P. Englefield
C. Paddison
M. Tibbits
I. Damani

A proposed architecture for
integrating accessibility
test tools

Automated test tools are an essential resource for practitioners responsible for
evaluating the accessibility of Web sites. However, both systematic analysis of tool
capabilities and practitioner feedback have identified a range of practical issues that
mar the effectiveness of existing tools. In practice, although automated test tools need
to be used in combination to give good coverage, their lack of consistent user
experience and their diverse reporting formats discourage such combined usage.
Furthermore, test tools are expensive to develop; in addition to core analytical
capability, authors must individually construct the user interface, 1/0 routines, Web
crawlers, and report writers. In this paper, an architecture is proposed to address these
concerns. In this architecture, tools are developed as plug-ins to an infrastructure that
provides a common user interface, crawling and parsing services, and practitioner-
oriented tools for analysis and reporting. The architecture supports an efficient,
systematic evaluation process and benefits accessibility practice in two distinct ways:
first, it simplifies the task of the evaluator by providing a consistent, integrated, and
efficient user experience for executing, reporting, and communicating a study; second,
it supports an economic model in which tools can release development resources
from mundane software engineering activities in order to invest in the intelligent-agent

development necessary to address the deeper challenges of automated testing.

INTRODUCTION

Accessible design is intended to enable universal
access' to interactive systems, regardless of user
impairments and preferred client technology. Such
design supports the specific needs of distinct groups
challenged by impairments related to vision, hear-
ing, motor skills, and cognitive abilities. To use
Shneiderman’s definition, “Universal usability will
be met when affordable, useful, and usable tech-
nology accommodates the vast majority of the
global population: this entails addressing challenges

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

of technology variety, user diversity, and gaps in
user knowledge in ways only beginning to be
acknowledged by educational, corporate, and gov-
ernment agencies.”2

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

ENGLEFIELD ET AL.

537

538

Although the methods of accessible design are well
understood, a majority of existing Web sites fail to

m A majority of existing Web
sites fail to meet the
fundamental needs of people
with disabilities m

meet the fundamental needs of people with dis-
abilities. For example, a 2004 study carried out by
City University on behalf of the UK Disability Rights
Commission’ found that less than 19 percent of all
home pages and only 32 percent of government
home pages conformed to level A, the most basic
level of compliance defined by W3C** (World Wide
Web Consortium) Web Content Accessibility
Guidelines (WCAG).4 (The WCAG guidelines define
three levels of compliance, with “A” being the
lowest and “AAA” the highest).

This paper is organized as follows. In the next
section we provide a background on accessibility
design issues, existing automated-test-tool technol-
ogy, and our proposed architecture for automated
test tools. In the following section, the details of
current test tool characteristics and adherence to
guidelines are described. We then summarize feed-
back from practitioners on current tools. The next
section outlines design criteria for our test tool
architecture and is followed by a presentation of the
architecture in detail. The paper closes with a
summary of our work and an indication of future
research directions.

BACKGROUND

Design for accessibility encompasses a complex set
of requirements. In particular, because of the
diverse needs involved, testing for compliance with
accessibility requirements can be difficult and time
consuming. Automated test tools could make the
situation easier, but current tools exhibit a series of
issues that make them less than ideal. In the
following sections we discuss these questions in
more detail and then describe our proposed archi-
tecture intended to address these concerns.

Design for accessibility

A diverse range of challenges must be addressed in
design for accessibility. For example, distinct design
responses are necessary to support blind users, as

ENGLEFIELD ET AL

compared to the support required for users with
other visual impairments such as limited vision or
tunnel vision. In the former case, a key concern is
providing appropriate encoding of content” for
screen readers, such as IBM Home Page reader.’
(Technologies for Disabilities Information Service
[TechDis]7 defines a screen reader as “a software
program that reads the contents of the screen aloud
to a user . . . usually used by blind and visually
impaired people. Screen readers cannot read text
that is part of an image.”) In the case of visual
impairments, the emphasis is on a range of
techniques, such as appropriate typography, sensi-
tivity to the diminished context associated with use
of a screen magnifier, and support for user-defined
font sizes.® Additional design responses are required
to facilitate input by users with limited dexterity,
strength, or mobility, users with hearing impair-
ments, and users with specific or general learning
difficulties. Moreover, disabilities are diverse in
degree. Universally usable design recognizes not
only the needs of screen reader users but also the
very real requirements of those whose eyesight and
dexterity are somewhat diminished by age or by
acquired conditions such as carpal tunnel syn-
drome.

Although awareness of disability is critical to
universal usability, designers should not see dis-
ability as the primary defining characteristic of an
audience. Users of assistive technology are primarily
citizens, employees, and social actors, and only
secondarily people living with a disability. Section
508 of the U.S. Rehabilitation Act defines assistive
technology as a “device or software that substitutes
for or enhances the function of some impaired
ability.”9 In this sense, design for accessibility is a
special case of design for usability. The IBM User
Engineering process,10 for example, recommends an
initial focus in design on goals and constraints. The
goals for accessible design are likely to be similar to
those for nondisabled users, namely research,
communication, learning, buying, and other trans-
actions related to physical, social, and existential
needs.'' The difference comes in the constraints. A
critical factor in design for accessibility is design for
assistive technology such as screen readers, adapted
keyboards, specialized pointing devices, and built-in
support within browsers and operating-system user
interfaces. From an abstract design process per-
spective, this can be seen as analogous to design for
heterogeneous clients such as WAP (Wireless

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Application Protocol) phones and PDA (Personal
Digital Assistant) devices; each device offers capa-
bilities and constraints that the designer must
understand and respond to.

Because assistive technologies rely on guideline-
compliant content, accessibility advocates recom-
mend that content developers respect these guide-
lines during implementation. For example,
formatting text in HTML (Hypertext Markup Lan-
guage) rather than using style sheets confounds the
user-defined preferences in a browser and makes the
user experience more difficult than it needs to be.
Similarly, a text label rendered as a JPEG (Joint
Photographic Experts Group) image is opaque to a
screen reader without additional tagging.

Although compliant implementation is critical to
success, more challenging issues must be resolved
earlier in the design process. In initial design, for
example, so-called vast-and-fast menus'~ support
recognition over recall for sighted users,"” but for
users of screen readers this design pattern imposes
an unacceptable burden on working memory. Like-
wise, during detailed design, visual designers may
need to make trade-offs between contemporary
typographic aesthetics that value compact, low-
contrast typography and the needs of readers with
low vision.

Rittel* distinguishes tame and wicked problems.
Tame problems can be analyzed by established
methods and have a single and recognizable
solution. In contrast, wicked problems are hard to
define to the satisfaction of all stakeholders, have no
clear stopping rules (rules to determine when
sufficient work has been done), have better or worse
(rather than right or wrong) solutions, have no
objective measure of success, have no given alter-
native solutions, and often have moral, political,
and professional dimensions. Tame problems are
solved by rigorously following a specified proce-
dure, but wicked problems are addressed by
argumentation. Whereas checking for compliance
with guidelines is a tame and tractable problem,
problems of the class described here for accessibility
design are wicked problems and can only be solved
by argumentation and designer insight.

Design for accessibility offers value to both users

and stakeholders. In particular, although acknowl-
edging the poor quality of much design,3 some blind

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

users nevertheless see the Web as fundamentally
enabling.15 For stakeholders, accessible design

m Design for accessibility
is a special case of design
for usability m

supports organizational goals related to both busi-
ness development and risk avoidance. For example,
in the UK, people with disabilities represent both a
significant marketplace and also a large pool of
potential employee talent. In fact, according to a
disability briefing published by the UK Disability
Rights Cornmission,16 nearly one in five people of
working age is disabled, with disabled people only
half as likely as nondisabled people to be in
employment.

Design for accessibility is also a regulatory com-
pliance issue because many countries have imple-
mented aggressive legislation to ensure reasonable
access to services. Examples include the UK
Disability Discrimination Act'” and Section 508 of
the U.S. Rehabilitation Act.'®

Testing for accessibility

A distinct feature of contemporary user-experience
design methods is an emphasis on rigorous evalua-
tion of design proposals.lo’19 Empirical testing with
users”’ is frequently preferred because of its
sensitivity and evidential weight. However, inspec-
tion methods, such as Nielsen’s heuristic evalua-
tion,” are widely used in commercial work as a
result of their lower cost, faster turnaround,”’ and
technical focus.

Both of these methods are used in evaluating the
user experience for users with disabilities. Given the
importance of standards compliance, however,
testing for accessibility also typically involves
automated test tools. Such tools crawl through a
Web site and identify various coding solecisms, such
as malformed HTML or the absence of tags essential
to assistive technology. Automated test tools are
relatively naive. For example, they can reliably
detect the presence or absence of an HTML <ALT>
attribute but are unable to form a judgment as to
whether the tag’s content is helpful. Test tools are
not restricted to HTML validation; for example, IBM

ENGLEFIELD ET AL.

539

540

Easy English Analyzer22 is helpful for assessing the
reading difficulty of English text.

Advocacy groups tend to prefer empirical evalua-
tion. For example, a recent report from the UK

m Design for accessibility offers
value to both users and
stakeholders m

Disabilities Rights Commission strongly supported
the need to involve disabled people in scientific
testing of Web designs.3 The RNIB (Royal National
Institute of the Blind) likewise strongly endorses this
approach.23 However, in commercial practice, eval-
uation typically involves a considered combination
of user testing, expert inspection, and automated
testing, the relative mix of which depends on
deadlines, funding, and availability of participants
with the required class and degree of disability.
Thus, in a recent study for a UK local government
project,24 evaluators were required to deliver a rapid
assessment of the accessibility of a wide range of
design proposals and chose to combine automated
testing and inspection to maximize the scope of the
evaluation.

Issues with automated test tools

Although automated test tools are an essential
component of the evaluation toolkit, a range of
issues with these tools can be identified that impact
both adoption by practitioners and also develop-
ment by subject matter experts. In order to carry out
a full-spectrum evaluation, tools must be used in
combination. However, these tools generally do not
interact gracefully with one another. Inconsistent
inputs, incompatible outputs, ambiguous warrants,
and patchy mutual coverage add to the burden of
using these resources in combination. (The term
warrant is used in this paper to mean an endorse-
ment from a reputable organization typically recog-
nized as an authority on a given topic.) Specific tools
issues include:

1. The cost of learning diverse user interfaces

2. The difficulty of physically combining input from
different tools

3. The challenge of aggregating output data based
on incompatible conceptual models

ENGLEFIELD ET AL

4. The lack of standards for defining test capabilities
and the authorities that provide a warrant for
those capabilities

5. The need to run tools individually and sequen-
tially

In addition to the core capability of assessing
content against some set of guidelines, each tool
developer must also design and implement a user
interface, I/0 routines, and services to crawl and
parse Web content. Much of this expensive infra-
structure is common to the majority of tools, but
experienced IBM developers estimate that creating
this infrastructure consumes 40-50 percent of the
development effort for a given application. More-
over, many tools authors belong to noncommercial,
charitable, or academic organizations. For these
groups the cost of developing such peripheral
technology is likely either to discourage the under-
taking of tools projects or to divert skilled resources
from development of core functionality related to
compliance with accessibility guidelines. Commer-
cial developers may also be affected by the need to
make substantial investment in areas beyond their
core competence, potentially leading to higher
pricing.

A proposed architecture for automated test tools
The preceding analysis suggests four essential issues
that impact both tool users and tool makers:
consistency, integration, authority, and development
cost. We propose here an architecture to explicitly
address these concerns. Although this proposal
specifically addresses concerns related to accessi-
bility tooling, the approach might also usefully be
generalized to support automated testing for us-
ability, application development, and other inspec-
tion-based disciplines.

The architecture has four components:

1. A set of standards provides coherent classes and
definitions for tool capabilities, guidelines against
which compliance assessments are made, sup-
porting warrants, and logical formats for outputs.

2. A common user interface offers a single, inte-
grated, consistent user experience to enable
practitioners to design, execute, and report any
test that exploits a set of tools.

3. An enabling framework provides shared services
for input and output, and a mechanism to run
and monitor tools in parallel.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

4. A defined client interface enables tools to be
registered and integrated in the framework.

Each tool need only implement core function to
advertise and execute its capabilities to assess
HTML with respect to a set of guidelines. In
particular, this architecture mandates no specific
enabling technology. For example, it might equally
well be implemented by using Web services™ or by
using Eclipse.26 The need for consistency is explic-
itly supported by a common user interface and a
framework service for writing output in a standard
physical and logical format. Although consistency is
delivered by technology, it is underwritten by
standards.

The goal of integration is satisfied by the framework.
A diverse set of tools is installed, selected, custom-
ized, and invoked by using a single user interface.
The output from multiple tools is aggregated and
presented as a whole for review, analysis, and
reporting. The requirement for authority is handled
by requiring each tool to support its advertised
capabilities with respect to both authoritative
guidelines and warrants. Finally, the issue of
development cost is addressed by a framework that
provides a rich set of services, so that individual tool
developers have no need to build code for a user
interface, file management, Web crawling, and
content parsing.

Many cases of commercially successful plug-in
models for specialized tools can be identified.
Examples include browser plug-ins such as Acro-
bat** viewer and Flash**, browser extensions such
as the Google toolbar**, Photoshop** filter plug-ins
for visual treatment of artwork, and third-party
extensions to games such as Microsoft Flight
Simulator.

Clearly, a well-designed framework does not in itself
ensure widespread adoption. Examples of good
designs that never achieved widespread success
include the IBM San Francisco project,27 the
Betamax** video format, and APS (Advanced Photo
System) format photographic stock. Potential in-
hibitors to success include performance, scalability,
timing, and promotion. The existence of a strong
architecture with compelling benefits is likely to

be a necessary but not sufficient condition for
adoption.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Rogers28 proposes a standard set of criteria for
diffusion of innovation in which an adoptable
innovation delivers the following:

1. Relative advantage—From the user’s perspective:
“What’s in it for me?”

2. Compatibility—*Does it fit my values and prac-
tices?”

3. Simplicity—*“Can 1 easily understand the value
statement?”

4. Suitability for tryout—“Can I try it before I
commit to use it?”

5. Observability—*Is it easy to see the claimed
benefits?”

The proposed framework meets criteria 1, 3, and 5
from this list. Criterion 2 needs to be dealt with by
the design of technical detail and standards.
Criterion 4 might be addressed by appropriate
commercial packaging.

THE TEST TOOLS LANDSCAPE

This section provides an overview of current
automated test tools. In particular, we focus on tool
characteristics and compliance with established
guidelines.

Methodology

The W3C WAI (Web Accessibility Initiative)29
provides a useful general classification of tools as
follows:

1. Evaluation tools—These tools perform a static
analysis of pages or sites regarding their accessi-
bility and return a report or a rating.

2. Repair tools—After the accessibility issues with a
Web page or site have been identified, these tools
can assist the author in making the pages or site
more accessible.

3. Filter and transformation tools—These tools
assist Web users rather than authors to either
modify a page or supplement an assistive
technology or browser.

A more specific classification of evaluation tools can
be done as follows:

a) General—Tools that perform tests for a variety of
accessibility issues

b) Focused—Tools that test for one aspect or a
limited aspect of accessibility

ENGLEFIELD ET AL.

541

542

c) Services—Tools that run on an ongoing basis,
such as proxies, Web services, and monitors.

Based on this classification scheme, a set of general
and focused evaluation tools was selected for review

m The existence of a strong
architecture with compelling
benefits is likely to be a
necessary but not sufficient
condition for adoption m

from a mix of sources including commercial
software developers, academic institutions, advo-
cacy organizations, and internal IBM teams. Initially
the descriptions of 30 tools were taken from Web
sites and analyzed to explore general coverage and
consistency. A representative set of seven tools was
then installed and analyzed for detailed compliance
with specific WAI guidelines.

Inputs, parameters, and outputs

The majority of tools reviewed were designed to work
with Web sites. The use of input formats in these tools
is reasonably homogenous and can be considered in
terms of a general case of Web site analysis extended
by necessary specializations to analyze specific file
types. A subset of tools was designed to work with
specialized file types such as image files, text
elements, and specific markup such as XML (Exten-
sible Markup Language), XHTML (Extensible Hy-
pertext Markup Language), SVG (Scalable Vector
Graphics), and JSP** (JavaServer Pages**) files.

Generic parameters include a starting point and a set
of options. Although the majority of tools specify the
starting point as a URL (Uniform Resource Locator),
a few require a domain name. More specialized
parameters include assessed guidelines, assessed
impairment, and choice of language.

Output formats show a high level of diversity in both
logical and physical format. Some tools provide
summaries, and others offer detailed reports. Some
tools provide reports as printed output, others
generate reports in HTML or Lynx30 format, and
some update the pages in which errors are found. In
addition to the inconsistency in medium, reports are
not written according to any common conceptual

ENGLEFIELD ET AL

model, and data from different tools cannot easily be
compared and aggregated.

General guideline coverage

Table 1 illustrates the stated coverage of various
sets of guidelines for all 30 tools. For example,
although 50 percent of the tools support the WCAG
guidelines, only 23 percent support all three WCAG
priority levels. A further 50 percent suggest that they
support WCAG but do not explicitly state which
guidelines are supported.

WAI guideline coverage

Table 2 shows the degree to which the WAI
guidelines are covered by the seven tools selected
for detailed analysis. Thus, WAI guidelines 1.1 and
5.1 are assessed by all seven tools, but guideline 3.1
is not assessed by any of the seven.

WAL organizes accessibility guidance as sets of
checkpoints within guidelines. Each of the 14
guidelines includes between one and ten check-
points. Table 3 shows the degree to which the seven
tools claim to test each of the individual check-
points. The columns labeled 1 through 10 show the
proportion of the seven tools that assess each
checkpoint. For example, although all seven tools
inspect checkpoint 1 of guideline 1, no tools assess
checkpoint 7 of guideline 3. A dash indicates that the
guideline has no checkpoint for a given number.
(For example, guideline 1 has only five check-
points.) The final column gives the mean coverage
for all checkpoints within a guideline.

Analysis

The consistency of input formats reflects the
common goal of these tools, namely to analyze Web
pages. However, there is some diversity in the
inputs required by more specialized tools. By
contrast, logical and physical output formats are
highly mutually inconsistent.

Some tools, but not a majority, define their
capabilities in terms of guidelines such as WCAG,
Section 508, and HTML. However, there is a high
variation in the precise subsets of these guidelines
that each such tool chooses to support. In many
cases tools do not explicitly state the guidelines for
which they test. Coverage of guidelines and check-
points is extremely variable; some are assessed by
many tools, others by few. In fact Knight reports a

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Table 1 Coverage by guideline

Number of Percentage of
Tools Stating Tools Stating
Support for Support for

Guidelines the Guideline the Guideline
WCAG WCAG 1.0 (Priority 1, 2, and 3) 7 23
WCAG 1.0 (Priority 1 and 2) 0 0
WCAG 1.0 (Priority 1) 1 3
WCAG 1.0 (priority level unspecified) 6 20
WCAG 2.0 (priority level unspecified) 1 3
Unstated or unobtainable 15 50
Section 508 All Section 508 12 40
Unstated or unobtainable 18 60
HTML HTML 4.0 2 7
HTML 3.2 Standard 1 3
HTML 1.1 1 3
HTML (version unspecified) 3 10
Unstated or unobtainable 23 77
IBM Guidelines Web 2 7
Unstated or unobtainable 28 93
Other Brinck 1 3
CLF (Common Look and Feel) 1 3
Diamond-Bullet Syntax 1 3
Gergle Wood 1 3
JIS (Japanese Industrial Standards) 1 3
SMOG (Simple Measure of Gobbledegook) 1 3
XAG (XML Accessibility Guidelines) 1 3
CSS (Cascading Style Sheet) 1 3
Unstated or unobtainable 22 73

comment from Wise’' that “Tools are lacking or
horribly expensive for AAA compliance.”

ANALYSIS OF PRACTITIONER EXPERIENCE

In addition to doing actual tool analysis, we also
sought out commentary from practitioners who use
these tools. This section describes the methodology,
results, and analysis of this part of our study.

Methodology

A small-scale informal study was carried out to
acquire formative knowledge of current accessibility
testing practice as well as perceived issues and
requirements. A group of four IBM accessibility
practitioners completed a questionnaire designed to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

probe their experiences using automated test tools.
Additionally, three specialists from industry, aca-
demia, and an advocacy organization were inter-
viewed to explore specific issues raised by the initial
survey.

Practitioner feedback

Participants reported using tools in combinations to,
in their words, “provide different perspectives” and
“check different types of applications.” For example,
one participant reported using Inspect32 and
AccExplorer3232 in tandem. Another reported using
LynXView33 for a quick overview and LIFT Online™*
for an in-depth audit. In a third case, LIFT> was
seen as useful for identifying technical problems,

ENGLEFIELD ET AL.

543

544

Table 2 Degree

of coverage of WAI Guidelines

Number of Tools Percentage of
Stating That They | Tools Stating That
Test These They Test These
Guidelines Covered Guidelines Guidelines
1.1,5.1 7 100
6.3 6 86
1.2,2.1,33,52,6.1,72,73 5 71
1.4,3.4,4.3,5.5,6.5, 12.4 4 57
13,15,22,32,36,7.1,74,75,9.3,10.2, 11.2,12.2, 13.1, 13.2, 13.6, 3 43
13.9
3.5,3.7,4.1,4.2,53,5.6, 6.4, 8.1,9.1, 94, 9.5, 10.1, 10.5, 11.4, 12.1, 12.3, 2 29
13.3,13.7, 14.3
5.4,6.2,9.2,10.3, 104, 11.1, 11.3, 13.4, 13.5, 13.8, 13.10, 14.1, 14.2 1 14
3.1 0 0

but another tool was used to discover issues related
to the use of color.

In this feedback, lack of consistency and lack of
integration were highlighted as particular problems.
For example, one participant stated, “There is a lot
of replication across different tools. It would be very
good if they were packaged together.” Another
participant stated a requirement for one tool that is
automated and can test for all disability software

parameters, stating, “Right now, in order to test for
the entire range of compliance, multiple tools need
to be used.”

The participants also expressed a number of con-
cerns regarding the usability and quality of current
tools and the effectiveness of generated reports.
Specifically, they found reports to be “overwhelm-
ing,” difficult to use, too large, unhelpful as a
medium for communicating findings to managers

Table 3 Degree of coverage of checkpoints within WAI guidelines

Percentage of Coverage of Checkpoints Overall
1 2 3 4 5 6 7 8 9 10 Percentage of
Guideline Coverage
1 100 71 57 43 43 = = = = = 63
2 71 43 - - - - - - - - 57
7 71 71 43 43 43 - - - - - 54
6 86 71 57 29 14 - - - - - 51
12 57 43 29 - - - - - - - 43
5 71 57 29 14 29 - - - - - 40
4 57 29 29 - - - - - - - 38
3 71 57 43 29 29 29 0 - - - 37
8 29 - - - - - - - - - 29
9 43 29 14 29 29 = = - = - 29
13 14 14 14 32 43 43 43 29 29 14 29
10 43 29 14 14 29 = = = = - 26
11 43 29 14 14 - = = - - - 25
14 14 14 29 - - - = - - - 19

ENGLEFIELD ET AL

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

and developers, and missing practical advice on
fixing problems. One participant observed, “The
way I work involves moving between different
applications and sites and [the tools] all present
results in different ways, so it gets complicated.”
Another commented that a standardized reporting
system would be ideal to reconcile reports of the
same issue by different tools. Other concerns
included quality, overly technical interfaces, and
insufficient support for customization.

The currently available tool set is also perceived to
be mutually incomplete. For example, participants
were concerned that there was little support for
testing font sizes and high-contrast-mode issues.
One specifically expressed a need for a tool to assess
tab order. On the other hand, participants valued
certain specific abilities of current tools, including
facilities to inspect the code in error, parameters to
adjust the level of compliance to be tested, and
suggested fixes to erroneous source code.

Participants described the following requirements
for test tools:

1. They should be integrated in the development
environment to minimize learning and simplify
use.

2. They should produce consistent reports to sup-
port intraproject comparisons.

3. They should report findings in HTML and provide
“nice and flexible” facilities to “reorder in nice
different ways.”

4. They should provide graphic summaries, such as
pie charts.

5. They should be flexible and capable of accom-
modating new capabilities.

One participant looked for a system that would do
the following: “Bring together all the tools”; “Take
you through the evaluation process”; “Run the
automated tests for you”; and finally, “When you
press the button at the end, it gives you a report
that you can send to your client [that] would
identify issues and tell [the client] what they need
to do.”

Analysis
This research suggests that although practitioners do
use tools in combination, they are hindered by a

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

lack of consistency, integration, and mutual cover-
age. Reports are seen to lack specificity, consistency,
and relevance for target audiences. An integrated,
process-oriented framework, closely tied to devel-
opment environments, can be identified as a
desirable strategy for addressing these concerns.
Table 4 identifies the support such a framework
would provide for each of these questions.

Overall, issues concerning testing tools can be
separated into two main categories:

1. Ergonomic issues related to the practical deploy-
ment of test tools by evaluators

2. The analytical power of the algorithms used by
these tools

Table 4 illustrates the value of the proposed
architecture as an explicit response to the first set of
issues. Although this work does not claim to
specifically address the second set of issues, an
implementation might well support an economic
model that encourages more investment in intelli-
gent-agent-based tools. For example, commercial
developers might then be able to reassign develop-
ment resources previously consumed in developing
user interface components to the implementation of
more advanced analysis algorithms. Additionally, a
common platform would offer a robust and attrac-
tive implementation channel for innovative algo-
rithms developed by academic researchers.

DESIGN PRINCIPLES

Analysis of the practitioner feedback and current
tool characteristics suggests the following guidelines
for an effective architecture. In particular the
architecture should:

1. Demarcate responsibilities—Common services
should be handled by the architecture and unique
and specialized services by the tools.

2. Deliver consistency through tools not rules—The
architecture must deliver an integrated user
experience and consistent reports through a
standards-based interface to tools.

3. Adapt to research goals—Practitioners must be
able to specify the scope of the test in terms of
Web pages, classes of disability, and levels of
compliance.

ENGLEFIELD ET AL.

545

Table 4 Framework support for issues identified by practitioners

Level of

Reported Issue Support

Nature of Support

A. Lack of consistency High

B. Lack of integration High

C. Reports hard to use High

D. Reports too large High
E. Reports unhelpful for communicating High
results to stakeholders

F. Inconsistent reporting formats High

G. Hard to reconcile reports from different High
tools

H. Quality Medium

1. Overly technical interfaces Medium

J. Insufficient support for customization Low

K. Tool set mutually incomplete Medium

L. The tools run and report all tests together High

The framework provides a common user interface, a
shared taxonomy of capabilities, and a standard
reporting format.

The set of pluggable tools are presented to the evaluator
as a single integrated package.

Filtering, sorting, and cross-tabulation support structured
analysis of results.

The framework supports a range of output formats to
meet specific audiences and purposes.

Exporting results as XML enables the use of XSL to
design tailored reports for specialized purposes.

Filtering enables reports to eliminate ‘noise’ to
emphasize data relevant to a specific study.

See C.

The framework provides and enforces a common logical
and physical output format.

Output from all tools is integrated into a common
format. Sorting enables convenient comparison. Where
tool capabilities overlap, a single capability in the
less-preferred tool can be selectively disabled.

Quality issues arising from development costs are
mitigated by eliminating costs associated with
development of user interface and I/0. Quality issues
related to the user interface and I/O routines are
eliminated. Issues associated with deep problems in
artificial intelligence are not addressed other than by the
economic argument for K.

A common user interface can be developed to a
high standard of usability by applying IBM User
Engineering techniques. The costs of this activity
are incurred once and the benefits realized for
each tool.

The framework encourages developers to support
a standard set of customization parameters.

The framework provides an economic model to
encourage the development of specialized tools.

It enables both commercial and academic organizations
with skills in agent design to exploit their core
capabilities without the need to invest in mundane
software engineering activities.

The framework provides a transport mechanism
to run a selected subset of tools as a single
operation and consolidate the generated output.

4. Support practitioners—Minimize effort and max-
imize effectiveness and satisfaction of practi-
tioners (c.f., International Organization for
Standardization (ISO) Standard 924136).

. Support evaluation stakeholders—Ensure that
reports are useful to managers, designers, and
developers.

ENGLEFIELD ET AL

6. Support tools authors—Minimize the development
costs for tools; maximize the likelihood of adoption.

THE ARCHITECTURE

Figure 1 summarizes the proposed architecture for
automated test tools. The next sections explain this
architecture in more detail.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Pluggable tools
=l
A (0] (0] i Q e E T
® e N ©] © 3
. = &» 3 0 z a
N, |_|C_| o oW & 8 5}
o T:ﬁ %) 3
) &
Install Execute

Design ‘ Transport

< Web pages

Report

NN files
wn 0 e e
) Ry E Q
= 3 @ Q‘
n B L

‘ Analyze

User interface

Figure 1

Overview of proposed architecture for automated test tools

Overview of the architecture

In this architecture an infrastructure provides
facilities to install additional tools, design a study,
pause and restart tests (transport), handle schedul-
ing and I/0 (execute), analyze findings, and export
reports in a standard format. Table 5 and Table 6
give an overview of the proposed architecture in
terms of the standards, user interface components,
infrastructure services, and client tool services that
apply to key life-cycle events. Table 5 describes the
events involved in initially installing tools. Table 6
lists the events that would take place within a
typical study.

In this architecture, standards provide coherent
classes and definitions for tool capabilities, guidelines
against which compliance assessments are made,
supporting warrants, and logical formats for outputs.
During installation, pluggable tools call infrastructure

services to register their capabilities. To design a
study, a practitioner uses a common user interface
both to selectively enable and disable individual tool
capabilities and to specify the values of runtime
parameters required by tools. Client tool services are
then implemented by the tool builder. To run a study,
the practitioner uses the common transport interface
to start, pause, and restart the test, and also to check
the status of running tools. A checkpoint/restart
capability enables large complex tests to be sus-
pended and restarted at a convenient time. During
execution, the framework uses shared services to
crawl and parse Web pages and pass tokenized
content to each enabled tool. Each tool analyzes the
parsed content by using its own algorithms and rules
and returns findings to the infrastructure in a canon-
ical format. Tools also respond to scheduled requests
for status from the infrastructure in order to display
progress in the common user interface. A common

Table 5 Architectural overview for setup

Selectable evaluation
criteria (e.g., A, AA, AAA)
® Taxonomy of standard
parameters
® Taxonomy of data types
for custom parameters

(enables the
tool author to
identify the
capabilities of
the tool)

Common User Infrastructure Client Tool
Standards Interface Services Services
Install Platform standards ® Install ® Install As required by platform
for creating plug-ins ® Uninstall ® Uninstall standards for plug-in
® Refresh ® Refresh
Register ® Taxonomy of capabilities: n/a Request and aggregate On request, register

name, author,
capabilities, warrants,
standard parameters,
and custom parameters

registration data

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

ENGLEFIELD ET AL.

547

548

Table 6 Architectural overview for usage

for communication with
stakeholders)

Common User Infrastructure Client Tool
Standards Interface Services Services
Design ® Taxonomy of ® List aggregated ® Selectively enable n/a
(enables the practitioner capabilities capabilities and disable
to select which tools to e Taxonomy of ® Sort and filter capabilities
use and to supply standard parameters by capability, within tools
required runtime * Taxonomy of warrant, name, ® Pass standard
parameters) data types for and author. and custom
custom parameters ® Selectively enable parameter values
and disable individual ~ to tools
capabilities
® Select preferred
tool in the case of
overlaps
® Specify values for
standard parameters.
® Specify values for
custom parameters.
® Save and reuse
designs
Transport n/a ® Start n/a ® Start
(enables the user ® Pause ® Pause
\®) I, IEOLGT, ® Restart ® Write checkpoint
pause, and cancel e Aband o ¢
the test) andon estart rom
checkpoint
® Abandon
Execute Logical output Report consolidated ® Crawl ® Report status on
(runs the selected tools format status ® Parse request
H; f.a Coniiol =4l sl ® Notify tools about ® Request unit
efficient manner) new page for of content
analysis ® Notify about
° Write aggregated findings
findings in
standardized format
Analyze n/a ® List, sort, filter n/a n/a
(enables the practitioner ® Search
to review and analyze ® Edit
the aggregated findings) ® List actions
Report Physical Select or n/a Export to selected
(exports selected file formats specify file file and format
findings to external files and format

user interface enables the practitioner to review and
edit the aggregated findings and export one or more
reports in a standardized format.

Standards and services

The following sections discuss in more detail the
specific standards and services of this architecture
for each of the event types.

ENGLEFIELD ET AL

The install event

This event describes the standards and services
required to enable a practitioner to install an
additional tool in the infrastructure. The infra-
structure must be able to install, uninstall, and
refresh tools. In particular, the process of refreshing
enables tools to incorporate updated assets such as
analytical rules.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Any implementation of the proposed test tools
architecture is necessarily based on an existing
platform architecture, such as Web Services or
Eclipse. This implementation is likely to provide
standards-based services for installing pluggable
components. For example, when Eclipse is used as a
platform, each tool must be packaged as a set of
Java** classes and XML elements that are written to
a standardized form prescribed by the platform.
Eclipse itself provides a user interface for installing
and uninstalling plug-ins and for refreshing resour-
ces from a server.

The register event

This event describes the standards and services
required to enable tools developers to register the
capabilities that each tool can contribute to the
framework. Automated test tools typically provide
capabilities to test only specific aspects of accessi-
bility; in practice, the architecture described here
encourages the development of specialized tools
with a narrow focus. To work well in combination,
tools need to register their attributes in a canonical
form that can be conveniently aggregated with the
attributes of other tools. Specifically, each tool must
register the following attributes:

1. Identity—This includes the tool’s name and
version together with the name and logotype of
the organization responsible for its development.

2. Capabilities—These define both the accessibility
factors that the tool can assess and the warrants
that back its claims for effectiveness. They are
specified in terms of a controlled vocabulary
defined by a formal taxonomy. This ensures that
individual tools describe themselves in a stand-
ard way and are grouped consistently and
logically within the user interface. Ideally, tools
with a broad scope would be constructed on a
granular basis so that individual capabilities
could be registered and used separately.

3. Parameters—Both standard and custom parame-
ters should be specified.

An appropriate taxonomy of test capabilities might
usefully reference both outcome and scope. An
outcome describes the tool’s ability to identify errors
with respect to a formal standard of compliance. For
example, a tool might claim to detect class A and AA
errors as defined by the W3C guidelines. In contrast,
scope describes the facets of accessibility that the
tool claims to test. For example, individual tools

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

might focus on support for blind users, arthritic
users, or dyslexics. Ideally, such a classification
should be hierarchical to enable practitioners to
aggregate tools and capabilities at various levels of
abstraction. Thus, a hierarchical scheme might
decompose high-level classes such as perceptual
disabilities, motor disabilities, and cognitive dis-
abilities. Existing proposals for taxonomies of
disability may prove to be useful resources. Exam-
ples include the functional limitation model’” and
the World Health Organization model.”® Warrants
are expressed as a list of endorsing organizations,
such as advocacy groups and government bodies.

Many existing tools permit the user to enter
parameters to specify aspects of the test. For
example, tools that crawl a Web site typically invite
the user to enter the URL of the starting point and
indicate the required depth of pages to be processed.
The architecture proposes two standards related to
parameters: first, a nomenclature of standard
parameters that many tools will use, and second, a
set of data types for custom parameters unique to a
specific tool. Examples of the former might include
start page, crawling depth, and severity filter
parameters. Examples of the latter include string,
numeric, and Boolean data types. Each tool is
required to register a set of standard parameters, as
well as the label and data type of any custom
parameters. To promote a simple and consistent
user experience, custom parameters are supported
but deprecated. (Deprecation is the declaration that
a component should not be used in subsequent
designs, but remains available to support existing
designs that incorporate it.)

The design event

This event describes the standards and services
required to enable a practitioner to design a study by
selecting a combination of capabilities and specify-
ing parameters that tailor the tools to the study
goals. The infrastructure presents a control panel
that lists and organizes the aggregated capabilities of
all registered tools. This list is organized hierarchi-
cally, using the taxonomy of capabilities as a
conceptual framework. As shown in Figure 2, the
user can review the available capabilities and select
those that best support the research goals. In this
fictional example, two tools support checking for
red-green discrimination, and the user has selected
the tool that has a warrant from the Royal National
Institute for the Blind.>

ENGLEFIELD ET AL.

549

550

Perceptual

Blindness

BlindnessChecker V1.0
Tunnel vision

TunnelChecker V1.2
Color blindness

RedGreen test

Color RG checker

SightSoft
SightSoft

Color systems Inc
Nimrod diagnostics

Deafness

Caption auditor University of Leamington

Motor

Figure 2
Design user interface

RNIB /]
RNIB]
RNIB]
None [x]
RNID]

The user also needs to specify parameters at this
time. When a standard parameter is used by many
tools, the value need only be specified once. For
example, the user might specify starting page and
crawling depth in a single dialog, and the infra-
structure would then pass these values to all tools
that have registered a need for this information. One
critical common parameter is compliance level. For
example, the evaluator might use a common dialog
to notify all tools to check for compliance with W3C
level AA. In practice, some tools may use criteria
other than the W3C ratings. In this case the
parameter dialog would aggregate all criteria regis-
tered by the selected tools.

Study designs are useful intellectual property in
their own right and may need to be reused or
adapted to save effort and share best practice.
Consequently, the user interface provides a facility
to import and export designs in the form of named
sets of capability selections and parameter values.

The transport event

This event describes the standards and services
required to enable a practitioner to run a study. The
user interface provides controls to start, pause,
restart, and abandon a study. Long-running or
complex studies may need to run for periods longer
than a working day in situations where it is
impractical or unsafe to leave a machine running
unattended. Pause and restart capabilities provide a
standard mechanism to take a checkpoint, suspend
the test, and resume at a later convenient time.

These transport commands are passed to each of the
enabled tools. Checkpoint/restart is also supported

ENGLEFIELD ET AL

by standard services in the infrastructure for
recording the state of I/0 and for saving accumu-
lated findings reported by individual tools.

The execute event

This event describes the standards and services
required to enable the infrastructure to run a study
designed and started by a practitioner. The infra-
structure, rather than the individual tools, manages
the input to the Web site to be tested. Starting at the
home page specified by the designer as a standard
parameter, it reads the site as a set of linked pages.
For each page, it reads and parses the base content
defined in HTML, PostScript**, or presentation
information coded as CSS (Cascading Style Sheets),
and then notifies each enabled tool that a new page
is ready for testing.

Each tool then makes calls on a set of convenient
input services provided by the infrastructure to
request content from the page in a format suitable
for the tool’s specific needs. For example, a tool
designed to test the reading difficulty of a page
might call an infrastructure service to return the
content in units of single sentences. A tool designed
to check for typographical contrast might call a
service to get the next distinctly styled block of text
and the associated HTML and CSS markup associ-
ated with that block. Similarly, a tool interested in
assessing an index of redundancy in the use of
repeated hyperlinks might call a service to return the
page as a DOM (document object model), whereas a
tool that relies on digital-signal-processing techni-
ques to assess color contrasts might request a
rendered image of the page at a given resolution.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Additionally, the infrastructure might provide
standard services to read and parse embedded
content to deal with certain specialized data types,
for example, time-based media encoded as AVI
(Audio Video Interleave) files. A specialized tool
could then register an interest in AVI files in order to
check for the provision of subtitles. Further analysis
is required to define an exhaustive list of the
necessary input services. A plug-in approach to
input services would provide an extensible solution.

Whenever a tool identifies a finding, it calls a
common reporting service in the infrastructure. The
service is constructed to acquire finding descriptions
in a standard form that ensures completeness,
consistency, aggregation, and comparison. Table 7
lists the fields within the finding report and indicates
the responsibility for each field. Note the distinction
between impact and compliance. The former en-
codes the classes of disability affected and the
associated impact on task success. The latter records
noncompliance with external guidelines such as the
WCAG."

During execution, the infrastructure periodically
requests a status update from each tool. The tool is
then required to respond with a concise description
of its current activity. The infrastructure combines
this data with statistics on the number of pages
analyzed and the count and severity of findings
identified.

The analyze event

This event describes the standards and services
required to analyze the findings reported by the
enabled tools. At this stage, the individual tools
have completed their contribution to the study, and
the infrastructure need only provide services to
assist the practitioner in both analyzing and report-
ing the results.

Typically, test tools generate inconveniently large
volumes of findings. Practitioners need effective
tools to tame the aggregated dataset, using quanti-
tative and qualitative methods to identify the
underlying issues of interest to stakeholders. Con-
sequently, the architecture proposes a flexible set of
analysis features to enable the practitioner to
explore the data using relevant criteria to count,
sort, filter, and search. For example, a practitioner
might wish to review all serious problems reported
with respect to a site’s search page.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Alternatively, the practitioner might be interested in
the relative and absolute frequency of findings
cross-tabulated by disability and severity, or might
need to identify all findings that impact users with
motor impairment, sorted by severity. To satisfy
these diverse and unpredictable goals, the user
interface provides a mechanism to initially filter
findings either by specifying legal values for some
set of coded fields, such as impact or noncompli-
ance, or by comparing an arbitrary search string to
any text field, such as finding a description or page
title. After a filtered subset has been obtained, the
user can either list or cross-tabulate the results. For
a list, the user would select a set of fields to display
and sort. For cross-tabulation, the user would
specify a numeric field to display and two encoded
fields to use as row and column titles. It may also be
useful to offer a facility to save, reuse, and share
favorite filters, lists, and cross-tabulations.

In some cases the evaluator may wish to add a
comment to explain or qualify a finding. A facility is
provided to edit such manually entered comments.
Evaluators may also mark a finding as deleted.

In addition to findings, some tools identify actions.
For example, a tool might invite the practitioner to
manually review the content of an HTML <ALT>
attribute for relevance and clarity. To support such
actions, the infrastructure provides a to-do list to
enable the practitioner to systematically respond to
each action and to update findings with additional
data.

The report event

This event describes the standards and services
required to export results in a form helpful to others
involved in the evaluation process. Potential re-
ceivers of test results include designers, developers,
and business stakeholders. It may also be useful to
archive data for long-term initiatives, such as
intraproject and interproject analyses of trends and
regression. The needs of each audience are likely to
be somewhat different. For example, a developer is
primarily interested in a page-by-page enumeration
of errors and recommendations, whereas a manager
is more concerned with compliance issues and
strategic recommendations. Additionally, different
media may be needed to meet local technical
strategies. Although one enterprise may wish to
distribute HTML-based reports, another may prefer
to work with RTF (Rich Text Format) documents.

ENGLEFIELD ET AL.

551

552

Table 7 Fields within a report of findings

Identification
Provides a unique reference

Enables findings to be aggregated by tool, capability, page, or element

ID Generated automatically by the tool Unique alphanumeric ID
Study name Generated automatically by the tool from Concise name for study to enable
registration data using a standard findings to be aggregated and
parameter supplied by the user compared across studies
Time stamp Generated automatically by the tool Date and time page
from system clock loaded
Source Generated automatically by the tool from ® Capability name
registration data ® Tool name, version, and author
Page Recorded automatically by the URL
infrastructure using the URL of the last
page crawled
Page title Recorded automatically by the Page title text
infrastructure using the <TITLE> tag
of the last page crawled
Element ID Recorded automatically by the Unique alphanumeric ID for an

infrastructure by assigning a unique ID
to each element passed in response to
an input service request from a tool

element (enables multiple
findings for an element to be
aggregated for a tool, and in
certain cases, across multiple
tools)

Element description

Recorded automatically by the
infrastructure using the last input
service called by the tool

A concise textual summary of an
element such as a sentence or a
block of HTML content (used to
illustrate findings in reports and
to enable developers to identify
the location of the error)

Consequences
Describes the effect of the findin

g on the user and levels of noncompliance

Impact

Mandatory field supplied by the tool

Describes the set of disabilities
affected and assesses the severity
for each disability

Values for disability are specified
using a controlled vocabulary
based on a broad and generic
taxonomy.

Values for severity are specified
using a criteria-based scale that
describes the impact of the
finding on task completion

Noncompliance

Mandatory field supplied by the tool

Describes the set of guidelines
within external standards that
the page does not comply with.

Specifies the level of
noncompliance for each such
violation

Values are codes associated with
a specific externally defined
standard (for example, levels A,
AA, and AAA in the W3C
guidelines).

ENGLEFIELD ET AL

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Table 7 Fields within a report of findings (continued)

Description
Describes and illustrates the finding

Enables findings to be communicated clearly to stakeholders and developers

Description of finding

Mandatory field supplied by the tool

A concise textual description
of the problem

Location of finding

Mandatory field supplied by the tool

A specification of the location of
the problem within a page
description

Illustration of finding

Optional field supplied by the tool

Concise text that reports or
quotes from the erroneous code
or content

Evaluator comment

Optional field entered subsequently by
the evaluator during analysis.

An explanation or qualification
of the finding

Recommendations
Enables stakeholders and developers

to form a plan

Tactical recommendation

Optional field supplied by the tool

Describes a specific

recommended change to code
or content

Strategic recommendation

Optional field supplied by the tool

Describes a recommendation
to change processes and policies

Actions

Notifies practitioners that additional manual inspection is required to complete the finding

Action

Optional field supplied by the tool

Instructions to perform additional
expert inspection on a specific
segment of code or content

Likewise, some may require CSV (Comma Separated
Variable) files for conversion to spreadsheets or
relational databases, while others have a strategic
commitment to the benefits of XML markup.

The W3C Evaluation and Repair Tools Working
Group (ERT WG) is currently developing the
Evaluation and Report Language (EARL).40 EARL is
a language to express test results such as bug reports
and conformance claims. EARL “enables any per-
son, entity, or organization to state test results for
any thing tested against any set of criteria.” In a
situation where a Web site is tested for conformance
with the WCAG guidelines by using a variety of
tools, EARL can be used to compare results among
tools, identify conflicting results, and help evalua-
tors derive a single result from a multitude of tools.
Once EARL has been fully defined, the applicability
of the proposed framework in supporting EARL
should be addressed.

A flexible strategy is required to meet these diverse

information and technology requirements. Three
specific requirements are clear:

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

1. A mechanism is required to filter both findings
and fields of interest to a specific audience.

2. Distinct output formats are needed for human
readers and downstream software tools.

3. A range of established, externally specified
physical formats must be supported.

The first requirement is addressed by the same
facilities that the practitioner uses to filter, sort, list,
and cross-tabulate findings. Whereas these features
were used in analysis to select subsets of data to
review and explore, they are used here to select
subsets of interest to a specific audience or program.
The second requirement is met by generating an
XML version of the filtered data as input to a
pluggable XSL (Extensible Stylesheet Language)
style sheet. For example, the style sheet might
transform a raw hierarchy of findings within
categories into a readable and well-presented docu-
ment by creating an appropriate hierarchy of head-
ings, effective typography, and an appropriate look
and feel. The final requirement involves the ability
to export basic or transformed findings in a range of
physical formats. Although additional research is

ENGLEFIELD ET AL.

553

required to specify the entire range of required
formats, an initial set might usefully include XML,
XHTML, HTML, CSV, and RTF.

CONCLUSION

The architecture described in this paper addresses
the identified issues of consistency and integration
in automated accessibility test tools by applying
pragmatic techniques from software engineering
informed by a plausible and attractive business
model. Three major benefits are claimed for this
approach:

1. Tools are less expensive to develop. Commercial
software developers are exposed to smaller
investments and less risk in developing tools for
specialized aspects of accessibility. Academic
research teams and advocacy groups can channel
finite resources to tackling small, well-bounded
problems directly related to their core expertise.

2. The overall user experience is more efficient and
natural. Studies are designed in terms of capa-
bilities rather than software products. Tools are
started together, executed concurrently, moni-
tored, and can be paused and resumed as
necessary. Findings are aggregated as a coherent
and usefully structured dataset that can be
analyzed and reported by using powerful filtering
and formatting tools.

3. The eventual consumers of reports will receive
documents that are appropriately structured for
both understanding and action.

Further research is recommended to understand
requirements in more detail, construct quantitative
business models, and refine the proposed architec-
ture in terms of a preferred implementation.

**Trademark, service mark, or registered trademark of Adobe
Systems Incorporated, Eastman Kodak Company, Google,
Inc., Macromedia, Inc., Massachusetts Institute of Technol-
ogy, Sony Corporation, or Sun Microsystems, Inc.

CITED REFERENCES AND NOTES
1. Universal Usability Guide, universalusability.org, http://
www.universalusability.org/.

2. B. Shneiderman, “Universal Usability,” Communications
of the ACM 43, No. 5, 84-91 (2000).

3. The Web: Access and Inclusion for Disabled People,
Disability Rights Commission (2004), http://www.
drc-gb.org/publicationsandreports/report.asp.

4. W. Chisholm, G. Vanderheiden, and I. Jacobs, Web
Content Accessibility Guidelines 1.0, World Wide Web

ENGLEFIELD ET AL

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Consortium (May 5, 1999), http://www.w3.org/TR/
WCAG10/.

Speech and Braille Output Software, Royal National
Institute of the Blind, http://www.rnib.org.uk/xpedio/
groups/public/documents/PublicWebsite/
public_speechbrailleoutput.hcsp.

IBM Home Page Reader 3.04, IBM Corporation, http://
www-3.ibm.com/able/solution_offerings/hpr.html.

Welcome to TechDis, TechDis, http://www.techdis.
ac.uk/index.php.

Screen Magnification Software, Royal National Institute
of the Blind, http://www.rnib.org.uk/xpedio/groups/
public/documents/PublicWebsite/
public_screenmagnification.hcsp.

Section 508: Glossary, NASA, http://section508.nasa.
gov/glossary.htm.

User Engineering, IBM Corporation, http://www-3006.
ibm.com/ibm/easy/eou_ext.nsf/publish/1996.

A. H. Maslow, Toward a Psychology of Being, 3rd Edition,
Wiley, Hoboken, NJ (1998).

K. Norman, The Psychology of Menu Selection: Designing
Cognitive Control at the Human/Computer Interface,
Intellect Ltd., Bristol, UK (1991).

J. Nielsen, Usability Engineering, Morgan Kaufmann, San
Francisco, CA (1994).

H. W. J. Rittel, “Second Generation Design Methods,”
Interview in Design Methods Group Sth Anniversary
Report: DMG Occasional Paper 1, 5-10 (1972). Reprinted
in Developments in Design Methodology, N. Cross, Editor,
Wiley, Hoboken, NJ (1984), pp. 317-327.

Professional discussion with blind colleague (2003).

Disability Briefing December 2004, Disability Rights
Commission (2004), http://www.drc-gb.org/
publicationsandreports/campaigndetails.
asp?section = ddb&id = 666.

Disability Discrimination Act 1995, Disability Unit of
the Department for Work and Pensions, UK, http://
www.disability.gov.uk/dda/.

Section 508, Center for IT Accommodation (CITA),
Office of Governmentwide Policy, U.S. General
Services Administration, http://www.section508.gov/.

K. Vredenburg, User-Centered Design: The Integrated
Approach, Prentice Hall, New York (2002).

J. S. Dumas and J. C. Redish, A Practical Guide to
Usability Testing, Intellect Ltd., Bristol, UK (1999).

P. Englefield, A Pragmatic Framework for Selecting
Empirical or Inspection Methods to Evaluate Usability,
IBM Corporation (2003), http://www-306.ibm.com/ibm/
easy/eou_ext.nsf/Publish/5020penDocument&../
Publish/1118/$File/paper1118.pdf.

J. West, “The Newest AT Goes Mainstream and to the
Movies: Academy Awards Party Features Innovative
Access for All Courtesy of IBM,” The Assistive Technology
Journal 70 (April 2003), http://www.atnet.org/news/
2003/apr03/040102.htm.

Testing for Accessibility, Royal National Institute of the
Blind, http://www.rnib.org.uk/xpedio/groups/public/
documents/publicWebsite/public_testing.
hesp#P27_2586.

Local Authority Websites (LAWSs), UK National Projects
Programme, http://www.laws-project.org.uk.

IBM Web Services, IBM Corporation, http://www-128.
ibm.com/developerworks/web/library/w-int.html.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

26. The Eclipse Project, The Eclipse Foundation, http://
www.eclipse.org/eclipse/.

27. B. S.Rubin, A. R. Christ, and K. A. Bohrer, “Java and the
IBM San Francisco Project,” IBM Systems Journal 37, No.
3, 365-371 (1998).

28. E. Rogers, Diffusion of Innovations, Sth Edition, Free
Press, New York (2003).

29. W3C Web Accessibility Initiative (WAI), World Wide
Web Consortium, http://www.w3.org/WAI/.

30. Lynx, http://lynx.browser.org/.

31. J. Knight, Attitudes to Web Accessibility,
UsabilityNews.com (October 2003), http://www.
usabilitynews.com/news/article1321.asp.

32. Inspect32 and AccExplorer32 are both part of the Micro-
soft Active Accessibility® 2.0 Software Development Kit.
For details, see Active Accessibility 2.0 SDK Tools,
Microsoft Corporation, http://www.microsoft.com/
downloads/details.aspx?Familyld = 3755582A-A707-
460A-BF21-1373316E13F0&displaylang = en.

33. D.J. Delorie, Lynx Viewer, http://www.delorie.com/
web/lynxview.html.

34. LIFT Online, UsableNet Inc., http://www.usablenet.
com/products_services/lift_online/lift_online.html.

35. LIFT Machine, UsableNet Inc., http://www.usablenet.
com/products_services/lift_machine/lift_machine.html.

36. ISO Standard 9241: Ergonomic Requirements for Office
Work with Visual Display Terminals, International
Organization for Standardization, Geneva, Switzerland
(1999).

37. S. Z. Nagi, “Disability Concepts Revisited: Implications
for Prevention,” in Disability in America: Toward a
National Agenda for Prevention, A. M. Pope and A. R.
Tarlov, Editors, National Academy Press, Washington,
D.C. (1991), pp. 309-327.

38. International Classification of Functioning, Disability and
Health (ICF), World Health Organization, Geneva,
Switzerland (2001), http://www3.who.int/icf/
icftemplate.cfm?myurl = introduction.
html%20&mytitle = Introduction.

39. Royal National Institute of the Blind, http://www.
rnib.org.uk.

40. W. Chisholm and S. B. Palmer, Evaluation and Report
Language (EARL) 1.0, World Wide Web Consortium
(December 6, 2002), http://www.w3.0org/TR/2002/
WD-EARL10-20021206/.

Accepted for publication January 17, 2005.
Published online August 8, 200S.

Paul Englefield

IBM Warwick, MPS, PO Box 31, Birmingham Road, Warwick
CV34 SJL, UK (paul_englefiled@uk.ibm.com). Mr. Englefield
joined IBM in 1978 and currently works as a senior usability
consultant in the IBM Worldwide Ease of Use (EOU) team in
Warwick, UK. He leads usability engagements for internal,
commercial, and government clients, runs a team developing
software tools for usability practitioners, leads a corporate
work group on research and evaluation methods, and teaches
both usability and accessibility skills. His interests include
evaluation tools, inspection methods, task analysis, and
design rationale; he has published a range of articles, papers,
tutorials, and training materials on these topics. He has an
M.Sc. degree in human-centered technology and holds five

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

patents related to user interface technology. He is a member of
the IBM corporate UCD (User Centered Design) advisory
council and the British Computer Society HCI (Human-
Computer Interaction) Education and Practice group. Away
from the office, Paul enjoys acting in murder mysteries,
studies jazz guitar, and makes great black-cherry pancakes.

Claire Paddison

IBM Warwick, MP5, PO Box 31, Birmingham Road, Warwick
CV34 SJL, UK (paddisonc@uk.ibm.com). Ms. Paddison is a
usability and accessibility consultant working in IBM’s
Usability Competency Centre (UCC), part of the IBM
Worldwide Ease of Use (EOU) Strategy and Design group in
Warwick, UK. She first joined IBM as an industrial trainee at
the Greenock manufacturing site in 1995. There she worked
on monitor control usability and the out-of-box experience of
the IBM customer. She returned to Greenock as a human
factors engineer after graduating from Loughborough
University with a B.Sc. degree in ergonomics. Today Claire
works as a consultant advising customers on the design and
evaluation of user interfaces, primarily for Web sites. She has
practical experience in many areas of usability and
particularly enjoys the challenge of design work. Her main
area of expertise within the group is accessibility. She has
published a range of articles and papers on evaluating for
accessibility, acts as the accessibility focal point for her group,
and also provides accessibility advice to many other groups
within IBM.

Mark Tibbits

IBM Warwick, MPS, PO Box 31, Birmingham Road, Warwick
CV34 5JL, UK (mark_tibbits@uk.ibm.com). Mr. Tibbits has
many years of practical experience leading usability and
accessibility consultancy engagements within the retail,
government, automotive, banking, and insurance industries.
Recent engagements include evaluating the efficiency,
productivity, and accessibility of employee intranets,
commerce Web sites, thin-client banking applications, and
government Web sites. He also teaches usability design and
evaluation to IBM product development teams and client
design teams. In addition to his usability role, Mark acts as
technical architect for a range of projects related to universal
usability practitioner support tools.

Isha Damani

University of Warwick, Coventry CV4 7AL, UK

(L. Damani@warwick.ac.uk). Miss Damani is currently in her
final year at the University of Warwick majoring in computer
and business studies. Her dissertation is on the subject of IT
fads and foundations. Last year she participated in a work
experience program with IBM Warwick, where she
contributed to the studies described in this paper. She will be
joining Deloitte in the fall of 2005. M

ENGLEFIELD ET AL.

555

