732 LEYMANN AND ROLLER

Using flows
in information
integration

Information integration has two fundamental
aspects, data integration and function
integration. Function integration is based on
flow technology and adapter technology, and
both of these add powerful capabilities to
information integration. They provide access
to a huge variety of data sources, such as
standard applications, home-grown backend
systems, and Web services. For accesses
that are not restricted to read operations,
flows can help in managing units of work
across these data stores. When a database
system is coupled with a flow engine, all of
these capabilities are made available to
database applications.

Information integration has two fundamental as-
pects: data integration and function integration. In
a nutshell, data integration deals with the problem
of making heterogeneous, “external” data sources
accessible via a common interface and an integrated
schema: users should perceive the collection of data
as being managed by a single database system. Con-
siderable research has been undertaken in this area,
under the umbrella of federated databases,! and
products as well as standards are being developed.?
Function integration deals with the problem of mak-
ing local functions from disparate applications avail-
able in a uniform manner:? users should perceive a
homogeneous collection of functions as a base for
manipulating data encapsulated by the various ap-
plications. Notably, very little research has been un-
dertaken in this area, but a number of vendors offer

0018-8670/02/$5.00 © 2002 I1BM

by F. Leymann
D. Roller

products and standards* are appearing for enterprise
application integration (EATI).

In this paper we discuss the use of flow technology
as a fundamental ingredient for function integration
as well as function aggregation, and as a means to
bring data integration technology and function in-
tegration technology together. In the next section we
review the evolution of adapter technology and its
use of flow technology. The programming model re-
sulting from the use of flows is described in the fol-
lowing section. An advanced use of flows in func-
tion integration scenarios is described in the next
section, followed by a section on how flow technol-
ogy can be used in data integration scenarios. In the
final section, we describe transaction management
capabilities that are made available by using flows
in database environments.

Adapters

Today, applications are not perceived as indepen-
dent, isolated conglomerates of functions and data
but as parts that are subject to integration into a
whole in support of a company’s business processes.
Functions performed in one application imply func-
tions that must be performed in other applications
to maintain overall consistency. For example (see
Figure 1), when an order is entered into an SAP ap-
plication, the corresponding available credit may

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

have to be modified in an Oracle application, infor-
mation about the customer updated in a Siebel system,
and a cIcs* (Customer Information Control System)
transaction run to change an entry in a database.

In such scenarios, the notion of “application” cov-
ers the spectrum from home-grown legacy applica-
tions, over standard applications (enterprise resource
planning [ERP], customer relationship management
[crRM], etc.), to database systems, and may even in-
clude functions provided by external business part-
ners. Often these applications are collectively re-
ferred to as an enterprise information system (EIS).
The meaning of “integration” ranges from uniform
access to data managed by any of these applications,
over uniform access to discrete functions of the ap-
plications, to the ability for changes in one applica-
tion to cause automatic changes in other applications
in accordance with business rules. The correspond-
ing technology area is referred to as enterprise ap-
plication integration (EAI) technology.

The fundamental element of any EAI solution is an
adapter (often called connector—although a connec-
tor is defined with a particular semantics*). An
adapter accepts data in the particular format of one
application (source format), transforms the data into
the format of another application (farget format), and
knows how to pass the transformed data to the second
application for further processing. For example, an
adapter may accept a purchase order as defined by
RosettaNet,” transform it into a corresponding SAP
intermediate document (IDoc),® and then use the
SAP remote function call (RFC)” mechanism, with the
created IDoc as parameter, to call the appropriate
SAP function to process the purchase order.

This kind of adapter is often called a target adapter,
because its purpose is to invoke functions of a target
application to update the application’s database or
to query some data from it. A second kind of adapter
is called a source adapter—it typically hooks into its
associated application to capture events that are of
interest to other applications. The technique used
by source adapters to hook into an application de-
pends on the application itself and varies from da-
tabase triggers to publish/subscribe mechanisms.
Whenever an event occurs that might be of interest
to another application, the source adapter transforms
the corresponding data into an appropriate format
and sends it to the interested applications. Typically,
a source adapter sends the data through a separate
piece of middleware (see Figure 2). There are many
different names for this middleware: we call it a aub.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 1 The EAI problem

ERP
SAP ORACLE
— Order Entry —— Update Available
Credit
CRM
SIEBEL cIcs
Update StockHold_Tral

I

Figure 2 Source and target adapters

SOURGE ENVIRONMENT
APPLICATION A
SOURGCE
TWRIVN " 4 ADAPTER
| -
HUB
xdetf A
|4

| | |
TARGET ENVIRONMENT

TARGET

ADAPTER

cadlae v

APPLICATION B

The hub provides a neutral format for all data in-
terchanged between adapters. The fundamental ad-
vantage of a neutral format is that it reduces com-
binatorial complexity: one adapter does not need to
know the data format another adapter is expecting
or producing; it simply understands the specific for-
mat of its application, as well as the neutral format
of the hub, and it can transform between these two
formats. In some application areas, international
standardization efforts specify such neutral formats
(see, for example NIST® and Leymann® for neutral

LEYMANN AND ROLLER 733

Figure 3 Following corporate policies

TRANSFORM INTO STORE DATA
DB FORMAT INTO DB

(& O
TOrderVaIue > 10KE

(%) »O
L

TRANSFORM INTO INVOKE

ADAPTERX FORMAT ADAPTERX

RECEIVE
DATA

v

FORMAT
UNKNOWN

Figure 4 Abstract architecture of an EAIl environment

ADAPTER n

ADAPTER 1

CHANNELS

formats of product definition data). In case of n dif-
ferent adapters, at most n + n transformations are
needed (from each application-specific format into
the neutral format and vice versa). Without such a
neutral format, each of the n adapters, in the worst
case, would have to transform into the (n — 1) dif-
ferent formats of the other adapters and vice versa,
that is, n X (n — 1) transformations would be
needed.

By introducing a hub as intermediary between adapt-
ers, additional quality of services can be achieved
without additional programming in the adapters. For
example, a source adapter may produce data that
are of interest to a certain target adapter, but the

734 LEYMANN AND ROLLER

target adapter may not be actually running. The hub
may act as an active buffer, storing the data produced
and passing it to the target adapter at a later time,
thus increasing the availability of the overall system.
Furthermore, adapters and the hub can reside in dif-
ferent environments and on different machines, sup-
porting heterogeneity and scalability.

Most importantly from a business perspective, the
hub can follow corporate policies when mediating
data between adapters. For example (see Figure 3),
when the hub receives information about an entered
order, it may transform the data into the format ex-
pected by another adapter, and, if the value of the
order exceeds a certain threshold, it may store the
data into a database (DB) to keep track of high-value
orders. In case the data format is unknown, the hub
might write the data to an error log and inform an
administrator, via e-mail, for corrective actions.

The directed graphs shown in the figure are called
flow models (described in the next section). They typ-
ically represent (parts of) business processes reflect-
ing corporate policies. Flow engines execute such a
model by navigating through the graph and perform-
ing the actions specified at each node reached (see
Leymann and Roller" for an introduction to flow
technology). A hub includes a flow engine to run flow
models that reflect corporate policies when medi-
ating data between adapters. A flow model can de-
fine how to use multiple adapters of different appli-
cations within a single flow to implement the
integration scenario from Figure 1, for example.

Because of the inherent heterogeneity of EAI sce-
narios, a hub must communicate with adapters via
a multitude of formats and protocols. A particular
combination of formats and protocols used to ex-
change data between adapters and a hub is called
a channel. For example, a hub can use a SOAP/HTTP
(Simple Object Access Protocol/HyperText Trans-
fer Protocol) channel to communicate with one
adapter, a MIME/SMTP (Multipurpose Internet Mail
Extensions/Simple Mail Transfer Protocol) channel
for another adapter, and a Java™*/yMS (Java Mes-
sage Service) channel for yet a different adapter. Fig-
ure 4 depicts the relationship among a hub, a flow
engine, channels, and adapters for solving EAI prob-
lems. Note that “channel” is a generic concept and
is not restricted to hub environments; in general, the
communication between applications can be based
on channels.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Finally, building adapters is not a trivial task. Thus,
standards are needed for building adapters that can
be used within each standard compliant environment.
For the 2EE** (Java 2 Platform, Enterprise Edition)
environment, the J2EE Connector Architecture* defines
such a standard. An adapter built according to this
standard can run in every J2EE-compliant applica-
tion server and can be used by each J2EE application
to access the enterprise information system corre-
sponding to the adapter. For an environment pro-
vided by a relational database, the SQL/MED (Struc-
tured Query Language/Management of External
Data) standard? defines a special kind of adapter
called a wrapper. A wrapper allows an external data
source to be rendered as a table and accessed di-
rectly from the database system. Wrappers have spe-
cial semantics that allow them to be tied into the
query processing of the database system. Hergula!!
provides a comparison between connectors and
Wrappers.

Access to applications can also be provided via Web
services. Briefly, Web services are loosely coupled
software granules available via common Internet
technology.>* Thus, Web services can be perceived
as a base for implementing adapters, especially for
supporting access over the Internet to functions pro-
vided by business partners; standardization is pro-
gressing in this area.'>"’

Flow-based programming model

Flow technology is becoming an integral part of mod-
ern programming models. ' Such models distin-
guish between flow logic and function logic. While
function logic deals with a discrete fine-grained task
(such as retrieving an order document or updating
a customer record), flow logic deals with combining
many functions in order to solve a more complex
problem (such as processing an order). This results
in a two-level programming model with programmers
implementing functions (programming “in the
small”) and nonprogrammers implementing flows
(programming “in the large”).

Graphical tools may support the specification of such
“flows between functions” as a graph that even non-
programmers, for example, business specialists, can
draw (see Figure 5). The nodes represent the par-
ticular functions to be invoked, and the edges of the
graph represent the invocation order of the functions,
as determined by business rules. "’ Within a flow com-
position tool, these functions may appear on a pal-
ette, then be selected and dragged into the compo-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 5 A flow composition tool

PALETTE COMPOSITION EDITOR

GetOrder

o o DecideOnOrder |

Component_1

O CheckCreditCard o

Component_2

Not OK OK

e e

sition editor, where they are “wired” into graphs. The
types of functions span a broad spectrum, for exam-
ple, stored procedures, Enterprise JavaBeans** (EJB)
methods, adapters for standard applications, or Web
services; note that even flows themselves can be ren-
dered as functions and used as nodes in a flow graph.
For example, the CheckCreditCard function in the
example might be implemented by an EJB bean,
whereas the ProcessOrder function might be a com-
plex flow.

In general, flows are not as simple as the one shown
in Figure 5, and they are often not as low-level as
in Figure 3, but rather define how to process claims,
how to settle trades, and so on. It is important to
note that there is no special area of applicability of
flow technology, just as database systems are not re-
stricted to particular application areas. The business
itself determines the business processes.

The flow-based, two-level programming model con-
tinues the separation of concerns that began with the
introduction of relational database technology and
results in increased flexibility of application functions
built according to this model (see Figure 6). Rela-
tional database technology allows many changes of
the schema of the database underlying a particular
application without affecting the code of the appli-
cation functions. For example, indexes might be
added or dropped, tables might be moved to differ-
ent devices, and so on. The application functions are
said to be data independent in that sense. This in-
dependence was achieved by moving data manage-
ment-specific logic from the application into the da-

LEYMANN AND ROLLER 735

Figure 6 Data and flow independence of applications

tabase system. Similarly, moving flow logic and
composition logic from the application into the flow
engine results in applications that are called flow in-
dependent. The wiring together of the functions can
change without affecting the functions themselves,
but the result may be an application with a very dif-
ferent behavior. The flow engine simply interprets
the changed flow model and invokes the functions
according to the business policy or business process
it represents.

Because flows can wire together functions that are
themselves flows, the flow-based, two-level program-
ming model is recursive and can itself contribute to
the flow independence of functions. Flow-indepen-
dent functions typically make no assumptions about
their context, that is, the order in which they are in-
voked. This increases the reusability of the functions.

The use of flow technology in building applications
and functions introduces a higher degree of flexibil-
ity in solving business problems. Business processes
or policies can be changed much easier, even by non-
programmers. Thus, a company can react much
faster to changes in the business environment.

Flow-based applications inherit a number of prop-
erties that are otherwise much harder to achieve.
Such applications can be performed in a truly par-
allel mode; for example, the store and invoke func-

736 LEYMANN AND ROLLER

g

APP

TICATIO

tions in Figure 3 may run in parallel because they
are on parallel paths of the graph. Flow-based ap-
plications are inherently distributed and heteroge-
neous, because the functions invoked by the flow en-
gine may run on different machines and in different
environments. As we will see in a later section, such
applications may be recoverable according to ex-
tended transaction models.

Sample use of flows in function integration

A flow can invoke a function that is another flow,
that is, flows can be nested. This allows flows to be
used at different levels. For example, a flow can be
used to build an adapter to get data from a standard
application, that is, the flow transforms data into a
format appropriate for the application programming
interface (API) of the standard application, uses the
API, with the transformed data as parameters, to re-
trieve data, and finally transforms the retrieved data
into a format expected by the invoker. A flow can
be used to wire more than one adapter together to
get data from multiple standard applications and ma-
nipulate others, or wire together Web services that
retrieve or manipulate data from various sources
from the Internet.

The underlying abstract principle is function integra-

tion. Local functions { fy, ..., f,} are provided to
access otherwise opaque data sources. Each local

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

functionf; has input data {i, } ,c,; and might produce
output data {0, } 1. A global function must access
or manipulate a collection of opaque data sources
in a single step. To do this, a global function uses
a collection of local functions. But there are depen-
dencies between the local functions, for example, the
functions must be executed in a particular order and
the output produced by one local function may be
input for another. These dependencies are reflected
by wiring the local functions into a flow that repre-
sents the global function. The input parameters of
the global function, as well as output parameters of
some local functions, provide input for some other
local functions, and the output of the global func-
tion is an aggregation of the output of some of the
local functions (see Figure 7). Note that this requires
additional capabilities to be supported by flow en-
gines, in particular, the ability to specify data flows
(shown as dashed arrows in the figure) separate from
control flows (shown as solid arrows); see Leymann
and Roller! for the details. Finally, each such global
function is again a local function, that is, it provides
access to an opaque data source—the “federation”
of the sources encapsulated by its encompassed lo-
cal functions.

In a more concrete scenario, the local functions pro-
vide access to data managed by standard applications
and legacy applications, or any other data source.
The schema of the databases underlying these ap-
plications or data sources is unknown. Each local
function produces output according to its signature
and this signature is considered the schema of the
data retrieved from the applications’ databases.
When data from a series of these databases is needed,
a global function must be created that wires together
the corresponding local functions into a flow model.
A flow engine then executes the flow and invokes
the local functions in the specified order. It may tem-
porarily store the output data of the local functions
and make them available to succeeding local func-
tions in the flow, as defined by the data flow con-
structs. Finally, it passes the aggregated output to
the output parameters of the global function, that
is, the flow. In this way, the global function or flow
makes the underlying collection of the data in the
EIS available.

Flows in database systems

Often, the EIS data that are available via flows need
to be directly manipulated in a database environ-
ment. Ideally, the data to be manipulated should be
available as a table. By rendering flows as table-val-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 7 Global functions are flows between local
functions

GLOBAL | ,F (i ,i5,04,00,03,0
FUNCTION (,"2’\" L] ;‘2
7 SO NRS
7 NS s
A Y \\

- A

~
S

-~ »
S

SN,
s

~,

)
AN

Figure 8 Flows as table-valued UDFs

SELECT A1,.Y,An
FROM TABLE (runWorkflow(:wfname, :p1,...:pn)) AS T

WHERE P(B1,...,BK)

ued user-defined functions (UDFs) and wrappers,
function integration and data integration technol-
ogy is brought together.

Figure 8 shows a flow that is rendered as a UDF, and
its usage in a SQL FROM clause. The user-defined
function runWorkflow is a facade, for the correspond-
ing API of the flow engine, that allows an instance
of a flow model to be started. The name of the flow
model might be a parameter of the UDF. The (oth-
er) parameters of the UDF are those to be passed to
the flow as its input parameters. In the course of its
regular processing, the database system invokes the

LEYMANN AND ROLLER 737

Figure 9 Flows as wrappers

SELECT Af,..., An DBMS FLOW
ENGINE

FROM T _— 5 WRAPPER:
TABLE T

WHERE P (B1,...,BK) IS AFLOW

UDF, which starts the flow and receives its output.
The output of the flow is a collection of tuples that
can then be processed by the database system. In par-
ticular, predicates from the WHERE clause can be ap-
plied, as well as projections onto the subset of rel-
evant columns. For more details see Wagner.?

In a similar manner, flows can be rendered as
SQL/MED wrappers, as indicated in Figure 9. For this
purpose the signature of the output of a flow model
is defined as an external data source, that is, as an
SQL/MED foreign table. The corresponding SOL/MED
foreign data wrapper then uses the APIs of the un-
derlying flow engine to start an instance of the flow
model. This is straightforward when no parameters
have to be passed as input to the flow. Flow engines
are very simple SOL/MED servers and typically do not
understand relational algebra operators. In order to
pass input parameter to a flow, a detour must be
made through function mappings.®

The invocation of flows from within a database sys-
tem has an interesting similarity to stored proce-
dures: flows can be seen as federated stored proce-
dures,” that is, as a generalization of stored
procedures for federated database systems. The ar-
gument in favor of federated stored procedures is
exactly the same as for regular stored procedures (see
Figure 10). An application that manipulates a col-
lection of data sources available under a federated
database system runs a “script.” The script invokes
functions that request, via the federated database sys-
tem, manipulations of the data sources. Each request
involves communication between the application and
the federated database system.

738 LEYMANN AND ROLLER

Typically, it is much more efficient to run the com-
plete script within the federated database system.
This reduces the number of interactions between the
application and the database system to one, avoid-
ing the exchange, and the possibility of wire tapping,
of intermediate data between the functions of the
script. The application simply calls the federated
stored procedure, then the database system invokes
the corresponding flow within the associated flow en-
gine and returns the result of the flow to the appli-
cation. It is the flow engine that invokes the func-
tions manipulating the data sources, resulting in
additional benefits because functions can be used
(e.g., adapters) that have not been built for invoca-
tion by a database system, in contrast to UDFs and
Wrappers.

Transactions in flows

When a flow is invoked from within a database man-
agement system (DBMS) via one of the mechanisms
discussed in the previous section, the invocation of
the flow may be just one operation within a unit of
work. The invocation of a flow might be mixed with
regular SQL statements, and the effects of either all
or none of the operations must be reflected in the
underlying data stores. Thus, a flow must participate
in the unit-of-work processing of the database sys-
tem. This can be achieved by various means.

Flows can bound functions that are implemented as
transactions into a new transaction. For example, the
flow in Figure 11 (a slight variation of the flow from
Figure 3) calls the method of an EJB bean and (un-
der the specified condition) stores the data received
in a database. The EJB bean is running under trans-
action protection and the storage operation is also
a transaction. When both functions are executed in
a flow either they must both complete successfully,
or neither is performed; that is, both functions must
be executed by the flow engine as a single transac-
tion.

A group of transactions bound together within a flow
isreferred to as an atomic sphere. Whenever the flow
engine enters an atomic sphere, it begins a new trans-
action, and each contained transaction is invoked un-
der the atomic sphere transaction context. If any con-
tained transaction fails, the atomic sphere fails and
is automatically retried until the number of tries
reaches a threshold. If all contained transactions
complete successfully, the atomic sphere is consid-
ered to have completed successfully and the flow con-
tinues as usual. See Leymann and Roller'® for more

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 10 Federated stored procedure

APPLICATION

SCRIPT
FUNCTION 1

FUNCTION2

FUNCTION n

APPLICATION FEDERATED
DBMS

e

technical details and the precise definition of, and
assumptions behind, atomic spheres.

Flow engines also allow collections of functions that
are not themselves implemented as transactions to
be grouped into transactions. For example, one func-
tion within a flow writes a scanned-in job applica-
tion letter to a file, and another function invokes a
nontransactional interface of a standard human re-
sources application to insert the name and address
of the applicant. Both functions must be performed
successfully, or the effect of one function must be
undone if the other function fails. For this purpose,
each of the functions is associated with a “compen-
sation function,” that is, a function that undoes what
the intended function has done. The compensation
function for writing the scanned-in letter to a file dis-
cards the file, and the compensation function for
inserting the applicant information deletes this in-
formation. The flow engine will perform the com-
pensation function associated with an intended func-
tion whenever the intended function has been run
and its coupled function has failed.

A group of functions within a flow that must jointly

run successfully or be undone by compensation is
called a compensation sphere.”* Each function within

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

FEDERATED
DBMS

SOURCE 1

v

SOURCE 2

\ 4

SOURCE n
Lgl

Figure 11 An atomic sphere

STORE DATA
INTO DB

B FORMAT

OrderValue > 10K€

kRANSFOF{M INTO

RECEIVE

a compensation sphere has a compensation function
associated with it. For example, in Figure 12 com-
pensation sphere S groups together the functions B,
C, D, and E; the compensation function of B is called
‘B and so on. When B, C, and D have been per-
formed and E fails, the flow engine will execute the
compensation functions ‘D, °C, and °B to undo the
effects of B, C, and D."* For background on trans-

LEYMANN AND ROLLER 739

Figure 12 Compensation spheres

Figure 13 Spheres in flows

action concepts and an in-depth treatment of related
transaction technology see Gray and Reuter® and
Weikum and Vossen.*

The use of spheres to collect functions with partic-
ular properties within a flow allows us to specify a
broad spectrum of behavior. Not only transactional
behavior, such as atomic spheres and compensation
spheres, can be defined, but also more general
behavior, such as joint fault handling or time-out pro-
cessing, may be specified. Spheres can also have gen-
eral properties, such as being permeable or imper-
meable (indicated by a dotted line or a solid line in

740 LEYMANN AND ROLLER

Figure 13). A permeable sphere maintains its behav-
ior after the flow leaves the sphere, whereas imper-
meable spheres do not. A compensation sphere
might be permeable, that is, the compensation of the
functions performed within a sphere might be re-
quested long after the intended functions in the com-
pensation sphere were completed. An atomic sphere
is impermeable, that is, once the flow has moved on,
its actions cannot be undone (otherwise, the usual
implementation of ACID [atomicity, consistency, iso-
lation, and durability] semantics would require locks
to be held for an indefinite duration).

Another general property of a sphere is whether or
not it must be interruptible. When a sphere is inter-
ruptible, the flow engine stores state information be-
fore and after each function within the sphere is run.
In case of a failure of the environment, the flow it-
self continues, after restart, where it left off.’* A
sphere that is noninterruptible does not have restart
capabilities, but it typically runs orders of magnitudes
faster. (The noninterruptible parts of a flow are also
referred to as microflows.) Thus, the appropriate
properties to specify for sphere performance must
be considered along with the overall quality of ser-
vices.

In summary, the use of atomic and compensation
spheres helps in controlling the backward recovery
properties of (parts of) a flow. The notion of inter-
ruptability helps in controlling forward recovery or
Phoenix behavior.? Thus, flows allow us to control
fundamental transactional aspects of groups of func-
tions.

When flows are made available in a database sys-
tem, their transactional capabilities can be exploited
there. Figure 14 shows a database system that co-
operates with a flow engine via techniques similar
to the ones described earlier. Thus, the application
can access or manipulate external data sources via
appropriate flows started by the database system in
the associated flow engine. When the database sys-
tem or the application itself detects an error and has
to abort, the database system may request the flow
engine to undo the involved spheres; the detailed
discussion of the underlying mechanics is outside the
scope of this paper. But it should be obvious that by
coupling flow technology with database technology,
the management of long-running transactions be-
comes available to database applications. Note that
this does not solve the issues around traditional trans-
actions in federated databases such as global seri-
alizability.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 14 Managing extended transactions via flows

APPLICATION

EXECU%E ‘ %BORT

FEDERATED
DBMS

ROLLBACK SPHERE FLOW ENGINE

APPLICATION

APPLICATION
" FUNCTION FUNCTION
SOURCE 2

3

SOURCE 1

Conclusion

In this paper we give a high-level overview on adapter
technology and its relationship to flow technology.
We sketch how both technologies work hand-in-hand
to solve many aspects of the enterprise application
integration (EAI) problem. In particular, retrieving
data from and manipulating data in external data
sources can be achieved in a very flexible manner.
The flexibility is a result of the flow-based program-
ming model, based on flow technology, that is be-
coming more and more accepted. This programming
model helps us to solve fundamental aspects of the
function integration problem.

We discuss various ways to couple a database sys-
tem and a flow engine in order to make function in-
tegration capabilities available to database applica-
tions and database users. Especially important,
advanced transaction features supported by flow en-
gines may become part of a database system. To-
gether, the combination of a database system and a
flow engine are a step forward in providing advanced
information integration capabilities.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

START

APPLICATION

|‘ FUNCTION
SOURCE n

=

Cited references

1. A.P.Sheth andJ. A. Larson, “Federated Database Systems
for Managing Distributed, Heterogeneous and Autonomous
Databases,” ACM Computing Surveys 22, No. 3, 183-236
(1990).

2. Information Technology—Database Language—SQL—Part 9:
Management of External Data (SOL/MED), ISO/IEC 9075-9,
International Standards Organization (2001).

3. K. Hergula and T. Hérder, “A Middleware Approach for
Combining Heterogeneous Data Sources—Integration of Ge-
neric Query and Predefined Function Access,” Proceedings,
Ist International Conference on Web Information Systems En-
gineering, Hong Kong (June 19-21, 2000), pp. 26-33.

4. Java 2 Enterprise Edition, J2EE Connector Architecture Spec-
ification, Version 1.0, Sun Microsystems (2000).

5. See http://www.rosettanet.org.

6. See http://www.sap.com/solutions/compsoft/scenarios/te/docs/
ca_edi_testplan_40_en.pdf.

7. See http://www.sap.com/solutions/compsoft/scenarios/te/docs/
rfc_description.pdf.

8. See http://www.nist.gov/sc4/www/stepdocs.htm.

9. F.Leymann, “Towards the STEP Neutral Repository,” Com-
puter Standards and Interfaces 16, No. 3, 299-319 (1994).

10. F. Leymann and D. Roller, Production Workflow, Prentice
Hall, Inc., Upper Saddle River, NJ (2000).

11. K. Hergula, “Wrapper und Konnectoren— geht die Rechnung
auf?” Proceedings, Datenbanksysteme in Biiro, Technik und
Wissenschaft, Oldenburg, Germany (March 7-9, 2001), pp.
461-466.

12. See http://www-4.ibm.com/software/solutions/webservices/
resources.html.

13. S. Burbeck, The Tao of e-Business Services, available at

LEYMANN AND ROLLER 741

http://www-4.ibm.com/software/developer/library/ws-tao/
index.html.

14. D. Ferguson, IBM Web Services: Technical and Product Ar-
chitecture Roadmap, available at http://www-4.ibm.com/
software/solutions/webservices/pdf/roadmap.pdf.

15. See http://www.w3.0org/TR/SOAP12.

16. See http://www.w3.org/TR/wsdl.html.

17. See http://www.uddi.org.

18. F.Leymann and D. Roller, “Workflow-Based Applications,”
IBM Systems Journal 36, No. 1, 102-123 (1997).

19. G. Wiederhold, P. Wegner, and S. Ceri, “Towards Megapro-
gramming: A Paradigm for Component-Based Program-
ming,” Communications of the ACM 35, No. 2,89-99 (1992).

20. R. Wagner, Integration of Workflows into a Federated DBS with
SOL/MED, master’s thesis, Institute of Computer Science,
University of Stuttgart, Germany (2001).

21. F. Leymann, “A Practitioner’s Approach to Database Fed-
eration,” Proceedings, 4th Workshop on Federated Databases—
Integration of Heterogeneous Information Sources, Berlin, Ger-
many (November 25-26, 1999).

22. F. Leymann, “Supporting Business Transactions via Partial
Backward Recovery in Workflow Management Systems,” Pro-
ceedings, Datenbanksysteme in Biiro, Tecknik und Wissenschaft,
Dresden, Germany (March 22-24, 1995), pp. 51-70.

23. J. Gray and A. Reuter, Transaction Processing, Morgan Kauf-
mann Publishers, San Mateo, CA (1993).

24. G. Weikum and G. Vossen, Transactional Information Sys-
tems, Academic Press, San Diego, CA (2002).

Accepted for publication July 15, 2002.

Frank Leymann IBM Software Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (leyl @de.ibm.com). Dr. Leymann
is an IBM Distinguished Engineer, a member of the IBM Acad-
emy of Technology, and a professor of computer science at the
University of Stuttgart, Germany. He is the chief architect of
IBM’s workflow technology, and a member of the AIM Archi-
tecture Board that sets the overall technical direction for IBM’s
middleware products. Before his current position he worked on
database systems, database tools, and transaction processing. Dr.
Leymann has published many papers in various journals and con-
ference proceedings and filed a number of patents, and he is the
coauthor of textbooks on repositories and on workflow systems.
He has served as a member of program committees and orga-
nization committees for many international conferences and is
editor of the journal of the DBMS special interest group of the
German computer society (GI).

Dieter Roller IBM Software Group, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (rol@de.ibm.com). Mr. Roller is an
IBM Senior Technical Staff Member and a member of the IBM
Academy of Technology. He has held several technical and man-
agement positions during his IBM career. His current focus is on
the architecture and design of IBM’s MQSeries ™~ Workflow prod-
uct, contributing to all facets of the development and enterprise-
wide deployment of flow-based applications, and he is deeply in-
volved in customer projects in this area. Mr. Roller has published
papers in various journals and conference proceedings, mainly
on workflow technology, filed many patents, and given talks at
conferences and professional society meetings. He is the coau-
thor of a textbook about workflow systems.

742 LEYMANN AND ROLLER IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

