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One of the main characteristics of on demand
computing in general and of utility computing
services in particular is the “pay-as-you-go”
model. To implement this model, one needs a
flexible way to meter the services and
resources being used. The UMI (Universal
Management Infrastructure) architecture,
designed to provide common functions that
are needed by most, if not all, of the utilities
in a utility computing system, therefore
includes a metering function. The architecture
of the metering system is hierarchical and
highly flexible. This paper reviews the
metering service architecture and describes
how UMI’s metering service function is used
in the context of utility computing services,
for collecting and storing metered data,
computing service metrics (which are useful
to the data-consuming applications), and
feeding the metrics to various consumer
modules (e.g., for accounting and billing).

Utility computing brings the benefits of reduced IT
(information technology) complexity, variable pric-
ing, and reduced operating costs to enterprises.1,2

Utility services can be infrastructure- or application-
level services that are sold on a “pay-as-you-go” ba-
sis. To emphasize the on demand characteristic of
these services, we refer to them in this paper as “on
demand services” (ODSs). This is intended to be a
generic term for the technical community and is not
to be understood as the name of a product offering
or marketing initiative. We describe the architecture
of ODSs and the process of their development and
present our vision for metering services for ODSs that
use the Universal Management Infrastructure (UMI).

ODS architecture. On demand services (ODSs) form
a layered hierarchy. Infrastructure ODSs, used by all
the higher layers, are at the base. Above these are
the application-level ODSs.3 Both of these layers can
be further divided into common and specialized ODSs.
For example, a metering or monitoring ODS can be
thought of as a common infrastructure-level ODS,
whereas a firewall service can be thought of as a
higher-level specialized infrastructure service. Like-
wise, a billing service is an example of a common
service at the application level, whereas a supply
chain management application is a specialized ap-
plication-level ODS.

All ODSs use UMI for certain basic services. UMI is
both a platform for flexible service delivery and a
management discipline to automate the data cen-
ter.1 UMI watches the general health of ODSs run-
ning on it and provides a stable running environment
for them. Our vision for the future of UMI is that af-
ter an ODS is loaded, configured, and running in the
UMI environment (which consists of a hierarchy of
ODSs plus the UMI base), the ODS should not have
to ask UMI for any resources or for any specific help.
Instead, UMI will monitor the ODS, notice what it
needs, and provide the additional resources or cor-
rective actions, as specified by some predefined ser-
vice management policy. To accommodate the
phased implementation of this vision and to allow
for dynamic and flexible control by the ODSs as well,

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 0018-8670/04/$5.00 © 2004 IBM ALBAUGH AND MADDURI 179



UMI is expected to provide some well-architected ser-
vice programming interfaces (SPIs). ODSs can use
these to request UMI services, to alter configurations,
or to get information in and out of UMI.

In order for higher-level ODSs to take advantage of
lower-level ODSs, there must also be interfaces and
protocols for ODSs to talk to one another. It is ex-
pected that these interfaces and protocols will be
based on Web-service standards (XML [eXtensible
Markup Language], WSDL [Web Services Definition
Language], SOAP [Simple Object Access Protocol],
and UDDI [Universal Description, Discovery, and In-
tegration]). It is expected that a higher-level ODS will
serve its customers by occasionally calling lower-level
services for the lower-level resources and services
that it needs to satisfy its customers. For example,
a Web e-mail ODS may need 5 GB of additional disk
space to accommodate a request to create 1000 new
e-mail accounts, and the ODS would request this from
an infrastructure ODS that allocates disk storage. The
Web e-mail ODS may want to meter e-mail accounts
for their usage, whereas the disk storage ODS may
want to meter storage usage (and potentially charge
its respective customers based on usage). Both ser-
vices could take advantage of UMI metering inde-
pendently, and possibly for completely different pur-
poses (e.g., one service might meter for billing

purposes, whereas the other might meter for opti-
mizing performance).

Although much of the discussion of metering applies
equally to both infrastructure ODSs and application-
level ODSs, in the following sections we will focus
on application-level ODSs only, unless otherwise
indicated.

The ODS development model and process. The de-
velopment of an ODS on top of UMI must adhere to
certain guidelines and standards, which will be pub-
lished by the UMI development team. These guide-
lines and standards lead to a development process
that systematically specifies what changes an appli-
cation has to undergo in order to become a well-be-
having ODS in the UMI environment. (IBM�s Appli-
cation Enablement Program [AEP]4 team helps
software vendors adhere to this process for faster
and easier deployment.) We will not go into the de-
tails of all of these changes, but we will discuss what
the ODS needs to be aware of with respect to me-
tering in the section “Metering architecture.” Table
1 presents some concepts and definitions that will
be used in the presentation of the metering archi-
tecture and functions.

The importance of metering. Metering is an essen-
tial function in the world of on demand computing.

Table 1 Definition of terms

Term Definition

Variable A thing of interest whose value can change over time.
Sensor An instrument that captures a variable�s value at a given time.
Measurement An observed value of a variable.
Metric A value that is arrived at by computation, as opposed to a measurement (q.v.) that is arrived at by

observation. It typically uses a formula defined by the ODS owner or UMI administration (e.g., service
unit computation).

Agent A collection of sensors on a given server (one may also look at it as the single conduit over which all
sensors on a server send information).

Collector A consolidator of measurements received from all agents in a data center or data center region.
Metering engine A system which computes metrics (q.v.), refines and stores measurements and metrics, and provides

metrics to consumers.
Metrics consumer A subsystem that establishes a connection and protocol with the metering engine for the timely transfer of

metrics data (e.g., usage in service units [q.v.] for billing purposes).
Metering record Refers to the format that is used to communicate and store a single measurement.
Resource identifier Refers to the name given to a specific variable. It is used as a field in a metering record to identify the

variable that the measurement is reporting.
Service unit Refers to a measurement or composition of measurements that reflects usage and the business model a

service uses to charge their customers. Customers are charged for the “service units” they consume.
“Virtual” As a modifier for record, resource, or service unit (q.v.), “virtual” indicates that it is formed through

composition rather than captured as a measurement.
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Without a flexible and generalized metering func-
tion, the on demand vision cannot be realized. An
on demand business, by definition, must be focused,
resilient, and robust in response to changing condi-
tions. Metering is essential in implementing systems
that support variable cost, resiliency, and responsive-
ness. Autonomic behavior, which is a fundamental
technical characteristic of on demand systems, de-
pends upon implementing a closed-loop control sys-
tem, at the heart of which is metering.

Metering data is critical because loss of this data can
mean a loss of revenue. Some specific examples of
the use of metering in on demand systems and so-
lutions include usage-based billing, “charge back”
to user departments of a consolidated service, ca-
pacity planning, and studying end-user usage patterns
for improving customer service or inventing new
services.

UMI. UMI is an infrastructure that supports utility
computing systems. Some of the underlying concepts
of UMI are similar to those underlying a phone com-
pany infrastructure, which supports services like local
and long distance calls, Internet service, and DSL
(digital subscriber line) service. The infrastructure
has enough capacity to cope with variation in demand
and provides stability for the services. The vision of
UMI is to build an environment that provides sta-
bility for the ODSs by coping with fluctuating resource
needs.5 It is also meant to promote autonomic
behavior of the ODSs so that when they deviate from
expected behavior or performance, they can be cor-
rected and brought back to normalcy. This correc-
tion is effected by constant monitoring of
ODSs and application of prespecified policies
when conditions deviate. This kind of autonomic
behavior is referred to as policy-based management
in UMI.6

There are roughly a dozen components which are
expected in the initial release of UMI. The main ones
are metering, monitoring, auto-provisioning, SLA
(service level agreement) management, portal, bill-
ing, ordering, reporting, and helpdesk/change man-
agement. The capabilities of UMI are described on
IBM�s Internet Web site and elsewhere in this issue.3,6

Metering is a key component of UMI and interacts
with the UMI components that manage billing, re-
porting, and monitoring. The metering function of
UMI is designed to handle usage metering of both
system-level resources and application-level re-

sources as the application services (i.e., ODSs) are
exercised by their end users.

In the remainder of this paper, we discuss the role
and implementation of metering services generally
and their importance in the provision of ODSs. We
review the metering service architecture and describe
the metering service function of UMI (and its ben-
efits) in the context of utility computing services.

It should be noted that the descriptions of UMI, me-
tering architecture, and its implementation that are
presented here should be viewed as intended direc-
tions and not as commitments to be delivered in IBM
products. The actual functions and features deliv-
ered in UMI releases may vary considerably from what
has been described or referenced in this paper.

Metering

Requirements for a metering service pertain to the
metering agent and the metering engine. Flexibility
is a pervasive requirement. Of course, there are also
general requirements like scalability, reliability, and
availability that apply to the metering service as a
whole. Table 2 summarizes these requirements.

In addition, it is useful to distinguish between me-
tering and monitoring7 functions. Table 3 presents
the main distinctions between these two functions,
emphasizing that metering, in contrast to monitor-
ing, typically involves observing usage of a resource
without interpreting the usage, tying those observa-
tions to a user or account, or retaining them for pur-
poses of auditing.

Finally, one may observe that there are similarities
among metering, monitoring, and SLA (service level
agreement) management components. They all de-
pend on raw measurements (or observations)—in
fact, the “sensors” that provide these raw measure-
ments could be the same for all three. The compu-
tations, transformations, and threshold logic applied
to these measurements differ in each component, but
they all have the same basic design pattern. The pat-
tern has three parts: (1) collect the raw measure-
ments, (2) process them in flexible ways (a process-
ing engine), and (3) consume the processed results
in order to effect changes in the larger system. This
design pattern is shown in Figure 1. In the following
sections we will expand on this basic design pattern
as it applies to metering.
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Metering architecture
In this section, we describe the entities of which the
metering architecture is comprised and the interface
protocols that the architecture supports.

Entities. The entities comprising the general meter-
ing architecture have already been introduced and
described briefly in the definitions of terms given in
Table 1. They are discussed here in further detail
and in the context of the overall metering architec-

ture. The architecture provides for a hierarchical col-
lection of data from the endpoints to collectors and
from there to the metering engine, as shown in Fig-
ure 2.

Sensor. Sensors capture measurement values for var-
iables of interest. These measurements are an indi-
cation of resource usage or event occurrence. Sen-
sors are generally customized code implemented to
capture a particular variable�s value. There are many

Table 2 Metering requirements

Types of Requirement Description

Metering agent requirements Ability to gather data from various devices (each device type has its own sensor type)
Ability to poll for data as well as accept pushed data
Ability to collect data on a timer
Metering physical resources vs logical resources (virtual resources)
Metering application-level events
Flexibility at the input end (measurements) and at the output end (metrics)
Small footprint and good performance

Metering engine requirements Flexible metrics calculations (measurement aggregation, composition, and other derivatives)
Flexible ways to feed metering metrics to different consumer modules/services
Data retention for reliability and audit purposes
Agent-to-engine and engine-to-consumer data transfer protocols to include audit scopes
Flexible reporting of raw measurement data as well derived metric data

General metering requirements Scalability, reliability, and availability
Correctness, consistency and auditability
No loss of data in transit
Ability to start and stop components independently
Ability to have sensors and the engine in different network segments and even geographically
separated
Secure data communications between agents, collectors, metering engine, and consumer
modules
Manageability

Table 3 Characteristics of monitoring versus metering

Monitoring Metering

Makes observations. Metering also makes observations, but the data collected and the frequency of
collection might be different.

Main function is checking for something
(i.e., comparing against some predefined
values or conditions).

Main function is counting.

Function includes rules to interpret and
judge what is being observed.

Function usually does not interpret or judge what is being observed—this is
performed by other modules that consume the metering function�s output.

Typically, data is summarized and original
observations are discarded quickly.

May have to retain original observations for auditing purposes (for example, data
that drives billing). This has implications for both storage and data transmission.

Monitoring output for a shared resource
typically does not tie measurements to a
user or account.

Metering a shared resource typically ties measurements to a user or account.

May have more stringent real-time
requirements than metering.

May have real-time requirements also, but typically not as stringent as those of
monitoring.
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ways in which they may be implemented. They may
be embedded in the application code for a service
or implemented externally to the service code. They
may sample allocation of resources periodically, or
they may track every allocation and deallocation of
resources; they may execute system commands to
capture system resource usage; or they may scan log
files or databases to extract measurement values.
Sensors record their measurement values by provid-
ing them to the local agent, which takes responsi-
bility for the data upon receipt. There is one or more
sensor for each endpoint.

Agent. There is an agent at each endpoint. The agent
can be viewed as the single conduit for the local sen-
sors to forward their measurements. It presents a
standard local interface to each sensor. The agent
accumulates and buffers the measurements and for-
wards them to the collection process. The agent takes
responsibility for the data on receipt from a sensor
and must retain the data that it is buffering for pur-
poses of recovery from failures such as a system
power outage.

Endpoint. An endpoint is simply any system that is
a source of metering data. It has an agent and one
or more sensors. Any ODS that is providing meter-
ing data will have one or more endpoints. It is also
possible that each system allocated to an ODS (e.g.,
an e-learning service ODS) from some other provi-
sioning ODS (e.g., a virtual partition provisioning ser-
vice ODS) has sensors and an agent which are in place
already to support metering of the provisioned re-
source (in this case, the use of the virtual partition).

Collector. A collector exists in the architecture pri-
marily for scaling and redundancy. It is a conduit for
data from agents to the metering-engine data stor-
age. As more endpoints are added in the network,
additional collectors can be added as needed. They
provide for parallel processing of data before it is
recorded in the metering-engine data storage. Mul-
tiple collectors provide an alternate path for data if
one collector fails.

Metering engine. The metering engine conceptually
is a single system but may be implemented across
multiple systems as dictated by the size of the sup-
ported network. As shown in Figure 3, it houses the
database for storage of metering records. The da-
tabase can be partitioned by the ODS to avoid con-
tention and split across multiple servers for scaling
as necessary. It contains the configuration data for
each ODS, which includes the rules for scaling, fil-

tering, and composing metering records into virtual
service units. The metering engine performs the data
processing indicated by the configuration of the ODS.
The metering engine also provides an interface for
consumers of the processed metering data to request
and receive specified subsets of data.

Consumer of metrics. There are multiple consumers
of metering data. A primary consumer of metering
data is a billing system, which applies rate plans to
the data and prepares customer invoices. Other con-
sumers of the data include data mining services and
report services that may further process and present
the data for analysis and response. The ODS may re-
quest data for various reasons, including gathering
real-time usage statistics for presentation to end
users on demand.

Interface protocols. The architecture can be sup-
ported with various interface definitions for the
agent, collector, and metering engine. It is impor-
tant that the interface be defined such that the re-
ceipt of data is explicitly acknowledged and the en-
tity accepting data becomes responsible for retaining
the data until it is transferred.

Mapping to implementation technologies
The metering architecture described in the previous
section can be implemented in many ways, which in-
volve many design choices. This section offers guide-
lines for implementing a metering service for an ODS
and its interfaces and gives examples of expressions
used in creating virtual records by means of com-
position rules.

Architecture vs implementation in UMI. The UMI im-
plementation environment imposes constraints that
affect the implementation and realization of the me-

Figure 1 Basic design pattern for metering, monitoring, 
 and SLA management components
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tering architecture. The primary constraints affect-
ing the implementation are:

(1) The endpoint is the domain of the ODS. The sen-
sors and agents are in the endpoint owned by the
ODS. UMI does not require ODS systems to host a spe-
cific implementation of a metering agent. However,
UMI intends to provide a sample implementation of
an agent that may be used by an ODS either directly

or with needed modifications. With no assurance of
common agents at endpoints, the implementation
does not support the concept of centralized config-
uration or management and control of agents. In-
stead, the interface to the collector is defined as a
callable interface that endpoints invoke to get or log
metering data.

(2) UMI presents its services to ODSs through a Web
Services interface using SOAP remote procedure calls.
This requires UMI metering to present the interface
to the collector as a Web Services call. This call,
logMeteredData(), is described in detail later in this
section. The collector function in the architecture is
realized in UMI through the implementation of this
Web Services call, which inputs data to the metering-
engine data storage. The ability to have multiple Web
servers to present the interface fulfills the scalabil-
ity requirement of the collector in the architecture.

The consumer interface is also implemented as a
Web Services call, getMeteredData(). It allows con-
sumers to request processed metering records and
is also described in detail later in this section.

Architectural entities implemented in the ODS. The
ODS wishing to record metering data must implement
the logical functions of an endpoint. This includes
the implementation of sensors and an agent, as
shown in Figure 4.

Sensors. An ODS must decide what variables it wishes
to measure and assign resource IDs to the variables.
The ODS must then decide in what units to express
the variables for measurement and how it will instru-
ment its service to obtain values for those variables.
The implementation of that instrumentation is the
responsibility of the sensors in the ODS.

Figure 2 Metering architecture
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As an example, let us assume the ODS is an income
tax preparation Web application, and the following
variables are to be measured:

● The length of time a user is logged into the ser-
vice in seconds (“sessionTime”)

● The number of forms the user accesses each ses-
sion (“formsAccessed”)

● The number of help menus the user accesses each
session (“helpAccessed”)

● The number of completed forms contained in the
final Internal Revenue Service submission
(“formsSubmitted”)

There are many ways the ODS might choose to in-
strument (i.e., build sensors for) any of these var-
iables. Let us consider sessionTime. The ODS may
choose to sample the time when a user logs in, sam-
ple the time again when the user logs out, and sub-
mit one metering record for sessionTime at log out.
An alternate implementation might be to submit a
metering record every 30 seconds while the user is
logged in. With the latter approach, the ODS can
maintain more current data in the metering engine
and exploit the composition functions (such as sim-
ple aggregation) in the metering engine to generate
the user�s total sessionTime on demand. It is ex-
pected that many ODSs will want to record metered
data in real time, exploit the composition functions
in the metering engine, and exploit the consumer in-
terface to get processed records back on demand.
But ODSs may use other mechanisms. For example,
an ODS may be an existing application that has al-
ways recorded usage statistics in its own database or
log files. When adapting to UMI, it may choose to
scan those local repositories once a week or once a
month to provide its metered data. The choice is en-
tirely up to the ODS.

A question that might arise here is “How is this ar-
chitecture applicable to traditional hardware mea-
surements like CPU seconds, bytes of memory, disk
storage, etc.?” Traditional measurements can be han-
dled in the following way. One can build sensors for
these hardware usage measurements, which would
simply be wrappers on the corresponding operating
system functions, and connect them to the agent run-
ning on the corresponding hardware platform. The
sensors are governed by the agent. By the time the
measurements leave the agent and get into the col-
lector, they look no different from the software ODS
measurements mentioned above.

Agent. The requirements for an agent implementa-
tion in the ODS are driven by performance. The over-
head of invoking a remote Web Services call dictates
that the collector interface be defined to accept an
array of metering records. For a service that wishes
to submit records in real time, this is most easily
achieved through the implementation of an agent
that accepts records in real time from the various
sensors, buffers them, and forwards them to the
logMeteredData() interface in batch. (It may appear
that these calls could be asynchronous, but that
makes the programming somewhat harder due to re-
liable delivery considerations.) UMI intends to pro-
vide sample code for such an agent that ODSs may
use, modify, or emulate.

The implementation of an agent must include the
interface it will expose to the sensors for receiving
metering records. It must also include the policy that
it will enforce regarding when to forward buffered
data to the logMeteredData() interface. This could
be configurable based on a combination of time and
the amount of data, such that it would, for example,
forward buffered data when the number of records
reaches a count of 500 or when five minutes elapses,
whichever comes first. The agent could also expose
a “flush” interface that is used by other parts of the
application to flush any buffered data on demand to
the collector, as when a consuming part of their ap-
plication requests processed data back from the me-
tering engine through the getMeteredData()
interface.

Consumer. An ODS may invoke the consumer inter-
face, getMeteredData(), for various reasons. The ex-
ample already given is that the ODS may want to
present up-to-date usage statistics to a user on de-
mand. Alternatively, the ODS may also want to ac-

Figure 4 Logical functions for ODS metering
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cess, for a given time period, billable records for all
users, to feed an invoicing service. It may request
other non-billable records that it has instrumented
solely for the purpose of analyses of usage patterns.

Architectural entities implemented in the UMI. The
collector and consumer interfaces for metering are
implemented as Web Services calls in UMI. The me-
tering engine database logically includes the config-
uration data and composition rules for each ODS. The
ODS metering data includes both the records that are
explicitly recorded through the collector interface
and the virtual records that are calculated based on
composition rules configured for the ODS.

The collector interface—logMeteredData(). The
Web Services call is implemented through the
logMeteredData() method of a Java class. The caller
inputs an array of MeterData objects as one of the
parameters to this call. Each MeterData object rep-
resents a record of metered usage. The Java signa-
ture of the logMeteredData() method is shown in
Figure 5.

Of particular importance is the unitOfWork param-
eter. This parameter is used to define a processing
boundary for any specified composition rules, includ-
ing aggregation. This allows the ODS to associate mul-
tiple metering records with a specified unit of work.
The unit of work value is generated by the ODS and
must be unique, that is, different from any previous
specified unit of work value the ODS has used. A unit
of work is opened with the first record received that
references the unit of work value and closed when

a record is received referencing the unit of work and
having the closeUnitOfWork field set to true.

The metering engine provides the capability to com-
bine multiple records into a new calculated (virtual)
record based on the composition rules configured
in the metering engine for the ODS. For this process-
ing to occur, it is necessary to identify the record set
to be processed. The unit of work defines a set of
records for which composition rules can be applied.
When the unit of work is closed, composition pro-
cessing is triggered. A unitOfWork value of zero is
reserved for records that are not intended for com-
position. This value may be used at any time for any
record and simply excludes such records from selec-
tion in any composition formulas. Such records are
immediately available for downstream processing.

As one example of using the unitOfWork parame-
ter, an ODS may want to bill based on hourly usage.
In that case, the ODS may put all records for an hour
in a single unit of work, closing the unit of work and
starting a new unit of work each hour. Each time a
unit of work is closed, the composition rules (in this
case, simple aggregation) would be applied to the
set of records in the unit of work. As another ex-
ample, an ODS may want to bill based on usage for
a login session. In this case the ODS may start a unit
of work when the user signs in to the service, record
all usage statistics for the user while signed in to that
unit of work, and close the unit of work when the
user terminates the session. Real and virtual resource
records for that unit of work would be processed
when the unit of work is closed.

Figure 5 Java signature of logMeteredData() method

public LogMeteredDataResponse logMeteredData(
   String odsName,      // Identifies which ODS is invoking the call
   String auditScopeId,    // Used for data reconciliation between client and 
  // server; = ODS source identifier + YYYYMMDD
 int packetId,  // Uniquely identifies specific invocation of services call
 MeterData[ ] meterData, // An array of MeterData objects, each with instance
            // variables resourceId, resourceUserId, 
            // measurementValue, and unitOfWork and array of Attribute objects
 int packetRecordCount,   // Indicates how many records client has declared 
 float packetHashValue, // Sum of all measurementValues in the call
 int auditScopeRecordCount,    // Running sum of all records sent within audit scope
 float auditScopeHashValue      // Running sum of packet hash values in audit scope
)
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The consumer interface—getMeteredData(). This
interface is intended for getting the metering data
out of the metering engine and into a consuming
module or service. This consumer could be a billing
service or a reporting service or even the ODS itself.
The function of this Web Services call is implemented
through the getMeteredData() method of a Java
class. The call is presented in a manner similar to
a database query, where the metering records re-
turned are those which satisfy the selection criteria.
The Java signature of the call is:

public GetMeteredDataResponse
getMeteredData(

String transId,
String odsInstanceId,
SelectionCriteria SC

)

The SelectionCriteria is a container class that spec-
ifies the constraints of the query. These constraints
include unitOfWork, startTime, stopTime, resour-
ceId, resourceUserId, and startingRecordReference.
Any of these constraints may be specified or left at
their default values. Only the constraints specified
are applied to the query. There is a configurable limit
on the number of records returned in any response.
The records returned are sorted in order of the
record reference identifier. If the number of records
satisfying the query exceeds the maximum that can
be returned, only a partial set is returned, and the
caller may retrieve the remaining records by reissu-
ing the query with an adjusted value for startingRe-
cordReference. The response class contains, among
other things, the array of meter records being re-
turned and a flag indicating whether all the selected
records are contained in the response.

Composition and virtual records. Composition is the
process of creating new metering records, referred
to as virtual records, by selecting and combining real
metering records. The new records are added to the
database and can be selected like any other record
through the consumer interface. In order to perform
composition, the following need to be defined:

● Set of records to be considered in the selection
process

● Criteria for selecting records to be included in
composition

● Calculation to be performed in computing the new
measurement value

● Attributes to apply to the newly calculated record

The following sections describe how these param-
eters are defined in UMI metering.

Defining the set of records for processing. The set of
records to be considered for processing must be com-
municated from the ODS. If the metering engine were
to arbitrarily initiate composition processing, this
might result in an incomplete record set that has only
a subset of the records intended for inclusion in the
composition. The mechanism used to communicate
these processing sets is the unit of work. Every me-
tering record is tagged as belonging to a unit of work.
Composition processing is triggered when a unit of
work is closed by a “sentinel” record that belongs
to the unit of work but also indicates that the unit
of work should be closed.

An ODS that does not define composition rules can
simply send the zero value for unitOfWork with each
record and not be concerned with closing the unit
with sentinel records. Similarly, an ODS that has only
defined simple aggregation for its composition rules
can reuse the zero value of unitOfWork and simply
use a sentinel record to define the aggregation
boundaries. For example, if the ODS wants to create
hourly aggregation records, it can send a sentinel
record every hour. The granularity on defining the
unit of work is left to the ODS. An ODS that presents
itself as a Web application may want to create a unit
of work for each user session and perform process-
ing when the session terminates. The mechanism is
very flexible and can support a very wide range of
usage.

Defining the records to be selected in a composition
rule. A record or records must be selected in a com-
position rule by the resource identifier. The selec-
tion may be further qualified by specifying values for
additional fields and key/value attribute pairs con-
tained in the record. For the purposes of discussion,
we can think of the selection rule as being expressed
as

Selection X � �resourceId�value,
resourceUserId�value, key/value,
key/value, ..., key/value�

where X is the record or set of records selected by
the specified criteria. If the selection criteria that is
specified selects a set of records, a simple aggrega-
tion is performed, resulting in a single record that
maintains common field values. The only required
field in this record selection format is the resource
identifier. UMI metering reserves the key value of
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“UMI_unique” to imply multiple execution of the
rule for each unique value of a field. For example,
the following composition rule fragment selects and
adds the formsAccessed and helpAccessed resource
identifiers that are marked with the same value for
the session key, and would form a new resultant vir-
tual record for each session in the unit of work set:

�resourceId�formsAccessed,
“Session”/“UMI_unique”� �
�resourceId�helpAccessed,
“Session”/“UMI_unique”�

Defining the computation in a composition rule. The
composition rule defines how the value for the new
resource identifier is computed. Aggregation and lin-
ear arithmetic on the metric values can be supported.
Aggregation is expressed by enclosing brackets. The
rules format and description is most readily described
by example. The following expression would define
a virtual metering record that has the virtual resource
identifier of sessionFormsAccessed:

�Virtual
resourceId�sessionFormsAccessed� �
�resourceId�formsAccessed,
“Session”/“UMI_unique”�

It is calculated by the summation of all the records
for a user with a resourceId of formsAccessed that
are marked with the same value for the session key.

Linear expressions for calculation of values can be
formed as follows, for example:

�newResourceId� � 2�aaa� �
0.5(�bbb�) � 10�ccc�

This expression accesses the record defined by
�aaa� and scales it by 2, adds the intermediate re-
sult with aggregated records defined by �bbb� and
scaled by 0.5, and adds that intermediate result to
the record defined by �ccc� and scaled by 10.

Defining the attributes to apply to a virtual record. The
virtual records created by aggregation or linear com-
position can be populated with static values defined
in the rule or with “key/value” pairs used to qualify
records in the selection portion of the rule. If we use
the syntax �new,”keyname”, “keyvalue”� to indi-
cate a new attribute with static values, and the syn-
tax �resourceId, keyname� to reference attribute
values from a selected record, then we can extend

our previous example for an ODS that sends a sen-
tinel record every 30 minutes as follows:

�sessionFormsAccessed,
�formsAccessed,”Session”�, �new,
”aggregationPeriod”, ”30 minutes”�� �
�formsAccessed, “Session”/”UMI_unique”�

It creates a new sessionFormsAccessed record that
has the session attribute and value from the refer-
ence and adds a new attribute which sets the aggre-
gation period.

Benefits of metering
The metering system architecture presented here of-
fers flexible ways to meter almost anything. The ODS
owner simply needs to build a sensor and connect
it to the agent at the endpoint. Raw measurements
can be flexibly composed into service units or other
metrics of business value. Computed metrics can be
provided to a variety of consumers through simple
interfaces and protocols.

The protocol among metering agents, collector, and
the engine that keeps track of audit scopes, record
counts, and so forth, allows for full compliance with
business systems� audit standards. The key/value pa-
rameters passed to the metering system allow the
usage to be labeled with identifiers specifying end
users and contexts, allowing for fine-grained anal-
ysis of usage at any level. This architecture enables
extensive analysis of usage and events to improve per-
formance, response times, and customer satisfaction,
and true “pay-as-you-go” models of ODSs can be
achieved.

Metering is a key function enabling the development
of ODSs, and thus positions IBM better with indepen-
dent software vendors. Metering and billing are the
quintessence of the “pay-as-you-go” model of ser-
vices. Metering is also critical for IBM to assess how
well its own hosting infrastructure is doing and to
make the necessary capacity adjustments.

Conclusion and future work
We have presented the architecture and design of
a metering service using UMI, one which is very flex-
ible in terms of data input, computing metrics, and
providing metric output to consuming modules and
services. We have also presented a mapping to the
current implementation planned for the UMI 2.1
release.
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The future of metering systems can proceed in sev-
eral directions:

● Implementing all the elements of the metering ar-
chitecture with well-defined protocols to a variety
of producers and consumers of metering data.

● Standardizing and enabling third-party vendors to
build sensors and agents for various resources and
services.

● Adding instrumentation to middleware like Web-
Sphere* MQSeries* or WebSphere Application
Server Enterprise (i.e., Java 2 Enterprise Edi-
tion** containers) so that some level of usage me-
tering can be done without having to build instru-
mentation into the target applications.

● Developing easier ways to specify composition of
metrics to be performed—perhaps by using a GUI
(graphical user interface) tool (e. g., wizards).

● Developing easier ways to configure metering el-
ements for a new ODS—again perhaps by using a
GUI tool.

Regardless of which of these directions (or an al-
ternative) is chosen by the implementors of meter-
ing services, it is clear that the role of metering in
the provision of on demand services is critical to the
success of those services and that this role will con-
tinue to develop and expand.
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