W. De Pauw
M. Lei

E. Pring

L. Villard

M. Arnold

J. F. Morar

Web Services Navigator:
Visualizing the execution of
Web Services

The Web Services standard is becoming the lingua franca for loosely coupled
distributed applications. As the number of nodes and the complexity of these
applications grow over the coming years, it will become more challenging for
developers to understand, debug, and optimize them. In this paper, we describe Web
Services Navigator, a visualization tool that fosters better understanding of service-
oriented architecture (SOA) applications. We draw on our experience with real SOA
applications to show how this tool has been applied to practical problems ranging
from business logic misunderstandings to performance bottlenecks to syntax and
semantic errors. Web Services Navigator helps to solve these problems by visualizing
how applications really execute, enabling business owners, application designers,
project managers, programmers, and operations staff to understand how their
applications actually behave. We sketch the architecture of Web Services Navigator,
outline how it reconstructs application execution from event logs, and describe how

users interactively explore their applications using its five linked views.

INTRODUCTION

Significant portions of the productivity gains en-
joyed by businesses over the past decades are
attributable to the adoption of new information
technology (IT). At some point the economic
balance shifts; businesses start putting more em-
phasis on reducing the cost of supporting existing IT
functions than on adding new function. Today,
many businesses are striving to improve the overall
cost-effectiveness of their IT investments by re-
viewing business needs and cutting costs. These
efforts typically include leveraging existing assets,
consolidating redundancies, and laying a foundation
for future growth. This trend is fueling the move
from tightly coupled componentized systems to

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

loosely coupled service-based systems, such as
those based on service-oriented architectures
(SOAs) employing standards-based interfaces."”

To illustrate the differences between componentized
systems and service-based systems, we make an
analogy with the air transportation industry. This
industry moves passengers arriving by means of
ground transportation into airplanes, flies them to a

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

DE PAUW ET AL

821

822

destination, and discharges them into ground
transportation at the destination. Airplanes, an
essential part of the story, are constructed from large
collections of tightly integrated components. Ac-
cording to Boeing, a single 747-400** airplane
contains more than 6 million parts,3 demonstrating
that the componentized system approach can work
for very complex systems. Even so, the overall air
transportation system is best conceptualized as a
composition of “choreographed” services: fuel ser-
vices, food services, baggage services, air traffic
control services, and ground transportation services,
to name just a few.

Air transportation depends on both component
strategies and service strategies. What forces drive
businesses toward one approach or the other? One
way to address this question is to observe some of
the differences between integrated components and
choreographed services.

Componentized systems tend to be deeply hier-
archical, with components constructed from sub-
components that are themselves constructed from
other subcomponents. When a componentized
system malfunctions, the misbehaving subcompo-
nent must be identified and repaired or replaced. For
example, frequent airline passengers may be famil-
iar with delays associated with airplane malfunc-
tions. Drilling down into such “vertical” component
hierarchies to identify the root cause of failure is the
strength of today’s diagnostic tools, which are often
built into complex systems.

How does this contrast with the choreographed
services environment? Services have well-defined
and broadly available interfaces with a predictable
or specified quality of service. They are typically
accessed by different types of consumers. Services
generally provide a complete usable unit of work,
and equivalent services are frequently available as
alternatives. Indeed, interchangeable services are
the basis for competition. When a service fails, the
preferred remedy may be substitution rather than
repair. For example, if a fuel truck breaks down, any
airline passenger would expect a replacement truck
to be dispatched rather than waiting for the broken
truck to be fixed. Unlike componentized systems,
the domain of control and visibility for the consumer
of the service generally stops at the service interface.
This service environment leads to numerous “hor-

DE PAUW ET AL.

izontal” interaction patterns that take the form of a
broad and shallow hierarchy.

The challenge in managing and understanding
service composition is dealing with this horizontal
complexity. When systems are composed of multi-
ple independent business processes, the mapping
between such processes and the applications ex-
ecuting in the IT layers may not always be obvious.
Consider such fundamental tasks as verifying the
correctness of a workflow or locating performance
bottlenecks, where logs from a variety of servers
must be collated and interpreted. This is difficult
even when the number of servers is small and may
become impractical as horizontal complexity in-
creases.

The emergence of SOAs in the IT industry is driven
by the same pressures that have shaped the air
transportation system. Web Services Navigator4 has
been designed and built from the ground up to
address the challenges of horizontal complexity in
the service environment and its associated patterns
of usage. This tool relies on the Data Collector for
IBM Web Services Navigator5 to capture events. The
tool then correlates the events, models the trans-
actions they represent, and extracts patterns of
execution from the model. The tool thus recon-
structs individual transactions from end to end and
produces visual abstractions, such as service to-
pologies and flow patterns, as well as concrete views
of transaction flows and data content. The abstract
views reduce large volumes of execution data to
forms more meaningful to humans. They can reveal
important business trends that are obscured in
concrete views and at the same time, can link to the
associated detailed data when needed.

Because SOAs conform to open standards, the Data
Collector for Web Services Navigator can capture
application execution data in the middleware.
Consequently, developers and operations staff can
take advantage of visualization technology without
modifying their applications, either before or after
deployment, even when their environment includes
a mixture of programming languages and operating
platforms.

In the next section of this paper, we describe the five
views that are used by Web Services Navigator to
display information. The two sections that follow
illustrate a number of cases in which the tool has

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

proven useful; we show first how the tool was used
to diagnose a number of problems in business logic,
and then we show a number of cases in which the
tool helped diagnose problems in the IT layer. The
problems presented in this paper were encountered
in real Web Services-based applications developed
within IBM or for customers of IBM. In particular,
two applications were used to illustrate the tool
features: an online order validation service and a
retail point-of-sale system. Next, we briefly discuss
the Data Collector. Then, in “Architecture and
implementation,” we describe the general architec-
ture of the tool and discuss a number of imple-
mentation issues of interest: compensating for clock
skews among nodes, our algorithm for laying out
topology graphs, and identifying transaction pat-
terns. We discuss related work, and we conclude
with a summary.

The Web Services Navigator described in this paper
is a research project. It is publicly available from the
IBM alphaWorks* Web site and is included in a
recently released product from IBM.° A previous
version is also available from IBM.”

THE VISUALIZATION TOOL

The Web Services Navigator visualization tool is a
plug-in feature for the Eclipse Version 3.0 platform,8
an open framework for interactive tools. Web
Services Navigator offers a new perspective with
five new views of the execution of Web Services
applications, as shown in Figure 1. It can co-exist
with, but does not depend upon, other tools”'® and
products11 based on the Eclipse platform.

This section describes the five new views presented
by Web Services Navigator: Service Topology,
Transaction Flows, Flow Patterns, Statistics Tables,
and Message Content. Examples of how each view
visualizes problems are illustrated in later sections
of this paper and in a companion article'” published
on IBM alphaWorks.

The Service Topology view, on the upper right side
of Figure 1, shows a graph of the services involved
in an application and the message flows between

them. The boxes represent individual Web services:
each is labeled with the name of the service (at the
top of the box), the name of the machine that hosts
the service (below the service name), and the names
of one or more operations that the service provides

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

(shown in gray background). The colors of the
boxes indicate different host machines, and all
services hosted by the same machine are displayed
in the same color. The arrows between boxes
represent Web service requests and are labeled with
the number of requests captured. The circumstances
that produced this particular view will be discussed
in a later section.

When the cursor (mouse pointer) is moved near a
node or an edge, information such as the total
number of requests and the total number of bytes
transmitted is displayed in a small “tooltip” window
overlaid on the view.

The Transaction Flows view, on the left side of
Figure 1, shows a time sequence of the Web services
involved in an application and the message flows
between them. The columns represent individual
Web services and are labeled with the names of the
services and the machines that host them. Each
service and host machine is labeled in the same
color as the Service Topology view. Arrows repre-
sent Web service requests and responses, and
vertical bars represent processing of a request.
Transactions are separate flows of connected arrows
and vertical bars. Each transaction is drawn in a
unique color. The colors of the labels and trans-
actions are not related. Time proceeds from top to
bottom; it may be represented conventionally, in
seconds, with a scale running down the right-hand
side of the view; or, time may be represented in
logical steps, in proper sequence but with all events
evenly spaced, regardless of their actual duration.
The logical representation of time may reveal details
within dense clusters of events, and across widely
spaced events, that are obscured in the conventional
representation. Additional information can be dis-
played in tooltip windows by moving the cursor
over service names, machine names, message
arrows, and processing bars.

The Flow Patterns view, illustrated on the right side
of Figure 2, may provide more insight into the
behavior of an application than the Transaction
Flows view when it is cluttered by many concurrent
transactions.

By automatically classifying similar transaction
flows into flow patterns, Web Services Navigator
significantly reduces the amount of information that

DE PAUW ET AL

823

824

@ Transaction Flows &%

DIEGO
e

SYLVIAEARLE

e s s e e

TQQ ER e~ °U__

NELLIEBLY SACAJAWEA

getConfigurationOptions
——m
getCatalog
2
submitOrder
|_subm|tPO
T —m
| shipGoogls
k[ﬂgg ent :I
submitPO & | I
| —
PR BT ——
r —_logEvent | shipGoods |
I —
e logkvent | | |
logEvent N | |
. submitPO | |
| —]
submitSN
Jw
—
! r

Figure 1

The Web Services Navigator shows multiple views of application execution

a user must digest. Patterns are based on similarities
between the order of the invoked services, regard-
less of the exact timing. Patterns reveal common
trends, as well as abnormalities or outliers, enabling
users to explore their applications at different levels
of abstraction. This is explained in more detail in the
section “Architecture and implementation.”

For example, the pattern labeled “Pattern 1: 70 x” in
the Flow Patterns view represents 70 similar trans-
actions in the Transaction Flows view.

The Statistics Tables view, illustrated in Figure 3,
shows execution performance information numeri-
cally with four levels of granularity:

DE PAUW ET AL.

e The message statistics table includes data on
individual messages (request or response), in-
cluding the name of the sender (service and
machine), name of responder, network transit
time, and message size.

e The invocation statistics table includes data on
request/response pairs, client and server elapsed
times, network delay, server processing time, and
message sizes. For each invocation, the server
elapsed time and the network delay add up to the
client elapsed time. This table is shown in the
lower part of Figure 3.

* The transaction statistics table includes data on
trees of connected invocations, usually starting at
a client. The data, which pertains to the initiating
service and machine, include the number of

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

@ Service Topology

Warehouse
SACAJAWEA

WarehouseC
SACAJAWEA

Retailer
SACAJAWEA

2
2
Configurator
NELLIEBLY
2

WarehouseB
SACAJAWEA

ManufacturerC @
BAKERS

2

1

ManufacturerB
1 SYLVIAEARLE
2
Manufacturer
1 VESPUCCI
2

LoggingFacility
NELLIEBLY

Client
SYLVIAEARLE

4
7
3 SACAJAWEA
3
7

invocations and the number of services and

machines involved.

e The pattern invocation statistics table includes
data on groups of similar transactions, such as
averages, minimums and maximums for elapsed
client and server time, network delay, server
processing time, and request and response mes-
sage sizes.

Typically, users may start exploring the captured
data through the first three views (Service Topology,
Transaction Flows, and Flow Patterns) and after
pinpointing a problem, may use the Statistics Tables
view.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

The Message Content view, on the lower right side
of Figure 1, shows the contents of a selected
message in an Extensible Markup Language (XML)
viewer. When the user clicks on a message in one of
the other views (such as the Transactions Flow view
or the Statistics Tables view), the contents of that
message are automatically displayed. The Message
Content view can show the entire contents of the
selected message, or, when Simple Object Access
Protocol (SOAP) headers and XML namespace
identifiers are not helpful, they can be hidden to
simplify the view. Because Web Services Navigator
is an Eclipse plug-in, it can display multiple views of
the same data at the same time. When a message is
selected in any view, that message is highlighted in

DE PAUW ET AL

825

826

* Transaction Flows @Service Topology 2?_

@ Q=0

local database always
consulted first

Customer
LOCALSERVER

Client

N

100

Legacy
LOCALSERVER
30 10

NewDB2
LOCALSERVER

EnterpriseCusto.
CENTRALSERVER

7
EnterpriseCusto.
CENTRALSERVER

EnterpriseCusto. 3
CENTRALSERVER

ThirdPartyCusto.
1 N CENTRALSERVER

third-party “for fee” database

only consulted once

Figure 2

Verifying access patterns to a remote database for a retail point-of-sale system

yellow in all views, and its payload is automatically
displayed in the Message Content view, as illus-
trated in Figure 1.

VISUALIZING PROBLEMS IN BUSINESS LOGIC
Web Services Navigator helps business owners,
application developers (architects, programmers,
project managers, and testers), and operations staff
to understand the behavior of their Web Services-
based applications and diagnose problems through
visual representations of their execution. This
section presents several practical problems in busi-
ness logic that we have explored with the tool:
verifying workflow choreography, detecting incor-
rect implementation of business rules and exces-
sively “chatty” communications, and verifying
application cost structure. The problems presented
in this and the following section (which deals with
problems in the IT layer) were encountered in real
Web Services-based applications developed within
IBM or for customers of IBM.

Verifying workflow choreography
The architecture of a business process may appear
simple when it is being designed in a workflow

DE PAUW ET AL.

modeling tool. In practice, however, when the
architecture is implemented across organizational
boundaries and deployed across geographical
boundaries, verifying that the implementations
faithfully realize that architecture is not simple
at all.

The Supply Chain Management sample application
published by the Web Services Interoperability (WS-I)
organization is an example of such a workflow."” Its
architecture is straightforward. A Retailer system
includes catalog-search and order-submission ser-
vices accessible to online customers, and warehouse
shipping request and notification services available
only internally. Manufacturer systems provide
wholesale purchase and delivery services to the
Retailer’s warehouses.'* This architecture has been
implemented by at least 10 different organizations,
and extensive testing has demonstrated that all of
the implementations of each service can successfully
interoperate. For example, IBM’s implementation
deploys a Retailer system with three warehouses
and three Manufacturer systems on WebSphere*
Application Servers.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

@ Flow Patterns 52

MO ENE ~v=C

LOCALSERVER
Newps2

Patterns: 1: 70x
P—
Patterns: 2: 20x third-party “for fee” database
p— consulted only as a last resort
2
Patterns: 3: 7x I
S_@-
P—
P
Patterns: 4: 2x l
S_@-
e —— —mm
N
Patterns: 5: 1x
= —
) P ——
e

Web Services Navigator presents multiple views of
the actual execution of the deployed application,
permitting each user to examine aspects of the
application of interest to them, as illustrated in Fig-
ure 1. The Services Topology view (in the upper
right side of the figure) allows business owners to
confirm that the Retailer system is communicating
with all of its warehouses, and that the warehouses
are communicating with manufacturers. The
Transaction Flows view (in the left side of the
figure) allows architects to verify their logic by
following the message flow of individual trans-
actions. The Message Content view (in the lower
right side of the figure) allows programmers to
inspect the structure and content of individual
messages. The views are linked together so that
users can highlight messages of particular interest
and drill down into details of particular concern.

Detecting incorrect implementation of business
rules

The business owners who commission SOA appli-
cations often speak a very different language from
the developers who implement their requirements.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

In spite of their best efforts to forge a common
understanding, misunderstandings sometimes ensue
between business owners, application designers,
and programmers that result in the incorrect
implementation of business rules.

One such misunderstanding occurred in the imple-
mentation of a service for order validation in an
online application. The implementation of this
service consisted of two distinct workflows—one for
new orders, the other for follow-on orders. The
initial implementation seemed to handle both order
types correctly. However, the business owner, who
was not involved in the technical aspects of the
project and had no prior training with Web Services
Navigator, immediately spotted a problem in the
visualization of an apparently successful test,
illustrated in Figure 4. The business owner recog-
nized that for a new order, the invocation of the
StackingChecker service (identified by the text
balloon in the Service Topology view) was incorrect:
the business rules specified that this service should
be invoked only for follow-on orders.

DE PAUW ET AL

827

828

@ Transaction FIowsSQ\\ i @, ”g) | =i)

$.000 T
500 —
transaction performance T

- dominated by network delay and slow |
services, not workflow overhead)+

5.000 +—
8.500 —
4.000 +—
1.500 —+
5,000 +—
5.500 —
5.000 —

5.500 —
[seconds]

cursor location: 5,027 seconds

~

g E&°0

| @ Statistic Tables 53

Message statistics Invocation statistics | Transaction Statistics | Pattern Invocation Statistics |

Operation Name | Requester ... | Requester ... | Provider ... | Provider... | v Client ..,/| Server ... | Request... | Response ... |
lookupCustomer Client LOCALSERY... Customer LOCALS... 6,955 5.643 1.100 0.212
getEnterpriseCust.., Customer LOCALSERY... Enterpris... CENTRA,... 4.879 2,151 1.364 1,364
getFromEnterprise... Enterprise... CENTRASE... Enterpris... CENTRA... 0.388 0.029 0.264 0.095
getFromThirdPart.., Enterprise... CENTRASE... ThirdPar... CENTRA... 0.356 0.134 0.049 0.173
lookupCustomerIn... Customer LOCALSERY... Legacy LOCALS... 0.338 0.037 0.276 0,025
getFromEnterprise... Enterprise... CENTRASE.. Enterpris... CENTRA... 0,166 0.063 0.060 0,043
lookupCustomerIn... Customer LOCALSERY..., NewDB2 LOCALS... 0.123 0.010 0.093 0.020

<] 1l | =)

Figure 3

Identifying network delay and slow response from Web services as the cause of performance bottleneck

Detecting excessively chatty communications
As soon as the implementation of a distributed
application reaches the early testing phase, Web
Services Navigator can be used to verify its
correctness and identify performance bottlenecks.
One characteristic to look for is excessive or
unnecessary communications, because service in-
vocations tend to be performance intensive and
transit time between different machines may be
significant.

For example, the follow-on order transaction for the
online order validation service mentioned earlier
permits clients to submit requests containing multi-
ple line items. Interactive clients, for which the
initial implementation was modeled, typically sub-
mit requests with only a few line items. However,
when new test data was supplied that included

DE PAUW ET AL.

submissions from batch clients, requests with
hundreds or thousands of line items appeared.

The initial implementation handled large trans-
actions correctly but slowly. The “Find repetitions in
invocations” function of the Transaction Flows
view, illustrated in Figure 5 by the green rectangles
labeled “4X”, showed that the application was
iterating through order line items by invoking four
times the same sequence of services separately for
each line item. Each of the four repeated sequences
is framed by a white rectangle inside the green
rectangle indicating the total repetition. A subse-
quent implementation invoked the services once
with a list of line items, rather than invoking the
services repeatedly, thus dramatically reducing
overhead for batch clients and improving response
time for interactive clients.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

‘ Service Topology ER

QA |Hn=0

StackingChecker invocation
unnecessary in “new order” transaction

Logger
BAGGINS

ServicePacOrder...
BRANDYBUCK

ExclusivityChecker
TOOK

StackingChecker
GIMLIGLOIN

CompatibilityCh...
GIMLIGLOIN

Figure 4

Detecting an unnecessary service invocation in an online order validation service

Verifying application cost structure

The business owners who commission SOA appli-
cations are often as concerned with minimizing the
cost of operations as they are with ensuring the
correctness of the logic. The costs of greatest
concern may be bandwidth on their private net-
work, processing workload on their servers, fees
paid to other parties, or a combination of these
factors.

One such SOA application is a customer information
search for a retail point-of-sale system. The business
owner wanted to minimize network bandwidth on
the relatively slow links between retail stores and
the corporate data center, while searching for
information about known customers in a new local
database engine before burdening a central main-
frame. The application was permitted to purchase
information about unknown customers from a third-
party service, but the business owner wanted to
ensure that this option was exercised only after all
in-house options were exhausted.

Web Services Navigator enabled the project man-
ager to verify that the application faithfully imple-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

mented this cost structure. In Figure 2, the Services
Topology view showed that there was only one
request to the “ThirdPartyCustomerDB” service in a
sampling of 100 transactions (indicated by the
request counts on the arrows, as identified by the
left-hand text balloons in the figure). The Flow
Patterns view showed that this request was made
only after all other databases had been queried
(indicated by the order of its service invocation, as
identified by the right-hand text balloon in the
figure).

For business owners, patterns can be used to verify
the correctness of a business process, and they can
show trends in business activities. For architects,
patterns can show how services typically interact
with each other, enabling them to compare actual
behavior with the original design. For programmers,
patterns can help with optimization and debugging
by distinguishing the most frequently occurring
patterns from outliers and by identifying bottlenecks
that consume inordinate resources. For testers,
patterns can identify intermittent abnormalities and
outliers in the huge volumes of data produced by
applications under heavy load.

DE PAUW ET AL

829

ransaction Flowsg3 'y Q Q HEQH GSDw =

eaderValidato ValidationRules|CompatibilityRulExRule 1ForSPK | StackingRule

0.000+

validateServicePac

repeated invocations highlighted | P00

;/- 1.000-

ETvpes
getValidationRules

T

Heckco - 1.500—
A PPTE
ErkExRoteHrarSPK
y a T 1. 1 = |
- kreRgle
Fetvalidatiop” dies———TEc 2o
datior S
! Y
P 2.000
:r,/; e an
p i CHCCKEXRIIETFONSER
L 1 1.y Lo e |
IR STACKITT RLIE
AL r fe)
et atonRoles
therkEn HPS'!IDI!K‘ 2.500-+
erkExR e dny
cherkExRuleHForSPK

checkstackingRute

— 3.000-+

e

gpf\/a“ri;aﬁnnl?l e

checkCompatibility

checkEXRU | S — |
[Clal et Rl 350&
LTI R O KIIISKII’“"
| 7
T IYPCD
getvafidationRufes 4,000
——— checkCoy
L f 1
checkExRule 1ForSPK
kStackingRet
‘ 4 500+
1 1 o
checkCompatibility -L
e 1 .CD
checkbxRule HrorSPK
checkStackingRule
1 | S e T (o} ()_‘*
Lol ‘\II/HI[I/IIIHIIRIII(-'\ OO
1 1 i B S
CcOecrkCo II}J’IIIIHIII\I
F‘ -

Il 1
COSCKIl KITORUIE Z
W T () 500+
getVatidationRutes 5,50

P oy
CheckompatibHity

I
CHEeCKEXROIE TSEK

6.000+

checkStackingRule

6.500—+

7.000—+

[seconds]

Figure 5
The use of Find Repetitions in Invocations function to detect excessively fine-grained communications in the online
order validation service

VISUALIZING PROBLEMS IN IT LAYERS explored with the tool: incorrect implementation of
In addition to problems in business logic, as describedin ~ service semantics, transaction bottlenecks, unavail-
the preceding section, Web Services Navigator can also ability of resources, and syntax errors in message

visualize problems in the IT layers of Web Services- encoding. The problems presented in this section and
based applications. This section presents several prob- the preceding section were found in real SOA applica-
lems in the IT layers of applications that we have tions developed within IBM or for customers of IBM.

830 DE PAUW ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

- @ Transaction Flows §2 . Service Topology ’

BEQQ[ER| ¢ v =0

ServicePacVa...ionOperation

logServicePacData

sChecker

[stacking

invoked prior to compatibilityChecker

mpatibilityChecker

| warrantyPeriodChecker
exclusivityChecker

I S A——
hardwareSpecChecker

DIEGO |BRANDYBUCK| BAGGINS GIMLIGLOIN

ServicePacOrder ICompatibilityChe| WarrantyPeriod | ExclusivityChec |HardwareSpecC
\ | \

stackingChecker unexpectedly J

Figure 6

Detecting the incorrect invocation order of two service calls in the implementation of the order validation service

Semantic errors

The designers of SOA applications typically com-
pose their applications with Web Services developed
by other groups in different organizations by using
middleware provided by systems vendors. Within
this complexity lurk countless opportunities for
misunderstanding the detailed semantics of the
components that the application depends upon.

The business logic for the online order validation
service mentioned earlier specified the steps to be
executed for a follow-on order transaction, and the
application designer coded these steps using a
workflow language. During initial testing of the
application, the designer noticed, in the Transaction
Flows view illustrated in Figure 6, that the Stack-
ingChecker step was occasionally executed out of
sequence. Functional testing did not catch this error
because the workflow steps were implemented with
stub services. The documentation for the workflow
language specified that steps were by default
considered to be concurrent unless explicitly
marked to be serial. A review of the workflow

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

engine revealed that it scheduled concurrent steps
sequentially and usually, but not always, in the
order they were coded. The problem was fixed by
adding explicit coding for serial execution of the
workflow steps.

One of the users of the online order validation
service was a multithreaded client driven by a batch
process. During initial testing of the client, the
designer noticed, in the Transaction Flows view
illustrated in Figure 7, that the client occasionally
sent two nearly simultaneous requests, causing the
workflow engine to launch two parallel trans-
actions. The Message Content view confirmed that
the two requests were identical (both request
messages contained the same value in their
serialNumber fields, as identified by the green text
balloon in the figure), the result of a programming
error in the client’s asynchronous request queue.

Transaction bottlenecks

The overall performance of a SOA application
depends upon many independent factors, such as

DE PAUW ET AL

831

832

@ Transaction Flows:3

GREENLEAF BrANDYBUCK |
I e e

ServicePacVa...ionOperation

compatib
cSmpatt

ilityChecker
i

warrantyPerijodChecker
ARy EEHutChecke

exclusivityChecker
Checka

HRQE N

1 application occasionally
5t launches duplicate workflows

o oo ow = 0| Message Content £ - _".A- E_——

exclupvin

hardwareSpecChecker

Figure 7

I N E—

Detecting the occasional creation of duplicate requests in the order validation service

the bandwidth of the network, the responsiveness of
the services it invokes, the efficiency of the
application itself, and the overhead of the middle-
ware that supports it. When an application fails to
perform as expected, sorting out which of these
factors is responsible can be difficult.

The Transaction Flows view of an early version of
the online order validation service discussed pre-
viously shows where time is spent during a
particular invocation of the workflow engine, as
illustrated in Figure 8. The shading of the vertical
bar represents processing for the ServicePacOrder-
Validation service (the darker shade for “working,”
the lighter shade for “waiting,” as identified by the
upper text balloon in the figure). The Transaction
Flows view shows that the responsiveness of two
services was a contributing factor, although the time
measurements revealed in the tooltip windows
(identified by the lower text balloon in the figure)
indicate that it was not the dominant factor (about
0.35 seconds for one service and 0.26 seconds for
the other). The majority of the total transaction time
of 1.75 seconds was spent in the workflow engine.

The Transaction Flow and Statistics Table views of
the customer information search application, illus-
trated in Figure 3, showed that it performed as
expected. The network delay on the links to the
corporate data center (1.364 seconds each to trans-
mit the request and response messages, highlighted
in yellow in the figure) and the response time from

DE PAUW ET AL.

the data center (2.151 seconds to process the
operation on the server) were substantial, but the
project manager did not consider these to be serious
problems because the Service Topology and Flow
Patterns view, illustrated in Figure 2, showed that
most searches were satisfied by the local high-
performance database.

Unavailable resources

SOA applications depend upon the stability of many
geographically and organizationally distributed
services. When hardware or software problems
make any of those services unavailable or unre-
sponsive, locating that service and handling the
situation may be straightforward for shallow to-
pologies of well-understood services. However,
when applications fail somewhere within a nested
workflow involving many services, or because
services with unfamiliar semantics return unex-
pected responses, simply locating and diagnosing
the problem can be daunting.

The customer information search application men-
tioned earlier failed intermittently, but the tester
could not determine the reason from the diagnostics
returned to the point-of-sale client. The tester could
have tracked down the source of the problem by
digging through the server logs on the machines
involved in the application, but Web Services
Navigator located the problem automatically. Figure
9 shows the Transaction Flows and Statistics Tables
views: services that fail to respond to requests are

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

=_._Transaction FIOW? 23\\

FRQ|ER|lco v =0

NELLIEBLY BAKERS

HeaderVali| GetScenar | Validatiof
-- .;ransactlon performance dominated

T

validatesenuicePac validate | by workflow overhead (darker shading), not 0. OC
network delay or slow services (lighter shading)
e 0.500-+
| checkCompatibilit
checkExRule 1ForSH
checkStackingRule
getWarrantylnfo /] 1.000—
S
J\r/ansact%on 1 " -
aiting for msg: getWarrantylnfoRequest =iieon T3¢
From: PEWStandin on BAKtI:y eckExRule2ForSN 1500
St ST S T ERESE ESTweckHardvvar...WithinPariod :
arted at: 0124 11:24:19. .
Wiaiting for: +0.258 s peckHardwar 20DavsPerind . | o
‘ ‘ | \'\ flyover gives details of
transaction, including time spent [seconds]

|cursor location: 1.137 seconds

Figure 8

waiting for invoked services
V3

The responsiveness of the order validation service is dominated by the overhead of the workflow engine

flagged; incomplete invocations are identified with
question marks (“2”) in all views. In this failure, a
“getFromThirdPartyDB” request was sent by the

EnterpriseCustomer Service but never arrived at its

destination.

The online order validation service mentioned
earlier also failed intermittently, but Web Services
Navigator never showed any incomplete invocations
in the failed transactions. However, the linkage
between the Transaction Flows and Message Con-
tent views allowed a tester to step through a failed
transaction, message by message, examining each in
succession. Figure 10 shows a valid request to the
CheckCompatibility service (the top Message Con-
tent view) but an apparently invalid response
(bottom Message Content view) in which the
required fields are empty. An ensuing discussion
with the programmer revealed that the request to
the CheckCompatibility service resulted in a rela-
tional database query, which could fail in a variety
of ways. Because the service interface did not
provide for any explicit error indicators, the service
implementation indicated an error by returning an

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

empty response. In this case, the error was that the
relational database was offline.

Syntax errors

Web Services encode application data into XML
when sending messages and decode XML into
application data when receiving messages. The
mappings between language-specific data types used
within applications and the XML data types used in
SOAP messages conceal many opportunities for
syntax and semantic errors. Moreover, the details of
type mapping have evolved as Web Services
technology has matured, resulting in subtle incom-
patibilities between successive versions of SOAP
engines.

A customer information update application was
developed to support the retail point-of-sale system
mentioned earlier. The application was designed to
synchronously update all of the enterprise’s data-
bases when customers register product warranties.
As testing progressed, records were found that had
not been correctly updated. The linkage between the
Transaction Flows and Message Content views
allowed a developer to step through an apparently

DE PAUW ET AL

833

834

@ Transaction Flows 52

BQA[ER|[C o v =0

|ookupCustom...

LOCALCLIENT CENTRALSERVER
NewDB2 |EnterpriseCustomiEnterpriseCustom |EnterpriseCustom

LegacySybase

bmerlnNewDB2

etEnterpriseCustomer

offline service failed to
respond to request

etFromEnter...seCustomerDB

<'mn-er...seWarrantyD 3

[~ getrromen]

|
Party DB

[

@ Statistic Tablesss\\

Message statistics Invocation

lookupCusto... LOCALCL... 7.149 5.793
lookupCusto... LOCALCL... 0.336 0.038
lookupCusto... LOCALCL... 0.125 0.011
getEnterpris.,/ Customer CENTRA... 5.015 2.279
getFr EnterpriseC... CENTRA... 0,406 0.043
getFromEnt.., EnterpriseC... CENTRA... 0.178 0.079
getFromThir... EnterpriseC... ? 0.000 0.000

Figure 9

1.141 0.215 436 1178

0.273 0.025 466 497
0.093 0.021 454 479
2,300 0.436 438 1206
0.270 0.093 452 494
0.058 0.041 453 495
0.000 0.000 438 0

Diagnosing a failure to respond to requests in the retail point-of-sale system

successful transaction, message by message, exam-
ining each in succession. Figure 11 showed the
developer that in some but not all messages, XML
elements with no value had the “nil” attribute.

Further testing revealed that some SOAP engines
correctly encoded null Java strings into XML
elements with the “nil” attribute, but other SOAP
engines incorrectly omitted the “nil” attribute. All of
the SOAP engines correctly decoded “nil” XML
elements into null Java strings, and correctly
decoded “non-nil” XML elements into empty Java
strings (that is, non-null Java strings with a length of
Z€ro).

The design for the update application specified that
a null Java string value meant “leave the field
unchanged,” whereas an empty Java string value
meant “clear the field.” Hence, the encoding error in

DE PAUW ET AL.

some SOAP engines effectively changed the meaning
of updates with null Java strings from “leave this
field unchanged” to “clear this field,” resulting in
incorrect database updates.

The online order validation service mentioned
previously was developed and tested with the latest
Web Services technology available at the beginning
of the project. Later, when it was moved to different
versions of middleware, several compatibility prob-
lems surfaced. For example, the application repre-
sented dates internally with the Java type
GregorianCalendar. Older versions of the middle-
ware encoded the Java type GregorianCalendar as
the XML type date. Newer versions of the middle-
ware decoded the XML type date as the Java type
Calendar, which caused receivers to return “argu-
ment type mismatch” faults. Figure 12 shows the
Transaction Flows view and the associated Message

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

MITHRANDIR

' request contains database

valida - query arguments

Types

ValidationRules
o —m

checkCompatibility

checkExRule T ForSPK

RiCompatibilExRule 1 For|StackingR M Struckure

GIMLIGLO|

| value
= soapenv:Envelope
Fr— (=€ soapenv:Body
T [=F[@ checkCompatibility
I & sPKparthumber 01N1S7S
€ type 1830
& model 48U

I Yalue

Structure

| chédStackingRule |
l getWarrantylnfo
P check Hajdware.._pegification

(= 1€l soapenv:Envelope

empty response implies chedkDxRUle2ForSN

(=18 spapenv:Body

————
[

|

that database is unavailable VIRRPEnod

(el checkCompatibiltyResponse

checkHardwar..30DaysPeriod

= |

Figure 10

Diagnosing a failure to respond to requests in the order validation service

MANDOLIN ¢

* null string values mean
“leave these fields unchanged” omer

LS

REDBARON

ome NewDB2

@

| |
empty string values mean
“clear these fields"”

__M
=g] {Erive —
S ek updateCustomerinNewDB2
& Fm] = updateCustom...L¢
Trm cry Hawtharna — N
l-—iﬂl 10532
[~ state NY
-8 streetna '8 Saw Ml River Road
] streetf o 30
—-[& name
|~ firsthame John
161 lasthiame Pubbe
& middieName! @
@ calphone

Figure 11

Detecting discrepancies in the ways a NULL Java string is encoded by different SOAP engines

Content view of this error. Newer middleware
encoded the Java type GregorianCalendar as the
XML type dateTime instead of date, but did not
encode a time value along with the date value,
causing receivers with older middleware to throw a
Java NumberFormatException.

DATA COLLECTION
Web Services Navigator uses logs created by the
Data Collector for IBM Web Services Navigator.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

When the Data Collector is installed and configured
in WebSphere Application Server, it logs the content
and context of SOAP rnessages15 sent and received
by configured applications. The logs from all
machines involved in a Web Services-based appli-
cation can then be imported into Web Services
Navigator. Web Services Navigator automatically
reconstructs Web Services transaction flows by
correlating send and receive events, and compares
transaction flows to identify recurring patterns. The

DE PAUW ET AL

835

836

DIEG

NELLIEBLY
o e e

E— Struckure | value
—- & soapenv:Envelope
—— — — €l soapenv:Body
] — =& wvalidate
:é\\ @ orderhumber 050420041440049385498
—— - € orderDate 2004-05-11
= Java type GregorianCalendar —) el xsd:date
- encoded as XML type xsd:date ~ —— - ystem .
- &l country 897
[& salesChannel A
— T
| Structure | value
=\ (€ soapenv:Envelope 'd,ﬁl\ =
=18 soapenv:Body ——— Java type GregorianCalendar
=1 validate —— encoded as XML type xsd:dateTime
(€ orderNumber 050420041440049387207 L = without a time value
—i- (€] [orderDate 2004-05-11 :
— @ Ixsistype xsd:dateTime i —
& invokeSystem SAP
& country 8§97
(€] salesChannel A
Figure 12

Using Transaction Flows view and Message Content view to determine an incompatibility between different versions

of middleware

messages, flows, and patterns can be explored
through the Web Services Navigator’s five inter-
active views.

To successfully correlate events and construct
message, invocation, transaction, and pattern in-
formation, Web Services Navigator needs detailed
information about the message content, context
(event type, operation name, etc.), and transport
(time of event, IP address, etc.) of each event
logged.

This section describes the types of log data collected
for Web Services Navigator. This paper does not
address the transport of collected data, nor the
security issues involved in collecting, transporting,
and visualizing this data. Data collection is dis-
cussed in more detail in “Management of the
service-oriented-architecture life cycle” by Cox and
Kreger in this issue.'’

For each event, Web Services Navigator needs the
message content. This is the SOAP Envelope XML
element, encoded as a UTF-8 byte array (UTF-8 is a
Unicode** Transformation Format), which contains
the SOAP header elements, if any, and the SOAP
Body element, which contains the application data.

DE PAUW ET AL.

The Data Collector inserts a proprietary SOAP
header element into messages when it logs send
events so that Web Services Navigator can correlate
them with matching receive events. The proprietary
header contains a “correlator” that is similar to an
ARMA correlator.” Web Services Navigator makes
the application data in SOAP body elements
available for inspection in the Message Content
view.

For each event, Web Services Navigator needs some
information about the message context:

* The event type, which is one of the following:

— Client request (a request message is sent by a
client to a service endpoint)

— Server enter (a request message is received
by a service endpoint from a client)

— Server leave (a response message is returned
to a client by a service endpoint)

— Server fault (a fault message, instead of a
response message, is returned to a client by a
service endpoint)

— Client response (a response or fault message
is received by a client from a service
endpoint)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

@ Transaction Flows S

NQQ|ER|[CG> v =0

REDBARON
NowD52

lookupCustomer
?

N

ookupCustomerinNewDE

lookupCustom...LegacySybase

0.000 —

0.050 +

0.100 —

getEnterpriseCustomer

0.150 +

0.200 —

r..seCustomerDB
250 —

?

<.

?
0.300 —
[seconds]

cursor location: 0,277 seconds

Figure 13

Missing events and inferred messages in the Transaction Flows view

e The operation name (from the WSDL [Web
Services Description Language] definition'® of the
service endpoint)

* The operation direction, which is one of the
following:

— Two-way (that is, synchronous request and
response messages are expected)

— One-way (that is, asynchronous request
message only, no response message is
expected)

— Unknown (the operation direction is not
known to the SOAP engine)

e The service endpoint address (the Uniform Re-
source Identifier or URI"® of the service to which
request messages are sent)

* The process and thread identifiers under which

the SOAP engine is executing

For each event, Web Services Navigator also needs
some information about the message transport:

* The time of the event, according to the local

system clock, with the best precision available
® The local IP name, address, and port number

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

e The remote IP name, address, and port number
e The HTTP headers preceding the message content

In many situations, Web Services Navigator can
infer missing information from redundant data that
is logged by the Data Collector and reconstruct
transactions even when the data collected is
incomplete. This is helpful when the log information
is incomplete, for example, when some information
for some events is unknown or unavailable, some
events on some machines are not logged, or some
machines involved in a Web Services-based appli-
cation are not instrumented. Figure 13 marks
missing events with question marks and indicates
inferred messages as arrows with dashed lines. On
the left side and bottom of this figure, the two
question marks near dashed lines suggest that an
uninstrumented client called the Customer service.
Similarly, no receive event was logged by machine
REDBARON for the response message from the
EnterpriseCustomer service, but Web Services Nav-
igator was able to infer it from other events logged
before and after on the machines involved.

ARCHITECTURE AND IMPLEMENTATION
Web Services Navigator is implemented as a plug-in
feature for the Eclipse Workbench Version 3.0. The

DE PAUW ET AL

837

838

Figure 14
The Web Services Navigator architecture

y
y

Viewer

architecture of Web Services Navigator is illustrated
in Figure 14.

The log parser reads logs recorded by the Data
Collector and constructs a set of events representing
the SOAP messages sent and received by the
instrumented machines. This information is used by
the event analyzer.

The event analyzer adds successive layers of
structure using the Eclipse Modeling Framework”’
on top of the basic event and machine information,
representing messages, invocations, transaction
flows, and flow patterns. This information is used
by the interactive views.

The interactive viewers permit users to explore their
applications by examining the message, invocation,
transaction flow, and flow pattern information from
five distinct and complementary perspectives, the
five views of the tool. The five interactive views are
linked together: when messages are selected in any
view, they are highlighted in all views.

DE PAUW ET AL.

When the data for a Web Services-based application
is processed, the logs from the machines involved
are imported into Web Services Navigator, which
automatically analyzes the events, reconstructs the
transaction flows, and identifies flow patterns. The
resulting data model of this execution information
can then be explored through five interactive views.

To reconstruct Web Services transaction flows and
identify flow patterns, Web Services Navigator
correlates the logged events and adds several layers of
structure on top of them, as illustrated in Figure 15:

1. Matching send events and receive events are
combined into messages,

2. Corresponding request and response messages
are paired into operation invocations (analogous
to remote procedure calls),

3. Related incoming and outgoing invocations are
connected into transaction flows (analogous to
“call trees™), and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

@ Transaction Flows SS\

(&)
‘ 18.750 -
1
lookupCustorner, 3. parent and child invocations— transaction flows]
/ 16850+
2. request and response messages—invocations 16,900
B lookupCustomerinNewlB2 lookupCustom...Legacy Sybase
' ‘ 18.950-+
s— |
o p 4. similar transaction flows— flow patterns 5 11|
19.050—+
19.100+
lockupCustomerin B2
- =2 19150+
lookupCustomer
71 19.200+ -
19.250—+
lookupCustomerinNewDB2 19.300--
lookupCustomer 19350+
2
[seconds}¥+ L!J
C = B

cursor location: 19.420 seconds

Figure 15

Correlating events into messages, invocations, transactions, and patterns

4. Similar transaction flows are grouped into flow
patterns.

Compensating for clock skew

The machines involved in a Web Services-based
application may synchronize their system clocks, for
example by using the Network Time Protocol (NTP)
daemon.”’ However, if system clocks are not
synchronized, the time stamps logged for near-
simultaneous events may differ by seconds or hours.
In the Transaction Flows view, this may cause
messages to appear to either jump far ahead or flow
backwards in time.

Because no information about clock skew is
available in logs imported into Web Services
Navigator, the tool correlates events without using
time stamps. Then, upper and lower bounds on
clock skew are estimated by comparing the send and
receive time stamps on messages exchanged by

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

different machines and by applying a modified
version of the Floyd-Warshall “all-pairs shortest-
path” algorithm.22 The approximate bounds on
clock skew are used in the Transaction Flows view
to avoid drawing messages that appear to flow
backward in time.

Laying out topology graphs

In the Services Topology view, each node corre-
sponds to a service, and each edge corresponds to an
invocation of a service. A hierarchical-cluster-graph
layout is used to highlight their structure. Topology
graphs are particularly useful for validating actual
application execution against the original architec-
tural design. For example, Figure 4 and the left side
of Figure 2 show some simple service configura-
tions. The upper right side of Figure 1 illustrates a
topology with more complex service relationships; it
emphasizes the structure of the application by
grouping related services together while minimizing
the number of edge bends and crossings. Details of

DE PAUW ET AL

839

840

%?%%??%

group by tree structure

SSS %%%%

group by
operation
name

AN

Pattern extraction algorithm

| Figure 16
1

service usage, such as the number of invocations
and faults, the total network delay, and the total
message load, can be displayed in tooltip windows
by moving the cursor over each service.

Our layout algorithm is based on the classical
Sugiyama scheme.” Tt is composed of three phases
applied to topology graphs to obtain a visually
pleasant layout. Each phase addresses a different
minimization problem:

1. Assign hierarchical ranks (in our Services To-
pology view, a rank is the same as a column
number, starting from the left) to the nodes in a
way that minimizes the number of ranks as well
as the number of backward edges.

2. Compute an ordering of nodes within a rank that
minimizes the number of edge crossings.

3. Fine-tune the relative position of nodes to
minimize the length of edges, as well as the
number of edge bends.

One challenge in the design of the layout algorithm
came from our specific need to group nodes by
service. We thus use a hierarchical cluster graph
instead of the hierarchical graph commonly de-
scribed in the literature.”*

DE PAUW ET AL.

Another challenge is that the second phase (edge-
crossing minimization) of our algorithm is an NP-
hard problem. (NP-hard, or Non-deterministic poly-
nomial-time hard, is a concept in computational
complexity theory.) We approximate the optimal
solution by calculating attractive and repulsive
forces on the edges to order the nodes. The third
phase (edge-length reduction) also has an extra
priority—keeping long edges that span more than
two consecutive ranks straight. We first run a long-
edge straightening algorithm and then reduce edge
length.

The key to the layout algorithm is the use of a
combination of attractive and repulsive forces on the
edges. These forces directly sort clusters of nodes in
the second phase and directly find the positions for
clusters in the third phase. It addresses the problem
of “clusters,” is simple to implement, and yields
good visual results (that is, it yields fewer edge
crossings and bends, and a more balanced layout).
Its performance is comparable to that of the best in
the literature for hierarchical graphs:

¢ For the second phase (ordering the nodes within a
rank), the performance of our layout algorithm is
O(m, + njog n,), where n, is the number of nodes
on the changeable rank i and m, is the number of
edges between two adjacent ranks.

e For the third phase, the layout algorithm is linear.
Specifically, its performance is O(n, 4 m,), where
n. is the number of nodes on the changeable rank i
and m; is the number of edges between two
adjacent ranks.

This means that our algorithm will perform rea-
sonably well, even with a large number of nodes.

Identifying transaction patterns

Web Services Navigator categorizes transaction
flows based on similar patterns of invoked services.
Transactions typically start with a root invocation
(analogous to a function call), and proceed through
one or more service invocations (analogous to a
function call tree), possibly branching off via one-
way messages into parallel service invocations
(analogous to concurrent threads). The algorithm
for extracting flow patterns from transaction flows,
illustrated in Figure 16, involves these steps:

¢ All of the transaction trees are compared, starting
at their roots.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

@ Transaction Flows 3

HQQ EDN|ED

HQQIERE ~ =0
\

v oo @ Flow Pathemsﬁ_

0.000 +
0.500 +
1.000 +

E=

1.500 +

3.000 —

3.500 +

4.000 +

Figure 17

[seconds]

The Flow Patterns view (on the right) reveals patterns in the Transaction Flows view (above)

e All transactions are partitioned into groups of
isomorphic invocation trees.

e All isomorphic invocation trees with the same
operation names and service points are grouped
together.

¢ A flow pattern is created for each such group of
similarly named isomorphic transaction flows.

* Aggregate statistics are calculated for each flow
pattern, including minimum, maximum, and
average message sizes and response times.

Web Services Navigator uses exact matching for
invocation graphs, operation names, and service
points, but other categorization algorithms are
possible and may be equally useful in some
situations. For example, a “fuzzy” matching algo-
rithm might group together transactions with
operation names that differ only in case, or a
“cluster” matching algorithm might group together
transactions that invoke the same operations on
different service points.

Pattern extraction fosters understanding by reveal-
ing information that is not apparent from more
literal visualizations, as illustrated in Figure 17. The
Transaction Flows view (on the left in the figure) of
a set of transactions shows that they executed
concurrently, but it is not apparent that they have
anything in common besides the services they
invoke. The Flow Patterns view (on the right in the
figure), however, reveals that there are two types of

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

transactions, and most of the transactions follow the
simpler of the two patterns.

RELATED WORK

Aguilera et al.”® propose a method for finding
performance bottlenecks in distributed systems
without installing new tracing agents. They extract
message-level traces from the standard logging
features on each node, and then use two heuristic
algorithms to extract cause and effect relationships.
The “nesting” algorithm uses the nested nature of
RPC-style (RPC stands for remote procedure call)
communication, while the “convolution” algorithm
is based on signal-processing techniques. The
advantage of this system is that it works on “black
boxes,” requiring no special tracing or instrumen-
tation. In Web Services Navigator, we try to avoid
heuristics by using comprehensive data collection
because in complex systems, a tool’s effectiveness
for problem determination would be compromised
by the “false positives and negatives” inherent in a
heuristic approach.

Moe and Carr”® describe a system that traces the
execution of Common Object Request Broker Ar-
chitecture (CORBA**). After intercepting the
CORBA calls, they pair up the RPC call-return
sequences and aggregate the information into
summary statistics, which are presented in a scatter
plot. The focus of this system is on exceptions (at
the CORBA level) that may occur in a distributed
system. The system does not provide a view of

DE PAUW ET AL

841

842

execution at the transaction level and cannot isolate
specific messages, making it unsuitable for problem
determination.

Paragraph27 is a tool that shows the message passing
of parallel programs on multiprocessors. It has
different views that include processor utilization,
state of the processors, and logical connectivity of
the multiprocessors. Pablo”® is similar to Paragraph
in visualizing the execution of parallel systems. It
has additional features like adaptive tracing and
shows the execution in 3-D scatter plots. PVanimM®’
helps in optimizing programs running on Parallel
Virtual Machines. Its views show aggregate infor-
mation about messages and processor states. The
Paragraph, Pablo, and PVaniM frameworks do not
include the correlation information necessary for
reconstructing Web Services transactions, and the
amount of message-layer detail presented would
probably obfuscate the business-layer rules they
implement.

ETE’’ shows the itinerary of a single transaction as it
goes through different nodes. This system provides
a breakdown of the time spent in different compo-
nents for one transaction.

Visualization has proven to be very helpful in
understanding, debugging, and profiling software
systems. A lot of work has been done on visualizing
how a program executes on one computer.sl_42 The
challenges here are mainly related to making a
program run faster and with less memory. The
complexity of such programs is mainly related to the
large amount of data such execution logs can
produce. However, with most of this activity
happening on one computer, it is relatively easy to
collect and correlate the data.

Static analysis is a common technique used to
discover problems in software systems. For Web
Services in particular, Fu et al.” have proposed a
generic framework for analyzing BPEL" programs
by transforming them into Promela® programs, a
verification language. A limitation of this framework
is that it does not handle correlation of process
instantiations. A dynamic approach, such as Web
Services Navigator, is required for such analysis (in
general, static analysis may produce so many
possible outcomes that it is impractical for problem
determination). Although dynamic analysis can
produce very precise results, it may not be

DE PAUW ET AL.

exhaustive. The dynamic analysis and visualization
of Web Services-based application execution de-
scribed in this paper is a natural adjunct to static
analysis, program-execution tracing and debugging,
and code path coverage by means of automated
testing. All of these techniques are complementary
and can be used together to enhance the quality and
performance of Web Services-based applications.

A NEW METHODOLOGY FOR PROBLEM
DETERMINATION IN WEB SERVICES

The service-oriented environment poses new chal-
lenges for understanding application behavior and
for problem determination. Web Services Navigator,
a new tool for visualizing the execution of Web
Services-based applications, was designed to ad-
dress these challenges. The tool is the result of a
research project that is available on the IBM alpha-
Works Web site. In this paper we demonstrated the
benefits of the tool by showing a number of
problems that have been solved by using the tool in
practice, both within IBM and in customer engage-
ments.

The problem cases described in this paper were
encountered by Web Services-based application
developers in practical situations. The developers
using the tool did not undergo extensive training—
their only exposure was a short demonstration
session. Their experience shows that visualizing the
execution of Web Services provides useful insight
for problem determination and performance opti-
mization. They used the tool during the develop-
ment and prototyping phases of their projects and
found the Service Topology and the Flow Patterns
views especially helpful in discussions with their
customers.

The Web Services Navigator sheds new and
valuable light on several issues:

® The visual vocabulary of Web Services Navigator
helps to bridge conceptual gaps between business
and IT specialists, who typically speak different
languages. It employs novel algorithms for ab-
straction and pattern extraction to render Web
Services-based application execution logs in ways
that are meaningful to audiences including busi-
ness owners, application developers, and oper-
ations staff.

e The five linked views produced by Web Services
Navigator cut through the horizontal complexity

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

that can obscure the essence of Web Services-
based application execution. They dramatically
simplify such essential tasks as verifying the
correctness of a business process implementation
or finding the location of process failures.

® The ability of Web Services Navigator to visualize
the behavior of applications, independent of
programming language and operating system and
without modifying those applications, demon-
strates the value of the open standards employed
by Web Services, such as XML and SOAP.

e Architects typically use descriptive service names
that are meaningful to business owners, applica-
tion developers, and operations staff. Those same
names appear in the views displayed by the tool;
this facilitates communication between business
and technical users.

ACKNOWLEDGMENTS

We have benefited from the enthusiastic cooperation
of the eServicePac Validation team, including John
Hicks, Sophia Krasikov, Raju Pavuluri, Robert Hoch,
and Senthil Velayudham. We are also grateful for the
support of the IBM Tivoli* “tiger” team, including
John Harter, Kevin Dunphy, David Cox, Sudhakar
Chellam, Phil Fritz, Samuel Spiro, Ann Marie
Gallagher, Peter Wassel, and Chris O’Conner.

We appreciate the many fruitful discussions with
our colleagues in IBM Rational*, including Eric
Labadie, Richard Duggan, Vincent Encontre, Sergio
Lucio, Simon Johnston, and Harm Sluiman; John
Knutson in IBM Tivoli; our colleagues in IBM Global
Services, including Olaf Zimmerman and Yaroslav
Dunchych; our colleagues in the IBM CIO office,
including Lance Walker and Michael Martine; and
our colleagues in IBM Research, including Claudia
McGhee, Aaron Kershenbaum, and Ian Whalley.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., The Boeing Company, or Unicode,
Inc.

CITED REFERENCES AND NOTES
1. Web Services Architecture Specification, World Wide Web
Consortium (W3C), http://www.w3.0org/TR/2004/
NOTE-ws-arch-20040211/.

2. K. Gottschalk, S. Graham, H. Kreger, and J. Snell,
“Introduction to Web Services Architecture,” IBM Sys-
tems Journal 41, No. 2, 170-177 (2002).

3. “Boeing 747-400, by the Numbers,” Boeing Corporation,
http://www.boeing.com/news/feature/747evolution/
747facts.html.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

10.

11.

12.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

“Web Services Navigator,” alphaWorks Technology, IBM
Corporation, http://www.alphaworks.ibm.com/tech/
wsnavigator/.

“Data Collector for Web Services Navigator,” alpha-
Works Technology, IBM Corporation, http://alphaworks.
ibm.com/tech/wsdatacollector/.

IBM Tivoli Composite Application Manager for SOA,
Version 6.0, Product Code 5724-MO7, IBM Corporation.

IBM Tivoli Monitoring for Web Services, Version 1.1.0,
Product Code 5799-GZR, IBM Corporation.

“Eclipse Platform,” Eclipse Foundation, http://eclipse.
org/eclipse/index.html.

“Java Development Tools,” Eclipse Foundation, http://
www.eclipse.org/jdt/index.html.

“Test & Performance Tools Platform (TPTP),” Eclipse
Foundation, http://eclipse.org/tptp/index.html.

“IBM Rational Application Developer” and “IBM Rational
Web Developer,” IBM Corporation, http://www-306.
ibm.com/software/info/developer/radrwd/index.jsp.

W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and
and J. F. Morar, “Visualizing the Execution of Web
Services,” IBM alphaWorks, http://www.alphaworks.
ibm.com/g/g.nsf/img/semanticsdocs/$file/visualizews.
pdf.

“Supply Chain Management Sample Application Archi-
tecture,” Web Services Interoperability Organization,
http://www.ws-i.org/SampleApplications/
SupplyChainManagement,/2003-12/SCMArchitecturel.
01.pdf.

See Reference 13, Figure 1 on page 6.

Simple Object Access Protocol (SOAP) Version 1.1
Specification, World Wide Web Consortium (W3C),
http://www.w3.0org/TR/2000/NOTE-SOAP-20000508/.

D. Cox and and H. Kreger, “Management of the
Service-Oriented-Architecture Life Cycle,” IBM Sys-
tems Journal 44, No. 4, 709-726 (2005, this issue).

Application Request Measurement (ARM) 4.0 Specifica-
tion, The Open Group, http://www.opengroup.org/
management/arm.htm/.

Web Services Definition Language (WSDL) Version 1.1
Specification, World Wide Web Consortium (W3C),
http://www.w3.org/TR/wsdl.

Uniform Resource Identifiers (URI) Generic Syntax Spec-
ification, Internet Engineering Task Force (IETF), http://
www.ietf.org/rfc/rfc2396.txt.

“Eclipse Modeling Framework,” Eclipse Foundation,
http://www.eclipse.org/emf/.

“Network Time Protocol,” the Network Time Synchroni-
zation Project, http://www.ntp.org/.

T. Cormen, C. Leiserson, and R. Rivest, Introduction to
Algorithms, MIT Press and McGraw-Hill (1990), pp. 560-562.

K. Sugiyama, S. Tagawa, and M. Toda, “Methods for
Visual Understanding of Hierarchical Systems,” IEEE
Transactions on Systems, Man and Cybernetics, Volume
SMC-11, No. 2, 109-125 (1981).

G. di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph
Drawing, Algorithms for the Visualization of Graphs,
Prentice Hall, Upper Saddle River, New Jersey (1999).

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen, “Distributed Systems of Black
Boxes,” Proceedings of the 19th ACM Symposium on
Operating System Principles (SOSP’03), (October 2003),
pp. 74-89.

DE PAUW ET AL

843

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

844

J. Moe and D. A. Carr, “Understanding Distributed
Systems Via Execution Trace Data,” International Work-
shop on Program Comprehension, IEEE Computer Society
Press, New York (2001), pp. 60-69.

M. T. Heath and J. A. Etheridge, “Visualizing the
Performance of Parallel Programs,” IEEE Software 8,
Issue 5, 29-39 (September 1991).

D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A.
Shields, B. W. Schwartz, and L. F. Tavera, “Scalable
Performance Analysis: The Pablo Performance Analysis
Environment,” Proceedings of the Scalable Parallel
Libraries Conference, IEEE Computer Society (1993), pp.
104-113.

B. Topol, J. T. Stasko, and V. Sunderam, “PVaniM: A
Tool for Visualization in Network Computing Environ-
ments,” Concurrency: Practice and Experience 10, No. 14,
1197-1222 (1998).

J. L. Hellerstein, M. Maccabee, W. N. Mills, and J. J.
Turek, “ETE: A Customizable Approach to Measuring
End-to-End Response Times and Their Components in
Distributed Systems,” International Conference on Dis-
tributed Computing Systems (1999), pp. 152-162.

D. Jerding and J. T. Stasko, “The Information Mural: A
Technique for Displaying and Navigating Large Infor-
mation Spaces,” Proceedings of the IEEE Symposium on
Information Visualization, Atlanta, GA (October 1995),
pp. 43-50.

D. Jerding, J. T. Stasko, and T. Ball, “Visualizing
Interactions in Program Executions,” Proceedings of the
19th International Conference on Software Engineering
(May 1997), pp. 360-370.

D. Kimelman, B. Rosenburg, and T. Roth, “Visualization
of Dynamics in Real World Software Systems,” Software
Visualization: Programming as a Multimedia Experience,
J. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
Editors, MIT Press (1998), pp. 293-314.

E. Kraemer, “Visualizing Concurrent Programs,” Soft-
ware Visualization: Programming as a Multimedia
Experience, J. Stasko, J. Domingue, M. H. Brown, and
B. A. Price, Editors, MIT Press (1998), pp. 237-256.

W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.
Vlissides, and J. Yang, “Visualizing the Execution of Java
Programs,” Proceedings of the International Seminar on
Software Visualization, S. Diehl, Editor, Volume 2269 in
Lecture Notes in Computer Science, Springer-Verlag, New
York (2001), pp. 151-162.

W. De Pauw and and Gary Sevitsky, “Visualizing
Reference Patterns for Solving Memory Leaks in Java,”
Proceedings of the ECOOP ‘99 European Conference on
Object-Oriented Programming (1999), pp. 116-134.

W. De Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and
H. Srinivasan, “Drive-by Analysis of Running Programs,”
Proceedings of the ICSE Workshop of Software Visual-
ization (May 2001), pp. 17-22.

S. P. Reiss, “Visualization for Software Engineering—
Programming Environments,” Software Visualization:
Programming as a Multimedia Experience, J. Stasko, J.
Domingue, M. H. Brown, and B. A. Price, Editors, MIT
Press (1997), pp. 259-276.

S. P. Reiss, “Bee/Hive: a Software Visualization Back-
end,” IEEE Workshop on Software Visualization (May
2001), pp. 44-48.

S. P. Reiss, “An Overview of BLOOM,” Program Analysis
for Software Tools and Engineering (PASTE ‘01) (June
2001), pp. 2-5.

DE PAUW ET AL.

41. S. P. Reiss, “Visualizing Java in Action,” Proceedings of
the IEEE International Conference on Software Visual-
ization (2003), pp. 123-132.

42. S. P. Reiss, “JIVE: Visualizing Java in Action,” Proceed-
ings of International Conference on Software Engineering
(ICSE 2003) (May 2003), pp. 820-821.

43. X. Fu, T. Bultan, and J. Su, “Analysis of Interacting
BPEL Web Services,” Proceedings of International
WWW Conference, New York, USA (2004), pp. 621-
630.

44. Business Process Execution Language (BPEL) for Web
Services Version 1.1 Specification, Organization for the
Advancement of Structured Information Standards
(OASIS), http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

45. “Promela Language Reference,” the Spin Project, http://
spinroot.com/spin/Man/index.html.

Accepted for publication May 24, 2005.
Published online October 25, 2005.

Wim De Pauw

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (wim@us.ibm.com). Dr.
De Pauw received a Ph.D. degree in computer science from the
University of Ghent, Belgium, in 1991. At the Watson
Research Center, where he has been a research staff member
since 1992, he has led the software visualization projects
Ovation (C++ visualization) and Jinsight (Java visualization).
Jinsight technology is now part of IBM’s WebSphere Studio
Application Developer, and parts of it have been released
under the open-source project Hyades. Dr. De Pauw’s current
activities include software visualization, Web services,
service-oriented architecture, profiling, and debugging, and he
is currently the architect and technical leader of Web Services
Navigator. His scientific interests include addressing large
horizontal complexities in systems by using visualization,
pattern extraction, and adaptive tracing techniques. He has
published articles in refereed journals, has chaired
conferences, and holds several patents in software
visualization, tracing, and debugging.

Michelle Lei

(mlei04@gmail.com). As a software engineer at the Watson
Research Center, Ms. Lei worked on the Websight project. She
received her Master’s degree from the Swiss Federal Institute
of Technology (EPFL) in March 2004. Her areas of interest
include graph layout algorithms, Web technologies, and
middleware. She currently resides in Switzerland and works
as Project Manager for Java development at the Office Fédéral
d’Informatique et Télécommunication in Geneva.

Edward Pring

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (pring@watson.ibm.
com). Mr. Pring, a Senior Programmer at the Watson Research
Center, received an M.S. degree in computer science from
New York University. He has contributed to a wide range of
IBM products and technologies, including operating systems,
publishing applications, terminal emulators for mainframes,
virus protection for personal computers, network automation
for the Digital Immune System, visualization, and
performance analysis for Web Services. He holds a patent
portfolio that spans all of these fields.

Lionel Villard

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (villard@us.ibm.com).

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Dr. Villard, an Advisory Research Engineer at the Watson
Research Center, received a Ph.D. degree at the Institut
National Polytechnique de Grenoble (INPG) in 2002. His
research interests include multimedia documents, contextual
adaptation, authoring tools, document transformations,
incremental transformations, and high performance.

Matthew Arnold

IBM Research Division, Thomas, J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (marnold@us.ibm.com).
Dr. Arnold, a research staff member at the Watson Research
Center, received a Ph.D. degree in computer science from
Rutgers University in 2002. His thesis focused on profiling and
optimization techniques for the Java programming language.
His current research interests include software profiling,
program understanding, and dynamic optimization.

John F. Morar

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (morar@watson.ibm.
com). Dr. Morar received a Ph.D. degree in experimental solid-
state physics from the University of Maryland in 1982. After
joining IBM, he spent two years in residence at the National
Synchrotron Light Source, Brookhaven National Laboratory,
where he used soft X-ray spectroscopy to probe the outer few
atomic layers of semiconductors. Over the following eight
years he worked on developing metastable semiconductors
using molecular beam epitaxy. Dr. Morar spent seven years in
computer virus research, where he managed the Anti-Virus
Technology and Systems group. He contributed to numerous
releases of the IBM Anti-Virus and Digital Immune System,
which is designed to find, analyze, and automatically
distribute the cure for a new computer virus faster than the
virus itself can spread. He has written 70 articles in peer-
reviewed scientific journals and has contributed to IBM’s
patent portfolio in the areas of device processing, computer
virus detection, Web services, and economic systems. Dr.
Morar currently manages a group that focuses on the use of
Web services both within and between enterprises. ll

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

DE PAUW ET AL

845

