
Architectures for
intelligent systems

by J. F. Sowa

People communicate with each other in
sentences that incorporate two kinds of
information: propositions about some subject,
and metalevel speech acts that specify how
the propositional information is used—as an
assertion, a command, a question, or a
promise. By means of speech acts, a group
of people who have different areas of
expertise can cooperate and dynamically
reconfigure their social interactions to perform
tasks and solve problems that would be
difficult or impossible for any single individual.
This paper proposes a framework for
intelligent systems that consist of a variety of
specialized components together with logic-
based languages that can express
propositions and speech acts about those
propositions. The result is a system with a
dynamically changing architecture that can be
reconfigured in various ways: by a human
knowledge engineer who specifies a script of
speech acts that determine how the
components interact; by a planning
component that generates the speech acts to
redirect the other components; or by a
committee of components, which might
include human assistants, whose speech acts
serve to redirect one another. The
components communicate by sending
messages to a Linda-like blackboard, in
which components accept messages that are
either directed to them or that they consider
themselves competent to handle.

In the years since its founding conference in 1956,
the field of artificial intelligence (AI) has generated
an impressive collection of valuable components, but
no comparably successful architecture for assembling
them into intelligent systems. As examples, the fol-
lowing list illustrates the range of AI components that
were designed and implemented in the 1950s and
1960s:

Parsers, theorem provers, inference engines,
search engines, learning programs, classification
tools, statistical tools, neural networks, pattern
matchers, problem solvers, planning systems,
game-playing programs, question-answering sys-
tems, dialog managers, machine-translation sys-
tems, knowledge acquisition tools, modeling tools,
and robot guidance systems

Over the past 40 years, the performance, reliability,
and generality of these components have been vastly
improved. Their theoretical foundations are much
better understood, and they have found their way
into applications that are no longer considered part
of AI. Yet despite attempts to integrate the compo-
nents into general-purpose intelligent systems, the
results are disappointing: the commercially success-
ful systems are limited to special-purpose applica-
tions, and the more general systems have not pro-
gressed beyond the stage of clever demos. Nothing
remotely resembling the HAL computer in the movie
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2001: A Space Odyssey exists today, and there are no
credible designs for building one soon.

The lack of progress in building general-purpose in-
telligent systems could be explained by several dif-
ferent hypotheses:

1. Simulating human intelligence on a digital com-
puter is impossible.

2. The ideal architecture for true AI has not yet been
found.

3. Human intelligence is so flexible that no fixed ar-
chitecture can do more than simulate a single as-
pect of what is humanly possible.

Many people have presented strong, but not com-
pletely convincing arguments for the first hypothe-
sis.1,2,3 In the search for an ideal architecture, others
have implemented a variety of, at best, partially suc-
cessful designs. The purpose of this paper is to ex-
plore the third hypothesis: propose a flexible mod-
ular framework that can be tailored to an open-ended
variety of architectures for different kinds of appli-
cations. The tailoring could be done either by a hu-
man knowledge engineer who uses specialized AI
languages or by semiautomated design tools in col-
laboration with a human editor who has little or no
training in AI. Such a system would not be as intel-
ligent as HAL, but it should be valuable for a wide
range of important applications.

The idea of a flexible modular framework (FMF) is
not new. It is, in fact, the underlying philosophy of the
UNIX** operating system and its descendants. That
philosophy is characterized by four design principles:

1. There is a small kernel that provides the basic ser-
vices of resource allocation and process manage-
ment.

2. There is a large, open-ended collection of highly
modular utilities that can be used by themselves
or combined with other modules.

3. Glue languages, also called scripting languages,
are used for linking modules to form larger mod-
ules or complete applications.

4. There is a uniform data representation, based on
character strings, that constitutes the storage for-
mat of UNIX files and the content transmitted by
UNIX pipes.

The first three principles are as valid today as they
ever were, but the fourth has been modified to ac-
commodate modules that require data with more
structure than linear strings, especially database man-

agement systems (DBMSs) and graphical user inter-
faces (GUIs). UNIX systems implement the DBMS and
the GUI as independent modules, but their nonlin-
ear data structures cannot be communicated via
pipes. Other operating systems make different com-
promises: the IBM AS/400* implements the DBMS in
the kernel, and the Macintosh** and Microsoft Win-
dows** systems implement the GUI in the kernel.

The LISP language, which was the primary language
of AI since the late 1950s, pioneered techniques that
entered the mainstream of commercial computing
when they were adopted by other languages ranging
from PL/I (programming language one) to Java**.
For AI systems, LISP served as both an implemen-
tation language and a glue language for AI compo-
nents and complete systems. Unlike the UNIX char-
acter strings, the basic data structures of LISP consist
of tree-like lists, which can be supplemented with
cross links to form arbitrary graphs. During the 1970s
and 1980s, the trees and graphs of LISP proved to be
rich enough to support the operating systems of the
LISP machines with their stunning graphics. Those
graphics techniques, which were invented at Xerox
PARC (Palo Alto Research Center), have been cop-
ied in all modern GUIs, including those of the Macin-
tosh and Windows.

Although LISP was, and still is, a highly advanced pro-
gramming language, it is not by itself a knowledge
representation (KR) language. The Prolog language
is a step closer to a KR language. It supports the same
kinds of data structures as LISP, but it has a built-in
inference engine for the Horn-clause subset of logic,
which can be used to express the rules of an expert
system or the grammars of natural languages. For
many applications, Prolog has been used as a KR lan-
guage, either directly or with some syntactic sugar
to make its notation more palatable. Yet Prolog still
has limitations that make it unsuitable as the glue
language for intelligent systems: procedural depen-
dencies, a nonstandard treatment of negation, and
the limited expressive power of Horn-clause logic.
Like LISP, Prolog is better suited to implementing
the components of intelligent systems than repre-
senting the knowledge they process.

The most promising candidate for a glue language
is Elephant 2000, which McCarthy4 proposed as a
design goal for the AI languages of the new millen-
nium. Sentences in the Elephant language include
“requests, questions, offers, acceptances of offers, per-
missions as well as answers to questions and other as-
sertions of fact. Its outputs also include promises and
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statements of commitment analogous to promises.”
As an inspiration for Elephant, McCarthy cited the
speech acts of natural languages,5,6 but he believed
that Elephant sentences should be written in a for-
mally defined version of logic, rather than the much
more informal natural languages. UNIX only supports
one kind of speech act: a command that invokes some
program. The UNIX scripting languages add loops
and conditionals, which determine the sequence of
commands to execute. Prolog supports two kinds of
speech acts: assertions for stating facts and goals for
issuing commands or asking questions. Besides those
special cases, Elephant provides a framework that
can support the full range of speech acts described
in Reference 5.

Although the glue language for intelligent systems
should be at a higher level than the scripting lan-
guages of UNIX, the four design principles of the UNIX
philosophy can serve as guidelines. Following are AI
generalizations of the four principles:

1. Like the UNIX kernel, an AI kernel must support
resource allocation and process management. But
unlike UNIX, which invokes a specific module for
each command, an AI kernel should have a pat-
tern-directed or associative method for determin-
ing when a module should be invoked. In many
AI systems, a blackboard or bulletin board is used
to post messages, which any appropriate compo-
nent can access when it detects a characteristic
pattern. The Linda language7 is an example of
an efficient blackboard system that has been
widely used for scheduling parallel computations
by clusters of computers.

2. Like UNIX, an AI system should have an open-
ended collection of modular components, but the
components should be traditional AI tools of the
kind developed over the past 40 years. New kinds
may also be needed, but they could also be in-
voked by a glue language like Elephant in com-
bination with a Linda-like blackboard. More con-
ventional components, such as a DBMS, GUI, and
various networks, could be invoked by the same
mechanisms. The Jini** system of Java, for ex-
ample, uses a version of the Linda operators for
invoking components distributed across a net-
work.

3. An AI glue language, as McCarthy emphasized,
should be based on a version of logic that is rich
enough to include all first-order logic plus meta-
levels that can talk about the object level and state

whatever speech act is intended. Two such lan-
guages are conceptual graphs (CGs) and the
Knowledge Interchange Format (KIF), which are
being standardized as logically equivalent nota-
tions for the same model-theoretic foundations.
Other versions of logic, which are discussed in the
section on expressive power and computational
complexity, can be translated to or from subsets
of CGs and KIF. For communication with people
who are not logicians, those logics can also be
translated to or from versions of controlled nat-
ural languages (CNLs), which can serve as read-
able notations for the underlying logic.

4. Instead of the linear character strings stored in
files and transmitted by pipes, logic provides a
much richer notation that can represent all the
data structures needed for a DBMS, GUI, or net-
work protocol. The messages posted to a Linda-
like blackboard could include any logical expres-
sion, which in extreme cases might represent an
arbitrarily large graph or even the conjunction of
any or all the data in a DBMS. The metalevel ca-
pabilities of logic, which can represent any desired
speech act, can state what should, would, could,
or must be done with the data.

This paper shows how a framework based on these
four principles can support a family of architectures
that can easily be tailored for different kinds of ap-
plications. The next section discusses three logically
equivalent notations for an Elephant-like glue lan-
guage: controlled natural language for the human
interface; conceptual graphs for components that use
graph-based algorithms; and KIF for components that
use other notations for logic. The section “Using con-
trolled natural languages” surveys the use of CNLs
as a front end to AI systems. The section “Graph al-
gorithms” shows how graph algorithms can simplify
or clarify the techniques for searching, querying, and
theorem proving. The section “Expressive power and
computational complexity” discusses techniques for
handling the computational complexities in differ-
ent applications of logic. Finally, the section “A flex-
ible modular framework” discusses the kinds of com-
ponents needed for a flexible modular framework
and how a glue language communicating through a
blackboard can be used to combine them, relate
them, and drive them.

Notations for logic

McCarthy’s Elephant language requires a highly ex-
pressive version of logic, but he did not propose any
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particular notation for it. Although various nota-
tions—graphical, linear, or CNL-like—can express
equivalent semantic information, the choice of no-
tation can have a major influence on both the hu-
man interfaces and the kinds of algorithms used in
the computations. This section illustrates three no-
tations for logic: conceptual graphs, KIF, and con-
trolled natural languages. All three of them can ex-
press exactly the same semantics in logically
equivalent ways, but they have complementary
strengths and weaknesses that make them better
suited to different kinds of tasks. Any or all of them
could be used in messages passed through a Linda-
like blackboard.

For his syllogisms, the first version of formal logic,
Aristotle defined a highly stylized form of Greek,
which became the world’s first controlled natural lan-
guage. During the Middle Ages, Aristotle’s sentence
patterns were translated to controlled Arabic and
controlled Latin, and they became the major form
of logic until the twentieth century. Table 1 lists the
names of the four types of propositions used in syl-
logisms and the corresponding sentence patterns that
express them.

With letters such as A and B in the sentence pat-
terns, Aristotle introduced the first known use of var-
iables in history. Each letter represents some cate-
gory, which the Scholastics called praedicatum in
Latin and which became predicate in English. If nec-
essary, the verb form is may be replaced by are, has,
or have in order to make grammatical English sen-
tences. Although the patterns may look like English,
they are limited to a highly constrained syntax and
semantics: each sentence has exactly one quantifier,
at most one negation, and a single predicate that is
true or false of the individuals indicated by the sub-
ject.

Although Aristotle’s syllogisms are the oldest ver-
sion of formal logic, they are still an important sub-
set of logic, which forms the foundation for descrip-

tion logics, such as DAML and OIL. For frame-like
inheritance, the major premise is a universal affir-
mative statement with the connecting verb is; the mi-
nor premise is a universal or particular affirmative
with is, has, or other verbs. Many constraints for a
DBMS or an expert system can be stated as a univer-
sal negative statement with any of the verbs. For con-
straint checking and constraint inheritance, the ma-
jor premise is the constraint, and the minor premise
is a statement in one of the other three patterns.

Another important version of logic is the Horn-
clause subset, which is widely used for defining ex-
pert system rules and SQL (Structural Query Lan-
guage) views. The basic syntax has an if-then pattern:
the if-part of the rule is a conjunction of one or more
statements, which may have some negations; the
then-part is a conjunction of one or more statements,
which may not have negations. Following are two
such rules for a library database, written in Attempto
Controlled English:8,9

If a copy of a book is checked out to a borrower
and a staff member returns the copy

then the copy is available.
If a staff member adds a copy of a book to the library

and no catalog entry of the book exists
then the staff member creates a catalog entry

that contains the author name of the book
and the title of the book
and the subject area of the book

and the staff member enters the id of the copy
and the copy is available.

The Attempto system translates these rules to an ex-
ecutable form in Prolog. Anyone who can read En-
glish can read controlled English as if it were En-
glish, but controlled languages are formal languages
that require some training for an author to stay within
their limitations. Tools have been developed that can
help an author translate full natural language to a
CNL.

In the late nineteenth century, three logically equiv-
alent, but structurally very different notations for
first-order logic (FOL) were developed. The first was
the tree-like Begriffsschrift by Frege,10 and the sec-
ond was the algebraic notation by Peirce.11,12 With
minor modifications by Peano,13 Peirce’s version be-
came the most commonly used notation for logic dur-
ing the 20th century. The third notation was Peirce’s
existential graphs of 1897, which he called his chef
d’oeuvre. KIF is a sorted version of Peirce’s algebraic
notation, and conceptual graphs are a sorted version

Table 1 Four types of propositions used in syllogisms and
corresponding sentence patterns

Type Name Pattern

A Universal affirmative Every A is B.
I Particular affirmative Some A is B.
E Universal negative No A is B.
O Particular negative Some A is not B.
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of Peirce’s graph notation. For comparison, Figure
1 is a CG representation of the controlled English
sentence, John is going to Boston by bus.

The boxes in Figure 1 are called concepts, and the
circles are called conceptual relations. The default
quantifier for each concept is the existential, which
says that something of the specified type exists; the
concept [City: Boston] means that there exists a city
named Boston. Each conceptual relation has one or
more arcs: (Agnt) links a concept that represents an
action to the concept that represents its agent; (Inst)
links the action to its instrument; and (Dest) links
an action that involves motion to its destination. All
the relations in Figure 1 are dyadic, but in general,
a conceptual relation may have any number of arcs.

Although the display form is quite readable, it is not
easy to type or to transmit across a network. There-
fore, two interchange formats have been developed:
the Conceptual Graph Interchange Format (CGIF)
maps directly to and from the display form; and the
Knowledge Interchange Format (KIF) maps directly
to and from the algebraic notation for predicate cal-
culus. Following is the CGIF representation of Fig-
ure 1:

[Go: *x] [Person: 'John' *y] [City: 'Boston' *z] [Bus: *w]
(Agnt ?x ?y) (Dest ?x ?z) (Inst ?x ?w)

This statement captures every detail of the display
form except the two-dimensional layout, which is not
semantically relevant. If desired, the layout informa-

tion could be included as structured comments in-
side the brackets and parentheses that enclose the
nodes of the graph. The connections between con-
cepts and relations, which are shown directly by the
arcs of the graph in Figure 1, are shown indirectly
by labels, such as ?x and ?y in CGIF. Those labels are
translated to variables in KIF, as in the following ex-
ample:

(exists ((?x go) (?y person) (?z city) (?w Bus))
(and (name ?y John) (name ?z Boston)

(agnt ?x ?y) (dest ?x ?z) (inst ?x ?w)))

KIF notation is used for many theorem provers and
inference engines that are based on predicate cal-
culus. The translations between KIF and CGIF pre-
serve the semantics: a mapping from KIF to CGIF and
back to KIF might not generate an identical state-
ment, but it will generate a statement that is logi-
cally equivalent.

KIF and conceptual graphs can represent the full
range of operators and quantifiers of first-order logic,
and they have been extended with metalevel features
that can be used to define extensions to FOL, includ-
ing modal logic and higher-order logic. The meta-
level features are necessary for representing the
speech acts of Elephant 2000, which uses logic to talk
about the use of logic. In natural languages, meta-
levels are marked by a variety of syntactic features
that delimit the context of the metalanguage from
the context of the object language. The most obvi-
ous delimiters are quotation marks, but similar con-
texts are introduced by verbs that express what some

Dest City: Boston

Inst

Bus

AgntPerson: John Go

Figure 1 A conceptual graph in the display form
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agent says, thinks, believes, requests, wants, prom-
ises, or hopes. As an example, the following English
sentence contains two nested levels, which are en-
closed in brackets for emphasis:

Tom believes [Mary wants [to marry a sailor]].

This sentence is represented by the CG in Figure 2.

The context of Tom’s belief is represented by a con-
cept of type Proposition, which contains a nested CG
that states the proposition. The context of Mary’s
desire is represented by a concept of type Situation,
which is described by a proposition that is stated by
the nested CG. The (Expr) relation represents the
experiencer of a mental state, and the (Thme) re-
lation represents the theme. In general, the theme
of a belief or an assertion is a proposition, but the
theme of a desire must be something physical, such
as a situation. Following is the CGIF equivalent of
Figure 2:

[Person: *x1 'Tom'] [Believe *x2] (Expr ?x2 ?x1)
(Thme ?x2 [Proposition:

[Person: *x3 'Mary'] [Want *x4] (Expr ?x4 ?x3)
(Thme ?x4 [Situation:

[Marry *x5] (Agnt ?x5 ?x3)
(Theme ?x5 [Sailor]) ]) ])

And following is the equivalent KIF statement.

(exists ((?x1 person) (?x2 believe))
(and (name ?x1 Tom) (expr ?x2 ?x1)

(thme ?x2
(exists ((?x3 person) (?x4 want)

(?x8 situation))
(and (name ?x3 Mary) (expr ?x4 ?x3)

(thme ?x4 ?x8)
(dscr ?x8 (exists ((?x5 marry)

(?x6 sailor))
(and (agnt ?x5 ?x3)

(thme ?x5?x6)))))))))

The context boxes delimit the scope of quantifiers
and other logical operators. The sailor, whose ex-
istential quantifier occurs inside the context of Mary’s
desire, which itself is nested inside the context of
Tom’s belief, might not exist in reality. Following is
another sentence that makes it clear that the sailor
does exist:

There is a sailor that Tom believes Mary wants to marry.

This sentence corresponds to the CG in Figure 3.

The English sentence mentions the sailor before in-
troducing any verb that creates a nested context.

Figure 2 A conceptual graph with two nested contexts

PROPOSITION

SITUATION

Sailor

ExprPerson: Tom Believe Thme

ExprPerson: Mary Want Thme

Agnt Marry Thme
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Therefore, the concept [Sailor] in Figure 3, with its
implicit existential quantifier, is moved outside any
nested context. In the CGIF and KIF notations, the
concept or the quantifier that refers to the sailor
would be moved to the front of the statement. An-
other possibility, represented by the sentence Tom
believes there is a sailor that Mary wants to marry, could
be represented by moving the concept [Sailor] into
the middle context, which represents Tom’s belief.
In CGIF and KIF, the corresponding concept or quan-
tifier would also be moved to the context of Tom’s
belief.

As these examples illustrate, conceptual graphs in
the display form are more readable than either CGIF
or KIF. There are two reasons for the improved read-
ability:

1. Direct connections. The arcs of the graph show
connections directly without the need for labels
or variables. In Figure 1, for example, the four
concept boxes map to four distinct labels or var-
iables in CGIF and KIF. To show the links to the
relations, CGIF requires 10 occurrences of those
labels, and KIF requires 12; furthermore, those oc-
currences are scattered throughout the linear
strings.

2. Nested enclosures. As Figures 2 and 3 show, the
contexts are shown more clearly with nested en-
closures than with nested parentheses or brack-

ets. By using both brackets and parentheses, CGIF
has a slight advantage over KIF, but neither no-
tation can compete with the nested boxes of the
display form.

Besides human readability, graphs also have theo-
retical and computational advantages, which are dis-
cussed in the section on graph algorithms.

Using controlled natural languages

During the 1980s, the dominant approach to knowl-
edge acquisition required two kinds of highly trained,
highly paid professionals. At the top of Figure 4, a
knowledge engineer is interviewing a subject matter
expert in order to capture her knowledge and en-
code it in the arcane formats of an AI system. Mean-
while, computational linguists, who were designing
natural-language tools, tried to make them translate
NL documents into similar encodings without requir-
ing any human intervention. At the bottom of Fig-
ure 4, a physician who is examining a patient scrib-
bles some notes on a sheet of paper, which some clerk
will later transcribe for the computer. Then the NL
tools will attempt to convert those notes to the for-
mats specified by the knowledge engineer.

There are two things wrong with Figure 4: the top
row requires far too much human effort, and the bot-
tom row is expected to process unrestricted natural

Sailor

Thme

Figure 3 A conceptual graph that asserts the sailor's existence

PROPOSITION

SITUATION

ExprPerson: Tom Believe Thme

ExprPerson: Mary Want Thme

Agnt Marry
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language without any human assistance. To reduce
the cost of two high-priced experts, some develop-
ers merged the two roles at the top row into one:
either the subject matter expert learned knowledge
engineering, or the knowledge engineer learned
enough about the subject matter to extract knowl-
edge from documents. Yet people with expertise in
both fields became even more expensive to find, hire,
and train. Figure 5 shows a better alternative: sim-
plify the tools and the training required by the peo-
ple who use them. Instead of designing complex NL
tools that process documents without human inter-
vention, AI researchers developed simpler knowledge
extraction (KE) tools that can extract knowledge from
documents with assistance from just one human ed-
itor. Furthermore, the editor communicates with the
KE tools in a controlled natural language, which peo-
ple can read without special training.

The editor in Figure 5 represents various people who
at different times might play different roles with re-
spect to the subject matter, the computer system, and
the people and activities involved with them. Each
of the three people mentioned in Figure 4 has a dif-
ferent kind of expertise. Any of them might use KE
tools to edit their knowledge or to write a note, a
report, or a book that someone else might edit with

NL
TOOLS

KNOWLEDGE
BASE

Figure 4 Twentieth-century approaches to knowledge acquisition and NL processing

SUBJECT MATTER EXPERT KNOWLEDGE ENGINEER

DOCUMENTS

KE TOOLS KNOWLEDGE
BASE

Figure 5 Replacing two experts with one editor

DOCUMENTS

EDITOR
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the aid of KE tools. Following are the three kinds of
knowledge, the roles of the two experts in Figure 4,
and the way that KE tools can help the editor in Fig-
ure 5 do the work of both:

● Semantic knowledge. The subject matter expert
contributes the terminology and background
knowledge that is typically recorded in textbooks,
research reports, and reference manuals. That
knowledge represents the semantics of the subject
matter and its links to the natural language vocab-
ulary. An editor in Figure 5 could use the KE tools
to extract that knowledge from the documents, or
the experts who write the documents could use the
KE tools to generate a printable document and a
knowledge base at the same time.

● Episodic knowledge. The physician at the patient’s
bedside contributes knowledge of particular in-
stances or episodes in the day-to-day application
of the subject matter. Instead of writing notes on
a pad of paper, as in Figure 4, such people could
enter that information into a computerized tablet
or voice recognition system. The KE tools could
process the information immediately and respond
with a paraphrase in a controlled natural language,
which the operational personnel would correct and
approve.

● Patterns of language and logic. The knowledge en-
gineer in Figure 4 is a specialist in translating un-
formatted natural language to database tables, if-
then rules, and procedural sequences. That kind
of knowledge could be codified in a library of pat-
terns or templates represented as conceptual
graphs.14 The KE tools would apply the language
patterns to extract information from documents
and use the associated logic patterns to reformat
it in a CNL. Since the KE process is not foolproof,
a human editor must review, correct, and approve
the output before it goes into the knowledge base.

From an editor’s point of view, a KE system looks
like an intelligent word processor combined with so-
phisticated tools for searching, classifying, summa-
rizing, and paraphrasing. After the output has been
revised by an editor, who might be the original au-
thor of the documents, the result can be stored in
a knowledge base or be written as an annotation to
the documents.

As examples of KE tools, Doug Skuce15–17 has de-
signed an evolving series of knowledge extraction and
document management tools. All input to the knowl-
edge base, whether generated by the KE tools or en-
tered directly by an editor, is represented in a CNL

called ClearTalk. The KE tools have the following
advantages over the older systems represented by
Figure 4:

● Reduced training for people. A controlled natural
language is a subset of the corresponding natural
language. Anyone who can read English can im-
mediately read ClearTalk, and the knowledge ed-
itors who write ClearTalk can learn to write it in
a few hours. The ClearTalk system itself does most
of the training through use: the restrictions shown
by menus are enforced by immediate syntactic
checks. By consistently using ClearTalk for all its
output, the system reinforces the acceptable syn-
tactic patterns.

● Reduced complexity in the system. During the knowl-
edge extraction process, the KE tools can ask the
editor to resolve ambiguities in the documents, to
select relevant passages, and to correct misinter-
pretations. After the knowledge has been trans-
lated to ClearTalk with human assistance, the re-
stricted syntax of ClearTalk eliminates the syntactic
ambiguities of ordinary language. The semantic
ambiguities are eliminated by the system, which
enforces a single definition for every term. As a
result, the system can automatically translate
ClearTalk to and from logic and various compu-
tational languages.

● Self-documenting systems. People can read
ClearTalk without special training, and a computer
system can translate it automatically to a notation
for logic, such as CGs or KIF. As a result, the com-
ments and the implementation become identical,
and there is never a discrepancy between what the
human reads and what the machine is processing.

● Document annotations. The double-headed arrow
in Figure 5 indicates that the ClearTalk output
from the KE tools can also be written as an anno-
tation to the original source documents. Those an-
notations can serve as humanly readable comments
or as input to other ClearTalk systems.

As an example, the students in Skuce’s operating sys-
tems course used the KE tools to map information
from on-line Linux** manuals to a knowledge base
for a Linux help facility. The people who wrote the
manuals were experts, but the students who edited
the knowledge base were novice users of both Linux
and the KE tools. As another example, Skuce built
a simple knowledge base about animals for his
9-year-old daughter’s school project. She and her
class could browse the knowledge base on the Web,
and they had no difficulty in understanding every fact
presented in ClearTalk.
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Over the past 30 years, many natural-language query
systems have been developed that are much easier
to use than SQL. Unfortunately, one major stumbling
block has prevented them from becoming commer-
cially successful: the amount of effort required to de-
fine the vocabulary terms and map them to the ap-
propriate fields of the database is a large fraction of
the effort required to design the database itself. How-
ever, if appropriate KE tools are used to design the
database, the vocabulary needed for the query sys-
tem can be generated as a by-product of the design
process. As an example, the RÉCIT system18,19 uses
KE tools to extract knowledge from medical docu-
ments written in English, French, or German and
translates the results to a language-independent rep-
resentation in conceptual graphs. The knowledge ex-
traction process defines the appropriate vocabulary,
specifies the database design, and adds new infor-
mation to the database. The vocabulary generated
by the KE process is sufficient for end users to ask
questions and get answers in any of the three lan-
guages.

Translating an informal diagram to a formal nota-
tion of any kind is as difficult as translating informal
English specifications to executable programs. But
it is much easier to translate a formal representa-
tion in any version of logic to controlled natural lan-
guages, to various kinds of graphics, and to execut-
able specifications. Walling Cyre and his students
have developed KE tools for mapping both the text
and the diagrams from patent applications and sim-
ilar documents to conceptual graphs.20–22 Then they
implemented a scripting language for translating the
CGs to circuit diagrams, block diagrams, and other
graphic depictions. Their tools can also translate CGs
to VHDL, a hardware design language used to spec-
ify very high-speed integrated circuits (VHSICs).

Design and specification languages have multiple
metalevels. As an example, the Unified Modeling
Language (UML) has four levels: the metametalan-
guage defines the syntax and semantics of the UML
notations; the metalanguage defines the general-pur-
pose UML types; a systems analyst defines applica-
tion types as instances of the UML types; finally, the
working data of an application program consists of
instances of the application types. To provide a uni-
fied view of all these levels, Olivier Gerbé and his
colleagues at the DMR Consulting Group imple-
mented design tools that use conceptual graphs as
the representation language at every level.23–27 For
his Ph.D. dissertation, Gerbé developed an ontol-
ogy for using CGs as the metametalanguage for de-
fining CGs themselves.28 He also applied it to other
notations, including UML and the Common KADS sys-
tem for designing expert systems. Using that theory,
Gerbé and his colleagues developed the Method Re-
pository System as an authoring environment for ed-
iting, storing, and displaying the methods used by
the DMR consultants. Internally, the knowledge base
is stored in conceptual graphs, but externally, the
graphs can be translated to Web pages in either En-
glish or French. About 200 business processes have
been modeled in a total of 80000 CGs. Since DMR
is a Canadian company, the language-independent
nature of CGs is important because it allows the spec-
ifications to be stored in the neutral CG form. Then
any manager, systems analyst, or programmer can
read them in his or her native language.

No single system discussed in this paper incorporates
all the features desired in a KE system, but the crit-
ical research has been done, and the remaining work
requires more development effort than pure re-
search. Figure 6 shows the flow of information from
documents to logic and then to documents or to var-

DOCUMENTS DOCUMENTS

SQL

JAVA

XML

GRAPHICS

VHDL

LOGICCONTROLLED 
LANGUAGES

CONTROLLED 
LANGUAGES

Figure 6 Flow of information from documents to computer representations
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ious computational representations. The dotted ar-
row from documents to controlled languages re-
quires human assistance. The solid arrows represent
fully automated translations that have been imple-
mented in one or more systems.

For all these tools, the unifying representation lan-
guage is logic, which could be represented in KIF,
CGs, or other notations specialized for various tools.
Aristotelian syllogisms together with Horn-clause
rules provide sufficient expressive power to specify
a Turing machine, and they support efficient com-
putational mechanisms for executing the specifica-
tions. For database queries and constraints, state-
ments in full first-order logic can be translated to SQL.
All these subsets, however, use the same vocabulary
of natural-language terms, which map to the same
ontology of concepts and relations. From the user’s
point of view, the system communicates in a subset
of natural language, and the differences between
tools appear to be task-related differences rather
than differences in language.

Graph algorithms

For many purposes, graphs are a natural represen-
tation that is isomorphic to the structure of an ap-
plication: maps with cities as nodes and highways as
arcs; flow diagrams through programs, electrical wir-
ing, and plumbing; the valence bonds between at-
oms of an organic molecule; the communication links
in a computer network; the reference patterns be-
tween documents and Web sites on the Internet; and
the semantics of natural languages with their com-
plex phrase structures and anaphoric references.
When such networks are represented by strings or
matrices, the resulting data structures tend to make
inefficient use of storage space, execution time, or
both. This section surveys five important components
of an intelligent system that can benefit from graph-
based algorithms:

1. Storage, retrieval, and query
2. Deductive reasoning for logical inference and the-

orem proving
3. Inductive reasoning for learning new kinds of

structures
4. Abductive reasoning for discovering analogies
5. Representing natural-language semantics

In all five of these areas, the direct connectivity of
CGs and their nested contexts support algorithms that
are simpler and more efficient than algorithms on
linear strings and tables. For these reasons, most rea-

soning systems in AI, even those that use linear no-
tations externally, use tree and graph data structures
internally.

During the 1970s, the database field was embroiled
in a controversy between the proponents of the new
relational DBMS, which stored data in tables, and the
proponents of older DBMS systems, which stored data
in networks or hierarchies. For many applications,
the network and hierarchical systems had better per-
formance, but the relational systems became the uni-
versal standard because their logic-based query lan-
guages, such as SQL, were far easier to use than the
navigational systems, which required a link-by-link
traversal of the networks. The battle for network
DBMSs was finally lost when one of the staunchest
defenders claimed that ease of use was not impor-
tant because “programmers enjoy a challenge.” To-
day, network systems have come back into vogue as
the foundation for object-oriented DBMSs, which rep-
resent the connections between objects more directly
than the now standard RDBMS. Yet the query lan-
guages for OODBMSs (object-oriented DBMSs) require
the same kind of link-by-link traversals as the nav-
igational methods of the 1970s. Unlike the logic-
based SQL standard, the OODBMS query languages
require far more programming effort, which must be
specialized to the formats of each vendor.

To support a more natural interface between humans
and computers, Sowa29,30 proposed conceptual
graphs as an intermediate language between natu-
ral languages and logic-based computer languages.
For question-answering systems, a CG derived from
a natural language question could be translated to
logic-based query languages such as SQL or be
matched against the graphs of a network DBMS. In
principle, CGs could provide a high-level interface
for any DBMS—relational, network, or object-ori-
ented. However, there were two obstacles to using
CGs as the universal interface to every DBMS: the nat-
ural language processors were not sufficiently robust
to generate them, and the algorithms for searching
network databases were too slow.

The breakthrough in performance that made a CG
database efficient was accomplished by Levinson and
Ellis,31,32 who developed algorithms that could search
a lattice of graphs in logarithmic time. Instead of nav-
igating the networks link by link, their systems could
take any query graph q and determine where it fit
within the lattice. As a result, it would return two
pointers: one would point to the lower sublattice of
all graphs that are more specialized than q, and the
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other would point to the upper sublattice of all graphs
that are more generalized than q.

For deduction and theorem proving, Peirce33 discov-
ered graph-based rules of inference, which are gen-
eralizations and simplifications of the rules of nat-
ural deduction by Gentzen.34 The beauty of Peirce’s
rules is that they make a perfect fit with a system
that stores and retrieves graphs in a generalization

hierarchy: Peirce’s rules are based on the conditions
in which any graph p may be replaced by a gener-
alization of p or a specialization of p. Furthermore,
the negation of any context reverses the ordering for
all graphs in the context: if p is a generalization of
q, then �p is a specialization of �q. Esch and
Levinson35,36 presented algorithms for combining
Peirce’s rules with search and retrieval from a gen-
eralization hierarchy, and one of Levinson’s students,
Stewart,37 implemented those algorithms in a high-
speed theorem prover for first-order logic. Every
proposition that was proved, either as a theorem or
as an intermediate result, was stored in its appro-
priate place in the generalization hierarchy together
with a pointer to its proof. During a proof, each pos-
sible step that could be generated by Peirce’s rules
was used as a query graph q to determine whether
q or any specialization of q had already been proved.
If so, the proof was done.

A high-speed search and retrieval mechanism for
generalization hierarchies of graphs can also be used
as the basis for structural learning algorithms. Un-
like neural networks and statistical algorithms, whose
learning consists of changing numerical weights, a
graph-based algorithm can learn arbitrarily large
structures represented as graphs. To demonstrate
that principle, Levinson38 used his search algorithms
in a learning program that would learn to play board
games, such as chess, by starting with no knowledge
about the game other than the ability to make legal
moves. His chess program, called Morph, learned
chess by playing games with a tutor called Gnu Chess,
which was a master-level program, but it could not

improve its performance by learning. At the end of
each game, Morph was told whether the game was
won, lost, or drawn (usually lost, especially in the
early stages of learning). Then Morph would esti-
mate the values of all the intermediate positions
achieved during the game by backpropagation from
the final value (1.0 for a win, 0.5 for a draw, or 0 for
a loss), and save the chess positions with their es-
timated values as graphs in the hierarchy.

When it made a move, Morph would determine all
the possible moves, look up the corresponding po-
sitions in the hierarchy, find the closest matching po-
sitions, and consider their previously estimated val-
ues. Morph would then make the move that led to
the position with the best estimated value. After play-
ing a few thousand games with its tutor, Morph would
have a sufficient database of moves with estimated
values to play a decent game of chess.

To find analogies, Majumdar39 implemented a sys-
tem called VivoMind, which represents knowledge
in dynamic conceptual graphs. What makes the
graphs dynamic are algorithms that pass messages
along the nodes of a graph. Each node in a CG cor-
responds to an object that can pass messages to
neighboring nodes. The result is an elegant gener-
alization of the marker-passing algorithms originally
implemented by Quillian40 and further developed by
Fahlman41 and Hendler.42 For finding analogies, Vi-
voMind has proved to be faster than other analog-
ical reasoners on all the usual test cases. For a knowl-
edge base with N relations, most analogy finders take
time proportional to N cubed, but VivoMind finds
the same analogies in time proportional to N log N.

The contexts of conceptual graphs are based on
Peirce’s logic of existential graphs and his theory of
indexicals. Yet the CG contexts happen to be isomor-
phic to the similarly nested discourse representation
structures (DRSs), which Hans Kamp43,44 developed
for representing and resolving indexicals in natural
languages. When Kamp published his first version
of DRS, he was not aware of Peirce’s graphs. When
Sowa30 published his book on conceptual graphs, he
was not aware of Kamp’s work. Yet the indepen-
dently developed theories converged on semantically
equivalent representations; therefore, Sowa and
Way45 were able to apply Kamp’s techniques to con-
ceptual graphs. Such convergence is common in sci-
ence; Peirce and Frege, for example, started from
very different assumptions and converged on equiv-
alent semantics for FOL, which 120 years later is still
the most widely used version of logic. Independently

The contexts of conceptual
graphs are based on Peirce’s

logic of existential graphs and
his theory of indexicals.
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developed, but convergent theories that stand the
test of time are a more reliable basis for standards
than the consensus of a committee.

Although graphs are one of the most versatile rep-
resentations, many good tools use other notations.
A framework for intelligent systems should take ad-
vantage of different structural properties: some al-
gorithms are more efficient on graphs, and some al-
gorithms are more efficient on strings or tables. The
logical equivalence of KIF and CGIF facilitates the
mapping from one to the other. Their generality fa-
cilitates the integration with other languages that
have more restricted expressive power, such as SQL
(Structured Query Language), DAML, OIL, RDF (Re-
source Description Framework), and others. Com-
ponents based on any of those languages can be in-
tegrated with a system that uses KIF and CGs as its
primary languages.

Expressive power and computational
complexity

The limitations of AI systems have often been blamed
on the complexity of the required computations. Var-
ious solutions have been proposed, ranging from
highly parallel networks that mimic the mechanisms
of the human brain, to restricted languages that limit
the complexity of the problem definition. A mod-
ular architecture could support components that use
such strategies for special purposes: neural networks,
for example, have been highly successful for pattern
recognition, and restricted languages can be highly
efficient for specific kinds of problems. For central
communications among all components, however,
the Elephant language used in the blackboard must
be the most expressive, since it must transmit any
information that any other component might use or
generate. That extreme expressive power raises a
question about the complexity of the computations
needed to process it.

Computational complexity, however, is not a prop-
erty of a language, but a property of the problems
stated in that language. First-order logic has been
criticized as computationally intractable because the
proof of an arbitrary FOL theorem may take an ex-
ponentially increasing amount of time. That criticism,
however, is misleading, since large numbers of prob-
lems stated in full FOL are easily solvable. Placing
restrictions on the logic or the notation cannot make
an intractable problem solvable; they merely make
it impossible to state. The expressive power of El-
ephant does not slow down the communications from

one component to another. The components that re-
ceive a communication are responsible for determin-
ing what they can do with it.

For certain kinds of problems, first-order logic can
be the most efficient way to express them and to solve
them. A typical example is answering a query in terms
of a relational database. The answer to an SQL query
that uses the full expressive power of FOL can be eval-
uated in at most polynomial time, with the exponent
of the polynomial equal to the number of quanti-
fiers in the query. If the quantifiers range over an
indexed domain, the evaluation can often be done
in logarithmic time. Evaluating a constraint against
a relational database is just as efficient as evaluating
a query; in fact, every constraint can be translated
to a corresponding query that asks for all instances
in the database that violate the constraint. In com-
mercial SQL systems, queries and constraints with the
expressive power of FOL are routinely evaluated with
databases containing gigabytes and terabytes of data.

Although the time to solve an intractable problem
may be very long, the time to detect the complexity
class of a problem can be very short. Callaghan46 took
advantage of syntactic criteria to subdivide the Lev-
inson-Ellis graph hierarchies into several disjoint
subhierarchies, each of which is limited to one com-
plexity class. For each subhierarchy, he determined
appropriate algorithms for efficiently classifying and
searching that hierarchy. To determine the complex-
ity class of any graph, Callaghan computed a signa-
ture or descriptor to determine its complexity prop-
erties. Each graph’s descriptor would specify easily
computable prerequisites (necessary conditions) that
any matching graph must meet. By precomputing the
descriptor of a query graph, Callaghan accomplished
several goals at once: determining the complexity of
the search (tractability or decidability); narrowing
the search to a particular class of graphs that have
compatible descriptors; or determining whether the
query graph lies outside the known complexity classes.

Besides the subhierarchies of graphs supported by
the Levinson-Ellis algorithms, Callaghan’s approach
can accommodate any external subsystem for which
a suitable descriptor can be computed by simple syn-
tactic tests. Among those subsystems are the rela-
tional databases, which are highly optimized for data
stored in tables. In fact, the Levinson-Ellis hierar-
chies are complementary to an RDBMS: the kinds of
data that are most efficient with one are the least
efficient with the other. Other important subsystems
include the specialized query languages of many ver-

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 SOWA 343



sions of description logics. If a query graph lies out-
side of any of the known classes, it can be sent to
a general first-order theorem prover. As a result, this
approach can accept any query expressible in first-
order logic, determine its complexity class, and send
it to the most efficient subsystem for processing it.

Mapping a smaller logic to a more expressive logic
is always possible, but the reverse mapping usually
requires some restrictions. To map information from
a large, rich knowledge base to a smaller, more ef-
ficiently computable one, Peterson, Andersen, and
Engel47 developed a system they called the knowl-
edge bus. Their source was the Cyc** knowledge
base,48,49 which contains over 500000 axioms ex-
pressed in full FOL with temporal, higher-order, and
nonmonotonic extensions. Their target was a hybrid
system that combined a relational database with an
inference engine based on the Horn-clause subset
of FOL. To map from one to the other, the knowl-
edge bus performs the following transformations:

● Extracting a subontology. To extract an ontology
for a particular application, the knowledge bus
starts with a seed consisting of the concept types
explicitly mentioned in the application. Then it
searches through Cyc to determine which axioms
might deduce information about any of the seed
types. Finally, it extracts those axioms together with
the types and predicates used in them. For the sam-
ple application, it extracted approximately 1 per-
cent of the total Cyc knowledge base: 1531 types,
1267 predicates, and 5532 axioms.

● Separating rules and constraints. Since the Horn-
clause inference engine cannot process arbitrary
FOL statements, the knowledge bus separates the
axioms into two classes: 4667 Horn-clause rules
that are used for inferences, and 875 FOL state-
ments that are used as database constraints. Both
the inferencing and the constraint checking can be
done efficiently, in at most polynomial time.

● Restrictions and modifications. For temporal rea-
soning, the knowledge bus adds extra arguments
for starting and ending times to the Cyc time-de-
pendent predicates. To eliminate the higher-order
features, it introduces constants of type Assertion.
And to simulate the Cyc nonmonotonic features,
it uses a version of negation as failure.

For a particular application, the knowledge bus ex-
tracts a small subset of the Cyc knowledge base that
can be processed more efficiently by simpler tools.
Although some information and some potential in-
ferences are lost, the extracted subset has a well-

founded semantics that is guaranteed to be free of
contradictions. Furthermore, the resulting subset is
more portable: the inference engine can be used as
an extension to any relational database, and Engel50

has developed techniques for mapping the defini-
tions and axioms to Java classes that can be used in
Web-based applications.

A flexible modular framework

A framework based on Elephant and Linda would
subsume anything that could be done with a more
conventional scripting language. Natural languages
can specify procedures with a sequence of impera-
tive statements linked by adverbs such as then and
next. A translation of those statements into KIF or
CGs would specify the same procedure. But natural
languages and their translations into logic could also
specify more complex speech acts that could dynam-
ically reconfigure the components of an intelligent
system and their ways of interacting.

In the original Linda system, the operators access
a blackboard that contains tuples, which consist of
sequences of arbitrary data. For a system that sup-
ports multiple languages, the first element of the
tuple should identify the language so that the Linda
system could immediately determine how to inter-
pret the remainder. A general format would have
six elements:

1. Language—A character string that specifies the
language, such as “KIF,” “CGIF,” “English,” or
“Deutsch”

2. Source—A character string that identifies the
sender

3. Message Id—A character string generated by the
sender

4. Destination—A character string that identifies the
intended receiver, if known. For pattern-directed
communications, this string is empty, and the mes-
sage is matched to the patterns of available re-
ceivers.

5. Speech Act—A character string that states the
speech act

6. Message—An arbitrary expression in the specified
language that states the propositional content of
the message

The Linda pattern matcher could use an ordinary
string comparison for the first five elements of the
tuple, but it would require a more general logical
unification (of CGs or KIF statements) for the sixth.
Unification of messages in controlled natural lan-
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guages might be difficult to define, and the pattern
matcher might need to translate the message to CGs
or KIF if a pattern match is necessary.

To simulate a conventional scripting language, the
destination would always be specified, and the speech
act would always be “command.” To access a rela-
tional database, the speech act would be “assertion”
for an update, “question” for a query, or “definition”
for creating a new table with a new format. At the
end of his book, Austin5 specified a large number
of possible speech acts, and he insisted that his list
was not exhaustive. Following are his five categories,
his description of each, and a few of his examples:

1. Verdictives “are typified by the giving of a verdict,
as the name implies, by a jury, arbitrator, or um-
pire.”

Examples: acquit, convict, calculate, estimate,
measure, assess, characterize, diagnose

2. Exercitives “are the exercising of powers, rights,
or influence.”

Examples: appoint, demote, excommunicate,
command, direct, bequeath, claim, pardon, coun-
termand, veto, dedicate

3. Commissives “are typified by promising or oth-
erwise undertaking.”

Examples: promise, contract, undertake, intend,
plan, propose, contemplate, engage, vow, consent,
champion, oppose

4. Behabitives “are a very miscellaneous group, and
have to do with attitudes and social behavior.”

Examples: apologize, thank, deplore, congratu-
late, welcome, bless, curse, defy, challenge

5. Expositives “make plain how our utterances fit into
the course of an argument or conversation, how
we are using words, or, in general, are exposito-
ry.”

Examples: affirm, deny, state, assert, ask, iden-
tify, remark, mention, inform, answer, repudiate,
recognize, define, postulate, illustrate, explain, ar-
gue, correct, revise, tell, report, interpret

The verbs listed in these examples illustrate the kinds
of speech acts that people commonly perform, but

in most cases, they omit the verb that specifies the
speech act. A man who stands up in a meeting to
shout something in an angry voice seldom begins with
the words “I protest.” Yet the people in the audi-
ence would recognize that the new speaker is pro-
testing rather than agreeing with the previous speak-
ers. Computers, however, need to be told how to
interpret such speech, and an explicit statement of
the speech act would enable them to respond more
“intelligently.”

To illustrate the kinds of speech acts in an AI sys-
tem, Figure 7 shows a kind of system discussed by
Sowa.51 The boxes labeled FMF represent the same
flexible modular framework that has been adapted
to different kinds of tasks by changing the roles and
the kinds of speech acts expected of the users. At
the upper left, linguists, logicians, and philosophers
are using the FMF to define a general ontology. Lo-
gicians could use FMF to enter the definitions and
axioms for logical operators, set theory, and basic
mathematical concepts and relations. Linguists could
use it to enter the grammar rules of natural languages
and the kinds of semantic types and relations. Phi-
losophers could use FMF to collaborate with the lin-
guists and logicians in analyzing and defining the fun-
damental ontologies of space, time, and causality
common to all domains of application. The major
speech act for these users would be definition, but
they might also ask questions about how to use the
system, and they might use verdictives to evaluate
the work of their colleagues.

In the center of Figure 7, application developers use
FMF to enter domain-dependent information about
specific applications. Some of them would use FMF
to define generic ontologies for industries such as
banking, agriculture, mining, education, and man-
ufacturing. Others would start with one or more ge-
neric ontologies and combine them or tailor them
to a particular business, project, or application. The
users in this mode would perform the same kinds of
speech acts as the linguists, logicians, and philoso-
phers. But they might put more emphasis on com-
missives, which would commit them to strict dead-
lines and performance goals.

At the bottom right of Figure 7 the application users
might interact with the FMF in an unpredictable num-
ber of ways. A business user with a job to do would
have different requirements from those of a recre-
ational user. Both, however, might react with beha-
bitives, such as grumbling, complaining, or cursing,
when the system does not do what they wish. But
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unlike more conventional systems, an FMF could
apologize, sympathize, and commiserate.

The examples shown in Figure 7 do not begin to ex-
ploit the kinds of opportunities offered by an FMF
that is able to recognize and respond to a wide range
of speech acts. An important reason for building an
FMF is to explore new ways of interaction, either be-
tween computers and humans or among mixed com-
mittees of human and computer participants. The
explicit recognition and marking of speech acts en-
ables the components of an FMF to interact, nego-
tiate, and cooperate more intelligently among them-
selves and with their human users.

Implementing the FMF

A major advantage of a flexible modular framework
is that it does not have to be implemented all at once.
The four design principles, which enabled UNIX-like
systems to be implemented on anything from a wear-
able computer to the largest supercomputers, can

also support the growth of intelligent systems from
simple beginnings to a complete “society of mind,”
as Minsky52 called it. For an initial implementation,
each of the four principles could be reduced to the
barest minimum, but any of them could be enhanced
incrementally without disturbing any previously sup-
ported operations:

1. The first component that must be implemented
is a blackboard for passing messages. Even the
pattern matcher might be omitted in the first im-
plementation, and messages could only be sent
to named destinations. For greater power and
flexibility, a pattern matcher is necessary, but the
basic Linda systems use only a simple pattern
matcher that is far less sophisticated than most
AI systems. The greatest power would come from
patterns stored in a hierarchy of graphs based on
the Levinson-Ellis algorithms, which could ac-
commodate millions of patterns that might invoke
intelligent agents distributed anywhere across the
Internet.

Figure 7 Tailoring an FMF for different purposes
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2. Any components that accept inputs and gener-
ate outputs could be accommodated in an FMF.
The first implementation might support only con-
ventional components that do exactly what they
are told, such as the traditional collection of UNIX
utilities. More sophisticated components for rea-
soning, planning, problem solving, and natural-
language processing could be added incremen-
tally. The initial implementation would look like
a pattern-matching front end to a UNIX command
line, but it could grow arbitrarily far. Each stage
in the growth would continue to have the full func-
tionality of every preceding stage. Nothing would
become obsolete as more intelligence is added by
the new components.

3. The Elephant language, which serves as the glue
for linking components, could also grow incre-
mentally. An initial version could consist of just
the three verbs implemented in conventional com-
puter systems: tell, ask, and do. Those verbs cor-
respond to the declarative, interrogative, and im-
perative moods of English. They also correspond
to the three operators supported by a Linda black-
board: output, input, and execute. Those verbs
would be necessary to support many, if not most
of the messages in even the most sophisticated
systems. As more sophisticated components are
added to the FMF, other verbs could be added to
support more complex interactions: authorize for
secure communications; reply, lock, and commit
for transactions that require multiple exchanges;
explain for help facilities; and promise for future
commitments.

4. The communication language for writing mes-
sages could be conventional first-order logic,
which supports a wide range of simpler subsets,
such as lists, frames, and rules. The richer CG lan-
guage includes FOL, but with nested contexts and
metalevel statements about the contents of any
context. New languages and dialects of languages
could be added whenever a translator becomes
available for mapping them to and from the pat-
terns of CGs that are used by the blackboard com-
munication center.

As an FMF is being developed, it can accommodate
any mixture of a variety of components: newly de-
signed components specially tailored for the FMF;
legacy systems enclosed in a wrapper that translates
their I/O formats to the common language of the
blackboard; commercial products that perform spe-
cific services; experimental components that are be-

ing designed and tested in research projects; an open-
ended variety of client interfaces specialized for
different applications; remote servers distributed
anywhere across the Internet.

A blackboard is an ideal platform for supporting hot-
swap or plug-n-play components. When a new com-
ponent is added to the FMF, it would send a message
to the blackboard to identify itself and the patterns
of messages it accepts. It could then be invoked by
any other component whose message matches the
appropriate pattern. To take advantage of that flex-
ibility, the Jini system uses the Linda operators to
accommodate any kind of I/O device that might be
attached to a network. But for intelligent systems,
it is even more important to have that flexibility at
the center instead of the periphery.

Any server anywhere on the Internet could be con-
verted to an intelligent agent by using an FMF as its
front end. It could then respond to requests from
other FMF servers anywhere else on the Internet.
Each FMF would be, in Minsky’s terms, a society of
mind, and the entire Internet would become a so-
ciety of societies. Human users could have a personal
FMF running on their own computers, which could
communicate with any other FMF to request services.
The traditional help desks, in which a human expert
answers the same questions repeatedly for multiple
users, could be replaced by a human teacher or ed-
itor, as in Figure 5, who would build a knowledge
base. That knowledge base would drive a specialized
FMF, which could be consulted by the personal FMF
of anyone who asks a relevant question. The intel-
ligence accessible to any user would then be the com-
bined intelligence of his or her personal FMF together
with every FMF accessible to it across the Internet.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group, Ap-
ple Computer, Inc., Microsoft Corporation, Sun Microsystems,
Inc., Linus Torvalds, or Cycorp, Inc.
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23. O. Gerbé and M. Perron, “Presentation Definition Language
Using Conceptual Graphs,” Conceptual Structures: Applica-

tions, Implementation, and Theory, G. Ellis, R. A. Levinson,
and W. Rich, Editors, Lecture Notes in Artificial Intelligence,
Vol. 954, Springer-Verlag, Berlin (1995).
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