M. Turunen

J. Hakulinen
K.-J. Rdiha
E.-P. Salonen
A. Kainulainen

An architecture and applications
for speech-based accessibility
systems

Speech can be an efficient and natural means for communication between humans
and computers. The development of speech applications requires techniques,
methodology, and development tools capable of flexible and adaptive interaction,
taking into account the needs of different users and different environments. In this
paper, we discuss how the needs of different user groups can be supported by using
novel architectural solutions. We present the Jaspis speech application architecture,
which introduces a new paradigm for adaptive applications and has been released as
open-source software to assist in practical application development. To illustrate how

P. Prusi

the architecture supports adaptive interaction and accessibility, we present several
applications that are based on the Jaspis architecture, including multilingual
e-mail systems, timetable systems, and guidance systems.

INTRODUCTION

Accessibility is often mentioned as one of the major
motivations for the development of speech applica-
tions. For example, there has been much work in
speech-based and auditory interfaces to allow
visually impaired users to access existing graphical
interfaces.' In general, multiple modalities have
been used to make human-computer interaction
accessible for people with disabilities.”

In the ideal case, applications should take the needs
of different users and usage conditions into account
in the first place: interaction should be adapted to
each usage situation. The goal of this approach is
universal access to services. Current application
development architectures tend to lack the flexibility
necessary to adapt to a variety of users and usage

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

conditions. In this paper, we present a system
architecture capable of supporting the development
of accessible interactive systems.

SPEECH SYSTEM ARCHITECTURES

A software architecture defines applications in terms
of components and interactions among them.” A
framework suitable for practical speech applications
must provide components for a variety of applica-
tion requirements, including dialog management,
speech recognition, and natural language process-

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

TURUNEN ET AL

485

ing. High-level components (modules) usually con-
tain multiple subcomponents having their own

m Applications should take the
needs of different users and
usage conditions into account m

internal organization and relations. The challenge
lies in finding ways for all of these components to be
organized and selecting the functionality that the
underlying system architecture should offer. This
includes the development of principles for interac-
tion and management of information flow among
the system components.

When we consider speech architectures from the
human-computer interaction point of view, an
interesting issue is how the system can be made to
support more intuitive and natural speech-based
interaction to allow universal access to services. The
needs of different user groups vary considerably.
Natural interaction requires flexible interaction
models supported by the system architecture.*

In most speech systems, components are structured
in a pipeline fashion; that is, they are executed in a
sequential order, although this kind of “pipes-and-
filters” model is considered suboptimal for inter-
active systems.3 In order to facilitate the develop-
ment of advanced speech applications, we need
more advanced techniques, models, methodology,
and tools. In particular, we need system frameworks
that support the requirements mentioned because,
as with all technical variation, the key issue is the
integration of components into a working system.5

Earlier work in advanced speech system architec-
tures includes client-server approaches and systems
based on agent architectures. Probably the best-
known speech-specific client-server architecture is
Galaxy—ll.6 The Open Agent Architecture’ is a
general agent architecture that has been used in the
construction of many speech applications. These
architectures offer the necessary infrastructure
components for applications, but they do not
support human-computer interaction tasks or adap-
tation in any particular manner.

A great deal of work has been done in the field of
dialog management. Three particularly interesting

486 TURUNEN ET AL

recent examples include the agenda-based dialog

. 8 .
management architecture and its RavenClaw ex-
tension,9 Queen’s Communicator,10 and SesaME.11
The purpose of these approaches is not to provide a
complete speech architecture but instead, a model
for dialog management.

The Jaspis architecture addresses many of the same
features as the dialog management architectures
mentioned but aims for general applicability in a
variety of task settings, one of which is dialog
management. It introduces a new paradigm for
interactive systems that focuses on speech-based
applications. In our previous papers12 we have
presented technical and functional aspects of the
architecture. In this paper, the architectural princi-
ples—and in particular their novel support for
adaptive interaction—are described in the context of
human-computer interaction. We demonstrate how
it is possible to construct highly adaptive systems
suitable for different user groups and to support
accessibility by using the Jaspis architecture and its
principles.

The remainder of the paper is organized as follows.
In the next section we introduce architectural
foundations for adaptive human-computer interac-
tion. The Jaspis architecture and its novel inter-
action paradigm based on agents, managers and
evaluators is introduced with examples. After the
architecture presentation, we introduce several
Jaspis-based applications for various domains.
Examples of multilingual e-mail systems, timetable
services, and pervasive computing applications are
given. Special focus is given to interaction-level
issues, such as error management, help, and
guidance. In the next section we report experiences
and results from user-centered design, “Wizard of
0Oz”** studies, and evaluations of Jaspis applica-
tions. Accessibility issues, such as those raised in
design sessions with users who are visually im-
paired, are discussed. The paper closes with
conclusions and discussion.

JASPIS ARCHITECTURE

Jaspis is a general speech-application architecture
designed for the challenges of advanced speech
applications, especially adaptive and multilingual
speech applications. It provides support for human-
computer interaction tasks, such as error handling,
“Wizard of Oz” studies (i.e., those in which some
parts of the system are simulated with a human

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

operator), and corpora collection. While Jaspis is a
general conceptual architecture, it is also a concrete
framework which provides components for appli-
cation development. In this section, we present the
principles of the Jaspis architecture, focusing on
human-computer interaction tasks, in particular on
dialog management, output generation, and input
management tasks. In addition, application devel-
opment aspects are briefly discussed.

Architecture requirements

In order to support more flexible interaction, we
have identified requirements for speech application
architectures. First, speech applications need adap-
tive interaction methods in all system modules. For
example, outputs and inputs should be tailored to
the language of the users, and dialog management
should adapt to the situation at hand. Second,
systems should be modular because modular
components support reusability, are easy to main-
tain and extend, can be distributed efficiently, and
make adaptivity easier to achieve. The other
requirements concern collaborative and iterative
application design and development, the need for an
extensible and practical infrastructure for applica-
tion development, and support for standards. These
principles are motivated by the technology, human-
computer interaction, and application development
viewpoints, all of which should be taken into
account. For a more comprehensive description of
the Jaspis architecture requirements see Reference
13.

Architecture overview

In order to support the architectural requirements
mentioned, the Jaspis architecture uses a modular
and distributed system structure, an adaptive inter-
action coordination model and a shared system
context. These form the basic infrastructure on
which other features and components of the system
are based.

Figure 1 presents a typical Jaspis-based system
setup. The top-level structure of the system is based
on managers, which are connected to the central
manager with a star topology. Communication
between components is organized according to the
client-server paradigm. Local subsystems are lo-
cated inside the system modules. The interaction
coordination model of the Jaspis architecture is
based on the agents-managers-evaluators paradigm.
Agents are interaction components which imple-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Dialog
Management

Natural Database
Language Management
Understanding

Jaspis Core

Interaction Manager
(facilitator)

Information Manager

ation
ge

Communication
Management

Presentation
Management

Natural User
Language Modeling
Generation

Input
Management
Figure 1

Overall system structure for Jaspis applications

ment different interaction techniques, such as
speech output presentations and dialog decisions.
Evaluators are used to evaluate different aspects of
the agents, in order to determine how suitable the
agents are for different tasks. Managers are used to
coordinate these components. All information in
Jaspis-based systems is stored in the shared in-
formation storage. All components of the system
may access the content of the information storage by
using the information manager. These are the key
features enabling architecture-level adaptation.

Shared information management

Information management is a crucial element of
adaptive, modular, and distributed applications. The
repository approach (i.e., using “blackboards” and
databases) provides several advantages for adaptive
and distributed applications. The term “black-
boards,” in the context of speech applications, refers
to shared information resources, or specifically, a
shared knowledge base. Most importantly, the
repository approach allows the use of shared
information by all system components. The main
drawback of this approach is the lack of control.” In
Jaspis, the coordination and control are performed
by a separate component (the interaction manager)
to achieve architecture-level coordination.

The Jaspis information management architecture
consists of four layers. In this way, the actual

TURUNEN ET AL

487

storage (the information storage), the application
interface (the information manager), and the com-
munication interfaces (the information access pro-
tocol and communication protocols) are separated to
maximize flexibility. In this section we focus on
information storing and application layers, omitting
the communication layers.

The information storage holds all the shared system
data, that is, the shared system context. The Jaspis
architecture assumes that individual components do
not store any high-level information inside them,
but instead use the information storage for that
purpose. This makes the interaction components
stateless, and the system is able to adapt to each
interaction by choosing proper components for each
situation. To make this possible, the system
assumes that every component updates its knowl-
edge from the information storage when activated
and writes modified information back to the
information storage when deactivated. In the ideal
case, the shared data should be represented at a
conceptual level such that it can be used by other
components as well. This is one of the main features
used to adapt the systems for different users.

The reference implementation of the information
storage uses XML (Extensible Markup Language) for
its internal information representation. The content
or the structure of information inside the informa-
tion storage is not defined by the system architecture
because this is specific to the particular application
and domain. The definition of the shared knowledge
is an important phase of the application develop-
ment process.

The programming interface for the information
storage is straightforward: it takes XML requests and
produces XML results. The information storage
offers only the minimal set of operations needed to
manipulate its contents. In addition to the shared
information storage, direct information exchange
between certain I/O components is supported for
efficiency reasons. Most notably, the raw audio
streams should be passed between components in a
cost-efficient way to minimize system overhead and
delays.

The information manager provides an application
interface to the information storage. It uses the
information access protocol to access the informa-
tion storage and provides a programming interface

488 TURUNEN ET AL

for other components to access the shared system
context. For example, system inputs and outputs
may be modified by their own set of methods.
Application developers may write new, application-
specific methods when needed.

Flexible interaction management

The interaction management model of Jaspis is
focused on the key design principles of the
architecture: adaptivity and modularity. Interaction
management in this context means both the overall
coordination of system components and the coor-
dination of those components that implement
interaction techniques to be used in human-com-
puter interaction tasks. In practice, this means input,
output, and dialog management components in their
various forms.

Interaction techniques are implemented by agents,
which are software components specialized for
certain tasks. Evaluators are used to make selections
among different agents. Managers are used to
coordinate agents and evaluators. Components
specialized for related tasks are organized into
modules. An overview of the interaction manage-
ment model is presented in Figure 2.

As illustrated in the figure, each system module
contains one local manager and several agents and
evaluators. It is up to the local managers to decide
which agents are used in different situations. Instead
of centralizing this decision (by assigning it to the
managers), evaluators are used to evaluate agents
and their suitability for different tasks. Thus, there is
no central component which makes these decisions.
This makes it possible to construct highly adaptive
and modular systems because all functionality is
divided into specialized components that have no
predefined execution order and relations among
them. The principles governing how managers,
agents, and evaluators are used are presented next
in more detail.

Managers: coordination

The interaction manager is a central component in
Jaspis-based systems. It manages other components
and is responsible for the overall coordination of the
interaction. The interaction manager is similar to
some central components found in other speech
architectures. Such components include the hub in
the Galaxy-II architecture® and the Facilitator in the
Open Agent Architecture.” Similar components can

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

‘ Coordinate Coordinate
Input Model Coordinate Presentation Model
Dialog Model .
Input Manager Presentation Manager
Select Use Dialog Manager Select Use
T .
l Coordinate l Select Use l Coordinate l
T
Input Input l Coordinate l Presentation Presentation
Agents Evaluators Dialog Dialog Agents Evaluators
1 | Agents Evaluators 1 |
Evaluate)y T I Evaluate)
Evaluate
J
Figure 2

General interaction management architecture

also be found in other distributed architectures. The
main differences include the division of labor
between the information manager and the interac-
tion manager and the fact that Jaspis is a layered
(hierarchical) architecture.

Coordination is one of the main issues in agent-
based systerns.7’14 In order to coordinate interaction
in a flexible way, it is better to use decentralized
control logic; managers and their components may
be more autonomous, and the system may adapt to
interaction when needed. This is crucial in applica-
tions that are targeted for various user groups, and
in particular, when applications need to be modified
afterwards, as is the case in many accessibility
systems which need to be customized for different
users. In Jaspis, local managers are quite inde-
pendent. The interaction manager does not know
the internal structure of modules, nor does it
coordinate interaction inside modules. Layered
systems are easier to maintain, and they can be
more efficient. This is because local managers need
to coordinate only their own components. Evalua-
tions in particular are more efficient when only
those agents that belong to the same module are
evaluated.

Jaspis uses a “round robin” interaction management
approach, in which one manager is active at a time.
The interaction manager enables the managers to
take turns, based on a prioritized list. When the
option to become active is offered to a manager, it
will check if it is able to handle the situation by
using its own reasoning algorithm or by consulting
evaluators.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

In order to support application development, the
architecture includes a general manager class that
can be customized for different purposes. The
general manager asks evaluators to assign a score
for each agent in the module. If there is an agent that
receives a score above zero, the manager becomes
active and activates the agent with the highest score.
In the basic algorithm, managers multiply evalua-
tion scores, but more elaborate methods may be
used as well."”

In addition to the default behavior presented, local
managers are able to extend this functionality, or in
general, implement their own functionality. For
example, some of the Jaspis reference implementa-
tion managers (e.g., the presentation manager and
the communication manager) have extended the
basic functionality. This is because they have
different needs when using agents. The agents-
managers-evaluators paradigm is used in all system
modules, but in various ways.

Agents: interaction tasks

Agents in the Jaspis architecture are software
components that handle various interaction tasks.
Agents are often used to handle tasks that are fairly
complex. For example, in the WITAS (Wallenberg
Laboratory for Research on Information Technology
and Autonomous Systems) multimodal dialog sys-
tem, there are six agents.15 Jaspis has been designed
with compact agents in mind. Because agents are
meant to handle single, well-defined tasks, they are
fairly small, and typical systems contain many of
them. For example, in the AthosMail application
(presented in the following section), there are over

TURUNEN ET AL

489

50 basic dialog agents alone (e.g., agents for reading
e-mail messages, navigating among folders and
messages, and providing context-sensitive help).

Typical agents in Jaspis-based systems are spe-
ctalized for certain tasks, which may be domain-
specific or general interaction management tasks.
Agents may implement interaction techniques for
tasks such as generation of welcome prompts or
handling of speech inputs. Some of the agents may
be application-independent, while some may be
closely tied to the application domain. Application-
independent behavior is usually preferred so that
components may be used across applications.
Usually, application-specific components are en-
capsulated in their own agents, and inheritance is
used to maximize runtime efﬁciency.lﬁ_18

Specialized agents make it possible to implement
modular, reusable, and extensible interaction com-
ponents that are easy to implement and maintain.
For example, we have constructed general inter-
action techniques, such as error correction methods,
to take care of error situations in speech applica-
tions."” Another example is that of tutoring agents,
which provide guidance for the users in a real
context.””

In addition to the collaborative approach, where
different agents implement different functionality,
multiple agents may be specialized for the same
tasks with varying behavior. In other words, agents
may provide alternative solutions to the same
problems. Based on our experiences, we have
concluded that different user groups prefer different
types of interaction (described in the following
sections in more detail). Using modular agents, we
can support different interaction strategies within an
application and adapt the interaction dynamically to
the user and the situation. For example, we may
have different agents to take care of speech outputs
for various user groups and languages. We have
constructed specialized presentation agents for
different languages and with varying verbosity
levels without modifying the original agents.

Jaspis agents are stateless, as stated previously, but
they are autonomous in the sense that they know
when they are able to act. Each agent has a self-
evaluation method that checks the current situation
(for example, the dialog context) and gives a local
estimate that defines how well it can handle the

490 TURUNEN ET AL

situation at hand. The self-evaluation method is
only one part of the agent selection process. All
dependencies among agents, including the overall
suitability of competing agents for different situa-
tions, are modeled using evaluators.

Evaluators: system-level adaptation

Evaluators are the key concept in making applica-
tions adaptive and interaction flexible. They deter-
mine which agents should be selected for different
interaction tasks. It is up to evaluators to compare
different agents and their capabilities and assign an
evaluation score for every agent in any given
situation. Like agents, evaluators are specialized for
certain tasks. In practice, this means that different
evaluators evaluate different aspects of agents from
different system viewpoints. For example, an
evaluator may use the dialog history to determine
which dialog strategy should be used (i.e., which
kind of dialog agent should be selected), and
another evaluator may use the user model to select
verbose or brief system output formats.

When Jaspis evaluators are employed at the human-
computer interaction level, they can monitor inter-
actions and give guidance as to how an interaction is
progressing and how it should continue. One
example is dialog strategy: if the interaction is not
going smoothly when the dialog strategy is based on
user initiative, a specialized dialog evaluator may
give better scores for dialog agents based on system
initiative. Similarly, if the user has problems,
presentation evaluators may prefer presentation
agents that use more detailed and helpful prompts.
Concrete examples are presented in the following
sections.

Evaluation is applied in the system modules. When
one of the agents inside a module is to be selected,
each evaluator in the module assigns a score to
every agent in the module. These scores are then
multiplied by the local manager. The manager
assigns the final score, a suitability factor, to every
agent (see Reference 13 for a more comprehensive
description). It is noteworthy that there is no single
evaluator, nor any single component in general,
which selects agents for each situation; instead, the
selection is always both dynamic and distributed.
This makes it possible to keep the program control
and interaction flow highly dynamic and adaptive
on the architectural level. This is a major improve-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

ment to the “black box” type of adaptivity that most
systems offer (see, for example, Reference 21).

Evaluators may use different strategies and tech-
niques to evaluate agents. They may use informa-
tion such as the current dialog context, user model,
and interaction history. Presentation evaluators, for
example, may use dialog history to determine (e.g.,
using heuristic rules) which confirmation agent is
most suitable for the current dialog state. Other
evaluators may use methods from machine learning,
for example, to evaluate agents and their usefulness
in a given context.

Evaluators know the properties of the agents, which
are expressed in the form of attributes. Attributes
are presented in XML-based configuration files and
can be configured with domain-specific parameters.
In more complex systems, the parameters can be
learned automatically. To be generic, the architec-
ture does not force application developers to follow
any predefined approach to this process. In con-
ventional dialog systems, all dialog decisions are
made by the dialog manager. Jaspis evaluators allow
more flexible interaction management to take place
because the reasoning is both distributed and
dynamic. Evaluators may nevertheless be used for
more global evaluation. This can be done with
special evaluators to monitor interactions and to
favor consistent interaction. For example, the
evaluators may favor agents which use a language
similar to that used in previous dialogs for inputs
and outputs and which follow the same dialog
strategy.

In the AthosMail system (to be presented in the
following sections), the presentation agents are
evaluated with five different evaluators. Each
evaluator uses specific information to assign a score
to each agent. The presentation evaluators use the
following information: (1) dialog data, (2) language
of the output, (3) user expertise, (4) characteristics
of the mailbox, and (5) self-evaluation results of the
agents. Evaluation scores from these five evaluators
are combined, and the agent with the highest overall
score is selected to generate the output.

We next present how the general agents-managers-
evaluators paradigm is applied to human-computer
interaction tasks, including dialog, presentation, and
input management tasks.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Human-computer interaction management

The Jaspis architecture provides several general
interaction modules that can be customized for
specific tasks and applications. These are input,

m Natural interaction requires
flexible interaction models
supported by the system
architecture m

dialog, presentation, and communication modules.
These modules contain the components used to
implement interaction techniques for human-com-
puter interaction tasks. All of these modules are
based on the general agents-managers—evaluators
paradigm but use it in slightly different ways.
Developers are free to introduce additional modules
when needed (e.g., for user modeling or handling
modality-specific issues).

Dialog and error management

The task of the dialog management module is to
update the dialog state, that is, to move the dialog
from one state to another. This abstract task
representation may be modeled in various ways and
should not be restricted to any single dialog control
model, such as the finite-state model or the form-
based model.

Like other agents, dialog agents are specialized for
different dialog tasks or provide alternative solu-
tions for the same dialog tasks. Unlike many other
agents, such as presentation agents and input
agents, in most cases there is usually only one dialog
agent active at any given time. The dialog control
model is one way to categorize dialog agents. For
example, in the state-based dialog control model,
each dialog state can correspond to one dialog agent,
whereas in the concept-based model, each concept
may form its own agent. In the form-based dialog
model, every form field may correspond with a
dialog agent. In addition, it is possible to use
multiple dialog control models, such as those based
on state machines and forms, in the same applica-
tion. The combination of different approaches is
especially useful when subdialogs are implemented
with different dialog control models."”

Dialog evaluators may be specialized for aspects
such as general dialog-level issues, functional

TURUNEN ET AL

491

aspects of agents, domain-specific issues, or user
preferences. For example, one dialog evaluator
monitors the dialog flow and checks that the

m Information management is
a crucial element of adaptive,
modular, and distributed
applications m

interface is consistent, ensuring that the dialog
management strategy is not changed for every
dialog instance. Another evaluator may perform the
mapping of dialog tasks to the functionality of
agents, while other, more specialized evaluators
monitor error situations and the user’s need for help
and guidance.

Dialog agents and evaluators can be used to imple-
ment different dialog management strategies to
adapt the dialog to the user. Different dialog
management strategies, such as the system-initiative
approach and the mixed-initiative approach, have
different benefits and drawbacks,”” which makes it
useful to use a multiplicity of them in an adaptive
way. For example, we have used tutoring agents to
provide system-initiative features to the user-initia-
tive interface.”” In the next section we present a
concrete example of such usage in the context of a
multilingual e-mail application.

Similarly, alternative solutions for the same dialog
tasks can be implemented by using modular agents
and evaluators. Alternative dialog agents can be used
to provide adaptivity to the interface in special
situations. One example is error management. Errors
are unavoidable in speech-based applications, and
their proper handling is a challenging task. In the
agent-based error management model,"” the task is
divided into seven phases, and the actual error
correction techniques are implemented using the
Jaspis agents and evaluators. For example, there can
be agents and evaluators for error detection (e.g.,
monitoring of speech-recognition confidence scores
and dialog history), actual error correction techni-
ques (such as selections from a list and different
kinds of confirmations), and decisions regarding
how to continue after the error has been corrected.

The agent-based approach for dialog management is
demonstrated in the following dialog example

492 TURUNEN ET AL

(translated from Finnish) from the Busman time-
table system.
AGENT U;: Welcome to Busman, the Tampere bus
information service! How may I help
you?

USER: When does the next bus leave from
Central Square to Her ehhh correction
from Central Square to Hervanta?

AGENT E,: Sorry, I didn’t recognize that. Please
speak clearly.

USER: What now?

AGENT H,: Busman understands questions such as
“When does the next bus to Hervanta
depart?”, ... [help continues]

USER: I'm leaving from Central Square, and
I’'m going to Hervanta.

AGENT E,: Sorry, 1 still didn’t recognize that.

AGENT S,: Please tell me where you are leaving
from.

USER: From Central Square.

AGENT G,: What is your destination?

USER: Hervanta.

AGENT G,: From Central Square to Hervanta use
lines 13, 20, 23 and 30.

AGENT S,: Do you want to hear timetables?

USER: Yes.

AGENT G;: From Central Square to Hervanta on

weekdays at 11:15 bus in line 23...

In this example, five types of dialog agents are
present: user-initiative dialog agents (U,), system-
initiative dialog agents (S,, S,), error management
agents (E, E,), help agents (H,) and general dialog
agents (G, G,, G,). All of these agents operate on
the basis of the shared form and concept definitions
that are stored in the information storage. In the
beginning, the dialog evaluators select a user-
initiative agent (U,). Recognition errors occur due to
the complex recognition grammars, and the first
error management agent (E,) is selected. After that,
the user requests help by using a universal
command (its usage will be presented in the
following sections), and a help agent (H,) is
selected. After the second recognition error, another
error management agent (E,) is chosen, and the
dialog evaluators select a system-initiative dialog
agent (S,) to continue the dialog because of the
recent errors (the recognition grammars are changed
at the same time to more compact ones by the input
agents). The recognizer is performing better, and
two generic dialog agents (G, G,) are selected to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

complete the task. Finally, the dialog evaluators
select a system-initiative dialog agent (S,) again, and
a generic agent (G,) provides the results. In the
Busman application every dialog agent has a
floating-point value (initiative attribute) to deter-
mine its suitability for system-initiative and user-
initiative dialog. This will be presented in the
section “Bus timetable systems.”

Presentation management

The presentation management module is responsi-
ble for generating system outputs suitable for the
current dialog state. Usually, this is done on the
basis of conceptual messages that the dialog
management module produces. Presentation agents
produce a representation of speech outputs, which
are synthesized by the communication management
module. They perform natural language generation,
add prosodic information to sentences, decide which
(synthesized) voices should be used, and add other
modality-specific features into outputs.

Real-world metaphors for presentation agents are
actors, who perform their roles as efficiently as they
can. Different agents have different capabilities, and
they are chosen for different roles. Unlike the real
world, the choice of agents can be tailored for each
listener, that is, for each user. A real-world
metaphor for presentation evaluators is a casting
agency, which tries to find the most suitable actors
to perform the roles in a play. Similarly, presenta-
tion evaluators try to find which presentation
agents are the most suitable for the presentation of
speech outputs. Several evaluators can be used in
this process: in the e-mail domain, we have used
five evaluators to choose among the presentation
agents.

Multiple presentation agents may be active at a
time. First, there may be multiple output requests
in information storage, and all of these will be
processed. Second, presentation agents may pro-
duce several outputs from a single output request.
For example, multiple agents may contribute to the
output, and a message may be rendered by using
multiple modalities. Furthermore, the output gen-
eration process can be modular and involve several
steps. This could be used when outputs for
different user groups are produced. For example,
additional information can be added with separate
agents for those users who prefer more informative
outputs.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Aside from speech outputs, the presentation man-
agement module handles the generation of outputs
in other modalities. The presentation management
module performs fission; that is, it decides which
modalities should be used for outputs. In this way, it
is easy to use different modalities in the system and
to take user preferences into account both because
dialog management components do not need to be
modified when available modalities are changed and
because user preferences are learned or given by the
user. The presentation management module can be
used to support multimodal outputs for different
user groups to make single-mode systems more
accessible. We have introduced new modalities in
this way without the need to modify existing output
generation components. Examples of multimodal
timetable systems are given in the following
sections.

Multilingual outputs can be hard to handle in speech
applications. The modular structure of the presen-
tation management module helps to separate lan-
guage-specific issues into their own agents, and the
developers of a new language version are able to
translate the system in an iterative way and keep the
process manageable. This supports localization,
which is one of the key features in making
applications more accessible for older users, for
example. We used this approach in the case of the
Mailman and AthosMail applications, which are
presented in the next section. Finally, speech
outputs have a strong influence on the user’s choice
of words, and therefore on the interaction as a
whole. For this reason, presentation agents should
produce a consistent speech interface and use
knowledge from dialog management, user inputs,
and the user model in this process.

Input management

Input agents and evaluators are similar to presen-
tation agents and evaluators. They take conceptual
input requests from information storage, select
appropriate modalities, and add the necessary
control information, such as device configuration
parameters. The resulting control messages are then
processed by the communication module. In this
way, conceptual input requests, modality selection,
and device control are separated from each other.

Input management components take care of the

selection and creation of the input vocabulary
(recognition grammars or language models in

TURUNEN ET AL

493

speech applications). Context-sensitive grammars
may be selected or generated in system-initiative
dialogs, meta-dialogs, and other situations where
users are expected to speak in various ways.
Recognition grammars should be consistent with the
way that the system speaks to the user. Even in
simple cases, such as when synonyms and yes/no
dialogs are used, a wrong lexical selection may lead
to problems if output and input languages are not
consistent.”” Because the order in which J aspis
managers are executed can be freely customized,
application developers may decide how they model
topics, speech styles, and lexical selection in differ-
ent modules, that is, in which order the corre-
sponding modules will be executed.

Generation of control information is modality-
specific, and a highly application-specific and
iterative process. By selecting input modalities for
specialized agents, dialog-level components can be
used without modification. It should be noted,
however, that modality change is not just a
configuration parameter, but instead may involve
complex relations between input, output, and dialog
modules. Input management components do not
perform actual multimodal fusion (i.e., the process
in which the results of multiple input modalities,
generally multiple information sources, are com-
bined). This is the task of the communication
module.

Communication management and application
development

Communication, that is, low-level input and output
management, differs in several ways from other
parts of the architecture, although it still shares the
agents-managers-evaluators paradigm. In addition
to agents and evaluators, communication manage-
ment includes a layered and concurrent architecture
for handling communication between devices and
other external resources. This architecture consists
of devices, clients, connections, servers, handlers,
and engines. Devices and engines are I/0O-specific
components; clients, connections, servers and han-
dlers can be used in other parts of the system for
distribution of components.

In order to create intuitive and rich interfaces, we
need flexible models for handling interaction.” In
Jaspis, the communication manager coordinates
input and output devices, using I/0 agents to
interpret and conceptualize inputs (including natu-

494 TURUNEN ET AL

ral language understanding and multimodal fusion),
and I/0 evaluators to coordinate devices. This
process is carried through in a timely and concurrent
manner, and feedback may be provided to the
devices while they are still gathering inputs or
presenting outputs.

With respect to technology, the Jaspis framework is
based on dynamic objects, XML documents, a set of
core infrastructure classes, and more than 20
extensions. XML is used in all parts of the
architecture, and the system supports several
standards and markup languages. For example, it
includes support for several synthesis markup
languages, and we are currently implementing
VoiceXML support for distributed dialogs and
various mobile devices. Because Jaspis-based sys-
tems are modular and distributed, an important part
of practical application development is configura-
tion, which is performed using XML-based config-
uration files.

The reference implementation of the architecture is
released as open-source software (under the LGPL
[Lesser General Public License] license) to support
practical application development and can be
downloaded from its home page (http://www.cs.
uta.fi/hci/spi/Jaspis/). Further details about the
communication management and application de-
velopment are outside the scope of this paper, but
can be found in Reference 13.

JASPIS APPLICATIONS

In this section, we present several applications
using the Jaspis architecture. These applications
cover many areas, including information services,
multilingual systems, and pervasive computing
applications. Many human-computer interaction
aspects are involved, and in all of them accessi-
bility issues are taken into account. In particular,
we have worked with special user groups to
design, iteratively develop, and evaluate these
applications.

E-mail applications

The e-mail domain is an especially suitable area for
speech applications. E-mail itself is one of the most
successful applications in the history of computing
and involves many issues that are relevant to other
services and to universal access for various users in
different settings.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Our research group has been involved in the
development of several multilingual (Finnish, En-
glish, and Swedish) speech-based e-mail applica-
tions. The first version of the Mailman application
was developed for a Finnish national research
project.24 In the EU-funded DUMAS project, the
existing Mailman application served as a basis for
the AthosMail application.25 AthosMail supports
more advanced functionality, including alternative
solutions for input processing, dialog management,
and output generation, to bring more robustness and
adaptivity to the interaction.'”

These e-mail applications allow the user to access
his or her mailbox by using a standard mobile or
fixed-line phone. They offer functionality for most
e-mail reading tasks. The systems provide both
speech input (speech recognition) and DTMF (Dual-
Tone Multi-Frequency, also known as “touch-tone”)
interfaces which may be used in a multimodal
fashion. We have worked together with visually
impaired users and learned in the user studies that
their preferences are quite different from those of
other users, especially those of normally sighted
novice users. In order to help different users, we
have implemented several features that provide
adaptive interaction supporting accessibility for
various user groups.26

Flexible interaction management

In the AthosMail application, two alternative dialog
management approaches are used to bring more
flexibility to the interaction.'® All dialog components
use the same dialog history, which is represented as
a discourse tree in the information storage. In
addition, the tutoring agents bring system-initiative
features to the user-initiative interface,20 comple-
menting the main dialog components.

When the interface is adapted for different users, it
is not possible for all functionality to be used by all
user groups in all cases (e.g., for technological,
economical, or interface reasons). To share compo-
nents and maintain portability, a common core of
functionality is needed. More advanced interaction
methods can be built on top of this core, taking into
account the specific needs and capabilities of each
user group. In the Mailman and AthosMail systems,
the different configurations of the system share the
same basic functionality. In addition to speech
inputs, all functionality can be accessed by the
DTMF interface. In small mailboxes, elementary

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

numbers (1-9) are used to select messages and
folders. In this way, both the speech and the DTMF
interfaces are robust and simple to use. If the user
has a large number of messages, more complex
recognition grammars are selected by input eval-
uators to access the messages, and the DTMF
interface uses multiple keys to access messages. In
addition, we have adapted the recognition gram-
mars to contain the names and keywords

m In order to coordinate
interaction in a flexible way,

it is better to use decentralized
control logic m

found in each user’s e-mail messages. We have
found the DTMF interface to be important for users
who are visually impaired, who have usually
learned to use it in other applications and often
prefer it over the speech recognition interface.
However, when we designed DTMF layouts with
these users and tested them with sighted novice
users, the novice users found them hard to use. We
discuss this further in the following sections.

Adaptive system outputs

In the e-mail domain, the main challenge is how to
read messages and present other information so that
the outputs are both intelligible and pleasant for the
user. In the presentation components, different
prompts are used for different users (novices,
regular users, experts). This is implemented in such
a way that each type of prompt (for example, a brief
and a verbose version of a welcome prompt) has its
own agents, and the appropriate one is selected at
runtime, based on dynamically calculated user
profiles. Presentation agents for multiple languages
are implemented in the same way, thus making it
easy to port the applications to different languages.
Overall, multilinguality is one of the key issues in
e-mail systerns.24 Users have different ways to
approach multilingual systems: for example, some
of the visually impaired users prefer to use a Finnish
synthesizer for English messages as well because
they are accustomed to how the synthesizer
pronounces English messages. This kind of user
preference can be modeled using Jaspis evaluators
to dynamically select proper agents for reading the
messages.

TURUNEN ET AL

495

In order to present large lists of messages efficiently
and adapt them for each user, the messages are
categorized into meaningful groups by using an

m Usually, application-specific
components are encapsulated
in their own agents, and
inheritance is used to
maximize runtime efficiency m

algorithm that tries to create both meaningful and
easily manageable groups. Information about the
messages, such as header information, is used for
this purpose. The number of messages within each
group is kept within the limits of human capabilities
to handle spoken data.”” This helps the user to get
an overview of the mailbox contents even with a
large number of messages. By dynamically adapting
the groupings for each situation, it is possible to use
alternative input methods and strategies, such as the
DTMF Kkeys. In particular, users who are visually
impaired often prefer these communication meth-
ods. In addition, tapering is used to reduce the
length of the lists, by including only the meaningful
information in them.

Help and guidance

In order to provide help and guidance for novice
users, AthosMail supports a set of universal
commands”® that adapt to the interaction. With the
“tell me more” command, the user can get a detailed
presentation of the current dialog situation. For
example, when a message is selected, only the main
information is spoken. With the “tell me more”
command, the user can access additional informa-
tion, such as length of the message, date, and time.
Another universal command is the “what now?”
command, which triggers context-sensitive help, in
which only relevant guidance is given to the user,
taking into account the current dialog situation and
history. These features are demonstrated in the
following dialog (translated from Finnish):

SYSTEM: Message number one from Esa-Pekka
Salonen, subject is “AthosMail review”

USER: Tell me more.

SYSTEM: Message number one from Esa-Pekka

Salonen, subject is “AthosMail review,
urgent.” Message was sent on Wed-

496 TURUNEN ET AL

nesday at 14.24. It has 6 lines. Sum-
mary of message: “We should prepare
for the review. How about meeting

tomorrow?”
USER: What now?
SYSTEM: You can make the system read the

message by saying “read”, or you can
select another message by saying, for
example, “second message”, ...

Another form of guidance is provided by tutoring
agents.20 They introduce the system to the user,
monitor how well the user interacts with the system,
and provide guidance accordingly. Tutoring com-
ponents take the initiative in certain situations. They
use the dialog history, the user model, and their own
tutoring plan in this process. Technically, the Jaspis
agents and evaluators make it possible to add the
tutoring agents to the system without modifications
to other components. Furthermore, the tutoring
feature can be turned dynamically on and off. The
following dialog (translated from Finnish) gives an
example of the tutoring feature:

SYSTEM: Please wait, connecting to your mail
server ... Hi, Test user. No new
messages. 17 old messages. You have 3
groups. Group one, ...

Hi, I'm your tutor. I'll teach you how to
use the system. Next, choose one of the
available groups. You can do this by
saying, for example, “third group.” So,
please use the group number you wish.
Go to the third group

Good. Now you are in the third group.
Next AthosMail will list messages in
the group.

[the system lists the messages in the
selected third group]

TUTOR:

USER:
TUTOR:

SYSTEM:

Bus timetable systems

In addition to e-mail systems, we have been working
with several bus timetable systems. As with the
e-mail domain, the timetable domain is practical,
provides plenty of research challenges, and the
results can be used in other information services.
Similar human-operated systems are widely avail-
able, and there is a need to replace existing systems
with automated systems. Furthermore, with auto-
mated systems it is possible to produce new services
that are either not possible or not economically
viable with human operators. For special user

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

groups, they may represent the only possibility to
access information, as has been noted recently in
many areas.

The Busman and Interact systems provide bus route
and timetable information for the Tampere and
Helsinki areas, two major cities in Finland. The
functionality of these systems is similar to other
timetable services, such as MALIN *’ The user may
request information such as bus routes (e.g.,
“Which bus goes to the university hospital?””) and
timetables (e.g., “When does the next one leave?”).
Like the e-mail applications, these systems have a
speech interface and can be used with mobile and
fixed-line telephones. In contrast, a third timetable
system (Stopman) and its ongoing continuation
(PUMS), are based more on the system-initiative
approach and can be used with a multimodal
personal digital assistant (PDA) interface as well.
These applications are designed in close collabo-
ration with users who are visually impaired.
Currently, we are implementing mobile clients for
the Stopman system. Wireless connections, such as
GPRS (General Packet Radio Service) or UTMS
(Universal Mobile Telecommunications System),
provide speech recognition and synthesis services
on PDAs and cellular phones for users who are
visually impaired. Jaspis components are used both
on the server and the client side, and the interaction,
such as menu selection, is adapted by the agents and
evaluators to the capabilities of each device. In
addition to speech and nonspeech audio, we have
plans to use touch-sensitive displays. In the Interact
system, multimodal extensions such as a graphical
touch-screen interface for information kiosk usage
and a short-message interface for mobile nonspeech
usage were implemented for users who are deaf or
hard of hearing.

In the Busman system, we have experimented with a
truly mixed-initiative approach to dialog manage-
ment, which we have found to be the key aspect in
making dialogs work in this domain. In this
approach, each dialog agent has an initiative
attribute, which indicates its suitability for system-
initiative and user-initiative dialogs. In the current
implementation, one dialog evaluator is used to give
preference to system-initiative agents when the
interaction proceeds normally, and to user-initiative
agents when errors are present. In this way, the
system tries to adapt to the interaction by changing
the dialog strategy on the basis of the success of the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

=TS
Guidance
Good
Busman understood your input correctly. It did not hear exactly “Which bus goes to Atala” but it
understood that you want to know the number of a bus line and that you are going to Atala. Busman
does not try to understand all of your speech. It aims to pick up the important keywords instead.

Now press the continue button to get an answer to your question.
[Continue | Back

Which bus
to Atala

Busman,
Tampere area bus
timetable service.

| Introduction - Spoken inputs - Example 1- Example 2 - Grammar - Questions - Free Practice

Figure 3
Multimodal tutoring in the Busman system

interaction. An example dialog with this feature was
given in the section “Dialog and error manage-
ment.” In addition, the Busman application includes
a set of tutoring agents20 to provide multimodal
guidance and assistance in error situations. Figure 3
illustrates this guidance. It also demonstrates how
spoken dialogs can be visualized automatically. In
terms of technology, the tutoring is implemented as
a set of agents and evaluators providing GUI outputs
and inputs, while the Busman agents and evaluators
provide speech inputs and outputs. Again, the
tutoring component could be included in the system
without any modifications to the Busman code. All
the information necessary for the tutor agents is
already available in the information storage.

Pervasive speech applications

Doorman is a pervasive computing system that uses
speech and audio as its main modalities. It has been
designed with both sighted users and users who are
visually impaired in mind. We have used it to
experiment with implementations of speech inter-
faces in pervasive-computing settings. In this field,
many new challenges have been encountered.
Experiments from this domain have greatly influ-
enced the development of the new Jaspis-2 archi-
tecture,30 which supports multiple concurrent users
and dialogs.

The Doorman system serves staff members and
visitors in an office environment. The system
controls access to this environment by identifying
staff members and helping visitors to find the place
or person that they are looking for. The system gives
guidance to visitors about how to reach their
destinations. Several extensions, such as an auditory
awareness information service, have been added to

TURUNEN ET AL

497

the system. The system has features similar to the
Office Monitor’' and PER> systems.

The Doorman system uses speech recognition and
speaker identification to recognize users from their

m Tutor-based guidance is a
promising approach to
making systems accessible
for different users m

speech. Synthesized speech, nonspeech audio, and
pointing gestures are used for multimodal outputs.
For visually impaired users, the speech outputs,
augmented with nonspeech audio (including audi-
tory icons) contain the necessary information. The
presence, location, and state of users can be tracked
from different signals and their fusion. People on the
move can be followed using infrared and pressure-
sensitive EMFi (Electro-Mechanical Film) technolo-
gies. Other information (such as keyboard, mouse,
or application activity) is received from desktop
computers and mobile devices.

The main feature of the system is guidance. The
office layout is modeled in such a way that the
system is able to generate various alternative
guidance descriptions with varying levels of detail.
The selection of details is highly dependent on the
particular user group process. Route instructions
given to users who are visually impaired need to be
founded on different criteria from those for sighted
users.”> For example, the visual landmarks that are
useful for sighted users can be replaced with
auditory landmarks for visually impaired users. This
can be understood by comparing the following
system outputs:

For sighted users:

Follow the hallway until you come to a crossroad
with a sign “copy machine.”

For users who are visually impaired:

Continue ahead until you can hear the following
sound [sound of a copy machine].

Communication with the user is handled through
communication points located in strategic places in

498 TURUNEN ET AL

the facility, such as intersections. This enables the
distribution of route instructions in small units,
which are easier to understand and memorize,
hence easing the cognitive load on the user.”* These
smaller units are presented according to the user’s
progress along the route. Distributed route instruc-
tions are supported by auditory cues, which
function as beacons along the route. An auditory cue
played from the next communication unit on the
route functions as a target which the user can aim
at. This serial component in multimodal spatial
information is very important for visually impaired
users.”” The user can ask for more detailed
information from the system when passing com-
munication units.

In addition to guidance related to navigation, the
system is capable of giving added information in the
manner of an exhibition guide. The guide gives a
tour of the premises, showcasing physical artifacts.
The same identification and positioning information
enables cross-references to earlier events and
personalized content generation with temporally as
well as spatially dynamic modality choices. Such
choices are helpful for various accessibility prob-
lems, for example, as demonstrated in the following
system outputs:

For sighted users:

As you can see, the artist uses the same technique
of contrasting colors when choosing materials, as
in the three previous sculptures.

For users who are visually impaired:

If you touch the sculpture, you can feel the
contrasting textures of soft wool and unfinished
cast bronze, a similar method to that used in the
artist’s two previous sculptures.

One group of extensions to the Doorman system is
applications for supporting awareness and group
communication. In these applications, auditory
information is presented in a way which helps to
keep users aware of events occurring in their
surroundings. For example, an application monitors
the presence of group members and informs other
group members about the activity in the group (e.g.,
usage of desktop computers or tracking of people
using floor sensors). The presentation of the
information is done so that auditory icons and other

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

auditory information indicate important changes in
the environment, such as arrival of other people and
incoming messages. Through ambient soundscapes
(i.e., acoustic environments that surround the user),
information is made available in the periphery of the
senses.”” Both continuous and temporal information
are presented. Natural sounds, such as walking
sounds and birds singing, are used in auditory
presentations.36 From the architectural point of
view, creating and controlling such soundscapes is
not trivial. One has to map the information to
specified qualities of the sound, as well as manage
and adjust the whole composition dynamically
according to preset rules, in order to assure the
continuity and harmony of the presentation.

The guidance and awareness applications can be
very useful for users with special needs. For
example, navigation in an unfamiliar environment
can be a challenging task for users who are visually
impaired and cannot rely on visual landmarks.
Similarly, a good deal of tacit awareness information
can be sensed, fused together, processed, and made
available through several modalities and levels of
abstraction. Our goal is to provide methods to
express meaningful information from the environ-
ment to help different users in their everyday tasks.
We have addressed this challenge by implementing
alternative interaction techniques and applied them
in the various applications using the agents-
managers-evaluators paradigm. In order to better
understand the needs of different users, we plan to
install the Doorman system in places where special
user groups work and live.

USER STUDIES

We arranged several user experiments at different
stages of the development of the Jaspis applications.
We have used various representative user groups in
these studies, focusing on users who are visually
impaired in particular. In addition, user feedback
has been received from the public use of the
applications. Mailman has been available to the
public since 1999, and the bus timetable service
Stopman has been in public use since 2003. In these
studies, various Jaspis evaluation tools have been
used.

User-centered design

To take representative users into account in the
development of the Mailman application, we
arranged a design session with the Finnish Feder-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

ation of the Visually Impaired. The purpose of the
session was to introduce the components that had
been implemented and to design speech inputs and
outputs by experimenting with different alterna-
tives. Similarly, we designed bus timetable systems
with representative users. We found it useful to
conduct early user tests with partially implemented
applications. In particular, we managed to set up
design sessions with Jaspis tools without any
modifications to the application code. This signifi-
cantly accelerated the process and allowed a wide
range of experiments to be conducted interactively.

In order to identify usability problems, we collected
feedback by asking specific questions and request-
ing free-form comments on the usability of the
applications. These are good ways of identifying
specific problems, such as poor rendering of e-mail
contents. Users who are visually impaired, espe-
cially those working in the information technology
industry, may be considered to be expert users of
speech applications, and they are also, in many
ways, a very demanding user group. Other expert
opinions were gathered from students taking a
usability course with no prior experience of speech
applications, but with an ability to analyze user
interfaces.

The results obtained with representative end users
have been used in implementations using Jaspis
agents and evaluators in practical applications. For
example, we have used and evaluated different
DTMF layouts for e-mail applications designed with
users who are visually impaired. Similarly, we have
implemented new agents to read e-mail messages
more fluently on the basis of the comments from
users who are visually impaired. With our modular
and adaptive approach, these components can be
included in applications and selected dynamically
when needed. Furthermore, the resulting agents can
be used in other similar applications as well. For
example, a telephone-based document-reading sys-
tem for users who are visually impaired has been
implemented by other developers on the basis of the
Jaspis architecture and the AthosMail application.37

Wizard of Oz studies

“Wizard of 0z” (WOZ) experiments, in which some
parts of the system are simulated with a human
operator, are useful for speech application develop-
ment as a usability-testing and data-collection
method. There are several tools to aid such experi-

TURUNEN ET AL

499

ments, such as SUEDE.”® One particular limitation of
such external tools is that they simulate the whole
system, and as a result, the software used in the

m The need for adaptivity and
supporting architectures is
identified to be one of the key
elements in the next generation
of speech applications m

experiment is different from the software to be used
in the actual system. In most cases, however, at
least a partly implemented system is needed or
wanted. Thus, it would be useful to run the actual
system in a WOZ mode. This is the purpose of the
Jaspis WOZ tools. For building WOZ interfaces,
Jaspis includes a generic WOZ GUI (graphical user
interface), which can be customized for different
purposes by using an XML-based description lan-
guage. This way, setting up a WOZ GUI requires a
definition of the interface, and no programming is
necessary.

We used the Jaspis tools to set up a WOZ experi-
ment to test the Doorman and AthosMail applica-
tions. The usability of the Doorman system was
evaluated as part of the development process by
performing a WOZ experiment in which speech
recognition and speaker recognition were simulated.
This was done by using a Jaspis WOZ applet.
Otherwise, the guidance system was functional, and
there were no modifications to the Doorman
components. Aside from evaluating the system
functionality and multimodal guiding instructions,
we wanted to collect data about how people speak to
the system.

With the Doorman WOZ experiment, we were able
to find many ways to improve the system. The main
findings from the user study concerned the way that
the users spoke to the system and the guidance
given by the system. For example, the guidance
algorithm was modified to use landmarks and
relative measures, and the dialog was divided to
consist of smaller dialog units. There were several
user groups (staff members, students, and visitors),
who had very different needs for the interaction.
The experiment and the results are described in
detail in Reference 39. In the future, we will

500 TURUNEN ET AL

implement more adaptivity in the guidance to
customize it for more user groups and individuals,
making the system more accessible.

We also used the WOZ method with a similar setup
to test the AthosMail application. We used the WOZ
study as a starting point for the AthosMail applica-
tion design, together with experiments in the usage
of the Mailman system.

Evaluation of working applications

We have done several experiments with working
versions of Jaspis applications. The e-mail systems
have been evaluated with several approaches. In
these studies, we have found several interesting
phenomena from the user diversity point of view;
for example, males and females have quite different
expectations and perceptions of the speech inter-
face;* tutor-based guidance is a promising approach
to making the systems accessible for different
users;"”" and sighted and visually impaired users
prefer different DTMF layouts. When we tested
various DTMF layouts, some of which had been
designed together with users who were visually
impaired, sighted novice users found the layouts to
be randomly assigned to the application function-
ality. Users who were visually impaired, on the
other hand, had a strong mental model (learned
from the use of text-based applications and screen
readers) concerning how the DTMF keys should be
used for navigation in speech interfaces. In addition,
this showed that novice users need support and
guidance when DTMF interfaces are used. In the
case of the Jaspis applications, customized inter-
faces and their dynamic selection are modeled using
agents and evaluators, and we have implemented
several context-sensitive features for help and
guidance, as discussed earlier.

We have conducted user studies with the working
versions of the timetable systems as well. Several
problems were found after the tests. Based on the
findings, Jaspis agents were used to improve
usability and add new functionality to the system.
For example, the users’ language in the experiments
was different from the language in the recorded
conversations between human operators and users.
In the human-to-human recordings, conversational
language was used, but in the human-to-computer
interaction, shorter sentences, terser style, and
different words and structures overall were used.
Most interestingly, in the human-to-computer con-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

versations, some people used nongrammatical
sentences similar to universal commands”® and tried
to adapt their language to the system. A represen-
tative example is “departure: railway station [pause]
destination: Arabia.” The lesson learned here is that
the language model should not be acquired directly
from human-to-human conversations because the
language used in human-to-computer communica-
tion is quite different. We solved this problem by
adding a set of new Jaspis agents to take care of
those inputs that the original, corpus-based input-
interpretation components were not able to handle.

In addition, we concluded that it is more efficient to
use a system-initiative dialog strategy as a default.
We used this approach in the more recent Stopman
application, which has been evaluated by analyzing
the calls from the public use of the system and has
been found usable in real-life practical situations. In
this context as well, it seems that users who are
visually impaired have quite different ways to
interact with the system. For example, they seem to
interrupt the system prompts immediately in the
beginning of the call, whereas most users do not
interrupt the greeting prompts (however, because
the calls are anonymous, we cannot identify the
users accurately).

In summary, the tests and experiments with the
applications have provided essential information for
iterative application development. In particular, we
have found the needs of different user groups to be
quite different. From the technical perspective, we
have found it efficient to work with the Jaspis
agents-managers-evaluators paradigm, which has
allowed us to improve the accessibility of the
systems by implementing alternative components
for the same tasks. Jaspis agents have made it
possible to efficiently realize results in terms of
software components and to construct sophisticated
tools to aid the evaluation process.

CONCLUSION

We have presented a number of ways in which the
needs of different users can be taken into account
with flexible and adaptive architecture solutions.
The Jaspis architecture includes the generic agents-
managers—-evaluators paradigm, which has proven
to be successful when adaptive applications and
interaction techniques have been built on top of the
architecture. When applications are constructed
with adaptivity in mind, it is easy to support

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

different user groups, as demonstrated in several
Jaspis applications.

Overall, the need for adaptivity and supporting
architectures is identified to be one of the key
elements in the next generation of speech applica-
tions.** We have found the compact agents to be very
useful when alternative interaction methods are
included in existing applications. Jaspis agents
together with the built-in adaptation mechanism of
Jaspis make it possible to include additional and
alternative functionality for different needs without
modifications to the existing components. An exam-
ple of this is the customized DTMF interfaces for
telephone systems and spoken guidance in indoor
environments that takes the needs (e.g., visual versus
nonvisual landmarks) of different users into account.

In order to better support sophisticated speech-
based systems, the Jaspis architecture has been
extended in several ways. The main new feature of
the Jaspis-2 architecture®® is the support for con-
current interaction in a coordinated and synchro-
nized way. In the Jaspis-2 architecture, indirect
messaging (using triggers and transactions) between
system components (i.e., agents) is used to support
concurrent interaction, while the coordinated adap-
tation mechanism of the original architecture (using
managers and evaluators) is preserved.

At the same time, the architecture is more black-
board-oriented, and the distribution of components
is extended to support sharing of components
among modules. All the changes have been made in
a way that makes it possible to use the adaptive
features of the original architecture. This is still
preliminary work, and in the future we will continue
the development of the Jaspis-2 architecture in close
relation to pervasive-computing systems in order to
find out how new application areas can be better
supported by the system architecture.

The solutions offered by the Jaspis architecture are
targeted mainly for speech-based and auditory
applications. Similar challenges can be found in
other application domains as well. In particular,
non-speech-based approaches to support accessibil-
ity are among the issues that will be part of the
future development of the Jaspis architecture and its
applications.

**Trademark, service mark, or registered trademark of Turner
Entertainment Corporation.

TURUNEN ET AL

501

CITED REFERENCES

1.

10.

11.

12.

13.

14.

E. Mynatt and G. Weber, “Nonvisual Presentation of
Graphical User Interfaces,” Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (CHI’94), Boston, MA (1994), pp. 166-172.

A. Edwards, “Multimodal Interaction and People with
Disabilities,” in Multimodality in Language and Speech
Systems, B. Granstrom, D. House and I. Karlsson, Editors,
Kluwer Academic Press, Dordrecht, The Netherlands
(2002), pp. 73-92.

D. Garlan and M. Shaw, “An Introduction to Software
Architecture,” in Advances in Software Engineering and
Knowledge Engineering, Series on Software Engineering
and Knowledge Engineering, Volume 2, V. Ambriola and
G. Tortora, Editors, World Scientific Publishing Com-
pany, Singapore (1993), pp. 1-39.

J. Allen, G. Ferguson, and A. Stent, “An Architecture for
More Realistic Conversational Systems,” Proceedings of

the International Conference on Intelligent User Interfaces
2001 (IUI-01), Santa Fe, New Mexico (2001), pp. 14-17.

M. McTear, “Spoken Dialogue Technology: Enabling the
Conversational Interface,” ACM Computing Surveys 34,
No. 1, 90-169 (March 2002).

S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V.
Zue, “Galaxy-II: A Reference Architecture for Conversa-
tional System Development,” Proceedings of the Fifth
International Conference on Spoken Language Processing
(ICSLP98), Sydney, Australia (1998), pp. 931-934.

D. L. Martin, A. J. Cheyer, and D. B. Moran, “The Open
Agent Architecture: A Framework for Building Distrib-
uted Software Systems,” Applied Artificial Intelligence:
An International Journal 13, No. 1-2 (January-March
1999), pp. 91-128.

A. Rudnicky and W. Xu, “An Agenda-based Dialog
Management Architecture for Spoken Language Sys-
tems,” Proceedings of the IEEE Automatic Speech Recog-
nition and Understanding Workshop (1999), pp. 337-
340.

D. Bohus and A. Rudnicky, “RavenClaw: Dialog Man-
agement Using Hierarchical Task Decomposition and an
Expectation Agenda,” Proceedings of the Eighth European
Conference on Speech Communication and Technology
(Eurospeech 2003), Geneva, Switzerland (2003), pp. 597-
600.

1. O’Neill, P. Hanna, X. Liu, and M. McTear, “The
Queen’s Communicator: An Object-Oriented Dialogue
Manager,” Proceedings of the Eighth European Conference
on Speech Communication and Technology (Eurospeech
2003), Geneva, Switzerland (2003), pp. 593-596.

B. Pakucs, “Towards Dynamic Multi-Domain Dialogue
Processing,” Proceedings of the Eighth European Confer-
ence on Speech Communication and Technology (Euro-
speech 2003), Geneva, Switzerland (2003), pp. 741-744.

M. Turunen and J. Hakulinen, “Jaspis—A Framework for
Multilingual Adaptive Speech Applications,” Proceedings
of the Sixth International Conference on Spoken Language
Processing (ICSLP 2000), Beijing, China (2000), pp. 719-
722.

M. Turunen, Jaspis—A Spoken Dialogue Architecture and
Its Applications, Ph.D. dissertation, University of Tam-
pere, Finland, Department of Computer Sciences, Report
A-2004-2, ISBN 951-44-5896-6, ISSN 1459-6903 (2004).

N. Blaylock, J. Allen, and G. Ferguson, “Synchronization
in an Asynchronous Agent-Based Architecture for Dia-
logue Systems,” Proceedings of the 3rd SIGdial Workshop

502 TURUNEN ET AL

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

206.

27.

on Discourse and Dialog, Philadelphia, PA; Association
for Computational Linguistics (2002), pp. 1-10.

O. Lemon, A. Bracy, A. Gruenstein, and S. Peters, “The
WITAS Multi-Modal Dialogue System 1,” Proceedings of
the Seventh European Conference on Speech Communi-
cation and Technology (Eurospeech 2001), Aalborg,
Denmark (2001), pp. 1559-1562.

I. O’Neill and M. McTear, “Object-Oriented Modeling of
Spoken Language Dialogue Systems,” Natural Language
Engineering 6, No. 3-4, Cambridge University Press
(2000), pp. 341-362.

M. Turunen, E.-P. Salonen, M. Hartikainen, and J.
Hakulinen, “Robust and Adaptive Architecture for
Multilingual Spoken Dialogue Systems,” Proceedings of
the Eighth International Conference on Spoken Language
Processing (INTERSPEECH 2004-ICSLP), Jeju Island,
Korea (2004), pp. 3081-3084.

E.-P. Salonen, M. Hartikainen, M. Turunen, J. Hakulinen,
and A. Funk, “Flexible Dialogue Management Using
Distributed and Dynamic Dialogue Control,” Proceedings
of the Eighth International Conference on Spoken Lan-
guage Processing (INTERSPEECH 2004-ICSLP), Jeju Is-
land, Korea (2004), pp. 197-200.

M. Turunen and J. Hakulinen, “Agent-Based Error
Handling in Spoken Dialogue Systems,” Proceedings of
the Seventh European Conference on Speech Communi-
cation and Technology (Eurospeech 2001), Aalborg,
Denmark (2001), pp. 2189-2192.

J. Hakulinen, M. Turunen, and E.-P. Salonen, “Agents for
Integrated Tutoring in Spoken Dialogue Systems,” Pro-
ceedings of the Eighth European Conference on Speech
Communication and Technology (Eurospeech 2003),
Geneva, Switzerland (2003), pp. 757-760.

J. Chu-Carroll, “MIMIC: An Adaptive Mixed Initiative
Spoken Dialogue System for Information Queries,”
Proceedings of the 6th ACL Conference on Applied Natural
Language Processing, Seattle, WA (May 2000), pp. 97-
104.

M. Walker, J. Fromer, G. Fabbrizio, C. Mestel, and D.
Hindle, “What Can I Say?: Evaluating a Spoken Language
Interface to Email,” Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI 98), Los
Angeles, CA (1998), pp. 582-589.

B. Hockey, D. Rossen-Knill, B. Spejewski, M. Stone, and
S. Isard, “Can You Predict Responses to Yes/No Ques-
tions? Yes, No, and Stuff,” Proceedings of the Fifth
European Conference on Speech Communication and
Technology (Eurospeech 1997), Rhodes, Greece (1997),
pp. 2267-2270.

M. Turunen and J. Hakulinen, “Mailman—a Multilingual
Speech-Only E-Mail Client Based on an Adaptive Speech
Application Framework,” Proceedings of the Workshop on
Multi-Lingual Speech Commaunication (MSC 2000), Kyoto,
Japan (2000), pp. 7-12.

M. Turunen, E.-P. Salonen, M. Hartikainen, et al.,
“AthosMail—A Multilingual Adaptive Spoken Dialogue
System for the E-mail Domain,” Proceedings of the
Workshop on Robust and Adaptive Information Process-
ing for Mobile Speech Interfaces, Geneva, Switzerland
(2004), pp. 77-86.

E.-P. Salinen, M. Hartikainen, M. Turunen, J. Hakulinen,
J. Rissanen, K. Kanto, and K. Jokinen, “Adaptivity in

a Speech-Based Multilingual E-mail Client,” Proceedings
of NordiCHI 2004, Tampere, Finland (2004), pp. 437-
440.

B. Suhm, “Towards Best Practices for Speech User
Interface Design,” Proceedings of the Eighth European
Conference on Speech Communication and Technology

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

(Eurospeech 2003), Geneva, Switzerland (2003), pp.
2217-2220.

28. R. Rosenfeld, X. Zhu, S. Shriver, A. Toth, K. Lenzo, and
A. W. Black, “Towards a Universal Speech Interface,”
Proceedings of the Sixth International Conference on
Spoken Language Processing (ICSLP 2000), Beijing, China
(2000), http://www-2.cs.cmu.edu/ ~ stef/papers/
ICSLPO0O-usi.pdf.

29. N. Dahlbdck and A. Jénsson, “Knowledge Sources In
Spoken Dialogue Systems,” Proceedings of the Seventh
European Conference on Speech Communication and
Technology (Eurospeech 1999), Budapest, Hungary
(1999), pp. 1523-1526.

30. M. Turunen and J. Hakulinen, “Jaspis2 - An Architecture
For Supporting Distributed Spoken Dialogues,” Proceed-
ings of the Eighth European Conference on Speech
Communication and Technology (Eurospeech 2003),
Geneva, Switzerland (2003), pp. 1913-1916.

31. N. Yankelovich and C. McLain, “Office Monitor,”
Proceedings of the Conference on Human Factors in
Computing Systems (CHI *96), Vancouver, British
Columbia, Canada; ACM Press, New York (1996), pp.
173-174.

32. B. Pakucs and H. Melin, “PER: A Speech Based
Automated Entrance Receptionist,” Proceedings of the
13th Nordic Conference of Computational Linguistics
(NoDaLiDa ’01), Uppsala, Sweden (2001).

33. S. Werner, B. Krieg-Briickner, H. A. Mallot, K. Schweizer,
and C. Freksa, “Spatial Cognition: The Role of Landmark,
Route, and Survey Knowledge in Human and Robot
Navigation,” in Informatik *97, M. Jarke, K. Pasedach,
and K. Pohl, Editors, Springer-Verlag, Vienna, Austria
(1997), pp. 41-50.

34. K. Hook, “An Approach to a Route Guidance Interface,*
Licentiate Thesis, Stockholm University, Department of
Computer and Systems Sciences, ISSN 1101 8526 (1991).

35. M. Weiser and J. S. Brown, “The Coming Age of Calm
Technology,” in Beyond Calculation: The Next Fifty
Years, Copernicus, New York, NY (1997), pp. 75-85.

36. K. Madkeld, J. Hakulinen, and M. Turunen, “The Use Of
Walking Sounds In Supporting Awareness,” Proceedings
of the International Conference on Auditory Display
(ICAD 2003), Boston, MA (2003), pp. 144-147.

37. P. Heiskari, “The Finnish AthosNews: A News-Reading
Application for Visually Impaired Users,” Proceedings of
the 20th International Conference on Computational
Linguistics, Geneva, Switzerland (2004), p. 43.

38. S. Klemmer, A. Sinha, J. Chen, A. Landay, N. Aboobaker,
and A. Wang, “SUEDE: A Wizard of Oz Prototyping Tool
for Speech User Interfaces,” CHI Letters, The 13th Annual
ACM Symposium on User Interface Software and Tech-
nology (UIST 2000) 2, No. 2 (2000), pp. 1-10.

39. K. Mdikeld, E.-P. Salonen, M. Turunen, J. Hakulinen, and
R. Raisamo, “Conducting a Wizard of Oz Experiment on a
Ubiquitous Computing System Doorman,” Proceedings of
the International Workshop on Information Presentation
and Natural Multimodal Dialogue (2001), pp. 115-119.

40. M. Hartikainen, E.-P. Salonen, and M. Turunen, “Sub-
jective Evaluation of Spoken Dialogue Systems Using
SERVQUAL Method,” Proceedings of the Eighth Interna-
tional Conference on Spoken Language Processing (IN-
TERSPEECH 2004-ICSLP), Jeju Island, Korea (2004).

41. J. Hakulinen, M. Turunen, E.-P. Salonen, and K.-J. Rdiha,
“Tutor Design for Speech-Based Interfaces,” Proceedings
of Designing Interactive Systems (DIS2004), Cambridge,
MA (2004), pp. 155-164.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

42. M. McTear, “New Directions in Spoken Dialogue
Technology for Pervasive Interfaces,” Proceedings of the
Workshop on Robust and Adaptive Information Process-
ing for Mobile Speech Interfaces (2004), pp. 57-64.

Accepted for publication February 16, 2005.
Published online August 5, 2005.

Markku Turunen

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, Kanslerinrinne 1, FIN-33014
University of Tampere, Finland (mturunen@cs.uta.fi). Dr.
Turunen received a Ph.D. degree in computer science from the
University of Tampere in March 2004. He joined the Tampere
Unit for Computer-Human Interaction in 1998, and has been
coordinating one of its research groups, the Speech-Based and
Pervasive Interaction group. His research interests are in
speech-based, auditory, and pervasive applications.

Jaakko Hakulinen

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, Kanslerinrinne 1, FIN-33014
University of Tampere, Finland (jaakko.hakulinen@cs.uta.fi).
Mr. Hakulinen is a researcher in the Speech-Based and
Pervasive Interaction Group. He received an M.Sc. degree in
computer science from the University of Joensuu in 1998. He
joined the TAUCHI (Tampere Unit for Computer Human
Interaction) unit in 1998 and has been working since on the
area of speech interfaces. Currently, he is working on software
tutoring of speech interfaces.

Kari-Jouko Rdihd

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, FIN-33014
University of Tampere, Finland (kjr@cs.uta.fi). Dr. Rdihd is a
professor of computer science at the University of Tampere.
He received a Ph.D. degree in computer science from the
University of Helsinki in 1982 and moved to the University of
Tampere soon after. He has worked in human-computer
interaction for 15 years and is the founder and head of the
Tampere Unit for Computer-Human Interaction, a research
unit of more than 50 researchers, faculty members, and
graduate students. His research interests are in interaction
design, particularly the use of nonstandard modalities, such as
eye gaze and speech.

Esa-Pekka Salonen

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(esa-pekka.salonen@cs.uta.fi). Mr. Salonen is a researcher
and a Ph.D. candidate at the University of Tampere. He
received B.Sc. and M.Sc. degrees in computer science from the
University of Tampere in June 2002 and in December 2002,
respectively. Mr. Salonen has worked in the Speech-Based and
Pervasive Interaction Group since 2001 on various projects
and applications.

Anssi Kainulainen

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(anssi@cs.uta.fi). Mr. Kainulainen is a researcher in the
Speech-Based and Pervasive Interaction Group. He is working
on auditory awareness information in ubiquitous systems.

TURUNEN ET AL

503

Perttu Prusi

University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(prusi@cs.uta.fi). Mr. Prusi is a researcher in the Speech-
Based and Pervasive Interaction Group. He received an M.Sc.
degree in computer science from the University of Tampere in
February 2005. He is working on speech-based and audio-
based guidance systems. M

504 TURUNEN ET AL IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

