
Autonomic service
deployment in
networks

by R. Haas
P. Droz
B. Stiller

Networks have been growing dramatically in
size and functionality in past years. Internet
Protocol network nodes not only forward
datagrams using longest-prefix matching of
the destination address, but also execute
functions based on dynamic policies such as
proxy-caching, encryption, tunneling, and
firewalling. More recently, programmable
behaviors have begun to appear in network
elements, allowing experimentation with even
more sophisticated services. This paper
presents an autonomic approach to network
service deployment that scales to large
heterogeneous networks. Topological
categories of service deployment are
introduced. A two-phase deployment
mechanism that is split into hierarchically
distributed and central computations is
presented and illustrated with examples of
actual services in a programmable network
environment, together with their deployment
algorithms and simulation results. Autonomic
service deployment allows the distributed and
complex capabilities present in network
elements to be leveraged more efficiently
when installing new services than is possible
in traditional centralized network
management-based approaches. As a result,
installation is faster and use of functional
resources is more optimized.

A network manager faces a daunting task today when
designing, configuring, and provisioning a complete
service for customers, and when trying to obtain the

most use of the specific capabilities available in so-
phisticated network elements such as programma-
ble routers, encryption and transcoding gateways,
traffic shapers and purifiers, and distributed caches,
just to name a few. However, it would not be prof-
itable to add more capabilities to a network, for in-
stance, in the form of network processors,1 unless
they can be exploited efficiently when installing and
running a service.

If we consider an environment of networks with large
numbers of nodes that have widely varying capabil-
ities and resources and that need to be enabled with
new services, it is necessary to define and provide a
way to organize the deployment of new services at
both the network and the node levels. The frame-
work presented here addresses both levels globally,
as well as the interactions taking place between
them.

Activities that focus on the deployment of services
over heterogeneous programmable networks are still
very few and do not focus on those aspects that are
exacerbated in large networks. Policy-based network-
ing allows a high-level policy to be transformed into
lower-level network-node configurations.2 Such mech-
anisms depend on an efficient resource discovery and
enablement, as presented here. Dynamic composi-
tion and deployment of services in the context of end-
to-end application sessions are addressed in Refer-

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HAAS, DROZ, AND STILLER 0018-8670/03/$5.00 © 2003 IBM IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003150



ences 3, 4, and 5. This applies, for instance, to the
setup of a network path for a multimedia session
based on the availability and cost of image transcod-
ers and compression service components active
in intermediate network nodes. Active networks6

achieve self-controlled deployment of services in a
network by embedding service execution code into
data packets so that the service remains dedicated
to that flow of packets. This method is particularly
suitable for environments with many network nodes
that support the necessary execution environment
and for short-lived flows that require an ad hoc de-
ployment of a service exclusively along the path
through which the flows have been routed. Partic-
ularly well-suited for large-scale problems are hier-
archical architectures that have been used in the con-
text of routing protocols and network management
but not yet considered for deploying services.

To accelerate the deployment of network services,
at least at the node level, efforts have begun focus-
ing on the standardization of interfaces within net-
working equipment, either in the form of control pro-
tocols for label switches (Internet Engineering
Task Force [IETF] General Switch Management
Protocol [GSMP]7), Internet Protocol (IP) routers
(IETF ForCES8), and media gateways (IETF MEGACO9),
or more generic application programming interfaces
(APIs) such as those described in References 10 and
11. Therefore, it is expected that in a network a va-
riety of solutions are likely to coexist.

Although the work presented here specifically ad-
dresses network services, the deployment of higher-
level services such as Web services, for which the net-
work can be viewed as a black box, indirectly benefits
from the underlying network service-deployment
framework.

The next section of this paper first presents the net-
work-level and node-level service-deployment phases,
then classifies the types of services supported by the
framework presented here, and finally reviews the
key elements such as the representation of capabil-

ities and the hierarchical architecture. The third sec-
tion focuses on network-level deployment. It pre-
sents a formalism for hierarchically distributed
computations, illustrated with examples and algo-
rithms. Simulation results of the network-level de-
ployment are presented in the fourth section.

Service-deployment framework

Service deployment denotes the set of tasks required
to provide a new service dynamically in a partially
or fully programmable network. A service is an as-
sembly of components that have to be identified and
placed appropriately in a network. Service provision-
ing is the task that operates on a service already de-
ployed in order to provide a product of that service.
For instance, encrypted flows are a product of the
Virtual Private Network (VPN) service, and the VPN
service is a product of its components present in the
network nodes, performing encryption or decryption
at the edges and quality-of-service (QoS) in the in-
termediate nodes, as shown in Figure 1. Whereas ser-
vice composition defines the components required
by a service and how to compose them, service de-
ployment performs the actual mapping of these com-
ponents into the network.

Clearly, providing tailored services means that new
components have to be placed adequately in the net-
work. We argue that an autonomic approach is the
only scalable solution to service deployment, given
the heterogeneity and size of today’s networks as well
as the variety of different services and the frequency
at which such services have to be deployed. Auto-
nomic means that the network itself orchestrates the
deployment process, and the interaction with the net-
work manager is limited to specifying the service ac-
cording to customer needs.

More specifically, this framework splits service de-
ployment into two successive phases, namely, macro
and micro deployment. As shown in Figure 2, each
phase covers a certain scope of the network, and the
border between these scopes can be adjusted. In the

Figure 1 Network service operations

SERVICE
“PRODUCT” 

SERVICE
PROVISIONING

DEPLOYED
SERVICE

SERVICE
COMPONENTS

SERVICE
COMPOSITION

SERVICE
DESCRIPTION

SERVICE
DEPLOYMENT

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 151



following discussion, we choose to place the border
at the distributed-router level. Therefore, the macro
deployment has a network-wide scope, whereas the
micro deployment has a node-local scope. This
choice does not preclude other scenarios in which
the border is set instead at the local-area-network
level, for instance.

For macro or network-level deployment, a sequence
of five steps is executed in a hierarchically distrib-
uted manner, as described in more detail in the next
section. For micro or node-level deployment, a cen-

tralized resource co-allocation method is used that
benefits from information gathered during the net-
work-level phase in order to place functions opti-
mally. A service component could need resources
of different types to be allocated, one for each ser-
vice function constituting the service, hence the co-
allocation problem. The main characteristics of both
phases are summarized in Table 1.

Categories of services. Services are assumed to be
decomposable into sets of components to be exe-
cuted by individual nodes. We distinguish the fol-
lowing topological categories of service deployment
and provide examples of current network services:

● Path-based, between a set of source(s) and desti-
nation(s), which is further divided into two types:

–Continuous, for which the same component must
be present in each node on the path, for instance,
application-specific queuing (such as IETF Differ-
entiated Services, or diffserv) that has to be en-
abled on all nodes of a path

–Sparse path-based, or discontinuous, for which a
set of components must be present in a set of nodes
on the path. This type can be, for instance, a mul-

Table 1 Relevant characteristics of macro and micro
deployment

Macro Deployment Micro Deployment

Network level: Node level:

Distribute hierarchically Distribute centrally (control
point)

Use abstract representation
of node capabilities

Use actual representation
of node capabilities

Minimize nodes’ resources
for matchmaking, get

Make use of specific node
capabilities when
installing the service, forFaster processing

Solicit more nodes Fine-grained optimization

Figure 2 Macro and micro deployment

SERVICE
COMPONENT

SERVICE
COMPONENT

SERVICE
COMPONENT

SERVICE
REQUIREMENTS

ABSTRACT
NODE
CAPABILITIES

ACTUAL
NODE
CAPABILITIES

SERVICE
FUNCTION

SERVICE
FUNCTION

SERVICE
FUNCTION

MACRO
DEPLOYMENT

MICRO
DEPLOYMENT

SERVICE
COMPONENTS

NETWORK LEVEL NODE LEVEL

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003152



timedia transcoding and compression service,
with one node on the path performing transcod-
ing while another node performs compression.

● Fence-based, orthogonal to path-based, for which
nodes along a path (possibly a loop) must act on
the traffic crossing them, such as a firewall span-
ning multiple access routers

● Node-based, for which only selected nodes need
to be activated, and no source or destination pairs
are specified, but rather domains, such as a trans-
parent Web cache acting for a group of end sta-
tions

● Combinations of the above, such as a path-and-
node-based VPN service with encryption at the end-
points and QoS support in the intermediate nodes

Whenever necessary, service redundancy can be
achieved by deploying the service along multiple dis-
tinct paths or nodes.

Description of service requirements and node ca-
pabilities. Topological properties help to classify ser-
vices from a network-level connectivity point of view,
but a larger set of properties is required to fully de-
scribe service requirements as well as network or
node capabilities. These properties are the follow-
ing:

● Topology—description of the connectivity, which
can be modified dynamically such as in wavelength-
switching networks or with hot-pluggable node
modules

● Functionality—description of functions, which can
be static, configurable, or even programmable

● Performance—measure of resources, such as band-
width or delay in networks and CPU speed in nodes

● Cost—administrative measure for using the above
resources, relevant when the economical dimen-
sion must be taken into account during deploy-
ment, addressed in Reference 12.

The representation of node capabilities can, for in-
stance, be expressed in XML (Extensible Markup
Language) together with the appropriate Schema,
as an extension to the IETF MIBs (Management In-
formation Bases) such as described in References
13 and 14. It includes a description of the type of
APIs to access, configure, and operate the resources
in the node, either base10 or higher-level resources
such as operating-system-resident services, as well
as the utilization of these resources. A similar rep-

resentation for services is matched against node ca-
pabilities. This representation includes the required
node capabilities to accommodate the service. The
actual evaluation process of node capabilities against
service requirements exceeds the scope of this pa-
per. The information resulting from this evaluation
is a metric or a set of metrics that are used to direct
the deployment of the service onto the most appro-
priate nodes, as is illustrated later in this paper. When
this information is transported toward the top of the
service-deployment hierarchy, during the network-
level deployment phase, it can be aggregated differ-
ently, depending on service needs. The service-
deployment framework proposed lets services
themselves define the information they require to
execute their deployment and how it should be ag-
gregated. This defining can be viewed as an appli-
cation of active code for the network control plane.

Network processors (NPs) are one of the key build-
ing blocks for a programmable network infrastruc-
ture. They have widely varying capabilities, such as
the number of simultaneous forwarding tables sup-
ported (required for VPN support), hardware assists
(required for fast packet handling), and software-
level programmability (required for flexible packet
handling).

Figure 3 (A) Abstract capabilities, (B) actual capabilities
 for a programmable distributed router

A
CP

EE

CLS

B
CP

CLS

SWITCH ASIC

LAYER-2
INTERFACE

EE

CLS
EE

NP

EE
NP

CLS

CLS

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 153



Figure 3 is a simple illustration of the abstract and
actual representations of capabilities, as described
in Figure 2. Part A of Figure 3 shows the abstracted
relevant capabilities of the distributed router de-
scribed in Part B, namely, a control point (CP), an
execution environment (EE), and a packet-classifier
mechanism (CLS). If a tunneling service that requires
encapsulation and decapsulation of data packets to
be performed at line speed has to be deployed, the
macro deployment phase will select an appropriate
endpoint for the tunnel, based on the abstract view
of Part A. Once it is known that this particular node
is the most appropriate one and which interface is
to be used for this service (indicated by an arrow in
Part A), micro deployment is able to proceed and
allocate the necessary functions, such as the EE to
perform the encapsulation and decapsulation, and
the CLS to select the relevant packets to be tunneled.
For instance, the CLS capability in the application-
specific integrated circuit (ASIC) of the interface se-
lected and the EE of an NP can be used, depending
on availability.

Figure 4 shows a short example of possible NP ca-
pabilities. Using XML for such a representation rather
than an MIB-like structure is interesting because XML
is easily extendable, thanks to its self-contained struc-
ture.

Service-deployment hierarchy. Compared to exist-
ing hierarchies for routing or network management,
the service-deployment hierarchy extends the sum-
marization (or aggregation) techniques to treat more
generic information than only IP or ATM (asynchro-
nous transfer mode) addressing and QoS. Whereas
network management mostly performs collection
and aggregation of data upwards, the service-deploy-
ment hierarchy is used in both directions: to collect
data resulting from the service requirements versus
node capabilities evaluation and to execute the de-
ployment of a service based on the data collected.
Note that although the number of hierarchy levels
is not limited by the mechanism, the resources in the
network to maintain this hierarchy are bounded. ATM
and IP networks commonly use three levels of hier-
archy to aggregate routes: two levels for intranet-
work routing, such as IP OSPF (Open Shortest-Path
First) areas and Autonomous Systems, and a third
level for internetwork routing, such as BGP (Border-
Gateway Protocol). The hierarchy may extend down-
wards in network nodes such as distributed routers
(clusters) that to the outside appear as a single node
with a single IP address. Placing the border between
macro and micro deployment within such nodes can

bring the advantages of macro deployment to auto-
mating the placement of functions in large clusters
(see Table 1).

The physical network topology is the main factor in
creating a hierarchy, at least in fixed networks. A
spanning tree is built by successively grouping nodes
at each hierarchy level. Figure 5 shows a simplified
example of a seven-node network on top of which
a three-layer hierarchy has been built. Nodes B.1,
B.2, and B.3 are grouped together and represented
by logical node B at the next level of the hierarchy.
Routing across a hierarchical network requires the
use of uplinks,15 as represented for node B in thick
dashed lines (B.1 � A), (B.2 � A), and (B.3 � C)
[uplinks (A.1 � B), (A.2 � B), and (C.1 � B) are
not shown]. For instance, when routing from a source
in A to a destination in C, uplink (B.3 � C) shows
that B.3 is the only possible border node toward C,
whereas in the opposite direction, uplinks (B.1 � A)
and (B.2 � A) show that B.1 and B.2 are the only
possible border nodes toward A. For certain types
of services, proper deployment requires that nodes
along entire paths are enabled with a certain service
component. In such cases, the use of uplinks is nec-
essary.

Network-level service deployment

This section concentrates on the network-level de-
ployment procedure and its formalization. We then
illustrate how it is implemented for service deploy-
ment of the path-based and path-and-node-based
categories, together with specific algorithms used in
the deployment steps.

Deployment procedure. From a high-level perspec-
tive, the network-level service-deployment procedure
can be broken down into five steps. Figure 6 shows
these steps and the resulting deployment procedures
when all or only some of the steps are executed. Us-
ing only the last two steps in Figure 6 leads to a man-
ual deployment and automatic configuration of a ser-
vice. This is how services are generally deployed in
networks today. With the intermediate solution, for
example, skipping the first step, the result is an au-
tomatic deployment with generic metrics and automatic
configuration. Only when all five steps are executed
will an automatic deployment with custom metrics and
automatic configuration result.

Computations are distributed in a logical hierarchy
described in Reference 16. Layers in the hierarchy
are built by recursively grouping logical or physical

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003154



nodes and representing them by a single logical node
at the next layer of the hierarchy.

During the solicitation step, service requirements are
distributed to nodes, following the service-deploy-
ment hierarchy downwards (see Figure 5). The sum-
marization step collects the metrics created at the

lowest level of the hierarchy, namely the physical
nodes, and successively hands them over to the next
higher layer of the hierarchy, possibly repeatedly ag-
gregating the results to prevent information over-
flows. Once the result reaches the top level of the
hierarchy, the dissemination step can start, in which
the metrics collected at each level are evaluated and

Figure 4 XML representation of the capabilities of a network processor

<Network_Processor>
    <base_capabilities>
        <API_supported> ForCES, NPF </API_supported>
        <general>
            <processing>
                <speed> 500 MHz </speed>
            </processing>
            <scheduling>
                <total_bandwidth> 100 Mbit/s </total_bandwidth>
                <type> WFQ </type>
                <max_queues> 1000 </max_queues>
            </scheduling>
            <buffers_management>
                <total_buffer_size> 1 MB </total_buffer_size>
                <max_buffer_pools> 16 </max_buffer_pools>
                <buffer_sharing> yes </buffer_sharing>
                <Advanced Queue Management> RED </AQM>>
            </buffers_management>
            <forwarding>
                <type> layer-4 </type>
                <fields> source destination address port </fields>
                <line_rate> 100% </line_rate>
                <table_size> 100k </table_size>
                <number_of_tables> 1 </number_of_tables>
            </forwarding>
        </general>
        <resource_usage>
            // current usage for the defined capabilities
        </resource_usage>
    </base_capabilities>
    <diff_serv>       // absent if NP does not provide
                             // explicit support for diffserv
        <API_supported> ForCES, NPF </API_supported>
            <general>
                <classifier>
                   <fields> 6 </fields>
                   <options> ranges_support </options>
                   // etc
                </classifier>
                 // etc
            </general>
            <resource_usage>
                // current usage for the defined capabilities
            </resource_usage>
    </diff_serv>
    // etc
</Network_Processor>

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 155



the most appropriate nodes are chosen until the
physical nodes are reached. In these nodes the in-
stallation step loads the service. The final advertise-
ment step mimics the summarization step, albeit only
involving nodes that have been chosen to run the ser-
vice.

This procedure can also be viewed as two successive
query-reply processes taking place over the entire
network, the queries going down the hierarchy and
the replies going upwards, in which the nodes at the
intermediate layers actively process the queries and
replies. The first query-reply pair is used to extract
the information from the network on how it can sup-
port a certain service (solicitation and summariza-
tion steps), whereas the next query-reply pair is used

to actually install the service in the manner most ap-
propriate (dissemination, installation, and advertise-
ment steps).

Hierarchical iterative gather-compute-scatter algo-
rithm. The procedure described in the previous sub-
section with its five steps can be divided into a se-
quence of iterations, each consisting of gather,
compute, and scatter phases, distributed over the ser-
vice-deployment hierarchy, hence the name HIGCS
(hierarchical iterative, gather-compute-scatter).
HIGCS uses an approach similar to the one in Ref-
erence 17, albeit with specific enhancements. A pos-
sible implementation of such a mechanism could in-
volve mobile agents whose navigation model is
extracted from the structure of the hierarchy. We

LOGICAL 
NODE

PHYSICAL 
LINK

LOGICAL LINK

PHYSICAL 
NODE

UPLINK

B.3 C.2

C.1

B C

Figure 5 A sample three-layer hierarchy

A.1

A.2 B.2

B.1

A

SOLICITATION SUMMARIZATION DISSEMINATION INSTALLATION ADVERTISEMENT

n

AUTOMATIC DEPLOYMENT WITH GENERIC METRICS AND AUTOMATIC CONFIGURATIONAUTOMATIC DEPLOYMENT WITH GENERIC METRICS AND AUTOMATIC CONFIGURATION

MANUAL DEPLOYMENT AND
AUTOMATIC CONFIGURATION
MANUAL DEPLOYMENT AND
AUTOMATIC CONFIGURATION

AUTOMATIC DEPLOYMENT WITH CUSTOM METRICS AND AUTOMATIC CONFIGURATION

Figure 6 The five steps of the service-deployment mechanism

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003156



first describe the formal model and then how it is
used to express the service-deployment procedure.

Service-deployment HIGCS messages are exchanged
at each iteration, following the tree-like topology of
the underlying hierarchy. The sets of destinations and
origins relevant for the messages exchanged in the
scatter and gather phases, respectively, are obtained
from the compute phase. The logical node of a group
is merely responsible for communicating with its un-
derlying peer-group members of the scatter set. The
logical node has neither to monitor all members of
its group nor perform all computations centrally. For
ease of description, we assume in the following dis-
cussion that the scatter set is always determined by
a central computation performed by the logical node
rather than distributing this computation among
group members.

Each node executes iterative computations based on
a tuple {(Gi , Ci , Si)�0 � i � (k � 1)}, where k
is the total number of iterations. The gather set Gi

is defined here as the set of (logical or physical) nodes
from which messages are expected. The compute
phase Ci executes once the iMsg messages have been
received from all nodes in Gi , as illustrated in Fig-
ure 7. The scatter set Si denotes the (logical or phys-
ical) nodes to which oMsg messages are sent once
the compute phase Ci completes. oMsgn messages
can differ, depending on their destination node n in
the Si set. Similarly to that in Reference 17, node
attributes are assumed to be available during the
compute phase. This includes, for instance, the hi-
erarchy level at which the node is located.

The generic signaling-message format used by the
network-level service-deployment mechanism is de-
fined in Table 2.

To perform service deployment, iterations are as-
sociated with the steps as described in Figure 6. For
that purpose, we define the following general behav-
iors for Ci :

● C0 selects the set of underlying nodes S0 that have
to be solicited (null set if executed on a physical
node).

● C1 summarizes information gathered from the set
of underlying nodes G1 (on a physical node, this
information is created) and places it in sMetric.

● C2 selects the set of nodes S2 where the service
is to be deployed (on a physical node, the service
is installed).

● C3 summarizes the results from the deployment

on the set of nodes G3 (on a physical node, this
information is obtained locally) and places it in
iMetric.

The actions executed by nodes in the hierarchy dur-
ing the first query-reply pair, namely, the solicita-
tion and summarization steps, are expressed in the
C0 and C1 compute phases, whereas C2 and C3 cor-
respond to the second query-reply pair, namely, the
dissemination, installation, and advertisement steps.

Clearly, these Ci functions will be implemented dif-
ferently for each service to be deployed, as we de-
scribe next. More detailed examples of the HIGCS
iterations and Ci functions for each category of ser-
vice deployment are given in Reference 18.

Path-based deployment. Table 3 shows the compu-
tations executed for the deployment of a hypothet-
ical path-based service on all nodes of a path between
two customer sites (represented by the A and C top-
level nodes in Figure 8). For the sake of simplicity,
the straightforward update of other fields in the

GATHER 
SET Gi

SCATTER 
SET Si

Figure 7 The HIGCS agent operation model

COMPUTE
Ci

oMsg

oMsg

oMsg
oMsg

iMsg

iMsg

iMsg

iM
sg

Table 2 The HIGCS service-deployment message format

Parameter Generic Value

serviceId Instance of service deployed
hierarchyId Identifier of service hierarchy
srcId Source of message
destId Destination
iterationId Current iteration
Gi Gather set for iteration i
Ci Compute function for iteration i
Si Scatter set for iteration i
servSpec Service specification
sMetric Solicited metric
iMetric Installed metric
. . . Other service-specific information

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 157



oMsg (such as srcId) and fields that do not change
from the iMsg message are not shown.

Figure 8 illustrates the result after all four HIGCS it-
erations have completed across the entire hierarchy.
The path selected is shown as a thicker line. The first
iteration was initiated by node B, which received the
initial HIGCS message with iMsg.ends set to {A, C}.
Logical node B.3 and router B.2.3 did not partici-
pate in the service deployment, since they are not
on a path between A and C. All other nodes had been
solicited, and nodes B.0.3 and B.1.0 were excluded,
since their capabilities did not match the require-
ments of that service. Of the remaining routers, B.0.0,
B.0.1, B.0.2, B.2.1, and B.2.2 are finally enabled with
the service, since they are on the shortest path be-
tween A and C.

For path-based deployment, routing decisions have
to be taken successively at each layer of the hierar-
chy (executed by SelectNodesOnShortestPath in Ta-
ble 3). Among the various suitable data represen-
tations, transition matrices offer an accurate view of
the cost of traversing a logical node.

Transition matrices used in path-based service de-
ployment contain topology-, capability-, perfor-
mance-, or cost-related information, or all of these
types of information. For instance, the sMetric gen-
erated for node B in Figure 8 is the following tran-
sition matrix:

TB � �1 . . .
0 0 . . .
5 0 1

�

Figure 8 Result of the HIGCS computations

SOLICITED, CAPABLE,
AND ENABLED ROUTER

SOLICITED AND CAPABLE
BUT NOT ENABLED

NOT SOLICITEDSOLICITED BUT 
NOT CAPABLE

B.2.3 B.0.3

B.0.2

BB CA

B.1

B.3B.3

B.4B.4

B.0

B.4.1

B.0.1B.2.1

B.4.0

B.2B.2

B.0.0

B.1.0

B.2.0 B.2.2

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003158



Elements t i, j indicate that there is connectivity be-
tween border nodes B.i and B.j, with a path com-
posed of nodes capable of running that particular
service. In addition, the value of t i, j corresponds to
the performance of that path in terms of number of
hops. For instance, element t0,2 in TB with a value
of 5 indicates that there is a path composed of ca-
pable nodes when crossing B from B.0 to B.2 (and
vice versa). This path is shown with a thicker line at
each hierarchy level in Figure 8, which consists of
five nodes (or hops) at the bottom hierarchy layer.

Straight-path search. In path-based deployment, it
is only necessary to solicit those nodes that form a
path between the endpoints specified. Nodes that lie
in stub networks, as, for instance, B.3 in the exam-
ple of Figure 8, do not have to be solicited. In ad-
dition, assuming that node capabilities are available
in the same way irrespective of the input and output
port on a node (this normally applies to physical
nodes), it is possible to further constrain the set of
possible paths as follows: Assume S is the set of all
possible paths without loops between two endpoints.
Ss contains all paths from S for which no subpath
exists in S. (A path Ps is defined as a subpath of an-
other path P if by removing one or more nodes from
the list of nodes that form P we obtain the list of
nodes that form Ps .) We define such paths in Ss as
straight paths. Clearly, the shortest path is a straight
path. Note also that straight paths are not transitive.
Appending a straight path between nodes b and c,
such as {b, c}, to a straight path between a and b,
such as {a, e, b}, does not necessarily lead to a
straight path between a and c, as {a, e, c} is a sub-
path of {a, e, b, c}, as shown in Figure 9. In this ex-
ample, the only straight paths between a and c are
{a, d, b, c} and {a, e, c}.

Here, we present a novel algorithm that searches for
straight paths (SPS) and performs similarly to the
Depth-First Search (complexity of O(n 2), where n
is the total number of nodes). The algorithm discov-
ers all nodes that lie on a straight path between two
endpoints source and dest in a graph G composed
of nodes V[G], where Adj[u] is the set of nodes ad-
jacent to node u.

SPS(source,dest)
1 for each u � V[G] do
2 color[u] 4 WHITE
3 marked[u] 4 FALSE
4 SPS-Visit(source,dest)

SPS-Visit(u,dest)
1 localresult 4 0
2 color[u] 4 GRAY
3 for each v � Adj[u] do
4 if v � dest then
5 localresult 4 2
6 if localresult � 2 then
7 for each v � Adj[u] do
8 if color[v] � WHITE then
9 if NumGrayNeighbors(v) � 2 then

10 localresult 4 max(SPS-Visit(v,dest),
localresult)

11 else localresult 4 max(localresult,1)
12 if localresult � 2 then
13 marked[u] 4 TRUE

Figure 9 Example network for SPS

e

a b cd

Table 3 C0, C1, C2, and C3 functions

C0 DS-solicit

S0 4 SelectAllNodesBetween (iMsg.ends)
oMsgn .ends 4 SelectNeighborNodes (n�n � S0)
G1 4 S0

C1 DS-summarize

S1 4 GetLogicalNode �
oMsg.sMetric 4 if IsLogicalNode � then

SummarizeMetrics
(iMsgj.sMetric, @j � G1)

else CreateMetric (iMsg.servSpec)
G2 4 S1

C2 DS-disseminate

S2 4 if IsLogicalNode � then
SelectNodesOnShortestPath

(iMsg.ends)
else null

oMsgn .ends 4 SelectNeighbornodes (n�n � S2)
G3 4 S2

C3 DS-install

oMsg.iMetric 4 if IsLogicalNode � then
SummarizeInstalledMetrics

(iMsgj.iMetric, @j � G3)
else InstallService (iMsg.servSpec)

S3 4 GetLogicalNode �

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 159



14 color[u] 4 WHITE
15 return(localresult)

NumGrayNeighbors(u)
1 result 4 0
2 for each v � Adj[u] do
3 if color[v] � GRAY then
4 result 4 result � 1
5 return (result)

In the initialization phase of the algorithm (lines 1–3
of SPS�), all nodes in the graph are marked as FALSE
and colored WHITE. Nodes that lie on a straight path
between source and dest will be marked by the SPS
algorithm. The color of each node can alternate be-
tween WHITE and GRAY as nodes are being visited.
Note that nodes may be visited multiple times on
different paths.

The principle of the algorithm is to grow all possible
paths in the graph recursively and temporarily color
nodes on such paths gray, until one of the two fol-
lowing conditions applies: the path either reaches
the destination, or the path reaches a node that is
adjacent to a gray node (therefore already in the
same path). This is the case if NumGrayNeigh-
bors(v) is equal to 2, on line 9 of SPS-Visit�). If the
first condition applies, then all nodes on this path
are marked as belonging to a straight path (line 13
of SPS-Visit�). In both cases, the color reverts from
gray to white as the algorithm continues and recur-
sively searches for other paths. It stops once all pos-
sible paths have been visited.

As a brief proof that all nodes on straight paths and
only those nodes are indeed marked by this algo-
rithm, we use the following property: If any subpath
of some path is not a straight path, then the path
itself is not a straight path either. Note that a node
can belong to many of the paths in S simultaneously,
including paths in the subset Ss , but only those nodes
that belong to at least one path of Ss will be marked.
By construction, the algorithm extends all paths from
source to dest, except those paths it abandons at some
intermediate node because the subpath from source
to that intermediate node is not straight (and hence,
according to the property above, any extension of
that subpath to dest would not lead to a straight path).
Therefore, all paths that have been successfully ex-
tended to dest comprise the set Ss of all possible
straight paths between source and dest. By construc-
tion, the algorithm marks only those nodes—but all
of them—that belong to each such path in Ss, thereby
marking certain nodes possibly more than once. As

a result, all nodes on straight paths are marked at
least once by the algorithm.

A performance improvement19 to the algorithm con-
sists in reusing the marking obtained at each node.
Because straight paths are not transitive, this might
lead to false markings; therefore, more nodes than
necessary might be solicited.

Path- and node-based deployment. As an example
of a service deployed both along paths and at selected
nodes with differing requirements, we consider the
deployment of a VPN. Encryption capabilities are re-
quired at the VPN endpoints, and QoS treatment of
packets is ensured by RSVP-enabled (IETF Resource
Reservation Protocol, or RSVP) nodes between those
endpoints.

To accommodate both path- and node-based char-
acteristics, we choose to extend the transition ma-
trix presented in the previous subsection with the
necessary node information. The extended transi-
tion matrix is defined as follows:

TN � �M; P)

Elements mi, j indicate the shortest number of
RSVP-capable hops between border nodes N.i and
N.j in node N. Elements pi, j indicate the shortest path
from a node in domain Dj that fulfills the require-
ments of the VPN-endpoint service specification to
border node i. The VPN interconnects n domains Dn ,
which are represented by logical nodes.

Figure 10 shows a group of nodes with their capa-
bilities. For simplicity, it is assumed that all VPN-
endpoint-capable nodes are also RSVP-capable, but
not vice versa. The extended transition matrix for
this group is:

TA.1 � �
1 . . .
0 0 . . .
4 0 1 . . .
2 0 3 1

�
1
0
3
1
�

In TA.1, element m2,0 indicates that the number of
hops to cross A.1 from A.1.2 to A.1.0 is four. Ele-
ment p2,0 indicates that the number of hops to reach
a VPN-capable endpoint in A.1 entering from A.1.2
with a path composed of RSVP-capable nodes only
is three. There are actually two such paths, namely,
(A.1.2, A.1.4, A.1.3) and (A.1.2, A.1.6, A.1.3).

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003160



If we assume that logical node A.1 represents one
domain and that logical node A.2 (not shown) rep-
resents another domain, then the P matrix of the
extended transition matrix for logical node A, com-
posed of A.1 and A.2, will have two columns p:1 and
p:2, one for each domain. When summarizing such
extended matrices, a new column is appended for
each domain considered.

Hierarchical Steiner-tree construction. When con-
structing a VPN, it might be relevant to minimize the
total cost of interconnecting the VPN endpoints. The
Minimum Steiner Tree is the minimum-cost tree that
interconnects such endpoints, and is an NP-complete
problem in the case of additive edge weights. Sev-
eral algorithms approximate the optimum solution,
such as Selective Closest Terminal First (SCTF20),
which finds a solution guaranteed to be at most twice
as expensive as the optimum tree. Here, we address
how Steiner trees can be built over hierarchical net-
works.

During the summarization step, as the locations of
the branching points of the Steiner tree are not yet
known, only the shortest paths between all pairs of
nodes at that hierarchy level are computed and
stored as transition matrices in the sMetric. It can
be shown that extending each transition matrix with
the costs of all Steiner trees that can be constructed
between all combinations of three or more border
nodes would incur a large amount of additional trans-
ported information and computation effort in the
summarization step. In addition, the SCTF algorithm
cannot operate with the resulting interdependent
edge costs.

Based on this information, a Steiner tree is computed
successively at each hierarchy level during the sub-
sequent dissemination step, for instance, using the
SCTF algorithm. The cost used in a computation at
a given level is an upper bound of the actual cost of
the Steiner tree that can be built at the level below.
This can lead to suboptimum decisions being made,
as shown in Figure 11. Here, nodes A.1 and A.2 have
identical transition matrices, and therefore the al-
gorithm will select one of these two nodes indistinc-
tively to become the branching point for the Steiner
tree in node A. The cost of this tree, indicated in
Figure 11 by a thicker line in node A, is forecast to
be seven, which is the upper bound given the cost
of four for traversing node A.2 according to its tran-
sition matrix. While the algorithm repeats in node
A.2, it computes a local Steiner tree of cost three,
leading to a final cost of six for the overall Steiner

tree, instead of the upper bound of seven that would
have been reached if node A.1 had been selected
instead of A.2.

The information-aggregation method used by tran-
sition matrices is designed so that the shortest path
can be accurately computed over a hierarchical net-
work as presented earlier, but it lacks information
that would allow the construction of better Steiner
trees as described above. This method illustrates the
necessary trade-off between acceptable quality and
amount of information that has to be found for each

Figure 10 A group of nodes solicited for the VPN service

A.1.4 

A.1.6
A.1.2

A.1.5

RSVP-CAPABLE
ROUTER

VPN-ENDPOINT-
CAPABLE ROUTER

A.1.0

A.1.3

A.1.1

11

1

1 1

1
A.2

1

1 1
2

2

2
A.1

Figure 11 Hierarchical construction of a Steiner tree

A

A.2A.1

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 161



service to be deployed, hence the complexity of the
processing it entails.

Simulation results

The elements and algorithms of network-level ser-
vice deployment presented in the previous section
have been implemented in a simulation environment
to evaluate their scalability over large networks. The
HIGCS agent-based deployment protocol has been
implemented as an extension to the discrete-event
network simulator ns-2. We present here some sim-
ulation results obtained with various fixed network
topologies and for two types of services:

● A Web-cache node-based service, for which the
Web cache is deployed in the most appropriate
physical node in each lowest-layer peer group (B.0,
B.1, B.2, B.3, and B.4, in Figure 8)

● A three-endpoint diffserv path-based service, us-
ing the directed broadcast mechanism shown ear-
lier for the solicitation step, the Floyd-Warshall
all-pairs shortest-path algorithm for the summa-
rization step, and the Steiner-tree computation
shown previously for the dissemination step.

Whereas typical Internet topologies consist of three
routing-hierarchy levels, we have simulated the ser-
vice-deployment protocol over topologies ranging

from a flat two-level up to a highly hierarchical seven-
level topology, as produced by the GT-ITM (Georgia
Tech Internetwork Topology Models) topology mod-
eler. The average size of peer groups is fixed to three
nodes at every level so as to obtain comparable re-
sults for the various topologies, and also to keep the
maximum number of nodes (¥n�0

6 3 n � 1093) within
the simulator capabilities. For each discrete num-
ber of hierarchy levels, ten different topologies are
generated using a random placement of nodes on a
grid, and connectivity is determined with the Wax-
man probabilistic method.21 Random numbers are
generated using the Stanford GraphBase pseudo-
random-number generator.22

As a benchmarking topology, a tree-network topol-
ogy that ideally fits the hierarchical structure of
HIGCS is also simulated. In this topology, HIGCS mes-
sages that travel between logical nodes only go over
a single physical hop.

Interesting measures of the overhead incurred by the
service-deployment protocol are the total number
of messages exchanged during the five deployment
steps and the total compute time spent in all nodes
participating in the procedure.

Figure 12 shows the total number of HIGCS messages
sent over the topology (normalized to a 1000-node
topology) for the deployment of the Web-cache ser-
vice. The standard deviation is zero for the tree to-
pology (number of packets is deterministic) and very
small for the randomly generated GT-ITM topologies.
Note that despite the arbitrary logical-node selec-
tion policy applied in the simulations, the GT-ITM and
the tree topologies show close to identical results.
The more hierarchy levels, the more solicitation
packets are transmitted, since every logical or phys-
ical node receives such a packet, but this increase
becomes less and less important. During the dissem-
ination step, the overhead is negligible because only
one node in each lowest-level peer group has to be
reached.

Figure 13 shows the total compute time (defined as
a relative measure on normalized topologies) for the
deployment of a three-endpoint diffserv service.
Standard deviation is shown only for the ten ran-
domly generated GT-ITM topologies for each num-
ber of hierarchy levels, since the measurement vari-
ations in the fixed-tree topologies are negligible.

The divide and conquer method takes effect as it can
be seen that compute time decreases noticeably when

0

200

400

600

800

1000

1200

2 3 4 5 6 7

P
A

C
K

E
TS

HIERARCHY LEVELS

WEB CACHE (NORMALIZED TO 1000 NODES)

SOLICITATION IN TREE TOPOLOGY
SOLICITATION IN GT-ITM TOPOLOGY
DISSEMINATION IN TREE TOPOLOGY
DISSEMINATION IN GT-ITM TOPOLOGY

Figure 12 Total HIGCS messages for Web-cache 
 deployment

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003162



more hierarchical levels are introduced, because in
turn the set of nodes that each logical node is re-
sponsible for decreases.

These results confirm the influence of the number
of levels in the deployment hierarchy. The total com-
pute time, shown here for the solicitation and dis-
semination steps only, decreases when more hier-
archy levels are introduced in a given topology,
whereas only a minor increase in message overhead
is incurred. Hierarchical network-level deployment
based on the suitable algorithms for the service-de-
ployment categories presented therefore allows an
efficient and scalable allocation of services in a net-
work.

Conclusion

Organizing the autonomic deployment of services is
a key step toward an intelligent network infrastruc-
ture. Openness and programmability are starting to
appear in network equipment, and it is therefore nec-
essary to provide generic mechanisms that can en-
able the deployment of any type of service.

In this paper, we have introduced a two-phase mech-
anism that achieves an efficient and flexible de-
ployment of services in networks: a macro-level de-
ployment phase that operates in a hierarchically dis-
tributed manner to query and collect capabilities of
nodes in the network, and then execute the deploy-
ment itself; and a micro-level deployment phase that
refines the actual installation of a service according
to the specific capabilities of each element compris-
ing the network node.

In addition, we have introduced various categories
of services according to topological service-deploy-
ment needs and proposed novel information aggre-
gation methods, as well as a straight-paths graph al-
gorithm used during the macro-level deployment
phase that allows the number of nodes queried to
be limited. The trade-off between accuracy, amount
of information, and availability of efficient algorithms
required for near-optimum deployment was illus-
trated using the hierarchical Steiner-tree computa-
tion.

By making the network itself responsible for execut-
ing the deployment of a service, an autonomic de-
ployment is achieved, avoiding time-consuming and
error-prone manual operations. As networks grow in
size and heterogeneity, the deployment mechanism can
still capture the essential data for deploying any par-

ticular service, while retaining its scalability thanks to
the use of summarization and dissemination across
the service-deployment hierarchy, as confirmed by
our simulations.

Cited references

1. Power Network Processor Software Overview, Technical Re-
port, IBM Corporation (April 2002); see http://www.chips.
ibm.com/techlib.

2. D. Verma, M. Beigi, and R. Jennings, “Policy-Based SLA
Management in Enterprise Networks,” Proceedings of the
Workshop on Policies for Distributed Systems and Networks
(POLICY 2001), Bristol, UK (2001), Lecture Notes on Com-
puter Science, Vol. 1995, Springer, Berlin (2001), pp. 137–152.

3. K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed QoS
Compilation and Runtime Instantiation,” Proceedings of
IEEE/IFIP 8th International Workshop on Quality of Service
(IWQoS’2000), Pittsburgh, PA (June 5–7, 2000).

4. A. Nakao, L. Peterson, and A. Bavier, “Constructing End-
to-End Paths for Playing Media Objects,” Proceedings of
OpenArch 2001—The 4th IEEE Conference on Open Archi-
tectures and Network Programming, Anchorage, AK (March
2001).

5. S. Choi, J. Turner, and T. Wolf, “Configuring Sessions in Pro-
grammable Networks,” Proceedings of INFOCOM 2001, An-
chorage, AK (April 2001), pp. 60–66.

6. D. Wetherall, U. Legedza, and J. Gutta, “Introducing New
Internet Services: Why and How,” IEEE Network: The Mag-
azine of Global Information Exchange 12, No. 3, 12–19 (1998).

7. A. Doria, F. Hellstrand, K. Sundell, and T. Worster, General
Switch Management Protocol V3, IETF RFC 3292 (June 2002);
see http://www.ietf.org.

8. ForCES, Requirements for Separation of IP Control and For-

TI
M

E

HIERARCHY LEVELS

MULTIPOINT DIFFSERV (NORMALIZED TO 1000 NODES)

Figure 13 Total HIGCS compute time for diffserv 
 deployment

0

10000

20000

30000

40000

50000

60000

SOLICITATION (STDDEV) IN GT-ITM TOPOLOGY
DISSEMINATION (STDDEV) IN GT-ITM TOPOLOGY
SOLICITATION IN TREE TOPOLOGY
DISSEMINATION IN TREE TOPOLOGY

2 3 4 5 6 7

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 HAAS, DROZ, AND STILLER 163



warding, IETF draft �draft-ietf-forces-requirements-05.txt�
(June 2002).

9. N. Greene, M. Ramalho, and B. Rosen, Media Gateway Con-
trol Protocol Architecture and Requirements, IETF RFC 2805
(April 2000); see http://www.ietf.org.

10. J. Biswas et al., Application Programming Interfaces for Net-
works, Technical Report, IEEE PIN1520 Working Group
(2000); see http://www.ieee-pin.org.

11. Software Working Group, Network Processing Forum, Fre-
mont, CA (2002), at www.npforum.org.

12. R. Haas, P. Droz, and B. Stiller, “Cost- and Quality-of-Service-
Aware Network-Service Deployment,” Proceedings of Ad-
vanced Internet Charging and QoS Technology (ICQT 2001),
Vienna, Austria (September 2001), pp. 166–171.

13. P. Grillo and S. Waldbusser, Host Resources MIB, IETF RFC
1514 (September 1993); see http://www.ietf.org.

14. F. Baker, K. Chan, and A. Smith, Management Information
Base for the Differentiated Services Architecture, Internet En-
gineering Task Force (IETF) Request for Comments (RFC)
3289 (May 2002); see http://www.ietf.org.

15. Private Network-Network Interface Specification Version 1.0 (P-
NNI V1.0), af-pnni-0055.000, the ATM Forum (March 1996);
see http://www.atmforum.com/pages/aboutatmtech/approved.
html.

16. R. Haas, P. Droz, and B. Stiller, “A Hierarchical Mechanism
for the Scalable Deployment of Services over Large Program-
mable and Heterogeneous Networks,” Proceedings of the
IEEE International Conference on Communications (ICC
2001), Helsinki, Finland (June 11–15, 2001), pp. 2074–2078.

17. Y. Chae, S. Merugu, E. Zegura, and S. Bhattacharjee, “Ex-
posing the Network: Support for Topology-Sensitive Appli-
cations,” Proceedings of OpenArch 2000—The 3rd IEEE Con-
ference on Open Architectures and Network Programming, Tel
Aviv, Israel (March 26–27, 2000).

18. R. Haas, P. Droz, and B. Stiller, “Distributed Service De-
ployment over Programmable Networks,” Proceedings of the
12th International Workshop on Distributed Systems: Opera-
tions & Management (DSOM’01), Nancy, France (October
2001), pp. 113–128.

19. A. Kumar and R. Haas, Design and Implementation of a Dis-
tributed-Agent-Based Simulation for Hierarchical Service-De-
ployment, Technical Report RZ 3378, IBM Corporation, Zur-
ich Research Laboratory, Rüschlikon, Switzerland (2001).

20. S. Ramanathan, “Multicast Tree Generation in Networks with
Asymmetric Links,” IEEE/ACM Transactions on Networking
4, No. 4, 558–568 (1996).

21. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to
Model an Internetwork,” Proceedings of INFOCOM 1996, Vol.
2 (March 1996), pp. 594–602.

22. D. E. Knuth, The Stanford GraphBase: A Platform for Com-
binatorial Computing, Addison-Wesley Publishing Co., Read-
ing, MA (1994).

Accepted for publication August 9, 2002.

Robert Haas IBM Research Division, Zurich Research Labora-
tory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland (electron-
ic mail: rha@zurich.ibm.com). Mr. Haas received the M.S. de-
gree in communication systems from the Swiss Federal Institute
of Technology (EPFL), Lausanne, and the Eurecom Institute,
Sophia-Antipolis, France, in 1996. He also received the D.E.A.
degree in distributed systems from the University of Nice Sophia-
Antipolis. He joined the IBM Thomas J. Watson Research Cen-
ter in 1996 as a research staff member, designing and prototyping
a layer-3 switch. In 1998 he joined the Zurich Research Labo-

ratory, and he is currently studying for a Ph.D. degree with the
Swiss Federal Institute of Technology (ETHZ), Zurich. His re-
search interests include network protocols and architecture, spe-
cifically auto-configurable and programmable networks.

Patrick Droz IBM Research Division, Zurich Research Labora-
tory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland (electron-
ic mail: dro@zurich.ibm.com). Dr. Droz received an M.S. degree
in computer science from the Swiss Federal Institute of Tech-
nology (ETHZ), Zurich, in 1992. He then joined the Zurich Re-
search Laboratory and worked in the ATM Networking Group
on the design and implementation of the ATM control point for
the 8260 campus backbone hub, and completed his Ph.D. degree
on “Traffic Estimation and Resource Allocation in ATM Net-
works” in 1996. He is now manager of the Network Processor
Software group. He is cochair of the IETF ForCES working group.
His current research activities focus on software enablement for
network processors.

Burkhard Stiller Information Systems Laboratory IIS, University
of Federal Armed Forces Munich, D-85579 Neubiberg, Germany,
and also Computer Engineering and Networks Laboratory TIK,
ETH Zurich, CH-8092 Zurich, Switzerland (electronic mail:
stiller@informatik.unibw-muenchen.de). Prof. Dr. Stiller received
an M.S. degree in computer science and a Ph.D. degree from the
University of Karlsruhe, Germany, in 1990 and 1994, respectively.
He worked there as a research assistant at the Institute of Tele-
matics until 1995, and was a visiting scientist at the University of
California, Irvine, California, in 1992, and at the University of
Cambridge, Computer Laboratory, in the United Kingdom in
1994/1995 under a European Community Research Fellowship.
From 1995 until 1999 he was with the Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technol-
ogy (ETHZ), Zurich, as a research associate and lecturer for mul-
timedia communications. Since August 1999 he has been an as-
sistant professor for communication systems at ETHZ. In
addition, he was appointed full professor for computer science
at the University of Federal Armed Forces, Munich, Germany,
in April 2002.

HAAS, DROZ, AND STILLER IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003164


