Aligning technology and
business: Applying patterns for
legacy transformation

H. M. Hess

Two key goals for aligning technology and business are to increase an organization’s
ability to change rapidly and to reduce the costs of technology. While many efforts are
underway to improve application development, less emphasis has been placed on
addressing key challenges posed by existing applications that resist rapid change. In
this paper, we discuss techniques for accelerating change to legacy systems and for
streamlining an application portfolio. Our approach takes business-driven application
requirements, links them to analysis of an application portfolio, and identifies potential
sequences of transformations to realize the targeted improvements. This paper
describes our approach for mapping business requirements to application software,
for using patterns to help translate business requirements to software requirements,
and for using patterns to translate software requirements into potential solution
designs. The paper describes how these techniques are applied to two stages of the
software life cycle—initial analysis and detailed analysis—and summarizes experience

gained from projects working with IBM clients.

Businesses often depend on information systems
that were built with traditional transactional and
batch technologies. These information systems—
commonly called legacy systems—were built to
satisfy high demands for throughput and scale at a
time when systems software and hardware were far
less capable than they are today. These legacy
systems are often very large and complex by any
standard, and relatively closed and inflexible by the
standards of today. The application portfolio of an
enterprise typically contains many applications,
often developed independently, operating in silos
(isolated, often vertically integrated structures) with
overlapping and redundant function and data.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

For example, an IBM Business Consulting Services
report on financial institutions noted, “From our
extensive studies of performance improvement and
cost reduction, we estimate that as much as 60
percent to 80 percent of the functionality in silos
may be redundant or duplicated in other parts of the
business. This weakens the performance of financial

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

HESS

25

26

institutions and makes it harder for them to respond
to fresh demands for change.”1

Over the past two decades, significant efforts have
been made to improve interoperability of legacy
systems by wrapping them first with client/server
solutions, then with messaging, and now with Web
technology. These changes have added capability
and increased interoperability, but have come at a
cost of increased application size and complexity.
This was also described in the IBM Business
Consulting Services report:

Recent advances in integration middleware
technology have provided some relief by making
it possible for financial institutions to move
customer information across channels. But in
many cases the technology has been laid over
flawed legacy architecture and has merely
created more duplication. The cost of such an
approach is reflected in our research, which
shows that up to 70 percent of IT [information
technology] spending by financial institutions
goes toward maintenance and redevelopment.
Furthermore, the problem seems to grow with
size: The largest banking institutions (with assets
more than $60bn) spend 50 percent to 100
percent more on IT relative to their smaller
(under $2bn) counterparts. Despite this
[expenditure], virtually every business manager
in large financial institutions bemoans the
organization’s lack of speed and institutional
inflexibility.'

The IBM Business Consulting Services report focu-
ses on financial institutions, but similar results can
be found in other industries. The inertia of legacy
systems creates significant challenges that remain
even when new layers of more flexible technologies
have been added. Emerging approaches for creating
applications—such as model-driven development
and service-oriented architecture (SOA)—sidestep
the challenges of legacy systems, treating the
applications as black boxes to be reused through
connectors and adapters.

There is an opportunity to make these emerging
approaches more valuable by augmenting them with
solutions to some of the deep-rooted problems of
legacy systems. This paper describes research on
analysis and transformation techniques to face
directly the problems of duplication and inflexibility

HESS

of legacy systems, and to integrate top-down
approaches for creating applications with bottom-up
analysis of existing applications. Our approach
combines three techniques:

1. Business-to-technology model mapping—A to-be
model of business (i.e., a model of the business
as we wish it to be) is mapped to an as-is model
of applications (i.e., a model of applications as
they are today) to identify areas of redundancy
and overlap, and to provide a basis for tools that
can help derive technical requirements from
business requirements.

2. As-is pattern discovery—A to-be model of soft-
ware interfaces is compared with an as-is model
of the composition and flow of legacy applica-
tions. The analysis identifies instances of struc-
tural patterns in the architecture of legacy
applications, the programming, and the data
representation that define the gap between the as-
is implementation model and the to-be imple-
mentation model. (We discuss patterns in sub-
stantially greater detail in the section “The role of
patterns for legacy transformations” later in this

paper.)

3. Transformation pattern selection—A set of pat-
terns for transforming legacy applications is
compared with the model gaps and the as-is
patterns to identify approaches and techniques
for closing the gap. The transformation patterns
provide solutions that allow the gap to be closed
over several iterations. The transformation pat-
terns include structural patterns for changes to
application architecture, programming, and data
representation, as well as process patterns for the
transformation work itself.

The approach is founded on experience gained with
IBM clients in projects that needed to analyze and
change large portfolios of legacy applications. This
paper describes some of the relevant characteristics
of legacy applications and the motivation for
moving beyond legacy integration to legacy trans-
formation. It describes the motivation for mapping
business models and technology models and the
processes by which this mapping is performed at
two stages in the life of a project: the initial analysis
stage and the detailed analysis stage. The models
used in detailed analysis of a project are then
discussed (the design of a model is often referred to

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

as a metamodel). The paper concludes with two
summaries of project experience: one for the initial
analysis of a project to consolidate redundant
applications, and one for the detailed analysis of
integrating a batch legacy program with a service-
based interface.

CHARACTERISTICS OF LEGACY APPLICATIONS
Two broad definitions of legacy applications are
“anything that is running in production” or “any-
thing that is not end-user computing.” This could
include batch and transactional applications running
on z/0S* or 0OS/400*, C++ programs running on an
open standards-compliant operating system, client/
server applications based on personal computers,
and others.

Our research is focusing on a significant subset of
these broader definitions: batch and transactional
applications running on z/0S. Even this constrained
scope is quite large. For example:

e An enterprise’s mainframe application portfolio
can comprise tens of thousands of programs, tens
of millions of data declarations, and more than
100 million lines of source code.

¢ The application portfolio may contain hundreds of
business applications, which in turn may be
architecturally and technically diverse.

* There are numerous interfaces between applica-
tions, many of which have been developed as
needed, without a consistent underlying architec-
ture.

These issues of portfolio-level scale and complexity
have traditionally led to an approach that focuses on
analysis of individual applications. Conducting
analysis one application at a time has at least two
significant shortcomings:

1. It does not enable analysis of the duplication and
redundancy that exist for different applications—
where there may be an overlap of 60 percent to
80 percent. Significant opportunities to consol-
idate and streamline may be missed.

2. It does not expose interfaces into the single
application from other applications in the port-
folio, increasing the risk of making a change that
breaks one or more unseen interfaces.

Scale and complexity are issues even at the
application level and program level. There are also

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

systems and programs known to be brittle and error-
prone, for which only the most critical changes are
attempted.

MOVING FROM INTEGRATION TO
TRANSFORMATION

The challenges and risks in making changes to
legacy systems have played a large role in shaping
current integration architectures and solutions in the
marketplace. These solutions treat z/OS applica-
tions as black boxes to be integrated through Java**
connectors, messaging solutions, and data access.”

Families of patterns for legacy integration have been
developed to build needed capabilities on top of the
connectors and message interfaces. For example,
Reference 3 describes a technique to support
requirements for routing a response from a legacy
system to the appropriate end point. The legacy
system returns a data structure to its caller; the
integration solution is responsible for managing the
routing to a Return Address:

One difficulty in exposing systems as services
results from the fact that many legacy systems
were not built with features such as Return
Address ... in mind. Therefore we “wrap” access
to the legacy system with a Smart Proxy. ... This
Smart Proxy ... enhances the basic system
service with additional capability so that it can
participate in an SOA.’

SOA is an important element of both legacy
integration and legacy transformation. For integra-
tion, SOA through messaging or Web services offers
well-accepted tools and protocols for interoperabil-
ity.4 For transformation, SOA provides a formal
interface to the legacy systems, separating the
interface from the implementation of the legacy
system or systems. After the interface is established,
the legacy systems underneath the interface can be
changed, consolidated, or replaced with signifi-
cantly reduced impact on the other parts of the
application portfolio.

TO-BE MODEL MAPPING

As with most information technology projects,
legacy transformation projects begin with a goal and
a general plan that are iteratively refined to detailed
requirements, specifications, and plans. While some
legacy transformation projects—such as data name
standardization—have information technology is-

HESS

27

28

Functional
Decomposition
Business Model

Component-Service
Business Model

BUSINESS BUSINESS
PROCESS COMPONENT
BUSINESS BUSINESS
SUBPROCESS SERVICE
BUSINESS
ACTIVITY
APPLICATION
Figure 1

Business models mapped to applications

sues as their primary drivers, our work focuses on
legacy transformation driven by business process
change. In some cases, the project begins with a
well-defined scope and business objective. In other
cases, analysis of business strategy and the appli-
cation portfolio are performed first, to define the
scope and objectives of a set of related legacy
transformation projects.

Understanding the relationships between the busi-
ness processes and applications is a prerequisite to
specifying and planning such a legacy transforma-
tion project. To record these relationships, we use
two types of model: a model of the business and a
model of the legacy applications. These models are
used and refined throughout the life cycle of a
project. Our approach starts with a broad, shallow
model of the business and a high-level model of the
legacy applications.

In the initial analysis we capture coarse-grained
mappings—between high-level business processes
and applications, for example—to provide the basis
for identifying potential redundancies and overlaps
in the application portfolio, estimating the size and
complexity of the applications that support a busi-
ness process, and identifying applications that
perform common services.

HESS

In later iterations we capture finer-grained map-
pings, such as those between a business service and
specific on-line transactions or batch jobs, to
provide the basis for selecting integration and
transformation strategies, identifying technical risks,
and creating transformation plans. Our work ad-
dresses both the coarse- and fine-grained mappings.

Business modeling is itself a broad and complex
subject. There are many types of business models,
incorporating static and dynamic views of organi-
zations, processes, and information. There are a
number of tools for business process modeling,
some of which link to tools for application devel-
opment and infrastructures for business activity
monitoring. There are also efforts, such as the
Object Management Group’s Model Driven Archi-
tecture**° initiative, working on the complex prob-
lems associated with comprehensive, end-to-end
modeling and transformation and traceability be-
tween models.

At this point in our work, we have opted to use
simple models that provide a static view of business
processes. Two variations of static business process
models have proven useful to our work:

1. Functional decomposition—In the long-accepted
form of static process model, we use three levels
of decomposition. Business processes, the highest
level of the model, are composed of business
subprocesses, which in turn are composed of
business activities.

2. Component-service model—This is a form used
within the component business modeling (CBM)
approach developed by IBM Business Consulting
Services. In this variation, a business component
provides business services that can be used by
other business components.

An illustration of the two forms of business model is
shown in Figure 1. In many cases, an organization
already has a documented functional decomposition
that can be used to populate this model. In other
cases, a good initial model can be prepared in a few
weeks. Anecdotal experience from consulting en-
gagements suggests that the coarse-grained model is
likely to contain between 150 and 300 business
activities.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

Initial analysis and coarse-grained mapping
One key objective of the initial analysis is to identify
the context and scope of a proposed change. For
example, the initial analysis for a system consol-
idation project needs to expose the areas of
redundancy and the interface dependencies that
must be considered in a migration plan. We use
coarse-grained models of business and legacy
applications for this stage.

A coarse-grained model is well-suited to the initial
mapping between the business and legacy systems
models. The coarse-grained mappings are made
between the business activities or subprocesses and
the legacy applications. This mapping is typically
performed in the first several weeks of a project. It is
a broad, shallow analysis. This mapping is typically
performed at this coarse-grained level for the entire
enterprise and the entire application portfolio.

The mappings help us gain insight from two
viewpoints:

1. The business model point of view—The mapping
allows us to understand the degree to which
business functions or business services depend
on multiple applications or have redundant
implementations.

2. The application point of view—The mapping
allows us to understand the business functions or
business services supported by each application.

The development of the business model is usually
performed in parallel with an application portfolio
analysis. The application portfolio analysis uses
manual techniques such as interviews, question-
naires, and workshops to document key attributes of
the applications. Those attributes include measures
of size, technologies used, and interfaces with other
applications and external entities. The portfolio
analysis may also estimate each application’s
development and operational costs, business value,
and technical quality.6 The application portfolio
analysis and mapping results are typically manually
entered into a spreadsheet, database, or other tool.

Initial application portfolio analysis projects typi-
cally avoid the use of automated tools for scanning
source code and other application artifacts. This is
true for two reasons. First, significant time and effort
are required to scan large numbers of application
artifacts. Second, even if the artifacts are scanned, it

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

is difficult to sift through the detailed meta-data
collected by automated tools to find information that
is relevant to the early decision-making and
estimating processes. Our research is exploring
ways to make detailed application meta-data useful
in the early stages of a project. Some examples of the
ways in which the detailed meta-data could improve
the initial analysis are:

* Detection and categorization of interfaces between
applications to validate and extend the list of
interfaces gathered in interviews and workshops

e Identification of technical dependencies, such as
use of specific application programming interfaces
or obsolete language versions or features

e Detection of implementation practices that have
an impact, positive or negative, on the integration
or transformation of an application (e.g., separa-
tion or coupling of user interfaces with business
logic, or sequential batch processing)

* Determination of ways to group related applica-
tions together based on their interrelationships

e Improved accuracy of initial estimates through use
of automated tools to compute software metrics

Automated tools, such as WebSphere* Studio Asset
Analyzer (WSAA),7 can be used to analyze the
software artifacts associated with a portfolio of
applications and to create detailed meta-data on the
composition, size, and complexity of each applica-
tion. The mapping between the coarse-grained
business and application models, when combined
with the linkage between the manually gathered
application model and the tool-gathered application
meta-data, gives us the foundation for assessing the
technical impact of the desired business change.

The tools may supplement the initial analysis, but
the purpose of the initial analysis remains the
identification of the context, scope, and require-
ments for a proposed change. The initial analysis
relies on a high-level model of the business, a high-
level model of the application portfolio, and the
mapping between them. The output of this initial
analysis is thus a high-level specification of the
business functions or services to be changed and the
applications and interfaces that need to be changed,
integrated, replaced, or retired. This specification is
used as input to the detailed analysis.

Detailed analysis and fine-grained mapping
The detailed analysis identifies all of the software
assets affected by a change and their dependencies

HESS

29

30

Accounts Receivable

Process
Payment
Process
General Ledger / Refund
Post
Transaction
‘\ACCOUWS Payable
Manual Issue
Journal Check
Entry
Cancel
Check
Figure 2

Legacy application interfaces

Accounts Receivable

Process
Payment
Process
General Ledger / Refund
Post
Transaction
7 Accounts Payable
Manual
Journal Issue
Entry Check
Mediator Web-service
to Existing Interface: <€ gﬁgiﬁl
GL “ Post GL
Application Transaction
Figure 3

General Ledger application replacement: Release 1

and interfaces throughout the application portfolio.
For example, detailed analysis for a project to create
a Web services interface to a legacy implementation
of a business function needs to examine the
composition and flow of online transactions and
batch jobs, as well as the persistent data stores that
help perform that function. The analysis must
identify any barriers to creating a Web services
interface with the desired quality of service—such as
a monolithic batch implementation of a business
function that may require subsecond response time
when invoked as a service.

The mapping between business and legacy systems
models is also an important aspect of this subse-
quent detailed analysis. Our work on fine-grained
mapping focuses principally on the scenario for
transforming legacy systems to participate in SOAs,
particularly those legacy systems that are not
amenable to straightforward integration. The type of
analysis required can be shown with an example:
replacing an existing application with a software
package, using Web services for interfaces. Consider
the simplified example in Figure 2. Assume that the
project objective is to replace a company’s General
Ledger (GL) application with an off-the-shelf pack-
age. The interfaces between the GL application and

HESS

the rest of the portfolio need to be considered. In our
simple example, the GL application’s Post Trans-
action function is used by two other applications:
Accounts Receivable and Accounts Payable.

In this example, let us assume that Accounts
Receivable is undergoing significant enhancement to
meet new business requirements and that changes
to its interfaces cannot be made for several months.
The package replacement could then be imple-
mented in three releases:

1. A first release might create a new Web-service
interface to the existing code for the Post Trans-
action business function. The Accounts Payable
application would be modified to invoke the Web
service. Two of Accounts Payable’s functions
would need to be changed: Issue Check and
Cancel Check. This is shown in Figure 3.

2. After the enhancements to Accounts Receivable
are complete, the second release in the GL
replacement would be prepared. Accounts Re-
ceivable would be modified to use the Web
services interface. Two of Accounts Receivable’s
functions would need to be changed: Process

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

Accounts Receivable

Accounts Receivable

Process Process
Payment Payment
Process Process
General Ledger Refund Refund
Post
Transaction
7 Accounts Payable Accounts Payable
Manual
Journal Issue Issue
Entry Check Check
Mediator Web-Service Web-Service
i Cancel New General Cancel
to Existing - Interface: — ~ Ledger Package Interface: <+— " ~
GL Post GL Apphcanon Post GL
Application Transaction Transaction
Figure 4 Figure 5
General Ledger application replacement: Release 2 General Ledger application replacement: Release 3
1 1

Payment and Process Refund, as shown in
Figure 4.

3. The third release would preserve the Web
services interface, but replace the existing GL
application with the new package. Figure 5
depicts this final release.

It should be noted that the use of Web services is not
a requirement of this encapsulation; the essential
requirement is to create a well-defined interface that
hides the implementation of the GL functions from
other applications.

One set of project planning problems revolves
around the implementation of each of the interfaces
to the GL. For each, a decision needs to be made
whether to convert the other application to use the
Web service directly, or whether to create a “reverse
adapter” around the Web service that implements
the existing legacy interface.

Although simplistic, this scenario demonstrates that
the planning of a legacy transformation project
requires integration of knowledge about the busi-
ness model, its mapping to the legacy systems

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

model, and a legacy systems model of software
assets and their interdependencies. This analysis
requires mapping at a finer-grained level for both
the business model and the legacy systems model.
Given the orientation of our work toward aiding the
transformation to SOA, it is natural that the fine-
grained representation of the business model may be
that of a service interface.

METAMODELS FOR DETAILED ANALYSIS

Figure 6 is a Unified Modeling Language**
(UML*"‘)8 class diagram that is a conceptual-level
model of a service interface and implementation,
based on prior work in modeling and specification of
services.” The ComponentFacade stereotype in the
diagram represents the interface to the service: in
this example a service named doService.

The Mediator behind the facade provides the
implementation of the service by coordinating the
execution of BusinessComponents, which could be
new code or interfaces into legacy systems.

Our detailed analysis identifies the points of inter-
face into legacy applications and helps determine
whether the legacy application is well-suited for
integration through standard connectors or mes-

HESS

31

<<ComponentFacade>> Mediator saging. When a legacy system is already well-suited

ShareableComponent for integration, transformation is not needed to
o +dosenvice() create services. An example wou}d be a legacy
_ 1 1* privateOpl() system that already has callable interfaces to its
FdoService() -privateOp2() transactions.
0.1
Our model for detailed analysis of legacy systems
0.5/ includes a model of the z/OS application runtime
<<ReuseElement>> environments and a model of application program-
BusinessComponent ming artifacts. Figure 7 is a conceptual-level UML
model of z/OS runtime artifacts. Analysis of runtime
artifacts is important, because it provides essential
information about how programs are invoked in
] batch and online interactions, and it also reveals the
Figure 6

binding between programs and the physical files and
databases they use. Figure 8 is a conceptual-level
model of a compilation-unit application program
and its interfaces. The model captures information
about the internal details of each program—the data

Template for service interface

z/0S Site

\ \ \ \ \ \
Online Region Dataset Batch Job IMS Database DB2 Database WebSphere MQ

! ! ! ! !

Transaction — Job Step Segment Table Message Queue
DD Statement

!

Column

Executable

Call Hierarchy

Figure 7
Conceptual model of z/OS runtime artifacts

32 HESS IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

Compilation Unit

{

Procedural Statement

?—\

Data Declaration

Statement
uses data
Statement \ \ Data used
is interface Compilation Unit Interface in interface
Entry Point External Call Data Store
File IMS Segment Relational Message Queue Screen

Figure 8
Compilation unit conceptual model

elements declared and the procedural statements—
and about the external interfaces of each program.

The runtime and program models are used by
generalized impact-analysis tools that trace control
and data flow within and across programs. This
automated impact analysis can be performed start-
ing with a scenario and a seed (described in more
detail in the next section). Example scenarios
include:

* Maintenance and enhancement changes to data
definitions, procedure interfaces, and program-
ming logic

e Creation of Java 2 Platform, Enterprise Edition
(J2EE**) Connector Architecture connectors ' to
CICS* (Customer Information Control System)
and IMS* (Information Management System)
transactions’’

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

® Creation of a subroutine from procedural logic
contained in a COBOL (Common Business Ori-
ented Language) program

The impact-analysis tools trace control and data
flow within programs, across program interfaces,
and through files and databases. Building on top of
the control and data-flow tracing, the impact-
analysis tools determine the impact of a potential
change upon runtime and program artifacts at all
levels of granularity, from programming statements
or data items up to the level of the overall
application. This impact information is stored in the
meta-data repository.

CONNECTING THE BUSINESS AND LEGACY
SYSTEM MODELS

Whereas the initial coarse-grained mapping is
typically performed broadly for the enterprise and
its application portfolio, the fine-grained mapping is

HESS

33

34

<<ComponentFacade>>
ShareableComponent

+doService()

Current Implementation

|

Analysis Seed

Analysis Result

Mediator

+doService()
-privateOp1()
-privateOp2()

<<ReuseElement>>
BusinessComponent

Analysis results are a
collection of items from
the z/0OS runtime and
programming models

Transaction Executable

Figure 9

Conceptual model for fine-grained mapping and analysis

Entry Point

Procedural Statement Data Element

performed selectively for the subset of the applica-
tion portfolio that is relevant to the project. The fine-
grained mapping is performed with a combination of
user input and tool assistance. Figure 9 shows a
conceptual view of the metamodel for this fine-
grained mapping and analysis.

The selective mapping and the subsequent analysis
use the following steps:

e Define the service to be created and its proposed
interface. This is done from the top down in the
traditional way, using the business and functional
requirements. The service interface is represented
by the ShareableComponent.

* Identify one or more points in the legacy system
that are currently performing processing that
needs to be included in the service. These points
could be existing CICS or IMS transactions, batch
jobs, programs, or even statements within a
program. These are represented by the Analysis

HESS

Seed. When a subject matter expert is available—a
business user, analyst or developer who can
describe the systems and transactions used to
perform a process—this is a straightforward
process. When the desired expertise is not
available, other techniques are employed, such as
documentation review, observation of system
users, and the use of tools to search and analyze
source code.

* For the touch points identified above, use gener-

alized application understanding and impact
analysis tools that follow control and data flows to
identify the parts of the application portfolio that
may be part of the implementation of the service.
These are represented by the Analysis Result.

e Use specialized analysis tools to examine the

affected parts of the portfolio, looking for instan-
ces of architecture, coding, and data-structure
patterns that may affect the integration of the
legacy system with the service interface.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

Impact-analysis tools are used to determine the
application software assets related to the initial
seeds. The tools analyze control and data flow
within a program to identify affected statements and
data elements, and analyze control and data flow
across interfaces to identify other programs and data
stores that are affected. The tools use the z/0S
runtime model to analyze impact through shared
data within and across applications.

The ability to do global impact analysis simplifies
the job of an analyst who needs to determine how to
integrate the legacy system with the service. It also
provides flexibility to the analyst performing the
fine-grained mapping, since it allows the analyst to
choose from many types of seed based on the
information that is available. The analyst does not
need to know the precise location within the
application where the current business process
begins or ends. Rather, the analyst just needs to
know a location where the business process is
performed; the automated tools will help determine
the boundaries of the process implementation.

Given a set of initial mappings, the role of the tools
is to compute other relevant mappings and to
provide a way to help a user iteratively refine these
mappings to expose the alignment and gaps between
the current legacy applications and the desired
service interface.

THE ROLE OF PATTERNS FOR LEGACY
TRANSFORMATION

Patterns have become recognized as a useful way to
capture lessons learned and to help disseminate and
apply practices that have proven successful. IBM’s
Patterns for e-business are an example of this
concept:

The Patterns leverage the experience of IBM
architects to create solutions quickly, whether for
a small local business or a large multinational
enterprise. ... customer requirements are quickly
translated through the different levels of Patterns
assets to identify a final solution design and
product mapping appropriate for the application
being developed.12

These patterns have been developed and refined
with experience gained on more than 20,000
Internet-based engagements,13 and they provide
guidance for working top-down from business

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

design to application runtime. In general, the
patterns provide a description of proven practices
(and thus, reusable assets) that identify how to
satisfy a given set of objectives within a defined
context. The patterns are typically used in a
prescriptive fashion, guiding analysis and design
processes that start from the top down.

The application of patterns to legacy transformation
is somewhat different. The intent is the same: to
capture lessons learned and help disseminate and
apply proven practices. Legacy transformation adds
significant bottom-up analysis and design efforts to
the top-down analysis inherent to IT projects.

Patterns are a means to the end of legacy trans-
formation. We want to use them to:

* Help us understand the current state of legacy
systems, with as-is legacy patterns found through
tool-based analysis of legacy application assets

* Model the desired end state of legacy trans-
formation projects, with patterns for z/OS appli-
cations and the IBM Patterns for e-business

¢ Identify the sequence of incremental changes to
close the gap between the current state and end
state, using legacy transformation patterns

The definition of as-is legacy patterns is an ongoing
process and results from analysis and transforma-
tion projects with IBM clients. As with the Patterns
for e-business, our goal is to define and refine these
patterns by using experience gained on a large
number of projects. A taxonomy of patterns has
been developed as part of this work. There are three
basic as-is legacy pattern categories:

1. Architecture patterns, which span from the
application portfolio to the flows invoked by
mechanisms other than program calls (e.g., CICS
pseudoconversations, batch schedules) and con-
nected by shared data.

2. Program patterns, which address items found in a
single compilation unit or in a collection of
programs connected in a calling hierarchy.

3. Data patterns, which address the structure and
navigation of data structures, typically files and
databases.

HESS

35

36

—» Transaction
holding file l
° I
Master File update
Online inquiry]
< » and update
of daily copy of -
master file ¢
Extract
Daily Copy < Master
of Master File
File

Figure 10

Online Data Capture With Batch Update legacy architecture pattern

An example of an as-is legacy pattern at the
architecture level is Online Data Capture With Batch
Update, shown in Figure 10. For purposes of this
example, we use the term file to represent either a
file or a database.

This architecture pattern includes three key ele-
ments:

1. Online programs that store transactions for
subsequent processing in a batch job. The on-line
programs typically validate the transactions
before storing them, to minimize the number of
exceptions detected in the batch job.

2. Batch programs that read the stored transactions
and update master files. The batch programs may
repeat the validation performed online, and may
perform additional validations as well.

3. Batch programs to create or update the replicated
master file data used by the online programs.

This pattern is useful when analyzing options for
exposing existing function as a service. The con-
sequence of this pattern is that a straightforward
connector to the online program cannot provide a
synchronous update to the master file of record. If
the service requires a synchronous update to the
master file, then alternative approaches must be
evaluated.

An example of an as-is legacy pattern at the program
level is the Multiple Split/Merge On Transaction

HESS

Data pattern. This pattern detects a coding idiom
commonly found in COBOL programs that perform
multiple business functions, such as opening a bank
account, recording deposits, recording withdrawals,
and closing a bank account. In this idiom, the
program is organized with a common mainline
routine that handles all business functions, with
lower-level routines making tests of business func-
tion to perform specialized processing. This is in
contrast to a program organized into a separate
mainline routine for each business function, rou-
tines specific to a business function, and lower-level
routines that perform logic shared by two or more
business functions.

This program pattern includes three key elements:

1. A field or structure in an input record that is
compared to multiple hard-coded values

2. A control flow graph that branches based on the
comparisons to hard-coded values, then merges
to perform common logic

3. Multiple instances of a test for a specific value

This pattern is useful when analyzing options to
change a program to make it more extensible or to
extract a subset of its function. The consequence of
this pattern is that the organization of the program
needs to be changed—for example, to make a single
test of the transaction data at the top of the
procedural code—before the program can be made
more extensible or before the code for the business

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

function can be extracted to a separate module. The
process of changing the organization of the code
without changing its function is commonly known
as refactoring.14 Tools and patterns for refactoring
J2EE applications are an important part of Java
integrated development environments. Many of our
legacy transformation patterns are intended to guide
the process of refactoring legacy systems.

An example of an as-is legacy pattern at the data
level is the Sequential Master File pattern. Some
legacy applications still exist in which master files
are organized or processed sequentially. The pattern
has one key element: the way in which the master
file’s dataset is organized. This pattern is useful
when analyzing options to expose existing business
functions as services. The consequence of this
pattern is that redesign of data structure is likely to
be a prerequisite for refactoring the program or
exposing any of its capabilities as a service.

As best practices for z/OS applications are created or
identified, we are able to define and document z/0S
application patterns. Emphasis is being placed on
patterns that exploit newer capabilities available on
z/08S, such as support in COBOL for XML (Exten-
sible Markup Language) data, Java interoperability,
and support for SOAP (Simple Object Access
Protocol) and Web services interfaces in CICS and
IMS.

We are able to define legacy transformation patterns
as we identify discrete transformations that can be
combined to close the gap between an as-is state and
a to-be state. These legacy transformation patterns
are associated with instances of the as-is legacy
patterns. For example, the Online Data Capture With
Batch Update as-is legacy pattern shown in

Figure 10 could be addressed by transformations
such as:

e Use Primary File Instead of Replica, which would
modify the online inquiry and update application
to use the master file directly and eliminate the
daily copy of the master file. The result would be
online transactions that could be wrapped to
create a service interface.

e Run Subset Of Batch On Demand, which would

preserve the existing online and batch architec-
ture, but would make any changes needed to

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

allow the batch process to be run as needed on a
small set of transactions.

* Add Message Interface To Batch, which would
modify the batch programs to accept transactions
from a message queue, in addition to the current
file-based transaction source.

Tools to support the use of the as-is legacy patterns
and legacy transformation patterns are being built as
extensions to existing analysis tools. This automa-
tion is important: tools have the ability to comb
through models of large software portfolios search-
ing for instances of as-is legacy patterns through
multiple implementation variations and levels of
indirection. These tools can extend the abilities of
analysts who may lack experience in z/OS applica-
tions and methods commonly used years ago.
Moreover, the tools are built upon models that can
be the basis for project planning, change manage-
ment, and testing. As we expand our set of patterns,
we will look for opportunities to generalize the way
we detect patterns and externalize their specifica-
tion.

Our work has focused on capturing these patterns
through engagements in two client scenarios: (1)
consolidating data and applications to align with
business processes and (2) integrating z/OS batch
and online software with service interfaces. This
work is in its early stages and will certainly evolve.
Two case studies are summarized to illustrate these
patterns and their use in legacy transformation. It
should be noted that the use of patterns is a way to
augment, not replace, the processes and methods
already in use today.

The case study on application consolidation focuses
on the use of patterns in the initial analysis phase.
The case study on integrating with a services
interface focuses on the detailed analysis phase.

Case study: Application consolidation

There are many reasons why application consol-
idation may be proposed. Mergers are one example;
removing redundancy found by CBM is another. An
application consolidation includes the following
steps:

1. Initial analysis

a. Identify existing functions and data in each
application

HESS

37

38

Application 1 H

REDUNDANT FUNCTIONS s> b

- Same function performed

D € E
by some, but not all applications

Application 2

Figure 11
Venn diagram of legacy pattern at the application level

COMMON FUNCTIONS
- Same business function
represented in all applications

A

B K Application 3

E

UNIQUE FUNCTIONS
- One function performed
by one application

b. Define criteria for choosing “best-in-class”
implementation
c. Assess application functional overlap
d. Classify functions by degree of commonality:
core (used by all), common, or application
unique
e. Select “best-in-class” application (or re-
placement package)
f. Determine disposition for other common and
unique functions
g. Create initial project estimate
. Detailed analysis
a. Plan new user and external interfaces
b. Plan code and data migration, testing
3. Design
4. Develop
5
6

[\S)

. Test
. Deploy

The scope of application consolidation projects
includes data as well as function. Our work on
legacy patterns also includes that scope. In the
interest of clarity, however, in this paper we will
focus specifically on functions and the role of legacy
patterns in their analysis.

Initial analysis is supported by the coarse-grained
mapping between the business model and the
applications defined in the high-level legacy systems
model. Using that mapping data, as-is legacy
patterns at the application level can assess func-
tional overlap and classify functions based on the

HESS

degree to which their use is repeated in the
applications. If we were to stop at this point, we
would be automating some of the data capture that
is typically performed with spreadsheets and docu-
mented with reports and Venn diagrams such as the
one shown in Figure 11. However, at this coarse-
grained level, relying only on information gathered
in a consultative process, we can go a bit further in
two ways:

1. Use the information about the applications
(including the application-to-function mapping,
information gathered about technical quality, and
business capability) as input to the analysis that
selects the “best-in-class” application to be used
as the base for consolidation. This analysis also
determines the disposition of each common or
unique function: whether it should be included in
the consolidated application, reallocated to an-
other application, or eliminated.

2. Capture coarse-grained information about appli-
cation interfaces. This information is typically
gathered with interviews and questionnaires that
ask an application owner to identify the other
applications with which interfaces are known to
exist.

Patterns for coarse-grained analysis

With this additional information, we can apply high-
level legacy transformation patterns to develop the
initial work plan. Because we are working on the

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

AS-IS PATTERN
Application to be

Retained
> Application 1 H

TRANSFORMATION PATTERN
Retire Function

TRANSFORMATION PATTERN
Migrate Function

Application 3

AS-IS PATTERN

Application 2 <

Figure 12
Venn diagram including legacy transformation patterns

Application to be Retired

initial plan, these patterns represent high-level
activities to be completed in later detailed planning.
These patterns can be thought of as refactorings at
the level of applications, functions, and interfaces.
The legacy transformation patterns include:

* Retire Application, which is instantiated for each
instance detected by an as-is legacy pattern called
Application To Be Retired.

 Retire Interface, which is instantiated for each
instance detected by an as-is legacy pattern called
Interface Connects Applications To Be Retired.

* Migrate Interface, which is instantiated for each
instance detected by an as-is legacy pattern called
Interface Connects Applications To Be Retained.

* Migrate Function, which is instantiated for each
instance detected by an as-is legacy pattern called
Function To Be Retained from Application To Be
Retired.

e Retire Function, which is instantiated for each
instance detected by an as-is legacy pattern called
Application To Be Retained Implements Function
To Be Consolidated.

¢ Create Common Interface, which is instantiated
for each instance detected by an as-is legacy
pattern called Interface Connects To Multiple
Applications; this analysis occurs after the analy-
sis for the Retire Interface and Migrate Interface
legacy transformation patterns.

¢ Create Interface Adapter, which is instantiated for
each interface consolidated by the Create Common
Interface legacy transformation pattern.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

A simple illustration of how these patterns apply is
shown in Figure 12. In this example, Application 1
was chosen to be the base for consolidation;
Applications 2 and 3 are to be retired.

Coarse-grained analysis with fine-grained legacy
model

If automated analysis of the application portfolio has
been performed, legacy patterns can be applied to
this finer-grained information, even in the context of
initial analysis. In this case, the finer-grained
application model gives a more detailed under-
standing of the interfaces between applications. We
can detect instances of as-is legacy patterns such as:

e Shared File/Database, which looks for files or
databases used directly by multiple applications
(see Figure 13).

® Custom Extract, in which a file is created by one
application and processed by one other applica-
tion (see Figure 13).

e Common Extract, in which a file is created by one
application and processed by more than one other
application (see Figure 13).

® Custom API, in which a transaction or message-
driven program belonging to one application is
invoked by one other application.

e Common API, in which a transaction or message-
driven program belonging to one application is
invoked by more than one other application.

HESS

39

40

Application A Application B Application C
]_s Shared File/ J
Database
Application A Application B Application C
_s Common —]

Extract
Application A Application B Application C

T :

f———> Custom
Extract

ey CUSTOM
Extract

Figure 13
Example as-is legacy pattern

These as-is legacy patterns lead to corresponding
legacy transformation patterns. For example, the
Custom Extract as-is pattern shown in Figure 14
leads to potential legacy transformation patterns for
the data provider, Application A, such as Replace
With Standard Extract/Transform/Load Tool, and
for data consumers, applications B and C, legacy
transformation patterns such as Replace Use Of File
With Access To Common Warehouse.

While these patterns can provide insight to archi-
tects performing initial analysis and can also help
with analysis of modest amounts of information,
they represent an incremental improvement in the
way these projects are performed today. It is in the
transition to detailed analysis that patterns can

HESS

Transformation for Transformation for

Application A: Applications B and C:
Replace Custom Replace Use of
Extract with File with Access to
Standard Extract/ Common Warehouse
Transform/Load Tool
| |
[[1
Application A Application B Application C
T A
| Custom
Extract
e CuStOM
Extract
Figure 14

Legacy transformation patterns for
Custom Extract legacy pattern

enable a significant change in the size and scope of
projects that can be handled effectively.

The detailed analysis requires that the automated
analysis of the application portfolio be complete. For
application consolidation, the legacy patterns can
help identify ways to migrate functions and inter-
faces. In the consolidation scenario, we may be
doing the detailed analysis of consolidation re-
quirements by using a business process model that
is based on a functional decomposition or on a
business component and service model.

Once we focus our attention on the transformations
required for a single function in a single application,
our analysis for the application consolidation
scenario converges with that needed to integrate
z/0S batch and online applications with a services
interface. For the purposes of this paper, we take up
the discussion of detailed analysis in the second case
study that follows.

Case study: Integration with services interface
Our work on legacy patterns focuses on integration
and transformation requirements that are not met by
existing integration approaches. As an example,
consider the application architecture shown in

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

z/0S Applications

New account transactions

New :
New Account — Accounts Customer information transactions
«—p Processing l
online, COBOL
() > Postin_g_
Mini-Master Account et and Billing
Replica File Extract Master File <+—————— (batch,
COBOL)
Customer Erim
. Information
Customer Information == Transactions
Application
(online, COBOL) Statements
- (batch,
Statement assembler)
History
File
. — Time Reportin HR and Benefits
Point of Kurclhas_e Authorization Replicated App“catign & Application Statements
Sale —F (([)Jr?lilr(\:gn::sembler) > Master (batch and (batch and
Application ' File online, COBOL) online, COBOL)
Periodic update of Commission
commission tables Calculation
Tables
Payroll Application
g(‘(i)lr?fmission » (batch and online,
e— Remote file transfer of sales commission transactions COBOL)
v
Point of Sale
Transactions Remote file transfer of point of sale transactions
Figure 15

Application architecture for detailed analysis case study

Figure 15. This architecture is a composite created
from two similar client engagements. It includes a
set of batch applications that perform the core
business processes of posting and billing. These
batch applications are the current systems of record
and thus manage the master files. Over time, these
batch applications have been augmented with
online systems for customer-service and new-
account processing, as well as interfaces to point-of-
sale systems. Each of these systems maintains its
own data, which is synchronized with the master
files on a nightly basis.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

The business process of creating a new account
spans two COBOL applications: the online applica-
tion for new-account processing and the batch
posting application. If the requirement for business
change is to create a service interface to the current
Create New Account process, it might be sufficient
to wrap the existing new-account-processing online
transactions. If, however, there is a requirement that
the account be created immediately, and not by
overnight batch processing, the straightforward
wrapping of the online new-account-processing
application will not suffice.

HESS

41

42

This requirement drives deeper analysis that can be
improved by using patterns. The existing imple-
mentation needs to be examined to determine
whether some portion of it can be reused, or
whether it needs to be refactored or even replaced.

Our approach to detailed analysis comprises the
following steps:

1. Use the mapping between service interface and
legacy system to perform automated data and
control-flow analysis to identify the potential
scope of change.

2. Within that scope, and the type of change,
perform automated analysis to see which as-is
legacy patterns apply.

3. Review the results, to identify any significant
barriers to project success.

4. Use legacy transformation patterns to identify
and estimate alternative solutions to the require-
ments and constraints.

As-is legacy patterns

We have discovered several as-is legacy patterns
that are relevant to the service interface scenario. At
the architecture level, they include:

* Online Entry/Batch Update, in which transactions
are collected and edited for subsequent batch
processing to re-edit and apply the transactions.
Edits Repeated, in which the transaction data
undergoes the same or similar validation at
different times in the process. An example is on-
line edits that are similar to those in the batch
process.

Job Step Handles Multiple Processes, in which
many business processes are handled in a single
job step. This is typically a performance optimi-
zation, to avoid reading the same file multiple
times.

At the data level, as-is legacy patterns include:

* Replicated Master File, in which batch systems
create a copy of their master files for use by online
systems.

* Sequential Master File, in which the physical
organization of the file permits only sequential
access. Direct access to a given record is not
possible without reading the file from the begin-
ning.

HESS

¢ Home-Grown Database, in which access to data—
typically master file data—is controlled through an
API (application programming interface) that
supports positioning, reading, writing, updates,
and deletions, but hides details associated with
underlying data formats, compression, and phys-
ical access.

At the program level, as-is legacy patterns include:

¢ Abend On Exception, in which the program
intentionally executes an instruction or invokes a
system API to terminate execution of the program
and batch job step, rather than attempting
recovery.

* Screen Handling Combined With Business Logic,
in which online programs have business logic
tightly coupled to presentation logic, making it
harder to create a service.

* Screen Handling Separated From Business Logic,
in which online programs are well-suited for
invocation of business logic from a wrapper or
service interface.

¢ Multiple Split/Merge on Transaction Data, in
which a single program handles multiple business
transaction types and has a single mainline path
that contains tests for transaction type in multiple
locations, in contrast with testing for transaction
type once and performing the processing of each
transaction in a cohesive routine.

¢ Multiple Statements For File I/O, in which a single
program uses multiple identical I/O statements
(such as read or write), instead of encapsulating
I/0 in a common internal procedure or external
subroutine.

¢ Deferred Write Of Master File, in which a program
is sequentially processing an input transaction and
input master file, and writing a new copy of the
master file as an output. The transaction and
master files are sorted on some common key. In
the classic batch update program, an in-memory
copy of the master file record is updated for each
applicable transaction. This in-memory copy is
written only after all applicable transactions have
been applied to it. The write is not triggered by
any of the transactions that update the record;
rather, it is triggered when the program reads a
transaction that applies to a different master
record.

How do these patterns help create a service interface
to the new account processing? First, they help us

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

understand the architecture of the current imple-
mentation, which imposes constraints on the solu-
tion.

Recalling Figure 9, analysis starts with one or more
user-specified links between the business model, in
this case the service definition, and the legacy
systems model. The analysis approach accommo-
dates multiple starting points. The case study
application shown in Figure 15 offers two examples:

1. If the analyst were to specify the online trans-
action that initiates the business process, analysis
of control and data flow would lead to the New
Accounts transaction file, which would in turn
lead to the batch job steps and programs in the
posting application. In turn, additional control
and data-flow analysis would detect the data
insertion into the master file, and the copying of
the master file to the mini-master file used by the
online new-account-processing application.

2. If the analyst were to specify the statements in the
batch posting program, the control and data flow
analysis would work backward from the batch
program, discovering the New Accounts trans-
action file, and leading to the online system and
relevant transactions.

In either case, this analysis creates a graph structure
of the control and data flows. That graph can be
analyzed to detect the instance of the Online Entry/
Batch Update as-is legacy pattern. It can also be
analyzed to detect the creation of the mini-master
file as an instance of the Replicated Master File
pattern. Analysis of the batch job’s dataset attributes
reveals the Sequential Master File pattern. Analysis
of the online programs exposes any instances of
Screen Handling Combined With Business Logic,
while analysis of the batch programs exposes
Abend On Exception, Multiple Split/Merge On
Transaction Data, Multiple Statements For File I/0,
and Deferred Write Of Master File. By examining
and comparing the statements used in the online
and batch programs, Edits Repeated may be
identified.

Having found these instances of as-is legacy

patterns, what can we do with them? In our current
engagements, the pattern instances have been used
by the architects developing the solution approach

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

and plan. Certain of these patterns—such as
Sequential Master File—cannot be replaced by a
programmed work-around. In fact, this data struc-
ture is a dominant factor shaping the application
architecture. Other patterns, such as Edits Repeated,
can have a programmed work-around or can even
be tolerated.

In the scenario for integrating with a services
interface, the as-is legacy patterns help the architect
identify barriers to creating a service and explore
implementation options. For example, it may be
possible to split this effort into subprojects. In a first
release, one might initially create the service inter-
face on top of the existing online system, realizing
the benefit of interoperability without achieving the
benefit of straight-through processing. A second
release might convert the sequential file to a
database or direct access file. A third release could
consolidate the processing to create the straight-
through service.

Legacy transformation patterns

Whereas these as-is legacy patterns help discover
constraints and requirements, legacy transformation
patterns help identify potential solutions. For each
as-is pattern, there may be one or more potential
transformation patterns. For example, two trans-
formation patterns for Sequential Master File are
Convert Sequential File To Direct Access File and
Externalize Program I/O Statements In I/O Module.
In these transformations, the underlying data
structure can be changed to permit keyed access,
even if batch programs continue to access the file
sequentially. The transformation also decouples the
programs using the file from the file’s physical
characteristics, facilitating future changes in data
structures.

Another example involves transformation patterns
associated with the Multiple Split/Merge On Trans-
action Data pattern. Two transformation patterns
could apply:

1. Refactor By Transaction Type, which creates a
separate subroutine to handle each type of
transaction.

2. Refactor Common Code Into Shared Module,

which further refactors the subroutines created
for the transactions.

HESS

43

44

In one client engagement, a batch job step for
transaction posting was refactored. The original
implementation handled 48 unique transaction
types for 10 account types and included 38,000 lines
of code in nine source programs. The refactored
implementation totaled 42,000 lines of code in 45
programs. The number of lines of code increased
slightly, but the average program size was reduced
from approximately 4,200 to approximately 900
lines of code. The resulting programs were func-
tionally cohesive and well-structured for single-
entry, single-exit processing. The transformation
offered two benefits: (1) improved maintenance
because the application could now easily be
extended to handle new transaction and account
types, and (2) improved interoperability, because
the processing for each transaction type was
exposed for reuse.

We continue to explore ways to link the legacy
transformation patterns, the legacy system models,
and impact-analysis tools to provide “what if”
simulation capability in developing transformation
alternatives.

CONCLUSION

The design trade-offs made in creating application
software have changed dramatically over the past
four decades. Where we once sought to automate
clerical processes and squeeze programs and data
into the smallest possible space, we now seek to
automate business processes within and across
enterprises, with an eye toward maximizing flexi-
bility and responsiveness to change. Where software
was once designed with flowcharts, written on
coding sheets, and punched into cards, we now see
business processes designed with visual models that
are transformed into executable flows, which in turn
choreograph reusable components and services.

At the core of many application portfolios, however,
are legacy systems that were designed, quite
appropriately, to meet the constraints of their time
and that cannot easily adapt to the types and pace of
change required today. A variety of techniques exist
to wrap these legacy systems, delivering the benefits
of interoperability. In many cases these techniques
are sufficient. In other cases, additional techniques
are needed to achieve interoperability and to
streamline the application portfolio and align it with
business needs.

HESS

This paper has described an approach that is
grounded in past experience with legacy trans-
formation processes and tools, that seeks to align
with other work in business strategy consulting and
information technology, and that appears to offer
promise in making legacy transformation a more
scalable, repeatable process. There is much to be
learned about useful patterns and refactorings for
legacy systems, and much work remains in the areas
of managing patterns and of supporting a com-
munity that can use and extend the legacy patterns.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Management
Group, Inc., or Sun Microsystems, Inc.

CITED REFERENCES
1. S. Ramamurthy and M. Robinson, Simplify to Succeed,
G510-9109-00, IBM Corporation (2003), http://
www-1.ibm.com/services/us/imc/pdf/g510-9109-00
-simplify-to-succeed-retail-banking-in-2005-full.pdf.

2. F.Injey, K. Findeis, Y. Tang, and M. Zelbel, Patterns on
z/0S: Connecting Self-Service Applications to the Enter-
prise, SG24-6827-00, IBM Corporation (March 2003),
http://www.redbooks.ibm.com/abstracts/

5246827 .html.

3. G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building and Deploying Messaging Solutions,
Addison-Wesley, Boston, MA (2003).

4. M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.
Krogkahl, M. Luo, and T. Newling, Patterns: Service-
Oriented Architecture and Web Services, SG24-6303-00
IBM Corporation (July 2004), pp. 31-37, http://
www.redbooks.ibm.com/abstracts/sg246303.html.

5. OMG Model Driven Architecture, Object Management
Group, http://www.omg.org/mda/.

6. R. Seacord, D. Plakosh, and G. Lewis, Modernizing
Legacy Systems, Addison-Wesley, Boston, MA (2003).

7. WebSphere Studio Asset Analyzer for Multiplatforms, IBM
Corporation, http://www-306.ibm.com/software/
awdtools/wsaa/.

8. Unified Modeling Language, Object Management Group,
http://www.uml.org/.

9. A. Arsanjani, J. Alpigini, and H. Zedan, “Externalizing
Component Manners to Achieve Greater Maintainability
through a Highly Re-Configurable Architectural Style”,
Proceedings of IEEE International Conference on Software
Maintenance (ICSM’02), Montreal, Canada, October 3-6,
2002, IEEE, New York (2002), pp. 628-639.

10. J2EE Connector Architecture, Sun Microsystems, Inc.,
http://java.sun.com/j2ee/connector/index.jsp.

11. F. Injey, J. Lastra, D. Hoer, and D. Carmona, XML on
z/0S and 0S/390: Introduction to a Service-Oriented
Architecture, SG24-6826-00, IBM Corporation (June
2003), http://www.redbooks.ibm.com/abstracts/
$g246826.html.

12. IBM Patterns for e-business, IBM Corporation, http://
www-106.ibm.com/developerworks/patterns/.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

13. Endrei et al., Patterns: Service-Oriented Architecture and
Web Service, p. 46.

14. M. Fowler, Refactoring, Addison-Wesley, Boston, MA
(1999).

Accepted for publication August 9, 2004.
Internet publication January 7, 2005.

Howard M. Hess

IBM Research Division, Thomas J. Watson Research Center,
330 North Wabash Avenue, Chicago, Illinois 60611
(h2@us.ibm.com). Mr. Hess is a Distinguished Engineer in the
Software Technology department at the Thomas J. Watson
Research Center. He received a B.A. degree in
communications and theater arts from the University of lowa
in 1981. After working for systems integration firms and the
software re-engineering practice of a Big Six consulting firm,
he joined IBM in 1992 as part of an application redevelopment
services practice. He worked on solutions for legacy
transformation in IBM Global Services and the IBM Software
Group prior to joining IBM Research in 2003. H

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

HESS

45

