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Information graphics, which include graphs,
charts, and diagrams, are visual illustrations
that facilitate human comprehension of
information. In this paper, we present our
work on applying machine learning to the
automated generation of information graphics.
Our approach is embodied in a hybrid
graphics generation system, IMPROVISE*, which
uses both rule-based and example-based
generation engines. We discuss the use of
machine learning to support such systems
from three aspects. First, we introduce an
object-oriented, integrated hierarchical feature
representation for annotating information
graphics. Second, we describe how to use
decision-tree learning to automatically extract
design rules from a set of annotated graphic
examples. Our results demonstrate that we
can acquire, with quantitative confidence,
concise rules that are difficult to obtain in
handcrafted rules. Third, we present a case-
based learning method to retrieve matched
graphic examples based on user requests.
Specifically, we use a semantics-based,
quantitative visual similarity measuring
algorithm to retrieve the top-k matched
examples from a visual database. To help
users browse a graphics database and
understand the inherent relations among
different examples, we combine our similarity
measuring model with a hierarchical clustering
algorithm to dynamically organize our graphic
examples based on user interests.

Information graphics, which include graphs, charts,
and diagrams, are visual illustrations that facilitate
human comprehension of information. To help users
understand information and achieve their informa-
tion-seeking goals (e.g., understanding the trend of
the real-estate market for a particular area), a num-
ber of systems have been built to design informa-
tion graphics based on user’s information needs (e.g.,
visualizing a file system using a cone tree1). How-
ever, information graphics created by these systems
are carefully designed and preprogrammed by hand.
Handcrafting information graphics is a difficult and
time-consuming task, and relatively few information
system developers have had training in graphic de-
sign. Moreover, handcrafting information graphics
in advance is inadequate for an interactive environ-
ment, where different users may have different tasks
in mind (e.g., comparing two data items vs under-
standing a trend) or may change their tasks in the
course of information exploration. To support dy-
namic design and customization, researchers have
been investigating approaches to the automated gen-
eration of information graphics. There are two main
approaches: rule-based and example-based graph-
ics generation.

For the past decade, researchers have been devel-
oping systems that can automatically create infor-
mation graphics using a set of design rules. Given
a set of data entities, a presentation intent (e.g., sum-
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marize a set of information), and a presentation con-
text (e.g., a specific type of users and presentation
devices), an automated graphics generation system
automatically constructs a customized information
graphic that communicates the input data to the in-
tended users in the specified context. For example,
systems like APT,2 SAGE,3 and IMPROVISE4 employ
handcrafted design rules to map data onto proper
information graphics. Nevertheless, the rule-based
approaches present two major problems. First, ac-
quiring design rules manually is difficult. Handcraft-
ing design rules can be laborious, as experts may need
to process large amounts of evidence before extract-
ing rules. Second, maintaining and extending a large
rule base is difficult. As the rule base grows, it is dif-
ficult to integrate new rules with existing rules, and
to discover and rectify inconsistencies among the
rules.

Alternatively, researchers have started to explore ex-
ample-based design approaches.5,6 Instead of using
rules, an example-based approach starts with a set
of existing examples. Upon a user’s request (e.g., find
presentations that are suitable for my data), this ap-
proach searches through a graphics database and re-
trieves the most relevant examples. The retrieved ex-
amples can then be directly reused for, or adapted
to, the new situation (e.g., new data or new visual
preference). However, an example-based approach
alone is usually inadequate, because it is difficult to
learn all low-level design details directly from exam-
ples (e.g., the exact scale and position of every
graphic element).

To overcome these problems, we are exploring a hy-
brid approach, which makes use of both rule-based
and example-based generation. Our approach is em-
bodied in a prototype system, IMPROVISE*, which is
an extension of our previous rule-based generation
system, IMPROVISE.4 On the one hand, IMPROVISE*
employs an example-based approach to improve ex-
tensibility, allowing new graphic examples to be eas-
ily added and reused. On the other hand, IMPROVISE*
utilizes rules to determine various graphic details ef-
ficiently, complementing example-based generation.

Our focus here is on applying machine learning to
support systems like IMPROVISE*. To the best of our
knowledge, our work is the first to apply machine
learning to automated information graphics gener-
ation. Our contributions are threefold. First, we in-
troduce a unique feature selection/extraction method
for information graphics design. In particular, we de-
fine an object-oriented, integrated hierarchical fea-

ture representation for annotating information
graphics. As described later, our annotation captures
cohesively both data and visual characteristics. Our
annotation formalism provides the needed founda-
tion for applying machine learning to automated
graphics generation.

Second, we address how to systematically acquire de-
sign rules from existing graphic examples. Specifi-
cally, we employ a decision-tree learning algorithm
to induce design rules automatically from a set of
annotated graphic examples. Our results demon-
strate that machine learning helps the system to ac-
quire useful design rules automatically and to im-
prove the overall quality of a rule base (e.g., by
simplifying expert-derived rules and removing redun-
dancies).

Third, we investigate how to create new information
graphics directly from existing graphics to augment
our previous rule-based generation approach.4 In
particular, we develop a case-based learning method.
We use a semantics-based, quantitative visual sim-
ilarity measuring model to retrieve top-matched
graphic examples, which can then be directly reused
for, or be adapted to, the new situation.

The paper is organized as follows: first we discuss
related work, then provide an overview of
IMPROVISE*. We then introduce an object-oriented,
integrated hierarchical feature representation for an-
notating graphic examples. Using our annotation for-
malism, we present the systematic application of de-
cision-tree learning to extract design rules from
annotated graphic examples. We then describe a
case-based learning method that uses a semantics-
based quantitative visual similarity measuring model
to retrieve relevant graphic examples. Finally we con-
clude and indicate future research directions.

Related work

Before presenting our machine-learning approaches
to information graphics generation, we discuss re-
lated work from two aspects: machine learning in rule
acquisition and example-based graphics generation.

Automatic rule acquisition. Machine-learning tech-
niques, especially supervised learning, have been
widely applied to rule acquisition in other domains
(e.g., speech synthesis7). However, applying these
techniques to the acquisition of graphic design rules
has hardly been addressed. One of the causes lies
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in the difficulty of expressing information graphics
accurately and comprehensively.

To identify features for machine learning, we have
adopted previous research results on data and graph-
ics characterization. On the data side, researchers
establish data characterization taxonomies to ab-
stract what and how presentation-related data prop-
erties influence visual encoding strategies.8–10 To de-
scribe visual patterns systematically, on the other
hand, researchers characterize different visual for-
mats,11 formulate a set of graphics languages,2 and
define the formal syntax or semantics of a particular
visual representation.12 However, we have extended
these efforts to characterize both the data and vi-
sual patterns more comprehensively. In particular,
we developed an object-oriented hierarchical feature
representation to uniformly express the semantic,
meta-level, and structural properties of a graphic at
multiple levels of abstraction. This is also different
from the conventional feature representation used
in many machine-learning applications, where a flat
structure of simple features is used.

Example-based graphics generation. Programming
by demonstration is perhaps the earliest technique
that supports example-based graphics generation.13

Through user demonstration, this approach attempts
to generalize the behavior to a design principle,
which can then be applied to an entire class of tasks
in the future. However, coming up with the right set
of examples requires design knowledge on the part
of the user.14

Instead of asking users to supply the right examples,
a recent example-based generation approach allows
a user to select an example to be automated from
the user’s past requests, or operations.6 The user can
modify the selected example or refine it for perform-
ing future tasks. This approach also uses a hierar-
chical representation to express the semantics of
stored examples and new user operations. However,
it matches a new user operation with a single selected
example based solely on the similarity of lowest level
components, without considering compositional
structures. In contrast, IMPROVISE* matches a user
request against multiple examples, and it takes into
account both content and structural similarities and
differences.

Another closely related example-based generation
system is Sage/SageBook.5 Upon a user’s request,
Sage searches its stored visual presentations and re-
trieves those relevant for reuse in the new situation.

It uses both data features and visual properties to
describe the stored presentations and user requests.
Moreover, Sage matches a user request with a pre-
sentation example by qualitatively comparing low-
est level data and visual contents (e.g., data elements
and graphemes). IMPROVISE* differs significantly
from Sage in its use and representation of examples
and in its method for matching requests to exam-
ples. First, Sage uses only examples that it creates,3

whereas IMPROVISE* exploits graphic examples from
a wide variety of sources, which may or may not be
generated by our system. Second, Sage employs a
flat data characterization, separated from its hier-
archical visual feature description. In contrast, we
express both visual and data features hierarchically
and integrate visual features with their correspond-
ing data features at every level of the abstraction.
Third, Sage uses a qualitative matching method to
retrieve desired examples, whereas we develop a
quantitative similarity measuring method to facili-
tate a more accurate comparison between examples
and user requests. In addition, we allow users to
dynamically adjust various weights in our similarity
model and to submit partial requests with different
matching criteria.

IMPROVISE* overview

Figure 1 shows the high-level components of
IMPROVISE*. The initial input is a set of user requests,
including the data to be conveyed, presentation in-
tent, and presentation context. The output is an in-
formation graphic that conveys the input data. A typ-
ical generation process includes three main steps.

Step 1. Starting with a set of inputs, IMPROVISE* al-
ways attempts to find the matched examples first, be-
cause the examples imply the most specific rules. To
search for a set of relevant examples, IMPROVISE*
calculates the similarity distances between the user
request and the existing graphics. Consequently, it
retrieves the top-k matched examples (e.g., k � 3).
If there are no matched examples (e.g., the sim-
ilarity difference exceeds a certain threshold),
IMPROVISE* will attempt to generate a sketch using
a rule-based approach.15

Step 2. Using the matched examples, IMPROVISE*
first creates a sketch, which is an intermediate rep-
resentation of an information graphic. A sketch out-
lines the basic visual structure and visual elements
without specifying low-level visual details. For ex-
ample, a sketch of a bar chart specifies the number
of axes and bar elements to be created, but not the
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specifics of the axes and bars, such as their exact
scales and positions.

Step 3. Once a sketch is created, IMPROVISE* uses
layout and perceptual rules to refine the sketch.
These rules usually appear in the form of constraints.
As described earlier, we use these constraints to de-
termine the detailed visual characteristics (e.g., the
exact scale or position of a graphical element) in-
stead of learning from examples. IMPROVISE* may
repeat these steps until a complete information
graphic is built.

To support the automated graphics generation pro-
cess, we apply machine learning to address two sub-
problems. First, we use decision-tree learning to au-
tomatically acquire design rules from existing graphic
designs. As shown in Figure 1, IMPROVISE* has an
off-line rule learning engine. This engine can extract
relevant rules with quantitative confidence factors
according to specific learning goals (e.g., learning the
usage pattern of a visual technique such as highlight).

Second, we use case-based learning to retrieve and
organize similar graphic designs based on user in-
put. To search for relevant examples, we develop a
semantics-based, quantitative visual similarity mea-
suring model that supports partial matching. In par-

ticular, IMPROVISE* calculates the similarity distances
between the user request and the existing graphic
examples. As a result, it retrieves the top-k matched
examples. To help users navigate through graphic
examples in a meaningful way, we also combine our
case-based learning method with a hierarchical clus-
tering algorithm. Using this approach, IMPROVISE*
can automatically categorize graphic examples based
on their subtle semantic and visual properties.

Object-oriented, integrated hierarchical
annotation of information graphics

To apply machine learning to graphics generation
as just described, we express both input and output
uniformly as a collection of features.16,17

In traditional machine-learning applications, learn-
ing data are simply expressed using a vector of fea-
tures, which in turn are expressed using flat, cate-
gorical values or numbers. However, we have found
this simple, flat feature representation inadequate
for expressing information graphics. From a com-
putational standpoint, an information graphic ex-
presses a complex mapping between a set of data
patterns and visual patterns.2,4 For example, Figure
2A maps the data correlation (a data pattern) be-
tween two data sets, car countries and names, onto

RULE-BASED GENERATION ENGINE

EXAMPLE-BASED GENERATION ENGINE
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Figure 1 High-level components of IMPROVISE*
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a scatter plot (a visual pattern). To express such a
data-to-visual mapping, we must capture the rich
characteristics of both patterns. Thus we develop an
object-oriented, integrated hierarchical feature rep-
resentation for describing information graphics.

Visual objects and visual features. A visual depic-
tion may be considered a hierarchical composition
of different visual patterns.2–4 To describe all visual
patterns uniformly, we introduce the concept of vi-
sual object, which is a meaningful visual pattern with
a unique syntax and semantics.4 Moreover, a visual
object can be recursively made up of a hierarchical
composition of other visual objects.18 Figure 2B il-
lustrates the visual composition of Figure 2A. In this
case, the top-level visual object ScatterPlot is made
up of two lower-level visual objects: a coordinate
frame (CoordinateFrame) and a set of markers (Mark-
er). A coordinate frame consists of two visual ob-
jects (XAxis and YAxis), and a marker contains two
other visual objects: a horizontal position (HorzPos)
and a vertical position (VertPos). Here we also cap-
ture the relationships among visual objects. For ex-
ample, a scatter plot is composed by overlaying (a
visual composition relation) the markers on top of
the coordinate frame.

Building on previous work,16,17 we use seven features
(Table 1) to describe a visual object.19 Four features
describe the syntactic aspects of a visual object, such
as its visual dimensions (e.g., two or three) and en-
coding technique (e.g., highlight or cutaway). Two
features capture the semantic properties of a visual
object (i.e., function and purpose). One feature
(structure) expresses a visual object’s composition,
including its components and the composition re-
lations. The structure feature characterizes an infor-
mation graphic as a hierarchical composition of vi-
sual objects.

It is worth noting that our visual features are dif-
ferent from those low-level visual features (e.g., color
histogram) used in content-based image and video
retrieval applications (e.g., Aslandogan20). In par-
ticular, we capture the multilayered visual syntactic,
semantic, and structural properties of graphics.

Data objects and data features. Similarly, we use
data objects and their compositions to represent the
data encoded in an information graphic. For exam-
ple, each marker in Figure 2A encodes a data ob-
ject, which contains two other data objects: car name
and nation.

Figure 2A from J. MacKinlay, “Automating the Design of Graphical Presentations of Relational Information,” ACM Transactions on Graphics, 

Vol. 5, No. 2 (1986). Copyright 1986 ACM. Reprinted by permission.
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Figure 2 A scatter plot adopted from MacKinlay and its visual composition
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We use 16 features to describe a data object com-
prehensively (Table 2). Three features express the
semantic properties of a data object, such as its se-
mantic domain (e.g., business domain) and seman-
tic category (e.g., price). Nine features describe var-
ious meta-data properties (e.g., the cardinality of a
data set), and two features specify presentation-re-
lated data properties (e.g., presentation importance).
The last feature, structure, captures the composition
of a data object, including the composition relations
and components.

Data-visual mapping. Using the concepts just intro-
duced, we can now express an information graphic
as a set of visual/data objects, which are expressed
by a collection of features. We also bind the corre-
sponding visual and data objects together to explic-
itly express the data-visual mapping. Specifically, our
representation scheme allows a visual object to be
linked to its corresponding data object and vice versa.
It is worth noting that such a binding is not always
one-to-one. For example, a visual object (a spher-
ical icon) can be used repeatedly to represent mul-

Table 1 Seven visual features

Feature Value Definition

Category (syntactic) Path Syntactic category of a visual element, a path in our visual
hierarchy

Technique (syntactic) String One of the 21 techniques for visualizing data
Parameter (syntactic) Pair Parameters of visual techniques, in the form of attribute-

value pairs
Dimension (syntactic) Integer Dimension of Euclidean space (1, 2, or 3), where the visual

element is rendered
Intent (semantic) Path The purpose of a visual object, a path in our visual task

ontology
Role (semantic) String One of the 10 roles that a visual element can play in a

visual composition
Structure (composition) Graph Represents a visual composition, including the

subcomponents and the relations among them

Table 2 Sixteen data features

Feature Value Definition

Domain (semantic) Path The data application/domain—a path in our ontology
Category (semantic) Path The semantic category to which a data element belongs—a

path in our ontology
Type (semantic) String One of the four meta-data types (entity, relation, ellipses,

compound)
Form (meta) String One of the three meta-data formations (singleton, array,

collection)
Scale (meta) String One of the four ways a data element is ordered and measured

(nominal, ordinal, interval, ratio)
Unit (meta) String The unit of measure used
Continuity (meta) String Whether data are continuous or discrete
Resolution (meta) Integer The number of distinct values of a data set
Volume (meta) Integer The total number of children in a data element
Cardinality (meta) Integer The number of elements in a data set
Arity (meta) Integer The number of elements in a data relation
Source (meta) String Whether the data are originally in the database or are derived

from other information
Role (presentation-related) String One of ten presentation-related roles that a data element

plays in a data composition
Intent (presentation-related) Path The presentation goal for visualizing a data element—a path

in our user task ontology
Importance (presentation-related) String One of four presentation priorities of data: (primary,

secondary, extraordinary, background)
Structure (composition) Graph Expresses the data composition
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tiple data objects of the same kind (all towns). On
the other hand, a data object (price) can be visual-
ized by multiple visual objects (a textual label or a
rectangular bar) in the same graphic. The fact that
this binding is not one-to-one complicates the sim-
ilarity measure between two information graphics,
as we discuss later.

Using the features defined in Tables 1 and 2, we have
defined an XML (Extensible Markup Language) an-
notation schema to describe each graphic example.
Based on our schema, we have annotated by hand
over 3000 visual and data objects for about 100
graphic examples. Each example now in our data-
base has two parts: an XML annotation and the im-
age itself in JPEG (Joint Photographic Experts
Group) format. Although we have carefully designed
our current feature set to cover a wide variety of
graphic examples, by no means is this a complete set
of features. Nonetheless, it is easy to extend our cur-
rent representation framework by adding a new fea-
ture or modifying an existing feature.

Automatic graphic-design rule acquisition

In graphics generation, graphic-design rules help
map a set of data objects onto a set of visual objects.
To acquire these rules automatically, we employ a
decision-tree learning technique. Moreover, we iden-
tify and formulate a set of specific learning goals that
systematically define the types of rules to be learned.
We also address how to extract a subset of relevant
features from our entire feature set to describe ob-
servational data for achieving specific learning goals.

Decision-tree learning. Every design rule can be con-
sidered a mapping between a set of rule anteced-
ents (conditions) and consequents (actions). Our
goal is to discover the mapping between the n con-
ditions and m actions:

G: C1, . . . , Ci . . . , Cn f A1, . . . , A j, . . . , A m

where Ci denotes the ith condition and Aj is the jth
action; G is the mapping function that states the re-
lations among the conditions (in our case, a Bool-
ean function). Moreover, each condition can be con-
sidered to be computed based on a feature f.

Thus, our goal of inducing such a mapping G is a
special case of supervised learning:21 G( f ) f t,
where G maps the training samples’ feature space
f to its target space t. Among various rule-learning

algorithms,21,22 a decision-tree-based approach meets
our needs best because of its predictable training
time and comprehensive output.23,24 We thus use this
approach to induce a set of classification rules from
training samples.

In our application, each sample is an existing graph-
ic; f is a set of design facts and t is a set of design
actions. Thus classification rules categorize the map-
pings between a set of design facts (features) and
design actions (targets). For example, one classifi-
cation rule may look like this:

IF f [1] � VAL
THEN t[2] � T [80.0%]

This rule states that if the first feature’s value is VAL,
we should then use the second design action T. Here
80 percent is a confidence factor (CF), the assessed
probability of the occurrence of the mapping. Using
the confidence factor, we can solve potential design
conflicts. That is, a rule with a higher CF is preferred
over a rule with a lower CF, when the conditions of
both rules are met.

Learning goals. Specific learning goals help us to
identify relevant features and proper feature assign-
ments. Suppose that our goal is to learn how data
objects are depicted using different types of visual
techniques. We would label samples using the cat-
egory of the techniques (e.g., highlight or zoom), but
not the parameters (e.g., the particular color used
for highlighting). To formulate learning goals sys-
tematically, we follow our design process.

As shown in Figure 3, our process starts with a set
of presentation tasks, which specify the general pre-
sentation intents and the data to be presented (e.g.,
summarize school information). Using presentation
plan rules, IMPROVISE* maps the presentation tasks
onto a set of visual tasks (e.g., emphasize school cost).
These visual tasks describe what desired visual ef-
fects are to be achieved.4 Visual plan rules then re-
fine the visual tasks to a set of concrete visual tech-
niques, such as highlight and enlarge. These visual
techniques specify how to achieve the desired effects.
To complete a graphic design, visual tuning rules help
define the parameters of a visual technique (e.g., the
color of a highlight technique).

Since visual tuning rules determine visual details,
which could vary a great deal (e.g., the exact scales
of visual objects), it is difficult to generalize these
rules from examples. Thus we focus on learning only
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presentation plan rules and visual plan rules. Accord-
ingly, we formulate two sets of learning goals. The
first set of goals (Goal A in Figure 3) is to establish
presentation plan rules, which map presentation data
and intents onto visual tasks. For example, a par-
ticular learning goal may be to learn how to map a
“summarize” intent to different visual tasks (e.g.,
cluster or emphasize).

Our second set of goals (Goal B) is to learn visual
plan rules, which capture the correlations among the
data, visual techniques, and visual objects. Since vi-
sual planning includes refining both visual techniques
and visual objects,15 we have two subsets of learning
goals. One is to learn the relations between abstract
and concrete visual techniques so that abstract tech-
niques can be refined (visual tasks are considered to
be abstract techniques). For example, to refine the
abstract technique “emphasize,” we need to learn
how it is related to concrete visual techniques, such
as highlight and enlarge. The other subset is to learn
the relations between a higher-level visual object and
its components (e.g., the semantic relation between
a bar chart and its header). The second subset of
learning goals helps us to acquire visual object con-
struction rules (e.g., how to compose a bar chart).

Learning from features with complex structures. In
traditional learning applications, features are usu-
ally described by a flat structure of numerical or nom-
inal values. However, many of our features are spec-
ified using a complex structure. For example, our
visual feature “structure” describes the composition
of a visual object using a complex expression. More-

over, simply flattening the complex features may pro-
duce an overwhelmingly large number of possible
feature assignments due to the complexity of our fea-
ture domains. For example, flattening the visual fea-
ture “category” would produce a whole set of values
that describe a visual object at different levels of ab-
straction.

To systematically select relevant features and fea-
ture assignments, currently we use a trial-and-test
approach. Initially, we select all relevant features
based on a learning goal. We then construct train-
ing samples by using the most general values of each
feature. Because of the general description, obser-
vational data may not be well distinguished and the
learned rules may appear trivial. In this case, we grad-
ually refine each feature, starting with those that have
the fewest possible values (the lowest information
gain, according to Mitchell21). This trial-and-test ap-
proach is not optimal, but it does help us to monitor
the learning process, while preventing us from miss-
ing out on useful features or feature assignments.

Experiment: Learning visual technique correlation.
Using a decision-tree approach, here we demonstrate
how to learn rules for refining a visual technique.

Learning goal. One of the advantages of automated
graphics generation systems is that users can specify
their information-seeking goals at a high level with-
out worrying about low-level visual details. 3,4 Upon
receiving an abstract user goal, IMPROVISE* must de-
termine what specific visual techniques should be em-
ployed to achieve the goal.4 Specifically, in our ex-

Figure 3 Learning  goals formulated systematically, based on a design process

PRESENTATION 
PLAN RULES

VISUAL PLAN 
RULES

VISUAL TUNING
RULES

PRESENTATION 
TASKS

VISUAL 
TASKS

VISUAL 
TECHNIQUES

INFORMATION 
GRAPHICS

  GOAL A
<Data, Intent>
     VisualTask

  GOAL B
<Data, VisualTask>
     Concrete-VisualTechnique

<Data, Abstract-VisualObject>
     Concrete-VisualObject

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 ZHOU, MA, AND FENG 511



periment we want to learn the correlations between
a visual goal, reveal, and three specific visual tech-
niques, expose, separate, and overlay. Here visual
goal reveal �v1 , v2 , o1 , o2� aims to display a visual
object v2 (encoding data object o2) that is usually
“hidden by” visual object v1 (encoding data object
o1). The three techniques describe the specific ways
of bringing out the hidden object v2 . Expose uses
standard graphic techniques, such as cutaway, open,
or set transparency, to expose the hidden object (Fig-
ure 4A). Separate reveals the hidden object by split-
ting and slicing v1 (Figure 4B). Unlike expose and
separate, which modify v1 , overlay places v2 directly
on top of the existing display (Figure 4C). Thus, our
learning goal can be expressed as:

G: f f �Expose, Separate, Overlay�

where G is a Boolean function, and f is a set of fea-
tures describing v1 , v2 , o1 , and o2 .

Training data and tool. Our training data are collected
from three books.25–27 Because of the diversity of the

samples, we hope to avoid biased conclusions that
might be meant only for a specific application.
Among more than 500 illustrations, 60 are related
to visual revealing.

Based on our learning goal, we first determine our
learning input. We initially extract five features: re-
lation, DCat1, DCat2, VCat1, and VCat2. The rela-
tion feature is extracted from the structure data fea-
ture to describe the semantic relation between data
objects o1 and o2 . DCat1 and DCat2 are the seman-
tic categories of o1 and o2 . VCat1 and VCat2 are the
visual categories of v1 and v2 . During our feature
selection, we have eliminated indistinguishable and
irrelevant features. For example, the intention fea-
ture for o2 is always a path: Lookup f Individual f
Detail, and the cardinality feature is irrelevant to our
goal. We define our target to be one of the three
reveal techniques: expose, separate, and overlay.

We can describe all five features at multiple levels
of abstraction. For example, Table 3 lists three top-
level values of feature relation and three lower-level
values of enumeration. Assigning top-level values to
all five features, we obtain the most general feature
assignment. Table 4 shows the three samples in Fig-
ure 4, using this assignment. Next we discuss our ex-
perimental results using Quinlan’s decision-tree
learning algorithm, C4.5.24

Experimental results. We train the C4.5 algorithm on
the 60 selected illustrations, using sixfold cross val-
idation, a standard procedure when the amount of

Figure 4 Data samples used in learning

Figure 4A from P. Keller and M. Keller, Visual Cues: Practical Data Visualization, IEEE Press, Piscataway, NJ (1993). Copyright 1993 IEEE. 

Reprinted with permission. Figure 4B from Information Graphics, Thames & Hudson, London (1998). Copyright 1998 Foster and Partners, London. 

Reprinted with permission. Figure 4C from Information Graphics, Thames & Hudson, London (1998). Copyright 1998 TUBE Graphics, Tokyo. 

Reprinted with permission.

PROTEIN AND PROTEIN BUNDLE MACHINE AND ITS PARTS HIGHWAY DAMAGE AND DETAILS 
(INSET)

A CB

Table 3 Possible feature values for relation

Relation
Value

Value Definition

Constituent o2 is a part of o1
Attributive o2 is an attribute of o1
Enumeration o2 enumerates o1
—Specify o2 is a specification (e.g. detail) of o1
—Instance o2 is an instance of o1
—Subconcept o2 is a subconcept (subclass) of o1
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data is limited. Using the most general feature as-
signment, we learn five classification rules with an
overall classification error of 30 percent:

1. DCat1 � Intangible ∧ VCat2 � VisStructure
f Overlay [87.1%]

2. Relation � Enumeration ∧ VCat2 � VisStructure
f Overlay [84.1%]

3. Relation � Enumeration ∧ DCat1 � Intangible
f Overlay [84.1%]

4. DCat1 � Tangible ∧ VCat2 � VisUnity
f Expose [56.7%]

5. Relation � Constituent ∧ DCat1 � Intangible ∧
VCat2 � VisUnity f Separate [50.0%]

Although these rules indicate a strong correlation
between the visual object v2 (VCat2) and reveal tech-
niques, they may not be useful in predicating a re-
veal technique. This is because VCat2 might be un-
known when the technique needs to be decided.
After dropping VCat2, we get four new rules, but
with an overall error of 35.7 percent:

6. Relation � Enumeration f Overlay [74.0%]
7. DCat1 � Intangible f Overlay [70.2%]
8. DCat1 � Tangible ∧ DCat2 � Intangible
f Expose [58.7%]

9. Relation � Constituent ∧ DCat1 � Tangible
f Expose [48.8%]

To reduce the classification error, we systematically
vary feature assignments from the most general to
more specific. Consequently, an assignment of fea-
ture VCat1 produces a set of useful rules, which pre-

dict reveal techniques based on v1 with a relatively
low error rate (Table 5).

Compared to the handcrafted rules used in
IMPROVISE,15 the learned rules give similar design
suggestions. But the learned rules are more concise
(with fewer, but adequate conditions), and have a
quantitative confidence factor, which is missing in
our handcrafted rules.

Case-based graphic example retrieval

This section addresses our second application of ma-
chine learning in automated graphics generation. A
new graphic design can be acquired by transforming
existing graphic examples that address situations
bearing a strong similarity to the new situation. As-
sume that an existing graphic illustrates city infor-
mation on a map, including the city location and pop-
ulation. We wish to transform this graphic to display
school information on a map, including the school
geographical boundary and student data.

Because this process requires that analogous cases
be retrieved from memory, transformed, and applied
to the new situation, this type of learning is known
as case-based learning. 21 In this example, the anal-
ogy is drawn upon a set of parameters, such as the
presentation goal (locate objects on a map) and the
inherent relations among the data elements involved
(both city and school are entities, and other data are
their attributes). To determine relevant parameters
that help us to draw a meaningful analogy, we use

Table 4 Values assigned for features in Figure 4

Relation DCat1 DCat2 VCat1 VCat2 Target

4A Constituent Tangible Tangible VisUnity VisUnity Expose
4B Constituent Tangible Tangible VisUnity VisUnity Separate
4C Enumeration Intangible Intangible VisUnity VisUnity Overlay

Table 5 The design rules for reveal, and the salient feature

VCat1 Values and Definitions Rules (Overall Error Rate 21.7 Percent)

Icon: An iconic representation (A) VCat1 � Icon f Overlay (85.7 percent)
Label: A textual representation and its variations

(e.g., buttons)
(B) VCat1 � Label f Overlay (82.0 percent)

Symbol: A three-dimensional representation (C) VCat1 � Symbol f Expose (60.0 percent)
VisStructure: A visual schematic drawing (e.g., map)
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our feature representation to express the properties
of cases (existing graphics and user requests).

To draw an analogy, a critical step is to develop a sim-
ilarity measuring model that can precisely assess how
well a stored case (graphic example) matches a new
case (e.g., a user request). Before presenting our sim-
ilarity measuring model, we first describe our inter-
nal representation of a case (information graphics).

Picture objects and picture graphs. As described
earlier, we annotate each information graphic using
three parts: a hierarchical composition of visual ob-
jects, a hierarchical composition of data objects, and
the mappings between these two compositions. To
allow an accurate visual similarity measuring, we in-
troduce picture objects, which merge the two hier-
archies together while preserving all their features.

Specifically, each picture object encapsulates two
components: a visual object and a corresponding data
object. Moreover, picture objects must be linked to-
gether to reflect the structures of their visual objects
and data objects. However, linking picture objects
together is not straightforward, because the data-vi-
sual mapping is not always one-to-one. This implies
that data objects can be connected in one way and
visual objects in another. Thus, we cannot simply link
picture objects together by following only the data
composition or only the visual composition structure.

Figure 5A shows two hierarchical structures: a data
composition (left) and a visual composition (right).
In the data composition, data object D0 is composed
of four data objects, which in turn are made up of
other data objects. Similarly, in the visual compo-
sition, visual object V0 consists of three visual ob-
jects, which may or may not be made up of other
visual objects. We use dotted, double-ended arrows
to indicate the data-visual mapping between corre-
sponding data and visual objects. For example, there
is a mapping between D0 and V0, and between D1
and V1. Note that both data objects D1 and D2 are
mapped to the same visual object V1, and D41 is
mapped onto two visual objects, V31 and V32. Data
object D3 (not directly visualized) and visual object
V3 (not encoding any data content) have no corre-
sponding mappings.

To capture both data and visual compositions, we
organize picture objects using two graph structures.
First we construct a picture-visual graph (PVGraph),
which organizes picture objects based on the rela-
tions among the visual objects. Figure 5B depicts a

PVGraph, created based on the visual structure in
Figure 5A. Here, each picture object contains two
parts; for example, P0 is a picture object, containing
a visual object V0 and a data object D0. The special
symbol “/” represents a null object. Because a visual
object (e.g., V1) may be mapped to multiple data ob-
jects (D1 and D2) and vice versa, a picture object may
contain more than one visual or data object (e.g.,
picture object P1 in Figure 5B). Likewise, we can con-
struct a picture-data graph (PDGraph), which links
picture objects together based on data relations. Fig-
ure 5C shows a PDGraph, built on the data com-
positional structure in Figure 5A. Note the differ-
ences between the generated PVGraph (Figure 5B)
and PDGraph (Figure 5C) when the data-visual map-
ping is not one-to-one (Figure 5A).

Using the PVGraph and PDGraph together, we are
now able to obtain an accurate comparison between
two graphics by comparing their visual objects, data
objects, and the mappings between the visual and
data objects. This is different from previous systems,
which usually separate the data comparison from the
visual comparison (e.g., Chuah,5 Derthick6).

Similarity measure. When comparing two annotated
graphics, IMPROVISE* first creates a PVGraph and
a PDGraph for each graphic (currently in the form
of an XML document). The similarity between the
two graphics is then measured by calculating the dis-
tances between the four corresponding graphs:

D�E1, E2� � wv � D�PV1, PV2� � wd

� D�PD1, PD2�

Here E1 and E2 are two graphic examples. PV1 and
PV2 are their PVGraphs, and PD1 and PD2 are their
PDGraphs. Weights w v and wd determine the con-
tributions of the visual and data parts, respectively.
Similarly, in the rest of the section we use different
weights to indicate the contributions of different fea-
tures or feature sets in our distance measure. Cur-
rently, since all of our distances are normalized to
lie between 0.0 and 1.0, the summation of all weights
at the same level is always 1.0. As described later,
users can adjust these weights to express what fea-
tures and feature sets they are interested in. For ex-
ample, if a user is interested only in comparing the
graphic examples by their visual appearance, wd

would be 0.0, and w v would be 1.0. We have pre-
pared a default weight file, which weighs all parts
equally, for specifying the weights if users do not have
specific interests.
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Since both PVGraphs and PDGraphs are ordered
graphs with roots (starting nodes), the distance be-
tween two graphs is the distance between the two
corresponding roots, which are hierarchical compo-
sitions of other picture objects. Here we use com-
posite and atomic picture objects to distinguish pic-
ture objects with children from those without
children. Thus, a composite picture object has four
parts: a visual object,28 a data object, a set of chil-
dren, and the composition relation among its chil-
dren.29 Conversely, an atomic picture object has only
two parts: a visual object and a data object.

Each root is a composite picture object. Thus, the
distance between two roots is defined by four parts:

1. Distance between their visual objects
2. Distance between their data objects
3. Overall distance between their children
4. Distance between the composition relations

Here (1) and (2) can be measured by computing the
distance between a set of visual/data features,30 and
(3) can be recursively defined by the distance be-
tween two picture objects (see below). Finally (4)
requires only a simple feature comparison (see the
“Distance between features” subsection). Next, we
define the distance between two picture objects.

Distance between picture objects. We define the dis-
tance between two picture objects P and P� using
three formulas:

1. If both P and P� are atomic picture objects:

D�P, P�� � wv1 � D�VO, VO�� � wd1

	 D�DO, DO�� � Dvd�P, P��

Here VO and VO� are the visual objects in P and
P�, respectively; and DO and DO� are the cor-
responding data objects. This formula states that
the distance between two atomic picture objects
is the weighted sum of the distances between their
corresponding visual objects and data objects.
This case is the “stop” condition in a recursive
process for computing the distance between two
picture objects. We record it using Dvd� for later
use.

2. If P is atomic and P� is composite:

D�P, P�� � wvd � Dvd�P, P�� � ws

	 avg
D�P, P�j��1�j�Q

PVGraph

D1 D2 V1

V21 V22 V31 V32

V2 V3

D31 D32 D41

D3 D4

Figure 5 A visual-data mapping and the corresponding 
 PVGraph and PDGraph

V0

B

C PDGraph

P2: (V1, D2)

 A

P0: (V0, D0)

D0

P3: (V3, D4)P1: (V1, (D1, D2)) P2: (V2, /)

P21: (V21, D31) P22: (V22, D32)

P31: (V31, D41) P32: (V32, D41)

P1: (V1,(D1)

P0: (V0, D0)

P4: (V3, D4)P3: (/, D3)

P32: (V22, D32) P((V31, V32), D41)P31: (V21, D31)
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Here Q is the total number of children of P� and
P�j is the jth child. The distance between an atomic
and a composite object is a weighted sum of
two distances: (1) the distance between their
visual/data objects, and (2) the average distance
between the atomic object and the children of the
composite object. The combined distance ensures
that we compare all visual/data features, includ-
ing their structures.

3. If P and P� both are composite:

D�P, P�� � wvd � Dvd�P, P�� � ws � Ds�Ps, P�s�

where

Ds�Ps, P�s� � wc � Dc�Pc, P�c� � wr � D�r, r��

Here Ps and P�s are the visual/data composition
structures, including their children Pc and P�c and
the composition relations r and r� among the chil-
dren. This formula indicates that the distance be-
tween two composites is a weighted sum of
two distances: (1) the distance between their
visual/data objects (D vd�), and (2) the distance
between their structures (Ds�). The distance be-
tween their structures is computed by the distance
between their children (Dc�), and the distance
between the relations.

Now we define the overall distance between two sets
of children Dc�. The complication here is that P
and P� may have different numbers of children. To
make a systematic comparison, we first insert “dum-
my” objects to make up the difference. In addition,
we define that the distance between a regular pic-
ture object and a dummy is always 1.0 (the largest
possible distance in our model). We then seek a map-
ping between the two sets of children so that their
overall distance is minimized. The rationale is that
a similarity measure should stress the similar prop-
erties (e.g., matched components) but not the dif-
ferences. Moreover, function min� guarantees that
the distance is zero between two graphics that are
exactly the same. We formulate the distance between
two sets of children Pc and P�c as follows:

Dc�Pc, P�c� � min
�

��
i�0

K

D�Pi, P��i
��, where K

� max�M, N�

Here M and N are the total number of elements in
Pc and P�c , respectively. � is a permutation of P�c , Pi

is the ith element of Pc , and P��i
is the ith element

of the permutation �. Theoretically, finding such a
mapping requires an optimization algorithm, which
is normally NP-complete. Currently we use a greedy
algorithm to find the mapping. However, we have
a special case if both relations are similar and non-
commutative (e.g., the distance between the relations
is below a certain threshold). In this case, the map-
ping between the two sets of children is determined
by the ordering of the children. For example, when
comparing Overlay(a, b) with Overlay(a�, b�), we
only map a to a� and b to b�, since Overlay is non-
commutative.

Distance between visual/data objects. As just de-
scribed, computing the distance between two picture
objects requires calculating the distance between
visual/data objects. Because both types of objects are
described by a set of features (Figure 6), we can de-
fine the distances between their relevant features.

Features can be grouped into feature sets. Figure 6
shows two visual feature sets and three data feature
sets. Each feature set or feature is assigned a weight
to promote or demote its contribution in the overall
distance measure. Figure 6 indicates that the distance
between two visual/data objects is a weighted sum
of distances between all feature sets. Similarly, the
distance between two feature sets is a weighted sum
of distances between all features in the set. Thus we
can express the distance between two visual/data ob-
jects O and O�:

D�O, O�� � �
i�1

N �
j�1

Ki

wij � D�Fij, F�ij�

Here N is the total number of feature sets and Ki

is the total number of features in the ith feature set.
Fij and F�ij are the jth features in the ith feature set
of O and O�, respectively, and wij is the weight of
the jth feature in the ith feature set (e.g., w vcat is the
weight of the category feature in the visual syntactic
feature set shown in Figure 6).

Distance between features. We compute the distance
between two features F and F� by comparing their
feature values V and V�. If both values are simple
categorical values, the process is trivial (e.g., using
strcmp� to compare strings). However, we have
three special cases, because some of our features
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carry rich semantics and their distances are not sim-
ple Euclidean distances.

The first case compares feature values that are paths
(e.g., the value of the visual/data category feature).
In this case, we define the distance between two paths
V and V� as:

D�V, V�� � �
i�1

max�M,N�

wi � D�vi, v�i�

where

V � �v1, . . . , vN� and V� � �v�1, . . . , v�M�

Note that if N � M, the shorter path would be pad-
ded with “/” values. The distance between “/” and
any string is always the longest possible distance (1.0).
The weights in this formula gradually decrease (wi 

wj if i � j) to ensure that a higher-level match is
preferred to a lower-level match.

The second case compares feature values that are
strings, but have special connotations, for example,
two visual relations ComposeFrame and Compose-
Unity. We have prepared several relation distance
matrices to specify the distance between any two re-
lations. For example, the distance between Horz-
Align and VertAlign is 0.5, whereas the distance be-
tween HorzAlign and Overlay is 1.0.

The third case compares numeric feature values for
which the absolute numeric distance is inadequate
to return a meaningful result. For example, we may
consider that data volume is relatively small if the
value is less than 100. Thus, a graphic that has a data
volume of 100 is not very different from one with a
data volume of 30. To deal with this situation, we
use the following distance measure between two nu-
meric values v and v�:

D�v, v�� � avg�D�scale�v�, scale�v���,

normalize��v � v����

Here function scale� maps an actual number onto
an ordinal scale. By default, we use four ordinal
scales: small (0–100 data objects), medium
(100–1000), large (1000–10000), and huge
(
10000). Using this setting, the scaled distance be-
tween values 60 and 180 is the distance between the
two ordinal scales small and medium.

To handle boundary values (e.g., 100 and 101 are
mapped onto two ordinal scales, and 1000 and 9999
are mapped to the same scale), we also compute a
normalized absolute distance between v and v�. Cur-
rently, we use a normalization function to map an
absolute distance onto a value between [0, 1].

Figure 6 A typical picture object and its composition

DATA OBJECT

Wv

WsemWsync

Wtech Wvrole Wdcat Wvolume WimptWvcat

Wdm WdoWds
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Dynamic clustering. The most common use of case-
based learning is to classify a new case (e.g., a newly
generated graphic or a new sample provided by oth-
ers) based on a set of similar existing cases.21 In ad-
dition, a user may want to browse the example da-
tabase to understand the general structure and
patterns of existing presentation examples. Along
with our similarity model, we use a hierarchical clus-
tering algorithm31 to organize existing graphic ex-
amples and classify new information graphics. The
clustering algorithm ensures that the intracluster sim-
ilarity is maximized and the intercluster similarity is
minimized.31 Instead of using a static classification
method (e.g., Chuah5), IMPROVISE* creates clusters
dynamically, based on user requests. In particular,
users can dynamically adjust various weight assign-
ments to view different organizations of graphic ex-
amples by interests (e.g., organizing all examples by
visual appearance). Users may also ask that a new
sample be classified (e.g., find all existing examples
similar to the new one).

There are two reasons for supporting dynamic clus-
tering for an automated graphics generation system
such as IMPROVISE*. First, new graphics are gener-
ated dynamically and need to be stored back in the
visual database in a useful way (e.g., for efficient fu-
ture retrieval). Second, as we continue collecting ex-
amples from other sources (e.g., professional design-
ers or other generation systems) to enrich our
database, we need an evaluation tool to tell us how
the new samples are related to our existing cases.
As the number of examples grows, our dynamic clus-
tering also provides a level of organization by which
users can easily identify the overall trend among all
examples, and the local patterns within a subset.

Partial matching. In our approach, we allow a user
to specify partial requests. This means that the user
does not need to know every aspect of the data and
desired visual characteristics. Suppose that a user
wants to discover the correlation among a set of
school data: school names, academic ranks, the cost
of education per year, and the average time spent
on completing a degree. Our users can easily enter
such a request using a form-based graphical user in-
terface provided by the XML Spy Integrated Devel-
opment Environment32 based on our defined
schema. Figure 7A shows a fragment of this request
created by XML Spy. According to our schema, each
request may include (1) a top-level visual/data ob-
ject (visualRoot/dataRoot) and (2) a set of lower-
level visual and data objects (visualComponent/
dataComponent). Each visual/data object (including

its root) is specified in terms of the features defined
earlier. For example, data object D1 is described as
an array (form) of school names (category). In this
case, since little visual preference is provided (no vi-
sual component is specified), IMPROVISE* automat-
ically creates only a PDGraph (Figure 7B) based on
this input. In the generated PDGraph, each picture
object (e.g., P0) contains a data object identifier
(Dld), which points to the actual data object, and an
unspecified visual object. The symbol “*” represents
all unknown objects or feature values.

In addition to specifying a partial request, a user may
provide certain matching criteria. IMPROVISE* allows
two types of matching criteria: soft match and hard
match. A soft-match criterion does not guarantee an
exact match, whereas a hard-match criterion requires
an exact match. By default, all user specifications are
soft-match criteria. Users can update the criteria by
adjusting various weights defined in our model. Con-
versely, users must explicitly specify a hard-match
criterion for a specific feature of a visual/data object
(see Experiment 2, following).

Experiments. In this section, we illustrate the appli-
cation of our case-based learning through two con-
crete experiments. In the first, we demonstrate that
we can distinguish different graphic examples at a
fine granularity. In the second, we show how
IMPROVISE* handles a partially specified user re-
quest.

Experiment 1. Suppose that a user wants to browse
all graphic examples without a specific emphasis on
any of the features. This request is translated into
a neutral weight assignment, in which all indepen-
dent features are weighted evenly. But if a feature
(e.g., scale) dominates another (e.g., measurement),
the two are weighted differently. Using these weights,
IMPROVISE* produces a hierarchical cluster for 20
visual examples, which are collected from different
sources.2–5,12,33 Figure 8A shows all the clusters, which
are hierarchically formed by recursively merging two
clusters together until all examples are under one
cluster. Here the x-axis represents the example iden-
tifier, and the y-axis represents the distance between
two clusters. By setting different distance thresholds,
the user can have a different number of clusters. For
example, if the threshold is set to 0.25, there will be
six clusters (the number of dots in Figure 8A). Con-
tinuing this experiment, we modify the feature
weights to stress only the visual features. This new
weight assignment produces a new clustering result
(Figure 8B).
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Experiment 2. In most cases, users submit a partial
request that describes the data to be conveyed, with
few visual preferences. Figure 7 illustrates such a re-
quest. Taking this request as input, IMPROVISE* re-
turns the top-three matched examples: 8 and 9 (see
Figure 9) and 5 (see Figure 10). Here example 5 is

a bar chart that encodes seven cars with their name,
price, and nation (represented by color).

Not surprisingly, all data objects expressed in the re-
quest can be mapped to at least one of the data ob-
jects encoded in the three examples. The cost in the

DId: D1
...
Type: Entity
Form: Array
Category: Name
Scale: Nominal
...

VId: V0
...
Category: *
Technique: *
...

DId: D0
...
Type: Relation
Form: Singleton
Category: LogicalRelation
Structure: SimpleJoin(D1, D2, D3, D4)
...

DId: D2
...
Type: Entity
Form: Array
Category: Rank
Scale: Ordinal
...

DId: D3
...
Type: Entity
Form: Array
Category: Cost
Scale: Ratio
...

DId: D4
...
Type: Entity
Form: Array
Category: Duration
Scale: Ratio
...

PId: P0
Vld: V0
Dld: D0
Relation: SimpleJoin

PId: P1
Vld: *
Dld: D1
Relation: =*

PId: P2
Vld: *
Dld: D2
Relation: =*

PId: P3
Vld: *
Dld: D3
Relation: =*

PId: P4
Vld: *
Dld: D4
Relation: =*

Figure 7 The representation of a partial user request

<?xml version="1.0" encoding="UTF-8"?>
<pictureAnnotation xmlns:xsi=". . ."
  xsi:noNamespaceSchemaLocation="ourSchema.xml">
<title> User request </title>
<visualRoot name="V0" dataEncoded="D0">...</visualRoot>
<dataRoot name="D0" visualEncoding="V0">...

                 ......
        <structure mode="specified" xsi:type="ComplexDataType">
              <operator>simpleJoin</operator>
   <operand>D1</operand>...<operland>D4</operand>
        </structure>
</dataRoot>

<dataComponent name="D1" visualEncoding="*">
        <category mode="specified">SchoolName</category>
        <type mode="specified">entity</type>
        <form mode="specified">array</form>

        ......
</dataComponent>
     ......
</pictureAnnotation>

 A

B
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request can be mapped to the cost in example 8, and
to the price in examples 9 and 5. Note that examples
8 and 9 encode more data dimensions (seven) and
example 5 encodes fewer data dimensions (three)
than the user requested (four). Thus IMPROVISE*
performs subset matching against examples 8 and
9,5 and superset matching against example 5 (i.e.,
one element of the data in the request cannot be
mapped to any element in the example). In example
5, we need to find other means to encode the data
left unmatched. Note that our current algorithm does
not allow overload matching (e.g., mapping both the
time spent in school and the cost in the request onto
the price in example 5). This is because we cannot
use the same visual cue to encode two different types
of data.34

In addition to providing data descriptions, an expe-
rienced user may supply specific visual preferences.
Continuing our experiment, suppose that our user
specifies that the category of V0 in Figure 7 must be
a bar chart. This hard-match criterion requires that
all retrieved examples be bar charts. Consequently,
IMPROVISE* retrieves example 5 (Figure 10) as the
top match. Here example 5 replaces the top matches
in the previous experiment, examples 8 and 9, which
are not bar charts.

It is interesting to note the change of relationships
between examples 8 and 9, which are both created
by SAGE (Figure 9). When considering all features

equally, IMPROVISE* finds that examples 8 and 9 are
not that similar in Experiment 1. But it finds them
to be quite close in Experiment 2, when considering
only visual features. After examining the examples,
we are able to produce an explanation. First, exam-
ples 8 and 9 are different in their data composition
characteristics although they appear very similar.
Particularly, the vertical axis in example 8 encodes
the work type, which is not a unique identifier for
the projects (a one-to-many mapping exists between
the work types and projects). In contrast, the ver-
tical axis in example 9 encodes the house name, which
can uniquely identify a house (a one-to-one map-
ping exists between the names and the houses). As
indicated in Chuah,5 examples 8 and 9 also differ in
their data-encoding format. The circles (encoding
the project cost) in example 8 have no relationship
to the bars along the horizontal axis (time duration),
whereas the circles (agent-estimated price) and bars
(asking and selling prices) in example 9 are related.
The subtle data differences widen the distance be-
tween examples 8 and 9 in Experiment 1, but their
strong visual structural similarity brings them close
in Experiment 2.

Although we describe the dynamic clustering and
partial matching in separate experiments, in reality
they work together to provide the foundation of our
example-based graphics generation. Specifically,
IMPROVISE* presents users with the top-matched ex-
amples that are marked on a clustering hierarchy.

 A B

Figure 8 Clusters produced by different weights
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Users can then review these examples and observe
the overall relations among them to facilitate fur-
ther example browsing and refinement.

Conclusions and future work

Automated graphics generation promises to simplify
information-system developers’ tasks by automati-
cally creating visual depictions that can effectively
communicate the desired information to users. Pre-
vious research efforts focus mainly on using rule-
based generation approaches, which employ hand-
crafted design rules. To overcome the shortcomings
of rule-based approaches, we have developed a hy-
brid approach that combines rule-based with exam-

ple-based generation approaches. Currently, our ap-
proach is embodied in the prototype system
IMPROVISE*. Under this hybrid framework, our cur-
rent work is on how to apply various machine-learn-
ing techniques to facilitate graphics generation. In
particular, in this paper we focus on addressing the
use of machine learning in graphics generation from
three aspects.

First, we introduce an object-oriented, integrated hi-
erarchical feature representation that we use to an-
notate existing information graphics and user re-
quests. Not only do we capture various characteristics
of data and visual components; we also stress the da-
ta-visual bindings. Second, we describe how to use

From M. Chuah, S. Roth, and S. Kerpedjiev, “Sketching, Searching, and Customizing Visualizations,” Intelligent Multimedia Information Retrieval, 
M. Maybury, Editor, American Association for Artificial Intelligence, Menlo Park, CA (1997), p. 97. Copyright 1997 American Association for 

Artificial Intelligence. Reprinted by permission.
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Figure 9 Examples 8 (top) and 9 (bottom), from Chuah, Roth, and Kerpedjiev
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decision-tree learning to automatically extract de-
sign rules from a set of annotated graphic examples.
Our experimental results have demonstrated that we
can learn concise and useful design rules. Third, we
combine case-based learning with dynamic cluster-
ing to retrieve matched graphic examples for reuse
based on user requests. Specifically, we use a seman-
tics-based, quantitative visual similarity measuring
algorithm to retrieve the top-k matched examples.
To demonstrate our approach, we have conducted
a series of experiments and obtained satisfactory re-
sults.

There are several things on our agenda to improve
our current use of machine learning in automated
graphics generation. To facilitate fine-grained
graphic design analysis using machine learning, we
are collecting a large graphics corpus, which will con-
tain several thousand design patterns. In addition,
we are developing rule-acquisition learning algo-
rithms that can take advantage of our complex struc-
tured features; existing tools focus only on numer-
ical or nominal features. Dealing with a potentially
large set of features in graphics synthesis, we would
like to explore how to automatically extract salient
features.

Our current similarity measure emphasizes the over-
all similarity between two cases. We are improving
the current model to calculate the similarity between
meaningful design fragments. In graphics generation,
it is crucial to retrieve existing matched design frag-
ments. This is because a new graphic design may need
to be pieced together by using multiple design frag-
ments from different existing graphic examples.

To facilitate the use of our system, we are investi-
gating how to better support user interaction by in-
corporating direct manipulation and multimodal in-
put techniques that allow users to specify their
information visualization requests more easily and
naturally. We are also exploring how to apply ad-
vanced computer vision and graphics technologies
to automatically extract various visual characteris-
tics from examples to aid our current hand-annota-
tion process.
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