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It has become increasingly desirable for
companies worldwide to outsource their
complex e-business infrastructure under the
utility computing paradigm by means of
service level agreements (SLAs). A successful
utility computing provider must be able not
only to satisfy its customers’ demand for high
service-quality standards, but also to fulfill its
service-quality commitments based upon
business objectives (e.g., cost-effectively
minimizing the exposed business impact of
service level violations). This paper presents
the design rationale of a business-objectives-
based utility computing SLA management
system, called SAM, along with
implementation experiences.

It has become increasingly desirable for companies
worldwide to outsource their computing resources,
e-business applications, and business processes, to
focus on the growth of their core competency and
to competitively improve their productivity by ex-
ploiting leading-edge computing technologies. Aim-
ing at capitalizing on this information technology (IT)
outsourcing trend, leading IT providers are explor-
ing cost-effective means of maximizing the utiliza-
tion of shareable computing and human resources
under the utility computing model.1 From the cus-
tomer�s viewpoint, the utility computing model
promises on demand delivery of IT capabilities and
cost-effective usage-based pricing schemes. Service-
quality management objectives are assured by the
provider in accordance with the established service
level agreement (SLA) contract. The customer need
not know the implementation details of the provid-
er�s service level management (SLM) processes.2

A utility computing SLA is an IT service contract that
specifies the minimum expectations and obligations
that exist between the provider and the customer of
a utility computing service.3 , 4 It includes one or more
service level components, each of which specifies the
measurement, evaluation, and reporting criteria for
an agreed service-quality standard5 such as:

● How raw quality measures (e.g., service availabil-
ity or performance) for an agreed service compo-
nent (e.g., on demand storage provisioning) in the
contract will be gathered

● How raw quality measures will be adjudicated to
become qualified quality measures (so that, for ex-
ample, “service outages caused by the customer or
associated with contract maintenance provisions do
not contribute to the total service downtime calcu-
lations”6)

● How qualified quality measures will be used to eval-
uate the achieved service levels (e.g., computing
monthly Lotus Notes* availability as “the monthly
average availability of the Lotus Notes application
running on the e-mail servers, weighted by the num-
ber of Lotus Notes IDs on each server”)

● How service level evaluation results will be re-
ported (e.g., “monthly network latency statistics can
be viewed at the following URL [uniform resource
locator]”)

● How unexpected disputes on service level evalu-
ation results will be resolved
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Based upon the agreed set of quality standards (or
service level targets), ramifications of not meeting
or exceeding the standards can be explicitly included
in the SLA contract. If a service level target (or a ser-
vice level objective2) is linked with a penalty clause
for a service level violation, it is considered to be a
service level guarantee (SLG); otherwise, it is a ser-
vice level intent. The clarity, attainability, and man-
ageability of a service level guarantee are usually bet-
ter than those of a service level intent in a commercial
SLA contract.

A service level target in an SLA contract can be stated
based upon objective quantitative measurement of
computing system availability or performance (e.g.,
“monthly availability of Individual Web Server will be
no less than 99.7 percent”) or business process effi-
ciency or effectiveness (e.g., “no less than 97 percent
of on demand storage provisioning requests are fulfilled
within two business days”). The refund policies for
missing service level targets can be specified rela-
tive to the service cost (e.g., “credit customer one day
of the service cost if the outsourced e-business infra-
structure is unavailable more than 15 minutes a day”)
or in absolute terms (e.g., “credit customer two thou-
sand dollars if a monthly average network latency across
the provider ISP [Internet Service Provider] access links
to the ISP�s backbone is higher than 95 milliseconds”).
A sample (abridged) Web hosting SLA contract is
provided in the Appendix.

From the viewpoint of a utility computing provider,
offering a few customer-neutral service functions

atop a common service delivery infrastructure ex-
ploits economy of scale better than pursuing a high
degree of customization of its service functions for
every potential customer. This customer-neutral ap-
proach to establishing SLA contracts is adopted by
most network and server collocation service provid-
ers.7 However, a competitive IT outsourcing contract
normally requires nontrivial customer-specific cus-
tomization or extension of the provider�s “standard”
service offerings to accommodate the customer�s
unique IT outsourcing needs. When the number of
such customer-specific SLA contracts grows, the com-
plexity increases in the provider�s service delivery
environment and SLM processes.8 A credible study
on a leading IT service provider�s SLA reporting cost,
for example, has shown that several millions of dol-
lars could be saved annually by reducing the cost of
generating the monthly reports for 100 high-valued
customer-specific SLA contracts by no more than 20
percent. Thus, it is important for a successful utility
computing service provider to be able to satisfy its
customers� demand for customer-oriented IT out-
sourcing functions with high-quality services and to
fulfill all of its SLA commitments based upon bus-
iness objectives (e.g., cost-effectively minimizing the
exposed business impact of missing SLA commit-
ments).

Figure 1 highlights the business logic for service level
reporting (or SLA compliance reporting). It shows
that the gathered raw quality measures must be ad-
judicated first before they can be used as qualified
quality measurement. The service level evaluation

Figure 1 Business logic for service level reporting
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step can be triggered to generate the quality attain-
ment reporting data for a past (completed) service
level evaluation period or for the current evaluation
period. After making changes to the input or imple-
mentation of any one of the steps, that step as well
as the following steps must be re-executed to update
the affected service level reports. Activation of such
a report update process is necessary when, for ex-
ample, the qualification status of a quality measure
needs to be changed after a dispute about the qual-
ity measure is resolved between the customer and
the provider.

In order to make timely adequate service manage-
ment decisions based upon the provider�s SLA com-
mitments, the provider�s SLA management system
must be capable of performing on demand interme-
diate service level evaluations with support for ad-
judication processes for contractual quality mea-
sures. The intermediate service level evaluation
results must be as accurate and current as possible
so that appropriate SLM processes can be executed
in a timely manner.

A leading utility computing provider must proac-
tively: (1) maximize customer satisfaction with com-
petitive service level reports (with regard to both cov-
erage and attained quality), (2) minimize the exposed
business impact of service level violations, and (3)
lower the cost-to-quality ratio of executing SLM pro-
cesses. However, these goals cannot be sufficiently
and effectively supported by the existing service qual-
ity management products and common service man-
agement practices9 for the following reasons:

● Existing service quality management products do
not support SLA compliance evaluations well be-
cause of their limited support of the adjudication
processes for quality measures.10

● Contractual and internal quality measures on com-
puting system health or performance are usually
sent directly to service personnel (who usually
manage systems by experience) or system manage-
ment agents (which usually manage systems by in-
frequently changed thresholds or condition-action
rules). Most service personnel and system man-
agement agents know little about the established
SLA contracts; moreover, most of them incorrectly
equate contractual service level targets to raw qual-
ity-monitoring thresholds.

● Service levels on efficiency or effectiveness of bus-
iness processes (e.g., resource provisioning pro-
cesses and problem resolution processes) are
usually managed by a simple and static task pri-

oritization scheme, such as those based upon se-
verity levels.

● When computing-resource or human-resource con-
tention situations, or both, are caused by unexpected
system management alerts, ad hoc SLM processes are
usually used to determine which management ac-
tions should be carried out first by the available
service personnel or system management agents.
Resolution-time-based business impact assess-
ments of the alerts are not clearly linked with the
provider�s SLA commitments and the intermedi-
ate service level evaluation results for the affected
SLA contracts.

Existing service-quality management technologies
and methodologies, therefore, need to be improved
to enable unified, business-oriented approaches to
fulfilling SLA commitments.11,12 This paper presents
the design rationale of the utility computing SLA
management system called SAM (SLA Action Man-
ager) and our implementation experiences with it.
The SAM project aims to develop a generic SLA man-
agement framework and an integrated set of ad-
vanced service level management technologies that
among other benefits do the following:

1. Enable the provider to deploy an effective means
of capturing and managing SLM-related contrac-
tual data as well as the provider�s internal man-
agement data.

2. Enable the provider and the customer to review
and analyze intermediate service level attainment
reports on demand.

3. Assist service personnel and service management
agents in ordering quality management alerts
based upon the exposed business impact over
time.

4. Automate the prioritization and execution man-
agement of SLM processes, including the assign-
ment of SLM tasks to service personnel using con-
tinual optimization technologies.

The remainder of the paper is organized as follows.
The next section presents the SLA semantic model
of SAM with highlights on nontrivial data manage-
ment needs for executing SLM processes based upon
business objectives. The third section illustrates how
SAM can be an integral component of a utility-com-
puting operating environment. The fourth section
presents the principal architectural components in
SAM, and the fifth section elaborates on the service-
quality alert ordering capabilities of SAM. In the sixth
section we present the design of the process-based
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SLM resource optimizing scheduler of SAM with per-
formance comparison from event-driven simulations,
and then we conclude our discussion.

The SLA semantic model of SAM

An SLA contract legalizes a mutual agreement be-
tween two parties on a service offering and an agree-
ment on change management details. It also codi-
fies how service quality will be objectively measured
against agreed service level targets. Finally, it details
which remedies are applicable to both parties when
the targets are missed.

It is often unappreciated that related data for SLA
compliance reporting (e.g., quality metric types, ser-
vice level computation algorithms) are a proper sub-
set of the SLM-related contractual data (e.g., pricing
structure, SLA rebate computation algorithms) that
are important for business-oriented SLA manage-
ment. We refer to all SLM-related contractual data,
which include the data that cannot or need not be
explicitly part of the SLA document (e.g., unsched-
uled conditional service maintenance periods, recur-
ring monthly service charges), as the SLA Data. We
call the provider�s service quality management data
the SLM Data.

For example, a managed storage service contract that
offers virtual disk space to a customer with an avail-
ability target requires that the provider manage the
mapping between the virtual disk space and the cor-
responding physical storage resources. The SLA Data
in this case comprise all contractually described data
attributes associated with the availability of the vir-
tual disk, including pricing, required capacity, avail-
ability target, and so forth. The corresponding set
of SLM Data includes the data attributes associated
with this mapping (e.g., physical storage server
names, allocated capacity). Although the SLM Data
and the SLA and SLM Data relationships must be
managed well by the provider, such noncontractual
implementation details do not have to be exposed
to the customer.

To the best of our knowledge, there is still no com-
mercially available satisfactory means of capturing
and managing the SLA Data, the SLM Data, and the
relationships between them in support of SLA-driven
service-quality management approaches. The SLA
and SLM data and relationships are often poorly man-
aged as an ad hoc collection of paper documents,
text files, spreadsheets, database records, and other
items.

Figure 2 illustrates the staged approach of SAM to

Figure 2 Staged approach of SAM to capturing and managing SLA and SLM Data
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capturing and managing SLA and SLM Data based
upon contract life-cycle management activities. The
SLA Data are established during the contract author-
ing phase and may be represented in a variety of for-
mats (e.g., printed text, tables, arithmetic formulas,
or formal language specifications). Once signed, the
SLA Data are extracted and represented in a Com-
mon Intermediate Representation, independent of
how the SLA contract is to be fulfilled. These data
are then associated with a Fulfillment Solution, which
is a multilevel implementation-independent relation-
ship graph of the SLA-related SLM Data. For exam-
ple, for a managed storage service contract, the SLA
Data refer to the storage service components and
associated service levels, whereas the SLM Data in
the fulfillment solution refer to (at level 1) the set
of attributes required to compute the contractual or
internal service levels for the contract and link them
(at level 2) to the set of fulfillment linkage specifi-
cations that locate the relevant data and algorithms.
Exact details of the Fulfillment Solution are related
to the nature of the contracts supported in SAM (i.e.,
the set of contract offerings represented in the Com-
mon Intermediate Representation) and could incor-
porate many linkage levels. Finally, the Fulfillment
Implementation (e.g., service delivery environment
configurations and other sources of relevant data)
stores the actual SLM Data in various databases and
locales as referenced by the Fulfillment Solution.

As part of our research effort in creating a generic
and extensible intermediate representation of util-
ity computing SLA contracts, we have developed a
high-level information model that facilitates an it-
erative, top-down approach to capturing and man-
aging the SLA Data based upon the purposes (or the
semantics) of the needed contract data elements.13,14

The model differs from other SLA-related informa-
tion models15,16 in that it focuses on the necessary
and sufficient steps to affect business impact com-
putation, a requisite step in proactive SLA manage-
ment (including action execution and reporting). We
have validated the SLA semantic model with more
than 60 commercial IT outsourcing SLA contracts or
templates, including those from the Information
Technology Association of America (ITAA) Appli-
cation Service Provider (ASP) SLA Library.17 The set
of SLA contracts or samples comprises more than 200
service level components in total for various service
level targets for IT system availability and perfor-
mance and business process effectiveness and effi-
ciency. We believe the model is applicable to a very
broad set of utility computing SLA contracts. The

model can be extended by using other third-party
models as its companion models.

Figure 3 exemplifies the primary relationships be-
tween the core elements of the model in the Unified
Modeling Language** (UML**)18 with regard to the
information needs for contract-wide SLA rebate re-
porting, an instance of SLA-based business impact
reporting. The relationships have labels such as “use”
and “includes.” To facilitate top-to-bottom reading,
some relationships are passive (e.g., “is generated
by”).

Starting from the top, we see in the diagram that an
SLA contract includes information on the customer,
which can be a single person, a single organization,
or several organizations (e.g., the Joint Information
Systems Committee members of the UKERNA con-
tract19). The semantic element [Customer] captures,
among other SLA Data, customer names, contact per-
sonnel, billing address, and so forth. [Customer] as
well as [Provider] can be expanded through a third-
party information model for person and organiza-
tion, such as the person and organization model sup-
ported by the LDAP (Lightweight Directory Access
Protocol) White Pages Schema,20 Customer Profile
Exchange,21 and others. The element [Duration] cap-
tures contract start date, contract end date, contract
termination terms and conditions, and other items.
[SLA Refund/Reward Data] captures, for example, the
contractual terms on the SLA rebate settlement in-
terval (e.g., “credits and premiums will be aggregated
and settled on an annual basis”).

The relationships, represented in UML by solid lines,
are an essential component in the semantic model
and define specific interactions between the princi-
pal semantic elements. Although most of them are
self-explanatory, several of them deserve special at-
tention.

Figure 3 shows [Qualified SL Measurement Data] is gen-
erated by applying [SL Qualification Rules/Algorithm] to
[Actual SL Measurement Data], i.e., raw quality mea-
sures. In computing service availability, for exam-
ple, quality measures include “service up” and “ser-
vice down” times. The qualification algorithm is
specified in the contract and takes [Qualified
Inclusion/Exclusion Data] as input (e.g., as customer-
approved service downtime periods). Including this
relationship in the SLA semantic model of SAM is im-
portant because IT outsourcing contracts often place
restrictions on the total amount of service downtime
for service maintenance per service level evaluation
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period. Service maintenance periods for a single ser-
vice delivery site may also need to be adjudicated
based upon the service maintenance periods of other
service delivery sites (e.g., “provider shall perform
maintenance in a manner that ensures that one Web
Hosting Environment with Geographically Diverse Web
Hosting Environments will be fully operational and ac-
cessible at all times.”).

A single [SLG Refund/Reward Algorithm] may be
linked with more than one [SL Evaluation Data] be-
cause the rebate computation for a single service
level guarantee may use the evaluation results for
several service levels. This nontrivial one-to-many
relationship can be exemplified by the following ex-
cerpt from a commercial SLA contract: “A Service
Level Default occurs when Provider fails to meet a Min-

Figure 3 Primary relationships between SLA semantic model elements of SAM for contract-wide SLA rebate computation 
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imum Service Level during any month of the Term, at
any time, or fails to meet an Expected Service Level
with a Performance Category on four (4) or more oc-
casions during a calendar twelve (12) month period
following the Acceptance Date Plus five (5) months.”
We note that, in this example, the evaluation results
for two types of service level targets are used in com-
puting the yearly SLA rebate: monthly Minimum Ser-
vice Level and yearly total number of occasions that
the monthly Expected Service Level is missed.

To compute the overall SLA rebate, the [SLA
Refund/Reward Algorithm] uses an accumulation of
individual service-level guarantee refund and reward
data sets along with contract-wide SLA refund pol-
icy statements such as “a maximum of 25 percent of
the Customer�s monthly fee will be credited each month
(limit one credit per [network] line per month).” The
service level guarantee refund and reward data sets
are organized into service entities, each of which cap-
tures the functional specifications for a service com-
ponent in the contract, for example, help desk, net-
work service, or learning utility service. We note that
every service level component codifies the agreed
quality for one and only one service entity, and sev-
eral service level targets can be specified for a single
service entity. We have seen an SLA contract with 12
service entities and 64 service level targets.18

The SLA semantic model of SAM includes a notion
of service package graphs, composed of service pack-
ages and transition triggers. They enable the model
to capture contractual agreements on how service
level targets can change (e.g., “customer may add or
delete Performance Categories by sending written no-
tice to Provider at least ninety (90) days prior to the
date that such new Performance Categories are to be
effective”) and how the SLA rebate computation al-
gorithm can change (e.g., “customer credit for the first
month of a new order, which meets the [refund] re-
quirements, is 25 percent of the prorated monthly fee”).
A [Service Package] can be considered as a data con-
tainer for more than one [Service Entity] under con-
tract-defined circumstances. The transition from one
[Service Package] to another can be accomplished
by some contract-defined event. It is possible that
an intermediate [Service Package] is needed to make
the service-level computations that are required dur-
ing the transition neat and orderly.

SLA manager in a utility computing
operating environment
Figure 4 illustrates, at a high level of abstraction, how

an SLA manager (such as SAM) can be an integral
component of a utility-computing operating environ-
ment that promises “the delivery of standardized pro-
cesses, applications, and infrastructure over the net-
work, as a service, with both business and information
technology functionality.”22 The utility computing ser-
vices and the underlying physical IT infrastructure
resources (including network routers, firewalls,
server machines, and storage devices) collectively
form the managed utilities in the environment. By le-
veraging existing utility computing functions such as
virtual resources, a new service can be composed and
managed as a composite service with characteristics
that are distinguished from the sum of the constit-
uent utilities. For example, an on demand applica-
tion-renting service can be offered as a single utility

Figure 4 SLA manager in a utility computing operating 
 environment
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by integrating a set of software license-management
utilities, license-aware application utilities, and data
storage utilities.

In the advanced service delivery environment, each
managed utility is associated with a utility manager
that coordinates and automates the management of
the physical and virtual resources of the utility
through advanced IT system management technol-
ogies (such as policy-based resource provisioning and
security management technologies).23,24 A compos-
ite utility typically requires its own management in-
terfaces and tools separate from those for its phys-
ical or virtual resources.25 The aforementioned on
demand application-renting service, for example,
needs its own manager to manage the necessary in-
tegration modules for the service and to integrate
the management functions of the constituent util-
ities.

Service-level and business-impact reporting data can
be generated by the SLA manager based upon:

● SLA contract data
● Provider�s internal service level management ob-

jectives
● Operations support system/business support sys-

tem (OSS/BSS) data
● Contractual and internal quality measures on util-

ity computing functions (e.g., availability and per-
formance of the managed utilities)

● Contractual and internal quality measures on util-
ity computing management functions (e.g., effec-
tiveness and efficiency of the OSS/BSS processes).

Besides the SLA-related monitoring and reporting
functions, the SLA manager can perform SLA-related
control functions as well. It can leverage state-of-the-
art IT system management technologies (e.g., con-
tinual optimization, policy-based management, au-
tonomic computing, and grid computing) as the
utility managers do.

The SLA manager and the SLM processes that it man-
ages actually provide a process-based control to the
utility manager interfaces and to the utility manage-
ment interfaces. The SLM processes can be manual,
semiautomated, or fully automated. The result of ex-
ecuting either an automated or a manual service-
quality management task is usually a modification
to the overall configuration of the managed utilities.
The overall OSS/BSS process instances essentially or-
chestrate all of the utility computing management

activities in the SLA manager, utility managers, and
managed utilities.

Principal architecture components in SAM
The SAM system is designed to be an extensible dis-
tributed SLA management environment that enables
a utility computing provider to deploy an SLA-driven,
business-impact-based SLM process management so-
lution that not only can assist service personnel and
service management agents in ordering quality man-
agement alerts based upon exposed business impact,
but also automate the prioritization and execution
management of SLM processes, including assigning
SLM tasks to service personnel and service manage-
ment agents.

Figure 5 illustrates the primary interactions between
the principal components in SAM. After an SLA con-
tract is established, the SLA Data are imported into
SLA Data storage via an SLA contract processor based
upon the SLA semantic model of SAM (see Figure 3).
The SLA Data are then linked with the necessary in-
ternal SLM Data via an extensible SLM data manage-
ment framework (the SLA and SLM Data Integrator)
based upon the staged approach of SAM to captur-
ing and managing SLA and SLM Data (see Figure 2).
Every contract is bound with a unique SLA manage-
ment object (SMO) in SAM, which interacts with the
other service management components to manage
the execution of the contract (e.g., processing con-
tract-specific on demand resource-provisioning
requests).

We note that accessing the SLA and SLM Data of SAM
through a data management system using data ac-
cess interfaces based on XML (eXtensible Markup
Language) allows the implementation details of the
SLA and SLM Data storage design to be hidden from
other SAM components and related applications. This
is particularly effective for SAM because of the dif-
ficulties inherent in describing a universal SLM Data
schema for all contract offerings before their defi-
nition. A relational table-based data storage must
either represent parameters as a set of generic ta-
bles (e.g., ParameterTable, ParameterRelationTable,
and ParameterTypeTable) or represent parameter sets
as text-based attributes within other entities. Both
approaches introduce a weak notion of semantic in-
tegrity by obscuring the essential data relationships.
Semistructured data storage holds the promise of
greater flexibility, but it is still somewhat experimen-
tal. An XML-based data management interface per-
mits both.
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Every established SLA contract is associated with one
and only one SMO in SAM. Each SMO essentially trans-
forms the associated SLA contract into an active com-
puting entity in the distributed SLA management
environment. Common functions supported by each
SMO include, among others:

● Managing the SLA and SLM Data for the associ-
ated contract

● Performing complete and intermediate SLA com-
pliance evaluations according to the business logic
for service level reporting (see Figure 1) with sup-
port for both manual and automatic adjudication
processes of quality measures

● Associating anticipated quality alerts with contract-
specific (exposed) penalty functions

● Driving the determination of one or more SLM pro-
cesses for each quality alert specific to its contract
(by working with service personnel and other ser-
vice management agents)

● Associating the needed SLM processes for handling
a specific quality alert with contract-specific (ex-
posed) penalty functions

Implementation details of the SMOs are hidden from
the rest of the system via a common XML applica-
tion programming interface (API) to the SMOs that
is based on SOAP (Simple Object Access Protocol).
With the recognition that every commercial SLA con-
tract includes a clause for resolution of disputes, ev-
ery SMO is required to re-evaluate complete and in-
termediate service levels and related business impact
assessment data when the qualification status of a
quality measure recorded in SAM is changed. The cost
and efficiency of managing the life cycle of utility
computing SLA contracts can be improved signif-
icantly via the SMOs and the SMO manager, which
supports mainly contract change management ac-
tivities.

Figure 5 Key component technologies in SAM
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The Cross-SLA Quality Alert Manager gathers qual-
ity alert data from all of the SMOs, normalizes and
aggregates the penalty functions across all contracts,
and maintains one or more ordered lists of (active)
quality alerts in terms of business impact. The or-
dered lists of quality alerts can be formatted in XML
or HTML (Hypertext Markup Language) and distrib-
uted to other service management agents and per-
sonnel in support of their decision-making needs.
The lists are updated when the status of a quality
alert changes.

The Cross-SLA SLM Process Manager gathers SLM
process execution management requests from all of
the SMOs, normalizes and aggregates the penalty
functions across all contracts, and continually opti-
mizes the execution of the SLM process instances
based upon the provider�s business objectives (or SLM
process execution policies). The SLM processes are
prioritized not only according to the penalty func-
tions, but also according to the needed resources
(e.g., qualified service personnel for a manual task)
for each step of the processes when the resource re-
quirements are available. The SLM processes can be
implemented by means of several workflow engines.

Service-quality alert ordering in SAM
The working principles of the approach used in SAM
to ordering cross-SLA quality alerts by exposed bus-
iness impact over time (or by resolution-time-based
penalty functions) are illustrated in Figure 6. It shows
the quality measures that may affect multiple con-
tracts are first received by the Cross-SLA Event Man-
ager of the system via SLM events, each of which con-
veys a condition at a particular time (e.g., “server X
is down at time T,” “server X is up at time T,” and
“new resource provisioning request X arrives at time
T”) that deserves the provider�s attention according
to all of the contract-specified quality measurement
criteria and service level targets. When receiving a
contract-specific SLM event from the Cross-SLA Event
Manager, the SMO processes the event according to
its own SLA and SLM Data. If a new quality alert must
be generated, the SMO assesses the exposed business
impact of the alert on the basis of the contractual
terms and latest quality measurement statistics for
the current service level evaluation interval, and as-
sociates the alert with a penalty function in accor-
dance with the time the alerted condition will be re-
moved. The penalty functions for the alert from all
of the affected SMOs are normalized and aggregated
in the Cross-SLA Quality Alert Manager. The man-
ager ensures that the ordered lists of cross-SLA alerts

which it maintains are current and makes the lists
available to its client applications, such as service per-
sonnel�s Web browsers and service management
agents.

We note that the quality-alert-ordering capability of
SAM is developed mainly as a decision support func-
tion. Each supported alert-ordering algorithm re-
flects a distinct preference of the receivers of the alert
lists. Figure 7 exemplifies three penalty-function-
based alert-ordering algorithms that we have imple-
mented in our SAM prototype, assuming the business
impact metric in use is the additional (exposed) SLA
rebate amount. The penalty diagram in the figure
shows that there were two action-demanding qual-
ity alerts when the diagram was generated. It also
shows that the provider was exposed to an additional
cumulative penalty of $200.00 if the alert “S1 down”
was not resolved within 15 minutes (relative to the
time that the diagram was generated) and $600.00
within 45 minutes. Similarly, the provider was ex-
posed to an additional cumulative penalty of $50.00
if it did not resolve “S2 down” within 10 minutes,
$100.00 within 20 minutes, and $150.00 within 40
minutes. Note that the penalty amount data shown
in the figure are used to facilitate the presentation.
Service personnel, for example, need not see the data
in practice.

The Earliest Higher Penalty Time–Complete Order
(EHPT-CO) algorithm sorts all of the exposed (or pre-
dicted) penalty points in chronological order on the
basis of their respective penalty time. The Earliest
Higher Penalty Time–Partial Order (EHPT-PO) al-
gorithm takes into account only the earliest penalty
point of each SLM event. Instead of sorting the pen-
alty points by their respective penalty times, the
Higher Penalty Rate First–Partial Order (HPRF-PO)
algorithm sorts the earliest penalty point of each
quality alert on the basis of the ratio of extra penalty
amount and time to the penalty point. Notice that
“S1 down” is placed before “S2 down” by this algo-
rithm.

Although the output generated by EHPT-PO or
HPRF-PO appears more concise and user-friendly
than that of EHPT-CO, EHPT-CO output facilitates ex-
ploiting estimated resolution times for action-
demanding SLM events. For example, if it would take
more than 10 minutes to complete the needed SLM
process for “S2 down” and less than 15 minutes for
“S1 down,” the provider should execute the SLM pro-
cess for “S1 down” first to minimize the total exposed
penalty.
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SLM process execution management
in SAM
The most significant aspects of the industrial revo-
lution at the beginning of the Twentieth Century
were the innovations led by the automation of pro-
duction. Most contemporary service providers un-
derstand the importance of achieving revenue and
profile goals by integrating and automating OSS/BSS
processes and are seriously reviewing and improv-
ing the execution of their business processes.26 In
light of the complexity of implementing and man-
aging high-quality utility computing services, it is im-
portant for a utility computing provider to take ad-

vantage of contemporary process automation and
integration products (such as WebSphere* Process
Manager and WebSphere InterChange Server) and
make the execution of its SLM processes cost-effec-
tive, flexible, and manageable.27

The Cross-SLA Process Execution Manager of SAM
automates the prioritization and management of dis-
crete service management tasks at the SLM process
level according to the resource needs of each task
by means of continual optimization technologies. It
enables SAM to be an autonomic SLM process exe-
cution management system in which monitoring,

Figure 6 Ordering cross-SLA quality alerts by exposed business impact
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analysis, planning, and execution of SLM processes
can be done automatically in accordance with bus-
iness objectives.28 This process-centric self-manag-
ing approach to fulfilling utility computing SLA com-
mitments enables the service delivery team to focus
on managing SLM processes in business terms, rather
than resolving discrete system availability or perfor-
mance issues by intuition.

We have developed an optimizing scheduler for the
process execution manager so that SAM can manage
the task assignments of service personnel and ser-
vice management agents well. Note that the use of
the word optimizing here refers to the goal rather
than to the result, in much the same spirit as the ex-
pressions optimizing compiler and query optimizer.
For technical reasons, as will be outlined below, it
is extremely unlikely that the exact optimal solutions
found for most problem instances considered by the
SAM scheduler could be found in an acceptable
amount of time.

The SAM scheduler assigns SLM tasks to service per-
sonnel (or employees) and software agents on the
basis of a job-based task management model. The
tasks in each job are assumed to be performed ac-
cording to chain precedence; that is, there is a strict
sequencing of the tasks within a job, and a given task
can only be started when the previous task is com-
plete. Every job and task can be associated with a
penalty function. The scheduler tries to minimize the
sum of the exposed business impact, one summand
for each job or task, based upon its absolute or rel-
ative completion times.

The SAM scheduler takes into account personnel
availability information, including, for example,
lunches, breaks, and shift start and end times. Per-
sonnel skills and training on various tasks are also
considered. Essential tasks that cause built-in delays
but do not directly involve the existing personnel can
be modeled. Such delaying tasks might pertain to
work performed by software agents, work performed
by personnel from other shops, and similar work sit-
uations. The scheduler can allow the common as-
signment of tasks to personnel, so that an employee
assigned to one task would also be assigned to all
other tasks in a collection of tasks. It also allows a
set of tasks to be defined in a way that they cannot
be handled simultaneously, perhaps as a result of
common resource requirements. Multiple priority
levels of jobs are modeled. If a higher-priority job
arrives, it will cause immediate preemption of a task

Figure 7 Examples of penalty function based quality alert
 ordering algorithms

800

700

600

500

400

300

200

100

0
0 50 6030 4010 20

P
E

N
A

LT
Y

 ($
)

TIME (MIN)

$50
$150$100

$600

$200

PENALTY DIAGRAMS FOR ALL EVENTS
AT SAT SEP 29 21:50:27 EDT 2003

S2 DOWN
S1 DOWN

5

4
3

2

EARLIEST HIGHER PENALTY TIME - COMPLETE ORDER
AT SAT SEP 29 21:50:27 EDT 2003

RANK EVENT
TIME TO NEXT 
PENALTY

ADDITIONAL 
PENALTY

1 S2 DOWN

2 S1 DOWN

3 S2 DOWN

4 S2 DOWN

5 S1 DOWN

10

15

20

40

45

$50

$200

$100

$150

$600

1

5

4

2

3

EARLIEST HIGHER PENALTY TIME - PARTIAL ORDER 
AT SAT SEP 29 21:50:27 EDT 2003

RANK EVENT
TIME TO NEXT 
PENALTY

ADDITIONAL 
PENALTY

1 S2 DOWN

2 S1 DOWN

10

15

$50

$200

EARLIEST HIGHER PENALTY RATE - PARTIAL ORDER
AT SAT SEP 29 21:50:27 EDT 2003

RANK EVENT
TIME TO NEXT 
PENALTY

ADDITIONAL 
PENALTY

1 S1 DOWN

2 S2 DOWN

15

10

$200

$50

1

BUCO ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004170



associated with a lower-priority job, as long as that
preemption is useful.

The summands in the function to be optimized are
generalizations of the sort of deadline penalties typ-
ically studied in scheduling theory.29–31 The sched-
uling problem of assigning tasks to employees and
other resources while minimizing the total penalties
belongs to a class of so-called NP (nondeterministic
polynomial) hard mathematical problems,32 for
which exact solutions are essentially intractable to
attain. Despite the fact that a special case of our
scheduling problem is shown to be NP hard in Blaze-
wicz et al., 29 we observe that the potential savings
in penalties possible with a good quality scheduling
tool can be quite dramatic as compared with an ad
hoc solution. Moreover, we think customers will be
significantly more satisfied if such a scheduling tool
is implemented, because the assignments of tasks in

jobs to employees and other resources will be fairer.
The result will be greater customer loyalty, an in-
tangible but very real benefit.

The SAM scheduler is event-driven, responding syn-
chronously to each event arrival with a (possibly
empty) list of new preemptive or nonpreemptive as-
signments, or both, followed by an acknowledgment
that the list of assignments has been completed. If
there is no work for the scheduler to do, which oc-
curs when there are no queued tasks to consider, it
simply “sleeps,” waiting to be awakened, for exam-
ple, by a subsequent job arrival. If any queued tasks
exist, it “thinks about,” or analyzes, possible varia-
tions of the resulting scheduling problem instances.

Figure 8 illustrates a sample scenario in which the
SAM scheduler synchronously responds to stochas-
tically arriving events such as job arrivals, task com-

Figure 8     Sample scheduler time line
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pletions, data changes, and manager requests for a
schedule. Time is represented on the horizontal axis.
Each event (the top part of the figure) may cause
the SAM scheduler to return scheduling decisions and
the like (the bottom part of the figure). Then the
SAM scheduler goes back to thinking, as illustrated
by the number juggler, until the next event occurs.

Because the scheduler must not be a bottleneck it-
self, it must decide quickly about a problem instance
that it has not necessarily anticipated. For example,
new job arrivals generally cannot be anticipated with
much accuracy, and the scheduler therefore does not
attempt to analyze such problem instances in ad-
vance. But an arriving job may be of high priority,
and thus the first task in that job might preempt an
existing task assignment. Or a job might arrive when
appropriate personnel are idle. This quick response
philosophy argues for a scheduling scheme that is
fast and produces a solution that is of at least rea-
sonably good quality. More specifically, its immedi-
ate task assignments and reassignments should not
be so poor that decent quality continuations of the
schedule become impossible. The scheduler employs
a greedy scheduling heuristic for this purpose. Al-
though we do not have sufficient space to describe
this scheme here, we note that it is very similar to
the scheduling algorithm described in Reference 33

for an apparently quite different problem. A com-
plete description of the greedy algorithm used for
the problem in this paper is given in Reference 34.
This greedy scheme is employed to initiate analysis
of task completion events as well.

In contrast, there should also be a gracefully inter-
ruptible scheduling scheme which, given sufficient
computation time, can potentially improve upon the
solution quality obtained by the greedy algorithm.
Thus, the scheduler employs a randomized sched-
uling heuristic as well. It is gracefully interruptible
in the sense that each randomized schedule can be
produced quickly, so that stopping the scheduler im-
mediately will only disrupt one of many iterations
of the algorithm. The best solution found is always
kept. For details on randomized algorithms see Ref-
erence 35. A complete description of the random-
ized algorithm used for the problem in this paper is
given in Reference 34.

Figure 9 illustrates a possible sequence of schedules
computed for a particular potential problem in-
stance. The x-axis represents computation time, and
the y-axis represents the total exposed penalty. From
left to right, the first circle, shown as white, refers
to the greedy heuristic scheduler, which always runs
first. The remaining orange and gray circles refer to
multiple instances of the randomized scheduler. In
particular, an orange circle indicates that no improve-
ment has been achieved during that scheduler iter-
ation. The corresponding solution is ignored. A gray
circle indicates that the solution achieved during that
scheduler iteration represents an improvement and
is thus the current best solution. The corresponding
solution is retained until such time as it is displaced
by a better one.

The scheduler will never be idle in the presence of
queued tasks, that is, if any scheduling problem re-
mains to be analyzed. Moreover, it must consider
an essentially infinite collection of problem variants.
It is not known precisely how long each task will take
to be completed, and these completion time varia-
tions can impact the quality of the scheduling subtly
but considerably. Therefore, the scheduler tries to
consider a set of problem variants that at least ap-
proximates all of these possibilities, essentially by bet-
ting both on which task will complete first and ap-
proximately when that task will be completed. The
scheduler also tries to hedge these bets by thinking
about all of them. At the beginning of each period
of computation, the scheduler quickly solves a net-
work flow resource allocation problem.36 The goal

Figure 9 Greedy versus randomized heuristic scheduler
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is to find the optimal “think time” allocations. This
network flow covers all the possible task completion
time bets, maximizing the weighted average of the
expected improvement as a function of time, thus
minimizing the expected penalties paid. The network
flow formulation also ensures that the scheduler will
have thought about, or analyzed, the actual first task
to be completed by the time it actually does. Com-
plete details on this network flow problem are given
in Reference 34.

It might be useful to consider an analogy here to the
scenario of a chess-playing computer playing a hu-
man challenger. The computer would typically think,
or analyze, continually, trying to optimize its next
move, regardless of whose turn it is. When it is the
human�s turn, in particular, an aggressive chess-play-
ing computer might think about which move the hu-
man might make, and when. The computer could
then allocate an appropriate amount of time for each
of these possible “bets,” and thus have an answer
ready instantly whenever the human makes a move.

In light of the dynamic changing nature of the ser-
vice delivery environment, the SAM scheduler only
reveals the very next, immediate, task assignment to
an employee (upon completion of the previous task),
the next preemptive task reassignment (upon the ar-
rival of a higher-priority job), and so on. Such a just-
in-time philosophy has the benefit of not showing
an employee any hypothetical, in-the-future task as-
signments, so that the employee is not confused if
reassignments are made because of arrivals and data
changes beyond the ability of the scheduler to an-
ticipate. Additionally, the employee cannot pick and
choose among several tasks, perhaps making a non-
optimal choice. The employee sees one task at a time.

Figure 10 shows the relative merits of the job and
task scheduling algorithm of the SAM scheduler and
several other common task-scheduling heuristics.
The “First-Come-First-Serve (FCFS)” algorithm sim-
ply schedules ready tasks in order of job arrival.
Roughly speaking, the “Earliest Deadline” algorithm
first schedules the ready task that has the earliest
deadline. Similarly, the “First Slope” algorithm first
schedules the ready task for which the first ratio of
incremental penalty to incremental time to deadline
is largest. The “Highest Slope” algorithm first sched-
ules the ready task for which the highest ratio of in-
cremental penalty to incremental time to deadline
is largest. The SAM scheduler does the best here, in
part because it exploits the most information and
thinks more continually than with the other algo-

rithms. We note that the SAM scheduler is modular,
and its continual optimization framework is appli-
cable to other application domains.

The figure is generated based upon a set of event-
driven simulation experiments. The simulation
model assumes a Poisson arrival of jobs (low:med:
high � 1:2:3) with low arrival rate chosen to achieve
the threshold penalties, five job types (normal dis-
tribution), 10 employees, and an average of three
penalty points per job. Additional details and fur-
ther experimental results are provided in Reference
34.

We note that, in practice, an SLM process may be far
more complex than a chain precedence task list. A
workflow engine generally supports the modeling of
an SLM process as a network of tasks represented by
a directed graph. The order in which tasks are per-
formed is determined by control flow links between
tasks. These links can be conditional (that is, resolved
at run time). A task can be the starting point or end-
ing point of any number of links (allowing for par-
allel execution). Moreover, a task can be a single en-
tity (e.g., a program), a subprocess (allowing for
simplification and reuse), or a block of tasks that are
repeated until some condition is met (allowing loop-
ing behavior).

Figure 10 An event-driven simulation-based evaluation of  
 the optimizing scheduler of SAM
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Figure 11 shows a sample on demand storage pro-
visioning process captured as a workflow. The semi-
automated process integrates several manual tasks
(shown by person icons in the figure) with automated
tasks performed by service management agents. The
process reports measurement data for two service
levels: a noncontractual service level for initial re-
sponse time [Report_SL_Measurement1] and a con-

tractual service level for overall response time to
an on demand storage request [Report_SL_Mea-
surement2].

Although the sample process is relatively simple,
it incorporates a number of features commonly
supported for directed task graphs in workflow
engines:

Figure 11 A sample on demand storage-provisioning process captured as a workflow
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● Looping (e.g., [Wait_for_Review1] is a loop of sev-
eral tasks that are repeated until an exit condition
is met)

● Conditional execution (e.g., [Wait_for_Review1] is
only executed if the storage request is complete)

● Parallel execution (e.g., [Report_SL_Measurement2]
and [Close_ticket] can be performed simul-
taneously).

The initial design of the scheduler focused on op-
timizing the use of human resources for process in-
stances consisting of tasks in chain precedence or-
der (i.e., a list of tasks performed in sequence with
no loops, no conditional execution, and no parallel
execution). This scheduling problem is already ex-
traordinarily challenging under the chain precedence
assumption, and we thus chose to implement this ver-
sion initially. We recognize, however, that the chain
precedence model of jobs and tasks is not always suf-
ficient for modeling SLM processes, and generaliz-
ing this is one item on our list for future work.

We have created a method to dynamically convert
a less restrictive task graph into chain precedence
order at run time, based upon the SLM process man-
agement needs for the sample on demand resource-
provisioning process. Although this conversion can-
not necessarily be accomplished for an arbitrary task
graph, it does allow us to support a larger and more
realistic subset of task graphs than just those satis-
fying the chain precedence constraints.

In order to accomplish this run-time conversion to
a chain precedence task list, the codified SLM pro-
cess must be annotated at the workflow build time
with information, such as the expected length of time
to perform a task and the links that are expected or
can be ignored for the purpose of resource alloca-
tion. Before a managed workflow process is de-
ployed, a process analysis step is required to capture
the process specification details needed at run time
and to ensure that the process obeys the following
restrictions:

● There can be no possible parallel execution of tasks
that require scheduled resources. However, there
can be parallel execution paths that contain only
tasks which (1) do not require any scheduled re-
sources and (2) have no immediate or subsequent
links with tasks that do require scheduled re-
sources. Such parallel paths can be defined by flag-
ging the initial links as ignore for the purpose of
resource scheduling. All subsequent links are au-
tomatically regarded as ignore links.

● A task can be the starting point for at most one
unconditional link that is not flagged as ignore or
one conditional link that is flagged as expected.

● A subprocess or block task must be flagged as
transparent if any of its tasks require resource
scheduling. The expected number of iterations for
transparent blocks can be set to a number greater
than one.

● Expected times must be supplied for all tasks that
are not on an ignored path (that is, not the end
point of an ignored link) with the exception of
transparent-subprocess or block tasks for which
expected times must be supplied for all contained
tasks (subject to the same condition).

At run time, the Cross-SLA Process Execution Man-
ager monitors the execution of each process instance
that requires resource scheduling. It informs the
scheduler of task completions and any changes to
the expected task list for a process instance.

Conclusion
In the era of on demand computing, a leading utility
computing provider must proactively: (1) maximize
customer satisfaction with competitive service level
reports (in terms of both coverage and attained qual-
ity), (2) minimize the exposed business impact of ser-
vice level violations, and (3) lower the cost-to-qual-
ity ratio of executing SLM processes. In order to make
timely adequate service management decisions based
upon the exposed business impact of all action-de-
manding quality alerts, the provider�s SLA manage-
ment system must be capable of performing on de-
mand intermediate service level evaluations with
support for adjudication processes for contractual
quality measures. The intermediate SLA compliance
evaluation results must be as accurate and current
as possible so that appropriate SLM processes can
be executed in a timely manner.

SAM is a distributed SLA management system that
can be seamlessly integrated into a utility-comput-
ing operating environment through SLM process au-
tomation and integration technologies. The system
enables a utility computing provider to proactively
fulfill its service-quality management commitments
to all of its SLA contracts in accordance with bus-
iness requirements. The SAM system would, among
other benefits: (1) enable the deployment of an effec-
tive means of capturing and managing SLM-related
contractual data as well as the provider�s internal
management data, (2) enable on demand interme-
diate evaluation of contractual service levels with
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support for manual or automatic adjudication of
quality measures, (3) assist service personnel and ser-
vice management agents in ordering quality alerts
based upon the exposed business impact over time,
and (4) automate the prioritization and execution
management of SLM processes, including assigning
SLM tasks to service personnel using continual op-
timization technologies.

Preliminary event-driven, simulation-based evalua-
tions of our SLM task and resource optimizing sched-
uler show SAM can significantly reduce the financial
risk of service level violations relative to other com-
mon SLM job and workforce scheduling algorithms.
Our development and internal pilot deployment
experience with SAM suggests our business-oriented,
process-centric approach to managing utility com-
puting SLA contracts is both practical and useful.

Appendix: An Abridged Web Hosting SLA
Contract

Provider�s Service Level Agreement (SLA) standard
for Customer�s Web Hosting environment is less than
four hours per calendar month of downtime, which

is an availability of approximately 99.5 percent. This
SLA objective applies to downtime caused by Pro-
vider in regard to operation of system software, load-
ing of system software, hardware failure, backup and
recovery of files, and connectivity from the server
farm to the Internet and from the server farm to the
Customer data center. This SLA objective specifically
does not include failures caused by Customer, out-
ages associated with contract maintenance provi-
sions, failure of bandwidth connectivity, and exter-
nal failures outside the Web-site Hosting
Environment.

Availability for the purposes of the SLA objective is
based either on Help Desk trouble-ticket informa-
tion or Provider-detected downtime. For problems
reported to the Provider Help Desk trouble-ticket
system, opening of the Help Desk trouble ticket es-
tablishes the outage begin time; the problem resolved
time, as documented in the Help Desk trouble ticket,
establishes the end time for that particular outage.
For Provider-detected downtime, the outage begin
time is based on the first detection of any outage,
and the end time for the outage is based on the prob-
lem resolve time. The amount of downtime in each
calendar month will be totaled to determine any fail-
ure to meet the SLA objective.

Table 1 documents the monthly refunds or premi-
ums associated with missing or exceeding the SLA
standard for each calendar month. In no case shall
more than the monthly charge be credited for down-
time incurred in a single month.

Credits and premiums will be aggregated and set-
tled on an annual basis. Premiums may be used to
offset credits, but will not create an obligation on the
part of a customer to pay more than those monthly
charges documented in this statement of work (SOW)
or subsequent transaction document pertaining to
these services. Any payment due from Provider to
Customer will be paid by January 31st of the follow-
ing year.

The credit and premium schedule associated with
this SLA and described herein did not commence un-
til January 1, 1999; however, the Provider used best
efforts to meet the SLA standard beforehand.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Management
Group.

Table 1 Monthly refunds or premiums for missing or
exceeding the SLA standard

Duration of SLA
Downtime

Amount of Credit or
Premium

More than 48 hours in a
calendar month

100% credit of monthly
charge

More than 36 hours in a
calendar month

80% credit of monthly
charge

More than 24 hours in a
calendar month

60% credit of monthly
charge

More than 16 hours in a
calendar month

40% credit of monthly
charge

More than 8 hours in a
calendar month

20% credit of monthly
charge

More than 4 hours in a
calendar month

10% credit of monthly
charge

4 hours or less in a
calendar month

None

2 hours or less in a
calendar month

10% premium of monthly
charge

1 hour or less in a calendar
month

20% premium of monthly
charge

No downtime in a calendar
month

30% premium of monthly
charge
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