
Improving Web accessibility
through an enhanced
open-source browser

&

V. L. Hanson

J. P. Brezin

S. Crayne

S. Keates

R. Kjeldsen

J. T. Richards

C. Swart

S. Trewin

The accessibilityWorks project provides software enhancements to the Mozillae Web

browser and allows users to control their browsing environment. Although Web

accessibility standards specify markup that must be incorporated for Web pages to be

accessible, these standards do not ensure a good experience for all Web users. This

paper discusses user controls that facilitate a number of adaptations that can greatly

increase the usability of Web pages for a diverse population of users. In addition to

transformations that change page presentation, innovations are discussed that enable

mouse and keyboard input correction as well as vision-based control for users unable

to use their hands for computer input.

INTRODUCTION

Accessibility technology is of value not only for

people who have disabilities, but also for a

significant number of workers, many of whom

would not consider themselves as disabled or as

having a medical condition, but who nevertheless

experience difficulty reading information on a

computer screen or accurately using a keyboard or

mouse. Such technology has the potential to enable

people with a broad spectrum of abilities, who may

currently be unemployed or underemployed, to fully

participate in the workforce.

The World Wide Web has become an indispensable

source of information and communication both

inside and outside the workplace. For the past few

years, work at the IBM Thomas J. Watson Research

Center has been directed at creating ways to make

the Web more usable for persons with vision and

motor limitations. This effort began as a partnership

between IBM Corporate Community Relations and

organizations serving older adults. Since then, the

project has expanded to address the needs of other

groups of individuals who have vision and motor

limitations that adversely impact their ability to use

a computer. Unforeseen when the project began was

the software’s additional use by low-literacy and

limited-English-proficiency students in job-training

classes.

This paper begins with background information on

the types of problems that may be experienced by

Web users, and then describes the Web Adaptation

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 573

Technology project, the forerunner of the accessi-

bilityWorks project. The Web Adaptation Technol-

ogy project provided extensions to the Internet

& Our early pilot studies with
users revealed that people
prefer to use a standard
browser with accessibility
adaptations added &

Explorer** browser on the Microsoft Windows**

platform. This paper continues with a presentation

of accessibilityWorks, a new open-source develop-

ment effort initially being tested on the Linux**

platform, which is an outgrowth of that earlier

project. The accessibilityWorks project specifically

took the findings from the Web Adaptation Tech-

nology work and used them in implementing similar

capabilities in the Firefox** and Mozilla** open-

source browsers to provide cross-platform func-

tionality. As will be discussed, accessibilityWorks

also provides expanded mouse and keyboard

adaptations.

WEB USABILITY
Problems with computer access due to vision and

motor limitations can be addressed by various

medical, hardware, and software approaches. Large

monitors and eyeglasses, for example, can certainly

help with visual acuity problems, but these measures

may not be sufficient. Consider the case of bifocals

worn by many older adults. These glasses can

provide some help with acuity difficulties, but

wearers of bifocals who spend much time at the

computer tend to develop stiff necks from tilting their

heads at an awkward angle. This is exacerbated for

people with particularly low vision—caused, for

example by macular degeneration—because they

need to sit very close to computer screens and often

develop shoulder and back pain as a result.

Current browsers and desktop environments can

adjust some aspects of content presentation to

alleviate certain difficulties when reading text.

However, although users are often aware that some

font enlargement capability is available through the

browser, few are aware of browser options for

changing colors, font styles, and screen magnifica-

tion, or for creating style sheets.
1

This lack of

awareness is not particularly surprising, given that

the options often are configurable only by following

a complex series of menu choices and dialog boxes.

For example, changing the color of text on a Web

page by using Internet Explorer’s built-in features

requires knowing that Internet Options is the

required menu selection from the Tools menu, then

further being able to navigate to the Colors dialog

box, deselect the Use Windows colors checkbox, set

the desired colors, and then return to the Internet

Options menu selection to indicate on the Acces-

sibility dialog box that specified Web page colors

should be ignored. This is a fairly complex task

requiring knowledge of computer software, the

ability to see the small boxes to be selected, and the

dexterity to click accurately.

Some motor difficulties can be addressed by using

the adjustments to mouse and keyboard sensitivity

built into current computer operating systems. As

with page presentation changes, the use of such

adjustments requires that users be aware of the

existence of these options, know where they are

located in the menu structure, and be able to carry

out the steps needed to set the features. Users who

have disabilities that impact their hand movement

can have great difficulty actually using these tools.
2

Consider the case of key debounce time. Persons

with tremors, for example, may depress one key

multiple times in rapid succession, causing repeated

letters to appear when typing. Microsoft Windows

allows users to set a debounce parameter to control

the length of the time period in which repeat keys

will be filtered out. In order to set this parameter,

however, users must not only know that this feature

exists and how to find it in the Control Panel

options, but must also be able to navigate the steps

required for setting the feature, which in turn

requires the clicking of tiny graphical user interface

(GUI) buttons and checkboxes.

There are special keyboards and mice available to

ease difficulties with double-clicking and scrolling,

but, in fact, these special devices provide only

partial solutions to the problems experienced by

older adults. Accurate mouse usage, for example,

requires visual acuity; people with poor vision have

mouse difficulties whether they possess good motor

control or not.
3

Scrolling is another example of a

task that is particularly difficult for reasons related

to a combination of visual and motor factors.

Visually, the small size of the scroll bar, particularly

the target box, can be problematic. In terms of motor

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005574

skills, scrolling requires the complex sequence of

moving the mouse to the small target box, holding

down the mouse button, and then continuing to

hold down the button while moving the mouse in

the direction needed for scrolling. Solutions that

address difficulties in only one of these aspects of

scrolling may not succeed.

Considering all the preceding difficulties, we began

our project to address the need to allow

individuals to tailor Web interactions to their

particular combination of requirements. The goals

as the project began focused on meeting changing

user needs resulting from failing vision and limited

dexterity due to aging. The project did not attempt to

address either limited hearing, which was not

considered by users to negatively impact their Web

experience,
4

or blindness, for which other Web

accessibility software exists.
5

As the project evolved,

however, it became clear that the needs of the

original older-adult user population were not

unique. In particular, problems with content size,

color, and other display characteristics were

typical of many users with vision limitations,

regardless of age and the specific medical condition

that may have led to the limitation. Similarly, motor

disabilities, regardless of origin, created keyboard

and mouse problems similar to those experienced by

older adults. As a result, at present the IBM

Corporate Community Relations project has ex-

panded to include approximately equal numbers

of members of organizations serving older adults

and organizations serving persons with

disabilities.
6

Web adaptation technology: Internet Explorer

browser extensions

The project’s software architecture was based on the

need for client-side transformations combined with

a server-side database for storing user preferences.

As detailed elsewhere,
7,8

an original attempt to use a

server intermediary for providing the transforma-

tions was inadequate with respect to security,

copyright compliance, system responsiveness, and

transformation accuracy. These shortcomings led to

this initial approach being abandoned. A database

on the server was still needed, however, for storing

user preferences because most people used the

software in a shared computing environment. Thus,

saving preferences on the local client machines was

not a viable option.

The software needed to be used by people for access

to the entire Web. Thus, it could not be limited to

sites specifically designed or annotated for accessi-

bility. Key to the software design was the fact that

many users experience a variety of physical and

cognitive limitations that may impact their Web

access. These limitations are made more complex by

the fact that they can occur in combination and can

fluctuate in severity from hour to hour and day to

day.
9

Thus, the content transformations needed to

work well in combination with each other. More-

over, the sorts of disabilities a particular user will

have cannot easily be known in advance. Therefore,

a large collection of possible transformations was

needed. The transformations implemented were

suggested both by interviews with users and by the

literature.
10–14

These transformations included op-

tions for:

� Enlarging page content—for example, magnifying

pages and enlarging specific text or images
� Enhancing text—for example, changing colors,

letter and line spacing, and text style
� Reducing visual clutter—for example, stopping

animations, hiding backgrounds, and reformatting

pages for a single-column layout
� Enlarging browser controls—for example, enlarg-

ing the cursor and scrollbar
� Adapting keyboard and mouse settings

Moreover, the interface for selecting these trans-

formations needed to be accessible by people with a

wide range of disabilities.

In addition, our early pilot studies with users

revealed that people prefer to use a standard

browser with accessibility adaptations added, rather

than a specialized browser that has specific buttons

for low vision but that offers a more limited set of

features overall. Users who had previous Web

experience did not like a specialized browser due to

lack of the functionality that they were accustomed

to using. Instructors who taught Web skills to new

users did not like the fact that a specialized browser

did not mesh well with existing teaching materials.

Based on this feedback, the Web Adaptation

Technology software was built as extensions to the

Internet Explorer browser.

Finally, because many users who were expected to

use the control interface were new to computing, it

had to be very simple and straightforward to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 575

operate. The resulting interface was a band appear-

ing at the bottom of the browser that could be

hidden after preferences were set. The band

comprised a series of panels, one panel for each of

the different options that could be set.

Mechanisms for providing added functionality
Functionality was added to the browser through a

variety of means, including the automatic setting of

browser and operating-system features (including

the use of programmatically constructed style

sheets), manipulations of the browser’s underlying

Document Object Model (DOM), and the launching

of background tasks to monitor events and provide

transformation services. Each of these mechanisms

will be discussed in turn.

Browser and operating system features

The Web Adaptation Technology software provides

convenient and uniform access to browser and

operating-system settings for non-expert computer

users or persons who might have difficulty with the

physical or cognitive complexity of changing these

settings. Examples of Web page transformations

using the underlying browser and operating-system

features include text style changes, text size

increases (up to the limits of what the browser

directly supports), and the hiding of images, back-

grounds, and animations. Programmatically gener-

ated style sheets are used to implement page

magnification and increased letter and line spacing.

Input adaptations, including allowing use of only

one hand as well as keystroke, mouse click, and

typing adjustments, all use operating-system fea-

tures.

Document Object Model

Certain dynamic visual changes to a Web page are

accomplished in the Web Adaptation Technology

software by means of manipulation of the browser’s

internal model for the page, the DOM. The DOM is

structured as a tree in which all the elements of the

page are represented, one element being a child of

another within which it is contained. The Internet

Explorer implementation uses a Browser Helper

Object written in Java**, which gives the program

access to the DOM after it is constructed (so that any

JavaScript** or other dynamic changes to the

document have already been made) but before it is

displayed by the browser. The software is thereby

able to manipulate the representation that will

determine exactly what the user will see, before the

user sees it. As a result the software does not need to

be concerned with how the source HTML (Hypertext

Markup Language) is parsed or dynamically gen-

erated. It simply deals with the content after the

DOM is constructed. Examples of DOM-based visual

transformations include changing colors and

changing page layout (linearization). An important

non-visual transformation involves chunking large

text blocks into smaller ones in order to get a better

idea of where the mouse is pointing. This chunking

forms the basis of the Speak Text feature for reading

text aloud and the Banner Text feature for displaying

selected text in very large letters at the top of the

browser window.

Background Tasks

The remaining functions in the Web Adaptation

Technology software are accomplished through

background tasks, which are launched as the

software is started. Certain keyboard adjustments

are handled by a background task, the Dynamic

Keyboard,
15

that monitors keystroke events, com-

pares this event stream to a typing model, and then

makes adjustments to keyboard features in the

operating system. (These features are described in

more detail later in this paper.) Image enlargement

of GIF (Graphics Interchange Format) and JPEG

(Joint Photographic Experts Group) images and

sharpening of JPEG images also involve a back-

ground task. This task retrieves the images,

decompresses them, and enlarges them using bi-

linear interpolation to eliminate the jagged appear-

ance that results from a simple scaling process. If

requested, the images are also sharpened by

enhancing the contrast of edges within the image.

The images are then compressed and displayed.

Status of the Web Adaptation Technology project

The Web Adaptation Technology software has been

in use for over a year by a number of nonprofit

organizations sponsored by IBM Corporate Com-

munity Relations. The software has been translated

into several languages including Spanish, French,

German, Italian, Brazilian Portuguese, Chinese,

Korean, and Japanese, and it is used not only in the

United States but in many other countries world-

wide. Recently, it has been developed into a

generally available IBM services offering named

WebAdapt2Me.
16

User feedback was gathered during testing with the

Web Adaptation Technology to learn more about

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005576

what users find beneficial and to determine what

further enhancements to the functionality might

prove helpful. For example, user comments helped

us refine the Speak Text feature, extend the range

of transformations within some existing features

(e.g., adding an option for increasing text size

beyond what the browser could support directly),

and enhance feature usage through keyboard

navigation.

Importantly, what started as an application for

older adults is now being used by many people

who come from communities other than the aging

population. That this software might serve the

needs of users with poor vision, regardless of age,

is not surprising. That it can serve the needs of

users with keyboarding difficulties, regardless of

age, might also have been expected. What is

surprising, however, is the extent to which this

technology has been adopted by other user groups,

including low-literacy and limited-English-

proficiency students, and young adults with autism,

developmental delays, or attention issues. The

Speak Text feature is particularly popular among

low-literacy users, and several of the text presen-

tation features have also been adopted for initially

unforeseen purposes. For example, the letter and

line spacing feature was designed to reduce

visual clutter and provide older readers with more

white space between text characters. However,

reducing visual clutter also proved useful for

students with developmental delays or attention

problems. Surprisingly, these students often used

the page magnification function to reduce the

amount of information presented on the screen.

More detailed information about these various uses

of the Web Adaptation Technology software is

reported elsewhere.
6,7

Firefox and Mozilla browser extensions with

accessibilityWorks

Although the Internet Explorer implementation

allowed for rapid prototyping because it was

possible to use many Windows native functions, the

use of these native functions obviously restricted the

tool specifically to the Windows operating system.

One of the original project goals, however, was to

create a cross-platform solution.
17

For the follow-on

accessibilityWorks project, therefore, development

has focused on the Firefox and Mozilla browsers,

which do provide a multiplatform solution.
18,19

In

this work, Web page transformations are made

within the existing Mozilla programming model in

& What started as an application
for older adults is now being
used by many people who
come from communities other
than the aging population &

order to minimize platform dependencies. The

growing popularity of Linux has also prompted us to

further extend some of our Windows-based appli-

cations, for example, the Dynamic Keyboard and

camera-based user interfaces (discussed later), to

run on the Linux platform.

For accessibilityWorks, the goal was not simply to

recreate features available in the Web Adaptation

Technology software, but to expand upon those

features. In particular, additional capabilities for

mouse correction and vision-based interfaces are

being incorporated into the project.

In addition, accessibilityWorks is intended to aug-

ment existing accessibility development work for

the Linux platform. The growing popularity of Linux

has created a developer community that has worked

to create accessibility tools for that platform.
20–22

Although some applications for Linux, such as

Mozilla, can run on many platforms, others are

native to the Linux platform and are often built into

the desktop, such as the accessibility applications

included in GNOME**.
22

Because the accessibility-

Works input enhancements are closely tied to the

operating system, some Linux-specific development

was required to implement these features, as will be

discussed later in this paper.

Figure 1 shows the architecture for the

accessibilityWorks implementation for Firefox and

Mozilla. The elements of this design will be

discussed in the remainder of this paper.

Transformations to page presentation

Mozilla provides a self-contained application-

development and deployment environment. Appli-

cations written for this environment, namely

browser extensions, run on all the platforms on

which Mozilla runs. This means that most of the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 577

code only needs to be written once. In particular, the

XML (Extensible Markup Language) User Interface

Language (XUL**) feature of this environment

permits the runtime assembly of complex user

interface elements.
23

From XUL, one can call Java-

Script functions to accomplish other tasks, such as

initialization, event handling, and DOM modifica-

tion. The overlay feature of XUL also allows the

characteristics of the parts of the browser that frame

the browser document window, such as menus and

toolbars, to be changed. In Mozilla terminology,

these elements are called the chrome.

XPCOM is a feature of the Mozilla environment that

allows developers to perform lower-level tasks that

cannot be done in XUL or JavaScript.
24

(XPCOM

stands for Cross-Platform Component Object Model,

and is somewhat similar to Microsoft’s COM or

Component Object Model.) Mozilla comes supplied

with a large variety of XPCOM objects that can be

instantiated from JavaScript. These objects currently

allow preferences to be retrieved and set, and files to

be read and written. Developers can also write their

own XPCOM objects.

In many ways, Mozilla’s application-development

environment allowed simplification of the Web

Adaptation Technology architecture created for the

Internet Explorer implementation. For example, we

had to manage a series of dialogs to represent each

of the panels in the band. In the current version,

Mozilla’s XUL language does much of this work for

us. XUL provides a user-interface element called a

deck. Each panel is a member of the deck and has an

index associated with it. Panels can be brought to

the top of the deck (that is, made viewable) simply

by changing the current index of the deck.

The panels are designed to be easily used and to

allow each user to try out transformations to

determine their suitability and effectiveness.

Figure 2 shows an example Web page (2A) and then

versions of that page with various control-panel

features applied. Thus, Figure 2B shows the Speak

Text feature, in which content is read aloud. Figures

2C and 2D then show the results of the application

of specific page transformations to the original page.

More specifically, in Figure 2C, Banner Text is

shown. Figure 2D shows the page with text, back-

Figure 1
Design elements of the accessibilityWorks Mozilla implementation

Client

http Request

http Response

• Create ID
• Login
• Set profile
• Get profile

Mozilla

User
Inputs

LDAP DB2

WebSphere
Application Server

Authentication
User Profiles

Settings Toolbar

Mozilla Preference
Transforms
• Text style
• Color contrast
• Animation removal

Document Object Model
(DOM) Transforms
• Line spacing
• Letter spacing
• Transparent GIF repair

Native Code Transforms
• Speak Text
• Image enlargement

ZoomManager Transform:
Text Size

XUL Transform:
Banner Text

ViaVoice TTS

Image Processor

Keystroke and
Pointer Analysis

OS Keyboard
Settings

Vision-based Interaction

World Wide
Web

Keyboard and
Mouse Input

Speech XPCOM

Automatic Configuration

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005578

Figure 2
Transforming a Web page for accessibility: (A) the Web page with no transformations applied; (B) application of
the Speak Text transformation from accessibilityWorks; (C) the original Web page with the Larger Text and Banner
Text transformations applied; and (D) the original Web page with colors changed.

A

B

C

D

“An extraordinary project between the Egyptian
government and IBM has created Eternal Egypt, an
unprecedented achievement …”

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 579

ground, and link colors all changed. Figure 3 uses

the same page to show an example of image

enlargement.

Firefox allows users to change Web page color

preferences by accessing the Options dialog box on

the Tools menu. There are fewer steps in the Firefox

Fonts and Colors option than in the comparable

Internet Explorer sequence, but modifications do

still require that users know that colors can be set,

know about terms such as ‘‘unvisited link,’’ and

have both the vision and dexterity required to set

these options by using small checkboxes. As shown

in Figure 2D, the colors buttons provided by the

accessibilityWorks interface greatly simplifies this

task.

One useful feature of the Mozilla application

environment is that the DOM is extended to the

chrome. A tool called the DOM Inspector is included

with Mozilla. By using this tool one can start at the

DOM node whose ID is main-window. (This is the

main window of the browser’s chrome, not the

window of the current Web page.) One can then

traverse the tree all the way down to the node whose

ID is browser, which corresponds to the Web page

document, and beyond. Along the way, changes can

be made to either the chrome or the document. For

accessibilityWorks, the chrome was modified to

create the settings band that was originally imple-

mented in the Internet Explorer version as a separate

dynamic link library (DLL). This technique was also

used to increase the font size of the menus and to

place a custom icon on the toolbar.

Figure 3
The original Web page from Figure 2 with an image enlarged. An image is enlarged when a user selects
this option and then points the mouse at an image.

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005580

The Speak Text functionality in accessibilityWorks

is implemented as an XPCOM object, with calls to

functions in the IBM ViaVoice* Text-To-Speech

(TTS) library.
25

In Windows, an XPCOM object is a

DLL, whereas in Linux, it is a shared library. The

TTS XPCOM functions are directly callable from

JavaScript, and in turn make calls to the IBM speech

API (application programming interface), which is

embodied as ibmeci.dll on the Windows platform,

and as libibmeci.so on the Linux platform. The

TTS XPCOM object is completely platform inde-

pendent and thus only has to be recompiled to work

on each platform.

The programming of DOM transformations is similar

in Mozilla to the equivalent code in the Web

Adaptation Technology software. Working in Java-

Script though has meant that this implementation is

significantly more compact than the Internet Ex-

plorer implementation in Java. This advantage is a

direct result of Mozilla’s XUL-based architecture,

which allows the use of scripts that gain control

when the page is loaded, much as Internet Explor-

er’s Browser Helper Objects do. The key point is that

the scripts do not have to be inserted into the pages

themselves before the pages are parsed; the scripts

are part of the browser’s definition and are run on

an event-driven basis. In addition, the user-interface

event handling provided by Mozilla allows signifi-

cantly simpler programming because fewer handlers

are needed and they are also less complex.

Initial testing of accessibilityWorks was carried out

on Mozilla, and accessibilityWorks currently runs on

Mozilla Versions 1.6 and 1.7.3. With the release of

Firefox 1.0 the functionality is now being moved to

Firefox, which will soon be supported as well.

Keyboard and mouse assistance

The transformations of page presentation discussed

so far have aimed at improving overall usability for

users who have difficulties reading the content of a

Web page. However, reading content is only one

aspect of a successful Web experience. Typing

words for a Web search, typing e-mail, and

completing online forms all require the ability to use

a keyboard. In addition, Web navigation is critically

dependent on the ability to use a mouse to point and

click. These features of a Web interface can create

severe difficulties for persons who have a motor

impairment.
26

For example, in the case of older

adults it is possible, even likely, that users may have

arthritis in their hands, making it difficult to produce

the fine motor movements required to touch-type or

to operate a mouse button. Moreover, conditions

& Reducing visual clutter also
proved useful for students with
developmental delays or
attention problems &

such as Parkinson’s disease and cerebral palsy are

strongly associated with involuntary tremors and

uncontrolled movements. Even something as com-

mon as a bone fracture or repetitive strain injury can

lead to difficulties typing or using a mouse.

According to recent government figures, approx-

imately 10 percent of working-age, non-institution-

alized adults have significant long-term motor

limitations.
27,28

A recent commercial study sug-

gested that more than a quarter of working-age

adults experience dexterity limitations and would

benefit from using accessible computer technol-

ogy.
29

To address these issues, the accessibility-

Works project includes options for aiding both text

(keyboard) and pointer-based (mouse) input. These

common user-input problems are discussed in the

next section.

Common user-input difficulties
Common keyboard input difficulties include press-

ing and holding a key too long, difficulty holding

down one key while pressing another, pressing two

keys at the same time, pressing a key multiple times

when only a single press was meant, and pressing

the wrong key.
30

Many operating systems, including

Windows, UNIX**, and Linux, offer mechanisms for

adjusting key repeat rates and debounce thresholds

that address certain of these difficulties. These

mechanisms are specifically built into the Windows

operating system. On UNIX and Linux systems they

are provided by the accessX feature of the X Window

System**. Each platform offers essentially the same

keyboard access features, but implements them in

different ways. For example, Windows systems

maintain two key-repeat delay values, one of which

is associated with the Windows accessibility fea-

tures and overrides the other value when accessi-

bility features are activated. In contrast, accessX

uses a single key-repeat delay value. The accessX

features tend to offer greater sensitivity and a greater

range of available values than those provided in

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 581

Windows. For example, Windows XP offers four

key-repeat delay values in the keyboard control

panel and five different values in the accessibility

& In many ways, Mozilla’s
application-development
environment allowed
simplification of the Web
Adaptation Technology
architecture created for the
Internet Explorer
implementation &

control panel. Together these enable delays of 250,

300, 500, 700, 750, 1000, 1500 and 2000 msec.

Repeats can also be turned off completely. AccessX

provides values in the range 100–1510 msec, in

increments of 10 msec, plus the ability to turn off

repeats.

However, comparatively few users know about the

existence of these options, and even fewer know

how to adjust them, much less what the optimal

settings are for their own needs. To further

compound the situation, a user’s optimal settings

may vary over the course of the day, from early-

morning alertness to post-lunch fatigue. Often users

have to adjust the settings by trial and error, and this

can lead to a strategy known as satisficing, that is,

finding a solution that is just about satisfactory, but

far from ideal.

Mechanisms for correcting common user-input

difficulties

In the Web Adaptation Technology software, several

keyboard and pointing options were provided. Some

of these were explicitly provided as settings under

direct user control. An example is the One Hand

feature that eliminates the need to hold keys down

while pressing other keys. Setting the One Hand

option turns on the StickyKeys functionality in the

operating system. In other cases, such a simple

setting of keyboard adjustments was not possible.

Specifically, for those options where a range of

settings are available and where users typically do

not know their own ideal settings, automatic

adjustment was implemented through the Dynamic

Keyboard application.
15

Consider, for example, the

case of debounce time that was mentioned earlier.

Certain motor disabilities cause users to depress one

key multiple times in rapid succession, creating

repeated letters when typing. The debounce setting

available in many operating systems can filter out

such repeated keystrokes by controlling the length

of time after a given keystroke before another typed

letter will be accepted. In order to use the debounce

setting, though, users must know about this feature,

be able to find and set it through menus and dialog

boxes, and be able to specify the required debounce

time in milliseconds. The Dynamic Keyboard sim-

plifies this process by automatically detecting the

need for a debounce adjustment and then setting

debounce parameters appropriate for the user. Most

important, this software monitors typing behavior

throughout a user’s session. Thus, as typing needs

change, adjustments to typing features are continu-

ously updated.

At present the Dynamic Keyboard functionality

adjusts key repeat delays, repeat times, and bounce

thresholds. It has no user interface. The goal is to

perform adaptations that improve the user’s input

accuracy when problems are observed, but other-

wise remain unobtrusive. This is achieved by

monitoring specific aspects of a user’s keystrokes

and adjusting the appropriate keyboard accessibility

parameters accordingly. User studies have shown

these interventions to be remarkably effective

among users with noticeable keyboard difficulties,

and they have also proved quite popular with these

users.
15

Separate Dynamic Keyboard implementations have

been developed for Windows (used in the Web

Adaptation Technology software) and Linux sys-

tems with accessX (used in the accessibilityWorks

software). These have essentially identical func-

tionality, but each uses the native operating-system

features to implement the adaptations. This means

that the sensitivity of the response depends on the

sensitivity of the host system and necessarily reflects

any constraints imposed by the native operating

system. An example of such a constraint and its

effect on the Dynamic Keyboard’s effectiveness is

given in the following paragraph.

Specific Dynamic Keyboard experiments have been

performed with adjustments to the key repeat delay,

key repeat rate, and bounce thresholds.
15

These user

studies have suggested that the key-repeat delay

adjustments made by the Dynamic Keyboard are

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005582

appropriate, effective, and acceptable to users. This

adaptation thus represents an initial solution to the

single greatest keyboard accessibility barrier. The

current algorithm for automatic adjustment of key

repeat rates requires some improvement, however,

to account for the many compensatory strategies

people use. For example, bounce thresholds as

implemented in Windows have proved inappropri-

ate for automatic adjustment, and in general for

users with low error rates. This is partly because the

shortest available debounce setting in Windows is

500 msec, which is too long for most users, forcing

them to deliberately slow down their typing of

double letters. The Windows version of the Dynamic

Keyboard is therefore unable to respond appropri-

ately when a (more typical) debounce time of 50

msec is indicated. Activating the debounce feature

in Windows also prevents keys from repeating, and

many users find this side effect unacceptable. On

Linux systems, a more appropriate range of

debounce settings is available (0 to 910 msec in

increments of 10 msec), and there is no key-repeat

side effect. The debounce feature may therefore

prove more acceptable to Linux users.

New keyboard assistance, such as the automatic

filtering of multiple key presses, will also be

incorporated in accessibilityWorks. Users with poor

hand-eye coordination can find it difficult to position

their fingers precisely over the keyboard. As a result

it is quite common for them to press both the

intended key and an adjacent key at the same time.

Research has shown that careful analysis of the

number of times each key was pressed and released

can indicate which key was intended with 80

percent accuracy.
31

This functionality has been

referred to as OverlapKeys.

The success of the Dynamic Keyboard as an

approach to solving input difficulties suggests the

value of applying similar principles to other input

devices, such as the mouse. For example, should

the user accidentally click both the left and right

buttons at the same time, filtering like that used for

OverlapKeys can be applied. Research is currently

being performed to establish other areas of possible

assistance, and the resulting utilities will be incor-

porated into later versions of accessibilityWorks.

Camera-based user interfaces

In some user cases, even the types of adjustments

for keyboard and mouse correction discussed earlier

are not sufficient. Consider, for example, the case of

individuals with spinal cord injuries who are not

able use their hands well enough to control either a

keyboard or a mouse. Custom hardware can be built

for users with such disabilities, but this process is

expensive and time-consuming. Moreover, the

hardware can also become unsuitable if the needs of

the user change. Camera-based user interaction has

the flexibility to provide interfaces that are far more

universally accessible than such hardware-based

interactions.

Camera-based interfaces rely on visual recognition

of the user’s actions. Specific body movements can

take the place of buttons and pointing devices.

Unlike hardware devices, elements of a camera-

based interface can be rearranged easily to satisfy

different requirements or reconfigured to adapt to

different movement patterns. The result is an

interface that can be customized to match a user’s

current abilities.

Over the last several years IBM Research has

developed several systems targeted for users with

physical disabilities that take advantage of camera-

based interactions. Two of these have proven useful

and reliable and are being incorporated into

accessibilityWorks.

The TouchFree** Switch, released by Edmark in

1999, represents the simplest variant of a vision-

based interface. As shown in Figure 4, the TouchFree

Switch provides an alternative to the physical

switches often used by people with severe physical

disabilities to control so-called scanning interfaces. It

allows users to locate interactive regions in video

images of themselves and to train the system to

recognize specific changes in appearance in those

regions. Thereafter, when a region detects such a

change, it generates an event that can be used by the

scanning software to allow control of a full range of

computing activities. In this way users can interact

with the computer by a tip of the head, a shrug of the

shoulder, finger movement, or nearly any other body

movement that produces a change visible to a video

camera. These ‘‘buttons’’ can be repositioned or

trained to recognize a different movement in a few

seconds, allowing an interface that can adapt easily to

meet a user’s immediate needs.

In other applications, tools were developed to

control the mouse pointer. In one version, the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 583

camera was placed near the computer screen

looking back at the user. By monitoring the move-

ment of users’ faces, the system was able to position

the pointer on the screen with character-level

accuracy, such that users felt as though they were

actually pointing with their noses.
32

The accessibilityWorks project will incorporate these

capabilities as alternative input methods for pointing

and clicking. Using a camera connected by USB

(Universal Serial Bus), users will be able to position

the pointer by aiming their faces, and then ‘‘click’’

either by allowing the pointer to dwell at a location

on the screen or by moving some other body part.

Vision-based input requires a small amount of setup

on the part of users or their facilitators. Because

face-finding algorithms are not sufficiently reliable

under all the imaging conditions where accessibili-

tyWorks may be used, users must tip their heads

left-and-right three times at the beginning of each

session (or whenever face-tracking performance

degrades). This distinctive motion is easy to

recognize and provides the system with sufficient

information to begin tracking the user’s face. If a

separate movement is to be used to generate the

click, then an interactive region, similar to those

used in the TouchFree Switch, can be positioned in

the video image such that users can ‘‘touch’’ that

region of the image with some part of the body. If

the system is being used in an environment where

other movements may appear in the interactive

region, users can demonstrate a specific movement

to the system so that only that touch elicits a click.

For example, if users want to use a shoulder shrug

to click, they may select a region just above the

shoulder such that the shoulder moves into it when

they shrug. If they are concerned about people

triggering the button by walking behind them, they

can train the system to be more specific by

demonstrating the shrug.

These tools provide basic mouse function for users

with certain physical disabilities. Our goal is to take

better advantage of the flexibility of camera-based

interaction to provide a richer set of interactions for

users with a wider range of limitations. Our current

vision system can recognize many different input

signals in user body movements, but the way this

capability is provided to the user is limited. We can

provide more flexibility by classifying these control

signals according to the dimensionality of the

information they contain (i.e., zero-, one-, two-, or

three-dimensional information). If the inputs re-

quired by an application are also so classified, then

user signals can be mapped to application inputs of

the same type, allowing users to control an

application with whatever body movement they

would like. For example, users could control pointer

movement using facial aiming for a time. Should

they tire, they could switch to moving the hand

within a region on a surface.

Ideally, to take full advantage of vision-based

interaction the design of the browsing interface

should be modified. A good example involves link

selection. Typically, links are selected by two-

dimensional positioning of the pointer followed by a

click, but for some users accurate two-dimensional

positioning can be difficult. To create an interface

for such a user, the links on a page can be extracted

automatically and placed in an auxiliary window in

linear order. One of several one-dimensional posi-

tioning actions, such as an up/down tip of the head

or a lateral motion of a hand, can then be used to

select links.

Camera-based user interfaces require significant

software infrastructure. Image interpretation must

be fast and reliable, image buffer management and

display routines must be efficient and flexible, and

methods must be in place to assemble these building

blocks into useful, user-friendly components. A

comprehensive library of low-level image-process-

Figure 4
The TouchFree Switch allows users to control
input by moving any part of one’s body. In this picture,
the user is controlling input by tilting his head

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005584

ing routines and common high-level operations for

finding and tracking body parts is important. The

code must be efficient enough to handle at least 15

frames a second in order to support good quality

user response.

Over the last several years just such an infra-

structure has been developed under Windows.
33

This VI (Visual Interface) Architecture is now being

ported to Linux in such a way as to have a common

code base for both platforms. The bulk of the code is

already system-independent Cþþ. The GUI, which

serves as the control panel for applications, is being

moved to a cross-platform development toolkit.

Generic image display routines are often not fast

enough to support video rates, and camera inter-

faces vary significantly among systems. These

elements are optimized for each platform, then

encapsulated in VI objects, so that any camera-

based interface developed with the VI Architecture

can run on either platform without code changes.

CONCLUSION

Over the past few years, work at the IBM Thomas J.

Watson Research Center has been directed at devel-

oping tools to support computer use by persons who,

for various reasons, have difficulty using such

technology. The effort to improve Web access

discussed here is an example of one such project. The

hallmark of this work has been ongoing user

involvement and iterative testing throughout the

design and development process. Partnerships be-

tween IBM Corporate Community Relations and

nonprofit organizations provided the perfect envi-

ronment for this work. Through such partnerships

with organizations serving both older adults and

persons with disabilities, valuable feedback was

received throughout the development process to

enable the design of a system that would meet user

needs.

The Web Adaptation Technology application, a

platform-dependent set of extensions for Windows

Internet Explorer, was developed first. Its successor,

accessibilityWorks, provides a cross-platform im-

plementation using the Firefox/Mozilla browser.

This new software builds on the lessons learned

from the initial work and expands its capabilities. It

is not a port of the earlier software, but rather a new

implementation with additional functionality. In

particular, it expands on the earlier work in the area

of input technologies through the addition of key-

board and mouse assistance as well as vision-based

user interfaces. The accessibilityWorks software is

& According to recent
government figures,
approximately 10 percent
of working-age,
noninstitutionalized adults
have significant long-term
motor limitations &

in early test stages on the Linux platform by persons

who have low vision, learning disabilities, spinal

cord injuries, and cerebral palsy.

The accessibilityWorks browser approach, which

allows users to control presentation and input, is

complementary to that involving the issue of Web

page compliance with accessibility standards and

regulations,
34–36

for which excellent tools have been

developed to help content providers.
37

In many

cases these guidelines do not directly impact page

presentation, but rather address issues related to

making Web pages capable of being rendered by

assistive technology devices such as screen readers.

The work described here takes a broader view of

Web accessibility. Rather than addressing Web page

compliance, this software provides for changes that

directly impact the user experience. The types of

page transformations and input adaptations dis-

cussed do not modify page sources. They simply

modify presentation and input on a computer as

requested by the user.

It is important for Web page authors to still adhere

to accessibility guidelines. Even with accessible Web

design, however, any one page cannot meet the

needs of each and every individual. The features

enabled by accessibilityWorks allow users to control

their Web experience to meet individual needs not

addressed by the guidelines (see, for example,

References 38–41). Thus, even well-designed pages

can be changed to meet a broader spectrum of user

needs than that addressed by the standards and

regulations,
42

thus increasing the number of people

who are able to use the entire World Wide Web with

ease. Taking a similar approach to that of the

W3C** (World Wide Web Consortium) guidelines

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 585

regarding User Agent Accessibility for browers,
43,44

accessibilityWorks allows individuals to have con-

trol over existing content on the open Web with

respect to both the way pages are presented and

how user input is provided.

ACKNOWLEDGMENTS
We acknowledge IBM Corporate Community

Relations (http://www.ibm.com/ibm/ibmgives/

about/index.shtml), particularly Stan Litow and

Paula Baker, for continuing support of this research

effort. We are also grateful to our early collaborators,

Peter Fairweather, Rich Schwedtfeger, and Sam

Detweiler, for their insights on this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of the
Mozilla Foundation, the GNOME Foundation, Sun Micro-
systems, Inc., Linus Torvalds, Riverdeep Interactive Learning
Limited, The Open Group, the Massachusetts Institute of
Technology, Microsoft Corporation, or the X Consortium, Inc.

CITED REFERENCES
1. V. L. Hanson, ‘‘Facing the Future: Including Elderly Users

When Considering Universal Access,’’ in Universal
Access in HCI: Inclusive Design in the Information Society,
Volume 4, C. Stephanidis, Editor, Lawrence Erlbaum
Associates, Inc., Mahwah, NJ (2003), pp. 394–398.

2. S. Trewin, ‘‘Configuration Agents, Control, and Privacy,’’
Proceedings of the ACM 2000 Conference on Universal
Usability (CUU 2000), Arlington, VA, November 16–17,
2000, ACM, New York (2000), pp. 9–16.

3. J. A. Jacko, A. B. Barreto, G. J. Marrnet, J. Y. M. Chu,
H. S. Bautsch, I. U. Scott, and R. H. Rosa, ‘‘Low Vision:
The Role of Visual Acuity in the Efficiency of Cursor
Movement,’’ Proceedings of the Fourth International ACM
Conference on Assistive Technologies (ASSETS 2000),
Arlington, VA, November 13–15, 2000, ACM, New York
(2000), pp. 1–8.

4. V. L. Hanson, ‘‘Web Access for Elderly Citizens,’’
Proceedings of the Workshop on Universal Accessibility of
Ubiquitous Computing (WUAUC’01), Alcácer do Sal,
Portugal, May 22–25, 2001, ACM, New York (2001), pp.
14–18.

5. IBM Home Page Reader 3.04, IBM Corporation, http://
www-3.ibm.com/able/solution_offerings/hpr.html.

6. V. L. Hanson and S. Crayne, ‘‘Personalization of Web
Browsing: Adaptations to Meet the Needs of Older
Adults,’’ Universal Access in the Information Society, in
press.

7. V. L. Hanson and J. T. Richards, ‘‘Achieving a Usable
World Wide Web,’’ Behaviour and Information Technol-
ogy, in press.

8. J. T. Richards and V. L. Hanson, ‘‘Web Accessibility: A
Broader View,’’ Proceedings of the Thirteenth Interna-
tional ACM World Wide Web Conference (WWW2004),

New York, May 19–21, 2004, ACM, New York (2004), pp.
72–79.

9. P. Gregor, A. F. Newell, and M. Zajicek, ‘‘Designing for
Dynamic Diversity—Interfaces for Older People,’’ Pro-
ceedings of the Fifth International ACM SIGCAPH Confer-
ence on Assistive Technologies (ASSETS 2002),
Edinburgh, Scotland, UK, July 8–10, 2002, ACM, New
York (2002), pp. 151–156.

10. Older Adults and Information Technology: A Compendium
of Scientific Research and Web Site Accessibility Guidelines,
National Institute on Aging, Bethesda, MD (2002).

11. A. Arditi, ‘‘Web Accessibility and Low Vision,’’ Aging &
Vision 14, No. 2, 2–3 (Fall, 2002).

12. K. V. Echt, ‘‘Designing Web-Based Health Information for
Older Adults: Visual Considerations and Design
Directives,’’ in Older Adults, Health Information, and
the World Wide Web, R. W. Morrell, Editor, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ (2002),
pp. 61–88.

13. S. J. Czaja and C. C. Lee, ‘‘Designing Computer Systems
for Older Adults,’’ in The Human-Computer Interaction
Handbook, J. Jacko and A. Sears, Editors, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ (2003), pp.
413–427.

14. S. Dailey, ‘‘Using Cognitive Aging and Vision Research to
Develop Senior-Friendly Online Resources,’’ AARP
(2004), http://assets.aarp.org/www.aarp.org_/articles/
research/oww/university/DaileySlides.ppt.

15. S. Trewin, ‘‘Automating Accessibility,’’ Proceedings of the
Sixth International ACM SIGACCESS Conference on
Assistive Technologies (ASSETS 2004), Atlanta, GA,
October 18–20, 2004, ACM, New York (2004),
pp. 71–78.

16. WebAdapt2Me, IBM Corporation, http://www-306.ibm.
com/able/solution_offerings/WebAdapt2Me.html.

17. P. G. Fairweather, V. L. Hanson, S. R. Detweiler, and R. S.
Schwerdtfeger, ‘‘From Assistive Technology to a Web
Accessibility Service,’’ Proceedings of the Fifth Interna-
tional ACM SIGCAPH Conference on Assistive Technolo-
gies (ASSETS 2002), Edinburgh, Scotland, UK, July 8–10,
2002, ACM, New York (2002), pp. 4–8.

18. Mozilla 1.x Releases, The Mozilla Organization, http://
www.mozilla.org/releases/.

19. Download Firefox, The Mozilla Organization, http://
www.mozilla.org/products/firefox/all.html.

20. M. De La Rue and S. Snider, Linux Accessibility HOWTO,
The Linux Documentation Project, http://www.tldp.org/
HOWTO/Accessibility-HOWTO/.

21. D. Bolter, Linux Accessibility Resource Site (LARS),
Adaptive Technology Resource Centre (ATRC), http://
lars.atrc.utoronto.ca/.

22. Disability Access to GNOME, The GNOME Project,
http://developer.gnome.org/projects/gap/.

23. Welcome to XULPlanet, XULPlanet.com, http://
xulplanet.com/.

24. N. Deakin, XPCOM Interfaces, XULPlanet.com (Novem-
ber 13, 2004), http://xulplanet.com/tutorials/xultu/
xpcom.html.

25. ViaVoice, IBM Corporation, http://www-306.ibm.com/
software/voice/viavoice/.

26. S. Keates, P. Langdon, P. J. Clarkson, and P. Robinson,
‘‘User Models and User Physical Capability,’’ User
Modeling and User-Adapted Interaction (UMUAI) 12, No.
2–3, 139–169 (2002).

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005586

27. E. Grundy, D. Ahlburg, M. Ali, E. Breeze, and A. Sloggett,
Disability in Great Britain: Results of the 1996/7 Disability
Follow-Up to the Family Resources Survey, Department for
Work and Pensions, UK.

28. Disabilities/Limitations, National Center for Health Sta-
tistics, http://www.cdc.gov/nchs/fastats/disable.htm.

29. The Market for Accessible Technology—The Wide Range
of Computer Abilities and Its Impact on Computer
Technology, Forrester Research, Inc. (2003), http://
www.microsoft.com/enable/research/phase1.aspx.

30. S. Trewin and H. Pain, ‘‘Keyboard and Mouse Errors Due
to Motor Disabilities,’’ International Journal of Human-
Computer Studies 50, No. 2, 109–144 (February 1999).

31. S. Trewin, ‘‘Extending Keyboard Adaptability: An Inves-
tigation,’’ Universal Access in the Information Society, in
press.

32. R. Kjeldsen, ‘‘Head Gestures for Computer Control,’’
Proceedings of the IEEE ICCV Workshop on Recognition,
Analysis and Tracking of Faces and Gesture—Real Time
Systems (RATFG-RTS ‘01), Vancouver, BC, Canada, July
13–August 13, 2001, IEEE Press, New York (2001), pp.
61–67.

33. R. Kjeldsen, A. Levas, and C. Pinhanez, ‘‘Dynamically
Reconfigurable Vision-Based User Interfaces,’’ Machine
Vision and Applications 16, No. 1, pp. 323–332 (2004).

34. J. Brewer, Web Accessibility Initiative (WAI), World
Wide Web Consortium, http://www.w3.org/WAI/.

35. W. Chisholm, G. Vanderheiden, and I. Jacobs, Web
Content Accessibility Guidelines 1.0, World Wide Web
Consortium (May 5, 1999), http://www.w3.org/TR/
WCAG10/.

36. Section 508 Standards, Center for IT Accommodation
(CITA), Office of Governmentwide Policy, U.S. General
Services Administration, http://www.section508.gov/
index.cfm?FuseAction=Content&ID=12.

37. J. Maeda, K. Fukuda, H. Takagi, and C. Asakawa, ‘‘Web
Accessibility Technology at the IBM Tokyo Research
Laboratory,’’ IBM Journal of Research and Development
48, No. 5/6, 735–748 (2004).

38. B. Leporini and F. Paternò, ‘‘Increasing Usability when
Interacting through Screen Readers,’’ Universal Access in
the Information Society 3, No. 1, 57–70 (March 2004).

39. J. Mankoff, A. Dey, U. Batra, and M. Moore, ‘‘Web
Accessibility for Low Bandwidth Input,’’ Proceedings of
the Fifth International ACM SIGCAPH Conference on
Assistive Technologies (ASSETS 2002), Edinburgh, Scot-
land, UK, July 8–10, 2002, ACM, New York (2002), pp.
17–24.

40. Beyond Accessibility: Treating Users with Disabilities as
People, Neilson Norman Group (November 11, 2001),
summary available at http://www.useit.com/alertbox/
20011111.html.

41. J. J. Powlik and A. I. Karshmer, ‘‘When Accessibility
Meets Usability,’’ Universal Access in the Information
Society 1, No. 3, 217–222 (June 2002).

42. V. L. Hanson, ‘‘Taking Control of Web Browsing,’’ New
Review of Hypermedia and Multimedia 10, No. 2, 127–
140 (December 2004).

43. J. Gunderson, ‘‘W3C User Agent Accessibility Guidelines
1.0 for Graphical Web Browsers,’’ Universal Access in the
Information Society 3, No. 1, 38–47 (March 2004).

44. I. Jacobs, J. Gunderson, and E. Hansen, User Agent
Accessibility Guidelines, World Wide Web Consortium
(October 16, 2002), http://www.w3.org/TR/2002/
PR-UAAG10-20021016/.

Accepted for publication January 24, 2005.

Vicki L. Hanson
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (vlh@us.ibm.com). Dr.
Hanson is a research staff member and manager of the
Accessibility Research department at the Thomas J. Watson
Research Center. She received a B.A. degree in psychology
and speech pathology and audiology from the University of
Colorado in 1974, and M.A. and Ph.D. degrees in cognitive
psychology from the University of Oregon in 1976 and 1978,
respectively. She worked as a postdoctoral fellow in the
Laboratory of Language and Cognition at the Salk Institute and
then as a research associate at Haskins Laboratories in New
Haven before joining the IBM Research Division in 1986. She
is active in the ACM (Association of Computing Machinery)
organization and currently serves as Chair of the ACM Special
Interest Group on Accessible Computing (SIGACCESS). She is
a recent ACM Fellow.

Jonathan P. Brezin
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (brezin@us.ibm.com).
Dr. Brezin is a research staff member in the Enhanced Web
Experience department at the Thomas J. Watson Research
Center. He received a B.S. degree in mathematics from Cornell
University in 1963 and a Ph.D. degree in mathematics from
the City University of New York in 1967. He served on the
faculties of the University of Minnesota and the University of
North Carolina before joining IBM in 1983 to work on the 801
minicomputer project.

Susan Crayne
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (crayne@us.ibm.com).
Ms. Crayne is a software engineer in the Accessibility
Research department at the Thomas J. Watson Research
Center. She received a B.S. degree in mathematics from CUNY
City College, where she was a member of Phi Beta Kappa. She
then became Manager of Application Development tools at
Auragen Systems, a startup computer manufacturer.
Subsequently, she ran a software consulting business
specializing in Windows development and image-processing
applications. After joining IBM in 1997, she co-designed and
developed a tool for teaching mathematics and science to
middle school students. Since 2000 she has focused her efforts
on improving the accessibility of the Web.

Simeon Keates
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (lsk@us.ibm.com). Dr.
Keates is a research staff member in the Accessibility Research
department at the Thomas J. Watson Research Center. He
received B.A. (with honors) and M.A. degrees in engineering
and a Ph.D. degree in rehabilitation engineering from the
University of Cambridge, UK. After completing his Ph.D.
degree in 1997, he continued his research at Cambridge until
2003, when he joined IBM. His work both at Cambridge and
IBM has focused on computer access for motion-impaired
users and also on the broader issues of inclusive design. Dr.
Keates is a member of the Institute of Electrical and
Electronics Engineers and the Association of Computing
Machinery.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HANSON ET AL. 587

Published online July 13, 2005.

Rick Kjeldsen
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (fcmk@us.ibm.com). Dr. Kjeldsen
received his B.S.E.E degree (with great distinction), from
Clarkson University in 1981, his M.S. degree from the
University of Massachusetts in 1987, and his Ph.D. degree
from Columbia University in 1997. He was a member of the
Exploratory Computer Vision department at the Thomas J.
Watson Research Center from 1987 through 2001, at which
time he joined the Accessibility Research department. He has
published and filed patents on a wide range of subjects in
artificial intelligence, computer vision, and perceptual user
interfaces. His current research is aimed at the application of
human-centric computer vision to create advanced
multimodal user interfaces for both general and special needs
users.

John T. Richards
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ajtr@us.ibm.com). Dr.
Richards is a research staff member and manager at the
Thomas J. Watson Research Center. He received a B.A. degree
in psychology from Alma College in 1974, and M.S. and Ph.D.
degrees in cognitive psychology from the University of Oregon
in 1976 and 1978, respectively. He joined the IBM Research
Division in 1978. He is a Fellow of the Association of
Computing Machinery.

Cal Swart
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (cals@us.ibm.com). Mr.
Swart is a senior software engineer in the Enhanced Web
Experience department at the Thomas J. Watson Research
Center. He received a B.S. degree from Calvin College in 1969
and joined IBM in 1982. He has served in research and
programming roles in numerous graphics, networking, K-12
internet access, and PDA (Personal Digital Assistant)
programming projects. Most recently, he has been
concentrating on Web accessibility and portal applications.

Shari Trewin
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (trewin@us.ibm.com).
Dr. Trewin is a research staff member in the Accessibility
Research department at the Thomas J. Watson Research
Center. She received B.Sc. (with honors) and Ph.D. degrees in
computing science and artificial intelligence from the
University of Edinburgh, Scotland, in 1991 and 1998,
respectively. After completing a Ph.D. degree, she continued
her research at the University of Edinburgh until 2000, at
which time she joined IBM. She serves as co-editor of the
Universal Remote Console suite of standards for remote
control of devices and services, developed within the INCITS
(International Committee for Information Technology) V2
standards committee. &

HANSON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005588

