
Web Services Navigator:
Visualizing the execution of
Web Services

&

W. De Pauw

M. Lei

E. Pring

L. Villard

M. Arnold

J. F. Morar

The Web Services standard is becoming the lingua franca for loosely coupled

distributed applications. As the number of nodes and the complexity of these

applications grow over the coming years, it will become more challenging for

developers to understand, debug, and optimize them. In this paper, we describe Web

Services Navigator, a visualization tool that fosters better understanding of service-

oriented architecture (SOA) applications. We draw on our experience with real SOA

applications to show how this tool has been applied to practical problems ranging

from business logic misunderstandings to performance bottlenecks to syntax and

semantic errors. Web Services Navigator helps to solve these problems by visualizing

how applications really execute, enabling business owners, application designers,

project managers, programmers, and operations staff to understand how their

applications actually behave. We sketch the architecture of Web Services Navigator,

outline how it reconstructs application execution from event logs, and describe how

users interactively explore their applications using its five linked views.

INTRODUCTION

Significant portions of the productivity gains en-

joyed by businesses over the past decades are

attributable to the adoption of new information

technology (IT). At some point the economic

balance shifts; businesses start putting more em-

phasis on reducing the cost of supporting existing IT

functions than on adding new function. Today,

many businesses are striving to improve the overall

cost-effectiveness of their IT investments by re-

viewing business needs and cutting costs. These

efforts typically include leveraging existing assets,

consolidating redundancies, and laying a foundation

for future growth. This trend is fueling the move

from tightly coupled componentized systems to

loosely coupled service-based systems, such as

those based on service-oriented architectures

(SOAs) employing standards-based interfaces.
1,2

To illustrate the differences between componentized

systems and service-based systems, we make an

analogy with the air transportation industry. This

industry moves passengers arriving by means of

ground transportation into airplanes, flies them to a

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 821

destination, and discharges them into ground

transportation at the destination. Airplanes, an

essential part of the story, are constructed from large

collections of tightly integrated components. Ac-

cording to Boeing, a single 747-400** airplane

contains more than 6 million parts,
3

demonstrating

that the componentized system approach can work

for very complex systems. Even so, the overall air

transportation system is best conceptualized as a

composition of ‘‘choreographed’’ services: fuel ser-

vices, food services, baggage services, air traffic

control services, and ground transportation services,

to name just a few.

Air transportation depends on both component

strategies and service strategies. What forces drive

businesses toward one approach or the other? One

way to address this question is to observe some of

the differences between integrated components and

choreographed services.

Componentized systems tend to be deeply hier-

archical, with components constructed from sub-

components that are themselves constructed from

other subcomponents. When a componentized

system malfunctions, the misbehaving subcompo-

nent must be identified and repaired or replaced. For

example, frequent airline passengers may be famil-

iar with delays associated with airplane malfunc-

tions. Drilling down into such ‘‘vertical’’ component

hierarchies to identify the root cause of failure is the

strength of today’s diagnostic tools, which are often

built into complex systems.

How does this contrast with the choreographed

services environment? Services have well-defined

and broadly available interfaces with a predictable

or specified quality of service. They are typically

accessed by different types of consumers. Services

generally provide a complete usable unit of work,

and equivalent services are frequently available as

alternatives. Indeed, interchangeable services are

the basis for competition. When a service fails, the

preferred remedy may be substitution rather than

repair. For example, if a fuel truck breaks down, any

airline passenger would expect a replacement truck

to be dispatched rather than waiting for the broken

truck to be fixed. Unlike componentized systems,

the domain of control and visibility for the consumer

of the service generally stops at the service interface.

This service environment leads to numerous ‘‘hor-

izontal’’ interaction patterns that take the form of a

broad and shallow hierarchy.

The challenge in managing and understanding

service composition is dealing with this horizontal

complexity. When systems are composed of multi-

ple independent business processes, the mapping

between such processes and the applications ex-

ecuting in the IT layers may not always be obvious.

Consider such fundamental tasks as verifying the

correctness of a workflow or locating performance

bottlenecks, where logs from a variety of servers

must be collated and interpreted. This is difficult

even when the number of servers is small and may

become impractical as horizontal complexity in-

creases.

The emergence of SOAs in the IT industry is driven

by the same pressures that have shaped the air

transportation system. Web Services Navigator
4

has

been designed and built from the ground up to

address the challenges of horizontal complexity in

the service environment and its associated patterns

of usage. This tool relies on the Data Collector for

IBM Web Services Navigator
5

to capture events. The

tool then correlates the events, models the trans-

actions they represent, and extracts patterns of

execution from the model. The tool thus recon-

structs individual transactions from end to end and

produces visual abstractions, such as service to-

pologies and flow patterns, as well as concrete views

of transaction flows and data content. The abstract

views reduce large volumes of execution data to

forms more meaningful to humans. They can reveal

important business trends that are obscured in

concrete views and at the same time, can link to the

associated detailed data when needed.

Because SOAs conform to open standards, the Data

Collector for Web Services Navigator can capture

application execution data in the middleware.

Consequently, developers and operations staff can

take advantage of visualization technology without

modifying their applications, either before or after

deployment, even when their environment includes

a mixture of programming languages and operating

platforms.

In the next section of this paper, we describe the five

views that are used by Web Services Navigator to

display information. The two sections that follow

illustrate a number of cases in which the tool has

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005822

proven useful; we show first how the tool was used

to diagnose a number of problems in business logic,

and then we show a number of cases in which the

tool helped diagnose problems in the IT layer. The

problems presented in this paper were encountered

in real Web Services-based applications developed

within IBM or for customers of IBM. In particular,

two applications were used to illustrate the tool

features: an online order validation service and a

retail point-of-sale system. Next, we briefly discuss

the Data Collector. Then, in ‘‘Architecture and

implementation,’’ we describe the general architec-

ture of the tool and discuss a number of imple-

mentation issues of interest: compensating for clock

skews among nodes, our algorithm for laying out

topology graphs, and identifying transaction pat-

terns. We discuss related work, and we conclude

with a summary.

The Web Services Navigator described in this paper

is a research project. It is publicly available from the

IBM alphaWorks* Web site and is included in a

recently released product from IBM.
6

A previous

version is also available from IBM.
7

THE VISUALIZATION TOOL

The Web Services Navigator visualization tool is a

plug-in feature for the Eclipse Version 3.0 platform,
8

an open framework for interactive tools. Web

Services Navigator offers a new perspective with

five new views of the execution of Web Services

applications, as shown in Figure 1. It can co-exist

with, but does not depend upon, other tools
9,10

and

products
11

based on the Eclipse platform.

This section describes the five new views presented

by Web Services Navigator: Service Topology,

Transaction Flows, Flow Patterns, Statistics Tables,

and Message Content. Examples of how each view

visualizes problems are illustrated in later sections

of this paper and in a companion article
12

published

on IBM alphaWorks.

The Service Topology view, on the upper right side

of Figure 1, shows a graph of the services involved

in an application and the message flows between

them. The boxes represent individual Web services:

each is labeled with the name of the service (at the

top of the box), the name of the machine that hosts

the service (below the service name), and the names

of one or more operations that the service provides

(shown in gray background). The colors of the

boxes indicate different host machines, and all

services hosted by the same machine are displayed

in the same color. The arrows between boxes

represent Web service requests and are labeled with

the number of requests captured. The circumstances

that produced this particular view will be discussed

in a later section.

When the cursor (mouse pointer) is moved near a

node or an edge, information such as the total

number of requests and the total number of bytes

transmitted is displayed in a small ‘‘tooltip’’ window

overlaid on the view.

The Transaction Flows view, on the left side of

Figure 1, shows a time sequence of the Web services

involved in an application and the message flows

between them. The columns represent individual

Web services and are labeled with the names of the

services and the machines that host them. Each

service and host machine is labeled in the same

color as the Service Topology view. Arrows repre-

sent Web service requests and responses, and

vertical bars represent processing of a request.

Transactions are separate flows of connected arrows

and vertical bars. Each transaction is drawn in a

unique color. The colors of the labels and trans-

actions are not related. Time proceeds from top to

bottom; it may be represented conventionally, in

seconds, with a scale running down the right-hand

side of the view; or, time may be represented in

logical steps, in proper sequence but with all events

evenly spaced, regardless of their actual duration.

The logical representation of time may reveal details

within dense clusters of events, and across widely

spaced events, that are obscured in the conventional

representation. Additional information can be dis-

played in tooltip windows by moving the cursor

over service names, machine names, message

arrows, and processing bars.

The Flow Patterns view, illustrated on the right side

of Figure 2, may provide more insight into the

behavior of an application than the Transaction

Flows view when it is cluttered by many concurrent

transactions.

By automatically classifying similar transaction

flows into flow patterns, Web Services Navigator

significantly reduces the amount of information that

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 823

a user must digest. Patterns are based on similarities

between the order of the invoked services, regard-

less of the exact timing. Patterns reveal common

trends, as well as abnormalities or outliers, enabling

users to explore their applications at different levels

of abstraction. This is explained in more detail in the

section ‘‘Architecture and implementation.’’

For example, the pattern labeled ‘‘Pattern 1: 70 x’’ in

the Flow Patterns view represents 70 similar trans-

actions in the Transaction Flows view.

The Statistics Tables view, illustrated in Figure 3,

shows execution performance information numeri-

cally with four levels of granularity:

� The message statistics table includes data on

individual messages (request or response), in-

cluding the name of the sender (service and

machine), name of responder, network transit

time, and message size.
� The invocation statistics table includes data on

request/response pairs, client and server elapsed

times, network delay, server processing time, and

message sizes. For each invocation, the server

elapsed time and the network delay add up to the

client elapsed time. This table is shown in the

lower part of Figure 3.
� The transaction statistics table includes data on

trees of connected invocations, usually starting at

a client. The data, which pertains to the initiating

service and machine, include the number of

Figure 1
The Web Services Navigator shows multiple views of application execution

Transaction Flows

Client Client Manufa ConfigLogging RetaileWareh Wareh Wareh Wareh Man

NELLIEBLY SACAJAWEA BAKEDIEGO VESPUCCI SYLVIAEARLE

Client Manuf

getCatalog

getConfigurationOptions

submitOrder
logEvent

logEvent

logEvent

logEvent

logEvent

shipGoods

submitPO

shipGoods

submitPO

logEvent

shipGoods

submitPO

logEvent

logEvent

logEvent

logEvent

logEvent

logEvent

submitSN

submitSN
logEvent

logEvent

getEvents

1

2

4

5

3

6

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005824

invocations and the number of services and

machines involved.

� The pattern invocation statistics table includes

data on groups of similar transactions, such as

averages, minimums and maximums for elapsed

client and server time, network delay, server

processing time, and request and response mes-

sage sizes.

Typically, users may start exploring the captured

data through the first three views (Service Topology,

Transaction Flows, and Flow Patterns) and after

pinpointing a problem, may use the Statistics Tables

view.

The Message Content view, on the lower right side

of Figure 1, shows the contents of a selected

message in an Extensible Markup Language (XML)

viewer. When the user clicks on a message in one of

the other views (such as the Transactions Flow view

or the Statistics Tables view), the contents of that

message are automatically displayed. The Message

Content view can show the entire contents of the

selected message, or, when Simple Object Access

Protocol (SOAP) headers and XML namespace

identifiers are not helpful, they can be hidden to

simplify the view. Because Web Services Navigator

is an Eclipse plug-in, it can display multiple views of

the same data at the same time. When a message is

selected in any view, that message is highlighted in

Service Topology

Message Content

2
2

2

Configurator
NELLIEBLY

Client
DIEGO

getConfiguratio...

ManufacturerC
BAKERS

submitPO

ManufacturerB
SYLVIAEARLE

submitPO

Manufacturer
VESPUCCI

submitPO

7

Client
SYLVIAEARLE

Retailer
SACAJAWEA

getCatalog
submitOrder

2

2

2

4

Client
VESPUCCI

7

3
3

1
2

4

4

4

1
2

1
2

LoggingFacility
NELLIEBLY

logEvent
getEvents

WarehouseCallBa
SACAJAWEA

submitSN

7

Warehouse
SACAJAWEA

shipGoods

WarehouseC
SACAJAWEA

shipGoods

WarehouseB
SACAJAWEA

shipGoods

12

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 825

yellow in all views, and its payload is automatically

displayed in the Message Content view, as illus-

trated in Figure 1.

VISUALIZING PROBLEMS IN BUSINESS LOGIC

Web Services Navigator helps business owners,

application developers (architects, programmers,

project managers, and testers), and operations staff

to understand the behavior of their Web Services-

based applications and diagnose problems through

visual representations of their execution. This

section presents several practical problems in busi-

ness logic that we have explored with the tool:

verifying workflow choreography, detecting incor-

rect implementation of business rules and exces-

sively ‘‘chatty’’ communications, and verifying

application cost structure. The problems presented

in this and the following section (which deals with

problems in the IT layer) were encountered in real

Web Services-based applications developed within

IBM or for customers of IBM.

Verifying workflow choreography

The architecture of a business process may appear

simple when it is being designed in a workflow

modeling tool. In practice, however, when the

architecture is implemented across organizational

boundaries and deployed across geographical

boundaries, verifying that the implementations

faithfully realize that architecture is not simple

at all.

The Supply Chain Management sample application

published by the Web Services Interoperability (WS-I)

organization is an example of such a workflow.
13

Its

architecture is straightforward. A Retailer system

includes catalog-search and order-submission ser-

vices accessible to online customers, and warehouse

shipping request and notification services available

only internally. Manufacturer systems provide

wholesale purchase and delivery services to the

Retailer’s warehouses.
14

This architecture has been

implemented by at least 10 different organizations,

and extensive testing has demonstrated that all of

the implementations of each service can successfully

interoperate. For example, IBM’s implementation

deploys a Retailer system with three warehouses

and three Manufacturer systems on WebSphere*

Application Servers.

Figure 2
Verifying access patterns to a remote database for a retail point-of-sale system

Transaction Flows Service Topology

30

100

100

10 3

10

1

Customer
LOCALSERVER

Client
LOCALCLIENT

NewDB2
LOCALSERVER

lookupCustomerI...

lookupCustomer

Legacy
LOCALSERVER

lookupCustomerI...

EnterpriseCusto.
CENTRALSERVER

getEnterpriseCu...

EnterpriseCusto.
CENTRALSERVER

EnterpriseCusto.
CENTRALSERVER

ThirdPartyCusto.
CENTRALSERVER

getFromThirdPar...

getFromEnterpri...

getFromEnterpri...

local database always
consulted first

third-party “for fee” database
only consulted once

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005826

Web Services Navigator presents multiple views of

the actual execution of the deployed application,

permitting each user to examine aspects of the

application of interest to them, as illustrated in Fig-

ure 1. The Services Topology view (in the upper

right side of the figure) allows business owners to

confirm that the Retailer system is communicating

with all of its warehouses, and that the warehouses

are communicating with manufacturers. The

Transaction Flows view (in the left side of the

figure) allows architects to verify their logic by

following the message flow of individual trans-

actions. The Message Content view (in the lower

right side of the figure) allows programmers to

inspect the structure and content of individual

messages. The views are linked together so that

users can highlight messages of particular interest

and drill down into details of particular concern.

Detecting incorrect implementation of business

rules

The business owners who commission SOA appli-

cations often speak a very different language from

the developers who implement their requirements.

In spite of their best efforts to forge a common

understanding, misunderstandings sometimes ensue

between business owners, application designers,

and programmers that result in the incorrect

implementation of business rules.

One such misunderstanding occurred in the imple-

mentation of a service for order validation in an

online application. The implementation of this

service consisted of two distinct workflows—one for

new orders, the other for follow-on orders. The

initial implementation seemed to handle both order

types correctly. However, the business owner, who

was not involved in the technical aspects of the

project and had no prior training with Web Services

Navigator, immediately spotted a problem in the

visualization of an apparently successful test,

illustrated in Figure 4. The business owner recog-

nized that for a new order, the invocation of the

StackingChecker service (identified by the text

balloon in the Service Topology view) was incorrect:

the business rules specified that this service should

be invoked only for follow-on orders.

Flow Patterns

LOCALCLIENT

Client Customer NewDB2 Legacy
LOCALSERVER

EnterpriseCu EnterpriseCuEnterpriseCu ThirdPartyCu

CENTRALSERVER

Patterns: 1: 70x

Patterns: 2: 20x

Patterns: 3: 7x

Patterns: 4: 2x

Patterns: 5: 1x

third-party “for fee” database
consulted only as a last resort

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 827

Detecting excessively chatty communications

As soon as the implementation of a distributed

application reaches the early testing phase, Web

Services Navigator can be used to verify its

correctness and identify performance bottlenecks.

One characteristic to look for is excessive or

unnecessary communications, because service in-

vocations tend to be performance intensive and

transit time between different machines may be

significant.

For example, the follow-on order transaction for the

online order validation service mentioned earlier

permits clients to submit requests containing multi-

ple line items. Interactive clients, for which the

initial implementation was modeled, typically sub-

mit requests with only a few line items. However,

when new test data was supplied that included

submissions from batch clients, requests with

hundreds or thousands of line items appeared.

The initial implementation handled large trans-

actions correctly but slowly. The ‘‘Find repetitions in

invocations’’ function of the Transaction Flows

view, illustrated in Figure 5 by the green rectangles

labeled ‘‘4X’’, showed that the application was

iterating through order line items by invoking four

times the same sequence of services separately for

each line item. Each of the four repeated sequences

is framed by a white rectangle inside the green

rectangle indicating the total repetition. A subse-

quent implementation invoked the services once

with a list of line items, rather than invoking the

services repeatedly, thus dramatically reducing

overhead for batch clients and improving response

time for interactive clients.

Figure 3
Identifying network delay and slow response from Web services as the cause of performance bottleneck

Transaction Flows

Statistic Tables

Client Customer Legacy NewDB2 EnterpriseCusto EnterpriseCusto EnterpriseCusto ThirdPartyCusto

LOCALSERVER CENTRALSERVER

[seconds]
6.500
6.000
5.500
5.000
4.500
4.000
3.500
3.000
2.500
2.000
1.500
1.000
0.500
0.000

1

transaction performance
dominated by network delay and slow
services, not workflow overhead

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005828

Verifying application cost structure

The business owners who commission SOA appli-

cations are often as concerned with minimizing the

cost of operations as they are with ensuring the

correctness of the logic. The costs of greatest

concern may be bandwidth on their private net-

work, processing workload on their servers, fees

paid to other parties, or a combination of these

factors.

One such SOA application is a customer information

search for a retail point-of-sale system. The business

owner wanted to minimize network bandwidth on

the relatively slow links between retail stores and

the corporate data center, while searching for

information about known customers in a new local

database engine before burdening a central main-

frame. The application was permitted to purchase

information about unknown customers from a third-

party service, but the business owner wanted to

ensure that this option was exercised only after all

in-house options were exhausted.

Web Services Navigator enabled the project man-

ager to verify that the application faithfully imple-

mented this cost structure. In Figure 2, the Services

Topology view showed that there was only one

request to the ‘‘ThirdPartyCustomerDB’’ service in a

sampling of 100 transactions (indicated by the

request counts on the arrows, as identified by the

left-hand text balloons in the figure). The Flow

Patterns view showed that this request was made

only after all other databases had been queried

(indicated by the order of its service invocation, as

identified by the right-hand text balloon in the

figure).

For business owners, patterns can be used to verify

the correctness of a business process, and they can

show trends in business activities. For architects,

patterns can show how services typically interact

with each other, enabling them to compare actual

behavior with the original design. For programmers,

patterns can help with optimization and debugging

by distinguishing the most frequently occurring

patterns from outliers and by identifying bottlenecks

that consume inordinate resources. For testers,

patterns can identify intermittent abnormalities and

outliers in the huge volumes of data produced by

applications under heavy load.

Figure 4
Detecting an unnecessary service invocation in an online order validation service

Service Topology

logServicePacData

Logger
BAGGINS

exclusivityChecker

ExclusivityChecker
TOOK

stackingChecker

StackingChecker
GIMLIGLOIN

compatibilityCh...

CompatibilityCh...
GIMLIGLOIN

ServicePacOrder...
BRANDYBUCK

1 ServicePacValid...

1

1

1

1

Client
DIEGO

StackingChecker invocation
unnecessary in “new order” transaction

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 829

VISUALIZING PROBLEMS IN IT LAYERS

Inaddition toproblems inbusiness logic, asdescribed in

the preceding section, Web Services Navigator can also

visualize problems in the IT layers of Web Services-

based applications. This section presents several prob-

lems in the IT layers of applications that we have

explored with the tool: incorrect implementation of

service semantics, transaction bottlenecks, unavail-

ability of resources, and syntax errors in message

encoding. The problems presented in this section and

the preceding section were found in real SOA applica-

tions developed within IBM or for customers of IBM.

4X

4X

Figure 5
The use of Find Repetitions in Invocations function to detect excessively fine-grained communications in the online
order validation service

Transaction Flows

DIEGO

Client ServicePacProce

MITHRANDIR

HeaderValidatorGetScenarioAva ValidationRules

LAUDS

CompatibilityRu StackingRuleExRule1ForSPK

getValidationRules
checkCompatibility

checkExRule1ForSPK
checkStackingRulegetValidationRules

checkCompatibility
checkExRule1ForSPK

checkStackingRule
getValidationRules

checkCompatibility
checkExRule1ForSPK

checkStackingRule

checkCompatibility
checkExRule1ForSPK

checkStackingRule
getSPKTypes

getValidationRules
checkCompatibility

checkExRule1ForSPK
checkStackingRule

getValidationRules
checkCompatibility

checkExRule1ForSPK
checkStackingRule

getValidationRules
checkCompatibility

checkExRule1ForSPK
checkStackingRule

getValidationRules
checkCompatibility

checkExRule1ForSPK

checkStackingRule

validateServicePac

validate
getSPKTypes

getValidationRules

1

[seconds]

7.000

6.500

6.000

5.500

5.000

4.500

4.000

3.500

3.000

2.500

2.000

1.500

1.000

0.500

0.000

repeated invocations highlighted

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005830

Semantic errors

The designers of SOA applications typically com-

pose their applications with Web Services developed

by other groups in different organizations by using

middleware provided by systems vendors. Within

this complexity lurk countless opportunities for

misunderstanding the detailed semantics of the

components that the application depends upon.

The business logic for the online order validation

service mentioned earlier specified the steps to be

executed for a follow-on order transaction, and the

application designer coded these steps using a

workflow language. During initial testing of the

application, the designer noticed, in the Transaction

Flows view illustrated in Figure 6, that the Stack-

ingChecker step was occasionally executed out of

sequence. Functional testing did not catch this error

because the workflow steps were implemented with

stub services. The documentation for the workflow

language specified that steps were by default

considered to be concurrent unless explicitly

marked to be serial. A review of the workflow

engine revealed that it scheduled concurrent steps

sequentially and usually, but not always, in the

order they were coded. The problem was fixed by

adding explicit coding for serial execution of the

workflow steps.

One of the users of the online order validation

service was a multithreaded client driven by a batch

process. During initial testing of the client, the

designer noticed, in the Transaction Flows view

illustrated in Figure 7, that the client occasionally

sent two nearly simultaneous requests, causing the

workflow engine to launch two parallel trans-

actions. The Message Content view confirmed that

the two requests were identical (both request

messages contained the same value in their

serialNumber fields, as identified by the green text

balloon in the figure), the result of a programming

error in the client’s asynchronous request queue.

Transaction bottlenecks

The overall performance of a SOA application

depends upon many independent factors, such as

Figure 6
Detecting the incorrect invocation order of two service calls in the implementation of the order validation service

Transaction Flows Service Topology

DIEGO

Client

BRANDYBUCK

ServicePacOrder

BAGGINS

Logger

GIMLIGLOIN

ExclusivityChec

TOOK

WarrantyPeriod

GREENLEAF

HardwareSpecCCompatibilityCheStackingChecker

ServicePacVa...ionOperation

logServicePacData

stackingChecker

compatibilityChecker

warrantyPeriodChecker

exclusivityChecker

hardwareSpecChecker

1 stackingChecker unexpectedly
invoked prior to compatibilityChecker

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 831

the bandwidth of the network, the responsiveness of

the services it invokes, the efficiency of the

application itself, and the overhead of the middle-

ware that supports it. When an application fails to

perform as expected, sorting out which of these

factors is responsible can be difficult.

The Transaction Flows view of an early version of

the online order validation service discussed pre-

viously shows where time is spent during a

particular invocation of the workflow engine, as

illustrated in Figure 8. The shading of the vertical

bar represents processing for the ServicePacOrder-

Validation service (the darker shade for ‘‘working,’’

the lighter shade for ‘‘waiting,’’ as identified by the

upper text balloon in the figure). The Transaction

Flows view shows that the responsiveness of two

services was a contributing factor, although the time

measurements revealed in the tooltip windows

(identified by the lower text balloon in the figure)

indicate that it was not the dominant factor (about

0.35 seconds for one service and 0.26 seconds for

the other). The majority of the total transaction time

of 1.75 seconds was spent in the workflow engine.

The Transaction Flow and Statistics Table views of

the customer information search application, illus-

trated in Figure 3, showed that it performed as

expected. The network delay on the links to the

corporate data center (1.364 seconds each to trans-

mit the request and response messages, highlighted

in yellow in the figure) and the response time from

the data center (2.151 seconds to process the

operation on the server) were substantial, but the

project manager did not consider these to be serious

problems because the Service Topology and Flow

Patterns view, illustrated in Figure 2, showed that

most searches were satisfied by the local high-

performance database.

Unavailable resources

SOA applications depend upon the stability of many

geographically and organizationally distributed

services. When hardware or software problems

make any of those services unavailable or unre-

sponsive, locating that service and handling the

situation may be straightforward for shallow to-

pologies of well-understood services. However,

when applications fail somewhere within a nested

workflow involving many services, or because

services with unfamiliar semantics return unex-

pected responses, simply locating and diagnosing

the problem can be daunting.

The customer information search application men-

tioned earlier failed intermittently, but the tester

could not determine the reason from the diagnostics

returned to the point-of-sale client. The tester could

have tracked down the source of the problem by

digging through the server logs on the machines

involved in the application, but Web Services

Navigator located the problem automatically. Figure

9 shows the Transaction Flows and Statistics Tables

views: services that fail to respond to requests are

Figure 7
Detecting the occasional creation of duplicate requests in the order validation service

Transaction Flows

Client

BRANDYBUCK

ServicePacOrd

BAGGINS

Logger

GIMLIGLOIN

ExclusivityChe

TOOK

WarrantyPerio

GREENLEAF

HardwareSpec CompatibilityChStackingCheck

hardwareSpecChecker

ServicePacVa...ionOperation

logServicePacData

stackingChecker

compatibilityChecker

warrantyPeriodChecker

exclusivityChecker

logServicePacData

compatibilityChecker

warrantyPeriodChecker

exclusivityChecker

1

Message Content

application occasionally
launches duplicate workflows

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005832

flagged; incomplete invocations are identified with

question marks (‘‘?’’) in all views. In this failure, a

‘‘getFromThirdPartyDB’’ request was sent by the

EnterpriseCustomer Service but never arrived at its

destination.

The online order validation service mentioned

earlier also failed intermittently, but Web Services

Navigator never showed any incomplete invocations

in the failed transactions. However, the linkage

between the Transaction Flows and Message Con-

tent views allowed a tester to step through a failed

transaction, message by message, examining each in

succession. Figure 10 shows a valid request to the

CheckCompatibility service (the top Message Con-

tent view) but an apparently invalid response

(bottom Message Content view) in which the

required fields are empty. An ensuing discussion

with the programmer revealed that the request to

the CheckCompatibility service resulted in a rela-

tional database query, which could fail in a variety

of ways. Because the service interface did not

provide for any explicit error indicators, the service

implementation indicated an error by returning an

empty response. In this case, the error was that the

relational database was offline.

Syntax errors
Web Services encode application data into XML

when sending messages and decode XML into

application data when receiving messages. The

mappings between language-specific data types used

within applications and the XML data types used in

SOAP messages conceal many opportunities for

syntax and semantic errors. Moreover, the details of

type mapping have evolved as Web Services

technology has matured, resulting in subtle incom-

patibilities between successive versions of SOAP

engines.

A customer information update application was

developed to support the retail point-of-sale system

mentioned earlier. The application was designed to

synchronously update all of the enterprise’s data-

bases when customers register product warranties.

As testing progressed, records were found that had

not been correctly updated. The linkage between the

Transaction Flows and Message Content views

allowed a developer to step through an apparently

Figure 8
The responsiveness of the order validation service is dominated by the overhead of the workflow engine

Transaction Flows

cursor location: 1.137 seconds

VESPUCCI

Client ServicePac

NELLIEBLY

HeaderVali GetScenari ValidationR

BAKERS

Compatibili HardwareS StackingRu PEWStand ExRule2Fo HardwareWExRule1Fo
validateServicePac

validate
getSPKTypes

getValidationRules
checkCompatibility

checkExRule1ForSPK
checkStackingRule

CheckExRule2ForSN

CheckHardwar...WithinPeriod
CheckHardwar...30DaysPeriod

getWarrantyInfo

Transaction: 1
Waiting for msg: getWarrantyInfoRequest
From: PEWStandin on BAKERS

Started at: 2005-01-24 11:24:19.519 EST
Waiting for: +0.258 s

0.000

0.500

1.000

1.500

[seconds]

1

transaction performance dominated
by workflow overhead (darker shading), not
network delay or slow services (lighter shading)

flyover gives details of
transaction, including time spent
waiting for invoked services

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 833

successful transaction, message by message, exam-

ining each in succession. Figure 11 showed the

developer that in some but not all messages, XML

elements with no value had the ‘‘nil’’ attribute.

Further testing revealed that some SOAP engines

correctly encoded null Java strings into XML

elements with the ‘‘nil’’ attribute, but other SOAP

engines incorrectly omitted the ‘‘nil’’ attribute. All of

the SOAP engines correctly decoded ‘‘nil’’ XML

elements into null Java strings, and correctly

decoded ‘‘non-nil’’ XML elements into empty Java

strings (that is, non-null Java strings with a length of

zero).

The design for the update application specified that

a null Java string value meant ‘‘leave the field

unchanged,’’ whereas an empty Java string value

meant ‘‘clear the field.’’ Hence, the encoding error in

some SOAP engines effectively changed the meaning

of updates with null Java strings from ‘‘leave this

field unchanged’’ to ‘‘clear this field,’’ resulting in

incorrect database updates.

The online order validation service mentioned

previously was developed and tested with the latest

Web Services technology available at the beginning

of the project. Later, when it was moved to different

versions of middleware, several compatibility prob-

lems surfaced. For example, the application repre-

sented dates internally with the Java type

GregorianCalendar. Older versions of the middle-

ware encoded the Java type GregorianCalendar as

the XML type date. Newer versions of the middle-

ware decoded the XML type date as the Java type

Calendar, which caused receivers to return ‘‘argu-

ment type mismatch’’ faults. Figure 12 shows the

Transaction Flows view and the associated Message

Figure 9
Diagnosing a failure to respond to requests in the retail point-of-sale system

Transaction Flows

Client Customer Legacy NewDB2 EnterpriseCustomEnterpriseCustom EnterpriseCustom

LOCALCLIENT CENTRALSERVER

Statistic Tables

lookupCustomer
lookupCustom...LegacySybase

lookupCustomerInNewDB2

getEnterpriseCustomer

1

? ?

getFromEnter...seWarrantyDB

getFromEnter...seCustomerDB

getFromThirdParty DB

offline service failed to
respond to request

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005834

Content view of this error. Newer middleware

encoded the Java type GregorianCalendar as the

XML type dateTime instead of date, but did not

encode a time value along with the date value,

causing receivers with older middleware to throw a

Java NumberFormatException.

DATA COLLECTION

Web Services Navigator uses logs created by the

Data Collector for IBM Web Services Navigator.

When the Data Collector is installed and configured

in WebSphere Application Server, it logs the content

and context of SOAP messages
15

sent and received

by configured applications. The logs from all

machines involved in a Web Services-based appli-

cation can then be imported into Web Services

Navigator. Web Services Navigator automatically

reconstructs Web Services transaction flows by

correlating send and receive events, and compares

transaction flows to identify recurring patterns. The

updateCustomerInNewDB2

0.300

0.250

0.200

0.150

0.100

0.050

0.000

AVENGER

EnterpriseCustomerEnterpriseCustomerCCustomer Legacy

updateCustom...LegacySybase
putEnterpriseCustomer

updateCustomer

[seconds]

putEnterpriseCustomerDB

REDBARON

Client

1

MANDOLIN

NewDB2

Figure 11
Detecting discrepancies in the ways a NULL Java string is encoded by different SOAP engines

null string values mean
“leave these fields unchanged”

empty string values mean
“clear these fields”

validateServicePac
validate

Client HeaderVali GetScenar ValidationR CompatibilExRule1For StackingRu HardwareS ExRule2FoHardwareS PEWStand

LAUDS GIMLIGLOMITHRANDIR

ServicePac

getSPKTypes

getValidationRules

checkCompatibility

checkExRule1ForSPK

checkStackingRule

getWarrantyInfo

check Hardware...pecification

checkExRule2ForSN

checkHardwar...WithinPeriod

checkHardwar...30DaysPeriod

1

Figure 10
Diagnosing a failure to respond to requests in the order validation service

request contains database
query arguments

empty response implies
that database is unavailable

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 835

messages, flows, and patterns can be explored

through the Web Services Navigator’s five inter-

active views.

To successfully correlate events and construct

message, invocation, transaction, and pattern in-

formation, Web Services Navigator needs detailed

information about the message content, context

(event type, operation name, etc.), and transport

(time of event, IP address, etc.) of each event

logged.

This section describes the types of log data collected

for Web Services Navigator. This paper does not

address the transport of collected data, nor the

security issues involved in collecting, transporting,

and visualizing this data. Data collection is dis-

cussed in more detail in ‘‘Management of the

service-oriented-architecture life cycle’’ by Cox and

Kreger in this issue.
16

For each event, Web Services Navigator needs the

message content. This is the SOAP Envelope XML

element, encoded as a UTF-8 byte array (UTF-8 is a

Unicode** Transformation Format), which contains

the SOAP header elements, if any, and the SOAP

Body element, which contains the application data.

The Data Collector inserts a proprietary SOAP

header element into messages when it logs send

events so that Web Services Navigator can correlate

them with matching receive events. The proprietary

header contains a ‘‘correlator’’ that is similar to an

ARM4 correlator.
17

Web Services Navigator makes

the application data in SOAP body elements

available for inspection in the Message Content

view.

For each event, Web Services Navigator needs some

information about the message context:

� The event type, which is one of the following:

— Client request (a request message is sent by a

client to a service endpoint)

— Server enter (a request message is received

by a service endpoint from a client)

— Server leave (a response message is returned

to a client by a service endpoint)

— Server fault (a fault message, instead of a

response message, is returned to a client by a

service endpoint)

— Client response (a response or fault message

is received by a client from a service

endpoint)

Figure 12
Using Transaction Flows view and Message Content view to determine an incompatibility between different versions
of middleware

PEWS

GIMLI

Head GetSc ValidaCompHard ExRul HardExRulStack

NELLIEBLY BAKERS

Client Head GetSc ValidaCompExRul StackiHard ExRul Hard

LAUDSMITHDIEG

Servic

SACA

Servic

Java type GregorianCalendar
encoded as XML type xsd:date

Java type GregorianCalendar
encoded as XML type xsd:dateTime
without a time value

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005836

� The operation name (from the WSDL [Web

Services Description Language] definition
18

of the

service endpoint)

� The operation direction, which is one of the

following:

— Two-way (that is, synchronous request and

response messages are expected)

— One-way (that is, asynchronous request

message only, no response message is

expected)

— Unknown (the operation direction is not

known to the SOAP engine)

� The service endpoint address (the Uniform Re-

source Identifier or URI
19

of the service to which

request messages are sent)

� The process and thread identifiers under which

the SOAP engine is executing

For each event, Web Services Navigator also needs

some information about the message transport:

� The time of the event, according to the local

system clock, with the best precision available
� The local IP name, address, and port number

� The remote IP name, address, and port number
� The HTTP headers preceding the message content

In many situations, Web Services Navigator can

infer missing information from redundant data that

is logged by the Data Collector and reconstruct

transactions even when the data collected is

incomplete. This is helpful when the log information

is incomplete, for example, when some information

for some events is unknown or unavailable, some

events on some machines are not logged, or some

machines involved in a Web Services-based appli-

cation are not instrumented. Figure 13 marks

missing events with question marks and indicates

inferred messages as arrows with dashed lines. On

the left side and bottom of this figure, the two

question marks near dashed lines suggest that an

uninstrumented client called the Customer service.

Similarly, no receive event was logged by machine

REDBARON for the response message from the

EnterpriseCustomer service, but Web Services Nav-

igator was able to infer it from other events logged

before and after on the machines involved.

ARCHITECTURE AND IMPLEMENTATION

Web Services Navigator is implemented as a plug-in

feature for the Eclipse Workbench Version 3.0. The

Figure 13
Missing events and inferred messages in the Transaction Flows view

Transaction Flows

REDBARON AVENGER

EnterpriseCustomerNewDB2Customer Legacy

lookupCustomerInNewDB2
lookupCustom...LegacySybase

getEnterpriseCustomer

lookupCustomer
?

?
?

?
?

[seconds]
0.300

0.250

0.200

0.150

0.100

0.050

0.000

getFront er...seCustomerDB

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 837

architecture of Web Services Navigator is illustrated

in Figure 14.

The log parser reads logs recorded by the Data

Collector and constructs a set of events representing

the SOAP messages sent and received by the

instrumented machines. This information is used by

the event analyzer.

The event analyzer adds successive layers of

structure using the Eclipse Modeling Framework
20

on top of the basic event and machine information,

representing messages, invocations, transaction

flows, and flow patterns. This information is used

by the interactive views.

The interactive viewers permit users to explore their

applications by examining the message, invocation,

transaction flow, and flow pattern information from

five distinct and complementary perspectives, the

five views of the tool. The five interactive views are

linked together: when messages are selected in any

view, they are highlighted in all views.

When the data for a Web Services-based application

is processed, the logs from the machines involved

are imported into Web Services Navigator, which

automatically analyzes the events, reconstructs the

transaction flows, and identifies flow patterns. The

resulting data model of this execution information

can then be explored through five interactive views.

To reconstruct Web Services transaction flows and

identify flow patterns, Web Services Navigator

correlates the logged events and adds several layers of

structure on top of them, as illustrated in Figure 15:

1. Matching send events and receive events are

combined into messages,

2. Corresponding request and response messages

are paired into operation invocations (analogous

to remote procedure calls),

3. Related incoming and outgoing invocations are

connected into transaction flows (analogous to

‘‘call trees’’), and

Figure 14
The Web Services Navigator architecture

Message
Content
Viewer

Statistics
Tables
Viewer

Service
Topology
Viewer

Flow
Patterns
Viewer

Transaction
Flows
Viewer

Pattern Data

Transaction Data

Invocation Data

Message Data

Event Data

Machine DataLog
Parser

Event
Analyzer

log

log

log

Message Selection

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005838

4. Similar transaction flows are grouped into flow

patterns.

Compensating for clock skew

The machines involved in a Web Services-based

application may synchronize their system clocks, for

example by using the Network Time Protocol (NTP)

daemon.
21

However, if system clocks are not

synchronized, the time stamps logged for near-

simultaneous events may differ by seconds or hours.

In the Transaction Flows view, this may cause

messages to appear to either jump far ahead or flow

backwards in time.

Because no information about clock skew is

available in logs imported into Web Services

Navigator, the tool correlates events without using

time stamps. Then, upper and lower bounds on

clock skew are estimated by comparing the send and

receive time stamps on messages exchanged by

different machines and by applying a modified

version of the Floyd-Warshall ‘‘all-pairs shortest-

path’’ algorithm.
22

The approximate bounds on

clock skew are used in the Transaction Flows view

to avoid drawing messages that appear to flow

backward in time.

Laying out topology graphs

In the Services Topology view, each node corre-

sponds to a service, and each edge corresponds to an

invocation of a service. A hierarchical-cluster-graph

layout is used to highlight their structure. Topology

graphs are particularly useful for validating actual

application execution against the original architec-

tural design. For example, Figure 4 and the left side

of Figure 2 show some simple service configura-

tions. The upper right side of Figure 1 illustrates a

topology with more complex service relationships; it

emphasizes the structure of the application by

grouping related services together while minimizing

the number of edge bends and crossings. Details of

18.750

18.800

18.850

18.900

18.950

19.000

19.050

19.100

19.150

19.200

19.250

19.300

19.350

[seconds]

Figure 15
Correlating events into messages, invocations, transactions, and patterns

Transaction Flows

LOCALCLIENT LOCALSERVER

Client NewDB2Customer Legacy En

lookupCustomerInNewDB2

lookupCustomerInNewDB2

lookupCustomerInNewDB2

lookupCustomerInNewDB2 lookupCustom...Legacy Sybase

lookupCustomer
69

70

71

72

lookupCustomer

lookupCustomer

lookupCustomer

4. similar transaction flows flow patterns

3. parent and child invocations transaction flows

2. request and response messages invocations

1. send and receive events messages

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 839

service usage, such as the number of invocations

and faults, the total network delay, and the total

message load, can be displayed in tooltip windows

by moving the cursor over each service.

Our layout algorithm is based on the classical

Sugiyama scheme.
23

It is composed of three phases

applied to topology graphs to obtain a visually

pleasant layout. Each phase addresses a different

minimization problem:

1. Assign hierarchical ranks (in our Services To-

pology view, a rank is the same as a column

number, starting from the left) to the nodes in a

way that minimizes the number of ranks as well

as the number of backward edges.

2. Compute an ordering of nodes within a rank that

minimizes the number of edge crossings.

3. Fine-tune the relative position of nodes to

minimize the length of edges, as well as the

number of edge bends.

One challenge in the design of the layout algorithm

came from our specific need to group nodes by

service. We thus use a hierarchical cluster graph

instead of the hierarchical graph commonly de-

scribed in the literature.
24

Another challenge is that the second phase (edge-

crossing minimization) of our algorithm is an NP-

hard problem. (NP-hard, or Non-deterministic poly-

nomial-time hard, is a concept in computational

complexity theory.) We approximate the optimal

solution by calculating attractive and repulsive

forces on the edges to order the nodes. The third

phase (edge-length reduction) also has an extra

priority—keeping long edges that span more than

two consecutive ranks straight. We first run a long-

edge straightening algorithm and then reduce edge

length.

The key to the layout algorithm is the use of a

combination of attractive and repulsive forces on the

edges. These forces directly sort clusters of nodes in

the second phase and directly find the positions for

clusters in the third phase. It addresses the problem

of ‘‘clusters,’’ is simple to implement, and yields

good visual results (that is, it yields fewer edge

crossings and bends, and a more balanced layout).

Its performance is comparable to that of the best in

the literature for hierarchical graphs:

� For the second phase (ordering the nodes within a

rank), the performance of our layout algorithm is

O(m
i
þ n

i
log n

i
), where n

i
is the number of nodes

on the changeable rank i and m
i
is the number of

edges between two adjacent ranks.
� For the third phase, the layout algorithm is linear.

Specifically, its performance is O(n
i
þm

i
), where

n
i
is the number of nodes on the changeable rank i

and m
i
is the number of edges between two

adjacent ranks.

This means that our algorithm will perform rea-

sonably well, even with a large number of nodes.

Identifying transaction patterns

Web Services Navigator categorizes transaction

flows based on similar patterns of invoked services.

Transactions typically start with a root invocation

(analogous to a function call), and proceed through

one or more service invocations (analogous to a

function call tree), possibly branching off via one-

way messages into parallel service invocations

(analogous to concurrent threads). The algorithm

for extracting flow patterns from transaction flows,

illustrated in Figure 16, involves these steps:

� All of the transaction trees are compared, starting

at their roots.

Figure 16
Pattern extraction algorithm

group by tree structure

group by
operation
name

a a p d k
l l

k

d k k

d

d
a ab b bb f f

e e

c c a a

h h w

b b q
c rc

d d se e t

f f u

g g v

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005840

� All transactions are partitioned into groups of

isomorphic invocation trees.
� All isomorphic invocation trees with the same

operation names and service points are grouped

together.
� A flow pattern is created for each such group of

similarly named isomorphic transaction flows.
� Aggregate statistics are calculated for each flow

pattern, including minimum, maximum, and

average message sizes and response times.

Web Services Navigator uses exact matching for

invocation graphs, operation names, and service

points, but other categorization algorithms are

possible and may be equally useful in some

situations. For example, a ‘‘fuzzy’’ matching algo-

rithm might group together transactions with

operation names that differ only in case, or a

‘‘cluster’’ matching algorithm might group together

transactions that invoke the same operations on

different service points.

Pattern extraction fosters understanding by reveal-

ing information that is not apparent from more

literal visualizations, as illustrated in Figure 17. The

Transaction Flows view (on the left in the figure) of

a set of transactions shows that they executed

concurrently, but it is not apparent that they have

anything in common besides the services they

invoke. The Flow Patterns view (on the right in the

figure), however, reveals that there are two types of

transactions, and most of the transactions follow the

simpler of the two patterns.

RELATED WORK
Aguilera et al.

25
propose a method for finding

performance bottlenecks in distributed systems

without installing new tracing agents. They extract

message-level traces from the standard logging

features on each node, and then use two heuristic

algorithms to extract cause and effect relationships.

The ‘‘nesting’’ algorithm uses the nested nature of

RPC-style (RPC stands for remote procedure call)

communication, while the ‘‘convolution’’ algorithm

is based on signal-processing techniques. The

advantage of this system is that it works on ‘‘black

boxes,’’ requiring no special tracing or instrumen-

tation. In Web Services Navigator, we try to avoid

heuristics by using comprehensive data collection

because in complex systems, a tool’s effectiveness

for problem determination would be compromised

by the ‘‘false positives and negatives’’ inherent in a

heuristic approach.

Moe and Carr
26

describe a system that traces the

execution of Common Object Request Broker Ar-

chitecture (CORBA**). After intercepting the

CORBA calls, they pair up the RPC call-return

sequences and aggregate the information into

summary statistics, which are presented in a scatter

plot. The focus of this system is on exceptions (at

the CORBA level) that may occur in a distributed

system. The system does not provide a view of

Figure 17
The Flow Patterns view (on the right) reveals patterns in the Transaction Flows view (above)

Transaction Flows

SLAPC46

[seconds]

4.000

3.500

3.000

2.500

2.000

1.500

1.000

0.500

0.000

Client Catalog NewDB2 Inventory Legacy Delivery EnterpriseC ThirdPartyCEnterpriseCEnterpriseCCustomer

Flow Patterns

Client Catalog NewDB Invento Legacy Deliver Enterpr ThirdPaEnterprEnterprCustom

SLAPC46

Patterns: 1: 3

Patterns: 2: 20

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 841

execution at the transaction level and cannot isolate

specific messages, making it unsuitable for problem

determination.

Paragraph
27

is a tool that shows the message passing

of parallel programs on multiprocessors. It has

different views that include processor utilization,

state of the processors, and logical connectivity of

the multiprocessors. Pablo
28

is similar to Paragraph

in visualizing the execution of parallel systems. It

has additional features like adaptive tracing and

shows the execution in 3-D scatter plots. PVaniM
29

helps in optimizing programs running on Parallel

Virtual Machines. Its views show aggregate infor-

mation about messages and processor states. The

Paragraph, Pablo, and PVaniM frameworks do not

include the correlation information necessary for

reconstructing Web Services transactions, and the

amount of message-layer detail presented would

probably obfuscate the business-layer rules they

implement.

ETE
30

shows the itinerary of a single transaction as it

goes through different nodes. This system provides

a breakdown of the time spent in different compo-

nents for one transaction.

Visualization has proven to be very helpful in

understanding, debugging, and profiling software

systems. A lot of work has been done on visualizing

how a program executes on one computer.
31–42

The

challenges here are mainly related to making a

program run faster and with less memory. The

complexity of such programs is mainly related to the

large amount of data such execution logs can

produce. However, with most of this activity

happening on one computer, it is relatively easy to

collect and correlate the data.

Static analysis is a common technique used to

discover problems in software systems. For Web

Services in particular, Fu et al.
43

have proposed a

generic framework for analyzing BPEL
44

programs

by transforming them into Promela
45

programs, a

verification language. A limitation of this framework

is that it does not handle correlation of process

instantiations. A dynamic approach, such as Web

Services Navigator, is required for such analysis (in

general, static analysis may produce so many

possible outcomes that it is impractical for problem

determination). Although dynamic analysis can

produce very precise results, it may not be

exhaustive. The dynamic analysis and visualization

of Web Services-based application execution de-

scribed in this paper is a natural adjunct to static

analysis, program-execution tracing and debugging,

and code path coverage by means of automated

testing. All of these techniques are complementary

and can be used together to enhance the quality and

performance of Web Services-based applications.

A NEW METHODOLOGY FOR PROBLEM
DETERMINATION IN WEB SERVICES

The service-oriented environment poses new chal-

lenges for understanding application behavior and

for problem determination. Web Services Navigator,

a new tool for visualizing the execution of Web

Services-based applications, was designed to ad-

dress these challenges. The tool is the result of a

research project that is available on the IBM alpha-

Works Web site. In this paper we demonstrated the

benefits of the tool by showing a number of

problems that have been solved by using the tool in

practice, both within IBM and in customer engage-

ments.

The problem cases described in this paper were

encountered by Web Services-based application

developers in practical situations. The developers

using the tool did not undergo extensive training—

their only exposure was a short demonstration

session. Their experience shows that visualizing the

execution of Web Services provides useful insight

for problem determination and performance opti-

mization. They used the tool during the develop-

ment and prototyping phases of their projects and

found the Service Topology and the Flow Patterns

views especially helpful in discussions with their

customers.

The Web Services Navigator sheds new and

valuable light on several issues:

� The visual vocabulary of Web Services Navigator

helps to bridge conceptual gaps between business

and IT specialists, who typically speak different

languages. It employs novel algorithms for ab-

straction and pattern extraction to render Web

Services-based application execution logs in ways

that are meaningful to audiences including busi-

ness owners, application developers, and oper-

ations staff.
� The five linked views produced by Web Services

Navigator cut through the horizontal complexity

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005842

that can obscure the essence of Web Services-

based application execution. They dramatically

simplify such essential tasks as verifying the

correctness of a business process implementation

or finding the location of process failures.
� The ability of Web Services Navigator to visualize

the behavior of applications, independent of

programming language and operating system and

without modifying those applications, demon-

strates the value of the open standards employed

by Web Services, such as XML and SOAP.
� Architects typically use descriptive service names

that are meaningful to business owners, applica-

tion developers, and operations staff. Those same

names appear in the views displayed by the tool;

this facilitates communication between business

and technical users.

ACKNOWLEDGMENTS
We have benefited from the enthusiastic cooperation

of the eServicePac Validation team, including John

Hicks, Sophia Krasikov, Raju Pavuluri, Robert Hoch,

and Senthil Velayudham. We are also grateful for the

support of the IBM Tivoli* ‘‘tiger’’ team, including

John Harter, Kevin Dunphy, David Cox, Sudhakar

Chellam, Phil Fritz, Samuel Spiro, Ann Marie

Gallagher, Peter Wassel, and Chris O’Conner.

We appreciate the many fruitful discussions with

our colleagues in IBM Rational*, including Eric

Labadie, Richard Duggan, Vincent Encontre, Sergio

Lucio, Simon Johnston, and Harm Sluiman; John

Knutson in IBM Tivoli; our colleagues in IBM Global

Services, including Olaf Zimmerman and Yaroslav

Dunchych; our colleagues in the IBM CIO office,

including Lance Walker and Michael Martine; and

our colleagues in IBM Research, including Claudia

McGhee, Aaron Kershenbaum, and Ian Whalley.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., The Boeing Company, or Unicode,
Inc.

CITED REFERENCES AND NOTES
1. Web Services Architecture Specification, World Wide Web

Consortium (W3C), http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211/.

2. K. Gottschalk, S. Graham, H. Kreger, and J. Snell,
‘‘Introduction to Web Services Architecture,’’ IBM Sys-
tems Journal 41, No. 2, 170–177 (2002).

3. ‘‘Boeing 747-400, by the Numbers,’’ Boeing Corporation,
http://www.boeing.com/news/feature/747evolution/
747facts.html.

4. ‘‘Web Services Navigator,’’ alphaWorks Technology, IBM
Corporation, http://www.alphaworks.ibm.com/tech/
wsnavigator/.

5. ‘‘Data Collector for Web Services Navigator,’’ alpha-
Works Technology, IBM Corporation, http://alphaworks.
ibm.com/tech/wsdatacollector/.

6. IBM Tivoli Composite Application Manager for SOA,
Version 6.0, Product Code 5724-MO7, IBM Corporation.

7. IBM Tivoli Monitoring for Web Services, Version 1.1.0,
Product Code 5799-GZR, IBM Corporation.

8. ‘‘Eclipse Platform,’’ Eclipse Foundation, http://eclipse.
org/eclipse/index.html.

9. ‘‘Java Development Tools,’’ Eclipse Foundation, http://
www.eclipse.org/jdt/index.html.

10. ‘‘Test & Performance Tools Platform (TPTP),’’ Eclipse
Foundation, http://eclipse.org/tptp/index.html.

11. ‘‘IBM Rational Application Developer’’ and ‘‘IBM Rational
Web Developer,’’ IBM Corporation, http://www-306.
ibm.com/software/info/developer/radrwd/index.jsp.

12. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and
and J. F. Morar, ‘‘Visualizing the Execution of Web
Services,’’ IBM alphaWorks, http://www.alphaworks.
ibm.com/g/g.nsf/img/semanticsdocs/$file/visualizews.
pdf.

13. ‘‘Supply Chain Management Sample Application Archi-
tecture,’’ Web Services Interoperability Organization,
http://www.ws-i.org/SampleApplications/
SupplyChainManagement/2003-12/SCMArchitecture1.
01.pdf.

14. See Reference 13, Figure 1 on page 6.

15. Simple Object Access Protocol (SOAP) Version 1.1
Specification, World Wide Web Consortium (W3C),
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

16. D. Cox and and H. Kreger, ‘‘Management of the
Service-Oriented-Architecture Life Cycle,’’ IBM Sys-
tems Journal 44, No. 4, 709–726 (2005, this issue).

17. Application Request Measurement (ARM) 4.0 Specifica-
tion, The Open Group, http://www.opengroup.org/
management/arm.htm/.

18. Web Services Definition Language (WSDL) Version 1.1
Specification, World Wide Web Consortium (W3C),
http://www.w3.org/TR/wsdl.

19. Uniform Resource Identifiers (URI) Generic Syntax Spec-
ification, Internet Engineering Task Force (IETF), http://
www.ietf.org/rfc/rfc2396.txt.

20. ‘‘Eclipse Modeling Framework,’’ Eclipse Foundation,
http://www.eclipse.org/emf/.

21. ‘‘Network Time Protocol,’’ the Network Time Synchroni-
zation Project, http://www.ntp.org/.

22. T. Cormen, C. Leiserson, and R. Rivest, Introduction to
Algorithms,MITPress andMcGraw-Hill (1990), pp. 560–562.

23. K. Sugiyama, S. Tagawa, and M. Toda, ‘‘Methods for
Visual Understanding of Hierarchical Systems,’’ IEEE
Transactions on Systems, Man and Cybernetics, Volume
SMC-11, No. 2, 109–125 (1981).

24. G. di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph
Drawing, Algorithms for the Visualization of Graphs,
Prentice Hall, Upper Saddle River, New Jersey (1999).

25. M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen, ‘‘Distributed Systems of Black
Boxes,’’ Proceedings of the 19th ACM Symposium on
Operating System Principles (SOSP’03), (October 2003),
pp. 74–89.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 843

26. J. Moe and D. A. Carr, ‘‘Understanding Distributed
Systems Via Execution Trace Data,’’ International Work-
shop on Program Comprehension, IEEE Computer Society
Press, New York (2001), pp. 60–69.

27. M. T. Heath and J. A. Etheridge, ‘‘Visualizing the
Performance of Parallel Programs,’’ IEEE Software 8,
Issue 5, 29–39 (September 1991).

28. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A.
Shields, B. W. Schwartz, and L. F. Tavera, ‘‘Scalable
Performance Analysis: The Pablo Performance Analysis
Environment,’’ Proceedings of the Scalable Parallel
Libraries Conference, IEEE Computer Society (1993), pp.
104–113.

29. B. Topol, J. T. Stasko, and V. Sunderam, ‘‘PVaniM: A
Tool for Visualization in Network Computing Environ-
ments,’’ Concurrency: Practice and Experience 10, No. 14,
1197–1222 (1998).

30. J. L. Hellerstein, M. Maccabee, W. N. Mills, and J. J.
Turek, ‘‘ETE: A Customizable Approach to Measuring
End-to-End Response Times and Their Components in
Distributed Systems,’’ International Conference on Dis-
tributed Computing Systems (1999), pp. 152–162.

31. D. Jerding and J. T. Stasko, ‘‘The Information Mural: A
Technique for Displaying and Navigating Large Infor-
mation Spaces,’’ Proceedings of the IEEE Symposium on
Information Visualization, Atlanta, GA (October 1995),
pp. 43–50.

32. D. Jerding, J. T. Stasko, and T. Ball, ‘‘Visualizing
Interactions in Program Executions,’’ Proceedings of the
19th International Conference on Software Engineering
(May 1997), pp. 360–370.

33. D. Kimelman, B. Rosenburg, and T. Roth, ‘‘Visualization
of Dynamics in Real World Software Systems,’’ Software
Visualization: Programming as a Multimedia Experience,
J. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
Editors, MIT Press (1998), pp. 293–314.

34. E. Kraemer, ‘‘Visualizing Concurrent Programs,’’ Soft-
ware Visualization: Programming as a Multimedia
Experience, J. Stasko, J. Domingue, M. H. Brown, and
B. A. Price, Editors, MIT Press (1998), pp. 237–256.

35. W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.
Vlissides, and J. Yang, ‘‘Visualizing the Execution of Java
Programs,’’ Proceedings of the International Seminar on
Software Visualization, S. Diehl, Editor, Volume 2269 in
Lecture Notes in Computer Science, Springer-Verlag, New
York (2001), pp. 151–162.

36. W. De Pauw and and Gary Sevitsky, ‘‘Visualizing
Reference Patterns for Solving Memory Leaks in Java,’’
Proceedings of the ECOOP ‘99 European Conference on
Object-Oriented Programming (1999), pp. 116–134.

37. W. De Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and
H. Srinivasan, ‘‘Drive-by Analysis of Running Programs,’’
Proceedings of the ICSE Workshop of Software Visual-
ization (May 2001), pp. 17–22.

38. S. P. Reiss, ‘‘Visualization for Software Engineering—
Programming Environments,’’ Software Visualization:
Programming as a Multimedia Experience, J. Stasko, J.
Domingue, M. H. Brown, and B. A. Price, Editors, MIT
Press (1997), pp. 259–276.

39. S. P. Reiss, ‘‘Bee/Hive: a Software Visualization Back-
end,’’ IEEE Workshop on Software Visualization (May
2001), pp. 44–48.

40. S. P. Reiss, ‘‘An Overview of BLOOM,’’ Program Analysis
for Software Tools and Engineering (PASTE ‘01) (June
2001), pp. 2–5.

41. S. P. Reiss, ‘‘Visualizing Java in Action,’’ Proceedings of
the IEEE International Conference on Software Visual-
ization (2003), pp. 123–132.

42. S. P. Reiss, ‘‘JIVE: Visualizing Java in Action,’’ Proceed-
ings of International Conference on Software Engineering
(ICSE 2003) (May 2003), pp. 820–821.

43. X. Fu, T. Bultan, and J. Su, ‘‘Analysis of Interacting
BPEL Web Services,’’ Proceedings of International
WWW Conference, New York, USA (2004), pp. 621–
630.

44. Business Process Execution Language (BPEL) for Web
Services Version 1.1 Specification, Organization for the
Advancement of Structured Information Standards
(OASIS), http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

45. ‘‘Promela Language Reference,’’ the Spin Project, http://
spinroot.com/spin/Man/index.html.

Accepted for publication May 24, 2005.

Wim De Pauw
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (wim@us.ibm.com). Dr.
De Pauw received a Ph.D. degree in computer science from the
University of Ghent, Belgium, in 1991. At the Watson
Research Center, where he has been a research staff member
since 1992, he has led the software visualization projects
Ovation (Cþþ visualization) and Jinsight (Java visualization).
Jinsight technology is now part of IBM’s WebSphere Studio
Application Developer, and parts of it have been released
under the open-source project Hyades. Dr. De Pauw’s current
activities include software visualization, Web services,
service-oriented architecture, profiling, and debugging, and he
is currently the architect and technical leader of Web Services
Navigator. His scientific interests include addressing large
horizontal complexities in systems by using visualization,
pattern extraction, and adaptive tracing techniques. He has
published articles in refereed journals, has chaired
conferences, and holds several patents in software
visualization, tracing, and debugging.

Michelle Lei
(mlei04@gmail.com). As a software engineer at the Watson
Research Center, Ms. Lei worked on the Websight project. She
received her Master’s degree from the Swiss Federal Institute
of Technology (EPFL) in March 2004. Her areas of interest
include graph layout algorithms, Web technologies, and
middleware. She currently resides in Switzerland and works
as Project Manager for Java development at the Office Fédéral
d’Informatique et Télécommunication in Geneva.

Edward Pring
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (pring@watson.ibm.
com). Mr. Pring, a Senior Programmer at the Watson Research
Center, received an M.S. degree in computer science from
New York University. He has contributed to a wide range of
IBM products and technologies, including operating systems,
publishing applications, terminal emulators for mainframes,
virus protection for personal computers, network automation
for the Digital Immune System, visualization, and
performance analysis for Web Services. He holds a patent
portfolio that spans all of these fields.

Lionel Villard
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (villard@us.ibm.com).

DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005844

Published online October 25, 2005.

Dr. Villard, an Advisory Research Engineer at the Watson
Research Center, received a Ph.D. degree at the Institut
National Polytechnique de Grenoble (INPG) in 2002. His
research interests include multimedia documents, contextual
adaptation, authoring tools, document transformations,
incremental transformations, and high performance.

Matthew Arnold
IBM Research Division, Thomas, J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (marnold@us.ibm.com).
Dr. Arnold, a research staff member at the Watson Research
Center, received a Ph.D. degree in computer science from
Rutgers University in 2002. His thesis focused on profiling and
optimization techniques for the Java programming language.
His current research interests include software profiling,
program understanding, and dynamic optimization.

John F. Morar
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (morar@watson.ibm.
com). Dr. Morar received a Ph.D. degree in experimental solid-
state physics from the University of Maryland in 1982. After
joining IBM, he spent two years in residence at the National
Synchrotron Light Source, Brookhaven National Laboratory,
where he used soft X-ray spectroscopy to probe the outer few
atomic layers of semiconductors. Over the following eight
years he worked on developing metastable semiconductors
using molecular beam epitaxy. Dr. Morar spent seven years in
computer virus research, where he managed the Anti-Virus
Technology and Systems group. He contributed to numerous
releases of the IBM Anti-Virus and Digital Immune System,
which is designed to find, analyze, and automatically
distribute the cure for a new computer virus faster than the
virus itself can spread. He has written 70 articles in peer-
reviewed scientific journals and has contributed to IBM’s
patent portfolio in the areas of device processing, computer
virus detection, Web services, and economic systems. Dr.
Morar currently manages a group that focuses on the use of
Web services both within and between enterprises. &

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 DE PAUW ET AL. 845

