WebSphere Dynamic
Cache: Improving
J2EE application
performance

The Dynamic Cache is part of the IBM
solution for improving performance of Java 2
Platform, Enterprise Edition (J2EE™)
applications running within WebSphere
Application Server. It supports caching of
Java™ servlets, JavaServer Pages™ (JSP™),
WebSphere® command objects, Web services
objects, and Java objects. This paper
describes the techniques used by the
Dynamic Cache for caching these objects and
demonstrates the performance improvement
gained by applying these techniques to a
typical enterprise Web application.

Modern Web applications carry a heavy burden: they
are required to deliver high performance and be full
featured. They must feature personalization for in-
dividual users, assemble information from disparate
and volatile data sources, and process data intelli-
gently depending on user requests. Also, the appli-
cations are fragmented into multiple operations ex-
ecuted for the same request, the results of which are
assembled into a structured response to the user. For
example, the request to view an account balance may
require checking for a valid session, querying a back-
end database, and finally putting together an HTML
(HyperText Markup Language) page using the re-
sults from the database query. As some of these op-
erations are time-consuming, such dynamic applica-
tions have high inherent costs in performance and
scalability.

Caching can significantly improve the response time
for such applications by saving the computed results
in a cache, associating the saved results with prop-
erties of the request, and obviating computations for
subsequent similar requests by serving their re-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

0018-8670/04/$5.00 © 2004 IBM

by R. Bakalova N. Kodali
A. Chow D. Poirier
C. Fricano S. Sankaran
P. Jain D. Shupp

sponses from the cache. Existing caching mecha-
nisms, however, fail to operate suitably for Java 2
Platform, Enterprise Edition (J2EE**) applications.
They either do not operate at a fine enough gran-
ularity, cannot handle the complex associations be-
tween fragments that are used across multiple op-
erations, or require one-of-a-kind solutions. When
application developers build their own caches, they
are often hard to re-use or modify, costly (in time)
to develop, and still cannot function at every tier of
a J2EE application.

The WebSphere Dynamic Cache solution responds
to the unique demands of J2EE applications. It is in-
tegrated into the WebSphere Application Server'
and utilizes the J2EE architecture to cache objects
and results at every level. Web services output, pre-
sentation layer servlets, JavaServer Pages™* (JSPs**),
WebSphere* command classes, and Java®* objects
can all be cached by means of application program-
ming interfaces (APIs) or by declaring caching pol-
icies and adding them to an application. Significant
performance advantages, especially for high-volume
Web applications, can be achieved by use of the Dy-
namic Cache.? In most cases, these policies can be
written and enabled without modifying application
code and can be easily updated whenever the un-
derlying code changes. This method makes enabling
dynamic caching for existing J2EE applications

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BAKALOVA ET AL. 351

Figure 1

WebSphere Application Server Dynamic Cache overview

Servlet Command = Web Object Cache
Service Policy XML
APIs V4 4 4 /

Dynamic Cache

Engine
Memory-based
Java Object Store

e

4—> Object Storage
Replacement Policy
Overflow to Disk
XML Cache Policy

Disk Management
Cache

Disk Files

Dynamic Cache

straightforward while keeping the application inde-
pendent of a specific J2EE platform.

By using the dynamic caching service, application de-
signers can define a range of conditions to govern
the freshness of objects in the cache. Explicit time-
outs can be set up to ensure that an object’s data is
current. Also, because data in a cached result may
be modified by requests to other objects or may be-
come invalid based on other conditions like the end
of a session, a cache policy may declare dependen-
cies on other objects, causing a stored result to be
deleted from the cache when underlying data is mod-
ified or some other condition is met. Because mul-
tiple entries may be dependent on the same condi-
tions, grouping different cache entries to be deleted
together is also allowed through the policies.

Figure 1 presents an overview of the Dynamic Cache
engine. The Dynamic Cache stores its content in a
memory-based Java object store. These objects can
be accessed and manipulated by APIs that are pro-

352 BAKALOVA ET AL.

Cache

<+—p |nvalidation Statistics

Replication (DC-to-DC)

External Cache Support
(DC to other caches)

Data Replication
Service

External Cache

Dynamic Cache

vided with the service. The WebSphere Application
Server also offers a Web application called Cache
Monitor, which plugs into the cache to provide a view
of its contents and statistics. The Dynamic Cache uses
a replacement policy like the least recently used
(LRU) algorithm to create space for incoming entries
when the assigned space is full by deleting contents
based on the replacement policy. It can also be con-
figured to push data to a disk cache from which it
can reclaim the data if needed in the future. Removal
of entries from a cache can also occur due to data
invalidations, based on cache policies defined by the
administrator.

The Dynamic Cache can take advantage of the data
replication services in the application server to rep-
licate cached data across servers in a cluster. Inval-
idations are transmitted across the cluster to keep
data consistent and valid. The Dynamic Cache can
also send cached data and invalidations to various
external caches like the Akamai ESI (Edge Side In-
cludes) server and the WebSphere Edge Server to

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

bring data closer to the end user and further enhance
performance of J2EE applications.

This paper illustrates the caching techniques offered
by the Dynamic Cache service, shows examples of
their use, and measures their effects on performance
using the Trade3 application.® Trade3 is IBM’s end-
to-end benchmark and performance sample appli-
cation. For each of the key dynamic caching tech-
nologies, we provide a technical discussion of its
unique requirements and the specific methods Web-
Sphere uses to cache in that context. We also pro-
vide examples that apply those methods to relevant
parts of the Trade3 application and measure the re-
sulting changes in performance to understand the
relative effect of caching within the scope of a whole
application.

Common aspects of Web application caching.
While J2EE application performance can be signif-
icantly improved by the use of caching techniques,
the J2EE standard does not require implementations
to perform any caching of dynamic results. There is
currently an effort to define a standard programming
interface for caching from Java programs (Java Spec-
ification Request [JSR] 107%), and IBM is participat-
ing in the process of defining this standard.

Dynamic caching requires cache policies to be con-
figured for an application, or for the application to
explicitly use the available caching APIs. Caching pol-
icies must be carefully chosen because incorrect
cache policies may result in users viewing outdated
data. The 1BM WebSphere Application Server tool-
kit provides an Eclipse plug-in to generate a set of
default policies for an application, along with a cus-
tom GUI (graphical user interface) editor and wiz-
ards to create and edit policies. No changes need to
be made to existing J2EE applications to take advan-
tage of the Dynamic Cache technology.

The Dynamic Cache (in the cachespec.xml file) stores
a caching policy for each cacheable object. This pol-
icy defines a set of rules specifying when and how
to cache an object (i.e., based on certain parameters
and arguments), and how to set up dependency re-
lationships for individual or group removal of en-
tries in the cache.

Each data request (i.e., any invocation of a cache-
able servlet, JSP, Web service, or other object) is as-
sociated with a set of input parameters that are com-
bined to form a unique key, called a cache identifier
or cache ID. A key policy defines which cache iden-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

tifiers result in a cacheable response. If a subsequent
request generates the same key, the response is
served from the cache. If a unique key is not created
through any of the rules, the response for the request
is considered not cacheable.’

A second critical policy defines when to remove the
cached results from the cache. Removing out-of-date
cache entries is as important as populating them.
Cache entries may expire after a given amount of
time or be removed from the cache based on its de-
pendencies or on the basis of an LRU algorithm when
the cache needs space for new entries.

The method of removing entries from the cache is
called cache invalidation. The easiest method for
cache invalidation is to set a “time-to-live” (TTL)
value on the cache entry. If an entry needs to be in-
validated before its TTL has expired, an explicit in-
validation policy is written for that cache entry in
the cachespec.xml file. This policy defines an inval-
idation rule very similar to the cache ID rule, and an
invalidation ID is generated based on that rule. When
an invalidation rule is specified for an object, Web-
Sphere generates an invalidation ID during the ex-
ecution of that object and checks it against the cache
IDs of all entries currently in the cache. If a cache
ID matching the invalidation ID is found in the cache,
the cache entry associated with this cache ID is re-
moved from the cache (i.e., invalidated).

The Dynamic Cache also provides a group-based in-
validation mechanism through dependency IDs. A de-
pendency ID identifies a cache entry’s dependency
on certain factors, such that when those factors oc-
cur, they trigger an invalidation of all the cache en-
tries that share this dependency. Different objects,
based on their defined rules, may generate the same
dependency ID. If an invalidation ID is generated for
a request that matches a given dependency ID, all
the cache entries associated with that dependency
ID are removed from cache.

Competing technologies. Alternative approaches
for caching the dynamic content of J2EE applications
include Oracle Application Server Web Cache,® the
JCache specification,® the Tangosol Coherence
Cache,” and SpiritCache.®

Like the WebSphere Dynamic Cache, Oracle’s cach-
ing technology includes fragment caching, ESI cach-
ing, and invalidations based on triggers and APIs. In
an effort to standardize caching APIs, Oracle Cor-
poration submitted JSR-107 (JCache—Java Tempo-

BAKALOVA ET AL. 353

rary Caching API) with support from several other
companies including IBM. JCache is an open-source
caching-API specification for J2EE applications to pro-
grammatically cache data. It includes APIs to tem-
porarily store Java objects in memory for reuse and
invalidation APIs to maintain freshness and consis-
tency. It also requires data replication across caches
on servers in a site. There are several open-source
implementations of JCache as well as several JCache-
compliant products in the market.

The Tangosol Coherence Cache is a JCache-compliant
technology that can be deployed on multiple appli-
cation servers. In addition, it includes a distributed
cache that can be used by applications to program-
matically replicate cached data across servers in a
cluster.

SpiritCache by SpiritSoft provides a multitiered dis-
tributed caching framework based on JCache stan-
dards. It offers API-based caching for storing Java
objects and tag-based caching for HTML responses
from JSPs.

Similarly to these approaches, WebSphere Dynamic
Cache includes servlet caching for full pages as well
as fragments, ESI caching, object caching, invalida-
tions, and cache replication. Additionally, it features
caching of WebSphere commands and Web services
responses on the server.

The dynamic caching design specified by Viriri® at-
tempts to split dynamic pages into relatively static
and more dynamic parts by using custom tags. Its
suggests the use of existing static cache technologies
for storing and reusing the relatively static parts of
the dynamic pages. This method introduces two
problems. The first problem is that any existing J2EE
applications would have to be redesigned to accom-
modate this method of caching. The second prob-
lem is that because the relatively static pages are
cached using existing static cache technologies, ap-
plication vendors would have to customize their ex-
isting static caches to recognize the new tags that sep-
arate the static and dynamic portions of a page and
reconstruct the static portion when it does change.

Performance measurement. In the remainder of this
paper, performance numbers for the Dynamic Cache
for all caching types except Object Cache were ob-
tained using the Trade3 application. (For Object
Cache, a basic J2EE application was created to do
simple cache “puts,” “gets,” and “invalidates” by us-
ing the DistributedMap APIs.)

354 BAKALOVA ET AL

Trade3 is an application developed and used by the
WebSphere performance team for characterizing the
performance of WebSphere Application Server Ver-
sion 5.0. This application was created to emulate on-
line brokerage services. It is a collection of Java serv-
lets, JSps, Enterprise JavaBeans™* (EJBs**), commands,
Web services, and message-driven beans that together
form an application. It allows a user, typically using
a browser, to perform the following actions: register
to create a user profile, log in to validate a registered
user, browse a list of stocks for ticker prices, sell and
buy shares, view a portfolio, and log out. Figure 2
provides the architectural overview of Trade3.

Trade3 provides a trading scenario servlet, emulat-
ing a single trade, to simplify benchmarking. This
servlet can be driven by multiple threads to model
the activity of a population of users. The trading sce-
nario servlet models a user performing any of the
standard trading operations listed previously.

Trade3 implements new and significant features of
the EJB 2.0 component specification. These include:

e Container-managed relationships—One-to-one,
one-to-many and many-to-many relationships of
objects to relational data which are managed by
the EJB container and defined by an abstract per-
sistence schema. This provides an extended, real
world data model with foreign key relationships,
cascaded updates and deletes, and so forth.

* EJB query language—Standardized, portable query
language for EJB finder and select methods with
container-managed persistence.

* Local or remote interfaces—Optimized local in-
terfaces providing pass-by reference objects and
reduced security overhead.

In our tests, the database is accessed using the EIB
2.0 technology. The operations provided by the
Trade3 server model are defined in an interface
called TradeServices. The TradeServices interface
is implemented by an EJB implementation (Trade)
using session, entity, and message EJBs. Access to the
EJB model implementations is through the “Trade-
Action” Java bean, which acts as a facade to the
Trade server model.

Trade3 also provides two access modes which de-
termine the protocol used by the Trade Web appli-
cation to access server-side services. The standard
access mode uses the default Java RMI (remote
method invocation) protocol and was used in the
servlet and command caching tests. The Web services

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 2 Trade3 application architecture

Web EJB Container
Container
Message
Trade EJBs
Session 4= hal PO
Trade EJB Sso
Servlets l S
Web / I \
Client Trade Entity 2.0 EJBs A
Trade Trade WebSphere \ Services \
+— JSPs Action - Command (3 Account AccountProfile H
Web Bels 7 i CMP » Trade H
Services Web Services Holdings Database !
Client CMP h
Quote Order !
o SOAP CMP CMP ¢
v Servlet Message
Client Serverg
Trade
Direct
JDBC

access mode uses WebSphere’s implementation of
Web services including SOAP (Simple Object Access
Protocol), WSDL (Web Service Definition Language),
and UDDI (Universal Description, Discovery, and In-
tegration). This mode was used in the Web services
caching tests.

Figure 3 shows the four-tier test configuration used
to gather performance data. The first tier consists
of a single client machine which runs the AKStress
tool. AKStress is an IBM internally developed tool
to generate HTTP (HyperText Transfer Protocol) re-
quests. The second tier consists of a single proces-
sor Linux** machine running IBM HTTP Server 2.0,
which is an Apache-based Web server developed and
supported by IBM. The third tier consists of a mul-
tiprocessor machine, which runs the WebSphere Ap-
plication Server and the IBM DB2* runtime client. The
fourth tier consists of a machine functioning as a DB2
server.

Performance is primarily measured by how many re-

quests the server can handle per second (i.e.,
throughput) and how fast it responds to the client

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

request (i.e., response time). This is accomplished
by using AKStress to simulate multiple users mak-
ing hundreds of requests to the server. AKStress was
configured to run with 11 threads per run.

For connectivity, a gigabit network adapter was in-
stalled on the tier-3 machine for the DB2 client hosted
on this machine to connect to the DB2 server ma-
chine. A 100-Mbps Ethernet card was installed on
the same machine for the Web server to connect to
the application server also hosted on this machine.
100-Mbps Ethernet cards were installed on each of
the tier-1 and tier-4 machines, hosting the client and
the DB2 server respectively. Two 100-Mbps Ether-
net cards were installed on the tier-2 machine, one
to connect to the application server and one for the
client to connect to the Web server hosted on this
machine.

Servlet and JSP caching

This section describes issues involved in caching Java-
servlet or JSP responses in a Web application. It ex-

BAKALOVA ET AL. 355

Figure 3 Dynamic Cache performance test setup using Trade3

TIER 1 TIER 2 TIER 3 TIER 4
CLIENT NODE WEB SERVER NODE APPLICATION SERVER AND DATABASE DATA STORE NODE
CLIENT NODE
[——
f— -—
AKStress Application IBM HTTP Server 2.0 WebSphere DB2 8.1 Client DB2 8.1 Server
Application
Server 5.0.2
and Trade3

plains what information is needed for caching and
how a Web application developer might specity this
data.

Aservlet or JSPis a Java technology-based Web com-
ponent, managed by a container that generates dy-
namic contents. This is a widely used technology in
building Web applications, and the performance of
a Web application can be improved by intelligently
caching servlet and JSP responses. The golden rule
of servlet caching is to isolate the servlets and JSPs
that perform complex processing, and cache them
and the pages they depend on. Although caching a
simple presentation JSP file gives moderate perfor-
mance gains, caching servlets that request informa-
tion from EJBs or a database saves the WebSphere
Application Server significant processing power and
decreases load on the back end.

The Dynamic Cache service of the WebSphere Ap-
plication Server is an in-memory cache capable of
caching servlet and JSP responses as well as other
dynamic content. The servlet and JSP cache can be
enabled or disabled using the Web container settings
of the WebSphere administrative console. Because
all Jsp files are compiled into servlets by the Web-
Sphere Application Server, from the point of view
of the Dynamic Cache, JSPs and servlets are identical.

Figure 4 shows the steps used in handling a servlet
request. In general, serving a servlet request involves
(step 1) loading the servlet class, creating an instance
of the servlet class, initializing the servlet instance
by calling its initialization method, and finally invok-

356 BAKALOVA ET AL.

ing the service method of the servlet class. When
servlet caching is enabled, it uses hooks in Web-
Sphere Application Server’s servlet engine to (step
2) intercept calls to a servlet’s service method and
tries to create a key based on the policy defined for
it. If a key is created, it looks for the response to that
servlet request in the cache. If found, the response
is served from the cache (steps 3 and 9); otherwise,
the service method of that servlet is executed (steps
4-7) and the response is cached (step 8). If a policy
is not defined for this servlet or a key is not gener-
ated based on the policy, the response is not cached.

Cache ID of a servlet or JSP. When a servlet request
isreceived, the cache attempts to build a unique key
for that invocation from the values of certain request
variables. When the cache does not contain an en-
try associated with this key, the variable HttpServ-
letResponse is stored in the cache. For the purpose
of servlets and JSP caching, these cache IDs can be
composed using the following:

* parameter—Named parameter from the servlet re-
quest object

e attribute—Named attribute from the servlet re-
quest object

e servletpath—Directory path of the servlet; that is,
the path section that corresponds to the compo-
nent alias that activated this request

* pathinfo—Part of the request path that is not part
of the context path or the servlet path

e session—Named value from the HTTPSession
bean

* header—Named header from the servlet request

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 4 Data flow for WebSphere Application Server servlet/JSP response cache

WEBSPHERE WEBSPHERE
APPLICATION SERVER APPLICATION SERVER
PRESENTATION BUSINESS LOGIC
CLIENT TIER TIER
1 5
— ———————— ————(,
49— SERVLET — 46— DATABASE
ENGINE
% 21 IS 18
CACHE

CACHE MISS: STEPS 1-9
CACHE HIT: STEPS 1, 2, 3, AND 9

* Jocale—Request locale
¢ cookie—Value of named cookie

Whole page versus fragment caching. Most dy-
namic Web pages are constructed from smaller and
simpler page fragments. Some fragments are static
(such as headers and footers), and some are dynamic
(such as fragments containing stock quotes). The goal
of creating fragments or components is to maximize
reuse and cache utilization. A fragment may or may
not contain one or more fragments, and it may or
may not be contained by one or more “parents.” The
Dynamic Cache can be configured to cache either
the whole page or individual fragments. ' For exam-
ple, Figure 5 shows the home page of a specific user
in the Trade3 application. This page, “tradeHome.
jsp,” includes another dynamic fragment called “mar-
ketSummary.jsp.” The marketSummary.jsp fragment
is not user-specific and hence is the same for all users.
In such a case, caching marketSummary.jsp as a sep-
arate fragment and reusing its cached value in every
page that includes it would result in higher gains than
caching the tradeHome.jsp page as a whole.

ESI caching. ESI is an open standard ! for compos-
ing Web pages from smaller fragments that reside
at the edge of the network. A Web server or proxy
that supports the ESI standard can take advantage
of the caching of Web page fragments close to the
end user.

The WebSphere Dynamic Cache can recognize the

presence of an edge server and automatically gen-
erate ESI tags and appropriate ESI cache policies for

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

fragments to be cached at the edge, based on the
cache policies defined in the cachespec.xml file. The
purpose of this integration is to allow WebSphere
dynamic content to be assembled and cached at edge
nodes throughout the Internet, resulting in increased
throughput and lower response times for WebSphere
applications. It provides edge caching of applica-
tions without requiring any changes to the
WebSphere/J2EE programming model.

Whole pages, as well as fragments, can be cached at
the edge. However, for a fragment to be edge-cache-
able, it has to be accessible via the HTTP protocol.
In other words, if users enter the URL (Uniform Re-
source Locator) in their browser with the appropri-
ate parameters and cookies for the fragment, the
WebSphere Application Server returns the content
for that fragment. In addition, cache IDs of edge-
cacheable fragments must be formed using only data
that is available at the edge, that is, query param-
eters, request headers, and cookies, but no session
data. A fragment is configured as edge-cacheable by
adding the following XML (eXtensible Markup Lan-
guage) tag to its cachespec.xml file:

<property name="EdgeCacheable”>true</property>.

The presence of an ESI processor in the network is
indicated to the WebSphere Dynamic Cache by the
ESI processor by adding a “surrogate capabilities”
header to a request before it is forwarded to Web-
Sphere Application Server. Upon receipt of this
header, WebSphere Dynamic Cache will switch into
the edge caching mode in which it first checks if the

BAKALOVA ET AL. 357

Figure 5 A user's Trade3 home page

2 http://commerce:9080/trade/ - Microsoft Internet Explorer =[Ol x|

File Edit View Favorites Tools Help li
GBack ~ = - @ (2] A | @oearch [GiFavorites Media (% | B S
Address |&) http://commerce:0080/tr ade/

~| e ‘Links 4

Performance Application WebSphere Performance Benchmark Sample software
N
Home Account Portfolio Quotes/Trade Logoff ioperation schematic
Ovwerview Wed Jan 21 11:07:59 PST 2004
Welcome uid:0 Market Summary
Technical : 2004-01-21 11:07:06 035
Dorueriatan i o e o 2004-01-21 11:07:06.035
Trade Stock
. account ID: 2000 iy | 101.12(-200%)8
— Index (TSIA)
A account created: 2003-10-28 14:0027.7 —
: ns: Tradin
Configuration total logins: 18 ‘ Lieding 86420
session created: Wed Jan 21 11:07:59 PST 2004 Volums
Go Trade! Account Sma‘y sambol | price dunge
71 ||25192 || 7092%
Web Primitives cash balance: $979936.71 Top Gai e3¢ ||23275 || s7.95%
number of holdings: 1 AORURREE | 770 |[s7.60® |
total of holdings: $15100.00 oot 15872 | sera®
sum of cash/holdings $995036.71 525 |[22575 [s075®
opening balance: $1000000.00
'm’ Syawbol | price dunge
X . - v ‘
WebSphere 10T PN current gainflloss): § -4963.298 (+0.00%)# e % |
TopLosers s40 [10023 [80978
s28 |11820 | 71808
s0 [87.58 | 63428

AL

[— ﬁ ﬁ (& Local intranet

servlet is configured as edge-cacheable. If the frag-
ment is not edge-cacheable, then a header indicat-
ing this is added to the response to indicate to the
edge server that this response is not edge-cacheable.
If the fragment is edge-cacheable, then a header in-
dicating this is added to the response with the cache
ID, dependency ID, and TTL value for the fragment.
The ESI processor builds a cache and stores the re-
sponse in the ESI cache.

The Dynamic Cache converts all servlet and JSP in-
clude tags to ESI include tags by using the ESI syntax.
For each ESIinclude tag in the body of the response,

358 BAKALOVA ET AL

the ESI processor processes a new request, such that
each nested include tag results in either a cache hit
or another request forwarded to the application
server. When all nested include tags have been pro-
cessed, the page is assembled and returned to the
client.

Figure 6 shows content being pushed by the Dynamic
Cache service that is running on the WebSphere Ap-
plication Servers to the edge servers, thus bringing
the content closer to the end user. Pushing content
saves the steps of the edge server forwarding a re-
quest to the application server and the application

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 6 Pushing content to WebSphere edge servers

Intern

server sending the response back to the edge server,
thus resulting in lower response time.

The cache entries on the edge server can be inval-
idated either through timeouts or by sending explicit
invalidation messages to the edge server caches. In
the case of the standard ESI Version 1.0 protocol,
these cache invalidation messages include the full
URLSs of the fragments that need to be invalidated.
The WebSphere Dynamic Cache will push all inval-
idations that occur out to the edge server through
an ESI invalidation gateway.

Servlet and JSP cachingin Trade3. Trade3 has been
built based on the standard model-view-controller
(MvC) architecture, where a call to a controller serv-
let might include one or more JSPs that are used to
construct the view. In the Trade3 application, the
controller servlet used is “Trade AppServlet,” and the
following JSPs are used for creating the view:

* Welcome.jsp—This is the login page.

* TradeHome.jsp—This page is displayed after a
user logs into his account. It displays the user ac-
count information.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

 Portfolio.jsp—This page displays the stock port-
folio of a specific user.

 Account.jsp—This page displays information, such
as the account balance of a specific user.

e MarketSummary.jsp—This page displays the stock
market summary for that day.

Figure 7 shows the sample policies for generating
the cache 1D, dependency ID, and invalidation ID for
the portfolio page in Trade3. After a user logs into
his account, he can view his portfolio by accessing
the controller servlet with the query parameter “ac-
tion” set to “portfolio.” When a user logs in, his user
ID is stored as “uidBean” in the HTTPSession ob-
ject. Because a portfolio page should be unique for
a specific user, its cache ID should include the value
of uidBean stored in the session. But as mentioned
earlier, for a page to be edge cacheable, its cache ID
should be composed of only query parameters, head-
ers, and cookie values; therefore, in order to make
the portfolio page edge-cacheable, its cache policy
is based on the JSESSIONID cookie value (instead of
the uidBean value). In Trade3, a new JSESSIONID
cookie is set every time a user logs into his account;
hence, it would be unique for a specific user.

BAKALOVA ET AL. 359

Figure 7 Sample cache policies

<cache-entry>
<class>servlet</class>
<name>/app</name>
<cache-id>

<component id="action" type="parameter">

<value>portfolio</value>
<required>true</required>
</component>

<component id="JSESSIONID" type="cookie">

<required>true</required>
</component>

<property name="EdgeCacheable">true</property>

</cache-id>
<dependency-id>Holdings_UserID

<component id="action" type="parameter" ignore-value="true">

<value>portfolio</value>
<required>true</required>
</component>

<component id="uidBean" type="session">

<required>true</required>
</component>
</dependency-id>
</cache-entry>
<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>

<name>com.ibm.websphere.samples.trade.command.SellCommand</name>

<invalidation>Holdings_UserID

<component id="getUserID" type="method">

<required>true</required>

</component>
</invalidation>
</cache-entry>

In Figure 7, the <cache-id> element defines a rule
for caching the portfolio page and is composed of
two <component> subelements, each generating a
portion of the cache ID. As mentioned earlier, the
controller servlet forwards the request to the port-
folio page if its query parameter “action” is set to
“portfolio.” Hence, the first <component> subele-
ment is of type “parameter” named “action” and with
a value of “portfolio.” Because the portfolio page
should be unique to a specific user, a second <com-
ponent> subelement of type “cookie” with ID
“JSESSIONID” is defined. Similarly, a dependency ID
named “Holdings UserID” is associated with the
cache 1D of the portfolio page, and it is also com-
posed of two <component> subelements. The de-
pendency ID is based only on the user ID of that spe-
cific user.

Every time a user sells or buys a stock, his stock port-

folio changes, which requires the portfolio page to
be removed from cache. An invalidation ID named

360 BAKALOVA ET AL

“Holdings_UserID” is defined for the sell command,
and it is based on the user ID of a specific user. When
auser “uid1” accesses his portfolio, a cache ID is gen-
erated, and a dependency ID “Holdings UserID:
uid1” is associated with that cache ID. When the same
user tries to sell one of his holdings, an invalidation
ID “Holdings UserID:uid1” is generated, and be-
cause it matches the dependency ID of the portfolio
page, the portfolio page is invalidated from cache.
For more information on writing cache policies, see
Reference 12.

The performance measurements shown in Table 1
and obtained with Trade3 demonstrate the advan-
tage of servlet caching in a typical J2EE application.
Note that on a completely loaded system, as is the
case in our stress tests, the throughput multiplied by
the response time is a constant. Table 1 shows the
performance improvement achieved for the Trade3
application by enabling servlet caching. The response
time of the application has decreased to 44 percent

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

of its original value, improving the throughput by a
factor of 2.21. Enabling ESI caching further improves
the response time to 35 percent of its original value
and results in a throughput improvement of 2.8 times.

Note that in a typical live scenario the performance
improvement gained by using ESI caching is in fact
much more striking than seen in our results. This is
because Trade3 is more dynamic than real-world ap-
plications in that it has about the same number of
buy and sell requests as requests to view data. In a
real-world usage environment, the number of data
retrievals is much higher than the number of data
modifications, resulting in a lower number of inval-
idations, higher number of cache hits, and hence
more outstanding performance gains.

Command caching

In the WebSphere Application Server, commands
written to the WebSphere Command Architecture '?
encapsulate business logic operations and provide
a standard way to invoke business tasks. Commands
may access databases, file systems, and connectors
to perform business logic and often execute remotely
on another server. Significant performance gains can
be achieved by caching command results and avoid-
ing their repeated execution. ™

Commands are Java objects that follow a “set, ex-
ecute, get” usage pattern. The set method is used to
initialize the input properties of the command ob-
ject. The execute method is used to perform the spe-
cific business logic for which the command was writ-
ten. Finally, the get methods are used to read the
output properties that are set by the execution. Each
command can be in one of three states based on
which methods have been executed: “new”—mean-
ing the command has been created but the input
properties have not been set; “initialized”—mean-
ing the input properties have been set; and “execut-
ed”—meaning the execute method has been called
and output properties have been set.

Executed command objects can be stored in the
cache so that subsequent instances of that command
object’s execute method can be served by copying
output properties of the cached command to the cur-
rent command for retrieval by its get methods.

The Dynamic Cache supports caching of command
objects for later reuse by servlets, JSPs, EJBs, or other
business logic programming (see Figure 6). To iden-
tify these cached command objects, a unique cache

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Table 1 Performance measurement with dynamic caching
disabled, servlet caching enabled, and ESI
caching enabled

Caching Throughput Response
(pages/second) Time (ms)
None 51.43 214.83
Servlet Caching 113.89 94.76
Servlet + ESI Caching 143.26 75.65

ID is generated based on the fields and methods that
represent or are used to retrieve input properties of
the command. To cache a command in an applica-
tion, a cache ID creation rule must be written in the
cache policy file, and the command must be changed
to extend the “CacheableCommandImpl” class in-
stead of implementing the standard “Targetable-
Command” interface.

CacheableCommandImpl is an abstract class that im-
plements the methods necessary for the command
to interact with the caching framework. Because the
CacheableCommand interface extends the Tar-
getableCommand interface, the command in the ap-
plication must continue to implement the methods
needed for the TargetableCommand interface.

The standard TargetableCommand interface pro-
vides only the client-side interface for generic com-
mands and declares three basic methods as described
in Reference 11:

1. IsReadyToCallExecute. This method is called on
the client side before the command passes to the
server for execution.

2. Execute. This method passes the command to the
target and returns any data.

3. Reset. This method resets any output properties
to the values they had before the execute method
was called so that the object can be reused.

When a command is called to execute, the request
is intercepted by the cache, and a cache ID is gen-
erated based on the values of the input properties
specified in its cache policy. If a cache entry exists
for this cache 1D, the output properties are copied
from the cached object to this instance of the com-
mand, and the state of this instance is changed to
“executed” without actually executing the business
logic. If an entry with the generated ID is not found,
the execute method is called, and the executed com-
mand object is stored in the cache. If an ID is not

BAKALOVA ET AL. 361

Figure 8 WebSphere Application Server command cache

MyCommand Execute
command
" logic at:
set() 1 - properties
Mi e L ocal
execute() 2 - command logic SS server
or
* Remote
get() 3 ~ results Hit servers
Cache

generated, the command is considered not cache-
able. Figure 8 illustrates this process.

The cache policies for cacheable command objects
are defined in the cachespec.xml file. The <cache-
entry> elements identify the command objects. To
cache an object, the server must know how to gen-
erate unique IDs for different invocations of that ob-
ject. The <cache-id> element performs that task.
Each cache entry has its own properties, including
its sharing policy, priority, TTL, and single or mul-
tiple cache ID rules. Multiple cache ID rules execute
in sequence until a rule either returns a non-empty
cache ID or no more rules remain to execute. The
ID can be generated by using the <component> sub-
element defined in the cache policy of a cache entry
or by writing custom Java code to build the ID from
input variables and system state.

Command caching and Trade3. In Trade3, cache
policies are defined in the cachespec.xml file for a
variety of brokerage application commands. The
“QuoteCommand” class, used to get the stock price
for a given stock symbol, is shown in Figure 9. Quote
Commands are invalidated for each individual sym-
bol when the symbol is updated with the command
“UpdateQuotePriceCommand.”

Because QuoteCommand is used to get the stock
price of a given symbol, its cache ID is based on the
getSymbol method. Similarly, the Quote_Symbol de-
pendency ID is associated with this cache ID and is
based on the getSymbol method as well. For exam-
ple, when a user tries to look up the stock price of
$:120, a cache 1D of “QuoteCommand:getSymbol=s:

362 BAKALOVA ET AL

1207 is generated to cache the QuoteCommand and
a dependency ID of “Quote_Symbol:s:120” is asso-
ciated with that cache ID. The sample policies to gen-
erate the cache ID and dependency ID of QuoteCom-
mand are shown in Figure 10.

Table 2 shows the performance improvement seen
in the Trade3 application by enabling command
caching. Our tests show that the response time of
the application decreased to 27 percent of its orig-
inal value, thus improving the throughput by a fac-
tor of 3.5.

Caching using Web services

Web services are self-contained, modular applica-
tions that are described, published, located, and in-
voked over a network. Key components of Web ser-
vices are WSDL, UDDI, and SOAP. WSDL and UDDI are
used for describing and locating an application that
is provided as a Web service. SOAP provides the stan-
dard protocol for passing XML-encoded data between
the servers and clients for Web services. The under-
lying technology for all these components is XML,
which allows systems of different technologies to
communicate with each other.

Web services provide effective cross-vendor and
cross-organization interoperability by making use of
Web protocols and defining a common framework
for communication. The remote application compo-
nents provided as Web services usually perform com-
plex business tasks involving database queries and
computations. To communicate with a Web service
application, a client converts requests from its lan-
guage to an XML format and sends the request to
the server. The server parses these XML messages
and converts them to the language of the server be-
fore the service is invoked. The response is again con-
verted into an XML message format and sent back
to the client. Due to this extensive amount of pars-
ing and the complex business operations on the pro-
vider’s end, the overall latency of a Web service could
pose a concern for application performance. Cach-
ing Web service responses is an effective way of im-
proving performance of a Web service application.
The WebSphere Dynamic Cache supports caching
of Web service responses on the server side and could
improve performance by avoiding parsing and con-
version of XML data during service invocation and
response and/or avoiding the expense of executing
the service.

Dynamic caching and Web services. A Web service
message essentially consists of an HTTP header and

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 9 Example of class using command caching

public class QuoteCommand extends CacheableCommandimpl {

public TradeServices trade = null;
public QuoteDataBean quoteData = null;
public String symbol = null;

public QuoteCommand() {}

public QuoteCommand(TradeServices trade, String symbol) {

this.trade = trade;
this.symbol = symbol;

}

public void setTradeServices(TradeServices trade) {

this.trade = trade;

public void setSymbol(String symbol) {
this.symbol = symbol;

}

public String getSymbol() {
return this.symbol;

public QuoteDataBean getQuote() {
return this.quoteData;

I1T1T1101111771111 Cacheable command methods //////1/111111111111111111117

public boolean isReadyToCallExecute() {

//We can only execute the command and populate this
//bean if we have a TradeServices object on which to act

return this.trade != null && symbol != null;

public void performExecute() throws Exception {
this.quoteData = this.trade.getQuote(this.symbol);

}

a SOAP envelope. The HTTP request header contains
arequired field called “SOAPAction” that indicates
the intent of this request by using the URI (Univer-
sal Resource Identifier) of the requested service as
the value of this field. The SOAPAction HTTP header
is defined in the SOAP specification and is used by
HTTP proxy servers to dispatch requests to partic-
ular HTTP servers. When no parameters exist for a
Web service request, the cache policies can be writ-
ten to build cache IDs based on this SOAPAction
header and avoid parsing the SOAP envelope alto-
gether. This method would save all parsing and ex-
ecution on the server side, providing significant per-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

formance gains as well as reduction of load on the
server. For example, if a Web service from a bus-
iness provided its current stock quote, this service
would not require parameters and could be cached
based on the SOAPAction header.

The following is an example of a SOAP message with
accompanying HTTP request headers. The message
sample contains a SOAP message for a “getIBM-
Quote” operation, requesting a stock price. This is
aread-only operation that gets its data from the back
end with no parameters, and is cacheable. In this ex-
ample, the SOAP message is cached, and a timeout

BAKALOVA ET AL. 363

Figure 10 Sample command caching policies

<cache>
<cache-entry>
<class>command</class>

<sharing-policy>not-shared</sharing-policy>

<name>

com.ibm.websphere.samples.trade.command.QuoteCommand

</name>
<cache-id>

<component type="method" id="getSymbol">
<required>true</required>

</component>
</cache-id>

<!I-- This dependency ID is set up to identify stocks by their symbol -->

<dependency-id>Quote_Symbol

<component id="getSymbol" type="method">
<required>true</required>

</component>
</dependency-id>
</cache-entry>
</cache>

Table 2 Performance measurement with all dynamic
caching disabled and with command caching

enabled
Caching Throughput Response
(pages/second) Time (ms)
None 51.43 214.83
Command Caching 179.73 59.42

is placed on its entries to ensure that the quotes it
returns are not out of date.

POST /soap/serviet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8”
SOAPAction: urn:ibmstockquote-lookup
<SOAP-ENV:Envelope xmins:
SOAP-ENV="http://schemas.xmlsoap.
org/soap/envelope/”
SOAP-ENV:encodingStyle="http://schemas.
xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>
<m:getIBMQuotexmins:m=
“urn:ibmstockquote:>
</m:getIBMQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

364 BAKALOVA ET AL

The cache policy for the above service could be de-
fined as follows:

<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<cache-id>
<component id="" type=SOAPAction>
<value>urn:ibmstockquote-lookup
</value>
</component>
</cache-id>
</cache-entry>

Most Web services are more complex and require
further details for a request, such as the service name,
method name, and parameter values for the method.
These details are provided in the SOAP envelope as
part of the SOAP header and the SOAP body. The Dy-
namic Cache also provides an alternative method to
generate cache IDs, based on the content of the SOAP
envelope. In this method, the entire SOAP envelope
is hashed, and the result is used as the cache ID to
save the Web service response. This method, like us-
ing the SOAPAction header, saves all the parsing
and repeated execution of the Web service on the
server side. A cache policy using the hash of the SOAP
envelope could be defined as follows:

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<cache-id>
<component id=“Hash”
type=“SOAPEnvelope”/>
<timeout>3600</timeout>
</cache-id>
</cache-entry>

Various SOAP engines on different Web service cli-
ents could generate different formats of SOAP en-
velopes for exactly the same request. Therefore, this
method could potentially result in the caching of the
same response multiple times with different cache
IDs. To overcome this problem, the WebSphere Dy-
namic Cache also provides an option to generate the
cache 1D based on the specific details in the SOAP
envelope. This method requires parsing of the XML
in the consumer’s request, but prevents the recur-
ring execution of the Web service as well as the con-
version of the response to XML. This method of cache
ID generation for Web services has the potential to
provide the maximum number of cache hits. Select-
ing the right method for cache ID generation based
on the type of Web service can provide high gains
in performance and scalability.

In the following example, the service operation name
is used to build the cache key. This name is always
found in the SOAP message body and also sometimes
exists in the SOAPAction HTTP header. Because
reading a header is fast and simple compared to ex-
tracting the operation from the message body (which
requires parsing XML and searching it), the Dynamic
Cache provides different component types for the
two places where the service operation name might
be found.

<cache>

<cache-entry>

<class>webservice<class>
<name>/soap/servlet/soaprouter</name>
<cache-id>
<component id="" type="“serviceOperation”>

<value>urn:stockquote:getQuote</value>

</component>
<timeout>3600</timeout>

</cache-id>

</cache-entry>

</cache>

Web services in Trade3. All server-side trading ser-
vices are provided as Web services in Trade3. Trade3

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Table 3 Performance measurements with Trade3 in Web
services access mode and Web services dynamic
caching disabled and enabled

Caching Throughput Response
(pages/second) Time (ms)

None 37.39 292.90

Web services caching 61.91 176.38

provides a SOAP-EJB runtime mode, in which the
Trade3 Web application accesses these server-side
services via the SOAP protocol using the WebSphere
UDDI registry and Trade3 WSDL. This mode was used
to run the performance tests for Web services
caching.

The results of the stress tests with Web services cach-
ing turned off and on are shown in Table 3. The setup
used is the same as that in the previous tests except
that the trade services are now being accessed using
the Web services access mode. Table 3 shows the
performance improvement seen in the Trade3 ap-
plication by enabling Web services caching. The re-
sponse time of the application decreased to 60 per-
cent of its original value, thus improving the
throughput by a factor of 1.6.

Object caching

Distributed Java object cache. Another powerful
feature of the Dynamic Cache is its ability to store
and share Java objects. Using the Enterprise Edi-
tion of WebSphere Application Server, a J2EE ap-
plication can leverage this functionality by defining
unique instances of the Dynamic Cache. Public APIs
in the DistributedMap interface will then give the
application direct access to that instance, which
seamlessly distributes its objects across servers. An
application can store and retrieve any Java object
using an extended java.util. Map interface, and if the
stored object implements the java.io.Serializable or
java.io.Externalizable interface, WebSphere can au-
tomatically share these objects with other servers in
a clustered environment. This section describes the
use of the Dynamic Cache in a J2EE application to
improve performance and share common informa-
tion between servers in a clustered environment.

Cache instances. Cache instances are used to cache
often used Java objects and to share these objects
with other servers within a cluster. They are also used
to logically group related object types. Objects stored
in a particular cache instance are not affected by

BAKALOVA ET AL. 365

other cache instances. This means that if an object
with a given name and value is stored in cache in-
stance x, an object with the same name, and possibly
a different value, can also be stored in cache instance
y.For example, if an object named ADDRESS is stored
in cache instance SHOE_STORE, another object with
the same name can be stored in cache instance
DRESS_STORE. Each cache instance will operate in-
dependently on its own ADDRESS.

In the WebSphere network deployment environ-
ment, objects stored in a particular cache instance
are available to applications on other servers by ac-
cessing a cache instance with the same JNDI (Java
Naming and Directory Interface) name. The serv-
ers must be within the same replication domain to
share data. Cache instances are considered resources
similar in concept to a JDBC** (Java Database Con-
nectivity) resource. The WebSphere administrative
console is used to configure a cache instance.

For the system described here, two cache instances
were defined with JNDI names “services/cache/
instance_one” and “services/cache/instance_two.” Each
cache instance can be configured independently for the
parameters JNDI name, cache size, disk offload
enabled/disabled (which determines cache behavior if
anew entry is created while the cache is full), and other
parameters.

DistributedMap interface. The DistributedMap in-
terface extends java.util. Map to access a cache in-
stance. Using the DistributedMap interface, J2EE ap-
plications and system components can cache and
share Java objects by storing a reference to the ob-
ject in the cache. To store and retrieve objects in a
cache instance, a DistributedMap reference for the
named cache instance is needed. The following code
added to the application will return a Distributed-
Map reference for two cache instances:

import javax.naming.InitialContext;
import com.ibm.websphere.cache.DistributedMap;

InitialContext ic = new InitialContext();
DistributedMap dMap1 =
(DistributedMap)ic.lookup(“services/cache/
instance_one”);
DistributedMap dMap2 =
(DistributedMap)ic.lookup(“services/cache/
instance_two”);

366 BAKALOVA ET AL.

Placing an entry in cache is performed simply by us-
ing the put and get methods. For example,

dMap1.put(“someld”,somedavaObject);
sjo = (SomedavaObject)dMap1.get(“someld”);

In a clustered environment, an application can put
an entry on one server and get it from another server.
Objects can be removed from the cache by allowing
the object’s TTL (which is set during a put operation)
to expire. For example, to place an object in cache
for 30 seconds:

int TTL = 30; // Allow this entry to live for 30 seconds

int priority = 1;

int shareType = Entryinfo. SHARED_PUSH;

dmap1.put(“someld”, someJavaObiject, priority, TTL,
shareType, null);

In the preceding example, “someJavaObject” will be
placed in cache and shared (via the PUSH method)
with other application servers in the cluster. After
30 seconds, the object will expire and thus will
be removed from all the caches in the cluster. Al-
ternatively, cache removal can be performed by
using the explicit “invalidate” method (e.g.,
“dmapl.invalidate(“someld”)”).

Invalidation events. Invalidation events allow an ap-
plication to be notified when a cache entry is removed
from cache. The application can then repopulate the
cache with current information. This helps keep the
cache up to date with current entries and prevents
delays (caused by cache misses) upon user requests
for the information. To use invalidation events, an
event handler that implements the InvalidationLis-
tener interface must be created. The following code
repopulates the cache when an entry is invalidated
due to a timeout.

public class InvalidationEventHandler implements
InvalidationListener {
public void fireEvent(final InvalidationEvent €) {
String name = (String)e.getld();
if (e.getCauseOfInvalidation() ==
InvalidationEvent. TIMEOUT) {
StockQuote stockQuote =
BackendSimulator.getStockQuote(name);
BackendSimulator.setStockQuote(stockQuote);

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

The following code activates “invalidate” events for
the above handler:

dMap1.enableListener(true);

InvalidationEventHandler handler = new
InvalidationEventHandler();

dMap1.addInvalidationListener(handler);

Sharing information in a cluster. One can control
how data is shared between servers in a clustered
environment by setting the sharing policy at the time
an object is put into the cache. There are three shar-
ing types available for use with the DistributedMap
interface that control the amount and type of infor-
mation (including the object name, its value, and in-
validation messages) that flows between servers:
NOT_SHARED, SHARED_PUSH, and SHARED_PUSH_
PULL. The sharing types are defined in the Entry-
Info class. With all share types, object invalidation
messages are always sent to other servers to ensure
that outdated information is never served to a user.

In the case of SHARED_PUSH, the cached object and
its name are sent to all servers in the replication do-
main at the time the object is placed in cache. This
makes the object immediately available to the ap-
plications on other servers and speeds up applica-
tion server performance at the expense of greater
network traffic. In the case of SHARED PUSH_PULL,
the cached object is kept local to the server that cre-
ated it, but the object’s name is shared with other
servers. If a remote server needs the object, it will
request the object by name from the creating server.
This performance compromise is useful when net-
work bandwidth comes at a premium.

The NOT_SHARED option is useful when there is an
affinity between a client and a Web application server
and the data is used only by that client (e.g., a shop-
ping cart). The SHARED_PUSH option is useful when
the entry is very heavily used by all clients (e.g., a
popular product display). The SHARED_PUSH_PULL
option is useful when the entry is shared by clients
but is not accessed often enough to warrant pushing
the entire cached object to all other servers (e.g., a
product display that is not popular).

Performance improvement for object caching. Be-
cause the Trade3 application does not make use of
the DistributedMap APIs for object caching, a sim-
ple J2EE application was created to do cache puts,
gets, and invalidates using the DistributedMap APIs.
This application was stress tested to obtain the re-
sults that are presented here. The method shown in

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 11 was used to gather the hit/miss counters
while running the test. Each pass through this
method constituted one request for a stock quote.
If a request was the first quote request for a partic-
ular stock symbol, the quote was not found in the
cache, and a request was made to the back-end stock
quote system. Once the back-end stock quote sys-
tem returned the stock quote, the quote was cached.
Subsequent requests for the same stock symbol were
retrieved from the cache. One thousand unique stock
symbols were used. Stock quotes were randomly in-
validated at the rate of 500/sec, and the back-end
database delay was set to 10 ms.

The performance improvement experienced de-
pends on many factors. Some of these factors include
the request rate, back-end database response time,
invalidation rate, and cache size. The hit/miss ratios
shown in Tables 4, 5, and 6 represent the number
of cache hits for every cache miss for the simple J2EE
application. These numbers primarily confirm that
the use of cache instances and the DistributedMap
APIs can greatly improve throughput, and the use of
InvalidationEvents can improve the hit/miss ratio.
As with all dynamic caching, performance gains are
tightly tied to the usage and design patterns of the
application.

Performance results summary

Tables 7, 8, and 9 summarize the performance im-
provement results measured for dynamic caching
with the Trade3 application with the setup described
earlier in this paper. The performance improvements
were measured in terms of gain in throughput and
decrease in response time. The throughput and re-
sponse time are inversely proportional to each other.

Using servlet caching, the response time of the ap-
plication decreased to 44 percent of its original value,
improving the throughput by a factor of 2.21. En-
abling ESI caching further improved the response
time to 35 percent of its original value and resulted
in a throughput 2.8 times higher. Using command
caching, the response time of the application de-
creased to 27 percent of its original value, improv-
ing the throughput by a factor of 3.5. Using servlet
caching in conjunction with command caching re-
sulted in a 75 percent decrease in the response time,
lowering it to less than 25 percent of its original value.
The throughput in this case improved by a factor of
almost 4.

Using Web services caching in the Web services ac-
cess mode, the response time of the application de-

BAKALOVA ET AL. 367

Figure 11 Method used for generating cache hit ratios

public StockQuote getStockQuote(String stockSymbol, boolean useCache) {

StockQuote stockQuote = null;

1/
// If using cache, check for stock quote in stockQuoteCache
1/
if (useCache) {
stockQuote = (StockQuote)stockQuoteCache.get(stockSymbol);
if (stockQuote != null) { // Was stockQuote found?
statusBean.incrementCacheHit (); // If so, log a cache hit
return stockQuote; // Exit the method with the stockQuote value
}
}
1/
// Go to the back end for stock quote if
// 1) not using cache, or
// 2) using cache and get() results in cache miss
1/
stockQuote = BackendStockQuoteSystem.getStockQuote (stockSymbol); // get a stockQuote
1/
// If using cache, log a cache miss and save stock quote in stockQuoteCache
1/
if (useCache) {

statusBean.setCacheMiss();

stockQuoteCache.put(stockSymbol, stockQuote);

return stockQuote;

Table 4 Performance measurements with no object

Table 6 Performance measurements using object cache

caching and invalidation listeners
Threads Throughput Threads Throughput Hit/Miss Ratio
(requests/second) (requests/second)
1 100 1 26000 539
2 200 2 42000 838
10 985 10 61000 1171
20 1950 20 64000 1169

Table 5 Performance measurements using object cache

Threads Throughput Hit/Miss Ratio
(requests/second)
1 136 0.40
2 381 0.93
10 48000 132
20 59000 149

creased to 60 percent of its original value, thus im-
proving the throughput by a factor of 1.6. Using
object caching resulted in a drastic increase in the

368 BAKALOVA ET AL

number of requests completed per second, and us-
ing invalidation listeners in conjunction with this re-
sulted in an 8 times higher hit/miss ratio.

Concluding remarks

As the industry trend moves towards conducting
more business over the Web, competitive pressures
drive e-business sites to deliver more personalized
and hence, more dynamically generated content. Due
to variations in workload, providers of dynamic Web
sites and e-commerce services need to find a cost-
effective solution to keep applications scalable and

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Table 7 Performance measurements with Trade3 in
standard access mode and Web services
dynamic caching disabled and enabled

Caching Throughput Response
(pages/second) Time (ms)
None 51.43 214.83
Servlet caching 113.89 94.76
Servlet and ESI 143.26 75.65
caching
Command caching 179.73 59.42
Servlet and command 200.19 53.62
caching

Table 8 Performance measurements with Trade3 in Web
services access mode and Web services dynamic
caching disabled and enabled

Caching Throughput Response
(pages/second) Time (ms)

None 37.39 292.90

Web services caching 61.9 176.38

Table 9 Performance measurements with ten threads and
object caching and invalidation events disabled

and enabled
Caching Throughput Hit/Miss
(requests/second) Ratio
None 985 N/A
Object caching 48000 132/1
Object caching and 61000 1171/1
invalidation events

to avoid server bottlenecks while still providing vi-
able response times. Dynamic caching at various tiers
of a J2EE application provides such a solution by
avoiding CPU-intensive or back-end-intensive com-
putations on the servers and reusing response data
when possible. In most cases no change is required
to the application in order to use the Dynamic Cache
service. Also, the service is conveniently offered as
a built-in solution with WebSphere Application
Server and can be easily enabled through the admin-
istrative console.

Using Trade3, the IBM J2EE benchmark application,
our performance tests showed an improvement of
2.2 times in throughput using Dynamic Cache serv-
let caching without ESI caching and an improvement
of 2.8 times using servlet caching with ESI caching.
Command caching and Web services caching re-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

sulted in improvements of 3.5 and 1.6 times respec-
tively and, using a basic sample application, object
caching showed sweeping gains in performance. Im-
provements in performance vary based on how dy-
namic the data is, the intensity of saved computa-
tions, and most important, the cache policy
configuration. Because of this, the WebSphere Ap-
plication Server also provides tools to configure,
tune, and monitor the cache in order to optimize the
benefits from the Dynamic Cache.

The Dynamic Cache is also capable of leveraging the
services of distributed notification and replication
services to efficiently spread the benefit of saved com-
putation across processes and further improve scal-
ability. Moreover, the cache is designed to work to-
gether with external caches that exist outside the J2EE
application space such as WebSphere Edge Server,
WebSphere HTTP Plug-in, or the Akamai ESI Server.
The Dynamic Cache thus provides an ideal solution
for high volume Web sites serving dynamic content,
enabling them to achieve high levels of scalability
and performance.

Acknowledgments

We would like to thank Kenichiroh Ueno, Harley
Stenzel, and Greg Ames for help with performance
measurements setup, and Stan Cox for help with
Trade3 information.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or Linus Torvalds.

Cited references and notes

1. WebSphere Application Server Library, IBM Software, http://
www.ibm.com/software/webservers/appserv/was/library/.

2. High-volume Web Sites, Library of Best Practices, IBM Corp.,
http://www7b.software.ibm.com/wsdd/zones/hvws/library.
html.

3. Trade3 is available for download at http://www.ibm.com/
software/webservers/appserv/benchmark3.html.

4. JCACHE - Java Temporary Caching API, Java Community
Process (2001), http://www.jcp.org/en/jsr/detail?id=107.

5. The policy for an object may contain multiple rules to gen-
erate the unique key (cache ID), based on different sets of
input parameters. These rules are executed in order until one
of the rules returns a non-empty cache ID (based on the cur-
rent input parameters) or until no more rules remain to be
executed.

6. Caching In on the Enterprise Grid: Turbo-Charge Your Appli-
cations with OracleAS Web Cache, Oracle Technology Net-
work, Oracle Corporation (September 2003), http://otn.

BAKALOVA ET AL. 369

oracle.com/products/ias/web_cache/pdf/Oracle AS-Web-
Cache-10g-904-twp.pdf.

7. Tangosol Coherence User Guide, Tangosol, Inc. (February
2004), http://www.tangosol.com/userguide.jsp.

8. Welcome to SpiritCache 3.0, Spritsoft, Ltd., (2004), http://www.
beyondjms.com/documentation/cache/3.0/index.html.

9. S. Viriri, “Dynamic Caching Design Proto-Pattern for J2EE
Web Component Development,” Journal of Object Technol-
ogy 2, No. 4, 113-117 (July 2003).

10. G. Copeland and M. McClain, “Web Caching With Dynamic
Content,” http://research.microsoft.com/~gray/HPTS99/
papers/Copeland_McClain.pdf..

11. ESI Language Specification 1.0, Edge Side Includes (2001),
http://www.esi.org/language_spec_1-0.html.

12. WebSphere Application Server Network Deployment - Command
Class, IBM Corp., (October 2003), http://publib.boulder.ibm.
com/infocenter/wsphelp/topic/com.ibm.websphere.nd.doc/
info/ae/ae/rprf_commandclass.html.

13. G. Cuomo and C. Diep, “The Dynamic Caching Services:
Eliminate Bottlenecks and Improve Response Time,” Web-
Sphere Developer’s Journal (February 2003), http://www.
findarticles.com/mOMLX/2_2/103192558/pl/
article.jhtml?cf=dls..

General references

Java 2 Platform, Enterprise Edition (J2EE), Sun Microsystems,
http://java.sun.com/j2ee.

WebSphere Software Platform, IBM Corp., http://www.ibm.
com/websphere.

Accepted for publication December 8, 2003.

Radoslava Bakalova IBM Software Group, 4205 S. Miami
Blvd., Durham, NC 27703 (rgbakalo@us.ibm.com) Ms. Bakalova
is a software developer in the IBM WebSphere Application Server
cache development group in Research Triangle Park, NC. She
received her Bachelor’s degree in business economics in July 1996
and her M.B.A. degree in November 1997 from the University
of National and World Economy in Sofia, Bulgaria. Ms. Bakalova
is currently finishing her M.S. degree in information technology
at the Rochester Institute of Technology in Rochester, New York.
Her concentrations are object-oriented programming and data-
base administration. She joined IBM as a supplemental employee
in December 2002.

Andy Chow IBM Software Group, 4205 S. Miami Blvd., Durham,
NC 27703 (cachow@us.ibm.com). Mr. Chow is a staff software
engineer in IBM’s WebSphere Application Server development
group in Research Triangle Park, NC. He received a B.S. degree
in electrical engineering from the University of Michigan at Ann
Arbor and an M.S. degree in electrical engineering from the Geor-
gia Institute of Technology. He joined IBM in 1983 and has
worked on developing diagnostics and configuration software for
the network adapters used in the IBM 3174 and 3745 commu-
nications controllers and personal computers. He has also worked
on developing software for host integration products and edge
services components. His current assignment is in WebSphere
Dynamic Cache development.

Chuck Fricano IBM Software Group, 4205 S. Miami Blvd.,
Durham, NC 27703 (fricano@us.ibm.com). Mr. Fricano is an ad-
visory software engineer with IBM’s WebSphere Application
Server development group in Research Triangle Park, NC. He

370 BAKALOVA ET AL

received a degree in electronics from the Penn Technical Insti-
tute in Pittsburgh, Pennsylvania in 1976. He joined IBM in 1979
and worked in the Pittsburgh Field Engineering division for 11
years. In 1990 he was transferred to the Networking Support Cen-
ter in Research Triangle Park where he provided remote tech-
nical support for the IBM 3745 communications controller and
related software products, including VTAM (Virtual Telecom-
munications Access Method) and NCP (Network Control Pro-
gram). In 1995, he transferred to the programming lab in Re-
search Triangle Park where he has been developing Internet-
related products. His current assignment is in WebSphere
Dynamic Cache development.

Priyanka Jain IBM Software Group, 4205 S. Miami Blvd.,
Durham, NC 27703 (pjain@us.ibm.com). Ms. Jain is a software
engineer in the IBM WebSphere Application Server cache de-
velopment group in Research Triangle Park, NC. She received
a Bachelor of Engineering degree in computer science and en-
gineering from Bangalore University in India in 1998 and an ML.S.
degree in computer science from Louisiana State University in
Baton Rouge, LA in 2001. She joined IBM the same year, and
has been working with the dynamic caching group since May 2002.

Nirmala Kodali IBM Software Group, 4205 S. Miami Blvd.,
Durham, NC 27703 (kodalin@us.ibm.com). Ms. Kodali is a staff
software engineer in IBM’s WebSphere Application Server de-
velopment group in Research Triangle Park, NC. She received
an M.S. degree in computer science from the University of Ten-
nessee at Knoxville in 1998 and joined IBM in the same year.
Since joining IBM, she worked on the IBM WebSphere Host-
Publisher product, then joined WebSphere Application Server
development in August 2002.

Dan Poirier IBM Software Group, 4205 S. Miami Blvd., Durham,
NC 27703 (poirier@us.ibm.com). Mr. Poirier is an advisory soft-
ware engineer in IBM’s WebSphere Application Server devel-
opment group in Research Triangle Park, NC. He received an
M.S. degree in computer science from the University of North
Carolina at Chapel Hill in 1991. He joined IBM in 1992, and has
worked on numerous networking products ranging from an SNA
implementation for PC-DOS to his current work on the Web-
Sphere Application Server.

Sajan Sankaran IBM Software Group, 4205 S. Miami Blvd.,
Durham, NC 27703 (sajan@us.ibm.com). Mr. Sankaran is an ad-
visory software engineer working on dynamic caching in Web-
Sphere Application Server development. He received an M.S. de-
gree in computer science from the University of North Carolina
at Charlotte. He joined IBM in 1999 and has worked on host in-
tegration products and edge services components before his cur-
rent assignment in WebSphere Application Server development.

Dan Shupp BM Sofiware Group, 4205 S. Miami Blvd., Durham,
NC 27703 (shupp@us.ibm.com). Mr. Shupp is a staff software en-
gineer with IBM’s WebSphere Application Server development
group in Research Triangle Park, NC. He received a B.A. degree
in computer science from Johns Hopkins University in 2000. Since
joining IBM, he has worked on emerging Internet technologies
for the WebSphere Performance Group and has worked on dy-
namic caching since it was incorporated into WebSphere in Ver-
sion 3.5.3. He is currently on assignment in Beijing, working with
IBM China Research Labs on grid computing projects for
WebSphere.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

