The Eclipse 3.0 platform:
Adopting OSGi technology

From its inception Eclipse was mainly designed to be a tooling platform, but with

0. Gruber

Version 3.0, Eclipse is now evolving toward a Rich Client Platform (RCP). This change,

driven by the open-source community, brought a whole set of new requirements and

B. J. Hargrave
J. McAffer

P. Rapicault
T. Watson

challenges for the Eclipse platform, such as dynamic plug-in management, services,
security, and improved performance. This paper describes the path from the
proprietary Eclipse 2.1 runtime to the new Eclipse 3.0 runtime based on OSGi™

specifications. It details the motivation for such a change and discusses the challenges

this change presented.

Although Eclipse1 was initially created to serve as an
open platform for tools, its architecture was designed
so that its components could be used to build
essentially any client application. Now in Release
3.0, Eclipse has reinvented itself, evolving toward a
Rich Client Platform (RCP).” The RCP is a natural
progression toward integrating not only tools but
also applications and services. In particular, the RCP
involved the minimal set of plug-ins needed for this
transformation, promoting not only modular devel-
opment through plug-ins but also dynamic network
provisioning. This RCP evolution, however, intro-
duced new requirements and challenges for Eclipse.

In particular, the RCP needed to embrace dynamic
management of components. With larger and more
complex runtime configurations and usage scenar-
ios, requiring restarts of the platform for changes in
the runtime configuration to take effect was no
longer acceptable. A service framework would nicely
complement the extension framework promoted by
the Eclipse registry. Indeed, service and extension

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

frameworks correspond to complementary software
design patterns. Finally, it was important that
security be addressed in the context of an RCP.

Considering these technical challenges, we rapidly
realized that our main challenge would be managing
change itself. The necessary changes mandated a
quantum leap in the design and architecture of the
core platform, but the planning, target dates, and the
requirement for maintaining backward compatibility
(that is, compatability with previous versions) all
favored instead a rather timid evolutionary path. A
deep-seated overhauling of the Eclipse core runtime’
would be both risky and difficult to achieve without
disrupting the rest of the Eclipse 3.0 planning
process.

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

GRUBER ET AL

289

Applications / Bundles Security

Services

Service Registry

Life Cycle

Modules

Java Runtime Environment

Operating System and Hardware

Figure 1
OSGi service platform architecture

We decided to try a new approach, one that would
allow for fast experiments intended to scout for best
solutions, but would also ensure that such solutions
could be easily integrated into the main develop-
ment stream of Eclipse 3.0. Specifically, we decided
to leverage the existing Eclipse Technology Projects
program.4 Technology projects are meant to explore
adventurous ideas with a loose connection to the
Eclipse mainstream.

Our technology project was called Equinox. From
the start, we involved committers® of the Eclipse
platform team as well as external contributors. The
goal was concrete: scouting practical solutions for
direct inclusion in Eclipse 3.0. Through both Eclipse
committers and external contributors, we achieved
the right balance between fresh new ideas and an
intimate knowledge of the Eclipse internal structure.
The Eclipse committers provided invaluable con-
nections to the other groups of Eclipse when it was
time to transfer the results of Equinox back into
mainstream Eclipse. Overall, this approach proved
to be a successful one for managing core change in a
mature open-source project.

In Equinox, we examined two primary technical
avenues. One focused on using an Eclipse-specific
runtime, evolving it to support the new require-
ments. The other involved evaluation of existing
open standards providing similar functionality. In
the end, we followed the latter course and chose an
approach based on specifications from the OSGi**
Alliance.® The 0SGi Alliance provides an open
standard that specifies the OSGi Service Platform
(SP), a platform for network-provisioned software

290 GRUBER ET AL

components.7 Although the OSGi specifications
seemed a natural choice, their adoption posed
technical challenges as well as educational ones.

This paper traces the Equinox project, assuming
familiarity with Eclipse 2.x.° We briefly present
OSGi technology in the following section and then
discuss its adoption by Eclipse. The next section
details the extensions to the OSGi specifications that
we added to our implementation in order to support
Eclipse. We also discuss the necessary changes to
the Eclipse core runtime. Finally, we present
conclusions derived from our work and discuss
directions for future efforts.

OSGI SERVICE PLATFORM RELEASE 3

The OSGi Alliance publishes speciﬁcations9 that
define the SP depicted in Figure 1. The SP was
initially targeted at residential Internet gateways
with home automation applications. It consists of a
small layer above a Java** Virtual Machine (JVM**)
that provides a shared platform for network-
provisioned components and services. It is shared
by different providers of components, potentially
across organizational boundaries. It provides an
extensive security model and at the same time
promotes cooperation and reuse between compo-
nents. The most attractive features of the platform
are its long-running design based on a service-
oriented architecture and its ability to support
dynamic updates with minimal perturbation of the
running environment.

Component and service model

The SP embodies a component and service model.
An OSGi component, or bundle, is a set of Java
packages containing both classes and resources,
essentially what would be traditionally packaged in
aJAR (Java archive) file. The difference, however, is
that the SP manages such bundles and their
dependencies that are expressed as meta-data
attached to each bundle.

Each bundle expresses its dependencies at the level
of Java packages. A bundle explicitly imports the
Java packages that it needs but does not itself define.
Conversely, a bundle may export some Java pack-
ages that it defines. The SP automatically matches
imports and exports based on name equivalence.
This matching process is dynamic as bundles are
installed or uninstalled. A bundle is said to be
resolved when all its dependencies are met, that is,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

when exporters for all the Java packages it imports
are available. When a bundle is resolved, its
exported Java packages automatically become
available for matching to the import requirements of
other bundles.

Above the component model, the SP provides a
service-oriented architecture. In particular, it relies
on the ability to activate a bundle. In other words,
after a bundle is resolved, it may be started and
stopped. A bundle may be activated if it defines an
activator class. When a bundle is started, the SP
creates an instance of that activator class, called the
activator object, on which it calls the methods start
and stop.

The start provides the bundle its context. Using
that context, the bundle code may publish, find, and
bind services. An OSGi service is a plain Java object.
Once created, the service object may be registered. A
registered service is identified through its Java
interface and optional meta-data, provided as name-
value pairs. A service may be located in the service
registry through simple LDAP (lightweight directory
access protocol)-like queries on interfaces or
through meta-data. The service registry is fully
dynamic; services may be registered or unregistered
at any time by an active bundle.

Management agent model

The SP presents a simple and intuitive model for
Java programmers, advocating components and
services. It goes beyond a simple Java Runtime
Environment (JRE) in that it also provides a shared
platform with a managed configuration. As such, the
management agent is a key component of the SP.

The management agent is a normal bundle, but with
administrative privileges. It is responsible for
managing the runtime configuration of the envi-
ronment in which it runs. A management agent may
be very simple or very complex. An example of a
simple agent is one that installs a predetermined set
of bundles from a bundle server on the Web. The set
of bundles is assumed to be consistent, perhaps
because a human administrator has tested that
configuration. This would be the case for a small
device like a cellular phone, where the service
provider would have tested different configurations
for different cellular phones.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

In the presence of a more dynamic environment, the
overall consistency of the runtime configuration is
the sole responsibility of the management agent.
This overall responsibility translates into the specific
tasks that follow:

1. Installing bundles that will resolve—When a set
of bundles is installed, the runtime attempts to
match imports and exports based on names and
versions. Some bundles may resolve while others
may not. An agent wants to maximize resolved
bundles. Indeed, unresolved bundles waste re-
sources and contribute neither Java packages nor
services. It is important to point out, however,
that having unresolved bundles may be un-
avoidable at times.

2. Managing the active configuration—This is an
explicit process involving the starting and stop-
ping of bundles. It is the responsibility of the
agent to decide which bundles to start and when.
This is independent of overall shutdowns and
restarts, because the SP offers a persistent
environment wherein active bundles are auto-
matically stopped and restarted across shut-
downs and restarts.

3. Overall security, that is, setting the permissions for
bundles—The SP is a secure environment that
relies on Java 2 security. OSGi specifications
define permissions for the entire set of APIs
(application programming interfaces). There are
administrative permissions, as mentioned above,
but there are also permissions for importing or
exporting a Java package and for publishing or
finding a service. The permissions are associated
with a bundle through the bundle location, which
is a string associated with a bundle by the
management agent when it first installs that
bundle.

4. Ensuring the correctness of name equivalence—To
better understand this responsibility, we must
examine bundle dependencies in more detail. As
mentioned, bundle dependencies are expressed at
the level of Java packages; that is, a bundle may
import or export Java packages. But the SP
distinguishes between two very different types of
packages, namely, specification and implementa-
tion packages.

a. Specification packages correspond to formal
specifications. The very first property of
specification packages is that a package
name and version completely define the

GRUBER ET AL

291

contents of that package, across all pro-
viders. Indeed, providers may not augment
or reduce the contents of specification
packages in any way. The second property
of specification packages is that versions
are forever compatible with previous ver-
sions, as dictated in Reference 10.

b. Implementation packages are very different
and have none of the preceding properties.
For implementation packages, there is no
entity protecting the package name or
guarding its contents. Furthermore, there
are usually no globally accepted version
numbers, and versions may grow incom-
patible over time. Therefore, a Java package
name and version may not represent the
same contents with different providers. It is
consequently crucial that the management
agent ensure that name equivalence is used
properly. In other words, it is the respon-
sibility of the management agent to ensure
that name equivalence is correct between
the import and export statements of the
bundles it installs.

Runtime environment

The service platform is a thin layer above a JVM. It
requires a minimal Java runtime environment that is
compatible with J2SE** (Java 2 Platform, Standard
Edition) and many Java profiles in J2ME** (Java 2
Platform, Micro Edition). The SP is a single-JVM
environment; it is not a distributed environment
across processes or across machines.

The SP hosts a persistent runtime configuration.
From within this environment, the management
agent creates and maintains the runtime configura-
tion by installing, updating, or uninstalling bundles.
The SP also remembers this configuration across
shutdowns. In particular, it remembers the installed
bundles, and it also remembers which bundles were
active at the time of shutdown and should therefore
be restarted automatically at the next startup.

Because of the persistent nature of the runtime
configuration, the SP manages the physical contents
of the installed bundles. As mentioned previously, a
management agent uniquely identifies a bundle by a
location. This location is used by the SP to determine
the contents of that bundle in a platform-dependent
way. For example, the location could be a URL
(Uniform Resource Locator) from which the con-

292 GRUBER ET AL

tents could be obtained as an input stream. Alter-
natively, the URL could be a file URL and point to a
directory where the bundle contents can be found.

The approach is quite flexible, but there are
constraints. The first constraint is that the platform
must be able to understand the location string in
order to access the contents, unless these contents
are provided directly through an input stream. The
second constraint is that the platform must be able
to create a class loader for the bundle contents.
Indeed, the SP uses a class loader for each bundle
combined with a directed delegation mechanism to
support Java package imports.

ECLIPSE 3.0

When the Equinox project began, the goal was to
explore more advanced technologies for the Eclipse
platform. Improving on the Eclipse 2.1 runtime was
a natural first choice. However, as noted previously,
adopting an open standard rather than extending an
Eclipse-specific technology rapidly became attrac-
tive, to the mutual benefit of both the Eclipse and
open-standard communities. Our eventual decision
was to adopt OSGi technology because this tech-
nology had very strong points in its favor. As a fully
dynamic environment, the OSGi technology pro-
vides a solution to one of the most serious
limitations of the Eclipse 2.x platforms. OSGi
technology also defines a service framework and a
security framework. However, the adoption of this
technology also presented serious challenges be-
cause the Eclipse and OSGi environments had
architectural, design, and philosophical differences.

This section discusses these challenges and de-
scribes the solutions we adopted initially in Equinox
and which were later included in Eclipse 3.0. Eclipse
3.0 does not embed the full set of OSGi specifica-
tions, but rather a small subset centered around the
module, life-cycle, and service concepts. Our im-
plementation also includes extensions required to
support Eclipse-specific needs. These extensions
have been made, however, in a way which is fully
compatible with OSGi specifications. These exten-
sions are in turn being proposed to the OSGi
Alliance for inclusion in its next version (Release 4).

Architecture overview

Eclipse 3.0 adopted the OSGi Service Platform (SP)
as a foundation, evolving and improving its own
architecture accordingly. It is important to point out

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

that Eclipse provides a core runtime that lies above
the SP, as depicted in Figure 2. The SP provides the
core model for components and services, but Eclipse
provides the concept of plug-ins, which are fully
managed by the Eclipse core runtime.

Above the SP, all components are bundles, specif-
ically including the components implementing the
Eclipse core runtime itself, which includes the plug-
in registry, the backward compatibility component,
the configurator, and the update manager. The plug-
in registry and the configurator work closely
together to deliver the traditional Eclipse environ-
ment for plug-ins. The configurator manages the
runtime configuration, installing or uninstalling
specific plug-ins from the available set of down-
loaded plug-ins. The update manager downloads
plug-ins from Eclipse Web sites onto the local file
system; these plug-ins are later installed in the
runtime configuration by the configurator.

To achieve this division of responsibilities between
the configurator and the update manager, we used
the semantics of the bundle locations. The location
is merely an identification string in Eclipse. The
platform is not able to locate the bundle contents
from locations; instead bundle contents are provided
indirectly through a special input stream that refers
to the directory on the local file system where the
bundle can be found. As a side note, our imple-
mentation does also support input streams that
directly provide contents, in which case the SP reads
the stream and expands its contents into the local
file system.

This approach allows us to share bundles through-
out multiple runtime configurations, which is very
important for three reasons. First, it supports more
efficient handling of libraries. If bundles are kept in
JAR files, the JVM does not know how to load native
libraries from them, requiring that native libraries
be manually extracted and managed somewhere on
disk. Second, it allows the installation of different
Eclipse-based products, running as different runtime
instances, but sharing some or all of their plug-ins
on the local file system. Third, it supports the
Eclipse self-hosting philosophy.

Self-hosting relates to the fact that the tools to
develop plug-ins are themselves developed as plug-
ins. In other words, Eclipse provides a set of plug-
ins, called the Plug-in Development Environment

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Eclipse Integration Frameworks
and Applications
Plugin e

Eclipse Core Runtime

Plug-in Update Backward
Registry Manager Compatibility
Configurator

OSGi Service Platform

Java Runtime Environment

Figure 2
Eclipse architecture overview

(PDE), aimed at developing plug-ins. With PDE,
there is a host instance of Eclipse running PDE and a
target instance of Eclipse running the developed
plug-ins. A typical scenario for developing new plug-
ins is the following.

The developed plug-ins are projects in the work-
space of the host Eclipse. These plug-ins are
developed to run within the same runtime config-
uration as the host Eclipse. When debugging, the
host Eclipse launches a target Eclipse, with the same
runtime configuration as itself plus the plug-ins
developed in the workspace. This runtime config-
uration is computed by the PDE and stored in a
configuration file, which is used by the configurator
of the target Eclipse to create the correct runtime
configuration. None of the plug-ins are actually
copied. Rather they are all shared between the host
and target instances of Eclipse.

When not in self-hosting mode, Eclipse follows a
persistent approach; it simply restarts in the same
state as that from which it was shut down. This
requires remembering the runtime configuration
across shutdowns, which is the traditional OSGi
approach. However, Eclipse also allows the config-
uration to be modified while Eclipse is shut down, in
particular, by adding or removing plug-ins directly
in the file system. To support this capability, the
configurator must compare the last-known config-
uration and the current on-disk configuration,
installing or uninstalling bundles accordingly.

GRUBER ET AL

293

<plug-in> <!--org.eclipse.core.runtime plug-in -->
<extension-point id="applications"
name="%applicationsName"
schema="schema/applications.exsd"

/>
</plug-in>

<plug-in> <!-org.eclipse.ui.ide plug-in >
<extension
id="workbench"
point="org.eclipse.core.runtime.applications'">
<application>

<run class="org.eclipse.ui.internal.ide.IDEApplication"> </run>

</application>
</extension>
</plug-in>

Figure 3

XML definitions for the Application extension point and one of its extensions

This separation of the configurator and the update
manager provides a much cleaner architecture than
was the case in earlier versions of Eclipse. Pre-
viously, the functionality of the configurator was
buried deep in the Eclipse platform, making the
Eclipse core runtime aware of and dependent on the
details, or features, of a runtime configuration as
seen by the Eclipse update manager. The new OSGi-
based implementation allows a clean separation
between the core runtime and management issues.
This is important because the goal is for Eclipse 3.0
to be able to operate regardless of the particular
management protocol that is used for its dynamic
provisioning.

Plug-ins versus bundles

Plug-ins are bundles that are managed by the Eclipse
core runtime. Some plug-ins may declare extensions
or extension points. This extension framework
provides support for extensibility and is one of the
core concepts of Eclipse. The extension framework
and the service framework are complementary, and
both leverage the component framework. More
specifically, the extension framework defines the
concepts of extension point and extension.

An extension point is defined by a plug-in within the
namespace (a set of names that is defined according
to some naming convention) of that plug-in. For
example, if the plug-in org.eclipse.core.runtime
defines an extension point App1ication, then the full
name of the point is org.eclipse.core.runtime.
Application. In other words, the name of a plug-in

294 GRUBER ET AL

defines a namespace for the extension points

that the plug-in defines. An extension point is a
recipient for extensions and defines the schema of
the extensions it accepts. In turn, the schema of an
extension defines, in the XML (Extensible Markup
Language) sense, the characteristics of that exten-
sion. Both extensions and extension points of a plug-
in are defined in an XML manifest for that plug-in.

The XML definitions for the above Application
extension point and one of its extensions are shown
in Figure 3. The first XML snippet appears in the
manifest of the org.eclipse.core.runtime plug-in.
The second XML snippet appears in the manifest of
the org.eclipse.ui.ide plug-in, which defines the
workbench application.

More details on the extension framework are
beyond the scope of this paper, but it is important to
briefly discuss this framework in comparison to the
service framework provided by the SP. Extensions
and services correspond to two different design
patterns. Extensions address the extensibility of a
component, whereas services address the more
traditional requirement of interoperability. Not only
did we need to keep both patterns, but both patterns
are valuable for an RCP.

Besides extensions and extension points, an Eclipse
plug-in may have fragments. Conceptually, a frag-
ment adds contributions to the class path (a listing
of locations where Java can expect to find class files)
of its host plug-ins. The OSGi specifications define

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

no equivalent support. Without specialized support,
a management agent would have to update the host
plug-in after having modified its contents on disk.
We decided this approach was too complex and
instead added specific support for fragments to our
SP, extending the concept of bundles. A typical role
for fragments involves delivering resources, such as
natural language property files or operating-system-
dependent libraries.

A bundle may be either a host plug-in or a plug-in
fragment. When a bundle is a fragment, it identifies
its host bundles using symbolic names and versions.
Symbolic names and versions for bundles do not
exist in the OSGi specifications; thus, they are
another extension required in our implementation.
When a host is resolved and has fragments, the class
paths of the fragments are added to the class path of
the host. Therefore, installing a fragment may
require reloading its hosts, although this can be
avoided in many practical cases.

Plug-in dependencies

Eclipse and the SP have quite different under-
standings of runtime configurations. Although this
initially appeared to be a difficult challenge, we
found that the two complementary approaches
actually resolved each other’s limitations.

Eclipse relies on a radically different dependency
model, based on requiring plug-ins. Rather than
simply importing the Java packages it needs, a plug-
in requires other plug-ins. In other words, a plug-in
does not state which Java packages it needs, but
rather indicates where they can be found. Because
plug-ins often embed both their API and their
implementation, the Eclipse model captures imple-
mentation dependencies. Furthermore, because
most plug-in names are in fact prefixed with their
provider names, a plug-in dependency relates to an
implementation from a specific provider. This
provides a very robust description of a product
release. The Eclipse approach works best for
implementation packages for which the correctness
of name equivalence is hard to ensure across bundle
providers, or potentially across organizations.

In comparison, the SP captures more specification
dependencies and provides a very flexible matching
mechanism. In particular, an import may be
matched to any export from any bundle, as long as
the name and version match. This flexible approach

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

works well with specification dependencies, and is
especially well-suited for a service-oriented archi-
tecture that advocates a strong independence
between specification APIs and implementations.
Examples include specifications such as W3C**
(World Wide Web Consortium),11 DOM (Document
Object Model),'* SAXP (Simple API for XML
Parser),ls or Servlet APIs."*

We decided to support both models in our runtime.
A bundle may import and export specification
packages, following the OSGi model. However, a
bundle developer is encouraged not to use import or
export statements for implementation packages, but
rather to use our new mechanism designed after the
Eclipse plug-in dependency. This new mechanism
works as follows. A bundle B, may require another
bundle B,. This means that B, will see all packages
that bundle B, provides. The bundle B, provides
packages by specifying them in its manifest, similar
to the way it would specify packages that it exports.

Bundle B, requires bundle B, by name and version,
reusing the same mechanism put in place for
fragments. The bundle names typically follow the
Java naming convention for Java packages (domain
prefixed). The version model uses four tokens:
major, minor, service, and qualifier. Versions may
be compared at each of these different levels. Major
versions may be incompatible. Minor versions are
compatible. Service and qualifier versions are minor
compatible evolutions, such as bug fixes.

The combination of the two models is quite power-
ful and incorporates the strengths of both
approaches, providing greater flexibility when
semantically correct and controlled flexibility when
required. One very important feature is that the
combined models allow concurrent loading of
different versions of the same bundle. For imple-
mentation packages, each bundle is a different
namespace for the packages it provides. Therefore,
although they have the same package name, the
Java packages provided by two versions of the same
bundle are considered different. This is not possible
in the OSGi model and enables handling of the more
complex runtime configurations that may be
required in large systems.

Eclipse registry

The Eclipse registry manages plug-ins. More specif-
ically, given a set of plug-ins, the Eclipse registry

GRUBER ET AL

295

manages their contributions (i.e., their extensions
and extension points).

In earlier versions of Eclipse, the registry was
computed at startup. All installed plug-ins were
processed and their contributions added to the
registry. Each plug-in then queried the registry to
discover the contributed extensions to its extension
points. The plug-in would usually process that list of
extensions, building internal data structures. Noth-
ing would change until the next shutdown-restart
cycle of the Eclipse platform. With Eclipse 3.0 this is
no longer the case.

The first change in Eclipse 3.0 is that plug-ins may
come and go, and thus the list of plug-ins changes
over time. We originally planned to use the life-cycle
events defined by the OSGi specifications to
determine which plug-ins are installed or unin-
stalled. Indeed, the SP triggers events when a new
bundle is installed or an existing bundle is unin-
stalled. However, this is not sufficient; it is also
important to know whether a bundle was resolved
or unresolved. Indeed, the registry can only consider
the contributions of resolved bundles. If a bundle is
unresolved, the registry must discard its contribu-
tions, even if the bundle is still installed in the
runtime configuration.

We simply added two new life-cycle events to our
OSGi implementation: resolved and unresolved. The
registry could then listen for those two events and
dynamically add or remove contributions of plug-
ins. Thus, the registry is able to maintain itself
properly, but the challenge becomes to broadcast to
plug-ins the changes in the registry itself. As
contributions come or go, the registry needs a way
to broadcast life-cycle events in order for plug-ins to
react appropriately. We favored the delta mecha-
nism, well-known to Eclipse developers. A delta
groups change events into a data structure, as
opposed to sending individual events for each
change. The delta mechanism allows anyone to
listen to such life-cycle events. Each delta applies to
a plug-in namespace and includes change events for
added or removed extensions and extension points
in that namespace.

Eclipse execution model

Eclipse advocates an automated model for activa-
tion. Plug-in developers must implement the start
and stop methods for their bundles, but they do not

296 GRUBER ET AL

have to worry about when or how these methods are
called. This is a simple programming model that
further enables a lazy and efficient approach for our
runtime, allowing it to scale up to thousands of plug-
ins. The idea is to avoid overeager creation of class
loaders and initialization of plug-ins.

The first issue is to delay the creation of the class
loaders for resolved bundles. The problem is as
follows. When a plug-in becomes resolved, the
Eclipse registry has to parse its plug-in manifest
(pTug-in.xm1) in order to discover its contributions.
However, the OSGi API does not allow accessing the
contents of a bundle without creating a class loader.
In fact, most OSGi implementations seem to be eager
to create class loaders when bundles resolve.

We avoided the problem in two steps. First, we
adopted a lazy approach that delays the creation of
class loaders until absolutely necessary—the first
class load. Second, we introduced a new API that
allows accessing the content of a bundle without
requiring a class loader to be created. This enables
the Eclipse registry to access the plug-in manifest
and add its contributions, without activating the
plug-in or even triggering a class loader creation.

The second issue is deciding when to activate a
plug-in. We consider that a plug-in needs to be
activated before any loading of a class that it defines.
This ensures that a plug-in will be initialized before
any of its functionality can be used. Our imple-
mentation hooks into the class loader creation (on
first class load) and triggers plug-in activation,
calling the bundle start method.

Backward compatibility

An essential requirement of evolving a core runtime
of a mature system is to offer strong backward
compatibility. It was extremely important to be able
to run Eclipse 2.x plug-ins on the new runtime
because most plug-ins would have to run in back-
ward compatibility mode until made aware of the
dynamic registry. Even as Eclipse 3.0 was shipped,
many current plug-ins were still static, unable to
react to events regarding extensions and extension
points appearing or disappearing in the Eclipse
registry.

Despite the importance of backward compatibility,

we wanted to make it optional so that it could be
deprecated some day. (Deprecation is the declara-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

tion that a component should not be used in
subsequent designs, but remains available to sup-
port existing designs that incorporate it.) Thus,
backward compatibility is simply provided through
an optional plug-in (org.eclipse.core.runtime.
compatibility), which, when installed, allows an
Eclipse 2.1 plug-in to be loaded without any
modification, even to its meta-data. In other words,
an Eclipse 2.1 plug-in may simply be dropped into
the file system, and the plug-in will work the next
time Eclipse is started.

To achieve this, we automatically translate an
Eclipse 2.1 plug-in into an Eclipse 3.0 plug-in. In
particular, this means generating the bundle mani-
fest dynamically. This can be achieved quite easily
by mapping plug-in requirements into bundle
requirements. Once the manifest is generated, an
Eclipse 2.1 plug-in can be loaded by our SP just like
any other bundle. We also create an activator for the
bundle, which interconnects the new OSGi life cycle
and the old Eclipse 2.1 life cycle, creating and
activating the Version 2.1 plug-in object as neces-
sary.

CONCLUSION

The move from Eclipse toward an RCP has received
very positive reaction so far. At the Eclipse confer-
ence in Anaheim in 2003, the very large attendance
at RCP-related tracks pleasantly surprised everyone.
It confirmed that the Eclipse community perceives
Eclipse as an integration platform not only for tools
but also for applications and services. We feel
confident that this positive reaction, combined with
the already existing momentum of OSGi technology
in the industry, together suggest exciting times to
come for Eclipse, the OSGi Alliance, and the open-
source community at large.

One very important lesson drawn from this project
regards managing drastic change in an already
successful open-source project. Although it may still
be early to draw absolute conclusions, using the
Eclipse technology project framework with both
internal and external contributors provides an
attractive approach, especially if the project is
focused on technologies intended for direct inclu-
sion back into the main development stream.
External contributors are key to bringing new ideas,
new skills, and of course additional manpower that
allows for the involvement of just a limited number
of committers. Involving committers provides ex-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

perience and wisdom about the current state of the
project as well as better understanding of the trade-
offs of various possible solutions. Committers also
make final acceptance realistic. Without the in-
volvement of committers throughout the process,
real understanding of the solutions and their final
acceptance become less likely, regardless of their
merits.

Another very interesting aspect of Equinox was the
adoption of an open standard. We believe that
adopting the OSGi specifications has already proved
beneficial to both communities. Involving the OSGi
Alliance within Equinox was very beneficial from
the start, with OSGi experts providing valuable
know-how and insights on problems and potential
solutions. In the long term, we are proposing some
of our extensions to the OSGi Alliance for adoption
in the next release, R4. We also hope that the OSGi
Alliance will benefit from the new usage scenarios
that Eclipse brings. Additionally, we look forward to
seeing better tools for helping to develop, debug,
and monitor applications for OSGi platforms.

Equinox began in early 2003. After approximately
eight months of exploring different technical ave-
nues, the OSGi technology was adopted as the
favored option within Equinox. Three months later,
Eclipse accepted this conclusion, and the Equinox
OSGi-based runtime was integrated into the main
Eclipse code base. Thus, the Eclipse core runtime
was overhauled in less than a year, with minimal
impact on the layers above the core runtime.
Overall, Eclipse 3.0 shipped with the new runtime
only eighteen months from the start of this project.

One key aspect of this success was certainly the
strong commitment of Equinox to backward com-
patibility. In particular, we worked hard to produce a
backward compatibility layer that allows Eclipse 2.1
plug-ins to run without modification. Unfortunately,
this also meant that progress toward some of our
other goals had to be delayed, because leveraging
some of the most salient features of OSGi involves
more pervasive impact throughout the Eclipse
programming model and corresponding tools. At the
time of this writing we are just beginning phase 2 of
the Equinox project, aimed at enhancements requir-
ing these more deep-seated changes.

This second phase involves interesting and chal-
lenging issues. First, security needs to be addressed.

GRUBER ET AL

297

Although the SP is a secure environment, we need to
understand and master the implications of security
at the level of the Eclipse core runtime and above
(integration frameworks). In addition, the impacts
of a dynamic environment on plug-ins have not
been fully mastered. We need tools to help develop
dynamic plug-ins and to diagnose erroneous ones.
Furthermore, the programming model should evolve
to integrate the OSGi service framework. Finally,
scalability is a never-ending pursuit, including both
upward and downward scalability, that is, the
ability both to manage large complex configurations
and to understand how to scale down the Eclipse
RCP for small pervasive devices.

**Trademark or registered trademark of Massachusetts Institute
of Technology, Sun Microsystems, Inc., or The OSGi Alliance.

Cited references
1. Eclipse.org, The Eclipse Foundation, http://
www.eclipse.org/.

2. E.Burnette, Rich Client Tutorial, http://www.eclipse.org/
articles/index.html, and references therein.

3. For a detailed description of the role of the runtime, see
Eclipse Runtime, The Eclipse Foundation, http://
help.eclipse.org/help30/index.jsp?topic = /
org.eclipse.platform.doc.isv/guide/runtime.htm.

4. Eclipse Technology Project Home Page, The Eclipse
Foundation, http://www.eclipse.org/technology/.

5. Committers are Eclipse developers who have made
frequent and valuable contributions to a project or a
component of a larger project, and thus have been
granted access to the relevant source-code repository as
well as voting rights allowing them to affect the future of
that project. For more detailed information see The
Eclipse Project—Top Level Project Charter, The Eclipse
Foundation, http://www.eclipse.org/eclipse/
eclipse-charter.html.

6. The OSGi Alliance, http://www.osgi.org/.

7. About the OSGi Service Platform, OSGi Alliance (July 12,
2004), http://www.osgi.org/documents/
osgi_technology/osgi-sp-overview.pdf.

8. Eclipse Platform Technical Overview, The Eclipse Foun-
dation (February 2003), http://www.eclipse.org/
whitepapers/eclipse-overview.pdf.

9. OSGi Service Platform, Release 3 Specifications, OSGi
Alliance, http://www.osgi.org/resources/
spec_download.asp.

10. Java Product Versioning Specification, Sun Microsystems,
Inc. (November 30, 1998), http://java.sun.com/j2se/1.3/
docs/guide/versioning/spec/VersioningTOC.html.

11. World Wide Web Consortium (W3C), http://
WWW.w3.01rg/.

12. Document Object Model (DOM), World Wide Web
Consortium, http://www.w3.org/DOM/.

13. Class SAXParser, Sun Microsystems, Inc., http://

java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/
SAXParser.html.

298 GRUBER ET AL

14. Java Servlet Technology, Sun Microsystems, Inc., http://
java.sun.com/products/servlet/.

Accepted for publication November 11, 2004.
Published online April 26, 2005.

Olivier Gruber

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ogruber@us.ibm.com).
Dr. Gruber received a Ph.D. degree in the field of object
systems from the University Pierre et Marie Curie in Paris,
France (1992). For the next two years he led a European
project on large-scale persistent object systems at the French
national research institute for computer science (INRIA). He
joined IBM Research in 1995 and since then has alternated
between research phases on advanced object systems and
transfer phases with high impact on IBM business. Since 2002,
he has been a decisive force working toward the recently
announced IBM Workplace. In particular, he was involved in
the origins of the Equinox project and advocated the adoption
of OSGi technology.

B. J. Hargrave

IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(hargrave@us.ibm.com). Mr. Hargrave has over 18 years of
experience as an IBM software architect and developer. His
focus is small computer operating systems (kernels, file
systems, development tools, application binary interface
specifications) and Java technology. He holds multiple patents
for JVM performance improvements and is the IBM expert and
lead developer for OSGi technologies. He holds a B.S. degree
in computer science from Rensselaer Polytechnic Institute and
an M.S. degree in computer science from the University of
Miami. He has been a leader in the development of the OSGi
technology since its inception and was named an OSGi Fellow
during the 2002 OSGi World Congress for his technical
contributions and leadership. He is currently Chief Technical
Officer of the OSGi Alliance and chair of the OSGi Core
Platform Expert Group.

Jeff McAffer

IBM Software Group, Ottawa Laboratory, 2670 Queensview
Drive, Ottawa, Ontario K2B 8K1 (Jeff McAffer@ca.ibm.com).
Dr. McAffer leads the Equinox project. He is one of the
architects of the Eclipse platform and has been involved in the
project from the beginning. His current interests lie in helping
to realize Eclipse’s original vision as a platform for composing
general sets of application function, involving, in particular,
such areas as dynamic plug-ins and alternate runtime models.
Previous lives included work in distributed/parallel object-
oriented computing (Server Smalltalk, massively parallel
Smalltalk, etc.) as well as expert systems, and meta-level
architectures. He received a Ph.D. degree from the University
of Tokyo.

Pascal Rapicault

IBM Software Group, Ottawa Laboratory, 2670 Queensview
Drive, Ottawa, Ontario K2B 8K1 (Pascal_Rapicault@
ca.ibm.com). Mr. Rapicault has been a developer with IBM
Ottawa labs (formerly Object Technology International) since
2002. He played a key role in Equinox and the successful
adoption of OSGi into Eclipse 3.0. He continues to work on the
Eclipse 3.x platform. Dr. Rapicault holds a Master’s degree
from the ESSI (France) and a Ph.D. degree from the University
of Nice (France).

Thomas Watson

IBM Software Group, 11501 Burnet Road, Austin, TX 78758

(tjwatson@us.ibm.com). Mr. Watson is a lead developer of

IBM’s implementation of the OSGi Framework. He has been

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

involved in the Equinox project and the adoption of the OSGi
Framework as the new component runtime for Eclipse 3.0. His
current interests lie in participating in the OSGi Alliance to
help define a modularity layer that can be used in a broad
range of environments, including Eclipse and Web application
servers. His previous experience in OSGi includes design and
development of embedded web container and service gateway
software that controls home appliances. Before his
involvement with OSGi and the Pervasive Computing
Division, he worked for the Network Computer Division. l

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 GRUBER ET AL. 299

