Designing WebSphere
Application Server for
performance: An

evolutionary approach

Performance and scalability are critical
elements for a successful Web site and
therefore, are fundamental design criteria for
the IBM WebSphere® platform. This paper
focuses on the evolution of IBM WebSphere
Application Server performance and
scalability features, the improvements that
were achieved, and directions for future work.
There are three design principles underlying
the success of WebSphere: (1) optimize the
design for the predominant (no-failure) case,
(2) make finite resources appear infinite, and
(3) minimize the number of interprocess calls.
We illustrate the application of these design
principles in key areas, including workload
management, Hypertext Transfer Protocol
(HTTP) session management, back-end
connection management, session data and
content caching, and Enterprise JavaBean™
(EJB™) design and deployment patterns.

WebSphere Application Server is IBM’s Java-based
Web application server that supports the deployment
and management of Web applications, ranging from
simple Web sites to powerful e-business solutions.’
WebSphere Application Server performance, and in
particular its scalability and resiliency, have consis-
tently improved from release to release. We describe
here our evolutionary approach to improving the per-
formance of WebSphere Application Server and the
design principles we adopted that enabled these per-
formance improvements.

WebSphere Application Server is, at its heart, a Java

2 Platform, Enterprise Edition (J2EE**)? Web ap-
plication server, similar to a number of other Web
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application servers, such as BEA WebLogic** Serv-
er’ and Oracle Application Server.* J2EE is a plat-
form for building distributed enterprise applications
that includes a specification, a reference implemen-
tation, and a set of testing suites. Its core compo-
nents are Enterprise JavaBeans™** (EJBs**), JavaSer-
ver Pages** (JSPs**), Java™* servlets, and a variety
of interfaces for linking to databases and other in-
formation resources in the enterprise. The compo-
nents of various types are deployed in “containers”
that provide services for those components: servlets
are deployed into a Web container, whereas EJBs are
deployed into an EJB container.

Most Web applications written for J2EE have a com-
mon architecture, commonly referred to as the model-
view-controller (MVC) architecture.’ Its main advan-
tage, which is the reason for its widespread adoption,
is the separation of design concerns: data persistence
and behavior, presentation, and control. Thus, con-
trolis centralized, code duplication is decreased, and
changes of code are more localized. For example,
changes to the presentation (view) of the data are
limited to the JSP components, whereas changes to
the business logic (model) are limited to the busi-
ness model components. The controller, usually im-
plemented as a Java servlet and associated classes,
mediates between the view and the model and co-
ordinates application flow.
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Figure 1 Major components in a WebSphere Application Server installation
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The challenge to vendors of J2EE application serv-
ers is to support the deployment of applications that
serve hundreds or thousands of simultaneous users.
Such a load is greater than any single machine can
handle. Moreover, because a single machine is sus-
ceptible to hardware failure, the design of such sys-
tems has to include failover. Failover is a backup
mode in which the functions of a system component
(e.g., a processor, network, or database) are assumed
by other components when the primary component
becomes unavailable through either failure or sched-
uled down time. The design also has to support the
administration of multiple servers, as well as the man-
agement of workload and performance across these
Servers.

In our work to improve application performance
measures we have used three main design principles,
or themes: (1) optimize performance for failure-free,
normal operation (that is, treat failover as a special
case), (2) make finite resources appear infinite, and
(3) minimize cross-process calls. While this paper is
primarily a historical overview of the evolution of
these major themes in the product, we expect that
developers of WebSphere Application Server appli-
cations will gain additional insight into the features
of WebSphere Application Server and will thus be
able to optimize their applications. We also expect
that readers interested in distributed systems will gain
some insight into the way the three design princi-
ples have been used in WebSphere Application
Server and will be able to apply some of the lessons
we learned to their own systems.

The rest of the paper consists of three main sections,
each of which resonates with one of these three
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themes. In the next section, we examine the evolu-
tion of WebSphere Application Server scalability and
resiliency (a.k.a. availability). This section is based
on the principle “optimize for failure-free operation”
as applied to workload management and data par-
titioning. In the following section, in which we ex-
amine the evolution of resource management, we ap-
ply the principle “make finite resources appear
infinite.” In this section, we also describe the inter-
play between application performance and the Web-
Sphere Application Server infrastructure, and the
role WebSphere Application Server has played in
providing high-performing standard interfaces for
application developers. The principle “minimize
cross-process calls” anchors the section that follows,
in which we cover the evolution of caching and EJBs.
We continue to examine the relationship between
the WebSphere Application Server infrastructure
and the application, discussing application design and
deployment topology. We also discuss the unique
content-caching capabilities of WebSphere Appli-
cation Server that go well beyond the existing J2EE
specification. We conclude with a brief summary.

The evolution of scalability and resiliency:
Optimize for normal processing

Figure 1 shows the major components in a Web-
Sphere Application Server installation: network
sprayer, Web server, WebSphere Application Server,
Web container, EJB container, WebSphere Applica-
tion Server plug-in, and ORB (Object Request Bro-
ker).® The workload, consisting of client HTTP (Hy-
perText Transfer Protocol) requests, is routed
through these components. Each client request is
eventually mapped to an execution thread that pro-
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cesses this request. As shown in Figure 1, there are
three major routing points in WebSphere Applica-
tion Server: the network sprayer, the WebSphere Ap-
plication Server plug-in, and the ORB.’

Figure 1 shows two deployment options for Web con-
tainers and EJB containers. Each container can be
deployed by itself within an application server (the
two application servers located in the upper part in
Figure 1), or they can be co-deployed within a sin-
gle application server (the application server in the
bottom part of Figure 1).

The network sprayer routes the arriving HTTP request
toa Web server. The Web server is “WebSphere Ap-
plication Server-enabled”; that is, it is equipped with
a WebSphere Application Server plug-in that for-
wards requests from the Web server to a WebSphere
Application Server. Because of its strategic position-
ing as the first point of WebSphere Application
Server presence in the installation, the plug-in has
built-in functions for workload management, secur-
ity, and caching.

The ORB, the third routing point in our typical in-
stallation, routes calls to EJB methods to an appli-
cation server that hosts an EJB container. The ORB
also supports failover by resending failed requests
to another application server. The ORB makes use
of the Internet InterORB Protocol (110P**), which
has the advantage that requests not originating in a
Web browser can still benefit from workload
management.’

We describe now our approach to enhancing the scal-
ability and resiliency of the system in Figure 1. As
we will show, the techniques used to make a system
scalable often make the system resilient (highly avail-
able) as well. Over the past three releases of Web-
Sphere Application Server, a pattern has emerged
that has become our blueprint for enhancing the scal-
ability and resiliency of the product. Our approach
involves the use of the following techniques: clus-
tering, workload management, data partitioning,
caching, and data replication.

Clustering. Our primary technique for achieving scal-
ability and resiliency is clustering. (See Figure 2.)
When a single application server cannot support a
site’s performance requirements, we can obtain sig-
nificant improvements in application throughput and
response time by running multiple copies of an ap-
plication on a cluster of application servers (Figure
2B). If the application is well-written and the Web-
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Sphere Application Server system is properly con-
figured and provisioned, then close to linear scalabil-
ity can be achieved. Figure 2C illustrates a failover
scenario, in which a failure of one of the nodes in
the three-node cluster is handled by having the re-
maining nodes take over the entire load.

The scalability of WebSphere Application Server
through clustering has been demonstrated in numer-
ous benchmarks and customer engagements over the
years. The ECperf** Expert Group, for example,
publishes a number of results of measuring perfor-
mance and scalability of I2EE servers.® The study of
April, 22,2002, shown in Figure 3, reflects measure-
ments involving a cluster of up to nine nodes, using
WebSphere Application Server Version 4.03, and a
common database consisting of IBM DB2 Version 7.2.
As Figure 3 illustrates, the experiment demonstrated
near linear scalability for the throughput (a multi-
plier of 8.74 corresponds to a nine-node cluster). The
graph marked “DB2 CPU” shows the utilization of the
database server as a function of the cluster size. The
unit of measurement is in BBOPS (Benchmark Bus-
iness Operations). See Reference 9 for additional
benchmarking results for application servers, includ-
ing WebSphere Application Server. The ORB work-
load routing capabilities of WebSphere Application
Server are not duplicated by other application serv-
ers in these tests.'’ As these results show, WebSphere
Application Server has been at or near the top among
application servers in terms of performance and scal-
ability. (See also Reference 11.)

Workload management. In a cluster of application
servers, the technique used for distributing the work-
load among the application server instances is called
workload management (WLM). The administrator
defines policies that dictate how requests are distrib-
uted to the applications running in the cluster (this
is known as intelligent workload management). WLM
routers (network sprayer, WebSphere Application
Server plug-in, ORB) interpret these policies and
route requests to downstream WebSphere Applica-
tion Servers. Figure 2D illustrates the distribution
of workload in a three-node cluster, where the work
is split 25 percent, 50 percent, and 25 percent.

Data partitioning. Early in the development of ap-
plication servers it could be assumed that no client
data need be stored from one session to the next
(“stateless” design). Applications could thus be made
to scale linearly with the size of the cluster through
the use of simple workload management policies.
Following this approach, early WebSphere Appli-
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Figure 2  Clustering Scenarios

cation Server customers of high-volume perfor-
mance-sensitive applications would go to great
lengths to develop applications that were designed
to be stateless. Although linear scalability was
achieved, the benefits were often short-lived.

As applications began providing richer and person-
alized user experiences, session state data had to be
stored on the application server. At first, the arriv-
ing transactions could be routed to any server, and
thus session state data had to be accessible by all serv-
ers in a cluster, as illustrated in Figure 4A. This was
typically accomplished by storing the data on shared
persistent storage, such as a database. This approach
suffers from performance degradations due to the
significant data transfers involved and the overhead
of keeping track of the most recent update of a data
item when there is more than one copy of it in use
(all copies of a data item other than the most recent
one have to be invalidated and cannot be reused).
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To improve performance for “stateful” applications
we introduced data partitioning. The technique is
illustrated in Figure 4B for the no-failure case (the
possibility that one of the nodes in the cluster fails
will be considered later). Session state data is par-
titioned four ways, each partition is resident on a
designated server. The database component is not
needed for the no-failure case because the session
data is stored on the designated server (we refer
to this as data “affinity”). This data affinity is the
basis for intelligent workload routing, which re-
sults in reduced traffic and overhead and improved
performance.

Although the combination of data partitioning and
intelligent workload management improves the per-
formance in a cluster, the configuration has a single
point of failure. We address this deficiency in the
next section, which deals with data replication.
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Figure 3  ECPerf scalability results for WebSphere Application Server Version 4.03, 04/22/2002
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Data replication and caching. To improve on the
configuration in Figure 4B and provide for failover,
we use a database for storing data as illustrated in
Figure 5. We also use data partitioning and estab-
lish an affinity between each partition and a selected
cluster node (Figure 5 depicts the partitions in dif-
ferent colors). The backing of each data partition to
the database follows a write-through caching mech-
anism, in which any changes to the data in the clus-
ter node are immediately replicated on the database.
In the case of a server failure, the WLM router de-
tects the failure and selects another server to which
the data partition associated with the failed server
is assigned. When the first client request after the
failure arrives at the new server, the user data is trans-
ferred from the database to populate the new cache
for this data partition.

The evolution of HTTP user session support. The
use of the previously described techniques for en-
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hancing scalability and resiliency is best illustrated
in the WebSphere Application Server support of
HTTP user sessions. Table 1 summarizes the release-
to-release evolution of the use of these techniques.

WebSphere Application Server Version 3.0. The first
WebSphere Application Server implementations
typically relied on the network sprayer for workload
management across multiple HTTP servers and Web-
Sphere Application Server instances. For stateful ap-
plications, the network sprayer “sticky port” option
was used, which routed all requests from a given In-
ternet Protocol (IP) address to the same HTTP server.
While this simplistic form of workload management
worked for some Web sites, the workload was not
always well distributed. For example, all users com-
ing through a proxy server IP address were routed
to the same Web server. In particular, large Inter-
net service providers with many users coming
through a single proxy address caused unbalanced
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Figure 4  Workload routing with and without data partitioning

Table 1 Evolution of HTTP user session support

WebSphere WebSphere WebSphere WebSphere WebSphere
Application Server Application Server Application Server Application Server Application Server
Version 3.0 Version 3.5 Version 4.0 Version 5.0 Enterprise Edition
Version 5.02
Workload Network sprayer WebSphere ‘WebSphere ‘WebSphere Performance PMI-
Management sticky port Application Application Application based dynamic
Server plug-in Server plug-in Server plug-in / workload
affinity from pure affinity ORB weighted management
second request workload
management
Caching No session Write-through Lazy session cache Lazy session Lazy session
caching session cache cache cache
Replication Relational Relational Relational database Relational Relational database,
Store database database database, memory
memory

workload distribution. An even worse situation was
created when requests from the same end user came
through two different proxy servers and thus gave
the appearance of two distinct users, which interfered
with session data partitioning schemes.

WebSphere Application Server Version 3.5. Clearly,
simple workload management at the network sprayer
was not sufficient. Thus, in WebSphere Application
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Server Version 3.5, affinity-based routing was added
at the WebSphere Application Server plug-in layer.
By default, client requests were routed using simple
routing patterns, such as round robin or random.
However, when a user session was detected, the rout-
ing mechanism identified the cluster node where the
user session was cached by querying the data par-
titioning component and forwarded the request to
it.
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The first client request triggered the creation of a
session identifier (session ID) and an associated HTTP
cookie at the client. A second request triggered the
creation of an affinity of the user session to a data
partition (and thus to a cluster node) by hashing the
session ID. Although the hashing approach mini-
mized the amount of data required to determine the
partition (it needed just a simple session ID), it was
not totally effective because affinity was not estab-
lished until the second request. As a result, the first
request was sometimes routed to a server different
from the second and subsequent requests. Thus, un-
der normal operation (no failure), session data had
to be staged from the database not once, but twice.

As illustrated in Figure 6, the same user session is
served by two WebSphere Application Servers. Ses-
sion data is created following the first client request
(label 1 in the figure). When the transaction process-
ing is complete (end of service or EOS), session data
is written through to the database. In other words,
WebSphere Application Server Version 3.5 does not
cleanly partition HTTP session data. Second and sub-
sequent client requests (label 2-n in the figure) are
routed to another WebSphere Application Server,
and session data is staged from the database. These
additional database accesses hinder performance, es-
pecially for large HTTP sessions.

WebSphere Application Server Version 4.0. This re-
lease recognized a critical tenet for achieving high
performance and scalability— optimize for normal
path processing and treat failures as a special case.
In other words, for performance and scalability, as-
sume failures do not happen! We still support fail-
over through techniques such as data replication, but
we remove failover-related operations from main-
stream processing.

Thus, in WebSphere Application Server Version 4.0,
access to the database is required only in failover
scenarios. At the time the session ID is created, a
server ID, which establishes an affinity between the
session and a specific server, is also created. This en-
sures that this session’s requests are all routed to the
same WebSphere Application Server, a property
known as “pure affinity” (the system illustrated in
Figure 5 exhibits this property).

With this addition, the session data is always avail-
able in the server memory, and access to the data-
base is needed only if a failure occurs. Further per-
formance optimizations were added in the data
replication layer with a customizable lazy replication
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Figure 5 Data replication for failover
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feature. Lazy replication, unlike the EOS alternative,
allows the updating of session data to the database
to be queued up and processed by a background
thread. This feature, referred to as time-based write
(TBW), allows trading off performance for robustness
by varying the time delay in triggering the data rep-
lication task; the longer this time delay the higher
the probability that session data will be lost in case
of failure.

The performance advantages of lazy replication in
WebSphere Application Server are quite dramatic,

WILLENBORG, BROWN, AND cuomMo 333



Figure 7 Performance of EOS versus TBW database
replication policies
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particularly for larger session objects. Figure 7 shows
the performance of EOS versus time-based write-ses-
sion data-replication policies for a simple servlet test
case with a 2 KB HTTP session object. * This test case
involved a simple performance primitive specifically
designed to study the performance of session rep-
lication and contained no business logic. The bar
graph shows the same test case executed in three dif-
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ferent configurations. First, the baseline is run with-
out replication of session data to the database, which
represents the “best case” performance. The same
test is then executed with database updating using
a TBW delay of 10 seconds, and then with EOS pro-
cessing. The performance degradation is small (at
4 percent) with TBW, but significant with EOS (at 80
percent). Although this simple test case illustrates
the potential for performance improvement with
TBW, a typical Web application will experience more
modest benefits. The WebSphere Performance
Benchmark Sample, for example, shows compara-
ble degradations of 1 percent and 18 percent
respectively. '?

WebSphere Application Server Version 5.0. Enhance-
ments for this release were focused on data repli-
cation and workload management. With pure affin-
ity, HTTP session replication to a database was only
required for failover scenarios. Although this means
of data replication works well, it assumes that the
database server is highly available. Unless the instal-
lation already includes a highly available database,
this can be an expensive proposition.

As an alternative, WebSphere Application Server
Version 5.0 introduced memory-to-memory replica-
tion. As shown in Figure 8, servers in the cluster are
configured to act as back-up servers for user-session
data. This configuration backing up the session data
on a given server is known as its replication domain.
The replication domain can consist of a single server
(buddy) or a collection of servers (in Figure 8, server
Bisserver A’s buddy). The memory-to-memory rep-
lication of session data is performed using the built-in
Java message broker, Java Messaging Service (IMS).2
This solution provides a cost effective means of scal-
ing WebSphere Application Server user sessions
when a highly available database is not already avail-
able because it uses the existing WebSphere Appli-
cation Server infrastructure (no need for an addi-
tional database server).

In addition to the new data replication capabilities,
Version 5.0 included an enhanced workload rout-
ing mechanism in which the WebSphere Application
Server plug-in and ORB components had the ability
to perform weighted round-robin routing. For ex-
ample, if in a two-node WebSphere Application
Server cluster, the first node is a 1GHz (gigahertz)
2-way symmetric multiprocessor (SMP) and the other
a 1 GHz 8-way SMP, we may want to route four times
as many requests to the 8-way machine in order to
ensure the machines are properly utilized. With
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Figure 9  Dynamic workload management performance results
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weighted round-robin routing, this is done by the ap-
propriate setting of the weights in the routing
algorithm.

WebSphere Application Server Enterprise Edition Ver-
sion 5.02. Workload management in this release was
enhanced with the addition of dynamic workload
management, which extends weighted round-robin
routing by automatically adjusting the weights based
on performance metrics, such as response time and
throughput. The performance data is obtained from
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the WebSphere Application Server Performance
Monitoring Infrastructure (PmI).!

The result of dynamic workload management is a
more even distribution of work across a cluster, typ-
ically resulting in higher overall throughput when ap-
plication usage patterns change. Figure 9 shows per-
formance results from a test environment with four
nodes running two applications; Figure 9A shows the
fixed-weights case; whereas, Figure 9B shows the re-
sults with dynamic weight adjustment. ™ Application
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1 is deployed on all four nodes; whereas, applica-
tion 2 is deployed on a single node. For the first
1-minute interval in Figure 9A, in which only appli-
cation 1 is active, the CPU utilization across all four
servers is comparable and running around 50 per-
cent. As a second application is activated, the fixed-
weight routing algorithm continues to evenly distrib-
ute application-1 requests to the four nodes in the
cluster. As a result, the CPU on one server reaches
100 percent, while the other three servers remain at
around 50 percent utilization.

In contrast, Figure 9B shows the result of using dy-
namic workload management with the same work-
load mix. In this case the system automatically
adjusts to CPU utilization, so that additional appli-
cation-1 requests are routed to the three underuti-
lized servers. As a result, the CPU utilization on these
three servers increases to the 60-70 percent range
(at time 16:34, stability is reached); whereas, the
server that was previously running at maximum ca-
pacity now operates in a similar range. Moreover,
the throughput for application 1 increases by 16
percent.

Future directions in scalability and resiliency.
Achieving scalability and resiliency through cluster-
ing, data partitioning, caching, intelligent workload
management, and data replication extends beyond
HTTP transaction processing. Current implementa-
tions of stateful session beans and Option-A Cached
CMP (container-managed persistence) entity beans?
are limited in clustered environments. Unlike an
HTTP session, the infrastructure does not have the
application knowledge to automatically perform the
data-partitioning and intelligent-workload manage-
ment. New infrastructure services, combined with ap-
plication design and implementation techniques, are
being explored to improve performance and scalabil-
ity for stateful session beans and Option-A Cached
CMP entity beans. The same design principle, opti-
mized for normal (no-failure) path processing,
applies.

Although WebSphere Application Server is opti-
mized for the no-failure case, mission-critical re-
quirements are driving investigation into more ag-
gressive ways of handling failures. WebSphere
Application Server currently supports a passive fail-
ure detection scheme, as follows. When a server in
a cluster goes down, the upstream WLM agent (i.e.,
the WebSphere Application Server plug-in or the
ORB) detects the failure when it attempts to connect
to the failed server. The failure detection mechanism
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involves time-out and retry intervals, and these rep-
resent delays in responding to the failure. We are
working on more powerful failure detection schemes
that include a heartbeat mechanism and that allow
timely detection of failures.

The evolution of resource management:
Make finite resources appear infinite

In addition to designing a scalable and resilient Web-
Sphere Application Server infrastructure, we also
need to manage available resources. Memory, CPU,
and disk storage are typically the constraining re-
sources in any software environment. WebSphere
Application Server, which runs in a Java Virtual Ma-
chine (JvM**), is additionally constrained by the re-
sources made available to the JVM by the operating
system.

As a server-side Java operating environment, Web-
Sphere Application Server must utilize these re-
sources wisely and not impose resource restrictions
on the applications it hosts. These applications have
widely diverse resource requirements. Whereas some
applications handle high-volume short-transaction
traffic, others have long running times and require
large amounts of memory. Many WebSphere Ap-
plication Server applications were ported from a
client/server environment where resource constraints
are less severe than in distributed multitiered
environments.

Regardless of the application mix, the WebSphere
Application Server environment typically hosts many
simultaneous requests, each of which requires re-
sources. Because the resources required at any one
time often surpass the available resources, Web-
Sphere Application Server is designed to make the
finite resources appear to the application as unlim-
ited. A variety of techniques, such as queues, thread
pools, and memory utilization schemes, have evolved
to support the two most critical resources: threads
and memory.

In this section we examine the evolution of resource
management in two key areas: access to databases
and other back-end resources, and thread pool
dynamics. This evolution has been driven by the need
for standards and by requirements for performance,
scalability, and security. Because performance and
scalability require careful control of resources, the
WebSphere Application Server designers faced the
challenge of providing high performance infrastruc-
ture components that did not impose explicit limits
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Table 2 Evolution of connection management

WebSphere WebSphere WebSphere WebSphere
Application Server Application Server Application Server Application Server
Version 3.0 Version 3.5 Version 4.0 Version 5.0

Pre-standard JDBC 2.0
connection pooling

Database connection
pooling (proprietary)

JDBC 2.0 standard connection
pooling; proprietary support
for CCF CCF

J2EE Connector Architecture
(J2CA) standard replaces

on application developers. Their solution was mak-
ing the finite resources appear infinite.

Access to database and other back-end resources.
Although the middle tier of the WebSphere Appli-
cation Server environment, which includes the in-
teraction between the Web servers and the Web-
Sphere Application Servers, has its own challenges,
the back-end tier has been the most challenging one.
This back-end tier is not considered part of the Web-
Sphere Application Server system, and it is often
maintained, tuned, and administered separately from
the WebSphere Application Server system. Almost
all applications require data from the back end, which
includes either a database or a “legacy” system. Back-
end resources are usually constrained, often with
hard configuration limits. We need to develop ap-
plications without explicit knowledge of these restric-
tions. Moreover, providing a mechanism to make
these finite back-end resources appear unlimited to
the application is important for both performance
and ease of development.

From a performance perspective, the creation of
back-end connections is often extremely expensive.
Many performance bottlenecks are created when the
application accesses the back-end tier, typically a re-
lational database. These databases can be accessed
either directly by the application using Java Data-
base Connectivity (JDBC**),? or by WebSphere Ap-
plication Server CMP EJBs. We examine now the evo-
lution of database access (database connection
management) within a WebSphere Application
Server system, followed by more general capabili-
ties for accessing the back end. This evolution is sum-
marized in Table 2.

WebSphere Application Server Version 3.0. The ear-
liest WebSphere Application Server applications
were supported by servlets accessing a relational da-
tabase. The performance of these applications was
heavily dependent on database access. The most per-
formance-costly JDBC command is getConnection. Es-
tablishing the connection may take seconds, much
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longer than typical SQL (structured query language)
queries over JDBC.

To minimize the number of getConnection calls re-
quired, a common technique is to use a connection
pool. Though this concept was not new, at the time
there was no connection pool support in the JDBC
1.0 specification. The WebSphere Application Server
designers recognized the importance of optimizing
database access and provided a proprietary database
connection pool service for use by application
developers.

This database connection pool service maintains a
set of connections, making these connections avail-
able to the application as needed. Thus, rather than
creating and destroying connections, the connections
in the pool are allocated on request and returned to
the pool for reuse. Though the number of connec-
tions is finite, the connection pooling service makes
them appear unlimited to the applications. The per-
formance overhead of the getConnection call is never
experienced by the running application. This simple
concept is highly efficient, and the use of connection
pooling yielded significant performance improve-
ments. Gunther documents these performance gains
and shows how, in a simple test case, the use of con-
nection pooling improves performance by a factor
of three.™

The acceptance of the connection pool mechanism
was affected by its proprietary nature. Because the
WebSphere Application Server connection pool in-
terfaces were not part of the Java standards (and
therefore, not portable), many application develop-
ers chose not to use them. To maintain portability,
some wrote their own connection pooling compo-
nents, which were often fraught with problems due
to poor implementation. Others did not use connec-
tion pools and paid the performance penalty for cre-
ating connections at runtime. Consequently, early
performance crises were frequently caused by data-
base connection issues.
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Table 3 Thread-pool evolution

WebSphere WebSphere
Application Server Application Server
Version 3.5 Version 4.0

WebSphere
Application Server
Version 5.02

Future

Bounded and unbounded
configuration options for
both pools

Web container thread pool
bounded, ORB thread
pool unbounded

Runtime advice for tuning
and adjusting thread
pool sizes

Adaptive and autonomic
thread pools

Even developers who used the WebSphere Appli-
cation Server connection pool experienced difficul-
ties, with the most common problem being the fail-
ure to return the connection to the free pool (which
still happens today). When applications fail to re-
lease connections after use, the finite nature of con-
nection pools surfaces. The connection pool runs out
of available connections, applications wait longer to
acquire a connection, and performance deteriorates.
The performance and scalability benefits of making
finite resources appear unlimited materialize only if
the applications are implemented to make proper
use of these services.

WebSphere Application Server Version 3.5 and Ver-
sion 4.0. The need for connection pooling was quickly
recognized by the Java community, and connection
pooling was included in the JDBC 2.0 standard. Web-
Sphere Application Server designers anticipated sup-
port of the IDBC 2.0 standard by introducing the JDBC
2.0 ApI for connection pooling in WebSphere Ap-
plication Server Version 3.5, and JDBC 2.0-compli-
ant connection pooling in WebSphere Application
Server Version 4.0. The database connection pool-
ing services are used within WebSphere Application
Server by the EJB container (for CMP persistence) as
well as by application developers writing direct JDBC
calls from servlets or bean-managed persistence
(BMP) beans.?

Although a standard connection pooling service was
added to WebSphere Application Server for data-
base access, many performance issues remained for
applications accessing other back-end resources, such
as IBM Customer Information Control System
(c1cs*)"S or 1BM Information Management System
(1Ms*).'° Access to these back-end resources could
also benefit from connection pooling. With no stan-
dard in effect, WebSphere Application Server de-
signers again stepped in with proprietary support
based on the VisualAge* Common Connector
Framework (CCF)."” CCF provided common services
for accessing many back-end resources, including
CICS, IMS, and 1BM WebSphere MQ,'® greatly sim-
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plifying development of these applications. CCF made
these finite resources appear unlimited to the ap-
plication developer. Similar to the evolution of JDBC,
the need to standardize back-end access within J2EE
was required to solidify usage. CCF evolved to be-
come the J2EE Connector Architecture (J2CA)? stan-
dard, discussed next.

WebSphere Application Server Version 5.0. J2CA sup-
ports access from Java programs to a broad range
of back-end resources in the enterprise. A resource
adapter is a system-level software driver that plugs
into an application server and enables a Java appli-
cation to connect to various back-end resources. The
specification provides the necessary interfaces for
supporting these back-end resources as well as the
interfaces for use by application programmers. Sim-
ilar to the JDBC support, WebSphere Application
Server uses the resource adapters both for EJB ac-
cess and for direct application use of the available
connection pool interfaces.

Thread pools. Applications accessing back-end con-
nections acquire threads either from the Web con-
tainer thread pool or the ORB thread pool. These
pools contain the actual resources that execute a user
request. Therefore managing the thread pools (to
enable work to get done and to keep the work flow-
ing through the system) is critical to WebSphere Ap-
plication Server performance and scalability. We de-
scribe now the evolution of these pools, which is
summarized in Table 3, the design challenges in-
volved, and directions for future work.

Web container thread pool. The Web container ini-
tially supported a fixed-size thread pool. As requests
came in from the Web server, they were handled by
Web container threads until the threads were ex-
hausted, and additional requests were queued. The
thread pool could grow and shrink within a speci-
fied, bounded range. Although the bounded pool size
constrained the available resources, the restriction
was transparent to the application. Even so, there
were situations in which this design was problematic.
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First, consider a fixed-size thread pool and a down-
stream resource that also has a fixed-size pool. It ap-
pears that if we make the size of the two pools the
same, then there should be no resource contention.
Unfortunately, this argument fails to consider that
sometimes an application requires multiple threads
from the same pool, which may lead to a deadlock.

Second, some WebSphere Application Server sites
experience very bursty request patterns. This requires
the ability to temporarily grow the thread pool in
order to handle the bursts transparently to the ap-
plication. However, even providing an unbounded
thread pool also presents potential issues, as expe-
rienced just downstream in the ORB pool.

ORB thread pool. The ORB threads are used for EJB
container work when EJB calls are made directly to
WebSphere Application Server through 110P. These
requests may originate from Java clients or from an-
other WebSphere Application Server system, but not
from a local servlet engine, which uses the Web con-
tainer pool to process EJB calls.

The original ORB thread pool design was based on
a different model from the Web container thread
pool. The ORB thread pool started out as an un-
bounded thread pool without the ability to fix the
maximum pool size. The primary reason for this de-
sign was to avoid causing a potential deadlock due
to circular EJB calls. Consider, for example, an EJB
in container A that calls an EJB in container B, and
assume that the EJB in container B makes a call back
to container A. If there is no available thread in con-
tainer A, a deadlock occurs. An unbounded ORB
thread pool tries to avoid this problem by ensuring
that a new thread in container A is always available.

Unfortunately, an unbounded thread pool does not
treat finite resources as finite. This design is suscep-
tible to resource exhaustion in certain circumstances,
for example, when a deadlock occurs. In the Web-
container thread-pool discussion, we mentioned the
potential of deadlocks in fixed pools requiring mul-
tiple connections. Now consider the same scenario
with an unbounded thread pool, an application re-
quiring access to multiple back-end connections, and
a fixed number of back-end connections. The pool
connections can still consume all the back-end con-
nections and be deadlocked, with no connection be-
ing able to get the second required connection. Af-
ter the deadlock occurs, the unbounded pool
continues to create new threads for all incoming
work, leading to uncontrolled growth. This scenario
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can lead to resource exhaustion, and proved prob-
lematic to certain WebSphere Application Server
Version 3.5 applications.

WebSphere Application Server Version 4.0. As the de-
sign of thread pools improved, more flexible behav-
ior was built into both types of pools. In this release,
the two designs were brought together, with com-
mon code for handling the pooling of threads in both
the Web-container thread pool and the ORB thread
pool. In addition, this design supported both
bounded and unbounded configurations—the deci-
sion as to which configuration to use depended on
the characteristics of the application.

WebSphere Application Server Version 5.02. Although
WebSphere Application Server Version 5.0 thread
pools self-adjust within the limits of their range, the
settings must be configured by the administrator. The
finite resources may appear unlimited to the appli-
cation developer, but the responsibility for manag-
ing the resources is shared between the administra-
tor and the WebSphere Application Server
infrastructure. In this release an important step was
taken toward removing the burden of resource man-
agement from the administrator, a goal of autonomic
computing. ' This release introduced the Runtime
Performance Advisor,! which runs in the back-
ground, analyzing system resources and thread pool
utilization and issuing tuning suggestions, in partic-
ular, suggestions for optimizing pool size.

Future directions in resource management. The au-
tonomic levels discussed by Ganek" and shown in
Figure 10 also apply to the evolution of WebSphere
Application Server resource management. Web-
Sphere Application Server Version 5.02 moved the
product to the “predictive” stage in the autonomic
evolution. This stage requires administrators to un-
derstand WebSphere Application Server and appli-
cation resource management and to explicitly con-
figure tuning parameters. Future autonomic
enhancements are underway, into the “adaptive”
stage, towards eventually attaining the autonomic
goal of self-adjusting resources without any admin-
istrative interactions. At that stage, finite WebSphere
Application Server resources appear unlimited to
both the application and the administrator.

Memory. One of the primary motives for limiting
thread-pool and connection-pool sizes is exercising
control over memory resources. The creation of a
thread or a connection requires allocation of mem-
ory. Memory for operating WebSphere Application
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Figure 10 Evolving to autonomic operations
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From IBM Global Services and Autonomic Computing, IBM White Paper, October 2002;

see http://www-3.ibm.com/autonomic/pdfs/wp-igs-autonomic.pdf.

Server and executing applications comes from the
JVM heap and is periodically reclaimed through gar-
bage collection (GC). This mechanism, which re-
moves memory management responsibilities from
the application developer, is one of the strongest sell-
ing points of the Java environment. However, be-
cause GC significantly impacts performance, careful
management of memory is critical to high perfor-
mance and scalability. Specifically, in addition to con-
trolling the creation of new threads, attention to
overall object creation and usage is important. The
more objects are created and destroyed, the more
“garbage” is generated, and the longer and more fre-
quently the garbage collector runs. GC represents
overhead because when the garbage collector runs
the application is not servicing requests.

Fortunately, GC design has made great strides along-
side the WebSphere platform. In early WebSphere
Application Server releases heap sizes were small,
with a recommended maximum of 128 MB. These
smaller heaps required more frequent GC runs, but
each GC run was short, minimizing the performance
impact on in-flight requests. When an application
had large memory requirements, noticeable pauses
occurred during the GC cycles.
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As GC algorithms matured, situations when GC runs
single-threaded, preventing other work from running
in the JvM, occurred less often. Java Developer Kit
(JDK**) 1.3.1,2 supported in WebSphere Applica-
tion Server Version 4.0 and WebSphere Application
Server Version 5.0, included parallel mark and par-
allel sweep techniques and also introduced the op-
tional concurrent mark technique.” These GC im-
provements allowed WebSphere Application Server
applications to run with larger heaps, and thus with
fewer GC runs. With the combination of faster pro-
cessors and better GC design, GC pauses have become
rare. WebSphere Application Server is now fre-
quently run with 1 GB heaps. The 1.4.1 JvM, sup-
ported by WebSphere Application Server 5.1, fur-
ther improves performance with incremental
compaction techniques.

Nevertheless, even as garbage collectors have
evolved, careful consideration of memory usage
within WebSphere Application Server and Web-
Sphere Application Server applications is still re-
quired. WebSphere Application Server uses tech-
niques such as object pooling to minimize memory
use. Application developers are also encouraged to
pay close attention to memory use, and to use ob-
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ject pools when appropriate.’ In WebSphere Appli-
cation Server Enterprise Edition Version 5.0, the
platform provides an object pooling service for use
by application developers. This capability allows de-
velopers to easily achieve the benefits of object re-
use for complex and frequently instantiated objects.

Although the WebSphere Application Server plat-
form is optimized for efficient resource utilization,
high performance and scalability are achieved by
combining it with applications that properly lever-
age its capabilities. In the next section, we look at
the importance of optimizing the application and ex-
amine the ways application design has evolved
toward a more effective use of the WebSphere Ap-
plication Server platform.

The evolution of caching and EJBs:
Minimize interprocess calls

Whereas the evolution of WebSphere Application
Server has incorporated an understanding of how
users develop their applications, the applications
themselves also evolved in order to take better ad-
vantage of WebSphere Application Server features.
The HTTP session support has improved, and re-
source pooling has been adopted. The design of cus-
tomer applications has changed to better take ad-
vantage of the trade-offs within J2EE. A mutually
reinforcing cycle—the application server changes to
meet application requirements, while applications
change to take advantage of new application server
features— has been a constant theme in WebSphere
Application Server development over the past sev-
eral years.

Often we find that the important lessons are the most
painful ones. As children, we do not realize that fire
can hurt until we get burned for the first time. In the
same way, we have learned, rather painfully, that
some of the ideas we had for developing WebSphere
Application Server applications were less applica-
ble than we thought. One of these lessons is that we
need to make every call (especially extra process
calls) count.

It is obvious, in retrospect, that invoking a local pro-
cedure is faster than a remote procedure call, regard-
less of the technology used (the fastest code is no
code). It is also faster to access a cached, local copy
of data than to retrieve data from a remote storage
device. While this might belong in Computer Sci-
ence 101, the appropriate application of these prin-
ciples is far from intuitive, and it has taken us sev-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 11 Typical screen layout
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eral tries to achieve the right balance of in-process
and out-of-process calls in the WebSphere Appli-
cation Server implementation. Understanding this
balance has impacted both the WebSphere Appli-
cation Server design and WebSphere Application
Server application programming. For our first appli-
cation of this principle, we examine content caching in
WebSphere Application Server and how it has
changed over time.

Content caching. The MVC architecture contains an
implicit assumption that has proven to be its Achil-
les’ heel in some cases, namely that every request
for dynamic data from a client browser needs to pro-
ceed through each of the three layers (controller,
model, and view) every time, regardless of the re-
sult ultimately presented to the user. Compare this
dynamic approach with the handling of static Web
content. The design of modern Web servers teaches
that static Web content is read once from a fixed stor-
age medium and cached in memory.?' Although the
dynamic nature of data in Web applications initially
led us to believe that the presentation data needed
to be generated every time, we learned that caching
can also improve performance for slowly changing
data.

Dynamic page generation and caching. We noticed
that many of the screen designs being developed for
the financial-services industry have a common lay-
out, as illustrated in Figure 11. The page presented
to the user has a number of distinct areas, each area
presenting one kind of information. For a private
investor, for example, the areas on the page could
include a portfolio summary, a stock ticker that is
updated every few seconds to show the latest stock
prices, a graph of the market averages for the day,
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Table 4 Evolution of content-caching capabilities

WebSphere WebSphere WebSphere WebSphere Future

Application Server Application Server Application Server Application Server

Version 3.0 Version 3.5.3 Version 4.0.3 Version 5.0

Static pages Servlet/JSP Cache replication Command caching Web services
fragments client cache

WebSphere Application Server
plug-in or edge caching
Web services server cache

headlines of financial news, and special announce-
ments from the financial-services firm. Most of the
information on this page stays the same (is “read-
only”). The low read/write ratio in this type of ap-
plication is key to the performance optimizations that
follow.

Each region on the page is represented by its own
JSP and a corresponding fragment of Hypertext
Markup Language (HTML), and these are all included
in a global JSP (using the standard JSP include mech-
anism). This containment scheme, which is found in
other applications as well, is the basis of Web portals.

Although all the regions contain dynamic data (not
static data from an HTML file), data in some of the
sections change at a faster rate. For instance, the
stock ticker and the portfolio summary data may
change in a synchronized fashion at fixed intervals;
every 15 seconds, say, there may be a change in a
stock price that causes some data to change. How-
ever, the special-announcement region may change
much more slowly—perhaps only once a day or even
less often than that.

We also realized that some of the sections are com-
mon to many users. For instance, the financial-news
and the special-announcement regions might con-
tain the same information for a large number of cus-
tomers and would change for all customers at the
same time.

When we understood how the data presented to the
user change over time, it was a short step to real-
izing that caching the dynamically generated pages
could provide applications with a significant perfor-
mance benefit. Thus, one of the key performance fea-
tures added to WebSphere Application Server was
dynamic caching. We realized that caching could
work at the model and view levels of the MvC ar-
chitecture. The primary benefit of this caching was
that it would enable us to avoid expensive and un-
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necessary process hops. If the servlet or JSP process-
ing would not require a call to a database server or
second application tier, the performance would im-
prove. The evolution of dynamic caching is shown
in Table 4.

WebSphere Application Server Version 3.5.3. The first
part of the dynamic-caching implementation to be
exposed allowed a WebSphere Application Server
system administrator to identify a set of JSP pages
whose output can be cached, and then to specify (1)
the conditions under which the page can be cached,
and (2) the conditions under which the page can be
refreshed. The cache key combined information from
the HTTP request and the HTTP session data that
uniquely identified a page. The information on pages,
their keys, and their refresh conditions was held in
an XML (eXtensible Markup Language)* deploy-
ment file that allowed the EAR (enterprise applica-
tion archive)* administrator to tune the cache (add-
ing or removing pages, or adjusting the caching
parameters) without affecting the code of the Web
application at all.

Dynamic caching, which was introduced in the Web-
Sphere Application Server Version 3.5.3 fix pack, has
been a significant contributor to WebSphere Appli-
cation Server performance and a performance dif-
ferentiator for the product.!

WebSphere Application Server Version 4.0.3. As it
turned out, it was not enough simply to identify what
pages to cache and to specify under what conditions
to cache them. Because WebSphere Application
Server is usually deployed in a clustered environ-
ment, if a page is placed in a cache on one server,
and later that page is invalidated on another server,
then two identical requests from the same user could
produce different results depending upon which
server processed the request. To prevent this from
happening, the dynamic-caching facility allows for
replication of caches across cluster nodes—as
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changes occur within one node they are propagated
to the different members of the cache synchroniza-
tion group.

Even though dynamic replication was part of the ini-
tial design of dynamic caching, its implementation
evolved over time. The original plan was to include
an RMI-based (remote method invocation-based)
replication scheme, which was never deployed.?
Early versions of WebSphere Application Server had
featured a similar RMI-based HTTP session replica-
tion mechanism, which had gained a reputation for
underperforming, so we decided not to ship the RMI-
based replication with the first version of dynamic
caching. However, soon afterwards, we became
aware of a JMS-based multicast model that was used
in a prototype application developed for the Web
site for the 2000 Olympics. We adopted that ap-
proach and released JMS-based replication in Web-
Sphere Application Server Version 4.03.

How does this relate to reducing the number of out-
of-process calls? Simply put, it reduces the number
in the most direct way, by avoiding calls altogether.
A fully populated cached page for a JSP or a servlet
Universal Resource Identifier (URI) not only avoids
the servlet or JSP call, but all the downstream calls
as well. Here we have a multiplier effect at work,
where a hit to an upstream cache can avoid several
downstream calls.

In the field, we have seen dynamic caching provide
large, sometimes order-of-magnitude improvements
in the performance of applications suited for this kind
of optimization. Cox and Martin®* document per-
formance benefits up to a multiplier of 10 from ap-
plying dynamic caching after the fact to an existing
RSS (RDF [Resource Description Format]| site sum-
mary) servlet. We should point out that the exper-
iment involved a simple servlet, and this order-of-
magnitude improvement may not be reflective of a
more complex application mix.

WebSphere Application Server Version 5.0 command
caching. As successful as WebSphere Application
Server 4.0 dynamic caching has been, it was not effec-
tive in all circumstances. In our example of a finan-
cial-services Web site, we described how the finan-
cial-news and special-announcement data could be
held in the dynamic page cache for all users. We
could hold the portfolio summary pages in cache for
each user for a limited time, specified by a time-out
parameter; if stock prices are updated every 15 sec-
onds, then we could hold the page in memory for up
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to 15 seconds. However, we could do even more. Be-
cause the stock prices are updated every 15 seconds,
any stock price remains the same for that period
regardless of who makes the request. We cannot use
dynamic page caching in this instance because each
user’s list of equities is different (that is, I care about
stocks A, B, and C, while you care about X, Y, and
7). This realization that many EJB calls are for the
same information—even when the page displayed
is different—led to the introduction of the innova-
tive WebSphere Application Server command cach-
ing, which is an implementation of the Command
design pattern.” A command encapsulates an ac-
tion as an object. The intent of the Command pat-
tern can be stated as “encapsulate a request in an
object, thereby parameterizing clients with different
requests, queue or log requests, and support “‘undo-
able’ operations (that is, operations that can be
backed out).”

Command caching is designed to provide benefits
by allowing developers to create their own Command
classes that can be either executed or undone, and
that can execute either locally or remotely (behind
an EJB session facade?). However, the most inno-
vative feature of command caching is that it can sig-
nificantly reduce the number of remote calls by cach-
ing the results of a remote EJB call within the
command implementation.

Just as the dynamic-caching page-cache feature al-
lows an HTML page to remain fresh for a period of
time, or until it is explicitly marked “dirty” by an API
call, a cached command can also be held for a pe-
riod of time or until it is explicitly cleared. Command
caching allows a system to take advantage of the fact
that a single page may expand into many calls into
the domain model. Many of those calls may have the
same value over some period of time, while others
are more time-sensitive.

For instance, consider the page for an item posted
on an auction Web site. Many fields of the page (the
item being auctioned, its description, its original bid
price) remain the same until they are explicitly
changed by the seller. Others, the maximum bid and
the time remaining on the auction, are time-sensi-
tive and change rapidly. Whereas command cach-
ing allows the same code to execute every time within
the servlet code that populates the page, the com-
mands (for example, GetTimelnsensitiveltemDetails,
GetTimeSensitiveltemDetails) are treated differently;
the former would be cached, whereas the latter would
not.
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Figure 12 Performance benefits of edge caching
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TRADE3 BENCHMARK IN EJB MODE

Although command caching was considered for the
original WebSphere Application Server Version
3.5.3 version of dynamic caching, it required a pro-
gramming model change, and this led to some re-
sistance to its introduction. Following the general
acceptance of the Command pattern in J2EE pro-
gramming, command caching was finally deployed
as part of the programming model in WebSphere
Application Server Version 5.0. Just as with page
caching, the primary advantage of command cach-
ing is avoiding unnecessary computation, and more
importantly, unnecessary process hops. By caching
command results in the domain model, we can avoid
repeated SQL calls, EJB calls, and other back-end
invocations.

Future directions in content caching. As dynamic
caching evolved, we discovered other places in which
itis useful. For instance, in Web services, WebSphere
Application Server Version 5.0 can dynamically
cache Simple Object Access Protocol (SOAP) re-
sponses (with the cache key including elements of
the SOAP request) on the server side in the same way
that HTML page results are cached. We are currently
implementing a Web services client-side cache that
works at the same layer as command caching, allow-
ing us in certain cases to avoid altogether sending
SOAP messages over HTTP.

A most interesting development is the extension up-
stream of command caching, into the WebSphere
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Application Server plug-in and the edge server com-
ponents. For instance, we now support caching HTML
results from JSP pages in HTTP servers and in cach-
ing proxy servers. The bar graph in Figure 122 shows
the result of running Trade3, the WebSphere Per-
formance Benchmark Sample,? in EJB mode in three
different configurations. The first bar represents the
default configuration, with no dynamic caching. The
second bar shows a 3X (factor of three) performance
improvement in throughput through the use of dy-
namic and command caching. The third bar shows
an additional 38 percent improvement gained by add-
ing caching capabilities in the WebSphere Applica-
tion Server plug-in.

Fowler’s first law and local EJBs. The history of dis-
tributed computing has been one of a few small tri-
umphs in an endless sea of failed predictions, low-
ered expectations, and general disappointments. The
idea of making domain logic available over a net-
work to any application that requests it is so seduc-
tive and so right that otherwise pragmatic and hard-
boiled computer scientists have been falling over
themselves for nearly 30 years in order to make that
dream a reality. But rather than dwell on the dis-
appointments in the history of distributed comput-
ing environments (DCE),* Common Object Request
Broker Architecture (CORBA**)7 and Distributed
Common Object Model (DCcOM),* we start with the
version of this story that is most familiar to us—the
promise and reality of distributed computing using
EJBs.

When the EJB specification was first written, it was
avisionary merging of a number of technologies and
ideas. By building on the solid foundation laid in
CORBA, and by adding new features, it was hoped
that the success that (for the most part) had eluded
CORBA would be achieved. CORBA was criticized for
its complicated programming model, which was dif-
ficult to master. By grafting the simplified program-
ming model from Java RMI onto the CORBA frame-
work, it was hoped that the adoption of distributed
computing by Java programmers would be hastened.
However, that was not nearly all that went into even
the first EJB specification. The specification also in-
cluded a sophisticated transaction management
mechanism, and even a mechanism for object per-
sistence. Because these were seen to be critical re-
quirements for developing complex business appli-
cations, its designers pinned their hopes on this
combination.
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However, there were some assumptions hidden in
the very base of the EJB specification that would cause
grief to many of its early adopters. From the begin-
ning, it was assumed that EJBs would be shared across
applications. That was, after all, the reason for dis-
tributed programming: the assumption that it would
be cheaper and more efficient to invoke business-
processing logic on a remote shared server than to
invoke it local to the UI (user interface) logic. The
second assumption was that any overhead would be
small compared with the processing requirements;
that is, the bulk of the time spent in executing a re-
mote function would be in the business processing
rather than in the delays of transferring parameter
values and results over the network.

There were many grand designs that, in effect, de-
creed “the more tiers the merrier.” In the accepted
wisdom of the first J2EE specification, the typical to-
pology of a distributed system would resemble the
upper part of Figure 1, in which Web containers and
EJB containers reside on separate WebSphere Ap-
plication Server instances.

Soon after the first large-scale EJB applications
moved into production, it was discovered that the
assumptions did not play out as well as had been
hoped. It was realized that while some EJBs are re-
usable across applications, far fewer have turned out
to be reusable than first thought. A more troubling
aspect—even when EJBs proved to be reusable—was
that deploying reusable EJBs remotely from appli-
cation-specific EJBs can create serious version-man-
agement issues.*

However, EJBs were not a failure by any stretch of
the imagination. Other properties of EJBs—the abil-
ity to manage two-phase commit transactions declar-
atively, the ability to define object security declar-
atively, and the ability to provide standard object
persistence— have been quite successful.

Java developers have become quite comfortable us-
ing EJBs, even though they have found that most de-
ployed applications have a simpler topology than that
shown in the upper part of Figure 1. In particular,
developers realized that the same information is
needed on both sides of the distribution boundary
when using EJBs; thus, it is easier to have a single
transformation (Java-to-HTML) when transferring re-
sults to the client than two (Java-to-Java and then
Java-to-HTML). This reasoning led to a simpler to-
pology in which Web containers and EJB containers
are collocated, as shown in the lower part of Figure 1.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

In this arrangement, the Web container and the EJB
container are deployed within the same WebSphere
Application Server instance. This topology allows for
linear scalability, even without the use of a second
EJB tier, by using load balancing at the WebSphere
Application Server plug-in layer. The performance
advantage of this approach is that remote calls are
eliminated entirely. The WebSphere Application
Server ORB can detect when an EJB client and server
are physically collocated within a JvM; when this is
detected, the ORB “short-circuits” the calls by avoid-
ing the use of socket connections between the client
and server, and instead replacing the socket com-
munication with Java method invocations.

WebSphere Application Server Version 3.5 and Ver-
sion 4.0. Application developers discovered that an
additional performance advantage of this topology
was realized (without change to the application code)
when using pass-by-reference, a feature referred to
as no-local-copies. In short, the no-local-copies op-
timization turns off the serialization and deserializa-
tion of EJB parameters and return values, which
means that both client and server code use the same
set of value objects. In early WebSphere Applica-
tion Server Version 3.5 performance tests, this op-
timization was found to improve performance in
many applications with collocated Web and EJB con-
tainers by 10 percent or more.*'

Soon this arrangement of collocating Web and EJB
containers combined with the use of the no-local-
copies optimization became the recommended to-
pology for most EJB systems. In fact, the logic of this
arrangement was even codified by Fowler* into what
he refers to as “Fowler’s first law of distributed ob-
ject design,” which simply states, “Don’t distribute
your objects.”

WebSphere Application Server Version 5.0. So wide-
spread and successful was Fowler’s first law of dis-
tributed object design that it even made its way into
the EJB 2.0 specification. In the initial versions of the
EJB specification, every EJB object was a remote ob-
ject; there was no other way of specifying EJBs. How-
ever, in the aftermath of the furor over the EJB 2.0
final specification 1 (which contained a version of
CMP that was shown to be unworkable), an older pro-
posal from the IBM team was “dusted off” by the EJB
specification team. The proposal suggested the in-
troduction of local entity bean objects, which oper-
ate solely within a single JvM and do not present a
remote interface, as a solution to a number of prob-
lems inherent in trying to manage distributed cach-
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Figure 13  Performance advantage of local interfaces
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ing and prefetching of database results. This proposal
was extended from entity beans to all EJBs, and was
introduced into EJB 2.0 final specification 2, which
is the version implemented by WebSphere Applica-
tion Server Version 5.0.

We show the effect of these optimizations, and the
additional benefits gained by local interfaces in Fig-
ure 13." This chart shows the performance gain for
both a simple test case (with minimal business logic)
and a more representative (albeit still simple) ap-
plication, Trade3. Three configurations were run: (1)
remote interfaces only, (2) remote interfaces but with
no-local-copies set to TRUE, and (3) local interfaces
only. As the bar graph shows, a dramatic improve-
ment is realized for the primitive application, and
a modest 16 percent improvement for the Trade3
application. For the third configuration the imple-
mentation was rewritten to explicitly use EJB 2.0 lo-
cal interfaces. As shown in Figure 13, additional per-
formance benefits, above and beyond the no-local-
copies case, are realized by the explicit use of the
new APIL The same conclusion, that using local in-
terfaces to avoid remote calls results in significant
improvements in overall application performance,
was also reached by Cecchet, whose analysis of the
JONAS and JBoss servers indicates that the results
are not limited to WebSphere Application Server.*
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The performance differences between local and re-
mote interfaces lead us to wonder why so much time
and effort have been invested into distributed com-
puting when the numbers do not prove its benefits.
As with so much in computing, we believe the an-
swer may be found in Moore’s Law. If we look back,
we find that processor speed and memory capacity
(which are directly tied to the number of transistors
on each chip) have increased at a much faster rate
than network bandwidth. For instance, 10 years ago,
a high-end desktop machine might have had a 90
MHz processor, 64 MB of main memory, and a 10
Mbps Ethernet local area network (LAN) connection.
Today a similar machine has a 2 GHz processor, a
gigabyte of memory, but only a 100 Mbps Ethernet
LAN connection. Thus, although processor speed has
increased 20 times and memory size has increased
16 times, the data transfer rate has only increased
10 times.

The underlying assumption of distributed process-
ing is that the cost of processing is high compared
to the cost of network overhead. So, while in the past
it would have made more sense to do business pro-
cessing remotely from UI (user interface) process-
ing because the cost of processing was higher; now
that processing costs are lower it makes more eco-
nomic sense to simply move to a more powerful pro-
cessor, or several processors within a single machine,
than to rely on remote processing over the network.

Nonetheless, there are still cases where distributed
processing with EJBs makes sense. In particular, there
are often good reasons that the Ul and business code
cannot run in the same machine. For instance, with
Java clients it may be advantageous to run the shared
business logic behind a firewall. In this case, we pre-
fer not to download the business logic to the client
machine for security reasons, or because the shared
business logic can take advantage of resource pool-
ing of the type described in previous sections. Sim-
ilarly, when working with applications that we do not
control (such as in a Web services scenario), we may
still want to distribute our objects.

Evolution of CMP EJB performance. One of the
more significant success stories in WebSphere Ap-
plication Server performance has been the dramatic
improvement in the performance of CMP entity beans
over time. In the early version of WebSphere Ap-
plication Server (and indeed most J2EE servers), CMP
entity beans had a somewhat deserved reputation as
a performance sinkhole. Luckily for developers, this
situation has improved significantly. A summary of
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Table 5 Evolution of CMP EJB performance optimization

WebSphere WebSphere
Application Server Application Server
Version 3.5 Version 4.02

WebSphere WebSphere
Application Server Application Server
Version 5.0 Enterprise Edition

Version 5.0

Read-only flag Optimistic and pessimistic

concurrency

Local EJBs, preload
optimization, store
avoidance determined
by container

Application profiling

the major performance optimizations is shown in Ta-
ble 5.

WebSphere Application Server Version 3.5. At the
time of this release, the level of the EJB specification
was EJB 1.0. CMP support in this level of the container
was optional, and few vendors offered it. Container-
managed entity beans in EJB 1.0 were defined as re-
mote objects (as were all other EJB types in EJB 1.0),
and their bean implementation classes defined a set
of attributes that were characterized in the deploy-
ment descriptor as being “container-managed”
(meaning they were persistent in a database). How-
ever, the persistence support defined in EJB 1.0 was
primitive; it was not even up to the standards of most
object-relational mapping tools available at the time.
For instance, in the specification there was no way
defined to represent relationships between entity
beans.

Regardless of the state of the EJB specification, the
WebSphere Application Server 3.5 CMP entity im-
plementation went beyond the specification in a
number of ways. It implemented a form of EJB re-
lationships by allowing the addition of special “get-
ter” methods (those EJB methods prefixed with “get”
that are used to retrieve attribute state from an EJB)
on an entity bean class. (These methods use foreign-
key information, stored as a persistent field in the
entity bean, as an argument to a special finder
method on the EJB home of the related entities to
return the related beans.) Also, through the addi-
tion of a read-only flag on CMP EJBs, it remedied what
many perceived as a flaw in the EJB specification.

To understand why the read-only flag was necessary,
we have to understand the life cycle of CMP entity
beans as defined in the EJB specification. CMP entity
beans, can be created through a “create” method on
an EJB home, or they can be instantiated from in-
formation held in an underlying data source through
the use of a “finder” method on the EJB home. In
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either case, the actions of creating or finding the EJBs
are usually contained within an outer containing-EJB
transaction scope defined by the session-bean
method that initiated the action. This is where the
problem arises. The EJB specification also states that
at the end of an EJB transaction, the entity state must
be updated in the database. This is a very cautious
approach that assumes that the container itself does
not track the changes that are made to the state of
the entities as they change during the course of the
transaction. So, in the simplest interpretation of the
specification, all entities touched during a transac-
tion, whether or not they are actually modified, are
written back to the database, even though that in-
volves overwriting the same data already present in
the database.

To eliminate this unnecessary step in the case where
an entity bean was read but not modified during a
transaction, WebSphere Application Server Version
3.5 included a read-only flag that extended the in-
formation in the deployment descriptor and could
be applied to methods that did not modify the state
of the EJB. For instance, “getter” methods could be
marked by the developer as being read-only. The
container was then able to determine on a case-by-
case basis whether each EJB touched in a transac-
tion had only methods with the read-only flag set on
them called during that transaction, or whether other
methods, not having that flag set, were called. In the
latter case, the entity bean was considered “dirty”
and written back to the database. In the former case,
no database state was recorded, avoiding a number
of unnecessary updates. This is consistent with the
major theme of this section: avoiding process hops.
By avoiding these unnecessary back-end SQL calls,
we can substantially improve the performance of the
application. This concept is referred to as store
avoidance.

WebSphere Application Server Version 4.02. The next
significant enhancement of EJB performance came
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in WebSphere Application Server Version 4.02,
which introduced a new way of treating the locking
of database rows used by CMP entity EJBs. In this re-
lease, a new IBM-initiated deployment descriptor ex-
tension was introduced—a setting for “concurrency
control” that had two values, “pessimistic” and “op-
timistic.” When the choice was “optimistic” concur-
rency control, WebSphere Application Server used
an overqualified update scheme to determine
whether any columns in the target row changed dur-
ing the transaction. WebSphere Application Server
used all columns defined in the EJB deployment de-
scriptor as CMP fields, with the exception of those
columns having an ineligible column type (BLOB,
CLOB, LONG VARCHAR, and VARCHAR having a
length greater than 255). The addition of an opti-
mistic concurrency scheme to the original pessimis-
tic locking scheme (which used a “find by update”
SQL statement) allowed certain types of transactions
that have a low occurrence of collisions to operate
concurrently without the chance of lost updates.

WebSphere Application Server Version 5.0. The most
significant performance improvements to CMP sup-
port came with the introduction of WebSphere Ap-
plication Server Version 5.0, which introduced sup-
port for the EIB 2.0 specification. As described
earlier, one of the major innovations introduced in
the EJB 2.0 specification was local EJB interfaces,
which improved the performance of entity beans in
the same way it improved the performance of ses-
sion beans. However, that was not the only new item
in the EJB 2.0 specification. In addition to local EJBs,
the EJB 2.0 specification introduced EJB relationships
(an 1BM-initiated extension in WebSphere Applica-
tion Server Version 3.5) as a supported feature. Also,
in the WebSphere Application Server EJB support,
store-avoidance logic was added directly to the EIB
container, no longer requiring the explicit setting of
the read-only flag.

The WebSphere Application Server implementation
went beyond the specification to provide a signifi-
cant performance gain to users of EJB relationships
in CMP EJBs. It achieved this through the introduc-
tion of the preload, or “read-ahead” optimization.
The idea behind EJB read ahead is so simple and
straightforward that it comes as a shock to many that
it is not a standard part of all EJB implementations.
To elaborate, consider a situation in which we have
an order CMP EJB that has a 1-to-many relationship
to a number of OrderLineltem CMP EJBs. It is highly
likely that whenever an order is handled, a query and
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an update to the line items within the order will be
issued.

In a “default” implementation of EJB relationships,
an SQL SELECT statement fetches the attributes of
the order, and an additional SQL SELECT retrieves
the OrderLineltem attributes. The preload optimiza-
tion allows for the EJB relationships to be prefetched
into a row cache, so the two SQL SELECT statements
are combined at the outset into a single SQL JOIN.
Then, when the CMP EJBs are “hydrated” or brought
into memory (which only happens when an EJB is
referenced either through iterating through a col-
lection returned from a finder method or from an
EJB relationship method), the attributes of the re-
lated EJBs are fetched from the existing row cache,
and the additional SQL SELECT statements are
avoided. Avoiding these additional SQL calls and the
process hops that they entail can significantly im-
prove the overall performance of the application.
Performance advantages of 8-16 percent for two
simple test cases, achieved through the use of Web-
Sphere Application Server read-ahead capabilities,
are documented by Gunther.*

There have been a number of additional perfor-
mance improvements built into the CMP EJB imple-
mentation of WebSphere Application Server Ver-
sion 5.0, besides the preload optimization. The
introduction of access intents in Version 5.0 was a
significant improvement in the locking behavior of
CMP entity EJBs. Access intent is a specification of
how an EJB will be used; for instance, whether by an
optimistic or pessimistic locking scheme. WebSphere
Application Server Version 5.0 Enterprise Edition
introduced the idea of application profiling, which
allows the same EJB to use different access intents
under different circumstances (in the core and net-
work deployment editions of WebSphere Applica-
tion Server, only one access intent can be set per
bean). WebSphere Application Server Version 5.0
also introduced support for SQLJ (Structured Query
Language for Java) in the CMP implementation,
which can improve the performance of CMPs by
avoiding the dynamic compilation of SQL statements.

Future direction in EJB optimizations. The Web-
Sphere Application Server implementation will con-
tinue to improve the performance of entity CMP
beans over time. In WebSphere Application Server
5.02, we introduced the capability of batch updates
for cMP changes. This takes advantage of the JDBC
Batch Update feature in order to postpone updates
until the very end of the transaction. Also in Web-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Sphere Application Server 5.02 we modified our ac-
cess intent policies to provide better performance
in the simplest cases by allowing for a default access
intent “per bean,” instead of “per method,” as is now
common. Although these small performance in-
creases help, we see two larger performance en-
hancements on the horizon. First, we will support
partial hydration of entity beans. This means that
we will be able to selectively bring in the most com-
monly used parts of an entity bean when it is first
requested, and then defer bringing in the rest of the
bean until those attributes are referenced. This can
substantially improve the performance of certain
common use cases involving populating lists, which
are now the exclusive domain of the “fast lane
reader” pattern described by Marinescu.®

Also, we are examining ways of applying dynamic-
caching technology (data-replication asynchronous-
update mechanism, in particular) to CMP entity beans
set up using Option A EJB caching. Currently Op-
tion A caching (which is defined by the EJB speci-
fication as bringing in an EJB once from the data-
base and then holding the data values in memory
indefinitely) is not compatible with WebSphere Ap-
plication Server clustering because changes to a bean
in one server are not propagated to other servers.
Adding an asynchronous update mechanism to prop-
agate those updates will allow Option A caching to
be used in many circumstances and will significantly
improve the performance of entity beans when it is
used. This is perhaps the best example of avoiding
process hops that we can envision. By restricting our
EJB-based database activity to updates only, and not
queries (as we do for HttpSessions), we should be
able to substantially improve the performance of
many EJB applications.

Conclusion.

WebSphere Application Server performance and
scalability have improved with each release. The ap-
plication requirements have driven WebSphere Ap-
plication Server capabilities and, in turn, WebSphere
Application Server capabilities have driven applica-
tion design and deployment decisions. The perfor-
mance and scalability improvements are based on
the application of three major design principles: (1)
optimize the design assuming failures will not occur,
(2) make finite resources appear infinite, and (3)
minimize the number of interprocess calls. A walk
through WebSphere Application Server perfor-
mance history clearly shows how understanding and
applying these design principles enabled us to im-
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prove the performance of WebSphere Application
Server and to support the development of highly per-
forming Web applications.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or the Object Management Group, Inc.
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