
Global namespace
for files

by O. T. Anderson
L. Luan
C. Everhart
M. Pereira
R. Sarkar
J. Xu

We propose a name service that enables
construction of a uniform, global, hierarchical
namespace, a key feature needed to create a
file-system grid. Combined with other grid
replication and location-lookup mechanisms,
it supports independence of position for users
and applications as well as transparency of
data location in a scalable and secure
fashion. This name service enables federation
of individual files as well as file-system trees
that are exported by a variety of distributed
file systems and is extensible to include non-
file-system data such as databases or live
data feeds. Such a federated namespace for
files can be rendered by network file servers,
such as NFS (Network File System) or CIFS
(Common Internet File System) servers,
proxies supporting the NAS (network-
attached storage) protocol, or grid data
service interfaces. File access proxies, which
handle protocol translation, can also include
caching and replication support to enhance
data access performance. A uniform
namespace with global scope and hierarchical
ownership allows sharing file data between
and within organizations without
compromising security or autonomy.

The major goal of grid computing is to foster shar-
ing of widely distributed resources. All distributed
systems are faced with network limitations and scal-
ing. The grid shares these fundamental problems
with other distributed systems, but unlike more
tightly coupled systems, such as clusters, these prob-

lems cannot be eliminated, but must be accepted as
part of the environment in which the grid operates.
Crucial network problems include large latencies and
low bandwidths; the question is not how to improve
these parameters as much as how can the system ac-
commodate these limitations. The large scale of grid
systems expands the boundaries containing current
systems in the number of applications, users, groups,
domains, and hosts, the variety of their operating sys-
tems, and the diversity of protocols. A key result of
this scale is that the security mechanisms of small
groups break down, and stronger and more formal
measures are needed. Security is also important be-
cause owners are more willing to share their re-
sources when they can maintain control over them.

Files represent an especially fundamental resource
for collaboration within grid virtual organizations.1

The usage of file data is strongly impacted by fea-
tures of the distributed environment, especially la-
tency, bandwidth, and hot spots, to name a few. The
grid community has tackled problems affecting the
use of file data with design and development in the
areas of security, data transport, and replication.

The Grid Security Infrastructure2 (GSI) provides
strong security based on public keys and certificates
for authentication. Though GSI does not support
groups of users or access control lists (ACLs) to sup-

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

ANDERSON ET AL. 0018-8670/04/$5.00 © 2004 IBM IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004702

port authorization decisions, some separate efforts
have begun to address the authorization problem.
The development of GridFTP3 consists of extensions
to the venerable FTP (File Transfer Protocol), a ref-
erence implementation of a server, a client library,
and various utilities to provide secure and high-per-
formance access to files. The Replica Location Ser-
vice4 (RLS) has addressed the problem of locating
replicas of file data. Collectively, these mechanisms
make significant contributions to problems of ex-
changing files within a grid.

In grid computing, management of distributed data
presents challenging problems in data naming and
organization. Data grids are implementations of data
virtualization services providing uniform access,
management, and control mechanisms for distrib-
uted data. Several notable products and projects can
build data grids across geographically dispersed
areas. Among them, the Storage Resource Broker
(SRB)5 is client-server middleware that provides a
uniform interface for connecting to heterogeneous
data resources over a network and accessing repli-
cated data sets. Avaki software6 provides a single
data service that makes data from multiple, distrib-
uted, heterogeneous data sources available to grid
applications.

One shortcoming of this suite of grid tools is the lack
of a namespace to support sharing files. This
namespace would allow uniform and global path
names to persistently address file data within a grid
wherever it is located. Indeed, a suitably open nam-
ing architecture could include data from sources
other than GridFTP, such as NAS (network-attached
storage) file servers, and potentially even non-file
sources like databases, thus greatly expanding the
scope and utility of the data grid.

We propose a global namespace service (GNS) to pro-
vide a naming mechanism to link existing data
sources. The term “service” is not intended narrowly
as a Web or grid service, but generically to encom-
pass a collection of repositories of namespace data
linked to clients realized in various technologies pro-
viding ubiquitous access. The GNS is supplemented
with security infrastructure, data management sys-
tems, location services, and file data sources to cre-
ate a global namespace. Along with distributed file
access protocols and ways of mapping between mis-
matched clients and servers, this namespace enables
a file-system grid. 7 This phrase is intended to describe

a specific case of a data grid that federates existing
exported file systems8 into a virtual global file system.

The namespace is uniform, global, and hierarchical.
Uniformity means that it has transparency of posi-
tion and location. Transparency of position means
that the data consumers, users and their applications,
can be mobile or have multiple positions. Similarly,
location independence allows the data to move from
place to place. Providing these capabilities requires
an abstraction between the name and location of the
data, which allows this mapping to be done dynam-
ically. This separation between the logical-name and
physical-location properties of the data allows them
to be managed separately. This results in crucial ad-
ministrative scalability through the delegation that
this decoupling makes possible.

Users affect the logical layout of the data by means
of namespace operations such as creation, deletion,
and renaming. Infrastructure managers are respon-
sible for deploying and retiring servers, adding and
removing disks, and configuring networks to opti-
mize a system�s ability to handle the demand for data
services. The logical layout may be very long-lived,
limited only by the lifetime of the owning organi-
zation. On the other hand, the physical structure
must adapt to short-term changes in load, rapid tech-
nological evolution, and organizational changes such
as acquisitions and outsourcing.

The global nature of the grid means that logical
names must be uniform across administrative do-
mains such as corporations and nations, to support
virtual organizations as well as more loosely defined
groups. In addition, names are hierarchical, making
a path name a descriptive term for them. Path names
follow common hierarchical patterns of ownership
and control and so make a good model for organiz-
ing the namespace.9

Path-name prefixes give names to aggregates of file-
system data, such as an organization�s MS/Dfs (Mi-
crosoft Distributed File System) tree of shares or a
filer�s exports. The GNS can link these existing re-
sources into an enterprise-wide and even a cross-do-
main namespace that looks the same to everyone ev-
erywhere. This federation of file systems is especially
valuable if file-access protocol conversion is achieved
or multiprotocol servers or clients are available. The
namespace also facilitates scalable data management
of aggregates by enabling collections of appropriate

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 703

size (e.g., servers, file systems, or shares) to be the
objects of administrative operations.

The GNS namespace consists of virtual directories
that contain other virtual directories and junctions.
A junction is an object that points to files and sub-
trees provided by data sources or to namespace serv-
ers. Namespace clients traverse path names by per-
forming lookups at a series of GNS instances, yielding
a file or file-system reference. This reference is gen-
erally a logical name that is mapped by a location
service to a physical file server reference such as a
URL (Uniform Resource Locator) specifying the pro-
tocol, host, and export name. Junctions, in contrast,
may instead contain direct physical references.
Namespace clients can be implemented in a file-sys-
tem proxy, a client machine (e.g., using an “auto-
mounter” backend),10 or a server running a proto-
col supporting referrals (e.g., CIFS [Common Internet
File System] or NFS [Network File System] Version
4) that may export any file data or an application
library. The best choice of implementation vehicle
depends on the environment of each domain in which
GNS is deployed.

In the following section, we survey related work in
this field. The core of the paper consists of two sec-
tions, one detailing the features of GNS and the sec-
ond describing how the namespace fits into the larger
data delivery process. Following this general descrip-
tion, we provide some implementation experience,
alternative approaches, and usage scenarios, with the
aim of translating the relatively abstract concepts of
GNS into a variety of concrete terms and situations.
The goal of this mostly functional description of GNS
and its proposed usage is to stimulate discussion on
the benefits namespaces can provide to the collab-
orative process and operational efficiency in general.

Related work and technologies

This section presents some of the most significant
existing software for distributed file systems and con-
siders their use in the grid environment.

CIFS and NFS. Traditional distributed file systems
such as Network File System (NFS) and Common In-
ternet File System11 (also called SMB [Server Mes-
sage Block]), collectively called NAS file systems, pose
problems in grid and wide-area network (WAN) en-
vironments. These protocols were designed for use
on fast LANs (local-area networks), and the long la-
tencies of WANs are particularly harmful to their per-

formance. Each has its own naming architecture
whose design point was the small workgroup, and
their security is often weak for this reason. Their sup-
port for replication is limited in many implementa-
tions, and support for location independence is al-
most nonexistent. Collectively, these features now
make these protocols seem provincial compared with
the enterprise and global-scale demands that distrib-
uted file systems now face.

A fourth version of NFS (NFSv4), developed under
the auspices of the IETF (Internet Engineering Task
Force), has explicitly addressed some of the prob-
lems of WAN performance, cross-domain operation,
and security. This protocol has reached the draft
standard stage as document RFC 3530.12 It does not
provide a global namespace, but relies upon the same
automounter mechanisms that supplement naming
for earlier versions of the protocol. NFSv4 (and CIFS)
provide protocol support for server-side referrals that
can be used to stitch individual file systems together,
but there are no standards for representing the in-
formation that defines the namespace. Unfortu-
nately, many of the WAN-friendly features are op-
tional, and so may not see wide deployment soon;
and the substantial complexity of the protocol will
slow the availability of high quality implementations.
The NFSv4 design effort does share many goals with
the grid community, and the protocol has promise
as an important component of the grid computing
arsenal.

AFS and DFS. Experience with AFS*13 (Andrew File
System) and DFS*14 (Distributed File System) has
demonstrated many of the benefits of a global, uni-
form, hierarchical namespace. These file systems fea-
ture excellent security, good WAN performance, and
peerless scalability. Both scale successfully over a
wide range of geographies, numbers of users, serv-
ers, clients, and data capacities. An unusual feature
both provide is that of authorization groups that can
be created and maintained by individual users, which
improves the convenience and utility of ACLs while
reducing the administrative burden. AFS file storage
has a proprietary format that DFS improves upon by
allowing export of any of the server�s local file sys-
tems, though many advanced data-management and
security features are unavailable unless the propri-
etary DFS local file system is used.

Neither of these file systems, however, is suitable as
a grid file system, though many of the grid ideas and
those of other distributed systems have been mod-
eled on them. Both AFS and DFS require complex,

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004704

custom, in-kernel software to be developed for each
client platform and to be installed on each client ma-
chine. Part of the motivation for the present work
is to make use of the technologies that have evolved
since the inception of AFS and DFS and to provide
some of their benefits without requiring extensive
in-kernel modifications to every client, by using plat-
form-standard facilities where possible. Authentica-
tion and authorization for both AFS and DFS are

deeply integrated into their structure, and to the sub-
stantial extent that grid facilities are similar but dif-
ferent in detail, their suitability for the grid suffers.
Because AFS is now “open source” and is supported
by a lively community, it could conceivably evolve
one day into a grid file system; at that point it could
be integrated into the system we describe. The own-
ership for DFS is complex and not open, and it is not
likely to emerge from this morass of legal entangle-
ments and the absence of support from its few re-
maining vendors, thus rendering the DFS product a
dead end.

Avaki. The Avaki Data Grid** product provides a
uniform namespace built from heterogeneous file
systems using a proprietary solution. The system-
level architecture at a domain level consists of a net-
work of share, grid, and access servers, as well as a
grid domain controller, which collectively manage a
global namespace. Share servers export data and
meta-data from a variety of native (physical) file sys-
tems. Grid servers cache file-system meta-data from
multiple share servers and facilitate the creation and
management of virtual directories in the global
namespace. Access servers provide access to the
global namespace via NFS, FTP, and HTTP (Hyper-
Text Transport Protocol) protocols and provide data
and meta-data caching without enforcing a strong
consistency model. The grid domain controller in-
terfaces with LDAP (Lightweight Directory Access
Protocol) and NIS (Network Information Service) to
authenticate end users accessing the file-system
namespace. The system does not address replication

or use Globus Toolkit** components such as Grid-
FTP or RLS. Researchers at Avaki proposed a Se-
cure Grid Naming Protocol15 (SGNP) that has some
high-level similarities to GNS. SGNP does not specify
mappings to file-system objects.

Storage Resource Broker. Storage Resource Bro-
ker (SRB) from the SDSC (San Diego Supercomput-
ing Center) is middleware that provides a compre-
hensive distributed data-management solution, with
features to support the management, collaborative
(and controlled) sharing, publication, and preserva-
tion of distributed data collections. It has a rich set
of APIs (application programming interfaces) to a
management layer providing a uniform interface for
connecting to heterogeneous data resources over a
network and accessing replicated data sets. The APIs
allow higher-level applications to be built on top of
a wide variety of storage systems. SRB, in conjunc-
tion with the meta-data catalog, provides a way to
access data sets and resources based on their at-
tributes rather than their names or physical locations.
This is done by using a logical namespace with a map-
ping for each data object (file) from a logical to a
physical name and location. Each data set stored in
SRB has a logical name, which may be used as a han-
dle for data operations. In SRB, files or objects are
represented as data sets, or digital entities. Similar
to the virtual directory in GNS, the term collection
indicates a hierarchical tree structure used to group
multiple data sets. Although SRB provides a complete
solution for distributed data management and ac-
cess in grid computing, it requires significant deploy-
ment efforts. Because SRB is more than simply a
namespace, a working SRB system requires a great
deal of infrastructure in order to store and access
data.

Globus.** The Globus Toolkit contains key features
needed for a file-system grid. The GSI provides strong
security based on a public key infrastructure using
server certificates and user proxies. This arrangement
may not scale to global scope without additional
mechanisms, but it has many benefits, such as secur-
ity and autonomy, that provide a stable foundation.
Building on that foundation are several authoriza-
tion systems, for example, the Community Autho-
rization Service,16 though the group and ACL model
of AFS and DFS may be more suitable for file-system
use. RLS provides a mechanism for locating replicas
by mapping between logical file names and physical
file names. The logical file names are flexible enough
to allow use as a location service even for unrepli-
cated data. This flexibility results from a lack of struc-

Namespace clients
traverse path names

by performing lookups
at a series of

GNS instances.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 705

ture that prevents RLS from providing a general so-
lution to the namespace problem. While its focus on
file-level replication is a scalability concern, this can
be mitigated to some extent by deploying one or
more instances per domain.

The file transport standard in Globus is GridFTP,
a secure and efficient protocol based on FTP extended
to support GSI, parallel data transfers, and other fea-
tures. Enhancements in Version 3.2 of the toolkit,
which provide machine-readable file listings17 and
chmod(), 18 improve support for attributes. Still miss-
ing is a means for modifying other attributes and sup-
port for synchronization operations such as byte
range or open locking. However, it remains uncer-
tain how far GridFTP should be extended in the di-
rection of making it a distributed file system.

Plan 9. The Plan 919 operating system uses the file
system namespace to represent, control, and mon-
itor virtually all system resources. The file system�s
message-based interface, called 9P, provides a uni-
form access method for all these objects. The 9P pro-
tocol is easily mapped onto a secure channel and can
provide interprocess and network communication.
Each process has its own private namespace to hold
all the resources that it can access. Resources can
be passed between processes and across the network
to allow sharing and location-independent access.
Plan 9 has been proposed20 as an ideal grid oper-
ating system, called 9grid, because it naturally pro-
vides secure, uniform access to resources locally and
across the network. Many of the mechanisms nec-
essary for a grid toolkit on other systems are basic
features of Plan 9.

The namespace-oriented architecture of Plan 9 ex-
tends the UNIX device model and the /proc file-sys-
tem concept to all accessible resources and shows
the power of unified naming and access methods.
Each process has its own namespace under its con-
trol, which supports privacy, security, and autonomy.
Because completely private namespaces would be
of limited utility, Plan 9 uses delegation when mount-
ing remote file systems and conventions to assure
uniformity of major branches of the namespace. Plan
9 is an operating system, and interoperation relies
upon homogeneous nodes and a uniform file-system
protocol. However, the ideas and experience are rel-
evant to the present global namespace effort.

Other related technologies. To leverage existing de-
sign and development efforts in this area, those im-
plementing GNS should consider existing compo-

nents. Possibilities to consider include OGSA (Open
Grid Services Architecture), DNS (Domain Name
System), and LDAP.

OGSA and WSRF. The rapid development of the In-
ternet makes access to file data via Web services a
requirement for grid computing. A service-oriented
architecture (SOA) is based on the premise that a sys-
tem can be decomposed into a collection of network-
connected components. SOA describes the overall ap-
proach of building loosely coupled distributed
systems. Grid computing provides an evolving open
set of standards for Web services and interfaces that
are based on SOA and make services, or computing
resources, available over the World Wide Web.

Open Grid Services Architecture (OGSA) is a Global
Grid Forum (GGF) standard for building a basic plat-
form to support the plugability and composability
of heterogeneous resources, including file systems.
The Web Services Resource Framework (WSRF) is
a framework that models stateful resources and cod-
ifies the relation between Web services and resource
participants. WSRF is a convergence standard be-
tween grid and Web services. In this framework, the
WS-Resource Properties standard defines how data
is associated with a stateful resource, and the WS-
Resource Lifetime standard allows users to specify
the period during which a resource definition is valid.
The GNS is designed to work under OGSA and be
plugged into WSRF. In particular, the OGSA data ser-
vice proposed by the GGF DAIS (Database Access and
Integration Services) Working Group provides a uni-
fied data access and management paradigm based
on WSRF. The GNS could be used by an implemen-
tation of an OGSA data service to access file data with
a global namespace.

Domain Name System. The Domain Name System
(DNS) has a long history of robustness in the open
and large-scale environment that GNS also targets.
The architecture and existing implementations used
by DNS may be suitable for holding GNS data, espe-
cially for naming organizations near the root of the
namespace. The existing infrastructure for manag-
ing domain name information, however, is probably
not conveniently extended to hold lower-level file sys-
tem namespace entries. The coordination necessary
to share a database used for two such disparate pur-
poses would probably be more trouble than it was
worth.

LDAP. Because this is perhaps the most prominent
directory service available today, it is natural to ex-

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004706

amine the possibility of using it to implement GNS
instances.21 Using existing LDAP deployments in en-
terprises and organizations can help reduce the man-
agement overhead of maintaining GNS and help
consolidate the information and technology infra-
structure. LDAP defines a communication protocol
for accessing and searching a database of entries an-
notated with attributes. Accordingly, LDAP does not
define a directory service but rather the transport
and format of messages used by clients to access data
in a directory. These messages deal with directory
entries, whose structure and relationships are de-
scribed by a schema.

An earlier system, proposed by Sun Microsystems
and standardized by x/Open (now The Open Group),
defines an API for federating directory services such
as x.500, DNS, and NIS, which is called x/Open Fed-
erated Naming22 (XFN), though it does not address
specifically how file systems can be federated into
one namespace.

It may be useful at this point to identify the prin-
cipal characteristics of a directory, as compared to
a general-purpose relational database, to better un-
derstand the connection between the proposed hi-
erarchical namespace service and existing directory
services such as those built using LDAP. A directory
is a structure for organizing information about ob-
jects that maintains information about each object;
a common analogy is a city telephone directory. In
the context of LDAP, a directory may be defined as
a specialized database serving relatively static infor-
mation that is optimized for high-volume read op-
erations. In contrast, general-purpose relational da-
tabases are more efficient at storing information that
changes rapidly. Relational databases typically re-
quire a more powerful and complex method of ac-
cess, such as structured query language (SQL). Di-
rectories use a simplified and optimized access
protocol that can be used in thin and relatively sim-
ple applications. Because directories deal mostly with
read requests, they generally do not support trans-
actions. As a result, strict consistency in a distrib-
uted environment is usually not practical.

Needless to say, there are a number of LDAP char-
acteristics that fit nicely with those of a namespace
service. First, data stored in a GNS should be rela-
tively static under normal circumstances. Secondly,
because a GNS offers a specific service, thin and op-
timized clients are possible and desirable. Other fea-
tures defined by LDAP that appeal to GNS include se-
curity, delegation, and referral mechanisms.

Despite these similar characteristics, a well-designed
namespace service has special requirements with re-
spect to hierarchical data management, consistency,
and replication. In hierarchical data management,
an inherent obstacle with standard LDAP implemen-
tations is the inability to modify (e.g., to rename) en-
tries within the hierarchy without affecting nested
subentries. This is due to the composition of the hi-
erarchy and how the hierarchy is established and de-
fined by LDAP. The LDAP naming model incorporates
a unique name, known as the distinguished name,
which unambiguously identifies each entry. Each en-
try�s distinguished name, its fully qualified name, is
based on its parent�s distinguished name. Hierarchy
within LDAP is therefore constructed through the re-
lationship found between entries and their respec-
tive distinguished names. This model requires that
all subentries, relative to a given entry within the hi-
erarchy, must be modified in the event that an entry
is renamed or moved. A relational database, on the
other hand, can effortlessly modify an entry�s attri-
butes without affecting any of its child entries be-
cause entries can easily be indexed by an internally
unique identifier that does not serve as an attribute
of the entry outside of the relational database. Ad-
ditional efficiencies can be realized with a relational
database when used as a distributed namespace man-
agement repository with file-system-oriented re-
quirements, such as renaming, moving, and recur-
sive operations.

Moreover, since relational database management
systems (RDBMS) generally support transactional
operations, it is naturally easier to ensure stricter data
consistency between read and write operations. Most
RDBMSs incorporate optimized mechanisms for data
replication, with transaction-based features, in a dis-
tributed environment. In fact, certain vendor prod-
ucts, such as IBM�s eNetwork LDAP directory,
use a relational database for their implementa-
tion. As a result of examining the architectural
purpose and function of various technologies cur-
rently available, we find that the most efficient, scal-
able, standards-based solution for a distributed to-
pology of GNS services would be comprised of a
request-handling engine backed by a relational da-
tabase that incorporates LDAP, among others, as the
communication protocol. This does not, however, im-
ply that a relational database is required to imple-
ment a GNS, but rather suggests that greater efficien-
cies can be realized when a GNS is implemented as
described.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 707

GNS features
This section presents the features of the GNS, includ-
ing its directory structure, meta-data use, and
interfaces.

Directory structure and junctions. A GNS instance
holds a tree of virtual directories originating at a root
directory. The root and each subsidiary directory
contain named entries that have one of two types:
directory or junction. Both types of objects may have
other attributes, but a junction is particularly char-
acterized by its target, which takes the form of a URL.
The target URL addresses a GNS instance or a file-
system object.

Path names are evaluated from the GNS root by tra-
versing intermediate subdirectories until the path

name is exhausted or a junction is reached. A junc-
tion in a GNS or file-system directory represents a
delegation of authority for evaluating subsequent
path name components. Both types of junctions in-
sert subtrees into the namespace. Thus, junctions
construct the namespace from various directory
services.

File-system trees are generally terminals of the
namespace because most file systems do not contain
junctions. Junctions could be inserted into file sys-
tems, however, to allow nesting of file-system trees
within other file systems. Such junctions could be im-
plemented several ways: using a special file-system
object (e.g., a specially marked symbolic link or di-
rectory), using a separate database, or with GNS vir-
tual directories. Interpreting these junctions would

Table 1 Junction types

Type Example Description

GNS junction gns://naming.ibm.com GNS instance
Logical file-system name rls://rls.arc.ibm.com/storage Subtree located via location

service
Logical file name rls://rls.arc.ibm.com/8493802 File located via location

service
Physical file-system name gsiftp://cvs.shark.tuscon.ibm.com/src Subtree on specific server
Physical file name http://grid.almaden.ibm.com/arc/info/papers.zip File on specific server

Table 2 GNS mapping table

Node Type Target

/gfs/globus.org GNS junction gns://gns.globus.org
/gfs/ibm.com GNS junction gns://gfs.ibm.com
/gfs/ibm.com/SG/ Virtual Directory
/gfs/ibm.com/SG/shark Physical file-system name gsiftp://cvs.shark.tuscon.ibm.com/src
/gfs/ibm.com/SG/empData Logical file-system name rls://rls.hr.ibm.com/TucsonEmployeeData
/gfs/ibm.com/ARC GNS junction gns://namespace.almaden.ibm.com
/gfs/ibm.com/ARC/csstorage Logical file-system name rls://rls.arc.ibm.com/arc_cs_storage
/gfs/ibm.com/ARC/ais Virtual Directory
/gfs/ibm.com/ARC/ais/fileX Logical file name rls://rls.arc.ibm.com/8493802

Table 3 Location service mapping table

Logical name Physical location

TucsonEmployeeData cifs://nas3.tucson.ibm.com/employeeData

arc_cs_storage gsiftp://storage.almaden.ibm.com
nfs://nas1.almaden.ibm.com/csstg

8493802 gsiftp://gridftp1.almaden.ibm.com/infofiles/8493802
https://w3.almaden.ibm.com/arc/info/8493802

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004708

require logic in the client or server code to handle
the referral to the target service.

A GNS junction target conceptually has one of five
types, summarized in Table 1. In one type, the tar-
get is another GNS instance. The other four file-sys-
tem target types may be either logical or physical and
point to files or directories. The term file junction is
used for logical or physical junctions whose target
is a file; similarly, the target of a directory junction
is a file-system directory. The four types are logical
file name, logical file-system name, physical file
name, and physical file-system name.

The URL for logical targets indicates both the loca-
tion service address and the resource name for the
file or subtree that is used as a lookup key in the lo-
cation service. The result of the location lookup is
a physical target. A physical target is one or more
URLs that include the information necessary to con-
tact the file service. This information includes pro-
tocol, interface, host, export, and path prefix. Rep-
licated data is indicated by multiple URLs and
therefore requires a selection step to pick the most
suitable replica. The name service only returns the
junction target; the tasks of contacting the location
service and replica selection are the responsibilities
of the GNS client.

An example of GNS use is depicted in Figure 1 and
annotated in Tables 2 and 3. Under the global root
directory, /gfs, two GNS junction points are shown,
which provide the junctions to the namespaces main-
tained separately by two different organizations (“ib-
m.com” for IBM and “ggf.org” for the Global Grid
Forum). Within ibm.com, SG is a virtual directory,
and ARC is another GNS junction point. Only virtual
directories are represented in GNS. They do not re-
side in any physical file systems, but they allow phys-
ical file systems or files to be hierarchically organized
in the virtual namespace. Under SG, shark is a junc-
tion to the physical directory subtree available at the
GridFTP server cvs.shark.tucson.ibm.com, while
empData is a junction to the logical name TucsonEm-
ployeeData, which is resolved to a CIFS share via a
location service at rls.hr.ibm.com. Under ARC, cs-
storage is a junction to a logical directory subtree
with the name arc_cs_storage. This logical directory
subtree name is resolved through a lookup to a lo-
cation service running on rls.arc.ibm.com. This log-
ical directory subtree is shown served out of a Grid-
FTP server csstorage.almaden.ibm.com and an NFS
file system csstorage on nas1.almaden.ibm.com. A
junction to a logical file, fileX, (in ais, a virtual di-

rectory) is also shown under the ARC virtual direc-
tory. GNS maps file X to a logical file name 8493802,
which is used for lookup at the location service and
mapped to a GridFTP server-based copy of the file
and a secure HTTP-based version.

Meta-data and access control. A key property of
any file system is that it attaches meaning to path
names by mapping the visible paths to file contents.
This is no less true of the namespace constructed
using GNS. Therefore the security of reads and writes
is crucial to ensuring that the meaning of a path name
assigned by a writer is preserved for all subsequent
readers. Each file system has mechanisms to define
permissions for operations and privileges for users.
Similarly, GNS associates an ACL with each entry that
controls creation and deletion operations that mod-
ify the namespace as well as the reads and lookups
used for accessing it.

The meta-data required for the main tasks of the GNS
consists of directory contents, junction targets, and
ACLs. Other attributes might also be useful in some
circumstances. Directory junctions delegate meta-
data handling, especially for subsequent name res-
olution, to a physical file system. On the other hand,
file junctions allow the GNS to perform authoriza-
tion and provide meta-data.

Figure 1 A GNS example

/gfs

ARCSG

shark ais

dst

wiki grid

Global Root

GNS Junctions
ibm.com ggf.org

empDataempData

fileXfileX

csstoragecsstorage

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 709

A GNS virtual directory containing file junctions could
replace a file-system directory and supplement file-
system meta-data for those files. Authorization is
shared between the GNS and the file system. The GNS
controls lookup rights while the file system controls
read and write access. Control of creation and de-
letion operations is held jointly; for example, cre-
ating a file requires inserting the file junction in the
GNS virtual directory as well as creating the under-
lying file object on an appropriate server. This split
responsibility can lead to consistency problems when
access to both the GNS and the physical file system
are unconstrained. One approach to controlling ac-
cess is for the GNS to issue capabilities that must be
used when communicating with the file server. A ca-
pability is a concept from operating-system security
research in which authorization is encapsulated in
a token whose holder is granted certain rights to a
specific object or service. Capabilities allow the pro-
cesses of authentication and authorization, which
GNS is well-placed to perform, to be decoupled from
the enforcement of access control by the file server.
Such a file system could dispense with its own di-
rectories and most other meta-data and operate as
an object store. This object file-system model is one
possible use of the GNS; in other situations the GNS
would only contain directory junctions to large file
systems.

A similar circumstance arises when the GNS is used
to store junctions pointing to files and subtrees within
physical file systems. In this case, GNS virtual direc-
tories overlay file-system directories and either the
file server or the GNS-aware client must merge them
together. This arrangement may be useful because
it allows unified administration of an organization�s
namespace both at a high level, where diverse file-
system resources are linked together, and at the lower
level where these resources are assembled from in-
dividual file-system trees. On the other hand, as men-
tioned above, this split responsibility can lead to con-
sistency problems. Storing junctions as special objects
in the file system, as in AFS or DFS, helps maintain
consistency but can be difficult to manage (and may
be infeasible for some file systems). The best solu-
tion for file-system-to-file-system junctions may be
a judicious combination of these approaches.

Interface. The GNS has one or more interfaces used
to access and modify the namespace. Operations re-
fer to GNS objects by path name. The paths are rel-
ative to the GNS instance�s single root. The subtree
of objects is location independent and could be vis-
ible via multiple absolute paths in the global

namespace. Namespace cycles cannot be prevented
because individual instances are autonomous; there
is no global authority to prevent, detect, or elimi-
nate cycles. Therefore, GNS clients must be prepared
to detect loops and handle such path names appro-
priately. The lookup operation can traverse multi-
ple components, terminating at a virtual directory
when the input path is exhausted. If traversal reaches
a junction, the GNS client must apply the unused path
components to the service indicated by the junction�s
target. It is also possible to perform lookups one com-
ponent at a time. The strategy of using multiple com-
ponents can save communication time (i.e., round
trips), but provides the GNS with more information
than it needs. This information leakage can have se-
curity implications.

The GNS supports a standard file-system-like inter-
face but only implements naming and meta-data op-
erations, such as lookup, creation, and setting at-
tributes. Because readers of the GNS are likely to be
far more numerous than writers, it may be reason-
able to support only read-only operations using a file
access interface and perform updates using an in-
terface more suited to data management or admin-
istrative operations. This separation of read and write
functions into different interfaces could have sub-
stantial benefits for system integration and mainte-
nance while having minimal impact on users. A junc-
tion target in URL form can be accessed as an
extended attribute or like a symbolic-link target.
Other extra attributes used by GNS objects include
ACLs. The names of directory entries are case-insen-
sitive, which does not reduce their utility and im-
proves compatibility with Microsoft Windows** and
DNS interfaces.

Synchronization is needed to coordinate the reads
and writes of the namespace. This simple statement
belies the complexity of the subject because the re-
quirements range across many different parts of the
namespace. In addition, synchronization also serves
the purpose of maintaining consistency for caches
of namespace data. Near the root of the global
namespace, readers vastly outnumber writers and
performance requirements are stringent. On the
other hand, closer to the leaves of the namespace,
updates may be nearly as frequent as lookups, and
the benefits of explicit synchronization mechanisms
may be worth their expense. At the top of the
namespace, a time-to-live23 approach is perfectly ad-
equate, while at the bottom, the trade-offs are more
difficult, and one or more appropriate mechanisms
need to be identified.

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004710

Operational aspects

This section presents design aspects of the GNS
that must be considered in creating a GNS
implementation.

Namespace organization. The global namespace can
be divided into three sections: the root, the GNS, and
physical file systems. Names in the root directory rep-
resent the origins of control for various namespace
owners. The GNS defines global prefixes for files and
subtrees. File systems export terminal files, subtrees,
and file systems.

The root directory presents very significant control
and performance problems, and it is constructed ac-
cordingly to balance the conflicting needs of unifor-
mity and autonomy. The use of conventions in its
definition provides sufficient global uniformity for
practical purposes. Autonomy is preserved by com-
posing the root directory locally from an ordered list
of sources, such as a configuration file for local and
domain-level names and DNS for global names. Lo-
cal names might be used for scratch storage and pri-
vate names for defining convenient aliases for fre-
quently used data. Domain names might be used to
address proprietary organizational information.
Global names provide access to resources anywhere
on the network. Using DNS records (e.g., type TXT
or AFSDB) allows the use of existing name owner-
ship to provide a well-defined structure for the root
of the global namespace. By using an ordered list of
sources for the root, local configuration can over-
ride names defined later in the list, while allowing
most names to be the same everywhere. In effect,
the root directory is a special GNS instance fabricated
by the GNS client based on local configuration
information.

Many GNS instances define the top levels of the global
namespace. Each owner of a name in the GNS root
(e.g., “ibm.com”) operates an instance for direct path
name lookups to appropriate resources. Entities with
a decentralized internal structure may operate sub-
sidiary GNS instances (e.g., “ibm.com/research” or
“ibm.com/research/almaden”). This hierarchy of GNS
instances may mirror an organization�s DNS hierar-
chy or may follow a different logic. When the struc-
tures are compatible, the DNS names may replace
one or more levels of the GNS hierarchy. Within an
organization, the GNS is used to assemble a large
namespace from the smaller namespaces of individ-
ual file servers. This can occur in cases of large gran-
ularity, with a few junctions to large monolithic file

systems, or at a finer grain, with smaller subtrees be-
ing assembled into a structure relatively independent
of servers and file systems.

Global path names eventually reach a junction to a
file system. Within a file system, path name evalu-
ation occurs normally, with file and directory access
using a protocol appropriate for the hosting file
server. File systems and protocols that support junc-
tions can further extend the namespace by assisting
the GNS in lacing together individual subtrees into
a namespace shared by all users.

Each GNS instance and file server owns a portion of
the namespace. As the owner, it can delegate, with
junctions, responsibility for lower portions of the
namespace. The result is that each part of the
namespace has well-defined ownership. A conse-
quence of this is that unique names for resources
such as files can be defined easily.

Security. The GNS depends upon mutual authenti-
cation of both services and requestors to inform each
end of a communication channel as to the identity,
or principal, of the other party. Authentication of
requestors is necessary for access control. The au-
thentication of services to clients validates the re-
sults of the path name evaluation that maps from
path name to file contents. This validation is nec-
essary to assure that data consumers see the same
data the data producers intended. This is the most
basic contract a namespace service has with its users.
However, this assurance depends on factors beyond
the basic security of the authentication process.

Several services are involved in a path name traversal,
and additional services are involved in mapping from
logical to physical targets. During namespace tra-
versal, junctions have a delegation function, and the
creator of the junction is implicitly asking the client
to extend his trust in the current service to the tar-
get service. When contacting the location service,
trust is again required to ensure that the logical name
and the physical names represent the same data. This
trust can be conveyed in two ways. The principal
name for the service may be an X.509 subject that
is assembled from the service name, server name,
and other characteristics and verified by a certificate
signed by a certificate authority. Alternatively, the
service�s public key may be embedded in the junc-
tion when it is inserted into the namespace. The lat-
ter approach is safer, as it tightly binds the junction�s
path name to the service to be used for path names
with that prefix. Ensuring that the junction keys re-

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 711

main valid, however, even as data moves or is rep-
licated, is a significant challenge.

Authorization is an important aspect of GNS, and it
should be compatible with that used by both file sys-
tems and administrative tools. While other ap-
proaches are possible, the ACL mechanism for de-
scribing and evaluating access control has long been
used in both file systems and other secure applica-
tions. ACLs benefit greatly from the use of a group
abstraction that bundles authentication principals

into named collections. Groups allow ACLs to be
more compact and expressive, and the resulting se-
curity is more reliable and transparent. Scalability
requires that group creation and maintenance is
something ordinary users can do. Otherwise, the ad-
ministrative burden of creating and updating groups
inhibits their use by making ACL usage needlessly
cumbersome, to the detriment of the whole system�s
security. A global namespace requires an authenti-
cation and authorization system of similar extent and
scope. More work remains to be done in this area.

The security of the entire file system is limited by its
weakest link. Because the security of the namespace
underpins the security of the entire system, it is cru-
cial that the namespace use the strongest practical
security. For example, if GSI were used for the
namespace, file access protocols such as GridFTP,
which also uses GSI, or NFSv4, which can utilize the
GSSAPI (Generic Security Services Application Pro-
gramming Interface) based on the same authenti-
cation mechanisms, would be able to perform
securely.

On the other hand, NFSv2/v3 is notoriously insecure,
and even now implementations based on a secure
foundation are not widely available.24 To mitigate
the security weakness in environments where an in-
secure remote NFSv2/v3 server needs to be accessed
across a wide-area network, a local NFSv2/v3 server
can potentially be used to serve a replica or a proxy

cache.25 The replication or caching mechanism can
use a secure protocol or channel, such as IPsec. The
GNS allows such a replica or proxy cache to be re-
corded in the location service as described earlier in
this paper, making it visible to the clients. When the
local NFS server serves files out of a replica or cache,
access control decisions may require user ID map-
ping if the user IDs on the local machine belong to
a different user domain from that of the remote
server. This does not solve the fundamental prob-
lem of NFSv2/v3�s trust on client machines in present-
ing user IDs, but it does contain these issues to the
local network. It is also possible to reduce the trust
requirement in NFSv2/v3 clients through some out-
of-band authentication mechanism.

For example, a custom logon utility program on a
UNIX NFS client machine can be used to authenti-
cate a user with a local UNIX user ID to an NFS server
using Kerberos or some other challenge-response
mechanism. The NFS server then maps the user ID
from the client machine to the authenticated user
identity on the server. Subsequent NFS request mes-
sages with this user ID are considered to be from the
authenticated user, and an NFS client machine is only
trusted to present user IDs recently authenticated
from the client machine (i.e., within a configurable
period of time, such as 30 hours). Note that this au-
thentication mechanism is still vulnerable to IP spoof-
ing, which can be a bigger threat in wide-area net-
works. For NFSv2/v3 clients, the namespace is not a
panacea, but with a proxy or replica server, valuable
improvements in security can be achieved by con-
taining client accesses to local networks.

While GNS supports strong security, the namespace
does not require it of file systems. Deploying a se-
cure namespace that enables collaboration by using
secure file systems may encourage improvements in
other file systems and the authentication and autho-
rization infrastructure they require. For example, it
may foster wider and quicker adoption of GSI, NFSv4,
and other secure components.

In general, security is a large topic that goes beyond
authentication and authorization mechanisms to in-
clude communication systems, protocols, software
integrity, physical protection, managerial issues, eco-
nomic trade-offs, and even philosophic questions of
what trust really means. Securely deploying a global
namespace requires integration with many existing
systems, which will necessarily be difficult and im-
perfect at first. Federating multiple file access pro-
tocols also has security implications because mis-

Authorization is an important
aspect of GNS, and it

should be compatible with
that used by both file systems

and administrative tools.

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004712

matches in authentication and authorization
mechanisms must be bridged while still preserving
necessary security. The namespace�s global scope
means that principals from one domain will need a
representation in other domains, or else security
must be disabled or sharing prohibited. Real collab-
oration requires a middle road. While this paper ad-
dresses the necessary naming component, there are
significant issues to address in the security domain
as well.

Interoperability interfaces. The namespace con-
structed by GNS needs to be made available via or-
dinary file-system interfaces in order to encourage
adoption and ease of deployment in environments
with existing file-system clients. The mapping of read-
only namespace functions to file-system directory and
meta-data operations is straightforward. A GNS wrap-
per for each file-system protocol could accomplish
this mapping. The protocol support could be inte-
gral to the GNS instance or implemented as an ex-
ternal translator acting as a file-system server and
as the GNS client of one or more GNS instances. A
file-system server that exports only GNS data and no
actual file data acts as a GNS proxy.

Some complications in mapping semantics between
a file-system protocol and the GNS interface exist,
such as simulating unsupported attributes, represent-
ing junctions, and providing synchronization. File-
system attributes that do not have analogues in GNS
can generally be synthesized or replaced with some
appropriate constant value. However, some at-
tributes, such as NFS permission bits, may be more
difficult to handle. Synchronization of writers with
readers is handled in file systems by using byte-range
and session locks, and various cache consistency
mechanisms, such as OpLocks,26 time-to-live, and
callbacks.27 Approximate matching of these opera-
tions is usually acceptable. However, when more ex-
act semantics are required, matching is difficult. More
study is needed in this area.

Handling junctions is critical to efficient operation
of the namespace, as they allow the namespace and
the GNS proxy to get out of the data path once path
name traversal is completed. The NFSv4, CIFS, and
HTTP protocols support referrals, which can be used
to return information about junction targets to these
file-system clients. These clients expect physical tar-
get information, so proxies for these protocols will
act as GNS clients and contact the location service
to translate logical names to physical ones. The phys-
ical target, or list of targets in the case of replicated

data, is translated by the proxy into the NFSv4 pa-
rameter “fs_location,” CIFS parameter “DFS_REFER-
RAL,” or HTTP redirect responses, as appropriate.
The client can then access the file-system data di-
rectly without further contact with the GNS proxy.
File-system clients for older NFS versions and FTP,
however, will require proxies or one of the techniques
described later in this paper to access data referred
to by global path names.

GNS clients. Path evaluation requires requests to
GNS for name lookups and to a location service for
physical targets. The data are then accessed using
a protocol appropriate for the target. There are
trade-offs between different approaches for imple-
menting this combination of functionality. If clients
and servers share a protocol supporting referrals,
then using a GNS proxy is sensible. Multiprotocol
servers, such as several NAS appliances, are increas-
ingly common, and make this approach attractive.
Another approach is possible for multiprotocol cli-
ents for which both Microsoft Windows and UNIX
have some support. In the UNIX case, for example,
the automounter could be used to translate GNS junc-
tions into suitable parameters for the mount com-
mand and provide the client with access to the global
namespace. On the other hand, joining clients to
servers that have no protocols in common requires
a file-system proxy such as a gateway or caching ap-
pliance. Finally, GNS support can be added to a cli-
ent or application with a user or kernel library that
can handle GNS lookups, location mappings, and mul-
tiprotocol file-system access. This approach can have
advantages but at a greater cost than the other
approaches.

Proxies behave as servers for one file-system proto-
col while operating as clients of the GNS, the loca-
tion service, and the target�s file-system protocol.
Such proxies can provide protocol translation, en-
abling federation and shared caching that benefits
performance.

In addition, they can support data replication and
migration, allowing centralization of data manage-
ment tasks, while hiding the complexities of these
operations from the file-system clients. Thus, in ad-
dition to providing necessary support for some pro-
tocols, proxies may have utility for clients of all pro-
tocols. Figure 2 illustrates the paths used in GNS
accesses.

Scalability and performance. In order to provide a
distributed global namespace service, the GNS must

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 713

employ a scalable and extensible architecture. The
GNS proposes to leverage the existing infrastructure
whenever possible by utilizing existing DNS and LDAP
deployments. This approach offers the obvious ad-
vantages of resource management overhead reduc-
tion, resource investment consolidation, and reduced
requirements for installation and deployment. More-
over, this approach enables the GNS to assume the
scalability and performance characteristics exhibited
by these globally deployed architectures.

GNS service discovery and representation of the top-
level namespace, as mentioned in the subsection on
namespace organization, proposes to employ stan-
dard DNS. DNS is a time-tested architecture with truly
global scalability and proven performance. DNS has
been scaling in operation, with considerable reliabil-
ity, availability, and ample performance, since 1983.
DNS currently services an estimated 301 million
unique domain names worldwide, according to the
Internet Domain Survey of January 2004,28 acting
as a worldwide, distributed database.

DNS clearly offers a reasonable solution for the top-
level namespace of GNS. However, it is not suitable

for the storage, management, and security aspects
of GNS at lower levels of the service. As previously
discussed, LDAP is a promising candidate for provid-
ing GNS services from a server perspective. Due to
differences in the nature of their operation and ap-
plication, it is expected that LDAP would not perform
as well as DNS. LDAP does, however, provide a di-
rectory service which is optimized for read opera-
tions on large sets of data. This characteristic rep-
resents a desirable quality appropriate for GNS
services. Furthermore, some LDAP implementations
can store and serve over a billion objects. While dif-
ferent LDAP server implementations perform and
scale differently, one study revealed that an LDAP
server was capable of delivering 3175 message op-
erations per second using 10 clients.29 For that same
server, the search rate with 10 clients yielded 3147
operations per second.

Extensibility is an even more notable aspect of LDAP
scalability and performance. LDAP installations can
begin small, both in terms of size and price, and of-
fer virtually limitless expandability. This expandabil-
ity can often be realized easily without retooling or
application modification.

Figure 2 GNS access paths

Multiprotocol
File Access

Single
Protocol
File
Access

Location
Service

Global Namespace
Service

Global Namespace Lookup
File Access

Automounter NFSv2/3
Clients
(using automounts)

NFSv4, CIFS
Clients
(using referrals)

All Clients
(single mount for global
namespace)

Proxy Cache,
Protocol Gateway
(single namespace rendered
transparently, protocol
translation allowed)

GridFTP
Server

Other
Protocols

NFS
Server

CIFS
Server

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004714

Examples

This section supplies concrete examples in the im-
plementation of the GNS.

Usage scenarios. Imagine a loosely collaborative sci-
entific enterprise, consisting of 10 large organiza-
tions, each with 50 file servers. Each organization
has perhaps 250 local users, who mostly use the files
on their local servers. Even within a single organi-
zation, our proposed uniform namespace helps those
users navigate among the changing set of file serv-
ers. Each user mounts just one root of the namespace
and is potentially connected to any of the files for
which he or she is authorized; if the user moves to
another workstation, the names of the files do not
change. If a user wants to identify a file to be shared
with a colleague at one of the other nine organiza-
tions, a simple file name will suffice—and that file
name is exactly the same file name by which the user
already identifies the file. The remote colleague�s
workstation also uses the same global namespace,
identifying the correct file server at the first orga-
nization and the correct file within that server. Path
names in the global namespace thus act as unique
identifiers to content, similar to the capability pro-
vided by HTTP URLs in the World Wide Web. This
enables a more efficient mode of information shar-
ing by simple mechanisms such as e-mail, where a
path name is exchanged in the body of the e-mail
instead of using a bulky attachment. As long as the
recipient of the e-mail has a suitable file-system cli-
ent installed locally, such information sharing via file-
system namespace references is simple. This is a com-
mon paradigm for information sharing in AFS and
DFS environments where the sender and receiver
both have AFS clients installed. Our heterogeneous
global namespace solution enables the same capa-
bility with standard clients supporting NFS and CIFS
protocols.

Suppose that one of these large organizations, in ad-
dition to its 250 local users, has 100 satellite users,
each with small laboratories and requirements for
local file storage. Small file servers can be installed
in the small laboratories, and they can be included
in the global namespace for that organization. Work-
stations in the lab can refer to files in the same lab,
at the central site, or at the remote site, all simply
by naming those files, and the file names will not
change regardless of where the user sits.

In both of these examples, the global namespace
forms an abstraction layer that hides the actual lo-

cation of the files in addition to making the location
of the user irrelevant. The namespace serves as a use-
ful abstraction for additional file and file-system ser-
vices: files can be replicated to multiple locations,
but all the replicas can share a single name, and work-
stations can make use of the nearest replica to sat-
isfy requests for the replicated file. File systems can
be rehosted on different servers, and by updating the
location server, the namespace that pointed to the
old location can be made to point to the new loca-
tion. Such operations allow for files to be migrated
from old to new systems without disrupting the ex-
pectations of users, achieving the dream of the trans-
parent upgrade. The global namespace we propose
can accomplish all this.

The global namespace abstraction will also fit nat-
urally with database-managed files. IBM�s DB2* Dat-
aLinks30 is one such mechanism. It uses a new SQL
type—“DATALINKS”—the content of which is rep-
resented as a URL providing the path name and server
name (or cell name for DFS). A DB2 server that sup-
ports the DataLinks mechanism interacts with a
DataLinks file manager running on a file server to
implement referential integrity and coordinated
backup. A path name in our global namespace
scheme could be included as a reference in a
DataLinks field, though providing the enhanced
services of the DataLinks file manager would require
additional integration work. In a way, DataLinks pro-
vides a database view of files as data objects in the
same way that GNS creates a hierarchical file-system
view of files using file junctions. The ambitious ap-
proach taken by DataLinks addresses the problems
of consistency between the GNS and file systems aris-
ing when file junctions are used, but at the cost of
deploying a DataLinks file manager for each sup-
ported file system. File-system junctions represent
a clearer delegation of authority presenting simpler
consistency issues.

Deployment options. The following subsection de-
tails available alternatives for legacy distributed-file-
system clients to utilize the global namespace.

GNS proxies. One approach enabling legacy distrib-
uted file-system clients to access the global
namespace is via GNS proxies. A GNS proxy for a given
file-system protocol uses GNS access methods to tra-
verse the global namespace of virtual directories and
junctions and present information to the legacy cli-
ent (e.g., CIFS, NFSv2/v3, NFSv4) in a form that would
be understandable to that client. Such a proxy would
require GNS client functionality and access to the lo-

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 715

cation service for translating logical to physical tar-
gets, but it would not export ordinary file-system data.
Virtual directories in the namespace that are discov-
ered by the proxy by querying one or more GNS serv-
ers would be returned as directory objects to the leg-
acy clients. On the other hand, a reference to a
physical file system that is located as a leaf node of
the global namespace could be returned to the leg-
acy client either as a file system referral (if supported,
e.g., for CIFS and NFSv4), or in a special represen-
tation that can be used by the legacy client, when
enhanced appropriately, to mount the new file sys-
tem. Various options to achieve the latter for NFSv2/v3
are described below.

The location service is conceptually an independent
database accessible via some network protocol. The
database stores mappings from logical names for files
and file systems to the physical addresses at which
they can be found. Each administrative domain main-
tains its own location service to track the location
of its storage resources. RLS is one possible realiza-
tion of the location service. While RLS was devel-
oped to support replica location, clearly the degen-
erate case of a single replica provides the desired
location services as well. Another possibility is to use
an LDAP server with a suitably designed schema. In-
deed, the location service could be collocated with
the domain GNS, and the same database engine could
store both databases.

CIFS. Microsoft Corporation�s MS/Dfs leverages the
referral capability of CIFS (SMB) to support the cre-
ation of a global namespace. An MS/Dfs global
namespace is constructed from various exported file
systems (called shares) by an administrator, who cre-
ates MS/Dfs links that map a path in the MS/Dfs
namespace to a separate file system by using the Uni-
versal Naming Convention (UNC) name of the form
\\servername\sharename. MS/Dfs links are thus junc-
tions that can be used to construct nested file sys-
tems. An MS/Dfs namespace can be traversed by an
unmodified CIFS client using standard operations;
when it traverses an MS/Dfs link, the MS/Dfs server re-
turns a “PATH_NOT_COVERED” error code, the CIFS
client returns to the server with a “GET_DFS_REFER-
RAL” request, and the server responds by returning
a referral (or more than one if there are multiple
replicas). Each referral structure provides the UNC
name of the server to contact and the path name to
start with. There is support in CIFS for referring a
client to a file system exported by a different pro-
tocol (e.g., the Netware** example is well docu-
mented), but support for multiprotocol referrals has

a critical dependency on the presence of the appro-
priate type of redirector in the accessing client.

This capability of CIFS can be very easily used by a
dataless CIFS server in the role of a GNS proxy to pro-
vide a legacy CIFS client access to the multiprotocol
global namespace constructed with GNS and location
services. This server is dataless in the sense that it
does not export local file-system shares. Such a GNS
proxy (e.g., gnsCifsProxy1.raleigh.ibm.com) would be
the root server for legacy CIFS clients, and it could
export the root of the global namespace (/gfs) as
some arbitrarily named share (e.g., “gnsroot”). Re-
ferring to the example of Figure 1, if a CIFS client
referenced the UNC name \\gnsCifsProxy1.raleigh.
ibm.com\gnsroot\ibm.com\SG\empData, it would get
an error code of “PATH_NOT_COVERED,” and on re-
questing an MS/Dfs referral, would get a response back
to the CIFS server at Tucson, as the UNC name
\\nas3.tucson.ibm.com\employeeData. In returning
such a referral, the GNS proxy has to consult the lo-
cation service because CIFS referrals have to be phys-
ical targets. The CIFS client can then access this CIFS
server directly, bypassing the proxy and the entire
GNS-based infrastructure. In this example, a naming
convention for the CIFS-based physical target is as-
sumed, namely, that the share name follows the
server name. Note that a file system can be an MS/Dfs
namespace containing nested file systems, and nor-
mal MS/Dfs referral mechanisms handle that portion
of the namespace traversal.

NFS versions 2 and 3. The same global namespace
can be rendered for use by legacy NFS clients (i.e.,
NFS versions 2 and 3). Assumptions built into NFS
and UNIX introduce the restriction that only file sys-
tem junctions are usable, and junctions to single files
are not visible. Because legacy NFS lacks the concept
of a file-system referral, it is more complicated to
render the GNS for such clients, but there are at least
three methods that can accomplish it by using the
automounter. The use of the automounter can al-
low multiprotocol support in machines configured
with appropriate client file systems. For example, a
UNIX system with both NFS and Samba support could
access file systems on both NFS and CIFS servers. All
such methods presuppose that the file-system junc-
tions in GNS can be known to the automounter. Pos-
sibilities include defining an executable map that
queries the GNS, using local maps updated by scan-
ning the GNS periodically, or having the automounter
use a network data source that is backed by queries
to the GNS. One automounter network source is LDAP
holding NIS data as defined by RFC 2307.31 Because

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004716

the GNS may be implemented using LDAP, some com-
monality may be possible, as with DNS, but the sche-
mas are likely to differ such that LDAP automounter
maps would be a transformed representation rep-
licating the relevant GNS junctions.

Furthermore, for junctions from one file system to
another, the assumption is that the NFS server can
be modified to render the junctions in a specific way.
This assumption is the basis under which we simul-
taneously export the same file system via multiple
protocols, so that junctions are rendered one way
via a CIFS server, another way via an NFSv2 or NFSv3
server, and yet another way via an NFSv4 server. On
the server�s file system, the junction might be rep-

resented as a symbolic link of a given format, such
as a symbolic link to gns://abc in which abc is the
logical name for the target file system. We then rec-
ognize this pattern in each of the file exporters for
a given file system. Although it would be possible to
record physical rather than logical names in the file
systems so that one file system could refer to another
without requiring a logical-to-physical evaluation, we
prefer to use logical names in this role to allow for
future changes to that logical-to-physical mapping
without having to change the data in all the parent
file systems.

The first legacy rendering method uses a dataless GNS
proxy for NFS, much like the one described for use
with CIFS, so that names and directories wholly within
the GNS are rendered as NFS names and directories,
but in which file-system junctions are represented
as empty directories. Simultaneously, these empty
directories are represented to the automounter as
trigger nodes, directing clients to mount NFS file sys-
tems at those points in the tree. Thus, as legacy NFS
clients navigate their way through the global direc-
tory tree, the GNS proxy and the automounter co-
operate to make the appropriate file systems appear
as needed. In GNS, file systems themselves can also
contain junctions to other file systems. The NFSv2 and

NFSv3 servers can represent these junctions with
empty directories, and the automounter can know
about all the nested junctions as well, so that child
file systems are mounted atop these empty directo-
ries by the time applications actually traverse through
them.

The second legacy rendering replaces the dataless
GNS proxy for NFS with what some automounter ver-
sions call offset mounts.32 This allows the auto-
mounter to create the appropriate virtual directo-
ries and names up to the point of a file-system
junction, which the automounter would cause the
legacy client to mount as usual. Offset mounts are
not widely supported, though. File-system-based
junctions to other file systems could be rendered as
above, with empty directories overlaid by the
automounter.

The third legacy rendering uses the dataless GNS
proxy for NFS, but renders junctions to logical file-
system names not with a direct or trigger mount, but
rather as a symbolic link to a well-known path-name
pattern. For example, if a server file system contained
a junction to the logical name “xyz,” this could be
rendered to the legacy NFS client as a symbolic link
to /.gns/xyz. The reserved /.gns directory would it-
self be served by the automounter. Perhaps via an
executable map, the location service would be con-
sulted for the physical locations of file system xyz,
and then the automounter would mount that file sys-
tem atop /.gns/xyz. Client applications would follow
the symbolic link, whereupon they would be led into
the appropriate target file system. Thus the need for
the automounter to know the exact locations of the
file-system-to-file-system junctions before they are
discovered in the server file systems is removed. As
mentioned above, this rendering makes it most ad-
visable to use logical names rather than physical ones
in the file system�s local representation of junctions.

NFS version 4. NFS version 4 is highly analogous to
CIFS: the version 4 protocol defines referrals directly.
NFSv4 servers can refer clients to other servers,
though this is done with an optional part of the NFSv4
protocol. Clients that do not implement this part of
the protocol can be integrated into the GNS in the
same way as legacy NFSv2/v3 clients. Clients that do
implement this part of the protocol work as CIFS
does. Thus, a dataless NFSv4 server can be a proxy
for the high-level GNS namespace, and that proxy can
refer NFSv4 clients to file-system trees (though not
to individual files).

The use of the automounter
can allow multiprotocol

support in machines
configured with appropriate

client file systems.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 717

An NFSv4 server can render the common junction
representation (e.g., a symbolic link to gns://
somename) by consulting the location service to de-
termine the corresponding physical name (or names)
for the referral, and then returning them to the cli-
ent as fs_locations information. There have been sug-
gestions that fs_locations should be extended to pro-
vide a logical name for evaluation by the client.33

Generally, with all these file-system renderings of the
GNS, a given client will be able to see only that por-
tion of the global namespace that is represented by
file systems exported by protocols that are under-
stood by that client. For example, if a CIFS-only cli-
ent is navigating a global namespace made up of file
systems exported only via CIFS or NFS, then those por-
tions of the namespace exported only by NFS will be
inaccessible from that client. However, it is straight-
forward to export file systems using more than one
protocol at a time, as many NAS products do, and it
is not uncommon for clients to be capable of nav-
igating multiple protocols. (If nothing else, clients
can often handle multiple versions of NFS
interchangeably.)

Distributed SAN File System. The Distributed Stor-
age Tank (DST) is an ongoing IBM research project
that extends the IBM TotalStorage* SAN file system
for heterogeneous and distributed file sharing, in-
cluding sharing in wide area networks. The aim of
this research project is to demonstrate how SAN (stor-
age area network) file systems can be extended to
allow one SAN file-system cluster to interoperate with
other SAN file-system clusters as well as various other
types of file storage systems, such as NAS appliances
and data grids. The DST provides its clients with a
unified file access interface to these distributed and
heterogeneous data sources. File data from globally
distributed sources are rendered with SAN speed
through server-managed caching and replication.

To demonstrate global namespace management and
rendering functionalities in the DST, the project has
developed working prototypes of the GNS server—
with an RDBMS back end, graphical service manage-
ment tool, and file-system client. The file-system cli-
ent currently functions as a component of the DST,
rendering the GNS namespace via the SAN File Sys-
tem meta-data server, making the global namespace
immediately available to all SAN- and gateway-con-
nected clients without any modification to the
clients. Although the GNS originated from the DST
project, and the prototype implementation is
demonstrated by the DST, its application is not lim-

ited to the DST. In fact, the namespace service ar-
chitecture and naming model proposed by the GNS
offer an interoperable namespace solution that is
neutral to file-system protocols and technologies.

When a GNS client is deployed within a proxy, as is
the case in our prototype implementation, a num-
ber of additional valuable features are realized. All
clients of the file-system server or proxy experience
a transparent view of the global namespace. The DST
operates as a cache proxy, rendering the global
namespace and caching the remote data represented
within it. All referral connections and data transports
are performed by the server or cache proxy, thereby
relieving the file-system clients from the responsi-
bilities of namespace service intelligence as well as
protocol support for remote data sources. The pro-
totype implementation demonstrates the feature of
a cache proxy that supports multiple protocols, in-
cluding NFS, FTP, and GridFTP, and so provides
transparent access to global data. When data is scat-
tered over heterogeneous sources, this is certainly
an attractive capability.

The prototype implementation demonstrates the
ability to mount the global namespace at the root
of a file-system client�s directory tree or file-system
view. Once a user or application enters this special
global namespace mount, all file-system requests are
directed to the cluster meta-data server (MDS) com-
ponent responsible for handling dynamic global
namespace requests. This component employs the
previously discussed GNS client, which is responsi-
ble for communicating with the namespace service
and converting the results presented by the service
into file-system-specific entities that have meaning-
ful representation in the local/clustered file system.
For example, a service response message that con-
tains a number of virtual directory entries accom-
panied by respective attributes is converted into file-
system directories with corresponding attributes. As
a result, if the file-system client issues a directory list-
ing command (“ls”) at the root of the global
namespace, the MDS handles the request by first que-
rying the namespace service. This typically returns
a number of virtual directories (at the root level).
The virtual directories are converted to file-system
directories. After the newly created directory entries
are stored in the MDS, their listing is returned to the
requesting client and appears to the file-system cli-
ent as standard directories. The more exciting ex-
ample is when a file system client lists the contents
of a directory that is actually a namespace junction
to a remote data source. In this case, the MDS com-

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004718

ponent responsible for handling global namespace
requests identifies that the result of its GNS query
represents a junction to a remote file system. A lo-
cal file system container is dynamically constructed
and commissioned to serve as a cache of the remote
file system, and a connection to the remote file server
is established. The meta-data of the remote direc-
tory is cached in the corresponding local container
and subdirectory, and file entries are created in it
and are then returned to the requesting file-system
client. With data read requests, the same process is
followed, with the addition of data transfer taking
place before returning to the file-system client.

Deployment comparison. It is instructive to compare
the facilities that may be rendered with each of the
protocols or systems described in the previous
section.

CIFS can render the parent GNS space as well as file-
system-to-file-system junctions. The targets of CIFS
referrals can in principle be file systems exported over
a variety of protocols, though it is not clear how well
this works in practice. GNS clients are used both in
the CIFS server and in the dataless proxy that ren-
ders the GNS.

NFSv2 and v3 require substantial help from the au-
tomounter to navigate both the parent GNS space and
any file-system-to-file-system junctions. Automounter
mounts can be a choice of NFS protocol versions. The
NFS automounter can mount only file systems, not
individual files. GNS clients are used both in the au-
tomounter data source and in the dataless proxy that
renders the GNS.

NFSv4 supports the same style of interaction that
CIFS does. The representation of referrals in version
4 points only to other NFSv4 servers, but subsequent
revisions might extend that to enable the descrip-
tion of referrals to a variety of file-server protocols.

Distributed SAN File System is capable of handling
all GNS features and facilities, including both file and
file-system junctions. It renders GNS as a file-system
client component of DST within a proxy and imposes
the requirement of using the proxy as an interme-
diary, which may or may not be convenient in a given
deployment and may or may not provide adequate
consistency assurances for the task at hand. But the
rendering is complete, and the proxy is the only
mechanism that ensures the ability to traverse a GNS
made up of heterogeneous protocols, in which dif-

ferent file systems are accessible only through dif-
ferent protocols (CIFS, NFSv2/v3, and NFSv4).

Conclusion
We have defined a global, uniform, hierarchical
namespace service that transparently links file data
to users and provides crucial functionality to enable
a file-system grid. A suite of strategies has been pre-
sented for accessing file data residing on diverse

sources using commonly available clients. This fed-
erated approach provides the promise of a univer-
sal file system that looks the same to all users ev-
erywhere, providing a boon to collaboration. The
namespace also allows decoupling logical and phys-
ical resources, which improves the ability to man-
age the increasingly complicated information
infrastructure.

Future work includes efforts to reduce more of these
ideas to practice and to deploy them more widely.
This will provide valuable experience about what
combination of approaches works best in a given
environment. In addition, we hope to extend the
namespace to include nonfile data such as databases
and real-time feeds. The effort needed to join data
currently fragmented into numerous isolated systems
is large, but we have shown a few manageable steps
that can start the process. Once the process begins,
the tremendous benefits to usability and administra-
tion will provide the impetus necessary to complete
the unification.

Acknowledgments

Carl Burnett reviewed an early version of this pa-
per, and we received helpful comments from several
anonymous reviewers.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Avaki Corporation, The
University of Chicago, The Open Group, Novell, Inc., or Microsoft
Corporation.

This federated approach
provides the promise

of a universal file system
that looks the same

to all users everywhere.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 719

Cited references and notes

1. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,” Interna-
tional Journal of Supercomputer Applications 15, No. 3 (2001),
http://www.globus.org/research/papers/anatomy.pdf.

2. Security Documentation, The Globus Alliance, http://www.glo-
bus.org/security/.

3. W. Allcock, Editor, GridFTP: Protocol Extensions to FTP for
the Grid, Global Grid Forum Draft Standard (April 2003),
http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev2.pdf.

4. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Kunszt, M. Ripenu, B.
Schwartzkopf, H. Stocking, K. Stockinger, and B. Tierney,
“Giggle: A Framework for Constructing Scalable Replica Lo-
cation Services,” Proceedings of the IEEE/ACM Supercom-
puting SC2002 Conference; IEEE Computer Society Press,
Washington, D.C. (November 2002), http://www.isi.edu/
�annc/rls/chervenakFinalSC2002.pdf.

5. A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kreme-
nek, A. Jagatheesan, C. Cowart, B. Zhu, S.-Y. Chen, and R.
Olschanowsky, “Storage Resource Broker—Managing Dis-
tributed Data in a Grid,” Computer Society of India Journal,
Special Issue on SAN 33, No. 4, 42–54 (October 2003), http://
www.npaci.edu/DICE/Pubs/CSI-paper-sent.doc.

6. A. Grimshaw, “Enterprise Data Grids,” Tutorial presenta-
tion at Global Grid Forum 7 (GGF7), Tokyo, Japan (March
2003), http://www.gridforum.org/Meetings/ggf7/tut1.htm.

7. L. Luan and T. Anderson, “Grid Namespace for Files,” (June
2003), http://www.gridforum.org/Meetings/ggf10/GGF10%20
Documents/GridNamespaceforFiles.pdf.

8. The term “file system” has two distinct meanings. One refers
to a body of software, concepts, and interfaces and the other
refers to a collection of files, directories and other objects
linked in a hierarchy to a root directory. The latter meaning
is sometimes given other names, such as a CIFS “share” or
AFS “volume,” but in typical usage, also followed in this pa-
per, “file system” is used for both. Sometimes for clarifica-
tion we will say “subtree” of “file-system tree” to make the
meaning explicit.

9. A path name is a sequence of components, separated by “/”
characters - for example, /usr/joe/statement.txt. Each path-
name component represents a lookup in a directory, so to
interpret the path name of this example, the key “usr” is
looked up in the directory “/”, and presumably leads to an-
other directory. The key “joe” is looked up in that directory,
leading to yet another directory, in which “statement.txt” is
looked up. File path names are looked up at GNS instances.
In some cases, a GNS can fully resolve a path name and pro-
vide the client a reference to the file system or file the path
name represents. In other cases, a GNS instance may only
be able to resolve a prefix of a path name provided by the
client and provide the client a reference to another GNS in-
stance where the client should do the lookups to resolve the
remaining portion of the path name.

10. Automounter is a mechanism for managing UNIX** file sys-
tems that automates the process of mounting them when they
are referenced and unmounting them when they are no longer
being used. Mounting attaches the root of a file system to a
directory in the local file-system namespace according to pa-
rameters that describe how the file system can be accessed
(e.g., a disk device or an NFS server name) and related op-
tions. The file systems to be managed by automounter can
be specified in a number of ways, including configuration files
and helper programs that provide the local path name where

the file system is to appear and the parameters necessary to
mount it..

11. Common Internet File System Technical Reference, Storage
Networking Industry Organization, http://www.snia.org/
tech_activities/CIFS/.

12. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck, “Network File System (NFS) Ver-
sion 4 Protocol”, RFC3530, Internet Engineering Task Force
(April 2003), http://www.ietf.org/rfc/rfc3530.txt.

13. OpenAFS, http://www.openafs.org/.
14. DFS Administration Guide, IBM Corporation (2000), http://

www.ibm.com/software/stormgmt/dfs/library/docs/31manuals/
AdminGd/duagd002.htm.

15. J. Apgar, A. Grimshaw, S. Harris, M. Humphrey, and A.
Nguyen-Tuong, “Secure Grid Naming Protocol (SGNP):
Draft Specification for Review and Comment,” (2002) http://
www.gridforum.org/Meetings/ggf4/bofs/SGNP%20-
%20GWD-R%202002.02.05.pdf.

16. Community Authorization Service (CAS) GT3 Notes, http://
www.globus.org/security/CAS/GT3/.

17. R. Elz and P. Hethmon, Extensions to FTP, Internet Engi-
neering Task Force, FTPEXT Working Group Internet Draft
(September 2002), http://www.ietf.org/internet-drafts/draft-
ietf-ftpext-mlst-16.txt.

18. The Unix function chmod() changes the access rights of a
file system object using the simple 12-bit UNIX permission
model.

19. R. Pike, D. Presotto, K. Thompson, H. Trickey, and P. Win-
terbottom, “The Use of Name Spaces in Plan 9,” Operating
Systems Review 27, No. 2, 72–76 (April 1993), http://www.
cs.bell-labs.com/sys/doc/names.html.

20. A. Mirtchovski, R. Simmonds, and R. Minnich, Plan 9—An
Integrated Approach to Grid Computing, The 9Grid, http://
www.9grid.net/papers/ipdps-04/plan9-grid.pdf.

21. H. Johner, L. Brown, F.-S. Hinner, W. Reis, and J. Westman,
Understanding LDAP—Design and Implementation, IBM Red-
book SG24-4986-00 (June 1998), http://publib-b.boulder.
ibm.com/Redbooks.nsf/RedbookAbstracts/sg244986.html.

22. Federated Naming: The XFN Specification, The Open Group
(July 1995), http://www.opengroup.org/public/pubs/catalog/
c403.htm.

23. “Time-to-live” is a simple cache consistency mechanism used
by DNS, HTTP, and many other systems where the server
tells the client how long the returned information can be ex-
pected to remain valid. The client can use and cache the in-
formation for this period and then should request the data
again in case it has changed.

24. Stronger authentication support such as Kerberos may start
to appear more in vendors� products as a byproduct of their
NFSv4 development, where Kerberos-based authentication
support is mandatory.

25. The file-system-proxy cache function is not available in typ-
ical file-system products today. An emergence of a global
namespace for files and file-system grids, however, will likely
encourage file server vendors to develop file-system-proxy
cache products.

26. The CIFS/SMB protocol uses “OpLocks” to tell a client that
it may perform certain operations on a file or directory safely
without contacting the server for each one. This represents
a temporary delegation of authority from the server to the
client allowing it to cache data, which may be “recalled” (i.e.,
broken) by the server when it can no longer assure the safety
of the client�s independent operation.

27. “Callback” is a term used by AFS to designate the recall of
the server�s extension of caching rights to the client. The call-

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004720

back message from the server notifies the client that a file
or directory may have been modified by another client and
it should invalidate its cache of that object�s data.

28. Internet Systems Consortium, Inc., http://www.isc.org/.
29. J. Snyder, “Sizing up LDAP servers,” Network World (05/15/

30. R. Michel, A. Arora, K. Crooks, A. Lalla, and D. Shields,
Data Links: Managing Files Using DB2, IBM Redbook SG24-
6280-00 (December 2001), http://publib-b.boulder.ibm.com/
Redbooks.nsf/RedbookAbstracts/sg246280.html.

31. L. Howard, An Approach for Using LDAP as a Network In-
formation Service, Internet Engineering Task Force, RFC2307
(March 1998), http://www.ietf.org/rfc/rfc2307.txt.

32. B. Callaghan, NFS Illustrated, Addison-Wesley, Reading, MA
(2000).

33. J. Zhang and P. Honeyman, Naming, Migration, and Repli-
cation in NFSv4, University of Michigan CITI (Center for In-
formation Technology Integration) Technical Report (2003),
http://www.citi.umich.edu/techreports/reports/citi-tr-03-2.
pdf.

Accepted for publication May 27, 2004.

Ted Anderson IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120
(ota@almaden.ibm.com). Mr. Anderson is a member of the Al-
maden Research Center (ARC) and works in the Distributed Stor-
age Tank group, whose aim is providing consistent and transpar-
ent access to remote data for users of the SAN File System and
other file systems. Before joining ARC he worked at Transarc,
both before and after its acquisition by IBM, on Episode, a fast-
restart physical file system providing fileset support, as well as
other aspects of DFS/DCE. He was also a developer of AFS, both
at Transarc and at Carnegie Mellon University (CMU). Before
coming to CMU in 1988, he worked on the S-1 project at Law-
rence Livermore National Laboratory after obtaining a bache-
lor�s degree from the Massachusetts Institute of Technology in
1979.

Leo Luan IBM Research Division, Almaden Research Center, 650
Harry Road, San Jose, California 95120 (luan@almaden.ibm.com).
Dr. Luan is a research staff member at the Almaden Research
Center and manager of the Grid and IDC (Internet Data Cen-
ter) Storage Systems department. He received a B.S.E.E. degree
from National Tsinghua University, Hsin-Chu, Taiwan, ROC, in
1982, and a Ph.D. degree in electrical engineering from the Uni-
versity of Maryland in 1990. In 1990, Dr. Luan started consulting
with the IBM Federal Systems Division in distributed computing
security, and led the design and implementation of the audit sub-
system for OSF (Open Software Foundation) DCE. He joined
the IBM Almaden Research Center in 1994 where he has been
working on storage systems. He developed ADSM (now TSM)
solutions for AFS and DFS backup and pioneered the develop-
ment of the LAN-free backup solution for TSM. Dr. Luan also
led a research project called UFiler to explore Internet-based uni-
versal file-storage solutions. His current research focus includes
distributed file systems and storage solutions for grid computing.
He leads the Distributed Storage Tank project, which aims at
building key technology components for heterogeneous distrib-
uted file systems and demonstrating their application in wide-area
and grid file sharing.

Craig Everhart IBM Systems and Technology Group, 500 Park
Offices Drive, Highway 54, Research Triangle Park, NC 27709

(craigev@us.ibm.com). Dr. Everhart is a Senior Technical Staff
Member currently working in the development of the SAN File
System product, as well as focusing on strategic file system and
storage issues. Prior to joining IBM with the completion of the
acquisition of Transarc, he was the chief architect for DCE/DFS,
among other roles there. Before joining Transarc, he designed
and built advanced e-mail systems at the Information Technol-
ogy Center at Carnegie Mellon University, from which he received
his Ph.D. degree in 1985.

Manuel Pereira IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120
(mvp@almaden.ibm.com). Mr. Pereira is a member of the Al-
maden Research Center and works in the Distributed Storage
Tank (DST) group as a major contributor to its design and de-
velopment. He has developed a functional GNS prototype im-
plementation consisting of a GNS server, SAN-File-System-in-
tegrated GNS client, and GNS administrative client. He was the
technical mentor of the IBM Extreme Blue project at Almaden
in Spring 2003 where he led the exploration of grid enablement
of DST. In addition to the global namespace features of DST,
he has been instrumental in the development of DST�s consis-
tency management framework. Prior to his involvement in DST,
Manuel was the principal developer of the UFiler project, where
he developed an API and corresponding libraries that enable se-
cure Java/Web-based access to and management of AFS; this work
has since been adopted by the Stonehenge project in Germany,
and it will be included in their product. His AFS development
experience has included authorship in the OpenAFS community.
Before joining ARC he was the chief developer and Web appli-
cation architect for the IBM Edge extranet application, which
served IBM�s largest OEM and reseller customers, channeling
over $2 billion of revenue in its first full year of deployment. He
joined IBM after obtaining a bachelor�s degree from the Cali-
fornia State University at Fresno in 1998.

Ronnie Sarkar IBM Systems and Technology Group, 500 Park
Offices Drive, Highway 54, Research Triangle Park, NC 27709
(sarkar@us.ibm.com). Dr. Sarkar has been with IBM for 15 years.
He is currently a Senior Technical Staff Member in the Storage
Software Architecture department of the Systems and Technol-
ogy Group, where he has been focusing on the SAN File System,
policy-based storage management, and parallel NAS issues. Prior
to this position, he was in the Software Group (AIM division)
where he led development teams building Web-based host in-
tegration products. He spent the first seven years in the Network-
ing Software Division working on communication protocols and
protocol converters. Before joining IBM, he spent three years in
an Indian startup company building PC compilers, while getting
his bachelor�s degree in electrical engineering and his master�s
degree in computer science from the Indian Institute of Tech-
nology, and his Ph.D. degree in computer science from Ohio State
University in 1989.

Jane Xu IBM Systems and Technology Group, 5600 Cottle Road,
San Jose, California 95193 (jxu@us.ibm.com). Dr. Xu is a Senior
Technical Staff Member in the Storage Software Architecture de-
partment in the Systems and Technology Group. She is also a
member of the IBM Academy of Technology. Dr. Xu is currently
responsible for policy-based life-cycle management of the SAN
File System, grid storage, and file-system strategy for on demand
systems. She actively participates in the Global Grid Forum
(GGF), representing IBM in the data area and serving as a co-
chair of the grid-file-system-service working group. She is a mem-

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 ANDERSON ET AL. 721

00), http://www.nwfusion.com/reviews/2000/0515rev2.html.

ber of the IBM on demand design council and leads the file-sys-
tem working group. Dr. Xu joined IBM Storage Systems division
in 1990 working on storage architecture. Joining the IBM Soft-
ware Group, she delivered the DB2www, Net.Data, and DB2
XML Extender products as the technical leader. After a one-year
assignment to assist the Vice President of Research in 2001, she
worked on advanced technology for storage software. Dr. Xu has
received several Outstanding Technical Achievement Awards. She
holds eleven issued patents and has another eleven pending. Dr.
Xu received her Ph.D. degree in computer science from the Uni-
versity of Southern California in 1990, and her B.S. and M.S. de-
grees in computer science from the University of Hawaii at Manoa,
in 1985 and 1986 respectively.

ANDERSON ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004722

