An architecture

for the coordination
of system
management services

Today, system management services are
implemented by dedicated subsystems, built
using proprietary system management
components. These subsystems are
customized to automate their operations to
the extent feasible. This model has been
successful in dedicated enterprise
environments, but there are opportunities to
broaden the scope of these services to
multicustomer utility computing environments
while reducing the costs of providing these
services. A new model suitable for utility
computing is being developed to address
these opportunities. This model features
several new elements: (1) a repository to
represent the state of the remotely managed
components and of the services that manage
them, (2) a repository of policies and
operational constraints, and (3) a set of meta-
management services that use existing
management services to analyze, construct,
and safely execute a complex set of
management tasks on remote systems. The
meta-management services manage the
system management services provided by the
utility—they guide and modify the behavior of
the services, often as a result of the collective
analysis of the state of one or more services.
In this paper, we describe requirements and
behaviors of such meta-management services
and the architecture to provide them. We
focus on the components of this architecture
that enable and provide effective meta-
management services in a utility environment.

78 NAIK, MOHINDRA, AND BANTZ

0018-8670/04/$5.00 © 2004 IBM

by V. K. Naik
A. Mohindra
D. F. Bantz

In an enterprise, a large fraction of the budget spent
on information technology (IT) is associated with pro-
viding system management services. The primary ob-
jective of system management services is the con-
tinual operation of servers, desktops, and laptops in
the enterprise. Typical of the services provided by
system management are deployment services (ini-
tial configuration, software distribution, and instal-
lation), support services (help-desk support and trou-
bleshooting), preventive maintenance services
(upgrades, backups, and virus scanning), and other
administrative services (asset management, user
management, and license management). Today these
services are typically provided by the IT staff.

System management tasks are complex, error-prone,
and training- and labor-intensive. In current prac-
tice, a system administrator invokes services man-
ually through the facilities of one or more consoles.
Typically, each console controls one service, and the
system administrator is responsible for mentally map-
ping the desired actions into the specific service in-
vocation syntax. Multistep service invocations are of-
ten stored as scripts whose sequence is fixed but
whose parameters can be supplied at run time. Taken
together, these scripts represent an enterprise-spe-
cificintegration of system management components.
These scripts must be constructed from scratch for
each enterprise in low-level programming languages,

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

and they constitute a significant management and
maintenance task in themselves.

The increasing complexity and integration of enter-
prise IT is reflected in the increasing complexity of
system management. In order to reduce the total cost
of ownership associated with system management,
enterprises have begun to standardize software ap-
plications and streamline IT processes used in their
enterprise.

The next step in streamlining the IT infrastructure
is to deliver the standard set of services and processes
through a shared infrastructure with a consolidated
help desk and IT staff, or to outsource the manage-
ment of the IT infrastructure to other companies that
specialize in IT outsourcing. We define a system man-
agement utility as delivering IT services to multiple
customers over the Internet from a shared infrastruc-
ture. (In the rest of the paper, when there is no am-
biguity, we use the term utility to mean system man-
agement utility.) The goal of such a utility is to deliver
IT services at reduced cost through standardization,
automation, and leveraging economies of scale.

Effective automation in service deployment, deliv-
ery, and problem determination requires a high de-
gree of coordination among services and the objects
managed by the services. We observe that the cur-
rent approaches to system management are not de-
signed with coordination and automation as require-
ments as follows:

1. Services maintain information in silos and do not
automatically take advantage of information gath-
ered by other services. This situation makes any
multiservice use of system management services
IT administrator-centric. To perform any system
management task, the system administrator has
to analyze the requirements, plan an approach,
execute steps, and monitor success across services.

2. System management tools and services do not au-
tomatically customize themselves to the config-
urations being managed. As a result, the config-
uration, deployment, and coordination of system
management services is labor-intensive.

3. System management services and applications are
enterprise-centric: most services and applications
treat trust and privacy issues from an enterprise
perspective.

4. System management services are configured with
certain built-in assumptions about the managed
systems. They are not configured to adapt to a
changing environment. For example, broken de-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

pendencies or unsatisfied prerequisites are the
main reason when management procedures do
not complete their execution normally.

In summary, the existing services and practices do
not lend themselves easily to the utility computing
model. Although there is a clear need for delivering
system management services using the utility model,
existing system management services are not suffi-
cient for realizing this goal.

To overcome these difficulties, today’s system man-
agement services could be redesigned and re-imple-
mented, or new technologies could be developed that
would allow the use of existing services while en-
abling automation by some other means. We take
the latter approach here and describe a method and
an architecture for developing an infrastructure that
is highly automated and scalable, yet adaptive to each
specific managed element in its unique context. With
this approach, system administrators are relieved
from the burden of performing repetitious tasks and
are able to focus more on complex tasks such as so-
lution architecture and planning.

Several key contributions are presented in this pa-
per. We describe how to use a rule-based system to
model policies, profiles, and dependencies or re-
quirements. We also describe an architecture in
which a repository of rule-based objects is used for
automated configuration and sequencing of multi-
ple services. This architecture also handles manage-
ment tasks related to spontaneous changes in remote
systems. The organization of the objects in the re-
pository makes it possible to reason about actions
to take and which services to deploy.

In the next section of this paper, we describe objec-
tives and requirements of a system management util-
ity and discuss the shortcomings of existing solutions
to meet these objectives and requirements. We con-
clude the section by describing some of the salient
points of our approach. In the third section, we in-
troduce rules and discuss how they can be used to
represent policies, profiles, and requirements. The
architecture of our approach is discussed in the
fourth section. We present some design issues after
that, and in the sixth section we describe an outline
of a prototype implementation of this approach.
Other work in the literature related to this work is
discussed in the seventh section. Finally we conclude
with a summary and some directions for future work.

NAIK, MOHINDRA, AND BANTZ 79

Delivering system management services as
a utility

In this section we first discuss the objectives and re-
quirements of a utility. We then discuss the short-
comings of current system management tools and
services, and following that we describe intuitively
the key ingredients needed to realize the objectives
of the utility model.

Objectives and requirements of a utility. In the in-
troductory section, we briefly described the objec-
tives and principles used in managing systems. To
offer system management services as a utility, some
additional considerations must be taken into account.
By its nature, a utility has to cater to a diverse set
of customers, each customer having its own unique
requirements. At the same time, to be successful as
aviable business, the utility cannot assign expert sys-
tem administrators individually to each customer. It
must replicate its services economically and be able
to customize them before deployment on customer
systems. In particular, a system management utility
has the following three key objectives:

1. Provide policy-based system management and ser-
vice administration

2. Provision services to customers on demand and
according to service level agreements (SLAs) with
the customers

3. Leverage economies of scale

Policy-based system management means adjusting
the service behavior according to some customizable
policy. The policy may be customer-, user-, or ma-
chine-specific. It can also be a policy specified by the
utility. An example of a policy is performing incre-
mental backup on a daily basis and a full backup on
a monthly basis. At the machine or user level, the
policy might specify the exact time of the day when
the backup is to be performed.

“On demand” service provisioning means being able
to configure and deliver a service just in time when
the need arises. “SLA-driven” means that the quality
of service is maintained at a certain prescribed level.
An example of an on demand service is performing
a nonroutine backup just before upgrading the op-
erating system of a machine. An example of an SLA-
driven service is maintaining a particular machine
configuration in a usable state 99 percent of the time
during normal working hours over a specified pe-
riod of time.

80 NAIK, MOHINDRA, AND BANTZ

To satisfy the first two objectives just described, for
each kind of system management service, a utility
has to manage multiple types of system management
services (i.e., similar service functionality offered by
different brands, versions, etc.) and needs to be ca-
pable of configuring and deploying different variants
of a particular service, depending on the situation
at hand.

The third objective is driven mostly by pragmatic con-
siderations. Leveraging economies of scale means
being able to amortize costs efficiently over a large
customer base. In other words, costs associated with
system management services should grow sublinearly
as a function of the number of customers, machines,
and users.

Clearly, for a utility to be successful as a business
concept, large-scale automation is required to achieve
the three key objectives listed above. Large-scale au-
tomation in configuring and coordinating services is
necessary to provide system management services
from a utility.

State-of-the-art in system management technol-
ogy. The Microsoft Systems Management Server
(sms)! and the Tivoli Configuration Manager (TCM)?
are two widely used applications for managing sys-
tems. These applications provide mechanisms that
facilitate the performing of certain management
tasks by an IT administrator. Management applica-
tions typically provide mechanisms for gathering
hardware and software inventory and performing
software installation and distribution, license man-
agement, troubleshooting, and so on. These tools en-
able an IT administrator to perform management
tasks from a central console. However, the manage-
ment applications do not alleviate the need for an
IT administrator to spend time thinking and devel-
oping steps needed to accomplish the task at hand.
For instance, if an IT administrator needs to deploy
a new version of software, then he or she has to de-
velop an action plan that takes into account hard-
ware and software prerequisites, best practices, and
old versions of the software that are deployed. The
seemingly simple task of deploying software trans-
lates into several interdependent steps that may vary,
depending upon the configuration of each managed
object.

For example, the task of distributing a software pack-
age to an endpoint (i.e., a managed object) using TCM
requires execution of a 65-line shell script given in
Reference 3. Before executing the script, it is as-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

sumed that the endpoint has been recognized by the
TCM console. Additional scripts need to be executed
to discover and integrate an endpoint into TCM. The
software distribution script consists of several sub-
tasks: checking for the software profile manager
(wlookup command), subscribing the endpoint to the
software profile manager (wsub command), and
distributing the software package to the endpoint
(winstp command). Successful execution of this last
step implies that the software package is successfully
delivered to an agent running on the managed ob-
ject.

The script assumes that the prerequisites and other
dependencies for installing the software package are
met. When the script is to be applied on a mass scale,
this assumption has to be verified for each and ev-
ery instance before applying the script; otherwise,
the software installation may not be completed suc-
cessfully. However, such a verification test may de-
pend on the type of the managed object. Thus, mul-
tiple customized verification scripts may have to be
generated. The problem becomes more difficult if a
set of post-installation tests are required to be per-
formed remotely to ensure that the installation was
successful or if the installed software is required not
to interfere with other software installed on that sys-
tem. And typically, these scripts control a single ser-
vice. They do not coordinate and integrate multiple
services to orchestrate them to achieve a common
goal.

The preceding shortcomings are not shortcomings
of TCM, but of the way in which the facilities of TCM
are invoked. Similar difficulties exist when trying to
accomplish the same task in SMS by using the mech-
anisms and wizards provided by SMS. Many products
are available that offer highly specialized functions
such as inventory gathering, software distribution,
or event monitoring. Many IT administrators still rely
on highly customized shell scripts written in script-
ing languages such as WsH (Windows** Script Host)
and Perl to perform system management tasks that
have been somewhat tuned to their environment.

Need for a new approach. As described earlier, most
of the system management services available today
are designed and developed in isolation. Given this
state-of-the-art for the system management services,
a policy-based and on demand system management
utility would imply generation of one-time scripts on
a case-by-case basis. Such a situation is hardly con-
ducive to large-scale automation. From a practical
point of view, it is much more desirable and attract-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

ive to automate interactions among components that
can be introspected, examined for state changes, and
associated with actions that can be triggered by us-
ing semantic rules. In the context of system manage-
ment services, this means being able to model the
managed objects and the services that manage them.
These models should predict the need for a partic-
ular change in the state of the managed object and
what action should be triggered to bring about that
change. By associating the action with a service, a
desired level of automation can be accomplished.

Our approach. We have formulated our approach
by focusing on the needs described above. In par-
ticular, we have focused on a system in which the
causes of changes in the state of a managed object
and effects of those changes on the environment can
be reasoned about. We also focus on associating ac-
tions with services so that the available services can
be coordinated once the actions to be taken are de-
termined. When desired changes are known a pri-
ori, this approach allows us to build action plans by
analyzing the current state and known effects of avail-
able change management services.

Specifically, we model a managed object by caching
selected components of its state together with con-
straints on that state, and we formulate rules that
specify what actions to take when constraints are vi-
olated. We also model policies, profiles, and service
behavior. Whenever a change is sought in a man-
aged object, we create an action plan by using the
analysis and service models. We then predict the ef-
fect of an action associated with a service on the mod-
eled object. With this we derive a predicted state and
steer the state of the actual managed object toward
the desired state in a controlled manner. In this ap-
proach, effects of unanticipated behavior are man-
aged by tracking the changes incrementally using a
feedback mechanism. Moreover, whenever the sys-
tem detects uncertainties, it proportionately in-
creases the level of monitoring for feedback and anal-
ysis purposes.

We illustrate our approach schematically in Figure 1,
which depicts controlled change brought about in a
remotely managed object.

Using rules

We seek a management system whose behavior can
be altered by system administrators without chang-
ing the mechanisms of the management system it-
self. We refer to this behavior as externally specified,

NAIK, MOHINDRA, AND BANTZ 81

Figure 1 Realizing a controlled change in a remote
managed object
LAST ACCEPTED STABLE
STABLE STATE END STATE
EXPECTED ACTION EXECUTION
END STATE YALUATIE PLAN PLAN
MONITORING REMOTE
AND FEEDBACK MANAGED OBJECT

because it varies from deployment to deployment
and from time to time. At the same time, the system
should have some core behaviors ensuring that for
any externally specified behavior the system will be-
have in a consistent, predictable way. We refer to
this system behavior as internally specified, because
the designers and implementers of the system make
the determination of such behavior. We use rules to
implement both externally and internally specified
behavior. In other words, the system obeys internal
rules that are not visible to its users and that main-
tain its consistency. The system also obeys external
rules, given by its users, to alter its behavior to im-
plement the needs of a specific deployment.

Damianou et al.* define a policy as “. . . a rule that
defines a choice in the behavior of a system.” Their
use of the term “policy” is in accord with common
usage, in which the term is used in connection with
externally specified behavior. They identify several
classes of policies: authorizations (you may), refrain-
ment (you may not), and obligations (you must). Co-
ercive policies (refrainments and obligations) are
commonly referred to as “constraints.” In our sys-
tem, behavior-determining rules are pervasive. In or-
der to avoid confusion, we will refer to those rules
that are externally specified as implementing poli-
cies and to internal rules as implementing mecha-
nisms. This distinction is not material, however. In
both cases, rules control behavior. In fact, we think
of internally specified behavior as obeying policies
that are determined by the designers and implemen-
tors of the system.

82 NAIK, MOHINDRA, AND BANTZ

In accordance with the dual role that rules play in
our system, we have chosen an implementation of
rules appropriate both to the external specifier and
to the system designer. Rules are implemented by
the Agent Building and Learning Environment
(ABLE®). The rule language of ABLE compiles into
JavaBeans**.

The following is an example of (externally specified)
policy:

voi d process() using Script {
{weekend} i nvokeRul eBl ock
(“weekendPol icy”);}

voi d weekendPol i cy() using Forward {
RL [2]: I F (nmenorial DayWekend)
THEN {/* special case */};
R2 [2]: IF (fourthOf Jul yWeekend)
THEN {/* special case */};
R3 [1]: IF (!crunchTine)
THEN {/* general case */}
ELSE {/* special case for overworked
folks */};
}

Here we see the process() method invoking a
Scri pt inference engine on a rule that is precon-
ditioned on a Boolean variable, weekend, set else-
where to indicate that the current time and day are
in a weekend time period. The action of this rule is
to invoke a ruleblock (a set of rules) whose name is
weekendPol i cy. The ruleblock is written non-
procedurally as three rules (R1, R2, and R3). Each
rule is followed by optional numerical priority spec-
ified in square brackets. In the above example, rules
R1 and R2 have higher priority (priority 2) than rule
R3 (priority 1). The last rule, whose condition would
be very enterprise-specific, provides for an escape
from normal policy in times of crisis.

Mechanisms are typically procedural, but the expres-
sion of mechanisms as rules has some important ad-
vantages even in the procedural case. Rules facil-
itate experimentation, tuning, and even dynamic
modification. Rather than anticipate all possible
eventualities by constructing an elaborate rules li-
brary, it may be advantageous to alter internal be-
havior temporarily by modifying existing rules. Not
all mechanisms are best expressed procedurally. A
(trivially) simple expression of root cause analysis is
illustrated in the following nonprocedural set of
rules:

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

voi d process(y) using Predicate {
. set Control Par anet er (ARL. Goal ,
suspect (X)) ;

cause(power Qut, power).

cause(cabl eUnPl ugged, cable).

panel (power, no).

panel (cabl e, yes).

suspect (X) :- cause(X Z), panel (Z,y).
}

This ruleblock uses the predicate inferencing engine
to solve for X under the parameter y, which gives
the state of the lights. The last rule says that the state
of the lights is determined by a panel and that the
cause is related to the panel. The four rules imme-
diately preceding the last relate a cause to a panel
and a panel to the state of the lights. For the pa-
rameter y = “no,” the goal is reached when the lo-
cal variable Z selects the power panel.

Architecture for autonomous system
management

We now describe our architecture that addresses the
utility requirements by using a structured applica-
tion of the rule-based approach. First we discuss the
forces that drive typical system management action
sequences. With this discussion in the background,
we present an intuitive description of the architec-
ture, and following that we present a more formal
description of the logical architecture. We then de-
scribe the salient features of the key components in
some detail and the control flow among these log-
ical components.

Architectural considerations. In a system manage-
ment utility, three types of forces drive the services:

1. Component requirements
2. Computer and user profiles
3. Utility and customer policies

We consider these forces as the three dimensions of
the utility. Each dimension gives rise to constraints
that are not to be violated.

Any component, whether it is a hardware or a soft-
ware component, has some inherent requirements
that need to be satisfied in order for that compo-
nent to be installed and function properly. For ex-
ample, a CD-ROM (compact disk-read only memory)
device requires a driver to function properly, and the
driver may have a dependency on a particular ver-
sion of a component in the operating system run-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

ning on the computer. The component constraints
arise from the design choices made by the compo-
nent developer and are independent of the utility
and customer policies or the computer and user pro-
files. We model these dependencies and require-
ments using special constructs of the rules.

Computer and user profiles dictate how the installed
components are to be configured, the look and feel
as well as the behavior of the environment and of
the components in the environment. These profiles
give rise to constraints that need to be taken into
account whenever a managed system is to be con-
figured or reconfigured. We model these profile-spe-
cific requirements using rules.

Similarly, utility and customer-specific policies give
rise to constraints, and these policies are also mod-
eled using rules. In general, policies may be asso-
ciated with every aspect of the utility. Policies may
govern hardware, software, and operational aspects
of the utility. An example of a hardware-related pol-
icy is that all desktops in a system should have a min-
imum of 512 MB (megabytes) of installed memory.
An example of the software-related policy is that all
desktops should have CAD (Computer Aided Design)
software version 4.0 installed. An example of an op-
erations-related policy is that each system should
have a daily backup performed at 11 PM. Just as in
an enterprise, policies allow IT administrators to
maintain consistency and order across the organi-
zation, and policies permit the utility to plan and ex-
ecute actions to keep the managed systems consis-
tent with the policies.

Note that the constraints along each dimension can
be stated independent of those in the other two di-
mensions. However, when a new component is to
be installed in an existing environment, the con-
straints relate to one another and affect the state of
the user or computer environment. Violations of any
of the constraints can leave the environment in an
inconsistent state (e.g., an existing or the newly in-
stalled component may not function or perform as
expected). In fact, one of the main concerns of sys-
tem management services is to eliminate conflicts
and satisfy requirements. However, this concern re-
quires a judicious choice of which services to apply,
the order in which they are to be applied, and the
appropriate service configurations to use. System ad-
ministrators tend to spend most of their time figur-
ing out the service configurations and the sequence
in which to apply those services for each instance of
a system they have to manage.

NAIK, MOHINDRA, AND BANTZ 83

Figure 2 Logical architecture diagram for the system management utility

UNSATISFIED
CONSTRAINTS SET
PLAN
RULE PLAN
UPDATES EVALUATOR SCHERITER
UTILITY
INITIATED ACTIVE REPOSITORY PLAN
CHANGE EXECUTOR
UTILITY MANAGER
CHANGE STATE
COORDINATOR PRESERVER
EVENT DETECTOR REMOTE MANAGED
AND CONDITION OBJECT WITH AGENTS
MONITOR

The architecture defined here uses rules to model
constraints to plan, analyze, and execute the system
management services in such a manner that the sit-
uations leading to constraint violations are avoided.
With our approach, if constraints are violated, then
they can be detected, and recovery actions can be
planned, analyzed, and executed with a quantifiable
degree of confidence. More formally, our architec-
ture consists of a collection of active repositories
(data and constraints) and modules for monitoring,
analyzing, planning, evaluation, and execution with
knowledge (MAPE-K). Although at a high level, the
architecture has the MAPEK structure that is com-
mon to many autonomic systems,® it extends many
of the concepts to bring about cooperation among
heterogeneous system management services that are
not explicitly designed to cooperate with one another.
This is brought about by using the active reposito-
ries and their interactions with a plan evaluator. The
repositories are made active by embedding them with
self-triggering rules described earlier. The rules may
trigger their actions in response to externally mon-
itored events or in response to actions of other rules.

In the following subsections, we first describe the log-
ical architecture and then discuss the active resposi-

84 NAIK, MOHINDRA, AND BANTZ

tory, control flow, and management of changes in
some detail.

Logical architecture. Shown in Figure 2 is the log-
ical architecture diagram for the system management
utility.

The Managed Object (MO) shown in the lower right
corner in Figure 2 is a stand-alone system or a com-
ponent running on top of another managed object,
and is capable of being monitored and altered by a
management service. System management services
are launched by agents that run on the same plat-
form as the MO or from another system capable of
controlling the MO. Events that affect the state of
the MO are detected and monitored by the Event De-
tector component. These events may be further fil-
tered, based on one or more conditions and criteria.

When events and conditions of interest are observed,
they are recorded into a repository of active objects.
Each active object contains a rule that triggers one
or more actions whenever a monitored condition is
met. A rule-based action can trigger one or more
events that may activate other objects in the repos-
itory, leading to more actions. In Figure 2, the re-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

pository is shown as a single logical component. An
Active Repository is actually a collection of three
repositories: a Component Repository, a Profile Re-
pository, and a Policy Repository. For the sake of
brevity, we refer to the entire collection of active ob-
jects and the associated mechanisms as the Active
Repository.

A Plan Evaluator monitors the actions generated by
the Active Repository. The Plan Evaluator collects
actions associated with an MO and analyzes them to
determine whether the actions are consistent with
one another. It also performs an analysis to deter-
mine whether the application of the actions would
leave the MO in an inconsistent state. Whenever it
detects actions that are inconsistent with one another
or whenever some actions lead to an inconsistent
state, it adds the associated constraints to the Un-
satisfied Constraints Set. It then tries to resolve the
conflicts and unsatisfied constraints by injecting pre-
conditions and actions and then re-evaluates the re-
sulting plan. It iterates this process until all conflicts
are resolved and the Unsatisfied Constraints Set is
empty. If the iterative process does not terminate
after a certain number of iterations, human inter-
vention is sought.

The Active Repository and the Plan Evaluator have
complementary roles. Together these two compo-
nents make it possible to analyze and reason about
an action before applying it to an MO. Undesirable
results can be avoided by modifying or removing
some actions in the plan before they are applied. Ad-
ditional actions can be added to the plan to avoid
the undesirable side effects of other actions in the
plan. The analysis is carried out until a desired de-
gree of confidence in the outcome is achieved. If, for
some reason, the iterative analysis does not achieve
a desired degree of confidence in a plan, the Plan
Evaluator can apply the plan with fine-grained mon-
itoring and feedback turned on so that the plan can
be reversed or altered while being applied to the MO.

When the Plan Evaluator generates a plan that is
safe to execute, the plan is handed over to a Plan
Scheduler. The Plan Scheduler examines the plan
to see whether the plan can be optimized for per-
formance (e.g., reducing the number of reboots
where possible) and determines which actions can
be performed in parallel and which actions must be
serialized. It also adds monitoring and feedback com-
mands to the plan to achieve a certain desired de-
gree of confidence in the plan.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

A plan that is ready to execute is handed over to the
Plan Executor. For each action in the plan, the Plan
Executor either invokes an appropriate system man-
agement service or performs the action by execut-
ing corresponding system commands. The Plan Ex-
ecutor also primes the appropriate event monitoring
agents before applying any actions. In this way, the
desired state attributes and conditions are monitored
and fed back to the utility. When intermediate steps
of the plan execution require synchronization with
the utility, the Plan Executor waits for signals from
the monitoring agents or from the Active Reposi-
tory before proceeding to the next step.

We note here that the ultimate plan executed by the
Plan Executor may not be exactly the same as the
one initially specified by the Plan Evaluator or the
Plan Scheduler. The reasons are the Plan Evaluator
may have generated a plan requiring intermediate
feedback and the Plan Scheduler may have inserted
steps requiring synchronization of the MO state in-
formation with that represented in the utility. In ei-
ther case, during the course of plan execution, new
events and conditions may be fed back to the utility,
which may lead to reevaluation and alteration of the
plan.

The Utility Manager coordinates the Active Repos-
itory and the other components of the utility. Be-
cause these components operate asynchronously and
because the state of an MO may change spontane-
ously, events can arrive in any order. The irregular
arrivals can lead to deadlocks or livelocks (i.e., one
event triggering another event and the second event
in turn triggering the first one, and so on). To avoid
this without imposing strict synchronization require-
ments, coordination at a higher level is required. This
function is performed by the Utility Manager. The
Utility Manager has two subcomponents: the State
Preserver and the Change Coordinator. The role of
the State Preserver is to protect the state of an MO
from spontaneous changes (i.e., changes not initi-
ated by the utility). If the state changes spontane-
ously, then the State Preserver tries to ensure that
no constraints are violated. If any constraints are vi-
olated, it coordinates the activities of the Plan Eval-
uator, the Plan Scheduler, and the Plan Executor to
modify the state of the MO so that constraint vio-
lations are eliminated. The Change Coordinator, in
contrast, facilitates changes in an MO state originated
by the utility. The Utility Manager monitors the
events entering the Active Repository. The Change
Coordinator handles expected events, whereas un-
expected events are handled by the State Preserver.

NAIK, MOHINDRA, AND BANTZ 85

We now describe the Active Repository in some de-
tail because it is one of the key components of the
architecture.

Active Repository. As stated earlier, the architec-
ture of the Active Repository consists of three basic
repositories: the Component Repository, the Pro-
file Repository, and the Policy Repository.

The Component Repository contains a representa-
tion of all components—both hardware and soft-
ware—that may be used in any of the managed sys-
tems. Associated with each component are rules
representing requirements, dependencies, and
knowledge-base assertions for each stage in their life
cycle. The rules are updated along with the require-
ments and the knowledge base during the lifetime
of a component. New components are added to the
repository as the utility expands its support.

The Profile Repository contains customer and user
profiles. Typically, each customer has a profile. This
profile is inherited by the users belonging to that cus-
tomer. Individual users may extend or override some
of the attributes in the customer profile. In addition
to specifying the look and feel and the expected be-
havior of the computing environment, a user profile
may also specify SLAs, such as the maximum num-
ber of outages or the acceptable maximum duration
of an outage during which a certain basic configura-
tion may not be available to the user. If an SLA is
violated, a penalty may be imposed on the service
provider. Such penalties are also specified in the pro-
file. Specifications in the profile give rise to con-
straints. These constraints are translated into rules
that indicate how a particular machine or a user’s
computing environment is to be managed and how
to prioritize available alternatives. The rules govern
the manner in which system management services
are to be applied during normal operations as well
as whenever a change is to be applied.

The Policy Repository contains representations of
customer-specific policies as well as utility-wide pol-
icies. One example of a customer policy is how of-
ten a new version of a software package is to be rolled
out to its users. An example of a utility-wide policy
is denial of support for certain types of software pack-
ages or certain system configurations. As in the case
of the other two repositories, these policies give rise
to constraints that are represented as rules indicat-
ing how a particular machine or a user environment
is to be managed.

86 NAIK, MOHINDRA, AND BANTZ

The organization and structure of the Active Repos-
itory is such that no explicit and monolithic state rep-
resentation of the managed objects is necessary.
When a new component is to be installed on a man-
aged object, that component is first modeled in the
Active Repository by creating an instance object (i.e.,
its presence in the environment of the MO is sim-
ulated). The instance is created by using a template
in the Component Repository for that component
with built-in constraints. Before actually installing
the component, information is gathered to validate
whether the associated constraints can be satisfied.
If necessary and possible, the state of the MO is ad-
justed to satisfy the constraints. The component is
installed after verifying that all the associated con-
straints can be satisfied. Conditions satisfying the
constraints are recorded in the object representing
the component in the Component Repository. The
constraints may be revalidated periodically by explicit
probing or by inferring from routinely monitored
events. Whenever validations fail, constraint viola-
tions are raised. The objects modeling the compo-
nents are associated with other objects in the Active
Repository, including the objects representing pol-
icies, profiles, and other components.

Control flow. We explain the control flow in the util-
ity architecture by using an example in which a utility-
originated change is brought about in an MO. An ex-
ample of such a change is a new policy for a customer
environment that mandates use of a new CAD soft-
ware package for all employees in the customer or-
ganization. The net effect of this policy change would
be for the utility to initiate distribution and instal-
lation of the new CAD package, ensuring the stabil-
ity of each machine after the change. Figure 3 shows
the schematic of the corresponding control flow. As
mentioned earlier, in the Component Repository the
utility maintains the constraints for the hardware and
software components and the actual state informa-
tion. In addition, it maintains information on admin-
istrative and maintenance services to be applied on
each MO and the frequency with which those services
are to be applied. The associated rules trigger ap-
plication of the services. When an administrative or
maintenance service is applied, the resulting state
change is reflected back to the Component Repos-
itory. Thus, for example, from the information stored
in the Component Repository, it is straightforward
to determine when a file system on a particular ma-
chine was backed up or when the next virus scan is
scheduled to be run on a machine.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 3 Control flow schematic for the systems management utility

INPUT/POLICIES

CHANGE
CONFIGURATION
WIZARD

CHANGE
COORDINATOR

CURRENT POLICY
STATE REPOSITORY

ANALYZER

PLAN EVALUATOR

MONITOR/PLAN
EXECUTOR

A Change Configuration Wizard is provided to en-
able utility administrators to inject desired changes
to either an individual system or to an entire cus-
tomer environment. The Change Configuration Wiz-
ard interfaces with the Change Coordinator subcom-
ponent of the Utility Manager which, in turn,
interfaces with the other components in the utility.
The Change Configuration Wizard verifies the avail-
ability of the relevant software packages, bug fixes,
and so forth. It then initiates the change by forward-
ing the information to the Change Coordinator. The
Change Coordinator takes a snapshot of the context
of the relevant portion of the Active Repository and
injects an object representing the change. In the case
of the CAD software package, for example, the
Change Coordinator instantiates an object to rep-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

COMPONENT REPOSITORY
HARDWARE/ SERVICE PROFILE
SOFTWARE DESCRIPTION REPOSITORY

REPOSITORY REPOSITORY

PLANNER

NO DECIDER
EXECUTE PLAN?

YES

PLAN SCHEDULER

resent the CAD package and the associated con-
straints governing its successful installation and op-
eration. It also updates the Profile Repository by
adding a new constraint to the profile to trigger the
installation of the CAD package.

The Change Coordinator then submits the newly cre-
ated context, including the injected object, to the Plan
Evaluator. This context represents a model of the
system as it would be with the intended change in
place.

The Plan Evaluator has three components: the An-
alyzer, the Planner, and the Decider. The Analyzer
is responsible for analyzing the effects of policies and
profiles governing the environment where a change

NAIK, MOHINDRA, AND BANTZ 87

is to be brought about. It is also concerned with the
effects of the change on the state and configurations
of other managed objects in the same environment.
For this, the Analyzer uses the information in the
relevant portions of the Component, Profile, and Pol-
icy Repositories. In our current example, the An-
alyzer determines whether the installation of the new
CAD software may require uninstalling an existing
version, updating a database software component to
a new release prior to installing the new CAD soft-
ware, and so on. Thus, a single high-level change
could result in several changes to the current state,
some acceptable and others unacceptable. An exam-
ple of an unacceptable state change would be up-
dating of the component to a new release that would
break an existing business-critical application. This
change is a violation of the existing policy that all
critical software must be installed and installed soft-
ware must be properly configured. The Analyzer col-
lects the set of changes and violations that are im-
plied by the intended change and then forwards them
to the Planner.

The role of the Planner is to generate a sequence
of actions, called the Action Plan, to overcome the
violations or to bring about the required state
changes. For each violation, the Planner suggests an
action to overcome the violation. To arrive at such
a suggestion, the Planner may make use of domain-
specific knowledge databases. Constraints in the Ac-
tive Repository provide priority information that the
Planner uses as advice in evaluating alternative ac-
tions for resolving violations. The Planner also as-
signs specific system management services to per-
form specific actions. For this the Planner relies on
the information in the Services Repository, which is
a special subrepository of the Component Repos-
itory. The Services Repository contains descriptions
of services that are capable of performing actions in
the Action Plan. For instance, if the Action Plan re-
quires that a backup of the system be done prior to
installing a new software package, the Planner se-
lects a service that is most suitable for performing
a backup operation on a particular system. The suit-
ability of a service may be determined by other con-
straints in the Services Repository such as a policy
constraint or a profile-related constraint.

As the Planner creates an Action Plan, specific ser-
vices are tentatively bound to actions. These services
may have their own dependency and configuration
requirements. Thus, although the Planner has a plan
to resolve the initial set of violations, the specific ac-
tions chosen by the Planner need to be analyzed

88 NAIK, MOHINDRA, AND BANTZ

again for policy, profile, or dependency and require-
ments violations. For example, invocation of a cer-
tain service may require installation of a service cli-
ent. But this client installation may be incompatible
with other software on that MO. Thus, the plan needs
to be analyzed again to see whether it can be exe-
cuted without generating any new violations. After
a plan is generated by the Planner, the Decider de-
termines whether the plan needs further analysis. If
that is the case, it sends the plan back to the An-
alyzer. The Analyzer and Planner iterate in this man-
ner until the plan generates no new violations. The
Decider decides when to terminate the iterations.
In the CAD software package installation example,
iterations between the Analyzer and Planner would
generate a plan consisting of performing a backup
followed by an uninstall of the old version of the soft-
ware, a download of the update to the database com-
ponent, an installation of the update to the database
component, and finally download and installation of
the new CAD software package.

In the preceding discussion, we have described the
interactions among the Analyzer, Planner, and De-
cider as totally autonomic. This may not be always
possible with the available information. In such cases,
a human utility system administrator can easily be
introduced into the decision-making loop.

The finalized plan generated by the Plan Evaluator
is first forwarded to the Plan Scheduler and then to
the Plan Executor. The control flow between the Plan
Evaluator and Plan Scheduler is straightforward, as
is the control flow between the Plan Scheduler and
the Plan Executor. In addition to the specific actions
to be taken, the plan handed to the Plan Executor
may also consist of expected observations or state
changes in the MO, at the end of one or more ac-
tions in the plan. These conditions will be observed,
verified, and reported back to the utility to update
the context and the Active Repository to reflect the
actual state of the MO. As the Plan Executor starts
to invoke actions, the desired observations and ver-
ifications are made and reported back to the utility.
Once the Plan Executor is done with the plan, the
Change Coordinator dissolves the context and allows
the actual changes to be reflected in the Active Re-
pository. If the observed changes do not match the
expected changes, the plan provides remedial actions
for the Plan Executor to take. For example, one such
action may be to undo the last set of actions and then
reapply them. If the desired changes are not achieved
after a certain number of attempts, the Plan Exec-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

utor sends the plan back to the Utility Manager and
waits for the arrival of the next plan.

Putting it all together. We now summarize how the
components of the utility manage desired and un-
desired changes to an MO so that the MO remains
operational.

To keep the discussion simple, we assume that ini-
tially the MO is in an acceptable working condition
and represent its state by [AcceptableState]. Recall
that the state of an MO is the collective state of all
components represented by the MO. As long as there
are no changes to this state, the MO remains in the
acceptable working condition. Changes to the [Ac-
ceptableState] can occur either because of the
changes sponsored by the utility or because of spon-
taneous changes to the MO. All changes to the MO
that are not initiated by the utility are spontaneous.
They include device failures, bug manifestations, and
user-initiated changes.

In the case of utility-sponsored changes, the follow-
ing steps lead to the generation of an Action Plan:

{Utility Initiated Changes}
< ChangeConfi gW zar d(Administrator Input)

[PredictedState] <
ChangeCoor di nat or ([AcceptableState],
{Utility Initiated Changes})

Note that the utility-sponsored changes are yet to
take place on the MO. At this point, the Change Co-
ordinator hands over the [PredictedState] to the An-
alyzer for determining constraint violations.

In the case of spontaneous changes, the utility ob-
serves the changes via monitored events. Thus,

[ObservedState] < St at ePreserver
([AcceptableState], {Monitored Events})

Changes in the MO are observed by the State Pre-
server after they have actually taken place. At this
point, the State Preserver hands over the [Observed-
State] to the Analyzer for determining constraint vi-
olations.

In either case, the [PredictedState] or the [Observed-
State] is handed over to the Analyzer. The Analyzer
is not aware of whether the state is observed or pre-
dicted. We represent this simply as [MO_State]. The
Analyzer, Planner, and Decider iterate over the fol-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

lowing loop, which produces an Action Plan with-
out any constraint violations. Initially, the {Action
Plan} set is empty.

{Constraint Violations}
< Anal yzer ((MO_State]);

do whi | e ({Constraint Violations} is empty)
{Antidote Actions} < Pl anner ((MO_State],
{Constraint Violations});

{Action Plan} < {Antidote Actions}
+ {Action Plan};

[MO_State] < [MO_State]
+ {Antidote Actions};

{Constraint Violations}
< Anal yzer ((MO_State]);

od

The resulting [MO_State] is the desired end state for
the MO, and it is expected to be realized after ap-
plying the actions in the {Action Plan} set. A suitable
service (along with appropriate parameters) is bound
to each action in the {Action Plan} set. However, the
steps in applying the services are not optimized. Op-
timization is performed by invoking the Plan Sched-
uler, which eliminates unnecessary steps (e.g., dupli-
cate backups or reboots between unrelated actions)
and streamlines the application of services so that
the actions are applied in an optimized manner. The
Plan Executor executes the {Action Plan} by invoking
the services as mandated by the plan. The Plan Ex-
ecutor and the Change Coordinator work together
to realize the expected [MO_State]. Otherwise, cor-
rective actions are taken to reach a new desired end
state. Once the MO is at a desired end state, that state
is treated as the new [AcceptableState].

Design considerations

There are many design issues that require careful
consideration in realizing an implementation of this
architecture. Some of these issues are motivated by
performance considerations and others by the state
of the art of the available technology. In the follow-
ing subsections, we address some of these design is-
sues.

Active Repository. In our architecture, the Active
Repository plays a key role in representing policy,
profile, and dependency-related state information.
It also acts as a driving force that prompts other com-
ponents to perform a “what if” type of analysis. Once
a plan for a change is decided, it helps in tracking

NAIK, MOHINDRA, AND BANTZ §9

the actual changes until there is a convergence be-
tween the desired state and the actual observed state
of an MO. To realize these facets of the Active Re-
pository, we explicitly chose a design that allows us
to represent policies, profiles, and components as ab-
stract entities from which we derive instances to
model observed and monitored information as well
as to represent associations among entities to indi-
cate satisfaction of constraints.

When an MO is configured to satisfy the profile, pol-
icy, and dependency constraints, one or more ob-
jects are created in the Active Repository. Informa-
tion is stored in these objects to indicate how the
constraints are satisfied. Collectively these objects
maintain the dynamic and static state information
about each MO. Note that only the constraint-spe-
cific state information is stored and tracked. Because
of the distributed nature of the environment and the
dynamic nature of the MO state, we require only that
the Active Repository track the state of an MO closely
but not in real time.

For example, the Active Repository contains an in-
stance of the MO for each desktop or server system
managed by the utility environment. This represen-
tation is shown in Figure 4, using the uML** (Uni-
fied Modeling Language) specification. The MO con-
tains information about the hardware, software, and
the operational state and associated constraints. For
each monitored attribute, the hardware state con-
tains information on maximum capacity, average, and
peak utilization, safe operating zone, actions to take
in case of exceptions, and so on. The software state
contains information about the operating system and
a set of installed applications, along with their static
and dynamic dependencies and associated set of at-
tributes to monitor. It also contains information on
life-cycle stages of the MO and the spatial and tem-
poral dependencies within each stage and during life-
cycle transitions. The operation state contains infor-
mation about the state of the services needed to
manage the system such as backup, virus check, and
software installation and update services. Informa-
tion is stored to indicate the frequency with which
aservice is to be applied, the last time the service was
applied, and any related status information. Service
description entities provide information on the types
of services available and the software products that
need to be installed to make that service available.
Specific service instances maintain information on
the spatial and temporal dependencies among them-
selves and among the managed objects.

00 NAIK, MOHINDRA, AND BANTZ

Each MO is also associated with a customer object
that contains information about the location where
the managed system resides. Each customer contains
the state of one or more of the customer’s users. One
user may be associated with one or more MOs that
is used to perform a day-to-day job. Further, asso-
ciated with each user, customer, and MO are one or
more policy objects contained in the Policy Repos-

itory.

Bootstrapping the Active Repository. So far we have
described the Active Repository without describing
how it is bootstrapped or how it is configured so that
it can respond to changes. There are three different
types of activities: (1) populating the repository with
objects representing configuration information, con-
straints, and rules, (2) bootstrapping an object into
the Active Repository to represent a real MO that
is subject to policy- and profile-related constraints
in addition to the configuration constraints, and (3)
triggering an event in the Active Repository.

The Active Repository must be populated with rules.
These rules are updated as new information and
knowledge are gathered. Automated software agents
may be used to gather information available in var-
ious knowledge bases and incorporate it in the Ac-
tive Repository. Rules are added and maintained by
domain experts using specialized wizards and tools.
Because events trigger rules that trigger actions, af-
ter the Active Repository is operational, it must be
quiescent whenever new rules are added to the re-

pository.

When an MO is to be represented in the Active Re-
pository, first a representative object is created from
a template with constraints that are yet to be sat-
isfied. For example, when a new system is introduced
in a customer environment, a representative object
for that system (possibly with a bare minimum of
state information) is injected into the repository. Be-
cause the state information associated with the ob-
ject is incomplete, one or more of the constraints
associated with the object remain unsatisfied. This
triggers rules associated with the relevant compo-
nents, profiles, and policies resulting in actions.
These actions may, in turn, lead to triggering of other
rules and their associated actions. This chain reac-
tion results in an Action Plan to properly configure
the newly introduced system. The Action Plan will
be carried out by a set of services to be deployed in
a certain order to configure the machine to its de-
sired state. As the configuration is completed, the

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 4 UML specification for the MO representation in the Active Repository

Hardware KnowledgeBase Hardware

—Name
—Serial Number —DefinedVirtualMemory
—Vendor 1 _DiskState

—Hardware Dependencies
—Software Dependencies
—Driver Information

Managed Object

1 —SerialNumber

—hostname
—domain
1
1 * 1 1
Profile
—Name
1 1
Customer
¥ _Name
—Address
1
1 *
*lx Poli
olic
User v
—Name
—Name b
—Email
—Profile L *

object in the Active Repository is updated with the
observed state information.

Events and conditions may be activated in two dif-
ferent ways. One way is when the utility wants to
bring about a change in the state of the MO. For ex-
ample, a scheduled upgrade may need to be per-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

—lInstalledPhysicalMemory

Disk State

—Partition

Software

—OS Version
—OS updates
—Installed Applications

Operational

—LastBackup
—LastAntivirus
—Avg memory usage
—Avg disk usage
—IP Address

Service Description

—Name
—Interface

Partition

—Name
* —Size
—Free

Software KnowledgeBase

—Name

—Vendor

—Hardware Dependencies
—Software Dependencies

Application

—Vendor
—Name
—Path
—Version

Policy KnowledgeBase

—Name

formed or a security patch may need to be applied.
In such a case, the utility initiates the change, and
this change is injected into the Active Repository as
a desired state change. The repository behaves as
though a real state change has taken place and pro-
duces actions to resolve violations. However, the
Utility Manager is aware of the trigger provided by

NAIK, MOHINDRA, AND BANTZ 01

Figure 5 Action Plan execution with risk containment

NEXT ACTION STEP EXECUTE MONITORING,
VERIFYING, AND
FEEDBACK
EXPECTED UNEXPECTED
OUTCOME OUTCOME
UNDO ONE OR UNDO ZERO OR UNDO AND STOP
MORE STEPS MORE STEPS
CONTINUE WITH CONTINUE WITH NEW OR MODIFIED
CURRENT PLAN, CURRENT PLAN PLAN—START WITH
NEXT STEP AND REAPPLY FIRST STEP
CURRENT STEP

the utility-initiated change, and it orchestrates the
utility components to generate actions and plans.

Real events taking place at the MO can also activate
the objects in the Active Repository. For example,
the user of a system may install new software with-
out involving the utility. The configuration change
event is detected, and a condition is triggered that
ultimately activates an object in the repository. The
resulting plan is analyzed and evaluated in the same
manner as described earlier.

Risk containment. It is important for utility admin-
istrators to know and mitigate the risks involved in
executing an Action Plan. When routine changes are
to be applied to a normal MO, the probability of a
successful outcome of an Action Plan is high. When
extraordinary changes are to be made, the outcome
of the Action Plan may not be so obvious. Similarly,
when changes are to be applied to a mission-critical
MO, administrators may want to take extra precau-
tions. To provide the desired level of assurance, the
actions in the Action Plan can be executed in a mode
that we call “risk containment mode.” In this mode,

02 NAIK, MOHINDRA, AND BANTZ

actions are performed in a way analogous to a com-
piler that has its debugging option on, but instead
of break points, monitoring and automatic verifica-
tion points are set at the end of one or more action
steps. At the end of a set of action steps that are
deemed to exceed acceptable risk, the process in-
serts additional verification scripts, personalized to
the service invocations they succeed and precede. In
the general case, these scripts invoke additional ser-
vices to validate the success of the preceding service
invocation and to compute the prerequisites for the
subsequent service invocation.

In our design, the Decider determines the effective-
ness of the Action Plan and, based on certain pre-
defined criteria such as success probability, prior his-
tory associated with the change, minimal downtime,
and scope of changes, would either allow the Action
Plan to proceed or cause the plan to be further an-
alyzed. The Decider may also provide specific mon-
itoring and feedback to the utility so that the changes
can take place in a controlled manner. In case of the
failure of any step, the Decider can take corrective
actions to roll back the effects of the plan step so

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

that the system is restored to a consistent state. This
process is illustrated schematically in Figure 5. Note
that the exact verification steps and their relative fre-
quency can be decided dynamically.

Our goal is to apply system management services
such that each state transition of the managed sys-
tem leaves it in a consistent and usable state. We do
not want to create an environment in which failure
of an action plan results in the need to completely
reinstall the operating system along with the soft-
ware applications and user data. By controlling the
granularity of the atomic changes that are applied
to the system, we are able to ensure that the system
is easily recoverable to a consistent state. We do re-
alize that not all roll-backs are simple, and some may
require reinstallation of the operating system. The
architecture and design of the utility minimize the
number of such cases, and, when they do occur, au-
tomation reduces the need for experts to be involved.

Implementation

We now describe a proposed implementation of the
system management utility discussed in this paper.
A high-level view of the prototype is shown in Fig-
ure 6. The prototype consists of three components:
the utility infrastructure, the support center, and the
customer environment. Several customer environ-
ments can be managed by a single utility infrastruc-
ture and support center. The utility infrastructure
typically consists of a server farm that hosts deploy-
ment services (configuration and setup, and software
distribution and upgrades), support services (help
desk support and troubleshooting), preventive main-
tenance services (backups and virus scanning) and
other administrative services (asset management,
user management, and license management). These
services are implemented using off-the-shelf prod-
ucts such as the Tivoli Storage Manager® (for
backup), Tivoli Configuration Manager? (for con-
figuration and software distribution), and 1BM Di-
rector’ (for event management and monitoring). The
Active Repository, the Plan Evaluator, and the Plan
Scheduler are collocated with these services to co-
ordinate their activities. Components of the Utility
Manager, Plan Evaluator, and Plan Scheduler are
realized as Web services using the IBM Websphere*
Application Server, ' whereas the Active Repository
is implemented as a database using IBM DB2*.!! The
Plan Evaluator uses the ABLE (Agent Building and
Learning Environment) toolkit for rule evaluation
and an inference engine. The support technicians
perform system management tasks for customers us-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

Figure 6 Schematic for realizing the system management

utility
UTILITY COMPUTING SUPPORT CENTER
INFRASTRUCTURE
ACTIVE PLAN EVALUATOR CONFIGURATION
REPOSITORY AND SCHEDULER CHANGE TOOL
INTERNET
CUSTOMER
MONITOR/PLAN
EXECUTOR
EXECUTOR
AGENTS
MANAGED
OBJECT

ing the Change Configuration Wizard, which is im-
plemented as a Web service with a browser inter-
face.

At the customer site, all the desktops managed by
the utility are connected via a local-area network to
a management server. The primary role of the man-
agement server is to act as a local proxy for the util-
ity services. To ensure security of all communications
between the customer site and the utility, the on-
site server is connected via an outbound (customer-
site initiated) VPN (virtual private network) connec-
tion to the utility infrastructure. Each managed
system at the customer site contains a standard soft-
ware stack that consists of the base operating sys-
tem, business applications, and agents representing
one or more utility services. In addition to these
agents, the customer environment also hosts the cli-
ent-side Monitor and the Plan Executor components
of our architecture. Both the Monitor and Plan Ex-
ecutor subsystems are implemented as extensions to
the 1BM Director Server and its agents that run on
individual systems.

NAIK, MOHINDRA, AND BANTZ

93

Related work

System management is a well-established discipline
with its own extensive literature (e.g., Reference 12).
Much of this concerns systems, algorithms, and tech-
niques for accomplishing a specific management
goal, as in, for example, the automation of event re-
sponse. In this paper, we are concerned primarily
with the orchestration of management services.

A common theme in the references cited here is the
introduction of integration middleware, often as
proxies for a managed object or for a gateway that
manages a family of related objects. This integra-
tion middleware may be passive, functioning as an
adapter or format and protocol translator or, as in
the examples below, active integration middleware.
Active integration middleware performs such func-
tions as event generation, detection of inconsisten-
cies in the monitored state, and aggregation.

Aschemann and Kehr® focus on the information
model with which management applications inter-
act. They conclude that existing information mod-
els are too limiting and that object-oriented models
are required. Management applications are written
in Common Lisp and include constraint and query
sublanguages. Although a constraint solver has yet
to be included in their system, constraints play a ma-
jor role in their thinking. Our focus is similar to theirs
in several respects, but differs in that our repository
is a shadow of the information maintained in auton-
omous subsystems, and we focus on the dynamic
plug-in nature of those subsystems.

Anerousis ! writes of Marvel, a “distributed comput-
ing environment for building scalable management
services using intelligent agents and the world-wide
web.” The goals of Marvel are similar to ours, in that
its emphasis is on integrating existing management
services and exposing their data to management ap-
plications. Analogous to the ability of databases to
support multiple views of their data, Marvel supports
the definition of new managed objects to represent
computed views of existing management informa-
tion, acquired through a process of spatial aggrega-
tion, or grouping, and temporal aggregation, or the
extraction of parameters from a time series. Con-
trol originates with intelligent agents, downloaded
dynamically.

Aschemann et al."® describe an architecture for the
dynamic discovery and configuration of managed ob-
jects using Jini**!° technology. Monitoring and con-

04 NAIK, MOHINDRA, AND BANTZ

trol is mediated by a configuration service, which con-
tains a configuration repository, a scheduling service,
protocol adapters, and most relevant here, a “rule
base which contains rules and policies to preserve
the consistency of the configuration.” Managed ob-
jects are represented by a so-called nanny !’ that prox-
ies for the object. The repository is active in that it
can perform arbitrary processing when an event is
received or when the state of an MO is changed.

Lewis et al.'® describe a useful case study of fulfill-
ment of customer orders for a switched ATM (asyn-
chronous transfer mode) service. The case study ex-
presses the solution, expressed as subscription and
configuration management and a network planner,
in terms of the standard TINA (Telecommunications
Information Network Architecture) and ™ (Tele-
Management) Forum specifications.” This case
study illustrates the application of these standards
and presupposes a standards-based implementation.
If broadly accepted and widely implemented stan-
dards were available for system management, this
case study shows how simple it might be to build an
integrated system.

Yang et al.” describe ViaScope, a virtual enterprise
information integration system based on CORBA™*
(Common Object Request Broker Architecture™*).
Managed objects in ViaScope consist of entities,
meta-data, and events, each of which has a manager.
Relevant to this paper is the Information Integrat-
ing Engine, which implements numerous integration
functions, including a bulletin service, access nego-
tiation service, and integration processing. This en-
gine permits all managed objects to have a highly
functional, uniform distributed appearance.

Hong et al.?! review the alternatives in Web-based
management and give some useful examples of how
they can be applied. They observe that “the main
problem is that none of the existing management ap-
proaches can be used to manage all types of
internet/intranet resources,” precisely the problem
that occupies us here.

Conclusions and future work

Any complex endeavor involves risk, and system
management is no exception. System administrators
may fail to translate policies into corresponding ac-
tions, communications may fail at inopportune times,
hardware and software may fail, and procedures may
be run in environments that do not match their pre-
requisites. In our environment, the system manage-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

ment utility is expected to manage thousands of cus-
tomers, each with their own set of policies and rules.
Even with standardization, slight variations across
systems can have a large impact on the complexity
of the tasks in the system management utility envi-
ronment.

In this paper, we have described an approach for
building a large-scale utility for managing remote sys-
tems spread over multiple customer sites. The sys-
tem is designed, keeping in mind the need for a high
degree of automation, so that not only can system
management chores be automatically executed, but
the action plans can also be derived automatically.
The dynamic interactions among objects in the Ac-
tive Repository in response to observed or simulated
state changes in the remote managed objects allow
the composition of Action Plans that in effect inte-
grate multiple system management services. Our sys-
tem is also capable of analyzing and reasoning about
a proposed plan. When a plan is determined to have
a degree of uncertainty about its outcome, its exe-
cution can be carried out using a finer-grained mon-
itoring, verification, and feedback mode so that the
steps taken can be reversed before undesirable ef-
fects render the system unmanageable. The Utility
Manager, Plan Evaluator, Plan Scheduler, and Plan
Executor together provide meta-system management
services that enable controlled execution of complex
management tasks.

Much more remains to be done toward realizing the
ultimate goal. Ongoing challenges include growing
and maintaining expert knowledge, rule authoring,
dependency generation, and maintenance. We want
to extend the system to cross-platform (diverse op-
erating environments) management. Future work in-
cludes risk management, performance measure-
ments, and effectiveness of the design in field trials.

*Trademark or registered trademark of International Business
Machines Corporation.

“*Trademark or registered trademark of Microsoft Corporation,
Sun Microsystems, Inc., or Object Management Group.

Cited references

1. Microsoft Systems Manager Server, Microsoft Corporation,
http://www.microsoft.com/smserver/.

2. Tivoli Configuration Manager, IBM Corporation, http://
www.ibm.com/software/tivoli/products/config-mgr/.

3. Implementing Automated Inventory Scanning and Software Dis-
tribution after Auto Discovery, Redbook, SG24-6626-00, IBM
Corporation.

4. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Ponder:
A Language for Specifying Security and Management Policies

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

for Distributed Systems,” Research Report DoC 2000/1, Im-
perial College, London (January 2000).

. J. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Miller III,

and Y. Diao, “ABLE: A Toolkit for Building Multiagent Au-
tonomic Systems,” IBM Systems Journal 41, No. 3, 350-371
(2002), http://www.research.ibm.com/journal/sj/413/bigus.pdf.

. J. Kephart and D. Chess, “The Vision of Autonomic Com-

puting,” Computing 36, No. 1, 41-50 (2003).

. A.G.Ganek and T. A. Corbi, “The Dawning of the Autonomic

Computing Era,” IBM Systems Journal 42, No. 1, 5-18 (2003).

. Tivoli Storage Manager, IBM Corporation, http://www.ibm.

com/software/tivoli/products/storage-mgr/.

. IBM Director with UMS [Universal Management Server],

2.2-Overview, IBM Corporation, http://www-1.ibm.com/
support/docview.wss?uid=psgIMIGR-4V2UP7.
WebSphere Application Server, IBM Corporation, http://
www.ibm.com/software/infol/websphere/index.jsp.

DB2 Information Management, IBM Corporation, http://
www.ibm.com/software/data/db2/library/.

Journal of Network and Systems Management, Kluwer Aca-
demic/Plenum Publishing Company, New York.

G. Aschemann and R. Kehr, “Towards a Requirements-Based
Information Model for Configuration Management,” Pro-
ceedings of the 4th International Conference on Configurable
Distributed Systems, Annapolis, MD (May 1998), pp. 181-189.
N. Anerousis, “An Architecture for Building Scalable, Web-
Based Management Services,” Journal of Network and Sys-
tems Management 7, No. 1 (1999).

G. Aschemann, S. Domnitcheva, P. Hasselmeyer, R. Kehr,
and A. Zeidler, “A Framework for the Integration of Legacy
Devices into a Jini Management Federation,” Proceedings of
the Tenth IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM °99), Lecture
Notes in Computer Science 1700, Springer-Verlag, Heidelberg
(October 1999), pp. 257-268.

See, for example, “The Jini Specifications, Second Edition,”
J. Waldo and K. Arnold, Editors, Pearson Education, Upper
Saddle River, NJ (December 2000); see also Jini Network
Technology, Sun Microsystems, Inc., http://wwws.sun.com/
software/jini/.

. G. Aschemann and P. Hasselmeyer, “A Loosely Coupled Fed-

eration of Distributed Management Services,” Journal of Net-
work and Systems Management 9, No. 1, 51-65 (2001).

D. Lewis, C. Malbon, G. Pavlou, C. Stathopoulos, and E. J.
Villoldo, “Integrating Service and Network Management
Components for Service Fulfilment,” Proceedings of the Tenth
IFIP/IEEE International Workshop on Distributed Systems: Op-
erations and Management (DSOM99), Lecture Notes in Com-
puter Science 1700, Springer-Verlag, Heidelberg (October
1999), pp. 49-62.

G. Pavlou and D. Griffin, “Realizing TMN-like Management
Services in TINA,” special issue on TINA, Journal of Net-
work and Systems Management 5, No. 4, 437-457 (1997).
X. Yang, G. Wang, G. Yu, and D. L. Lee, “Modeling En-
terprise Objects in a Virtual Enterprise Integrating System:
ViaScope,” Lecture Notes in Computer Science, 1749, Springer-
Verlag, Heidelberg pp. 166-175 (1999).

J.W.Hong,J. Y. Hong, T. H. Yun, J. S. Kim, J. T. Park, and
J. W. Baek, “Web-Based Intranet Services and Network Man-
agement,” IEEE Communications Magazine 35, No. 10, 100—
110 (October 1997).

Accepted for publication September 20, 2003.

NAIK, MOHINDRA, AND BANTZ 0§

Vijay K. Naik IBM Research Division, Thomas J. Watson Research
Center, P. O. Box 218, Yorktown Heights, New York 10598
(vkn@us.ibm.com). Dr. Naik is a research staff member in the
Internet Infrastructure and Computing Utilities Department. His
current research areas include distributed computing, in partic-
ular, utility computing, peer-to-peer, and grid computing. He is
the author of the book, Multiprocessing: Trade-Offs in Computa-
tion and Communication. He has also published over 40 articles
injournals and refereed conferences. Prior to joining IBM in 1988,
Dr. Naik was a staff scientist at [CASE, NASA Langley Research
Center. He received a Ph.D. in computer science from Duke Uni-
versity.

Ajay Mohindra IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(ajaym@us.ibm.com). Dr. Mohindra has been a research staff
member at IBM since 1993. He holds a Ph.D. in computer sci-
ence from the Georgia Institute of Technology. His research in-
terests include distributed systems and autonomic and utility com-
puting.

David F. Bantz IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(bantz@watson.ibm.com). Dr. Bantz has been a research staff
member since 1972, after a short stint at a startup company. He
graduated from Columbia University in 1970 with an Eng. Sc. D.
degree and taught there as an adjunct professor for nearly 25 years.
He has 20 issued patents. His technical interests have always been
in personal computing applications and technology, and he is cur-
rently working on autonomic personal computer management.

96 NAIK, MOHINDRA, AND BANTZ IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004

