Using a utility
computing framework
to develop

utility systems

In this paper we describe a utility computing
framework, consisting of a component model,
a methodology, and a set of tools and
common services for building utility
computing systems. This framework facilitates
the creation of new utility computing systems
by providing a set of common functions, as
well as a set of standard interfaces for those
components that are specialized. It also
provides a methodology and tools to
assemble and re-use resource provisioning
and management functions used to support
new services with possibly different
requirements. We demonstrate the benefits of
the framework by describing two sample
systems: a life-science utility computing
service designed and implemented using the
framework, and an on-line gaming utility
computing service designed in compliance
with the framework.

We describe in this paper a utility computing frame-
work (framework, for short) that consists of a com-
ponent model, a methodology, and a set of tools and
common services for building utility computing sys-
tems. A utility computing system (also referred to as
a utility system, or simply a utility) is a system that
can automatically create and manage multiple util-
ity computing services (utilities services, for short) on
a shared infrastructure. The infrastructure consists
of pools of hardware resources, such as servers, stor-
age, and network appliances, as well as software re-
sources, such as operating systems, middleware, and
applications. The utility services that can be created
are not limited to a specific domain, and may range
from e-commerce services, to scientific applications,

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

0018-8670/04/$5.00 © 2004 IBM

by T. Eilam G. D. H. Hunt
K. Appleby T. Lu
J. Breh S. D. Miller
G. Breiter L. B. Mummert
H. Daur J. A. Pershing

A
S. A. Fakhouri H. Wagner

to on-line gaming. A utility system ensures the
smooth operation of the supported services by
dynamically adjusting the allocation of resources. If
the total demand for services exceeds the capacity
of available resources, the utility system may dynam-
ically procure and configure additional resources in
order to support service level commitments. The util-
ity system makes resource allocation and configura-
tion decisions based on factors such as performance
monitoring, SLA (service level agreement) goals, bus-
iness objectives, or human interaction.

Utility computing systems differ in the types of re-
sources used, the topology of the network connect-
ing these resources, the services offered, and the bus-
iness and operational constraints that govern their
operations. Figure 1 shows two examples of utility
systems. Ultility system 1 offers and manages services
that perform scientific computations and queries. In-
stances of services, such as the protein folding ser-
vice, are illustrated at the upper tier in Figure 1. Util-
ity system 1 uses an infrastructure that includes IBM
eServer® zSeries™ servers, an Oracle™* database, a
SAN-(storage area network) based storage system,
and a scientific application (these are shown at the
bottom tier in Figure 1). Utility system 2 offers e-
commerce services and on-line gaming services. It
uses Intel** servers, an IBM DB2 Universal Data-
base*, IBM WebSphere* application servers (WAS),
and a NAS (network-attached storage) component.

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

EILAM ET AL. Q7

Figure 1 Two examples of utility computing systems

UTILITY SYSTEM 1

UTILITY SERVICES
PROTEIN GENOME PROTEIN GENOME
FOLDING SEARCH FOLDING SEARCH
SERVICE SERVICE SERVICE SERVICE

(INSTANCE 1) (INSTANCE 1) (INSTANCE 2) (INSTANCE 2)

RESOURCE MANAGEMENT LOGIC

ORACLE SCIENTIFIC
DATABASE APPLICATION 1

SAN

zSERIES SERVERS

The middle tier in the illustrations of Figure 1 rep-
resents the resource management logic of a utility
system. These are idealized diagrams that represent
resource allocation knowledge—what to allocate,
when to allocate, and how to allocate available re-
sources. The resource management logic also in-
cludes functions such as performance monitoring,
event correlation, problem determination, and op-
timization. As Figure 1 illustrates, the resource man-
agement logic can vary depending on the utility sys-
tem. Here are some specific examples.

* Thelogic required to allocate logical partitions on
an IBM zSeries machine (a logical partition, also
known as an LPAR, represents a share of the ma-
chine’s resources) is different from the logic re-
quired to allocate an entire Intel machine. Thus,
the sequence of steps required to allocate a re-
source varies, depending on the resource type,
even for resources of the same family.

* An e-commerce service may require a multitier
network topology with firewalls between tiers to
support strict security procedures. The resources
needed include load balancers, Web servers, Web
application servers, and databases. For an on-line

08 EILAM ET AL

UTILITY SYSTEM 2
UTILITY SERVICES
e-commerce e-commerce ON-LINE
APPLICATION APPLICATION GAMING
(INSTANCE 1) (NSTANCE?2) SERVICE
(INSTANCE 1)

RESOURCE MANAGEMENT LOGIC

& -

-
DB2 WAS INTEL SERVERS
DATABASE

NAS

gaming service a simple one-tier network topol-
ogy may suffice, as security is more relaxed. The
resources needed are servers running various pro-
prietary gaming applications. Thus, the required
resource types and their configuration, as well as
the network topology, differ for different services.

e CPU utilization is a good performance indicator
for a scientific computation, whereas Web server
response time should be monitored for an e-com-
merce service. Thus, the set of performance pa-
rameters to be monitored is different for different
services.

When a new service type is introduced, the resource
management logic must be modified to support its
requirements, structure, and operational constraints.
Similarly, when a new resource type (e.g., a new com-
puting platform) is incorporated, or an existing re-
source is upgraded, changes are required to the in-
frastructure that must be reflected in the
management logic.

Thus, building new utility systems, or changing ex-
isting ones, is labor-intensive and error prone—a

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

daunting task. The task is complicated by the many
interdependencies between resources, which are of-
ten hidden and not well understood, by the combi-
natorial large number of possible allocations and
configurations of a given set of resources, by the va-
riety of possible services with different requirements,
and by the many and rapidly evolving types of hard-
ware and software resources. Without a conceptual
model, a suitable methodology, and a good set of
tools, developing new utility systems, or changing ex-
isting ones, is an expensive and time-consuming
process.

The utility computing framework described in this
paper addresses this challenge. The framework does
not assume a set of resource types, a network topol-
ogy, or specific types of utility services. Indeed, it can
be used to build utility systems that support a va-
riety of services using a variety of resources. More-
over, a utility system that is built using the frame-
work can be modified to accommodate changes in
infrastructure or services offered.

Under the framework, the creation of a new utility
service requires that the service be defined using a
formal XML-(eXtensible Markup Language) based
specification language developed for this purpose.
A component, named the Planner, translates the de-
scription to a set of plans (workflows) that imple-
ment the operations performed on the service. Al-
though the set of plans varies depending on the
service definition, it always includes a “create” plan
and a “delete” plan; when executed, these create (or
terminate) an instance of the service. Other com-
mon plans are “add resource” and “remove re-
source.” These plans are represented in Figure 1 by
the idealized diagrams labeled “resource manage-
ment logic.”

The Planner makes use of a parts catalog, where parts
are entities describing resource-related capabilities
at various levels of abstraction. At the lowest level
of abstraction, a part may represent capabilities of
physical resources, whereas higher level parts may
make use of lower level parts to define more com-
plex entities, such as a secure Web server.

As an example, suppose a new utility service is to be
created and offered to customers; a service that pro-
vides Web sites capable of dynamically garnering ad-
ditional resources in response to an increasing load.
A utility service expert defines the service by creat-
ing a part that represents this new service and that
is built using existing parts, such as “Web server,”

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

“load balancer,” and “database.” This service def-
inition is then “published” and accessible to custom-
ers. Suppose a customer interested in outsourcing
an e-commerce Web site subscribes to this service.
Then, the customer, using a service template, may
specify values for a number of parameters in the ser-
vice definition, such as the initial number of Web
servers to be provided.

After the subscription is received and validated, a
service instance for the dynamic Web site service has
to be created. First, an entity known as a utility ser-
vice controller (USC) is set up; it tracks the state of
the service instance, including handles to resources
allocated to it. Next, the Planner is invoked; from
a service template it generates a set of plans, includ-
ing the “create” plan, and a plan to increase service
capacity according to the load. Then, the “create”
plan is executed; resources (load balancers, Web
servers, databases) are allocated and configured. The
plan may include steps requiring a response from the
customer, such as uploading data to a database.

The service instance is now operational, and the pub-
lic may access the new Web site. The Runtime Man-
agement component continuously monitors the load
on the Web site, and when the response time exceeds
a specified threshold defined in the subscription
agreement, the plan to increase service capacity is
invoked and executed.

In addition to describing the architecture and the
design of the utility computing framework, we also
discuss two utility systems based on the framework:
the Life Science Computing Service (LSCS), and the
on-line gaming service. We designed and imple-
mented the LSCS using a preliminary version of the
framework; we designed the on-line gaming service
in compliance with the framework but have not im-
plemented it yet.

Due to the enormous scope of the subject, and to
facilitate the exposition of the material, we present
only those elements of the framework that we ac-
tually used in our implementations. In particular, we
focus on distributed management, on provisioning
and configuration of resources, and on the process
of assembling the resources and functions for a new
service from existing building blocks. We defer other
aspects of the framework, such as monitoring, me-
tering, runtime management, and tuning of re-
sources, to future publications.

EILAM ET AL. 99

The LSCS utility system offers services consisting of
compute-intensive scientific applications, such as
protein folding calculations for life-science research.
Servers for these services are typically allocated for
periods of weeks—the allocation being triggered by
an explicit request from the customer. We chose the
LSCS system as our first implementation because of
its simplicity—there is no need for resource perfor-
mance monitoring or for load-dependent dynamic
allocation of resources.

The on-line gaming utility system provides on-line
gaming services implemented using servers running
various proprietary gaming applications. Resources
are allocated among game instances based on load,
typically represented by the number of participat-
ing players.

Related work. Early work on utility computing sys-
tems provided a single service type that used a small
number of resource types, such as servers, with fixed
assumptions about network infrastructure. The
Océano system provided dynamic provisioning of
front-end servers for Web sites consisting of a load
balancer, a variable number of front-end servers, and
a fixed number of back-end database servers.' Ini-
tially, a minimum set of servers was allocated to each
Web site service subscriber, with unassigned servers
constituting a free pool.! Additional front-end serv-
ers were allocated automatically, in response to
events triggered by server workload or response time
measurements. Isolation between subscribers was
achieved using physically separate servers and vir-
tual local area networks (VLANs) in a reconfigurable
switched-network infrastructure. The Muse system
also allocated server resources in response to load,
but modeled both the value of allocating resources
to each customer and the cost of employing those
resources, based on energy cost.?

The Racquarium system provided a variety of mul-
titier Web sites through application complexes, de-
scribed by a software plug-in component which de-
fined the tier structure of the complex, the content
of each tier, whether it could be modified by adding
application instances, and under what circumstances
these modifications could occur (e.g., excess server
load).? Racquarium did not provide network isola-
tion. Provisioning support was limited to configura-
tion of servers preloaded with operating system and
application software. Application complexes were
configured via a GUI (graphical user interface).

100 EiLAm ET AL

The cluster-on-demand (COD) system provided serv-
ers for general use by dynamically partitioning a phys-
ical server cluster into virtual clusters.* Each virtual
cluster contained server and storage resources in a
private IP address block on its own VLAN, configured
with a user-specified software environment. New en-
vironments were constructed using ad hoc tools and
captured as partition images. Management of the
cluster was hierarchical, with virtual cluster manag-
ers negotiating resource allocations with a single
global COD resource manager.

A growing number of industrial products aim to pro-
vide multitier application environments over a phys-
ical infrastructure consisting of a variety of resources,
such as Hewlett Packard’s Utility Data Center,’
ThinkDynamics,® Sun Microsystems” N1”%? and
Jareva’s OpForce suite. ' They vary in many respects:
the types of resources provided (e.g., servers and stor-
age); operating systems and middleware supported;
characteristics of the network infrastructure (e.g.,
whether network isolation is provided by VLAN); level
of resource virtualization; level of monitoring sup-
port (e.g., resource usage, failure detection, SLA,
threshold-based alerting); level of support for re-
source discovery; level of support for modifying the
application environment and whether modifications
can occur automatically (e.g., triggered by SLA); and
the extent to which the products can (or must) be
customized to fit pre-existing hosting center infra-
structures. For example, a customer can define a two-
tiered structure “virtual server farm” that lays out
the desired resources and network topology to be
configured on request.

At the application layer, SmartFrog'! is a framework
for deployment and management of distributed ap-
plications. An application is described as a collec-
tion of related, reusable components, which may rep-
resent resources or subsystems. The description
includes dependency information to ensure that, for
example, components are started in the correct se-
quence. Once deployed, applications may be mon-
itored, and actions, such as automatic failover or re-
start, may be specified in case of component or
resource failures. SmartFrog is not used for low level
resource configuration tasks such as installing op-
erating systems on servers, but for higher level ap-
plication-specific configuration. The parts catalog
and the Planner components of our framework are
similar in approach to SmartFrog.

Several systems provide utility functionality in wide
area networks. Opus'? is an overlay peer utility ser-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 2 The architecture of the utility computing framework

Utility Business Service (UBS)

* Contracting

Client » Subscription management
(subscriber) » Billing i °
¢ SLA management
Utility Utility
Client Service 1 Service 2
(user)

Resource Control

¢ Resource managers (RMs):
- Create/destroy resources
- Manage resource collection
- Manage resource availability
* Resource services (RSs):
- Configure resource

¢ Resource instance controllers (RICs):

- Start/stop
- Monitor
¢ Utility service controller (USC)

Infrastructure

¢ Hardware and software
resources
¢ Networks

vice that provides common functions for hosting dis-
tributed applications over wide area networks. Given
a specification of application performance and avail-
ability targets, Opus allocates nodes to applications
and modifies allocations dynamically, based on ob-
served conditions and SLAs. For example, if demand
for an application increases in a particular area of
the network, Opus may allocate additional nodes to
the application in that area.

The grid was initially developed to enable sharing
of computing resources over wide area networks for
scientific applications.” More recently, the Open
Grid Services Architecture (OGSA) is an effort to gen-
eralize grid technologies to support the assembly and
maintenance of collections of resources for distrib-
uted services. '* A related effort, GARA, describes an
advance resource reservation system using structures
similar to those in our framework. * Our work relies
on OGSA concepts and is compliant with the
architecture.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Create/delete,
change capacity,

Utility Resource
query availability

Management Service (URMS)

Planner
Efasifaugic"?y e Service definition
e Generation of plans to
create/delete services,
change capacity of
services, configure
resources/services
Deploy Query
new state
Allocate/ plans
configure
resources

and services Runtime Manager

e Workflow engine
(Plans execution)

Monitoring e Performance monitoring
information, and problem determination
availability

information

The rest of the paper is structured as follows. In the
next section we present an overview of the frame-
work and discuss the main concepts behind the tech-
nology. In the following two sections we describe the
two implementations based on the framework: the
LSCS utility system and the on-line gaming utility sys-
tem. In the last section we present our conclusions
based upon the work presented here.

Overview of the utility computing
framework

The architecture of the framework, illustrated in Fig-
ure 2, includes three main components: Utility Bus-
iness Service (UBS), Utility Resource Management
Service (URMS) and Resource Control. UBS is the
gateway to the utility. It includes such functions as
contracting, subscription management, SLA manage-
ment, and billing. URMS is responsible for provision-
ing and managing utility services. Resource Control
directly controls resources and utility service in-

eitam ET AL. 101

stances. In this paper we focus on URMS and Re-
source Control components, with the emphasis on
the functions that were used to develop the sample
utilities.

In Resource Control, resource services (RS), resource
managers (RM), and resource instance controllers
(RIC) are resource control entities that are used to
allocate and manage resources. Specifically, an RM
manages a collection of resources of the same type,
their “creation,” allocation, and availability. Every
resource is represented and controlled by a RIC,
which encapsulates the state of the resource, and
which can be used to start it, stop it, or monitor its
performance. Finally, an RS is a helper function that
configures a single resource or a combination of
resources.

A utility service controller (USC) is used to repre-
sent and control a utility service instance. The USC
encapsulates its state and the operations that can be
performed on it. The state of a service instance in-
cludes the set of handles to the resources currently
allocated to it. The operations that can be performed
on it include creating and destroying the service in-
stance as well as changing its capacity (by allocating
or deallocating resources).

The Utility Resource Management Service (URMS)
creates and manages utility service instances. To cre-
ate a utility service instance, a combination of re-
sources must be created, allocated, and configured.
To manage a utility service instance over time, al-
located resources must be monitored and reconfig-
ured. The URMS includes two main components: the
Planner and the Runtime Manager. The Planner uses
the definition of the service to generate plans for cre-
ating and managing the utility services. The plans,
which are realized as workflows, consist of sequences
of instructions that perform operations on the con-
trol entities (RMs, RSs, and RICs). There are two man-
datory plans that are always generated for every ser-
vice instance: “create” and “delete.” Other plans, for
example, a plan to change the capacity of a service
instance, are optional and depend on the definition
of the service. The Runtime Manager includes a plan
executor (workflow engine) and a rule-based corre-
lation engine that is activated by events detected
through monitoring. An event may trigger the pro-
cessing of a rule, leading to the execution of a plan
to allocate or configure resources.

In the Planner, the artifacts known as parts are used
to formally represent capabilities of resources. High-

102 EiLAm ET AL

er-level parts, such as a secure Web server, are used
to represent complex entities and functions that can
be realized using lower-level parts, such as physical
resources. Thus, the parts serve as the vocabulary
that is used to define utility services.

In the rest of this section we provide additional de-
tails on the structure and operation of the URMS and
Resource Control.

Resource control. Resource managers (RMs), re-
source services (RSs), and resource instance control-
lers (RICs) are collectively termed resource control-
lers. They encapsulate functions that control
resources, including their creation, allocation, con-
figuration, and monitoring. The operation of these
functions is exposed by using the 0GSA WSDL (Web
Services Description Language) mechanism (see
Reference 16). When workflows are executed by the
workflow engine, the resource controllers are acti-
vated; resources are created, allocated, and
configured.

Resource managers. Every resource manager (RM)
encapsulates the logic to create and allocate a par-
ticular type of resource. Resources can be physical
(e.g., an IBM eServer xSeries™ server) or virtual (e.g.,
an LPAR on an IBM eServer zSeries server). A re-
source may be allocated to a service instance or un-
allocated (free). Free resources are kept in a logical
structure called a free-pool.

The two main functions of the RM are managing the
free pool and managing (i.e., allocating and reclaim-
ing) resources. Free-pool management includes
tracking the available resources and selecting re-
sources for allocation to a service instance. A re-
source reservation system is used to support this func-
tion. When the URMS needs to allocate a resource,
it first has to be reserved. The RM has two manda-
tory operations for reserving resources: findAvailabil-
ity and commitResource. The operation findAvailabil-
ity is used to determine the time slots when a resource
with certain specified properties is available for al-
location. It is used when an advanced reservation is
needed or when a combination of resources is con-
currently needed. The operation commitResource is
used to reserve a resource with certain properties
for a particular time slot. It returns a reservation
ticket (rsvTKT), which is used later for allocating the
resource. The operation fails if no resource that sat-
isfies the requirements is available.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

To allocate a resource to a service instance the URMS
invokes a create operation on the RM. The param-
eters of the create operation include the reservation
ticket returned from a previously invoked commitRe-
source operation. If the resource exists, create sim-
ply returns a handle to a RIC representing the se-
lected resource. The RIC provides a mechanism to
access and manage the resource (see the section “Re-
source instance controller” below). The resource may
be further configured by URMS as part of the utility-
service instance-creation process. If the resource
does not exist, the RM has to go through the resource
creation process. Examples include the creation of
a VM guest machine on a zSeries machine or the
setup of a VLAN on a network switch. In all these
cases, the resource may not exist prior to the create
request. It is the responsibility of the RM to create
the resource before a handle to it is returned and
the operation is completed. Whether the resource
is actually created or allocated from the free-pool
is transparent to URMS.

Resource services. A resource service (RS) encap-
sulates low-level configuration operations on a sin-
gle or multiple resource types. These configuration
operations are used in the process of creating or de-
stroying a service instance or when its resources are
allocated and deallocated. As an example consider
a service instance that includes a secure network im-
plemented with virtual LANS (VLANS). When a server
is added to such an environment, it is necessary to
assign the switch port connected to the server’s net-
work interface card (NIC) to the appropriate VLAN.
This is done by using a switch configuration RS with
an assign operation that receives two parameters: a
switch port ID and a VLAN ID. As another example,
consider a service instance that includes a shared file
system and a set of servers. For the servers to be able
to use the shared file system, an RS equipped with
a mount operation enables the mounting of the
shared file system on individual servers.

Resource instance controllers. A resource instance
controller (RIC) is used to start, stop, and monitor
a resource instance. It is created by a create oper-
ation on an RM, issued when a resource is allocated
to a service instance by URMS. A handle to the RIC
isreturned from the call and kept in the correspond-
ing USC. Other common operations exposed by a RIC
include operations to query the state of a resource,
or to reconfigure it. For example, a Web server re-
source is represented and controlled by a Web server
RIC that can start, stop, or query it (e.g., whether it
is “started,” “starting,” “stopped,” or “failed”).

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Utility service controller. A utility service controller
(Usc) represents and controls a single utility service
instance. The state of the service instance includes
the set of handles to the resources that are currently
allocated to it. The operations that can be performed
on a USC are the invocation of plans (workflows) gen-
erated by the Planner. As mentioned, create and de-
lete are mandatory operations; additional operations
are known as custom operations. The USC provides
interfaces to trigger the execution of the workflows
or to query its state.

Figure 3 illustrates the operation of the USC and the
components it interacts with. Upon instantiation by
the framework the USC is empty, with no associated
workflows. Then, the build operation on the USC in-
vokes the Planner in order to generate the workflows
(see the section “Planner”). This is depicted in Fig-
ure 3 as the arrow labeled B; the Planner returns
the workflows. Next, the deploy operation is called
to deploy the workflows on the workflow engine (see
the subsection “Plan Executor” later in this paper).
This is depicted in Figure 3 as the arrow labeled D.
Finally, the operation schedule schedules the creation
of the service instance using a Schedule Coordina-
tor (see the subsection “Schedule Coordinator”).
This is depicted in Figure 3 as the arrow labeled S.
Note that the service instance itself has not been cre-
ated yet. When the create operation is invoked, at
the time determined by the Schedule Coordinator,
the create workflow is launched and the service in-
stance is created; using the resource controllers, the
required resources are allocated and configured.
Handles to these resources are kept in the USC and
can be retrieved using the getResources operation.

Additional operations on the USC include execute-
Workflow, which is used to invoke by name any of
the custom workflows, and the getAttributes opera-
tion, which returns values of attributes from an ex-
ecution of custom workflows.

It is important to understand that the USC does not
have to be re-implemented when a new type of util-
ity service instance is defined. It is a generic com-
ponent that is instantiated automatically by a call to
a controller factory (an OGSA factory described in
Reference 13) and customized later by the Planner,
based on the definition of the utility service.

Parts and topology trees. Resources and their ca-
pabilities are defined and represented as parts. Ser-
vice instances are represented using a graphical con-
cept known as a topology tree, whose nodes are parts.

Eitam ET AL. 103

Figure 3 The operation of the utility service controller (USC)

CONTROLLER
FACTORY ~ "=~ 7-=7==== ':
1
\ 4 _ PLANNER PARTS
usc B > ~— CATALOG
build
5 _ WORKFLOW
deploy » ENGINE
schedule ~ SCHEDULE
S » COORDINATOR
WORKFLOWS: RMs/RSs
create create: T F——F
delete delete: —p——p——»
executeWorkflow custom: BN BN
d BN B SERVICE INSTANCE
STATE Resource
/7 Handles
getResources / \
getAttributes .

§?

Parts catalog. The parts catalog is a collection of parts
that can be accessed programmatically by the Plan-
ner, or manually by an expert working on defining
a new service or developing a new part. The mech-
anism for accessing parts is not covered in this pa-
per. A part is an XML-based definition describing a
resource, a combination of resources, or operations
on resources.

There are currently two types of parts: static parts
and dynamic parts. The static parts represent an ag-
gregation of lower-level parts, static or dynamic. The
“dynamic” aspect of dynamic parts originates in com-
ponents with running code, specifically RM or RS op-
erations. Dynamic parts provide a mapping from
global operations (workflows) on service instances
to local operations, that is, operations on RMs and
RSs. Specifically, if workflow X is mapped to RM/RS
operation Y then an invocation of Y is included in
workflow X. An example of a global operation is the

104 EiLAm ET AL

create workflow to create a utility service instance.
As part of the creation process, many local opera-
tions need to be performed. One such operation may
be to configure a switch; in this case there will be a
part with a mapping from the global operation cre-
ate to a local operation config on a switch RS.

Topology trees. Utility services are defined using a
topology tree whose nodes are parts. The root of the
tree is a static part that is associated with the utility
service template. The descendants in the tree are ei-
ther static parts, in which case they are intermediate
nodes (non-leaves), or dynamic parts, in which case
they are leaves of the tree and are associated with
specific RMs and RSs.

The Planner maps a service template to a set of work-
flows for provisioning and managing the utility ser-
vice instances corresponding to the template. The
process of workflow generation consists of two steps.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 4 An example of a topology tree and the corresponding USC

TOPOLOGY TREE
1
Usc
2 AbsRes1 3 AbsRes?2
Create Delete
4 5 6 7
ExecuteWorkflow(add) ExecuteWorkflow(remove)
create -> create create -> configl
delete -> delete delete -> no-op
add -> create add -> config2
remove -> delete remove -> no-op
RM1 RS1 RM2 RS2
STATIC DYNAMIC RM/RS WORKFLOW-TO-
PART PART OPERATION MAPPING

First, the topology tree is created and then the to-
pology tree is used to generate the set of workflows
(see the following section, “Planner”). The gener-
ated set of workflows includes the mandatory create
and delete workflows, and possibly some custom
workflows. As previously mentioned, all of these
workflows are encapsulated in the USC and will be
launched by invoking the corresponding USC
operations.

Figure 4 shows an example of a topology tree and
the corresponding USC. The topology tree includes
static parts 1, 2, and 3, and dynamic parts 4 through
7. Parts 2 and 3 represent lower-level parts AbsRes1
and AbsRes2 (AbsResl1 stands for “abstract resource
17). Part 4 references RM1, used for controlling a con-
crete resource (not shown in the figure) that AbsRes1
represents, Part 5 references RS1, used for config-
uring the same concrete resource. Four workflows
are defined and shown in the component labeled
USC: the mandatory create and delete workflows used
to create and destroy the service instance, and the
custom add and remove workflows used to change
the allocation of the AbsRes1 resource.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Workflows are defined by providing mappings from
workflow names to operations on RMs and RSs. To
avoid clutter only the mappings for RM1 and RS1 are
shown in the figure. Note that the create workflow
is mapped to a create operation on RM1 and a con-
fig1 operation on RS1. This implies that resource in-
stances of type AbsRes1 are created and configured
as a part of creating a service instance. Whereas the
add workflow is mapped to operation create on RM1,
it is mapped to a different operation config2 on RS2,
which implies that a different configuration opera-
tion takes place when adding resources of type
AbsResl to an existing service instance. Note that
for RS1 the workflow delete is mapped to the special
no-op. This implies that no configuration operation
should take place when removing resources of type
AbsResl from the service instance. The USC con-
tains four knobs (conceptually) that control the ser-
vice instance: create and delete operations to trigger
the execution of the create and delete workflow and
an executeWorkflow operation that may take two pa-
rameter values: add to trigger the execution of the
add workflow, and remove to trigger the execution
of the remove workflow.

EiLaM ET AL. 105

Planner. The Planner transforms a service template
into a concrete utility service definition that includes
a set of workflows and other necessary information
to be included in the USC. First, the topology tree
is generated. The process starts by identifying the
root node, a part referenced in the service template.
The rest of the topology tree is generated by a re-
cursive algorithm that starts with a set of nodes con-
sisting of the single root node and expands it to the
next level—its immediate descendants—by identi-
fying the parts that are “aggregated” by it. The al-
gorithm terminates when the set of parts to be ex-
panded next are all dynamic parts and thus cannot
be further expanded.

The second step includes the analysis of the topol-
ogy tree and the generation of the create, delete, and
custom workflows. For every workflow referenced
in the topology tree, the operations on RMs/RSs that
should be included in it are collected by using the
mapping from workflow names to RMs/RSs operations
defined in the dynamic parts that constitute the
leaves of the tree. Note that the actual operations
may have names different from the name of the
workflow.

After the operations for a particular workflow are
collected, they have to be ordered (the description
of this is beyond the scope of the paper). A verifi-
cation step ensures that the workflow is valid and
contains no loops by analyzing the parameter val-
ues for each operation.

Schedule Coordinator. Before a service instance can
be created, its resources have to be reserved. Re-
serving of resources is complicated by the fact that
the availability of various resource types required
may be limited to certain time slots. The reservation
process involves the RMs and the Planner and is co-
ordinated by the Schedule Coordinator.

Recall, that every RM implements the findAvailability
and commitResource operations. The findAvailability
operation returns all time slots within a given range
for which the required resources are available. The
commitResource operation commits resources for a
particular time slot and returns a reservation ticket
to be used later in the create operation when the re-
sources are actually allocated.

In addition to the create, delete, and custom work-
flows, the Planner also generates findAvailability and
commitResource workflows. The findAvailability
workflow invokes in sequence the findAvailability op-

106 EiLAM ET AL

erations on all the RMs that are referenced from the
leaves of the topology tree, and it returns the time
slots for which resources are available. The commit-
Resource workflow invokes the commitResource op-
eration on all RMs referenced from the topology tree
to commit the required resources for a particular
time slot. It returns reservation tickets for the com-
mitted resources.

A schedule operation has to be invoked on the USC
before the actual service instance is created. This op-
eration, which receives as parameters a start range
and duration, invokes the Schedule Coordinator to
reserve the necessary resources for the service
instance.

The Schedule Coordinator triggers the execution of
the findAvailability workflow. Next, it analyzes the
return values of the workflow to find a start time
within the given start range for which all resources
are available for the required duration. Finally, it trig-
gers the execution of the commitResource workflow
to actually reserve the resources. The reservation
tickets returned from the commitResource workflow
are used later as input for the create workflow.

The Schedule Coordinator may fail to find a time
slot for which all required resources are available.
Even if it found an appropriate time slot based on
the results of the findAvailability workflow, due to
the distributed nature of the system, the commitRe-
source workflow may fail if one or more of the com-
mitResource operations on the RMs fail (possibly due
to a competing asynchronous process of reservation
for another utility service). In every one of these
cases, a compensation action (not covered here) is
taken by the Schedule Coordinator.

Plan Executor. Because plans are realized in the
framework as workflows, the Plan Executor is a work-
flow engine. The workflow engine used must have
a programmatic interface that allows dynamic de-
ployment of workflows. Workflows for a particular
service instance are deployed when the deploy op-
eration is invoked on the USC. The execution of a
deployed workflow by the workflow engine is trig-
gered either by the Schedule Coordinator, which is
the case for the findAvailability and commitResource
workflows, or by the USC following a create, delete,
or executeWorkflow invocation.

Workflow engines are particularly useful when deal-

ing with long-running tasks or when some of the op-
erations are performed manually, which is often the

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

case in utility systems. To learn more about work-
flow and workflow engines see References 17 and
18.

The Life Science Computing Service

Life sciences research companies developing new
drugs need computing power to solve problems such
as DNA sequencing or protein folding. These appli-
cations require intensive computation that uses hun-
dreds of servers at a time. A typical computation lasts
on the order of a few weeks. After the computation
is complete, a laboratory phase that may last several
months follows, during which the computing power
is not needed. Thus, life-science companies face the
cost and complexity of maintaining an IT infrastruc-
ture with a large computing capacity that is used only
for a few weeks every few months.

The Life Science Computing Service (LSCS) can al-
leviate this problem and benefit the life-science cus-
tomers. When a customer subscribes to the LSCS util-
ity service, a base computation environment is
created that includes dedicated servers, storage, a
virtual private network (VPN) connection, and con-
trol software—all needed to perform computation.
This environment is maintained for the duration of
the customer subscription. At the start of a compu-
tation phase, the service provider upgrades the envi-
ronment with a specified number of computation
servers for the required duration. Upon completion,
the service provider reclaims the servers for other
uses. Because of the idle periods, the service pro-
vider can support several customers with the same
infrastructure. The customers avoid the cost of ac-
quiring and maintaining the computing infrastruc-
ture, and pay only for the computing resources they
use.

In this section we show how we use the framework
to create an LSCS utility system. The LSCS is a rel-
atively simple utility, as it requires neither resource
performance monitoring nor resource reallocation
based on load and is thus suitable as a first
implementation.

Overview of the LSCS utility. Every user is associ-
ated with a service instance that is created at the time
the subscription takes effect. Using a GUI for this pur-
pose, a user may request that additional computa-
tional servers be allocated to the environment for
some length of time. Similarly, the user may request
that computational servers be removed from the
environment.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

There are two types of resources used in LSCS: fixed
resources and dynamic resources. The fixed re-
sources are allocated to the service instance when
it is created and deallocated when it is destroyed.
They include four physical servers: a storage server,
a utility Proxy, a master server, and an application
server that is used to run the Scientific Application
Manager (also known as the manager). The manager,
which controls and manages the scientific compu-
tation on the computational servers available to it,
is supplied by the customer; the LSCS does not man-
date the use of a particular manager. It typically in-
cludes an internal scheduler that dispatches tasks to
the computational servers and collects the results,
and a data manager that caches data on the local
disks of these servers as needed for the computa-
tion they perform. It is assumed that the manager
automatically discovers newly allocated computa-
tional servers, and thus no interaction or reconfigu-
ration is required. It is also assumed that the man-
ager can deal with failures of computational servers
(e.g., by redispatching the task), and therefore, com-
putational servers can be deallocated from the ser-
vice instance without notifying the manager. To ac-
commodate more restrictive assumptions regarding
the manager might require that the workflows that
affect a service instance include some additional ap-
propriate configuration operations. For example, an
operation may be needed to notify the manager when
a new computational server is added to a service
instance.

In the future we envision a more sophisticated in-
teraction between the manager and the utility sys-
tem in which the manager may request more com-
putational servers, based on the state of the
computation. Moreover, when the utility system ini-
tiates an action to deallocate computational servers
from the service instance, it might invoke a manager
function to identify the best candidates for deallo-
cation based on the state of the application. The de-
sign guiding principle is the separation of the two
domains, the application domain from the utility
system.

LSCS in more detail. In this section we describe the
process of developing the sample LSCS utility using
the framework. Our goal, aside from developing a
running utility system, was to validate the idea of the
framework as a system-building tool that involves re-
usable components, notably RSs, RMs, and parts. The
design and implementation decisions that we made
were shaped by this goal. For example, we used the
Planner to generate the workflows included in the

EiLam ET AL 107

Figure 5 The infrastructure of an LSCS utility system

NETWORK
SUBNETWORK SWITCHES
FOR A SERVICE
INSTANCE

UTILITY VLAN

CUSTOMER 1 ADMIN VLAN

CUSTOMER 2 ADMIN VLAN

CUSTOMER 1 COMPUTE VLAN

COMPUTE COMPUTE COMPUTE
SERVER SERVER SERVER
CUSTOMER 1
COMPUTE SERVERS

A UTILITY PROXY

SERVER

USC rather than writing them manually, this despite
the fact that the workflows in this sample utility are
rather simple. Specifically, we designed and imple-
mented the code to control the resources as RSs and
RMs, and we implemented the parts required to rep-
resent them. These parts were then used by the Plan-
ner to generate the workflow.

Due to time constraints, we took some shortcuts. For
example, the function to create and destroy a ser-
vice instance was done manually. Because the cre-
ation of a service instance involves configuration of
firewalls and because an RS to automatically perform
that operation was not available at the time, we de-
cided to stay focused on our main goal—making the
idea of a framework work—and invest our efforts in
tasks that were directly related to this goal. Also, from
an operational perspective, whereas a service in-
stance is created once for each customer and typ-

108 EiLAm ET AL

CUSTOMER 2 COMPUTE VLAN

CUSTOMER 2 COMPUTE SERVERS

UTILITY USERS
SERVER
VPN/INTERNET
FIREWALL
VPN/INTERNET FEED
CUSTOMER 3 ADMIN VLAN
C D A B C D

CUSTOMER 3 COMPUTE VLAN

COMPUTE
SERVER

COMPUTE
SERVER

COMPUTE
SERVER o

CUSTOMER 3 COMPUTE SERVERS

B SCIENTIFIC APPLICATION
MANAGER SERVER

C MASTER
SERVER

D STORAGE
SERVER

ically remains unchanged for several years, resources
such as the computational servers are allocated and
deallocated at intervals of weeks. Thus, it is more
cost effective to automate the process of allocating
and deallocating computational servers for service
instances rather than automating the process of ser-
vice instance creation. As the framework mandates,
we do generate create and delete workflows to pro-
vision the service instance after it is created.

The utility service controller. Concerning a service in-
stance, two operations are mandatory in the frame-
work: create and delete. When subscribing to the ser-
vice, the user/subscriber can determine the initial
computing capacity of the service instance. The user
can also request to increase or reduce the compu-
tational capacity. For this, two operations are need-
ed: addComputeServer and removeComputeServer.
The actual operations that the USC provides are:

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

PUBLIC
DATABASES

FREE POOL ADMIN VLAN

RES.
CONTROL

FREE POOL COMPUTE VLAN

COMPUTE
SERVER

COMPUTE
SERVER

FREE POOL COMPUTE SERVERS

o create—triggers the execution of the create
workflow

e delete—triggers the execution of the delete
workflow

* executeWorkflow—a generic operation that re-
ceives as a parameter a name of a custom work-
flow and triggers its execution. Since addCom-
puteServer and removeComputeServer are custom
workflows, they can only be executed by using this
operation.

It should be emphasized that the USC, including its
operational interface above, is generated automat-
ically by the framework at the time the new subscrip-
tion is created.

The infrastructure and service instance environment.
An important component of the utility system is the
infrastructure on which it runs. Figure 5 illustrates
the infrastructure of an LSCS utility system. The de-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

sign of the infrastructure includes the design of the
overall network (types of network elements, network
topology), the resources to be allocated to service
instances, as well as the service instance structure
(network topology and fixed and dynamic resources).

The design of the infrastructure is based on require-
ments from the utility system provider, the service
offering provider (if different from the utility system
provider), and the subscribers/users. The design has
to consider the utility provider’s existing network and
possible constraints on its use. For life-science ap-
plications there is usually a strict security require-
ment: life-science companies require a strong guar-
antee that their data are kept secure. In some cases,
even information concerning the allocation/deallo-
cation of computing resources is considered sensi-
tive and needs to be protected.

The design of the network and the service instance
structure, illustrated in Figure 5 and further de-
scribed next, was based on these requirements. Spe-
cifically, computational servers allocated to differ-
ent service instances are isolated, and their local disks
are scrubbed between allocations. The users com-
municate with the utility system over VPNs. Thus,
even information on requests to allocate/deallocate
servers is protected.

As shown in Figure 5, the network includes switches,
VLAN;, a firewall, and VPN connections. Servers, in-
cluding computational servers, are allocated static
fixed 1P addresses. Every service instance has a sub-
network that includes two VLANs: an administrative
VLAN, and a computational VLAN (one such subnet-
work is highlighted in Figure 5). A set of designated
servers (storage server, Scientific Application Man-
ager server, utility proxy server, and master server)
are connected to both VLANs. The number of these
servers is fixed for the duration of the life of the ser-
vice. The computational servers, which are dynam-
ically allocated, are connected to the computational
VLAN. The utility server (shown at the top of the fig-
ure) runs the framework code, which includes the
RMs, RSs, the Planner, and so forth. The utility server,
together with the network switches, is connected to
the utility VLAN. This allows the RMs/RSs running on
the utility server to configure the switches when com-
putational servers are allocated/deallocated. The util-
ity VLAN is connected to the various admin VLANs
through the firewall. The free-pool subnetwork re-
sembles a service instance subnetwork.

EILAM ET AL.

109

Users (shown attached to the vPN/Internet cloud in
the figure) access the servers connected to their ad-
ministrative VLAN on a dedicated VPN through the
firewall. Computational servers cannot be accessed
directly by the utility server or by the users. All serv-
ers allocated to a service instance are isolated from
servers in other service instances.

Each service instance includes fixed and dynamic re-
sources. In LSCS, the only dynamic resources are the
computational servers. The following fixed resources
are allocated to a service instance when it is created
and deallocated when it is destroyed.

o Storage server—A shared file system is used in LSCS.

* Scientific Application Manager server—This is the
server on which the manager application is
installed.

e Utility proxy server—Because the utility system can-
not access the computational servers directly, it
needs “agents” to perform its functions inside the
service instance. These agents are installed and
started on the utility proxy. Some of the corre-
sponding processes are part of the distributed im-
plementation of various RMs/RSs. Others compo-
nents include a Dynamic Host Configuration
Protocol (DHCP) server and an “image manager”
used to create new computational server images
that can be installed on computational servers
when they are allocated to the service instance.

* Master server—The master server is used by the
user/subscriber to create a computational server
image to be captured by the image manager. The
user accesses the master server directly and con-
figures it as desired. The user then captures the
computational server image thus created with the
image manager. When a new server is allocated,
the captured image is installed on it.

RMs, RSs, and RICs. We describe here the main con-
trollers in the LSCS system.

The Compute Server RM (computeServerRM) man-
ages the pool of available computational servers (free
pool). It provides the following operations:

e createComputeServer—accepts a description of a
computational server and returns the handle of a
computational server RIC that represents a par-
ticular computational server in the free pool. The
service can be used to retrieve information needed
to access the computational server in the free pool,
such as its TP address.

110 Eam ET AL

¢ deleteComputeServer—the counterpart of create-
ComputeServer, accepts the handle to a computa-
tional server RIC that identifies a computational
server to be returned to the free pool.

The Install RS (InstallRS) performs much of the work
needed to transfer a computational server from the
free pool to a service instance (and back). It includes
two main operations:

* prelnstall removes the MAC address of the compu-
tational server from the DHCP server at the source
(service instance or free pool) so that it will not
respond to network boot requests from the server.
In addition, it adds the MAC address of the server
to the DHCP server at the destination. It then con-
figures the server to boot from the network and
reboots it.

* install completes the installation of the requested
image on the server after it is moved to the des-
tination environment. The disk scrubbing preced-
ing an allocation is implemented by installing an
in-memory Linux** image on computational serv-
ers whose destination environment is the free pool.
This image is preloaded with a start-up script that
writes zeroes to the disk. The operation returns
only after the computational server is ready for
use.

The SwitchConfig RS (SwitchConfigRS) configures
the switch as part of the allocation/de-allocation pro-
cess of computational servers. It provides an assign
operation that assigns a computational server to the
computational VLAN of the destination environment
(service instance or free pool).

The order of operations to allocate a computational
server to a service instance is important. First, the
computational server is allocated by using the cre-
ateComputeServer operation. Then, the prelnstall op-
eration is invoked to prepare the computational
server (and the DHCP servers) for installation. Then,
the computational server is located at the destina-
tion computational VLAN by configuring the switch
by means of the assign operation. Last, the instal-
lation process is triggered by the install operation.

During the design of the LSCS utility system we re-
alized that an additional entity, not previously ac-
counted for, was needed. Our RMs/RSs were only ca-
pable of handling a single computational server at
a time. The workflow that was generated from the

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

parts representing them also dealt with a single com-
putational server. We needed an entity to manage
a set of computational servers allocated to the same
service instance. In particular, an iteration over a set
of computational servers was needed that involved
the execution of the addComputeServer and remove-
ComputeServer workflows for every one of them. The
same entity would also select a subset of the set of
computational servers for deallocation based on a
user request.

Our design treats this entity as an abstract com-
puteServerGroup resource. A computeServerGroup re-
source is allocated (initially empty) to every service
instance by using a ComputeServerGroupRM. It is re-
alized as a computational server group RIC, a ser-
vice instantiated by the RM when a computeServer-
Group resource is conceptually allocated.

While going through this exercise, we realized that
aresource group is a useful concept. Future versions
of the framework will include it as a generic object
that can be used to build higher-level parts. For LSCS,
we had to handcraft the computational server group
RIC and its RM as follows.

ComputeServerGroupRM is the RM of the com-
puteServerGroup abstract resource. It provides the
commitResource, create, and delete operations. The
create operation merely instantiated a new compu-
tational server group RIC, the delete operation de-
stroys it.

ComputeServerGroupRIC represents a group of com-
putational servers. It provides the following oper-
ations.

* selectAddComputeServers accepts as parameter the
number num of computational servers to be allo-
cated (and an identifier of the image to be installed
on them). It executes the addComputeServer work-
flow to add a single computational server num
times. This is done by invoking executeWorkflow
on the USC.

* selectRemoveComputeServers selects computa-
tional servers for deallocation. The only param-
eter currently supported is the identifier of the im-
age installed on the computational server (different
computational servers may have different images
installed on them). The removeComputeServer
workflow is iteratively executed over the set of se-
lected computational servers.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Parts and the topology tree. The Planner uses parts
to generate the required workflows to be encapsu-
lated in the USC; the dynamic parts provide the map-
ping from workflow names to RMs/RSs operations. In
our case, there are four required operations: create,
delete, addComputeServer, and removeComputeServer.
Figure 6 shows the topology tree for LSCS, including
the parts and the mappings that the dynamic parts
define from workflows names to operations.

The topology tree consists of one static part and five
dynamic parts, the latter representing two RMs and
two RSs. Two parts are needed to represent two dif-
ferent operations, Install and Prelnstall on Install RS
(the current mapping mechanism supports only one
operation per part/workflow pair). If there is no en-
try for a particular workflow in a mapping, then no
operation on the respective RM/RS has to be included.
Note that the only operation that is included in the
create (delete) workflow is a create (delete) operation
on the ComputeServerGroupRM. Indeed, the only au-
tomatic operation in provisioning an LSCS service in-
stance is the instantiation of a computational server
group RIC. Other operations are performed manu-
ally in this version of LSCS. The static LSCS part ag-
gregates the five dynamic parts (the descendants of
the root node in the figure) needed for the defini-
tion of the service.

One of the advantages of the framework is that the
complete topology tree, or just a subtree, can be re-
used in other, more complex cases. Thus, using the
framework, the work performed when building RMs
and parts does not have to be repeated when build-
ing new utility systems.

The Planner automatically generates four workflows
from the parts and RMs/RSs described earlier. See Ta-
ble 1.

Customer interactions. Because UBS was not yet
available when LSCS was implemented, we used in-
stead a simple component to manage all interactions
with the customer as subscriber. This component,
the customer representative, handles subscription re-
quests and requests to add or remove computational
servers to or from existing environments by inter-
acting with both the USC and the computational
server group RIC (which are not accessible by the
subscriber).

Subscription requests are handled by first instanti-
ating a new USC to represent a new service instance
(by calling a controller factory), then building and

EILAM ET AL. 111

Figure 6 The topology tree for LSCS

LSCS
Part

ComputeServerRM ComputeServerGroupRM PreinstallComputeServer InstallComputeServer SwitchConfig
Part Part Part Part Part
addComputeServer-> create-> addComputeServer-> addComputeServer-> addComputeServer->
createComputeServer create Prelnstall install assign
removeComputeServer-> delete-> removeComputeServer-> removeComputeServer-> removeComputeServer->
deleteComputeServer delete Prelnstall install assign
Compute Server RM Compute Server Install RS Switch
Group RM Config RS
STATIC DYNAMIC RM/RS WORKFLOW-TO-
PART PART OPERATION MAPPING

Table 1 Workflows generated from parts by the Planner

create Workflow
ComputeServerGroupRM.create

addComputeServer Workflow
computeServerRM.createComputeServer
InstallRS.Prelnstall
SwitchConfigRS.assign

InstallRS.Install

delete Workflow
ComputeServerGroupRM.delete

removeComputeServer Workflow
InstallRS.Prelnstall
SwitchConfigRS.assign

InstallRS.Install
ComputeServerRM.deleteComputeServer

deploying the workflows by calling build and deploy
operations on the USC. Reserving resources by call-
ing schedule is next, and finally, invoking create to
trigger the execution of the create workflow. Note
that the actual service instance was built in a man-
ual process (as the create workflow merely instan-
tiates an empty group instance service). In LSCS, the
schedule operation merely reserves an abstract Com-
puteServerGroup resource and always succeeds.

112 EiLAM ET AL

Requests to add or remove compute servers are
handled by interacting with both the USC and the
ComputeServerGrouplnstanceService. Basically, the
operation selectAddComputeServer (or selectDelete
ComputeServer for delete) on the ComputeServer-
GroupRIC handles the request. The USC is called only
to retrieve a handle to the ComputeServerGroupRIC.
Note that ComputeServerGroupRIC was created by
the create workflow; a handle (URL) to it was then

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

returned to the USC, which refers to it as a resource.
Resource handles can be retrieved from the control-
ler using a getResources operation. The interaction
is further described in the next section.

Usage scenario. Figures 7 and 8 illustrate a usage
scenario that covers all phases of the utility service
life cycle.

a. A customer (a life-science company) subscribes
to the service provided by LSCS. The process uses
an interface provided by the customer repre-
sentative component and may include human
interaction.

b. The service instance corresponding to the new
subscription is manually constructed. It includes
an application manager server that runs the sub-
scriber-selected manager application.

c. The customer representative component instan-
tiates a new USC by invoking the controller fac-
tory (Step 0 and Step 1 in Figure 7).

d. The customer representative calls build on USC;
the operation invokes the planner to generate
the workflows (Step 2 in Figure 7).

e. The customer representative calls deploy on
USC to deploy workflows on the workflow en-
gine (Step 3 in Figure 7).

f. The customer representative calls schedule
on USC to reserve an abstract ComputeServer-
Group resource (Step 4 in Figure 7).

g. As soon as the workflows are generated and
deployed, their execution can be triggered by in-
voking operations on the controller. The create
and delete workflows can be executed by invok-
ing create and delete respectively. The addCompute
Server and removeComputeServer workflows can
be executed by invoking the executeWorkflow
operation.

h. The customer representative invokes the create
operation on USC (Step 5 in Figure 7). This trig-
gers the execution of the create workflow.

i. The create workflow invokes create on the com-
computeServerGroup RM. A ComputeServer-
GroupRIC is instantiated and a handle to it is
returned to the USC (Step 6 and Step 7 in Fig-
ure 7).

The scenario continues in Figure 8.
a. The subscriber requests the customer repre-

sentative to add a number num of computational
servers to its service instance.

Figure 7 Usage scenario (part 1)

CONTROLLER
FACTORY
0: create 1: creates...
2: build
CUSTOMER 3: deploy
REPRESENTATIVE 4: schedule usc
5: create
6: create(rsvTKT,..)
7: creates...
computeServerGroupRM = = = = = = = — = - workerGroupRIC
OPERATION INVOCATION
D FROM WITHIN WORKFLOW
OPERATION INVOCATION LIFE-CYCLE OPERATION

puteServerGroupRIC allocated to it (Step 0 in Fig-
ure 8).

. The customer representative uses the handle to

invoke selectAddComputeServers on the Com-
puteServerGroupRIC with a parameter value num
(Step 1 in Figure 8).

. ComputeServerGroupRIC invokes executeWork-

flow (addComputeServer) on the controller (Step
2 in Figure 8). Each such invocation triggers the
execution of the addComputeServer workflow,
which adds one computational server to USC
from the free pool (Step 3, Step 4, and Step 5
in Figure 8). Note that only the beginning of the
workflow is described in the figure; the complete
workflow is found in Figure 1. The handle to the
computeServerRIC representing the computa-
tional server is returned to USC from the work-
flow and kept as an attribute.

. ComputeServerGroupRIC retrieves the handle by

invoking the getAttribute operation on the USC
in order to keep track of the computational serv-
ers in the group. It adds the handle to its inter-
nal data structures (Step 6 in Figure 8).

b. The customer representative invokes getRe- This process (items d and e in this description) is
sources on USC to get the handle to Com- repeated numtimes.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 EILAM ET AL. 113

Figure 8 Usage scenario (part 2)

CUSTOMER
REPRESENTATIVE

0: getResources("computeServerGroupRM")

usc

1: selectAddComputeServer(num, imageName, ...)

2: executeWF("addComputeServer", imageName, ...)

computeServerGroupRIC

ComputeServerRM

4: creates...

ComputeServerRIC um

The on-line gaming service

On-line games fall into two major categories: mas-
sively multiplayer persistent (MMP) games and ses-
sion-based games. MMP games, which are frequently
adventure-based, can host thousands of players, and
a session can run indefinitely. Session-based games,
which are typically shooter games, have typically less
than 128 players and tend to be short lived, lasting
less than one hour. These two game types are also
differentiated by the required response time for state
updates and by the number of locations (players) to
which these updates must be distributed. These dif-
ferences place unique requirements on the under-
lying resources.

Today’s game developers and game publishers have
separate infrastructures with dedicated resources for
each stage (development, test, and production) in
the life cycle of a game. These dedicated resources,
such as management servers, file stores, database
servers, firewalls, and DNS (domain name service)
servers, are generally underutilized and are not
dynamically reallocated. Moreover, the develop-
ment, test, and production environments place dif-
ferent demands on infrastructure resources.

The on-line gaming service (gaming service, for
short) offers environments to game developers and

114 EiLAm ET AL

3: createComputeServer(...)

6: getAttribute("computeServerHandle")

5: addComputeServer workflow continues...

OPERATION INVOCATION
FROM WITHIN WORKFLOW

LIFE-CYCLE OPERATION

SYSTEM COMPONENT

OPERATION INVOCATION

publishers that are customizable in terms of re-
sources, allows sharing of resources, and can vary
the resource allocation based on load. Thus, devel-
opers and publishers can concentrate on their core
business, the creation and delivery of entertainment
content, and leave the management and maintenance
of the gaming infrastructure to the utility service pro-
vider. Customers are charged only for the resources
actually used. For example, a developer may use a
game service instance for a few months, while a pub-
lisher may require the transfer of resources from one
game service to another as the popularity of games
changes in the marketplace.

MMP games and session-based games both employ
techniques to optimize resource usage while meet-
ing their performance goals for game play events.
The gaming service provides monitoring of perfor-
mance data and a set of policies using that data to
drive dynamic allocation of resources. Some resource
types are uniformly managed across service instances
and employ and thus are controlled by the same pol-
icies and parameter values. Other resource types re-
quire treatment that is specialized to the game and
has custom rule sets. For these custom rules, the util-
ity service makes no guarantees as to their correct-
ness and applies them as long as there is no conten-
tion over resources. In case of contention, the

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 9 The on-line gaming system

SERVICE INSTANCE

DB SERVER
PROXY
SERVER
FREE SERVER POOL
ADDITIONAL
USERS SERVER
FREE SERVER
RESOURCE
MONITORING
SERVICE INSTANCE INFRASTRUCTURE
CORRELATION ENGINE
SERVER RM
usc
GAME RM GAME GROUP RIC INSTALL GAME RS
PROXY GROUP RM PROXY GROUP RIC INSTALL PROXY RS

applicable SLAs between the subscriber, the service
provider, and the service supplier determine the ac-
tual allocation of resources.

The gaming service differs from LSCS in its require-
ments: the mix of resource types, the duration of re-
source allocations, the support for custom (game)
software, and the support for dynamic resource al-
location in response to changes in load. The secur-
ity requirements, however, are not as stringent as
those for LSCS.

Overview of the gaming service. The gaming ser-
vice provides game environments for development
or play. Customers subscribe to the service weeks or
even months in advance. A subscription is usually
for a specified game type, set of resources, activa-
tion time, and duration. The service provider can
make use of rule sets that determine how resources
are managed. Game service instances are created,
managed, and destroyed on a continuous basis. The
provisioned environment may contain development
tools, various security features, and facilities for man-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

aging players. Game players can subscribe to indi-
vidual games, log in and log out of games, and en-
gage in peripheral activities such as chat. The active
game environments acquire and release resources
automatically, depending on player activity.

Like LSCS, game environments contain fixed re-
sources and dynamic resources. The fixed resources
are allocated when the service instance is created.
These include a firewall, a DNS server, a network ad-
dress translation (NAT) router, a file store (where the
game images are stored), and a database server (on
which game databases store the persistent game
state). Although network isolation is not required,
security is provided by the firewall, a packet filter on
each server that discards traffic not directed at the
port assigned to the game it hosts, and a NAT router
that only routes traffic to gateway servers.

The dynamic resources include a set of game serv-
ers for game logic and state management, and a set
of proxy servers where players log in and game ses-
sions are maintained. Add-on services, such as chat,

EILAM ET AL. 115

are also hosted on the proxy servers. Figure 9, which
shows the gaming service architecture, depicts the
servers as part of the service instance infrastructure.

Design of the gaming service. We describe here the
gaming utility service controller (USC), which rep-
resents and controls a service instance, and the base
components, RMs, RSs, and RICs, that are used to build
and support the gaming service. We also describe
the parts, the topology tree, and the workflows that
make this service work.

The USC. The USC operations include (1) create—
triggers the execution of the create workflow, (2) de-
lete—triggers the execution of the delete workflow,
and (3) executeWorkflow—a generic operation that
receives as a parameter a name of a custom work-
flow and triggers its execution. executeWorkflow is
used to invoke the workflows that are generated for
each one of the following four operations:

1. addGameServer—Add a game server to the ser-
vice instance

2. addProxyServer—Add a gateway server to the ser-
vice instance

3. delGameServer—Delete a game server from the
service instance

4. delProxyServer—Delete a gateway server from the
service instance

As in LSCS, we call the two addXXXServer workflows
(XXX stands for either “Game” or “Proxy”) through
the use of the selectAddXXXServer call, which is car-
ried out by XXXGrouplnstanceServices immediately
after the creation of the service instance to allocate
the gaming environment’s initial server sets. The cus-
tom workflows are invoked by using the executeWork-
flow operation on the USC.

RMs, RSs, and RICs. Server RM is similar to the com-
putational server group RM for LSCS.

Install Game RS performs the work needed to re-
allocate a server from the free pool and configure
and install it in the gaming environment as a game
server. It has two operations:

* Install—installs and configures the base operating
system, the database connection libraries, and se-
curity software.

¢ ConfigureGS—configures the server for the role it
will play in the service instance (namely, a game
server). This involves the running of various scripts

116 EiLAm ET AL

and installing the data collection agent
(monitoring).

Game Group RM is similar to the LSCS Com-
puteServerGroup RM. When its create operation is in-
voked, it creates the GameGrouplnstanceService,
which provides the selectAddGameSvr and selectDel-
GameSvr operations. The selectAddGameSvr oper-
ation adds a set of num game servers to the game
server group by executing the addGameSvr workflow
num times. Similarly, the selectDelGameSvr opera-
tion removes game servers from the group by invok-
ing delGameSvr workflow. Both of these workflows
are executed by invoking the executeWorkflow op-
eration on the USC.

Install Proxy RS and Proxy Group RM are the coun-
terparts of the Install Game RS and the Game Group
RM for the proxy servers.

Infrastructure RM performs the system configuration
operations that are not server based. For each new
service instance the RM (1) opens a game port on
the firewall, (2) configures the DNS server, and (3)
configures the NAT router.

Database RM, which is used to store the persistent
state, creates the database for the game service in-
stance. This RM has two operations: (1) create—cre-
ates the database instance by using a set of scripts
that load database tables (the instance is created on
a server node that is already configured as a data-
base server), and (2) delete—deletes the database
instance.

Parts and the topology tree. Figure 10 shows the parts
and the topology tree for the gaming service, as well
as an illustration of the mapping from workflows to
RM/RS operations. In this figure, the subtrees rooted
at the Game Server Part and the Proxy Server Part
have the same structure; both employ group parts
and install-server parts, and both use the Server RM
as a common component (for clarity, only the Game
Server Part subtree is shown in detail).

Using the game service template, the Planner builds
the workflows and the rules that will be invoked at
runtime to create and manage the gaming service
instance. The workflows include:

create—Creates gaming service instance
delete—Deletes gaming service instance
addGameSvr—Reserves, creates, and adds N serv-
ers to the game server group

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 10 The topology tree for the gaming service

Game Service

Part
Game Server Part
Proxy
Game Server Configure s Part Infrastructure Database
Group Part Game Part vy (7] Config Part
Install Server Part
create-> addGameSvr-> = addGameSvr-> create->null create create
create install configureGS delete->null delete delete
delete-> delGameSvr-> delGameSvr->
delete de-install deconfigureGS
GameGroup Install Game RS Server RM Infrastructure Database RM
RM
serverRM.allocate
STATIC DYNAMIC RM/RS WORKFLOW-TO-
PART PART OPERATION MAPPING

Table 2 Examples of workflows generated by the Planner and their corresponding operations

create Workflow
Game-Grp.create
Proxy-Grp.create
databaseRM.create
infrastructureRM.create

addGameSvr Workflow
InstallGameRS.Install
InstallGameRS.ConfigureGS

delGameSvr—Deletes a server from the game server
group

addProxySvr—Reserves, creates, and adds N serv-
ers to the proxy server group

delProxySvr—Deletes a server from the proxy server
group

A “meta-workflow” that invokes the create workflow
and adds the initial server sets by invoking the add
workflow for each of the server types is defined man-
ually outside of the Planner. Examples of workflows
generated by the Planner and their corresponding
operations are shown in Table 2.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Event correlation. The gaming service uses an event-
correlation engine to drive reallocations of resources
for gaming service instances, and also for problem
determination. In the current design only a few pol-
icies are supported, such as policies to aggregate and
smooth performance data, threshold rules that mon-
itor the aggregate metrics and detect performance
violations, and availability monitors that periodically
check server availability. When a server is determined
to be overloaded or under loaded, the threshold pol-
icies trigger automatic resource rebalancing using the
selectAddXXXSvr and selectDelXXXSvr operations.
These policies are described in detail in Reference 19.

EILAM ET AL. 117

A data collection agent used for monitoring resides
on each server resource. Agents are configured by
the InstallXXXRS.ConfigureXX operation to provide
sensor data for the appropriate type of resource. Sen-
sor data is pushed to, or pulled from, the utility man-
agement node. The correlation engine gets notified
when these events occur (the setup is performed by
the InstallXXXRS.ConfigureXX operation). The corre-
lation engine is kept apprised of which servers be-
long to which service instance by GrouplnstanceSer-
vices. This basic configuration data is used in
conjunction with the sensor data by the rule-based
correlation engine.

Conclusions

In this paper we described a utility computing frame-
work and two utility systems that were designed us-
ing it. The LSCS utility system has been implemented
and is operational. Our experience shows that the
utility-computing framework facilitates the creation
of new utility systems by providing:

¢ Common functions, such as resource reservation,
generation and execution of workflows, and mon-
itoring and correlation of events.

e Common interfaces for those functions that are
resource-specific so that they can be easily devel-
oped and incorporated in the framework.

¢ A methodology and tools for defining the infra-
structure needed to support a utility service and
flexibly assembling existing provisioning and
management functions based on the service
requirements.

Our experience in using the framework for the sam-
ple utilities showed that components such as RMs and
parts are often reused. For example, the LSCS server
and server group components were reused to a large
extent in the gaming utility system. We also discov-
ered that patterns that were not initially part of the
framework, such as the server group, appear to have
broad applicability. This componentization of pro-
visioning and management function is important not
only for reuse, but also because it facilitates devel-
opment by multiple vendors while preserving
interoperability.

We found that the limitations of the current mech-
anism for mapping workflows to operations resulted
in a larger than expected set of parts. Some of these
parts represent configuration tasks that were mapped
to resource services in an ad hoc fashion. In addi-
tion, these tasks were highly specific to a particular

118 EiLam ET AL

physical infrastructure, and it is unclear how reus-
able the parts and the corresponding implementa-
tion components will be. Overcoming these chal-
lenges, while preserving the benefits offered by the
framework, is part of our ongoing work.

The general problem of building solutions and com-
mercially deploying utility computing services is be-
ing tackled in the marketplace. Our future work is
intended to help make utility computing a commer-
cial success through the use of advanced technology,
and more specifically by applying autonomic meth-
ods to the utility computing environment.

Acknowledgments

We had many interactions with researchers, archi-
tects, and developers while working on this project,
and we thank everyone who contributed. We recog-
nize Georg Ochs, Georg Bildhauer, and Andrea
Schmidt for their contributions to the project as a
whole and for their insight that affected this work.
We thank Stefan Zink, Sebastian Bauer, Peter
Taube, and Srirama Krishnakumar for their work on
various aspects of the LSCS. We thank German Gold-
szmidt for his contributions to Océano, an early pro-
totype from which this project benefited significantly.
We also thank Yariv Aridor, Ofer Biran, and Srirama
Krishnakumar for their contributions to Raquarium,
another important early work in this space. We also
thank Yariv Aridor and Ofer Biran for helpful dis-
cussions that shaped our ideas on the architecture
of the framework. Kemal Ebcioglu contributed to
our understanding of the requirements through his
analysis of related work and its shortcomings. Var-
ious members of our team benefited from the time
spent discussing gaming services with Boaz Betzler.
Finally, we thank Andrew Laycock, Terence Wells,
and Gordon Watson for introducing us to life-sci-
ence computing and helping us vet our approach to
this problem.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Oracle Corporation, Li-
nus Torvalds, or Intel Corporation.

Cited references

1. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalan-
tar, S. Krishnakumar, D. P. Pazel, J. Pershing, B. Rochwerger,
“Océano—SLA Based Management of a Computing Util-
ity,” Proceedings of the 7th IFIP/IEEE International Sympo-
sium on Integrated Network Management, IEEE, New York
(2001).

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

2. J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle,
“Managing Energy and Server Resources in Hosting Cen-
ters,” Proceedings of the 18th Symposium on Operating Sys-
tems Principles, ACM, New York (2001).

3. A. Abbondanzio, Y. Aridor, O. Biran, L. L. Fong, G. S. Gold-
szmidt, R. E. Harper, S. M. Krishnakumar, G. Pruett, and
B. Yassur, “Management of Application Complexes in Mul-
titier Clustered Systems,” IBM Systems Journal 42, No. 1,
189-195 (2003).

4. J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase, Man-
aging Mixed-Use Clusters with Cluster-On-Demand, Techni-
cal Report, Department of Computer Science, Duke Uni-
versity (November 2002).

5. HP Utility Data Center, Technical White Paper, Hewlett-Pack-
ard Company (October 2001).

6. ThinkDynamics: On Demand Provisioning, IBM Corporation
(2003).

7. M. Lovington, Intelligent Storage Platform, Sun Microsystems,
Inc. (2002).

8. NI Provisioning Server 3.0 Blades Edition, Sun Microsystems,
Inc. (2003).

9. The I-Fabric Architecture, Sun Microsystems, Inc. (2002).

10. Op-Force 2.0—IT Automation Suite, Jareva Technologies, Inc.
(2002).

11. P. Goldsack and P. Toft, “SmartFrog: a Framework for Con-
figuration,” Large Scale System Configuration Workshop, Na-
tional e-Science Centre, UK (2001).

12. R.Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vah-
dat, “Opus: an Overlay Peer Utility Service,” Proceedings of
the 5th International Conference on Open Architectures and
Network Programming (OPENARCH), IEEE, New York
(2002).

13. The Globus Alliance, http://www.globus.org.

14. 1. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology
of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration,” Global Grid Forum, Open Grid
Service Infrastructure WG (June 22, 2002).

15. A. Roy and V. Sander, “GARA: A Uniform Quality of Ser-
vice Architecture,” Grid Resource Management: State of the
Art and Future Trends, J. Nabrzyski, J. M. Schopf, and J. We-
glarz, Editors, Kluwer Academic Publishers, Norwell, MA
(Fall 2003).

16. Open Grid Services Infrastructure Working Group (OGSI-
WG), Global Grid Forum, http://www.ggf.org/ogsi-wg.

17. D. Georgakopoulos, M. F. Hornick, A. P. Sheth, “An Over-
view of Workflow Management: From Process Modeling to
Workflow Automation Infrastructure,” Distributed and Par-
allel Databases 3, No. 2, 119-153 (1995).

18. F.Leyman and D. Roller, Production Workflow: Concepts and
Techniques, Prentice Hall, Upper Saddle River, NJ (2000).

19. K. Appleby and S. Calo, “Policy-Based Automated Provision-
ing,” IBM Systems Journal 43, No. 1, 97-120 (2004, this is-
sue).

Accepted for publication October 11, 2003.

Tamar Eilam IBM Thomas J. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532 (eilamt@us.ibm.com). Dr. Eilam
is a research staff member in the Distributed Middleware De-
partment at the Watson Research Center. She received her Ph.D.
degree in computer science in 2000 from the Technion, the Is-
rael Institute of Technology, where she worked on trade-offs be-
tween space and efficiency in routing protocols. Dr. Eilam’s ar-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

eas of interests include systems management, distributed systems,
and networking. She is currently working on the dynamic gen-
eration of automation plans for systems configuration.

Karen Appleby IBM ThomasJ. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532 (applebyk @us.ibm.com). Karen
Appleby is a member of the Network and Systems Management
Department at the Watson Research Center. She holds an M.S.
degree in computer science from New York University. Karen
Appleby’s main research interests are in the areas of event cor-
relation, problem determination, e-commerce, and policy-based
management.

Jochen Breh [IBM Development GmbH Germany, Schoenaicher
Strasse 220, 71032 Boeblingen, Germany (breh@de.ibm.com). Mr.
Breh is a software engineer in the e-Utility Department at the
IBM Development Laboratory in Boeblingen. His current activ-
ity is designing an on demand solution in the SAP space. Pre-
viously, he was involved in porting message-based infrastructures
to the IBM eServer zSeries platform. Mr. Breh obtained a Mas-
ter’s degree in electrical engineering from the University of Stutt-
gart in 1997.

Gerd Breiter IBM Development GmbH Germany, Schoenaicher
Strasse 220, 71032 Boeblingen, Germany (gbreiter@de.ibm.com).
Gerd Breiter is a Senior Technical Staff Member working with
IBM Fellow Jeffrey Nick’s team on the architecture for the in-
frastructure for on demand computing. Prior to this project he
worked on integrating rich media into WebSphere/J2EE business
applications and on the architecture and design of transaction
and recognition systems in the banking industry. His technical
interests are in advanced Web technologies, especially in Web
services and the grid environment.

Harald Daur [BM Development GmbH Germany, Schoenaicher
Strasse 220, 71032 Boeblingen, Germany (harald_daur@de.
ibm.com). Mr. Daur is a software engineer in the e-Utility De-
partment at the IBM Development Laboratory in Boeblingen.
He is currently working on the architecture for the infrastructure
for on demand computing, focusing on the provisioning of IT re-
sources and its underlying model. Previously, he was involved in
the architecture and design of J2EE extensions to integrate au-
dio and video data into business applications. Mr. Daur obtained
a B.S. degree in computer science from the University of Esslin-
gen in 1986.

Sameh A. Fakhouri IBM Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532 (sameh@us.ibm.com).
Sameh Farkhouri is an advisory software engineer in the Distrib-
uted Middleware Department at the Watson Research Center.
He received a Master’s degree in 1983 from New York Univer-
sity. His research interests include the discovery, monitoring, and
management of network topology, as well as distributed messag-
ing systems.

Guerney D. H. Hunt IBM Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532 (gdhh@us.ibm.com). Dr.
Hunt is currently Senior Manager of the Distributed Middleware
Department at the Watson Research Center. He is also on the
editorial board of the IEEE Pervasive Computing magazine. He
received his Ph.D. degree in 1995 from Cornell University, work-
ing with Ken Birman in the area of multicast flow control for fault-
tolerant distributed computing. His research interests include dis-

EILAM ET AL. 119

tributed systems, autonomic provisioning, on demand
infrastructures, fault tolerance, pervasive computing, context, pri-
vacy, and security.

Tan Lu IBM Systems Group, 2455 South Road, Poughkeepsie,
New York 12603 (tanlu@us.ibm.com). Mr. Lu is a core architect
working on the design of IBM’s on demand computing initiative.
He received his M.S. degree in computer engineering in 1999 from
Carnegie Mellon University. Previously, he was responsible for
leading the architecture design for IBM’s eServer zSeries z/900
I/O subsystem. His interests include the application of on demand
technologies in emerging businesses in American and Chinese
markets.

Sandra Miller IBM ThomasJ. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532. Sandra Miller is an Advisory
Software Engineer in the Distributed Middleware Department
at the Watson Research Center. She received her M.S. degree
from Duke University in 1990. She has worked in the areas of
network communications and distributed computing. She is cur-
rently on a leave of absence from IBM, residing in Winchester,
England with her family.

Lily Mummert [IBM ThomasJ. Watson Research Center, 19 Sky-
line Drive, Hawthorne, New York, 10532 (lily@us.ibm.com). Dr.
Mummert is a research staff member at the Watson Research
Center. She received her Ph.D. degree in 1996 from Carnegie
Mellon University in the area of distributed file systems. Her re-
search interests include distributed systems, systems management,
fault tolerance, and performance evaluation.

JohnPershing IBM ThomasJ. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532 (pershng@us.ibm.com). Mr. Per-
shing is a research staff member in the Internet Infrastructure
and Computing Utilities Department at the Watson Research
Center. He received his B.S. and M.S. degrees in computer sci-
ence from Massachusetts Institute of Technology. He has been
involved in computer systems work for over 30 years, primarily
in the areas of computer networking, large-scale clustering, and
systems management.

Hendrik Wagner IBM Development GmbH Germany, Schoe-
naicher Strasse 220, 71032 Boeblingen, Germany (xxhewa@de.
ibm.com). Mr. Wagner is currently with the IBM Development
Laboratory in Boeblingen, Germany. After his graduation in com-
puter science from the Berufsakademie in Stuttgart, Germany in
1991, Mr. Wagner worked on various IT projects for the auto-
mobile industry and telecommunication customers and on middle-
ware-related product development on different platforms. His
main interests are in object-oriented architectures and compo-
nent-based systems.

120 EiLAM ET AL IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

