
An architecture and applications
for speech-based accessibility
systems

&

M. Turunen

J. Hakulinen

K.-J. Räihä

E.-P. Salonen

A. Kainulainen

P. Prusi

Speech can be an efficient and natural means for communication between humans

and computers. The development of speech applications requires techniques,

methodology, and development tools capable of flexible and adaptive interaction,

taking into account the needs of different users and different environments. In this

paper, we discuss how the needs of different user groups can be supported by using

novel architectural solutions. We present the Jaspis speech application architecture,

which introduces a new paradigm for adaptive applications and has been released as

open-source software to assist in practical application development. To illustrate how

the architecture supports adaptive interaction and accessibility, we present several

applications that are based on the Jaspis architecture, including multilingual

e-mail systems, timetable systems, and guidance systems.

INTRODUCTION

Accessibility is often mentioned as one of the major

motivations for the development of speech applica-

tions. For example, there has been much work in

speech-based and auditory interfaces to allow

visually impaired users to access existing graphical

interfaces.
1

In general, multiple modalities have

been used to make human-computer interaction

accessible for people with disabilities.
2

In the ideal case, applications should take the needs

of different users and usage conditions into account

in the first place: interaction should be adapted to

each usage situation. The goal of this approach is

universal access to services. Current application

development architectures tend to lack the flexibility

necessary to adapt to a variety of users and usage

conditions. In this paper, we present a system

architecture capable of supporting the development

of accessible interactive systems.

SPEECH SYSTEM ARCHITECTURES

A software architecture defines applications in terms

of components and interactions among them.
3

A

framework suitable for practical speech applications

must provide components for a variety of applica-

tion requirements, including dialog management,

speech recognition, and natural language process-

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 485

ing. High-level components (modules) usually con-

tain multiple subcomponents having their own

& Applications should take the
needs of different users and
usage conditions into account &

internal organization and relations. The challenge

lies in finding ways for all of these components to be

organized and selecting the functionality that the

underlying system architecture should offer. This

includes the development of principles for interac-

tion and management of information flow among

the system components.

When we consider speech architectures from the

human-computer interaction point of view, an

interesting issue is how the system can be made to

support more intuitive and natural speech-based

interaction to allow universal access to services. The

needs of different user groups vary considerably.

Natural interaction requires flexible interaction

models supported by the system architecture.
4

In most speech systems, components are structured

in a pipeline fashion; that is, they are executed in a

sequential order, although this kind of ‘‘pipes-and-

filters’’ model is considered suboptimal for inter-

active systems.
3

In order to facilitate the develop-

ment of advanced speech applications, we need

more advanced techniques, models, methodology,

and tools. In particular, we need system frameworks

that support the requirements mentioned because,

as with all technical variation, the key issue is the

integration of components into a working system.
5

Earlier work in advanced speech system architec-

tures includes client-server approaches and systems

based on agent architectures. Probably the best-

known speech-specific client-server architecture is

Galaxy-II.
6

The Open Agent Architecture
7

is a

general agent architecture that has been used in the

construction of many speech applications. These

architectures offer the necessary infrastructure

components for applications, but they do not

support human-computer interaction tasks or adap-

tation in any particular manner.

A great deal of work has been done in the field of

dialog management. Three particularly interesting

recent examples include the agenda-based dialog

management architecture
8

and its RavenClaw ex-

tension,
9

Queen’s Communicator,
10

and SesaME.
11

The purpose of these approaches is not to provide a

complete speech architecture but instead, a model

for dialog management.

The Jaspis architecture addresses many of the same

features as the dialog management architectures

mentioned but aims for general applicability in a

variety of task settings, one of which is dialog

management. It introduces a new paradigm for

interactive systems that focuses on speech-based

applications. In our previous papers
12

we have

presented technical and functional aspects of the

architecture. In this paper, the architectural princi-

ples—and in particular their novel support for

adaptive interaction—are described in the context of

human-computer interaction. We demonstrate how

it is possible to construct highly adaptive systems

suitable for different user groups and to support

accessibility by using the Jaspis architecture and its

principles.

The remainder of the paper is organized as follows.

In the next section we introduce architectural

foundations for adaptive human-computer interac-

tion. The Jaspis architecture and its novel inter-

action paradigm based on agents, managers and

evaluators is introduced with examples. After the

architecture presentation, we introduce several

Jaspis-based applications for various domains.

Examples of multilingual e-mail systems, timetable

services, and pervasive computing applications are

given. Special focus is given to interaction-level

issues, such as error management, help, and

guidance. In the next section we report experiences

and results from user-centered design, ‘‘Wizard of

Oz’’** studies, and evaluations of Jaspis applica-

tions. Accessibility issues, such as those raised in

design sessions with users who are visually im-

paired, are discussed. The paper closes with

conclusions and discussion.

JASPIS ARCHITECTURE
Jaspis is a general speech-application architecture

designed for the challenges of advanced speech

applications, especially adaptive and multilingual

speech applications. It provides support for human-

computer interaction tasks, such as error handling,

‘‘Wizard of Oz’’ studies (i.e., those in which some

parts of the system are simulated with a human

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005486

operator), and corpora collection. While Jaspis is a

general conceptual architecture, it is also a concrete

framework which provides components for appli-

cation development. In this section, we present the

principles of the Jaspis architecture, focusing on

human-computer interaction tasks, in particular on

dialog management, output generation, and input

management tasks. In addition, application devel-

opment aspects are briefly discussed.

Architecture requirements

In order to support more flexible interaction, we

have identified requirements for speech application

architectures. First, speech applications need adap-

tive interaction methods in all system modules. For

example, outputs and inputs should be tailored to

the language of the users, and dialog management

should adapt to the situation at hand. Second,

systems should be modular because modular

components support reusability, are easy to main-

tain and extend, can be distributed efficiently, and

make adaptivity easier to achieve. The other

requirements concern collaborative and iterative

application design and development, the need for an

extensible and practical infrastructure for applica-

tion development, and support for standards. These

principles are motivated by the technology, human-

computer interaction, and application development

viewpoints, all of which should be taken into

account. For a more comprehensive description of

the Jaspis architecture requirements see Reference

13.

Architecture overview

In order to support the architectural requirements

mentioned, the Jaspis architecture uses a modular

and distributed system structure, an adaptive inter-

action coordination model and a shared system

context. These form the basic infrastructure on

which other features and components of the system

are based.

Figure 1 presents a typical Jaspis-based system

setup. The top-level structure of the system is based

on managers, which are connected to the central

manager with a star topology. Communication

between components is organized according to the

client-server paradigm. Local subsystems are lo-

cated inside the system modules. The interaction

coordination model of the Jaspis architecture is

based on the agents-managers-evaluators paradigm.

Agents are interaction components which imple-

ment different interaction techniques, such as

speech output presentations and dialog decisions.

Evaluators are used to evaluate different aspects of

the agents, in order to determine how suitable the

agents are for different tasks. Managers are used to

coordinate these components. All information in

Jaspis-based systems is stored in the shared in-

formation storage. All components of the system

may access the content of the information storage by

using the information manager. These are the key

features enabling architecture-level adaptation.

Shared information management

Information management is a crucial element of

adaptive, modular, and distributed applications. The

repository approach (i.e., using ‘‘blackboards’’ and

databases) provides several advantages for adaptive

and distributed applications. The term ‘‘black-

boards,’’ in the context of speech applications, refers

to shared information resources, or specifically, a

shared knowledge base. Most importantly, the

repository approach allows the use of shared

information by all system components. The main

drawback of this approach is the lack of control.
7

In

Jaspis, the coordination and control are performed

by a separate component (the interaction manager)

to achieve architecture-level coordination.

The Jaspis information management architecture

consists of four layers. In this way, the actual

Figure 1
Overall system structure for Jaspis applications

Natural
Language
Understanding

Natural
Language
Generation

Interaction Manager
(facilitator)

Information
Storage

Information Manager

Communication
Management

Dialog
Management

Input
Management

Presentation
Management

Database
Management

User
Modeling

Jaspis Core

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 487

storage (the information storage), the application

interface (the information manager), and the com-

munication interfaces (the information access pro-

tocol and communication protocols) are separated to

maximize flexibility. In this section we focus on

information storing and application layers, omitting

the communication layers.

The information storage holds all the shared system

data, that is, the shared system context. The Jaspis

architecture assumes that individual components do

not store any high-level information inside them,

but instead use the information storage for that

purpose. This makes the interaction components

stateless, and the system is able to adapt to each

interaction by choosing proper components for each

situation. To make this possible, the system

assumes that every component updates its knowl-

edge from the information storage when activated

and writes modified information back to the

information storage when deactivated. In the ideal

case, the shared data should be represented at a

conceptual level such that it can be used by other

components as well. This is one of the main features

used to adapt the systems for different users.

The reference implementation of the information

storage uses XML (Extensible Markup Language) for

its internal information representation. The content

or the structure of information inside the informa-

tion storage is not defined by the system architecture

because this is specific to the particular application

and domain. The definition of the shared knowledge

is an important phase of the application develop-

ment process.

The programming interface for the information

storage is straightforward: it takes XML requests and

produces XML results. The information storage

offers only the minimal set of operations needed to

manipulate its contents. In addition to the shared

information storage, direct information exchange

between certain I/O components is supported for

efficiency reasons. Most notably, the raw audio

streams should be passed between components in a

cost-efficient way to minimize system overhead and

delays.

The information manager provides an application

interface to the information storage. It uses the

information access protocol to access the informa-

tion storage and provides a programming interface

for other components to access the shared system

context. For example, system inputs and outputs

may be modified by their own set of methods.

Application developers may write new, application-

specific methods when needed.

Flexible interaction management

The interaction management model of Jaspis is

focused on the key design principles of the

architecture: adaptivity and modularity. Interaction

management in this context means both the overall

coordination of system components and the coor-

dination of those components that implement

interaction techniques to be used in human-com-

puter interaction tasks. In practice, this means input,

output, and dialog management components in their

various forms.

Interaction techniques are implemented by agents,

which are software components specialized for

certain tasks. Evaluators are used to make selections

among different agents. Managers are used to

coordinate agents and evaluators. Components

specialized for related tasks are organized into

modules. An overview of the interaction manage-

ment model is presented in Figure 2.

As illustrated in the figure, each system module

contains one local manager and several agents and

evaluators. It is up to the local managers to decide

which agents are used in different situations. Instead

of centralizing this decision (by assigning it to the

managers), evaluators are used to evaluate agents

and their suitability for different tasks. Thus, there is

no central component which makes these decisions.

This makes it possible to construct highly adaptive

and modular systems because all functionality is

divided into specialized components that have no

predefined execution order and relations among

them. The principles governing how managers,

agents, and evaluators are used are presented next

in more detail.

Managers: coordination

The interaction manager is a central component in

Jaspis-based systems. It manages other components

and is responsible for the overall coordination of the

interaction. The interaction manager is similar to

some central components found in other speech

architectures. Such components include the hub in

the Galaxy-II architecture
6

and the Facilitator in the

Open Agent Architecture.
7

Similar components can

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005488

also be found in other distributed architectures. The

main differences include the division of labor

between the information manager and the interac-

tion manager and the fact that Jaspis is a layered

(hierarchical) architecture.

Coordination is one of the main issues in agent-

based systems.
7,14

In order to coordinate interaction

in a flexible way, it is better to use decentralized

control logic; managers and their components may

be more autonomous, and the system may adapt to

interaction when needed. This is crucial in applica-

tions that are targeted for various user groups, and

in particular, when applications need to be modified

afterwards, as is the case in many accessibility

systems which need to be customized for different

users. In Jaspis, local managers are quite inde-

pendent. The interaction manager does not know

the internal structure of modules, nor does it

coordinate interaction inside modules. Layered

systems are easier to maintain, and they can be

more efficient. This is because local managers need

to coordinate only their own components. Evalua-

tions in particular are more efficient when only

those agents that belong to the same module are

evaluated.

Jaspis uses a ‘‘round robin’’ interaction management

approach, in which one manager is active at a time.

The interaction manager enables the managers to

take turns, based on a prioritized list. When the

option to become active is offered to a manager, it

will check if it is able to handle the situation by

using its own reasoning algorithm or by consulting

evaluators.

In order to support application development, the

architecture includes a general manager class that

can be customized for different purposes. The

general manager asks evaluators to assign a score

for each agent in the module. If there is an agent that

receives a score above zero, the manager becomes

active and activates the agent with the highest score.

In the basic algorithm, managers multiply evalua-

tion scores, but more elaborate methods may be

used as well.
13

In addition to the default behavior presented, local

managers are able to extend this functionality, or in

general, implement their own functionality. For

example, some of the Jaspis reference implementa-

tion managers (e.g., the presentation manager and

the communication manager) have extended the

basic functionality. This is because they have

different needs when using agents. The agents–

managers–evaluators paradigm is used in all system

modules, but in various ways.

Agents: interaction tasks

Agents in the Jaspis architecture are software

components that handle various interaction tasks.

Agents are often used to handle tasks that are fairly

complex. For example, in the WITAS (Wallenberg

Laboratory for Research on Information Technology

and Autonomous Systems) multimodal dialog sys-

tem, there are six agents.
15

Jaspis has been designed

with compact agents in mind. Because agents are

meant to handle single, well-defined tasks, they are

fairly small, and typical systems contain many of

them. For example, in the AthosMail application

(presented in the following section), there are over

Figure 2
General interaction management architecture

Coordinate Coordinate
Interaction Manager

Coordinate
Presentation Model

Presentation
Agents

Presentation
Evaluators

Evaluate

Coordinate

Input Model

Input
Agents

Coordinate

Presentation Manager
Dialog Model

Dialog
Agents

Dialog
Evaluators

Evaluate

Dialog Manager

CoordinateInput
Evaluators

Input Manager

SelectSelect UseUse

Select Use

Evaluate

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 489

50 basic dialog agents alone (e.g., agents for reading

e-mail messages, navigating among folders and

messages, and providing context-sensitive help).

Typical agents in Jaspis-based systems are spe-

cialized for certain tasks, which may be domain-

specific or general interaction management tasks.

Agents may implement interaction techniques for

tasks such as generation of welcome prompts or

handling of speech inputs. Some of the agents may

be application-independent, while some may be

closely tied to the application domain. Application-

independent behavior is usually preferred so that

components may be used across applications.

Usually, application-specific components are en-

capsulated in their own agents, and inheritance is

used to maximize runtime efficiency.
16–18

Specialized agents make it possible to implement

modular, reusable, and extensible interaction com-

ponents that are easy to implement and maintain.

For example, we have constructed general inter-

action techniques, such as error correction methods,

to take care of error situations in speech applica-

tions.
19

Another example is that of tutoring agents,

which provide guidance for the users in a real

context.
20

In addition to the collaborative approach, where

different agents implement different functionality,

multiple agents may be specialized for the same

tasks with varying behavior. In other words, agents

may provide alternative solutions to the same

problems. Based on our experiences, we have

concluded that different user groups prefer different

types of interaction (described in the following

sections in more detail). Using modular agents, we

can support different interaction strategies within an

application and adapt the interaction dynamically to

the user and the situation. For example, we may

have different agents to take care of speech outputs

for various user groups and languages. We have

constructed specialized presentation agents for

different languages and with varying verbosity

levels without modifying the original agents.

Jaspis agents are stateless, as stated previously, but

they are autonomous in the sense that they know

when they are able to act. Each agent has a self-

evaluation method that checks the current situation

(for example, the dialog context) and gives a local

estimate that defines how well it can handle the

situation at hand. The self-evaluation method is

only one part of the agent selection process. All

dependencies among agents, including the overall

suitability of competing agents for different situa-

tions, are modeled using evaluators.

Evaluators: system-level adaptation

Evaluators are the key concept in making applica-

tions adaptive and interaction flexible. They deter-

mine which agents should be selected for different

interaction tasks. It is up to evaluators to compare

different agents and their capabilities and assign an

evaluation score for every agent in any given

situation. Like agents, evaluators are specialized for

certain tasks. In practice, this means that different

evaluators evaluate different aspects of agents from

different system viewpoints. For example, an

evaluator may use the dialog history to determine

which dialog strategy should be used (i.e., which

kind of dialog agent should be selected), and

another evaluator may use the user model to select

verbose or brief system output formats.

When Jaspis evaluators are employed at the human-

computer interaction level, they can monitor inter-

actions and give guidance as to how an interaction is

progressing and how it should continue. One

example is dialog strategy: if the interaction is not

going smoothly when the dialog strategy is based on

user initiative, a specialized dialog evaluator may

give better scores for dialog agents based on system

initiative. Similarly, if the user has problems,

presentation evaluators may prefer presentation

agents that use more detailed and helpful prompts.

Concrete examples are presented in the following

sections.

Evaluation is applied in the system modules. When

one of the agents inside a module is to be selected,

each evaluator in the module assigns a score to

every agent in the module. These scores are then

multiplied by the local manager. The manager

assigns the final score, a suitability factor, to every

agent (see Reference 13 for a more comprehensive

description). It is noteworthy that there is no single

evaluator, nor any single component in general,

which selects agents for each situation; instead, the

selection is always both dynamic and distributed.

This makes it possible to keep the program control

and interaction flow highly dynamic and adaptive

on the architectural level. This is a major improve-

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005490

ment to the ‘‘black box’’ type of adaptivity that most

systems offer (see, for example, Reference 21).

Evaluators may use different strategies and tech-

niques to evaluate agents. They may use informa-

tion such as the current dialog context, user model,

and interaction history. Presentation evaluators, for

example, may use dialog history to determine (e.g.,

using heuristic rules) which confirmation agent is

most suitable for the current dialog state. Other

evaluators may use methods from machine learning,

for example, to evaluate agents and their usefulness

in a given context.

Evaluators know the properties of the agents, which

are expressed in the form of attributes. Attributes

are presented in XML-based configuration files and

can be configured with domain-specific parameters.

In more complex systems, the parameters can be

learned automatically. To be generic, the architec-

ture does not force application developers to follow

any predefined approach to this process. In con-

ventional dialog systems, all dialog decisions are

made by the dialog manager. Jaspis evaluators allow

more flexible interaction management to take place

because the reasoning is both distributed and

dynamic. Evaluators may nevertheless be used for

more global evaluation. This can be done with

special evaluators to monitor interactions and to

favor consistent interaction. For example, the

evaluators may favor agents which use a language

similar to that used in previous dialogs for inputs

and outputs and which follow the same dialog

strategy.

In the AthosMail system (to be presented in the

following sections), the presentation agents are

evaluated with five different evaluators. Each

evaluator uses specific information to assign a score

to each agent. The presentation evaluators use the

following information: (1) dialog data, (2) language

of the output, (3) user expertise, (4) characteristics

of the mailbox, and (5) self-evaluation results of the

agents. Evaluation scores from these five evaluators

are combined, and the agent with the highest overall

score is selected to generate the output.

We next present how the general agents–managers–

evaluators paradigm is applied to human-computer

interaction tasks, including dialog, presentation, and

input management tasks.

Human-computer interaction management
The Jaspis architecture provides several general

interaction modules that can be customized for

specific tasks and applications. These are input,

& Natural interaction requires
flexible interaction models
supported by the system
architecture &

dialog, presentation, and communication modules.

These modules contain the components used to

implement interaction techniques for human-com-

puter interaction tasks. All of these modules are

based on the general agents–managers–evaluators

paradigm but use it in slightly different ways.

Developers are free to introduce additional modules

when needed (e.g., for user modeling or handling

modality-specific issues).

Dialog and error management

The task of the dialog management module is to

update the dialog state, that is, to move the dialog

from one state to another. This abstract task

representation may be modeled in various ways and

should not be restricted to any single dialog control

model, such as the finite-state model or the form-

based model.

Like other agents, dialog agents are specialized for

different dialog tasks or provide alternative solu-

tions for the same dialog tasks. Unlike many other

agents, such as presentation agents and input

agents, in most cases there is usually only one dialog

agent active at any given time. The dialog control

model is one way to categorize dialog agents. For

example, in the state-based dialog control model,

each dialog state can correspond to one dialog agent,

whereas in the concept-based model, each concept

may form its own agent. In the form-based dialog

model, every form field may correspond with a

dialog agent. In addition, it is possible to use

multiple dialog control models, such as those based

on state machines and forms, in the same applica-

tion. The combination of different approaches is

especially useful when subdialogs are implemented

with different dialog control models.
17

Dialog evaluators may be specialized for aspects

such as general dialog-level issues, functional

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 491

aspects of agents, domain-specific issues, or user

preferences. For example, one dialog evaluator

monitors the dialog flow and checks that the

& Information management is
a crucial element of adaptive,
modular, and distributed
applications &

interface is consistent, ensuring that the dialog

management strategy is not changed for every

dialog instance. Another evaluator may perform the

mapping of dialog tasks to the functionality of

agents, while other, more specialized evaluators

monitor error situations and the user’s need for help

and guidance.

Dialog agents and evaluators can be used to imple-

ment different dialog management strategies to

adapt the dialog to the user. Different dialog

management strategies, such as the system-initiative

approach and the mixed-initiative approach, have

different benefits and drawbacks,
22

which makes it

useful to use a multiplicity of them in an adaptive

way. For example, we have used tutoring agents to

provide system-initiative features to the user-initia-

tive interface.
20

In the next section we present a

concrete example of such usage in the context of a

multilingual e-mail application.

Similarly, alternative solutions for the same dialog

tasks can be implemented by using modular agents

and evaluators. Alternative dialog agents can be used

to provide adaptivity to the interface in special

situations. One example is error management. Errors

are unavoidable in speech-based applications, and

their proper handling is a challenging task. In the

agent-based error management model,
19

the task is

divided into seven phases, and the actual error

correction techniques are implemented using the

Jaspis agents and evaluators. For example, there can

be agents and evaluators for error detection (e.g.,

monitoring of speech-recognition confidence scores

and dialog history), actual error correction techni-

ques (such as selections from a list and different

kinds of confirmations), and decisions regarding

how to continue after the error has been corrected.

The agent-based approach for dialog management is

demonstrated in the following dialog example

(translated from Finnish) from the Busman time-

table system.

AGENT U
1
: Welcome to Busman, the Tampere bus

information service! How may I help

you?

USER: When does the next bus leave from

Central Square to Her ehhh correction

from Central Square to Hervanta?

AGENT E
1
: Sorry, I didn’t recognize that. Please

speak clearly.

USER: What now?

AGENT H
1
: Busman understands questions such as

‘‘When does the next bus to Hervanta

depart?’’, ... [help continues]

USER: I’m leaving from Central Square, and

I’m going to Hervanta.

AGENT E
2
: Sorry, I still didn’t recognize that.

AGENT S
1
: Please tell me where you are leaving

from.

USER: From Central Square.

AGENT G
1
: What is your destination?

USER: Hervanta.

AGENT G
2
: From Central Square to Hervanta use

lines 13, 20, 23 and 30.

AGENT S
2
: Do you want to hear timetables?

USER: Yes.

AGENT G
3
: From Central Square to Hervanta on

weekdays at 11:15 bus in line 23...

In this example, five types of dialog agents are

present: user-initiative dialog agents (U
1
), system-

initiative dialog agents (S
1
, S

2
), error management

agents (E
1
, E

2
), help agents (H

1
) and general dialog

agents (G
1
, G

2
, G

3
). All of these agents operate on

the basis of the shared form and concept definitions

that are stored in the information storage. In the

beginning, the dialog evaluators select a user-

initiative agent (U
1
). Recognition errors occur due to

the complex recognition grammars, and the first

error management agent (E
1
) is selected. After that,

the user requests help by using a universal

command (its usage will be presented in the

following sections), and a help agent (H
1
) is

selected. After the second recognition error, another

error management agent (E
2
) is chosen, and the

dialog evaluators select a system-initiative dialog

agent (S
1
) to continue the dialog because of the

recent errors (the recognition grammars are changed

at the same time to more compact ones by the input

agents). The recognizer is performing better, and

two generic dialog agents (G
1
, G

2
) are selected to

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005492

complete the task. Finally, the dialog evaluators

select a system-initiative dialog agent (S
2
) again, and

a generic agent (G
3
) provides the results. In the

Busman application every dialog agent has a

floating-point value (initiative attribute) to deter-

mine its suitability for system-initiative and user-

initiative dialog. This will be presented in the

section ‘‘Bus timetable systems.’’

Presentation management

The presentation management module is responsi-

ble for generating system outputs suitable for the

current dialog state. Usually, this is done on the

basis of conceptual messages that the dialog

management module produces. Presentation agents

produce a representation of speech outputs, which

are synthesized by the communication management

module. They perform natural language generation,

add prosodic information to sentences, decide which

(synthesized) voices should be used, and add other

modality-specific features into outputs.

Real-world metaphors for presentation agents are

actors, who perform their roles as efficiently as they

can. Different agents have different capabilities, and

they are chosen for different roles. Unlike the real

world, the choice of agents can be tailored for each

listener, that is, for each user. A real-world

metaphor for presentation evaluators is a casting

agency, which tries to find the most suitable actors

to perform the roles in a play. Similarly, presenta-

tion evaluators try to find which presentation

agents are the most suitable for the presentation of

speech outputs. Several evaluators can be used in

this process: in the e-mail domain, we have used

five evaluators to choose among the presentation

agents.

Multiple presentation agents may be active at a

time. First, there may be multiple output requests

in information storage, and all of these will be

processed. Second, presentation agents may pro-

duce several outputs from a single output request.

For example, multiple agents may contribute to the

output, and a message may be rendered by using

multiple modalities. Furthermore, the output gen-

eration process can be modular and involve several

steps. This could be used when outputs for

different user groups are produced. For example,

additional information can be added with separate

agents for those users who prefer more informative

outputs.

Aside from speech outputs, the presentation man-

agement module handles the generation of outputs

in other modalities. The presentation management

module performs fission; that is, it decides which

modalities should be used for outputs. In this way, it

is easy to use different modalities in the system and

to take user preferences into account both because

dialog management components do not need to be

modified when available modalities are changed and

because user preferences are learned or given by the

user. The presentation management module can be

used to support multimodal outputs for different

user groups to make single-mode systems more

accessible. We have introduced new modalities in

this way without the need to modify existing output

generation components. Examples of multimodal

timetable systems are given in the following

sections.

Multilingual outputs can be hard to handle in speech

applications. The modular structure of the presen-

tation management module helps to separate lan-

guage-specific issues into their own agents, and the

developers of a new language version are able to

translate the system in an iterative way and keep the

process manageable. This supports localization,

which is one of the key features in making

applications more accessible for older users, for

example. We used this approach in the case of the

Mailman and AthosMail applications, which are

presented in the next section. Finally, speech

outputs have a strong influence on the user’s choice

of words, and therefore on the interaction as a

whole. For this reason, presentation agents should

produce a consistent speech interface and use

knowledge from dialog management, user inputs,

and the user model in this process.

Input management

Input agents and evaluators are similar to presen-

tation agents and evaluators. They take conceptual

input requests from information storage, select

appropriate modalities, and add the necessary

control information, such as device configuration

parameters. The resulting control messages are then

processed by the communication module. In this

way, conceptual input requests, modality selection,

and device control are separated from each other.

Input management components take care of the

selection and creation of the input vocabulary

(recognition grammars or language models in

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 493

speech applications). Context-sensitive grammars

may be selected or generated in system-initiative

dialogs, meta-dialogs, and other situations where

users are expected to speak in various ways.

Recognition grammars should be consistent with the

way that the system speaks to the user. Even in

simple cases, such as when synonyms and yes/no

dialogs are used, a wrong lexical selection may lead

to problems if output and input languages are not

consistent.
23

Because the order in which Jaspis

managers are executed can be freely customized,

application developers may decide how they model

topics, speech styles, and lexical selection in differ-

ent modules, that is, in which order the corre-

sponding modules will be executed.

Generation of control information is modality-

specific, and a highly application-specific and

iterative process. By selecting input modalities for

specialized agents, dialog-level components can be

used without modification. It should be noted,

however, that modality change is not just a

configuration parameter, but instead may involve

complex relations between input, output, and dialog

modules. Input management components do not

perform actual multimodal fusion (i.e., the process

in which the results of multiple input modalities,

generally multiple information sources, are com-

bined). This is the task of the communication

module.

Communication management and application

development

Communication, that is, low-level input and output

management, differs in several ways from other

parts of the architecture, although it still shares the

agents–managers–evaluators paradigm. In addition

to agents and evaluators, communication manage-

ment includes a layered and concurrent architecture

for handling communication between devices and

other external resources. This architecture consists

of devices, clients, connections, servers, handlers,

and engines. Devices and engines are I/O-specific

components; clients, connections, servers and han-

dlers can be used in other parts of the system for

distribution of components.

In order to create intuitive and rich interfaces, we

need flexible models for handling interaction.
4

In

Jaspis, the communication manager coordinates

input and output devices, using I/O agents to

interpret and conceptualize inputs (including natu-

ral language understanding and multimodal fusion),

and I/O evaluators to coordinate devices. This

process is carried through in a timely and concurrent

manner, and feedback may be provided to the

devices while they are still gathering inputs or

presenting outputs.

With respect to technology, the Jaspis framework is

based on dynamic objects, XML documents, a set of

core infrastructure classes, and more than 20

extensions. XML is used in all parts of the

architecture, and the system supports several

standards and markup languages. For example, it

includes support for several synthesis markup

languages, and we are currently implementing

VoiceXML support for distributed dialogs and

various mobile devices. Because Jaspis-based sys-

tems are modular and distributed, an important part

of practical application development is configura-

tion, which is performed using XML-based config-

uration files.

The reference implementation of the architecture is

released as open-source software (under the LGPL

[Lesser General Public License] license) to support

practical application development and can be

downloaded from its home page (http://www.cs.

uta.fi/hci/spi/Jaspis/). Further details about the

communication management and application de-

velopment are outside the scope of this paper, but

can be found in Reference 13.

JASPIS APPLICATIONS

In this section, we present several applications

using the Jaspis architecture. These applications

cover many areas, including information services,

multilingual systems, and pervasive computing

applications. Many human-computer interaction

aspects are involved, and in all of them accessi-

bility issues are taken into account. In particular,

we have worked with special user groups to

design, iteratively develop, and evaluate these

applications.

E-mail applications

The e-mail domain is an especially suitable area for

speech applications. E-mail itself is one of the most

successful applications in the history of computing

and involves many issues that are relevant to other

services and to universal access for various users in

different settings.

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005494

Our research group has been involved in the

development of several multilingual (Finnish, En-

glish, and Swedish) speech-based e-mail applica-

tions. The first version of the Mailman application

was developed for a Finnish national research

project.
24

In the EU-funded DUMAS project, the

existing Mailman application served as a basis for

the AthosMail application.
25

AthosMail supports

more advanced functionality, including alternative

solutions for input processing, dialog management,

and output generation, to bring more robustness and

adaptivity to the interaction.
17

These e-mail applications allow the user to access

his or her mailbox by using a standard mobile or

fixed-line phone. They offer functionality for most

e-mail reading tasks. The systems provide both

speech input (speech recognition) and DTMF (Dual-

Tone Multi-Frequency, also known as ‘‘touch-tone’’)

interfaces which may be used in a multimodal

fashion. We have worked together with visually

impaired users and learned in the user studies that

their preferences are quite different from those of

other users, especially those of normally sighted

novice users. In order to help different users, we

have implemented several features that provide

adaptive interaction supporting accessibility for

various user groups.
26

Flexible interaction management

In the AthosMail application, two alternative dialog

management approaches are used to bring more

flexibility to the interaction.
18

All dialog components

use the same dialog history, which is represented as

a discourse tree in the information storage. In

addition, the tutoring agents bring system-initiative

features to the user-initiative interface,
20

comple-

menting the main dialog components.

When the interface is adapted for different users, it

is not possible for all functionality to be used by all

user groups in all cases (e.g., for technological,

economical, or interface reasons). To share compo-

nents and maintain portability, a common core of

functionality is needed. More advanced interaction

methods can be built on top of this core, taking into

account the specific needs and capabilities of each

user group. In the Mailman and AthosMail systems,

the different configurations of the system share the

same basic functionality. In addition to speech

inputs, all functionality can be accessed by the

DTMF interface. In small mailboxes, elementary

numbers (1–9) are used to select messages and

folders. In this way, both the speech and the DTMF

interfaces are robust and simple to use. If the user

has a large number of messages, more complex

recognition grammars are selected by input eval-

uators to access the messages, and the DTMF

interface uses multiple keys to access messages. In

addition, we have adapted the recognition gram-

mars to contain the names and keywords

& In order to coordinate
interaction in a flexible way,
it is better to use decentralized
control logic &

found in each user’s e-mail messages. We have

found the DTMF interface to be important for users

who are visually impaired, who have usually

learned to use it in other applications and often

prefer it over the speech recognition interface.

However, when we designed DTMF layouts with

these users and tested them with sighted novice

users, the novice users found them hard to use. We

discuss this further in the following sections.

Adaptive system outputs

In the e-mail domain, the main challenge is how to

read messages and present other information so that

the outputs are both intelligible and pleasant for the

user. In the presentation components, different

prompts are used for different users (novices,

regular users, experts). This is implemented in such

a way that each type of prompt (for example, a brief

and a verbose version of a welcome prompt) has its

own agents, and the appropriate one is selected at

runtime, based on dynamically calculated user

profiles. Presentation agents for multiple languages

are implemented in the same way, thus making it

easy to port the applications to different languages.

Overall, multilinguality is one of the key issues in

e-mail systems.
24

Users have different ways to

approach multilingual systems: for example, some

of the visually impaired users prefer to use a Finnish

synthesizer for English messages as well because

they are accustomed to how the synthesizer

pronounces English messages. This kind of user

preference can be modeled using Jaspis evaluators

to dynamically select proper agents for reading the

messages.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 495

In order to present large lists of messages efficiently

and adapt them for each user, the messages are

categorized into meaningful groups by using an

& Usually, application-specific
components are encapsulated
in their own agents, and
inheritance is used to
maximize runtime efficiency &

algorithm that tries to create both meaningful and

easily manageable groups. Information about the

messages, such as header information, is used for

this purpose. The number of messages within each

group is kept within the limits of human capabilities

to handle spoken data.
27

This helps the user to get

an overview of the mailbox contents even with a

large number of messages. By dynamically adapting

the groupings for each situation, it is possible to use

alternative input methods and strategies, such as the

DTMF keys. In particular, users who are visually

impaired often prefer these communication meth-

ods. In addition, tapering is used to reduce the

length of the lists, by including only the meaningful

information in them.

Help and guidance

In order to provide help and guidance for novice

users, AthosMail supports a set of universal

commands
28

that adapt to the interaction. With the

‘‘tell me more’’ command, the user can get a detailed

presentation of the current dialog situation. For

example, when a message is selected, only the main

information is spoken. With the ‘‘tell me more’’

command, the user can access additional informa-

tion, such as length of the message, date, and time.

Another universal command is the ‘‘what now?’’

command, which triggers context-sensitive help, in

which only relevant guidance is given to the user,

taking into account the current dialog situation and

history. These features are demonstrated in the

following dialog (translated from Finnish):

SYSTEM: Message number one from Esa-Pekka

Salonen, subject is ‘‘AthosMail review’’

USER: Tell me more.

SYSTEM: Message number one from Esa-Pekka

Salonen, subject is ‘‘AthosMail review,

urgent.’’ Message was sent on Wed-

nesday at 14.24. It has 6 lines. Sum-

mary of message: ‘‘We should prepare

for the review. How about meeting

tomorrow?’’

USER: What now?

SYSTEM: You can make the system read the

message by saying ‘‘read’’, or you can

select another message by saying, for

example, ‘‘second message’’, ...

Another form of guidance is provided by tutoring

agents.
20

They introduce the system to the user,

monitor how well the user interacts with the system,

and provide guidance accordingly. Tutoring com-

ponents take the initiative in certain situations. They

use the dialog history, the user model, and their own

tutoring plan in this process. Technically, the Jaspis

agents and evaluators make it possible to add the

tutoring agents to the system without modifications

to other components. Furthermore, the tutoring

feature can be turned dynamically on and off. The

following dialog (translated from Finnish) gives an

example of the tutoring feature:

SYSTEM: Please wait, connecting to your mail

server ... Hi, Test user. No new

messages. 17 old messages. You have 3

groups. Group one, ...

TUTOR: Hi, I’m your tutor. I’ll teach you how to

use the system. Next, choose one of the

available groups. You can do this by

saying, for example, ‘‘third group.’’ So,

please use the group number you wish.

USER: Go to the third group

TUTOR: Good. Now you are in the third group.

Next AthosMail will list messages in

the group.

SYSTEM: [the system lists the messages in the

selected third group]

Bus timetable systems

In addition to e-mail systems, we have been working

with several bus timetable systems. As with the

e-mail domain, the timetable domain is practical,

provides plenty of research challenges, and the

results can be used in other information services.

Similar human-operated systems are widely avail-

able, and there is a need to replace existing systems

with automated systems. Furthermore, with auto-

mated systems it is possible to produce new services

that are either not possible or not economically

viable with human operators. For special user

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005496

groups, they may represent the only possibility to

access information, as has been noted recently in

many areas.

The Busman and Interact systems provide bus route

and timetable information for the Tampere and

Helsinki areas, two major cities in Finland. The

functionality of these systems is similar to other

timetable services, such as MALIN.
29

The user may

request information such as bus routes (e.g.,

‘‘Which bus goes to the university hospital?’’) and

timetables (e.g., ‘‘When does the next one leave?’’).

Like the e-mail applications, these systems have a

speech interface and can be used with mobile and

fixed-line telephones. In contrast, a third timetable

system (Stopman) and its ongoing continuation

(PUMS), are based more on the system-initiative

approach and can be used with a multimodal

personal digital assistant (PDA) interface as well.

These applications are designed in close collabo-

ration with users who are visually impaired.

Currently, we are implementing mobile clients for

the Stopman system. Wireless connections, such as

GPRS (General Packet Radio Service) or UTMS

(Universal Mobile Telecommunications System),

provide speech recognition and synthesis services

on PDAs and cellular phones for users who are

visually impaired. Jaspis components are used both

on the server and the client side, and the interaction,

such as menu selection, is adapted by the agents and

evaluators to the capabilities of each device. In

addition to speech and nonspeech audio, we have

plans to use touch-sensitive displays. In the Interact

system, multimodal extensions such as a graphical

touch-screen interface for information kiosk usage

and a short-message interface for mobile nonspeech

usage were implemented for users who are deaf or

hard of hearing.

In the Busman system, we have experimented with a

truly mixed-initiative approach to dialog manage-

ment, which we have found to be the key aspect in

making dialogs work in this domain. In this

approach, each dialog agent has an initiative

attribute, which indicates its suitability for system-

initiative and user-initiative dialogs. In the current

implementation, one dialog evaluator is used to give

preference to system-initiative agents when the

interaction proceeds normally, and to user-initiative

agents when errors are present. In this way, the

system tries to adapt to the interaction by changing

the dialog strategy on the basis of the success of the

interaction. An example dialog with this feature was

given in the section ‘‘Dialog and error manage-

ment.’’ In addition, the Busman application includes

a set of tutoring agents
20

to provide multimodal

guidance and assistance in error situations. Figure 3

illustrates this guidance. It also demonstrates how

spoken dialogs can be visualized automatically. In

terms of technology, the tutoring is implemented as

a set of agents and evaluators providing GUI outputs

and inputs, while the Busman agents and evaluators

provide speech inputs and outputs. Again, the

tutoring component could be included in the system

without any modifications to the Busman code. All

the information necessary for the tutor agents is

already available in the information storage.

Pervasive speech applications

Doorman is a pervasive computing system that uses

speech and audio as its main modalities. It has been

designed with both sighted users and users who are

visually impaired in mind. We have used it to

experiment with implementations of speech inter-

faces in pervasive-computing settings. In this field,

many new challenges have been encountered.

Experiments from this domain have greatly influ-

enced the development of the new Jaspis-2 archi-

tecture,
30

which supports multiple concurrent users

and dialogs.

The Doorman system serves staff members and

visitors in an office environment. The system

controls access to this environment by identifying

staff members and helping visitors to find the place

or person that they are looking for. The system gives

guidance to visitors about how to reach their

destinations. Several extensions, such as an auditory

awareness information service, have been added to

Figure 3
Multimodal tutoring in the Busman system

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 497

the system. The system has features similar to the

Office Monitor
31

and PER
32

systems.

The Doorman system uses speech recognition and

speaker identification to recognize users from their

& Tutor-based guidance is a
promising approach to
making systems accessible
for different users &

speech. Synthesized speech, nonspeech audio, and

pointing gestures are used for multimodal outputs.

For visually impaired users, the speech outputs,

augmented with nonspeech audio (including audi-

tory icons) contain the necessary information. The

presence, location, and state of users can be tracked

from different signals and their fusion. People on the

move can be followed using infrared and pressure-

sensitive EMFi (Electro-Mechanical Film) technolo-

gies. Other information (such as keyboard, mouse,

or application activity) is received from desktop

computers and mobile devices.

The main feature of the system is guidance. The

office layout is modeled in such a way that the

system is able to generate various alternative

guidance descriptions with varying levels of detail.

The selection of details is highly dependent on the

particular user group process. Route instructions

given to users who are visually impaired need to be

founded on different criteria from those for sighted

users.
33

For example, the visual landmarks that are

useful for sighted users can be replaced with

auditory landmarks for visually impaired users. This

can be understood by comparing the following

system outputs:

For sighted users:

Follow the hallway until you come to a crossroad

with a sign ‘‘copy machine.’’

For users who are visually impaired:

Continue ahead until you can hear the following

sound [sound of a copy machine].

Communication with the user is handled through

communication points located in strategic places in

the facility, such as intersections. This enables the

distribution of route instructions in small units,

which are easier to understand and memorize,

hence easing the cognitive load on the user.
34

These

smaller units are presented according to the user’s

progress along the route. Distributed route instruc-

tions are supported by auditory cues, which

function as beacons along the route. An auditory cue

played from the next communication unit on the

route functions as a target which the user can aim

at. This serial component in multimodal spatial

information is very important for visually impaired

users.
33

The user can ask for more detailed

information from the system when passing com-

munication units.

In addition to guidance related to navigation, the

system is capable of giving added information in the

manner of an exhibition guide. The guide gives a

tour of the premises, showcasing physical artifacts.

The same identification and positioning information

enables cross-references to earlier events and

personalized content generation with temporally as

well as spatially dynamic modality choices. Such

choices are helpful for various accessibility prob-

lems, for example, as demonstrated in the following

system outputs:

For sighted users:

As you can see, the artist uses the same technique

of contrasting colors when choosing materials, as

in the three previous sculptures.

For users who are visually impaired:

If you touch the sculpture, you can feel the

contrasting textures of soft wool and unfinished

cast bronze, a similar method to that used in the

artist’s two previous sculptures.

One group of extensions to the Doorman system is

applications for supporting awareness and group

communication. In these applications, auditory

information is presented in a way which helps to

keep users aware of events occurring in their

surroundings. For example, an application monitors

the presence of group members and informs other

group members about the activity in the group (e.g.,

usage of desktop computers or tracking of people

using floor sensors). The presentation of the

information is done so that auditory icons and other

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005498

auditory information indicate important changes in

the environment, such as arrival of other people and

incoming messages. Through ambient soundscapes

(i.e., acoustic environments that surround the user),

information is made available in the periphery of the

senses.
35

Both continuous and temporal information

are presented. Natural sounds, such as walking

sounds and birds singing, are used in auditory

presentations.
36

From the architectural point of

view, creating and controlling such soundscapes is

not trivial. One has to map the information to

specified qualities of the sound, as well as manage

and adjust the whole composition dynamically

according to preset rules, in order to assure the

continuity and harmony of the presentation.

The guidance and awareness applications can be

very useful for users with special needs. For

example, navigation in an unfamiliar environment

can be a challenging task for users who are visually

impaired and cannot rely on visual landmarks.

Similarly, a good deal of tacit awareness information

can be sensed, fused together, processed, and made

available through several modalities and levels of

abstraction. Our goal is to provide methods to

express meaningful information from the environ-

ment to help different users in their everyday tasks.

We have addressed this challenge by implementing

alternative interaction techniques and applied them

in the various applications using the agents–

managers–evaluators paradigm. In order to better

understand the needs of different users, we plan to

install the Doorman system in places where special

user groups work and live.

USER STUDIES

We arranged several user experiments at different

stages of the development of the Jaspis applications.

We have used various representative user groups in

these studies, focusing on users who are visually

impaired in particular. In addition, user feedback

has been received from the public use of the

applications. Mailman has been available to the

public since 1999, and the bus timetable service

Stopman has been in public use since 2003. In these

studies, various Jaspis evaluation tools have been

used.

User-centered design
To take representative users into account in the

development of the Mailman application, we

arranged a design session with the Finnish Feder-

ation of the Visually Impaired. The purpose of the

session was to introduce the components that had

been implemented and to design speech inputs and

outputs by experimenting with different alterna-

tives. Similarly, we designed bus timetable systems

with representative users. We found it useful to

conduct early user tests with partially implemented

applications. In particular, we managed to set up

design sessions with Jaspis tools without any

modifications to the application code. This signifi-

cantly accelerated the process and allowed a wide

range of experiments to be conducted interactively.

In order to identify usability problems, we collected

feedback by asking specific questions and request-

ing free-form comments on the usability of the

applications. These are good ways of identifying

specific problems, such as poor rendering of e-mail

contents. Users who are visually impaired, espe-

cially those working in the information technology

industry, may be considered to be expert users of

speech applications, and they are also, in many

ways, a very demanding user group. Other expert

opinions were gathered from students taking a

usability course with no prior experience of speech

applications, but with an ability to analyze user

interfaces.

The results obtained with representative end users

have been used in implementations using Jaspis

agents and evaluators in practical applications. For

example, we have used and evaluated different

DTMF layouts for e-mail applications designed with

users who are visually impaired. Similarly, we have

implemented new agents to read e-mail messages

more fluently on the basis of the comments from

users who are visually impaired. With our modular

and adaptive approach, these components can be

included in applications and selected dynamically

when needed. Furthermore, the resulting agents can

be used in other similar applications as well. For

example, a telephone-based document-reading sys-

tem for users who are visually impaired has been

implemented by other developers on the basis of the

Jaspis architecture and the AthosMail application.
37

Wizard of Oz studies
‘‘Wizard of Oz’’ (WOZ) experiments, in which some

parts of the system are simulated with a human

operator, are useful for speech application develop-

ment as a usability-testing and data-collection

method. There are several tools to aid such experi-

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 499

ments, such as SUEDE.
38

One particular limitation of

such external tools is that they simulate the whole

system, and as a result, the software used in the

& The need for adaptivity and
supporting architectures is
identified to be one of the key
elements in the next generation
of speech applications &

experiment is different from the software to be used

in the actual system. In most cases, however, at

least a partly implemented system is needed or

wanted. Thus, it would be useful to run the actual

system in a WOZ mode. This is the purpose of the

Jaspis WOZ tools. For building WOZ interfaces,

Jaspis includes a generic WOZ GUI (graphical user

interface), which can be customized for different

purposes by using an XML-based description lan-

guage. This way, setting up a WOZ GUI requires a

definition of the interface, and no programming is

necessary.

We used the Jaspis tools to set up a WOZ experi-

ment to test the Doorman and AthosMail applica-

tions. The usability of the Doorman system was

evaluated as part of the development process by

performing a WOZ experiment in which speech

recognition and speaker recognition were simulated.

This was done by using a Jaspis WOZ applet.

Otherwise, the guidance system was functional, and

there were no modifications to the Doorman

components. Aside from evaluating the system

functionality and multimodal guiding instructions,

we wanted to collect data about how people speak to

the system.

With the Doorman WOZ experiment, we were able

to find many ways to improve the system. The main

findings from the user study concerned the way that

the users spoke to the system and the guidance

given by the system. For example, the guidance

algorithm was modified to use landmarks and

relative measures, and the dialog was divided to

consist of smaller dialog units. There were several

user groups (staff members, students, and visitors),

who had very different needs for the interaction.

The experiment and the results are described in

detail in Reference 39. In the future, we will

implement more adaptivity in the guidance to

customize it for more user groups and individuals,

making the system more accessible.

We also used the WOZ method with a similar setup

to test the AthosMail application. We used the WOZ

study as a starting point for the AthosMail applica-

tion design, together with experiments in the usage

of the Mailman system.

Evaluation of working applications

We have done several experiments with working

versions of Jaspis applications. The e-mail systems

have been evaluated with several approaches. In

these studies, we have found several interesting

phenomena from the user diversity point of view;

for example, males and females have quite different

expectations and perceptions of the speech inter-

face;
40

tutor-based guidance is a promising approach

to making the systems accessible for different

users;
41

and sighted and visually impaired users

prefer different DTMF layouts. When we tested

various DTMF layouts, some of which had been

designed together with users who were visually

impaired, sighted novice users found the layouts to

be randomly assigned to the application function-

ality. Users who were visually impaired, on the

other hand, had a strong mental model (learned

from the use of text-based applications and screen

readers) concerning how the DTMF keys should be

used for navigation in speech interfaces. In addition,

this showed that novice users need support and

guidance when DTMF interfaces are used. In the

case of the Jaspis applications, customized inter-

faces and their dynamic selection are modeled using

agents and evaluators, and we have implemented

several context-sensitive features for help and

guidance, as discussed earlier.

We have conducted user studies with the working

versions of the timetable systems as well. Several

problems were found after the tests. Based on the

findings, Jaspis agents were used to improve

usability and add new functionality to the system.

For example, the users’ language in the experiments

was different from the language in the recorded

conversations between human operators and users.

In the human-to-human recordings, conversational

language was used, but in the human-to-computer

interaction, shorter sentences, terser style, and

different words and structures overall were used.

Most interestingly, in the human-to-computer con-

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005500

versations, some people used nongrammatical

sentences similar to universal commands
28

and tried

to adapt their language to the system. A represen-

tative example is ‘‘departure: railway station [pause]

destination: Arabia.’’ The lesson learned here is that

the language model should not be acquired directly

from human-to-human conversations because the

language used in human-to-computer communica-

tion is quite different. We solved this problem by

adding a set of new Jaspis agents to take care of

those inputs that the original, corpus-based input-

interpretation components were not able to handle.

In addition, we concluded that it is more efficient to

use a system-initiative dialog strategy as a default.

We used this approach in the more recent Stopman

application, which has been evaluated by analyzing

the calls from the public use of the system and has

been found usable in real-life practical situations. In

this context as well, it seems that users who are

visually impaired have quite different ways to

interact with the system. For example, they seem to

interrupt the system prompts immediately in the

beginning of the call, whereas most users do not

interrupt the greeting prompts (however, because

the calls are anonymous, we cannot identify the

users accurately).

In summary, the tests and experiments with the

applications have provided essential information for

iterative application development. In particular, we

have found the needs of different user groups to be

quite different. From the technical perspective, we

have found it efficient to work with the Jaspis

agents–managers–evaluators paradigm, which has

allowed us to improve the accessibility of the

systems by implementing alternative components

for the same tasks. Jaspis agents have made it

possible to efficiently realize results in terms of

software components and to construct sophisticated

tools to aid the evaluation process.

CONCLUSION

We have presented a number of ways in which the

needs of different users can be taken into account

with flexible and adaptive architecture solutions.

The Jaspis architecture includes the generic agents–

managers–evaluators paradigm, which has proven

to be successful when adaptive applications and

interaction techniques have been built on top of the

architecture. When applications are constructed

with adaptivity in mind, it is easy to support

different user groups, as demonstrated in several

Jaspis applications.

Overall, the need for adaptivity and supporting

architectures is identified to be one of the key

elements in the next generation of speech applica-

tions.
42

We have found the compact agents to be very

useful when alternative interaction methods are

included in existing applications. Jaspis agents

together with the built-in adaptation mechanism of

Jaspis make it possible to include additional and

alternative functionality for different needs without

modifications to the existing components. An exam-

ple of this is the customized DTMF interfaces for

telephone systems and spoken guidance in indoor

environments that takes the needs (e.g., visual versus

nonvisual landmarks) of different users into account.

In order to better support sophisticated speech-

based systems, the Jaspis architecture has been

extended in several ways. The main new feature of

the Jaspis-2 architecture
30

is the support for con-

current interaction in a coordinated and synchro-

nized way. In the Jaspis-2 architecture, indirect

messaging (using triggers and transactions) between

system components (i.e., agents) is used to support

concurrent interaction, while the coordinated adap-

tation mechanism of the original architecture (using

managers and evaluators) is preserved.

At the same time, the architecture is more black-

board-oriented, and the distribution of components

is extended to support sharing of components

among modules. All the changes have been made in

a way that makes it possible to use the adaptive

features of the original architecture. This is still

preliminary work, and in the future we will continue

the development of the Jaspis-2 architecture in close

relation to pervasive-computing systems in order to

find out how new application areas can be better

supported by the system architecture.

The solutions offered by the Jaspis architecture are

targeted mainly for speech-based and auditory

applications. Similar challenges can be found in

other application domains as well. In particular,

non-speech-based approaches to support accessibil-

ity are among the issues that will be part of the

future development of the Jaspis architecture and its

applications.

**Trademark, service mark, or registered trademark of Turner
Entertainment Corporation.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 501

CITED REFERENCES
1. E. Mynatt and G. Weber, ‘‘Nonvisual Presentation of

Graphical User Interfaces,’’ Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (CHI’94), Boston, MA (1994), pp. 166–172.

2. A. Edwards, ‘‘Multimodal Interaction and People with
Disabilities,’’ in Multimodality in Language and Speech
Systems, B. Granström, D. House and I. Karlsson, Editors,
Kluwer Academic Press, Dordrecht, The Netherlands
(2002), pp. 73–92.

3. D. Garlan and M. Shaw, ‘‘An Introduction to Software
Architecture,’’ in Advances in Software Engineering and
Knowledge Engineering, Series on Software Engineering
and Knowledge Engineering, Volume 2, V. Ambriola and
G. Tortora, Editors, World Scientific Publishing Com-
pany, Singapore (1993), pp. 1–39.

4. J. Allen, G. Ferguson, and A. Stent, ‘‘An Architecture for
More Realistic Conversational Systems,’’ Proceedings of
the International Conference on Intelligent User Interfaces
2001 (IUI-01), Santa Fe, New Mexico (2001), pp. 14–17.

5. M. McTear, ‘‘Spoken Dialogue Technology: Enabling the
Conversational Interface,’’ ACM Computing Surveys 34,
No. 1, 90–169 (March 2002).

6. S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V.
Zue, ‘‘Galaxy-II: A Reference Architecture for Conversa-
tional System Development,’’ Proceedings of the Fifth
International Conference on Spoken Language Processing
(ICSLP98), Sydney, Australia (1998), pp. 931–934.

7. D. L. Martin, A. J. Cheyer, and D. B. Moran, ‘‘The Open
Agent Architecture: A Framework for Building Distrib-
uted Software Systems,’’ Applied Artificial Intelligence:
An International Journal 13, No. 1–2 (January–March
1999), pp. 91–128.

8. A. Rudnicky and W. Xu, ‘‘An Agenda-based Dialog
Management Architecture for Spoken Language Sys-
tems,’’ Proceedings of the IEEE Automatic Speech Recog-
nition and Understanding Workshop (1999), pp. 337–
340.

9. D. Bohus and A. Rudnicky, ‘‘RavenClaw: Dialog Man-
agement Using Hierarchical Task Decomposition and an
Expectation Agenda,’’ Proceedings of the Eighth European
Conference on Speech Communication and Technology
(Eurospeech 2003), Geneva, Switzerland (2003), pp. 597–
600.

10. I. O’Neill, P. Hanna, X. Liu, and M. McTear, ‘‘The
Queen’s Communicator: An Object-Oriented Dialogue
Manager,’’ Proceedings of the Eighth European Conference
on Speech Communication and Technology (Eurospeech
2003), Geneva, Switzerland (2003), pp. 593–596.

11. B. Pakucs, ‘‘Towards Dynamic Multi-Domain Dialogue
Processing,’’ Proceedings of the Eighth European Confer-
ence on Speech Communication and Technology (Euro-
speech 2003), Geneva, Switzerland (2003), pp. 741–744.

12. M. Turunen and J. Hakulinen, ‘‘Jaspis—A Framework for
Multilingual Adaptive Speech Applications,’’ Proceedings
of the Sixth International Conference on Spoken Language
Processing (ICSLP 2000), Beijing, China (2000), pp. 719–
722.

13. M. Turunen, Jaspis—A Spoken Dialogue Architecture and
Its Applications, Ph.D. dissertation, University of Tam-
pere, Finland, Department of Computer Sciences, Report
A-2004-2, ISBN 951-44-5896-6, ISSN 1459-6903 (2004).

14. N. Blaylock, J. Allen, and G. Ferguson, ‘‘Synchronization
in an Asynchronous Agent-Based Architecture for Dia-
logue Systems,’’ Proceedings of the 3rd SIGdial Workshop

on Discourse and Dialog, Philadelphia, PA; Association
for Computational Linguistics (2002), pp. 1–10.

15. O. Lemon, A. Bracy, A. Gruenstein, and S. Peters, ‘‘The
WITAS Multi-Modal Dialogue System I,’’ Proceedings of
the Seventh European Conference on Speech Communi-
cation and Technology (Eurospeech 2001), Aalborg,
Denmark (2001), pp. 1559–1562.

16. I. O’Neill and M. McTear, ‘‘Object-Oriented Modeling of
Spoken Language Dialogue Systems,’’ Natural Language
Engineering 6, No. 3–4, Cambridge University Press
(2000), pp. 341–362.

17. M. Turunen, E.-P. Salonen, M. Hartikainen, and J.
Hakulinen, ‘‘Robust and Adaptive Architecture for
Multilingual Spoken Dialogue Systems,’’ Proceedings of
the Eighth International Conference on Spoken Language
Processing (INTERSPEECH 2004-ICSLP), Jeju Island,
Korea (2004), pp. 3081–3084.

18. E.-P. Salonen, M. Hartikainen, M. Turunen, J. Hakulinen,
and A. Funk, ‘‘Flexible Dialogue Management Using
Distributed and Dynamic Dialogue Control,’’ Proceedings
of the Eighth International Conference on Spoken Lan-
guage Processing (INTERSPEECH 2004-ICSLP), Jeju Is-
land, Korea (2004), pp. 197–200.

19. M. Turunen and J. Hakulinen, ‘‘Agent-Based Error
Handling in Spoken Dialogue Systems,’’ Proceedings of
the Seventh European Conference on Speech Communi-
cation and Technology (Eurospeech 2001), Aalborg,
Denmark (2001), pp. 2189–2192.

20. J. Hakulinen, M. Turunen, and E.-P. Salonen, ‘‘Agents for
Integrated Tutoring in Spoken Dialogue Systems,’’ Pro-
ceedings of the Eighth European Conference on Speech
Communication and Technology (Eurospeech 2003),
Geneva, Switzerland (2003), pp. 757–760.

21. J. Chu-Carroll, ‘‘MIMIC: An Adaptive Mixed Initiative
Spoken Dialogue System for Information Queries,’’
Proceedings of the 6th ACL Conference on Applied Natural
Language Processing, Seattle, WA (May 2000), pp. 97–
104.

22. M. Walker, J. Fromer, G. Fabbrizio, C. Mestel, and D.
Hindle, ‘‘What Can I Say?: Evaluating a Spoken Language
Interface to Email,’’ Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI 98), Los
Angeles, CA (1998), pp. 582–589.

23. B. Hockey, D. Rossen-Knill, B. Spejewski, M. Stone, and
S. Isard, ‘‘Can You Predict Responses to Yes/No Ques-
tions? Yes, No, and Stuff,’’ Proceedings of the Fifth
European Conference on Speech Communication and
Technology (Eurospeech 1997), Rhodes, Greece (1997),
pp. 2267–2270.

24. M. Turunen and J. Hakulinen, ‘‘Mailman—a Multilingual
Speech-Only E-Mail Client Based on an Adaptive Speech
Application Framework,’’ Proceedings of the Workshop on
Multi-Lingual Speech Communication (MSC 2000), Kyoto,
Japan (2000), pp. 7–12.

25. M. Turunen, E.-P. Salonen, M. Hartikainen, et al.,
‘‘AthosMail—A Multilingual Adaptive Spoken Dialogue
System for the E-mail Domain,’’ Proceedings of the
Workshop on Robust and Adaptive Information Process-
ing for Mobile Speech Interfaces, Geneva, Switzerland
(2004), pp. 77–86.

26. E.-P. Salinen, M. Hartikainen, M. Turunen, J. Hakulinen,
J. Rissanen, K. Kanto, and K. Jokinen, ‘‘Adaptivity in
a Speech-Based Multilingual E-mail Client,’’ Proceedings
of NordiCHI 2004, Tampere, Finland (2004), pp. 437–
440.

27. B. Suhm, ‘‘Towards Best Practices for Speech User
Interface Design,’’ Proceedings of the Eighth European
Conference on Speech Communication and Technology

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005502

(Eurospeech 2003), Geneva, Switzerland (2003), pp.
2217–2220.

28. R. Rosenfeld, X. Zhu, S. Shriver, A. Toth, K. Lenzo, and
A. W. Black, ‘‘Towards a Universal Speech Interface,’’
Proceedings of the Sixth International Conference on
Spoken Language Processing (ICSLP 2000), Beijing, China
(2000), http://www-2.cs.cmu.edu/~stef/papers/
ICSLP00-usi.pdf.

29. N. Dahlbäck and A. Jönsson, ‘‘Knowledge Sources In
Spoken Dialogue Systems,’’ Proceedings of the Seventh
European Conference on Speech Communication and
Technology (Eurospeech 1999), Budapest, Hungary
(1999), pp. 1523–1526.

30. M. Turunen and J. Hakulinen, ‘‘Jaspis
2

- An Architecture
For Supporting Distributed Spoken Dialogues,’’ Proceed-
ings of the Eighth European Conference on Speech
Communication and Technology (Eurospeech 2003),
Geneva, Switzerland (2003), pp. 1913–1916.

31. N. Yankelovich and C. McLain, ‘‘Office Monitor,’’
Proceedings of the Conference on Human Factors in
Computing Systems (CHI ’96), Vancouver, British
Columbia, Canada; ACM Press, New York (1996), pp.
173–174.

32. B. Pakucs and H. Melin, ‘‘PER: A Speech Based
Automated Entrance Receptionist,’’ Proceedings of the
13th Nordic Conference of Computational Linguistics
(NoDaLiDa ’01), Uppsala, Sweden (2001).

33. S. Werner, B. Krieg-Brückner, H. A. Mallot, K. Schweizer,
and C. Freksa, ‘‘Spatial Cognition: The Role of Landmark,
Route, and Survey Knowledge in Human and Robot
Navigation,’’ in Informatik ’97, M. Jarke, K. Pasedach,
and K. Pohl, Editors, Springer-Verlag, Vienna, Austria
(1997), pp. 41–50.

34. K. Hook, ‘‘An Approach to a Route Guidance Interface,‘‘
Licentiate Thesis, Stockholm University, Department of
Computer and Systems Sciences, ISSN 1101 8526 (1991).

35. M. Weiser and J. S. Brown, ‘‘The Coming Age of Calm
Technology,’’ in Beyond Calculation: The Next Fifty
Years, Copernicus, New York, NY (1997), pp. 75–85.

36. K. Mäkelä, J. Hakulinen, and M. Turunen, ‘‘The Use Of
Walking Sounds In Supporting Awareness,’’ Proceedings
of the International Conference on Auditory Display
(ICAD 2003), Boston, MA (2003), pp. 144–147.

37. P. Heiskari, ‘‘The Finnish AthosNews: A News-Reading
Application for Visually Impaired Users,’’ Proceedings of
the 20th International Conference on Computational
Linguistics, Geneva, Switzerland (2004), p. 43.

38. S. Klemmer, A. Sinha, J. Chen, A. Landay, N. Aboobaker,
and A. Wang, ‘‘SUEDE: A Wizard of Oz Prototyping Tool
for Speech User Interfaces,’’ CHI Letters, The 13th Annual
ACM Symposium on User Interface Software and Tech-
nology (UIST 2000) 2, No. 2 (2000), pp. 1–10.

39. K. Mäkelä, E.-P. Salonen, M. Turunen, J. Hakulinen, and
R. Raisamo, ‘‘Conducting a Wizard of Oz Experiment on a
Ubiquitous Computing System Doorman,’’ Proceedings of
the International Workshop on Information Presentation
and Natural Multimodal Dialogue (2001), pp. 115–119.

40. M. Hartikainen, E.-P. Salonen, and M. Turunen, ‘‘Sub-
jective Evaluation of Spoken Dialogue Systems Using
SERVQUAL Method,’’ Proceedings of the Eighth Interna-
tional Conference on Spoken Language Processing (IN-
TERSPEECH 2004-ICSLP), Jeju Island, Korea (2004).

41. J. Hakulinen, M. Turunen, E.-P. Salonen, and K.-J. Räihä,
‘‘Tutor Design for Speech-Based Interfaces,’’ Proceedings
of Designing Interactive Systems (DIS2004), Cambridge,
MA (2004), pp. 155–164.

42. M. McTear, ‘‘New Directions in Spoken Dialogue
Technology for Pervasive Interfaces,’’ Proceedings of the
Workshop on Robust and Adaptive Information Process-
ing for Mobile Speech Interfaces (2004), pp. 57–64.

Accepted for publication February 16, 2005.

Markku Turunen
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, Kanslerinrinne 1, FIN-33014
University of Tampere, Finland (mturunen@cs.uta.fi). Dr.
Turunen received a Ph.D. degree in computer science from the
University of Tampere in March 2004. He joined the Tampere
Unit for Computer-Human Interaction in 1998, and has been
coordinating one of its research groups, the Speech-Based and
Pervasive Interaction group. His research interests are in
speech-based, auditory, and pervasive applications.

Jaakko Hakulinen
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, Kanslerinrinne 1, FIN-33014
University of Tampere, Finland (jaakko.hakulinen@cs.uta.fi).
Mr. Hakulinen is a researcher in the Speech-Based and
Pervasive Interaction Group. He received an M.Sc. degree in
computer science from the University of Joensuu in 1998. He
joined the TAUCHI (Tampere Unit for Computer Human
Interaction) unit in 1998 and has been working since on the
area of speech interfaces. Currently, he is working on software
tutoring of speech interfaces.

Kari-Jouko Räihä
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, FIN-33014
University of Tampere, Finland (kjr@cs.uta.fi). Dr. Räihä is a
professor of computer science at the University of Tampere.
He received a Ph.D. degree in computer science from the
University of Helsinki in 1982 and moved to the University of
Tampere soon after. He has worked in human-computer
interaction for 15 years and is the founder and head of the
Tampere Unit for Computer-Human Interaction, a research
unit of more than 50 researchers, faculty members, and
graduate students. His research interests are in interaction
design, particularly the use of nonstandard modalities, such as
eye gaze and speech.

Esa-Pekka Salonen
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(esa-pekka.salonen@cs.uta.fi). Mr. Salonen is a researcher
and a Ph.D. candidate at the University of Tampere. He
received B.Sc. and M.Sc. degrees in computer science from the
University of Tampere in June 2002 and in December 2002,
respectively. Mr. Salonen has worked in the Speech-Based and
Pervasive Interaction Group since 2001 on various projects
and applications.

Anssi Kainulainen
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(anssi@cs.uta.fi). Mr. Kainulainen is a researcher in the
Speech-Based and Pervasive Interaction Group. He is working
on auditory awareness information in ubiquitous systems.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 TURUNEN ET AL. 503

Published online August 5, 2005.

Perttu Prusi
University of Tampere, Department of Computer Sciences,
Tampere Unit for Computer Human Interaction, Speech-Based
and Pervasive Interaction Group, University of Tampere,
Kanslerinrinne 1, FIN-33014 University of Tampere, Finland
(prusi@cs.uta.fi). Mr. Prusi is a researcher in the Speech-
Based and Pervasive Interaction Group. He received an M.Sc.
degree in computer science from the University of Tampere in
February 2005. He is working on speech-based and audio-
based guidance systems. &

TURUNEN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005504

