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Statically tuned computing systems may
perform poorly when running time-varying
workloads. Current work on autonomic tuning
largely involves reactive autonomicity, based
on feedback control. This paper identifies a
new way of thinking about autonomic tuning,
that is, predictive autonomicity, based on
feedforward control. A general method, called
Clockwork, for constructing predictive
autonomic systems is proposed. The method
is based on statistical modeling, tracking, and
forecasting techniques borrowed from
econometrics. Systems employing the method
detect and subsequently forecast cyclic
variations in load, estimate the impact on
future performance, and use these data to
self-tune, dynamically, in anticipation of need.
The paper describes a prototype network-
attached storage system that was built using
Clockwork, demonstrating the feasibility of
the method, and presents key performance
measurements of the prototype,
demonstrating the practicality of the methods.

Large computing systems, especially those running
time-varying workloads, are difficult to keep tuned.
Dozens of interacting parameters may need to be
understood and adjusted. Even if a system is tuned
well at one point, because of changing workloads it
may end up being poorly tuned at some other point.
Badly tuned systems not only perform poorly, they
also waste resources and frustrate users.

There is substantial and growing interest in auto-
nomic systems, that is, systems that dynamically self-

regulate. A key aspect of self-regulation is self-tun-
ing. Current work on autonomic tuning is only slightly
more advanced than static tuning; largely, such work
revolves around primitive notions of reactive auto-
nomicity, based on feedback control. Reactive au-
tonomic systems reconfigure on the basis of instan-
taneous need or, at best, on the basis of short-term
historical measurements. As with any techniques in-
volving feedback control, reactive autonomic systems
carry with them the well-known problems of poten-
tial instability or slow response to change.

In the next section of this paper, we propose a new
approach to the problem. We introduce the concept
of predictive autonomicity, based on feedforward con-
trol. We outline a general method, which we call
Clockwork, for constructing predictive autonomically
tuned systems. Using statistical modeling, tracking,
and forecasting techniques borrowed from econo-
metrics, systems employing the Clockwork method
detect and forecast cyclic variations in their load, es-
timate the impact of the variations on future per-
formance, and use these data to reconfigure them-
selves, in anticipation of need.

The third section describes a prototype, scalable net-
work attached storage (NAS) system that we built us-
ing Clockwork, demonstrating the feasibility of the
method. A network attached store is a network file
server that processes requests sent to it using a pro-
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tocol such as Network File System (NFS),1 over a me-
dium such as Ethernet, by one or more clients. NFS,
layered in turn on the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite, uses a re-
mote procedure call architecture, in which every re-
quest from a client to a server engenders a response
from the server to the client. Typical NFS requests
are to create a file, to write data to a file, to read
data from a file, and to delete a file. A response in-
dicates whether the corresponding request was pro-
cessed without error and, if so, contains request-spe-
cific data, for example, file contents from a read.

An NAS acts as a central repository for data shared
among clients. With an NAS, clients need not each
store the data, reducing cost. Clients need not co-
ordinate updates to the data, simplifying their work-
ings. Data management may be centralized, sim-
plifying management and reducing costs. Small
computers may be deployed widely; alternatively,
large systems may be scaled further. It is desirable
to have a powerful NAS to support more clients or
to process more work from the same number of cli-
ents. For this paper, we prototyped one with a scal-
able architecture, integrating multiple stores into a
single, virtual NAS. Requests are sent to the virtual
NAS and are spread among the individual stores. The
advantage of the architecture is that systems of var-
ious capabilities, including a very powerful system,
may be built from relatively inexpensive components.
The disadvantage is that the overall performance of
a system will be only as good as that of its worst per-

forming store. Although a virtual NAS could be mas-
sively overprovisioned to minimize the effect of one
poorly performing store, that would reduce the ad-
vantage of the architecture. Alternatively, autonomic
tuning could be used to balance load among the
stores. We chose the latter approach.

Key performance measurements of the NAS proto-
type, demonstrating the practicality of the method,
are presented in the fourth section. Finally, in the
fifth section, directions for future work are suggested.

The Clockwork method

Clockwork is a general method, analogous to those
already in wide industrial use by electric power util-
ities and retail chains, for example. It enables a pre-
dictive autonomic system to be implemented follow-
ing five simple steps, summarized in Table 1. The
first two are configuration steps. They establish a sys-
tem objective and a means to track it with load. The
remaining three are operational steps. They auto-
matically and continually track, forecast, and con-
trol the system.

A system that cannot be measured cannot be man-
aged. Clockwork first establishes a simple, quanti-
fiable objective, comprising a performance objective
and a confidence level. For an electric utility, an ap-
propriate performance objective would be to meet
the instantaneous demand for electricity reliably. A
potential performance objective for a retail chain

Table 1 The Clockwork method

Step Electric Utility Retail Chain NAS Plex

1. Establish system
objective

Reliability
(by rate class)

In-stock ratio
(by sales class)

Response time
(by file or client class)

2. Establish measure of
demand

Electricity, as it is being
consumed

Sales, as they are being
made

Requests, as they are
being processed

3. Track objective with
demand

Reliability, as electricity
is being consumed

In-stock ratio, as items
are being sold

Response time, as requests
are being processed

Generator spin-up
times

Product distribution
times

—

Instantaneous capacity — —

4. Forecast demand Use autoregressive time series analysis

5. Adjust controllable
parameters

Buy or sell electricity or
options to buy or sell

Issue store orders to
distribution centers

Assign files to stores

Bring generators on or
off line

Issue purchase orders to
vendors

Copy or move files
between stores

Activate or deactivate
spinning reserve

Liquidate excess
inventory

Bring stores on or off line
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would be to achieve a certain in-stock ratio, a mea-
sure of how much product is in stock at a given time.
For an NAS, achieving a certain average response
time would be a suitable performance objective. The
confidence level measures how closely the system
must meet its performance objective. For example,
the electric utility might need to meet demand
99.99999 percent of the time, the retail chain might
need to achieve the in-stock ratio 90 percent of the
time, and the NAS might need to achieve the aver-
age response time 66 percent of the time.

Often, objectives are subclassed. Some electric util-
ity customers may be willing to trade decreased re-
liability for lower cost, some retail chains may re-
quire tighter controls on in-stock ratios for more
profitable products, and some NAS clients may be
willing to trade increased response time for lower
cost. Although for brevity, the present discussion ig-
nores subclassed objectives, Clockwork can handle
them.

Clockwork, in the second step, establishes a simple,
quantifiable measure of demand. An appropriate
measure for an electric utility would be electricity
being consumed; for a retail chain it would be sales
being made; and for an NAS, it would be requests
being processed.

Tracking the objective (and its variance) in relation
to demand is the third step. An electric utility would
track how reliably it met electricity demand, the time
it took (or would take) for generators to be spun-
up, and instantaneous capacity, as electricity was be-
ing consumed; a retail chain would track product in-
stock ratios and product distribution times, as sales
were being made; and an NAS would track response
time, as requests were being processed.

In the fourth step, demand is forecast, along with
uncertainty, using autoregressive time series proce-
dures. This technique projects future values of a vari-
able based on the history of that variable alone, which
simplifies forecasting considerably. A key contribu-
tion of Clockwork is that the same procedure would
be used by the utility, the retail chain, and the NAS.

Fifth and finally, the controllable parameters of the
system are adjusted to meet the objective. In antic-
ipation of forecast demand: the electric utility would
bring its generators on or off line, would buy or sell
electricity or options to do the same, or would ac-
tivate or deactivate its spinning reserve; the retail
chain would issue store orders to its distribution cen-

ters, would issue purchase orders to its vendors, or
would liquidate its excess inventory; and the NAS
would reassign files to stores, would replicate files
among or migrate files between stores, or would bring
stores on or off line.

The prototype

In this section, we describe how we used Clockwork
to prototype a scalable, autonomically tuned NAS.
Our purpose in building the prototype was to de-
termine whether the method is feasible and prac-
ticable, rather than to achieve optimal performance.
Nevertheless, as the measurements in the next sec-
tion show, the prototype performs well. For proof
of concept, and because we were able to operate in
a shared-disk environment, we implemented file re-
assignment, but not file replication (copying a file to
multiple stores) or migration (moving a file between
stores). Had we been faced with a serially shared disk
or a shared-nothing environment, we would have had
to have implemented replication and migration.

The prototype comprises three main components:
a set of stores, or storage servers, that process re-
quests for files kept in a cluster file system, a request
router that spreads requests among the stores, and
an autonomic control program that directs the
router, following the Clockwork method. We call the
overall system an NAS plex, as it integrates multiple,
otherwise independent systems. The prototype NAS
plex is depicted within the dashed-line area of Fig-
ure 1. It includes four stores, a router, an internal
network, and shared disks. Two clients are connected
to the plex via an external network.

The clients, the router, and the stores are comput-
ers with an Intel architecture. With the exception of
the router, all computers run the Linux** operating
system. The router runs a real-time operating sys-
tem to minimize latency and runs the Clockwork con-
trol program. The stores share files via the General
Parallel File System (GPFS)2 cluster file system, which
manages fibre channel disks. The prototype is inter-
connected via Fast Ethernet. Clients access files via
NFSv3/UDP (Network File System version 3/User
Datagram Protocol). Although the clients are con-
figured identically, the stores deliberately are not,
so that the prototype is inherently unbalanced (see
below). The stores contain processors of various
speeds. Some stores have one processor, whereas
others have two. Stores have different amounts of
memory. We used GPFS2 because it is a robust IBM
product that supports the hardware and software
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used in the prototype.3 GPFS implements a scalable,
shared disk architecture. Although the prototype
used GPFS, the IBM Storage Tank*4 storage area net-
work (SAN) file system was a viable alternative.5

The prototype works as follows. A client sends a re-
quest to the router, which forwards it to a store for
processing. Any store may access any file, since files
are managed by a cluster file system, which coordi-
nates accesses to them. Which store will process a
given request is a decision made by Clockwork based
on the type of the request, the file to which it refers,
and the state of Clockwork. The decision process is
described in more detail below. The architecture en-
ables the load of the NAS plex to be shared among
its stores.6 Load balancing, or intelligently sharing
load, has two main benefits. First, as with any mod-
ern computer system, performance is nonlinear. Past
a saturation point, a linear increase in load causes
a much greater increase in response time. Load bal-
ancing can keep the plex operating within a linear
performance region. Second, assigning related re-
quests to the same store can take advantage of data
caching, thereby keeping the number of I/Os, and the
amount of computation, low.

For this architecture, load could be balanced stat-
ically, that is, files could be assigned to stores fol-
lowing a fixed schedule, or it could be balanced
dynamically, with file assignment changing over time.
In reality, static assignment would prove a poor
choice. Requests arriving clustered in time tend to
be related, load tends to include multiple cyclical
components, and load tends to vary substantially over
time. The prototype is dynamically balanced using
feedforward control.

The router is NFS request- and response-aware. It
analyzes and routes requests and responses at net-
work speeds. The router records statistics on a per-
file, per-request basis, as well as on a per-store, per-
response basis. It forwards requests to appropriate
stores using a default rule and an exception set. The
default rule—the prototype uses a simple hash of
the NFS file handle (or file identifier) to choose a
store—has several characteristics. It spreads load
more or less uniformly among the stores. It repeat-
ably assigns a given file to the same store. It is sim-
ple to compute. Given these characteristics, the rule
takes advantage of store data (and cluster file sys-
tem token) caching; however, it assigns files to stores
statically, ignoring store load and file heat, that is,
the extent to which the file contributes to load.

Using the statistical data gathered by the router, the
Clockwork control program periodically: tracks and
forecasts store response time at a given load; tracks
and projects per-file heat; estimates the effect on re-
sponse time of reassigning hot files to stores; decides
which files to reassign, and updates the exception
set of the router to reassign the files. On the assump-
tion that there are cyclical components to access pat-
terns, the projections and assignments of Clockwork
are refined over time, as its statistical database grows.
Clockwork detects and adjusts rapidly to any fun-
damental changes in access patterns.

Clockwork projects the expected load of each file
using well-known time series analysis methods bor-
rowed from econometrics. In particular, Clockwork
models load using an Autoregressive Integrated
Moving Average (ARIMA) model7 from which it ex-
tracts cyclical components. Clockwork applies
Geweke’s Spectral Forecasting procedure8 to the
components to forecast future load from present
load. In essence, the number of requests per period
is viewed as an infinite moving average, a Fourier
transform of the time series is estimated, a corre-
sponding time-domain model is computed, and the
model is used to forecast load. As the same model

Figure 1 The prototype NAS plex, as built
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applies to all such series, the procedure can be au-
tomated.

Using the load forecast, Clockwork determines which
stores, if any, are likely to be overloaded in the next
period. It iteratively proposes a reassignment of files
from overloaded to underloaded stores. Files are
proposed for reassignment in descending order of
heat. Iteration terminates when the performance ob-
jective of the plex is achieved or, if the objective can-
not be achieved because of plex overload, when the
load is balanced.

Given a proposed assignment, Clockwork estimates
the response time of a store using Hannan’s Effi-
cient Estimator,9 a spectral procedure for estimat-
ing generalized least squares. This procedure is ap-
plicable assuming that all factors taken together,
other than the number of requests processed in a

period, follow a stationary ARIMA process. In prac-
tice, this assumption has proven reasonable. Because
the same model applies to all data series, the pro-
cedure again can be automated.

Rather than use a default rule and iteratively pro-
posing reassignment of a few hot files, the prototype
could have computed an optimal assignment follow-
ing a stochastic optimization model, with Benders
decomposition and Lagrangian relaxation. See
Dentcheva and Romisch10 for examples of such com-
putations. The model is completely specified, both
from a mathematical standpoint and in terms of sta-
tistical estimation procedures. The procedures re-
quire historical data on load and response time,
which the router gathers and records. In reality, such
a computation would be highly complex and slow.
Given the existence of a simple default rule, Clock-
work has an adequate starting point from which to

Figure 2 Default distribution of NFS requests, by store
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iteratively apply incremental changes, which quickly
leads to good results. There is no need to apply a
more complex procedure.

Measured results

There are no generally accepted, long-running NFS
traces suitable for evaluating the prototype. For pre-
dictive systems, synthetic workloads are inappropri-
ate, because they invariably contain artificial cycles
or are highly random, leading either to perfect re-
sults or perfectly useless ones. Lacking real work-
loads, yet desiring independently reproducible re-
sults, we generated NFS workloads from four
essentially different HyperText Transfer Protocol
(HTTP) traces we downloaded from HitBox.11 We
chose those from a “fantasy” soccer site on which
users create virtual teams with which they play vir-
tual matches, a memorabilia site on which users trade
sports and other memorabilia, a name definition site,
which expectant parents use to choose a name for
their baby, and an MP3 download site.

We used Fstress,12 an NFS benchmarking tool, to gen-
erate the actual workloads from the HTTP traces. For
each, we constructed an appropriate set of files, num-
bering over 1100, total. We determined a base load,
at which all four workloads were issuing requests at
a heavy rate, and under which the plex was stressed;
that is, its response time was changing nonlinearly
as a function of load. We evaluated the system with
the workloads running simultaneously and indepen-
dently. First, we ran the workloads with file reassign-
ment disabled, and again with it enabled. The re-
sults given below correspond to a representative 24
hours of the trace, starting 622 hours into it.13 Each
period corresponds to one hour of the trace.

Figure 2 shows the distribution of NFS requests by
store following the default rule. The rule tends to
spread requests evenly among the stores. Figure 3
shows the measured average response time, by store,
without file reassignment. Clearly, the stores perform
very differently. Figure 4 shows a forecast average
response time, by store. In a comparison of Figures
3 and 4, the projections seem acceptably close. No-
tably, Clockwork detects the differences among the
stores and projects them forward.

Next, we reran the traces through the prototype with
the file reassignment of Clockwork enabled, and with
an appropriate objective: to achieve a 5 ms or better
average response time at a 66 percent confidence
level. The goal was chosen to demonstrate the prac-

Figure 3 Measured average response time by store,  
 without reassignment
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Figure 4 Forecast average response time by store,  
 without reassignment
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ticality of the method, not to achieve the best pos-
sible results. Other goals could have been chosen that
also would have demonstrated practicality, for ex-
ample, reducing average response time by 10 per-
cent. With the chosen goal, files were reassigned in
11 of the 24 periods. In 10 periods, files were reas-
signed from Store 2; in three periods, files were re-
assigned from Store 3; and in two periods, files were
reassigned from both Stores 2 and 3. In all cases, the
files were reassigned to Store 4, the best performing
store.

Figure 5 shows the effect of the reassignments on
response time. The graphs show the maximum of the
average per-store response times, where base indi-
cates the measured times without reassignment, and
adjusted indicates the times with reassignment. The
prototype achieved the performance component of
its goal, or came very close, in nearly all periods. It
missed by more than the calibration error only in pe-
riods 637 and 639. Given the confidence level cho-
sen, it achieved its overall goal. It is notable that,
during Periods 639 and 643, including one of the pe-
riods in which it missed its performance goal, the
prototype shaved the maximum average response
time of the plex nearly in half.

Future work

We are continuing this work in several areas. We
have extended the router to translate incoming
NFS/TCP connections to NFS/UDP inside the plex to
balance a connection-oriented NAS protocol. We
have projected per-file workloads multiple periods
out, with encouraging results. Given the multiperiod
results, we believe it will be possible to balance load
by file replication and migration, extending the
method to serially shared-disk and shared-nothing
environments.

Re-examining Figure 5, we see that the prototype
incorrectly forecast an overload in periods 624 and
641, which led to slightly worse response times. Al-
though we argue against feedback control as the sole
method for autonomic tuning, integrating some form
of feedback control with Clockwork may improve the
method. In the noted periods, a real-time monitor
could have detected that actual load was deviating
from the forecast, and might temporarily have over-
ridden, or perhaps canceled, reassignment. It is un-
clear what steps should be taken in general. See
Wang and Morris14 for a comprehensive study of
load monitoring and balancing techniques, includ-

ing some that may be appropriate for integration with
Clockwork.

Conclusions

In this paper, we proposed a new approach to au-
tonomic systems. We introduced the concept of a
predictive autonomic system, which regulates its be-
havior in anticipation of need, using statistical mod-
eling, tracking, and forecasting procedures. We pro-
posed the Clockwork method for autonomic systems.
We demonstrated the feasibility of the method, us-
ing it to prototype a self-tuning NAS plex. We pre-
sented measurements of the prototype under sub-
stantial workloads. The measurements demonstrate
the practicality of the method. Finally, we discussed
future work.

*Trademark or registered trademark of International Business
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