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Colombo is a lightweight platform for developing, deploying, and executing service-
oriented applications. It provides optimized, native runtime support for the service-
oriented-computing model, as opposed to the approach of layering service-oriented
applications on a legacy runtime. This approach allows Colombo to provide high
runtime performance, a small footprint, and simplified application development and
deployment models. The Colombo runtime natively supports the full Web Services
(WS) stack, providing transactional, reliable, and secure interactions among services. It
defines a multilanguage service programming model that supports, among others,
Java™ and Business Process Execution Language for Web Services (BPEL4WS) service
composition, and offers a deployment and discovery model fully based on declarative
service descriptions (Web Service Description Language [WSDL] and WS-Policy). In this
paper we describe these and other aspects of the architecture, design principles, and

capabilities of the Colombo platform.

INTRODUCTION

Middleware and applications supporting Web
Services specifications and standards are now being
offered by every major software vendor. Solutions
utilizing these technologies can be found throughout
the Information Technology (IT) industry. As the
framework of Web Services speciﬁcationsl’2 pro-
gresses toward consolidation and standardization, a
new distributed computing paradigm is slowly being
established. Web Services provide an XML (Exten-
sible Markup Language) realization of the service-
oriented computing (SOC) paradigm, and the pro-
gressive deployment of applications based on Web
Services has the potential to make service-oriented
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architecture (SOA) the main architectural paradigm
in the industry.

Service-oriented applications have specific charac-
teristics that distinguish them from traditional
distributed applications.3 First, they must be able to
operate in a natively cross-organizational setting;
they interact with each other as peers, over
bidirectional, stateful channels, following standard-
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ized protocols that allow them to operate in highly
heterogeneous environments. They declaratively
define their functionality and quality-of-service
(QoS) requirements and capabilities in agreed-upon,
machine-readable formats in order to enable dy-
namic and automated service discovery. Finally,
service-oriented applications are, in one way or
another, created as compositions of services.”*

The adoption of Web Services technologies does not
necessarily mean that SOA principles are being
embraced. At this stage, middleware interoperabil-
ity; that is, the ability to support interoperation
among incompatible middleware platforms, is
probably the main factor driving Web Services
adoption. Web Services allow Enterprise Java** and
Microsoft .NET** to interact and proprietary mes-
saging middleware to connect over bridges of
standardized protocols. In this initial adoption stage,
the architectural impact of Web Services is likely to
be limited.

Extended interoperability contains the seed of wider
changes, however. As more and more existing and
new applications are Web-Services enabled, the
prospect of quasi-universal interoperability becomes
closer to reality, and with it, the ability to access any
number of services deployed anywhere (inside or
outside the enterprise). A business model built on
service access and reuse (including in particular
“pay per use”) is a direct consequence of this
increased level of interoperability. Even without
assuming a significant transformation of the busi-
ness model, application development is likely to be
profoundly transformed by this new focus on code
reuse through remote service access. Applications
developed in this environment can take full ad-
vantage of Web Services composition models,
dynamic service discovery, explicit interaction con-
tracts encoded in standards-based dialects, and so
forth. Moreover, the componentization brought
about by SOA advances will likely bring the design
of software components much closer to the business
components they are intended to support, helping
bridge the gap between business knowledge and IT.
Thus, one may expect that, in time, service-oriented
principles will naturally follow the Web Services
framework in an unstoppable advance through the
IT industry.

This assumption raises the question of whether the
architecture and the programming model associated
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with today’s middleware platforms is always the
most appropriate for supporting applications exe-
cuting in a service-oriented environment. Today’s
most successful Web Services platforms are funda-
mentally built by layering a veneer of Web Services
protocols on top of existing middleware (consider,
for example, Microsoft’s Web Services Enhance-
ments, WSE 2.0, and the suite of Java Specification
Requests [JSRs] supporting the use of Web Services
from a Java 2 Enterprise Edition [J2EE**] platform).
The eventual success of this approach is not in
question because it provides proven reliability and
scalability with a new protocol suite, and it is also a
progressive approach that ensures quick adoption
with little disruption of existing projects and
applications. Nonetheless, the question is whether
this layering model is always appropriate as a long-
term approach to service orientation.

The Colombo project at IBM Research is an attempt
to understand the consequences of the service-
oriented paradigm on the programming model and
the runtime and the type of competitive advantage
that a platform based natively on SOC principles can
provide in terms of simplicity, performance, and
developer productivity. With the Colombo ap-
proach, an experimental SOA platform is built from
first principles, SOC principles, and its character-
istics are evaluated with respect to performance,
scalability, the process of development and deploy-
ment, application management and maintenance,
and other aspects.

The Colombo project is a Web-Services-centric,
lightweight approach to service orientation. Web
Services are, after all, the only realization of SOC
with a sufficient level of adoption to support realistic
field tests and comparisons. The Colombo “plat-
form” is still under development, but it already
provides a very lightweight implementation of most
of the Web Services (WS) stack, with the notable
exception of service and meta-data discovery spec-
ifications. Thus, the Colombo runtime natively
provides transactional, reliable, and secure inter-
actions among services based on SOAP (Simple
Object Access Protocol).5 Colombo defines a multi-
language service programming model that supports,
among others, Java and Business Process Execution
Language for Web Services (BPEL4WS) service
composition, and offers a radically simplified
development and deployment model based on
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standards (Web Services Description Language
[WSDL]3 and WS—Policy6).

In this paper we describe the design principles
behind Colombo, focusing on its service-centric
programming model (the “servicelet” model) and
the architecture of its runtime. The rest of this paper
is organized as follows. The next section briefly
describes the principles of SOAs that have driven the
design of the Colombo runtime and programming
model. The third section introduces the Colombo
programming model in detail, including deploy-
ment, development models, and the realization of
that model in Java and BPEL. The fourth section
describes the Colombo runtime, focusing on the
Colombo message-processing engine, the compo-
nent manager architecture that supports the ser-
vicelet multilanguage programming model, and the
QoS policy framework. We conclude in the fifth and
sixth sections with a discussion of future work and a
summary of the paper.

SOA PRINCIPLES AND REQUIREMENTS IN
COLOMBO

The Colombo project is directed at exploring the
technical characteristics that differentiate SOA mid-
dleware. There are in fact many distinguishing
aspects of SOAs that might be expected to have an
effect on the design of SOA-centric middleware.
Because the Web Services specification framework
defines the only protocol stack built on SOA
principles to date, the Colombo effort has focused on
providing a faithful realization of the Web Services
stack. The discussion in this section in particular is
thus very much derived from the key characteristics
of the Web Services stack.

The main components of the Web Services frame-
work are depicted in Figure 1. (See Reference 3 for
an in-depth discussion of these components.)

The Colombo platform described in this paper
supports the complete stack shown here except for
the mechanisms for discovery of services and
negotiation. This implies in particular that there is
no support in Colombo for Universal Description,
Discovery, and Integration (UDDI)7 or
WS—MetadataExchange.8

As in all middleware architectures, the interaction

model, runtime architecture, and programming
model are intimately connected in SOAs. The

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

S Composite Atomic

2 Components

©

0o

()

z

5 Eﬂi;élst;gng Security | Transactions | gty

] Coordination | Of Service

2
‘ Interface + Bindings I Policy I Description
‘ SOAP XML | Non-XML I Messaging
‘ Transports I Transport

Figure 1

The Web Services stack

interaction model in Web Services is built around
the SOAP messaging model, and this has two main
implications: the centrality of XML as the data
serialization model and a natively asynchronous
interaction model that can also support synchronous
interactions. The WS-Addressing speciﬁcation9 in
particular introduces a set of SOAP headers and a
simple processing model to seamlessly support both
synchronous and asynchronous exchanges of SOAP
messages. The runtime architecture in Colombo is
thus built around an efficient XML parser supporting
a SOAP processor that can deal with synchronous
and asynchronous message exchanges.

A second characteristic of Web Services interactions
is the central role of QoS requirements. In an SOA,
QoS requirements are explicitly stated in machine-
readable format and become part of the interaction
contract between providers and requestors. QoS
requirements are used to configure the interaction
channel between service partners, and they are
encoded in the form of explicit service policies, in
the case of Colombo using the WS-Policy language.
WSDL service descriptions published and consumed
by Colombo applications are annotated with policies
stating those requirements. Correspondingly, the
Colombo runtime provides a policy handler frame-
work on top of the message-processing engine,
supporting the three QoS specifications currently in
the Web Services stack: atomic transactions (WS-
AtomicTransactions'’), reliable messaging (WS-Re-
liableMessagingu), and the suite of Web Services
security mechanisms defined by the Web Services
security standard."”
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Explicit meta-data in the form of machine-readable
service descriptions, including functional and non-
functional QoS characteristics, is a central aspect of
Web Services."> The Colombo development and
deployment models are completely driven by this
meta-data. Code generation, deployment, and run-
time configuration are all driven by the WSDL and
WS-Policy descriptions of the services being auth-
ored or consumed. The goal is to avoid generating a
gap between the internal representation of service
capabilities and the external, interoperable service
view that is defined by the service contract.

SOAs in general and Web Services in particular have
a distinct component orientation.”'* Services are
software components that allow remote access over
standard protocols and provide declarative descrip-
tions of their requirements and capabilities. In this
component-centric environment, the main task of
the application developer is the integration of
service components into new applications; that is,
service composition is the distinctive characteristic
of development in SOAs. The programming model
for SOA middleware needs to provide native support
for service creation and composition. The Colombo
programming model defines primitives for providing
and reusing services in a language-independent
manner, which allows Colombo to support a variety
of composition models. Java and BPEL" are the two
languages currently supported for composing ser-
vices.

We can summarize the preceding discussion by
enumerating the main aspects of the service-
oriented model that drives the design of Colombo:

e Native support for a SOAP asynchronous inter-
action model

e Policy-enabled interactions supporting the busi-
ness-enabling QoS requirements: transactions,
reliable messaging, and security

* Meta-data-driven development and deployment
models

e First-class support for service composition

The details of how the Colombo programming
model and runtime support these requirements are
discussed in the following sections.

THE COLOMBO PROGRAMMING MODEL
In this section, we discuss the Colombo program-
ming model. Given that the term “programming
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model” can have many meanings, we begin by
defining what we mean by a programming model. A
programming model is the set of abstractions,
conventions, and contracts to which the program-
mer must adhere when writing applications. It also
includes the set of services that the system provides
to the programmer.

The SOA programming model

A distinguishing characteristic of service-oriented
applications is that of composition: services are
often built by taking existing services and combining
them with some compositional logic. As such, we
identify four critical characteristics of a minimal
SOA programming model. There must be a mech-
anism

1. to access other services,

2. to encode the compositional logic,

3. to encapsulate the composition as a new service,
and

4. to state the QoS characteristics that should be
followed when interacting with other services.

We illustrate this model in Figure 2. As indicated in
the figure, the composition logic is the centerpiece
and serves to orchestrate, and add value to, the
functionality provided by the “Used” services to
offer a set of “Provided” services to its clients. The
terms and conditions under which the services are
used are indicated by policies associated with
interactions between the composition and external
services, whether they are used or provided
services. Policies are declarations of expected or
offered QoS characteristics, as described later. Note
that interactions between the composition logic and
“built-in” or “system” services are not special—they
too are modeled as service interactions.

The servicelet programming model

In keeping with the simplicity objectives of Colom-
bo, the programming model was designed to be as
simple as possible yet powerful enough to write
service-oriented applications. In Colombo, we define
“service” as follows: A service is a stateless message
processor supporting exactly one interface and with
associated interaction-specific information, said to
be “context.” Thus while the service logic itself is
stateless, it does have access to a context that may
contain state associated with a particular interaction
between the service and a client or partner service.
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Figure 2
SOA applications as service compositions

The unit of development and deployment in
Colombo is called a servicelet. As Figure 3 shows,
the servicelet concept is a direct mapping of the SOA
programming model illustrated in Figure 2 with
state represented as the servicelet context.

A servicelet provides one or more services and may
use more services to implement the provided
services’ logic. We call the implementation of the
provided services “business logic.” Although the
business logic itself is stateless, each interaction
between any service of the servicelet and a client or

partner results in the creation of a servicelet context
associated with, and shared by, the entire servicelet.
Interactions between the servicelet and other ser-
vices (whether they are with a partner service by
means of a stub or with a client service by means of
an adapter) represent conversations with their own
policies as well as a conversation context local to
that conversation.

We model interactions between an application
servicelet and the Colombo runtime also as service
interactions. This uniform approach for all inter-

Figure 3
Servicelets
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action with a servicelet simplifies the programming
model by not forcing the programmer to learn two
different sets of abstractions.

All the services in a single servicelet share a
common servicelet context for each “instance” of
the servicelet. However, we note that with our
definition of service, there is really no concept of a
service instance. Instead, there are stateful conver-
sations with a service. Thus, every usage or
sequence of usages (a session) with a service results
in one stateful conversation. A stateful conversation
with any of the services of the servicelet results in
the creation of a single servicelet context that is
shared by the entire servicelet. Thus, in effect, the
servicelet context instance represents the “instance”
of the servicelet.

Servicelet context data is not persisted by the
runtime system. The decision in Colombo that the
system would not provide any kind of automatic
persistence was carefully considered, as our expe-
rience indicated that such automatic persistence
comes at a heavy price with questionable benefit.
Thus, if any application-sensitive data is stored in
the servicelet context, the application is responsible
for treating such data only as a cache and for storing
it persistently by using the system data service.

Thus, a servicelet can migrate in between invoca-
tions to a different location by migrating the content
of the servicelet context.

When implementing the actual business logic,
programmers are offered a set of system services
that they can rely on (the system services currently
provide access to stubs for invoking services,
creating user-managed transactions, access to the
data service, and logging). As these services are
modeled as Web services, the business logic can be
implemented with any programming paradigm that
supports Web-service interactions. Thus, we do not
make any assumption about how the servicelet
business logic itself is implemented; that is, the
servicelet programming model is designed to allow a
servicelet to be implemented as a single Java class, a
collection of Java classes, a BPEL script, a collection
of XSLT scripts, and so forth. The servicelet
programming model is intended to be an abstract
programming model that can be mapped to specific
implementation approaches for servicelets.
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Stubs and adapters

In Figure 3 we refer to stubs and adapters. When the
service is invoking another service (i.e., when it acts
as a client to another service), we say that the
interaction is through a stub. This is a logical
concept; that is, there is no requirement that all
service interactions be through a statically type-
mapped interface (as is required in JAX—RPC16). The
stub exists to bridge between the business logic and
the Colombo runtime, which is actually responsible
for delivering the message to the called service.

The adapter concept is similarly logical. An adapter
is simply the bridge between the incoming message
and the actual business logic. Depending on the
implementation platform of the business logic, the
stub may do anything, ranging from nothing to
completely static type mapping.

Servicelet life cycle

The life cycle of servicelets is defined by three states:
initialize, process, and destroy. The servicelet is
initialized as the first message arrives to the
servicelet, or equivalently, when the servicelet
context is created. This initialization step allows the
servicelet to cache any useful information into the
servicelet context, for example.

After initialization, when messages arrive via any of
the published service interfaces, they are delivered
to the servicelet, along with the appropriate ser-
vicelet context, for processing. The servicelet con-
text associated with a message is determined by
using information in the incoming message (e.g.,
using WS-Addressing reference properties).

During the execution of the servicelet, a transient
state may be stored in the servicelet context.
However, any persistent state must explicitly be
stored by the application by using the system data
service.

When the servicelet is deemed to be complete or
finished, it is destroyed by destroying the associated
servicelet context. Note that due to the difficulty of
identifying when a servicelet is “finished” in
general, there is no assurance that a servicelet
context will ever be destroyed.

Conversations
A conversation is an interaction between a servicelet
and its client or partner services. Note that by
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definition every servicelet instance participates in at
least one conversation with the sender of the
message that started the interaction. Each servicelet
“instance” may hold only a single conversation with
any given partner at a time (a property of the
Colombo programming model inherited from
BPEL4WS).

The conversation concept is abstracted in Colombo
because of the need to compute QoS parameters on a
per-conversation basis. That is, at the start of a
conversation the policy that will apply to the
conversation is determined, possibly through a
negotiation protocol (such as WS-
MetadataExchange), and then that policy is used for
the duration of that conversation.

Conversations are characterized by a pair of
communicating endpoints and have context associ-
ated with the conversation. (In fact the conversation
policy is part of that context.) However, the
programming model does not expose this conver-
sation context to the application programmer. The
conversation context is maintained by the runtime,
and the application affects the behavior of the
conversation by asserting specific policies.

Policies

As just mentioned, all aspects of a conversation are
governed by policies, including whether the con-
versation can take place at all. Colombo’s policy
infrastructure uses the WS-Policy family of specifi-
cations.

Policies can be applied at different levels. When a
Colombo system is deployed, system-wide policies
may be defined. When a servicelet is deployed,
servicelet-wide policies may be defined as well.
Similarly each service of a servicelet may have its
own policies.

The policies that are applicable to a particular
conversation are determined at runtime by com-
bining all the system-wide policies, the servicelet-
wide policies, and service-specific policies. This
computation is performed at runtime, at the start of
a conversation, as explained in the previous section.
Policy granularity and calculation of effective policy
is explained in detail in the section “Policy frame-
work.”

It is also useful to mention that the enforcement of
certain policies applied to a conversation may not
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necessarily be reflected in the actual messages
exchanged. In particular, privacy is an example of a
policy that does not have an on-the-wire (explicit
message) representation.

The system services currently provide access to
stubs for invoking services, creating user-managed
transactions, getting access to the data service, and
logging.

Servicelet packaging and deployment

Before a servicelet can be deployed into a Colombo
system, the constituent parts of the servicelet must
be assembled and packaged together. Colombo uses
the familiar JAR (Java archive) file mechanism as a
packaging mechanism, yet does not force the use of
it; that is, Columbo expects that its defined con-
ventions have been followed rather than that every-
thing has actually been deployed as a single JAR.

The base servicelet package has the following
structure:

example.car/

META-INF/
servicelet.xml
policies.xml
*.wsdl for service definition
certificates.ks

classes/
object and source files

1ib/
shared Tibrary files

The basic objective of this structure is to simplify the
developer experience by providing a relatively
familiar structure (something similar to the Java
Web application archive format) and one that is
intuitively explainable. In order to deploy a ser-
vicelet one clearly needs some meta-data—the
description of the servicelet itself (e.g., which code
artifacts constitute the implementation of the busi-
ness logic), the policies that must be applied, and
the WSDL descriptions of the interfaces of the
servicelet. If there are security aspects, then a key
store is needed to record the keys.

In addition to this meta-data, one also needs to
deploy the code artifacts located in classes and
1ib. The classification of code artifacts between
classes and 1ib is a logical one. For example, if the
service were implemented in PHP,17 then the PHP
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<servicelet name="servicelet://localhost/path-to-ser
<provides>
<service name="xs:NCName" interface="xs:QName">
<policies> ... </policies>?
... Extensibility; e.g., java:implementation...
</service>+
</provides>
<requires>
<service name="xs:NCName" interface="xs:QName">
<locator type="static|mobility]...”>
EPR or whatever
</locator>
... Extensibility; e.g. java:stub...
</service>*
</requires>?
<policies> ... </policies>?
... Extensibility; e.g., servicelet-wide impl like BPEL ...
</servicelet>

Figure 4
A serviceletxml file

files would be inside the classes directory, even
though strictly speaking PHP files are source and not
compiled classes. The 11b directory exists to contain

dependent libraries.

Note that Colombo does not require that every one
of these parts be present. The objective is to require
absolutely minimal information and to expect the

runtime to deduce, derive, or compute whatever is
possible to be inferred. Furthermore, the author is

allowed to deploy the packaged file or the complete
directory structure; thus allowing developers to run
the system directly from their working environment

without having to copy any files.

The servicelet descriptor itself is also designed to be
intuitively obvious once the developer understands

the servicelet programming model concept. The
structure of the servicelet.xml file is given in
Figure 4.

Every servicelet has a name provided by the

application developer. The name is used to generate

the uniform resource identifier (URI) where the

Colombo runtime makes the servicelet available by
means of some access protocol (such as HTTP). For

example, if the servicelet is published by the

Colombo runtime by means of HTTP, then the URI

address of the servicelet is http://hostname/
serviceletname. Thus, the name represents a

transport-independent name for the entire servicelet.

For each service that the servicelet publishes, there

is a single (provides) element describing that
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service. At a minimum, each service has a name
(which can be concatenated to the end of the
servicelet name URI to get the full address of the
specific service) and some way to indicate how the
service is implemented. The specific implementa-
tion technology used will select exactly how the
code is executed (see the section “Runtime archi-
tecture”).

Servicelet development

Typical development in Colombo begins with a
WSDL document (Colombo supports only the WSDL
document/literal style, believing this is the direction
in which the industry is headed and this is the most
consistent model from a Web Services architecture
perspective). Data types are described by using XML
Schema, and WSDL port types represent service
interfaces.

Colombo tools generate mappings from XML Sche-
ma data types into Java data types, generating
custom classes for reading, writing, and manipulat-
ing the data from the service implementation
(Colombo “structs™) to enable future support of
alternative data definition languages (such as
RELAXNG schema language for XML for example).
Colombo does not strictly follow any of the existing
conventions for mapping Java and XML Schema
types because strictly following any of the conven-
tions would significantly detract from the simplicity
of the mapping of Colombo “structs” to Java types.
The serialization and deserialization code is built on
top of a pull parser18 interface.

In addition to mapping data types, Colombo tools
generate code artifacts that allow servicelets to
provide or to consume Web Services interfaces
(corresponding to the required and provided inter-
faces of the deployment descriptor). To provide a
Web Services interface, a skeleton and an adapter
are generated out of the WSDL port type: the
skeleton defines the Java interface that must be
implemented by the service author, and the adapter
is the class that coordinates all the reading or writing
of the message payload (not including the transport
and protocol headers) and contains logic to invoke
the desired method on the skeleton.

To invoke a service a stub is generated from the
WSDL port type. The stub is similar to the adapter in
that it coordinates the reading or writing of the
payload; however, instead of invoking methods
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directly on an interface, the stub makes use of a
servicelet manager to make the calls.

Policies may be attached to the binding sections of
the WSDL documents for required and provided
services, indicating QoS policies that are required for
the interactions. At deployment, these policies are
extracted and factored into the computation of the
effective policy of the servicelet. (See the section
“Policy framework” for additional details.)

Servicelets in Java

Servicelets defined in Java currently support only
one provided system service and may support one
or more required services. A servicelet implemen-
tation consists of regular Java code, usually imple-
menting a generated skeleton. The skeleton may
provide access to the payload of incoming messages
in one of three possible ways: (1) raw incoming
XML stream as pull parser events, (2) XML
information set (infoset) preserving a form such as
the document object model (DOM), or (3) statically
mapped Java data types. Whatever the choice, a
corresponding generated adapter provides the link
between the servicelet implementation and the rest
of the platform. The return value of each method
constitutes the response to the operation.

Because the servicelet programming model itself is
stateless, every method in a servicelet implementa-
tion takes a servicelet context as input in addition to
the payload of the incoming message. By the time a
call arrives at the implementation code, the system
has already looked up its servicelet context and
deserialized the payload into whatever format is
required by the skeleton. The servicelet context has
access to any instance-specific data values. In
addition, it looks up the stubs of both required
services and system services. The servicelet imple-
mentation can then simply invoke these services by
calling the corresponding Java operations directly
on the stubs.

Consider a servicelet that offers an address book
service address by means of an addAddress oper-
ation. Implementation of this operation invokes
another service that manages a directory of phone
numbers. The corresponding code snippet is shown
in Figure 5.

The endpoint of the invoked service is specific to the
context passed in. Therefore, different calls of this
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method (by different servicelet instances) may send
the phone message to different implementations of
the phone service, with different policies applied.
We will discuss endpoint management, policies, and
routing in subsequent sections of this paper.

A Java servicelet’s deployment descriptor extends
the basic one described earlier. It adds the Java class
containing the implementation and the class con-
taining the adapter to the provided service. It adds
the Java class containing the stub to each required
service. Note that the adapter is not relevant to the
developer.

Servicelets in BPEL

Web Services can be authored using the Business
Process Execution Language for Web Services
(BPEL4WS, to be renamed WS-BPEL by the OASIS
e-business standards consortium, and usually
referred to as “BPEL”). A BPEL process contains
a set of “partnerLinks” that model bidirectional
conversations between the process and other ser-
vices. A partnerLink can specify two WSDL
portTypes, the first provided by the process and a
second provided by the partner service. The busi-
ness process is encoded by providing control logic
that uses a set of primitive activities for message
exchange, data manipulation, and so forth.

A BPEL process embodies some of the prominent
characteristics of servicelets: it is inherently con-
versational due to partnerLinks, and its composition
model is based purely on portTypes instead of actual
physical endpoints. It therefore allows for special-
ization of particular instances through the charac-
teristics (policies, endpoints) of their conversations.

The “implementation” of the servicelet is the BPEL
process itself, and its runtime consists of a BPEL
processing engine. The state of a BPEL servicelet
instance consists of the values of its variables and
the state of the process navigation. The conversa-
tions of a BPEL servicelet are defined by partner-
Links. A one-sided partnerLink becomes an
inbound-only or outbound-only conversation, and a
two-sided partnerLink becomes an inbound-and-
outbound conversation. The portTypes provided by
the process are all those whose partnerLinks have
an inbound component. Conversely, the services
used by the process are all those whose partnerLinks
have an outbound component. As in the Java case,
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public void addAddress(ComponentContext myContext,
NameAndAddress nameAddr) {

PhoneNumberServiceStub pns = (PhoneNumberServiceStub)myContext.lookup(“phoneService");

PhoneAdditionInput pai = new PhoneAdditioninput () ;

pai.setName(nameAddr.getName() );
pai.setNumber(nameAddr.getNumber () );

PhoneAdditionReturn par = pns.addPhoneNumber(pai);

Figure 5
Address book service code

the outbound conversations must be provided with
an endpoint reference before they can be invoked at
runtime. There are multiple ways in which this can
occur: (1) at deployment time, to be used by each
created servicelet instance as a default endpoint; (2)
on an instance-by-instance basis at some later time
either by means of a ReplyTo in an incoming
message or by means of the explicit copying of an
endpoint in the BPEL process through the BPEL
assign activity; or (3) a combination of the two in
which the default endpoint for each outbound
conversation is used as long as it is not overwritten
in a particular instance using (2).

A BPEL process instance uses “correlation sets” to
allow message exchange activities to correlate
messages sent and received by specific servicelet
instances. These are fields of application data
present in the messages that maintain constant
values during the interaction with a particular
servicelet instance. This property allows the BPEL
runtime to use those correlation set values for
message routing. To clarify the interplay of correla-
tion-based routing and WS-Addressing-based rout-
ing (using endpoint reference data), a set of
precedence rules must be introduced. In Colombo,
correlation set routing is used only if middleware-
based routing is unable to find an instance.
Correlation set values are verified and updated
regardless of the mechanism used to route a
message, because the BPEL specification requires
that an application-level error be signaled if the
instance found using middleware-based routing has
different correlation values.

To summarize, a BPEL servicelet consists of multi-
ple conversations that provide and consume a
number of services, a single implementation con-
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sisting of the BPEL process definition, and any
endpoints and policies for these conversations.

RUNTIME ARCHITECTURE

The Colombo runtime architecture consists of three
major components: a SOAP-based message-pro-
cessing engine, a set of servicelet managers, and a
policy framework. The message-processing engine is
the backbone of the Colombo runtime, providing the
means by which data is transferred to and from
servicelets and QoS policy is enforced. The service-
let managers connect the Colombo message engine
to the individual servicelets, helping isolate the
servicelet programming model from implementation
artifacts and transport details. Finally, the policy
framework is responsible for managing and enforc-
ing QoS characteristics for services running inside of
Colombo. The following subsections describe each
of these components in more detail.

The message-processing engine

Like most other middleware platforms, Colombo is
at its core a message processing engine. Messages
flow into the system via a communications channel,
and are examined and dispatched to the intended
recipient according to a set of predefined rules.

Interactions are discussed in this section from the
point of reference of the servicelet. The term
“request” refers to a request directed to a Colombo-
hosted service (a servicelet). The term “response”
refers to the message sent by a servicelet to answer a
request. The term “invocation” indicates a message
(other than a response) sent by a servicelet to
another service, while “invocation response” refers
to the response message coming back to the
servicelet, which is triggered by the invocation
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message (we assume here the operation invoked
was a request/response operation).

The term “channel,” unless otherwise noted, refers
to the messaging protocol and transport used to
transmit Web Services messages, for example SOAP
or HTTP. In the case of Colombo, there is an
assumption that SOAP defines the messaging and
serialization format, whereas typically HTTP carries
the XML envelopes. Colombo allows replacement of
the underlying communication protocol (replacing
HTTP by TCP/IP for example), although the only
communication protocol currently available is
HTTP.

“Message context” refers to contextual information
associated with a specific message, such as the
originator of the message, and is not to be confused
with the servicelet context that was mentioned
earlier, although both are used during the process-
ing of a message.

Colombo’s message-processing pipeline implements
a one-way messaging model. While Web services, in
general, support other types of interaction patterns,
such as synchronous or asynchronous request/
response, the Colombo architecture does not assume
any particular message exchange pattern (MEP).
(See References 3 and 5 for typical Web-service
exchange patterns.) On top of the one-way core
message-processing engine, Colombo uses WS-
Addressing9 mechanisms to build support for the
common request/response MEP. Other MEPs can be
built on top of this framework once the appropriate
support mechanisms (message headers typically)
are provided.

Colombo partitions all exchanged messages into two
sets and creates a separate execution path for each
one of them. The first execution path processes
incoming messages, including requests and invoca-
tion responses, while the second processes outgoing
messages: responses and invocations. This factor-
ization is sufficiently generic to potentially enable
the execution of arbitrary MEPs, and supports the
requirements of generic message-based QoS proto-
cols, such as atomic transactions, reliable messag-
ing, or security. The result is to decouple the
programming-model-level decision of which MEPs
are more suitable when using a particular pro-
gramming language for a particular application from
the architecture of the runtime message processor.
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The same benefit applies when we consider specific
QoS protocols instead of MEPs.

As a result, the programming model exposed by
each servicelet realization (e.g., Java or BPEL)
remains consistent across communication mecha-
nisms. For example, the current invocation pattern
supported by Java servicelets fits naturally with the
synchronous request/response characteristics of
HTTP, but works consistently when asynchronous
responses are demanded (according to the use of the
ReplyTo header in WS-Addressing, for example).
BPEL servicelets are able to support both synchro-
nous and asynchronous request/response opera-
tions and can take explicit advantage of the
flexibility of the platform (both are also, of course,
able to perform one-way invocations, which is not
natural to HTTP). The more complex interaction
patterns are layered on top of the one-way messag-
ing model, and the issues involved are isolated in
the channels and in the servicelet managers. The
channels are responsible for managing the details of
the transport and protocol; for example the SOAP/
HTTP channel is responsible for managing the fact
that HTTP is a synchronous request/response
communication protocol.

Inbound message processing

Figure 6 shows the message flow into a Colombo
servicelet and represents the executing path fol-
lowed when a new request or an invocation
response is received. When one of these messages is
received, (1) the incoming connection is handed off
to an available worker thread or queued up if none
is available. When a worker is available, the
transport headers (e.g. HTTP headers) are stripped
from the stream and processed and (2) a new
instance of the XML parser representing the SOAP
message is handed over to the SOAP header
processor (the parser instance is passed along the
message-processing path because it contains and
represents the SOAP envelope). The header infor-
mation is extracted and stored (3) into a message
context structure by using preregistered object
mappings. By mapping SOAP headers to Java
objects in advance, each of the consumers of the
header information is directly presented with this
information in a well-defined, communication-pro-
tocol-independent format.

The SOAP message body is not read until the
message is actually delivered to the servicelet, thus
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Channel

Figure 6
Inbound message flow in Colombo

Manager

avoiding unnecessary parsing and data mapping in
cases when the message is not delivered to the
application because of the action of intermediate
QoS protocol handlers. In some instances, however,
it is not possible to delay the complete parsing of the
message because complete information is demanded
by an intermediate policy processor, such as when
digital signatures are validated.

After SOAP headers are extracted, the message is
passed off to a dispatcher module (4) where routing
and processing information is retrieved from WS-
Addressing message information headers. The in-
formation retrieved from these headers is used to
identify the target service instance and to retrieve
the policy configuration that applies to the con-
versation.

Once the target service has been identified and the
conversation details have been accessed, configured
policies are enforced. The policy handlers (described
in the subsection “Policy enforcement”) may ap-
prove the delivery of a message, reject the delivery,
or defer further processing. For example a reliable

Manager

Figure 7
Outbound message flow in Colombo

messaging handler may delay delivery of a message
if earlier messages in the sequence have not yet been
received. Policy handlers generally operate solely on
the message context provided. If the message
adheres to all of the applicable policies, it is
delivered to the appropriate servicelet manager (6)
for dispatching to the actual servicelet implementa-
tion and instance (7).

The servicelet manager may at this point decide that
the connection to a channel is no longer required,
based on the MEP within which the message has
been exchanged; for example, if the operation is a
one-way MEP or a response has already been
transmitted. In this case the manager notifies the
channel, which may decide whether to close down
the outstanding connection or to continue process-
ing further messages, such as in the case of a
persistent HTTP connection.

Outbound message processing

Outgoing messages, responses (including most fault
messages), and service invocations follow a similar,
but reversed, path. This is shown in Figure 7.

Channel
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Invocations and responses originating in a servicelet
instance (1) are passed on to the outbound message
pipeline by the servicelet manager (2). As with
incoming messages, outgoing messages have mes-
sage context associated with them, some of which
may be derived from previously received messages,
as is the case with responses, or from the config-
uration and state pertaining to the conversation on
which the message was exchanged. Outbound
messages undergo policy-enforcement-routine pro-
cessing as defined by the channel configuration (3);
just as in the incoming case, the policy handlers may
interrupt the processing if appropriate. If the
message passes inspection, it is sent over the
appropriate channel for transmission (4). Informa-
tion contained within the message context is written
on the message (5); then the channel serializes and
transmits the message (6 and 7).

Colombo support for WS-Addressing

Many of the difficulties that arose during develop-
ment of the Colombo runtime centered on issues
regarding the WS-Addressing speciﬁcation.9 Here
we describe how Colombo supports WS-Addressing
and the impact of this specification upon message
routing. WS-Addressing defines a set of message
information headers (SOAP headers) that provide
message routing and correlation information.
Figure 8 shows a sample request message with WS-
Addressing headers in a SOAP envelope (with an
empty SOAP body).

For each request, Colombo requires the WS-Ad-
dressing To and Action headers to be present. As
was mentioned earlier, Colombo uses WS-Address-
ing headers to identify the target of an incoming
message. The To header is used to route the message
to the appropriate service and hence to the correct
servicelet. The Action header, in turn, identifies the
operation being invoked on that service, and thus
identifies the message exchange pattern (i.e., it
indicates whether the message is one-way or part of
a request/response exchange.) In addition, a subset
of the SOAP headers present in the inbound message
might correspond to WS-Addressing “reference
properties” and is used to direct the message to a
particular servicelet instance (or servicelet context
instance).

Reference properties are specific SOAP headers that
have been previously communicated to the service
requestor with the endpoint reference of the target
service instance (possibly sent in the ReplyTo field
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of an outbound message), and that the requestor
must place on new messages directed to the
servicelet instance. Colombo uses a single, well-
defined, reference property (the “Colombo instance
ID”) to identify instances, but its value is otherwise
opaque to requestors. The values of the headers of
the To and reference properties are sufficient to
identify the servicelet conversation and retrieve the
corresponding configuration parameters (such as
negotiated policy settings) or conversation state
(recall that each servicelet instance can maintain
only one simultaneous conversation with each
service partner.)

Request/response operations, as indicated in the
WSDL document for the service, also require that
the ReplyTo header be present. The ReplyTo header
indicates where the response message should be
directed. A specific “anonymous” URI defined by
the WS-Addressing specification is used to indicate
that the delivery mechanism for the reply message
was provided out-of-band. In particular, this covers
the case of synchronous request/response interac-
tions in which the response is delivered through the
open connection as part of the HTTP response.
Observe that the semantics of the ReplyTo header in
WS-Addressing requires the runtime to dynamically
determine, based on the inspection of the ReplyTo
header, whether a response needs to be returned
synchronously over the open HTTP channel or
whether a new connection needs to be created to
deliver that response to a different address. Through
manipulation of the headers, WS-Addressing allows
the service requestor to force an asynchronous
message exchange over an otherwise synchronous
communications transport.

When a request for a request/response operation is
received by the Colombo message processor with an
“anonymous” ReplyTo, the HTTP channel is kept
open until the operation returns and the response
message is sent back as part of the HTTP synchro-
nous response. If, however, any other URI is present
in the ReplyTo field, the HTTP connection is closed
and a 200 OK returned. Next, a new HTTP
connection to the address specified in the ReplyTo is
opened and used to deliver the response message
returned by the servicelet, resulting in the asyn-
chronous delivery of the response.

The use of ReplyTo in WS-Addressing is not strictly
limited to request/response MEPs. When received as
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<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://www.w3.0rg/2003/05/soap-envelope"
xmlns:WS-ADDR=

"http://schemas.xmlsoap.org/ws/2004/03 /addressing"

xmIns:COLOMBO=
"http://w3.opensource.ibm.com/projects/colombo">
<SOAP-ENV:Header>
<WS-ADDR:MessagelD>
uid:221ae5be:101c9b82fc7:-7ffb
</addr:MessagelD>
<WS-ADDR:To>

http://localhost:4321 /http://www.research.ibm.com/shoppingCart

</WS-ADDR:To>
<WS-ADDR:Action>

colombo:///shoppingCart_service/finishWithCartRequest

</WS-ADDR:Action>
<COLOMBO:InstancelD>

uid:221ae5be:101c9b82fc7:-7fff</COLOMBO:InstancelD>

<WS-ADDR:ReplyTo>
<WS-ADDR:Address>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</WS-ADDR:Address>
</WS-ADDR:ReplyTo>
</SOAP-ENV:Header>
<SOAP-ENV:Body />
</SOAP-ENV:Envelope>example.car/

Figure 8
Sample request message

part of an invocation response or a request (except
in the case of the “anonymous” URI), the Colombo
message engine uses the ReplyTo field to bind, for
the duration of an extended message exchange, the
endpoint address of a service partner. This is
particularly relevant in the case of the interaction
between a BPEL process instance and a service
partner. The scope of the ReplyTo header is
interpreted in this case more broadly and, in effect,
provides an in-band mechanism to support con-
versation migration (because a new value of the
ReplyTo address may be communicated with any
incoming message). All future invocations to that
partner will then be delivered using the new URI.

Colombo supports all WS-Addressing headers as
defined in the WS-Addressing specification (FaultTo
to direct faults, Messageld for message correlation,
etc.), but we will not describe their operation here.
Refer to the WS-Addressing specification for details
on the semantics of these additional headers.’

Note that Colombo currently assumes that all of the
URIs specified by means of WS-Addressing mecha-
nisms are network routable (e.g., when performing
an invocation, the To header contains enough
information for the connection to be opened),
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although it would not be difficult to add a layer of
indirection for URI resolution. However this may
make interoperability with other systems more
difficult.

The servicelet manager

A servicelet manager provides the connective layer
between servicelet implementations and the rest of
the system’s infrastructure. Different implementa-
tion runtimes have different requirements and
formats. Therefore, having different servicelet
managers for each kind of servicelet enables the
reuse of most of the common SOA infrastructure
while still allowing specialization for different
runtimes. Examples of servicelet types requiring
different servicelet managers include Java service-
lets and BPEL servicelets. In order to add support for
additional servicelet types to the platform, a new
servicelet manager that hooks the new servicelets
and their runtimes into the rest of the Colombo
machinery can be added. At the very least, a
servicelet manager interfaces with the SOAP pro-
cessing machinery and the policy handlers, serial-
izes and deserializes message payloads into and out
of the correct format, and manages instances
(creation, destruction, and routing).
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In cases such as Java, where the language itself does
not have mechanisms to represent conversations,
the developer needs programmatical access to
partner representations and a language-specific
interface that complies with the WSDL portType
being implemented. To provide this capability and
shield the developer’s code from dependencies on
the servicelet manager, stubs, skeletons, and adapt-
ers are generated. The stubs and skeletons provide
the layer of abstraction for the developer code. The
stubs and adapters also provide the glue-code that
interfaces with the servicelet manager. These are
then used by the servicelet manager to handle
serialization and deserialization of data types.

The invocation sequence in the case of Java
servicelets is as follows: the manager passes the
servicelet context and the parser to the generated
adapter, which uses a “read” method defined in the
generated target Java class to parse the remainder of
the message. The appropriate method is then
invoked on the skeleton, which contains the busi-
ness logic for the operation. Note that the adapter is
stateless and does not maintain a reference to the
skeleton. There is one adapter instance per adapter
class, and each skeleton reference is passed to the
adapter, along with the context and parser, at the
time of invocation. After the skeleton method
invocation is completed, the return value is written
out by using the typed XML serializer.

BPEL, on the other hand, is natively conversational.
It provides a representation for conversations based
on WSDL portTypes (partnerLinks), as well as
activities to interact with partners along these
conversations. Therefore, there are no stubs and
skeletons to expose to the BPEL servicelet devel-
oper. His or her interaction will always be strictly
with standardized XML formats (BPEL, WSDL,
XPath, XML Schema), especially BPEL activities.
The BPEL servicelet manager therefore has the
choice of whether to use static stubs and adapters
internally to aid in reading or writing message
payloads or to do the serialization and deserializa-
tion dynamically itself. The latter option is currently
chosen in Colombo.

Handling service invocations

As noted earlier, the mechanism by which a
servicelet invokes one of its required services
depends on its implementation language, that is,
either a call to a stub’s operation in Java or through
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the activation of an invocation activity in BPEL, or
through whatever other mechanism a newly sup-
ported implementation language would provide.
Whichever way it occurs, a request for an invoca-
tion eventually reaches the relevant servicelet
manager. The servicelet manager then creates a
Colombo message. A new Colombo outgoing mes-
sage is always assigned a unique identifier known as
a “MessagelD.” The MessagelD is serialized into a
message header. If a response is expected, the
servicelet manager registers the message in an
outstanding-request registry, using the MessagelD as
a key. Finally, the servicelet manager hands the
Colombo message to the message-processing ma-
chinery so that it can be sent to the partner.

In the Java case, the servicelet makes a request to its
context to retrieve a stub. When a method is
invoked on the stub, a sequence of events occurs,
which are essentially the inverse of the adapter
invocation described earlier. Typed XML serializers
are used to write the argument types required by the
operation being invoked.

The response to the invocation arrives separately as
an incoming message to be dispatched to a waiting
servicelet instance. When a message arrives at a
servicelet manager, the latter has to find out
whether it is a new request or the response to a
previous invocation. The servicelet manager checks
the RelatesTo field in the header. Following WS-
Addressing, the value of this should be the
MessagelD from the invocation request message.
Therefore, the servicelet manager can use this value
to look up in its registry of outstanding invocations
the invocation to which the MessageID belongs.
Once found, the servicelet manager can dispatch the
response appropriately.

Handling service requests

Upon deployment, each servicelet is registered with
the relevant servicelet manager (Java, BPEL, etc.).
Once a message comes into the system, the relevant
servicelet manager is identified and handed the
message. The servicelet manager, upon receiving an
incoming request, has to find a servicelet instance to
consume it or create one if none is found. The
system will ask the servicelet manager for the
instance of the conversation corresponding to the
message. The system will also do any policy-related
required work based on that information and
eventually return to the servicelet manager with the
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message so that it can be handed to and processed
by the instance. Colombo uses a single, well-
defined, reference property (the “Colombo instance
ID”) to identify instances, but the value of the
reference property is otherwise opaque for request-
ors.

The default mechanism for looking up a conversa-
tion instance is to use the WS-Addressing headers.
The uniform resource locator (URL) informs the
servicelet manager which servicelet should consume
the message. The servicelet manager then uses any
available “reference property” headers to find out if
there is an already existing instance to which this
message should be routed. If there are no reference
properties and the servicelet manager does not have
any alternative routing schemes (such as BPEL
correlation sets using the application data in the
message), then the servicelet manager returns a new
conversation instance for the appropriate servicelet.
For optimization, the creation of the servicelet
instance itself can be delayed until the message
needs to be processed.

Once the system returns to the servicelet manager
for the actual dispatching of the message to the
instance, the servicelet manager simply passes it on.
At this point it may create a new instance if it needs
to. If a new instance is created, it is assigned a
unique identifier (“Colombo instance ID”) with
which it is registered. The message is deserialized
and handed to the implementation in the data
format it expects either dynamically by the servicelet
manager itself or by using an adapter if one is
present. Currently we use the former in the BPEL
servicelet manager and the latter in the Java
servicelet manager.

In the case of a request/response operation, the
response again goes through the servicelet manager.
The servicelet manager creates a response message
by using the destination endpoint reference that it
obtains from the conversation context, the actual
message content, and relevant information from the
original request such as a RelatesTo header
containing the request’s message ID. A ReplyTo
header is added containing the URL of the servicelet
along with the unique identifier of the instance as a
reference property. This is then handed to the
outbound dispatcher along with information on any
policies that need to be applied to the message on its
way out.
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Updating endpoint references

Once an instance is created by a servicelet manager,
the endpoint references of its provided services
(already containing a URL) are updated with a
reference property consisting of the instance identi-
fier. It is also registered with the servicelet manager
by using the instance identifier.

The services that a servicelet invokes may also
change their endpoint references at runtime. These
changes occur when a request message arrives with
an endpoint reference in the ReplyTo header that is
different from the one saved in the servicelet
instance information. In the section “Colombo
support for WS-Addressing,” we explained how this
is done when there is a ReplyTo header in the
message: the endpoint reference in the ReplyTo
header overwrites the one saved in the conversation
instance, provided that the former is not anony-
mous. A servicelet implementation may also ask
that the endpoint reference of an active instance be
updated. In this case, it needs to inform its servicelet
manager so that the required endpoint reference
updates take place. For example, in BPEL, one of the
capabilities of the “assign” activity is to copy an
endpoint reference passed by an application mes-
sage into the endpoint reference to be used in
subsequent interactions along one of its partner-
Links (conversations).

Instance deactivation

The servicelet manager deregisters servicelet in-
stances once they are deactivated and are no longer
able to consume messages. The cause of deactiva-
tion will depend on the type of servicelet (and its
corresponding servicelet manager). For example,
once all the activities in a BPEL process instance
have been completed, that instance must be dereg-
istered because it can no longer process messages.
Another example is in the case of a Java servicelet,
where a deactivate operation can be called at any
time programmatically from within the implemen-
tation.

Policy framework

As described earlier, a key feature of SOAs is the
explicit declaration of functional as well as QoS
capabilities and requirements in agreed-upon, ma-
chine-readable formats. In the Web Services frame-
work, policies are used to refer to meta-data for QoS
attributes of services. The WS-Policy language6
defines a base language and operators for policy
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assertions; this is designed to be extended by
domain-specific languages (such as languages for
defining security or transactional policy assertions)
to provide a rich framework for defining policies.

Policies are general statements about QoS and are
attached to Web Services. A single service definition
may have multiple policies attached to it simulta-
neously, at various levels of granularity (for
example, to the service as a whole, a particular
endpoint, an interface, an operation, or even a
particular message type). In Reference 19, trans-
action policies are attached to BPEL processes.
These policy attachments may be part of the service
definition or may be externally specified. The WS-
Policy Attachment speciﬁcation20 defines how pol-
icies are attached to Web services.

Colombo’s policy subsystem is responsible for
collecting, interpreting, and enforcing policies.
Policies are enforced at the level of a conversation;
that is, for each message entering or leaving
Colombo, the policy subsystem needs to ensure that
the message complies with the expected policy.
Because policies are attached at different levels of
granularity, interpreted policies need to be merged
to compute the effective policy for each such
message exchange.

Computing effective policy

The policies that the Colombo runtime applies to the
interaction with a deployed service originate from
three sources:

1. Service policy—The policy documents associated
with a service that is made available using
Colombo. These are attached to the service
definition or a part of the service definition.
Partner services that wish to use the functionality
offered by such a service need to comply with the
associated policies. As an example, a transaction
policy may be associated with a service interface
for an Internet banking service, because the
semantics of the function offered through that
interface require transactional behavior.

2. Partner policy—The policy documents associated
with a partner service that is used by a Colombo
service. These policies represent requirements for
partners. For example, our example of an Internet
banking service might offer a loan facility. This
operation might make use of an external credit-
check service. The banking service might require
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that the credit-check service follow the same
transactional protocol so that transactions can be
propagated and credit checks can occur within
the same transactional context as a loan request
transaction.

3. Framework policy—A policy document associated
with a particular deployment of Colombo. It is
used to enumerate the capabilities of the partic-
ular Colombo installation.

On deployment of a servicelet, the service policies
and partner policies for each service supported by
the servicelet are checked against the framework
policy to ensure that each of the services does not
have requirements that go beyond the platform
capabilities. If any service requires a policy not
supported by the platform, deployment of the
servicelet fails. Note that partner policies represent
requirements for partners; therefore, before partners
are assigned endpoints (i.e., before the abstract
partner interface becomes fully specified), the
service policy of one partner must be determined to
be compatible with the partner policy that is desired
by the other partner. In Colombo, the abstract
partner interface is fully specified at deployment.
Thus, discovery of the offered policy of one partner
and the checking of it against the desired partner
policy of the other is assumed to have taken place
before deployment. Doing this dynamically is a
planned future area of research (Reference 21 offers
one approach to arriving at negotiated policy).
Based on this assumption, the semantics of the
partner policies are that they represent the agreed-
upon, negotiated policies for the interaction between
the service and its partner, obtained by prior
matching of the QoS requirements with partner
offerings.

Next, effective policies need to be computed for
each potential message destined to or originating
from the services. This may be done at deployment
or dynamically, when a message leaves or arrives at
a service. In either case, the process is identical. The
policies attached to each input and output message
of a service endpoint are examined along with all
higher scopes in the same hierarchy, such as
policies attached to the service endpoint, interface
definition, or I/O-message definition. These policies
are merged to arrive at the effective policy for a
particular input or output message, as shown in
Figure 9. For example, the effective policy for input
message of operation ol in endpoint sl is obtained
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by merging policies P1 (attached to message type),
P2 (attached to port type), P3 (attached to
endpoint), and P4 (set of permissible configurations
supported by platform).

The method for comparing and merging policy
definitions is implied by the WS-Policy definition
and described in some detail in References 22 and
23. Simply put, policies can be represented as
Boolean expressions where policy operators are
mapped to Boolean ones, and policy assertions form
the terms being combined. Prior to merging or
comparing policies, they are put into a normal form
(analogous to disjunctive normal form (DNF) for
Boolean expressions). In this representation, each of
the terms in the DNF can be thought of as a
permissible combination of QoS features. A merge of
two policies can be obtained by defining a con-
junction of the normalized policy expressions that
each of the individual policies represents. The terms
of normalized policy expressions can be compared.
There are two caveats to these methods. The first
one deals with policies that have different vocab-
ularies. Consider two policies where one has an
assertion relating to a security protocol (for exam-
ple, a requirement that messages are signed using
the RSA (Rivet Shamir Adlerman) algorithm, while
the second policy has no assertions dealing with this
particular security protocol. One solution would be
to disallow such comparisons, but in practice they
would likely occur often. We chose the solution of
completing the policy where the term in question
was missing, by adding its positive and negative
form to each of the terms in the DNF form of the
policy (thus doubling the number of terms). In other
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words, the policy would be extended to explicitly
state that the security protocol was supported as
well as not supported in each of the permissible
configurations allowed by the policy (see policy-
merge example later). Although this solution works
for many practical cases, it does have inadequacies
that we have described further in Reference 22. The
second caveat involves dealing with effective
policies that allow multiple configurations (i.e., the
DNF of the merged policy has more than one term).
Consider the situation where the incoming message
for a particular operation offered by a particular
endpoint of the service has a DNF with more than
one term. For policy enforcement to take place
correctly, when the message in question arrives, it
has to be verified as following the policy correctly.
This is possible only if there is prior agreement
between the service and its partner as to which of
the permissible configurations will be used. Some
protocol is needed for making this determination.
This is another area of work we plan to undertake in
the future; currently, Colombo requires that all
effective policies consist only of one term. This
requirement is not a hindrance if QoS policies are
defined narrowly.

Policy P1: RSA_Signature (Subjects must follow
RSA algorithm to sign messages)

Policy P2: AT_Mandatory (Subjects must
participate in atomic transactions)

Normalized forms:

Pln: (RSA_Signature ~ !'AT_Mandatory) v
(RSA_Signature ~ AT_Mandatory)

P2n: (AT_Mandatory ~ RSA_Signature) v
(AT_Mandatory "~ !'RSA_Signature)

Final merged policy: ATMandatory ~ RSA_Signature

Policy enforcement

After effective policies are computed, the enforce-
ment mechanism for each effective policy can be put
into place. As in the case of computation of effective
policies, this can be done either at deployment or
dynamically, when a relevant message is being
processed by Colombo.

Information relevant for policy enforcement (such
as transaction IDs or message digests) is carried
along with messages as header information. This
information is serialized or deserialized by code that
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is specifically designed to deal with data following
the requirements of a particular message channel
(for example, according to SOAP rules). For
incoming messages, deserialized header information
can then be consumed by policy handlers to perform
the function required by a particular policy, such as
recording message arrival or departure in the case of
a reliable messaging policy. For outgoing messages,
the policy handler performs the function mandated
by the protocol and adds any relevant header
information (such as a message ID in the case of a
reliable messaging protocol) to the message. This
information is later serialized by the relevant header
processor before the message’s departure from the
system.

The mechanism for policy enforcement is thus a
linear chain of policy handlers, customized for a
particular policy. For example, if a message has an
associated policy requiring message reliability and
participation in a 2PC (two phase commit) trans-
action protocol, Colombo has to ensure that relevant
messages are routed to the transaction policy
handler and reliable-messaging policy handler. This
approach of using the interceptor pattern to handle
QoS is well known.>**?

When is a handler chain computed? The procedure
for doing this involves parsing the effective policy
for a message to configure a handler chain appro-
priately. It can be performed when services are
deployed in Colombo (this is the default), or at
runtime. After a handler chain is computed, the
configuration can be stored for use with future
messages with the same effective policy. If this
feature is disabled, handler chains are dynamically
computed when the need to process a particular
kind of message is identified, and then the chains
are discarded. This offers the most flexibility as the
system can adapt even to changes in the effective
policy.

Policy handlers need access to services offered by
the Colombo framework (such as access to a
database), the ability to invoke external services
(such as a transaction coordinator service) and
features that affect the routing of messages within
Colombo (such as the ability to interrupt or resume
message delivery to a service endpoint). Many of
these requirements are identical to the requirements
of services hosted within Colombo. Policy handlers
are thus designed as services hosted within a
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specialized container (the policy handler container),
which offers access to the internal elements of the
framework that are not available through other
containers. Other than this important distinction and
some specialized logic for routing messages to the
policy handler container, policy handlers can con-
ceptually be deployed and managed as regular
services and can use a programming model identical
to that used by servicelets. Currently though,
Colombo comes packaged with a set of predeployed
handlers supporting reliable messaging and trans-
action and security policies and does not allow
additional handlers to be deployed.

A difficult problem in policy enforcement relates to
the order in which messages are processed by
handlers within a handler chain. Our design
implicitly assumes that each policy handler works
independently, and the order of message delivery is
not relevant. This is usually not the case. Consider a
policy that requires encryption along with reliable
message delivery. When a message is encrypted, its
headers, including any headers used by the reliable-
messaging protocol (such as a Message ID), are also
encrypted. Thus, decryption of the message has to
take place before the message is handed to the
processor or handler of the reliable messaging
header. This is a dependency that comes out of the
semantics of the policy of that message. We plan to
explore solutions to this general problem of handler
dependencies within the chain, but currently we
treat security (in particular, encryption) as a special
case within the policy subsystem and take care of
that before message delivery to other policy han-
dlers.

FUTURE WORK

Work in the Colombo project continues in three
areas: completing the implementation of the runtime
platform, extending support to developers, and
testing and measuring Colombo as a compete
platform.

Two major areas of the Web Services stack are still
not supported by Colombo. One is discovery
capabilities, either a registry-based discovery (UDDI)
or dynamic meta-data exchange (WS-MetadataEx-
change). Colombo is already designed to take
advantage of dynamic service discovery (e.g.,
through dynamic policy reconfiguration), but cur-
rently Colombo does not support service partner
discovery other than static binding. The second area
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is the use of the business activity protocol (WS-
BusinessActivity26) to support loosely coupled
business interactions, as opposed to the tightly
coupled scenario where an atomic transaction
protocol might be used.

Support for developers will be extended by sup-
porting bottom up development strategies for Java
and incorporating scripting languages (Javascript**,
Perl) into the set of servicelet-supported languages.
We are considering adding the capability to update
an already deployed servicelet without stopping and
restarting the Colombo server (hot update), to
complement the existing hot deploy capability.

Finally, the ultimate goal of the Colombo project is to
deepen our understanding of what kinds of middle-
ware architectures are most appropriate to support
SOC environments. We are planning to test Colom-
bo’s assumptions about the performance and sim-
plicity yielded by a platform that natively supports
the SOC paradigm through a set of performance
benchmark tests and a field study focused on the
developer’s “ease of use” experiences.

SUMMARY

This paper has presented an overview of the
Colombo platform, an experimental IBM Research
project aimed at providing a deeper understanding
of how middleware can address the requirements of
the SOC paradigm. Colombo’s approach is to build a
native Web services runtime and programming
model focused exclusively on the execution and
development of service-oriented applications. Co-
lombo thus does not address the problem of
integrating legacy middleware and applications,
except by assuming that they can be enabled for
Web services by using the tools and adapters
already available in the market.

The Colombo programming and deployment models
achieve substantial simplification by extending the
service paradigm to both application and system
services and by concentrating on the composition
problems. Colombo programming can be imple-
mented in multiple languages; Java and BPEL
realizations of this programming model are already
available. The Colombo runtime is built on an
asynchronous SOAP processing engine in which a
policy-processing framework provides customizable
QoS capabilities.
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Colombo is an ongoing Research project. Work
continues to provide support for service discovery
standards, management interfaces, and extensions
to the set of programming tools. The evaluation of
the platform in the areas of performance, manage-
ment, and developer’s usability is now taking place,
and is likely to yield important insight into the
problem of designing and optimizing middleware to
support service-oriented environments.
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