Competitive algorithms
for the dynamic
selection of component
implementations

As component-based development matures,
more and more applications are built by
integrating multiple distributed components.
We suggest providing components with
multiple implementations, each optimized for
a particular workload, and augmenting the
component run-time environment with a
mechanism for switching between
implementations. This mechanism monitors
the types of requests the component is
receiving, and adaptively switches
implementations for optimal application
performance. Achieving this optimal
performance depends on making good
choices as to when and how to switch
implementations, a problem we refer to as the
adaptive component problem. We first
formalize the generic problem and then
provide an algorithm, named Delta, for
switching implementations in the special case
when the component has exactly two
implementations. We show that this algorithm
is (3 + epsilon)-competitive with respect to
the optimal algorithm, where epsilon is a
small fraction. We establish a 3-competitive
lower bound for the problem, which implies
that Delta is close to optimal. We describe the
application of these results to the distributed
pub/sub problem, and the data structure
selection problem.

Many applications are being built by integrating mul-
tiple distributed components in order to implement
a particular business function. The increasing pop-
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ularity of component programming models, such as
JavaBeans** ! and Web services, ? is predicted to fur-
ther accelerate the adoption of component-based
development (CBD).

An impediment to the adoption of CBD, however, is
the inability of the “user” of the components to op-
timize their performance for use in a particular so-
lution. Web services, with its premise of loosely cou-
pled distributed components working together,
makes this issue even more acute, as the develop-
ment, deployment, and maintenance of components
making up a single solution may come from differ-
ent vendors and run in very different system envi-
ronments.

In this paper, we propose a generic framework that
addresses this issue. In our formulation, an adaptive
component has multiple implementations, each op-
timized for a particular request workload. A mech-
anism for switching between implementations is also
provided. The underlying system monitors the cur-
rent request workload for a given component and
adaptively switches to the implementation best suited
to this workload. By shifting more of the performance
optimization burden to the component, performance
tuning is simplified and the resulting overall system
performance is likely to be improved. Additionally,
by having the system monitor the request workload
and dynamically switch implementations based upon
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current usage patterns, the component can better ac-
commodate changing request patterns.

Because switching between implementations can in-
cur a heavy cost, good algorithms are needed for de-
termining, at run time, when to switch between im-
plementations. We call this the adaptive component
problem. This paper describes an algorithm, named
Delta, for the case when there are exactly two im-
plementations. We show that Delta is (3 + €)-com-
petitive. This algorithm is designed for the case when
the cost of switching between implementations is very
large compared to the cost of processing a single re-
quest. In this case, the value of € is guaranteed to
be very small. Because we also show a 3-competitive
lower bound, this algorithm is close to optimal.

We show the applicability of this framework to two
problems. The first is an adaptive version of the dis-
tributed pub/sub problem, where multiple loosely
coupled components are reading and writing from
a shared data repository. A component can either
read and write to this shared repository or create a
local data cache for fast access. The second exam-
ple is an adaptive version of the data structure selec-
tion problem, where an application must choose the
appropriate internal data structure to use in order
to provide the quickest answer to particular queries.
We show that both of these are instances of the adap-
tive component problem and that Delta can be used
to decide when to switch implementations, thus op-
timizing run-time performance. This illustrates the
applicability of our framework to a wide range of
problems.

Here is an outline for the rest of this paper. The next
section “The adaptive component problem” is fol-
lowed by “The Delta algorithm.” Then, the section
“Examples” contains our two case studies. In the sec-
tion “Competitiveness” we prove that Delta is (3 +
€)-competitive, and in the section “Lower bounds,”
we establish a 3-competitive lower bound for this
problem. The section “Related work™ is followed by
“Summary and open issues.”

The adaptive component problem

We propose a model where the component devel-
oper implements multiple versions of a component,
each optimized for a specific request workload. The
developer also writes the code that controls the
switching between implementations at run time. For
each request type that the component can service,
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and for each implementation of that component, we
determine the cost for processing a request of that
type. We similarly determine the cost of switching
between any two implementations. These costs may
be specified by the component developer or may be
derived empirically (e.g., by profiling). An on-line
algorithm will monitor request workloads at run time
and determine when to switch implementations. The
rest of this section formalizes these concepts and de-
fines an optimality criterion for determining when
to switch implementations.

Let Comp be an adaptive component, and let Reg-
Types = {typ;} be the set of request types that Comp
can process. Let Impls = {impl;} be the set of im-
plementations of Comp, with impl, being the default
implementation. Let Cost:ReqTypes X Impls — R
be the function that gives the cost for Comp to pro-
cess a request of a given type using a particular im-
plementation (R denotes the set of reals). Let
SwitchCost : Impls X Impls — R be the function that
determines the cost in Comp of switching from one im-
plementation to another. SwitchCost(impl;,impl;) =
o iff Comp cannot switch from impl; to impl;. The
cost functions may reflect internal computation costs,
network message costs, or a combination of these
and other metrics, depending upon the application
environment.

We represent the computation to be performed as
a sequence of requests, ry, - - -, r,. The empty se-
quence is denoted by (). To facilitate the modeling
of many different sorts of problems, we allow a sin-
gle request to be processed by either a single com-
ponent or by multiple components. Given such a se-
quence of requests, a switch of implementations may
occur after processing any request in the sequence. We
represent this by the operation switch(impl;, impl;),
where impl; is the current implementation of the
component, and impl; is the implementation being
switched to. Hence, given a sequence of requests o =
riy, -+, ry, we model the adaptive behavior of the
component Comp as transforming this sequence to
the sequence o’ = sy, - - -, s, such that the follow-
ing comments are true:

e For1 =i =f, eithers, isarequest ors; is a switch
operation.

* Removing the switch operations from «’ produces
.

 If s, = switch(impl;, impl,) then either s, is the
first switch operation in the sequence andj = 1
or the closest preceding switch operation in the
sequence is of the form switch(impl;, impl;).
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An on-line algorithm is one that transforms the se-
quence « by deciding whether or not to insert a switch
operation after request r; based only upon the se-
quence seen so far, ry, -+ -, r;. We write @« —, o'
to indicate that on-line algorithm 4 (used by Comp)
maps « into o’ when processing it. For any request
s; in the transformed sequence «’, we say that the
implementation impl, is active at s, if the closest switch
operation preceding s; in the sequence is of the form
switch(impl;, impl,), or k = 1 and there is no switch
operation preceding s;. When algorithm 4 and se-
quence « are understood from the context, we sim-
ply denote this by Implls(s;, impl,).

Cost? is the cost of Comp to process request se-
quence « using algorithm A. Cost? = Cost(a') =
L, C(s;) where a —, o' =54, -+, s, and where

C(sy)

Cost(s;, impl,)

if s, is a request, and implIs(s;, impl,);
SwitchCost(impl;, impl,)

if 5; is the operation switch(impl,, impl,).

Let O be an optimal algorithm; that is, for any se-
quence « and any on-line algorithm A, Cost{ =
CostZ. An on-line algorithm A4 is c-competitive>* iff, for
any sequence o, there exist constants ¢ and d such
that Cost;} = ¢ *Cost? + d. Given Comp, RegTypes,
Impls, Cost, and SwitchCost, the adaptive component
problem is to find an on-line competitive algorithm
for this problem instance, that is, to find a c-com-
petitive algorithm for some constant c.

Now consider a special case of the adaptive compo-
nent problem where Impls = {impl,, impl, }, which
we call the adaptive two-implementation-component
problem (the adjective “adaptive” is sometimes omit-
ted, for conciseness). We assume that there is at least
one request r such that Cost(r, impl,) < Cost(r,
impl,), and at least one request 7’ such that Cost(r',
impl,) > Cost (r', impl,). Also, we assume that
there are no constraints on the order in which re-
quests must be composed in a sequence (i.e., any in-
terleaving of requests is a legitimate request se-
quence).

Let SC, = SwitchCost(impl,, impl,), SC, = Switch-
Cost(impl,, impl;), and SC = SC; + SC,. We call
SC the round trip switching cost. The Delta algorithm
described in the next section will perform close to
optimal when, for any request r, |Cost(r, impl,) —
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Cost(r, impl,)| << SC. That is, the difference in pro-
cessing cost for a single request when one implemen-
tation is active as opposed to the other implemen-
tation, is significantly less than the switching cost.

The Delta algorithm

Consider any two-implementation-component prob-
lem, where SC is the previously defined round trip
switching cost. Let « = ry, - - -, r, be a sequence of
requests. Then Cost( e, impl;) = 2}, Cost(r;, impl;),
j = 1, 2. Algorithm Delta is extremely simple and
works as follows. Say that implementation impl; of
component Comp is active,i € {1, 2}, and the pro-
cessing of request r, in the sequence ry, r,, - - - has
just ended. Given impl;, denote the other implemen-
tation by impl;. If there exists j = k such that
Cost((r, - - - ,1.),impl;) = Cost((r;, - - - ,11.),impl;) — SC,
then Delta instructs Comp to switch implementations.

Delta also has a simple implementation using just
three counters: Impl1Cost, Impl2Cost, and MinDelta.
The algorithm, when impl, is assumed active, is given
in Figure 1. The algorithm works analogously when
impl, is active.

To see why this implementation is correct, note that
by definition Cost(ry) = 0 and if Delta switches to
impl, after r,, then Jj, 1 = j = k, such that

(Cost((ry, -+ -, 1), impl,)
— Cost((ry, - -+, rj—l)a impl,))
—(Cost((ry, =+ -, 1), impl,)
— Cost((ry, =+ +, 1;-1), imply))) = SC
&
(Cost((ry, - -+, 1), impl,)
— Cost((ry, - -, r), imply))
—(Cost((ry, - - -, rj—l)’ impl,)
— Cost((ry, =+ +, 1;-1), imply))) = SC

After processing request k in the sequence, the value
of MinDelta in the implementation of Figure 1 equals
the minimum of 0 and miny-;<; {Cost((ry, - - -, 1}),
impl,) — Cost((rg, -+, 1;), imply)}.

At this same point Impl1Cost equals Cost((ry, - -,
rv), impl,), and Impl2Cost equals Cost((r, - - - ,1;),
impl,). Hence the equation above is true iff:

(Impl1Cost — Impl2Cost) — MinDelta = SC

This is exactly the computation that the algorithm
of Figure 1 performs in order to determine when to
switch implementations.
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Figure 1 The Delta Algorithm (impl; assumed active)

Impl1Cost := 0; Impl2Cost := 0; MinDelta := 0;
TimeToSwitch := false;
While (not TimeToSwitch) {
Process next request r;
Impl1Cost := Impl1Cost + Cost(r,impl1);
Impl2Cost := Impl2Cost + Cost(r,impl2);
Temp := Impl1Cost — Impl2Cost;
MinDelta := min(MinDelta, Temp);
If (Impl1Cost — Impl2Cost — MinDelta) > = SC)
{TimeToSwitch := true;}

Switch to impl2;

The section “Competitiveness,” later, contains a for-
mal proof that Delta is competitive and close to op-
timal. We now provide some intuition as to why this
is the case. Let A be any algorithm and consider B,
the “adversary” of 4, an algorithm that observes 4
and tries to devise a sequence on which 4 performs
worse than B. If A keeps impl, active too long, the
adversary will devise the sequence to be costly when
impl, is active and cheap when imipl, is active. Hence,
any competitive algorithm must keep switching be-
tween implementations when it determines that the
cost of keeping the other implementation active is
lower. But if A switches implementations too often,
the switching costs will dominate and the adversary
can choose to keep the same implementation active,
thus avoiding all switching costs. The key insight of
Delta is to switch exactly when it accumulates SC
more in cost than the other implementation would,
if it were active. Choosing any value other than SC
results in worse performance.

To see why this is the case, say that A makes impl,
active and switches to impl, after accumulating ad-
ditional cost k, k < SC (more than it would have
accumulated if impl, were active). As soon as A
makes impl, active, the adversary would design the
sequence so that 4 accumulates additional cost k
when impl, is active. At that point 4 will switch back
to impl,. The adversary would keep impl, active
throughout this sequence. Hence, the cost to the ad-
versary would be just k, while A’s cost would be k& +
SC + k > 3k. A would thus be worse than 3-com-
petitive (how much worse would depend upon the
choice of k).
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On the other hand, say that A makes impl, active
and A switches to impl, after accumulating additional
cost k, k > SC. The adversary would make impl,
active at the start of the sequence. As soon as A ac-
cumulates k in cost and switches to impl,, the ad-
versary would switch to impl, and would design the
sequence so that 4 accumulates additional cost k&
when impl, is active. At that point 4 will switch back
to impl,. Hence, the cost to the adversary would be
just SC, while A’s cost would be &k + SC + k >
3%SC. Hence, A would be worse than 3-competi-
tive.

The reason Deltais (3 + €)-competitive and not just
3-competitive is due to boundary conditions; Delta
does not always have the opportunity to switch when
it accumulates exactly SC more in cost. For instance,
in may be that impl, is active and Delta has accu-
mulated SC — 1 more in cost than it would have if
impl, had been active. The next request » may cost
itrCost = max,Cost(r, impl,) — Cost(r, impl,) more
to process in impl, than in impl,. Therefore Delta
will not actually switch until it accumulates SC +
rCost — 1 more cost in impl, than it would have in
impl,. The e term bounds the cost of these boundary
conditions.

Examples

In this section we apply the Delta algorithm to two
problems: the distributed pub/sub problem and the
data structure selection problem.

The distributed pub/sub problem. Consider a data
server that serves records from a database to many
clients. The server and each client reside on sepa-
rate nodes of the network. Each client can perform
a read or a write on the data. We assume that the
clients are independent, that is, a client reads and
writes data independent of any other client. There
is no synchronization between clients. More formally,
for any given “run,” there is a linear order in which
each client reads and writes records, but the inter-
leaving at the server of reads and writes from dif-
ferent clients is subject to various factors, and can-
not be predicted.

Each client can exist in one of two modes: either in
subscription (Sub) mode or in nonsubscription (Non-
Sub) mode. In the latter case, for each read that the
client wants to perform, it must send a message to
the server and receive a reply back. In Sub mode,
aclient caches a local copy of the database. All reads
of the database go against this local copy. In either
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case, writes must still go to the server. Upon receiv-
ing a write update from any client, the server must
inform all subscribers (even the writer of the data
if he or she is in Sub mode) of the change to the
data. This mechanism is known as “pub/sub”
(publication/subscription).

Because it is often impossible to statically predict the
read/write behavior of clients, and because their be-
havior changes over time, we consider an adaptive
pub/sub strategy that does not require a client to per-
manently use either Sub or NonSub mode, but that
can flexibly switch between these implementations
depending upon current workloads. The goal is to
find an optimal strategy for switching implementa-
tions that minimizes network traffic.

An instance of the pub/sub problem consists of a
server and m clients denoted by client; (1 =j = m).
Letr,, ---, r, be a sequence of requests where re-
quest 7; is either read; or write;, 1 = j = m, indi-
cating that client, is either reading or writing a data
record to the database. We assume that the data-
base contains p — 1 records (by database we simply
mean some collection of data items, where each item
can be read and written individually). We now focus
on how the requests related to client;,, 1 =i < m,

when in NonSub mode, are carried out.

e read;(r): This request generates a message from
client; to the server asking for record r, and a mes-
sage back from the server delivering record r.

e read,(r),j # i: This request does not concern cli-
ent; (it is only relevant to client;).

e write;(r): This request generates a message from
client; to the server asking for record r to be writ-
ten.

* write;(r), ] # i: This request does not concern cli-
ent;.

The requests related to client;, 1 =i = m, when in
Sub mode are carried out as follows.

e read;(r): Recordr is read from the cached data at
client;, thereby avoiding the need for messages to
the server.

e read;(r),j # i: This request does not concern cli-
ent;.

e write;(r): This request generates a message from
client; to the server asking for record r to be writ-
ten, and an update(r) message from the server to
client;.
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Figure 2 Cost to client; of processing requests (j #i)

Cost(writej,NonSub) = 1
Cost(writej, NonSub) = 0
Cost(readj,NonSub) = 2
)=0
)=p

Cost(readj,NonSub
SwitchCost(NonSub,Sub) =
Cost(writej,Sub) = 2
Cost(writej,Sub) = 1
Cost(readj,Sub) = 0

)=0
) =1

Cost(read;,Sub,
SwitchCost(Sub,NonSub

* write;(r),j # i: This request generates an update(r)
message from the server to client; informing it that
record r has been updated.

Switching implementations is carried out through
subscribe and unsubscribe messages.

e subscribe( ): This is shorthand for switch(NonSub,
Sub). It generates a message from client; to the
server, subscribing client; to the database, and a
message from the server delivering a local copy of
the database to client,. It puts client; into Sub mode.
unsubscribe( ): This is shorthand for switch(Sub,
NonSub). It generates a message from client; to the
server unsubscribing client;. It puts client; into Non-
Sub mode, and discards its local copy of the da-
tabase.

The cost of a request is proportional to the number
of messages it generates and their size, such that
sending a single message containing a single record
has unit cost. Figure 2 gives the costs to client; for
each of these requests.

Algorithm Delta can be applied to the pub/sub prob-
lem by monitoring each read and write request at
client;, switching from NonSub to Sub mode when
it detects that Sub mode would have processed a pre-
vious subsequence of the requests for p + 1 less in
network messaging costs than it was processed in
NonSub mode. The number p + 1 is the switch cost
of the Delta algorithm; SwitchCost(NonSub, Sub) +
SwitchCost(Sub, NonSub) = p + 1. It monitors the
requests being processed when in Sub mode and de-
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Figure 3 A read/write sequence (0) and a transformed sequence (a')

o= read, writeq, read, ready, read, readq, read, writep, writeq, readq, reado, writes, ready, read, writeo, read, read4

a'= subscribeq, localRead, writeq, updateq, localRead, reads, localRead, localRead, localRead, writeo, update,
write, updateq, localReadq, reads, writes, update, localRead, localReadq, writeo, updateq, localRead, localRead

Figure 4 The processing of sequence a by algorithm Delta

o = ready, write,, write,, write,, write,, read4, read, ready, write,, read4

Op Number x 0 1 2
Impl1Cost 0 2 2
Impl2Cost 0 0 1
Impl1Cost — Impl2Cost 0 2 1
MinDelta 0 0 0
(Impl1Cost — Impl2Cost) — MinDelta 0 2 1

cides when to switch to NonSub mode based upon
a similar calculation.

Figure 3 gives a sequence « involving two clients and
a server. For client,, Cost(a, NonSub) = 22 and
Cost(a, Sub) = 7.If p + 1 = 15, then Delta would
dictate that client, should subscribe in the course of
this sequence. «’ is the transformed sequence, if cli-
ent; were to subscribe at the beginning of this se-
quence. In this example, op; indicates that client; is
performing operation op, where op € {read, local-
Read, write, subscribe, unsubscribe}, i € {1, 2}, and
update; indicates that the server is sending an up-
date message to client,. localRead indicates a read
operation from the local cache.

There is one subtlety, however, in using Delta for
the pub/sub problem. Looking at Figure 2, we see
that Delta needs to know not only the reads and
writes done by client;, but also the writes done by
any client;, j # i. If Delta is running at client;, how
does it get this information? One possibility is to have
Delta run at the server, where all client reads and
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3 4 6 7 8 9 10
2 2 2 4 6 8 8 10
2 3 4 4 4 4 5 5
0 =i -2 0 2 4 3 5
0 -1 —2 —2 —2 —2 2 2
0 0 0 2 4 6 5 7

writes are known, and have the server tell client; when
to switch implementations. However, it may be ad-
vantageous to have the control for switching imple-
mentations located at the client, thereby providing
a more distributed architecture.

In Reference 5 we address the question “How can
Delta, running at client;, know about the write op-
erations performed by other clients without increas-
ing the number of messages that must be exchanged
between the client and the server?” In Sub mode the
issue does not exist, as the client can infer this from
the number of updates messages it receives. In Non-
Sub mode, it is required that the server piggyback a
count of the total number of write operations it has
received on the reply to each read request by client,.

Figure 4 illustrates the processing by Delta of se-
quence « involving client , client,, and a server. The
value of the counters as well as the intermediate com-
putations at client, (in NonSub mode) are shown, as
calculated by Delta (cf. Figure 1). In Figure 4, impl,
is in NonSub mode while impl, is in Sub mode.
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The adaptive data structure selection problem. Of-
ten an application chooses a data structure that is
optimized for particular requests. When different
types of requests require different data structures,
either duplicate data structures are maintained, or
a single data structure is used, chosen presumably
for the most frequent type of requests. Consider, for
example, a set of records S that has two possible keys,
i; and i,. (My bank allows me to identify myself ei-
ther by my social security number or by my account
number.) Let Comp be the component that encap-
sulates all operations on S. Comp may support many
types of requests that operate on this set, but all of
these requests can be categorized as either of type
ry, for requests using key i, or of type r,, for re-
quests using key i,.

One strategy is for Comp two create two index ta-
bles for S, one using key i; and one using key i,.
Each index table is implemented as a dictionary,®
allowing one to perform the usual operations of find-
ing, inserting, and deleting elements. But this strat-
egy may not always be feasible, because there may
not be sufficient capacity for storing both indices (e.g.,
a pervasive device), or the overhead in maintaining
these two separate indices may be too high. In such
cases, we can support two implementations, one that
uses key i, and one that uses keyi,. Algorithm Delta
is used to dynamically decide when to switch between
these implementations. In Reference 5 we present
a more complete discussion on the use of Delta in
this context.

Competitiveness

For any two-implementation-component problem,
let SC, = SwitchCost(impl,, impl,), SC, = Switch-
Cost(impl,, impl,), and let SC be the round trip
switching cost SC = SC; + SC,. Given request r
let

reqCost = max,|Cost(r, impl,) — Cost(r, impl,)|.

Let € = 2xreqCost/SC. In this section we prove the
following theorem:

Theorem 1: Algorithm Delta is (3 + €)-competitive
for any two-implementation-component problem.

Note that when the cost of processing a single re-
quest is significantly less than the cost of switching
implementations, then € << 1 and Delta is close to
optimal.
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Proof: Consider any sequence « processed by Delta.
a can always be viewed as consisting of recurring seg-
ments of the form w = B, switch(impl,, impl,), v,
switch(impl,, impl,), where B and vy are sequences
of requests, during processing of 3 impl, is active,
and during processing of yimpl, is active. Note that
B and <y contain no switch statements. Without loss
of generality, we can assume that 3, y # ) () is the
empty sequence). We will maintain the following in-
variant:

Invariant: At the start of processing of an w segment,
for any algorithm processing this sequence, either
impl, is active or impl, is active and there is a debt
of SC,. By “debt” we mean that if, at the start of
processing of a segment wimpl, is active, then a cost
SC hasaccrued in a preceding segment that has not
yet been charged to the algorithm. Initially we know
this is true because we assume that all algorithms
start in impl, mode.

Let r be the last request in 8. Note that Cost(r,
impl,) = Cost(r, impl,) + reqCost. There are two
properties of note regarding the cost to any algorithm
of processing the B8 portion of segment w.

Property 1: Let A be any algorithm that processes
B with impl, active at both the start and the end of
the sequence, and switching between implementa-
tions any number of times in between. Then Costz*
> Cost(B, impl,) — reqCost; that is, at most reqCost
is gained by switching back and forth during the pro-
cessing of B. To see why this is true, consider the
case when A switches only once; say, A makes impl,
active during B, impl, active during 3,, and impl,
active during B;, where B = 3, B,, B3. Assume that
B, # €, otherwise this is trivially true. If B; # () then
Cost(B,, impl,) + SC > Cost(B,, impl,), otherwise
Delta would have switched to impl, before or at the
end of processing 3,. If B; = () then let B; be the
prefix of B, with one operation (r) removed from
the end of B,. Then Cost(B5, impl,) + SC >
Cost( B4, impl,) since Delta did not switch implemen-
tations before completing the processing of 8. Since
Cost(r, impl,) = Cost(r, impl,) — reqCost, we have

Cost(B,, impl,) + SC
= Cost(Bj, impl,) + Cost(r, impl,) + SC
> Cost(B), impl,) + Cost(r, impl,) — reqCost
= Cost(B,, impl,) — reqCost

Hence,
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Costy" = Cost(B,, impl,) + Cost(B,, impl,)
+ Cost(Bs, impl)) + SC
> Cost(B, impl,) — reqCost

A similar argument applies to any algorithm that
switches multiple times back and forth between im-
plementations during (8. This completes the proof
of Property 1.

Property 2: For any f3,, B, such that B = 3,,,

Cost(B, impl,) < Cost(B,, impl,)
+ Cost(B,, impl,) + SC + reqCost

That is, it costs at most SC + reqCost more to pro-
cess B when impl, is active than processing part of
it when impl, is active and the rest when impl, is ac-
tive. If B, = (), this is trivially true. So assume that
B, # Q and let B5 be the prefix of B, with one op-
eration (r) removed from the end of $3,. Then

Cost(B,B;, impl,) < Cost(B,, impl,)
+ Cost(Bj, impl,) + SC

since Delta did not switch implementations before
completing the processing of 8. Since

Cost(r, impl,) = Cost(r, impl,) + reqCost,
we have

Cost(B, impl,)
= Cost(B,B5, impl,) + Cost(r, impl,)
< Cost(B,, impl,) + Cost(B, impl,) + SC
+ Cost(r, impl,) + reqCost
= Cost(B,, impl,) + Cost(B,, impl,)) + SC
+ reqCost

This completes the proof of Property 2.

Letl, = Cost(B, impl,) — SC — reqCost. Now we
determine the cost to any adversary algorithm Adv
of processing B by examining the four cases A
through D.

A: Adv starts with impl, active and ends with impl,
active. If it never switches implementations, its
costis/; + SC + reqCost. Otherwise, say that
it switches from impl, to impl, and back to impl,
during . By Property 1, this can only decrease
its cost by reqCost, so its cost is at least /; + SC.
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Switching multiple times will not further decrease
its cost.

B: Adv starts with impl, active and ends with impl,
active. By Property 2, if it switches only once then
it may save at most SC + reqCost over the cost
of processing 8 entirely in impl, but incurs a cost
of SC, in switching implementations. Hence, its
costisatleast/, + SC,. Switching multiple times
in processing B will not decrease its cost any fur-
ther.

C: Adpy starts with impl, active and ends with impl,
active. If Adv does not change modes at all dur-
ing this phase, then by Property 2 the cost to Adv
is at least/, to process 3. However, according to
the Invariant, there is a debt of SC, to Adv, since
it starts B with impl, active. We remove that debt
and charge it to this phase of the algorithm.
Hence, Adv will have at least the cost of [, + SC,.
By an argument similar to Property 1, by chang-
ing its mode during the processing of this se-
quence, Adv will not decrease its cost any fur-
ther.

D: Adv starts with impl, active and ends with impl,
active. This is similar to the preceding case, ex-
cept that it has an additional cost of SC, for
switching to impl,. Hence, its cost is at least /| +
SC, + SC, =1, + SC.

Now consider . Letr’ be the last request in y. Note
that

Cost(r', imply)) = Cost(r', impl,) + reqCost

The two properties stated above for 8 have analogs
in processing vy (we omit the proofs as they are sim-
ilar to those given above).

Property 3: Let A be any algorithm that processes
v by initially starting with impl, active, ending with
impl, active, but switching between implementations
any number of times in between. Then Cost;* >
Cost(vy, impl,) — reqCost.

Property 4: For any vy, v, such that y = v,y,,

Cost(y, impl,) < Cost(vy,, impl,)
+ Cost(vy,, impl,) + SC + reqCost

Letl, = Cost(y, impl,) — SC — reqCost. Now we
use Properties 1 through 4 above and determine the
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cost to any adversary Adv of processing y by exam-
ining the four cases E through H.

E: Ady starts with impl, active and ends with impl,
active. If it never switches implementations, its
cost is [, + SC + reqCost. Otherwise, say, it
switches from impl, to impl, and back to impl,
during processing of y. By Property 3, this can
decrease its cost by at most reqCost. However,
since Adv ends the processing of segment w with
impl, active (and will start the next segment with
impl, active), we remove SC, in cost from this
phase of the algorithm and pay the debt, thereby
maintaining the Invariant. Its costs are therefore
I, + SC - SC, =1, + SC,.

F: Adv starts with impl, active and ends with impl,
active. By Property 4, if it only switches once, then
it may save at most SC + reqCost over process-
ing vy entirely with impl, active but incurs a cost
of SC, to switch modes. Hence, its cost is at least
[, + §C,. Switching multiple times in process-
ing y will not decrease its cost any further.

G: Adbv starts inimpl, mode and ends in impl, mode.
If Adv does not change modes at all during this
phase, then by Property 4 the cost to Adv is at
least /, to process y. By an argument similar to
Property 3, by changing its mode during the pro-
cessing of this sequence, Adv will not decrease
its cost any further.

H: Adpy starts inimpl, mode and ends in impl, mode.
This is similar to the preceding case, except that
it has an additional cost of SC, for switching to
impl,. However, since Adv ends the iteration of
the w segment in impl,, we need to remove SC,
in cost from this phase of the algorithm and as-
sign it to the debt in order to maintain the In-
variant. Hence, its cost is at least /,.

To analyze the overall complexity of Adv, we con-
sider the cost of executing one complete segment of
w.Adv must follow one of the following eight “paths”:
A—-G,A—-H B—-E,B—-F,C—E C—
F,D — G, D — H. For instance, the first path says
that Adv first implements case A for 8 and then im-
plements case G for y. Note that these eight paths
are the only ones possible, as A cannot be combined
with E, for example, since case A states that impl,
is active at the end of B, and case E states that impl,
is active at the start of y (= end of 8). By summing
the costs of each of these paths, one sees that Cost 34"
=/, + 1, + SC. The cost to Delta is at most [, +
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SC + reqCost to process B, SC, to switch to impl,
atthe end of B,1, + SC + reqCost to process v, and
SC, to switch to impl, at the end of y. Hence,

Costg =1, + SC + reqCost + I, + SC
+ reqCost + SC, + SC,
=L +1,+3%8C + 2*reqCost
=B+ ex(,+1,+SC)
= (3 + e)*Costyl”

Hence, Delta is (3 + €)-competitive on any o seg-
ment.

To complete the proof of this theorem, we need to
show that for any arbitrary long sequence that is a
strict subsequence of an wsegment, Deltais also (3 +
€)-competitive. We leave this as a straightforward
exercise, based on the discussion above.

End of proof

Lower bounds

In this section we show that there are instances of
the two-implementation-component problem such
that no algorithm is better than 3-competitive. The
proof involves the dynamic pub/sub problem, given
in the section “Examples.”

In analyzing adaptive on-line algorithms, it is useful
to differentiate between different types of adversar-
ies.*” An oblivious adversary is one that constructs
the sequence of requests without regard to the ac-
tions taken by the algorithm. An adaptive adversary
determines the action corresponding to each element
of a sequence on line by taking into account the pre-
vious choices made by algorithm. If, additionally, the
adversary processes the sequence only after the en-
tire sequence has been generated, it is then said to
be an adaptive off-line adversary. This is the most
powerful sort of adversary, and we follow the ter-
minology of Reference 8 and call it a strong adver-

sary.

The result of this section shows that no determin-
istic or randomized algorithm can do better than
Delta against a strong adversary for all two-imple-
mentation-component problems. Also, since the dis-
tinction between strong and oblivious adversaries is
irrelevant for deterministic algorithms, it also shows
that no deterministic algorithm is better than 3-com-
petitive against any type of adversary for all two-im-
plementation-component problems.
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Lemma 1: Let Alg be any adaptive pub/sub algorithm
controlling an individual client. There exists an arbi-
trarily long sequence o constructed by a strong adver-
sary such that, as the length of a tends to infinity, Alg
is at best 3-competitive on o

Proof: Consider just two clients, client; and client,,
and let client; be running algorithm Alg. For any in-
teger [, we can construct a sequence of the form o =
read" writel' read(™ writey* - - - read™ writes* with
the following characteristics (r{" indicates m consec-
utive client; requests of type r):

e The length of the sequence (number of operations)
is larger or equal to [

e Forallt, 1 =t = k, client; subscribes after the
read" operations and unsubscribes after the write?'
operations.

To find this sequence, we begin by “serving” read
requests to the client, until it subscribes and then
“serving” write requests to client,, causing update
messages to propagate to client; until client, unsub-
scribes. We continue this process until we reach the
desired sequence length. Since we are dealing with
a strong adversary, it knows exactly when to serve
read (write) requests, as it just waits until it sees cli-
ent, subscribe (unsubscribe). We assume that client,
forever alternates between Sub and NonSub modes
if served enough write and read requests, respec-
tively. Otherwise, this client would trivially not be
competitive. Indeed, if it stayed in Sub mode, the
adversary could forever feed it update messages
whereas the adversary would incur no cost by stay-
ing in NonSub mode. Similarly, if it stayed in Non-
Sub mode the adversary could forever feed it read
messages and the adversary would incur no cost by
staying in Sub mode.

Let R be the total number of read operations and
W be the total number of write operations in a. The
cost to client, incurred by Alg, which we denote by
Cost(1), equals 2R + W + (pk + k), as it costs
2R for client; read messages, W for client, update
messages (= client, write operations), pk for the k
client; subscribe messages, and k for the k client,
unsubscribe messages. Let M = min{2R, W, (pk +
k)}. Now devise the strong adversary S.A as follows:

e Case 1: M = 2R. Let SA stay in NonSub mode
throughout the sequence. Then Cost$4(1) = 2R.
Cost!(1) = 2R + W + (pk + k) = 3(2R) =
3% Cost$4(1). Hence, Alg is at best 3-competitive.

e Case 2: M = pk + k. Let SA subscribe directly
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before each set of read operations and unsubscribe
directly before each set of write operations. Then
Cost34(1) = pk + k. Cost(1) = 2R + W +
(pK + k) = 3(pk + k) = 3 Cost$4(1). Hence,
Alg is at best 3-competitive.

e Case 3: M = W. Let SA initially subscribe and
then stay in Sub mode throughout the sequence.
Then Cost34(1) = W + p. Recall that as [ — o,
we can assume W — oo, otherwise the client is triv-
ially not competitive. Hence, as [ — o, Cost34(1)
— W. Therefore Cost%(1) = 2R + W + (pK +
k) = 3W = 3 Cost54(1), and Alg is at best 3-com-
petitive.

End of proof

Related work

The ideas in this paper are related to prior work in
program optimization, competitive algorithms, and
data replication policies.

Some of the work in program optimization discusses
optimizing programs by choosing among a set of al-
ternate implementations. For the most part, this
work focuses on low-level static optimizations. For
example, the early work on SETL examined how to
choose the best set representation based upon pro-
gram analysis.’ Similarly the work on SQL (Structured
Query Language) optimization can be viewed as stat-
ically choosing the best implementation for retriev-
ing information from a database given a particular

query. '

Closer to our strategy is the recent work described
in Reference 11, in which the authors propose that
the component writer provide multiple implemen-
tations of a component, assign costs to the different
operations on each component, profile a program
made up of multiple components running in a par-
ticular context, and construct an object affinity graph
for this program. They then use a graph partitioning
algorithm to find an optimal partitioning of the
graph, thereby finding the optimal implementation
for each component. Central to their scheme is the
observation that the implementations at different
components affect each other. Unlike algorithm
Delta, their strategy optimizes a program globally,
not just at the level of an individual component. On
the other hand, their technique requires a more com-
plicated methodology (profiling and the creation of
an object affinity graph) and cannot adjust to dynam-
ically changing contexts as Delta does.
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Recent work on dynamic architecture description
languages (see Reference 12 for a summary) aims
at building software architectures that can respond
adaptively to changes. Algorithms like Delta will be
important in helping realize the goals of these ar-
chitectures.

Our adaptive pub/sub application contrasts with pre-
vious work on data replication.'*'* An extended ver-
sion of Reference 15 gives a good overview of the
literature on file allocation, file migration, and file
replication problems. Although similar in some ways,
our adaptive pub/sub application is closer to the work
in References 16 and 17, which we discuss later in
this section.

Our work draws inspiration from many competitive
algorithms. *#15181% Although it may seem that this
work could be used to solve our problem, a closer
examination shows that this is not the case. For in-
stance, one immediate idea for a competitive adap-
tive pub/sub algorithm, modeled after the snoopy
caching algorithm,®!8 is for a client to subscribe af-
ter performing ('/2)p consecutive read operations,
and to unsubscribe after receiving p consecutive up-
date operations. The asymmetry between reads and
updates is due to the fact that in our model a read
is twice as expensive as an update operation. Con-

sider the sequence (readl(l/z)p _1, write,)"; that is,
client, issues (%2)p — 1 reads followed by a write
by client,. This is repeated n times. The cost to the
snoopy caching algorithm for this sequence with re-
gard to client, wouldben * (p — 2). One can devise
an adversary that would process this sequence at cost
p + n (the adversary would initially subscribe and
then stay in Sub mode). There do not exist constants
¢ and d independent of p such thatn(p —2) <c(n +
p) + d for all n. Hence, the snoopy caching algo-
rithm is not a good competitive algorithm for the
pub/sub problem.

As mentioned, our work on the adaptive pub/sub
problem is most closely related to the work in Ref-
erences 16 and 17. Reference 16 seems to exactly
address our problem and to derive a better lower
bound than ours (2k-competitive, for any integer k).
In their model, however, the data being replicated
are always of unit size, that is, variable p — 1 (the
size of the data being replicated) always takes value
1. Hence, our work generalizes that result in an im-
portant way, by allowing arbitrary size data.

Let us see how the algorithm in Reference 16 would
work for our problem. This algorithm re-evaluates
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the mode a client is in after every k operations (al-
ternatively, the algorithm in Reference 20 re-eval-
uates after a fixed time period ¢). If read operations
are the majority, the client switches to (stays in) Sub
mode; otherwise it switches to (stays in) NonSub
mode. Consider the sequence (readf, write5)"; that
is, k reads by client, are followed by k writes by some
other client. This is repeated n times. The cost with

Dynamically switching between
implementations of a component
should become a useful tool
in autonomic computing.

respect to client, would be (p + 1)n + 3kn. One
can devise an adversary whose cost would be W =
min{nk, (p + 1)n}. There do not exist constants
¢ and d independent of p such that (p + 1)n +
3kn = cW + d for all n. Because p may be arbi-
trarily large, this may result in a large competitive
factor. Hence, the algorithm would not perform well
in the worst case when one generalizes to larger data
structures. The algorithm does model other aspects
that we have not considered. Most importantly,
whereas we assume a fixed data “server,” Reference
16 uses the notion of a primary site that can dynam-
ically change in the course of execution.

Very recently, as this paper was going into produc-
tion, I became aware of the very relevant work on
metrical task systems.?! Metrical task systems are
very similar to the adaptive component problem de-
scribed in this paper, and the results there are con-
sistent with the results of this paper. However, there
are two important differences between the two. First,
in metrical task systems, it is assumed that Switch-
Cost(i, j) = SwitchCost(j, i) (symmetry). We make
no such assumption. As a matter of fact, for the dis-
tributed pub/sub problem described in the section
“Examples,” this is not the case. Second, in our model
we assume that once a request is received, the pro-
cessing of the request must be completed before
switching to another implementation. We took this
approach to better model scenarios where rapid re-
sponse time is critical (i.e., the response must be
made before embarking on the relatively lengthy pro-
cess of switching implementations). In metrical task
systems, however, switching implementations (states)
can be done after a request is received but before
it is processed. For both of these reasons, our work
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generalizes metrical task systems in the case of two
implementations (or, in the terminology of Refer-
ence 21, in the case of two states), and it is not clear
that the algorithms and proofs given in metrical task
systems apply directly to the adaptive component
problem.

Summary and open issues

This paper provides a framework for analyzing the
effectiveness of components that switch implemen-
tations dynamically at run time based upon run-time
workload characteristics. We believe that dynamic
selection of component implementations will become
an effective tool in optimizing component perfor-
mance, and therefore the framework given in this
paper should become increasingly important.

An important contribution of this paper is the near
optimal (3 + €)-competitive algorithm Delta, for the
two-implementation-component problem, in which
there are only two implementations to choose from.
An obvious question is whether there exist compet-
itive algorithms for components with an arbitrary
number of implementations. In Reference 5 we show
there does not exist an algorithm that is better than
k-competitive when the number of implementations
is k. Another limitation of Delta is that it requires
a switch from one implementation to another in “one
shot,” and this can often be expensive. In Reference
5 we show how Delta can switch implementations in
an incremental fashion for the two example prob-
lems of section “Examples,” thereby amortizing the
cost of the switch operation. Still, a more general
method of incremental switching between compo-
nent implementations is needed.

Competitiveness is only one criterion by which to
judge an algorithm for switching among implemen-
tations. In Reference 5 we mention one other cri-
terion: convergence. Other metrics can be used as
well. For instance, it may be that some domains ex-
hibit great periodicity of patterns in event sequences.
The ability to learn these patterns and then optimize
to them is an important strategy in these domains.

Most importantly, we need experience to see how
well Delta works in practice. This will shed light on
how to best evolve this algorithm. For instance, it
may be that domain knowledge needs to be taken
into account in order to obtain better results.
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