666 MALAIKA ET AL

DB2 and Web services

The World Wide Web offers a tremendous
amount of information. Accessing and
integrating the available information is a
challenge. “Screen scraping” and reverse
template engineering are manual and error-prone
integration techniques from the past. Simple
Object Access Protocol (SOAP) from the World
Wide Web Consortium (W3C) allowed Web
sites to become programmable Web services.
WB3C SOAP is based on XML (Extensible Markup
Language) and is a lightweight protocol that
provides a service-oriented architecture for
applications on the Web. Clients compose
requests and send SOAP envelopes to
providers, who reply through SOAP

responses. In this paper, we describe DB2®
and Web services, with techniques for
integrating information from multiple Web
service providers and exposing the collective
information through Web services.

Web services are part of an emerging technology that
offers the dual promise of simplicity and pervasive-
ness. Much of the simplicity is due to the common
XML (Extensible Markup Language) foundation that
underlies most Web service protocols. Web services
provide a ubiquitous model for offering business ser-
vices over the Internet as well as within organiza-
tions. Web services are of particular interest for their
ability to incorporate third-party applications or leg-
acy applications.

In the most primitive sense, Web services can be
viewed as any mechanism by which an application
service may be provided to other applications on the

0018-8670/02/$5.00 © 2002 I1BM

by S. Malaika
C. J. Nelin
R. Qu
B. Reinwald
D. C. Wolfson

Internet.! Web services are described in wsDL (Web
Services Description Language).” The WSDL descrip-
tion may be registered in the UDDI (Universal De-
scription, Discovery, and Integration) repository.
UDDI provides a set of application programming in-
terfaces (APIs) to register and search for Web ser-
vices. IBM, as one of the founders of UDDI.org,* has
provided a publicly available UDDI implementation
using Database 2* (DB2*) and WebSphere*.*

Web services may be informational or transactional.
That is, some services will provide information of
interest to the requestor, whereas other services may
actually lead to the invocation of business processes.
Informational Web services available today range
from simple weather or stock-quote services to the
access of nucleotide sequence data or corporate in-
formation. Transactional Web services are being
defined by organizations such as ebXML® and
XML.org® to facilitate standardization of business-
to-business processes.

This paper explains why Web services are important
to DB2 and how DB2 is being extended to provide op-
timized support for Web services. DB2 users may take
advantage of Web services in two ways: as a provider
and as arequestor. The next section describes an ap-
plication scenario and demonstrates how Web ser-
vices can be used in a database environment. The
following section gives a brief overview of the Web

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

services framework. The next section describes DB2
as a Web service requestor and explains how Web
services are incorporated into SQL (Structured Query
Language). The following section demonstrates how
DB2 provides Web services, and the last section de-
scribes DB2 tools that can be used to both provide
and request Web services.

Application scenario

Our application scenario describes a manufacturing
company that works with a number of suppliers
around the world. As a technically innovative com-
pany looking for cost-effective and speedy business
processes, it works with key suppliers (several hun-
dred around the world) to implement three capa-
bilities that allow users to get price quotes for pro-
posed purchases, to make a purchase, and to check
on the order status. By implementing these capabil-
ities as Web services, users in our company are able
to call these services from a wide variety of platforms
and application environments, while suppliers (as
providers of the Web services) are free to implement
the services in any manner they choose. Internal pur-
chasing applications can use these Web services in
a variety of ways. For instance, a simple purchasing
application may use a private UDDI registry to look
up a supplier in a user-specified city to get a price
quote on a product. The UDDI search finds a sup-
plier that offers the product and returns a link to the
supplier’s Web service operations. The purchasing
application can then issue a Web service request to
obtain a price quote from this supplier, provide it
to a buyer, and allow the buyer to place the order.
The application can then be used to query the order
status by invoking the appropriate operation for the
supplier. So to summarize, each supplier offers three
Web service operations that can be expressed with
the following abstract signatures:

e getQuote (in String partNum, in Integer qty, in
Date desiredDate, out Decimal price, out String
currency, out Date proposedDate)

e purchase (in String partNum, in Integer qty, out
String poNumber, out Date commitDate)

e getStatus (in String poNum, out String status)

In the next two sections we discuss how these Web
services can be invoked by DB2 applications, and how
they may be implemented by the Web Services Ob-
ject Run-time Framework (WORF) provided by DB2.
A later section describes WORF in detail.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Table 1 Table for purchase_orders
supplier po_num date part_num qty
ASupplier 12345 3/20/02 A4 34
BSupplier 12347 6/20/02 C7 43
CSupplier 34656 5/04/02 D7 3

Web service exploitation. The basic scenario, so far,
has shown how an application can find and work with
a single supplier. However, we often need to per-
form these operations over sets. We discuss two ex-
amples: first, to find the best quote from a set of sup-
pliers, and second, to report on the order status for
all overdue orders. The remainder of this section il-
lustrates how such set-oriented operations can eas-
ily be implemented by using Web services within da-
tabase queries.

DB2 allows users to define new functions that may
be invoked from SQL, thus extending the SQL lan-
guage. These user-defined functions (UDFs) may be
used for many purposes: calculations, transforma-
tions, or even to send messages.® Using this facility,
we can define a new function, GET_STATUS, to per-
form the getStatus operation:

varchar(20) GET_STATUS (url varchar(80),
po_num varchar(20))

Here the return value is the purchase order (PO) sta-
tus, and the input parameters are the URL (uniform
resource locator) to which the request is to be sent
and the identity of the purchase order in question.
To find the status of a specific purchase order, say
12345, from a supplier that offers this service at http:
/lwww.Asupplier.com/getStatus, we could issue the
following SQL statement:

values GET_STATUS (
‘http://www.Asupplier.com/getStatus’,'12345’)

To continue our example, Table 1 shows outstand-
ing purchase orders and Table 2 contains informa-
tion about the Web service operations each supplier
offers. Note that Table 2 could have been populated
in advance by queries to UDDI, or it could be replaced
by calls to UDDI. We choose to represent the infor-
mation in this way to simplify the example. To ob-
tain the status of all outstanding purchase orders
from ASupplier, we could say:

MALAIKA ET AL.

667

Table 2 Table for supplier_ops

supplier operation url
ASupplier getStatus http://www.Asupplier.com/getStatus
ASupplier getQuote http://www.Asupplier.com/getQuote
BSupplier getQuote http://www.Bsupplier.com/services/getQuote
BSupplier getStatus http://www.Bsupplier.com/services/getStatus

Table 3 Parameters for the getQuote Web service

Name Type
Input partNum string
qty integer
desiredDate date
Output price decimal
currency string
proposedDate date

Table 4 Parameters for the GET_QUOTE table function

Name Type
Input supplier varchar(30)
url varchar(80)
part_num varchar(20)
qty integer
desired_date date
Output supplier varchar(30)
url varchar(80)
part_num varchar(20)
qty integer
desired_date date
price decimal
currency varchar(10)
proposed_date date

SELECT supplier, po_num,

GET_STATUS (‘http://www.ASupplier.com/getStatus’,
po_num) AS po_status

FROM purchase_orders

WHERE supplier = ‘ASupplier’

In this simple example, we explicitly state the address
of the service to be invoked. To find the status of all
outstanding purchase orders from suppliers who of-
fer a Web service interface, we could issue the fol-
lowing query:

SELECT p.supplier, p.po_num,
GET_STATUS (s.url, p.po_num) AS po_status
FROM purchase_orders p, supplier_ops s
WHERE p.supplier = s.supplier
AND s.operation = ‘getStatus’

668 MALAIKA ET AL

If this query is commonly issued, it might be con-
venient to define a view to provide a simpler inter-
face. The definition of this view would be

CREATE VIEW order_status AS SELECT p.supplier, p.po_num,
GET_STATUS (s.url, p.po_num) AS po_status

FROM purchase_orders p, supplier_ops s

WHERE p.supplier = s.supplier

AND s.operation = ‘getStatus’

To get the status the following simple query could
then be used:

SELECT *
FROM order_status

This query could, of course, be extended to exploit
features of SQL. For instance, to sort the result by
supplier, we simply append an order by clause, such
as:

SELECT po_num, supplier, status
FROM order_status
ORDER BY supplier

All the examples so far show how a Web service that
returns a single value can be integrated with DB2 SQL,
but we may need to handle multiple return values.
The signature for the getQuote Web service is shown
in Table 3. In order to access it from DB2 we turn
this service into a DB2 table function with input and
output parameters as shown in Table 4.

To provide more meaningful context, our table func-
tion includes as outputs all of the interesting input
parameters. The GET_QUOTE table function is invoked
within a query such as

SELECT *

FROM TABLE (GET_QUOTE (‘ASupplier’,
‘http://www.Asupplier.com/getQuote,
‘52435FFA’,25, ‘7/1/2001°)) AS t

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

This statement returns a table containing a single
row with the response from this supplier. In order
to deal with suppliers in other countries, our
GET_QUOTE function contains currency units. To con-
vert the price to dollars, we could try to maintain a
table of currency conversion data manually. Given
the volatile nature of foreign exchange, it would be
better to invoke another Web service, perhaps pro-
vided by a foreign-exchange trading firm, to perform
the conversion using the most current data. Input
and output parameters for the DB2 function to in-
voke this service are shown in Table 5.

Using this additional service, we can now get a more
accurate quote with a query such as

SELECT t.supplier, t.part_num, t.qty,

(t.desired_date — t.proposed_date) AS timeliness,
TO_DOLLARS (t.currency, t.price) AS cost
FROM TABLE (GET_QUOTE (‘ASupplier’,
‘http://www.Asupplier.com/getQuote, ‘52435FFA’,

25, ‘7/1/20017)) AS t

Here we make the columns explicit and, using the
power of SQL, define an output column, “timeliness,”
to reflect the difference between our desired date
and the date proposed by the supplier for the part.
We also use the currency conversion Web service to
convert the quoted price to United States currency.
This query returns a single row with the quote from
a single vendor for a single part. Now, consider the
case where we require quotes for a list of parts. We
define a table, needed_parts, shown in Table 6.

To get quotes on all of these parts from our supplier
we can issue

SELECT t.supplier, n.part_num, n.qty,
(n.desired_date - t.proposed_date) AS timeliness,
TO_DOLLARS (t.currency, t.price)
FROM needed_parts n, TABLE (GET_QUOTE (‘ASupplier’,
‘http://www.Asupplier.com/getQuote’, n.part_num,
n.qty, n.desired_date)) t

This query returns a table of quotes for each part
listed in the needed_parts table from one supplier. To
get quotes for each of our suppliers we can issue the
following query:

SELECT n.part_num, t.supplier, n.qty,
(n.desired_date - t.proposed_date) AS timeliness,
TO_DOLLARS (t.currency, t.price)

FROM needed_parts n, supplier_ops s,
TABLE (GET_QUOTE (s.supplier, s.URL,

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Table 5 Parameters for the TO_DOLLARS user-defined

function
Name Type
Input currency varchar(10)
amount decimal
Output amount decimal

Table 6 Table and data for needed_parts

part_num qty desired_date
34dsaf 20 7/1/2001
35gfds 34 8/1/2001
809¢gds 10 6/30/2001

n.part_num, n.qty, n.desired_date)) t
WHERE s.operation = ‘GET_QUOTE’
ORDER by n.part_num, timeliness

This query generates quotes for all the needed parts
from all the suppliers that offer the getQuote Web
service and returns a table of these quotes ordered
by part number and timeliness. The queries use very
powerful, yet simple, standard DB2 SQL.

Finally, our company may want to expose this query
as a Web service itself so that its purchasing agents
can invoke the query from any location where they
have access to the Internet. DB2 7.2 provides a sim-
ple mechanism that allows Web services to be cre-
ated in support of such queries. (See http://www.
software.ibm.com/data/webservices for information
about Web service access to DB2 data and stored pro-
cedures.)

These examples show how Web services can be ex-
ploited within a database. By invoking Web services
as UDFs, we can take advantage the full power of SOL
to perform queries across combinations of Web ser-
vices and persistent data.

Providing Web services. Web services insulate users
of the service from its implementation. The three
services offered by suppliers in our scenario can be
implemented in any manner that fulfills the contract
defined by the service. Some might use the Java**
2 Platform, Extended Edition (J2EE**) programming
model implemented by the IBM WebSphere Appli-
cation Server. Others might use competing J2EE or
other architectures, such as .NET from Microsoft.

MALAIKA ET AL. 669

Table 7 Table and data for orders

po_num customer part_num qty commit_date status
78453 yourMfgCo A4 23 5/23/02 ONTIME
12347 myMfgCo C7 200 6/20/02 ONTIME
53456 theirMfgCo B12 5 4/23/02 COMPLETE
35335 yourCo A3 7 4/15/02 SHIPPED

In this paper we discuss how DB2 data can be easily
accessed using Web services. DB2 provides the Web
Services Object Runtime Framework (WORF) facil-
ity that can be used in conjunction with the Web-
Sphere Application Server to perform SOL queries,
utilize DB2 XML Extender routines to manipulate
XML data, and invoke stored procedures. Within our
scenario, a supplier could use this facility to imple-
ment the three Web services just described. Assume
that a supplier has the table, orders, shown in Table
7.

The getStatus service could be implemented by ef-
fectively wrapping a Web service around the query

SELECT status FROM orders WHERE po_num = :input

In this query the parameter input would be provided
within the Web service request and the WORF run-
time code would execute the query and return the
result (status) in the Web service response. In a later
section we discuss the details of the WORF facility.

Web service framework

SOAP (Simple Object Access Protocol) is a light-
weight protocol for the exchange of information in
a distributed environment. A Web service is de-
scribed in Web Services Description Language and
can be accessed via a standard protocol, such as SOAP,
over HTTP (HyperText Transfer Protocol). Other
bindings, such as RMI (Remote Method Invocation)
over ITOP (Internet Inter-ORB [Object Request Bro-
ker] Protocol) or SOAP over WebSphere MQ (Mes-
sage Queuing), can also be supported. SOAP started
as an XML-based RPC (Remote Procedure Call)
mechanism with a request/response message-ex-
change pattern. The exchange of structured, typed
values is supported through XML schema. SOAP is
transport-protocol independent; however, the cur-
rent standard defines bindings only for HTTP. DB2’s
Web service support is currently based on SOAP over
HTTP.

670 MALAIKA ET AL

A service requestor sends a SOAP envelope to a ser-
vice provider. A SOAP request envelope either con-
tains a serialized representation of an RPC method
call or is structured for sending an XML document
to a service provider. The service provider acts on
the request and sends back a SOAP response enve-
lope. Input and output parameters are described in
XML schema.

SOAP provides the protocol part of the Web services
framework (Figure 1). Additional components are
being defined and built on top of SOAP, such as se-
curity and transactions. WSDL (Web Services De-
scription Language) is an XML vocabulary used to
describe the interface of a Web service, including
the input and output message format in terms of
XML, the protocol binding and encoding, and the ser-
vice endpoint. Web services can be published and
advertised in a public UDDI registry. Publishing Web
services in a public registry allows client applications
to discover and dynamically bind to Web services.

SOAP is rightfully seen as the base for Web appli-
cation-to-application interoperability. The fast avail-
ability of SOAP implementations, combined with wide
industry backing, contributed to the quick adoption
of SOAP.

DB2 as a Web service requestor

A database is a powerful vehicle for information in-
tegration. The ability to pull information from a va-
riety of service providers puts databases in a unique
position to analyze and combine information and to
provide powerful querying capabilities. As we dis-
cussed in an earlier section, we want to make the
use of Web services a natural extension to the
DB2 SQL environment. To achieve this we must ad-
dress two sets of problems. First, the signature of
the UDF must be mapped to the signature of the Web
service it implements. Then these data must be used
to construct and send the SOAP message to the in-
dicated service provider. After the response is re-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 1

Web service framework

XMLP

CONTEXT

TRANSACTIONS

ROUTING

RELIABILITY

SECURITY

ATTACHMENTS

SOAP

BPEL

WSDL

AGREEMENTS

COMPOSITION

QUALITY OF SERVICE

SERVICE

INTERFACE

XML SCHEMA

UDDI ' pIRECTORY

PROTOCOLS

BPEL = BUSINESS PROCESS EXECUTION LANGUAGE
XMLP = XML PROTOCOL

ceived, the reply must be decomposed into the set
of result parameters that the user expects. Our im-
plementation architecture uses two layers of func-
tions: a set of SOAP UDFs that are specific for each
WSDL operation and a set of underlying functions
that actually perform the Web service invocation.
The following subsections describe the design of
these functions in further detail.

Web service conceptin SQL. For a service requestor
to send an invocation to a service provider, the fol-
lowing information is necessary:

* The URI (uniform resource identifier) of the tar-
get object, including optional header information,
such as SOAP action

* The name of an operation to execute, including
its input and output message format

* Binding information with respect to transport pro-
tocol, encoding style, name spaces, etc.

The abstract interface (operations and messages),
the protocol bindings, and the access ports for de-
ployed services are described in WSDL. Figure 2
shows the WSDL description of a sample Web ser-
vice that returns the current stock quote for a given
stock symbol.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

DESCRIPTIONS

DISCOVERY

Figure 3 shows a SOAP request envelope. The request
is submitted through HTTP to a service endpoint as
specified in the HTTP header. The SOAP body shows
the method name and the name space for the
method, as well as the input parameters. Figure 4
shows the SOAP response envelope. The response is
returned through HTTP to the requestor.

At a conceptual level, the deployed Web service
shown in Figure 2 has an abstract interface, such as

float stockQuote (symbol string)

SQL is extensible through functions, which may be
either built-in or user-defined. Functions accept in-
put parameters and return scalar values for the case
of scalar functions, or entire tables for the case of
table functions. SOL functions provide the necessary
language hooks for using Web services. An SQL func-
tion for a Web service acts as a SOAP requestor, and
we call these functions SOAP UDFs. SOAP UDFs com-
pose SOAP requests, submit the request to the pro-
vider, receive the response, and return the response
to the SQL engine. For composing and sending the
SOAP request, the SOL function needs the service end-
point (URL of the service provider), name of the

MALAIKA ET AL. 671

Figure 2 WSDL description of simple stock quote Web service, getStockQuote

<?xml version="1.0" encoding=“UTF-8"7>
<definitions name="StockQuoteServiceRemotelnterface”
targetNamespace="http://www.stockquoteservice.com/definitions/StockQuoteServiceRemotelnterface”
xmins="http://schemas.xmlsoap.org/wsdl/”
xmlins:tns="http://www.stockquoteservice.com/definitions/StockQuoteServiceRemotelnterface”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlins:soap="http://schemas.xmlsoap.org/wsdl/soap/”>
<message name="“getQuoteRequest”>
<part name="“symbol” type="xsd:string”/>
</message>
<message name="“getQuoteResponse”>
<part name="result” type="xsd:float”/>
</message>
<portType name="StockQuoteServiceJavaPortType”>
<operation name="stockQuote”>
<input name="getQuoteRequest” message="tns:getQuoteRequest”/>
<output name="getQuoteResponse” message="tns:getQuoteResponse”/>
</operation>
</portType>
<binding name="StockQuoteServiceBinding” type="“tns:StockQuoteServiceJavaPortType”>
<soap:binding style=“rpc” transport="http://schemas.xmlsoap.org/soap/http”/>
<operation name="“stockQuote”>
<soap:operation soapAction="" style="rpc”/>
<input name="getQuoteRequest”>
<soap:body use=“encoded” encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://tempuri.org/StockQuoteService”/>
</input>
<output name="getQuoteResponse”>
<soap:body use=“encoded” encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://tempuri.org/StockQuoteService”/>
</output>
</operation>
</binding>
<service name="StockQuoteServiceService”>
<port name="“StockQuoteServicePort” binding="binding:StockQuoteServiceBinding”>
<soap:address location="http://localhost:8080/soap/servlet/rpcrouter”/>
</port>
</service>
</definitions>

method (SQL functions and SOAP methods might
have different names), and name space, as well as
the input and output parameters. All these param-
eters are provided in the WSDL description of the
Web service. The abstract interface for the stock-
Quote Web service just shown could be registered
as the SOL function

CREATE FUNCTION STOCK_QUOTE (symbol char(3))
RETURNS double;

The implementation of the SQL function
STOCK_QUOTE generates a SOAP request envelope as
shown in Figure 3, sends the request to the service

672 MALAIKA ET AL

provider, receives the response as shown in Figure
4, retrieves the stock quote return value, and returns
it as a function result.

An SOL statement that combines the results from call-
ing the stockQuote Web service with data from the
stock_watch table is

SELECT name, symbol, STOCK_QUOTE (symbol) AS quote
FROM stock_watch

The results from execution of this SQL statement are
shown in Table 8.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 3 SOAP request envelope over HTTP

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost:8080

Connection: Keep-Alive

Content-Type: text/xml

SOAPAction: “”

Content-Length: 393

<SOAP-ENV:Envelope xmlIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/”
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/”
xmins:xsi="http://www.w3.0org/1999/XMLSchema-instance”
xmlins:xsd="http://www.w3.0org/1999/XMLSchema”>

<SOAP-ENV:Body>

<ns:getQuoteRequest xmlIn:ns="http://tempuri.org/StockQuoteService”>

<symbol xsi:type="xsd:string”>IBM</symbol>
</ns:getQuoteRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 4 SOAP response envelope over HTTP

HTTP/1.0 200 OK

Date: Fri, 15 Mar 2002 00:19:47 GMT
Status: 200

Content-Type: text/xml; charset=utf-8

Servlet-Engine: WebSphere Application Server (JSP 1.1; Servlet 2.2; Java 1.3.0; Linux 2.4.7-10smp

x86; java.vendor=IBM Corporation)
Content-Length: 465

Set-Cookie: JSESSIONID=JvGWBVYyjLplbVdPzNG92M04d;Path=/soap

Server: WebSphere

<?xml version=‘1.0’ encoding=‘"UTF-8’?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/”
xmins:xsi=http://www.w3.0rg/1999/XMLSchema-instance

xmlins:xsd="http://www.w3.org/1999/XMLSchema”>
<SOAP-ENV:Body>

<ns1:getQuoteResponse xmins:ns1="http://tempuri.org/StockQuoteService”

SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”>

<return xsi:type="xsd:float”>57.0</return>
</ns1:getQuoteResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web services may require complex input parame-
ters and generate complex XML output. A database
application might directly feed XML input to the func-
tion, retrieve the entire XML output, and process it
in native XML. Other applications may require a sim-
pler function interface that provides basic input pa-
rameters and returns basic output parameters. The

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Table 8 Results from execution of SQL statement

name symbol quote
International IBM 114.35
Business
Machines
Microsoft MSFT 70.58

MALAIKA ET AL. 673

Table 9 Results from SQL query

symbol quote
IBM <stock_quotes>
<stock_quote>
<last>114.35</last>
<ask>N/A</ask>
<bid>110.00</bid>

<change>+1.35000002</change>
<pctchange>+1.19%</pctchange>
<symbol>IBM</symbol>
<time>4:01PM</time>
</stock_quote>
</stock_quotes>

MSFT <stock_quotes>

<stock_quote>
<last>70.59</last>
<ask>70.54</ask>
<bid>70.31</bid>
<change>—2.41000366</change>
<pctchange>—3.30%</pctchange>
<symbol>MSFT</symbol>
<time>4:20PM </time>

</stock_quote>

</stock_quotes>

complexity of constructing complex XML input from <stockticker>
basic SQL input parameters, as well as decomposing <symbol>IBM</symbol>
complex XML output into basic SOL output param- </stockticker>

eters, may be hidden in wrapper functions. The fol-
lowing subsection describes the various options. might result in the output message
SOAP UDFs. We now introduce various options for
SOAP UDFs. A database application may more or less
directly invoke a service provider with the body of
the SOAP request envelope as input, receiving the
body of the SOAP response envelope as output. The
body of the SOAP request envelope is usually con-
structed from SQL values using SOL/XML publishing
functions and XML data types.* Depending on the
application, some values of the body of the SOAP re-
sponse envelope may be extracted as SQL values for
further processing. The logic for constructing a SOAP
request and extracting SQL values from SOAP re-
sponses may be extensive. Hiding this logic in
SQL-bodied wrapper functions improves usability but
reduces flexibility. In this subsection, we describe the

<stock quotes>
<stock_quote>
<last> 113.40 </last>
<ask> 113.50 </ask>
<bid> 113.26 </bid>
<change> +0.310005188 </change>
<pctchange> +0.27% </pctchange>
<symbol> IBM </symbol>
<time> 1:38 PM </time>
</stock_quote>
</stock_quotes>

Option 1: XML input and output. The user of the
SOAP UDF provides the input parameters in XML for-

various options and discuss their trade-offs.

We use a stock quote example for demonstration
purposes. The stock quote example uses a “ticker”
symbol as input and returns a structured value as out-
put. The input message

674 WMALAIKA ET AL

mat, and the SOAP UDF returns the service provider
output in XML format. Using WSDL, we can register
an SQL-bodied SOAP UDF, which sends a stock-ticker
XML fragment in a SOAP envelope to the service pro-
vider and returns the stock quote as an XML frag-
ment, as follows:

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 5 STOCK_QUOTES function definition

CREATE FUNCTION STOCK_QUOTES (stockticker varchar(5))
RETURNS table
(last varchar(8),
ask varchar(8),
bid varchar(8),
change varchar(15),
pctchange varchar(10),
symbol varchar(5),
time varchar(20))
LANGUAGE SQL READS SQL DATA
EXTERNAL ACTION NOT DETERMINISTIC
RETURN
WITH
--1. Perform type conversions and prepare SQL input parameters --
-- for SOAP envelope
soap_input (in)
AS
(VALUES XMLElement(NAME “getRTQuote”,
XMLElement(NAME “stockticker”,
XMLElement(NAME “symbol”, stockticker)))),
--2. Submit SOAP request with input parameter and receive SOAP --
-- response
soap_output (out)
AS
(values soaphttp (
‘http://localhost:8080/soap/servlet/rpcrouter’
(SELECT in FROM soap_input)))
--3. Shred SOAP response and perform type conversions to get SQL
-- output parameters
SELECT x.last, x.ask, x.bid, x.change, x.pctchange,
x.symbol, x.time
FROM Table (TableEXTRACT (
(select out from soap_output),
‘/stock_quotes/stock_quote’,
‘Jlast’, ‘./ask’, ‘./bid’, ‘./change’,
‘./pctchange’, ‘./symbol’, ‘./time’)
AS x (last AS varchar(8), ask AS varchar(8),
bid AS varchar(8), change AS varchar(15),
pctchange AS varchar(10), symbol AS varchar(5),
time AS varchar(20));

Table 10 Results from SQL query

symbol last ask bid change pctchange time
IBM 114.35 114.35 111.04 +1.35000002 1.19% 4:01PM
MSFT 70.58 70.58 70.55 —2.41999817 3.32% 6:21PM
CREATE FUNCTION STOCK_QUOTET (stockticker XML) RETURN
RETURNS XML (VALUES soaphttp (
LANGUAGE SQL CONTAINS SQL ‘http://localhost:8080/soap/servlet/rpcrouter’,
EXTERNAL ACTION NOT DETERMINISTIC “, stockticker));

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

MALAIKA ET AL. 675

Figure 6 Custom EJB components compared to
DADX files

(DADX
PROCESSOR)

DB2 DATA AND STORED PROCEDURES

Figure 7 Three DADX operations

DADX
STORED

OPERATIONS PROCEDURE EXTENDER
OPERATIONS OPERATIONS

SOAP CLIENT WORF
(DADX PROCESSOR)

REQUEST

SQL-BASED XML-BASED
OPERATIONS SP-BASED OPERATIONS

OPERATIONS

DB2
DATA AND STORED PROCEDURES

An SQL application can use SQL/XML functions to
construct the XML input for the STOCK_QUOTE1 func-
tion, and retrieve the XML output for stock data
stored in the MYPORTFOLIO table. An example of
the SQL statement using the STOCK_QUOTE1 function

1S

676 MALAIKA ET AL

SELECT symbol, STOCK_QUOTE1 (

XMLElement (NAME “getRTQuote”,

XMLElement (NAME “stockticker”,

XMLElement (NAME “symbol”, symbol)))) AS quote
FROM myportfolio;

The results from this query are shown in Table 9.
SOAPHTTP() is the DB2 SOAP requestor. This function
generates the SOAP envelope and communicates with
the SOAP provider through HTTP. It receives the SOAP
response, parses the response, and returns the SOAP
body to the invoker.

Option 2: SQL input and XML output. If an applica-
tion does not need the flexibility of XML input, then
usability can be improved by moving the XML con-
struction part into the SOAP UDF, as follows:

CREATE FUNCTION STOCK_QUOTE2
(stockticker varchar(5))
RETURNS XML
LANGUAGE SQL READS SQL DATA
EXTERNAL ACTION NOT DETERMINISTIC
RETURN
WITH
- -1. Perform type conversions and prepare SQL input
- - parameters for SOAP envelope
soap_input (in)
AS
(VALUES XMLElement(NAME “RTQuote”,
XMLElement(NAME “stockticker”,
XMLElement(NAME “symbol”, stockticker))))
- -2. Submit SOAP request with input parameter and
- - receive SOAP response
(VALUES soaphttp (
‘http://localhost:8080/soap/serviet/rpcrouter’, “,
SELECT in FROM soap_input)));

In option 2, the client application provides SQL in-
put; the SOAP UDF constructs the XML input accord-
ing to the WSDL description of the provider. The cli-
ent application receives the SOAP body as XML
output.

The following query returns the same result as the
query described in option 1:

SELECT symbol, STOCK_QUOTE2 (symbol) AS quote
FROM myportfolio

Option 3: SQL input and SQL output. In option 3, con-
struction of the SOAP request as well as decompo-
sition of the SOAP response is performed in the
SQL-bodied function (see Figure 5). An SQL state-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 8 DADX for getStatus and getAllStatus Web service operations

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”
xmins:dtd1="http://schemas.myco.com/sales/getstart.dtd”
xmlins:wsdl=“http://schemas.xmlsoap.org/wsdl/”>
<wsdl:documentation>Queries orders at myco.com.</wsdl:documentation>
<operation name="“getStatus”>
<wsdl:documentation>Gets the Status of an Order</wsdl:documentation>
<query>
<SQL_query>SELECT STATUS FROM ORDERS where PO_NUM = :inputponum</SQL_query>
<parameter name="inputponum” type="xsd:string”/>
</query>
</operation>
<operation name="“getAllStatus”>
<wsdl:documentation>Get the status of all orders</wsdl:documentation>
<query>
<SQL_query>SELECT * FROM ORDERS</SQL_query> </query>
</operation>
</DADX>

Figure 9 Output for the getStatus Web service

<?xml version=1.0" ?>
<xsd1:getStatusResponse
xmins:xsd1="http://schemas.ibm.com/sales/malaikaorders.dadx/XSD”
xmlins:xsd="http://www.w3.0rg/1999/XMLSchema”
xmlins:xsi=“http://www.w3.0rg/1999/XMLSchema-instance”>
<return>
<xsd1:getStatusResult
xmins:xsd1="http://schemas.ibm.com/sales/malaikaorders.dadx/XSD”
xmlins:xsi=“http://www.w3.0rg/2001/XMLSchema-instance”>
<getStatusRow>
<STATUS>ONTIME</STATUS>
</getStatusRow>
</xsd1:getStatusResult>
</return>
</xsd1:getStatusResponse>

ment that uses this function is

SELECT p.symbol, x.last, x.ask, x.bid,
x.change, x.pctchange, x.time
FROM myportfolio p,
TABLE (Stock_Quote3(p.symbol)) AS x;

The results from this select statement are shown in
Table 10.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

DB2 as a Web service provider

DB2 data and applications (stored procedures) can
be accessed as Web services by developing Web ser-
vice implementations, which could be Java classes
or Enterprise JavaBeans™* (EJB) components, which
access DB2 through JDBC** (Java Database Connec-
tivity) requests. However, each time a different type
of data access is desired, a new Web service imple-

MALAIKA ET AL.

677

Figure 10 Output for getAllStatus Web service

<?xml version="1.0" ?>
<xsd1:getAllStatusResponse

xmlns:xsd1="http://schemas.ibm.com/sales/malaikaorders.dadx/XSD”

xmins:xsd="http://www.w3.0rg/1999/XMLSchema”

xmlins:xsi=“http://www.w3.0rg/1999/XMLSchema-instance”>

<return>
<xsd1:getAllStatusResult

xmlins:xsd1="http://schemas.ibm.com/sales/malaikaorders.dadx/XSD”
xmlins:xsi=“http://www.w3.0rg/2001/XMLSchema-instance”>

<getAllStatusRow>
<PO_NUM>78453</PO_NUM>

<CUSTOMER>yourMfgCo</CUSTOMER>

<PART_NO>A4</PART_NO>
<QTY>23</QTY>

<COMMIT_DATE>2002-05-23</COMMIT_DATE>

<STATUS>ONTIME</STATUS>
</getAllStatusRow>
<getAllStatusRow>

<PO_NUM>12345</PO_NUM>

<CUSTOMER>myMfgCo</CUSTOMER>

<PART_NO>C7</PART_NO>
<QTY>200</QTY>

<COMMIT_DATE>2002-06-20</COMMIT_DATE>

<STATUS>ONTIME</STATUS>
</getAllStatusRow>
<getAllStatusRow>

<PO_NUM>53456</PO_NUM>

<CUSTOMER>theirMfgCo</CUSTOMER>

<PART_NO>B12</PART_NO>
<QTY>5</QTY>

<COMMIT_DATE>2002-04-23</COMMIT_DATE>

<STATUS>COMPLETE</STATUS>
</getAllStatusRow>
<getAllStatusRow>
<PO_NUM>35335</PO_NUM>
<CUSTOMER>yourCo</CUSTOMER>
<PART_NO>A3</PART_NO>
<QTY>7</QTY>

<COMMIT_DATE>2002-04-15</COMMIT_DATE>

<STATUS>SHIPPED</STATUS>
</getAllStatusRow>
</xsd1:getAllStatusResult>
</return>
</xsd1:getAllStatusResponse>

mentation would be needed. A simpler, and more
generic, alternative is to use the support shipped in
DB2 v 8.1 that processes DADX (Document Access
Definition extension®) files in conjunction with a gen-
eral SOAP-enabled server, such as WebSphere. A
DADX file is an XML document that represents a DB2
Web service. No application-specific code is required
to use the DADX support. Figure 6 compares using
custom user-written EJB components with using the
WOREF.

678 MALAIKA ET AL

DADX. The DADX file supports three types of op-
erations for making database requests as Web ser-
vices (see Figure 7). The relational results from these
requests are tagged as XML by the WORF in a cus-
tomizable way. The three types of operations are:

1. SQL request: Any SQL request can be issued, in-
cluding SELECT, UPDATE, user-defined functions,
and DB2 XML Extender column facilities.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 11 Operations findAll, findByColor, and findByMinPrice within a Web service

<?xml version=“1.0"?>

<DADX xmlns="“urn:ibm.com:dxx:dadx”
xmins:xsd="http://www.w3.org/1999/XMLSchema”>

<documentation <documentation xmlns="http://schemas.xmlsoap.org/wsd|/”>

Provides queries for part order information at myco.com.</documentation>
<operation name="findAll”>

<documentation xmIns="http://schemas.xmlsoap.org/wsdl/”>
Returns all the orders with their complete details.</documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<SQL_override>select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode from order_tab o,
part_tab p,

table(select substr(char(timestamp(generate_unique())),16) as ship_id,
date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id
</SQL_override>

</retrieveXML>
</operation>

<operation name="“findByColor”>

<documentation xmlns="http://schemas.xmlsoap.org/wsdl/”>Returns all the orders
that include one or more parts that have the specified color, and only shows

the details for those parts.</documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16) as ship_id,
date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
and color = :color

order by order_key, part_key, ship_id
</SQL_override>

<parameter name="“color” type="“xsd:string”/>
</retrieveXML>

</operation>
<operation name="“findByMinPrice”>
<documentation xmIns="http://schemas.xmlsoap.org/wsdl/”>
Returns all the orders that include one or more parts that have a
price greater than or equal to the specified minimum price, and only shows the details for
those parts.</documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,

p-part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16) as ship_id,
date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
and p.price >= :minprice

order by order_key, part_key, ship_id
</SQL_override>

<parameter name="“minprice” type="“xsd:decimal”/>
</retrieveXML>

</operation>
</DADX>

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

MALAIKA ET AL. 679

Figure 12 WORF architecture

SOAP SERVICE
RUN-TIME
ENVIRONMENT

(CONNECTION

2. Stored procedure call: Any DB2 stored procedure
can be invoked.

3. pB2 XML Extender stored procedure call: Any
DB2 XML Extender stored procedure can be in-
voked. These stored procedures can provide two
types of functionality. First, composition is used
for detailed control on the tagging of the gener-
ated document using a DAD (Document Access
Definition). This approach can be used to con-
trol where element repetition takes place, or to
control the number of documents produced, for
example. Second, decomposition is used to
“shred” an XML document and transform the re-
sult into relational data.

Figure 8 shows a DADX file for the getStatus service
described earlier. It contains two operations, both
SQL-based: getStatus has one input parameter,
poNum, and getAllStatus lists the status of all or-
ders and has no parameters.

The simplicity of the SOL-based DADX file clearly il-
lustrates how easy it is to build Web services based
on the SQL language. The client is unaware that SQL
is being used; for example, to invoke getStatus the
client simply passes a purchase-order number. Fig-
ure 9 illustrates the results of getStatus for part
“12345.” Figure 10 illustrates the results of getAll-
Status, which corresponds to the content of the or-
ders table described earlier. Note that the column

680 MALAIKA ET AL

names are used as the basis for the XML tagging of
the results.

The DADX file shown in Figure 11 defines three Web
service operations that utilize the DB2 XML Extender
functionality. The findAll operation takes no param-
eters. The returned data are formatted as XML in
accordance with the DB2 XML DAD getstart_xcollec-
tion.dad, which is referred to in the DADX. The sQL
request in the DB2 XML DAD is overridden by the SQL
statement in the SQL_Override section. The find-
ByColor operation takes one parameter, color, which
forms part of the WHERE clause in the SQL request.
The notation for parameters is very similar to that
used for host variables in SQL. The findByMinPrice
operation takes one parameter, minprice.

In general, only desired parameters are exposed. For
example, if a stored procedure has many input pa-
rameters, it is possible to expose just one parameter
to the client, leaving the other parameters as default
values set in the DADX. The DADX can be created
using a text or XML editor or with WebSphere Stu-
dio Application Developer as described in the next
section. To deploy a DADX-based Web service, the
required DADX files are placed in the appropriate
soAP-enabled Web server directory along with the
WOREF.

Web Services Object Runtime Framework (WORF).
WOREF provides the run-time environment for Web
services defined by DADX. WORF is implemented as
an extension to an Apache SOAP 2.2 run-time com-
ponent. It runs with the Apache Web server® and
WebSphere application server. Figure 12 shows
WORF hosted in a SOAP service run-time environ-
ment. WORF receives an HTTP SOAP GET or POST ser-
vice request from the SOAP RPC router. The service
endpoint of the request specifies a DADX or DTD
(Document Type Definition) file and the requested
action. (Note that WORF converts DTDs to XSDs. DB2
uses either DTDs or XSDs, but WSDL uses only XSDs.)
The requested action can be a DADX operation or
a command, such as TEST for the SOAP client test
page, WSDL for the WSDL generations, or XSD (XML
Schema Definition) for XML schema generation.
WORF loads the DADX file specified in the request
and connects to DB2 to run any SQL statements. Pa-
rameter markers in SQL statements are replaced with
the requested values. WORF formats the result of the
SQL statement into XML, converting types as neces-
sary, and returns a SOAP response envelope to the
SOAP client.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 13 Generated WSDL fragment for the findAll, findByColor and findByMinPrice Web services

<element name="findAllIResult”>
<complexType>
<sequence>

<element maxOccurs=“unbounded” minOccurs=“0"

ref="imp1:Order” />
</sequence>
</complexType>
</element>
<element name="findByColorResult”>
<complexType>
<sequence>

<element maxOccurs=“unbounded” minOccurs=“0"

ref="imp1:Order” />
</sequence>
</complexType>
</element>
<element name="findByMinPriceResult”>
<complexType>
<sequence>

<element maxOccurs=“unbounded” minOccurs=“0"

ref="imp1:Order” />
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="“findAlllnput” />
<message name="findAllOutput”>

<part element="“xsd1:findAllResult” name="“return” />

</message>
<message name="findByColorlnput”>
<part name="“color” type="xsd:string” />
</message>
<message name="“findByColorOutput”>

<part element=“xsd1:findByColorResult” name="return” />

</message>
<message name="findByMinPricelnput”>
<part name="“minprice” type="xsd:decimal” />
</message>
<message name="findByMinPriceOutput”>

<part element=“xsd1:findByMinPriceResult” name="return” />

</message>

Generating WSDL and XML schema from the DADX.
The WORF produces WSDL and XML schema for the
operations included in the DADX. As illustrated in
the fragment of WSDL shown in Figure 13, gener-
ated from the DADX illustrated in Figure 11, the cli-
ent application is not aware that it is invoking DB2
or executing SQL. The Web services client sees op-
erations and parameters only.

Testing DADX-based Web services through WORF.

WOREF provides a facility to test DADX files. The DADX
illustrated in Figure 11 appears in Figure 14 as Part-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Orders.dadx. The generated wsDL illustrated in Fig-
ure 13 is generated by clicking on the WSDL link in
the appropriate row.

Figure 15 illustrates what happens when the TEST
link is selected for PartOrders.dadx: the Part-
Orders.dadx operations are displayed. They can be
selected in turn to test the Web service, and input
parameters can be typed in to complete the testing.
As well as support for testing, the WORF provides
support for connection pooling and security man-
agement.

MALAIKA ET AL. 681

Figure 14 Web service samples page

ZJWeb Service Samples Page - Microsoft Internet Explorer _ O[]
FiIe‘Edi(View Favorites Tools Help ‘.
“Back v * v @3 d Agearch “Favorites YMedia @/ Ov JH v 5
Links ~Ibm —'Research /Customize Links £/Free Hotmail ’RealOne Player £/Watson 1st Floor Printers £Windows Media £Windows
Address @ http://malaika4.svl.ibm.com:8080/services/index html -] °Go
exone = 9 <[5 |Search[] «. @ - =Email Blnvesting - 2 Shop - (1Games - BINews - &Sports -
Web Service Samples Page
This page contains links for testing the sample Web Services.
« View the list of deployed services using the SOAP Admin page.
« View the WSDL and XSD.
o Testthe HTTP POST binding using the automatic and manual test pages.
Java Bean Samples
Service ID WSDL | WSDLservice WSDLbinding XSD TEST Manual Test Page
urn:/beans/AddressBook.isd WSDL WSDLservice WSDLbinding XSD TEST AddressBook.html
urn:/beans/Person.isd WSDL WSDLservice WSDLbinding XSD TEST Person.html
urn:/beans/TemperatureConverter.isd WSDL WSDLservice WSDLbinding XSD TEST TemperatureConverter.html
DB2 XML Extender Samples
Service ID WSDL | WSDLservice WSDLbinding | XSD TEST Manual Test Page
urn:/sales/PartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST PartOrders.html
urn:/sales/dan.dadx WSDL WSDLservice WSDLbinding XSD TEST dan.html (missing)
urn:/sales/PoiaPartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST PoiaPartOrders.html
urn:/sales/SqlMappingPartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST nfa
urn:/sales/RdbNodeMappingPartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST n/a
urn:/sales/StorePartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST n/a
urn:/sales/QueryPartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST n/a
urn:/sales/UpdatePartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST n/a
urn:/sales/CallPartOrders.dadx WSDL WSDLservice WSDLbinding XSD TEST n/a
@ ‘ ‘anternet -//I
Tools documents, DTDs, and XML schemas, mapping rela-

Development tools have kept pace with the rapid
emergence of Web services. They provide a number
of facilities for users to easily browse and find Web
services, write applications that access these Web ser-
vices, and develop, test, and publish new Web ser-
vices. Both the 1BM WebSphere Studio product
family, including WebSphere Studio Application
Developer and WebSphere Studio Site Developer,
and Microsoft Visual Studio**.NET include exten-
sive general Web service development support, and
the WebSphere Studio product has a number of fea-
tures specifically in support of DB2 Web services. The
remainder of this section highlights some of the func-
tionality provided in WebSphere Studio Application
Developer (see Figure 16). For more details on this
functionality see Reference 5, and for more infor-
mation on using WebSphere Studio to develop DB2
Web services, see References 7 and 8.

WebSphere Studio simplifies the task of developing
DB2 Web services; a user can build a Web service
without writing any code. A rich set of XML-based
tools is provided, including tools for building XML

682 MALAIKA ET AL

tional data to XML, and producing XML-extender
DAD files. An integrated graphical query builder sup-
ports point-and-click construction of the SQL state-
ments used in composing Web services. A wizard
leads the developer through the steps to produce the
Web service DADX file described previously. Devel-
opers select one or more SQL statements or DAD files
to be mapped to Web service operations, and the
DADX file is produced and saved in a DADX group
that holds the database connection-specific informa-
tion. A second wizard is used to turn the DADX file
into a Web service. Options allow the user to also
generate a proxy to access the Web service and
launch the test client, immediately testing the exe-
cution of the new Web service using the integrated
WebSphere test environment. There are also addi-
tional options to generate sample clients and to pub-
lish Web services by launching the integrated UDDI
explorer. When the developer is satisfied, the Web
service can be easily deployed to a production server.

WebSphere Studio also provides a rich set of func-
tions for building the applications that access Web

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Figure 15 Web service test page

3 urn:/sales/PartOrders.dadx Web Service Test Page - Microsoft Internet Explorer

File Edit View Favorites Tools Help ‘i

*Back v 7 v 9 ﬁ‘{aSearch “Favorites Media e‘%v Sy d

Links ~Ibm “Research £Customize Links </Free Hotmail “RealOne Player <Watson 1st Floor Printers £Windows Media £Windows

Addressle] http:/fmalaikad.svl.ibm.com:8080/services/sales/PartOrders.dad}/ TEST L| °Go
exeite - P "PI lSearchH f;jr,‘@ - ZEmail Blnvesting - #Shop - Games - ElNews - & Sports -
Methods = Inputs 2
@ urn:/sales/PartOrders.dadx Web Service |m= Select a method to test.
Provides queries for part order
information at myco.com.
- findAll
- findByColor
- findByMinPrice
= =
= Result B
o Enter input parameters and invoke the method.
=
@ ‘ ‘ ‘ }@Internet 4

services. Today’s support includes the automatic cre-
ation of Java proxies from WSDL files, and in the fu-
ture the support will be enhanced to generate
SQL-bodied UDFs as described earlier. The SQL UDF
generator allows developers to specify the WSDL files
of interest. The operations defined in a WSDL file can
then be mapped to UDFs. The input and output of
the operations is mapped to parameters and return
values of the generated UDFs. In addition, two styles
of UDF proxies are supported. The first is an early-
binding form with the UDF mapped to a specific end-
point. In this case, when the UDF is executed one
specific instance of a Web service is invoked and its
results returned by the UDF. The second is a late-
binding form with the endpoints passed in at run
time. In this case, the UDF can be invoked against
a set of Web services that support the same inter-
face, and the results are returned in table form. Both
the command line and wizard form of the tools gen-
erate SOAP UDFs with no coding required by devel-
opers.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Conclusion and future work

Web services have an increasingly important role,
on the Internet as well as within corporations, as a
convenient way to expose services and data to ap-
plications. In this paper, we show how a relational
database such as DB2 can both support and exploit
Web services technologies, to simplify access to data
and stored procedures and to extend the reach of
DB2 queries into external sources addressable
through Web services. Using the inherent power of
the DB2 engine, we can easily perform set-oriented
queries over external data and enrich traditional SQL
queries with real-time data. Furthermore, integrated
tools allow us to take advantage of these features
without writing programs.

The functionality described in this paper is power-
ful, allowing DB2 to integrate existing relational bus-
iness data with external data. The external data are
usually owned by different organizations, and there-

MALAIKA ET AL. 683

Figure 16 Web services development in WebSphere Studio Application Developer

4p Data - WebSphere Studic Workbench SDK -0l x]
File Edt Mavigate Search Project Run ‘Window Helo
J = . | “ N EN B “ |J P Web Service Client I—

u |

Web Services B
g m Dal Definkion __ G Review your Web service options and make any necessary changes before '|é -
F{B == WEB-INF Z proceeding to the next page. <
iz classes

@ -G b o
E Bz databases bl B

=~ SAMPLE (DB2 UDB ¥7.2)
=-BF NELIN
-3 Tables
£ Views
(O3 Aliases

I Generate a sample

Client prozy type: Web Service User-Defined Function *I

" Launch the Universal Test Client

= [Catrich the sample

‘3 Indexes

(27 Trggers

‘23 Stuctured Types
E| (73 Stored Procedures

<

Data DefinilionJ Navigator

DB Servers

=8 ﬁ Cont
=% SAMPLE(idbc:db2:5AMPLE)
=-B# NELIN
(-7 Tables
L] Views
-7 Aliases
«(73 Indexes

" Ovenwrite files without warning
[V Create folders when necessary
L]] _r " Check out files without waming

#(3 Triggers
(73 Structured Types
l (23 Stored Procedures

< Back I Next > I

Eitiisk Cancel l

‘.23 UserDefined Functions KH|

il

I 2]

&% NULLID Tasks | DB Output

WebServiceProject

fore cannot be stored in the same database. Further-
more, the external data are not static—they change
based on external factors, for example weather fore-
cast, stock price, airfare, or news feed. Although DB2
runs SOAP requests in a reliable and scalable envi-
ronment, the fact that a database query depends on
an external, potentially unreliable, low-bandwidth
SOAP provider sets some limits on the overall query
performance. Future work on SOAP response cach-
ing, in cooperation with service providers, will im-
prove reliability and scalability of DB2 Web services.
We have several projects underway that continue to
extend our Web services support. As Web services
continue to evolve and mature, we will augment our
work to support emerging standards and practices.
In particular, standards activities around security and
transactions will need to be part of future develop-
ment.

684 MALAIKA ET AL

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
or Microsoft Corporation.

Cited references and note

1. Web Services Activity, W3C Architecture Domain, see http://
www.w3.0rg/2002/ws/.

2. E. Christensen, F. Curbera, G. Merideth, and S. Weerawarana,
Web Services Description Language (WSDL) 1.1, W3C Note
(March 2001), available at http://www.w3.org/TR/wsdl.

3. For details on user-defined functions, see for example: (1) the
IBM DB2 Application Development Guide, available at http://
www-3.ibm.com/software/data/db2/udb/ad/v7/adg/db2aOe71.
pdf, or (2) D. Chamberlin, A Complete Guide to DB2 Uni-
versal Database, Chapter 6.4, Morgan Kaufmann Publishers,
San Francisco, CA (1998).

4. J. E. Funderburk, S. Malaika, and B. Reinwald, “XML Pro-
gramming with SQL/XML and XQuery,” IBM Systems Jour-
nal 41, No. 4, 642-665 (2002, this issue).

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

5. DB2 Web Services, see http://www.ibm.com/software/data/
webservices/.

6. The Jakarta Project, Apache Tomcat, see http://jakarta.
apache.org/tomcat/index.html.

7. “Developing XML Web Services with WebSphere Studio Ap-
plication Developer,” IBM Systems Journal 41, No. 2,178-197
(2002).

8. R. J. Brunner, F. Cohen, F. Curbera, D. Govoni, S. Haines,
M. Kloppmann, B. Marchal, K. S. Morrison, A. Ryman, J. We-
ber, and M. Wutka, Java Web Services Unleashed, Sam’s Pub-
lishing, Indianapolis, IN (2002), Chapter 23.

Accepted for publication August 19, 2002.

Susan Malaika IBM Software Group, Silicon Valley Laboratory,
555 Bailey Avenue, San Jose, California 95141 (electronic mail:
malaika@us.ibm.com). Ms. Malaika is a senior software engineer
with IBM’s Silicon Valley DB2 development group. She works
in the area of XML, DB2, and the Web.

Constance J. Nelin IBM Software Group, 11501 Burnett Road,
Austin, Texas 78758 (electronic mail: nelin@us.ibm.com). Ms. Ne-
lin is a Senior Technical Staff Member in the IBM Database Ad-
vanced Technology area. She has worked for IBM since 1987,
with a focus on database application development support and
tooling. She has responsibility for application development tool-
ing strategy, architecture, and development for data management.
This covers the application development support for the full DB2
family spanning the areas of core relational database, federated
database, XML, Web services, and messaging features.

Rong Qu IBM Sofiware Group, 11501 Burnett Road, Austin, Texas
78758 (electronic mail: qu@us.ibm.com). Ms. Qu is a software en-
gineer in the IBM Database Technology Institute for e-Business
with seven years’ experience in software development. Her re-
cent projects include DB2 integration with MOQSeries” and Web
services.

Berthold Reinwald IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (electronic mail:
reinwald@almaden.ibm.com). Dr. Reinwald joined the IBM Al-
maden Research Center in 1993, after finishing his Ph.D. degree
in computer science from the University of Erlangen-Nuernberg.
His Ph.D. thesis on workflow management received the “best
Ph.D. thesis” award from the university and was published as a
book. At IBM Research, Dr. Reinwald contributed to SMRC
(shared memory-resident cache) in DB2 Common Server, query
explain tools, workflow management with Lotus Notes, Flow-
Mark ™, and MQSeries, researched and delivered in DB2 Uni-
versal Database ™ support for OLE/COM, OLEDB, XML, and
most recently Web services. Dr. Reinwald is active in the design,
architecture, and implementation of SQL extensions for XML.

Daniel C. Wolfson IBM Software Group, 11501 Burnett Road,
Austin, Texas 78758 (electronic mail: dwolfson@us.ibm.com). Mr.
Wolfson is a Senior Technical Staff Member and manager in the
Database Technology Institute for e-Business. With more than
15 years of experience in distributed computing, his interests have
ranged broadly across databases, messaging, and transaction sys-
tems. He is a lead architect in the information integration area,
focusing on DB2 integration with WebSphere, MQSeries, work-
flow, Web services, and asynchronous client protocols.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

MALAIKA ET AL. 685

