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Although the goal of autonomic computing is
to make systems that work continuously,
robustly, and simply, no one imagines that
people can be excluded entirely. Whether it is
end users getting their jobs done by
interacting with autonomic systems or system
administrators maintaining, monitoring, and
debugging large-scale systems with
autonomic components, humans will always
be part of the computational process. As
autonomic systems become part of the
computing infrastructure, new demands will
be placed on all users. How do users
understand what autonomic systems are
trying to do? How should systems portray
themselves to users? How can we design the
experience of autonomic computing to
amplify user capabilities? This paper presents
an analysis of the user experience challenges
of autonomic computing and discusses
design requirements for user interaction. Our
main point is that autonomic computing
makes effective design of the user experience
even more challenging and critical than it is
now. The reason is that autonomic actions
taken by the system must be understandable
by the user and capable of review, revision,
and alteration. Because such actions are
often made autonomously, a heavy burden is
placed on the ability of the system to explain
what it is doing and why.

Autonomic computing systems manage themselves,
taking self-directed action when deemed appropri-

ate and making choices about what needs to be done
and how exactly to do it. Choices are made and ac-
tions are taken in the hope of reducing overall sys-
tem complexity and cost. Yet, this idea of autonomic
computing is not entirely new or surprising. For in-
stance, computer systems have been managing their
resource pools for years: memory is allocated and
freed on a regular basis without human intervention,
program components are brought into service and
taken out of service when appropriate, memory is
monitored for errors and corrected on-the-fly deep
within random access memory, and communication
channels are monitored for mistakes, which are au-
tomatically corrected when they arise. Nevertheless,
computing systems are now so large and complex that
moment-by-moment human management is often
the dominant cost.1,2 There is a need for computing
systems to take care of themselves at a higher level,
eliminating much of what is done today by human
monitoring, maintenance, and control.

The key analogy of autonomic computing is that of
the autonomic nervous system, which takes care of
many low-level functions in animals. For example,
pupils dilate, stomachs balance enzyme and acid lev-
els, and body posture and balance are maintained
under a wide variety of conditions. Although humans
are sometimes aware of the functioning of the au-
tonomic nervous system, autonomic functions are,
for the most part, unconscious and self-regulating.
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Autonomic body functions are implemented by a
mostly separate system of nerves—the sympathetic
and parasympathetic nerves, associated ganglia, and
a few others—a system that has been refined and
debugged by evolution. Behaviors created by the au-
tonomic nervous system are primarily direct re-
sponses to internally and externally sensed environ-
mental conditions. Breathing and heart rate are
modulated by levels of carbon dioxide and other
chemical signals in the blood. The “fight-or-flight”
response is a rapid, coordinated release of hormones
to prepare the body for sudden immediate action re-
quired in response to a perceived threat.

Although the autonomic nervous system is finely
honed and wonderfully responsive, it has become
what it is in response to evolutionary pressures. In
many ways, it is a system that best fits hunter-gath-
erers on an African savanna. The fight-or-flight re-
sponse, so useful when confronted with an imme-
diate threat requiring rapid physical response, is
often inappropriate in the modern world. As humans,
we suffer from constant pulls on the chain of our au-
tonomic nervous system—stressors in our environ-
ment invoke this system in ways that end up causing
stress-related disorders. Rather than constantly con-
fronting relatively short-term physical threats, mod-
ern life calls for more calm, measured responses over
a long period, such as those required when sitting
before a computer screen, while driving a car, per-
forming difficult surgery, or awaiting the results of
a grant review.3,4 Yet given extended periods of
stress, the autonomic nervous system interacts with
other systems, both internal and external, to produce
less than optimal results. Of course, the autonomic
nervous system is merely a metaphor, suggesting so-
phisticated self-managing and self-regulating sys-
tems, rather than a biologically plausible guide for
design. But if we are not careful in developing au-
tonomic computer systems, we might design our-
selves into the same fate: self-regulating systems that
suffer from unintended and unforeseen interactions
that lead to undesirable results. In particular, we fo-
cus here on the human-computer interaction aspects
of this new kind of system, or the user experience
of autonomic computing.

In what follows, we tell our story in four parts. First,
we consider how users might view autonomic sys-
tems, arguing that as systems become more auto-
matic, they often become less understandable. Sec-
ond, we describe autonomic computing from the
perspective of the system, arguing that a three-layer
model describes nearly all autonomic systems. Third,

we examine several existing systems that have au-
tonomic properties, and we learn some lessons about
what works and does not work from the user’s per-
spective. Finally, based on this analysis, we discuss
several challenges that will be faced by autonomic
system designers.

The user view of autonomic computing:
Ghosts in the machine

When systems manage their own very high-level
tasks, their behaviors and the interaction of their be-
haviors might be unpredictable and inscrutable, com-
plicated, and hidden from view. From a user’s per-
spective, an autonomic system might seem to have
“magical” properties, where things happen without
apparent or determinate causes. The basic issue for
users of autonomic systems will be understandabil-
ity, which depends on the complexity of the system
and the user’s trust that the system will behave in
the way it has behaved previously. Complexity re-
sults from the interactions of a variety of systems and
unexpected behaviors. Trust reflects the relationship
between user and computer, the history the two
share, what the user knows about the ability of the
system to control things, what the user has seen the
system do, and how well the system has explained
its actions and decisions, among others.

Human-computer interaction is a kind of “joint ac-
tivity,” just as human-human conversation is a shared
activity between participants in a conversation.5 To
accomplish some computational task, a person works
with a computer, each side—human and machine—
contributing something to the process and over time
building up a shared understanding or common
ground. There is recent evidence that when persons
interact with computers at higher and higher levels
(e.g., verbally), the persons assume “human” sorts
of common ground at the start.6,7 If this expectation
is not met—and yet the computer seems to be a high-
level participant in some joint activity—it might well
seem as though there is a “ghost in the machine,”
one that users must understand to be effective par-
ticipants themselves. Thus, being “magical” is what
is just out of reach of understanding.

The phrase “ghost in the machine” comes from
Ryle,8 who pejoratively described the Cartesian view
of mental states as the “ghost” that inhabits physical
brains, doing invisible work with perceivable conse-
quences. In fact, Ryle argued convincingly against
the Cartesian view of a mind-body dualism, show-
ing that the distinction between mind and body was
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based on a category-mistake, supposing that the mind
is the same kind of entity as the body or brain and
so must be explained in the same way. Ryle comes
to the view that minds are not like brains but, rather,
minds are simply what brains do, made of a constel-
lation of interacting abilities and skills. Now, Ryle

may further inspire us in the structure of our argu-
ment. If a modest goal of autonomic computing is
to eliminate common and time-consuming user tasks,
then computational processes can replace some user
tasks. If we take the supposition further, imagining
that the ultimate goal of autonomic computing is to
eliminate all user tasks, then it follows that user tasks
and computational processes are wholly interchange-
able; that is, what users do and what computers do
are relatively the same. Is this a reasonable conclu-
sion? We think not. Though it may be argued that
thought is a computational process and, therefore,
that user activities and computational activities
amount to the same kind of activity, from a human-
computer interaction perspective, it may also be ar-
gued that users and computers serve different pur-
poses: computers are tools that enable users to
accomplish certain jobs. In this case, user and com-
puter are different kinds of entities: controller and
controlled. Moreover, if we suppose that humans and
computers have different abilities—do different
things more or less easily than each other—then it
is appropriate to distribute the computational load
between users and computers. For instance, people
are good at many kinds of visual pattern recognition,
whereas computers are good at counting and cor-
relating. Given these different abilities, it might be
best to have a computational process analyze some
data and then display the data to users who can eas-
ily pick out patterns. This approach is the one taken
by work in data visualization. The bottom line is that
it makes sense to combine the processing of people
and machines to create a more effective overall com-
putation than can be done by either one alone.

Consider, for example, that disasters in domains with
tight safety and design guidelines, such as nuclear
reactors and aircraft, are blamed on human error

60 percent to 80 percent of the time.9 Although this
number seems high, many such “normal accidents”
actually stem from design flaws, specifically, failures
of communication in the human-computer joint sys-
tem. In retrospect, the flaws seem evident. But in
predicting failure cases, designers often deem fail-
ure probabilities too low or the need for rapid hu-
man intervention too unlikely to design for failure.
Nevertheless, it is well documented that humans
make all kinds of errors,10–13 including slips or lapses,
which are errors in execution (not doing what was
intended), and mistakes, which are errors in plan-
ning (choosing and executing the wrong course of
action). Automation irony is the observation that au-
tomation does not cure human error because design-
ers automate things that are easy to automate, leav-
ing the most complex and intractable problems for
people to solve.14 Though designers know that peo-
ple make mistakes, they often try to design systems
that reduce the need for human intervention. Con-
sequently, automation usually addresses the tasks
that can be easily automated, leaving only complex,
difficult, and rare tasks. In this way, automation re-
duces the chance for operators to obtain hands-on
experience; having been taken out of the loop, they
are no longer vigilant or completely aware of the cur-
rent operating context. Thus, ironically, automation
can decrease system transparency, increase system
complexity, and limit opportunities for human-sys-
tem interactions, all of which can make a system
harder for people to use and make it more likely that
they will make mistakes.11

From the user’s point of view, the fundamental is-
sue concerns how the overall behavior of the system
can be understood. Our approach is to design au-
tonomic behaviors not simply for the sake of the sys-
tem, but so that users can be effectively engaged in
a joint activity with the system.

View of autonomic computing by the
system: sense-model-act

As described in IBM’s vision statement about auto-
nomic computing, an autonomic system has the prop-
erties of self-management, self-healing, and self-op-
timization.15 What is the common thread throughout
these desiderata? In our view, an autonomic com-
puting system is one that (a) senses its operating envi-
ronment, (b) models its behavior in that environ-
ment, and (c) takes action to change the environment
or its behavior. It is important to the sense of au-
tonomy that the actions take place without human
intervention.

Ironically, automation can decrease
system transparency, increase system

complexity, and limit opportunities for
human-system interactions.
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Sensing. Autonomic systems must perceive what is
going on in the world and within the system. Often
sensing is purely programmatic, based on internally
represented measures of conditions such as buffer
pool size, number of currently running applications,
errors thrown by applications, and so on. But increas-
ingly, sensing for the user experience will involve de-
tecting what the user is doing: Is the user using an
input device; has the system been untouched for
some amount of time; is there a person in front of
the keyboard?

Model. The model represents the goals, environ-
ment, and behaviors of the system. These charac-
teristics can be fairly simple (such as the set-point
of a thermostat representing the ideal temperature
at which to activate the furnace), or a model can be
rich and complex (such as the SMART system of
DB2**, which adapts multiple database parameters
to achieve continuous high levels of performance).16

In all cases, the model is an explicit representation
of the ideal world state or condition that the auto-
nomic system uses to derive what action to take to
achieve the ideal. (Bear in mind that the computa-
tion on the model might well be embodied in a piece
of code that encapsulates the representation, rather
than a more symbol-processing style of explicit sym-
bol manipulation.)

Act. After the world is sensed and the model con-
sulted, actions are taken to modify the internal sys-
tem or the external world. Generally these are
straightforward tasks: back up a file, adjust a system
setting, adapt some property of the user interface.
But some actions can be long-lasting and complex:
restoring a system to a previous working version, or
automatically installing new software.

Simply put, an autonomic system senses the world
state, models what should be the ideal case, and acts
(or chooses to not act) to transform the world to what
the model says it should be. This is the most basic
of control paradigms, but one that when embedded
in a rich, complex environment creates a rich, com-
plex operating milieu for the human user to under-
stand. Autonomous action is taken by the system to
achieve some desired goal state, such as an optimized
database or a system running at the best throughput
levels. The goal, of course, is that it all just works,
that systems behave in the way we expect them to
behave. Yet someone must establish guidelines for
system behavior. Somehow, the system must know
the right thing to do at any time under widely vary-
ing conditions. For autonomic systems, establishing

the right and appropriate action to take is an inte-
gral part of enabling the user’s understanding of be-
havior.

Thus, a complete model of the system necessarily
includes the user. Ultimately, the computer systems
we build exist for some human-centered reason. Even
middleware services have users at the end of their
processing. And any reading of the literature on soft-
ware engineering assures us that software errors will
be with us for some time,17,18 suggesting that people
will, for the foreseeable future, be involved in the
use, care, maintenance, and repair of computer sys-
tems.

Autonomic action happens at different levels. Some
actions are visible in the user interface (UI), such as
a desktop display that periodically examines the desk-
top and reorganizes icons to “clean up their layout.”
Some are far less visible, such as a file transfer that
is interrupted by network connection loss, but that
resumes when next connected to the network. Rather
than trying to achieve just a single goal, an autonomic
system works to achieve many goals simultaneously,
at many different levels of user visibility and aware-
ness.

Note that simply making software better is not the
same as creating an autonomic computing system.
For example, it is well known in the software engi-
neering community that the simplicity and ease-of-
use of the Macintosh** operating system is superb.
A common user task such as “printing a file” is sig-
nificantly simpler from the Macintosh system than
from Linux** or Microsoft operating systems. There
is no magic involved: protocols for resource discov-
ery and the widespread implementation (on print-
ers) of the AppleTalk** network communication
standard and PostScript** standard on printers make
for effective printing. Despite the confusing welter
of drivers, complex network naming schemes, and
incompatibly implemented standards, Macintosh
owners can plug their machines into a network, and
printing simply works. Other kinds of systems expose
the confusion and complexity to the user, making
printing less automatic. Although laudable and use-
ful, the Macintosh approach to printing does not fall
under our definition of autonomic computing. It is
just good software engineering. In this paper, we fo-
cus on autonomic computing that takes place out of
the user’s sight—work that is automatically per-
formed, driven by an underlying model of the sys-
tem, not overtly directed by the user, and not con-
spicuous in its action.
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Autonomic lessons and analysis

Autonomic systems have existed in various guises for
some time. According to our sense-model-act par-
adigm, we can see that many basic operating system
functions are in fact autonomic systems. For instance,
dynamic memory allocation, with its sensing of frag-
mentation and model of maximizing contiguous
block size, can be thought of as a basic autonomic
subsystem. But autonomic systems often have a hu-
man-facing side that we have argued is a critical part
of the overall story. To make our argument concrete,
we now present six brief case studies, each with a set
of object lessons in the design of autonomic systems
from the user perspective.

Case 1—Importance of UI design. In July 1988, the
USS Vincennes was patrolling the restricted waters
of the Persian Gulf with the Aegis missile defense
system onboard. During an attack by several small
gunboats, the Vincennes was in a defensive posture,
with the ship making rapid turns and with troops on
active battle status. The effect of the maneuvers was
dramatic: “Books . . . and loose equipment went fly-
ing off desks. Desk and file drawers flew open. Many
of those on board had to grab for the nearest sup-
port to avoid being thrown to the deck . . . the sit-
uation aboard the Vincennes that day was one of con-
fusion and disorder.”19

In this chaos, the crew of the Vincennes interpreted
their Aegis display as signaling an attack by an in-
coming Iranian F-14 fighter. The operator—on the
basis of information displayed on the Aegis user in-
terface—believed that the fighter was rapidly de-
scending to prepare for an attack approach on the
ship. After ineffective efforts to communicate with
it on military voice channels, the Vincennes was au-
thorized to fire two missiles and remove the threat.
Sadly, the threat was misidentified, and IranAir
Flight 655 was destroyed with the loss of 259 lives.

In later analysis, Matt Jaffe, one of the designers of
the Aegis display interface, reported that the alti-
tude information was difficult to interpret correct-
ly.20 After all, Aegis, like many fire control systems,
is highly automatic. Threats are identified and tar-
gets selected and tracked. It is an autonomic system
with a sense-model-act architecture.

In this instance, the threatening aircraft altitude was
not shown on the main display, but required that the
operator request it, when it would be shown in a sub-
window with other ancillary data. And rather than

show a rate of altitude change (as is common in air-
craft displays), the altitude of the threat was shown
as a numeric display, requiring that the Aegis op-
erator do mental arithmetic to determine altitude
increase or decrease—difficult in normal circum-
stances, although clearly learnable. But under the
stress of battle it would be all too simple to make
an error in arithmetic, especially while the display
is rapidly changing. Thus, it would be simple to be-
lieve that the unknown incoming jet really was in an
attack flight pattern, and difficult to believe it was
not a hostile aircraft.

The Aegis system and display was designed for a de-
manding task: the rapid deployment of defensive ar-
mament in a battle situation. In this case, the un-
anticipated circumstance of a civilian airliner in a
war zone during a time of high stress led to a rapid
decision. Everything worked as planned, except for
the initial conditions, which were unanticipated in
all planning scenarios, and the difficulty of using the
Aegis interface, which lent itself to a predictable,
high-probability mistake (in cognitive load terms).

Lessons learned:

1. Autonomic applications need to support reliable
user assessments of system and world states to en-
sure proper operation in an unpredictable envi-
ronment.

2. Information needed to make an appraisal of the
situation must be displayed so the user can easily
find the data and make sense of the data.

3. User attention is a vital resource: autonomic sys-
tems need to model what to tell the user in par-
ticular situations. Just telling everything (or hid-
ing everything) is not a good solution.

Case 2—Visible autonomic interaction. The spell-
checking and automatic correction facility of the Mi-
crosoft Word** program for text processing can be
seen as an autonomic system. Running in real time,
the Word program checks each completed word as
entered, and subtly signals the user whether it is con-
sidered incorrect or not. In simple, obvious cases,
the word is automatically corrected. Behind the
scenes, the Word program senses the user’s comple-
tion of the word, and compares it against a model
of proper spelling. It then takes an action to mark
the word as valid (no mark) or incorrect and unguess-
able (a red, wavy underline) or, if the word is an “ob-
vious” misspelling, replace the word with a better
choice (one that fits the model of correct behavior).
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In practice, many people find this capability tremen-
dously useful. We tolerate the red underlining of
proper names and the occasional overcorrection of
certain words. In earlier systems, such as the Inter-
lisp-D DWIM (Do-What-I-Mean) system, correction
was not as graceful, requiring much user interven-
tion to prevent common spelling corrections from
mangling program code. In the main, because of the
degree of interventions needed to ensure proper op-
eration, people turned DWIM off. When people are
engaged in a rapid-fire, productive task such as writ-
ing with a text editor, distractions are extraordinar-
ily damaging to task performance.

Such disruptions still occur (just apparently below
a user’s annoyance level) when the corrector in a pro-
gram mistakenly “corrects” a word to something the
user did not desire. As an example, try typing the
word Hawai’i using the Word program. The apos-
trophe is present in the correct spelling, yet Word
insists on “correcting” the last “i” to be an upper-
case “I.” Practiced users know that control-Z will
undo the mistake of the spellchecker by undoing an
autonomic action.

By contrast with its spelling corrections, the Word
grammar checker does not receive quite as much uni-
versal acclaim. Grammar has a much richer, less con-
strained definition of “correct,” and there is a breadth
of opinion about what should be considered proper
usage. In our anecdotal evidence, far fewer people
use (or believe!) the recommendations of the gram-
mar checker, and it too, like DWIM, is often turned
off.

Lessons learned:

1. Carefully tune autonomic interactions for smooth
use, avoid interrupting a user’s primary tasks.

2. Allow users to back out of changes easily, includ-
ing autonomically driven actions.

3. Make actions visible whenever the actions are rel-
evant to user understanding of system behavior.
(But be aware of the cognitive load demands be-
ing placed on the user.)

4. Autonomic decisions to act must be correct (to
the user’s belief) in the vast majority of cases.

Case 3—Trust and latent errors. On January 31,
2000, Alaska Airlines flight 261 was flying an MD-83
airplane from Puerto Vallarta to San Francisco in
clear, smooth air when the plane became difficult to
control. After many minutes of valiantly trying to re-
gain control, the big plane suddenly inverted and

plunged into the sea just west of Los Angeles at 219
knots.

The horizontal stabilizer jackscrew—the main actua-
tor of a vital control surface—was later found to have
become stripped, with loose strips of metal detached
from the helix of the screw.

In the cockpit, the pilots experienced a rapid and
sudden loss of ability to control the attitude of the
aircraft. The plane rapidly made a transition from
normal to very erratic flight, becoming essentially un-
controllable in a matter of moments.

What happened? Part of the answer seems to lie in
a latent error—an error somewhere in the system that
does not become apparent until much later.13 In the
MD-83 there are control systems that compensate
for the gradual deterioration of some subsystems,
such as with normal wear on control surface drivers.
As their performance degrades, the compensation
mechanisms take over—in this case, silently—con-
tinuing to make the plane fly well and function nor-
mally.

A serious problem arises when the compensatory sys-
tems can exceed their ability to manage. When the
jackscrew mechanism went from difficult-to-manage
to uncontrollable, the compensators became irrel-
evant: nothing could drive the jackscrew, and the
plane spiraled out of control.21

The deeper issue for autonomic systems design is one
of trust and understanding. When errors occur, of-
ten they can be corrected autonomically. The sys-
tem can hold itself together by an accumulation of
dynamic compensations and small patches until a
critical event occurs and overwhelms the whole.

In many complex systems, errors need to be auto-
matically handled. Simply reporting all such errors
to the operator would overwhelm the humans with
additional tasks that need correction. “ . . . automat-
ing a process may reduce the chance of a human op-
erator doing the wrong thing, but such a change
merely shifts trust from one set of human beings to
another . . . ”22

Lessons learned:

1. We need to understand how compensation mech-
anisms might mask other problems, ones that
could become critical to overall systems perfor-
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mance. When should an autonomic system tell a
human that something is amiss?

2. More generally, how can we best design informa-
tion—revealing systems so the right information
is available and readily accessible (or even in-
trudes into consciousness)?

Case 4—Guessing user intent. You might think that
guessing a user’s intent would be a straightforward
task. After all, everything that can happen on a com-
puter system is right there, exposed for all to see. So
system builders try to anticipate the best and most
common uses of the tools they provide.

For instance, in Microsoft Windows** 2000, the file
browser attempts to adapt its behavior to what the
user wants to do. As the user makes the window
larger, the layout dynamically adapts itself to offer
more information as more space becomes available.
Unfortunately, if the user is trying to see the file mod-
ification dates, that is (by default) the fourth column.
When the window is small, the file preview area is
not visible. (See Figures 1 and 2.)

As Figure 1 shows, a standard file browser window
does not have enough space to show the file mod-
ification dates. If a task depends on knowing when

Figure 1 Standard file browser window in Windows 2000

Figure 2 A wider file browser window
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a file was modified, just making the window larger
to see those dates takes much longer than would be
expected.

Figure 2 shows that making the window wider (to
expose the file modification dates) causes the
browser to adaptively add a “file preview area” (the
window pane with colored artwork), which perversely
moves the file modification dates still farther off the
right edge. In this case the automatic adaptation is
making the user’s task harder by requiring still an-
other window enlargement. The point is not that this
adaptive window manager is wrong—it is a genuinely
useful feature. It is just not helpful in all cases, and
there is (currently) no way to understand that what
the user wants to really see are the file modification
dates. That level of detail and precision of under-
standing the user’s intent makes it a difficult prob-
lem.

In autonomic computing terms, the system is sens-
ing the user’s behavior, modeling what the right dis-
play should be to fit this kind of action, then acting
to modify the browser display.

Yet this kind of thing happens all the time in user
interfaces. As users know from wide-ranging expe-
rience, doing a “search” within a collection of texts
is straightforward: the user enters a string into a text
box and starts the search. But what does “search”
mean? It varies from application to application. In
the Eudora e-mail client, the default search is to find
the specified string anywhere it appears as a substring
in each e-mail message (including header content).
By contrast, “search” in the Lotus Notes e-mail cli-
ent means “find this string only as a separate token—
never as a substring of another, larger word.” Thus,
if it is necessary to find all messages from a colleague
with a long and difficult-to-remember name that con-
sists of 11 characters, merely remembering the
unique first five characters of his or her name will
not work. All 11 characters will have to be entered.
(For example, searching for “Czerw” in your e-mail
will not find any instances of mail from “Czerwin-
ski.”)

Lessons learned:

1. How does the user know what an action means?
Suggestion: better feedback about what is actu-
ally going on, done in a progressive disclosure
style.

2. Improve our systems ability to watch what a user

does and take reasonable action based on that be-
havior.

Case 5—Inscrutable systems. How often does a cur-
rent computer system do things that are apparently
inexplicable? Daily? Hourly? And this is without
highly autonomic systems. Users calling into a cor-
porate help desk frequently complain that the sys-
tem did something of its own accord. The callers
often have no idea why a particular behavior is sud-
denly made manifest, nor what they can do to change
its behavior. For example, “Why does my laptop
sometimes wake up at midnight and dial into the In-
ternet?” or “Why did it start and how do I stop it?”
When confronted with mysterious system behavior
at an end-user level, people most often call on an
expert, frequently someone local, to help understand
the problem and suggest a solution.

Autonomic systems might be similarly opaque: they
have the potential for making inscrutability intrac-
table. If there is no way to examine the history of a
system, then it becomes increasingly difficult for us
to learn what is going on and why.

Lessons learned:

1. Changes to systems should be recorded, especially
changes to system behavior that are not per-
formed by overt user action (e.g., by a wizard).

Case 6—Anticipating failure. RAID (redundant ar-
ray of independent disks) disk systems anticipate fail-
ures by distributing stored content over multiple in-
dependent disks with some redundancy. If a single
disk fails, it can be simply removed from the array
and replaced. The system then automatically corrects
the data and brings the new drive into the system by
correctly updating its contents, making the whole ar-
ray once again protected from failure.

Research into RAID systems suggested that as long
as there were standby spares on which to rebuild lost
data, RAID-5 would recover from bad drives, and so
they assured others. A system administrator re-
marked recently that every administrator he knew
had lost data on a RAID-5 system at one time in his
or her career, even though they had standby spare
disks.23 How could that be? In retrospect, the quoted
mean time to failure of disks assumes ideal temper-
ature and limited vibration. Surely, some RAID sys-
tems were exposed to higher temperatures and more
vibration than anticipated, and hence had failures
much more closely correlated than predicted. A sec-
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ond problem that occurs in RAID systems is oper-
ator removal of a good disk instead of the failed disk,
thereby inducing a second failure on top of the first
failure.19

Lessons learned:

1. When anticipating failure modes, we need to take
into account not just hardware and software fail-
ures, but also potentially incorrect human inter-
ventions.

2. RAID-5 is enough for faults we could anticipate
under nominal conditions. But wise engineering
practice should have recommended RAID-6 (tol-
erates up to two disk failures) to accommodate
the unanticipated faults in systems that were
working under real conditions. Design for real-
ity.

Challenges for user experience

An ideal autonomic system just takes care of itself,
sensing changes in the internal and external world
state, modeling those changes in terms of ideal sys-
tem behavior, and taking action accordingly. On the
joint activity view, system behavior must be under-
standable, or else users and systems cannot work to-
gether effectively. What are some potential design
guidelines for user experience? The lessons from our
case studies provide some suggestions.

Design for joint human-computer activity. It seems
clear that user interfaces must make autonomic ac-
tions visible (or at least easily accessible) to the user.
It is inevitable that at some point, a human will need
to understand what is going on in the system. Vis-
ible behaviors are reasonably straightforward, al-
though potentially complex. Invisible behaviors are
commonplace—one needs only to look at an auto-
mobile or jet aircraft to see that a great deal of sys-
tem management can happen automatically. The real
design issues arise when behavior varies from the ex-
pected. When the user wants to do something dif-
ferent, when errors arise, or when complex behav-
ior emerges, the user must take action, such as
describing a change or fixing an error. System build-
ers must take account of human cognitive and per-
ceptual abilities, incorporating a model of what users
need to know, when users need to know it, and how
best to portray information.

Design with human goals in mind. Users need to de-
scribe what the desired system behavior ought to be.
In many ways, autonomic computing adds one whole

new level of indirection. Users will have to describe
behaviors in terms of goals, rather than in terms of
actions; yet we know that people are especially poor
at describing goal states. Rarely does someone speak
of wanting a quarter-inch diameter hole; usually
someone says he or she needs to drill a quarter-inch
hole. Some systems have very natural goal descrip-
tion tools: an autopilot is programmed by specifying
destination, whereas flying by wire (a complex hu-

man autonomic activity) is naturally done through
the control stick and pedals of an aircraft. Whatever
the task and whatever the domain, goals must be de-
scribed in a simple manner that is understandable
to the user in terms the user understands.24

Design for limited sensing. A system might like to
do something to help, but is constrained by its abil-
ity to sense what is going on in the world. For in-
stance, we can imagine building an autonomic sys-
tem that automatically logs in the user when
presented with a log-in dialog box; however, this is
a huge security risk unless the person sitting in front
of the machine can be positively identified. Further,
unless the system can identify the source of the log-in
dialog (i.e., where are you logging in to?), the prob-
lem of figuring out which identifier and password to
use becomes difficult (and potentially a hassle, as
some log-in challenges give only a limited number
of attempts before locking the user out for some pe-
riod of time). More generally, sensing of the world
state (both external and internal system status) is not
a systemic goal. Although the keyboard of a com-
puter can be thought of as 70 (or more) touch sen-
sors, the activity of the person using the keyboard
is not sensed and represented as touch but rather as
a byte stream of characters.

Design for limited modeling. Misbehaviors also creep
into systems because the models they are based upon
have real limitations. What is worse, such models are
typically not aware of their boundary conditions.
Modeling is, by definition, an abstraction of the full
complexity of reality into a computationally tracta-
ble form. Although good, accurate, and predictive

System behavior must be
understandable, or users

and systems cannot work
together effectively.
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models can be built, rarely are they constructed with
a notion of appropriate use and context. What works
(and is predictive) in one environment, with one par-
ticular set of software, may not be applicable or use-
ful when that environment changes. And although
advances have been made in modeling user behav-
ior and user state, much remains to be done.

For instance, text gathered by monitoring user in-
teractions with the computer can be combined and
analyzed to produce a small list of keywords that
characterize the users’s working topic.25–27 In many
cases, text is gathered from user keyboard input, from
user e-mail, from Web pages read, and from files vis-
ited with editors. Keywords are derived from these
text sources by determining the frequency of the
words in the pooled text at a given time relative to
the frequency of the words overall. The keywords
are those words whose frequency is high in the cur-
rent set relative to their overall frequency. Collec-
tively, this forms a kind of model of the user’s work-
ing (operational) interests. This kind of model is
intrinsically limited in what it can capture and model
because of the relative lack of information about
what the user is actually doing. Of course, more com-
plex user models can be constructed from sensed
data, including statistical or probabilistic models,28–30

but models are always limited by their abstractions
and the modeling technology available at the time.
Autonomic systems design must take these limits into
account as much as any other factor.

Design for errors. There is one essential and deep
truth in computer science: errors will always be with
us. Errors arise from software failures, hardware fail-
ures and not incidentally from user-caused mis-
takes.10 When they occur, humans must understand
what is going on and be able to resolve the issue or
at least come up with a way to work around it. 18,31

The biggest question for autonomic systems will be
one of designing for those cases when errors hap-
pen and human intervention is needed, particularly
in systems that have grown so large and complex that
it could be that no one truly understands how the
entire system operates.

New research directions. Human-computer inter-
action must be present in autonomic computing de-
sign from its beginnings. Yet we see that the follow-
ing basic research questions remain:

1. How do people create an understanding of how
systems function? We know that relatively few
people read long, detailed manuals of operation.

How should systems present their ongoing state
and their moment-by-moment status? How do we
design for joint human-computer activity and for
the establishment of human-computer trust?

2. How do we know whether autonomic systems ac-
tually improve human use of computers? To de-
termine this, we need to quantify what humans
are actually doing when using computers to dis-
cover the impact of specific automated functions.
We might find, for instance, that automating pa-
rameter tuning to optimize system performance
provides only a small benefit to users compared
to the benefit of providing more informative er-
ror messages. But how can we measure user ac-
tivity? How can we determine the high-level tasks
human-computer systems are engaged in?

3. How should we notify users of problems or of nor-
mal system operation? We need to better under-
stand user notification and awareness of the sys-
tem model.

Conclusion

Our argument should be clear: Increasingly auto-
nomic computing systems require an ever greater at-
tention to the design of the user experience. Whereas
the goal of autonomic computing is to reduce the
total cost of ownership by reducing the number of
decisions the user must handle, the trade-off is to
potentially increase the amount of “magic” and in-
scrutable behavior in the system. This is particularly
true as systems grow ever more like composites of
many parts. Clear and simple decisions that can be
made by a system in isolation become difficult and
complex when embedded in a larger web of other
interacting systems.

Although having “ghosts in the machine” is prob-
ably a necessary precondition for the future growth
of computing systems, there is specific work to be
done on the critical path to autonomic computing
“nirvana.” We need to change our thinking about
the interaction between humans and systems to con-
sider the work underway as shared, joint activity be-
tween human and system. In particular, we must de-
velop (a) user attention management models to avoid
swamping users with system messages, (b) system in-
spectability for postfailure analysis, understanding,
and recovery, and (c) behavior-reporting mecha-
nisms that will allow users to understand what the
system is doing with a measure of trust and confi-
dence.

In summary, our main arguments are the following:
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● People cannot be removed from interacting with
computing systems for anything but the simplest,
most predictable of tasks. System tasks that op-
erate under well-understood principles (memory al-
location, buffer pool management, load balancing,
etc.), with accurate sensing and well-understood ac-
tions, are well suited for autonomic computing. Tasks
that rely intrinsically on user interaction, or crit-
ically depend on external world-state are often not
well suited for autonomic computing.

● Complex systems can seem like magic, especially
when they take action of their own volition. But
they need not seem like magic—understandabil-
ity depends on creating (or portraying) a model
of the system for the user and the creation of trust
that the system will behave in the way the user’s
mental model suggests.

● Humans must understand what is going on to be
effective participants in the joint activity of human-
computer interaction. To understand what is hap-
pening in the system, humans must be able to ob-
serve enough of the processes and interactions to
build up a trust of the system. As a consequence,
we must design autonomic systems so that their
processes are transparent, providing explanations
of their actions and running commentaries of their
internal states.

● Finally, humans must be able to communicate with
these systems in very high-level terms. With au-
tonomic systems that can take care of so much,
people will begin expecting them to be more hu-
man-like in capabilities and responses, dragging
social psychology and an entirely new raft of hu-
man-computer interaction issues into the mix.
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