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Applications such as those for systems
management and intrusion detection employ
an automated real-time operation system in
which sensor data are collected and
processed in real time. Although such a
system effectively reduces the need for
operation staff, it requires constructing and
maintaining correlation rules. Currently, rule
construction requires experts to identify
problem patterns, a process that is time-
consuming and error-prone. In this paper, we
propose reducing this burden by mining
historical data that are readily available.
Specifically, we first present efficient
algorithms to mine three types of important
patterns from historical event data: event
bursts, periodic patterns, and mutually
dependent patterns. We then discuss a
framework for efficiently mining events that
have multiple attributes. Last, we present
Event Correlation Constructor—a tool that
validates and extends correlation knowledge.

With advances in computer technology and sensor
technology, various applications employ automated
real-time, rule-based systems in which application-
critical data are collected from various sensors and
are processed and correlated based on predefined
rules for identifying problems, diagnosing their root
causes, and taking corrective action. Such applica-
tions include those used for computer availability and
performance management, intrusion detection, and
other surveillance tasks. In this paper, we focus on
the off-line data analysis for constructing and main-

taining correlation rules, and we apply our techniques
to systems management tasks.

Figure 1 illustrates the event management task for
a complex computer system and our vision of how
it can be improved. The area above the dashed line
depicts a typical on-line monitoring system such as
Tivoli’s TEC1 and CA’s Unicenter.2 A raw event is gen-
erated when the state of a device changes (e.g., the
router’s interface goes down) or an exceptional event
occurs (e.g., CPU utilization goes above 90 percent).
Raw events generated by various devices and sen-
sors flow into the event management system for au-
tomated operation (e.g., Reference 3), in which raw
events are parsed and stored. Then a correlation en-
gine uses correlation rules to interpret these events.
Some events are filtered, others are coalesced. Some
of them trigger notification mechanisms, such as
alarms and e-mails, and some trigger automatic re-
covery actions. Correlation rules are structured as
if-then statements. An example of a correlation rule
is the following:

If a “network card failure” event is followed by an
“interface failure” event occurring on a router,
within a five-minute window, then send an e-mail
to the network support supervisor.

The condition, or if part, describes a situation in
which actions are to be taken. The action, or then

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 0018-8670/02/$5.00 © 2002 IBM HELLERSTEIN, MA, AND PERNG 475



part, details what is to be done if the conditions of
the if part are satisfied. In our example, the action
to be taken is sending an e-mail for notification.

The if part of a rule is usually difficult to construct,
because we must know the situation to be addressed
before an action can be identified. Two broad ap-
proaches are used to specify the condition part of
rules. The first approach is based on models, such
as exploiting topology information to make infer-
ences about connectivity (see, for example, Refer-
ence 4). Even so, there remains a broad range of
problems that cannot be modeled easily. The sec-
ond approach is a knowledge-based approach, in
which human experts are consulted for constructing
correlation rules. For example, Thoenen et al.5 de-
veloped an event management and design method-
ology that has been widely used by IGS (IBM Global
Services) consultants over the past three years. The
core of this methodology is a graphic representation

called Event Relationship Network (ERN) that de-
scribes how events are correlated. For example, an
ERN graph can be used to represent the if part of
our previous example, in which “network card fail-
ure” and “interface failure” are drawn as two nodes,
and a link between these two events indicates that
these two events are correlated. More details are
found in the section “ERN constructor,” later in this
paper. Clearly, ERNs provide a means for an expert
to design correlation rules graphically at a higher
level, independent of a specific correlation engine.
In current practice ERNs are constructed manually
and may not always be complete or correct.

We describe in this paper an alternative approach—
data-driven rule construction—in which we apply
data mining in order to identify patterns used in con-
structing correlation rules. The lower part of Figure
1 illustrates the three components involved: Event
Browser, Event Miner, and Event Correlation Con-
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structor. Event Browser6 provides an interactive
environment for a user to visualize and explore large
volumes of event data. Event Miner7 employs data
mining techniques to automatically search for pat-
terns. Event Correlation Constructor takes as inputs
existing ERNs, if any, as well as the results of Event
Miner, and produces annotated ERNs that will be fur-
ther presented to domain experts to review and con-
struct correlation rules. Further, these tools are in-
tegrated to provide (A) seamless operation and early
insights through visualization, (B) pattern discovery
through event mining, and (C) assistance in knowl-
edge representation of ERNs. Preliminary results have
been reported previously. References 6 and 7 ad-
dress the system aspect of Event Browser and Event
Miner. Reference 8 discusses our early results of pat-
tern discovery. References 9 and 10 describe several
case studies. This paper provides a more systematic
treatment of the problems we address and the al-
gorithms employed. We also discuss how our data
mining approach can be used together with tradi-
tional knowledge-based approaches.

Specifically, we discuss pattern discovery from large
data sets of historical events. We define several types
of patterns that are pertinent to systems management
and propose algorithms for efficiently discovering
those patterns. We note here that there are some
key differences between our work and previous work,
especially regarding frequent pattern discovery and
frequent association rules11,12 in data mining. In ap-
plying data mining to systems management tasks, we
face some fairly unique challenges. For example, se-
vere operation problems are of great interest in this
domain. However, they do not occur frequently
enough in well-maintained production environments.
Hence the popular frequent itemset mining requires
different types of patterns that also address impor-
tant but less frequently occurring phenomena. Fur-
thermore, event data usually have multiple attributes,
usually from six to thirty. There is no apparent way
to transform event data to transactional data. Hence
this motivates us to propose a type of pattern that
explores all possible selections of attributes for
grouping and itemizing events.

We also discuss knowledge validation and comple-
tion from historical event data. This is important be-
cause considerable domain knowledge may be re-
quired to correlate event data. For example, ERNs
provide a graphic representation of event correla-
tion. To utilize existing correlation knowledge while
exploring historical data, we develop a mixed sys-

tem that is capable of validating existing knowledge
as well as constructing new knowledge.

The remainder of the paper is organized as follows.
In the next section we describe traditional data min-
ing and related work as they pertain to mining events.
Then we provide a motivating example and discuss
the unique aspects of event mining. In the section
that follows, we focus on the three main data pat-
terns and the algorithms used for their discovery. In
the next section we present a unified framework to
handle multiple attributes. In the section “ERN Con-
structor” we develop our method for validating cor-
relation knowledge. Our conclusions are contained
in the last section.

Overview of data mining

In this section we provide a brief overview of data
mining as it pertains to the analysis of event data.
We begin by describing the market-basket analysis,
the context in which data mining was first proposed.
Then, we discuss efficiency considerations, a topic
of particular importance given the large size of event
histories.

Market-basket analysis. Market-basket analysis13

originates from analyzing data from supermarkets,
in which each supermarket customer has a basket
of purchased goods. The main goal is to find asso-
ciation rules, according to which purchasing a set of
items indicates that another set of items is likely to
be also purchased. For example, as one early study
found, when diapers are purchased, beer is frequently
purchased as well. Association rules indicate a one-
way dependency. For example, purchasers of beer
are, in general, not particularly inclined to buy
diapers.

We introduce some notations. Let I be the set of
items that can be purchased. Thus, each market bas-
ket contains a subset of these items. We use T �
{Ti} i�1

N , where the i th transaction Ti � I, to denote
a set of N market baskets.

A key data mining problem is to find sets of items,
typically referred to as itemsets or patterns, with oc-
currences above a predefined threshold called min-
imum support (minsup). A second and closely re-
lated problem is prediction, in which we are looking
for patterns that have a high probability of predict-
ing that a given item will be in the same basket. The
metric used is “confidence,” and it is expressed as
a conditional probability.
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Generic level-wise search algorithm. A naive ap-
proach of frequent itemset mining is to exhaustively
examine every possible pattern. This is computation-
ally infeasible because the search space is huge,
O(n k) to be precise, where n is the number of dis-
tinct items and k is the maximal length of an item-
set. It is not uncommon that n can be 1000 or more.
Thus, this brute-force search is computationally in-
tractable even for modest k values.

Fortunately, the search for frequent patterns can be
made more efficient. Doing so rests on the follow-
ing observation: The support for a pattern E can be
no greater than the support for its subset. Put dif-
ferently, if one subset of E is not frequent, then E
cannot be frequent. This means that if we find a pat-
tern with low support, there is no need to consider
any pattern that contains that pattern. This property,
referred to as downward closure property14 or anti-
monotonicity,15 guarantees that we will not miss any
frequent pattern while eliminating search space
based on the current level. A level-wise search al-
gorithm called apriori11,13 was developed to efficiently
discover frequent patterns from large market-bas-
ket data. Clearly, such a level-wise algorithm can be
generalized to discover any type of pattern satisfy-
ing the downward closure property. Algorithm 1
shows a generic level-wise algorithm.

Algorithm 1: Generic level-wise algorithm

Input: Transaction data T
Output: All patterns

1. Find all qualified patterns of size 1: Q1; i � 2.
2. Ci � candidate patterns at level i based on qual-

ified patterns at level i � 1.
3. Scan data to obtain the count of each candidate

pattern in Ci .
4. Find qualified patterns at level i. Qi � {c�c �

Ci and c is qualified}.
5. i � i � 1; go to (2) until there is no more qual-

ified pattern.

A typical level-wise algorithm has four steps. The
initialization step finds qualified patterns with the
smallest size. This is often done by exhaustive search.
Then, the candidate patterns (Ci) are constructed
by using qualified patterns in the previous level. This
can be done through joining patterns in Ci�1 followed
by a pruning operation.13 Next, data are scanned to
count instances of candidate patterns. Some care is
needed here to efficiently count candidate patterns.
See Reference 13 for details. Last, the qualified pat-

terns (Qi) are found by checking the qualification
condition. For frequent patterns, we need only to
check whether the count of a candidate is above
minsup.

We note that the downward closure property holds
for some patterns and not for others. In particular,
downward closure does not hold for the confidence
of association rules and neither does the �2 test. Also,
we note that although we focus on level-wise search
algorithms in this paper, much work has been de-
veloped to improve the algorithm by exploring dif-
ferent search strategies (see References 16–18 and
references therein). All this work is built on the
downward closure property of frequent itemsets.

Related work. Our approach makes use of data min-
ing. Data mining is a mixture of statistical, machine
learning, and data management techniques that pro-
vides a way to mine categorical data so as to find in-
teresting combinations (e.g., the condition cold start
trap is often preceded by the condition CPU thresh-
old violated). Considerable work has been done in
mining transactional data (e.g., supermarket pur-
chases), much of which is based on References 11
and 13. For event data, time plays an important role.
Follow-on research has pursued two directions that
address this requirement. The first, sequential data
mining (see for example Reference 19), takes into
account the sequences of events rather than just their
occurrence. The second, temporal data mining (e.g.,
Reference 12), considers the time between event oc-
currences. Data mining has been applied to numer-
ous domains. Reference 20 discusses predictive
rules for capital markets. Reference 21 describes ap-
proaches to finding patterns in Web accesses. Ref-
erence 22 discusses prediction of defects in disk
drives. Reference 12 addresses sequential mining in
the context of telecommunications events. The last
one, although closely related to our interests, uses
event data to discover temporal associations, not to
identify characteristic patterns and their interpreta-
tion. Thus, although much foundational work has
been done in data mining and some consideration
has been given to mining event data, no one has stud-
ied the specific patterns that arise in enterprise event
management.

Event mining

Figure 2A is a scatter plot of event data collected
from a corporate intranet over a three-day period.
The events consist of SNMP (Simple Network Man-
agement Protocol) traps such as threshold violated,
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Reprinted with permission from J. L. Hellerstein and S. Ma, “Mining Event Data for Actionable Patterns,” Figures 2 and 3, Proceedings of the CMG 
2000 International Conference, December 2000, Orlando, FL, The Computer Measurement Group, Inc. (2000).
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Figure 2 Patterns in SNMP trap data

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 HELLERSTEIN, MA, AND PERNG 479



connection-closed, port-up, and port-down. The x-axis
represents time whereas the y-axis designates the
host where the event originated. There are 149 hosts,
numbered 1 through 149. A dot at ( x, y) means an
event occurred on host y at time x. Note that al-
though this plot contains a considerable amount of
information, few patterns are easily identifiable.

Figure 2B shows the same data, and the hosts are
algorithmically ordered in a way to reveal patterns
(the algorithms are described in References 23 and
24). Many of these patterns are used for construct-
ing correlation rules. For example, pattern 1 con-
sists of threshold violated and threshold reset events
that occur every 30 seconds. Such a pattern may be
indicative of hosts nearing their capacity limits. Pat-
tern 2 has a cloud-like appearance that consists of
port-up and port-down events generated as a result
of mobile users connecting to, and disconnecting
from, hubs. Such patterns are probably of little in-
terest to the operations staff and hence should be
filtered out since they represent normal behavior.
Pattern 3, consisting of events occurring every day
at 2:00 P.M., represents SNMP request and authenti-
cation failure events. This is most likely due to an im-
properly configured monitor. Pattern 4 is a series of
link-up and link-down events, the result of a software
problem on a group of hubs.

In a well-managed installation, errors are rare. Thus
months of data are needed to identify actionable ab-
normalities. The volume of data can be substantial.
For example, several installations we examined rou-
tinely collect five million events per week. Given the
large volume of data and the different time scales
at which patterns may be present, it is difficult to sys-
tematically identify patterns by relying only on vi-
sual inspection by a human. Clearly, automatic pat-
tern discovery is needed.

For event data, the previously described concept of
a market basket does not apply. However, each event
has a timestamp and so looking for patterns means
looking at events that co-occur within a time range.
These ranges may be time windows (either fixed or
variable size) or they may be contiguous segments
of data that are characterized in some other way. In
the data mining literature, this problem is referred
to as temporal mining or temporal association.12

It is usually the case that we are looking for patterns
related to problem-related situations, which occur
infrequently. The frequently occurring patterns in
systems management are usually related to normal

operation. This requires that patterns be defined dif-
ferently. In the next section we define three types of
patterns pertinent to system management tasks:
event burst, periodic pattern, and mutually depen-
dent pattern.

When dealing with event mining, we often need to
consider multiple attributes for characterizing mem-
bership in itemsets (or patterns). The event type at-
tribute describes the nature of the event. The event
origin attribute specifies the source of the event, a
combination of the host where the event originated
and the process and/or application that generated
the event. In addition to type and origin, there is a
plethora of other attributes that depend on these two,
such as the port associated with a port down event
and the threshold value and metric in a threshold
violated event. The section “Multiattribute frequent
pattern mining,” later, develops a framework and an
efficient mining algorithm for systematically explor-
ing patterns with various membership definitions.

When there exists rich domain knowledge, and es-
pecially correlation knowledge associated with sys-
tems management event data, the question arises,
how do we incorporate this knowledge in mining for
historical events? The section “ERN constructor”
presents a method and an implementation that val-
idate existing correlation knowledge and construct
new knowledge from historical data.

Patterns and pattern discovery algorithms

This section describes commonly occurring patterns
in systems management tasks as illustrated in Fig-
ure 2. Specifically, we discuss event bursts (patterns
3 and 4 in Figure 2B), periodic patterns (patterns 1
and 2), and mutually dependent patterns (pattern
3).

Event burst analysis. Event bursts (or event storms)
may arise under several circumstances. When a crit-
ical element fails in a network that lacks sufficient
redundancy (e.g., there is only one name server in
the network and it fails), communications are im-
paired thereby causing numerous cannot reach des-
tination events to be generated in a short time pe-
riod. Or, when a cascading problem occurs, such as
the one caused by a virus or by switching loads after
a failure, it may result in additional failures due to
heavier load.

Figure 3 provides a means for visual identification
of event bursts in our corporate intranet data. The
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plot in the lower left contains the raw data in the
same form as in Figure 2B. Given the coarse time
scale of the plot relative to the granularity of event
arrivals, there are many cases in which more than
one event occupies the same pixel. As a result, it is
difficult to discern event rates visually. We could drill
down to various sections of the plot to better deter-
mine event rates, but this is labor-intensive.

Instead, the upper left plot summarizes the rates of
events for a specific window size (as indicated in the
lower left). The table in the upper right of Figure
3 summarizes those situations in which large event
rates are present. This provides a convenient way to
select subsets of the data to study in detail.

Mining event bursts consists of two steps.

1. Finding periods in which event rates are higher
than a specified threshold

2. Mining for patterns common to the periods iden-
tified in Step 1

For Step 1, we proceed by first intervalizing the data.
Then, event rates within each interval are computed.
Those intervals in which rates exceed a specified
threshold are then identified. In Figure 2B, these in-
tervals are indicated by the vertical lines that lie
above the threshold (which is indicated by the hor-
izontal line).

Step 2 uses the intervals identified in Step 1 as the
market baskets of events. For example, mining the
three intervals with the largest event rates in Figure
3 finds the pattern SNMP request, Authentication

Figure 3 Event burst
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Failure. Note that the mining employed here is es-
sentially that performed by Algorithm 1. However,
our market baskets are just those intervals that have
high event rates.

Partially periodic event patterns. Periodic patterns
consist of repeated occurrences of the same event
or event set. Our experience has been that such pat-
terns are common in event data, often accounting
for one half to two thirds of the events present.

Periodic behaviors are common in networks. Two
factors contribute to this phenomenon. The first is
the monitoring model—when a managed element
emits a high-severity event, the management server
often initiates periodic monitoring of key resources
(e.g., router CPU utilization). The second is the rou-
tine scheduling of maintenance tasks, such as reboot-
ing print servers every morning or backing up data
every week.

Our experience with analyzing events in computer
networks suggests that periodic patterns often lead
to actionable insights. Indeed, a periodic pattern in-
dicates a persistent and predictable behavior, valu-
able in identifying and characterizing the periodic-
ity. In addition, the period itself often provides a
signature of the underlying phenomenon, thereby fa-
cilitating diagnosis. In either case, patterns with a
very low support are often of great interest. For ex-
ample, we found a one-day periodic pattern due to
a periodic port scan. Although this pattern only hap-
pens three times in a three-day log, it is a strong in-
dication of a potential intrusion.

Unfortunately, mining such periodic patterns is com-
plicated by several factors.

1. Periodic behaviors are not necessarily persistent.
For example, in complex networks, periodic mon-
itoring is initiated when an exception occurs (e.g.,
CPU utilization exceeds a threshold) and stopped
once exceptional situation is no longer present.
During the monitoring interval or on segment, the
monitoring request and its response occur peri-
odically. The off segment consists of a random gap
in the periodicity until another exceptional situ-
ation initiates periodic monitoring. This makes it
difficult to apply well-established techniques such
as the fast Fourier transforms.

2. There may be phase shifts and variations in the
period due to network delays, lack of clock syn-
chronization, and rounding errors.

3. Period lengths are not known in advance. This
means that either an exhaustive search is required
or there must be a way to infer the periods. Fur-
ther, periods may span a wide range, from mil-
liseconds to days.

4. The number of occurrences of a periodic pattern
typically depends on the period. For example, a
pattern with a period of one day has, at most,
seven occurrences in a week, whereas one with
a one-minute period may have as many as 1440
occurrences in a day. Thus, mining patterns with
longer periods requires adjusting support levels.
In particular, mining patterns with low support
greatly increases computational requirements in
existing approaches to discovering temporal as-
sociations.

In order to capture all the factors above, we employ
the concept of partially periodic temporal associa-
tion. We refer to it as a p-pattern. P-patterns gen-
eralize the concept of partial periodicity25 defined
by combining it with temporal associations (akin to
episodes in Reference 12) and including the concept
of time tolerance to account for imperfections in the
periodicities.

Figure 4 illustrates the structure of a partially pe-
riodic pattern. Such patterns consist of an on seg-
ment and an off segment. During the on segment,
events are periodic with a period of 3. No periodic
event is present during the off segment. Spurious
events (or noise) may arise during both on segments
and off segments.

Pattern 1 in Figure 2B is an example of a partial peri-
odicity. These partial periodicities contain two types

Figure 4 Partial periodicity

Reprinted with permission from S. Ma and J. L. Hellerstein, 
“Mining Partially Periodic Event Patterns with Unknown Periods,” 
Figure 2, Proceedings of the 2001 International Conference on Data 
Engineering (ICDE’01), Heidelberg, Germany, April 2001, IEEE, 
New York (© 2001 IEEE).
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of events: threshold violated and threshold reset. Here
the periodicities occur approximately every 30 sec-
onds, although some are closer to 28 seconds and
others are near 33 seconds.

Algorithm. Mining for p-patterns consists of two steps:
(1) finding period lengths for each event type; and
(2) finding temporal associations. Although a vari-
ation of level-wise search can be employed to ad-
dress the second subtask, the first subtask has not
been addressed (to the best of our knowledge). Our
approach to finding the periods of p-patterns is to
compute event interarrival times and then test if in-
terarrival counts exceed what would have been ex-
pected by chance. Note that a simple threshold test
is not sufficient here, since small interarrival times
are much more common than longer ones and hence
the threshold must be adjusted by the size of the in-
terarrival time. We address this by using a Poisson
distribution as our null hypothesis for the count of
events at specified interarrival times. A �2 test is used
to assess statistical significance. Next, we mine for
the patterns at each statistically significant interar-
rival time. This is done by level-wise search on each
interval that comprises each period. The details can
be found in Reference 26.

Results. Table 1 displays the results of mining p-pat-
terns in the corporate intranet data. The left-most
column indicates the number of events in the pat-
tern (i.e., size of the itemset). Note that patterns
range in size from 1 event to 13 events. Column two
specifies the number of candidate patterns searched
for each pattern size. Patterns are distinguished by
their host, event type, and period. Column three lists
the number of distinct p-patterns. The last two col-
umns specify the range of periods and the number
of occurrences of patterns listed in each row. Note
that the table includes each pattern only once (i.e.,
subpatterns are not listed).

Mutually dependent patterns. As we discussed be-
fore, in a systems management application, normal
behavior dominates; abnormal behavior, such as fail-
ures and intrusions, is rare. Thus, it is important to
discover infrequent patterns that relate to problem
situations. Consider the example in Reference 8 in
which the following events are generated on a rout-
er: network interface card failure, unreachable des-
tination, and cold start trap. The last event indicates
that the router has failed and restarted. If these
events commonly occur together, then the first two
may provide advance warning of an occurrence of
the third. In Figure 2B, pattern 4 is an m-pattern.

It consists of a combination of link down and link up
events.

One naive approach to mining for infrequent pat-
terns is to discover all frequent patterns (e.g., using
the apriori algorithm) with very low minimum sup-
port (minsup), and then apply postprocessing to dis-
cover significant patterns. This approach, however,
is impractical for finding infrequent patterns, because
the minimum support in the apriori algorithm must
be set very low, which in turn results in long pro-
cessing times as well as many irrelevant patterns that
must be examined. Irrelevant patterns (i.e., patterns
occurring simply by chance) are particularly prob-
lematic in real applications with a wide disparity in
the frequency of items. As an example, some events
have a very high probability of occurrence, such as
“connection closed” events issued by network hubs
that support the Dynamic Host Configuration Pro-
tocol (DHCP). As a result, there are a large number
of patterns that have “connection closed” in them
even though this event has little correlation with
other events.

With this background, we define an m-pattern to be
an itemset for which any subset is significantly mu-
tually dependent on all other subsets. That is, if any
subset of an m-pattern is present, the remaining items
occur with high probability. This is formalized26 as
follows.

Definition 1: A nonempty itemset E is an m-pattern
with minimum mutual dependence threshold minp,
iff

Table 1 Result of mining p-patterns

Itemset
Size

Candidate
Size

Distinct
p-patterns

Min:Max
Periods

Min:Max
Count

1 100 28 0:1-day 6:680
2 307 22 0:300 3:689
3 938 5 0:30 3:8
4 1917 1 4 3
5 3010 5 4 3
6 3525 3 4 3
7 3104 0
8 2057 2 4:1-day 3
9 1017 0

10 366 1 1 day 5
11 91 2 1 day 5
12 14 1 20 20
13 1 1 10 21

Reprinted with permission from S. Ma and J. L. Hellerstein, “Mining Partially
Periodic Event Patterns with Unknown Periods,” Table 3, Proceedings of the 2001
International Conference on Data Engineering (ICDE’01), Heidelberg, Germany,
April 2001, IEEE, New York (� 2001 IEEE).
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PD�E1�E2� � minp (1)

holds for any nonempty subsets E1 and E2 of E,
where 0 � minp � 1.

Note that this definition does not refer to a support
level. Thus, unlike frequent associations, m-patterns
will be discovered regardless of the frequency of their
occurrences. However, we note that it is quite rea-
sonable to consider frequent m-patterns that use
both minp and minsup.

Figure 5 compares m-patterns and frequent patterns.
Here, a, b, c, and d are events, and the intervaliza-
tion consists of two time units (as indicated by the
dashed lines). Suppose that: (1) the support thresh-
old for a frequent pattern is 40 percent (i.e., a pat-
tern must appear in 40 percent of the intervals to be
considered frequent) and (2) the m-pattern co-oc-
currence threshold is 60 percent. (The latter is much
higher because of the semantics of m-pattern.) Ob-
serve that the pattern {a, b} is frequent in that this
pattern occurs in 50 percent of the intervals. How-
ever, there are four cases in which a occurs but b
does not. Thus, {a, b} is not an m-pattern. Now con-
sider, {d, c}. This pattern is much less frequent than
{a, b} in that {d, c} occurs in only two of the eight
intervals, which is below the support threshold. How-
ever, whenever c or d occurs the other does as well.
Thus, {d, c} is an m-pattern.

M-patterns can be seen as basic semantic units one
level above events. Logically, the events in the pat-
tern can be treated as a group. So, from an analysis
perspective, it is desirable to coalesce an m-pattern
into a single event. This not only reduces the num-
ber of events, it also provides the opportunity for
higher level semantics (e.g., the m-pattern caused
by a router failure).

Algorithm. This section develops an efficient algo-
rithm for discovering all m-patterns. Efficiency is ob-
tained by addressing two issues: (1) how to test (qual-
ify) that an itemset is an m-pattern; (2) how to exploit
level-wise search.

For (1), if we use the definition of an m-pattern to
test for its presence, then the number of tests we must
make is exponential in the size of the pattern. Clearly,
this scales poorly. Fortunately, there is a way to sim-
plify matters.

Theorem 1: (Equivalent definition of m-patterns.)
An itemset E is an m-pattern as in Definition 2, iff

PD�E � �a���a�� � minp (2)

for every item a in E.

Following is the sketch of a proof. The necessary con-
dition is followed by m-pattern definition directly.
The sufficient condition can be proved by the fact
that

P�E1�E2� �
P�E1�E2�

P�E2�
�

P�E1�E2�

P�a�
�

P�E�

P�a�

� P�E � a�a� � minp

This equivalent definition provides a means to check
for the presence of an m-pattern in only linear time
of the length of E.

Second, observe that m-patterns have the downward
closure property. This is implied by Definition 1.
Since m-patterns are downward closed, a level-wise
algorithm (Algorithm 1) can be used. Conceptually,
we just need to use the m-pattern definition to qual-
ify a pattern (Theorem 1) in the fourth step of Al-
gorithm 1. Detailed elaboration of the algorithm and
the experimental evaluation can be found in Ref-
erence 27.

Results. We apply our algorithm for m-pattern dis-
covery to a set of operational data and compare the
results to those from mining frequent itemsets. We
fix minsup to be 3 so as to eliminate a pattern with
only one or two instances, and we vary minp. Our
results are reported in Figure 6A, which plots the
total number of m-patterns (the solid line) and the
number of border m-patterns (the dashed line)
against minp. Here, a border pattern refers to a pat-
tern that is not a subset of any other pattern. The

Figure 5 m-patterns vs frequent patterns
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x-axis is minp and the y-axis is the number of m-pat-
terns discovered on a log scale. Clearly, minp pro-
vides a very effective way to select the strongest pat-
terns in that the number of m-patterns discovered
drops dramatically as minp increases. Many of these
patterns have very low support levels. For example,
we found 59 border m-patterns with length from 2
to 5 in the data set when minp � 0.7. Half of these
patterns have support levels below 10.

Figure 6B reports the result of mining for frequent
patterns. Here the x-axis is minsup, and the y-axis
is the number of patterns found on a log scale. Note
that the number of frequent patterns is huge—in ex-
cess of 1000—even when minsup is 20. Examining
the frequent patterns closely, we find that most are
related to items that occur frequently, not necessar-
ily items that are causally related. This is not sur-
prising as the marginal distribution of items in our
data is highly skewed. Indeed, a small set of items
accounts for over 50 percent of total events and, con-
sequently, these items tend to appear in many fre-
quent patterns.

Multiattribute frequent pattern mining

In this section, we introduce a special class of pat-
terns, multiple attribute frequent patterns or maf-
patterns. The basic concept of maf-patterns follows
the apriori algorithm reviewed in the section “Ge-

neric level-wise search algorithm.” However, as pre-
viously mentioned, although events usually have mul-
tiple attributes, there is no obvious way of defining
transactions as well as labeling events as items. In
short, maf-patterns are designed in such a way that
all possible ways of grouping events to transactions
and labeling events to items are explored.

Table 2 shows a set of events collected from a pro-
duction environment. We made the following obser-
vations.

1. Host 23 generated a large number of Interface-
Down events on 8/21/00. Such situations may in-
dicate a problem with that host.

2. When Host 45 generates an InterfaceDown event,
Host 16 generates a CiscoLinkUp (failure recov-
ery) event within the same five-minute interval.
Thus, a Host 45 InterfaceDown event may pro-
vide a way to anticipate the failure of Host 16.

3. The event types NetworkManagerUp and Router-
LinkUp tend to be generated from the same host
and within the same minute. This means that
when a Cisco router recovers a link, it will dis-
cover that its midlevel manager is accessible.

4. Host 24 and Host 32 (not shown in Table 2) tend
to generate events with same severity in the same
day. This suggests a close linkage between these
hosts. If this linkage is unexpected, it should be
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investigated in order to avoid problems wherein
one host causes problems with the other host.

These patterns have been proven to be very useful
in systems management. However, two challenges
emerge, as one tries to build a system to discover
these patterns. First, we need a language that has
sufficient power to express the mining goals that pro-
duce the above patterns but is not so verbose that
it becomes computationally intractable. We need
such a language to define a problem space so that
we can explore that space and find all significant pat-
terns. We can see that it is not very difficult to write
programs to discover or verify each individual state-
ment. However, it is less clear how to discover all
these patterns through a systematic process. Second,
can the mining algorithm deal efficiently with many
attributes? As the field of frequent itemset mining
is mostly based on the apriori property,13,11 what are
the similar properties in this new problem that we
can utilize to speed up the mining process?

The maf-patterns go beyond fixed attribute mining
to mining directly from multiattribute data. We are
given data D with attributes A � {A1 , . . . , Ak}.
Thus, each record in D is a k tuple. For a given pat-
tern, a subset of these attributes is used to define
how transactions are grouped and another (disjoint)
subset of attributes determines the items. The for-
mer are called the grouping attributes, and the latter
are the itemizing attributes.

We begin with an example based on Table 2. Here,
k � 6. For pattern 3, the grouping attributes are Host
and Time; the itemizing attribute is EventType. The
pattern has length two, which means that a pattern
instance has two records. The items specified by
these records are determined by the value of the

EventType attribute. That is, one record must have
EventType � NetworkManagerUp and the other has
EventType � RouterLinkUp. Further, these records
must have the same value for their Host and Time
attributes. Records 7 and 8 form an instance of pat-
tern 3 with Host � 16 and Time � 3:16 A.M. Note that
items may be formed from multiple attributes. For
example, pattern 2 has the itemizing attributes Host
and EventType.

We use the term mining camp to provide the con-
text in which patterns are discovered. The context
includes pattern length (as in existing approaches),
grouping attributes, and itemizing attributes. For ex-
ample, pattern 3 has the mining camp (2, {Host,
Time}, {EventType}). Or, more formally, a mining
camp is a triple (n, G, S) where n is the number of
records in a pattern, G is a set of grouping attributes,
and S is the set of itemizing attributes.

Next, we formalize the notion of a pattern. There
are several parts to this. First, note that two records
occur in the same grouping if their G attributes have
the same value. Let r � D. We use the notation
�G(r) to indicate the values of r that correspond to
the attributes of G. Given a set of attributes G, two
records r1 and r2 are G-equivalent if and only if
�G(r1) � �G(r2).

In Table 2, records 7 and 8 are G-equivalent, where
G � {Host, Time}.

In maf-patterns, items are determined by the com-
binations of values of the attributes of S. Consider
pattern 2 for which we require one record with Event-
Type � InterfaceDown, Host � 45 and a second for
which EventType � CiscoLinkUp, Host � 16. Thus,
(InterfaceDown, 45) is one component (or item) of

Table 2 Systems management events

Rec Date Time Interval EventType Host Severity

1 08/21/00 2:12AM 2:10AM TcpCnnctClose 3 harmless
2 08/21/00 2:13AM 2:10AM InterfaceDown 45 severe
3 08/21/00 2:14AM 2:10AM InterfaceDown 23 severe
4 08/21/00 2:14AM 2:10AM InterfaceDown 5 severe
5 08/21/00 2:15AM 2:10AM InterfaceDown 24 severe
6 08/21/00 2:16AM 2:15AM CiscoLinkUp 16 harmless
7 08/21/00 3:16AM 3:15AM NetworkManagerUp 16 harmless
8 08/21/00 3:16AM 3:15AM RouterLinkUp 16 harmless
9 08/21/00 3:33AM 3:30AM InterfaceDown 45 severe

10 08/21/00 3:34AM 3:30AM CiscoLinkUp 16 harmless

Reprinted with permission from C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein, “FARM: A Framework for Exploring Mining Spaces with Multiple Attributes,” Figure 1,
Proceedings of the 2001 International Conference on Data Mining (ICDM’01), San Jose, CA, November 2001, IEEE, New York (� 2001 IEEE).
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the pattern and (CiscoLinkUp, 16) is the other com-
ponent. More formally, consider a mining camp (n,
G, S) where S � {S1 , . . . , Sm}. A pattern com-
ponent (also called a pattern item) is a sequence of
attribute values sv � �s1 , . . . , sm	 where s i � Si for
1 � i � m. p � {sv1, . . . , svn} is a pattern of length
n for this mining camp if each sv i is a pattern com-
ponent for S.

An instance of a pattern is a set of records that are
in the same grouping and whose itemizing attributes
match those in the pattern. Let p � {sv1 , . . . , svn}
be a pattern in mining camp (n, G, S) and let D be
a set of records. An instance of pattern p is a set of
n records R � {r1 , . . . , rn} such that r i � D and
�S(r i) � sv i for 1 � i � n, and r i and r j are G-
equivalent for all r i , r j � R.

Now we can define the concept of support in the maf-
pattern mining framework: given a mining camp (n,
G, S) and a set of records D that can be partitioned
into G-equivalent classes GEC1 , . . . , GECw , the
support of a pattern p is defined as �GEC1 �p � . . . ,
� �GECw �p where �GECi �p is the number of disjoint
instances of p in GECi for 1 � i � w.

We now have in place all of the definitions neces-
sary to discuss mining in the framework. First, note
that if G and S are fixed, then we have the tradi-
tional fixed attribute data mining problem. Here,
downward closure of the pattern length is used to
look for those patterns in (n � 1, G, S) for which
there is sufficient support in (n, G, S).

In maf-pattern mining, G and S need not be fixed.
In essence, a separate search is done for each com-
bination of G, S. This scales poorly. In particular,
the number of permitted combinations of G and S
is 3 k � 2 k, where k is the number of attributes (which
follows from observing that Ai may be in G, S, or
neither and eliminating the 2 k cases for which
S � �).

We propose the following ways for connecting min-
ing camps. Given a mining camp c � (n, G, S) and
an attribute Ai � G � S then

1. (n � 1, G, S) is the type-1 successor of c.
2. (n, G � {Ai}, S) is a type-2 successor of c.
3. (n, G, S � {Ai}) is a type-3 successor of c.

Figure 7 depicts the predecessor/successor relation-
ships. The root precedes all other mining camps. (In
this case, it is not a real camp since S � �.) The level

of mining camp (n, G, S) is defined as n � �G� �
�S�. Since n is at least 1 and S is nonempty, a min-
able mining camp has level no less than 2. We struc-
ture the mining camps so that the successor relation-
ships only exist between mining camps at different
levels. This imposes a partial order. Figure 7 is an
example of a mining space. More formally, a mining
space MS(c) is a partially ordered set (poset) of min-
ing camps containing c and all of its successors.

To make the notation more readable, we use MS(n,
G, S) to denote MS((n, G, S)).

Algorithm. This section shows that several types of
downward closure can be present in the maf-pattern
mining framework. Exploiting these properties pro-
vides considerable benefit in terms of efficiency. We
begin by presenting the main theorem of the frame-
work.

Theorem 2: Given a mining camp c � (n, G, S)
such that the support of a pattern p � {sv1 , . . . ,
svn} is less than 
.

1. For any type-1 successor of c, any pattern that is
a superset of p has support less than 
.

2. The support of p in any of type-2 successor of c
is less than 
.

3. The support of pattern p� � {sv�1 , . . . , sv�n} of
any type-3 successor of c is less than � if sv i �
sv�i for all 1 � i � n.

Reprinted with permission from C.-S. Perng, H. Wang, S. Ma, and  
J. L. Hellerstein, “FARM: A Framework for Exploring Mining 
Spaces with Multiple Attributes,” Figure 3, Proceedings of the 2001 
International Conference on Data Mining (ICDM’01), San Jose, CA, 
November 2001, IEEE, New York (© 2001 IEEE).
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Figure 7 A mining space
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Downward closure properties are the foundation of
our algorithm as they are in traditional (fixed at-
tribute) mining for frequent itemsets. The more
downward properties the mining algorithm uses, the
greater the efficiencies that can be realized in min-
ing.

Applications. The framework of maf-pattern min-
ing provides twofold benefits. First, it significantly
improves the performance of frequent itemset min-
ing on data with multiple attributes. The problem of
mining data with multiple attributes is hard because
the number of possible mining camps grows expo-
nentially with the number of attributes. The down-
ward closure properties covered in this section can
greatly reduce the computation time. Second and
more important, maf-pattern is a notion that unifies
frequent itemset mining and aggregation queries. For
those mining camps with n � 1, the results are ag-
gregations. Here are some examples:

1. The mining camp (1, �, {Host}) produces a list
of hosts that generate a large number of events.

2. The mining camp (1, {Interval}, {EventType})
finds all event types that tend to be bursty.

3. The mining camp (1, {Interval}) outputs the busi-
est moments in a day.

When n � 1, the results are frequent itemset min-
ing. Here we show an example that is particularly
interesting in systems management. The mining
camp (n, {Interval}, {Host}) finds the groups of hosts
that tend to emit events at the same time. Further-
more, (n, {Interval, EventType}, {Host}) finds the
groups of hosts that tend to encounter the same prob-
lems at the same time, and implies there is some sort
of correlation among hosts in the same group.

The expressive power of maf-patterns can even go
beyond the above examples by defining more derived
attributes. For example, Interval is a derived attribute
in Table 2. Intervals of other lengths can also be used.
Network topologies can also be used to add attributes
like Network Segment, Subnet, and Functionality.
See Reference 28 for a more detailed discussion.

Event Relationship Network constructor

The Event Relationship Network is becoming a pop-
ular graphical representation of event correlation.
In this section, we first introduce the ERN and the
architecture of Event Correlation Constructor (ECC)
and describe how domain experts can work with it.
Next we present a statistical interpretation of the

graphical model. Last, we discuss the application of
Event Correlation Constructor in a case study.

Our approach to describing correlation logic uses the
conceptual framework of ERN. An ERN is a directed
acyclic graph. Nodes are events and are labeled with
the role of the event within the case. Arcs from one
event to the next indicate that the latter is associ-
ated with the former.

A simple event relationship network for a Cisco
router is shown in Figure 8. The Cisco monitoring
agent emits minor and major alarms for power sup-
ply device when the device is encountering an ab-
normal situation. As the status backs to normal, the
monitoring agent emits AlarmOff events.

We now introduce a key concept: event roles. An
event plays a primary role (is a primary event) if it
provides an immediate, often unambiguous, indi-
cation as to the corrective action to take. For exam-
ple, if a warning trap is the first event in the cor-
relation case, then it is a primary event. Proactive
management uses the receipt of a primary event
to trigger a first level of response. Referring to Fig-
ure 8 the role of the chassisMinorAlarmPS1 and
chassisMinorAlarmPS2 event is primary within the
context of this example correlation case.

An event plays a secondary role (is a secondary
event) if it is always extraneous in terms of selecting
the corrective action in an exceptional situation. Al-
though secondary events do not affect the choice of
correct action, they may invoke actions of their own.

If events were always either primary or secondary,
then correlation would be much less complex. How-
ever, in a large number of cases, the role of an event
depends on context within the correlation case.
Events that may be either primary or secondary are
called primary/secondary events. Within our exam-
ple correlation case two events act in the role of
primary/secondary, the chassisMinorAlarmOff and
chassisMajorAlarmOff events.

ERNs play a central role in building event correla-
tion rules. Event correlation rules in most correla-
tion engines—for example, Tivoli event console—are
in the form of Event-Condition-Action. The structure
of an ERN and the event roles of events can be trans-
lated to the event and condition part of correlation
rules. With an action template provided by users,
usually a means to notify system administrators, each
ERN can be translated to a set of correlation rules.
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ECC usage scenarios. The ECC is capable of work-
ing in three modes.

1. ERN validation: In situations where there are ex-
isting ERNs, either constructed previously or from
other similar production environments, the ECC
can validate the existing ERNs against historical
event log from the environment.

2. ERN completion: For a given ERN, it identifies in-
correct links. This completion process is done in
an iterative manner. In each iteration, all event
types correlated to any event types in current ERNs
are attached with corresponding links. The pro-
cess proceeds until no more event type can be
added.

3. ERN construction: In situations where no exist-
ing ERN can be used as the starter set, the ECC
is responsible for generating ERNs for subject mat-
ter experts to review. ERN construction can be
treated as a special case of ERN completion where
no ERN is available.

Figure 9 shows how domain experts and ECC can
work together in an iterative fashion to produce high
quality ERNs. There are two general cases. When the
ERN Starter Set exists, then the ERN validation and
completion modules are used; otherwise, the ERN
construction module is used. The resulting ERNs are
then reviewed by domain experts and the process re-
peated until the ERNs obtained are satisfactory. Then,
the ERNs are translated into correlation rules for real-
time monitoring (Figure 1).

A statistical view of ERNs. Now we need to estab-
lish a notion of validity of ERNs. We propose here
a quantitative method that combines event count-
ing and statistical testing to justify whether an ERN
is valid based on the event history.

Given a predefined window length w, for each link
( A, B) we compute the following statistics ConfAB �
�NA , PB�A , �AB	.

1. NA: The total number of occurrences of event type
A. NA indicates whether the event type A as well
as the link are worth including in an ERN. In a
sense, NA represents the possible cost of apply-
ing incomplete ERN. The cost of processing these
redundant trouble tickets caused by missing link
( A, B) is proportional to NA . So for large NA ,
it is suggested to include the link if other statis-
tics also indicate high correlation. For small NA ,
the cost is a judgment call for the domain experts.

2. PB�A : The conditional probability that an occur-
rence of event type A is followed by an occurrence
of event type B within time no later than w. This
is defined as:

number of windows containing both A and B
the number of windows containing A

3. �AB : The dependence test score of ( A, B) cou-
pling, which indicates the deviation of A and B’s
distribution from random distribution. High �

chassisMinorAlarmOff

chassisMinorAlarmPS1 chassisMajorAlarmPS1

Cisco_Cold_Start

chassisMinorAlarmPS2

chassisMajorAlarmPS2

CLEARING

PRIMARY

CLEARING

SECONDARY PRIMARY SECONDARY

chassisMajorAlarmOff

CLEARING

Figure 8 ERN for Cisco chassis
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score indicates it is likely that the correlation of
the two events is not due to randomness.

The dependence test score is defined through the
following statistics. The probability of observing an
event A in a window is PA � NA /T where T is the
time covered in the log. The expected probability of
finding both event A and event B in a window with
event A occurring before event B is E(PAB) � PA 

PB / 2. The actual probability of finding both event
A and event B in a window with event A occurring
before event B is PB�A � NAB / 2T where NAB is the
number of ( A, B) event pairs. The variance of co-
occurrences of event A and event B is defined as
VARAB � (PAB(1 � PAB))/T. The dependence test
score is defined as �AB � (PB�A � E(PAB)) 2/VARAB .

Thresholds of link confidence are also in the form
of a triple �Nt , Pt , � t	 such that a link ( A, B) is valid
if NA � Nt , PAB � Pt and �AB � � t . Note that it
is possible that both links ( A, B) and (B, A) are
valid. In such cases, we suggest the direction of link
( A, B) should be from A to B if PB�A � PA�B , oth-
erwise, the direction should be from B to A.

Application. The ERN in Figure 10, which was cre-
ated by an IBM consultant team for a large financial
services company, is annotated with validation sta-
tistics. The count, NA , appears as a label adjacent

to each node. For each link ( A, B), (PB�A , �AB) and
(PA�B , �BA), in this order, appear as labels on the
link.

When domain experts drew the ERN shown in
Figure 8, they interpreted MinorAlarms and
MajorAlarms as different stages of the same under-
lying problem. Correspondingly, AlarmOff events
indicate the problem has been cleared. Also, Cisco_
Cold_Start, as the event name implies, should clear
all alarms.

The statistics shown in Figure 10 contain some sur-
prising results. First, while the number of major
alarms in the event log is considerable (760 for power
supply 1 and 16 for power supply 2), minor alarms
never occur prior to major alarms, or more accu-
rately, minor alarms never occur. Second, the
Cisco_Cold_Start event has no correlation with any
of the alarm events. We consulted the original de-
signers of the ERN and found that both cases are due
to design errors. In the first case, the minor alarms
and major alarms are actually assigned to indicate
problems of very different nature instead of differ-
ent severities. In the second case, the designers al-
ready doubted the correlation between the Cisco_
Cold_Start event and alarm events, but there was
no way to check out the correlation at the time. So

EXISTS NOT SATISFIED

ERN STARTER SET

DOES NOT EXIST

VERIFIED ERN

SATISFIED

EXPERT REVIEW

ERN VALIDATION
COMPLETION

EVENT
THROTTLING

ERN
CONSTRUCTION

CORRELATION
RULES

EVENT LOGS

Figure 9 Process of ERN validation, completion, and construction
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they included the event in this ERN because the cost
of making this type of error is smaller.

There are undoubtedly some constraints in using
event data to validate, complete, and construct ERNs.
The most noticeable one is the inability to construct
and refute the correlations that are not shown in
event logs. However, ECC does provide significant
improvement in ERN qualities and reduction of the
cost of ERN construction.

Conclusions

Event management is the foundation of systems
management. Over the last 15 years, automated op-
erations based on the use of correlation rules for in-
terpreting event patterns has lead to increased op-
erator productivity. Although productivity has
improved, a substantial bottleneck remains, namely
determining the correlation rules.

In this paper we describe how data mining can be
used to identify patterns of events that indicate un-

derlying problems. In particular, we identify several
patterns of interest to event management: event
bursts, periodicities, and mutual dependencies. We
provide interpretations for each, and we show how
pattern discovery can be structured to exploit a level-
wise search, thereby improving scalability. Scalabil-
ity is particularly important because, as experience
shows, tens of millions of events may need to be an-
alyzed in order to discover actionable patterns.

We also address the issue of related multiple at-
tributes of events. We develop here a framework that
provides a means to systematically and efficiently ex-
plore patterns with different membership definitions.
Last, we present the Event Correlation Constructor,
a tool that can validate existing correlation knowl-
edge and further construct such knowledge.
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