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The term “policy-based computing” refers to
a software paradigm that incorporates a set
of decision-making technologies into its
management components in order to simplify
and automate the administration of computer
systems. A significant part of this
simplification is achieved by allowing
administrators and operators to specify
management operations in terms of objectives
or goals, rather than detailed instructions that
need to be executed. A higher level of
abstraction is thus supported, while
permitting dynamic adjustment of the
behavior of the running system without
changing its implementation. This paper
focuses on the application of the policy-
based software paradigm to the automated
provisioning architecture described elsewhere
in this issue. We show how the use of policies
can enhance utility computing services by
making them more customizable and more
responsive to business objectives.

A utility computing system is a system for creating
and managing multiple instances of a utility service
within a shared IT (information technology) infra-
structure.1 A service provider maintains an aggre-
gation of computing resources that can be allocated
to different services. Customers of the utility com-
puting system request access to services of partic-
ular types, and instances of these services are pro-
visioned to meet their needs.

In IBM�s on demand architecture, each instance of
a utility service is called an “utility computing ser-
vice environment” (UCSE). In creating the UCSEs, re-

quests are made to resource managers (RMs) that
keep track of certain types of resources, their allo-
cations, and availabilities. There typically are RMs
for servers, storage, switches, routers, middleware,
and so forth. The RMs provide resources to the UCSEs,
which are appropriately configured to meet the func-
tionality and performance requirements of the par-
ticular service being supported. This will be described
in greater detail in the section “Background.”

Policies are considerations designed to guide deci-
sions on courses of action and can be used for nu-
merous purposes within utility computing systems.
The service provider responsible for the computing
environment manages the policies, which determine
how the environment is shared; for example, which
customers have priority, how reservations are man-
aged, how costs are allocated, and so forth. A ser-
vice provider with various environment instances (ag-
gregations of computing resources) manages policies
such as how each instance should be configured and
operated, how performance should be measured,
what to do in case of component failures.

The RMs that administer pools of specific comput-
ing resources manage policies regarding how re-
sources are reserved, whether overbooking is al-
lowed, how resources are monitored, and so forth.
Resource-specific policies depend upon the charac-
teristics that are associated with particular resource
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types: for example, storage systems have different
characteristics (space allocated, striping, access con-
trol) than networks (bandwidth allocation, packet
loss rate). A policy framework provides a general,
formalized way of controlling such customization
and variability within a system through the use of
policies.

As described in Reference 1, a utility computing infra-
structure architecture has been defined, and in-
stances of it are being developed in order to vali-
date its usefulness and completeness. Policy-based
technologies are also being defined,2 and standards
are evolving in certain areas.3 These technologies,
however, are still not very mature, and the structure
of policies and the interrelationships among them
are described differently in different systems. It is thus
of interest to investigate how policies can be applied
to utility computing systems, what types of policies
are needed, and how they extend the capabilities of
the overall environment.

In the next section, the utility computing infrastruc-
ture is presented and its principal architectural com-
ponents described. In the section “Policy-based com-
puting,” the concept of policy-based management
and a general framework for its application is intro-
duced, and in the section “Policy enablement,” we
show how policy-based technologies can be applied
to the utility computing infrastructure.

In the section “Utility computing policies,” we de-
scribe the types of policies that might be used within
such a system and how they may interrelate. In gen-
eral, the policy architecture must capture the details
of the various policy rules in a policy schema and
establish how policies are created and enforced
within the system. It must also indicate how policies
are related to other system decision-guiding struc-
tures like service level agreements (SLAs) and rules.
This is covered in the section “SLAs, policies, and
rules,” where it is also noted that certain resource
policies may be derivable from higher level aggre-
gate policies or business objectives, while others have
to be directly specified.

In the section “A gaming service example,” a detailed
description of a gaming service is presented, along
with specific policies that can be used in its opera-
tion. We discuss the principal sources of the policies
for such a service and how they are deployed. Fi-
nally, in the section “Conclusions,” we comment on
the status of efforts in this area, conclusions that can
be drawn, and projected future work that should be

undertaken to advance the state of policy-based
systems.

Background

A utility computing system creates and manages mul-
tiple instances of a utility service, each of which pro-
vides application functions to customers. Each UCSE
offering defines a UCSE type that can be built and
deployed on demand. Environments that are good
candidates for instantiation as UCSEs are those that
need a significant number of resources for a short
period of time, those that have complex requirements
so that users may not have the skills or time to de-
ploy them, and those that have resource needs that
vary over time and can thus take advantage of a
shared resource pool. A utility computing system can
rapidly deploy complex UCSEs that dynamically and
autonomically adjust capacity, using the services that
the utility computing system provides.

Customers subscribe to on demand services (ODSs)
using the OGSA (Open Grid Services Architecture)
business-provisioning service (OBPS). The OBPS con-
tains facilities supporting subscription, authentica-
tion, metering, SLA management, pricing, and rat-
ing. In addition to the OBPS, the utility computing
system contains an OGSA distributed resource man-
ager (ODRM). The ODRM is responsible for instan-
tiating and managing the UCSEs. Once a UCSE has
been created in response to a request to the OBPS,
the customer accesses the service directly. The princi-
pal architectural components that comprise the util-
ity computing infrastructure are shown in Figure 1.

The ODRM contains a planner whose purpose is to
build workflows that create, configure, and adjust the
working set of resources for the UCSE. When a user
subscription is processed, an ODS instance for the
environment is generated. The workflows created by
the planner are stored in the new instance service. To
generate the workflow, the planner uses input from
the parts catalog and its referenced resource man-
agers and from resource services (RSs), an ODS tem-
plate, and the policy database. The information col-
lected from these sources is described in Table 1.

The planner first builds a parts topology tree, the
leaves of which correspond to operations on RMs or
RSs. The leaves of the tree encapsulate the opera-
tions that need to be performed to build the ODS
environment. Workflows are generated by collect-
ing all of the operations referenced in the topology
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tree�s leaves. Each workflow must ensure that every
variable is generated by a process that computes its
value before it is passed to any other process as an
input.

After the ODS instance is instantiated with its work-
flow set, the reservation workflow can be invoked.
It is not until this workflow has been successfully run
that the reservation can be accepted and committed

Figure 1 Utility computing infrastructure architecture
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Table 1 Planning information

Parts catalog A set of parts, each of which describes one of the provider�s resources or processes. Parts are directly
related to the resources they encapsulate, and map workflows to operations on resource managers (RM).

RM An RM manages a specific type of resource. There is one RM for each resource type. It may handle
operations such as reservation, allocation, and configuration.

RS An RS is any service operating on infrastructure resources that is not a base resource operation.

ODS template The ODS template contains a pointer to the root part of the ODS environment being built. It also contains
values for the attributes found in the parts used to build the workflows that are not obtainable from the
policy database.

Policy database The policy database contains provisioning policies such as the minimum and maximum capacity of the ODS
environment, the date the system is to go online, the performance thresholds to be used, availability
requirements, and service class subscribed to.
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to the system. At activation time, the “create” work-
flow moves resources from the free pool and con-
figures them appropriately for the new ODS environ-
ment that they will support.

Policy-based computing
The Internet Engineering Task Force (IETF) has
adopted a general policy-based administration
framework that consists of the four basic elements
shown in Figure 2: a policy management tool, a pol-
icy repository, a policy decision point, and a policy
enforcement point.

Administrators define the policies that they wish to
use in the operation of the system with the policy
management tool. Once defined, these are stored in
a policy repository. In order to ensure interoperabil-
ity across products from different vendors, informa-
tion stored in the repository must follow an infor-
mation model specified by the IETF�s Policy
Framework Working Group.4 The actual points
within the system software at which policies are ex-
ecuted are known as policy enforcement points (PEPs).

Instead of communicating directly with the repos-
itory, policy enforcement points use intermediaries
known as policy decision points (PDPs). The PDPs are
responsible for interpreting the policies stored in the
repository and communicating them to the associ-
ated policy targets in whatever format is appropri-
ate. Associated PEPs and PDPs may be in a single de-
vice or in different physical devices. Different
protocols may be used for various parts of the ar-
chitecture, for example the COPS (Common Open
Policy Service) protocol5 or SNMP (Simple Network

Management Protocol)6 can be used for communi-
cation between PDPs and PEPs, and the policy repos-
itory can be a network directory server that is ac-
cessed using LDAP (Lightweight Directory Access
Protocol).7,8

The Distributed Management Task Force (DMTF)
is also involved in the creation of policy standards.
A high-level policy schema is included as part of the
overall common information model (CIM) schema.9

This defines policies as “condition, action” rules that
can be aggregated into policy sets that have policy
roles.

The primary advantage of a policy-based approach
is that it simplifies the complex task of administer-
ing large, distributed systems by allowing the spec-
ification of management operations in terms of high-
level objectives rather than detailed device-specific
parameters. It also supports separation of concerns,
in that decision points are called out explicitly, and
considerations that would lead to various alterna-
tives are captured in the policies. The use of a log-
ically centralized repository also enables detection
of possible conflicts between the policies assigned
to different devices.

Policies may be grouped according to disciplines, that
is, the particular aspects of a system that they have
been created to support (e.g., network quality of ser-
vice [QoS] or intrusion detection). Some aspects of
applying policies to a given discipline are specific to
the particular discipline, whereas others can be pro-
vided in a generic manner by using a set of common
algorithms and functions. Examples of capabilities
that can be provided in a generic fashion are: check-
ing if a policy is valid (Does it conform to the policy
schema?), determining whether a set of policies is
consistent (Are there conflicts?), checking if a pol-
icy is redundant (Is it covered by a combination of
other policies?), and determining if a policy is fea-
sible (Would it ever be executed?).

Additionally, each PEP and PDP in the system may
take on one or more roles. Roles further refine pol-
icies within a discipline. Thus, for network QoS, all
access routers may have the role of “edge,” whereas
all internal routers may have the role of “core,” and
they retrieve their respective policies from the pol-
icy repository based upon their roles.

Policy enablement
The utility computing infrastructure can be “policy
enabled” by incorporating a policy service (made up

Figure 2 General policy framework
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of the components depicted in Figure 3) in the over-
all architecture. There are three policy managers that
control access to policy creation and maintenance
for the three different types of policies in the sys-
tem, namely: (1) those for the service provider (SP),
which deal with the sharing of the computing infra-
structure among different ODSs; (2) those for utility
computing service environments, which deal with pol-
icies particular to the allocation and management
of computing resources supporting a given ODS; and
(3) those for resource managers, which deal with the
administration of pools of specific resources.

PDPs are associated with each SP, UCSE, and RM in-
stance. These, in turn, have associated PEPs that are
responsible for the enforcement of policies partic-
ular to their specific context. Figure 3 depicts the log-
ical components of the policy service. These can be
implemented in various ways. The PEPs for each
UCSE, for example, could be provided by a single soft-
ware component that has knowledge of the differ-
ent instances to which the policies must be applied.

Policies are communicated via a common policy re-
pository, where they are stored as XML (Extensible
Markup Language) documents. The policy service
has a common management graphical user interface
(GUI) with plug-ins for each of the different types of
policies being supported (SP, UCSE, and RM).

The policy managers are meant to deal with policy
information at a level of abstraction that is appro-
priate for interactions with a system administrator.
The policy schema specifying the interactions be-
tween the discipline GUI plug-in and the policy ser-
vice manager should thus capture policy information
at this level. The policies used by a PDP are meant
to cover an administrative domain, and so the pol-
icy schema used between the policy service manager
and the PDP should be at this “domain level.” The
policies used by a PEP need to specify device-
specific rules for a particular functional area. The
“device-level” policy schema used between the PDP
and the PEPs must reflect this system- and capability-
specific information. It would thus typically not be

Figure 3 Utility computing policy service
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stored in the policy repository and may take any
proprietary form, from an XML schema to a set of
system-specific configuration parameters.

The manner in which the policies at the different lev-
els are created, deployed, updated, and enforced
within the system is part of the policy architecture
that must be specified for every different type of util-
ity computing service. Certain device-level policies
might be derivable from domain-level policies, or ex-
plicit transformations might be incorporated into the
PEP specification. Alternatively, certain policies (like
access control lists) may need to be specified at the
administrator level and simply passed through to the
particular devices that use them.

Utility computing policies
As mentioned above, there are three principal cat-
egories of policies related to the provisioning of ser-
vices within a utility computing system: those that
deal with the sharing of the computing infrastruc-
ture among different ODSs; those that deal with pol-
icies particular to a given ODS; and those that deal
with the administration of pools of specific resources.
The general types of policies within each of these
categories are listed in Table 2.

Each of these policy types will be described in the
following sections. The list is not meant to be ex-
haustive, but to provide examples of the kinds of con-
siderations that might be applicable in utility com-
puting systems. Each class of utility typically has its
own specific sets of policies. We present here those
that are considered to be somewhat generic; in a sub-

sequent section we provide examples of policies that
are relevant to a specific type of utility.

Service provider policies. The service provider re-
quires policies for resource distribution, reservations,
and pricing. Resource distribution policies are used
to arbitrate between the different demands of the
service instances that are being provided within the
shared utility computing infrastructure. The policies
may be as simple as “first come, first served,” or may
involve priorities with preemptions (i.e. taking re-
sources from a lower priority instance to give to a
higher priority instance) or penalty functions (i.e. tak-
ing a resource from the instance that causes the least
loss in revenue). Reservation policies specify whether
classes of resources can be reserved for use by a
planned service, how far in advance reservations can
be made, what happens if the service cannot be pro-
visioned at the time promised, and so forth. Resource
distribution and reservation policies interact with one
another. Obviously, the manner of interaction be-
tween services that are running and services that are
reserved but not yet provisioned must be specified.
Pricing policies have to do with issues such as the way
in which customers are charged (using a flat fee,
based on usage, etc.), whether rebates apply and un-
der what conditions, and whether refunds must be
made if resource distribution and reservation policy
goals are not met. These policies also interact with
resource distribution and reservation policies, which
means that potential inconsistencies and conflicts
must be resolved in the design of the policy archi-
tecture and the concomitant schemas.

Table 2 Basic policy types by category

Policy name Description

SP utility policies Resource distribution policy Arbitration
Reservation policy How far in the future
Pricing policy Price of environment

UCSE policies Resource acquisition policy Maximum number of servers; when to add
Failure recovery policy Replacement policy
Pricing policy Price to UCSE user
Monitoring policy Aggregate metrics
Service-specific policy Provisioning constraints, workload management, etc.

RM policies Overbooking policy Amount of overbooking allowed
Forecasting policy Order new resources
Pricing policy Price of resource
Resource monitoring policy Availability
RM-specific policy For example, networks, storage, and servers
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UCSE policies. UCSE policies capture considerations
that apply to aggregations of resources allocated to
a given ODS instance. Examples include policies for
resource acquisition, failure recovery, pricing, and
monitoring. Considerations such as when to ask for
additional resources, and, for cost containment pur-
poses, the maximum number of resources allowed
per service instance, are managed by resource acqui-
sition policies. Failure recovery policies specify whether
failed resources need to be replaced, whether check-
points need to be taken and how often, whether hot
standbys are required, and so forth.

The pricing at this level is intermediate between the
SP and RM pricing. It aggregates the resource costs
and adds additional cost considerations due to over-
all service factors like congestion, failure, and QoS
options. These have to reflect the operation of the
specific configuration of the multiple resources com-
prising the service and may even involve other ser-
vices that are subsumed (e.g., a Web hosting service
might incorporate a network communications ser-
vice). These costs are taken into consideration by
the UCSE owner when the pricing policy is set. Mon-
itoring policies describe what metrics need to be pro-
vided, to whom they should be provided, and how
often; these are specified with respect to the aggre-
gate configuration (e.g., end-to-end response time).

In addition to the types of policies discussed earlier
that deal with aspects of participation in the utility,
there are policies defining the behavior of specific
UCSEs that would need to be specified by the ODS
developer. Some of the general categories of pol-
icies of this type are those for provisioning con-
straints, workload management, metering, capacity
planning, and failure recovery. These policies relate
to particular classes of service instances and the spe-
cific control points that they externalize.

Provisioning constraints include such considerations
as collocation (whether two resources must be hosted
on the same server, or whether they must be on sep-
arate servers), and dependencies (whether a partic-
ular software resource requires another software re-
source or a particular type of hardware resource,
whether one software resource needs to be started
before another resource can start, etc.). Workload
management policies deal with such considerations
as the manner in which transactions are dispatched
to clusters of servers and the priorities assigned to
different transaction classes. To facilitate billing and
accounting operations, the necessary usage and op-

erational data must be metered. Metering policies de-
termine what information needs to be gathered, how
it needs to be summarized or otherwise combined,
and where it is to be used. Obviously, the metering
rules must support the overall pricing policies. Ca-
pacity planning is necessary in order to determine or
predict the need for additional resources in order to
meet the operational goals of the service instance,
given its system context.

Resource manager policies. Resource manager pol-
icies that apply to the operation of the utility com-
puting system include those that deal with consid-
erations like overbooking, forecasting, pricing, and
monitoring. RMs administer pools of resources, and
can execute various strategies in allocating them to
UCSE instances. Overbooking policies specify whether
resources that are associated with pending reserva-
tions can be overcommitted, and, if so, what degree
of risk is acceptable in this context. Forecasting pol-
icies determine when additional resources should be
acquired, and may be simply based on the number
of resources remaining idle, or may incorporate pro-
jections of load or new reservation requests. Pricing
policies at this level deal with how the costs of in-
dividual resources are ascribed to the specific in-
stances to which they are allocated. This can be stated
in terms of a given fixed price per resource, based
on a contractual commitment, or can be calculated
based on a number of other considerations (e.g.,
amount of use, replacement cost, number remain-
ing in free pool, etc.). Monitoring policies describe
the metrics that need to be provided, to whom they
should be provided, and how often. Typical metrics
for computing resources include response times,
loads, and utilizations. The RM policies interact
among themselves and with the SP policies described
earlier. The policy architecture needs to capture all
of these relationships.

In addition to the types of policies that are defined
by an administrator of the utility computing system,
there are policies that manage the behavior of spe-
cific resources. These policies are specified by the
RM developer and affect the various controls exter-
nalized by the particular class of resource. The most
common of these policies pertain to networks, stor-
age, and servers.

Network policies deal with such attributes as band-
width, input and output queue-scheduling priority
at the endpoint servers for each link, TCP (Trans-
mission Control Protocol) congestion window, VLAN
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(virtual local area network) configuration, VPN (vir-
tual private network) configuration, and the num-
ber of concurrent connections supported. Storage pol-
icies deal with such attributes as storage allocation
(size), data integrity, access control, response time,
availability, request distribution (random or sequen-
tial), permanence, and so forth. Server policies deal
with such attributes as CPU utilization, I/O rates, de-
gree of multiprocessing, memory size, caching strat-
egies, response time, availability, and so forth.

SLAs, policies, and rules
Any instantiation of the policy-based architecture will
typically support customer services for which SLAs
are defined. Certain parts of these SLAs determine
policies for the system resources that were provi-
sioned to fulfill them. SLAs are business contracts be-
tween organizations that define the obligations that
each organization has to the other within some sys-
tem context. Policies capture the directives of an or-
ganization and are generally configurable by admin-
istrative personnel. They provide guidance on what
to do and when to do it and on the importance at-
tached to a specific action or goal. Internalized pol-
icies or rules capture internal system logic and are
not generally configurable by administrators al-
though they may be changed by personnel with a de-
tailed knowledge of how the system operates.

Thus SLAs are exposed inter-organizationally, pol-
icies are exposed within an organization, and rules
are typically not exposed (except to development per-
sonnel). In certain cases there may be a one-to-one
mapping between policies and portions of SLAs; in
some cases, policies may be derivable from business
objectives stated in SLAs. Similarly, in certain cases,
policies may be rules themselves, though of neces-
sity ones that have been externalized to system ad-
ministrators, or policies may simply set conditions
or action parameters in multiple system rules that
are not externalized.

Policy transformations
As indicated earlier, there are a number of different
types of policies at a number of different levels of
abstraction that need to be considered in the utility
computing infrastructure. Some of these are spec-
ified in the SLAs associated with instances of ODSs;
some are derived from business objectives in the
SLAs; some are specified by the service provider
through an administrative console; and some are de-
termined by the developers of the UCSEs and RMs

that externalize specific decision points to which pol-
icies may be applied.

Ideally, one would typically like to be able to derive
policies from business objectives, and derive lower-
level resource policies from higher-level aggregate
policies, in as automated a manner as possible. The
problem of determining the right set of underlying
policies to meet a business objective can be solved
in different ways, depending upon the particulars of
the required transformations. We consider some gen-
eral approaches next.

Simple transformations. In many circumstances, the
mapping from higher-level policies (or business ob-
jectives) to lower-level policies can be done directly
with simple transformations. This is the case when
information is only being refined, as in a direct sub-
stitution (e.g., mapping domain names to IP ad-
dresses). This is also the case when the higher-level
definition is actually a class definition that aggregates
a number of different attributes at the lower level
(e.g., associating a class of service like “gold” to a
given set of goals for network parameters, such as
response time and packet loss rate). Even when high-
er-level objectives are being mapped onto lower-level
policy constructs, the transformations may be sim-
ple. In determining the number of servers that are
needed to meet a desired response time and the class
of service that each server must provide, a simple
table of server characteristics might suffice. Also, if
the underlying system only supports a small number
of alternative configurations, a simple search may
be sufficient to see which is needed to meet a de-
sired objective (e.g., an availability target).

Analytic models. For more complex transformations,
if an analytic model can be developed to determine
the business objective as a function of the underly-
ing policies, the model parameters that would sat-
isfy the required business parameters can be deter-
mined. For example, if an analytical expression exists
to determine the outbound bandwidth needed to
support a given inbound traffic rate at a Web site,
the expression can be inverted to obtain the requi-
site traffic rate for any desired limit on outbound
bandwidth. That is to say, if there exists a known
closed form expression for the function f, where
f(p) � b, b is the bandwidth limit, and p is a vector
of policy values, it would be possible to use numer-
ical or other techniques to find the values for the
components of the policy vector p that would attain
the value b.
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Generic models. For some performance character-
istics, such as response time and throughput, com-
puting systems are often modeled as queuing net-
works. Under certain sets of simplifying assumptions,
queuing network parameters can be derived analyt-
ically, but most often are arrived at by simulation
techniques. Given such a parameterized model, one
could solve for the model parameters that would sat-
isfy the required business parameters.

Online adaptive control. Other classes of parame-
terized models, like those based on concepts from
control theory or statistical techniques like linear re-
gression, can be used to determine and fine-tune the
parameters needed to obtain a given business ob-
jective. Neural networks can also be used to deter-
mine the impact of specific policy parameters on the
requisite business objective. The neural network or
adaptive control scheme could then be used to
dynamically adapt policy parameters to meet the de-
sired goals in the running system. This approach is
fairly flexible, but generally requires extensive train-
ing data.

Case-based reasoning. In certain instances, it may
be possible to use learning techniques to develop im-
plicit models of system behavior. In a case-based rea-
soning (CBR) approach, the settings for system pa-
rameters that attain certain goals would be learned
experientially from historical data. A database of past
cases is maintained, where each case is a combina-
tion of the policy parameters and the business ob-
jectives that were achieved when those parameter
values were used. In order to determine the set of
policies that would be needed to achieve a new bus-
iness objective, the case database is searched to find
the closest matching case, or the existing cases that
bracket the new requirement are interpolated, to es-
tablish the appropriate settings. The definitions of
the cases and the strategies for interpolation tend
to be specific to the particular policy discipline be-
ing considered, but the same case manipulation soft-
ware and algorithms can be used across different dis-
ciplines.

The CBR approach depends on extensive historical
data in order to build a set of cases rich enough to
be consulted in guiding new decisions. In a system
that has been running for an extended period of time,
it is possible to build cases from prior experience.
However, at bootstrap time, there is no prior expe-
rience to exploit. Thus, a CBR approach needs to be
combined with an heuristic approach (using an an-
alytical expression or approximation), which is used

until enough historical data is collected, or the sys-
tem has to be pre-populated with a set of cases syn-
thetically derived or obtained experimentally.

A gaming service example
Consider an instance of a utility computing system
that supports multiplayer gaming, that is, an “ODS
game environment offering.” It provides specific ser-
vices for the development, testing, and production
of online games within a shared computing infra-
structure. Using this gaming utility, dynamically scal-
able game environments can be deployed and man-
aged to meet the changing needs of game developers
and publishers. The creation of a game environment
instance is presented in Reference 1 and will not be
discussed here, except as it relates to policy.

Basic components. The basic game environment
contains two types of dynamically allocated resourc-
es: a set of game servers that handle the game logic,
and a set of proxy servers that handle player oper-
ations such as log-in, session selection, chat, and se-
curity checks, as well as functions such as session cre-
ation and management. In addition to these variable-
capacity resources, there are a number of fixed
resources, including:

● A database server where game states are stored
● A game ODS management node where the OBPS

and ODRM components reside
● Various network components

A game ODS instance, with its associated links to the
main infrastructural components is depicted in
Figure 4.

Basic policies. Most of the policies used to control
the gaming environment are based on templates. For
example, consider the MonitorDelay policy which
monitors the average processing delay of the Game
servers.

Rule: MonitorDelay
If (averageProcessingDelay(event.serverData)
� delayThreshold(event.GameID)

& onLine(event.serverID)
& ruleArmed(“MonitorDelay”,

event.GameID)
{rebalance_load(event.ODSOwner)}

This rule is stored in the policy repository at ODS
creation time (i.e., when the ODS gaming offering is
defined). However, it is not until UCSE instance cre-
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ation time that thedelayThreshold for the given
GameID is stored in the policy repository. Values
such as these that are specific to the game instance
are derived from the SLA for the particular UCSE in-
stance. The SLA may additionally specify instance-
specific rules that do not apply to all game instances.
For example, the game servers that contain game-
specific processes may require special process mon-
itoring and a set of associated policies to handle these
monitored values. SLAs that capture various policy
components pertain between the Internet service
provider and the ODS owner, the service provider and
the ODS owner, the player and the ODS owner, and
the ODS owner and the game developer.

The gaming utility has a number of different types
of policies, each of which will be described in turn.
The basic policy types are summarized by category
in Table 3. These are versions of the more general
policy types previously described for utility comput-
ing systems.

SP policies. Arbitration policies are simple: any game
instance will not be allocated more than its maxi-
mum or less than its minimum number of servers,
and allocations are processed on a “first come, first
served” basis.

RM policies. The current reservation policy accepts
a gaming ODS reservation if it does not request more
server resources than the ODS offering maximum, is
not more than some fixed number of days in advance,
and allows for a sufficient number of days for re-
sources to be acquired if they are not currently avail-
able. If the resources are not already available, the
reservation policy uses the average length of time
required to order and receive a new resource to de-
termine if resources can be acquired by the target
activation date. The free pool always keeps some sur-
plus servers available for dynamic allocations.

The capacity planning policy is limited to the sub-
mission of a request for resource ordering when the

Figure 4 Gaming utility computing service
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current reserve falls below a given threshold. The
size of the free pool is the only parameter consid-
ered in this policy.

ODS offering policies. The performance policies for
the gaming utility cover aggregation and threshold-
ing. Metric collection agents residing on the allocated
servers supply the raw performance data to the PEP.
The PEP contains a single generic rule for each server
type (game or proxy) that aggregates and smoothes
the incoming data. Separate base rules are required,
as different performance metrics are utilized for each
server type. At runtime, the PEP creates an instance
of the base rule for each game environment. Asso-
ciated with each rule instance is a collection object
(the gameInstance-serverType collection) that was
supplied at resource allocation time. This collection
object keeps track of which resources belong to which
environments and the type of each resource.

Periodically, the “aggregate and smooth” data pol-
icy generates an internal summary event, which is
used by a thresholding rule. Again, there is a sep-
arate rule for each server type and an instance is gen-
erated at runtime for each game environment. If the
performance threshold is exceeded, the recovery ac-
tion will allocate additional capacity (if available) to
the server collection in question. When a recovery
action is taken, the triggering rule is suspended for
a period of time to allow the environment to take
advantage of the added capacity. The flow just de-
scribed is depicted in Figure 5. Similar rules to pro-
cess the proxy server performance data are also de-
fined.

The availability policies use a “heartbeat” mecha-
nism. Several heartbeats (i.e., connection attempts)
must be missed before a server is considered un-
reachable, and thus the main function of the avail-
ability rules is to collect missed heartbeat events un-
til enough have occurred to be considered significant.
Heartbeat rules are temporarily suspended for the
server in question after a server has been identified
as unreachable.

Metering policies use data collected using both “pull”
(polling) and “push” models. For example, process-
ing delay data are pushed from the game servers,
while the current number of machines allocated to
each environment instance is pulled from the man-
agement server. In general, metering data are sum-
marized and stored. Any threshold evaluation is done
off-line by the various systems that use metering data
as input, such as billing.

ODS environment instance policies. Policies specific
to the game instance allow for custom behavior. At
the very least, the threshold values used in the ge-
neric policies are specific to the instance. Threshold
values can be incorporated into the copy of the ge-
neric policy for a particular UCSE or looked up
dynamically when the rule is executed.

Policy creation and deployment. This subsection de-
scribes how policies are created and how they are
deployed within the example system. There are two
sources of policy information: the SLA document as-
sociated with a particular offering and the admin-
istrator console for the service provider. In Figure
6 the ODS game environment offering is portrayed
from a policy creation and deployment point of view.
The UCSEs in this case, as described above, are game
instances that consist of a collection of proxy serv-
ers, a collection of application servers, and a num-
ber of shared infrastructure components. Policy dis-
tribution consists of the distribution of the policy
specifications to the policy repository, the distribu-
tion of any subscriptions that are not implicit to the
policy enforcement point, and the distribution of the
metric collection agents to the resources themselves.

Policies in the repository. Policies can be defined and
stored in the repository before any instance that uses
them is created. They are designated inactive until
there is an association with an appropriate instance.
Policies are created and stored in the repository dur-
ing several of the environment creation phases, at
the time of creation for the utility infrastructure, ODS
template, subscription, or the ODS itself, and when
any component is updated.

When the utility is created, the initial set of SP pol-
icies (described in the section “Basic policies”) are
defined and stored in the policy repository. When

Table 3 Gaming utility policies

SP policies ● Arbitration
● Reservation

RM policies ● Capacity planning
ODS offering policies ● Environment configuration

requirements
● Generic performance and

availability
● Metering

ODS environment
instance policies

● Specific game environment
thresholds

● Custom metering data
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the ODS template is created, generic policies (pol-
icies that apply to all UCSE instances) and policy tem-
plates (policies with variables that will be set at sub-
scription time) are defined. At subscription time,
additional policies that are specific to the instance
are created, and the template policies that need to
be fully instantiated are completed. At UCSE creation
time, additional policies may be generated by the
build workflow.

Policy subscriptions. Utilities may have multiple PEPs.
This may be desirable because of necessary domain-
specific processing or for scalability reasons. In the
currently planned deployment, we have three PEPs
per ODS offering. A runtime PEP monitors ODS envi-
ronment performance and availability. One off-line
PEP enforces billing and penalty policies, and a sec-
ond one evaluates configuration constraints when re-
sources are allocated. In this case, the PEPs can sub-
scribe to policies based on their domain because

there is only one PEP per domain. The PEPs and their
subscriptions are created when the ODS offering is
defined.

In the future, it is likely that the enforcement of the
runtime policies will be shared by multiple PEPs. For
example, we may have one PEP per UCSE instance.
In this case, a new PEP will be instantiated and sup-
plied with the appropriate subscriptions each time
a new UCSE instance is created.

Metric collection agents. Whether an agent uses a
push or pull model, the PEP must be configured to
receive its data. The PEP registers with the utility and
indicates the ODS environment instances for which
it has responsibility. When an instance is created, the
PEPs are told which resources have been assigned to
the instance, and the PEPs are provided with a ref-
erence to the resource collections owned by the in-
stance. Resource collections can have associated pull

Figure 5 Game server performance policies

GAME 1, SERVER 1 (Game_Instance_ID, GameServer)

AGGREGATE AND
SMOOTH

GAME 1, SERVER 2 (Game_Instance_ID)  

RULE (CLONE 1)
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RULE
Game1.Summary_monitor_evt

30 000 ms over_load_Alert

over_load_Alert

SUSPEND RULE
FOR 600 000 ms

ACTION

PERFORMANCE 
DATA

SUSPEND RULE
FOR 600 000 msAGGREGATE AND

SMOOTH

RULE (CLONE 2)
Game.Server.Server_Monitor

RULE
Game2.Summary_monitor_evt

20 000 ms

PERFORMANCE 
DATA

CHECK THRESHOLDS

ADD CAPACITY

CHECK THRESHOLDS

APPLEBY ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004132



Figure 6 Policy management architecture
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data, push data, or both. For collections requiring
metric polling, a metric polling process is created.

Conclusions
In this paper, we have presented architectural ex-
tensions to the utility computing infrastructure that
enable the use of policy-based computing technol-
ogies. We have also identified classes of policies that
are useful within a shared resource infrastructure and
identified methodologies for creating, deriving, de-
ploying, and enforcing these policies. A hypothet-
ical instantiation of a utility for multiplayer gaming
has been used as an example to help make the dis-
cussion more concrete, but the overall mechanisms
for policy enablement have much broader use.

We have shown that various types of policies are re-
quired within these complex systems. Policies will
have to be defined at various times and by various
means. This is because these policies cover different
disciplines (performance, availability, configuration,
etc.); also, it is due to the characteristics of the en-
tities that the policies support.

There are many outstanding research problems in
this area. Some ways of capturing the interrelation-
ships between policies and automatically deriving
lower-level policies from higher-level policies or bus-
iness objectives have been identified. The simplest
example would be to correlate policies that refer-
ence the same parameters or resources. In other
cases, the triggering of one policy can generate an
additional condition used by other policies. For ex-
ample, the triggering of a policy to handle a hard-
ware failure may generate a repair-request condi-
tion, which supplies mean and maximum repair-time
statistical parameters that are used by a second pol-
icy to schedule repairs.

These processes need to be applied, studied, and for-
malized. Detection and resolution of policy conflicts,
especially those that occur between sets of policies
defined for different disciplines, has only been at-
tempted in very simple cases. Methods for represent-
ing policies in such a way as to make it easier for
administrators to understand their interrelationships
would also be quite useful. This entire field of study
is still not well understood.
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