
Aligning technology and
business: Applying patterns for
legacy transformation

&

H. M. Hess

Two key goals for aligning technology and business are to increase an organization’s

ability to change rapidly and to reduce the costs of technology. While many efforts are

underway to improve application development, less emphasis has been placed on

addressing key challenges posed by existing applications that resist rapid change. In

this paper, we discuss techniques for accelerating change to legacy systems and for

streamlining an application portfolio. Our approach takes business-driven application

requirements, links them to analysis of an application portfolio, and identifies potential

sequences of transformations to realize the targeted improvements. This paper

describes our approach for mapping business requirements to application software,

for using patterns to help translate business requirements to software requirements,

and for using patterns to translate software requirements into potential solution

designs. The paper describes how these techniques are applied to two stages of the

software life cycle—initial analysis and detailed analysis—and summarizes experience

gained from projects working with IBM clients.

Businesses often depend on information systems

that were built with traditional transactional and

batch technologies. These information systems—

commonly called legacy systems—were built to

satisfy high demands for throughput and scale at a

time when systems software and hardware were far

less capable than they are today. These legacy

systems are often very large and complex by any

standard, and relatively closed and inflexible by the

standards of today. The application portfolio of an

enterprise typically contains many applications,

often developed independently, operating in silos

(isolated, often vertically integrated structures) with

overlapping and redundant function and data.

For example, an IBM Business Consulting Services

report on financial institutions noted, ‘‘From our

extensive studies of performance improvement and

cost reduction, we estimate that as much as 60

percent to 80 percent of the functionality in silos

may be redundant or duplicated in other parts of the

business. This weakens the performance of financial

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 25

institutions and makes it harder for them to respond

to fresh demands for change.’’
1

Over the past two decades, significant efforts have

been made to improve interoperability of legacy

systems by wrapping them first with client/server

solutions, then with messaging, and now with Web

technology. These changes have added capability

and increased interoperability, but have come at a

cost of increased application size and complexity.

This was also described in the IBM Business

Consulting Services report:

Recent advances in integration middleware

technology have provided some relief by making

it possible for financial institutions to move

customer information across channels. But in

many cases the technology has been laid over

flawed legacy architecture and has merely

created more duplication. The cost of such an

approach is reflected in our research, which

shows that up to 70 percent of IT [information

technology] spending by financial institutions

goes toward maintenance and redevelopment.

Furthermore, the problem seems to grow with

size: The largest banking institutions (with assets

more than $60bn) spend 50 percent to 100

percent more on IT relative to their smaller

(under $2bn) counterparts. Despite this

[expenditure], virtually every business manager

in large financial institutions bemoans the

organization’s lack of speed and institutional

inflexibility.
1

The IBM Business Consulting Services report focu-

ses on financial institutions, but similar results can

be found in other industries. The inertia of legacy

systems creates significant challenges that remain

even when new layers of more flexible technologies

have been added. Emerging approaches for creating

applications—such as model-driven development

and service-oriented architecture (SOA)—sidestep

the challenges of legacy systems, treating the

applications as black boxes to be reused through

connectors and adapters.

There is an opportunity to make these emerging

approaches more valuable by augmenting them with

solutions to some of the deep-rooted problems of

legacy systems. This paper describes research on

analysis and transformation techniques to face

directly the problems of duplication and inflexibility

of legacy systems, and to integrate top-down

approaches for creating applications with bottom-up

analysis of existing applications. Our approach

combines three techniques:

1. Business-to-technology model mapping—A to-be

model of business (i.e., a model of the business

as we wish it to be) is mapped to an as-is model

of applications (i.e., a model of applications as

they are today) to identify areas of redundancy

and overlap, and to provide a basis for tools that

can help derive technical requirements from

business requirements.

2. As-is pattern discovery—A to-be model of soft-

ware interfaces is compared with an as-is model

of the composition and flow of legacy applica-

tions. The analysis identifies instances of struc-

tural patterns in the architecture of legacy

applications, the programming, and the data

representation that define the gap between the as-

is implementation model and the to-be imple-

mentation model. (We discuss patterns in sub-

stantially greater detail in the section ‘‘The role of

patterns for legacy transformations’’ later in this

paper.)

3. Transformation pattern selection—A set of pat-

terns for transforming legacy applications is

compared with the model gaps and the as-is

patterns to identify approaches and techniques

for closing the gap. The transformation patterns

provide solutions that allow the gap to be closed

over several iterations. The transformation pat-

terns include structural patterns for changes to

application architecture, programming, and data

representation, as well as process patterns for the

transformation work itself.

The approach is founded on experience gained with

IBM clients in projects that needed to analyze and

change large portfolios of legacy applications. This

paper describes some of the relevant characteristics

of legacy applications and the motivation for

moving beyond legacy integration to legacy trans-

formation. It describes the motivation for mapping

business models and technology models and the

processes by which this mapping is performed at

two stages in the life of a project: the initial analysis

stage and the detailed analysis stage. The models

used in detailed analysis of a project are then

discussed (the design of a model is often referred to

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200526

as a metamodel). The paper concludes with two

summaries of project experience: one for the initial

analysis of a project to consolidate redundant

applications, and one for the detailed analysis of

integrating a batch legacy program with a service-

based interface.

CHARACTERISTICS OF LEGACY APPLICATIONS

Two broad definitions of legacy applications are

‘‘anything that is running in production’’ or ‘‘any-

thing that is not end-user computing.’’ This could

include batch and transactional applications running

on z/OS* or OS/400*, Cþþ programs running on an

open standards-compliant operating system, client/

server applications based on personal computers,

and others.

Our research is focusing on a significant subset of

these broader definitions: batch and transactional

applications running on z/OS. Even this constrained

scope is quite large. For example:

� An enterprise’s mainframe application portfolio

can comprise tens of thousands of programs, tens

of millions of data declarations, and more than

100 million lines of source code.
� The application portfolio may contain hundreds of

business applications, which in turn may be

architecturally and technically diverse.
� There are numerous interfaces between applica-

tions, many of which have been developed as

needed, without a consistent underlying architec-

ture.

These issues of portfolio-level scale and complexity

have traditionally led to an approach that focuses on

analysis of individual applications. Conducting

analysis one application at a time has at least two

significant shortcomings:

1. It does not enable analysis of the duplication and

redundancy that exist for different applications—

where there may be an overlap of 60 percent to

80 percent. Significant opportunities to consol-

idate and streamline may be missed.

2. It does not expose interfaces into the single

application from other applications in the port-

folio, increasing the risk of making a change that

breaks one or more unseen interfaces.

Scale and complexity are issues even at the

application level and program level. There are also

systems and programs known to be brittle and error-

prone, for which only the most critical changes are

attempted.

MOVING FROM INTEGRATION TO
TRANSFORMATION

The challenges and risks in making changes to

legacy systems have played a large role in shaping

current integration architectures and solutions in the

marketplace. These solutions treat z/OS applica-

tions as black boxes to be integrated through Java**

connectors, messaging solutions, and data access.
2

Families of patterns for legacy integration have been

developed to build needed capabilities on top of the

connectors and message interfaces. For example,

Reference 3 describes a technique to support

requirements for routing a response from a legacy

system to the appropriate end point. The legacy

system returns a data structure to its caller; the

integration solution is responsible for managing the

routing to a Return Address:

One difficulty in exposing systems as services

results from the fact that many legacy systems

were not built with features such as Return

Address . . . in mind. Therefore we ‘‘wrap’’ access

to the legacy system with a Smart Proxy. . . . This

Smart Proxy . . . enhances the basic system

service with additional capability so that it can

participate in an SOA.
3

SOA is an important element of both legacy

integration and legacy transformation. For integra-

tion, SOA through messaging or Web services offers

well-accepted tools and protocols for interoperabil-

ity.
4

For transformation, SOA provides a formal

interface to the legacy systems, separating the

interface from the implementation of the legacy

system or systems. After the interface is established,

the legacy systems underneath the interface can be

changed, consolidated, or replaced with signifi-

cantly reduced impact on the other parts of the

application portfolio.

TO-BE MODEL MAPPING
As with most information technology projects,

legacy transformation projects begin with a goal and

a general plan that are iteratively refined to detailed

requirements, specifications, and plans. While some

legacy transformation projects—such as data name

standardization—have information technology is-

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 27

sues as their primary drivers, our work focuses on

legacy transformation driven by business process

change. In some cases, the project begins with a

well-defined scope and business objective. In other

cases, analysis of business strategy and the appli-

cation portfolio are performed first, to define the

scope and objectives of a set of related legacy

transformation projects.

Understanding the relationships between the busi-

ness processes and applications is a prerequisite to

specifying and planning such a legacy transforma-

tion project. To record these relationships, we use

two types of model: a model of the business and a

model of the legacy applications. These models are

used and refined throughout the life cycle of a

project. Our approach starts with a broad, shallow

model of the business and a high-level model of the

legacy applications.

In the initial analysis we capture coarse-grained

mappings—between high-level business processes

and applications, for example—to provide the basis

for identifying potential redundancies and overlaps

in the application portfolio, estimating the size and

complexity of the applications that support a busi-

ness process, and identifying applications that

perform common services.

In later iterations we capture finer-grained map-

pings, such as those between a business service and

specific on-line transactions or batch jobs, to

provide the basis for selecting integration and

transformation strategies, identifying technical risks,

and creating transformation plans. Our work ad-

dresses both the coarse- and fine-grained mappings.

Business modeling is itself a broad and complex

subject. There are many types of business models,

incorporating static and dynamic views of organi-

zations, processes, and information. There are a

number of tools for business process modeling,

some of which link to tools for application devel-

opment and infrastructures for business activity

monitoring. There are also efforts, such as the

Object Management Group’s Model Driven Archi-

tecture**
5

initiative, working on the complex prob-

lems associated with comprehensive, end-to-end

modeling and transformation and traceability be-

tween models.

At this point in our work, we have opted to use

simple models that provide a static view of business

processes. Two variations of static business process

models have proven useful to our work:

1. Functional decomposition—In the long-accepted

form of static process model, we use three levels

of decomposition. Business processes, the highest

level of the model, are composed of business

subprocesses, which in turn are composed of

business activities.

2. Component-service model—This is a form used

within the component business modeling (CBM)

approach developed by IBM Business Consulting

Services. In this variation, a business component

provides business services that can be used by

other business components.

An illustration of the two forms of business model is

shown in Figure 1. In many cases, an organization

already has a documented functional decomposition

that can be used to populate this model. In other

cases, a good initial model can be prepared in a few

weeks. Anecdotal experience from consulting en-

gagements suggests that the coarse-grained model is

likely to contain between 150 and 300 business

activities.

Figure 1
Business models mapped to applications

Functional
Decomposition
Business Model

Component-Service
Business Model

APPLICATION

BUSINESS
PROCESS

BUSINESS
SUBPROCESS

BUSINESS
ACTIVITY

BUSINESS
COMPONENT

BUSINESS
SERVICE

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200528

Initial analysis and coarse-grained mapping

One key objective of the initial analysis is to identify

the context and scope of a proposed change. For

example, the initial analysis for a system consol-

idation project needs to expose the areas of

redundancy and the interface dependencies that

must be considered in a migration plan. We use

coarse-grained models of business and legacy

applications for this stage.

A coarse-grained model is well-suited to the initial

mapping between the business and legacy systems

models. The coarse-grained mappings are made

between the business activities or subprocesses and

the legacy applications. This mapping is typically

performed in the first several weeks of a project. It is

a broad, shallow analysis. This mapping is typically

performed at this coarse-grained level for the entire

enterprise and the entire application portfolio.

The mappings help us gain insight from two

viewpoints:

1. The business model point of view—The mapping

allows us to understand the degree to which

business functions or business services depend

on multiple applications or have redundant

implementations.

2. The application point of view—The mapping

allows us to understand the business functions or

business services supported by each application.

The development of the business model is usually

performed in parallel with an application portfolio

analysis. The application portfolio analysis uses

manual techniques such as interviews, question-

naires, and workshops to document key attributes of

the applications. Those attributes include measures

of size, technologies used, and interfaces with other

applications and external entities. The portfolio

analysis may also estimate each application’s

development and operational costs, business value,

and technical quality.
6

The application portfolio

analysis and mapping results are typically manually

entered into a spreadsheet, database, or other tool.

Initial application portfolio analysis projects typi-

cally avoid the use of automated tools for scanning

source code and other application artifacts. This is

true for two reasons. First, significant time and effort

are required to scan large numbers of application

artifacts. Second, even if the artifacts are scanned, it

is difficult to sift through the detailed meta-data

collected by automated tools to find information that

is relevant to the early decision-making and

estimating processes. Our research is exploring

ways to make detailed application meta-data useful

in the early stages of a project. Some examples of the

ways in which the detailed meta-data could improve

the initial analysis are:

� Detection and categorization of interfaces between

applications to validate and extend the list of

interfaces gathered in interviews and workshops
� Identification of technical dependencies, such as

use of specific application programming interfaces

or obsolete language versions or features
� Detection of implementation practices that have

an impact, positive or negative, on the integration

or transformation of an application (e.g., separa-

tion or coupling of user interfaces with business

logic, or sequential batch processing)
� Determination of ways to group related applica-

tions together based on their interrelationships
� Improved accuracy of initial estimates through use

of automated tools to compute software metrics

Automated tools, such as WebSphere* Studio Asset

Analyzer (WSAA),
7

can be used to analyze the

software artifacts associated with a portfolio of

applications and to create detailed meta-data on the

composition, size, and complexity of each applica-

tion. The mapping between the coarse-grained

business and application models, when combined

with the linkage between the manually gathered

application model and the tool-gathered application

meta-data, gives us the foundation for assessing the

technical impact of the desired business change.

The tools may supplement the initial analysis, but

the purpose of the initial analysis remains the

identification of the context, scope, and require-

ments for a proposed change. The initial analysis

relies on a high-level model of the business, a high-

level model of the application portfolio, and the

mapping between them. The output of this initial

analysis is thus a high-level specification of the

business functions or services to be changed and the

applications and interfaces that need to be changed,

integrated, replaced, or retired. This specification is

used as input to the detailed analysis.

Detailed analysis and fine-grained mapping
The detailed analysis identifies all of the software

assets affected by a change and their dependencies

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 29

and interfaces throughout the application portfolio.

For example, detailed analysis for a project to create

a Web services interface to a legacy implementation

of a business function needs to examine the

composition and flow of online transactions and

batch jobs, as well as the persistent data stores that

help perform that function. The analysis must

identify any barriers to creating a Web services

interface with the desired quality of service—such as

a monolithic batch implementation of a business

function that may require subsecond response time

when invoked as a service.

The mapping between business and legacy systems

models is also an important aspect of this subse-

quent detailed analysis. Our work on fine-grained

mapping focuses principally on the scenario for

transforming legacy systems to participate in SOAs,

particularly those legacy systems that are not

amenable to straightforward integration. The type of

analysis required can be shown with an example:

replacing an existing application with a software

package, using Web services for interfaces. Consider

the simplified example in Figure 2. Assume that the

project objective is to replace a company’s General

Ledger (GL) application with an off-the-shelf pack-

age. The interfaces between the GL application and

the rest of the portfolio need to be considered. In our

simple example, the GL application’s Post Trans-

action function is used by two other applications:

Accounts Receivable and Accounts Payable.

In this example, let us assume that Accounts

Receivable is undergoing significant enhancement to

meet new business requirements and that changes

to its interfaces cannot be made for several months.

The package replacement could then be imple-

mented in three releases:

1. A first release might create a new Web-service

interface to the existing code for the Post Trans-

action business function. The Accounts Payable

application would be modified to invoke the Web

service. Two of Accounts Payable’s functions

would need to be changed: Issue Check and

Cancel Check. This is shown in Figure 3.

2. After the enhancements to Accounts Receivable

are complete, the second release in the GL

replacement would be prepared. Accounts Re-

ceivable would be modified to use the Web

services interface. Two of Accounts Receivable’s

functions would need to be changed: Process

Figure 2
Legacy application interfaces

General Ledger

Accounts Receivable

Accounts Payable

Process
Payment

Process
Refund

Cancel
Check

Post
Transaction

Manual
Journal
Entry

Issue
Check

Figure 3
General Ledger application replacement: Release 1

General Ledger

Accounts Receivable

Accounts Payable

Post
Transaction

Mediator
to Existing
GL
Application

Web-service
Interface:
Post GL
Transaction

Process
Payment

Process
Refund

Cancel
Check

Issue
Check

Manual
Journal
Entry

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200530

Payment and Process Refund, as shown in

Figure 4.

3. The third release would preserve the Web

services interface, but replace the existing GL

application with the new package. Figure 5

depicts this final release.

It should be noted that the use of Web services is not

a requirement of this encapsulation; the essential

requirement is to create a well-defined interface that

hides the implementation of the GL functions from

other applications.

One set of project planning problems revolves

around the implementation of each of the interfaces

to the GL. For each, a decision needs to be made

whether to convert the other application to use the

Web service directly, or whether to create a ‘‘reverse

adapter’’ around the Web service that implements

the existing legacy interface.

Although simplistic, this scenario demonstrates that

the planning of a legacy transformation project

requires integration of knowledge about the busi-

ness model, its mapping to the legacy systems

model, and a legacy systems model of software

assets and their interdependencies. This analysis

requires mapping at a finer-grained level for both

the business model and the legacy systems model.

Given the orientation of our work toward aiding the

transformation to SOA, it is natural that the fine-

grained representation of the business model may be

that of a service interface.

METAMODELS FOR DETAILED ANALYSIS

Figure 6 is a Unified Modeling Language**

(UML**)
8

class diagram that is a conceptual-level

model of a service interface and implementation,

based on prior work in modeling and specification of

services.
9

The ComponentFacade stereotype in the

diagram represents the interface to the service: in

this example a service named doService.

The Mediator behind the facade provides the

implementation of the service by coordinating the

execution of BusinessComponents, which could be

new code or interfaces into legacy systems.

Our detailed analysis identifies the points of inter-

face into legacy applications and helps determine

whether the legacy application is well-suited for

integration through standard connectors or mes-

Figure 4
General Ledger application replacement: Release 2

General Ledger

Accounts Receivable

Accounts Payable

Post
Transaction

Mediator
to Existing
GL
Application

Web-Service
Interface:
Post GL
Transaction

Process
Payment

Process
Refund

Cancel
Check

Issue
Check

Manual
Journal
Entry

Figure 5
General Ledger application replacement: Release 3

Accounts Receivable

Accounts Payable

Web-Service
Interface:
Post GL
Transaction

Process
Payment

Process
Refund

Cancel
Check

Issue
Check

New General
Ledger Package
Application

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 31

saging. When a legacy system is already well-suited

for integration, transformation is not needed to

create services. An example would be a legacy

system that already has callable interfaces to its

transactions.

Our model for detailed analysis of legacy systems

includes a model of the z/OS application runtime

environments and a model of application program-

ming artifacts. Figure 7 is a conceptual-level UML

model of z/OS runtime artifacts. Analysis of runtime

artifacts is important, because it provides essential

information about how programs are invoked in

batch and online interactions, and it also reveals the

binding between programs and the physical files and

databases they use. Figure 8 is a conceptual-level

model of a compilation-unit application program

and its interfaces. The model captures information

about the internal details of each program—the data

Figure 6
Template for service interface

<<ComponentFacade>>
ShareableComponent

+doService()

<<ReuseElement >>
BusinessComponent

1 1..*

0..1

0..*

Mediator

+doService()
-privateOp1()
-privateOp2()

Figure 7
Conceptual model of z/OS runtime artifacts

z/OS Site

Online Region Dataset Batch Job IMS Database DB2 Database WebSphere MQ

Transaction

DD Statement

Job Step Segment Message Queue

Executable

Call Hierarchy

Table

Column

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200532

elements declared and the procedural statements—

and about the external interfaces of each program.

The runtime and program models are used by

generalized impact-analysis tools that trace control

and data flow within and across programs. This

automated impact analysis can be performed start-

ing with a scenario and a seed (described in more

detail in the next section). Example scenarios

include:

� Maintenance and enhancement changes to data

definitions, procedure interfaces, and program-

ming logic
� Creation of Java 2 Platform, Enterprise Edition

(J2EE**) Connector Architecture connectors
10

to

CICS* (Customer Information Control System)

and IMS* (Information Management System)

transactions
11

� Creation of a subroutine from procedural logic

contained in a COBOL (Common Business Ori-

ented Language) program

The impact-analysis tools trace control and data

flow within programs, across program interfaces,

and through files and databases. Building on top of

the control and data-flow tracing, the impact-

analysis tools determine the impact of a potential

change upon runtime and program artifacts at all

levels of granularity, from programming statements

or data items up to the level of the overall

application. This impact information is stored in the

meta-data repository.

CONNECTING THE BUSINESS AND LEGACY

SYSTEM MODELS

Whereas the initial coarse-grained mapping is

typically performed broadly for the enterprise and

its application portfolio, the fine-grained mapping is

Figure 8
Compilation unit conceptual model

Compilation Unit

Data DeclarationProcedural Statement

Statement
uses data

Statement
is interface

Data used
in interfaceCompilation Unit Interface

Entry Point Data StoreExternal Call

File ScreenIMS Segment Relational Message Queue

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 33

performed selectively for the subset of the applica-

tion portfolio that is relevant to the project. The fine-

grained mapping is performed with a combination of

user input and tool assistance. Figure 9 shows a

conceptual view of the metamodel for this fine-

grained mapping and analysis.

The selective mapping and the subsequent analysis

use the following steps:

� Define the service to be created and its proposed

interface. This is done from the top down in the

traditional way, using the business and functional

requirements. The service interface is represented

by the ShareableComponent.

� Identify one or more points in the legacy system

that are currently performing processing that

needs to be included in the service. These points

could be existing CICS or IMS transactions, batch

jobs, programs, or even statements within a

program. These are represented by the Analysis

Seed. When a subject matter expert is available—a

business user, analyst or developer who can

describe the systems and transactions used to

perform a process—this is a straightforward

process. When the desired expertise is not

available, other techniques are employed, such as

documentation review, observation of system

users, and the use of tools to search and analyze

source code.

� For the touch points identified above, use gener-

alized application understanding and impact

analysis tools that follow control and data flows to

identify the parts of the application portfolio that

may be part of the implementation of the service.

These are represented by the Analysis Result.

� Use specialized analysis tools to examine the

affected parts of the portfolio, looking for instan-

ces of architecture, coding, and data-structure

patterns that may affect the integration of the

legacy system with the service interface.

Figure 9
Conceptual model for fine-grained mapping and analysis

Analysis Result

Mediator

+doService()
-privateOp1()
-privateOp2()

 <<ComponentFacade>>
ShareableComponent

 <<ReuseElement>>
BusinessComponent

Analysis Seed Analysis results are a
collection of items from
the z/OS runtime and
programming models

Current Implementation

+doService()

ExecutableTransaction Entry Point Procedural Statement Data Element

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200534

Impact-analysis tools are used to determine the

application software assets related to the initial

seeds. The tools analyze control and data flow

within a program to identify affected statements and

data elements, and analyze control and data flow

across interfaces to identify other programs and data

stores that are affected. The tools use the z/OS

runtime model to analyze impact through shared

data within and across applications.

The ability to do global impact analysis simplifies

the job of an analyst who needs to determine how to

integrate the legacy system with the service. It also

provides flexibility to the analyst performing the

fine-grained mapping, since it allows the analyst to

choose from many types of seed based on the

information that is available. The analyst does not

need to know the precise location within the

application where the current business process

begins or ends. Rather, the analyst just needs to

know a location where the business process is

performed; the automated tools will help determine

the boundaries of the process implementation.

Given a set of initial mappings, the role of the tools

is to compute other relevant mappings and to

provide a way to help a user iteratively refine these

mappings to expose the alignment and gaps between

the current legacy applications and the desired

service interface.

THE ROLE OF PATTERNS FOR LEGACY
TRANSFORMATION
Patterns have become recognized as a useful way to

capture lessons learned and to help disseminate and

apply practices that have proven successful. IBM’s

Patterns for e-business are an example of this

concept:

The Patterns leverage the experience of IBM

architects to create solutions quickly, whether for

a small local business or a large multinational

enterprise. . . . customer requirements are quickly

translated through the different levels of Patterns

assets to identify a final solution design and

product mapping appropriate for the application

being developed.
12

These patterns have been developed and refined

with experience gained on more than 20,000

Internet-based engagements,
13

and they provide

guidance for working top-down from business

design to application runtime. In general, the

patterns provide a description of proven practices

(and thus, reusable assets) that identify how to

satisfy a given set of objectives within a defined

context. The patterns are typically used in a

prescriptive fashion, guiding analysis and design

processes that start from the top down.

The application of patterns to legacy transformation

is somewhat different. The intent is the same: to

capture lessons learned and help disseminate and

apply proven practices. Legacy transformation adds

significant bottom-up analysis and design efforts to

the top-down analysis inherent to IT projects.

Patterns are a means to the end of legacy trans-

formation. We want to use them to:

� Help us understand the current state of legacy

systems, with as-is legacy patterns found through

tool-based analysis of legacy application assets
� Model the desired end state of legacy trans-

formation projects, with patterns for z/OS appli-

cations and the IBM Patterns for e-business
� Identify the sequence of incremental changes to

close the gap between the current state and end

state, using legacy transformation patterns

The definition of as-is legacy patterns is an ongoing

process and results from analysis and transforma-

tion projects with IBM clients. As with the Patterns

for e-business, our goal is to define and refine these

patterns by using experience gained on a large

number of projects. A taxonomy of patterns has

been developed as part of this work. There are three

basic as-is legacy pattern categories:

1. Architecture patterns, which span from the

application portfolio to the flows invoked by

mechanisms other than program calls (e.g., CICS

pseudoconversations, batch schedules) and con-

nected by shared data.

2. Program patterns, which address items found in a

single compilation unit or in a collection of

programs connected in a calling hierarchy.

3. Data patterns, which address the structure and

navigation of data structures, typically files and

databases.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 35

An example of an as-is legacy pattern at the

architecture level is Online Data Capture With Batch

Update, shown in Figure 10. For purposes of this

example, we use the term file to represent either a

file or a database.

This architecture pattern includes three key ele-

ments:

1. Online programs that store transactions for

subsequent processing in a batch job. The on-line

programs typically validate the transactions

before storing them, to minimize the number of

exceptions detected in the batch job.

2. Batch programs that read the stored transactions

and update master files. The batch programs may

repeat the validation performed online, and may

perform additional validations as well.

3. Batch programs to create or update the replicated

master file data used by the online programs.

This pattern is useful when analyzing options for

exposing existing function as a service. The con-

sequence of this pattern is that a straightforward

connector to the online program cannot provide a

synchronous update to the master file of record. If

the service requires a synchronous update to the

master file, then alternative approaches must be

evaluated.

An example of an as-is legacy pattern at the program

level is the Multiple Split/Merge On Transaction

Data pattern. This pattern detects a coding idiom

commonly found in COBOL programs that perform

multiple business functions, such as opening a bank

account, recording deposits, recording withdrawals,

and closing a bank account. In this idiom, the

program is organized with a common mainline

routine that handles all business functions, with

lower-level routines making tests of business func-

tion to perform specialized processing. This is in

contrast to a program organized into a separate

mainline routine for each business function, rou-

tines specific to a business function, and lower-level

routines that perform logic shared by two or more

business functions.

This program pattern includes three key elements:

1. A field or structure in an input record that is

compared to multiple hard-coded values

2. A control flow graph that branches based on the

comparisons to hard-coded values, then merges

to perform common logic

3. Multiple instances of a test for a specific value

This pattern is useful when analyzing options to

change a program to make it more extensible or to

extract a subset of its function. The consequence of

this pattern is that the organization of the program

needs to be changed—for example, to make a single

test of the transaction data at the top of the

procedural code—before the program can be made

more extensible or before the code for the business

Figure 10
Online Data Capture With Batch Update legacy architecture pattern

Transaction
holding file

Daily Copy
of Master
File

Master
File

Online inquiry
and update
of daily copy of
master file

Master File update

Extract

1

3

2

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200536

function can be extracted to a separate module. The

process of changing the organization of the code

without changing its function is commonly known

as refactoring.
14

Tools and patterns for refactoring

J2EE applications are an important part of Java

integrated development environments. Many of our

legacy transformation patterns are intended to guide

the process of refactoring legacy systems.

An example of an as-is legacy pattern at the data

level is the Sequential Master File pattern. Some

legacy applications still exist in which master files

are organized or processed sequentially. The pattern

has one key element: the way in which the master

file’s dataset is organized. This pattern is useful

when analyzing options to expose existing business

functions as services. The consequence of this

pattern is that redesign of data structure is likely to

be a prerequisite for refactoring the program or

exposing any of its capabilities as a service.

As best practices for z/OS applications are created or

identified, we are able to define and document z/OS

application patterns. Emphasis is being placed on

patterns that exploit newer capabilities available on

z/OS, such as support in COBOL for XML (Exten-

sible Markup Language) data, Java interoperability,

and support for SOAP (Simple Object Access

Protocol) and Web services interfaces in CICS and

IMS.

We are able to define legacy transformation patterns

as we identify discrete transformations that can be

combined to close the gap between an as-is state and

a to-be state. These legacy transformation patterns

are associated with instances of the as-is legacy

patterns. For example, the Online Data Capture With

Batch Update as-is legacy pattern shown in

Figure 10 could be addressed by transformations

such as:

� Use Primary File Instead of Replica, which would

modify the online inquiry and update application

to use the master file directly and eliminate the

daily copy of the master file. The result would be

online transactions that could be wrapped to

create a service interface.

� Run Subset Of Batch On Demand, which would

preserve the existing online and batch architec-

ture, but would make any changes needed to

allow the batch process to be run as needed on a

small set of transactions.

� Add Message Interface To Batch, which would

modify the batch programs to accept transactions

from a message queue, in addition to the current

file-based transaction source.

Tools to support the use of the as-is legacy patterns

and legacy transformation patterns are being built as

extensions to existing analysis tools. This automa-

tion is important: tools have the ability to comb

through models of large software portfolios search-

ing for instances of as-is legacy patterns through

multiple implementation variations and levels of

indirection. These tools can extend the abilities of

analysts who may lack experience in z/OS applica-

tions and methods commonly used years ago.

Moreover, the tools are built upon models that can

be the basis for project planning, change manage-

ment, and testing. As we expand our set of patterns,

we will look for opportunities to generalize the way

we detect patterns and externalize their specifica-

tion.

Our work has focused on capturing these patterns

through engagements in two client scenarios: (1)

consolidating data and applications to align with

business processes and (2) integrating z/OS batch

and online software with service interfaces. This

work is in its early stages and will certainly evolve.

Two case studies are summarized to illustrate these

patterns and their use in legacy transformation. It

should be noted that the use of patterns is a way to

augment, not replace, the processes and methods

already in use today.

The case study on application consolidation focuses

on the use of patterns in the initial analysis phase.

The case study on integrating with a services

interface focuses on the detailed analysis phase.

Case study: Application consolidation

There are many reasons why application consol-

idation may be proposed. Mergers are one example;

removing redundancy found by CBM is another. An

application consolidation includes the following

steps:

1. Initial analysis

a. Identify existing functions and data in each

application

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 37

b. Define criteria for choosing ‘‘best-in-class’’

implementation

c. Assess application functional overlap

d. Classify functions by degree of commonality:

core (used by all), common, or application

unique

e. Select ‘‘best-in-class’’ application (or re-

placement package)

f. Determine disposition for other common and

unique functions

g. Create initial project estimate

2. Detailed analysis

a. Plan new user and external interfaces

b. Plan code and data migration, testing

3. Design

4. Develop

5. Test

6. Deploy

The scope of application consolidation projects

includes data as well as function. Our work on

legacy patterns also includes that scope. In the

interest of clarity, however, in this paper we will

focus specifically on functions and the role of legacy

patterns in their analysis.

Initial analysis is supported by the coarse-grained

mapping between the business model and the

applications defined in the high-level legacy systems

model. Using that mapping data, as-is legacy

patterns at the application level can assess func-

tional overlap and classify functions based on the

degree to which their use is repeated in the

applications. If we were to stop at this point, we

would be automating some of the data capture that

is typically performed with spreadsheets and docu-

mented with reports and Venn diagrams such as the

one shown in Figure 11. However, at this coarse-

grained level, relying only on information gathered

in a consultative process, we can go a bit further in

two ways:

1. Use the information about the applications

(including the application-to-function mapping,

information gathered about technical quality, and

business capability) as input to the analysis that

selects the ‘‘best-in-class’’ application to be used

as the base for consolidation. This analysis also

determines the disposition of each common or

unique function: whether it should be included in

the consolidated application, reallocated to an-

other application, or eliminated.

2. Capture coarse-grained information about appli-

cation interfaces. This information is typically

gathered with interviews and questionnaires that

ask an application owner to identify the other

applications with which interfaces are known to

exist.

Patterns for coarse-grained analysis

With this additional information, we can apply high-

level legacy transformation patterns to develop the

initial work plan. Because we are working on the

Figure 11
Venn diagram of legacy pattern at the application level

Application 1

 REDUNDANT FUNCTIONS
- Same function performed
 by some, but not all applications

Application 3

Application 2

 COMMON FUNCTIONS
- Same business function
 represented in all applications

 UNIQUE FUNCTIONS
- One function performed
 by one application

A
B

C
D

D E

E

L
M

J

K

H
I

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200538

initial plan, these patterns represent high-level

activities to be completed in later detailed planning.

These patterns can be thought of as refactorings at

the level of applications, functions, and interfaces.

The legacy transformation patterns include:

� Retire Application, which is instantiated for each

instance detected by an as-is legacy pattern called

Application To Be Retired.
� Retire Interface, which is instantiated for each

instance detected by an as-is legacy pattern called

Interface Connects Applications To Be Retired.
� Migrate Interface, which is instantiated for each

instance detected by an as-is legacy pattern called

Interface Connects Applications To Be Retained.
� Migrate Function, which is instantiated for each

instance detected by an as-is legacy pattern called

Function To Be Retained from Application To Be

Retired.
� Retire Function, which is instantiated for each

instance detected by an as-is legacy pattern called

Application To Be Retained Implements Function

To Be Consolidated.
� Create Common Interface, which is instantiated

for each instance detected by an as-is legacy

pattern called Interface Connects To Multiple

Applications; this analysis occurs after the analy-

sis for the Retire Interface and Migrate Interface

legacy transformation patterns.
� Create Interface Adapter, which is instantiated for

each interface consolidated by the Create Common

Interface legacy transformation pattern.

A simple illustration of how these patterns apply is

shown in Figure 12. In this example, Application 1

was chosen to be the base for consolidation;

Applications 2 and 3 are to be retired.

Coarse-grained analysis with fine-grained legacy

model

If automated analysis of the application portfolio has

been performed, legacy patterns can be applied to

this finer-grained information, even in the context of

initial analysis. In this case, the finer-grained

application model gives a more detailed under-

standing of the interfaces between applications. We

can detect instances of as-is legacy patterns such as:

� Shared File/Database, which looks for files or

databases used directly by multiple applications

(see Figure 13).
� Custom Extract, in which a file is created by one

application and processed by one other applica-

tion (see Figure 13).
� Common Extract, in which a file is created by one

application and processed by more than one other

application (see Figure 13).
� Custom API, in which a transaction or message-

driven program belonging to one application is

invoked by one other application.
� Common API, in which a transaction or message-

driven program belonging to one application is

invoked by more than one other application.

Figure 12
Venn diagram including legacy transformation patterns

Application 1

Application 3

Application 2

Retire Function

TRANSFORMATION PATTERN

TRANSFORMATION PATTERN

Application to be
Retained

AS-IS PATTERN Migrate Function

AS-IS PATTERN
Application to be Retired

A
B

C
D

D E

E

M

J

K

H
I

L

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 39

These as-is legacy patterns lead to corresponding

legacy transformation patterns. For example, the

Custom Extract as-is pattern shown in Figure 14

leads to potential legacy transformation patterns for

the data provider, Application A, such as Replace

With Standard Extract/Transform/Load Tool, and

for data consumers, applications B and C, legacy

transformation patterns such as Replace Use Of File

With Access To Common Warehouse.

While these patterns can provide insight to archi-

tects performing initial analysis and can also help

with analysis of modest amounts of information,

they represent an incremental improvement in the

way these projects are performed today. It is in the

transition to detailed analysis that patterns can

enable a significant change in the size and scope of

projects that can be handled effectively.

The detailed analysis requires that the automated

analysis of the application portfolio be complete. For

application consolidation, the legacy patterns can

help identify ways to migrate functions and inter-

faces. In the consolidation scenario, we may be

doing the detailed analysis of consolidation re-

quirements by using a business process model that

is based on a functional decomposition or on a

business component and service model.

Once we focus our attention on the transformations

required for a single function in a single application,

our analysis for the application consolidation

scenario converges with that needed to integrate

z/OS batch and online applications with a services

interface. For the purposes of this paper, we take up

the discussion of detailed analysis in the second case

study that follows.

Case study: Integration with services interface

Our work on legacy patterns focuses on integration

and transformation requirements that are not met by

existing integration approaches. As an example,

consider the application architecture shown in

Figure 13
Example as-is legacy pattern

Shared File/
Database

Application A Application B Application C

Common
Extract

Application A Application B Application C

Custom
Extract

Custom
Extract

Application A Application B Application C

Figure 14
Legacy transformation patterns for
Custom Extract legacy pattern

Custom
Extract

Custom
Extract

Application A Application B Application C

Transformation for
Application A:
Replace Custom
Extract with
Standard Extract/
Transform/Load Tool

Transformation for
Applications B and C:
Replace Use of
File with Access to
Common Warehouse

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200540

Figure 15. This architecture is a composite created

from two similar client engagements. It includes a

set of batch applications that perform the core

business processes of posting and billing. These

batch applications are the current systems of record

and thus manage the master files. Over time, these

batch applications have been augmented with

online systems for customer-service and new-

account processing, as well as interfaces to point-of-

sale systems. Each of these systems maintains its

own data, which is synchronized with the master

files on a nightly basis.

The business process of creating a new account

spans two COBOL applications: the online applica-

tion for new-account processing and the batch

posting application. If the requirement for business

change is to create a service interface to the current

Create New Account process, it might be sufficient

to wrap the existing new-account-processing online

transactions. If, however, there is a requirement that

the account be created immediately, and not by

overnight batch processing, the straightforward

wrapping of the online new-account-processing

application will not suffice.

Figure 15
Application architecture for detailed analysis case study

Mini-Master
Replica File

Remote file transfer of point of sale transactions

Remote file transfer of sales commission transactions

New account transactions

Customer information transactions

Extract

Extract

z/OS Applications

Customer
Information
Transactions

New
Accounts

HR and Benefits
Application
(batch and
online, COBOL)

New Account
Processing
(online, COBOL)

Customer Information
Application
(online, COBOL)

Statement
History
File

Mini-Master
Replica File

Customer
Information
Transactions

Statements
(batch,
assembler)

Posting
and Billing
(batch,
COBOL)

Statements

Account
Master File

Replicated
Master
File

Commission
Calculation
Tables

Periodic update of
commission tables

Purchase Authorization
Application
(online, assembler)

Point of
Sale
Application

Point of Sale
Transactions

Sales
Commission
Transactions

Time Reporting
Application
(batch and
online, COBOL)

Payroll Application
(batch and online,
COBOL)

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 41

This requirement drives deeper analysis that can be

improved by using patterns. The existing imple-

mentation needs to be examined to determine

whether some portion of it can be reused, or

whether it needs to be refactored or even replaced.

Our approach to detailed analysis comprises the

following steps:

1. Use the mapping between service interface and

legacy system to perform automated data and

control-flow analysis to identify the potential

scope of change.

2. Within that scope, and the type of change,

perform automated analysis to see which as-is

legacy patterns apply.

3. Review the results, to identify any significant

barriers to project success.

4. Use legacy transformation patterns to identify

and estimate alternative solutions to the require-

ments and constraints.

As-is legacy patterns

We have discovered several as-is legacy patterns

that are relevant to the service interface scenario. At

the architecture level, they include:

� Online Entry/Batch Update, in which transactions

are collected and edited for subsequent batch

processing to re-edit and apply the transactions.
� Edits Repeated, in which the transaction data

undergoes the same or similar validation at

different times in the process. An example is on-

line edits that are similar to those in the batch

process.
� Job Step Handles Multiple Processes, in which

many business processes are handled in a single

job step. This is typically a performance optimi-

zation, to avoid reading the same file multiple

times.

At the data level, as-is legacy patterns include:

� Replicated Master File, in which batch systems

create a copy of their master files for use by online

systems.
� Sequential Master File, in which the physical

organization of the file permits only sequential

access. Direct access to a given record is not

possible without reading the file from the begin-

ning.

� Home-Grown Database, in which access to data—

typically master file data—is controlled through an

API (application programming interface) that

supports positioning, reading, writing, updates,

and deletions, but hides details associated with

underlying data formats, compression, and phys-

ical access.

At the program level, as-is legacy patterns include:

� Abend On Exception, in which the program

intentionally executes an instruction or invokes a

system API to terminate execution of the program

and batch job step, rather than attempting

recovery.
� Screen Handling Combined With Business Logic,

in which online programs have business logic

tightly coupled to presentation logic, making it

harder to create a service.
� Screen Handling Separated From Business Logic,

in which online programs are well-suited for

invocation of business logic from a wrapper or

service interface.
� Multiple Split/Merge on Transaction Data, in

which a single program handles multiple business

transaction types and has a single mainline path

that contains tests for transaction type in multiple

locations, in contrast with testing for transaction

type once and performing the processing of each

transaction in a cohesive routine.
� Multiple Statements For File I/O, in which a single

program uses multiple identical I/O statements

(such as read or write), instead of encapsulating

I/O in a common internal procedure or external

subroutine.
� Deferred Write Of Master File, in which a program

is sequentially processing an input transaction and

input master file, and writing a new copy of the

master file as an output. The transaction and

master files are sorted on some common key. In

the classic batch update program, an in-memory

copy of the master file record is updated for each

applicable transaction. This in-memory copy is

written only after all applicable transactions have

been applied to it. The write is not triggered by

any of the transactions that update the record;

rather, it is triggered when the program reads a

transaction that applies to a different master

record.

How do these patterns help create a service interface

to the new account processing? First, they help us

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200542

understand the architecture of the current imple-

mentation, which imposes constraints on the solu-

tion.

Recalling Figure 9, analysis starts with one or more

user-specified links between the business model, in

this case the service definition, and the legacy

systems model. The analysis approach accommo-

dates multiple starting points. The case study

application shown in Figure 15 offers two examples:

1. If the analyst were to specify the online trans-

action that initiates the business process, analysis

of control and data flow would lead to the New

Accounts transaction file, which would in turn

lead to the batch job steps and programs in the

posting application. In turn, additional control

and data-flow analysis would detect the data

insertion into the master file, and the copying of

the master file to the mini-master file used by the

online new-account-processing application.

2. If the analyst were to specify the statements in the

batch posting program, the control and data flow

analysis would work backward from the batch

program, discovering the New Accounts trans-

action file, and leading to the online system and

relevant transactions.

In either case, this analysis creates a graph structure

of the control and data flows. That graph can be

analyzed to detect the instance of the Online Entry/

Batch Update as-is legacy pattern. It can also be

analyzed to detect the creation of the mini-master

file as an instance of the Replicated Master File

pattern. Analysis of the batch job’s dataset attributes

reveals the Sequential Master File pattern. Analysis

of the online programs exposes any instances of

Screen Handling Combined With Business Logic,

while analysis of the batch programs exposes

Abend On Exception, Multiple Split/Merge On

Transaction Data, Multiple Statements For File I/O,

and Deferred Write Of Master File. By examining

and comparing the statements used in the online

and batch programs, Edits Repeated may be

identified.

Having found these instances of as-is legacy

patterns, what can we do with them? In our current

engagements, the pattern instances have been used

by the architects developing the solution approach

and plan. Certain of these patterns—such as

Sequential Master File—cannot be replaced by a

programmed work-around. In fact, this data struc-

ture is a dominant factor shaping the application

architecture. Other patterns, such as Edits Repeated,

can have a programmed work-around or can even

be tolerated.

In the scenario for integrating with a services

interface, the as-is legacy patterns help the architect

identify barriers to creating a service and explore

implementation options. For example, it may be

possible to split this effort into subprojects. In a first

release, one might initially create the service inter-

face on top of the existing online system, realizing

the benefit of interoperability without achieving the

benefit of straight-through processing. A second

release might convert the sequential file to a

database or direct access file. A third release could

consolidate the processing to create the straight-

through service.

Legacy transformation patterns

Whereas these as-is legacy patterns help discover

constraints and requirements, legacy transformation

patterns help identify potential solutions. For each

as-is pattern, there may be one or more potential

transformation patterns. For example, two trans-

formation patterns for Sequential Master File are

Convert Sequential File To Direct Access File and

Externalize Program I/O Statements In I/O Module.

In these transformations, the underlying data

structure can be changed to permit keyed access,

even if batch programs continue to access the file

sequentially. The transformation also decouples the

programs using the file from the file’s physical

characteristics, facilitating future changes in data

structures.

Another example involves transformation patterns

associated with the Multiple Split/Merge On Trans-

action Data pattern. Two transformation patterns

could apply:

1. Refactor By Transaction Type, which creates a

separate subroutine to handle each type of

transaction.

2. Refactor Common Code Into Shared Module,

which further refactors the subroutines created

for the transactions.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 43

In one client engagement, a batch job step for

transaction posting was refactored. The original

implementation handled 48 unique transaction

types for 10 account types and included 38,000 lines

of code in nine source programs. The refactored

implementation totaled 42,000 lines of code in 45

programs. The number of lines of code increased

slightly, but the average program size was reduced

from approximately 4,200 to approximately 900

lines of code. The resulting programs were func-

tionally cohesive and well-structured for single-

entry, single-exit processing. The transformation

offered two benefits: (1) improved maintenance

because the application could now easily be

extended to handle new transaction and account

types, and (2) improved interoperability, because

the processing for each transaction type was

exposed for reuse.

We continue to explore ways to link the legacy

transformation patterns, the legacy system models,

and impact-analysis tools to provide ‘‘what if’’

simulation capability in developing transformation

alternatives.

CONCLUSION

The design trade-offs made in creating application

software have changed dramatically over the past

four decades. Where we once sought to automate

clerical processes and squeeze programs and data

into the smallest possible space, we now seek to

automate business processes within and across

enterprises, with an eye toward maximizing flexi-

bility and responsiveness to change. Where software

was once designed with flowcharts, written on

coding sheets, and punched into cards, we now see

business processes designed with visual models that

are transformed into executable flows, which in turn

choreograph reusable components and services.

At the core of many application portfolios, however,

are legacy systems that were designed, quite

appropriately, to meet the constraints of their time

and that cannot easily adapt to the types and pace of

change required today. A variety of techniques exist

to wrap these legacy systems, delivering the benefits

of interoperability. In many cases these techniques

are sufficient. In other cases, additional techniques

are needed to achieve interoperability and to

streamline the application portfolio and align it with

business needs.

This paper has described an approach that is

grounded in past experience with legacy trans-

formation processes and tools, that seeks to align

with other work in business strategy consulting and

information technology, and that appears to offer

promise in making legacy transformation a more

scalable, repeatable process. There is much to be

learned about useful patterns and refactorings for

legacy systems, and much work remains in the areas

of managing patterns and of supporting a com-

munity that can use and extend the legacy patterns.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Management
Group, Inc., or Sun Microsystems, Inc.

CITED REFERENCES
1. S. Ramamurthy and M. Robinson, Simplify to Succeed,

G510-9109-00, IBM Corporation (2003), http://
www-1.ibm.com/services/us/imc/pdf/g510-9109-00
-simplify-to-succeed-retail-banking-in-2005-full.pdf.

2. F. Injey, K. Findeis, Y. Tang, and M. Zelbel, Patterns on
z/OS: Connecting Self-Service Applications to the Enter-
prise, SG24-6827-00, IBM Corporation (March 2003),
http://www.redbooks.ibm.com/abstracts/
sg246827.html.

3. G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building and Deploying Messaging Solutions,
Addison-Wesley, Boston, MA (2003).

4. M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.
Krogkahl, M. Luo, and T. Newling, Patterns: Service-
Oriented Architecture and Web Services, SG24-6303-00
IBM Corporation (July 2004), pp. 31–37, http://
www.redbooks.ibm.com/abstracts/sg246303.html.

5. OMG Model Driven Architecture, Object Management
Group, http://www.omg.org/mda/.

6. R. Seacord, D. Plakosh, and G. Lewis, Modernizing
Legacy Systems, Addison-Wesley, Boston, MA (2003).

7. WebSphere Studio Asset Analyzer for Multiplatforms, IBM
Corporation, http://www-306.ibm.com/software/
awdtools/wsaa/.

8. Unified Modeling Language, Object Management Group,
http://www.uml.org/.

9. A. Arsanjani, J. Alpigini, and H. Zedan, ‘‘Externalizing
Component Manners to Achieve Greater Maintainability
through a Highly Re-Configurable Architectural Style’’,
Proceedings of IEEE International Conference on Software
Maintenance (ICSM’02), Montreal, Canada, October 3–6,
2002, IEEE, New York (2002), pp. 628–639.

10. J2EE Connector Architecture, Sun Microsystems, Inc.,
http://java.sun.com/j2ee/connector/index.jsp.

11. F. Injey, J. Lastra, D. Hoer, and D. Carmona, XML on
z/OS and OS/390: Introduction to a Service-Oriented
Architecture, SG24-6826-00, IBM Corporation (June
2003), http://www.redbooks.ibm.com/abstracts/
sg246826.html.

12. IBM Patterns for e-business, IBM Corporation, http://
www-106.ibm.com/developerworks/patterns/.

HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200544

13. Endrei et al., Patterns: Service-Oriented Architecture and
Web Service, p. 46.

14. M. Fowler, Refactoring, Addison-Wesley, Boston, MA
(1999).

Accepted for publication August 9, 2004.

Howard M. Hess
IBM Research Division, Thomas J. Watson Research Center,
330 North Wabash Avenue, Chicago, Illinois 60611
(h2@us.ibm.com). Mr. Hess is a Distinguished Engineer in the
Software Technology department at the Thomas J. Watson
Research Center. He received a B.A. degree in
communications and theater arts from the University of Iowa
in 1981. After working for systems integration firms and the
software re-engineering practice of a Big Six consulting firm,
he joined IBM in 1992 as part of an application redevelopment
services practice. He worked on solutions for legacy
transformation in IBM Global Services and the IBM Software
Group prior to joining IBM Research in 2003. &

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 HESS 45

Internet publication January 7, 2005.

