
Colombo: Lightweight
middleware for service-oriented
computing

&

F. Curbera

M. J. Duftler

R. Khalaf

W. A. Nagy

N. Mukhi

S. Weerawarana

Colombo is a lightweight platform for developing, deploying, and executing service-

oriented applications. It provides optimized, native runtime support for the service-

oriented-computing model, as opposed to the approach of layering service-oriented

applications on a legacy runtime. This approach allows Colombo to provide high

runtime performance, a small footprint, and simplified application development and

deployment models. The Colombo runtime natively supports the full Web Services

(WS) stack, providing transactional, reliable, and secure interactions among services. It

defines a multilanguage service programming model that supports, among others,

Javae and Business Process Execution Language for Web Services (BPEL4WS) service

composition, and offers a deployment and discovery model fully based on declarative

service descriptions (Web Service Description Language [WSDL] and WS-Policy). In this

paper we describe these and other aspects of the architecture, design principles, and

capabilities of the Colombo platform.

INTRODUCTION

Middleware and applications supporting Web

Services specifications and standards are now being

offered by every major software vendor. Solutions

utilizing these technologies can be found throughout

the Information Technology (IT) industry. As the

framework of Web Services specifications
1,2

pro-

gresses toward consolidation and standardization, a

new distributed computing paradigm is slowly being

established. Web Services provide an XML (Exten-

sible Markup Language) realization of the service-

oriented computing (SOC) paradigm, and the pro-

gressive deployment of applications based on Web

Services has the potential to make service-oriented

architecture (SOA) the main architectural paradigm

in the industry.

Service-oriented applications have specific charac-

teristics that distinguish them from traditional

distributed applications.
3
First, they must be able to

operate in a natively cross-organizational setting;

they interact with each other as peers, over

bidirectional, stateful channels, following standard-

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 799

ized protocols that allow them to operate in highly

heterogeneous environments. They declaratively

define their functionality and quality-of-service

(QoS) requirements and capabilities in agreed-upon,

machine-readable formats in order to enable dy-

namic and automated service discovery. Finally,

service-oriented applications are, in one way or

another, created as compositions of services.
4

The adoption of Web Services technologies does not

necessarily mean that SOA principles are being

embraced. At this stage, middleware interoperabil-

ity; that is, the ability to support interoperation

among incompatible middleware platforms, is

probably the main factor driving Web Services

adoption. Web Services allow Enterprise Java** and

Microsoft .NET** to interact and proprietary mes-

saging middleware to connect over bridges of

standardized protocols. In this initial adoption stage,

the architectural impact of Web Services is likely to

be limited.

Extended interoperability contains the seed of wider

changes, however. As more and more existing and

new applications are Web-Services enabled, the

prospect of quasi-universal interoperability becomes

closer to reality, and with it, the ability to access any

number of services deployed anywhere (inside or

outside the enterprise). A business model built on

service access and reuse (including in particular

‘‘pay per use’’) is a direct consequence of this

increased level of interoperability. Even without

assuming a significant transformation of the busi-

ness model, application development is likely to be

profoundly transformed by this new focus on code

reuse through remote service access. Applications

developed in this environment can take full ad-

vantage of Web Services composition models,

dynamic service discovery, explicit interaction con-

tracts encoded in standards-based dialects, and so

forth. Moreover, the componentization brought

about by SOA advances will likely bring the design

of software components much closer to the business

components they are intended to support, helping

bridge the gap between business knowledge and IT.

Thus, one may expect that, in time, service-oriented

principles will naturally follow the Web Services

framework in an unstoppable advance through the

IT industry.

This assumption raises the question of whether the

architecture and the programming model associated

with today’s middleware platforms is always the

most appropriate for supporting applications exe-

cuting in a service-oriented environment. Today’s

most successful Web Services platforms are funda-

mentally built by layering a veneer of Web Services

protocols on top of existing middleware (consider,

for example, Microsoft’s Web Services Enhance-

ments, WSE 2.0, and the suite of Java Specification

Requests [JSRs] supporting the use of Web Services

from a Java 2 Enterprise Edition [J2EE**] platform).

The eventual success of this approach is not in

question because it provides proven reliability and

scalability with a new protocol suite, and it is also a

progressive approach that ensures quick adoption

with little disruption of existing projects and

applications. Nonetheless, the question is whether

this layering model is always appropriate as a long-

term approach to service orientation.

The Colombo project at IBM Research is an attempt

to understand the consequences of the service-

oriented paradigm on the programming model and

the runtime and the type of competitive advantage

that a platform based natively on SOC principles can

provide in terms of simplicity, performance, and

developer productivity. With the Colombo ap-

proach, an experimental SOA platform is built from

first principles, SOC principles, and its character-

istics are evaluated with respect to performance,

scalability, the process of development and deploy-

ment, application management and maintenance,

and other aspects.

The Colombo project is a Web-Services-centric,

lightweight approach to service orientation. Web

Services are, after all, the only realization of SOC

with a sufficient level of adoption to support realistic

field tests and comparisons. The Colombo ‘‘plat-

form’’ is still under development, but it already

provides a very lightweight implementation of most

of the Web Services (WS) stack, with the notable

exception of service and meta-data discovery spec-

ifications. Thus, the Colombo runtime natively

provides transactional, reliable, and secure inter-

actions among services based on SOAP (Simple

Object Access Protocol).
5
Colombo defines a multi-

language service programming model that supports,

among others, Java and Business Process Execution

Language for Web Services (BPEL4WS) service

composition, and offers a radically simplified

development and deployment model based on

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005800

standards (Web Services Description Language

[WSDL]
3
and WS-Policy

6
).

In this paper we describe the design principles

behind Colombo, focusing on its service-centric

programming model (the ‘‘servicelet’’ model) and

the architecture of its runtime. The rest of this paper

is organized as follows. The next section briefly

describes the principles of SOAs that have driven the

design of the Colombo runtime and programming

model. The third section introduces the Colombo

programming model in detail, including deploy-

ment, development models, and the realization of

that model in Java and BPEL. The fourth section

describes the Colombo runtime, focusing on the

Colombo message-processing engine, the compo-

nent manager architecture that supports the ser-

vicelet multilanguage programming model, and the

QoS policy framework. We conclude in the fifth and

sixth sections with a discussion of future work and a

summary of the paper.

SOA PRINCIPLES AND REQUIREMENTS IN
COLOMBO

The Colombo project is directed at exploring the

technical characteristics that differentiate SOA mid-

dleware. There are in fact many distinguishing

aspects of SOAs that might be expected to have an

effect on the design of SOA-centric middleware.

Because the Web Services specification framework

defines the only protocol stack built on SOA

principles to date, the Colombo effort has focused on

providing a faithful realization of the Web Services

stack. The discussion in this section in particular is

thus very much derived from the key characteristics

of the Web Services stack.

The main components of the Web Services frame-

work are depicted in Figure 1. (See Reference 3 for

an in-depth discussion of these components.)

The Colombo platform described in this paper

supports the complete stack shown here except for

the mechanisms for discovery of services and

negotiation. This implies in particular that there is

no support in Colombo for Universal Description,

Discovery, and Integration (UDDI)
7
or

WS-MetadataExchange.
8

As in all middleware architectures, the interaction

model, runtime architecture, and programming

model are intimately connected in SOAs. The

interaction model in Web Services is built around

the SOAP messaging model, and this has two main

implications: the centrality of XML as the data

serialization model and a natively asynchronous

interaction model that can also support synchronous

interactions. The WS-Addressing specification
9
in

particular introduces a set of SOAP headers and a

simple processing model to seamlessly support both

synchronous and asynchronous exchanges of SOAP

messages. The runtime architecture in Colombo is

thus built around an efficient XML parser supporting

a SOAP processor that can deal with synchronous

and asynchronous message exchanges.

A second characteristic of Web Services interactions

is the central role of QoS requirements. In an SOA,

QoS requirements are explicitly stated in machine-

readable format and become part of the interaction

contract between providers and requestors. QoS

requirements are used to configure the interaction

channel between service partners, and they are

encoded in the form of explicit service policies, in

the case of Colombo using the WS-Policy language.

WSDL service descriptions published and consumed

by Colombo applications are annotated with policies

stating those requirements. Correspondingly, the

Colombo runtime provides a policy handler frame-

work on top of the message-processing engine,

supporting the three QoS specifications currently in

the Web Services stack: atomic transactions (WS-

AtomicTransactions
10
), reliable messaging (WS-Re-

liableMessaging
11
), and the suite of Web Services

security mechanisms defined by the Web Services

security standard.
12

Figure 1
The Web Services stack

D
is

co
ve

ry
, N

eg
ot

ia
tio

n

Messaging

Quality
of Service

Transport

Description

Components
Composite Atomic

Transports

SOAP XML Non-XML

Interface + Bindings Policy

SecurityReliable
Messaging

Transactions

Coordination

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 801

Explicit meta-data in the form of machine-readable

service descriptions, including functional and non-

functional QoS characteristics, is a central aspect of

Web Services.
13

The Colombo development and

deployment models are completely driven by this

meta-data. Code generation, deployment, and run-

time configuration are all driven by the WSDL and

WS-Policy descriptions of the services being auth-

ored or consumed. The goal is to avoid generating a

gap between the internal representation of service

capabilities and the external, interoperable service

view that is defined by the service contract.

SOAs in general and Web Services in particular have

a distinct component orientation.
4,14

Services are

software components that allow remote access over

standard protocols and provide declarative descrip-

tions of their requirements and capabilities. In this

component-centric environment, the main task of

the application developer is the integration of

service components into new applications; that is,

service composition is the distinctive characteristic

of development in SOAs. The programming model

for SOA middleware needs to provide native support

for service creation and composition. The Colombo

programming model defines primitives for providing

and reusing services in a language-independent

manner, which allows Colombo to support a variety

of composition models. Java and BPEL
15

are the two

languages currently supported for composing ser-

vices.

We can summarize the preceding discussion by

enumerating the main aspects of the service-

oriented model that drives the design of Colombo:

� Native support for a SOAP asynchronous inter-

action model
� Policy-enabled interactions supporting the busi-

ness-enabling QoS requirements: transactions,

reliable messaging, and security
� Meta-data-driven development and deployment

models
� First-class support for service composition

The details of how the Colombo programming

model and runtime support these requirements are

discussed in the following sections.

THE COLOMBO PROGRAMMING MODEL

In this section, we discuss the Colombo program-

ming model. Given that the term ‘‘programming

model’’ can have many meanings, we begin by

defining what we mean by a programming model. A

programming model is the set of abstractions,

conventions, and contracts to which the program-

mer must adhere when writing applications. It also

includes the set of services that the system provides

to the programmer.

The SOA programming model

A distinguishing characteristic of service-oriented

applications is that of composition: services are

often built by taking existing services and combining

them with some compositional logic. As such, we

identify four critical characteristics of a minimal

SOA programming model. There must be a mech-

anism

1. to access other services,

2. to encode the compositional logic,

3. to encapsulate the composition as a new service,

and

4. to state the QoS characteristics that should be

followed when interacting with other services.

We illustrate this model in Figure 2. As indicated in

the figure, the composition logic is the centerpiece

and serves to orchestrate, and add value to, the

functionality provided by the ‘‘Used’’ services to

offer a set of ‘‘Provided’’ services to its clients. The

terms and conditions under which the services are

used are indicated by policies associated with

interactions between the composition and external

services, whether they are used or provided

services. Policies are declarations of expected or

offered QoS characteristics, as described later. Note

that interactions between the composition logic and

‘‘built-in’’ or ‘‘system’’ services are not special—they

too are modeled as service interactions.

The servicelet programming model

In keeping with the simplicity objectives of Colom-

bo, the programming model was designed to be as

simple as possible yet powerful enough to write

service-oriented applications. In Colombo, we define

‘‘service’’ as follows: A service is a stateless message

processor supporting exactly one interface and with

associated interaction-specific information, said to

be ‘‘context.’’ Thus while the service logic itself is

stateless, it does have access to a context that may

contain state associated with a particular interaction

between the service and a client or partner service.

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005802

The unit of development and deployment in

Colombo is called a servicelet. As Figure 3 shows,

the servicelet concept is a direct mapping of the SOA

programming model illustrated in Figure 2 with

state represented as the servicelet context.

A servicelet provides one or more services and may

use more services to implement the provided

services’ logic. We call the implementation of the

provided services ‘‘business logic.’’ Although the

business logic itself is stateless, each interaction

between any service of the servicelet and a client or

partner results in the creation of a servicelet context

associated with, and shared by, the entire servicelet.

Interactions between the servicelet and other ser-

vices (whether they are with a partner service by

means of a stub or with a client service by means of

an adapter) represent conversations with their own

policies as well as a conversation context local to

that conversation.

We model interactions between an application

servicelet and the Colombo runtime also as service

interactions. This uniform approach for all inter-

Figure 3
Servicelets

Servicelet

Client
Service

Client
Service

Client
Service

Servicelet
Context

Servicelet
Context

Servicelet
Context

Servicelet
Context

Servicelet
Context

Adapter

In
te

rfa
ce

Adapter

In
te

rfa
ce

Adapter

In
te

rfa
ce

Stub

In
te

rfa
ce

Stub

In
te

rfa
ce

Stateless
Business Logic

Stateless
Business Logic

Stateless
Business Logic

Policies

Policies

Partner
ServicePolicies

System
ServicePolicies

Policies

Figure 2
SOA applications as service compositions

Provided

In
te

rfa
ce

Provided

In
te

rfa
ce

Provided

In
te

rfa
ce

Client
Service Used

In
te

rfa
ce

Used

In
te

rfa
ce

Composition Logic

Policies

Client
Service Policies

Partner
Service

Policies

System
Service

Policies

Client
Service Policies

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 803

action with a servicelet simplifies the programming

model by not forcing the programmer to learn two

different sets of abstractions.

All the services in a single servicelet share a

common servicelet context for each ‘‘instance’’ of

the servicelet. However, we note that with our

definition of service, there is really no concept of a

service instance. Instead, there are stateful conver-

sations with a service. Thus, every usage or

sequence of usages (a session) with a service results

in one stateful conversation. A stateful conversation

with any of the services of the servicelet results in

the creation of a single servicelet context that is

shared by the entire servicelet. Thus, in effect, the

servicelet context instance represents the ‘‘instance’’

of the servicelet.

Servicelet context data is not persisted by the

runtime system. The decision in Colombo that the

system would not provide any kind of automatic

persistence was carefully considered, as our expe-

rience indicated that such automatic persistence

comes at a heavy price with questionable benefit.

Thus, if any application-sensitive data is stored in

the servicelet context, the application is responsible

for treating such data only as a cache and for storing

it persistently by using the system data service.

Thus, a servicelet can migrate in between invoca-

tions to a different location by migrating the content

of the servicelet context.

When implementing the actual business logic,

programmers are offered a set of system services

that they can rely on (the system services currently

provide access to stubs for invoking services,

creating user-managed transactions, access to the

data service, and logging). As these services are

modeled as Web services, the business logic can be

implemented with any programming paradigm that

supports Web-service interactions. Thus, we do not

make any assumption about how the servicelet

business logic itself is implemented; that is, the

servicelet programming model is designed to allow a

servicelet to be implemented as a single Java class, a

collection of Java classes, a BPEL script, a collection

of XSLT scripts, and so forth. The servicelet

programming model is intended to be an abstract

programming model that can be mapped to specific

implementation approaches for servicelets.

Stubs and adapters

In Figure 3 we refer to stubs and adapters. When the

service is invoking another service (i.e., when it acts

as a client to another service), we say that the

interaction is through a stub. This is a logical

concept; that is, there is no requirement that all

service interactions be through a statically type-

mapped interface (as is required in JAX-RPC
16
). The

stub exists to bridge between the business logic and

the Colombo runtime, which is actually responsible

for delivering the message to the called service.

The adapter concept is similarly logical. An adapter

is simply the bridge between the incoming message

and the actual business logic. Depending on the

implementation platform of the business logic, the

stub may do anything, ranging from nothing to

completely static type mapping.

Servicelet life cycle

The life cycle of servicelets is defined by three states:

initialize, process, and destroy. The servicelet is

initialized as the first message arrives to the

servicelet, or equivalently, when the servicelet

context is created. This initialization step allows the

servicelet to cache any useful information into the

servicelet context, for example.

After initialization, when messages arrive via any of

the published service interfaces, they are delivered

to the servicelet, along with the appropriate ser-

vicelet context, for processing. The servicelet con-

text associated with a message is determined by

using information in the incoming message (e.g.,

using WS-Addressing reference properties).

During the execution of the servicelet, a transient

state may be stored in the servicelet context.

However, any persistent state must explicitly be

stored by the application by using the system data

service.

When the servicelet is deemed to be complete or

finished, it is destroyed by destroying the associated

servicelet context. Note that due to the difficulty of

identifying when a servicelet is ‘‘finished’’ in

general, there is no assurance that a servicelet

context will ever be destroyed.

Conversations

A conversation is an interaction between a servicelet

and its client or partner services. Note that by

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005804

definition every servicelet instance participates in at

least one conversation with the sender of the

message that started the interaction. Each servicelet

‘‘instance’’ may hold only a single conversation with

any given partner at a time (a property of the

Colombo programming model inherited from

BPEL4WS).

The conversation concept is abstracted in Colombo

because of the need to compute QoS parameters on a

per-conversation basis. That is, at the start of a

conversation the policy that will apply to the

conversation is determined, possibly through a

negotiation protocol (such as WS-

MetadataExchange), and then that policy is used for

the duration of that conversation.

Conversations are characterized by a pair of

communicating endpoints and have context associ-

ated with the conversation. (In fact the conversation

policy is part of that context.) However, the

programming model does not expose this conver-

sation context to the application programmer. The

conversation context is maintained by the runtime,

and the application affects the behavior of the

conversation by asserting specific policies.

Policies

As just mentioned, all aspects of a conversation are

governed by policies, including whether the con-

versation can take place at all. Colombo’s policy

infrastructure uses the WS-Policy family of specifi-

cations.

Policies can be applied at different levels. When a

Colombo system is deployed, system-wide policies

may be defined. When a servicelet is deployed,

servicelet-wide policies may be defined as well.

Similarly each service of a servicelet may have its

own policies.

The policies that are applicable to a particular

conversation are determined at runtime by com-

bining all the system-wide policies, the servicelet-

wide policies, and service-specific policies. This

computation is performed at runtime, at the start of

a conversation, as explained in the previous section.

Policy granularity and calculation of effective policy

is explained in detail in the section ‘‘Policy frame-

work.’’

It is also useful to mention that the enforcement of

certain policies applied to a conversation may not

necessarily be reflected in the actual messages

exchanged. In particular, privacy is an example of a

policy that does not have an on-the-wire (explicit

message) representation.

The system services currently provide access to

stubs for invoking services, creating user-managed

transactions, getting access to the data service, and

logging.

Servicelet packaging and deployment

Before a servicelet can be deployed into a Colombo

system, the constituent parts of the servicelet must

be assembled and packaged together. Colombo uses

the familiar JAR (Java archive) file mechanism as a

packaging mechanism, yet does not force the use of

it; that is, Columbo expects that its defined con-

ventions have been followed rather than that every-

thing has actually been deployed as a single JAR.

The base servicelet package has the following

structure:

example.car/

META-INF/

servicelet.xml

policies.xml

*.wsdl for service definition

certificates.ks

classes/

object and source files

lib/

shared library files

The basic objective of this structure is to simplify the

developer experience by providing a relatively

familiar structure (something similar to the Java

Web application archive format) and one that is

intuitively explainable. In order to deploy a ser-

vicelet one clearly needs some meta-data—the

description of the servicelet itself (e.g., which code

artifacts constitute the implementation of the busi-

ness logic), the policies that must be applied, and

the WSDL descriptions of the interfaces of the

servicelet. If there are security aspects, then a key

store is needed to record the keys.

In addition to this meta-data, one also needs to

deploy the code artifacts located in classes and

lib. The classification of code artifacts between

classes and lib is a logical one. For example, if the

service were implemented in PHP,
17

then the PHP

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 805

files would be inside the classes directory, even

though strictly speaking PHP files are source and not

compiled classes. The lib directory exists to contain

dependent libraries.

Note that Colombo does not require that every one

of these parts be present. The objective is to require

absolutely minimal information and to expect the

runtime to deduce, derive, or compute whatever is

possible to be inferred. Furthermore, the author is

allowed to deploy the packaged file or the complete

directory structure; thus allowing developers to run

the system directly from their working environment

without having to copy any files.

The servicelet descriptor itself is also designed to be

intuitively obvious once the developer understands

the servicelet programming model concept. The

structure of the servicelet.xml file is given in

Figure 4.

Every servicelet has a name provided by the

application developer. The name is used to generate

the uniform resource identifier (URI) where the

Colombo runtime makes the servicelet available by

means of some access protocol (such as HTTP). For

example, if the servicelet is published by the

Colombo runtime by means of HTTP, then the URI

address of the servicelet is http://hostname/

serviceletname. Thus, the name represents a

transport-independent name for the entire servicelet.

For each service that the servicelet publishes, there

is a single hprovidesi element describing that

service. At a minimum, each service has a name

(which can be concatenated to the end of the

servicelet name URI to get the full address of the

specific service) and some way to indicate how the

service is implemented. The specific implementa-

tion technology used will select exactly how the

code is executed (see the section ‘‘Runtime archi-

tecture’’).

Servicelet development

Typical development in Colombo begins with a

WSDL document (Colombo supports only the WSDL

document/literal style, believing this is the direction

in which the industry is headed and this is the most

consistent model from a Web Services architecture

perspective). Data types are described by using XML

Schema, and WSDL port types represent service

interfaces.

Colombo tools generate mappings from XML Sche-

ma data types into Java data types, generating

custom classes for reading, writing, and manipulat-

ing the data from the service implementation

(Colombo ‘‘structs’’) to enable future support of

alternative data definition languages (such as

RELAXNG schema language for XML for example).

Colombo does not strictly follow any of the existing

conventions for mapping Java and XML Schema

types because strictly following any of the conven-

tions would significantly detract from the simplicity

of the mapping of Colombo ‘‘structs’’ to Java types.

The serialization and deserialization code is built on

top of a pull parser
18

interface.

In addition to mapping data types, Colombo tools

generate code artifacts that allow servicelets to

provide or to consume Web Services interfaces

(corresponding to the required and provided inter-

faces of the deployment descriptor). To provide a

Web Services interface, a skeleton and an adapter

are generated out of the WSDL port type: the

skeleton defines the Java interface that must be

implemented by the service author, and the adapter

is the class that coordinates all the reading or writing

of the message payload (not including the transport

and protocol headers) and contains logic to invoke

the desired method on the skeleton.

To invoke a service a stub is generated from the

WSDL port type. The stub is similar to the adapter in

that it coordinates the reading or writing of the

payload; however, instead of invoking methods

Figure 4
A servicelet.xml file

<servicelet name=“servicelet://localhost/path-to-ser
 <provides>
 <service name=“xs:NCName” interface=“xs:QName”>
 <policies> ... </policies>?
 ... Extensibility; e.g., java:implementation...
 </service>+
 </provides>
 <requires>
 <service name=“xs:NCName” interface=“xs:QName”>
 <locator type=“static|mobility|...”>
 EPR or whatever
 </locator>
 ... Extensibility; e.g. java:stub...
 </service>*
 </requires>?
 <policies> ... </policies>?
 ... Extensibility; e.g., servicelet-wide impl like BPEL ...
</servicelet>

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005806

directly on an interface, the stub makes use of a

servicelet manager to make the calls.

Policies may be attached to the binding sections of

the WSDL documents for required and provided

services, indicating QoS policies that are required for

the interactions. At deployment, these policies are

extracted and factored into the computation of the

effective policy of the servicelet. (See the section

‘‘Policy framework’’ for additional details.)

Servicelets in Java
Servicelets defined in Java currently support only

one provided system service and may support one

or more required services. A servicelet implemen-

tation consists of regular Java code, usually imple-

menting a generated skeleton. The skeleton may

provide access to the payload of incoming messages

in one of three possible ways: (1) raw incoming

XML stream as pull parser events, (2) XML

information set (infoset) preserving a form such as

the document object model (DOM), or (3) statically

mapped Java data types. Whatever the choice, a

corresponding generated adapter provides the link

between the servicelet implementation and the rest

of the platform. The return value of each method

constitutes the response to the operation.

Because the servicelet programming model itself is

stateless, every method in a servicelet implementa-

tion takes a servicelet context as input in addition to

the payload of the incoming message. By the time a

call arrives at the implementation code, the system

has already looked up its servicelet context and

deserialized the payload into whatever format is

required by the skeleton. The servicelet context has

access to any instance-specific data values. In

addition, it looks up the stubs of both required

services and system services. The servicelet imple-

mentation can then simply invoke these services by

calling the corresponding Java operations directly

on the stubs.

Consider a servicelet that offers an address book

service address by means of an addAddress oper-

ation. Implementation of this operation invokes

another service that manages a directory of phone

numbers. The corresponding code snippet is shown

in Figure 5.

The endpoint of the invoked service is specific to the

context passed in. Therefore, different calls of this

method (by different servicelet instances) may send

the phone message to different implementations of

the phone service, with different policies applied.

We will discuss endpoint management, policies, and

routing in subsequent sections of this paper.

A Java servicelet’s deployment descriptor extends

the basic one described earlier. It adds the Java class

containing the implementation and the class con-

taining the adapter to the provided service. It adds

the Java class containing the stub to each required

service. Note that the adapter is not relevant to the

developer.

Servicelets in BPEL

Web Services can be authored using the Business

Process Execution Language for Web Services

(BPEL4WS, to be renamed WS-BPEL by the OASIS

e-business standards consortium, and usually

referred to as ‘‘BPEL’’). A BPEL process contains

a set of ‘‘partnerLinks’’ that model bidirectional

conversations between the process and other ser-

vices. A partnerLink can specify two WSDL

portTypes, the first provided by the process and a

second provided by the partner service. The busi-

ness process is encoded by providing control logic

that uses a set of primitive activities for message

exchange, data manipulation, and so forth.

A BPEL process embodies some of the prominent

characteristics of servicelets: it is inherently con-

versational due to partnerLinks, and its composition

model is based purely on portTypes instead of actual

physical endpoints. It therefore allows for special-

ization of particular instances through the charac-

teristics (policies, endpoints) of their conversations.

The ‘‘implementation’’ of the servicelet is the BPEL

process itself, and its runtime consists of a BPEL

processing engine. The state of a BPEL servicelet

instance consists of the values of its variables and

the state of the process navigation. The conversa-

tions of a BPEL servicelet are defined by partner-

Links. A one-sided partnerLink becomes an

inbound-only or outbound-only conversation, and a

two-sided partnerLink becomes an inbound-and-

outbound conversation. The portTypes provided by

the process are all those whose partnerLinks have

an inbound component. Conversely, the services

used by the process are all those whose partnerLinks

have an outbound component. As in the Java case,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 807

the outbound conversations must be provided with

an endpoint reference before they can be invoked at

runtime. There are multiple ways in which this can

occur: (1) at deployment time, to be used by each

created servicelet instance as a default endpoint; (2)

on an instance-by-instance basis at some later time

either by means of a ReplyTo in an incoming

message or by means of the explicit copying of an

endpoint in the BPEL process through the BPEL

assign activity; or (3) a combination of the two in

which the default endpoint for each outbound

conversation is used as long as it is not overwritten

in a particular instance using (2).

A BPEL process instance uses ‘‘correlation sets’’ to

allow message exchange activities to correlate

messages sent and received by specific servicelet

instances. These are fields of application data

present in the messages that maintain constant

values during the interaction with a particular

servicelet instance. This property allows the BPEL

runtime to use those correlation set values for

message routing. To clarify the interplay of correla-

tion-based routing and WS-Addressing-based rout-

ing (using endpoint reference data), a set of

precedence rules must be introduced. In Colombo,

correlation set routing is used only if middleware-

based routing is unable to find an instance.

Correlation set values are verified and updated

regardless of the mechanism used to route a

message, because the BPEL specification requires

that an application-level error be signaled if the

instance found using middleware-based routing has

different correlation values.

To summarize, a BPEL servicelet consists of multi-

ple conversations that provide and consume a

number of services, a single implementation con-

sisting of the BPEL process definition, and any

endpoints and policies for these conversations.

RUNTIME ARCHITECTURE

The Colombo runtime architecture consists of three

major components: a SOAP-based message-pro-

cessing engine, a set of servicelet managers, and a

policy framework. The message-processing engine is

the backbone of the Colombo runtime, providing the

means by which data is transferred to and from

servicelets and QoS policy is enforced. The service-

let managers connect the Colombo message engine

to the individual servicelets, helping isolate the

servicelet programming model from implementation

artifacts and transport details. Finally, the policy

framework is responsible for managing and enforc-

ing QoS characteristics for services running inside of

Colombo. The following subsections describe each

of these components in more detail.

The message-processing engine

Like most other middleware platforms, Colombo is

at its core a message processing engine. Messages

flow into the system via a communications channel,

and are examined and dispatched to the intended

recipient according to a set of predefined rules.

Interactions are discussed in this section from the

point of reference of the servicelet. The term

‘‘request’’ refers to a request directed to a Colombo-

hosted service (a servicelet). The term ‘‘response’’

refers to the message sent by a servicelet to answer a

request. The term ‘‘invocation’’ indicates a message

(other than a response) sent by a servicelet to

another service, while ‘‘invocation response’’ refers

to the response message coming back to the

servicelet, which is triggered by the invocation

Figure 5
Address book service code

public void addAddress(ComponentContext myContext,
 NameAndAddress nameAddr) {
 …
 PhoneNumberServiceStub pns = (PhoneNumberServiceStub)myContext.lookup(“phoneService”);
 PhoneAdditionInput pai = new PhoneAdditionInput () ;
 pai.setName(nameAddr.getName());
 pai.setNumber(nameAddr.getNumber ());
 PhoneAdditionReturn par = pns.addPhoneNumber(pai);
 …
}

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005808

message (we assume here the operation invoked

was a request/response operation).

The term ‘‘channel,’’ unless otherwise noted, refers

to the messaging protocol and transport used to

transmit Web Services messages, for example SOAP

or HTTP. In the case of Colombo, there is an

assumption that SOAP defines the messaging and

serialization format, whereas typically HTTP carries

the XML envelopes. Colombo allows replacement of

the underlying communication protocol (replacing

HTTP by TCP/IP for example), although the only

communication protocol currently available is

HTTP.

‘‘Message context’’ refers to contextual information

associated with a specific message, such as the

originator of the message, and is not to be confused

with the servicelet context that was mentioned

earlier, although both are used during the process-

ing of a message.

Colombo’s message-processing pipeline implements

a one-way messaging model. While Web services, in

general, support other types of interaction patterns,

such as synchronous or asynchronous request/

response, the Colombo architecture does not assume

any particular message exchange pattern (MEP).

(See References 3 and 5 for typical Web-service

exchange patterns.) On top of the one-way core

message-processing engine, Colombo uses WS-

Addressing
9
mechanisms to build support for the

common request/response MEP. Other MEPs can be

built on top of this framework once the appropriate

support mechanisms (message headers typically)

are provided.

Colombo partitions all exchanged messages into two

sets and creates a separate execution path for each

one of them. The first execution path processes

incoming messages, including requests and invoca-

tion responses, while the second processes outgoing

messages: responses and invocations. This factor-

ization is sufficiently generic to potentially enable

the execution of arbitrary MEPs, and supports the

requirements of generic message-based QoS proto-

cols, such as atomic transactions, reliable messag-

ing, or security. The result is to decouple the

programming-model-level decision of which MEPs

are more suitable when using a particular pro-

gramming language for a particular application from

the architecture of the runtime message processor.

The same benefit applies when we consider specific

QoS protocols instead of MEPs.

As a result, the programming model exposed by

each servicelet realization (e.g., Java or BPEL)

remains consistent across communication mecha-

nisms. For example, the current invocation pattern

supported by Java servicelets fits naturally with the

synchronous request/response characteristics of

HTTP, but works consistently when asynchronous

responses are demanded (according to the use of the

ReplyTo header in WS-Addressing, for example).

BPEL servicelets are able to support both synchro-

nous and asynchronous request/response opera-

tions and can take explicit advantage of the

flexibility of the platform (both are also, of course,

able to perform one-way invocations, which is not

natural to HTTP). The more complex interaction

patterns are layered on top of the one-way messag-

ing model, and the issues involved are isolated in

the channels and in the servicelet managers. The

channels are responsible for managing the details of

the transport and protocol; for example the SOAP/

HTTP channel is responsible for managing the fact

that HTTP is a synchronous request/response

communication protocol.

Inbound message processing

Figure 6 shows the message flow into a Colombo

servicelet and represents the executing path fol-

lowed when a new request or an invocation

response is received. When one of these messages is

received, (1) the incoming connection is handed off

to an available worker thread or queued up if none

is available. When a worker is available, the

transport headers (e.g. HTTP headers) are stripped

from the stream and processed and (2) a new

instance of the XML parser representing the SOAP

message is handed over to the SOAP header

processor (the parser instance is passed along the

message-processing path because it contains and

represents the SOAP envelope). The header infor-

mation is extracted and stored (3) into a message

context structure by using preregistered object

mappings. By mapping SOAP headers to Java

objects in advance, each of the consumers of the

header information is directly presented with this

information in a well-defined, communication-pro-

tocol-independent format.

The SOAP message body is not read until the

message is actually delivered to the servicelet, thus

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 809

avoiding unnecessary parsing and data mapping in

cases when the message is not delivered to the

application because of the action of intermediate

QoS protocol handlers. In some instances, however,

it is not possible to delay the complete parsing of the

message because complete information is demanded

by an intermediate policy processor, such as when

digital signatures are validated.

After SOAP headers are extracted, the message is

passed off to a dispatcher module (4) where routing

and processing information is retrieved from WS-

Addressing message information headers. The in-

formation retrieved from these headers is used to

identify the target service instance and to retrieve

the policy configuration that applies to the con-

versation.

Once the target service has been identified and the

conversation details have been accessed, configured

policies are enforced. The policy handlers (described

in the subsection ‘‘Policy enforcement’’) may ap-

prove the delivery of a message, reject the delivery,

or defer further processing. For example a reliable

messaging handler may delay delivery of a message

if earlier messages in the sequence have not yet been

received. Policy handlers generally operate solely on

the message context provided. If the message

adheres to all of the applicable policies, it is

delivered to the appropriate servicelet manager (6)

for dispatching to the actual servicelet implementa-

tion and instance (7).

The servicelet manager may at this point decide that

the connection to a channel is no longer required,

based on the MEP within which the message has

been exchanged; for example, if the operation is a

one-way MEP or a response has already been

transmitted. In this case the manager notifies the

channel, which may decide whether to close down

the outstanding connection or to continue process-

ing further messages, such as in the case of a

persistent HTTP connection.

Outbound message processing

Outgoing messages, responses (including most fault

messages), and service invocations follow a similar,

but reversed, path. This is shown in Figure 7.

Figure 6
Inbound message flow in Colombo

SOAP/HTTP
Channel

Dispatcher Servicelet
Manager

Servicelet

SOAP Header
Processor

(4)
(1)

(7)(6)

(3)

(2)

HTTP
Processor

Policy
Framework

(5)

Figure 7
Outbound message flow in Colombo

Servicelet
Manager

DispatcherServicelet

SOAP Header
Processor

HTTP
Processor

Policy
Framework

SOAP/HTTP
Channel(4)(1)

(7)

(6)(3)

(2)

(5)

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005810

Invocations and responses originating in a servicelet

instance (1) are passed on to the outbound message

pipeline by the servicelet manager (2). As with

incoming messages, outgoing messages have mes-

sage context associated with them, some of which

may be derived from previously received messages,

as is the case with responses, or from the config-

uration and state pertaining to the conversation on

which the message was exchanged. Outbound

messages undergo policy-enforcement-routine pro-

cessing as defined by the channel configuration (3);

just as in the incoming case, the policy handlers may

interrupt the processing if appropriate. If the

message passes inspection, it is sent over the

appropriate channel for transmission (4). Informa-

tion contained within the message context is written

on the message (5); then the channel serializes and

transmits the message (6 and 7).

Colombo support for WS-Addressing

Many of the difficulties that arose during develop-

ment of the Colombo runtime centered on issues

regarding the WS-Addressing specification.
9
Here

we describe how Colombo supports WS-Addressing

and the impact of this specification upon message

routing. WS-Addressing defines a set of message

information headers (SOAP headers) that provide

message routing and correlation information.

Figure 8 shows a sample request message with WS-

Addressing headers in a SOAP envelope (with an

empty SOAP body).

For each request, Colombo requires the WS-Ad-

dressing To and Action headers to be present. As

was mentioned earlier, Colombo uses WS-Address-

ing headers to identify the target of an incoming

message. The To header is used to route the message

to the appropriate service and hence to the correct

servicelet. The Action header, in turn, identifies the

operation being invoked on that service, and thus

identifies the message exchange pattern (i.e., it

indicates whether the message is one-way or part of

a request/response exchange.) In addition, a subset

of the SOAP headers present in the inbound message

might correspond to WS-Addressing ‘‘reference

properties’’ and is used to direct the message to a

particular servicelet instance (or servicelet context

instance).

Reference properties are specific SOAP headers that

have been previously communicated to the service

requestor with the endpoint reference of the target

service instance (possibly sent in the ReplyTo field

of an outbound message), and that the requestor

must place on new messages directed to the

servicelet instance. Colombo uses a single, well-

defined, reference property (the ‘‘Colombo instance

ID’’) to identify instances, but its value is otherwise

opaque to requestors. The values of the headers of

the To and reference properties are sufficient to

identify the servicelet conversation and retrieve the

corresponding configuration parameters (such as

negotiated policy settings) or conversation state

(recall that each servicelet instance can maintain

only one simultaneous conversation with each

service partner.)

Request/response operations, as indicated in the

WSDL document for the service, also require that

the ReplyTo header be present. The ReplyTo header

indicates where the response message should be

directed. A specific ‘‘anonymous’’ URI defined by

the WS-Addressing specification is used to indicate

that the delivery mechanism for the reply message

was provided out-of-band. In particular, this covers

the case of synchronous request/response interac-

tions in which the response is delivered through the

open connection as part of the HTTP response.

Observe that the semantics of the ReplyTo header in

WS-Addressing requires the runtime to dynamically

determine, based on the inspection of the ReplyTo

header, whether a response needs to be returned

synchronously over the open HTTP channel or

whether a new connection needs to be created to

deliver that response to a different address. Through

manipulation of the headers, WS-Addressing allows

the service requestor to force an asynchronous

message exchange over an otherwise synchronous

communications transport.

When a request for a request/response operation is

received by the Colombo message processor with an

‘‘anonymous’’ ReplyTo, the HTTP channel is kept

open until the operation returns and the response

message is sent back as part of the HTTP synchro-

nous response. If, however, any other URI is present

in the ReplyTo field, the HTTP connection is closed

and a 200 OK returned. Next, a new HTTP

connection to the address specified in the ReplyTo is

opened and used to deliver the response message

returned by the servicelet, resulting in the asyn-

chronous delivery of the response.

The use of ReplyTo in WS-Addressing is not strictly

limited to request/response MEPs. When received as

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 811

part of an invocation response or a request (except

in the case of the ‘‘anonymous’’ URI), the Colombo

message engine uses the ReplyTo field to bind, for

the duration of an extended message exchange, the

endpoint address of a service partner. This is

particularly relevant in the case of the interaction

between a BPEL process instance and a service

partner. The scope of the ReplyTo header is

interpreted in this case more broadly and, in effect,

provides an in-band mechanism to support con-

versation migration (because a new value of the

ReplyTo address may be communicated with any

incoming message). All future invocations to that

partner will then be delivered using the new URI.

Colombo supports all WS-Addressing headers as

defined in the WS-Addressing specification (FaultTo

to direct faults, MessageId for message correlation,

etc.), but we will not describe their operation here.

Refer to the WS-Addressing specification for details

on the semantics of these additional headers.
9

Note that Colombo currently assumes that all of the

URIs specified by means of WS-Addressing mecha-

nisms are network routable (e.g., when performing

an invocation, the To header contains enough

information for the connection to be opened),

although it would not be difficult to add a layer of

indirection for URI resolution. However this may

make interoperability with other systems more

difficult.

The servicelet manager

A servicelet manager provides the connective layer

between servicelet implementations and the rest of

the system’s infrastructure. Different implementa-

tion runtimes have different requirements and

formats. Therefore, having different servicelet

managers for each kind of servicelet enables the

reuse of most of the common SOA infrastructure

while still allowing specialization for different

runtimes. Examples of servicelet types requiring

different servicelet managers include Java service-

lets and BPEL servicelets. In order to add support for

additional servicelet types to the platform, a new

servicelet manager that hooks the new servicelets

and their runtimes into the rest of the Colombo

machinery can be added. At the very least, a

servicelet manager interfaces with the SOAP pro-

cessing machinery and the policy handlers, serial-

izes and deserializes message payloads into and out

of the correct format, and manages instances

(creation, destruction, and routing).

Figure 8
Sample request message

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 “http://www.w3.org/2003/05/soap-envelope"
 xmlns:WS-ADDR=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns:COLOMBO=
 "http://w3.opensource.ibm.com/projects/colombo">
 <SOAP-ENV:Header>
 <WS-ADDR:MessageID>
 uid:221ae5be:101c9b82fc7:-7ffb
 </addr:MessageID>
 <WS-ADDR:To>
 http://localhost:4321/http://www.research.ibm.com/shoppingCart
 </WS-ADDR:To>
 <WS-ADDR:Action>
 colombo:///shoppingCart_service/finishWithCartRequest
 </WS-ADDR:Action>
 <COLOMBO:InstanceID>
 uid:221ae5be:101c9b82fc7:-7fff</COLOMBO:InstanceID>
 <WS-ADDR:ReplyTo>
 <WS-ADDR:Address>
http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </WS-ADDR:Address>
 </WS-ADDR:ReplyTo>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body />
</SOAP-ENV:Envelope>example.car/

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005812

In cases such as Java, where the language itself does

not have mechanisms to represent conversations,

the developer needs programmatical access to

partner representations and a language-specific

interface that complies with the WSDL portType

being implemented. To provide this capability and

shield the developer’s code from dependencies on

the servicelet manager, stubs, skeletons, and adapt-

ers are generated. The stubs and skeletons provide

the layer of abstraction for the developer code. The

stubs and adapters also provide the glue-code that

interfaces with the servicelet manager. These are

then used by the servicelet manager to handle

serialization and deserialization of data types.

The invocation sequence in the case of Java

servicelets is as follows: the manager passes the

servicelet context and the parser to the generated

adapter, which uses a ‘‘read’’ method defined in the

generated target Java class to parse the remainder of

the message. The appropriate method is then

invoked on the skeleton, which contains the busi-

ness logic for the operation. Note that the adapter is

stateless and does not maintain a reference to the

skeleton. There is one adapter instance per adapter

class, and each skeleton reference is passed to the

adapter, along with the context and parser, at the

time of invocation. After the skeleton method

invocation is completed, the return value is written

out by using the typed XML serializer.

BPEL, on the other hand, is natively conversational.

It provides a representation for conversations based

on WSDL portTypes (partnerLinks), as well as

activities to interact with partners along these

conversations. Therefore, there are no stubs and

skeletons to expose to the BPEL servicelet devel-

oper. His or her interaction will always be strictly

with standardized XML formats (BPEL, WSDL,

XPath, XML Schema), especially BPEL activities.

The BPEL servicelet manager therefore has the

choice of whether to use static stubs and adapters

internally to aid in reading or writing message

payloads or to do the serialization and deserializa-

tion dynamically itself. The latter option is currently

chosen in Colombo.

Handling service invocations

As noted earlier, the mechanism by which a

servicelet invokes one of its required services

depends on its implementation language, that is,

either a call to a stub’s operation in Java or through

the activation of an invocation activity in BPEL, or

through whatever other mechanism a newly sup-

ported implementation language would provide.

Whichever way it occurs, a request for an invoca-

tion eventually reaches the relevant servicelet

manager. The servicelet manager then creates a

Colombo message. A new Colombo outgoing mes-

sage is always assigned a unique identifier known as

a ‘‘MessageID.’’ The MessageID is serialized into a

message header. If a response is expected, the

servicelet manager registers the message in an

outstanding-request registry, using the MessageID as

a key. Finally, the servicelet manager hands the

Colombo message to the message-processing ma-

chinery so that it can be sent to the partner.

In the Java case, the servicelet makes a request to its

context to retrieve a stub. When a method is

invoked on the stub, a sequence of events occurs,

which are essentially the inverse of the adapter

invocation described earlier. Typed XML serializers

are used to write the argument types required by the

operation being invoked.

The response to the invocation arrives separately as

an incoming message to be dispatched to a waiting

servicelet instance. When a message arrives at a

servicelet manager, the latter has to find out

whether it is a new request or the response to a

previous invocation. The servicelet manager checks

the RelatesTo field in the header. Following WS-

Addressing, the value of this should be the

MessageID from the invocation request message.

Therefore, the servicelet manager can use this value

to look up in its registry of outstanding invocations

the invocation to which the MessageID belongs.

Once found, the servicelet manager can dispatch the

response appropriately.

Handling service requests

Upon deployment, each servicelet is registered with

the relevant servicelet manager (Java, BPEL, etc.).

Once a message comes into the system, the relevant

servicelet manager is identified and handed the

message. The servicelet manager, upon receiving an

incoming request, has to find a servicelet instance to

consume it or create one if none is found. The

system will ask the servicelet manager for the

instance of the conversation corresponding to the

message. The system will also do any policy-related

required work based on that information and

eventually return to the servicelet manager with the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 813

message so that it can be handed to and processed

by the instance. Colombo uses a single, well-

defined, reference property (the ‘‘Colombo instance

ID’’) to identify instances, but the value of the

reference property is otherwise opaque for request-

ors.

The default mechanism for looking up a conversa-

tion instance is to use the WS-Addressing headers.

The uniform resource locator (URL) informs the

servicelet manager which servicelet should consume

the message. The servicelet manager then uses any

available ‘‘reference property’’ headers to find out if

there is an already existing instance to which this

message should be routed. If there are no reference

properties and the servicelet manager does not have

any alternative routing schemes (such as BPEL

correlation sets using the application data in the

message), then the servicelet manager returns a new

conversation instance for the appropriate servicelet.

For optimization, the creation of the servicelet

instance itself can be delayed until the message

needs to be processed.

Once the system returns to the servicelet manager

for the actual dispatching of the message to the

instance, the servicelet manager simply passes it on.

At this point it may create a new instance if it needs

to. If a new instance is created, it is assigned a

unique identifier (‘‘Colombo instance ID’’) with

which it is registered. The message is deserialized

and handed to the implementation in the data

format it expects either dynamically by the servicelet

manager itself or by using an adapter if one is

present. Currently we use the former in the BPEL

servicelet manager and the latter in the Java

servicelet manager.

In the case of a request/response operation, the

response again goes through the servicelet manager.

The servicelet manager creates a response message

by using the destination endpoint reference that it

obtains from the conversation context, the actual

message content, and relevant information from the

original request such as a RelatesTo header

containing the request’s message ID. A ReplyTo

header is added containing the URL of the servicelet

along with the unique identifier of the instance as a

reference property. This is then handed to the

outbound dispatcher along with information on any

policies that need to be applied to the message on its

way out.

Updating endpoint references

Once an instance is created by a servicelet manager,

the endpoint references of its provided services

(already containing a URL) are updated with a

reference property consisting of the instance identi-

fier. It is also registered with the servicelet manager

by using the instance identifier.

The services that a servicelet invokes may also

change their endpoint references at runtime. These

changes occur when a request message arrives with

an endpoint reference in the ReplyTo header that is

different from the one saved in the servicelet

instance information. In the section ‘‘Colombo

support for WS-Addressing,’’ we explained how this

is done when there is a ReplyTo header in the

message: the endpoint reference in the ReplyTo

header overwrites the one saved in the conversation

instance, provided that the former is not anony-

mous. A servicelet implementation may also ask

that the endpoint reference of an active instance be

updated. In this case, it needs to inform its servicelet

manager so that the required endpoint reference

updates take place. For example, in BPEL, one of the

capabilities of the ‘‘assign’’ activity is to copy an

endpoint reference passed by an application mes-

sage into the endpoint reference to be used in

subsequent interactions along one of its partner-

Links (conversations).

Instance deactivation

The servicelet manager deregisters servicelet in-

stances once they are deactivated and are no longer

able to consume messages. The cause of deactiva-

tion will depend on the type of servicelet (and its

corresponding servicelet manager). For example,

once all the activities in a BPEL process instance

have been completed, that instance must be dereg-

istered because it can no longer process messages.

Another example is in the case of a Java servicelet,

where a deactivate operation can be called at any

time programmatically from within the implemen-

tation.

Policy framework

As described earlier, a key feature of SOAs is the

explicit declaration of functional as well as QoS

capabilities and requirements in agreed-upon, ma-

chine-readable formats. In the Web Services frame-

work, policies are used to refer to meta-data for QoS

attributes of services. The WS-Policy language
6

defines a base language and operators for policy

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005814

assertions; this is designed to be extended by

domain-specific languages (such as languages for

defining security or transactional policy assertions)

to provide a rich framework for defining policies.

Policies are general statements about QoS and are

attached to Web Services. A single service definition

may have multiple policies attached to it simulta-

neously, at various levels of granularity (for

example, to the service as a whole, a particular

endpoint, an interface, an operation, or even a

particular message type). In Reference 19, trans-

action policies are attached to BPEL processes.

These policy attachments may be part of the service

definition or may be externally specified. The WS-

Policy Attachment specification
20

defines how pol-

icies are attached to Web services.

Colombo’s policy subsystem is responsible for

collecting, interpreting, and enforcing policies.

Policies are enforced at the level of a conversation;

that is, for each message entering or leaving

Colombo, the policy subsystem needs to ensure that

the message complies with the expected policy.

Because policies are attached at different levels of

granularity, interpreted policies need to be merged

to compute the effective policy for each such

message exchange.

Computing effective policy

The policies that the Colombo runtime applies to the

interaction with a deployed service originate from

three sources:

1. Service policy—The policy documents associated

with a service that is made available using

Colombo. These are attached to the service

definition or a part of the service definition.

Partner services that wish to use the functionality

offered by such a service need to comply with the

associated policies. As an example, a transaction

policy may be associated with a service interface

for an Internet banking service, because the

semantics of the function offered through that

interface require transactional behavior.

2. Partner policy—The policy documents associated

with a partner service that is used by a Colombo

service. These policies represent requirements for

partners. For example, our example of an Internet

banking service might offer a loan facility. This

operation might make use of an external credit-

check service. The banking service might require

that the credit-check service follow the same

transactional protocol so that transactions can be

propagated and credit checks can occur within

the same transactional context as a loan request

transaction.

3. Framework policy—A policy document associated

with a particular deployment of Colombo. It is

used to enumerate the capabilities of the partic-

ular Colombo installation.

On deployment of a servicelet, the service policies

and partner policies for each service supported by

the servicelet are checked against the framework

policy to ensure that each of the services does not

have requirements that go beyond the platform

capabilities. If any service requires a policy not

supported by the platform, deployment of the

servicelet fails. Note that partner policies represent

requirements for partners; therefore, before partners

are assigned endpoints (i.e., before the abstract

partner interface becomes fully specified), the

service policy of one partner must be determined to

be compatible with the partner policy that is desired

by the other partner. In Colombo, the abstract

partner interface is fully specified at deployment.

Thus, discovery of the offered policy of one partner

and the checking of it against the desired partner

policy of the other is assumed to have taken place

before deployment. Doing this dynamically is a

planned future area of research (Reference 21 offers

one approach to arriving at negotiated policy).

Based on this assumption, the semantics of the

partner policies are that they represent the agreed-

upon, negotiated policies for the interaction between

the service and its partner, obtained by prior

matching of the QoS requirements with partner

offerings.

Next, effective policies need to be computed for

each potential message destined to or originating

from the services. This may be done at deployment

or dynamically, when a message leaves or arrives at

a service. In either case, the process is identical. The

policies attached to each input and output message

of a service endpoint are examined along with all

higher scopes in the same hierarchy, such as

policies attached to the service endpoint, interface

definition, or I/O-message definition. These policies

are merged to arrive at the effective policy for a

particular input or output message, as shown in

Figure 9. For example, the effective policy for input

message of operation o1 in endpoint s1 is obtained

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 815

by merging policies P1 (attached to message type),

P2 (attached to port type), P3 (attached to

endpoint), and P4 (set of permissible configurations

supported by platform).

The method for comparing and merging policy

definitions is implied by the WS-Policy definition

and described in some detail in References 22 and

23. Simply put, policies can be represented as

Boolean expressions where policy operators are

mapped to Boolean ones, and policy assertions form

the terms being combined. Prior to merging or

comparing policies, they are put into a normal form

(analogous to disjunctive normal form (DNF) for

Boolean expressions). In this representation, each of

the terms in the DNF can be thought of as a

permissible combination of QoS features. A merge of

two policies can be obtained by defining a con-

junction of the normalized policy expressions that

each of the individual policies represents. The terms

of normalized policy expressions can be compared.

There are two caveats to these methods. The first

one deals with policies that have different vocab-

ularies. Consider two policies where one has an

assertion relating to a security protocol (for exam-

ple, a requirement that messages are signed using

the RSA (Rivet Shamir Adlerman) algorithm, while

the second policy has no assertions dealing with this

particular security protocol. One solution would be

to disallow such comparisons, but in practice they

would likely occur often. We chose the solution of

completing the policy where the term in question

was missing, by adding its positive and negative

form to each of the terms in the DNF form of the

policy (thus doubling the number of terms). In other

words, the policy would be extended to explicitly

state that the security protocol was supported as

well as not supported in each of the permissible

configurations allowed by the policy (see policy-

merge example later). Although this solution works

for many practical cases, it does have inadequacies

that we have described further in Reference 22. The

second caveat involves dealing with effective

policies that allow multiple configurations (i.e., the

DNF of the merged policy has more than one term).

Consider the situation where the incoming message

for a particular operation offered by a particular

endpoint of the service has a DNF with more than

one term. For policy enforcement to take place

correctly, when the message in question arrives, it

has to be verified as following the policy correctly.

This is possible only if there is prior agreement

between the service and its partner as to which of

the permissible configurations will be used. Some

protocol is needed for making this determination.

This is another area of work we plan to undertake in

the future; currently, Colombo requires that all

effective policies consist only of one term. This

requirement is not a hindrance if QoS policies are

defined narrowly.

Policy P1: RSA_Signature (Subjects must follow

RSA algorithm to sign messages)

Policy P2: AT_Mandatory (Subjects must

participate in atomic transactions)

Normalized forms:

P1n: (RSA_Signature ^ !AT_Mandatory) v

(RSA_Signature ^ AT_Mandatory)

P2n: (AT_Mandatory ^ RSA_Signature) v

(AT_Mandatory ^ !RSA_Signature)

Final merged policy: ATMandatory ^ RSA_Signature

Policy enforcement

After effective policies are computed, the enforce-

ment mechanism for each effective policy can be put

into place. As in the case of computation of effective

policies, this can be done either at deployment or

dynamically, when a relevant message is being

processed by Colombo.

Information relevant for policy enforcement (such

as transaction IDs or message digests) is carried

along with messages as header information. This

information is serialized or deserialized by code that

Figure 9
Calculating effective policy for operation o1

Colombo Server

Policy
P1

Policy
P2

Policy
P3

Service Definition

Message m1
Message m2
Message m3
Port type P1
 Operation o1
 Input m1
 Output m2
 Operation o2
 Input m3
Binding b1
Service s1
Service s2

Policy P4

Service
Definition

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005816

is specifically designed to deal with data following

the requirements of a particular message channel

(for example, according to SOAP rules). For

incoming messages, deserialized header information

can then be consumed by policy handlers to perform

the function required by a particular policy, such as

recording message arrival or departure in the case of

a reliable messaging policy. For outgoing messages,

the policy handler performs the function mandated

by the protocol and adds any relevant header

information (such as a message ID in the case of a

reliable messaging protocol) to the message. This

information is later serialized by the relevant header

processor before the message’s departure from the

system.

The mechanism for policy enforcement is thus a

linear chain of policy handlers, customized for a

particular policy. For example, if a message has an

associated policy requiring message reliability and

participation in a 2PC (two phase commit) trans-

action protocol, Colombo has to ensure that relevant

messages are routed to the transaction policy

handler and reliable-messaging policy handler. This

approach of using the interceptor pattern to handle

QoS is well known.
21,24,25

When is a handler chain computed? The procedure

for doing this involves parsing the effective policy

for a message to configure a handler chain appro-

priately. It can be performed when services are

deployed in Colombo (this is the default), or at

runtime. After a handler chain is computed, the

configuration can be stored for use with future

messages with the same effective policy. If this

feature is disabled, handler chains are dynamically

computed when the need to process a particular

kind of message is identified, and then the chains

are discarded. This offers the most flexibility as the

system can adapt even to changes in the effective

policy.

Policy handlers need access to services offered by

the Colombo framework (such as access to a

database), the ability to invoke external services

(such as a transaction coordinator service) and

features that affect the routing of messages within

Colombo (such as the ability to interrupt or resume

message delivery to a service endpoint). Many of

these requirements are identical to the requirements

of services hosted within Colombo. Policy handlers

are thus designed as services hosted within a

specialized container (the policy handler container),

which offers access to the internal elements of the

framework that are not available through other

containers. Other than this important distinction and

some specialized logic for routing messages to the

policy handler container, policy handlers can con-

ceptually be deployed and managed as regular

services and can use a programming model identical

to that used by servicelets. Currently though,

Colombo comes packaged with a set of predeployed

handlers supporting reliable messaging and trans-

action and security policies and does not allow

additional handlers to be deployed.

A difficult problem in policy enforcement relates to

the order in which messages are processed by

handlers within a handler chain. Our design

implicitly assumes that each policy handler works

independently, and the order of message delivery is

not relevant. This is usually not the case. Consider a

policy that requires encryption along with reliable

message delivery. When a message is encrypted, its

headers, including any headers used by the reliable-

messaging protocol (such as a Message ID), are also

encrypted. Thus, decryption of the message has to

take place before the message is handed to the

processor or handler of the reliable messaging

header. This is a dependency that comes out of the

semantics of the policy of that message. We plan to

explore solutions to this general problem of handler

dependencies within the chain, but currently we

treat security (in particular, encryption) as a special

case within the policy subsystem and take care of

that before message delivery to other policy han-

dlers.

FUTURE WORK

Work in the Colombo project continues in three

areas: completing the implementation of the runtime

platform, extending support to developers, and

testing and measuring Colombo as a compete

platform.

Two major areas of the Web Services stack are still

not supported by Colombo. One is discovery

capabilities, either a registry-based discovery (UDDI)

or dynamic meta-data exchange (WS-MetadataEx-

change). Colombo is already designed to take

advantage of dynamic service discovery (e.g.,

through dynamic policy reconfiguration), but cur-

rently Colombo does not support service partner

discovery other than static binding. The second area

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 817

is the use of the business activity protocol (WS-

BusinessActivity
26
) to support loosely coupled

business interactions, as opposed to the tightly

coupled scenario where an atomic transaction

protocol might be used.

Support for developers will be extended by sup-

porting bottom up development strategies for Java

and incorporating scripting languages (Javascript**,

Perl) into the set of servicelet-supported languages.

We are considering adding the capability to update

an already deployed servicelet without stopping and

restarting the Colombo server (hot update), to

complement the existing hot deploy capability.

Finally, the ultimate goal of the Colombo project is to

deepen our understanding of what kinds of middle-

ware architectures are most appropriate to support

SOC environments. We are planning to test Colom-

bo’s assumptions about the performance and sim-

plicity yielded by a platform that natively supports

the SOC paradigm through a set of performance

benchmark tests and a field study focused on the

developer’s ‘‘ease of use’’ experiences.

SUMMARY

This paper has presented an overview of the

Colombo platform, an experimental IBM Research

project aimed at providing a deeper understanding

of how middleware can address the requirements of

the SOC paradigm. Colombo’s approach is to build a

native Web services runtime and programming

model focused exclusively on the execution and

development of service-oriented applications. Co-

lombo thus does not address the problem of

integrating legacy middleware and applications,

except by assuming that they can be enabled for

Web services by using the tools and adapters

already available in the market.

The Colombo programming and deployment models

achieve substantial simplification by extending the

service paradigm to both application and system

services and by concentrating on the composition

problems. Colombo programming can be imple-

mented in multiple languages; Java and BPEL

realizations of this programming model are already

available. The Colombo runtime is built on an

asynchronous SOAP processing engine in which a

policy-processing framework provides customizable

QoS capabilities.

Colombo is an ongoing Research project. Work

continues to provide support for service discovery

standards, management interfaces, and extensions

to the set of programming tools. The evaluation of

the platform in the areas of performance, manage-

ment, and developer’s usability is now taking place,

and is likely to yield important insight into the

problem of designing and optimizing middleware to

support service-oriented environments.

ACKNOWLEDGEMENTS

The Colombo project is a cross-departmental proj-

ect. In addition to the authors of this paper, Tom

Mikalsen, Stefan Tai, and Ignacio Silva-Lepe from

the IBM Thomas J. Watson Research Center and

Michiaki Tatsubori from the IBM Tokyo Research

Center have been key contributors to the design and

implementation of the Colombo platform.

Microsystems, Inc. or Microsoft Corporation.

CITED REFERENCES
1. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,

and S. Weerawarana, ‘‘Unraveling the Web Services
Web: An Introduction to SOAP, WSDL, and UDDI,’’ IEEE
Internet Computing, 6, No. 2, 86–93 (2002).

2. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S.
Weerawarana, ‘‘The Next Step in Web Services,’’
Communications of the ACM, 46, No. 10, 29–34 (2003).

3. E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, ‘‘Web Services Description Language (WSDL
1.1),’’ W3C Note, http://www.w3.org/TR/wsdl, March
2001.

4. C. Szyperski, ‘‘Component Software: Beyond Object-
Oriented Programming,’’ Addison-Wesley Professional,
Boston, MA, 1999.

5. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,
‘‘Simple Object Access Protocol (SOAP) 1.1,’’ http://

6. D. Box, F. Curbera, D. Langworty, A. Nadalin, N.
Nagaratnam, M. Nottingham, C. von Riegen, and J.
Shewchuk, ‘‘Web Services Policy Framework (WS-Policy
Framework),’’ 2002, http://www-128.ibm.com/
developerworks/library/specification/ws-polfram/.

7. UDDI V3.0.1 specification, http://uddi.org/pubs/
uddi-v3.0.1-20031014.htm.

8. F. Curbera and J. Schlimmer (Eds.), ‘‘Web Services
Metadata Exchange (WS-MetadataExchange)’’ (Septem-
ber 2004), ftp://www6.software.ibm.com/software/
developer/library/WS-MetadataExchange.pdf.

9. D. Box and F. Curbera (Eds.), ‘‘Web Services Addressing
(WS-Addressing),’’W3C Member Submission, August 10,
2004, http://www.w3.org/Submission/ws-addressing/.

10. L. Cabrera, G. Copeland, M. Feingold, T. Freund, J.
Johnson, C. Kaler, J. Klein, D. Langworthy, A. Nadalin,
D. Orchard, I. Robinson, T. Storey, and S. Thatte, ‘‘Web
Services Atomic Transactions Specification’’ (September

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005818

www.w3.org/TR/2000/NOTE-SOAP-20000508/.

** Trademark, service mark, or registered trademark of Sun

2003), http://www-106.ibm.com/developerworks/
library/specification/ws-tx/.

11. C. Ferris and D. Langworthy (Eds.) ‘‘Web Services
Reliable Messaging Protocol (WS-ReliableMessaging)’’
(March 2004), http://www-106.ibm.com/
developerworks/library/ws-rm/.

12. Web Services Security: SOAP Message Security 1.0
(March 2004), http://www.oasis-open.org/committees/
wss/.

13. F. Curbera and N. Mukhi, ‘‘Metadata-Driven Middleware
for Web Services,’’ Proceedings of the Fourth International
Conference on Web Information Systems Engineering
(WISE 2003), Rome, Italy, 2003, pp. 278–286.

14. R. Khalaf, N. K. Mukhi, and S. Weerawarana, ‘‘Service-
Oriented Composition in BPEL4WS,’’ Proceedings of the
12th International World Wide Web Conference (WWW
2003) Alternate Track Papers and Posters, Budapest,
Hungary, May 2003, http://www2003.org/cdrom/
papers/alternate/P768/choreo_html/p768-khalaf.htm.

15. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte, and S. Weerawarana, ‘‘Business Process Execu-
tion Language for Web Services (BPEL4WS) 1.0,’’ http://
www-128.ibm.com/developerworks/library/
specification/ws-bpel/.

16. Java API for XML-Based RPC (JAX-RPC), Sun Micro-
systems Inc., http://java.sun.com/xml/jaxrpc/.

17. PHP Hypertext Preprocessor scripting language, http://
www.php.net/.

18. XML Pull Parser, http://www.extreme.indiana.edu/
xgws/xsoap/xpp/.

19. S. Tai, R. Khalaf, and T. Mikalsen, ‘‘Composition of
Coordinated Web Services,’’ Proceedings of the 5th ACM/
IFIP/USENIX International Conference on Middleware,
Toronto, Canada (2004), pp. 294–310.

20. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P.
Hallam-Baker, M. Hondo, C. Kaler, A. Malhotra, H.
Maruyama, A. Nadalin, M. Nottingham, D. Orchard, H.
Prafullchandra, C. von Riegen, J. Schlimmer, C. Sharp,
and J. Shewchuk, ‘‘Web Services Policy Attachment (WS
Policy Attachment),’’ ftp://www6.software.ibm.com/
software/developer/library/ws-polat.pdf.

21. E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P.
Devanbu, ‘‘GlueQoS: Middleware to Sweeten Quality of
Service Policy Interactions,’’ Proceedings of the 26th
International Conference on Software Engineering
(ICSE’04), 2004, pp. 189–199.

22. N. Mukhi and P. Plebani, ‘‘Supporting Policy-Driven
Behaviors in Web Services: Experiences and Issues,’’
Proceedings of the 2nd International Conference on
Service-Oriented Computing (ICSOC 2004), New York,
USA (November 2004), pp. 322–328.

23. P. Nolan, ‘‘Understand WS-Policy Processing’’ (Decem-
ber 2004), http://www-106.ibm.com/developerworks/
webservices/library/ws-policy.html.

24. P. Narasimhan, L. Moser, and P. Mellior-Smith, ‘‘Using
Interceptors to enhance CORBA,’’ Computer 32, No. 7,
62–68, July 1999.

25. N. Mukhi, R. Konuru, and F. Curbera, ‘‘Cooperative
Middleware Specialization for Service-Oriented Architec-
tures,’’ Proceedings of the 13th International Conference
on the World Wide Web—Alternate Track Papers and
Posters (2004), pp. 206–215.

26. Web Services Business Activity Specification, http://
www.ibm.com/developerworks/webservices/library/
ws-busact, January 2004.

Accepted for publication June 23, 2005.

Francisco Curbera
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532
(curbera@us.ibm.com). Dr. Curbera is a research staff
member and manager of the Component Systems Group at the
Watson Research Center in Hawthorne, New York, where he
has worked since 1993. He holds a Ph.D. degree in computer
science from Columbia University. His current research
interests are in the use of component-oriented software in
distributed computing systems. In the past, he has worked in
the design of algorithms and tools for processing XML
documents and in the use of markup languages for automatic
user interface (UI) generation. He has worked on different
Web Services specifications since the initial Web services
concept surfaced in late 1999, first as one of the original
authors of the Apache SOAP implementation of SOAP 1.1, and
then as co-author of WSDL 1.1, BPEL4WS, WS-Policy, and
WS-PolicyAttachments, WS-Addressing, WS-
MetadataExchange, and other Web Services specifications. He
currently represents IBM in the Web Services Addressing
working group, standardizing WS-Addressing at the W3C, and
in the Web Services Business Process technical committee,
standardizing BPEL4WS at OASIS.

Matthew J. Duftler
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532
(duftler@us.ibm.com). Mr. Duftler is a software engineer in
the Component Systems Group at the Watson Research
Center. He was one of the original authors of Apache SOAP, is
the co-lead of JSR110, Java APIs for WSDL, is a co-author of
the IBM BPEL4WS engine, BPWS4J, and one of the main
developers of Colombo.

Rania Khalaf
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532
(rkhalaf@us.ibm.com). Ms. Khalaf is a software engineer in
the Component Systems Group at the Watson Research
Center. She received her Bachelor’s and Master’s degrees in
computer science and electrical engineering from
Massachusetts Institute of Technology in 2000 and 2001. Her
interests include component-based software engineering,
workflow, and service-oriented computing, Web services in
particular. She is a co-developer and co-architect of the IBM
BPEL4WS prototype implementation (BPWS4J) and the Java
Record Object Model (JROM). She has published a number of
papers on service-oriented computing and has served on the
program committees of conferences and workshops in the
field.

William A. Nagy
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532
(wnagy@us.ibm.com). Mr. Nagy is a senior software engineer
in the Component Systems Group at the Watson Research
Center. He received a B.S. degree in mathematics/computer
science from Carnegie Mellon University in 1994, and a M.S.
degree in computer science from Columbia University in 2000.
His research interests include the design and development of
wide area distributed systems, including their software
architecture, development and programming models, and
supporting infrastructure. His most recent efforts have been
focused in the area of Web services.

Nirmal Mukhi
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 CURBERA ET AL. 819

Published online October 24, 2005.

(nmukhi@us.ibm.com). Mr. Mukhi is a software engineer in
the Component Systems Group at the Watson Research
Center. He received an M.S. degree in computer science from
Indiana University in 1999 and is currently working on a Ph.D.
degree. He has been studying programming models for Web
services, service composition, orchestration, and related
problems. His current area of work is in developing policy-
driven, reconfigurable middleware for Web services.

Sanjiva Weerawarana
(sanjiva@openource.lk) Dr. Weerawarana received a Ph.D.
degree in computer science from Purdue University in 1994.
After a few years at Purdue as visiting faculty, he joined IBM
Research in 1997, where he worked as a research staff
member in the Component Systems Group. While at IBM, he
was elected a member of the IBM Academy of Technology. His
research interests are in component-oriented programming,
specifically component-oriented distributed computing
architectures. He has been an active contributor to IBM’s
technical strategy for Web services and is an author of many
Web Services specifications including WSDL, WS-Addressing,
WS-MetadataExchange, BPEL4WS, and WS-Resource
Framework. Dr. Weerawarana has implemented many of
those specifications and has contributed to multiple IBM Web
services products and offerings. He left IBM in April 2005. He
is a very active member of the open source community, as a
member of the Apache Software Foundation and as co-
founder of the Lanka Software Foundation, an open source
foundation in Sri Lanka. In his leisure time, he teaches at the
University of Moratuwa, Sri Lanka, where he lives. &

CURBERA ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005820

