
WebSphere
Application Server:
A foundation for
on demand computing

by E. N. Herness
R. H. High, Jr.
J. R. McGee

WebSphere� Application Server is the
foundation for IBM’s middleware software
portfolio. It has evolved rapidly from a simple
extension for Web servers and a server
runtime for business objects to the IBM
distributed operating system for mission-
critical computing and the leading application
server in the industry. WebSphere Application
Server plays a central role in the
transformation from a distributed operating
system to a distributed on demand operating
system. This transformation is achieved by
forging extensions to the WebSphere
Application Server foundation for the grid-
computing infrastructure, rich Web-based
interaction models, service-oriented
architecture, autonomics, business process
management, and dynamic provisioning and
utility management. This paper describes
elements of the WebSphere Application
Server architecture and how this architecture
provides a foundation for the on demand
computing infrastructure and application
environment.

There is little doubt about the importance of e-busi-
ness on demand*.1 The information technology in-
dustry has come to a juncture with the next major
step being one toward greater productivity— in terms
of improving both the productivity of information
systems specialists and, more importantly, the pro-
ductivity of businesses that depend on information
technology for conducting their business. This next
step forward will be enabled by e-business on de-
mand* through more efficient utilization of comput-
ing facilities by sharing resources among many lines

of business, and by interconnecting those facilities
into a computing grid that will enable access to more
computing capacity on demand. This potential is then
extended through e-business on demand by allow-
ing lines of business to be interconnected as a seam-
less flow of information and business processing and
by providing concrete definitions of customer bus-
iness processes so that customers can adjust those
processes rapidly as business conditions change.

The role of WebSphere* Application Server2–6 in
enabling on demand computing is significant in two
ways. First, it is a container for application compo-
nents whose very programming model design enables
a high degree of virtualization. This is achieved in
the underlying information system by separating the
presentation and business logic of the application
from the infrastructure hosting that logic.7 Second,
the application server is a resource manager—it man-
ages application components as resources, and man-
ages them in the context of the computing and in-
formation resources they depend on, including the
execution environment, data systems, connections,
transactions, security contexts, RAS (reliability, avail-
ability, and serviceability), messaging systems, and
other application components. Both of these prop-
erties form a critical backdrop to enabling on de-
mand computing.

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 0018-8670/04/$5.00 © 2004 IBM HERNESS, HIGH, AND MCGEE 213

WebSphere Application Server supports four ma-
jor models of application design: multitiered distrib-
uted business computing, Web-based computing, in-
tegrated enterprise computing, and service-oriented
computing. All of these design models focus on sep-
arating the application logic from the underlying in-
frastructure; that is, the physical topology and ex-
plicit access to the information system is distinct from
the programming model for the application. Use of
underlying resources within the information system
is abstracted in the programming model by high-level
interfaces and logical resource references and by en-
couraging service processing through declarative pol-
icies in the components. The appearance of control
is given but in a way that can be mapped to physical
resources by the application containers in Web-
Sphere Application Server based on its management
algorithms. Exploiting the component models de-
fined in the WebSphere Application Server program-
ming model makes programmers more productive,
but it also enables the application to be managed by
WebSphere Application Server. The application
components can be located within the topology as
needed on the basis of the resources required by the
application, as measured by the availability and ca-
pacity of the underlying computing facilities, and on
the basis of the relative requirements of the appli-
cation as compared to other applications in use by
the enterprise.

WebSphere Application Server provides support for
deploying the application, managing the resource re-
quirements for the application, ensuring the avail-
ability, isolation, and protection of the application
from other applications and their resource require-
ments, and monitoring and securing the application.
In the following sections we will survey various as-
pects of WebSphere Application Server and how it
enables computing for e-business on demand. In-
cluded is a discussion of how applications are man-
aged and deployed, how the application server is
monitored to determine how efficiently it is using re-
sources and how this affects workload management,
how applications can be profiled to enable the ap-
plication server to serve its resource dependencies
more efficiently, the infrastructure technology the ap-
plication server uses to ensure high availability and
failover, how this capability extends out to the edge
of the network, and finally the role the application
server plays in the area of grid computing.

Other aspects of WebSphere Application Server and
much of the WebSphere platform, including ap-
proaches to obtaining maximum scalability from

WebSphere Application Server,8 how to improve
performance by caching,9 information integration,10

portals,11 business process choreography,12 discon-
nected and rich clients,13 and connectors and adapt-
ers14 are discussed at length throughout this issue
of the IBM Systems Journal.

Application models for e-business

One major characteristic of an on demand e-busi-
ness is that it is dynamic. It changes at the rate and
pace of demand—demand for business services, de-
mand for information, and demand for computing
capacity. An application will survive in this sort of
environment only if it is designed for change. There
are many application design patterns,15 including the
principles of structured and object-oriented pro-
gramming, that describe techniques for achieving
high degrees of reuse and component sharing.

However, going from reuse to the kinds of dynamic
rehosting that can occur as resources are shifted
across a data center, or to handle the distribution of
workload across application partitions, or to handle
rapid changes in business processes that can occur
in an on demand computing environment requires
strict adherence to the best design disciplines. In an
on demand computing environment, databases and
legacy data systems in the Enterprise Information
System (EIS) can be moved frequently to accommo-
date surges or drops in demand for one system or
another. It may become necessary to partition work-
loads and route different transactions to different
computers. There may be many instances of the same
application in the same computer complex to serve
different customers. The steps and activities that are
performed for a given business situation can vary
from day to day, or even for different business cus-
tomers on an individual basis. Under other circum-
stances it would be very difficult to program an ap-
plication to tolerate this kind of variability.

Letting programmers add value to their businesses
by enabling them to focus their attention more on
business domain concerns and less on the underly-
ing computing infrastructure is one of the fundamen-
tal tenets of WebSphere Application Server. In ad-
dition WebSphere Application Server is a J2EE**
(Java 2 Platform, Enterprise Edition)-compliant ap-
plication server supporting the entire breadth of the
Java** language and J2EE specification, including
support for a Web-services-based service-oriented
architecture. The J2EE programming model sup-

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004214

ported by WebSphere Application Server makes it
much easier to build applications for on demand
computing specifically because it separates the de-
tails from the underlying infrastructure. It does this
with the component- and service-oriented program-
ming model offered by J2EE. By leveraging that sep-
aration, WebSphere Application Server is able to of-
fer a broad range of scaling in its application server
implementation—from a single server installation all
the way up to multiprocessor, multihost, and mul-
ticluster installations.

To obtain maximum advantage as an on demand bus-
iness an application should follow the best-practice
patterns that have been espoused for e-business com-
puting16—using the J2EE and WebSphere Applica-
tion Server programming model for component-
based, service-oriented, distributed, and message-
driven computing, and using business process
choreography for composition. The patterns for e-
business computing with this approach include:

● Multitiered distributed business computing
● Web-based computing
● Integrated enterprise computing
● Service-oriented computing

Multitiered distributed business computing. The
value of multitiered distributed computing comes
from first structuring the application with a clean sep-
aration between the logic elements (presentation,
business, and data) and then leveraging the bound-
aries between these elements as potential distribu-
tion points in the application. This is enabled with
a formal component model for business logic: En-
terprise JavaBeans** (EJB**). This component
model has several key benefits for application de-
velopment. Foremost, the component model pro-
vides a contract between the business logic and the
underlying runtime. The runtime is able to manage
the component.

The component runtime (also called the component
container) ensures the optimal organization of com-
ponent instances in memory, controlling the life cy-
cle and caching of state to achieve the highest levels
of efficiency and integrity, protecting access to the
components, and handling the complexities of com-
munication, distribution, and addressing. This same
principle of management applies to object identity,
transaction and session management, security, ver-
sioning, clustering, workload balancing and failover,
and so on. Part of the EJB component model includes
the idea of a single-level-store programming model,

whereby the issues of when and how to load the per-
sistent state of a component are removed from the
client.17 In many cases, the runtime has a much bet-
ter understanding of what is going on in the shared
system than any one application can ever have and
thus can do a better job of managing the component
and obtaining high performance and throughput in
the information system. The runtime does this for
the component developer; the programmer does not
have to worry about these details.

Web-based computing. Web-based computing is,
in some sense, a natural extension of the multitiered
distributed computing model, whereby the presen-
tation logic has been relocated in the middle tier of
the distributed computing topology and drives the
interaction with the end user through fixed-function
devices in the user�s presence. We refer to an in-pres-
ence, fixed-function device as a Tier-0 device in the
multitiered structure of the application. The most
common form of a Tier-0 device is the Web browser
on a client desktop. Pervasive computing devices are
emerging in the market in other forms as well, from
personal data assistants (PDAs) and mobile phones,
to intelligent refrigerators and cars (see Figure 1).

Web applications exploit the natural benefits of com-
ponent-based programming to enable the construc-
tion of Web presentation logic that can be hosted
on a server platform and to achieve richer styles of
interaction than can be achieved with simple static
content servers.18 The Web application server was
originally conceived to extend traditional Web serv-
ers with dynamic content; that is, page content that
is derived dynamically by interacting with business
logic and back-end data systems. However, in the
course of developing these Web application servers,
we realized that the issues of serving presentation
logic are essentially the same as the issues of serving
business logic. Through the use of servlets,19 port-
lets,20 and JavaServer Pages** (JSPs**),21 we see this
model supporting both a presentation and a busi-
ness logic tier in the application server layer. As with
business logic, the purpose of the presentation logic
server is to accommodate many clients (in this case,
Tier-0 clients) sharing a common implementation.

Integrated enterprise computing. Integrated enter-
prise computing is critical to retaining customer in-
vestments in past technologies. Few new applications
can be introduced into an established enterprise
without some regard as to how they will fit with ex-
isting applications22 and, by extension, the technol-
ogy and platform assumptions on which those ap-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 215

plications have been built. A close examination of
any enterprise will reveal a variety of applications
built on a variety of underlying technology
assumptions.

As usual, the issues of cross-technology integration
are complex. In mission-critical environments, we
must address concerns about data integrity, secur-
ity, traceability, configuration, and a host of other
administrative issues for deployment and manage-
ment. However, to support the productivity require-
ments of developers, these complexities should be
hidden. The key programming model elements pro-
vided by WebSphere Application Server for enter-
prise integration are offered in the form of Java 2
Connector Architecture (J2CA)23 and the Java Mes-
saging Service (JMS),24 both of which are part of the
J2EE specification. Figure 2 depicts this integration.

Another major advance in application integration
can be realized with the use of business process cho-
reography. Choreography is accomplished through
a scripting language (the Business Process Execu-
tion Language for Web Services, or BPEL4WS25) that
describes how to sequence a number of service ac-
tivities to form a workflow definition as depicted in
Figure 3. Activities can be serialized or executed in
parallel. A business process instance is instantiated
and forms its own state as it executes; that state can
be passed between activities in the flow. A business
process can be started, interrupted, resumed, and
terminated.

In looking at the problem of application integration
(or perhaps, more appropriately, lines-of-business
integration) from the top, it is important to model

business process flows in a way that allows them to
be rapidly adapted to new procedures and oppor-
tunities; for example, to be able to model and then
rapidly modify the order entry process to perform
credit checks and to process partial orders without
having to rewrite either the order entry or inventory
systems.26 Choreography lets us script the business
process, which makes it very easy to modify and im-
mediately execute changes in the implementation of
the process definition. Business rules, when com-
bined with choreography, can allow even more flex-
ible processes to be defined.

Service-oriented computing. The service-oriented
architecture (SOA) model suggests a type of appli-
cation where “business services” are exposed for use
both within and outside of an organization.27 Service-
oriented architectures leverage the relative cohesive-
ness of a given business service as the primary point
of interchange between parties in the network.28 Ser-
vices can be associated with service-level policies so
they can be secured, metered, monitored, and
tracked. We can combine the concepts of Web ser-
vices with J2EE to provide a managed component-
hosting environment for these kinds of applications.

Advances in the field of service-oriented computing
are heavily focused on Web services—especially on
Web Services Definition Language (WSDL), on the
Simple Object Access Protocol (SOAP), and Univer-
sal Description, Discovery and Integration (UDDI).
These technologies combine to introduce business
services that can be easily composed with other bus-
iness services to form new business applications. At
some level, Web services are just a new generation
of technology for achieving distributed computing,

Figure 1 Web computing model

PRESENTATION
LOGIC

BUSINESS
LOGIC

DATA LOGICPRESENTATION DEVICE

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004216

Figure 3 Business process choreography

MESSAGE-
ORIENTED
BUSINESS
SYSTEMS

LEGACY
BUSINESS
SYSTEMSPRESENTATION DEVICE

PRESENTATION
LOGIC

BUSINESS
LOGIC

DATA LOGIC

WORK ASSIGNMENT
(PEOPLE, ORGANIZATION, ROLE, LEVEL)

PROCESS ACTIVITIES

BUSINESS
MODEL

• MANUAL
• PROGRAMMATIC

J2CA
RESOURCE
ADAPTERS

APPLICATION
ADAPTER

JMS

Figure 2 Integrated enterprise computing

MESSAGE-
ORIENTED
BUSINESS
SYSTEMS

LEGACY
BUSINESS
SYSTEMS

PRESENTATION
LOGIC

BUSINESS
LOGIC

DATA LOGIC

PRESENTATION DEVICE

J2CA
RESOURCE
ADAPTERS

APPLICATION
ADAPTER

JMS

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 217

and in that sense, they have much in common with
many of the other distributed computing technologies,
such as Open Software Foundation/Distributed Com-
puting Environment (OSF/DCE**), Common Object
Request Broker Architecture (CORBA**), and the
J2EE Remote Method Invocation/Internet Inter-Orb
Protocol (RMI/IIOP**), that went before them.29

However, Web services differ from their predeces-
sors in the degree to which they deliberately address
a “loose coupling” model.30

We can measure the coupling of distributed appli-
cation components in at least three ways:

● Temporal affinity
● Organizational affinity
● Technology affinity

Temporal affinity. Temporal affinity is a measure of
how the information system is affected by time con-
straints in the relationship between its components.
If an application holds a lock on data for the dura-
tion of a request to another business service, there
are expectations that the requested operation will
be completed in a certain amount of time—data
locks and other similar semaphores tend to prevent
other work from executing concurrently. Tightly cou-
pled systems tend to have a low tolerance for latency.
In contrast, loosely coupled systems are designed to
avoid temporal constraints—the application and the
underlying runtime are able to execute correctly and
without creating unreasonable contention for re-
sources even if the service requests take a long time
to be completed.

Organizational affinity. Organizational affinity pertains
to how changes in one part of the system affect other
parts of the system. A classic example is in the ver-
sioning of interdependent components. If the inter-
face of a component changes, it cannot be used un-
til the dependent components are changed to use
that new interface. In tightly coupled systems, the
change has to be coordinated between the organi-
zation introducing the new interface and the orga-
nization responsible for using that interface. The co-
ordination often requires direct and detailed
communication between the organizations. In con-
trast, there is a high degree of tolerance for mis-
matches between components in loosely coupled
systems.

Another dimension of organizational affinity is the
degree to which the system has to be managed by
a single set of administrative policies. Tightly cou-

pled systems tend to require a common set of ad-
ministrative policies, most commonly handled with
a centralized administration facility to ensure con-
sistency of policy. The administration of loosely cou-
pled systems tends to be highly federated, allowing
each party to apply its own administrative policies
and expressing the effects of those policies only as
“qualities of service” at the boundaries between the
organizations. Generally, the invoker of a service in
a loosely coupled system can make choices based on
the trade-offs of costs, benefits, and risks in using an
available service. Different providers with different
quality-of-service characteristics can supply the same
service, thus enabling commercial marketplace eco-
nomics to drive a services community.

Technology affinity. Technology affinity addresses the
degree to which both parties have to agree to a com-
mon technology base to enable integration between
them. Tightly coupled systems have a higher depen-
dence on a broad technology stack. Conversely,
loosely coupled systems make relatively few assump-
tions about the underlying technology needed to en-
able integration.

All of these forms of affinity represent potential bar-
riers to the dynamism that occurs in on demand com-
puting systems. Avoiding them by adopting the prin-
ciples of loose coupling promoted by SOA is critical
in overcoming these barriers.

Programming for e-business on demand. There is
often a temptation to take short cuts when building
applications to respond rapidly to an immediate op-
portunity or to disregard the more powerful elements
of the J2EE programming model. In particular, we
see many cases where servlet programmers directly
invoke system services or make direct database calls.
That method may save developers some time initially,
especially if programmers are familiar with these ser-
vices and have intimate knowledge of their database.
However, doing so also weds their application to that
specific set of service technologies and database
schema. These applications will be more brittle and
will not be able to fully benefit from the capabilities
that WebSphere Application Server introduces for
on demand computing. To benefit from on demand
computing, the application must be structured to
avoid directly connecting to the resources it uses.

Conversely, we recommend that application abstrac-
tion layers which attempt to hide the J2EE and Web
services programming model be very carefully de-

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004218

signed and generally avoided. Although better ab-
stractions might offer some simplification to pro-
grammers, they also tend to inhibit the application
from taking advantage of some of the underlying flex-
ibility that is being built into the application server.
Specifically, it can be difficult to leverage quality-of-
service semantics that enable WebSphere Applica-
tion Server to manage components optimally when
those underlying component models are obscured
by higher-level abstraction layers. Often, we see
framework designers having to duplicate the very
same quality-of-service declarations and container
management that are inherent in the application
server itself.

Caches are another good example. A number of new
capabilities related to workload management and vir-
tualization will be driven by e-business on demand.
Applications that build local caches and alter nor-
mal affinity rules will not be able to efficiently par-
ticipate in environments where work is dynamically
moved around a distributed system based on load
statistics. WebSphere Application Server has built-in
cache support and leverages and manages those
caches to ensure optimal throughput and resource
utilization while maintaining a very high level of data
integrity. These properties are difficult to duplicate
in the application layers. Application and framework
developers often “get it wrong.” Moreover, even
when they “get it right,” they may be contravening
the inherent capabilities of the application server.

When WebSphere Application Server knows about
all of the resources being leveraged, such as connec-
tors, databases, queues, JMS topics, memory, and disk
storage, the inherent virtualization capabilities in the
server can more readily balance workloads across
those available resources, move work around the sys-
tem, and provision additional resources on machines
in the network. If the server does not know about
the resources, it is not possible to provision new ca-
pacity without operator, administrator, or sometimes
even programmer intervention.

Finally, the description of applications and the ap-
plication architecture has been centered largely
around the current J2EE standards and Web services
standards. As more advanced applications are con-
structed to solve business problems, they will make
increasing use of additional WebSphere program-
ming model extensions31 and other platform
capabilities.

Developing and deploying an application to
WebSphere Application Server

The principles of virtualization can be defeated if
the processes for constructing a virtualized applica-
tion component are too difficult. In fact, we want to
make the process for creating a virtualized applica-
tion easier than creating an application that makes
hard-coded assumptions about the resources and to-
pology in which it will execute. The goal of Web-
Sphere Application Server is to simplify the devel-
opment and deployment process to enable more
rapid application construction and improve the ef-
ficiency of the development and debugging process,
specifically to encourage the construction of appli-
cations that are enabled for on demand computing.

We begin by recapitulating the development and de-
ployment process for component-based applications.
The development process is comprised of creating
two primary types of artifacts: logic elements and de-
clarative meta-data. Logic elements are the code por-
tion of the application, captured in components such
as servlets, EJBs, Java classes, and the like. Declar-
ative meta-data is the information usually provided
in the form of an eXtensible Markup Language
(XML) document that controls the deployment and
execution behavior of the application. By specifying
information about how the logic elements should be
executed and bound to the runtime environment out-
side of the code itself, an application gains greater
flexibility and adaptability to new problems and new
environments.

One of the most important forms of declarative
meta-data introduced by J2EE is the notion of re-
source or component references. In J2EE, references
allow a level of indirection in the name of some re-
source that a logic element needs to use.32 For ex-
ample, if a servlet needs access to a data source, the
servlet can refer to that data source using a logical
name of its choosing. Later, when the application
containing the servlet is installed onto the applica-
tion server, the administrator is able to choose the
physical database that will be accessed by that serv-
let (see Figure 4) and map that database to the log-
ical name selected by the programmer within his or
her code. At any time, the binding between the log-
ical and physical data source names can be modified
by the administrator without any change to the logic
of the servlet.

By providing indirection, the application logic is pre-
vented from being too tightly bound to a particular

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 219

deployment environment, and the developer of that
application does not have to manually build an in-
direction mechanism. J2EE provides this indirection
mechanism for database connections, Web services,
J2CA resources, uniform resource locators (URLs),
EJBs, JMS topics and queues, and generically for any
object through the Java Naming and Directory In-
terface (JNDI) service.

Other forms of declarative meta-data include cach-
ing policy, transaction policy, security policy (policy
to be applied both to users of the application and
to the application logic itself), performance settings,
persistent field information, and application profile
data (indicating how the application is expected to
be used by particular clients). Declarative meta-data
is also used to inform the system of the elements of
the application, such as which EJBs are present, which
servlets are present, which URL should be used as
the default page for an application, and which mod-
ules make up the application. Because this informa-
tion is provided outside of the application logic, the
behavior of the application can more easily be mod-
ified, and the logic elements can be reused in dif-
ferent applications with different functional and non-
functional requirements.

Deployment of an application is the process of in-
stalling an application into the application server and
making that application available for execution. De-
ployment is a multistep process, including:

1. Presenting the application for deployment and in-
spection so that its contents can be understood
by the runtime.

2. Generating the additional logic elements required
to execute the components of the application in
the system. This process uses the declarative meta-
data to decide which behaviors must be applied
to the component. For example, the meta-data
for container-managed entity EJBs indicates which
fields should be persistent, and the code gener-
ation process produces the actual logic to load
and store the element in the database.

3. Binding the application to the environment after
code generation. Binding is the process of resolv-
ing any logical references in the application to
physical resources available in the environment
(for example, picking the exact database that
should back a particular data source).

4. Deciding on which servers or clusters the differ-
ent components of the application should execute,
which is also done by binding. See “Management
and Provisioning” for more information about
WebSphere clustering topology.

5. Specifying configuration and tuning parameters
for the application that are specific to this instal-
lation of the application (such as bean pool sizes)
by an application deployer in addition to the
binding information. This additional deployment in-
formation allows the server to be tuned for the par-
ticular application in a per-application manner.

6. Distributing the application to all of the machines
that will host the application and then starting the
application (the final step in deployment). Web-
Sphere Application Server does this automatically
from the deployment manager through a config-
uration synchronization protocol used between
the deployment manager and node agents. The
administrator can configure the application serv-

Figure 4 J2EE reference binding

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004220

ers and nodes in their cell (a collection of ma-
chines enabled for WebSphere Application
Server) through the administrative console at-
tached to the central deployment manager. The
relevant configuration information, including the
EAR (Enterprise Application Archive) and JAR
(Java archive) files for the application itself are
then synchronized with each node in the cell.

At this point, the application is running and avail-
able for service. It is important to note that many
of the decisions made during deployment can be
modified at any time to adjust the system. For ex-
ample, bindings can be changed, and application
modules can be moved to different servers or clus-
ters. (Clusters are discussed in the section “Work-
load Management.”) Most of these changes can be
made without restarting the server by simply restart-
ing the application that was affected.

The deployment flexibility in both J2EE and Web ser-
vices provides the foundation for on demand enable-
ment of applications. In on demand computing en-
vironments, the system will make decisions about the
optimal configuration to meet the goals defined by
the administrator. Optimization includes both ad-
justing tuning parameters for a given application or
server and adjusting the assignment of applications
to servers and resources available in the cell. By us-
ing the indirection mechanisms described above, the
on demand system can adjust numerous parameters
of the application, such as the data source settings
for a particular database, the server or cluster on
which to execute the application, and the tuning pa-
rameters for object pools and caches, without the
application itself being aware of the changes, and
without requiring the application to make any
modifications.

Let us discuss a particular example. In an on demand
system, the demand manager monitors the current
loading on the system. On the basis of the perfor-
mance data that are being collected, the system is
able to detect that a particular server (say, server A)
is underutilized. At the same time it might detect
that server B is overloaded, handling the requests
of multiple applications. On the basis of the described
deployment flexibility, the system could change the
server assignment binding of a particular application,
moving the application from server B to server A,
to better balance the load. When this happens, the
system will automatically move the binaries for the
application to the new machine, remove them from
the old machine, start the application on the new

server, and stop it on the old server. All of these
changes are transparent to the application logic it-
self and to the users of the application.

WebSphere rapid deployment. The deployment and
configuration capabilities of WebSphere Application
Server and J2EE are powerful, but the addition of
new concepts and artifacts to the development and
deployment process increase the complexity of ap-
plication construction for individuals who are not fa-
miliar with J2EE. Therefore, some may be dissuaded
from using the full power of J2EE if they do not un-
derstand how to bring all the pieces together. To help
facilitate the process, WebSphere Application Server
Version 6.0 will add a number of features to sim-
plify the development and deployment experience
for developers—enabling the “pay-as-you-go” no-
tion of on demand computing. Collectively, these fea-
tures are referred to as WebSphere Rapid Deploy-
ment (WRD). WRD introduces two key concepts:
annotation-based programming and deployment
automation.

Annotation-based programming. Annotation-based
programming is the notion of adding meta-data di-
rectly to the source code of a program and using that
meta-data to generate the additional artifacts of the
application. This approach simplifies development
by greatly reducing the number of artifacts that must
be created and maintained directly by the developer
and by reducing the amount of redundant informa-
tion between multiple artifacts.

As an example, consider the remote interface class
of an EJB. This class contains the method signatures
of the methods that should be exposed to remote
users of the EJB. The method signatures in the re-
mote interface are essentially the same as the method
signatures in the EJB implementation class. If the de-
veloper changes the method signature of some
method in the implementation class of the EJB, the
same redundant change has to be made to the re-
mote interface class. This extra step adds complex-
ity and the opportunity to make mistakes in the de-
velopment process.

With annotation-based programming, the developer
instead adds special tags to the EJB implementation
class to mark which methods should be made avail-
able on the remote interface. The remote interface
can then, as part of the deployment process, be au-
tomatically generated from the implementation
source code. This generation removes the redun-
dancy, reduces the opportunities for errors, and re-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 221

duces the number of artifacts with which the devel-
oper must deal. This is the essence of annotation-
based programming. Currently, annotations will be
added to Java source code through Javadoc**-style
tags in comments within the code. For the above ex-
ample, the source code of a remote method would
look something like the following:

/**
* @ejb.interface-method view-type�

remote
*/
public String hello(String name)
{

return “Hello: ” � name;
}

With annotation-based programming, external files
would take precedence over the annotations con-
tained in the source code if the developer also pro-
vides some of the declarative meta-data through ex-
ternal XML files. As can be seen in this example, if
the developer changes the signature of the hello()
method, he or she will not have to change any other
artifact in the application. The remote interface au-
tomatically is updated to reflect the change. Thus,
the development process has become simpler to un-
derstand and less error prone, and the developer has
had to acquire less knowledge about J2EE and the
full complexity of artifacts involved. This simplifi-
cation is an important aspect of on demand
computing.

Deployment automation. Deployment automation is
the notion of automatically handling the deployment
process for the user, including code generation, com-
pilation, and installation tasks. The key feature of
deployment automation is the notion of an actively
monitored directory where any changes made to the
contents of the directory are detected by the system
and appropriate actions are taken on behalf of the
user to reflect the changes made. This capability en-
ables a simple drag-and-drop or edit-in-place deploy-
ment model, greatly simplifying the deployment pro-
cess. As an example, a developer can install a new
J2EE EAR file onto the server simply by copying the
EAR file into a monitored directory, and then the rest
of the deployment process will proceed automatically.

Of course, to automate some of these processes re-
quires the system to choose defaults for certain set-
tings that normally would be provided by the user.
With use of the knowledge acquired for on demand
management of applications, defaults can be cho-

sen that are appropriate for most applications. For
many applications, deployment follows a simple pat-
tern, and there is no need to ask the user to provide
deployment data. For other applications, complex
analysis could be performed to infer the correct val-
ues. The deployment automation is smart enough
to do the most efficient action possible in the face
of the changes detected in the monitored directory,
thereby improving developer efficiency by reducing
the edit-compile-debug cycle time, a key goal of the
simplification aspects of on demand computing.

The combination of deployment automation and an-
notation-based programming enables a powerful
model of on demand development. In this model,
the developer can edit a small number of logic ar-
tifacts (artifacts that are predominantly business logic
artifacts) and have a fully compliant J2EE applica-
tion constantly being constructed and deployed in
the background, making his or her latest changes
continuously available for debugging without any ad-
ditional manual steps.

Management and provisioning
The WebSphere Application Server management
and provisioning system is one of the most impor-
tant components in supporting the paradigm of on
demand computing. The management system pro-
vides the fundamental capabilities to understand and
control the information technology (IT) system. The
role of the management system is to provide infor-
mation about the current configuration of the sys-
tem and to provide a mechanism to change that con-
figuration. In on demand computing, however, there
are additional important requirements. First, the
management of the system must be accessible in a
standard way to enable multiple systems to be con-
trolled together. Second, the system must be capa-
ble of being changed dynamically and of adjusting
to those changes transparently. Capabilities are be-
ing added that leverage the standard interfaces and
configuration flexibility that already exist in Web-
Sphere Application Server to enable it to participate
further in the on demand provisioning system.

After the application itself has been developed and
deployed, the ongoing cost and success of an appli-
cation in production depends largely on the ease and
ability of managing that application in the produc-
tion environment. The WebSphere Application
Server management system provides a unified man-
agement view, called a single-system image, across a
multiprocess, multimachine, heterogeneous deploy-

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004222

ment environment.33 It allows the system to be con-
figured, modified, monitored, and controlled through
a single point of administration from multiple ad-
ministrative agents, simultaneously and dynamically.

The core of the WebSphere Application Server man-
agement system is a data model that represents the
configuration of the cell. Currently, the data model
is embodied in a collection of XML documents on
the file system of the various machines in the cell.
A central management process called the deployment
manager (dmgr) is provided, which maintains the
master configuration of the cell and provides a sin-
gle point of contact for controlling the environment.
Each machine that is controlled by the dmgr con-
tains an agent process called the node agent. The
dmgr and the node agents collaborate to allow con-
trol and monitoring of the system and to perform a
configuration synchronization function. Each ma-
chine in the environment contains a copy of a subset
of the master configuration of the cell appropriate
for that machine, and the dmgr and node agents com-
municate to keep that copy synchronized with the
master copy.

For control of the system, WebSphere Application
Server exposes all of its management functions via
standard Java Management Extensions (JMX**)
MBeans.34 JMX is the Java standard application pro-
gramming interface (API) for managing a system. The
core concept in JMX is the notion of a management
bean—an MBean. An MBean is a component that
allows access to the management data and opera-
tions of some portion of the system. MBeans expose
operations, attributes, statistics, and notifications.
JMX capabilities allow the server and the cell to be
controlled and monitored.

WebSphere Application Server uses the JMX inter-
face internally to implement the management func-
tions of the product, but the interfaces are also ex-
posed externally for use by other management
agents, such as the IBM Tivoli* product. Accessing
these MBeans over multiple protocols is also sup-
ported, currently by SOAP/HTTP(S) (Simple Object
Access Protocol/HyperText Transfer Protocol [with
or without a secure connection]) and RMI/IIOP (Web-
Sphere Application Server Version 6.0 adds support
for SOAP/JMS [Java Message Service]). The protocol
choices allow the user to select the quality of service
most appropriate for his or her environment. With
use of standard management interfaces WebSphere
Application Server is enabled to be controlled as part
of a larger systems management environment, allow-

ing better control of an entire production IT envi-
ronment. JMX accessed by means of Web services
provides the standard control mechanism required
by on demand computing.

For access to the WebSphere management system,
three primary clients are provided. For graphical
management, WebSphere provides a browser-based
interface to the entire management environment. An
example of the WebSphere administrative console
is depicted in Figure 5. This Web user interface (UI)
is implemented as a standard J2EE Web application,
using servlets, JSPs, and Struts (an open source frame-
work used in building Java Web applications). It is
packaged as an EAR file and installed just as other
applications are on the application server.

For command-line or scripted access, WebSphere
Application Server provides a tool called WsAdmin.
WsAdmin has both an interactive shell and the abil-
ity to execute scripts. WsAdmin supports the creation
of administrative scripts in multiple scripting lan-
guages (currently JACL35 [Java Command Language]
and JPython**36), allowing customers to choose the
scripting language with which they are familiar.

The final client is a programmatic API for accessing
the management system. The API client allows cus-
tom management applications to be constructed that
can monitor and control WebSphere Application
Server. The administration API client is perhaps the
most important client for on demand computing, al-
lowing external agents to be written that can mon-
itor and control the WebSphere platform.

The WebSphere management system is designed to
be very scalable, allowing users to manage a large
installation of WebSphere Application Server serv-
ers. The system is designed to efficiently distribute
information and to minimize the amount of cross-
talk and interdependencies between processes. The
Web UI is designed to allow viewing and editing of
large topologies, providing features such as view sort-
ing, search, and filtering. This scalability is impor-
tant in allowing a production IT environment to be
managed centrally and in allowing partitioning of an
environment to be driven more by customer busi-
ness reasons than product technical constraints. The
Web UI is also designed to be extensible, a key ca-
pability in on demand computing.

As more of the system is managed automatically, an
administrator�s role becomes less to manage indi-
vidual products and more to manage the IT system

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 223

as a whole. To make this change practical, the ad-
ministrator needs a common administrative UI that
crosses product boundaries and that is tailored to
the scenarios that the administrator encounters on
a daily basis. The Web UI in WebSphere Applica-
tion Server Version 5.0 provides part of the foun-
dation for a unified administration model that will
be available in the Version 6.0 timeframe, enabling
a common and consistent approach to middleware
management across the system.

As WebSphere Application Server moves toward on
demand enablement, the key aspect of its manage-
ment system is its support for dynamic adjustment
of the configuration of the system. In WebSphere

Application Server Version 5.0, the management em-
phasis was on dynamic workload distribution over
a relatively static configuration. In Version 6.0 and
in on demand computing, the emphasis shifts to en-
compass dynamic configuration changes based on dy-
namic feedback from a policy-driven management
agent. Although this shift encompasses some signif-
icant new functions, it is built and predicated on what
exists today in WebSphere Application Server Ver-
sion 5.0.

On demand provisioning managers such as the IBM
Tivoli Provisioning Manager and IBM Tivoli Intel-
ligent ThinkDynamic* Orchestrator37 can use JMX
facilities to acquire the information they need to

Figure 5 WebSphere Application Server Version 5.0 administrative console

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004224

make decisions about how to dynamically control the
platform. (This monitoring capability is discussed in
the following section in more detail.) After an on
demand change is decided upon, the same JMX fa-
cilities are used to provision that change on the run-
ning server. WebSphere Application Server will then
adjust to the new environment as the change occurs.
For example, if a new server is added to a cluster to
increase the performance of some application, Web-
Sphere Application Server will notify the workload
management system of the change in the cluster con-
figuration, allowing the new server to absorb its share
of the workload.

By exposing JMX and the administration client APIs,
WebSphere Application Server enables external con-
trol over the configuration of the system in response
to utilization and capacity policy assessment. The
provisioning manager assesses the utilization of the
system against the policies that determine whether
a change is needed. If warranted, it can initiate a con-
figuration change immediately, reducing the time for
making these sorts of changes down to minutes or
hours as opposed to the days or weeks that it might
take an administrator to understand and respond to
a shift in demand under manual circumstances.

Monitoring and application response
measurement
In order to manage an on demand environment
dynamically, the on demand system must have ac-
curate and consistent data about the current state
and condition of the IT environment. It is not pos-
sible to balance an arriving workload across a com-
puting grid without an idea of the current loading
of servers within that grid. Therefore, the ability to
monitor a collection of systems and to understand
their current operation is the critical first require-
ment of on demand computing. This monitoring
environment must be accurate, must provide con-
tinuous access to information in the system, and must
be lightweight enough to not negatively impact the
performance of the systems being monitored.

WebSphere Application Server provides monitor-
ing capabilities as part of its management system,
such as monitoring of the current life-cycle status for
servers, applications, and their components (e.g.,
which servers are running), monitoring of problems
that are occurring in the cell (e.g., alerts, errors, warn-
ings), and monitoring of performance (both aggre-
gate and per request). As we move forward to Ver-
sion 6.0, a single infrastructure for capturing IT and

business-level events will enable higher-level mon-
itoring to occur as well as correlation across both IT
and business-level events.

Java management extensions. Status monitoring is
provided through the JMX MBeans that represent
the components of the system. The status of any par-
ticular component, such as a server or an applica-
tion, is available either as an attribute of the MBean
or indicated by the presence or absence of the
MBean itself (the MBean is only registered when the
component is active). Status information can be
polled by querying the appropriate MBean, or a cli-
ent can register for notification when the status of
a component changes state. Status monitoring is crit-
ical for understanding the current state of the envi-
ronment and is used to control critical functions such
as workload management. The ability to understand
status is also critically important in enabling Web-
Sphere Application Server for on demand comput-
ing, allowing external agents to understand which re-
sources are available and make decisions on what to
do next.

Monitoring of problems is provided primarily
through two mechanisms. The first, and most obvi-
ous, uses log files. Each server in the cell maintains
a log of events and errors occurring in the server.
An activity log of critical events happening in all serv-
ers on a particular machine is also maintained. The
contents of both of these logs are available on the
local machine and remotely via JMX. These logs al-
low a detailed understanding to be gained of prob-
lems that are occurring in the system.

Additionally, critical events that occur in the system
are also exposed via JMX notifications, which pro-
actively notify administrators of problems as they oc-
cur. Furthermore, external agents can register for
notification when critical problems occur. This no-
tification capability is important in enabling on de-
mand management of the WebSphere Application
Server environment by allowing the system to pro-
actively respond to problems as they occur. The no-
tification also simplifies production management of
a WebSphere Application Server system by remov-
ing from the administrator the burden of having to
constantly search log files for problems.

Performance monitoring allows a user to understand
the performance characteristics of the running ap-
plication in terms of the components that comprise
the application and the systems the application is us-
ing. Performance monitoring also provides the ba-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 225

sic data necessary to determine how to provision and
rebalance the on demand system. It provides real
load information from the servers to the workload
manager to help it decide how to distribute work-
load among a cluster of WebSphere Application
Server servers. There are two types of performance
information: aggregate performance metrics and per-
request timing data.

Performance Monitoring Infrastructure. Aggregate
performance data are provided through a system
called the Performance Monitoring Infrastructure
(PMI).38 PMI is comprised of a set of configurable
counters at critical points in the WebSphere Appli-
cation Server runtime that keep track of statistics
for all requests that pass through that part of the sys-
tem. PMI can keep simple counters or compute run-
ning averages. PMI counters exist in all of the major
subsystems of WebSphere Application Server, such
as the Web container, EJB container, connection
manager, transport layers, and session management
system. PMI keeps track of, for example, the average
response time for a particular servlet or the average
wait time to obtain a JDBC** (Java Database Con-
nectivity) connection from a connection pool.

The PMI counters can be configured to control which
and how much performance data are collected by
the runtime. PMI is designed to place as little extra
load on the system as possible, allowing it to be en-
abled in a production environment. But, of course,
there is some overhead in collecting performance
data, and therefore, it is not advisable to have all PMI
counters on all the time. Both the configuration of
PMI and the data collected are available through JMX
MBean statistics. As a result, there is a standard way
to access performance metrics from any WebSphere
Application Server server.

WebSphere Application Server provides a tool called
the Tivoli Performance Viewer (see Figure 6) that
allows a user to explore and record the performance
data being collected by a server. However, because
PMI is exposed through JMX, any external program,
such as a Tivoli product or the on demand manager,
can access the performance data collected by a Web-
Sphere Application Server server.

Application response measurement. Per-request
data are provided by PMI Request Metrics (PMI-RM).
PMI-RM collects data by timing requests as they travel
through WebSphere Application Server compo-
nents. These data help to identify runtime and ap-
plication problems. PMI-RM logs the time spent at

major subsystems, such as the Web server plug-in,
Web container, enterprise bean container, and da-
tabase. These statistics are recorded in logs and can
be written to Application Response Measurement
(ARM)39 agents used by Tivoli and other vendor mon-
itoring tools. ARM is an Open Group standard com-
posed of a set of interfaces implemented by an ARM
agent that provides elapsed-time statistics for pro-
cess hops. WebSphere Application Server does not
provide its own ARM agent but will work with an ARM
agent from Tivoli, Hewlett-Packard Development
Company, L.P., and others. Support for ARM is crit-
ical to on demand computing because it allows a stan-
dards-based mechanism to understand response time
for application requests, which can then be used to
control provisioning and workload management
configuration.

Using this continuous flow of data, the on demand
manager can analyze the system on the basis of a
knowledge repository and make recommendations
on how to reprovision the system to meet a policy
or goal.40 Monitoring provides the input that drives
the autonomic nature of on demand computing.
WebSphere provides that crucial flow of informa-
tion through standard JMX interfaces from the PMI
system, and through JMX event notifications when
critical errors occur. This flow of information is then
used to make dynamic workload management deci-
sions and to reconfigure the system on the basis of
administrative policy.

Performance advisors. One example of self-tuning
that exists in WebSphere Application Server Ver-
sion 5.0 is the performance advisors41 (see Figure
7). By collecting data from PMI over time and an-
alyzing the data using rules that have been built
through experience with real world applications, the
performance advisors make concrete recommenda-
tions on system-configuration changes that will re-
sult in better performance for the application.

This is a small example of how the WebSphere plat-
form builds on its own capabilities to provide higher-
level functions. Although the current performance
advisors do not transparently implement the sug-
gested actions, they represent a step toward the vi-
sion of a fully autonomic self-tuning system. In a fully
autonomic system, the generated recommendations
will be applied to the running system automatically
while the system is in operation, enabling the closed-
loop feedback that is the hallmark of on demand
computing.

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004226

Workload management
Much of on demand computing is about improving
the utilization and efficiency of existing computing
facilities. A key element to this aspect is ensuring
workloads are balanced; that is, they are distributed
over those facilities in a way that obtains maximum
utility from them, softens the impact of large spikes
in workload, and yet ensures computing goals are
being met. This is achieved in WebSphere Applica-
tion Server through workload management services
that classify inbound workload, measure the utiliza-
tion and availability of computing facilities, and pri-
oritize and distribute the work.

Clusters. Workload management in WebSphere Ap-
plication Server is based on the fundamental con-
cept of a cluster. A cluster is composed of two or more

application server instances; each instance is hosted
in its own Java Virtual Machine (JVM**) process.
Each application server instance has the same con-
figuration; that is, it is configured to host the same
set of Java applications, to use the same resource
definitions in the same domain, and so forth. The
cluster operates effectively as a single logical server.
Individual server instances within the cluster can be
stopped and started, or the cluster can be started and
stopped as a whole. Likewise, applications config-
ured to run on the cluster can be stopped and started,
resulting in stopping or starting the application run-
ning on all instances of the application server in the
cluster. From the perspective of the client, however,
it appears as though there is just one instance of the
application running on one application server
instance.

Figure 6 Viewing PMI data through Tivoli Performance Viewer

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 227

Multiple application server instances can be hosted
on a single computer (a vertical cluster) or on dif-
ferent computers (a horizontal cluster), or some com-
bination of the two.42 Vertical clusters are valuable
for better utilization of the computer when the op-
erating system otherwise constrains the availability
of resources on a process boundary. For example,
if a JVM process is pinned to a single processor on
a symmetric multiprocessor (SMP) computer, intro-
ducing additional application server instances allows
the process to utilize other CPUs on the same com-
puter (presuming they would be assigned to the other
processors). Or, if the operating system limits the
number of connections that can be formed to a single
process, then an increase in the number of effective con-
nections to the computer can be made by increasing
the number of application server instances.

Similarly, horizontal clusters let a workload be dis-
tributed over more computers. Greater distribution
might be necessary if all the memory or CPU cycles
that can be allocated to the application servers on
one computer are being used.

As with the rest of the topology, the configuration
of the cluster (that is, the number and location of
application servers in the cluster) is retained in the
configuration repository of the WebSphere Appli-
cation Server management facility. The application
server members in the cluster can be added or re-
moved through any of the WebSphere Application
Server management user, programming, or com-
mand-line interfaces, associating them with an ex-
isting or new cluster, or even configuring the appli-

Figure 7 Example of Performance Advisor display

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004228

cation server instance to operate as a stand-alone
server (independent of any cluster).

The workload management (WLM) facility is being
updated in WebSphere Application Server Version
6.0. As in Version 5.0, WLM will build on the fun-
damental premise of a cluster. The rest of the fa-
cility is composed of three parts: the host agent, work-
load controller, and workload router as depicted in
Figure 8. The host agent is responsible for detecting
how much utilization is being obtained from a set
of computing resources. Within WebSphere Appli-
cation Server, resource utilization is measured and
collected through the PMI. PMI acts as the host agent
for WebSphere Application Server resources. Other
workload sensors may supplement or replace PMI.
This is most applicable when considering that the
actual utilization of the computing facilities may be
loaded by other data management, on-line transac-
tion, batch, and other specialized middleware and
programs. WebSphere Application Server cannot,
by itself, account for all of the workloads that may
be assigned to the available computing facilities tar-
geted to other middleware products.

The workload controller is responsible for coalesc-
ing the topology of the cluster configuration, the uti-

lization measurements of the available computing
facilities, the operational goals of the on demand
computing environment, and the classification of an
inbound workload to make a routing decision for that
workload. It retrieves configuration information
about which application server instances are assigned
to a given cluster, their end-point addresses, and pri-
orities and weights from the deployment manager
for a WebSphere Application Server cell. PMI con-
tinuously updates the workload controller with in-
formation about available application server in-
stances and their utilization. All of this information
is factored into the routing tables.

The workload controller then feeds routing infor-
mation to the workload router, which then priori-
tizes and directs that inbound workload to an ap-
propriate server instance within the cluster. Lower-
priority work is queued behind higher-priority work.
Higher-priority work is moved higher in the dispatch
queue, adjusting to priority and policy demands.

It is usually not enough to just consider any given
work request by itself. Most work requests occur
within a broader context; that is, they are normally
part of some larger unit of work, session, or trans-
action. This context implies something about the

Figure 8 Workload management controller

WLM CONTROLLER

REQUEST SOURCE

OPERATIONAL GOALS

ROUTING
TABLE

CONFIGURATION CHANGES

HOST MEASUREMENTS

OPERATIONAL TOPOLOGY

WEBSPHERE
MEASUREMENTS

REQUEST FLOW
CONTROL FLOW

WEBSPHERE
APPLICATION SERVER

HOST AGENT

WEBSPHERE
DEPLOYMENT
MANAGER/NODE AGENT

WLM ROUTER

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 229

state of the target object (i.e., the component on
which the work is to be run). In many cases, the state
of a target object will be cached in memory in a given
application server instance for the duration of that
unit-of-work period. The state is loaded in response
to the first request that initiated the unit of work.
It remains in memory until the unit of work is com-
pleted. Subsequent requests within the unit of work
are best served at the application server on which
the unit of work was started and are said to have af-
finity to that application server.

Furthermore, a given target object may, in turn, have
cascading dependencies on other downstream ob-
jects. If a routing decision is made to send a work
request to a target object on one application server
and then that target object in turn calls another ob-
ject that requires a significant amount of computing
resources, the workload controller needs to be aware
of the situation and consider it in its routing deci-
sion. If the downstream object is hosted on a com-
puter that is overutilized at the time of the request,
it may be appropriate to prioritize other work ahead
of it, which does not depend on the bottlenecked re-
source. This is discussed further in the section “Ap-
plication profiling.”

The workload controller is generally responsible for
determining whether a cluster has the correct amount
of capacity allocated to it for the workloads that are
being routed to it. If demand surges at a certain time
of day, the workload controller will examine the ca-
pacity management policies and, presuming more ca-
pacity is warranted, it will direct the WebSphere Ap-
plication Server management infrastructure to
increase the capacity of the cluster by adding more
application server instances to the cluster. Con-
versely, if capacity is needed elsewhere, it will real-
locate capacity from a cluster that has an excess by
removing application server instances from the clus-
ter. This capability is being added in Version 6 with
relatively simple policy processing support. It will be
possible to plug in more sophisticated policy man-
agement facilities such as those being developed by
Tivoli.

However, an application server instance cannot be
taken off-line without potentially affecting the in-
flight requests associated with that server instance.
WebSphere Application Server Version 5.0 employs
a transactional quiescence mechanism that will block
new requests from being dispatched on a server, but
will allow previously in-flight transactions to be com-
pleted. That includes letting new requests enter the

server if they are part of an already existing trans-
action. The additional requests likely will need to
be completed before the transaction can be com-
pleted successfully.

WebSphere Application Server Version 6.0 will of-
fer the same support for workload, affinity, and ca-
pacity management for all the major application pro-
tocols supported by the application server, including
HTTP messages carrying Web-application and Web-
service requests, RMI/IIOP messages for EJB requests,
JMS, and the underlying protocol of the WebSphere
Application Server messaging engine for asynchro-
nous messaging and notifications. Workload will be
routed for messages flowing through all elements of
a WebSphere Application Server network, includ-
ing the proxy server, Web server, Web services gate-
way, in-network messaging engines, and the appli-
cation server itself.

Application profiling
J2EE promises to allow the building of reusable and
shared components hosted in a managed environ-
ment that maintains a separation between the bus-
iness logic and the underlying infrastructure. One
consequence of this promise is that the component,
and especially the underlying container assigned to
manage that component, must be prepared to be
used under a variety of different conditions.

This promise, of course, also requires that the con-
tainer know something about the dependencies that
each object has on other objects. In some cases, an
object may have a dependency on another object but
only exercise that relationship occasionally, perhaps
depending on input arriving with the request.

To understand how different clients can use the same
shared component differently and how such use will
affect the management of a component, consider the
following example. Imagine that a customer Account
object—something that maintains the balance of the
account and has operations for getting that balance
and crediting or debiting the account—has been im-
plemented. A banking application needs very accu-
rate balance information. The container should re-
read the balance data from the underlying database
for every operation on that Account object, lest the
balance were changed by some other activity within
the information system.

In contrast, a demographic analysis application might
be building statistical information about account

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004230

value trends for a set of customers with a given set
of attributes. The demographic analysis application
does not need absolutely current balance informa-
tion, but does need to optimize the path length for
obtaining balance information over a potentially
large number of accounts. Thus, if the balance value
is already cached in memory somewhere and is not
too old, it should be returned, without rereading the
balance from the disk (an operation with a longer
path).

A third application may be responsible for comput-
ing interest on the average balance of the Account
object over a period of time. This application will
need to traverse the related AccountHistory object.
The container should read the state of the related
AccountHistory objects at the same time that it is
reading the state of the Account object.

To ensure maximum efficiency in the information sys-
tem, while also fulfilling the integrity requirements
of the application, the container needs to know some-
thing about the client and what it expects. Informa-
tion about whether a given client is likely to use an
object in a certain way, or that causes it to exercise
a known relationship, can be associated with an ap-
plication profile. The task identity for the client is
correlated by the runtime with an application pro-
file43 that represents its usage pattern. The runtime
containers then will manage the object accordingly
for any requests coming from that client. The ap-
plication profile is a way of expressing usage poli-
cies and associating them implicitly with the target
object. The application does not have to explicitly
code the management of the components it uses.

Policies within the profile can be set to govern which
object relationships are likely to be exercised and
therefore which related objects to preload, whether
the use of the object is likely to result in updating
its state (and therefore the isolation policy that
should be applied to its state in the data system), the
rate at which elements of the results set are going
to be consumed (and therefore the optimal prefetch
size), the currency requirements for the state, and
several other issues. The result is to dramatically im-
prove the efficiency of the overall system.

High availability and failover
On demand computing is not just about responding
to fluctuations in demand against available capacity
based on a set of policy goals. Even in an on demand
computing center, computers do and will fail unex-

pectedly. Both planned and unplanned outages are
a part of managing a large data center. Actually, the
probability of some computer in the data center be-
ing out of service at any given moment goes up as
the number of computers in the center increases.

WebSphere Application Server handles outages with
the same clustering technology that it uses for on-
line workload management. When a computer fails,
that computer’s capacity is simply removed from the
list of available computing capacity for the system,
and workload is routed to other on-line computers
in the information system. When failed computers
are brought back on-line, they are automatically
added back into the available resource list and are
then utilized as soon as capacity requirements sug-
gest shifting workload to those computers.

It is common when a computer fails suddenly to have
the work that was in flight on that computer become
orphaned. A good example of this involves message
queues.44 Assume that a particular queue manager
is configured to run in a particular application server
instance for messages that have accumulated in a par-
ticular queue and persisted in a queue associated with
that queue manager. If the computer on which that
queue manager is located fails, none of the messages
that had been queued for the queue manager will
be processed until that computer and queue man-
ager are brought back up. Whereas on the one hand,
messaging systems do not generally presume any par-
ticular temporal assurances, orphaning these mes-
sages for a long period of time could have an ad-
verse affect on the customer�s business. On the other
hand, multiple queue managers should not be op-
erating on a message queue. Doing so would require
complex coordination between them to ensure that
each message is processed only once. (One would
not want the same debit message removing money
from one�s account twice, for example.) Coordinat-
ing these kinds of assurances between two or more
queue managers operating on a single shared mes-
sage queue can be very expensive.

In an on demand computing system, it is expected
that the queue manager will be automatically recon-
figured to run on another computer, possibly on an
application server that is already running. The mes-
sages in the original queue should be reassigned to
the new instance of that queue manager. WebSphere
Application Server will be adding support to do ex-
actly this by managing ownership within a cluster of
queue managers. At any given time only one queue
manager will operate on a given message queue (al-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 231

though other queue managers in the cluster can be
operating on other queues). If any queue manager
fails, another queue manager will be assigned to op-
erate on that message queue, including recovering
any failed transactions that may have been in flight
on the queue manager that failed.

The worst kind of failure that a data center can suf-
fer is a disaster that brings down the entire data cen-
ter. For this situation, many on demand enterprises
will operate two or more data centers that are geo-
graphically dispersed, but interconnected by broad-
band channels. WebSphere Application Server al-
lows the interconnection of two or more cells located
in different data centers. One cell can act as a fail-
over site for a cell in another data center. If all of
the resources in a cluster in one cell fail, then the
workload clients will reroute workload to the other
data center. This action, of course, presumes that
other provisions have been made to synchronize or
transfer the data of the underlying data system from
one site to the other.

The clustering, workload distribution, failover, and
recovery mechanisms built into WebSphere Appli-
cation Server are all essential to ensuring that the
information system is always available, balanced, and
responsive to varying computing needs and fluctu-
ations in utilization and capacity, and thus is on
demand.

Edge computing

The typical information computing topology is evolv-
ing. At one point, the standard topology for Web and
business computing consisted of a browser on a desk-
top computer, attached through the Internet or in-
tranet, through a firewall, to a Web server, perhaps
through a second firewall to the application server
hosting Web and business components, and finally
attached to a back-end data system as depicted in
Figure 9. Perhaps the browser was actually a client
application running on a handheld device or mobile
telephone. Perhaps an Internet Protocol (IP) sprayer
was injected in front of the Web server to statically
distribute workload. But the nature of many of these
components is changing. More often, customers are
introducing forward-proxy caching servers in front
of their Web servers, or even out in the network to
cache the content of Web pages for performance and
scalability. Web servers themselves are being en-
hanced with caching, security, and intrusion-detec-
tion features to guard against denial-of-service at-
tacks. The role of Web services has introduced the
need for gateway servers to convert between exter-
nal and internal networks and to hide private ser-
vices. Messaging engines are being inserted into cor-
porate networks to perform mediation, routing, and
flow control. Data systems are being clustered for
scalability. Even business applications are being de-
composed and distributed to multiple separate ap-
plication servers.

Figure 9 Basic WebSphere Application Server clustering topology

WEB CLIENTS

FIREWALL
(WITH FAILOVER)

MAINFRAMES

CLUSTERED
WEBSPHERE
APPLICATION
SERVERS

CLUSTERED
DATABASE
SERVERS

INTRANET

WEB SERVER

INTERNET

FIREWALL
(WITH FAILOVER)

DMZ

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004232

These changes are altering the shape of traditional
topologies.45 The roles of many network components
are evolving and, in some cases, converging. Already,
the role of the application server is evolving to in-
clude serving some of the static content that is in the
traditional domain of Web servers. Proxy servers are
sharing some of the same security and caching tech-
nologies that are often found in firewalls and appli-
cation servers. Even browsers are being extended to
support hosting of business components for local-
ized, mobile, and off-line processing.

In addition to this evolution, the relationships and
management of all of these components are crucial
to maintaining an on demand computing facility. If
different Web servers are assigned to handle the re-
quest traffic for different applications, and those ap-
plications are being moved around the on demand
data center in response to fluctuations in utilization
and capacity, the Web servers need to be reconfig-
ured accordingly. If proxy servers cache Web con-
tent for specific applications, they may need to be
flushed if the application is stopped or taken off-line.
If the workload balancing policies for an application
are changed, then the workload routers and gate-
ways need to be updated.

WebSphere has responded to this situation by re-
engineering the WebSphere caching proxy (also re-
ferred to as the edge server), IBM HTTP Server (IHS),
Web Services Gateway (WSGW), and WebSphere
messaging server to fundamentally build on the same
server underpinnings used in WebSphere Applica-
tion Server. Doing so yields two benefits. These ad-
ditional servers can exploit the same underlying man-
agement infrastructure that is integral to WebSphere
Application Server, and by extension, then, these
servers can be configured and managed along with
WebSphere Application Server within a single to-
pology configuration model.

The entire breadth of the WebSphere Application
Server programming model, including the J2EE pro-
gramming model for Web and business components,
Web services, handlers, mediations, and plug-ins, can
be enabled or disabled for use anywhere in the net-
work. In this way, function can be placed where it
is needed, based on the specific combination of needs
of the customer, whether that is to gain better re-
sponse time performance in the network or in branch
offices, or to extend the functionality of the DMZ (see
Figure 9) with system services written according to
the same programming model used by business ap-
plication developers, or to apply additional security

controls or workload classification at the back end
of the internal networks—on demand.

This rebasing of the peripheral servers on a com-
mon runtime infrastructure and the enabling of the
full breadth of the programming model at various
positions within the topology enables a new business
model: on demand edge computing. Several vendors
are already building large delivery networks within
the backbone of the Internet to leverage application
servers. Akamai Technologies, Inc. is an obvious ex-
ample of such a vendor.46 They are running a net-
work of some 15000 servers in the Internet, all sup-
porting WebSphere Application Server servers. Web
applications can be built and arranged to be hosted
by Akamai in their network. The result is service de-
livery that is much closer to the Internet end users
of an enterprise, creating a much more responsive
experience for them, and leveraging the capacity of
their vast network in response to spikes in demand.47

Several changes have been made to WebSphere Ap-
plication Server to enable this type of infrastructure.
In particular, one can imagine that Akamai would
prefer not to have all of the applications they are
hosting for their broad set of customers installed on
every one of their 15000 servers. Generally, the dis-
tribution of a given application is relatively sparse
most of the time, based on where that application
is actually being used at any given time in the world.
For example, if the customer had hosted a trading
application in the wide area network, it would be ex-
pected that the application is to be used by custom-
ers primarily after work, in the evening of their own
local time. This peak utilization rolls around the
world throughout the day. The application may, in
fact, be infrequently used for some 18 hours a day
at any given point in the world.

Edge server providers would prefer not to have the
application installed and consuming server resources
when it is sitting idle. They actually want to remove
the application from the computers where it is not
being used. Conversely, they want to be able to in-
stall the application and bring it up to a running state
very quickly when demand does pick up for the ap-
plication. For this, WebSphere Application Server
has introduced support to preinstall an application,
resolve its reference bindings to dependent re-
sources, then allow the application to be “zipped up”
and subsequently removed from the computer. Later,
when the customer needs to reinstall the application,
it can simply unzip the application into its original

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 233

directories and point WebSphere Application Server
to the presence of the application.

Edge server providers are also concerned about ap-
plications inadvertently consuming underlying server
resources unnecessarily, and are concerned about re-
ducing the risk of applications destabilizing their ex-
ecution environment. For both of these reasons,
WebSphere Application Server introduced config-
uration options that turn off automated deployment
and generation mechanisms. In particular, the au-
tomatic JSP compiling function within WebSphere
can be turned off. When automated JSP compiling
is turned on, if an application is loaded and a JSP is
referenced that has not been compiled, WebSphere
will automatically compile it and proceed to service
the request. However, the compilation time takes
away from the execution cycles of other requests and
delays the outstanding request while the compila-
tion takes place. Further, the fact that the JSP had
not been previously compiled in an environment
where the application should have already been pre-
installed, and where the application is used fre-
quently, raises questions: Why is the JSP not already
compiled? The biggest concern is that someone may
access the application and change a JSP—perhaps
inadvertently, as part of a deployment step that is
executed out of sequence. There is a concern that
this sort of mistake may imply a result that will fail
in the execution environment. Thus, it is possible to
turn off automated compilation to remove on de-
mand preparation of the application with the intent
of increasing the efficiency and availability of the on
demand computing environment.

Grid computing
Computing grids represent a core topology structure
for on demand computing, and even more so in util-
ity computing environments. The idea that a data
center can be composed of a large collection of com-
puting resources interconnected in a grid, or that a
data center can be interconnected with other data
centers to extend the grid even further, and then be
able to dynamically allocate resources from that grid
in response to on demand requirements for a given
set of applications is a central theme in on demand
computing. We have already discussed how Web-
Sphere Application Server provides the virtualiza-
tion capabilities and programming model that en-
able applications to be deployed and configured
dynamically across the grid infrastructure.

The relationship of grid computing to WebSphere
Application Server is more specific. The Global Grid

Forum (GGF)48 defines the Open Grid Service in-
frastructure (OGSi).49 OGSi, in part, defines extensions
to contemporary Web services standards for state-
ful business components that can be deployed in a
grid computing infrastructure. In fact, these exten-
sions are very generally applicable to business ap-
plications, regardless of whether they are deployed
to a grid infrastructure or just a simple stand-alone
server. In many ways, the grid infrastructure is not
specific to grid computing; it just happens to intro-
duce a need for more general-purpose Web services
functions sooner than they are being standardized
in the mainstream Web services communities.

Nonetheless, because WebSphere Application
Server serves as the foundational underpinnings for
IBM�s Web services runtime, it is, by extension, the
foundation for OGSi. IBM�s reference implementa-
tion of OGSi is implemented on it.50 Further, Web-
Sphere Application Server is internalizing the run-
time and component model support for grid services.
WebSphere Application Server is driving the stan-
dards work in Web services to ensure that grid ser-
vice components are fully embraced in those stan-
dards. The principles of service interface inheritance,
stateful services (resources), service references, ser-
vice state, soft-state life-cycle management and state
notifications, introduced by OGSi, are being incor-
porated into the general-purpose Web services in-
frastructure and will be supported by WebSphere
Application Server and made available to a wide va-
riety of deployment topologies, including those that
are most associated with grid computing.

Concluding remarks
The role of information computing in businesses con-
tinues to grow. Few activities of a modern business
are done without the automation and productivity
benefits that computers bring. For the most part, in-
formation computing is in principle a cost of doing
business—a necessary activity to remove the tedium
of repetitive tasks or to assist employees to perform
their jobs. Information computing has taken such a
strong hold on the basic ways in which businesses
operate that it is hard to imagine doing anything with-
out it. In this role, businesses need to be able to ob-
tain more utility from their investment in comput-
ing resources. They need to manage their computing
resources more efficiently to be able to share re-
sources over a broader range of applications and to
be able to dynamically adjust the allocation of those
resources to different applications as demand for
each application fluctuates throughout the day.

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004234

We stand on the threshold of a major shift in the
role of computing—from being the foundation on
which businesses are built, to being the driving force
behind business competitiveness. On demand com-
puting will enable businesses to model their business
processes and from that be able to detect their own
business weaknesses and advantages. Through bus-
iness process modeling, a business can quickly ad-
just its processes to remove unnecessary activities,
or to improve its own competitive strengths, and ex-
pect that changes in that model will immediately re-
sult in changes to the underlying computing appli-
cations that implement those business processes.
Ultimately, on demand computing enables a busi-
ness to drive and respond to changes in its markets
at the rate at which changes occur in the market-
place. Enterprise computing moves from being sim-
ply a cost center weighted down by the complexity
of information systems to being a true cost-effective
asset for a business.

WebSphere Application Server is at the leading edge
of this transformation, enabling the separation of
business logic from the underlying information tech-
nology needed to allow applications to be dynamic
and mobile. It virtualizes the computing environment
for these applications. It is instrumented to enable
the execution environment for these applications to
be monitored, to allow provisioning managers to de-
termine what utilization they are obtaining from the
system, and then to adjust the system to improve its
efficiency. It supports clustering for workload man-
agement and availability and can be dynamically re-
configured to increase or decrease the capacity of
the different applications hosted on the application
server. It has built-in support for maximizing the ef-
ficient management of application components
based on different usage patterns for different cli-
ents. WebSphere Application Server is the founda-
tion for IBM�s strategy for on demand computing.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Open Software Group, Object Management Group, or Corpo-
ration for National Research Initiatives.

Cited references and note

1. “Meet the Experts: Irving Wladawsky-Berger on E-business on
Demand,” developerWorks, IBM Corporation (February 2003),
http://www7b.software.ibm.com/dmdd/library/techarticle/
0302iwb/0302iwb.html.

2. T. Francis, E. Herness, R. High, J. Knutson, K. Rochat, and
C. Vignola, Professional IBM WebSphere 5.0 Application Server,

ISBN 0-7645-4366-0, John Wiley & Sons, Inc., New York
(2002).

3. WebSphere Application Server has become the leading ap-
plication server, gaining more market share than any other
application server, including .NET from Microsoft Corpo-
ration and WebLogic from BEA Systems.

4. E. Millard, “IBM�s WebSphere vs. Microsoft�s .NET—Who�s
Winning?” NewsFactor Network (July 30, 2002), http://
www.newsfactor.com/perl/story/18818.html.

5. “How IBM Hopes to Waltz around Microsoft,” GRID Today
1, No. 4 (July 8, 2002), http://www.gridtoday.com/02/0708/
100083.html.

6. M. LaMonica, “IBM Pulls Away in App Server Race,” C/Net
News.Com (May 6, 2003), http://news.com.com/2100-1012_
31000046.html.

7. U. Richter, L. Ostdiek, and C. Diep, Architecture for Virtu-
alization with WebSphere Application Server, Version 5, IBM
Corporation (2003).

8. R. Willenborg, K. Brown, and G. Cuomo, “Designing the
WebSphere Application Server for Performance: An Evo-
lutionary Approach,” IBM Systems Journal 43, No. 2, 327–350
(2004, this issue).

9. R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Kodali, D.
Poirer, S. Sankarar, and D. Shupp, “WebSphere Dynamic
Cache: Improving J2EE Application Performance,” IBM Sys-
tems Journal 43, No. 2, 351–370 (2004, this issue).

10. C. M. Saracco, M. A. Roth, and D. C. Wolfson, “Enabling
Distributed Enterprise Integration with WebSphere and DB2
Information Integrator,” IBM Systems Journal 43, No. 2,
255–269 (2004, this issue).

11. R. Will, S. Ramaswamy, and T. Schack, “WebSphere Portal:
Unified User Access to Content, Applications, and Services,”
IBM Systems Journal 43, No. 2, 420–430 (2004, this issue).

12. M. Kloppman, D. Koenig, F. Leymann, G. Pfau, and D.
Roller, “Business Process Choreography in WebSphere—
Combining the Power of BPEL and J2EE,” IBM Systems Jour-
nal 43, No. 2, 270–296 (2004, this issue).

13. J. Ponzo, L. D. Hassan, J. George, G. Thomas, O. Gruber,
R. Konuru, A. Purakayastha, R. D. Johnson, J. Colson, and
R. A. Pollak, “On Demand Web-Client Technologies,” IBM
Systems Journal 43, No. 2, 297–315 (2004, this issue).

14. S. M. Fontes, C. J. Nordstrom, and K. W. Sutter, “WebSphere
Connector Architecture Evolution,” IBM Systems Journal 43,
No. 2, 316–326 (2004, this issue).

15. F. Marinescu, EJB Design Patterns; Advanced Patterns, Pro-
cesses, and Idioms, ISBN 0-471-20831-0, John Wiley & Sons,
Inc., New York (2002).

16. J. Adams, S. Koushik, G. Vasudeva, and G. Galambos, Pat-
terns for E-business—A Strategy for Reuse, ISBN 1-931182-02-7,
IBM Press (MC Press), Lewisville, TX (2001). Also see “IBM
Patterns for E-business; Navigating You to a New Gener-
ation of E-business Applications,” IBM Corporation, http://
www.ibm.com/developerworks/patterns/.

17. P. Giangarra, “J2EE: Not Just a Language—It�s a Platform,”
Proceedings of SHARE 2001 (2001), http://www.share.org/
proceedings/sh97/data/S3546.PDF.

18. G. Desai, E. Sanchez, and J. Fenner, “Web Application Serv-
ers Come of Age,” CMP Network Computing (July 23, 2001),
http://www.networkcomputing.com/1215/1215f4.html.

19. Java Servlet Technology, Sun Microsystems, Inc., http://java.
sun.com/products/servlet.

20. JSR 168 Portlet Specification, Java Community Process, http://
jcp.org/en/jsr/detail?id�168.

21. JavaServer Pages Technology, Sun Microsystems, Inc., http://
java.sun.com/products/jsp/index.jsp.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 235

22. W. Appel, “Enterprise Architecture: An In-Depth Study,” En-
terprise Architecture Community, http://www.eacommunity.
com/articles/openarticle.asp?ID�1840.

23. R. Sharma, B. Stearns, and T. Ng, J2EE Connector Architec-
ture and Enterprise Application Integration, ISBN 0201775808,
Addison-Wesley Publishing Co., Boston, MA (2001).

24. G. Van Huizen, “JMS: An Infrastructure for XML-Based
Business-to-Business Communication,” Java World (Febru-
ary 2000), http://www.javaworld.com/javaworld/jw-02-2000/
jw-02-jmsxml.html.

25. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana, “Business Process Execution Lan-
guage for Web Services” (May 5, 2003), ftp://www-106.ibm.
com/developerworks/webservices/library/ws-bpel11.pdf.

26. T. Mikalsen, I. Rouvellou, and S. Tai, Reliability of Composed
Web Services from Object Transactions to Web Transactions,
IBM Corporation, T. J. Watson Research Center, Yorktown
Heights, NY, http://www.research.ibm.com/people/b/bth/
OOWS2001/mikalsen.pdf.

27. M. Stevens, “Service-Oriented Architecture Introduction, Part
1,” developer.com (April 16, 2002), http://www.developer.
com/services/article.php/1010451.

28. “Service-Oriented Architecture (SOA) Definition,” Barry &
Associates, http://www.service-architecture.com/web-services/
articles/service-oriented_architecture_soa_definition.html.

29. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, A Note on
Distributed Computing, SMLI TR-94-29, Sun Microsystems,
Inc., Mountain View, CA (November 1994), http://research.
sun.com/techrep/1994/smli_tr-94-29.pdf.

30. D. Orchard, “Myth of Loose Coupling,” W3C (January 2003),
http://lists.w3.org/Archives/Public/www-ws-arch/2003Jan/
0115.html.

31. P. Kovari, D. C. Diaz, F. C. H. Fernandes, D. Hassan, K.
Kawamura, D. Leigh, N. Lin, D. Masic, G. Wadley, and P.
Xu, WebSphere Application Server Enterprise V5 and Program-
ming Model Extensions, SG24-6932, WebSphere Handbook
Series, Redbooks, IBM Corporation (August 2003), http://
www.redbooks.ibm.com/redbooks/pdfs/sg246932.pdf.

32. Java 2 Platform, Enterprise Edition (J2EE), Sun Microsys-
tems, Inc., http://java.sun.com/j2ee/index.jsp.

33. L. Williamson, “System Administration for WebSphere Ap-
plication Server V5, Part 4; How to Extend the WebSphere
Management System (and Create Your Own MBeans),” IBM
WebSphere Developer Technical Journal, IBM Corporation
(April 23, 2003), http://www.ibm.com/developerworks/
websphere/techjournal/0304_williamson/williamson.html. See
also Part 1, http://www.ibm.com/developerworks/websphere/
techjournal/0301_williamson/williamson.html.

34. J2EE Management Specification, Sun Microsystems, Inc.,
http://java.sun.com/j2ee/tools/management/reference/docs/
index.html.

35. I. K. Lam and B. Smith, “Jacl: A Tcl Implementation in Java,”
Proceedings of the Fifth Annual Tcl/Tk Workshop, USENIX,
Boston, MA (July 1997), http://www.usenix.org/publications/
library/proceedings/tcl97/full_papers/lam/lam.pdf.

36. Overview of Jython Documentation, http://www.jython.org/
docs/index.html.

37. IBM Tivoli Provisioning Manager and IBM Tivoli Intelligent
ThinkDynamic Orchestrator Enable on Demand Comput-
ing to Improve Server Utilization, IBM Corporation, http://
www-3.ibm.com/software/tivoli/products/prov-mgr/.

38. “Meet the Experts: Ruth Willenborg on WebSphere Perfor-
mance,” developerWorks, IBM Corporation (August 2003),

http://www7b.software.ibm.com/wsdd/library/techarticles/
0308_willenborg/willenborg.html.

39. Application Response Measurement-ARM, The Open-
Group, http://www.opengroup.org/tech/management/arm/.

40. M. Pistoia and C. Letilley, IBM WebSphere Performance Pack:
Load Balancing with IBM SecureWay Network Dispatcher,
SG24-5858, Redbooks, IBM Corporation (October 1999),
http://www.redbooks.ibm.com/redbooks/pdfs/sg245858.pdf.

41. G. Trotta, “WebSphere 5�s New Tools: From Back-End to
End-User,” ebiz (September 8, 2003), http://www.ebizq.net/
topics/dev_tools/features/2708.html.

42. Clusters, IBM Corporation (March 27, 2003), http://publib.
boulder.ibm.com/infocenter/ws51help/index.jsp?topic�/
com.ibm.websphere.nd.doc/info/ae/crun-srvgrp.html

43. Application Profiles, IBM Corporation (March 28, 2003),
http://publib.boulder.ibm.com/infocenter/wasinfo/index.
jsp?topic�/com.ibm.wasee.doc/info/ee/appprofile/tasks/
tapp_assembleprofiles.html.

44. S. Meridew, “WebSphere MQ Clustering and High Avail-
ability,” Proceedings of SHARE 2002, (March 4, 2002), http://
www.share.org/proceedings/sh98/data/S1103.PDF.

45. Computing at the Edge, White Paper, Sun Microsystems, Inc.
(2003), http://www.sun.com/servers/entry/lx50/pdfs/whitepapers/
whitepaper.edge.pdf.

46. C. Moore, “Akamai, IBM Team Up for Edge Computing,”
InfoWorld (May 8, 2002), http://www.infoworld.com/article/
02/05/08/020508hnibmakamai_1.html.

47. C. Haley, “IBM, Akamai Boost ‘Virtual Capacity’,” ASPnews.
com (May 2, 2003), http://www.aspnews.com/news/article.
php/2200501.

48. “Global Grid Forum Overview,” GGF, http://www.ggf.org/
L_About/about.htm.

49. S. Tuecke, K. Czajkowski et al, “Open Grid Services Infra-
structure (OGSI) Specification,” GGF (April 5, 2003), http://
www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-
29_2003-04-05.pdf.

50. J. Mears, “IBM Adds Grid Computing to WebSphere,” Net-
work World Fusion (July 28, 2003), http://www.nwfusion.
com/news/2003/0728grid.html.

Accepted for publication January 6, 2004.

Eric N. Herness IBM Software Group, 3605 Highway 52 North,
Rochester, Minnesota 55901 (herness@us.ibm.com). Mr. Herness
is a Distinguished Engineer with the IBM Software Group. He
is currently the chief architect for WebSphere Business Integra-
tion. He is a senior member of the WebSphere Foundation Ar-
chitecture Board and a member of the Software Group Archi-
tecture Board. He has also been heavily involved in championing
and implementing the EJB 2.0 specification in WebSphere, es-
pecially those parts that enable container-managed persistence.
Mr. Herness has been involved in object technology and servers
that host objects since 1989. In the early years, he drove work on
object analysis and design methods, defining how to practically
leverage these concepts in large-scale software projects within and
outside IBM. He played a lead role in IBM�s implementations
of CORBA and the early component model definition work that
planted many of the seeds we now see flourishing in J2EE. He
holds a B.S. degree in business administration with an informa-
tion systems emphasis from the University of Wisconsin at Eau
Claire and an M.S. degree in business administration from the
Carlson School of Management at the University of Minnesota.
He has also been an adjunct computer science faculty member
at Winona State University.

HERNESS, HIGH, AND MCGEE IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004236

Rob H. High, Jr. IBM Software Group, 11501 Burnet Road, Aus-
tin, Texas 78758 (highr@us.ibm.com). Mr. High is a Distinguished
Engineer and the chief architect for the WebSphere Application
Server foundation. He has 26 years of programming experience
and has worked with distributed, object-oriented, component-
based transaction monitors for the last nine years, including
SOMObject Server and Component Broker, prior to WebSphere.
He helped to define, and then later refine, the basic concepts of
container-managed component technology, which is now intrin-
sic to the EJB specification and implemented by WebSphere and
other J2EE application servers. He started his career with IBM
in 1981 in Charlotte, North Carolina, and during his 12 years there,
he primarily worked in the finance industry sector as a developer
on the 4700 controller and on 4730 and 4736 ATM microcode
with responsibility for the device access methods. He led the de-
velopment of Application Foundation PC software for retail
branch computing, culminating in responsibility for the Finan-
cial Application Architecture. In 1993 he moved to Austin to lead
IBM�s participation in the Object Management Framework of
the Open Software Foundation, which led eventually to his in-
volvement in SOMObjects�, and later Component Broker and
WebSphere. Mr. High received a B.S. degree in computer and
information science from the University of California at Santa
Cruz in 1981.

Jason R. McGee IBM Software Group, 4205 South Miami
Boulevard, Research Triangle Park, North Carolina 27709
(jrmcgee@us.ibm.com). Mr. McGee is a Senior Technical Staff
Member and chief architect for the Base and Network Deploy-
ment versions of WebSphere Application Server. He is also a sen-
ior architect on the WebSphere Foundation Architecture Board
and an associate member of the Software Group Architecture
Board, focusing primarily on WebSphere family programming
model design issues. He joined IBM in 1997 and has been a mem-
ber of the WebSphere Application Server product team since its
inception. He helped to define the concepts of servlets and
JavaServer Pages (JSP) for processing Web presentation logic
on the server and has been instrumental in leading those parts
of the J2EE specification. He was responsible for the design and
implementation of the Web container in WebSphere Applica-
tion Server. Mr. McGee has been heavily involved in leading the
architecture for key parts of the WebSphere Application Server,
including the server runtime framework and the XML-based sys-
tems management architecture. He graduated with a B.S. degree
in computer engineering from Virginia Polytechnic Institute and
State University in 1995.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MCGEE 237

