
The Eclipse 3.0 platform:
Adopting OSGi technology

&

O. Gruber

B. J. Hargrave

J. McAffer

P. Rapicault

T. Watson

From its inception Eclipse was mainly designed to be a tooling platform, but with

Version 3.0, Eclipse is now evolving toward a Rich Client Platform (RCP). This change,

driven by the open-source community, brought a whole set of new requirements and

challenges for the Eclipse platform, such as dynamic plug-in management, services,

security, and improved performance. This paper describes the path from the

proprietary Eclipse 2.1 runtime to the new Eclipse 3.0 runtime based on OSGie

specifications. It details the motivation for such a change and discusses the challenges

this change presented.

Although Eclipse
1
was initially created to serve as an

open platform for tools, its architecture was designed

so that its components could be used to build

essentially any client application. Now in Release

3.0, Eclipse has reinvented itself, evolving toward a

Rich Client Platform (RCP).
2
The RCP is a natural

progression toward integrating not only tools but

also applications and services. In particular, the RCP

involved the minimal set of plug-ins needed for this

transformation, promoting not only modular devel-

opment through plug-ins but also dynamic network

provisioning. This RCP evolution, however, intro-

duced new requirements and challenges for Eclipse.

In particular, the RCP needed to embrace dynamic

management of components. With larger and more

complex runtime configurations and usage scenar-

ios, requiring restarts of the platform for changes in

the runtime configuration to take effect was no

longer acceptable. A service framework would nicely

complement the extension framework promoted by

the Eclipse registry. Indeed, service and extension

frameworks correspond to complementary software

design patterns. Finally, it was important that

security be addressed in the context of an RCP.

Considering these technical challenges, we rapidly

realized that our main challenge would be managing

change itself. The necessary changes mandated a

quantum leap in the design and architecture of the

core platform, but the planning, target dates, and the

requirement for maintaining backward compatibility

(that is, compatability with previous versions) all

favored instead a rather timid evolutionary path. A

deep-seated overhauling of the Eclipse core runtime
3

would be both risky and difficult to achieve without

disrupting the rest of the Eclipse 3.0 planning

process.

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 289

We decided to try a new approach, one that would

allow for fast experiments intended to scout for best

solutions, but would also ensure that such solutions

could be easily integrated into the main develop-

ment stream of Eclipse 3.0. Specifically, we decided

to leverage the existing Eclipse Technology Projects

program.
4
Technology projects are meant to explore

adventurous ideas with a loose connection to the

Eclipse mainstream.

Our technology project was called Equinox. From

the start, we involved committers
5
of the Eclipse

platform team as well as external contributors. The

goal was concrete: scouting practical solutions for

direct inclusion in Eclipse 3.0. Through both Eclipse

committers and external contributors, we achieved

the right balance between fresh new ideas and an

intimate knowledge of the Eclipse internal structure.

The Eclipse committers provided invaluable con-

nections to the other groups of Eclipse when it was

time to transfer the results of Equinox back into

mainstream Eclipse. Overall, this approach proved

to be a successful one for managing core change in a

mature open-source project.

In Equinox, we examined two primary technical

avenues. One focused on using an Eclipse-specific

runtime, evolving it to support the new require-

ments. The other involved evaluation of existing

open standards providing similar functionality. In

the end, we followed the latter course and chose an

approach based on specifications from the OSGi**

Alliance.
6
The OSGi Alliance provides an open

standard that specifies the OSGi Service Platform

(SP), a platform for network-provisioned software

components.
7
Although the OSGi specifications

seemed a natural choice, their adoption posed

technical challenges as well as educational ones.

This paper traces the Equinox project, assuming

familiarity with Eclipse 2.x.
8
We briefly present

OSGi technology in the following section and then

discuss its adoption by Eclipse. The next section

details the extensions to the OSGi specifications that

we added to our implementation in order to support

Eclipse. We also discuss the necessary changes to

the Eclipse core runtime. Finally, we present

conclusions derived from our work and discuss

directions for future efforts.

OSGI SERVICE PLATFORM RELEASE 3
The OSGi Alliance publishes specifications

9
that

define the SP depicted in Figure 1. The SP was

initially targeted at residential Internet gateways

with home automation applications. It consists of a

small layer above a Java** Virtual Machine (JVM**)

that provides a shared platform for network-

provisioned components and services. It is shared

by different providers of components, potentially

across organizational boundaries. It provides an

extensive security model and at the same time

promotes cooperation and reuse between compo-

nents. The most attractive features of the platform

are its long-running design based on a service-

oriented architecture and its ability to support

dynamic updates with minimal perturbation of the

running environment.

Component and service model
The SP embodies a component and service model.

An OSGi component, or bundle, is a set of Java

packages containing both classes and resources,

essentially what would be traditionally packaged in

a JAR (Java archive) file. The difference, however, is

that the SP manages such bundles and their

dependencies that are expressed as meta-data

attached to each bundle.

Each bundle expresses its dependencies at the level

of Java packages. A bundle explicitly imports the

Java packages that it needs but does not itself define.

Conversely, a bundle may export some Java pack-

ages that it defines. The SP automatically matches

imports and exports based on name equivalence.

This matching process is dynamic as bundles are

installed or uninstalled. A bundle is said to be

resolved when all its dependencies are met, that is,

Figure 1
OSGi service platform architecture

Operating System and Hardware

Modules

Life Cycle

Service Registry

Services

Security

Java Runtime Environment

Applications / Bundles

GRUBER ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005290

when exporters for all the Java packages it imports

are available. When a bundle is resolved, its

exported Java packages automatically become

available for matching to the import requirements of

other bundles.

Above the component model, the SP provides a

service-oriented architecture. In particular, it relies

on the ability to activate a bundle. In other words,

after a bundle is resolved, it may be started and

stopped. A bundle may be activated if it defines an

activator class. When a bundle is started, the SP

creates an instance of that activator class, called the

activator object, on which it calls the methods start

and stop.

The start provides the bundle its context. Using

that context, the bundle code may publish, find, and

bind services. An OSGi service is a plain Java object.

Once created, the service object may be registered. A

registered service is identified through its Java

interface and optional meta-data, provided as name-

value pairs. A service may be located in the service

registry through simple LDAP (lightweight directory

access protocol)-like queries on interfaces or

through meta-data. The service registry is fully

dynamic; services may be registered or unregistered

at any time by an active bundle.

Management agent model

The SP presents a simple and intuitive model for

Java programmers, advocating components and

services. It goes beyond a simple Java Runtime

Environment (JRE) in that it also provides a shared

platform with a managed configuration. As such, the

management agent is a key component of the SP.

The management agent is a normal bundle, but with

administrative privileges. It is responsible for

managing the runtime configuration of the envi-

ronment in which it runs. A management agent may

be very simple or very complex. An example of a

simple agent is one that installs a predetermined set

of bundles from a bundle server on the Web. The set

of bundles is assumed to be consistent, perhaps

because a human administrator has tested that

configuration. This would be the case for a small

device like a cellular phone, where the service

provider would have tested different configurations

for different cellular phones.

In the presence of a more dynamic environment, the

overall consistency of the runtime configuration is

the sole responsibility of the management agent.

This overall responsibility translates into the specific

tasks that follow:

1. Installing bundles that will resolve—When a set

of bundles is installed, the runtime attempts to

match imports and exports based on names and

versions. Some bundles may resolve while others

may not. An agent wants to maximize resolved

bundles. Indeed, unresolved bundles waste re-

sources and contribute neither Java packages nor

services. It is important to point out, however,

that having unresolved bundles may be un-

avoidable at times.

2. Managing the active configuration—This is an

explicit process involving the starting and stop-

ping of bundles. It is the responsibility of the

agent to decide which bundles to start and when.

This is independent of overall shutdowns and

restarts, because the SP offers a persistent

environment wherein active bundles are auto-

matically stopped and restarted across shut-

downs and restarts.

3. Overall security, that is, setting the permissions for

bundles—The SP is a secure environment that

relies on Java 2 security. OSGi specifications

define permissions for the entire set of APIs

(application programming interfaces). There are

administrative permissions, as mentioned above,

but there are also permissions for importing or

exporting a Java package and for publishing or

finding a service. The permissions are associated

with a bundle through the bundle location, which

is a string associated with a bundle by the

management agent when it first installs that

bundle.

4. Ensuring the correctness of name equivalence—To

better understand this responsibility, we must

examine bundle dependencies in more detail. As

mentioned, bundle dependencies are expressed at

the level of Java packages; that is, a bundle may

import or export Java packages. But the SP

distinguishes between two very different types of

packages, namely, specification and implementa-

tion packages.

a. Specification packages correspond to formal

specifications. The very first property of

specification packages is that a package

name and version completely define the

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 291

contents of that package, across all pro-

viders. Indeed, providers may not augment

or reduce the contents of specification

packages in any way. The second property

of specification packages is that versions

are forever compatible with previous ver-

sions, as dictated in Reference 10.

b. Implementation packages are very different

and have none of the preceding properties.

For implementation packages, there is no

entity protecting the package name or

guarding its contents. Furthermore, there

are usually no globally accepted version

numbers, and versions may grow incom-

patible over time. Therefore, a Java package

name and version may not represent the

same contents with different providers. It is

consequently crucial that the management

agent ensure that name equivalence is used

properly. In other words, it is the respon-

sibility of the management agent to ensure

that name equivalence is correct between

the import and export statements of the

bundles it installs.

Runtime environment

The service platform is a thin layer above a JVM. It

requires a minimal Java runtime environment that is

compatible with J2SE** (Java 2 Platform, Standard

Edition) and many Java profiles in J2ME** (Java 2

Platform, Micro Edition). The SP is a single-JVM

environment; it is not a distributed environment

across processes or across machines.

The SP hosts a persistent runtime configuration.

From within this environment, the management

agent creates and maintains the runtime configura-

tion by installing, updating, or uninstalling bundles.

The SP also remembers this configuration across

shutdowns. In particular, it remembers the installed

bundles, and it also remembers which bundles were

active at the time of shutdown and should therefore

be restarted automatically at the next startup.

Because of the persistent nature of the runtime

configuration, the SP manages the physical contents

of the installed bundles. As mentioned previously, a

management agent uniquely identifies a bundle by a

location. This location is used by the SP to determine

the contents of that bundle in a platform-dependent

way. For example, the location could be a URL

(Uniform Resource Locator) from which the con-

tents could be obtained as an input stream. Alter-

natively, the URL could be a file URL and point to a

directory where the bundle contents can be found.

The approach is quite flexible, but there are

constraints. The first constraint is that the platform

must be able to understand the location string in

order to access the contents, unless these contents

are provided directly through an input stream. The

second constraint is that the platform must be able

to create a class loader for the bundle contents.

Indeed, the SP uses a class loader for each bundle

combined with a directed delegation mechanism to

support Java package imports.

ECLIPSE 3.0
When the Equinox project began, the goal was to

explore more advanced technologies for the Eclipse

platform. Improving on the Eclipse 2.1 runtime was

a natural first choice. However, as noted previously,

adopting an open standard rather than extending an

Eclipse-specific technology rapidly became attrac-

tive, to the mutual benefit of both the Eclipse and

open-standard communities. Our eventual decision

was to adopt OSGi technology because this tech-

nology had very strong points in its favor. As a fully

dynamic environment, the OSGi technology pro-

vides a solution to one of the most serious

limitations of the Eclipse 2.x platforms. OSGi

technology also defines a service framework and a

security framework. However, the adoption of this

technology also presented serious challenges be-

cause the Eclipse and OSGi environments had

architectural, design, and philosophical differences.

This section discusses these challenges and de-

scribes the solutions we adopted initially in Equinox

and which were later included in Eclipse 3.0. Eclipse

3.0 does not embed the full set of OSGi specifica-

tions, but rather a small subset centered around the

module, life-cycle, and service concepts. Our im-

plementation also includes extensions required to

support Eclipse-specific needs. These extensions

have been made, however, in a way which is fully

compatible with OSGi specifications. These exten-

sions are in turn being proposed to the OSGi

Alliance for inclusion in its next version (Release 4).

Architecture overview

Eclipse 3.0 adopted the OSGi Service Platform (SP)

as a foundation, evolving and improving its own

architecture accordingly. It is important to point out

GRUBER ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005292

that Eclipse provides a core runtime that lies above

the SP, as depicted in Figure 2. The SP provides the

core model for components and services, but Eclipse

provides the concept of plug-ins, which are fully

managed by the Eclipse core runtime.

Above the SP, all components are bundles, specif-

ically including the components implementing the

Eclipse core runtime itself, which includes the plug-

in registry, the backward compatibility component,

the configurator, and the update manager. The plug-

in registry and the configurator work closely

together to deliver the traditional Eclipse environ-

ment for plug-ins. The configurator manages the

runtime configuration, installing or uninstalling

specific plug-ins from the available set of down-

loaded plug-ins. The update manager downloads

plug-ins from Eclipse Web sites onto the local file

system; these plug-ins are later installed in the

runtime configuration by the configurator.

To achieve this division of responsibilities between

the configurator and the update manager, we used

the semantics of the bundle locations. The location

is merely an identification string in Eclipse. The

platform is not able to locate the bundle contents

from locations; instead bundle contents are provided

indirectly through a special input stream that refers

to the directory on the local file system where the

bundle can be found. As a side note, our imple-

mentation does also support input streams that

directly provide contents, in which case the SP reads

the stream and expands its contents into the local

file system.

This approach allows us to share bundles through-

out multiple runtime configurations, which is very

important for three reasons. First, it supports more

efficient handling of libraries. If bundles are kept in

JAR files, the JVM does not know how to load native

libraries from them, requiring that native libraries

be manually extracted and managed somewhere on

disk. Second, it allows the installation of different

Eclipse-based products, running as different runtime

instances, but sharing some or all of their plug-ins

on the local file system. Third, it supports the

Eclipse self-hosting philosophy.

Self-hosting relates to the fact that the tools to

develop plug-ins are themselves developed as plug-

ins. In other words, Eclipse provides a set of plug-

ins, called the Plug-in Development Environment

(PDE), aimed at developing plug-ins. With PDE,

there is a host instance of Eclipse running PDE and a

target instance of Eclipse running the developed

plug-ins. A typical scenario for developing new plug-

ins is the following.

The developed plug-ins are projects in the work-

space of the host Eclipse. These plug-ins are

developed to run within the same runtime config-

uration as the host Eclipse. When debugging, the

host Eclipse launches a target Eclipse, with the same

runtime configuration as itself plus the plug-ins

developed in the workspace. This runtime config-

uration is computed by the PDE and stored in a

configuration file, which is used by the configurator

of the target Eclipse to create the correct runtime

configuration. None of the plug-ins are actually

copied. Rather they are all shared between the host

and target instances of Eclipse.

When not in self-hosting mode, Eclipse follows a

persistent approach; it simply restarts in the same

state as that from which it was shut down. This

requires remembering the runtime configuration

across shutdowns, which is the traditional OSGi

approach. However, Eclipse also allows the config-

uration to be modified while Eclipse is shut down, in

particular, by adding or removing plug-ins directly

in the file system. To support this capability, the

configurator must compare the last-known config-

uration and the current on-disk configuration,

installing or uninstalling bundles accordingly.

Figure 2
Eclipse architecture overview

Java Runtime Environment

OSGi Service Platform

Eclipse Integration Frameworks
and Applications

Plug-in
Registry

Update
Manager

Backward
Compatibility

Eclipse Core Runtime

Configurator

Plug-in

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 293

This separation of the configurator and the update

manager provides a much cleaner architecture than

was the case in earlier versions of Eclipse. Pre-

viously, the functionality of the configurator was

buried deep in the Eclipse platform, making the

Eclipse core runtime aware of and dependent on the

details, or features, of a runtime configuration as

seen by the Eclipse update manager. The new OSGi-

based implementation allows a clean separation

between the core runtime and management issues.

This is important because the goal is for Eclipse 3.0

to be able to operate regardless of the particular

management protocol that is used for its dynamic

provisioning.

Plug-ins versus bundles

Plug-ins are bundles that are managed by the Eclipse

core runtime. Some plug-ins may declare extensions

or extension points. This extension framework

provides support for extensibility and is one of the

core concepts of Eclipse. The extension framework

and the service framework are complementary, and

both leverage the component framework. More

specifically, the extension framework defines the

concepts of extension point and extension.

An extension point is defined by a plug-in within the

namespace (a set of names that is defined according

to some naming convention) of that plug-in. For

example, if the plug-in org.eclipse.core.runtime

defines an extension point Application, then the full

name of the point is org.eclipse.core.runtime.

Application. In other words, the name of a plug-in

defines a namespace for the extension points

that the plug-in defines. An extension point is a

recipient for extensions and defines the schema of

the extensions it accepts. In turn, the schema of an

extension defines, in the XML (Extensible Markup

Language) sense, the characteristics of that exten-

sion. Both extensions and extension points of a plug-

in are defined in an XML manifest for that plug-in.

The XML definitions for the above Application

extension point and one of its extensions are shown

in Figure 3. The first XML snippet appears in the

manifest of the org.eclipse.core.runtime plug-in.

The second XML snippet appears in the manifest of

the org.eclipse.ui.ide plug-in, which defines the

workbench application.

More details on the extension framework are

beyond the scope of this paper, but it is important to

briefly discuss this framework in comparison to the

service framework provided by the SP. Extensions

and services correspond to two different design

patterns. Extensions address the extensibility of a

component, whereas services address the more

traditional requirement of interoperability. Not only

did we need to keep both patterns, but both patterns

are valuable for an RCP.

Besides extensions and extension points, an Eclipse

plug-in may have fragments. Conceptually, a frag-

ment adds contributions to the class path (a listing

of locations where Java can expect to find class files)

of its host plug-ins. The OSGi specifications define

Figure 3
XML definitions for the Application extension point and one of its extensions

<plug-in> <!--org.eclipse.core.runtime plug-in -->
 <extension-point id="applications"
 name="%applicationsName"
 schema="schema/applications.exsd"
 />
</plug-in>

<plug-in> <!--org.eclipse.ui.ide plug-in -->
 <extension
 id="workbench"
 point="org.eclipse.core.runtime.applications">
 <application>

 <run class="org.eclipse.ui.internal.ide.IDEApplication"> </run>
 </application>

 </extension>
</plug-in>

GRUBER ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005294

no equivalent support. Without specialized support,

a management agent would have to update the host

plug-in after having modified its contents on disk.

We decided this approach was too complex and

instead added specific support for fragments to our

SP, extending the concept of bundles. A typical role

for fragments involves delivering resources, such as

natural language property files or operating-system-

dependent libraries.

A bundle may be either a host plug-in or a plug-in

fragment. When a bundle is a fragment, it identifies

its host bundles using symbolic names and versions.

Symbolic names and versions for bundles do not

exist in the OSGi specifications; thus, they are

another extension required in our implementation.

When a host is resolved and has fragments, the class

paths of the fragments are added to the class path of

the host. Therefore, installing a fragment may

require reloading its hosts, although this can be

avoided in many practical cases.

Plug-in dependencies

Eclipse and the SP have quite different under-

standings of runtime configurations. Although this

initially appeared to be a difficult challenge, we

found that the two complementary approaches

actually resolved each other’s limitations.

Eclipse relies on a radically different dependency

model, based on requiring plug-ins. Rather than

simply importing the Java packages it needs, a plug-

in requires other plug-ins. In other words, a plug-in

does not state which Java packages it needs, but

rather indicates where they can be found. Because

plug-ins often embed both their API and their

implementation, the Eclipse model captures imple-

mentation dependencies. Furthermore, because

most plug-in names are in fact prefixed with their

provider names, a plug-in dependency relates to an

implementation from a specific provider. This

provides a very robust description of a product

release. The Eclipse approach works best for

implementation packages for which the correctness

of name equivalence is hard to ensure across bundle

providers, or potentially across organizations.

In comparison, the SP captures more specification

dependencies and provides a very flexible matching

mechanism. In particular, an import may be

matched to any export from any bundle, as long as

the name and version match. This flexible approach

works well with specification dependencies, and is

especially well-suited for a service-oriented archi-

tecture that advocates a strong independence

between specification APIs and implementations.

Examples include specifications such as W3C**

(World Wide Web Consortium),
11

DOM (Document

Object Model),
12

SAXP (Simple API for XML

Parser),
13

or Servlet APIs.
14

We decided to support both models in our runtime.

A bundle may import and export specification

packages, following the OSGi model. However, a

bundle developer is encouraged not to use import or

export statements for implementation packages, but

rather to use our new mechanism designed after the

Eclipse plug-in dependency. This new mechanism

works as follows. A bundle B
1
may require another

bundle B
2
. This means that B

1
will see all packages

that bundle B
2
provides. The bundle B

2
provides

packages by specifying them in its manifest, similar

to the way it would specify packages that it exports.

Bundle B
1
requires bundle B

2
by name and version,

reusing the same mechanism put in place for

fragments. The bundle names typically follow the

Java naming convention for Java packages (domain

prefixed). The version model uses four tokens:

major, minor, service, and qualifier. Versions may

be compared at each of these different levels. Major

versions may be incompatible. Minor versions are

compatible. Service and qualifier versions are minor

compatible evolutions, such as bug fixes.

The combination of the two models is quite power-

ful and incorporates the strengths of both

approaches, providing greater flexibility when

semantically correct and controlled flexibility when

required. One very important feature is that the

combined models allow concurrent loading of

different versions of the same bundle. For imple-

mentation packages, each bundle is a different

namespace for the packages it provides. Therefore,

although they have the same package name, the

Java packages provided by two versions of the same

bundle are considered different. This is not possible

in the OSGi model and enables handling of the more

complex runtime configurations that may be

required in large systems.

Eclipse registry

The Eclipse registry manages plug-ins. More specif-

ically, given a set of plug-ins, the Eclipse registry

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 295

manages their contributions (i.e., their extensions

and extension points).

In earlier versions of Eclipse, the registry was

computed at startup. All installed plug-ins were

processed and their contributions added to the

registry. Each plug-in then queried the registry to

discover the contributed extensions to its extension

points. The plug-in would usually process that list of

extensions, building internal data structures. Noth-

ing would change until the next shutdown-restart

cycle of the Eclipse platform. With Eclipse 3.0 this is

no longer the case.

The first change in Eclipse 3.0 is that plug-ins may

come and go, and thus the list of plug-ins changes

over time. We originally planned to use the life-cycle

events defined by the OSGi specifications to

determine which plug-ins are installed or unin-

stalled. Indeed, the SP triggers events when a new

bundle is installed or an existing bundle is unin-

stalled. However, this is not sufficient; it is also

important to know whether a bundle was resolved

or unresolved. Indeed, the registry can only consider

the contributions of resolved bundles. If a bundle is

unresolved, the registry must discard its contribu-

tions, even if the bundle is still installed in the

runtime configuration.

We simply added two new life-cycle events to our

OSGi implementation: resolved and unresolved. The

registry could then listen for those two events and

dynamically add or remove contributions of plug-

ins. Thus, the registry is able to maintain itself

properly, but the challenge becomes to broadcast to

plug-ins the changes in the registry itself. As

contributions come or go, the registry needs a way

to broadcast life-cycle events in order for plug-ins to

react appropriately. We favored the delta mecha-

nism, well-known to Eclipse developers. A delta

groups change events into a data structure, as

opposed to sending individual events for each

change. The delta mechanism allows anyone to

listen to such life-cycle events. Each delta applies to

a plug-in namespace and includes change events for

added or removed extensions and extension points

in that namespace.

Eclipse execution model

Eclipse advocates an automated model for activa-

tion. Plug-in developers must implement the start

and stop methods for their bundles, but they do not

have to worry about when or how these methods are

called. This is a simple programming model that

further enables a lazy and efficient approach for our

runtime, allowing it to scale up to thousands of plug-

ins. The idea is to avoid overeager creation of class

loaders and initialization of plug-ins.

The first issue is to delay the creation of the class

loaders for resolved bundles. The problem is as

follows. When a plug-in becomes resolved, the

Eclipse registry has to parse its plug-in manifest

(plug-in.xml) in order to discover its contributions.

However, the OSGi API does not allow accessing the

contents of a bundle without creating a class loader.

In fact, most OSGi implementations seem to be eager

to create class loaders when bundles resolve.

We avoided the problem in two steps. First, we

adopted a lazy approach that delays the creation of

class loaders until absolutely necessary—the first

class load. Second, we introduced a new API that

allows accessing the content of a bundle without

requiring a class loader to be created. This enables

the Eclipse registry to access the plug-in manifest

and add its contributions, without activating the

plug-in or even triggering a class loader creation.

The second issue is deciding when to activate a

plug-in. We consider that a plug-in needs to be

activated before any loading of a class that it defines.

This ensures that a plug-in will be initialized before

any of its functionality can be used. Our imple-

mentation hooks into the class loader creation (on

first class load) and triggers plug-in activation,

calling the bundle start method.

Backward compatibility

An essential requirement of evolving a core runtime

of a mature system is to offer strong backward

compatibility. It was extremely important to be able

to run Eclipse 2.x plug-ins on the new runtime

because most plug-ins would have to run in back-

ward compatibility mode until made aware of the

dynamic registry. Even as Eclipse 3.0 was shipped,

many current plug-ins were still static, unable to

react to events regarding extensions and extension

points appearing or disappearing in the Eclipse

registry.

Despite the importance of backward compatibility,

we wanted to make it optional so that it could be

deprecated some day. (Deprecation is the declara-

GRUBER ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005296

tion that a component should not be used in

subsequent designs, but remains available to sup-

port existing designs that incorporate it.) Thus,

backward compatibility is simply provided through

an optional plug-in (org.eclipse.core.runtime.

compatibility), which, when installed, allows an

Eclipse 2.1 plug-in to be loaded without any

modification, even to its meta-data. In other words,

an Eclipse 2.1 plug-in may simply be dropped into

the file system, and the plug-in will work the next

time Eclipse is started.

To achieve this, we automatically translate an

Eclipse 2.1 plug-in into an Eclipse 3.0 plug-in. In

particular, this means generating the bundle mani-

fest dynamically. This can be achieved quite easily

by mapping plug-in requirements into bundle

requirements. Once the manifest is generated, an

Eclipse 2.1 plug-in can be loaded by our SP just like

any other bundle. We also create an activator for the

bundle, which interconnects the new OSGi life cycle

and the old Eclipse 2.1 life cycle, creating and

activating the Version 2.1 plug-in object as neces-

sary.

CONCLUSION

The move from Eclipse toward an RCP has received

very positive reaction so far. At the Eclipse confer-

ence in Anaheim in 2003, the very large attendance

at RCP-related tracks pleasantly surprised everyone.

It confirmed that the Eclipse community perceives

Eclipse as an integration platform not only for tools

but also for applications and services. We feel

confident that this positive reaction, combined with

the already existing momentum of OSGi technology

in the industry, together suggest exciting times to

come for Eclipse, the OSGi Alliance, and the open-

source community at large.

One very important lesson drawn from this project

regards managing drastic change in an already

successful open-source project. Although it may still

be early to draw absolute conclusions, using the

Eclipse technology project framework with both

internal and external contributors provides an

attractive approach, especially if the project is

focused on technologies intended for direct inclu-

sion back into the main development stream.

External contributors are key to bringing new ideas,

new skills, and of course additional manpower that

allows for the involvement of just a limited number

of committers. Involving committers provides ex-

perience and wisdom about the current state of the

project as well as better understanding of the trade-

offs of various possible solutions. Committers also

make final acceptance realistic. Without the in-

volvement of committers throughout the process,

real understanding of the solutions and their final

acceptance become less likely, regardless of their

merits.

Another very interesting aspect of Equinox was the

adoption of an open standard. We believe that

adopting the OSGi specifications has already proved

beneficial to both communities. Involving the OSGi

Alliance within Equinox was very beneficial from

the start, with OSGi experts providing valuable

know-how and insights on problems and potential

solutions. In the long term, we are proposing some

of our extensions to the OSGi Alliance for adoption

in the next release, R4. We also hope that the OSGi

Alliance will benefit from the new usage scenarios

that Eclipse brings. Additionally, we look forward to

seeing better tools for helping to develop, debug,

and monitor applications for OSGi platforms.

Equinox began in early 2003. After approximately

eight months of exploring different technical ave-

nues, the OSGi technology was adopted as the

favored option within Equinox. Three months later,

Eclipse accepted this conclusion, and the Equinox

OSGi-based runtime was integrated into the main

Eclipse code base. Thus, the Eclipse core runtime

was overhauled in less than a year, with minimal

impact on the layers above the core runtime.

Overall, Eclipse 3.0 shipped with the new runtime

only eighteen months from the start of this project.

One key aspect of this success was certainly the

strong commitment of Equinox to backward com-

patibility. In particular, we worked hard to produce a

backward compatibility layer that allows Eclipse 2.1

plug-ins to run without modification. Unfortunately,

this also meant that progress toward some of our

other goals had to be delayed, because leveraging

some of the most salient features of OSGi involves

more pervasive impact throughout the Eclipse

programming model and corresponding tools. At the

time of this writing we are just beginning phase 2 of

the Equinox project, aimed at enhancements requir-

ing these more deep-seated changes.

This second phase involves interesting and chal-

lenging issues. First, security needs to be addressed.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 297

Although the SP is a secure environment, we need to

understand and master the implications of security

at the level of the Eclipse core runtime and above

(integration frameworks). In addition, the impacts

of a dynamic environment on plug-ins have not

been fully mastered. We need tools to help develop

dynamic plug-ins and to diagnose erroneous ones.

Furthermore, the programming model should evolve

to integrate the OSGi service framework. Finally,

scalability is a never-ending pursuit, including both

upward and downward scalability, that is, the

ability both to manage large complex configurations

and to understand how to scale down the Eclipse

RCP for small pervasive devices.

**Trademarkor registered trademarkofMassachusetts Institute
of Technology, Sun Microsystems, Inc., or The OSGi Alliance.

Cited references
1. Eclipse.org, The Eclipse Foundation, http://

www.eclipse.org/.

2. E. Burnette, Rich Client Tutorial, http://www.eclipse.org/
articles/index.html, and references therein.

3. For a detailed description of the role of the runtime, see
Eclipse Runtime, The Eclipse Foundation, http://
help.eclipse.org/help30/index.jsp?topic=/
org.eclipse.platform.doc.isv/guide/runtime.htm.

4. Eclipse Technology Project Home Page, The Eclipse
Foundation, http://www.eclipse.org/technology/.

5. Committers are Eclipse developers who have made
frequent and valuable contributions to a project or a
component of a larger project, and thus have been
granted access to the relevant source-code repository as
well as voting rights allowing them to affect the future of
that project. For more detailed information see The
Eclipse Project—Top Level Project Charter, The Eclipse
Foundation, http://www.eclipse.org/eclipse/
eclipse-charter.html.

6. The OSGi Alliance, http://www.osgi.org/.

7. About the OSGi Service Platform, OSGi Alliance (July 12,
2004), http://www.osgi.org/documents/
osgi_technology/osgi-sp-overview.pdf.

8. Eclipse Platform Technical Overview, The Eclipse Foun-
dation (February 2003), http://www.eclipse.org/
whitepapers/eclipse-overview.pdf.

9. OSGi Service Platform, Release 3 Specifications, OSGi
Alliance, http://www.osgi.org/resources/
spec_download.asp.

10. Java Product Versioning Specification, Sun Microsystems,
Inc. (November 30, 1998), http://java.sun.com/j2se/1.3/
docs/guide/versioning/spec/VersioningTOC.html.

11. World Wide Web Consortium (W3C), http://
www.w3.org/.

12. Document Object Model (DOM), World Wide Web
Consortium, http://www.w3.org/DOM/.

13. Class SAXParser, Sun Microsystems, Inc., http://
java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/
SAXParser.html.

14. Java Servlet Technology, Sun Microsystems, Inc., http://
java.sun.com/products/servlet/.

Accepted for publication November 11, 2004.

Olivier Gruber
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ogruber@us.ibm.com).
Dr. Gruber received a Ph.D. degree in the field of object
systems from the University Pierre et Marie Curie in Paris,
France (1992). For the next two years he led a European
project on large-scale persistent object systems at the French
national research institute for computer science (INRIA). He
joined IBM Research in 1995 and since then has alternated
between research phases on advanced object systems and
transfer phases with high impact on IBM business. Since 2002,
he has been a decisive force working toward the recently
announced IBM Workplace. In particular, he was involved in
the origins of the Equinox project and advocated the adoption
of OSGi technology.

B. J. Hargrave
IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(hargrave@us.ibm.com). Mr. Hargrave has over 18 years of
experience as an IBM software architect and developer. His
focus is small computer operating systems (kernels, file
systems, development tools, application binary interface
specifications) and Java technology. He holds multiple patents
for JVM performance improvements and is the IBM expert and
lead developer for OSGi technologies. He holds a B.S. degree
in computer science from Rensselaer Polytechnic Institute and
an M.S. degree in computer science from the University of
Miami. He has been a leader in the development of the OSGi
technology since its inception and was named an OSGi Fellow
during the 2002 OSGi World Congress for his technical
contributions and leadership. He is currently Chief Technical
Officer of the OSGi Alliance and chair of the OSGi Core
Platform Expert Group.

Jeff McAffer
IBM Software Group, Ottawa Laboratory, 2670 Queensview
Drive, Ottawa, Ontario K2B 8K1 (Jeff_McAffer@ca.ibm.com).
Dr. McAffer leads the Equinox project. He is one of the
architects of the Eclipse platform and has been involved in the
project from the beginning. His current interests lie in helping
to realize Eclipse’s original vision as a platform for composing
general sets of application function, involving, in particular,
such areas as dynamic plug-ins and alternate runtime models.
Previous lives included work in distributed/parallel object-
oriented computing (Server Smalltalk, massively parallel
Smalltalk, etc.) as well as expert systems, and meta-level
architectures. He received a Ph.D. degree from the University
of Tokyo.

Pascal Rapicault
IBM Software Group, Ottawa Laboratory, 2670 Queensview
Drive, Ottawa, Ontario K2B 8K1 (Pascal_Rapicault@
ca.ibm.com). Mr. Rapicault has been a developer with IBM
Ottawa labs (formerly Object Technology International) since
2002. He played a key role in Equinox and the successful
adoption of OSGi into Eclipse 3.0. He continues to work on the
Eclipse 3.x platform. Dr. Rapicault holds a Master’s degree
from the ESSI (France) and a Ph.D. degree from the University
of Nice (France).

Thomas Watson
IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(tjwatson@us.ibm.com). Mr. Watson is a lead developer of
IBM’s implementation of the OSGi Framework. He has been

GRUBER ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005298

Published online April 26, 2005.

involved in the Equinox project and the adoption of the OSGi
Framework as the new component runtime for Eclipse 3.0. His
current interests lie in participating in the OSGi Alliance to
help define a modularity layer that can be used in a broad
range of environments, including Eclipse and Web application
servers. His previous experience in OSGi includes design and
development of embedded web container and service gateway
software that controls home appliances. Before his
involvement with OSGi and the Pervasive Computing
Division, he worked for the Network Computer Division. &

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 299

