
A proposed architecture for
integrating accessibility
test tools

&

P. Englefield

C. Paddison

M. Tibbits

I. Damani

Automated test tools are an essential resource for practitioners responsible for

evaluating the accessibility of Web sites. However, both systematic analysis of tool

capabilities and practitioner feedback have identified a range of practical issues that

mar the effectiveness of existing tools. In practice, although automated test tools need

to be used in combination to give good coverage, their lack of consistent user

experience and their diverse reporting formats discourage such combined usage.

Furthermore, test tools are expensive to develop; in addition to core analytical

capability, authors must individually construct the user interface, I/O routines, Web

crawlers, and report writers. In this paper, an architecture is proposed to address these

concerns. In this architecture, tools are developed as plug-ins to an infrastructure that

provides a common user interface, crawling and parsing services, and practitioner-

oriented tools for analysis and reporting. The architecture supports an efficient,

systematic evaluation process and benefits accessibility practice in two distinct ways:

first, it simplifies the task of the evaluator by providing a consistent, integrated, and

efficient user experience for executing, reporting, and communicating a study; second,

it supports an economic model in which tools can release development resources

from mundane software engineering activities in order to invest in the intelligent-agent

development necessary to address the deeper challenges of automated testing.

INTRODUCTION
Accessible design is intended to enable universal

access
1

to interactive systems, regardless of user

impairments and preferred client technology. Such

design supports the specific needs of distinct groups

challenged by impairments related to vision, hear-

ing, motor skills, and cognitive abilities. To use

Shneiderman’s definition, ‘‘Universal usability will

be met when affordable, useful, and usable tech-

nology accommodates the vast majority of the

global population: this entails addressing challenges

of technology variety, user diversity, and gaps in

user knowledge in ways only beginning to be

acknowledged by educational, corporate, and gov-

ernment agencies.’’
2

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 537

Although the methods of accessible design are well

understood, a majority of existing Web sites fail to

& A majority of existing Web
sites fail to meet the
fundamental needs of people
with disabilities &

meet the fundamental needs of people with dis-

abilities. For example, a 2004 study carried out by

City University on behalf of the UK Disability Rights

Commission
3

found that less than 19 percent of all

home pages and only 32 percent of government

home pages conformed to level A, the most basic

level of compliance defined by W3C** (World Wide

Web Consortium) Web Content Accessibility

Guidelines (WCAG).
4

(The WCAG guidelines define

three levels of compliance, with ‘‘A’’ being the

lowest and ‘‘AAA’’ the highest).

This paper is organized as follows. In the next

section we provide a background on accessibility

design issues, existing automated-test-tool technol-

ogy, and our proposed architecture for automated

test tools. In the following section, the details of

current test tool characteristics and adherence to

guidelines are described. We then summarize feed-

back from practitioners on current tools. The next

section outlines design criteria for our test tool

architecture and is followed by a presentation of the

architecture in detail. The paper closes with a

summary of our work and an indication of future

research directions.

BACKGROUND
Design for accessibility encompasses a complex set

of requirements. In particular, because of the

diverse needs involved, testing for compliance with

accessibility requirements can be difficult and time

consuming. Automated test tools could make the

situation easier, but current tools exhibit a series of

issues that make them less than ideal. In the

following sections we discuss these questions in

more detail and then describe our proposed archi-

tecture intended to address these concerns.

Design for accessibility
A diverse range of challenges must be addressed in

design for accessibility. For example, distinct design

responses are necessary to support blind users, as

compared to the support required for users with

other visual impairments such as limited vision or

tunnel vision. In the former case, a key concern is

providing appropriate encoding of content
5

for

screen readers, such as IBM Home Page reader.
6

(Technologies for Disabilities Information Service

[TechDis]
7

defines a screen reader as ‘‘a software

program that reads the contents of the screen aloud

to a user . . . usually used by blind and visually

impaired people. Screen readers cannot read text

that is part of an image.’’) In the case of visual

impairments, the emphasis is on a range of

techniques, such as appropriate typography, sensi-

tivity to the diminished context associated with use

of a screen magnifier, and support for user-defined

font sizes.
8

Additional design responses are required

to facilitate input by users with limited dexterity,

strength, or mobility, users with hearing impair-

ments, and users with specific or general learning

difficulties. Moreover, disabilities are diverse in

degree. Universally usable design recognizes not

only the needs of screen reader users but also the

very real requirements of those whose eyesight and

dexterity are somewhat diminished by age or by

acquired conditions such as carpal tunnel syn-

drome.

Although awareness of disability is critical to

universal usability, designers should not see dis-

ability as the primary defining characteristic of an

audience. Users of assistive technology are primarily

citizens, employees, and social actors, and only

secondarily people living with a disability. Section

508 of the U.S. Rehabilitation Act defines assistive

technology as a ‘‘device or software that substitutes

for or enhances the function of some impaired

ability.’’
9

In this sense, design for accessibility is a

special case of design for usability. The IBM User

Engineering process,
10

for example, recommends an

initial focus in design on goals and constraints. The

goals for accessible design are likely to be similar to

those for nondisabled users, namely research,

communication, learning, buying, and other trans-

actions related to physical, social, and existential

needs.
11

The difference comes in the constraints. A

critical factor in design for accessibility is design for

assistive technology such as screen readers, adapted

keyboards, specialized pointing devices, and built-in

support within browsers and operating-system user

interfaces. From an abstract design process per-

spective, this can be seen as analogous to design for

heterogeneous clients such as WAP (Wireless

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005538

Application Protocol) phones and PDA (Personal

Digital Assistant) devices; each device offers capa-

bilities and constraints that the designer must

understand and respond to.

Because assistive technologies rely on guideline-

compliant content, accessibility advocates recom-

mend that content developers respect these guide-

lines during implementation. For example,

formatting text in HTML (Hypertext Markup Lan-

guage) rather than using style sheets confounds the

user-defined preferences in a browser and makes the

user experience more difficult than it needs to be.

Similarly, a text label rendered as a JPEG (Joint

Photographic Experts Group) image is opaque to a

screen reader without additional tagging.

Although compliant implementation is critical to

success, more challenging issues must be resolved

earlier in the design process. In initial design, for

example, so-called vast-and-fast menus
12

support

recognition over recall for sighted users,
13

but for

users of screen readers this design pattern imposes

an unacceptable burden on working memory. Like-

wise, during detailed design, visual designers may

need to make trade-offs between contemporary

typographic aesthetics that value compact, low-

contrast typography and the needs of readers with

low vision.

Rittel
14

distinguishes tame and wicked problems.

Tame problems can be analyzed by established

methods and have a single and recognizable

solution. In contrast, wicked problems are hard to

define to the satisfaction of all stakeholders, have no

clear stopping rules (rules to determine when

sufficient work has been done), have better or worse

(rather than right or wrong) solutions, have no

objective measure of success, have no given alter-

native solutions, and often have moral, political,

and professional dimensions. Tame problems are

solved by rigorously following a specified proce-

dure, but wicked problems are addressed by

argumentation. Whereas checking for compliance

with guidelines is a tame and tractable problem,

problems of the class described here for accessibility

design are wicked problems and can only be solved

by argumentation and designer insight.

Design for accessibility offers value to both users

and stakeholders. In particular, although acknowl-

edging the poor quality of much design,
3

some blind

users nevertheless see the Web as fundamentally

enabling.
15

For stakeholders, accessible design

& Design for accessibility
is a special case of design
for usability &

supports organizational goals related to both busi-

ness development and risk avoidance. For example,

in the UK, people with disabilities represent both a

significant marketplace and also a large pool of

potential employee talent. In fact, according to a

disability briefing published by the UK Disability

Rights Commission,
16

nearly one in five people of

working age is disabled, with disabled people only

half as likely as nondisabled people to be in

employment.

Design for accessibility is also a regulatory com-

pliance issue because many countries have imple-

mented aggressive legislation to ensure reasonable

access to services. Examples include the UK

Disability Discrimination Act
17

and Section 508 of

the U.S. Rehabilitation Act.
18

Testing for accessibility

A distinct feature of contemporary user-experience

design methods is an emphasis on rigorous evalua-

tion of design proposals.
10,19

Empirical testing with

users
20

is frequently preferred because of its

sensitivity and evidential weight. However, inspec-

tion methods, such as Nielsen’s heuristic evalua-

tion,
13

are widely used in commercial work as a

result of their lower cost, faster turnaround,
21

and

technical focus.

Both of these methods are used in evaluating the

user experience for users with disabilities. Given the

importance of standards compliance, however,

testing for accessibility also typically involves

automated test tools. Such tools crawl through a

Web site and identify various coding solecisms, such

as malformed HTML or the absence of tags essential

to assistive technology. Automated test tools are

relatively naive. For example, they can reliably

detect the presence or absence of an HTML ,ALT.

attribute but are unable to form a judgment as to

whether the tag’s content is helpful. Test tools are

not restricted to HTML validation; for example, IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 539

Easy English Analyzer
22

is helpful for assessing the

reading difficulty of English text.

Advocacy groups tend to prefer empirical evalua-

tion. For example, a recent report from the UK

& Design for accessibility offers
value to both users and
stakeholders &

Disabilities Rights Commission strongly supported

the need to involve disabled people in scientific

testing of Web designs.
3

The RNIB (Royal National

Institute of the Blind) likewise strongly endorses this

approach.
23

However, in commercial practice, eval-

uation typically involves a considered combination

of user testing, expert inspection, and automated

testing, the relative mix of which depends on

deadlines, funding, and availability of participants

with the required class and degree of disability.

Thus, in a recent study for a UK local government

project,
24

evaluators were required to deliver a rapid

assessment of the accessibility of a wide range of

design proposals and chose to combine automated

testing and inspection to maximize the scope of the

evaluation.

Issues with automated test tools

Although automated test tools are an essential

component of the evaluation toolkit, a range of

issues with these tools can be identified that impact

both adoption by practitioners and also develop-

ment by subject matter experts. In order to carry out

a full-spectrum evaluation, tools must be used in

combination. However, these tools generally do not

interact gracefully with one another. Inconsistent

inputs, incompatible outputs, ambiguous warrants,

and patchy mutual coverage add to the burden of

using these resources in combination. (The term

warrant is used in this paper to mean an endorse-

ment from a reputable organization typically recog-

nized as an authority on a given topic.) Specific tools

issues include:

1. The cost of learning diverse user interfaces

2. The difficulty of physically combining input from

different tools

3. The challenge of aggregating output data based

on incompatible conceptual models

4. The lack of standards for defining test capabilities

and the authorities that provide a warrant for

those capabilities

5. The need to run tools individually and sequen-

tially

In addition to the core capability of assessing

content against some set of guidelines, each tool

developer must also design and implement a user

interface, I/O routines, and services to crawl and

parse Web content. Much of this expensive infra-

structure is common to the majority of tools, but

experienced IBM developers estimate that creating

this infrastructure consumes 40–50 percent of the

development effort for a given application. More-

over, many tools authors belong to noncommercial,

charitable, or academic organizations. For these

groups the cost of developing such peripheral

technology is likely either to discourage the under-

taking of tools projects or to divert skilled resources

from development of core functionality related to

compliance with accessibility guidelines. Commer-

cial developers may also be affected by the need to

make substantial investment in areas beyond their

core competence, potentially leading to higher

pricing.

A proposed architecture for automated test tools

The preceding analysis suggests four essential issues

that impact both tool users and tool makers:

consistency, integration, authority, and development

cost. We propose here an architecture to explicitly

address these concerns. Although this proposal

specifically addresses concerns related to accessi-

bility tooling, the approach might also usefully be

generalized to support automated testing for us-

ability, application development, and other inspec-

tion-based disciplines.

The architecture has four components:

1. A set of standards provides coherent classes and

definitions for tool capabilities, guidelines against

which compliance assessments are made, sup-

porting warrants, and logical formats for outputs.

2. A common user interface offers a single, inte-

grated, consistent user experience to enable

practitioners to design, execute, and report any

test that exploits a set of tools.

3. An enabling framework provides shared services

for input and output, and a mechanism to run

and monitor tools in parallel.

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005540

4. A defined client interface enables tools to be

registered and integrated in the framework.

Each tool need only implement core function to

advertise and execute its capabilities to assess

HTML with respect to a set of guidelines. In

particular, this architecture mandates no specific

enabling technology. For example, it might equally

well be implemented by using Web services
25

or by

using Eclipse.
26

The need for consistency is explic-

itly supported by a common user interface and a

framework service for writing output in a standard

physical and logical format. Although consistency is

delivered by technology, it is underwritten by

standards.

The goal of integration is satisfied by the framework.

A diverse set of tools is installed, selected, custom-

ized, and invoked by using a single user interface.

The output from multiple tools is aggregated and

presented as a whole for review, analysis, and

reporting. The requirement for authority is handled

by requiring each tool to support its advertised

capabilities with respect to both authoritative

guidelines and warrants. Finally, the issue of

development cost is addressed by a framework that

provides a rich set of services, so that individual tool

developers have no need to build code for a user

interface, file management, Web crawling, and

content parsing.

Many cases of commercially successful plug-in

models for specialized tools can be identified.

Examples include browser plug-ins such as Acro-

bat** viewer and Flash**, browser extensions such

as the Google toolbar**, Photoshop** filter plug-ins

for visual treatment of artwork, and third-party

extensions to games such as Microsoft Flight

Simulator.

Clearly, a well-designed framework does not in itself

ensure widespread adoption. Examples of good

designs that never achieved widespread success

include the IBM San Francisco project,
27

the

Betamax** video format, and APS (Advanced Photo

System) format photographic stock. Potential in-

hibitors to success include performance, scalability,

timing, and promotion. The existence of a strong

architecture with compelling benefits is likely to

be a necessary but not sufficient condition for

adoption.

Rogers
28

proposes a standard set of criteria for

diffusion of innovation in which an adoptable

innovation delivers the following:

1. Relative advantage—From the user’s perspective:

‘‘What’s in it for me?’’

2. Compatibility—‘‘Does it fit my values and prac-

tices?’’

3. Simplicity—‘‘Can I easily understand the value

statement?’’

4. Suitability for tryout—‘‘Can I try it before I

commit to use it?’’

5. Observability—‘‘Is it easy to see the claimed

benefits?’’

The proposed framework meets criteria 1, 3, and 5

from this list. Criterion 2 needs to be dealt with by

the design of technical detail and standards.

Criterion 4 might be addressed by appropriate

commercial packaging.

THE TEST TOOLS LANDSCAPE

This section provides an overview of current

automated test tools. In particular, we focus on tool

characteristics and compliance with established

guidelines.

Methodology

The W3C WAI (Web Accessibility Initiative)
29

provides a useful general classification of tools as

follows:

1. Evaluation tools—These tools perform a static

analysis of pages or sites regarding their accessi-

bility and return a report or a rating.

2. Repair tools—After the accessibility issues with a

Web page or site have been identified, these tools

can assist the author in making the pages or site

more accessible.

3. Filter and transformation tools—These tools

assist Web users rather than authors to either

modify a page or supplement an assistive

technology or browser.

A more specific classification of evaluation tools can

be done as follows:

a) General—Tools that perform tests for a variety of

accessibility issues

b) Focused—Tools that test for one aspect or a

limited aspect of accessibility

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 541

c) Services—Tools that run on an ongoing basis,

such as proxies, Web services, and monitors.

Based on this classification scheme, a set of general

and focused evaluation tools was selected for review

& The existence of a strong
architecture with compelling
benefits is likely to be a
necessary but not sufficient
condition for adoption &

from a mix of sources including commercial

software developers, academic institutions, advo-

cacy organizations, and internal IBM teams. Initially

the descriptions of 30 tools were taken from Web

sites and analyzed to explore general coverage and

consistency. A representative set of seven tools was

then installed and analyzed for detailed compliance

with specific WAI guidelines.

Inputs, parameters, and outputs

The majority of tools reviewed were designed to work

with Web sites. The use of input formats in these tools

is reasonably homogenous and can be considered in

terms of a general case of Web site analysis extended

by necessary specializations to analyze specific file

types. A subset of tools was designed to work with

specialized file types such as image files, text

elements, and specific markup such as XML (Exten-

sible Markup Language), XHTML (Extensible Hy-

pertext Markup Language), SVG (Scalable Vector

Graphics), and JSP** (JavaServer Pages**) files.

Generic parameters include a starting point and a set

of options. Although the majority of tools specify the

starting point as a URL (Uniform Resource Locator),

a few require a domain name. More specialized

parameters include assessed guidelines, assessed

impairment, and choice of language.

Output formats show a high level of diversity in both

logical and physical format. Some tools provide

summaries, and others offer detailed reports. Some

tools provide reports as printed output, others

generate reports in HTML or Lynx
30

format, and

some update the pages in which errors are found. In

addition to the inconsistency in medium, reports are

not written according to any common conceptual

model, and data from different tools cannot easily be

compared and aggregated.

General guideline coverage

Table 1 illustrates the stated coverage of various

sets of guidelines for all 30 tools. For example,

although 50 percent of the tools support the WCAG

guidelines, only 23 percent support all three WCAG

priority levels. A further 50 percent suggest that they

support WCAG but do not explicitly state which

guidelines are supported.

WAI guideline coverage

Table 2 shows the degree to which the WAI

guidelines are covered by the seven tools selected

for detailed analysis. Thus, WAI guidelines 1.1 and

5.1 are assessed by all seven tools, but guideline 3.1

is not assessed by any of the seven.

WAI organizes accessibility guidance as sets of

checkpoints within guidelines. Each of the 14

guidelines includes between one and ten check-

points. Table 3 shows the degree to which the seven

tools claim to test each of the individual check-

points. The columns labeled 1 through 10 show the

proportion of the seven tools that assess each

checkpoint. For example, although all seven tools

inspect checkpoint 1 of guideline 1, no tools assess

checkpoint 7 of guideline 3. A dash indicates that the

guideline has no checkpoint for a given number.

(For example, guideline 1 has only five check-

points.) The final column gives the mean coverage

for all checkpoints within a guideline.

Analysis

The consistency of input formats reflects the

common goal of these tools, namely to analyze Web

pages. However, there is some diversity in the

inputs required by more specialized tools. By

contrast, logical and physical output formats are

highly mutually inconsistent.

Some tools, but not a majority, define their

capabilities in terms of guidelines such as WCAG,

Section 508, and HTML. However, there is a high

variation in the precise subsets of these guidelines

that each such tool chooses to support. In many

cases tools do not explicitly state the guidelines for

which they test. Coverage of guidelines and check-

points is extremely variable; some are assessed by

many tools, others by few. In fact Knight reports a

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005542

comment from Wise
31

that ‘‘Tools are lacking or

horribly expensive for AAA compliance.’’

ANALYSIS OF PRACTITIONER EXPERIENCE

In addition to doing actual tool analysis, we also

sought out commentary from practitioners who use

these tools. This section describes the methodology,

results, and analysis of this part of our study.

Methodology

A small-scale informal study was carried out to

acquire formative knowledge of current accessibility

testing practice as well as perceived issues and

requirements. A group of four IBM accessibility

practitioners completed a questionnaire designed to

probe their experiences using automated test tools.

Additionally, three specialists from industry, aca-

demia, and an advocacy organization were inter-

viewed to explore specific issues raised by the initial

survey.

Practitioner feedback

Participants reported using tools in combinations to,

in their words, ‘‘provide different perspectives’’ and

‘‘check different types of applications.’’ For example,

one participant reported using Inspect32 and

AccExplorer32
32

in tandem. Another reported using

LynxView
33

for a quick overview and LIFT Online
34

for an in-depth audit. In a third case, LIFT
35

was

seen as useful for identifying technical problems,

Table 1 Coverage by guideline

Guidelines

Number of
Tools Stating

Support for

the Guideline

Percentage of
Tools Stating

Support for

the Guideline

WCAG WCAG 1.0 (Priority 1, 2, and 3) 7 23

WCAG 1.0 (Priority 1 and 2) 0 0

WCAG 1.0 (Priority 1) 1 3

WCAG 1.0 (priority level unspecified) 6 20

WCAG 2.0 (priority level unspecified) 1 3

Unstated or unobtainable 15 50

Section 508 All Section 508 12 40

Unstated or unobtainable 18 60

HTML HTML 4.0 2 7

HTML 3.2 Standard 1 3

HTML 1.1 1 3

HTML (version unspecified) 3 10

Unstated or unobtainable 23 77

IBM Guidelines Web 2 7

Unstated or unobtainable 28 93

Other Brinck 1 3

CLF (Common Look and Feel) 1 3

Diamond-Bullet Syntax 1 3

Gergle Wood 1 3

JIS (Japanese Industrial Standards) 1 3

SMOG (Simple Measure of Gobbledegook) 1 3

XAG (XML Accessibility Guidelines) 1 3

CSS (Cascading Style Sheet) 1 3

Unstated or unobtainable 22 73

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 543

but another tool was used to discover issues related

to the use of color.

In this feedback, lack of consistency and lack of

integration were highlighted as particular problems.

For example, one participant stated, ‘‘There is a lot

of replication across different tools. It would be very

good if they were packaged together.’’ Another

participant stated a requirement for one tool that is

automated and can test for all disability software

parameters, stating, ‘‘Right now, in order to test for

the entire range of compliance, multiple tools need

to be used.’’

The participants also expressed a number of con-

cerns regarding the usability and quality of current

tools and the effectiveness of generated reports.

Specifically, they found reports to be ‘‘overwhelm-

ing,’’ difficult to use, too large, unhelpful as a

medium for communicating findings to managers

Table 2 Degree of coverage of WAI Guidelines

Guidelines Covered

Number of Tools
Stating That They

Test These

Guidelines

Percentage of
Tools Stating That

They Test These

Guidelines

1.1, 5.1 7 100

6.3 6 86

1.2, 2.1, 3.3, 5.2, 6.1, 7.2, 7.3 5 71

1.4, 3.4, 4.3, 5.5, 6.5, 12.4 4 57

1.3, 1.5, 2.2, 3.2, 3.6, 7.1, 7.4, 7.5, 9.3, 10.2, 11.2, 12.2, 13.1, 13.2, 13.6,
13.9

3 43

3.5, 3.7, 4.1, 4.2, 5.3, 5.6, 6.4, 8.1, 9.1, 9.4, 9.5, 10.1, 10.5, 11.4, 12.1, 12.3,
13.3, 13.7, 14.3

2 29

5.4, 6.2, 9.2, 10.3, 10.4, 11.1, 11.3, 13.4, 13.5, 13.8, 13.10, 14.1, 14.2 1 14

3.1 0 0

Table 3 Degree of coverage of checkpoints within WAI guidelines

Guideline

Percentage of Coverage of Checkpoints Overall
Percentage of

Coverage
1 2 3 4 5 6 7 8 9 10

1 100 71 57 43 43 - - - - - 63

2 71 43 - - - - - - - - 57

7 71 71 43 43 43 - - - - - 54

6 86 71 57 29 14 - - - - - 51

12 57 43 29 - - - - - - - 43

5 71 57 29 14 29 - - - - - 40

4 57 29 29 - - - - - - - 38

3 71 57 43 29 29 29 0 - - - 37

8 29 - - - - - - - - - 29

9 43 29 14 29 29 - - - - - 29

13 14 14 14 32 43 43 43 29 29 14 29

10 43 29 14 14 29 - - - - - 26

11 43 29 14 14 - - - - - - 25

14 14 14 29 - - - - - - - 19

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005544

and developers, and missing practical advice on

fixing problems. One participant observed, ‘‘The

way I work involves moving between different

applications and sites and [the tools] all present

results in different ways, so it gets complicated.’’

Another commented that a standardized reporting

system would be ideal to reconcile reports of the

same issue by different tools. Other concerns

included quality, overly technical interfaces, and

insufficient support for customization.

The currently available tool set is also perceived to

be mutually incomplete. For example, participants

were concerned that there was little support for

testing font sizes and high-contrast-mode issues.

One specifically expressed a need for a tool to assess

tab order. On the other hand, participants valued

certain specific abilities of current tools, including

facilities to inspect the code in error, parameters to

adjust the level of compliance to be tested, and

suggested fixes to erroneous source code.

Participants described the following requirements

for test tools:

1. They should be integrated in the development

environment to minimize learning and simplify

use.

2. They should produce consistent reports to sup-

port intraproject comparisons.

3. They should report findings in HTML and provide

‘‘nice and flexible’’ facilities to ‘‘reorder in nice

different ways.’’

4. They should provide graphic summaries, such as

pie charts.

5. They should be flexible and capable of accom-

modating new capabilities.

One participant looked for a system that would do

the following: ‘‘Bring together all the tools’’; ‘‘Take

you through the evaluation process’’; ‘‘Run the

automated tests for you’’; and finally, ‘‘When you

press the button at the end, it gives you a report

that you can send to your client [that] would

identify issues and tell [the client] what they need

to do.’’

Analysis

This research suggests that although practitioners do

use tools in combination, they are hindered by a

lack of consistency, integration, and mutual cover-

age. Reports are seen to lack specificity, consistency,

and relevance for target audiences. An integrated,

process-oriented framework, closely tied to devel-

opment environments, can be identified as a

desirable strategy for addressing these concerns.

Table 4 identifies the support such a framework

would provide for each of these questions.

Overall, issues concerning testing tools can be

separated into two main categories:

1. Ergonomic issues related to the practical deploy-

ment of test tools by evaluators

2. The analytical power of the algorithms used by

these tools

Table 4 illustrates the value of the proposed

architecture as an explicit response to the first set of

issues. Although this work does not claim to

specifically address the second set of issues, an

implementation might well support an economic

model that encourages more investment in intelli-

gent-agent-based tools. For example, commercial

developers might then be able to reassign develop-

ment resources previously consumed in developing

user interface components to the implementation of

more advanced analysis algorithms. Additionally, a

common platform would offer a robust and attrac-

tive implementation channel for innovative algo-

rithms developed by academic researchers.

DESIGN PRINCIPLES

Analysis of the practitioner feedback and current

tool characteristics suggests the following guidelines

for an effective architecture. In particular the

architecture should:

1. Demarcate responsibilities—Common services

should be handled by the architecture and unique

and specialized services by the tools.

2. Deliver consistency through tools not rules—The

architecture must deliver an integrated user

experience and consistent reports through a

standards-based interface to tools.

3. Adapt to research goals—Practitioners must be

able to specify the scope of the test in terms of

Web pages, classes of disability, and levels of

compliance.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 545

4. Support practitioners—Minimize effort and max-

imize effectiveness and satisfaction of practi-

tioners (c.f., International Organization for

Standardization (ISO) Standard 9241
36

).

5. Support evaluation stakeholders—Ensure that

reports are useful to managers, designers, and

developers.

6. Support tools authors—Minimize the development

costs for tools;maximize the likelihood of adoption.

THE ARCHITECTURE

Figure 1 summarizes the proposed architecture for

automated test tools. The next sections explain this

architecture in more detail.

Table 4 Framework support for issues identified by practitioners

Reported Issue

Level of
Support Nature of Support

A. Lack of consistency High The framework provides a common user interface, a
shared taxonomy of capabilities, and a standard
reporting format.

B. Lack of integration High The set of pluggable tools are presented to the evaluator
as a single integrated package.

C. Reports hard to use High Filtering, sorting, and cross-tabulation support structured
analysis of results.

The framework supports a range of output formats to
meet specific audiences and purposes.

Exporting results as XML enables the use of XSL to
design tailored reports for specialized purposes.

D. Reports too large High Filtering enables reports to eliminate ‘noise’ to
emphasize data relevant to a specific study.

E. Reports unhelpful for communicating
results to stakeholders

High See C.

F. Inconsistent reporting formats High The framework provides and enforces a common logical
and physical output format.

G. Hard to reconcile reports from different
tools

High Output from all tools is integrated into a common
format. Sorting enables convenient comparison. Where
tool capabilities overlap, a single capability in the
less-preferred tool can be selectively disabled.

H. Quality Medium Quality issues arising from development costs are
mitigated by eliminating costs associated with
development of user interface and I/O. Quality issues
related to the user interface and I/O routines are
eliminated. Issues associated with deep problems in
artificial intelligence are not addressed other than by the
economic argument for K.

I. Overly technical interfaces Medium A common user interface can be developed to a
high standard of usability by applying IBM User
Engineering techniques. The costs of this activity
are incurred once and the benefits realized for
each tool.

J. Insufficient support for customization Low The framework encourages developers to support
a standard set of customization parameters.

K. Tool set mutually incomplete Medium The framework provides an economic model to
encourage the development of specialized tools.
It enables both commercial and academic organizations
with skills in agent design to exploit their core
capabilities without the need to invest in mundane
software engineering activities.

L. The tools run and report all tests together High The framework provides a transport mechanism
to run a selected subset of tools as a single
operation and consolidate the generated output.

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005546

Overview of the architecture
In this architecture an infrastructure provides

facilities to install additional tools, design a study,

pause and restart tests (transport), handle schedul-

ing and I/O (execute), analyze findings, and export

reports in a standard format. Table 5 and Table 6
give an overview of the proposed architecture in

terms of the standards, user interface components,

infrastructure services, and client tool services that

apply to key life-cycle events. Table 5 describes the

events involved in initially installing tools. Table 6

lists the events that would take place within a

typical study.

In this architecture, standards provide coherent

classes and definitions for tool capabilities, guidelines

against which compliance assessments are made,

supporting warrants, and logical formats for outputs.

During installation, pluggable tools call infrastructure

services to register their capabilities. To design a

study, a practitioner uses a common user interface

both to selectively enable and disable individual tool

capabilities and to specify the values of runtime

parameters required by tools. Client tool services are

then implemented by the tool builder. To run a study,

the practitioner uses the common transport interface

to start, pause, and restart the test, and also to check

the status of running tools. A checkpoint/restart

capability enables large complex tests to be sus-

pended and restarted at a convenient time. During

execution, the framework uses shared services to

crawl and parse Web pages and pass tokenized

content to each enabled tool. Each tool analyzes the

parsed content by using its own algorithms and rules

and returns findings to the infrastructure in a canon-

ical format. Tools also respond to scheduled requests

for status from the infrastructure in order to display

progress in the common user interface. A common

Table 5 Architectural overview for setup

Standards

Common User

Interface

Infrastructure

Services

Client Tool

Services

Install Platform standards
for creating plug-ins

� Install � Install As required by platform
standards for plug-in� Uninstall � Uninstall

� Refresh � Refresh

Register
(enables the
tool author to
identify the
capabilities of
the tool)

� Taxonomy of capabilities:
Selectable evaluation
criteria (e.g., A, AA, AAA)

n/a Request and aggregate
registration data

On request, register
name, author,
capabilities, warrants,
standard parameters,
and custom parameters

� Taxonomy of standard
parameters
� Taxonomy of data types

for custom parameters

Figure 1
Overview of proposed architecture for automated test tools

Pluggable tools
Report
files

Web pages

User interface

Register

Install Design

C
us

to
m

iz
e

En
ab

le

C
raw

l

Findings

Parse

Ex
po

rt

Status

Pa
rs

ed
 H

TM
L

St
ar

t

Pa
us

e

Re
st

ar
t

Transport Execute ReportAnalyze

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 547

user interface enables the practitioner to review and

edit the aggregated findings and export one or more

reports in a standardized format.

Standards and services

The following sections discuss in more detail the

specific standards and services of this architecture

for each of the event types.

The install event

This event describes the standards and services

required to enable a practitioner to install an

additional tool in the infrastructure. The infra-

structure must be able to install, uninstall, and

refresh tools. In particular, the process of refreshing

enables tools to incorporate updated assets such as

analytical rules.

Table 6 Architectural overview for usage

Standards

Common User
Interface

Infrastructure
Services

Client Tool
Services

Design
(enables the practitioner
to select which tools to
use and to supply
required runtime
parameters)

� Taxonomy of
capabilities

� Taxonomy of
standard parameters

� Taxonomy of
data types for
custom parameters

� List aggregated
capabilities

� Sort and filter
by capability,
warrant, name,
and author.

� Selectively enable
and disable individual
capabilities

� Select preferred
tool in the case of
overlaps

� Specify values for
standard parameters.

� Specify values for
custom parameters.

� Save and reuse
designs

� Selectively enable
and disable
capabilities
within tools

� Pass standard
and custom
parameter values
to tools

n/a

Transport

(enables the user
to start, monitor,
pause, and cancel
the test)

n/a � Start

� Pause

� Restart

� Abandon

n/a � Start

� Pause

� Write checkpoint

� Restart from
checkpoint

� Abandon

Execute

(runs the selected tools
in a controlled and
efficient manner)

Logical output
format

Report consolidated
status

� Crawl

� Parse

� Notify tools about
new page for
analysis

� Write aggregated
findings in
standardized format

� Report status on
request

� Request unit
of content

� Notify about
findings

Analyze

(enables the practitioner
to review and analyze
the aggregated findings)

n/a � List, sort, filter
� Search
� Edit
� List actions

n/a n/a

Report

(exports selected
findings to external files
for communication with
stakeholders)

Physical
file formats

Select or
specify file
and format

n/a Export to selected
file and format

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005548

Any implementation of the proposed test tools

architecture is necessarily based on an existing

platform architecture, such as Web Services or

Eclipse. This implementation is likely to provide

standards-based services for installing pluggable

components. For example, when Eclipse is used as a

platform, each tool must be packaged as a set of

Java** classes and XML elements that are written to

a standardized form prescribed by the platform.

Eclipse itself provides a user interface for installing

and uninstalling plug-ins and for refreshing resour-

ces from a server.

The register event

This event describes the standards and services

required to enable tools developers to register the

capabilities that each tool can contribute to the

framework. Automated test tools typically provide

capabilities to test only specific aspects of accessi-

bility; in practice, the architecture described here

encourages the development of specialized tools

with a narrow focus. To work well in combination,

tools need to register their attributes in a canonical

form that can be conveniently aggregated with the

attributes of other tools. Specifically, each tool must

register the following attributes:

1. Identity—This includes the tool’s name and

version together with the name and logotype of

the organization responsible for its development.

2. Capabilities—These define both the accessibility

factors that the tool can assess and the warrants

that back its claims for effectiveness. They are

specified in terms of a controlled vocabulary

defined by a formal taxonomy. This ensures that

individual tools describe themselves in a stand-

ard way and are grouped consistently and

logically within the user interface. Ideally, tools

with a broad scope would be constructed on a

granular basis so that individual capabilities

could be registered and used separately.

3. Parameters—Both standard and custom parame-

ters should be specified.

An appropriate taxonomy of test capabilities might

usefully reference both outcome and scope. An

outcome describes the tool’s ability to identify errors

with respect to a formal standard of compliance. For

example, a tool might claim to detect class A and AA

errors as defined by the W3C guidelines. In contrast,

scope describes the facets of accessibility that the

tool claims to test. For example, individual tools

might focus on support for blind users, arthritic

users, or dyslexics. Ideally, such a classification

should be hierarchical to enable practitioners to

aggregate tools and capabilities at various levels of

abstraction. Thus, a hierarchical scheme might

decompose high-level classes such as perceptual

disabilities, motor disabilities, and cognitive dis-

abilities. Existing proposals for taxonomies of

disability may prove to be useful resources. Exam-

ples include the functional limitation model
37

and

the World Health Organization model.
38

Warrants

are expressed as a list of endorsing organizations,

such as advocacy groups and government bodies.

Many existing tools permit the user to enter

parameters to specify aspects of the test. For

example, tools that crawl a Web site typically invite

the user to enter the URL of the starting point and

indicate the required depth of pages to be processed.

The architecture proposes two standards related to

parameters: first, a nomenclature of standard

parameters that many tools will use, and second, a

set of data types for custom parameters unique to a

specific tool. Examples of the former might include

start page, crawling depth, and severity filter

parameters. Examples of the latter include string,

numeric, and Boolean data types. Each tool is

required to register a set of standard parameters, as

well as the label and data type of any custom

parameters. To promote a simple and consistent

user experience, custom parameters are supported

but deprecated. (Deprecation is the declaration that

a component should not be used in subsequent

designs, but remains available to support existing

designs that incorporate it.)

The design event

This event describes the standards and services

required to enable a practitioner to design a study by

selecting a combination of capabilities and specify-

ing parameters that tailor the tools to the study

goals. The infrastructure presents a control panel

that lists and organizes the aggregated capabilities of

all registered tools. This list is organized hierarchi-

cally, using the taxonomy of capabilities as a

conceptual framework. As shown in Figure 2, the

user can review the available capabilities and select

those that best support the research goals. In this

fictional example, two tools support checking for

red-green discrimination, and the user has selected

the tool that has a warrant from the Royal National

Institute for the Blind.
39

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 549

The user also needs to specify parameters at this

time. When a standard parameter is used by many

tools, the value need only be specified once. For

example, the user might specify starting page and

crawling depth in a single dialog, and the infra-

structure would then pass these values to all tools

that have registered a need for this information. One

critical common parameter is compliance level. For

example, the evaluator might use a common dialog

to notify all tools to check for compliance with W3C

level AA. In practice, some tools may use criteria

other than the W3C ratings. In this case the

parameter dialog would aggregate all criteria regis-

tered by the selected tools.

Study designs are useful intellectual property in

their own right and may need to be reused or

adapted to save effort and share best practice.

Consequently, the user interface provides a facility

to import and export designs in the form of named

sets of capability selections and parameter values.

The transport event

This event describes the standards and services

required to enable a practitioner to run a study. The

user interface provides controls to start, pause,

restart, and abandon a study. Long-running or

complex studies may need to run for periods longer

than a working day in situations where it is

impractical or unsafe to leave a machine running

unattended. Pause and restart capabilities provide a

standard mechanism to take a checkpoint, suspend

the test, and resume at a later convenient time.

These transport commands are passed to each of the

enabled tools. Checkpoint/restart is also supported

by standard services in the infrastructure for

recording the state of I/O and for saving accumu-

lated findings reported by individual tools.

The execute event

This event describes the standards and services

required to enable the infrastructure to run a study

designed and started by a practitioner. The infra-

structure, rather than the individual tools, manages

the input to the Web site to be tested. Starting at the

home page specified by the designer as a standard

parameter, it reads the site as a set of linked pages.

For each page, it reads and parses the base content

defined in HTML, PostScript**, or presentation

information coded as CSS (Cascading Style Sheets),

and then notifies each enabled tool that a new page

is ready for testing.

Each tool then makes calls on a set of convenient

input services provided by the infrastructure to

request content from the page in a format suitable

for the tool’s specific needs. For example, a tool

designed to test the reading difficulty of a page

might call an infrastructure service to return the

content in units of single sentences. A tool designed

to check for typographical contrast might call a

service to get the next distinctly styled block of text

and the associated HTML and CSS markup associ-

ated with that block. Similarly, a tool interested in

assessing an index of redundancy in the use of

repeated hyperlinks might call a service to return the

page as a DOM (document object model), whereas a

tool that relies on digital-signal-processing techni-

ques to assess color contrasts might request a

rendered image of the page at a given resolution.

Figure 2
Design user interface

Blindness
 BlindnessChecker V1.0 SightSoft RNIB []
Tunnel vision
 TunnelChecker V1.2 SightSoft RNIB []
Color blindness
 RedGreen test Color systems Inc RNIB []
 Color RG checker Nimrod diagnostics None []
Deafness
 Caption auditor University of Leamington RNID []

Motor

 ...

Perceptual

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005550

Additionally, the infrastructure might provide

standard services to read and parse embedded

content to deal with certain specialized data types,

for example, time-based media encoded as AVI

(Audio Video Interleave) files. A specialized tool

could then register an interest in AVI files in order to

check for the provision of subtitles. Further analysis

is required to define an exhaustive list of the

necessary input services. A plug-in approach to

input services would provide an extensible solution.

Whenever a tool identifies a finding, it calls a

common reporting service in the infrastructure. The

service is constructed to acquire finding descriptions

in a standard form that ensures completeness,

consistency, aggregation, and comparison. Table 7

lists the fields within the finding report and indicates

the responsibility for each field. Note the distinction

between impact and compliance. The former en-

codes the classes of disability affected and the

associated impact on task success. The latter records

noncompliance with external guidelines such as the

WCAG.
4

During execution, the infrastructure periodically

requests a status update from each tool. The tool is

then required to respond with a concise description

of its current activity. The infrastructure combines

this data with statistics on the number of pages

analyzed and the count and severity of findings

identified.

The analyze event

This event describes the standards and services

required to analyze the findings reported by the

enabled tools. At this stage, the individual tools

have completed their contribution to the study, and

the infrastructure need only provide services to

assist the practitioner in both analyzing and report-

ing the results.

Typically, test tools generate inconveniently large

volumes of findings. Practitioners need effective

tools to tame the aggregated dataset, using quanti-

tative and qualitative methods to identify the

underlying issues of interest to stakeholders. Con-

sequently, the architecture proposes a flexible set of

analysis features to enable the practitioner to

explore the data using relevant criteria to count,

sort, filter, and search. For example, a practitioner

might wish to review all serious problems reported

with respect to a site’s search page.

Alternatively, the practitioner might be interested in

the relative and absolute frequency of findings

cross-tabulated by disability and severity, or might

need to identify all findings that impact users with

motor impairment, sorted by severity. To satisfy

these diverse and unpredictable goals, the user

interface provides a mechanism to initially filter

findings either by specifying legal values for some

set of coded fields, such as impact or noncompli-

ance, or by comparing an arbitrary search string to

any text field, such as finding a description or page

title. After a filtered subset has been obtained, the

user can either list or cross-tabulate the results. For

a list, the user would select a set of fields to display

and sort. For cross-tabulation, the user would

specify a numeric field to display and two encoded

fields to use as row and column titles. It may also be

useful to offer a facility to save, reuse, and share

favorite filters, lists, and cross-tabulations.

In some cases the evaluator may wish to add a

comment to explain or qualify a finding. A facility is

provided to edit such manually entered comments.

Evaluators may also mark a finding as deleted.

In addition to findings, some tools identify actions.

For example, a tool might invite the practitioner to

manually review the content of an HTML ,ALT.

attribute for relevance and clarity. To support such

actions, the infrastructure provides a to-do list to

enable the practitioner to systematically respond to

each action and to update findings with additional

data.

The report event

This event describes the standards and services

required to export results in a form helpful to others

involved in the evaluation process. Potential re-

ceivers of test results include designers, developers,

and business stakeholders. It may also be useful to

archive data for long-term initiatives, such as

intraproject and interproject analyses of trends and

regression. The needs of each audience are likely to

be somewhat different. For example, a developer is

primarily interested in a page-by-page enumeration

of errors and recommendations, whereas a manager

is more concerned with compliance issues and

strategic recommendations. Additionally, different

media may be needed to meet local technical

strategies. Although one enterprise may wish to

distribute HTML-based reports, another may prefer

to work with RTF (Rich Text Format) documents.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 551

Table 7 Fields within a report of findings

Identification
Provides a unique reference
Enables findings to be aggregated by tool, capability, page, or element

ID Generated automatically by the tool Unique alphanumeric ID

Study name Generated automatically by the tool from
registration data using a standard
parameter supplied by the user

Concise name for study to enable
findings to be aggregated and
compared across studies

Time stamp Generated automatically by the tool
from system clock

Date and time page
loaded

Source Generated automatically by the tool from
registration data

� Capability name

� Tool name, version, and author

Page Recorded automatically by the
infrastructure using the URL of the last
page crawled

URL

Page title Recorded automatically by the
infrastructure using the ,TITLE. tag
of the last page crawled

Page title text

Element ID Recorded automatically by the
infrastructure by assigning a unique ID
to each element passed in response to
an input service request from a tool

Unique alphanumeric ID for an
element (enables multiple
findings for an element to be
aggregated for a tool, and in
certain cases, across multiple
tools)

Element description Recorded automatically by the
infrastructure using the last input
service called by the tool

A concise textual summary of an
element such as a sentence or a
block of HTML content (used to
illustrate findings in reports and
to enable developers to identify
the location of the error)

Consequences

Describes the effect of the finding on the user and levels of noncompliance

Impact Mandatory field supplied by the tool Describes the set of disabilities
affected and assesses the severity
for each disability

Values for disability are specified
using a controlled vocabulary
based on a broad and generic
taxonomy.

Values for severity are specified
using a criteria-based scale that
describes the impact of the
finding on task completion

Noncompliance Mandatory field supplied by the tool Describes the set of guidelines
within external standards that
the page does not comply with.

Specifies the level of
noncompliance for each such
violation

Values are codes associated with
a specific externally defined
standard (for example, levels A,
AA, and AAA in the W3C
guidelines).

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005552

Likewise, some may require CSV (Comma Separated

Variable) files for conversion to spreadsheets or

relational databases, while others have a strategic

commitment to the benefits of XML markup.

The W3C Evaluation and Repair Tools Working

Group (ERT WG) is currently developing the

Evaluation and Report Language (EARL).
40

EARL is

a language to express test results such as bug reports

and conformance claims. EARL ‘‘enables any per-

son, entity, or organization to state test results for

any thing tested against any set of criteria.’’ In a

situation where a Web site is tested for conformance

with the WCAG guidelines by using a variety of

tools, EARL can be used to compare results among

tools, identify conflicting results, and help evalua-

tors derive a single result from a multitude of tools.

Once EARL has been fully defined, the applicability

of the proposed framework in supporting EARL

should be addressed.

A flexible strategy is required to meet these diverse

information and technology requirements. Three

specific requirements are clear:

1. A mechanism is required to filter both findings

and fields of interest to a specific audience.

2. Distinct output formats are needed for human

readers and downstream software tools.

3. A range of established, externally specified

physical formats must be supported.

The first requirement is addressed by the same

facilities that the practitioner uses to filter, sort, list,

and cross-tabulate findings. Whereas these features

were used in analysis to select subsets of data to

review and explore, they are used here to select

subsets of interest to a specific audience or program.

The second requirement is met by generating an

XML version of the filtered data as input to a

pluggable XSL (Extensible Stylesheet Language)

style sheet. For example, the style sheet might

transform a raw hierarchy of findings within

categories into a readable and well-presented docu-

ment by creating an appropriate hierarchy of head-

ings, effective typography, and an appropriate look

and feel. The final requirement involves the ability

to export basic or transformed findings in a range of

physical formats. Although additional research is

Table 7 Fields within a report of findings (continued)

Description
Describes and illustrates the finding
Enables findings to be communicated clearly to stakeholders and developers

Description of finding Mandatory field supplied by the tool A concise textual description
of the problem

Location of finding Mandatory field supplied by the tool A specification of the location of
the problem within a page
description

Illustration of finding Optional field supplied by the tool Concise text that reports or
quotes from the erroneous code
or content

Evaluator comment Optional field entered subsequently by
the evaluator during analysis.

An explanation or qualification
of the finding

Recommendations
Enables stakeholders and developers to form a plan

Tactical recommendation Optional field supplied by the tool Describes a specific
recommended change to code
or content

Strategic recommendation Optional field supplied by the tool Describes a recommendation
to change processes and policies

Actions
Notifies practitioners that additional manual inspection is required to complete the finding

Action Optional field supplied by the tool Instructions to perform additional
expert inspection on a specific
segment of code or content

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 553

required to specify the entire range of required

formats, an initial set might usefully include XML,

XHTML, HTML, CSV, and RTF.

CONCLUSION
The architecture described in this paper addresses

the identified issues of consistency and integration

in automated accessibility test tools by applying

pragmatic techniques from software engineering

informed by a plausible and attractive business

model. Three major benefits are claimed for this

approach:

1. Tools are less expensive to develop. Commercial

software developers are exposed to smaller

investments and less risk in developing tools for

specialized aspects of accessibility. Academic

research teams and advocacy groups can channel

finite resources to tackling small, well-bounded

problems directly related to their core expertise.

2. The overall user experience is more efficient and

natural. Studies are designed in terms of capa-

bilities rather than software products. Tools are

started together, executed concurrently, moni-

tored, and can be paused and resumed as

necessary. Findings are aggregated as a coherent

and usefully structured dataset that can be

analyzed and reported by using powerful filtering

and formatting tools.

3. The eventual consumers of reports will receive

documents that are appropriately structured for

both understanding and action.

Further research is recommended to understand

requirements in more detail, construct quantitative

business models, and refine the proposed architec-

ture in terms of a preferred implementation.

**Trademark, service mark, or registered trademark of Adobe
Systems Incorporated, Eastman Kodak Company, Google,
Inc., Macromedia, Inc., Massachusetts Institute of Technol-
ogy, Sony Corporation, or Sun Microsystems, Inc.

CITED REFERENCES AND NOTES
1. Universal Usability Guide, universalusability.org, http://

www.universalusability.org/.

2. B. Shneiderman, ‘‘Universal Usability,’’ Communications
of the ACM 43, No. 5, 84–91 (2000).

3. The Web: Access and Inclusion for Disabled People,
Disability Rights Commission (2004), http://www.
drc-gb.org/publicationsandreports/report.asp.

4. W. Chisholm, G. Vanderheiden, and I. Jacobs, Web
Content Accessibility Guidelines 1.0, World Wide Web

Consortium (May 5, 1999), http://www.w3.org/TR/
WCAG10/.

5. Speech and Braille Output Software, Royal National
Institute of the Blind, http://www.rnib.org.uk/xpedio/
groups/public/documents/PublicWebsite/
public_speechbrailleoutput.hcsp.

6. IBM Home Page Reader 3.04, IBM Corporation, http://
www-3.ibm.com/able/solution_offerings/hpr.html.

7. Welcome to TechDis, TechDis, http://www.techdis.
ac.uk/index.php.

8. Screen Magnification Software, Royal National Institute
of the Blind, http://www.rnib.org.uk/xpedio/groups/
public/documents/PublicWebsite/
public_screenmagnification.hcsp.

9. Section 508: Glossary, NASA, http://section508.nasa.
gov/glossary.htm.

10. User Engineering, IBM Corporation, http://www-306.
ibm.com/ibm/easy/eou_ext.nsf/publish/1996.

11. A. H. Maslow, Toward a Psychology of Being, 3rd Edition,
Wiley, Hoboken, NJ (1998).

12. K. Norman, The Psychology of Menu Selection: Designing
Cognitive Control at the Human/Computer Interface,
Intellect Ltd., Bristol, UK (1991).

13. J. Nielsen, Usability Engineering, Morgan Kaufmann, San
Francisco, CA (1994).

14. H. W. J. Rittel, ‘‘Second Generation Design Methods,’’
Interview in Design Methods Group 5th Anniversary
Report: DMG Occasional Paper 1, 5–10 (1972). Reprinted
in Developments in Design Methodology, N. Cross, Editor,
Wiley, Hoboken, NJ (1984), pp. 317–327.

15. Professional discussion with blind colleague (2003).

16. Disability Briefing December 2004, Disability Rights
Commission (2004), http://www.drc-gb.org/
publicationsandreports/campaigndetails.
asp?section=ddb&id=666.

17. Disability Discrimination Act 1995, Disability Unit of
the Department for Work and Pensions, UK, http://
www.disability.gov.uk/dda/.

18. Section 508, Center for IT Accommodation (CITA),
Office of Governmentwide Policy, U.S. General
Services Administration, http://www.section508.gov/.

19. K. Vredenburg, User-Centered Design: The Integrated
Approach, Prentice Hall, New York (2002).

20. J. S. Dumas and J. C. Redish, A Practical Guide to
Usability Testing, Intellect Ltd., Bristol, UK (1999).

21. P. Englefield, A Pragmatic Framework for Selecting
Empirical or Inspection Methods to Evaluate Usability,
IBM Corporation (2003), http://www-306.ibm.com/ibm/
easy/eou_ext.nsf/Publish/50?OpenDocument&../
Publish/1118/$File/paper1118.pdf.

22. J. West, ‘‘The Newest AT Goes Mainstream and to the
Movies: Academy Awards Party Features Innovative
Access for All Courtesy of IBM,’’ The Assistive Technology
Journal 70 (April 2003), http://www.atnet.org/news/
2003/apr03/040102.htm.

23. Testing for Accessibility, Royal National Institute of the
Blind, http://www.rnib.org.uk/xpedio/groups/public/
documents/publicWebsite/public_testing.
hcsp#P27_2586.

24. Local Authority Websites (LAWs), UK National Projects
Programme, http://www.laws-project.org.uk.

25. IBM Web Services, IBM Corporation, http://www-128.
ibm.com/developerworks/web/library/w-int.html.

ENGLEFIELD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005554

26. The Eclipse Project, The Eclipse Foundation, http://
www.eclipse.org/eclipse/.

27. B. S. Rubin, A. R. Christ, and K. A. Bohrer, ‘‘Java and the
IBM San Francisco Project,’’ IBM Systems Journal 37, No.
3, 365–371 (1998).

28. E. Rogers, Diffusion of Innovations, 5th Edition, Free
Press, New York (2003).

29. W3C Web Accessibility Initiative (WAI), World Wide
Web Consortium, http://www.w3.org/WAI/.

30. Lynx, http://lynx.browser.org/.

31. J. Knight, Attitudes to Web Accessibility,
UsabilityNews.com (October 2003), http://www.
usabilitynews.com/news/article1321.asp.

32. Inspect32 and AccExplorer32 are both part of the Micro-
soft Active Accessibilityt 2.0 Software Development Kit.
For details, see Active Accessibility 2.0 SDK Tools,
Microsoft Corporation, http://www.microsoft.com/
downloads/details.aspx?FamilyId=3755582A-A707-
460A-BF21-1373316E13F0&displaylang=en.

33. D. J. Delorie, Lynx Viewer, http://www.delorie.com/
web/lynxview.html.

34. LIFT Online, UsableNet Inc., http://www.usablenet.
com/products_services/lift_online/lift_online.html.

35. LIFT Machine, UsableNet Inc., http://www.usablenet.
com/products_services/lift_machine/lift_machine.html.

36. ISO Standard 9241: Ergonomic Requirements for Office
Work with Visual Display Terminals, International
Organization for Standardization, Geneva, Switzerland
(1999).

37. S. Z. Nagi, ‘‘Disability Concepts Revisited: Implications
for Prevention,’’ in Disability in America: Toward a
National Agenda for Prevention, A. M. Pope and A. R.
Tarlov, Editors, National Academy Press, Washington,
D.C. (1991), pp. 309–327.

38. International Classification of Functioning, Disability and
Health (ICF), World Health Organization, Geneva,
Switzerland (2001), http://www3.who.int/icf/
icftemplate.cfm?myurl=introduction.
html%20&mytitle=Introduction.

39. Royal National Institute of the Blind, http://www.
rnib.org.uk.

40. W. Chisholm and S. B. Palmer, Evaluation and Report
Language (EARL) 1.0, World Wide Web Consortium
(December 6, 2002), http://www.w3.org/TR/2002/
WD-EARL10-20021206/.

Accepted for publication January 17, 2005.

Paul Englefield
IBM Warwick, MP5, PO Box 31, Birmingham Road, Warwick
CV34 5JL, UK (paul_englefiled@uk.ibm.com). Mr. Englefield
joined IBM in 1978 and currently works as a senior usability
consultant in the IBM Worldwide Ease of Use (EOU) team in
Warwick, UK. He leads usability engagements for internal,
commercial, and government clients, runs a team developing
software tools for usability practitioners, leads a corporate
work group on research and evaluation methods, and teaches
both usability and accessibility skills. His interests include
evaluation tools, inspection methods, task analysis, and
design rationale; he has published a range of articles, papers,
tutorials, and training materials on these topics. He has an
M.Sc. degree in human-centered technology and holds five

patents related to user interface technology. He is a member of
the IBM corporate UCD (User Centered Design) advisory
council and the British Computer Society HCI (Human-
Computer Interaction) Education and Practice group. Away
from the office, Paul enjoys acting in murder mysteries,
studies jazz guitar, and makes great black-cherry pancakes.

Claire Paddison
IBM Warwick, MP5, PO Box 31, Birmingham Road, Warwick
CV34 5JL, UK (paddisonc@uk.ibm.com). Ms. Paddison is a
usability and accessibility consultant working in IBM’s
Usability Competency Centre (UCC), part of the IBM
Worldwide Ease of Use (EOU) Strategy and Design group in
Warwick, UK. She first joined IBM as an industrial trainee at
the Greenock manufacturing site in 1995. There she worked
on monitor control usability and the out-of-box experience of
the IBM customer. She returned to Greenock as a human
factors engineer after graduating from Loughborough
University with a B.Sc. degree in ergonomics. Today Claire
works as a consultant advising customers on the design and
evaluation of user interfaces, primarily for Web sites. She has
practical experience in many areas of usability and
particularly enjoys the challenge of design work. Her main
area of expertise within the group is accessibility. She has
published a range of articles and papers on evaluating for
accessibility, acts as the accessibility focal point for her group,
and also provides accessibility advice to many other groups
within IBM.

Mark Tibbits
IBM Warwick, MP5, PO Box 31, Birmingham Road, Warwick
CV34 5JL, UK (mark_tibbits@uk.ibm.com). Mr. Tibbits has
many years of practical experience leading usability and
accessibility consultancy engagements within the retail,
government, automotive, banking, and insurance industries.
Recent engagements include evaluating the efficiency,
productivity, and accessibility of employee intranets,
commerce Web sites, thin-client banking applications, and
government Web sites. He also teaches usability design and
evaluation to IBM product development teams and client
design teams. In addition to his usability role, Mark acts as
technical architect for a range of projects related to universal
usability practitioner support tools.

Isha Damani
University of Warwick, Coventry CV4 7AL, UK
(I.Damani@warwick.ac.uk). Miss Damani is currently in her
final year at the University of Warwick majoring in computer
and business studies. Her dissertation is on the subject of IT
fads and foundations. Last year she participated in a work
experience program with IBM Warwick, where she
contributed to the studies described in this paper. She will be
joining Deloitte in the fall of 2005. &

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 ENGLEFIELD ET AL. 555

Published online August , 2005.8

