Improving Web accessibility
through an enhanced
open-source browser

V. L. Hanson
J. P. Brezin
S. Crayne

S. Keates

R. Kjeldsen
J. T. Richards
C. Swart

S. Trewin

The accessibilityWorks project provides software enhancements to the Mozilla™ Web
browser and allows users to control their browsing environment. Although Web
accessibility standards specify markup that must be incorporated for Web pages to be
accessible, these standards do not ensure a good experience for all Web users. This
paper discusses user controls that facilitate a number of adaptations that can greatly
increase the usability of Web pages for a diverse population of users. In addition to
transformations that change page presentation, innovations are discussed that enable
mouse and keyboard input correction as well as vision-based control for users unable

to use their hands for computer input.

INTRODUCTION

Accessibility technology is of value not only for
people who have disabilities, but also for a
significant number of workers, many of whom
would not consider themselves as disabled or as
having a medical condition, but who nevertheless
experience difficulty reading information on a
computer screen or accurately using a keyboard or
mouse. Such technology has the potential to enable
people with a broad spectrum of abilities, who may
currently be unemployed or underemployed, to fully
participate in the workforce.

The World Wide Web has become an indispensable
source of information and communication both
inside and outside the workplace. For the past few
years, work at the IBM Thomas J. Watson Research
Center has been directed at creating ways to make
the Web more usable for persons with vision and

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

motor limitations. This effort began as a partnership
between IBM Corporate Community Relations and
organizations serving older adults. Since then, the
project has expanded to address the needs of other
groups of individuals who have vision and motor
limitations that adversely impact their ability to use
a computer. Unforeseen when the project began was
the software’s additional use by low-literacy and
limited-English-proficiency students in job-training
classes.

This paper begins with background information on
the types of problems that may be experienced by
Web users, and then describes the Web Adaptation

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

HANSON ET AL

573

Technology project, the forerunner of the accessi-
bilityWorks project. The Web Adaptation Technol-
ogy project provided extensions to the Internet

m Our early pilot studies with
users revealed that people
prefer to use a standard
browser with accessibility
adaptations added m

Explorer** browser on the Microsoft Windows**
platform. This paper continues with a presentation
of accessibilityWorks, a new open-source develop-
ment effort initially being tested on the Linux**
platform, which is an outgrowth of that earlier
project. The accessibilityWorks project specifically
took the findings from the Web Adaptation Tech-
nology work and used them in implementing similar
capabilities in the Firefox** and Mozilla** open-
source browsers to provide cross-platform func-
tionality. As will be discussed, accessibilityWorks
also provides expanded mouse and keyboard
adaptations.

WEB USABILITY

Problems with computer access due to vision and
motor limitations can be addressed by various
medical, hardware, and software approaches. Large
monitors and eyeglasses, for example, can certainly
help with visual acuity problems, but these measures
may not be sufficient. Consider the case of bifocals
worn by many older adults. These glasses can
provide some help with acuity difficulties, but
wearers of bifocals who spend much time at the
computer tend to develop stiff necks from tilting their
heads at an awkward angle. This is exacerbated for
people with particularly low vision—caused, for
example by macular degeneration—because they
need to sit very close to computer screens and often
develop shoulder and back pain as a result.

Current browsers and desktop environments can
adjust some aspects of content presentation to
alleviate certain difficulties when reading text.
However, although users are often aware that some
font enlargement capability is available through the
browser, few are aware of browser options for
changing colors, font styles, and screen magnifica-
tion, or for creating style sheets." This lack of
awareness is not particularly surprising, given that

574 HANSON ET AL

the options often are configurable only by following
a complex series of menu choices and dialog boxes.
For example, changing the color of text on a Web
page by using Internet Explorer’s built-in features
requires knowing that Internet Options is the
required menu selection from the Tools menu, then
further being able to navigate to the Colors dialog
box, deselect the Use Windows colors checkbox, set
the desired colors, and then return to the Internet
Options menu selection to indicate on the Acces-
sibility dialog box that specified Web page colors
should be ignored. This is a fairly complex task
requiring knowledge of computer software, the
ability to see the small boxes to be selected, and the
dexterity to click accurately.

Some motor difficulties can be addressed by using
the adjustments to mouse and keyboard sensitivity
built into current computer operating systems. As
with page presentation changes, the use of such
adjustments requires that users be aware of the
existence of these options, know where they are
located in the menu structure, and be able to carry
out the steps needed to set the features. Users who
have disabilities that impact their hand movement
can have great difficulty actually using these tools.”
Consider the case of key debounce time. Persons
with tremors, for example, may depress one key
multiple times in rapid succession, causing repeated
letters to appear when typing. Microsoft Windows
allows users to set a debounce parameter to control
the length of the time period in which repeat keys
will be filtered out. In order to set this parameter,
however, users must not only know that this feature
exists and how to find it in the Control Panel
options, but must also be able to navigate the steps
required for setting the feature, which in turn
requires the clicking of tiny graphical user interface
(GUI) buttons and checkboxes.

There are special keyboards and mice available to
ease difficulties with double-clicking and scrolling,
but, in fact, these special devices provide only
partial solutions to the problems experienced by
older adults. Accurate mouse usage, for example,
requires visual acuity; people with poor vision have
mouse difficulties whether they possess good motor
control or not.’ Scrolling is another example of a
task that is particularly difficult for reasons related
to a combination of visual and motor factors.
Visually, the small size of the scroll bar, particularly
the target box, can be problematic. In terms of motor

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

skills, scrolling requires the complex sequence of
moving the mouse to the small target box, holding
down the mouse button, and then continuing to
hold down the button while moving the mouse in
the direction needed for scrolling. Solutions that
address difficulties in only one of these aspects of
scrolling may not succeed.

Considering all the preceding difficulties, we began
our project to address the need to allow
individuals to tailor Web interactions to their
particular combination of requirements. The goals
as the project began focused on meeting changing
user needs resulting from failing vision and limited
dexterity due to aging. The project did not attempt to
address either limited hearing, which was not
considered by users to negatively impact their Web
experience,4 or blindness, for which other Web
accessibility software exists.” As the project evolved,
however, it became clear that the needs of the
original older-adult user population were not
unique. In particular, problems with content size,
color, and other display characteristics were
typical of many users with vision limitations,
regardless of age and the specific medical condition
that may have led to the limitation. Similarly, motor
disabilities, regardless of origin, created keyboard
and mouse problems similar to those experienced by
older adults. As a result, at present the IBM
Corporate Community Relations project has ex-
panded to include approximately equal numbers

of members of organizations serving older adults
and organizations serving persons with
disabilities.’

Web adaptation technology: Internet Explorer
browser extensions

The project’s software architecture was based on the
need for client-side transformations combined with
a server-side database for storing user preferences.
As detailed elsewhere,””® an original attempt to use a
server intermediary for providing the transforma-
tions was inadequate with respect to security,
copyright compliance, system responsiveness, and
transformation accuracy. These shortcomings led to
this initial approach being abandoned. A database
on the server was still needed, however, for storing
user preferences because most people used the
software in a shared computing environment. Thus,
saving preferences on the local client machines was
not a viable option.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

The software needed to be used by people for access
to the entire Web. Thus, it could not be limited to
sites specifically designed or annotated for accessi-
bility. Key to the software design was the fact that
many users experience a variety of physical and
cognitive limitations that may impact their Web
access. These limitations are made more complex by
the fact that they can occur in combination and can
fluctuate in severity from hour to hour and day to
day.9 Thus, the content transformations needed to
work well in combination with each other. More-
over, the sorts of disabilities a particular user will
have cannot easily be known in advance. Therefore,
a large collection of possible transformations was
needed. The transformations implemented were
suggested both by interviews with users and by the
literature. " These transformations included op-
tions for:

e Enlarging page content—for example, magnifying
pages and enlarging specific text or images

® Enhancing text—for example, changing colors,
letter and line spacing, and text style

® Reducing visual clutter—for example, stopping
animations, hiding backgrounds, and reformatting
pages for a single-column layout

e Enlarging browser controls—for example, enlarg-
ing the cursor and scrollbar

® Adapting keyboard and mouse settings

Moreover, the interface for selecting these trans-
formations needed to be accessible by people with a
wide range of disabilities.

In addition, our early pilot studies with users
revealed that people prefer to use a standard
browser with accessibility adaptations added, rather
than a specialized browser that has specific buttons
for low vision but that offers a more limited set of
features overall. Users who had previous Web
experience did not like a specialized browser due to
lack of the functionality that they were accustomed
to using. Instructors who taught Web skills to new
users did not like the fact that a specialized browser
did not mesh well with existing teaching materials.
Based on this feedback, the Web Adaptation
Technology software was built as extensions to the
Internet Explorer browser.

Finally, because many users who were expected to

use the control interface were new to computing, it
had to be very simple and straightforward to

HANSON ET AL

575

operate. The resulting interface was a band appear-
ing at the bottom of the browser that could be
hidden after preferences were set. The band
comprised a series of panels, one panel for each of
the different options that could be set.

Mechanisms for providing added functionality
Functionality was added to the browser through a
variety of means, including the automatic setting of
browser and operating-system features (including
the use of programmatically constructed style
sheets), manipulations of the browser’s underlying
Document Object Model (DOM), and the launching
of background tasks to monitor events and provide
transformation services. Each of these mechanisms
will be discussed in turn.

Browser and operating system features

The Web Adaptation Technology software provides
convenient and uniform access to browser and
operating-system settings for non-expert computer
users or persons who might have difficulty with the
physical or cognitive complexity of changing these
settings. Examples of Web page transformations
using the underlying browser and operating-system
features include text style changes, text size
increases (up to the limits of what the browser
directly supports), and the hiding of images, back-
grounds, and animations. Programmatically gener-
ated style sheets are used to implement page
magnification and increased letter and line spacing.
Input adaptations, including allowing use of only
one hand as well as keystroke, mouse click, and
typing adjustments, all use operating-system fea-
tures.

Document Object Model

Certain dynamic visual changes to a Web page are
accomplished in the Web Adaptation Technology
software by means of manipulation of the browser’s
internal model for the page, the DOM. The DOM is
structured as a tree in which all the elements of the
page are represented, one element being a child of
another within which it is contained. The Internet
Explorer implementation uses a Browser Helper
Object written in Java**, which gives the program
access to the DOM after it is constructed (so that any
JavaScript** or other dynamic changes to the
document have already been made) but before it is
displayed by the browser. The software is thereby
able to manipulate the representation that will
determine exactly what the user will see, before the

576 HANSON ET AL

user sees it. As a result the software does not need to
be concerned with how the source HTML (Hypertext
Markup Language) is parsed or dynamically gen-
erated. It simply deals with the content after the
DOM is constructed. Examples of DOM-based visual
transformations include changing colors and
changing page layout (linearization). An important
non-visual transformation involves chunking large
text blocks into smaller ones in order to get a better
idea of where the mouse is pointing. This chunking
forms the basis of the Speak Text feature for reading
text aloud and the Banner Text feature for displaying
selected text in very large letters at the top of the
browser window.

Background Tasks

The remaining functions in the Web Adaptation
Technology software are accomplished through
background tasks, which are launched as the
software is started. Certain keyboard adjustments
are handled by a background task, the Dynamic
Keyboard,15 that monitors keystroke events, com-
pares this event stream to a typing model, and then
makes adjustments to keyboard features in the
operating system. (These features are described in
more detail later in this paper.) Image enlargement
of GIF (Graphics Interchange Format) and JPEG
(Joint Photographic Experts Group) images and
sharpening of JPEG images also involve a back-
ground task. This task retrieves the images,
decompresses them, and enlarges them using bi-
linear interpolation to eliminate the jagged appear-
ance that results from a simple scaling process. If
requested, the images are also sharpened by
enhancing the contrast of edges within the image.
The images are then compressed and displayed.

Status of the Web Adaptation Technology project
The Web Adaptation Technology software has been
in use for over a year by a number of nonprofit
organizations sponsored by IBM Corporate Com-
munity Relations. The software has been translated
into several languages including Spanish, French,
German, Italian, Brazilian Portuguese, Chinese,
Korean, and Japanese, and it is used not only in the
United States but in many other countries world-
wide. Recently, it has been developed into a
generally available IBM services offering named
WebAdapt.ZMe.16

User feedback was gathered during testing with the
Web Adaptation Technology to learn more about

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

what users find beneficial and to determine what
further enhancements to the functionality might
prove helpful. For example, user comments helped
us refine the Speak Text feature, extend the range
of transformations within some existing features
(e.g., adding an option for increasing text size
beyond what the browser could support directly),
and enhance feature usage through keyboard
navigation.

Importantly, what started as an application for
older adults is now being used by many people
who come from communities other than the aging
population. That this software might serve the
needs of users with poor vision, regardless of age,
is not surprising. That it can serve the needs of
users with keyboarding difficulties, regardless of
age, might also have been expected. What is
surprising, however, is the extent to which this
technology has been adopted by other user groups,
including low-literacy and limited-English-
proficiency students, and young adults with autism,
developmental delays, or attention issues. The
Speak Text feature is particularly popular among
low-literacy users, and several of the text presen-
tation features have also been adopted for initially
unforeseen purposes. For example, the letter and
line spacing feature was designed to reduce

visual clutter and provide older readers with more
white space between text characters. However,
reducing visual clutter also proved useful for
students with developmental delays or attention
problems. Surprisingly, these students often used
the page magnification function to reduce the
amount of information presented on the screen.
More detailed information about these various uses
of the Web Adaptation Technology software is
reported elsewhere.”’

Firefox and Mozilla browser extensions with
accessibilityWorks

Although the Internet Explorer implementation
allowed for rapid prototyping because it was
possible to use many Windows native functions, the
use of these native functions obviously restricted the
tool specifically to the Windows operating system.
One of the original project goals, however, was to
create a cross-platform solution."” For the follow-on
accessibilityWorks project, therefore, development
has focused on the Firefox and Mozilla browsers,
which do provide a multiplatform solution.'®"” In

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

this work, Web page transformations are made
within the existing Mozilla programming model in

m What started as an application
for older adults is now being
used by many people who
come from communities other
than the aging population m

order to minimize platform dependencies. The
growing popularity of Linux has also prompted us to
further extend some of our Windows-based appli-
cations, for example, the Dynamic Keyboard and
camera-based user interfaces (discussed later), to
run on the Linux platform.

For accessibilityWorks, the goal was not simply to
recreate features available in the Web Adaptation
Technology software, but to expand upon those
features. In particular, additional capabilities for
mouse correction and vision-based interfaces are
being incorporated into the project.

In addition, accessibilityWorks is intended to aug-
ment existing accessibility development work for
the Linux platform. The growing popularity of Linux
has created a developer community that has worked
to create accessibility tools for that platform.zo*22
Although some applications for Linux, such as
Mozilla, can run on many platforms, others are
native to the Linux platform and are often built into
the desktop, such as the accessibility applications
included in GNOME**.** Because the accessibility-
Works input enhancements are closely tied to the
operating system, some Linux-specific development
was required to implement these features, as will be
discussed later in this paper.

Figure 1 shows the architecture for the
accessibilityWorks implementation for Firefox and
Mozilla. The elements of this design will be
discussed in the remainder of this paper.

Transformations to page presentation

Mozilla provides a self-contained application-
development and deployment environment. Appli-
cations written for this environment, namely
browser extensions, run on all the platforms on
which Mozilla runs. This means that most of the

HANSON ET AL

577

Client

/ Keyboard and /

« Color contrast
Keystroke and
Pointer Analysis

Automatic Configuration « Line spacing

* Letter spacing

Vision-based Interaction

Mozilla

Mouse Input
User Settings Toolbar
Inputs
OS Keyboard Mozilla Preference
Settings Transforms
» Text style

« Animation removal

Document Object Model
(DOM) Transforms

« Transparent GIF repair

Native Code Transforms

htp Request World Wide

http Response | Web

WebSphere

Speech XPCOM - Speak Text Application Server

- Image enlargement
PV LDAP DB2

ViaVoice TTS ZoomManager Transform:
Text Size + Create ID

Image Processor - Login
XUL Transform: « Set profile i
Banner Text » Get profile Authentication

User Profiles

N -

7

Figure 1

Design elements of the accessibilityWorks Mozilla implementation

code only needs to be written once. In particular, the
XML (Extensible Markup Language) User Interface
Language (XUL**) feature of this environment
permits the runtime assembly of complex user
interface elements.”> From XUL, one can call Java-
Script functions to accomplish other tasks, such as
initialization, event handling, and DOM modifica-
tion. The overlay feature of XUL also allows the
characteristics of the parts of the browser that frame
the browser document window, such as menus and
toolbars, to be changed. In Mozilla terminology,
these elements are called the chrome.

XPCOM is a feature of the Mozilla environment that
allows developers to perform lower-level tasks that
cannot be done in XUL or JavaScript.24 (XPCOM
stands for Cross-Platform Component Object Model,
and is somewhat similar to Microsoft’s COM or
Component Object Model.) Mozilla comes supplied
with a large variety of XPCOM objects that can be
instantiated from JavaScript. These objects currently
allow preferences to be retrieved and set, and files to
be read and written. Developers can also write their
own XPCOM objects.

578 HANSON ET AL

In many ways, Mozilla’s application-development
environment allowed simplification of the Web
Adaptation Technology architecture created for the
Internet Explorer implementation. For example, we
had to manage a series of dialogs to represent each
of the panels in the band. In the current version,
Mozilla’s XUL language does much of this work for
us. XUL provides a user-interface element called a
deck. Each panel is a member of the deck and has an
index associated with it. Panels can be brought to
the top of the deck (that is, made viewable) simply
by changing the current index of the deck.

The panels are designed to be easily used and to
allow each user to try out transformations to
determine their suitability and effectiveness.

Figure 2 shows an example Web page (2A) and then
versions of that page with various control-panel
features applied. Thus, Figure 2B shows the Speak
Text feature, in which content is read aloud. Figures
2C and 2D then show the results of the application
of specific page transformations to the original page.
More specifically, in Figure 2C, Banner Text is
shown. Figure 2D shows the page with text, back-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

+ Select 5 country

Overview

Aboul Communily
Relations

Grant programs

+ Educasan

- Workiore
davelopinent

- At and cunure

- Communites in need

- Employse giving

Grant appls aton

N v hghiighin
Awards and honors.
Fapors i papers
Wom infarmaen

JEM - Arts and culture | 1EM and Egyptian government provide global access 1o Egypr's culture - Mozilla a)x]

_ File Edt View Go Bookmaks Tools Window Help

i QQ @ O B | [o smmmiom combmibmgves rant/arts/egyptiais | [} Search C“;o

. 4 Home CJBookmarks - Red Hat, Inc. “: Red Hat Network EJSupport CJShop (JProducts CITraining

Home | Products & services | Suppor & downiands | My sccount

IBM and Egyptian government provide global access

1o Bayptsioutiure “An extraordinary project between the Egyptian

EEEEE—— | government and IBM has created Eternal Egypt, an
ST P unprecedented achievement ..."

is o 9
access 1 Mone han 5,000 years of Egyplan hisiory.

Thee years intha making, ihis pannarship oing one of the works olda st
civilizations with the late st inrovations In IBM echnalogy. For the firt tima over.

visitors i the new Etermal Egypt We b site af waw e i rmalegyplom canenler a ﬂ\‘
virtual s lomb as i

dicovered i chambar in 1922, o view the Lighthouss of Alsxandna as it b
SpPe 1o Detore A WS G0 BUOYED i NG 141N CENUTY. VIOWEF3 COn §Ven examing
ihe face of he Sphinx as it looked 2.000 years 50 5

. File Edt View Go Bookmarks Tools Window Help

& u 0 O \J W [hetp ffwww.ibn.comfibmfibmgvesigrant/ans/egyptia i | [C Search |

o 4 Home DBookmarks - Red Hat, Inc. - Red Hat Network C1Support D3Shop DProducts D Training

Home Products & services | Supparl & downloads | My aceaunt

Overview IBM and Egyptian government provide global acces
Avout Community to Egypt's culture

Felatians

Grant programs

Education

Workiome % ot and 180 has cra.

et An e:xrac gYPHan govemme ni and 13M has cremed
Emmal Egypt. an UNPECecemea achievement INal Is now PrOVdIng wordwide

Ans and cuture 2060 84 ko more Bhan 5,000 years of Egyptian hiskory.

+ Dommuntieaineed g yaareinthe making it parmarhip jong one of he wards cidet
Employee gwing ChiIZatons Wi ha laat novations in 13M Wehnology. For e
witars 1 Ihe new Esmal gy Web sl al ww ols maledy
witual , +lomb 8
discoverud the chamber in 1922, or view the Lighthouse of A

B E| speak text
wep | | none || slower |[standard | faster
Tewoe =

B

Grant apicazon
quieines

Text Banner Window,

An extraord iInary

Select a country

e IBM and Egyptian government provide
About
community global access to Egypt's culture
Relations
Grant programs
- Education [N
« Workforce . . .
L e An extraordinary project between the Egyptian
Arec and L onnial P

Home | Products & services | Support & downloads | My account

. File Edit View Go Bookmarks Tools Window Help

0 @ O Q O W % _hitpfwwww.ibm. comyibmyibmgives/granvans/e= | (G Search ngﬂ

43 Home JBookmarks “ Red Hat, Inc. “ Red Hat Network “3Suppon Z3Shop EIPraducts £)Training

ted States [change]

government and IBM has created Etemal Egypt, an —_ IBM and Egyptian government provide global access

banner text

Figure 2

to Egypt's culture

| none |[blackon whitell_\!ﬂn'on‘bl'ii;:k____]

colors

[Standard | [black on white]

‘DOJ’DQZ ‘Waking for weeew iben. com. = =p

D

Transforming a Web page for accessibility: (A) the Web page with no transformations applied; (B) application of
the Speak Text transformation from accessibilityWorks; (C) the original Web page with the Larger Text and Banner

Text transformations applied; and (D) the original Web page with colors changed.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

HANSON ET AL

579

Welcome

ITighlights

enlarge images

Figure 3

The original Web page from Figure 2 with an image enlarged. An image is enlarged when a user selects

this option and then points the mouse at an image.

ground, and link colors all changed. Figure 3 uses
the same page to show an example of image
enlargement.

Firefox allows users to change Web page color
preferences by accessing the Options dialog box on
the Tools menu. There are fewer steps in the Firefox
Fonts and Colors option than in the comparable
Internet Explorer sequence, but modifications do
still require that users know that colors can be set,
know about terms such as “unvisited link,” and
have both the vision and dexterity required to set
these options by using small checkboxes. As shown
in Figure 2D, the colors buttons provided by the
accessibilityWorks interface greatly simplifies this
task.

580 HANSON ET AL

One useful feature of the Mozilla application
environment is that the DOM is extended to the
chrome. A tool called the DOM Inspector is included
with Mozilla. By using this tool one can start at the
DOM node whose ID is main-window. (This is the
main window of the browser’s chrome, not the
window of the current Web page.) One can then
traverse the tree all the way down to the node whose
ID is browser, which corresponds to the Web page
document, and beyond. Along the way, changes can
be made to either the chrome or the document. For
accessibilityWorks, the chrome was modified to
create the settings band that was originally imple-
mented in the Internet Explorer version as a separate
dynamic link library (DLL). This technique was also
used to increase the font size of the menus and to
place a custom icon on the toolbar.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

The Speak Text functionality in accessibilityWorks
is implemented as an XPCOM object, with calls to
functions in the IBM ViaVoice* Text-To-Speech
(TTS) library.25 In Windows, an XPCOM object is a
DLL, whereas in Linux, it is a shared library. The
TTS XPCOM functions are directly callable from
JavaScript, and in turn make calls to the IBM speech
API (application programming interface), which is
embodied as ibmeci.d11 on the Windows platform,
and as 1ibibmeci.so on the Linux platform. The
TTS XPCOM object is completely platform inde-
pendent and thus only has to be recompiled to work
on each platform.

The programming of DOM transformations is similar
in Mozilla to the equivalent code in the Web
Adaptation Technology software. Working in Java-
Script though has meant that this implementation is
significantly more compact than the Internet Ex-
plorer implementation in Java. This advantage is a
direct result of Mozilla’s XUL-based architecture,
which allows the use of scripts that gain control
when the page is loaded, much as Internet Explor-
er’s Browser Helper Objects do. The key point is that
the scripts do not have to be inserted into the pages
themselves before the pages are parsed; the scripts
are part of the browser’s definition and are run on
an event-driven basis. In addition, the user-interface
event handling provided by Mozilla allows signifi-
cantly simpler programming because fewer handlers
are needed and they are also less complex.

Initial testing of accessibilityWorks was carried out

on Mozilla, and accessibilityWorks currently runs on
Mozilla Versions 1.6 and 1.7.3. With the release of

Firefox 1.0 the functionality is now being moved to
Firefox, which will soon be supported as well.

Keyboard and mouse assistance

The transformations of page presentation discussed
so far have aimed at improving overall usability for
users who have difficulties reading the content of a
Web page. However, reading content is only one
aspect of a successful Web experience. Typing
words for a Web search, typing e-mail, and
completing online forms all require the ability to use
a keyboard. In addition, Web navigation is critically
dependent on the ability to use a mouse to point and
click. These features of a Web interface can create
severe difficulties for persons who have a motor
impairment.26 For example, in the case of older
adults it is possible, even likely, that users may have

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

arthritis in their hands, making it difficult to produce
the fine motor movements required to touch-type or
to operate a mouse button. Moreover, conditions

m Reducing visual clutter also
proved useful for students with
developmental delays or
attention problems m

such as Parkinson’s disease and cerebral palsy are
strongly associated with involuntary tremors and
uncontrolled movements. Even something as com-
mon as a bone fracture or repetitive strain injury can
lead to difficulties typing or using a mouse.
According to recent government figures, approx-
imately 10 percent of working-age, non-institution-
alized adults have significant long-term motor
limitations.>”*® A recent commercial study sug-
gested that more than a quarter of working-age
adults experience dexterity limitations and would
benefit from using accessible computer technol-
ogy.29 To address these issues, the accessibility-
Works project includes options for aiding both text
(keyboard) and pointer-based (mouse) input. These
common user-input problems are discussed in the
next section.

Common user-input difficulties

Common keyboard input difficulties include press-
ing and holding a key too long, difficulty holding
down one key while pressing another, pressing two
keys at the same time, pressing a key multiple times
when only a single press was meant, and pressing
the wrong key.30 Many operating systems, including
Windows, UNIX**, and Linux, offer mechanisms for
adjusting key repeat rates and debounce thresholds
that address certain of these difficulties. These
mechanisms are specifically built into the Windows
operating system. On UNIX and Linux systems they
are provided by the accessX feature of the X Window
System**. Each platform offers essentially the same
keyboard access features, but implements them in
different ways. For example, Windows systems
maintain two key-repeat delay values, one of which
is associated with the Windows accessibility fea-
tures and overrides the other value when accessi-
bility features are activated. In contrast, accessX
uses a single key-repeat delay value. The accessX
features tend to offer greater sensitivity and a greater
range of available values than those provided in

HANSON ET AL

581

Windows. For example, Windows XP offers four
key-repeat delay values in the keyboard control
panel and five different values in the accessibility

m In many ways, Mozilla's
application-development
environment allowed
simplification of the Web
Adaptation Technology
architecture created for the
Internet Explorer
implementation m

control panel. Together these enable delays of 250,
300, 500, 700, 750, 1000, 1500 and 2000 msec.
Repeats can also be turned off completely. AccessX
provides values in the range 100-1510 msec, in
increments of 10 msec, plus the ability to turn off
repeats.

However, comparatively few users know about the
existence of these options, and even fewer know
how to adjust them, much less what the optimal
settings are for their own needs. To further
compound the situation, a user’s optimal settings
may vary over the course of the day, from early-
morning alertness to post-lunch fatigue. Often users
have to adjust the settings by trial and error, and this
can lead to a strategy known as satisficing, that is,
finding a solution that is just about satisfactory, but
far from ideal.

Mechanisms for correcting common user-input
difficulties

In the Web Adaptation Technology software, several
keyboard and pointing options were provided. Some
of these were explicitly provided as settings under
direct user control. An example is the One Hand
feature that eliminates the need to hold keys down
while pressing other keys. Setting the One Hand
option turns on the StickyKeys functionality in the
operating system. In other cases, such a simple
setting of keyboard adjustments was not possible.
Specifically, for those options where a range of
settings are available and where users typically do
not know their own ideal settings, automatic
adjustment was implemented through the Dynamic
Keyboard application.15 Consider, for example, the
case of debounce time that was mentioned earlier.

582 HANSON ET AL

Certain motor disabilities cause users to depress one
key multiple times in rapid succession, creating
repeated letters when typing. The debounce setting
available in many operating systems can filter out
such repeated keystrokes by controlling the length
of time after a given keystroke before another typed
letter will be accepted. In order to use the debounce
setting, though, users must know about this feature,
be able to find and set it through menus and dialog
boxes, and be able to specify the required debounce
time in milliseconds. The Dynamic Keyboard sim-
plifies this process by automatically detecting the
need for a debounce adjustment and then setting
debounce parameters appropriate for the user. Most
important, this software monitors typing behavior
throughout a user’s session. Thus, as typing needs
change, adjustments to typing features are continu-
ously updated.

At present the Dynamic Keyboard functionality
adjusts key repeat delays, repeat times, and bounce
thresholds. It has no user interface. The goal is to
perform adaptations that improve the user’s input
accuracy when problems are observed, but other-
wise remain unobtrusive. This is achieved by
monitoring specific aspects of a user’s keystrokes
and adjusting the appropriate keyboard accessibility
parameters accordingly. User studies have shown
these interventions to be remarkably effective
among users with noticeable keyboard difficulties,
and thlesy have also proved quite popular with these
users.

Separate Dynamic Keyboard implementations have
been developed for Windows (used in the Web
Adaptation Technology software) and Linux sys-
tems with accessX (used in the accessibilityWorks
software). These have essentially identical func-
tionality, but each uses the native operating-system
features to implement the adaptations. This means
that the sensitivity of the response depends on the
sensitivity of the host system and necessarily reflects
any constraints imposed by the native operating
system. An example of such a constraint and its
effect on the Dynamic Keyboard’s effectiveness is
given in the following paragraph.

Specific Dynamic Keyboard experiments have been
performed with adjustments to the key repeat delay,
key repeat rate, and bounce thresholds.'” These user
studies have suggested that the key-repeat delay
adjustments made by the Dynamic Keyboard are

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

appropriate, effective, and acceptable to users. This
adaptation thus represents an initial solution to the
single greatest keyboard accessibility barrier. The
current algorithm for automatic adjustment of key
repeat rates requires some improvement, however,
to account for the many compensatory strategies
people use. For example, bounce thresholds as
implemented in Windows have proved inappropri-
ate for automatic adjustment, and in general for
users with low error rates. This is partly because the
shortest available debounce setting in Windows is
500 msec, which is too long for most users, forcing
them to deliberately slow down their typing of
double letters. The Windows version of the Dynamic
Keyboard is therefore unable to respond appropri-
ately when a (more typical) debounce time of 50
msec is indicated. Activating the debounce feature
in Windows also prevents keys from repeating, and
many users find this side effect unacceptable. On
Linux systems, a more appropriate range of
debounce settings is available (0 to 910 msec in
increments of 10 msec), and there is no key-repeat
side effect. The debounce feature may therefore
prove more acceptable to Linux users.

New keyboard assistance, such as the automatic
filtering of multiple key presses, will also be
incorporated in accessibilityWorks. Users with poor
hand-eye coordination can find it difficult to position
their fingers precisely over the keyboard. As a result
it is quite common for them to press both the
intended key and an adjacent key at the same time.
Research has shown that careful analysis of the
number of times each key was pressed and released
can indicate which key was intended with 80
percent accuracy.31 This functionality has been
referred to as OverlapKeys.

The success of the Dynamic Keyboard as an
approach to solving input difficulties suggests the
value of applying similar principles to other input
devices, such as the mouse. For example, should
the user accidentally click both the left and right
buttons at the same time, filtering like that used for
OverlapKeys can be applied. Research is currently
being performed to establish other areas of possible
assistance, and the resulting utilities will be incor-
porated into later versions of accessibilityWorks.

Camera-based user interfaces

In some user cases, even the types of adjustments
for keyboard and mouse correction discussed earlier

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

are not sufficient. Consider, for example, the case of
individuals with spinal cord injuries who are not
able use their hands well enough to control either a
keyboard or a mouse. Custom hardware can be built
for users with such disabilities, but this process is
expensive and time-consuming. Moreover, the
hardware can also become unsuitable if the needs of
the user change. Camera-based user interaction has
the flexibility to provide interfaces that are far more
universally accessible than such hardware-based
interactions.

Camera-based interfaces rely on visual recognition
of the user’s actions. Specific body movements can
take the place of buttons and pointing devices.
Unlike hardware devices, elements of a camera-
based interface can be rearranged easily to satisfy
different requirements or reconfigured to adapt to
different movement patterns. The result is an
interface that can be customized to match a user’s
current abilities.

Over the last several years IBM Research has
developed several systems targeted for users with
physical disabilities that take advantage of camera-
based interactions. Two of these have proven useful
and reliable and are being incorporated into
accessibilityWorks.

The TouchFree** Switch, released by Edmark in
1999, represents the simplest variant of a vision-
based interface. As shown in Figure 4, the TouchFree
Switch provides an alternative to the physical
switches often used by people with severe physical
disabilities to control so-called scanning interfaces. It
allows users to locate interactive regions in video
images of themselves and to train the system to
recognize specific changes in appearance in those
regions. Thereafter, when a region detects such a
change, it generates an event that can be used by the
scanning software to allow control of a full range of
computing activities. In this way users can interact
with the computer by a tip of the head, a shrug of the
shoulder, finger movement, or nearly any other body
movement that produces a change visible to a video
camera. These “buttons” can be repositioned or
trained to recognize a different movement in a few
seconds, allowing an interface that can adapt easily to
meet a user’s immediate needs.

In other applications, tools were developed to
control the mouse pointer. In one version, the

HANSON ET AL

583

(ﬂ TouchFree Switch
lEle Settings Advanced Help

Figure 4

The TouchFree Switch allows users to control

input by moving any part of one’s body. In this picture,
the user is controlling input by tilting his head

camera was placed near the computer screen
looking back at the user. By monitoring the move-
ment of users’ faces, the system was able to position
the pointer on the screen with character-level
accuracy, such that users felt as though they were

o s . . 32
actually pointing with their noses.

The accessibilityWorks project will incorporate these
capabilities as alternative input methods for pointing
and clicking. Using a camera connected by USB
(Universal Serial Bus), users will be able to position
the pointer by aiming their faces, and then “click”
either by allowing the pointer to dwell at a location
on the screen or by moving some other body part.

Vision-based input requires a small amount of setup
on the part of users or their facilitators. Because
face-finding algorithms are not sufficiently reliable
under all the imaging conditions where accessibili-
tyWorks may be used, users must tip their heads
left-and-right three times at the beginning of each
session (or whenever face-tracking performance
degrades). This distinctive motion is easy to
recognize and provides the system with sufficient
information to begin tracking the user’s face. If a
separate movement is to be used to generate the
click, then an interactive region, similar to those
used in the TouchFree Switch, can be positioned in
the video image such that users can “touch” that
region of the image with some part of the body. If
the system is being used in an environment where
other movements may appear in the interactive

584 HANSON ET AL

region, users can demonstrate a specific movement
to the system so that only that touch elicits a click.
For example, if users want to use a shoulder shrug
to click, they may select a region just above the
shoulder such that the shoulder moves into it when
they shrug. If they are concerned about people
triggering the button by walking behind them, they
can train the system to be more specific by
demonstrating the shrug.

These tools provide basic mouse function for users
with certain physical disabilities. Our goal is to take
better advantage of the flexibility of camera-based
interaction to provide a richer set of interactions for
users with a wider range of limitations. Our current
vision system can recognize many different input
signals in user body movements, but the way this
capability is provided to the user is limited. We can
provide more flexibility by classifying these control
signals according to the dimensionality of the
information they contain (i.e., zero-, one-, two-, or
three-dimensional information). If the inputs re-
quired by an application are also so classified, then
user signals can be mapped to application inputs of
the same type, allowing users to control an
application with whatever body movement they
would like. For example, users could control pointer
movement using facial aiming for a time. Should
they tire, they could switch to moving the hand
within a region on a surface.

Ideally, to take full advantage of vision-based
interaction the design of the browsing interface
should be modified. A good example involves link
selection. Typically, links are selected by two-
dimensional positioning of the pointer followed by a
click, but for some users accurate two-dimensional
positioning can be difficult. To create an interface
for such a user, the links on a page can be extracted
automatically and placed in an auxiliary window in
linear order. One of several one-dimensional posi-
tioning actions, such as an up/down tip of the head
or a lateral motion of a hand, can then be used to
select links.

Camera-based user interfaces require significant
software infrastructure. Image interpretation must
be fast and reliable, image buffer management and
display routines must be efficient and flexible, and
methods must be in place to assemble these building
blocks into useful, user-friendly components. A
comprehensive library of low-level image-process-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

ing routines and common high-level operations for
finding and tracking body parts is important. The
code must be efficient enough to handle at least 15
frames a second in order to support good quality
user response.

Over the last several years just such an infra-
structure has been developed under Windows.”?
This VI (Visual Interface) Architecture is now being
ported to Linux in such a way as to have a common
code base for both platforms. The bulk of the code is
already system-independent C++. The GUI, which
serves as the control panel for applications, is being
moved to a cross-platform development toolKit.
Generic image display routines are often not fast
enough to support video rates, and camera inter-
faces vary significantly among systems. These
elements are optimized for each platform, then
encapsulated in VI objects, so that any camera-
based interface developed with the VI Architecture
can run on either platform without code changes.

CONCLUSION

Over the past few years, work at the IBM Thomas J.
Watson Research Center has been directed at devel-
oping tools to support computer use by persons who,
for various reasons, have difficulty using such
technology. The effort to improve Web access
discussed here is an example of one such project. The
hallmark of this work has been ongoing user
involvement and iterative testing throughout the
design and development process. Partnerships be-
tween IBM Corporate Community Relations and
nonprofit organizations provided the perfect envi-
ronment for this work. Through such partnerships
with organizations serving both older adults and
persons with disabilities, valuable feedback was
received throughout the development process to
enable the design of a system that would meet user
needs.

The Web Adaptation Technology application, a
platform-dependent set of extensions for Windows
Internet Explorer, was developed first. Its successor,
accessibilityWorks, provides a cross-platform im-
plementation using the Firefox/Mozilla browser.
This new software builds on the lessons learned
from the initial work and expands its capabilities. It
is not a port of the earlier software, but rather a new
implementation with additional functionality. In
particular, it expands on the earlier work in the area
of input technologies through the addition of key-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

board and mouse assistance as well as vision-based
user interfaces. The accessibilityWorks software is

m According to recent
government figures,
approximately 10 percent
of working-age,
noninstitutionalized adults
have significant long-term
motor limitations m

in early test stages on the Linux platform by persons
who have low vision, learning disabilities, spinal
cord injuries, and cerebral palsy.

The accessibilityWorks browser approach, which
allows users to control presentation and input, is
complementary to that involving the issue of Web
page compliance with accessibility standards and
regulatioxls,34_36 for which excellent tools have been
developed to help content providers.37 In many
cases these guidelines do not directly impact page
presentation, but rather address issues related to
making Web pages capable of being rendered by
assistive technology devices such as screen readers.

The work described here takes a broader view of
Web accessibility. Rather than addressing Web page
compliance, this software provides for changes that
directly impact the user experience. The types of
page transformations and input adaptations dis-
cussed do not modify page sources. They simply
modify presentation and input on a computer as
requested by the user.

It is important for Web page authors to still adhere
to accessibility guidelines. Even with accessible Web
design, however, any one page cannot meet the
needs of each and every individual. The features
enabled by accessibilityWorks allow users to control
their Web experience to meet individual needs not
addressed by the guidelines (see, for example,
References 38-41). Thus, even well-designed pages
can be changed to meet a broader spectrum of user
needs than that addressed by the standards and
regulations,42 thus increasing the number of people
who are able to use the entire World Wide Web with
ease. Taking a similar approach to that of the
W3C** (World Wide Web Consortium) guidelines

HANSON ET AL

585

regarding User Agent Accessibility for browers,>**

accessibilityWorks allows individuals to have con-
trol over existing content on the open Web with
respect to both the way pages are presented and
how user input is provided.

ACKNOWLEDGMENTS

We acknowledge IBM Corporate Community
Relations (http://www.ibm.com/ibm/ibmgives/
about/index.shtml), particularly Stan Litow and
Paula Baker, for continuing support of this research
effort. We are also grateful to our early collaborators,
Peter Fairweather, Rich Schwedtfeger, and Sam
Detweiler, for their insights on this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of the
Mozilla Foundation, the GNOME Foundation, Sun Micro-
systems, Inc., Linus Torvalds, Riverdeep Interactive Learning
Limited, The Open Group, the Massachusetts Institute of
Technology, Microsoft Corporation, or the X Consortium, Inc.

CITED REFERENCES
1. V. L. Hanson, “Facing the Future: Including Elderly Users
When Considering Universal Access,” in Universal
Access in HCI: Inclusive Design in the Information Society,
Volume 4, C. Stephanidis, Editor, Lawrence Erlbaum
Associates, Inc., Mahwah, NJ (2003), pp. 394-398.

2. S. Trewin, “Configuration Agents, Control, and Privacy,”
Proceedings of the ACM 2000 Conference on Universal
Usability (CUU 2000), Arlington, VA, November 16-17,
2000, ACM, New York (2000), pp. 9-16.

3. J. A. Jacko, A. B. Barreto, G. J. Marrnet, J. Y. M. Chu,
H. S. Bautsch, I. U. Scott, and R. H. Rosa, “Low Vision:
The Role of Visual Acuity in the Efficiency of Cursor
Movement,” Proceedings of the Fourth International ACM
Conference on Assistive Technologies (ASSETS 2000),
Arlington, VA, November 13-15, 2000, ACM, New York
(2000), pp. 1-8.

4. V. L. Hanson, “Web Access for Elderly Citizens,”
Proceedings of the Workshop on Universal Accessibility of
Ubiquitous Computing (WUAUC’01), Alcacer do Sal,
Portugal, May 22-25, 2001, ACM, New York (2001), pp.
14-18.

5. IBM Home Page Reader 3.04, IBM Corporation, http://
www-3.ibm.com/able/solution_offerings/hpr.html.

6. V. L. Hanson and S. Crayne, “Personalization of Web
Browsing: Adaptations to Meet the Needs of Older
Adults,” Universal Access in the Information Society, in
press.

7. V. L. Hanson and J. T. Richards, “Achieving a Usable
World Wide Web,” Behaviour and Information Technol-
0gy, in press.

8. J. T. Richards and V. L. Hanson, “Web Accessibility: A
Broader View,” Proceedings of the Thirteenth Interna-
tional ACM World Wide Web Conference (WWW2004),

586 HANSON ET AL

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

New York, May 19-21, 2004, ACM, New York (2004), pp.
72-79.

P. Gregor, A. F. Newell, and M. Zajicek, “Designing for
Dynamic Diversity—Interfaces for Older People,” Pro-
ceedings of the Fifth International ACM SIGCAPH Confer-
ence on Assistive Technologies (ASSETS 2002),
Edinburgh, Scotland, UK, July 8-10, 2002, ACM, New
York (2002), pp. 151-156.

Older Adults and Information Technology: A Compendium
of Scientific Research and Web Site Accessibility Guidelines,
National Institute on Aging, Bethesda, MD (2002).

A. Arditi, “Web Accessibility and Low Vision,” Aging &
Vision 14, No. 2, 2-3 (Fall, 2002).

K. V. Echt, “Designing Web-Based Health Information for
Older Adults: Visual Considerations and Design
Directives,” in Older Adults, Health Information, and
the World Wide Web, R. W. Morrell, Editor, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ (2002),

pp. 61-88.

S. J. Czaja and C. C. Lee, “Designing Computer Systems
for Older Adults,” in The Human-Computer Interaction
Handbook, J. Jacko and A. Sears, Editors, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ (2003), pp.
413-427.

S. Dailey, “Using Cognitive Aging and Vision Research to
Develop Senior-Friendly Online Resources,” AARP
(2004), http://assets.aarp.org/www.aarp.org_/articles/
research/oww/university/DaileySlides.ppt.

S. Trewin, “Automating Accessibility,” Proceedings of the
Sixth International ACM SIGACCESS Conference on
Assistive Technologies (ASSETS 2004), Atlanta, GA,
October 18-20, 2004, ACM, New York (2004),

pp. 71-78.

WebAdapt2Me, IBM Corporation, http://www-306.ibm.
com/able/solution_offerings/WebAdapt2Me.html.

P. G. Fairweather, V. L. Hanson, S. R. Detweiler, and R. S.
Schwerdtfeger, “From Assistive Technology to a Web
Accessibility Service,” Proceedings of the Fifth Interna-
tional ACM SIGCAPH Conference on Assistive Technolo-
gies (ASSETS 2002), Edinburgh, Scotland, UK, July 8-10,
2002, ACM, New York (2002), pp. 4-8.

Mozilla 1.x Releases, The Mozilla Organization, http://
www.mozilla.org/releases/.

Download Firefox, The Mozilla Organization, http://
www.mozilla.org/products/firefox/all.html.

M. De La Rue and S. Snider, Linux Accessibility HOWTO,
The Linux Documentation Project, http://www.tldp.org/
HOWTO/Accessibility-HOWTO/.

D. Bolter, Linux Accessibility Resource Site (LARS),
Adaptive Technology Resource Centre (ATRC), http://
lars.atrc.utoronto.ca/.

Disability Access to GNOME, The GNOME Project,
http://developer.gnome.org/projects/gap/.

Welcome to XULPlanet, XULPlanet.com, http://
xulplanet.com/.

N. Deakin, XPCOM Interfaces, XULPlanet.com (Novem-
ber 13, 2004), http://xulplanet.com/tutorials/xultu/
xpcom.html.

ViaVoice, IBM Corporation, http://www-306.ibm.com/
software/voice/viavoice/.

S. Keates, P. Langdon, P. J. Clarkson, and P. Robinson,
“User Models and User Physical Capability,” User
Modeling and User-Adapted Interaction (UMUAI) 12, No.
2-3, 139-169 (2002).

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

27. E. Grundy, D. Ahlburg, M. Ali, E. Breeze, and A. Sloggett,
Disability in Great Britain: Results of the 1996/7 Disability
Follow-Up to the Family Resources Survey, Department for
Work and Pensions, UK.

28. Disabilities/Limitations, National Center for Health Sta-
tistics, http://www.cdc.gov/nchs/fastats/disable.htm.

29. The Market for Accessible Technology—The Wide Range
of Computer Abilities and Its Impact on Computer
Technology, Forrester Research, Inc. (2003), http://
www.microsoft.com/enable/research/phasel.aspx.

30. S. Trewin and H. Pain, “Keyboard and Mouse Errors Due
to Motor Disabilities,” International Journal of Human-
Computer Studies 50, No. 2, 109-144 (February 1999).

31. S. Trewin, “Extending Keyboard Adaptability: An Inves-
tigation,” Universal Access in the Information Society, in
press.

32. R. Kjeldsen, “Head Gestures for Computer Control,”
Proceedings of the IEEE ICCV Workshop on Recognition,
Analysis and Tracking of Faces and Gesture—Real Time
Systems (RATFG-RTS ‘01), Vancouver, BC, Canada, July
13-August 13, 2001, IEEE Press, New York (2001), pp.
61-67.

33. R. Kjeldsen, A. Levas, and C. Pinhanez, “Dynamically
Reconfigurable Vision-Based User Interfaces,” Machine
Vision and Applications 16, No. 1, pp. 323-332 (2004).

34. J. Brewer, Web Accessibility Initiative (WAI), World
Wide Web Consortium, http://www.w3.org/WAI/.

35. W. Chisholm, G. Vanderheiden, and 1. Jacobs, Web
Content Accessibility Guidelines 1.0, World Wide Web
Consortium (May 5, 1999), http://www.w3.org/TR/
WCAG10/.

36. Section 508 Standards, Center for IT Accommodation
(CITA), Office of Governmentwide Policy, U.S. General
Services Administration, http://www.section508.gov/
index.cfm?FuseAction = Content&ID =12.

37. J. Maeda, K. Fukuda, H. Takagi, and C. Asakawa, “Web
Accessibility Technology at the IBM Tokyo Research
Laboratory,” IBM Journal of Research and Development
48, No. 5/6, 735-748 (2004).

38. B. Leporini and F. Paterno, “Increasing Usability when
Interacting through Screen Readers,” Universal Access in
the Information Society 3, No. 1, 57-70 (March 2004).

39. J. Mankoff, A. Dey, U. Batra, and M. Moore, “Web
Accessibility for Low Bandwidth Input,” Proceedings of
the Fifth International ACM SIGCAPH Conference on
Assistive Technologies (ASSETS 2002), Edinburgh, Scot-
land, UK, July 8-10, 2002, ACM, New York (2002), pp.
17-24.

40. Beyond Accessibility: Treating Users with Disabilities as
People, Neilson Norman Group (November 11, 2001),
summary available at http://www.useit.com/alertbox/
20011111.html.

41. J.J. Powlik and A. I. Karshmer, “When Accessibility
Meets Usability,” Universal Access in the Information
Society 1, No. 3, 217-222 (June 2002).

42. V. L. Hanson, “Taking Control of Web Browsing,” New
Review of Hypermedia and Multimedia 10, No. 2, 127-
140 (December 2004).

43. J. Gunderson, “W3C User Agent Accessibility Guidelines
1.0 for Graphical Web Browsers,” Universal Access in the
Information Society 3, No. 1, 38-47 (March 2004).

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

44. 1. Jacobs, J. Gunderson, and E. Hansen, User Agent
Accessibility Guidelines, World Wide Web Consortium
(October 16, 2002), http://www.w3.org/TR/2002/
PR-UAAG10-20021016/.

Accepted for publication January 24, 2005.
Published online July 13, 2005.

Vicki L. Hanson

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (vlh@us.ibm.com). Dr.
Hanson is a research staff member and manager of the
Accessibility Research department at the Thomas J. Watson
Research Center. She received a B.A. degree in psychology
and speech pathology and audiology from the University of
Colorado in 1974, and M.A. and Ph.D. degrees in cognitive
psychology from the University of Oregon in 1976 and 1978,
respectively. She worked as a postdoctoral fellow in the
Laboratory of Language and Cognition at the Salk Institute and
then as a research associate at Haskins Laboratories in New
Haven before joining the IBM Research Division in 1986. She
is active in the ACM (Association of Computing Machinery)
organization and currently serves as Chair of the ACM Special
Interest Group on Accessible Computing (SIGACCESS). She is
a recent ACM Fellow.

Jonathan P. Brezin

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (brezin@us.ibm.com).
Dr. Brezin is a research staff member in the Enhanced Web
Experience department at the Thomas J. Watson Research
Center. He received a B.S. degree in mathematics from Cornell
University in 1963 and a Ph.D. degree in mathematics from
the City University of New York in 1967. He served on the
faculties of the University of Minnesota and the University of
North Carolina before joining IBM in 1983 to work on the 801
minicomputer project.

Susan Crayne

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (crayne@us.ibm.com).
Ms. Crayne is a software engineer in the Accessibility
Research department at the Thomas J. Watson Research
Center. She received a B.S. degree in mathematics from CUNY
City College, where she was a member of Phi Beta Kappa. She
then became Manager of Application Development tools at
Auragen Systems, a startup computer manufacturer.
Subsequently, she ran a software consulting business
specializing in Windows development and image-processing
applications. After joining IBM in 1997, she co-designed and
developed a tool for teaching mathematics and science to
middle school students. Since 2000 she has focused her efforts
on improving the accessibility of the Web.

Simeon Keates

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (Isk@us.ibm.com). Dr.
Keates is a research staff member in the Accessibility Research
department at the Thomas J. Watson Research Center. He
received B.A. (with honors) and M.A. degrees in engineering
and a Ph.D. degree in rehabilitation engineering from the
University of Cambridge, UK. After completing his Ph.D.
degree in 1997, he continued his research at Cambridge until
2003, when he joined IBM. His work both at Cambridge and
IBM has focused on computer access for motion-impaired
users and also on the broader issues of inclusive design. Dr.
Keates is a member of the Institute of Electrical and
Electronics Engineers and the Association of Computing
Machinery.

HANSON ET AL

587

Rick Kjeldsen

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (fcmk@us.ibm.com). Dr. Kjeldsen
received his B.S.E.E degree (with great distinction), from
Clarkson University in 1981, his M.S. degree from the
University of Massachusetts in 1987, and his Ph.D. degree
from Columbia University in 1997. He was a member of the
Exploratory Computer Vision department at the Thomas J.
Watson Research Center from 1987 through 2001, at which
time he joined the Accessibility Research department. He has
published and filed patents on a wide range of subjects in
artificial intelligence, computer vision, and perceptual user
interfaces. His current research is aimed at the application of
human-centric computer vision to create advanced
multimodal user interfaces for both general and special needs
users.

John T. Richards

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ajtr@us.ibm.com). Dr.
Richards is a research staff member and manager at the
Thomas J. Watson Research Center. He received a B.A. degree
in psychology from Alma College in 1974, and M.S. and Ph.D.
degrees in cognitive psychology from the University of Oregon
in 1976 and 1978, respectively. He joined the IBM Research
Division in 1978. He is a Fellow of the Association of
Computing Machinery.

Cal Swart

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (cals@us.ibm.com). Mr.
Swart is a senior software engineer in the Enhanced Web
Experience department at the Thomas J. Watson Research
Center. He received a B.S. degree from Calvin College in 1969
and joined IBM in 1982. He has served in research and
programming roles in numerous graphics, networking, K-12
internet access, and PDA (Personal Digital Assistant)
programming projects. Most recently, he has been
concentrating on Web accessibility and portal applications.

Shari Trewin

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (trewin@us.ibm.com).
Dr. Trewin is a research staff member in the Accessibility
Research department at the Thomas J. Watson Research
Center. She received B.Sc. (with honors) and Ph.D. degrees in
computing science and artificial intelligence from the
University of Edinburgh, Scotland, in 1991 and 1998,
respectively. After completing a Ph.D. degree, she continued
her research at the University of Edinburgh until 2000, at
which time she joined IBM. She serves as co-editor of the
Universal Remote Console suite of standards for remote
control of devices and services, developed within the INCITS
(International Committee for Information Technology) V2
standards committee. M

588 HANSON ET AL IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

