D. F. Ferguson
M. L. Stockton

Service-oriented architecture:
Programming model and
product architecture

IBM products increasingly implement a service-oriented architecture (SOA), in which
programmers build services, use services, and develop solutions that aggregate
services. IBM Software Group middleware products and tools support the develop-
ment and deployment of SOA solutions, and increasingly make functional interfaces
between components and products visible through a service model. Software Group
components will increasingly use SOA standards for intracomponent communications.
Our move to SOA encompasses both the programming model and lower-level
infrastructure software, for example, systems-management and storage-management
application programming interfaces and functions. This paper concisely defines the
IBM SOA programming model and the product architecture that supports it. We
provide the motivation for our programming-model and design decisions. This paper
also focuses on the architectural concepts that underlie our programming model and

product architecture.

INTRODUCTION

This paper provides an overview of IBM’s pro-
gramming model and product architecture in sup-
port of service-oriented architecture (SOA). The
profound implications of SOA and Web services for
IBM products and programmers who use them are
too sweeping for a single paper to cover in detail.
Instead, this paper focuses on a broad overview of
the concepts and architecture. We refer the reader to
other sources, in this issue and elsewhere," for
more detail.

The programming model concept

A programming model defines the concepts and
abstractions that developers build and use. In this

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

paper, we use the terms developer and programmer
loosely. A key element of our SOA programming
model and supporting development tools is to
enable nontraditional roles to implement services
and assemble solutions by using services. A busi-
ness analyst defining business processes and a
marketing specialist defining policies that classify
customers and compute product discounts illustrate
what we mean by role.

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

FERGUSON AND STOCKTON 753

754

Runtime products, such as WebSphere* Application
Server, DB2* and CICS* (Customer Information
Control System), run or “host” the programming
model artifacts. Development tools support the
modeling and implementation of programming
model artifacts, their assembly into applications
(solutions), and their deployment into the runtimes.
Finally, systems management products, agents, and
instrumentation support the administration of the
runtimes and the programming model artifacts they
host.

Although there is no generally accepted definition
for a programming model, for the purposes of this
paper we define it to be a set of part types that
programmers build and a set of roles grouping
members of the development and administrative
community who have similar skills and knowledge.
Part types encompass the diversity of programming
model artifacts: Hypertext Markup Language
(HTML) files, database stored procedures, Java**
classes, XML (Extensible Markup Language) Sche-
ma definitions, C structs (C programming language
syntax for defining data structures) defining
MQSeries* messages, and so forth.

Categorizing developers by role helps us produce
role-appropriate tools that enable nonprogrammers
to implement services and assemble solutions from
services. This enables the participation of new kinds
of developers, such as a business analyst defining
business processes and a marketing specialist
defining policies that classify customers and com-
pute product discounts. For each role, a set of skills
is defined, for example, a user interface developer
develops interfaces presenting the functional arti-
facts of the application or solution. This role is
assumed to know the application under develop-
ment and its business goals, to understand the
application’s users and their tasks, to be an expert in
several user-interface design methods, and to create
easy-to-use user interfaces by choosing the right
kind for each task.

Each role is associated with part types and
application interfaces with which the role interacts
(consumes or produces). For example, those in the
role of designers of dynamic pages produce the part
type JavaServer Pages** (JSPs**) and consume the
part type JavaBeans**. These part types wrap
existing sources of information and applications.
Each role is also associated with the tools that the

FERGUSON AND STOCKTON

role uses; for example, a role-appropriate tool for a
Web developer is a “what-you-see-is-what-you-get”
page design tool for building dynamic pages, using
controls associated with HTML and JSP tag libraries,
and wiring the controls to JavaBeans.

This paper focuses primarily on the part types
comprising the SOA programming model. Incre-
mental extension of a person’s existing skills and
knowledge is the key to making Web services easy
to implement and use. A service in the form of CICS
COBOL transaction programs bears little resem-
blance to one written in the Business Process
Execution Language for Web Services (BPELAWS or
BPEL, for short).’ Calling a service from a database
stored procedure differs from calling it from a JSP;
the skills and expectations are different. We offer an
assortment of tools to adapt the part types to various
skills and to the stages of the development process.

Product architecture

Products supporting IBM’s service-oriented archi-
tecture fall into two broad categories: service
endpoints and the message transport fabric inter-
connecting them. This general architecture, popu-
lated by many products, which jointly constitute the
delivery vehicle for IBM’s SOA, is illustrated in
Figure 1.

At the core is an Enterprise Service Bus (ESB)
supplying connectivity among services. The ESB is a
multiprotocol bus and supports “point-to-point” and
“publish/subscribe”-style communication, as well
as mediation services that process messages in
flight. IBM WebSphere MQ, WebSphere MQ Inte-
grator Broker, and WebSphere’s support for Web
services and Java Message Services (JMS)4 are all in
the first category.

A service resides in an abstract hosting environment
known as a container and provides a specific
programming metaphor. The container loads the
service’s implementation code, provides connectiv-
ity to the ESB, and manages service instances.
Different types of services reside in different
containers. (In a notable example of design recur-
sion, the ESB itself is considered a container for
mediation services.) Table 1 lists some of IBM’s
major SOA hosting environments and the kinds of
components hosted.

The evolution of SOA will bring access, through the
bus, to an increasingly rich set of distinguished (i.e.,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Enterprise Service Bus:

Transformation, Routing, Notification, Augmentation, “Side Effect” Operations

WO(kflow .
Business Adtivity Enterprise Script, POJO, Distinguished
Information State]ess Services
System Adapter SessionBean J
Information
Mlanagement
XML Database
Figure 1

Product architecture

well-known) services for use by applications and
containers. These services could include directory
services; for example, Universal Description, Dis-
covery, and Integration (UDDI) for locating and
binding to service instances,” authentication ser-
vices by using WS-Security secure token services,8
coordination services provided by WS-Coordina-
tion,”'® WS-AtomicTransaction,”'" and WS-Busi-
ness Activityg’12 to manage the outcome of
multiservice computations and management and
monitoring.

The Model-View-Controller (MVC) paradigm
underlies most modern user interface application
frameworks."® SOA operations provide the model
layer. WebSphere’s Web container provides the
view and controller functions through its support for
Java servlets, JSPs and Apache Struts.™* WebSphere
Portal Server builds on this capability.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

The remainder of this paper is organized as follows.
The next section introduces concepts fundamental
to the programming model and explains how they
simplify the development experience. It covers Web
Services as a component model, Service Data
Objects (SDOs), codified design patterns for ser-
vices, and the association between component types
and hosting containers.

This section also introduces the most basic compo-
nent types—POJOs (plain old Java objects), Enter-
prise JavaBeans** (EJB**) and adapters—and
several simple component types for other environ-
ments and languages, for example COBOL trans-
action programs running in CICS or IMS**
(Information Management System).

The section “Service composition and customiza-
tion” describes the programming model for aggre-

FERGUSON AND STOCKTON

755

756

Table 1 Containers hosting various component and service types

Service/Component type

Container

Transaction programs written
in COBOL, PL/I and other
languages

Business Process
Choreography

CICS or IMS. Programmers can use SOAP/HTTP, WebSphere MQ and
J2EE (Java 2 Enterprise Edition) Connector Architecture
connections to access the services.

WebSphere Business Integration Server Foundation (WBISF).
This container supports long-lived workflow processes that
implement Web Services interfaces and invoke operations on

Application adapters, providing
an SOA/Web service fagade for
existing applications and systems

Services implemented by pre-
defined SQL or XML

queries or as database stored
procedures

Services implemented using
Java classes and EJBs

other Web services. It also supports long-running business
activity transactions.

Application adapter container provided by WBISF. An adapter
converts from SOA protocols and formats to those of

existing applications and systems. For example, an adapter for
SAP converts from SOA-encoded XML-over-Hypertext
Transport Protocol to SAP’s existing business application
programming interface formats and remote function calls.

DB2 in conjunction with WebSphere Application Server.
Parameters for the query come from an SOA operation’s input
message, and the result provides the output message.

WebSphere Application Server

gating individual services into composite services
and solutions. It introduces the business process
component type with two realizations: BPEL and
business state machines (BSMs). Communication
between services is intrinsic to service composition.
In our architecture, the ESB is responsible for
mediating these message exchanges. This section
covers the ESB architecture and product realization
and explains our programming model and architec-
ture for customizing business services. Business
policies (for example, the definition of a “gold
customer”) change over time. This section docu-
ments our approach to customizing and evolving
business rules without source code changes or
application redeployment.

Much of the literature on SOA ignores the data
dimension. Referring to services as “stateless” is
quite common. SDOs are one aspect of the inter-
section of SOA and data. The section “Services and
data” explains the integration of SOA with database
management: how to publish data through services
and integrate services into database operations. The
section “Services and user interfaces” outlines the
programming model and product architecture for
user access to services. SOA also underpins the Web

FERGUSON AND STOCKTON

Services Remote Portlet specification, which uses
Web services to integrate portal systems.

IBM’s integration technology is based on SOA
concepts; our SOA strategy includes both manage-
ment using Web services and management of Web
services. The section “Services and management”
describes our architecture for building distributed
systems and application management solutions
from SOA and Web services. Once SOA applications
become pervasively deployed, it is necessary to
manage them; this section discusses architectural
approaches and evolving standards for this. The
section “Development tools” summarizes SOA sup-
port in our development tools; a thorough treatment
of this topic would require a separate paper. The
concluding section, “Advanced concepts,” examines
some of the current areas for research, standards,
and advanced development.

THE BASICS: WHAT IS A SERVICE?

Despite the fact that many customers and inde-
pendent software vendors have been implementing
SOA-based applications, integration layers, and
solutions for years, there is still no generally
accepted definition of “service” or “service-ori-
ented.” This paper employs a very narrow, technical

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

definition; a service has a well-defined interface
(with a set of messages that the service receives and
sends and a set of named operations or verbs), an
implementation of the interface, and, if deployed, a
binding to a documented network address. Exam-
ples of services falling within the scope of our
definition include a message-driven application that
processes WebSphere MQ messages, a set of CICS or
IMS transaction programs, and a Java class.

A Web service is a service that, at minimum, defines
its interface by using the Web Services Description
Language (WSDL)15 and is accessible by using a
protocol that is compliant with Web Services
Interoperability (WS-I).lG’17 Because automatic
transformation between Web-service constructs and
more traditional approaches to defining services (for
example COBOL, C, and Java) is a feature of the IBM
runtimes and tools, the terms “service” and “Web
service” are often used interchangeably.

Our programming model and architecture do not
burden programmers with the complexity of writing
WSDL or the overhead of using SOAP (Simple
Object Access Protocol) and HTTP (HyperText
Transport Protocol). Programmers using Java can
build and use Web services relying only on Java
interfaces and classes; COBOL programmers can do
the same while relying solely on COBOL transaction
programs. The runtime architecture optimizes
bindings for service access, using Java Remote
Method Invocation over Internet Inter-Orb Protocol
(RMI-IIOP) or JMS. These optimizations are trans-
parent to programmers. Application development
tools automate the generation of WSDL from
COBOL, C, Java, and so forth. The IBM SOA
supports standards, however. The WSDL is avail-
able for exchanging interface information, and a
WS-Interoperability binding is available for com-
munication.

An evolving component model

Most of the literature on Web services, especially
standards, focuses on service interfaces and their
use; this paper focuses instead on the programming
model for implementing services and assembling
them into solutions. A component model simplifies
the process of building and assembling services.
Logically, a component is defined by the set of six
values listed in Table 2.

The programming model offers two formats for
component definition. The first is a control file: this

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

is a document that, by reference, associates all the
parts of the component. For example, referring again
to the six values in Table 2, the file references the
WSDL definition (i.e., the interface provided), the
Java class that implements the component (the
implementation artifact), the associated policy
documents (policy assertions), and so forth. These
can be references to the file system, class path,
source code control system, or Web URLs (uniform
resource locators). The control file format gathers
several individual programmer-developed artifacts
into a collection that comprises the component.
Application development tools aid in defining the
control file. The second format uses pragmas: these
are structured comments specifying the same
information, but contained within the body of a
single source file. Each component type has an
associated source file format for its implementation
artifact, for example a Java file or an SQL
(Structured Query Language) file. WebSphere Rapid
Deployment is a tool that simplifies defining a
service in Java by using the pragma format. The
annotations supported in WebSphere Rapid De-
ployment can generate all the individual elements
comprising a component from a source file con-
taining pragmas. For example, structured comments
in a Java source file can indicate which Java
methods will become Web-service operations in the
generated WSDL defining the component’s service
interfaces. We will illustrate this concept further in
the discussion of individual component types.

Component types and simplifying development
Before the architecture described herein, our pro-
gramming model and tool experience was focused
on the infrastructure, as (the tongue-in-cheek)
Figure 2 illustrates. Our tools would demand,
“Which type of Enterprise JavaBean do you want to
build?” This exasperating question evaded the
programmer’s true intent: to implement an element
of a business solution, for example, converting
documents from one format to another. The
programming model presented here enables devel-
opers to define business logic without being
concerned with what the business logic becomes
upon deployment.

To achieve this transparency, we introduced an
extensible set of service component types, each
suited for a developer with a given set of skills who
performs a specific task by using a certain tool
optimized for that task. For queries, the programmer

FERGUSON AND STOCKTON

757

Daddy, Mommy gave
me these documents
to convert.

1

What type of EJB do
you want to build?

Maybe you didn't
understand the
question.

Your choices are
SLSB, SFSB, CMP
Entity, BMP Entity,
MDB...

3 .
Um. | do not want to build
an EJB. You see,
Mommy gave me this...

5
You're not very nice!

Figure 2
Programmer impasse

758

implements an SQL file; for document conversion,
Extensible Stylesheet Language Transformations
(XSLTs), and so forth. There is no need for the
developer to know that a Web service, EJB, or other
artifact is generated upon deployment. Each service
component type also supports templates: that is,

recurring design patterns for implementing services
within a type. The programming model and tools
support extension of a set of templates.

Figure 3 lists some service component types,
showing the relationship between more specific
types (at the bottom of the tree) and more general
types (at the top of the tree). Programmers build the
leaf elements of this tree, concentrating on the
problem to be solved and the tool for doing so, not
on the resulting artifacts. The focus is thus on the
skills of the developers and the concepts they
understand. The remainder of this paper elaborates
on this theme and provides detail on elements of the
taxonomy.

The basic types of service component
This section presents several typical component
types by way of illustrating the extensible set of
service component types just mentioned.

POJO and stateless SessionBeans
The most basic type of service component imple-
mentation is a POJO. JSR (Java Specification

Table 2 Six values that define a component

Interfaces Provided

Implementation
Artifact

Policy Assertions

Interfaces required
(optional)

Resource Type
Managed
(optional)

Valid Operation
Sequences
(optional)

How one invokes the component; typically WSDL, although the
programming model and tools also support other languages.

The component’s executable to be hosted in a container at runtime; for
example, a Java file, BPEL document, SQL file, and so forth.

Declaration of the services that the component expects the infrastructure (container) to pro-
vide. Each Web Services standard (such as WS-ReliableMessaging'® or WS-AtomicTransac-
tions) enables a service to document its requirements via WS-Policy extensions.'® The contain-
er reads the policy assertions and automates their implementation in a manner analogous to
container-managed transactions and security in J2EE. Programmers using the service may also
examine the policy assertions to determine how to correctly call the service. For example, the
policy assertions may document expectations about message signing and acceptable certificate
authorities.

The component’s dependencies on external services. Although a service’s implementation calls
the interface in the native way (for example, via a BPEL invoke or a JAX-RPC?° stub), docu-
menting its dependencies aids in application and solution assembly.

Support for WS-ResourceFramework (WSRF), expressed by an XML Schema definition asso-
ciated with the component’s WSDL-defined interface; may also support other WSRF inter-
faces.?' All Web services, even stateless ones, manage state. Coupled with WS-Addressing,*
WSRF enables support for state within the service itself, mirroring the J2EE EntityBean model.

An abstract process defining supplemental machine-readable information about a service’s cor-
rect usage, for example the order in which to invoke its WSDL-defined operations. For exam-
ple, modifyPurchaseOrder must follow createPurchaseOrder and cannot occur after
submitPurchaseOrder. Although this concept was introduced by BPEL, an abstract process
can be associated with any service.

FERGUSON AND STOCKTON

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Service Component

AN

Process Component Mediation

AN

Business State Machine BPEL4WS Process

Rule Set

POJO

Figure 3
Some service component types

Adapter Data Service Portlet

SQL Queries XML

Stateless SessionBean

Request) 109 defines the model and architecture for
implementing Web services in J2EE** (Java 2
Enterprise Edition) 2 WebSphere Studio can publish
a Java class through a Web-service abstraction. The
Java class runs in the Web container and has full
access to the J2EE programming model’s facilities.
The WebSphere tools and runtime automate the
conversion from SOA-encoded XML to the Java
interface and operations of the POJO and vice versa.
Programmers may also use stateless SessionBeans to
implement services. WebSphere Studio tools auto-
mate publishing a stateless SessionBean through a
WSDL/SOA abstraction.

WebSphere Rapid Deployment is a tool that sim-
plifies defining a service in Java by using the pragma
format described previously. Using an editor, a
programmer annotates the Java source file with
control tags derived from the XDoclet model.”*
These tags specify whether the component is a POJO
or a stateless SessionBean, the values for deploy-
ment descriptors (e.g., for a transaction model), and
operations that become part of the remote interface
and WSDL. Placing the file into a certain directory
causes “rapid deployment” of the service defined by
the annotations. The model is similar to the tool
support for JSPs and Java Web Start.”

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Application adapters

An application adapter is another very common
service component type. WebSphere Business In-
tegration (WBI), WebSphere Portal Server, and
WebSphere Information Integrator (WII) exploit a
common programming model and adapter portfolio.
An application adapter makes an existing system or
application look like a Web service or a JavaBean.
The functions performed by an application adapter
fall into three categories, which are described in the
following: protocol and connection adaptation,
message format adaptation, and sequence or oper-
ation adaptation.

Protocol and connection adaptation. Most existing
systems invoke applications or transaction programs
through remote procedure call (RPC) or messaging
protocols. For example, CICS uses the External Call
Interface and Advanced Program-to-Program Com-
munication (APPC); IMS uses various APPC and
other Systems Network Architecture (SNA) proto-
cols; and SAP uses Remote Function Call and
MQSeries messaging interfaces.

In the most primitive case, the application adapter
must simulate the inputs expected by an existing
terminal user interface: a terminal and a user. For
existing protocols, the application adapter imple-

FERGUSON AND STOCKTON

759

760

ments a connection manager and connection pool
following the J2EE Connector Architecture (J2C).
The connection manager pools connections for
efficiency and manages reuse across users and
transactions. It also provides global sign-on by
integrating with the application server’s support for
user credential mapping; in addition, it integrates
the legacy protocol’s transaction model with that of
the application server.

Message format adaptation. The existing system
expects inputs in a specific format, for example 3270
screen layouts, C “structs” (i.e., C programming
language syntax for defining data structures),
COBOL records, or a vector of name/value pairs.
The J2C model with WebSphere or Rational* tools
can import message or structure definitions from
existing systems.26 The tools generate a trans-
formation artifact that converts from XML (or Java)
to the back-end system’s binary format. The set of
transformation artifacts can be deployed as a
SessionBean or Web service. The following example
typifies this message format adaptation logic.

A caller invokes an operation on a Web service
implementing the adapter pattern. The adapter does
the following:

e Calls the transformation artifact, for example, a
generated Java transformation class, to convert
from the XML input message to the back-end
system’s binary format, for example, a byte array
overlay for a C structure.

Reads configuration information to determine the

transaction program (interaction specification) to

invoke by using the converted data.

* Accesses the connection manager to obtain a
connection to the back-end system. The connec-
tion manager returns the optimal connection,
supporting affinity and reuse for the user and the
transaction as well as other policies.

¢ Invokes the back-end application through the
connection, passing the verb and converted
message.

® Receives the response and invokes a transforma-
tion artifact to convert from the back-end message
format to the XML (or Java) format for the
response.

The result is returned to the caller.

Sequence or operation adaptation. In some cases,
neither protocol nor message format adaptation will

FERGUSON AND STOCKTON

suffice. The adapter might require a highly custom-
ized approach, tailored to the existing system’s
nuances. It may modify the sequence of operations
to match that of the existing system, or it may emit
multiple messages to the back-end system in
response to a single input message carrying multiple
parameters. This level of adaptation is distinguished
by mappings that are more complex than one-to-
one.

CICS and IMS transactions

The abundance of transaction-oriented business
application programs (and data) for the CICS and
IMS environments can be rendered as service
components. New IBM-provided functionality and
tools unlock significant business value by weaving
these existing programs into the service-oriented
paradigm. The transactional style typical of IMS and
CICS programs lends itself to publication of these
programs as services and operations. Because these
applications are usually structured around verb-like
transaction programs, each of which receives a
message and responds with a message, it is natural
and intuitive to map a transaction to an SOA
operation and a message to XML.

cics

Most existing CICS applications can be exposed as
Web services, provided they have a well-established
“commarea”-type interface. A commarea is a
formatted message buffer which programmers typ-
ically define for messages that a transaction program
receives and returns using COBOL, PL/I, or C. At the
protocol level, CICS Transaction Server for z/OS*
Version 3.1 supports SOAP 1.1 and 1.2 for Web
Services Interoperability (WS-I); optional plug-ins
add WS-Security (SOAP Message Security), and WS-
AtomicTransactions. Interaction styles including
synchronous interactions over Hypertext Transport
Protocol (HTTP) or Secure HTTP, WebSphere MQ-
based asynchronous interactions, and one-way
asynchronous interactions are supported.

Infrastructure components can examine and trans-
form entire SOAP messages, or specific SOAP
headers, through an easy-to-use runtime interface. A
complementary tool generates converters to map
between SOAP payloads and commarea structures.
It can also generate XSDs (W3C** XML Schema
definition language) describing the interface. New
XML-aware CICS applications can benefit from the
high-performance z/0S XML parser of the Enterprise
COBOL and PL/I compilers.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

To let applications written in any CICS-supported
language access Web services offered on other
servers, the familiar EXEC CICS application pro-
gramming interface (API) is extended in a manner
that is very natural to a CICS programmer. The tools
enable CICS-hosted Web services to be published as
standard WSDL-described services, enabling sup-
port for standard Web-service requestor patterns. It
will be possible to provide standard WSDL descrip-
tions of all significant services provided by CICS
applications.

IMS

The IMS SOAP gateway affords the ability to
seamlessly expose existing and newly created IMS
application assets as Web services, in conjunction
with IMS Connect capabilities in IMS Version 9. The
rollout of the gateway will start with SOAP server
support for synchronous interactions over HTTP
and HTTPS (to enable the IMS application to receive
inbound service requests). Additional functions
such as SOAP client outbound support and addi-
tional Web Services protocols such as WS-Security,
WS-Atomic transaction, and WS-Endpoint Support
are expected. Future additions may include the use
of a WebSphere MQ-based asynchronous transport
and the ability for IMS to act as an ESB endpoint.

The mapping of an IMS transaction to a Web-service
operation is implemented by a collection of several
files: an XML-COBOL converter, a WSDL Web-
service interface definition, and an XML correlator.
The correlator relates the Uniform Resource Name
(URN) of the application to the name of the
associated XML-COBOL converter. The URN speci-
fies the appropriate data conversion for each
incoming SOAP message. The correlator also con-
tains protocol details enabling connection estab-
lishment between the SOAP runtime and IMS
Connect. An XML enablement utility in WebSphere
Studio Enterprise Developer generates these file
artifacts to repurpose IMS COBOL applications as
Web services.

A gateway tool automatically deploys server- and
client-side artifacts. From information in the WSDL
file, the tool automatically generates and deploys a
Java application, including an internal service file
and all Java beans in the SOAP Gateway server, to
invoke the IMS transaction. From the same WSDL
file, the tool also generates a Java SOAP client that
can run the IMS transaction by invoking the Web
service.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Enterprise Generation Language and other lan-
guages

The Rational software development platform defines
the Enterprise Generation Language (EGL) and a
supporting tool suite.”® EGL is a classic fourth-
generation language that simplifies business appli-
cation development through abstract concept defi-
nition.”” EGL generates Java code, and from Java, it
obtains its support for building Web applications
and Web services.

WebSphere supports JavaScript** within JSPs
through the extensible Bean Scripting Framework
(BSF).30 BSF transforms scripting functions and
their parameters into Java bean operations within
the Java runtime, and vice versa. Because Java
beans inherently support Web services (via POJO
and JSR 109), one can program in a scripting
language and publish the result as a Web service.

Simplified data access through SDOs

SDOs are a fundamental concept in IBM’s soa.’!
SDOs make developers more productive by freeing
them from technical details concerning how to
access particular back-end data sources, so that they
can focus on business logic. Currently, the pro-
gramming models for accessing Java Data Base
Connectivity (JDBC**),32 a WSDL service, an EJB,
and so forth, from a Java program are similar, but
different enough to create difficulties. SDOs replace
these diverse data access models with a uniform
abstraction for creating, retrieving, updating, and
deleting business data used by service implementa-
tions.

SDOs define a uniform paradigm of data graphs to
access and manipulate data from heterogeneous
sources, including relational databases, XML data
sources, Web services, and enterprise information
systems. A data graph is a collection of tree-
structured objects that may be disconnected from
the data source. With SDOs, an application does not
connect to a data source directly. Instead, it accesses
an intermediary called a data access service (DAS)
and receives a data graph in response.

A DAS is an adapter that handles the technical
details for a particular kind of data source. It
transforms the data into an SDO graph for the client.
The client application interacts with the data graph
to get and change data. To apply an update to the
original data source, the application returns the

FERGUSON AND STOCKTON

761

762

updated graph to the DAS, which in turn interacts
with the data source. In general, the runtime
provides the implementations of the DASes, and
application development tools provide support for
the data graphs.

In addition, SDOs offer a meta-data API enabling
applications, tools, and frameworks to introspect the
data model (i.e., programmatically examine its
meta-data to determine its structure) in a uniform
way, regardless of its origin. The DAS translates
back-end meta-data to the standard SDO format.

Implementors can define SDO types using Java
interfaces, XML schema, or the Unified Modeling
Language** (UML**).33 Simple Java types are valid
SDO types, saving a step for the Java implementor.
SDOs support both dynamic and static data access.

The dynamic model for SDOs (which is the default)
lets programmers get and set data elements in the
data graph by name. This is particularly useful when
the type of the SDO is not known at compilation
time. The client program or service queries the SDO
to learn its structure, then reads and updates any
element by name. For example, one could write a
generic SDO-access function and then populate it
with element-specific meta-data in order to access
individual SDOs. The static model employs named,
typed Java interfaces. Each data element has its own
individual “getter” and “setter” method. A tool
generates static interfaces from dynamic ones.

SDOs are important for data representation even if
there is no classic data source present. Examples of
this kind of usage include XML messages exchanged
with Web services, JMS messages, XML files, and
many others.

Figure 4 (in XML) shows the basis for the SDO type.
The Java interface in Figure 5, generated from the
preceding XML, illustrates the use of static inter-
faces.

The following examples—defining a data object
containing customer data—illustrate how easy it is
to define SDOs and use them with either Java or
XML. Storage is allocated for the data objects by
passing the SDO type definition to the SDO data
factory, a runtime component that instantiates SDO
data objects from SDO type definitions. The follow-
ing two examples show the creation of an SDO by

FERGUSON AND STOCKTON

passing an XML schema namespace and complex
type name (Example 1) as the argument or a Java
interface class (Example 2) as the argument.

DataObject customer=DataFactory.INSTANCE.
create(“http://www.myvalue.com”,
“Customer”); (1)

Customer customer = (Customer)DataFactory.
INSTANCE.create(service.customerinfo.
Customer.class): (2)

After SDO instantiation, an implementation can
access the SDO. The following code sample shows
dynamic access to the customer SDO.

DataObject customer =...;

customer.setString(“customerID”, customerlID);

customer.setint(“stockQuantity”, 100);
...=customer.getString(“customerID”);

...=customer.getint(“stockQuantity”);

This code sample shows static access to the
customer SDO:

Customer customer =...;
customer.setCustomerID(customerlID);

customer.setStockQuantity(100);
...=customer.getCustomerID();

...=customer.getStockQuantity();

In Table 3 and Table 4, we further illustrate the
simplicity of the programming model promoted by
SDOs with examples of access to an XML file service
and to a relational database. These applications can
be seen to be quite similar, despite technology
differences. The application developer can focus on
business logic and let the service handle the
implementation details of updating a persistent data
store.

The simple example shown in Table 3 loads data
from an XML file into an SDO data graph, prints and
updates the data, then writes it back to a file. (The
business goal is to change “Adam” to “Kevin”.)

Although complex relational-to-SDO mappings are
possible, the example shown in Table 4 uses a very

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<ml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://www.myvalue.com">

<element name="customer" type="Customer"></element>

<complexType name="Customer">
<sequence>

<element name="customerID" type="string"></element>
<element name="firstName" type="string"></element>
<element name="lastName" type="string"></element>
<element name="stockSymbol" type="string"></element>
<element name="stockQuantity" type="int"></element>

</sequence>
</complexType>
</schema>

Figure 4
An SDO type definition in XML

simple one: each database table is an SDO type, each
row in the table is an SDO data object, and each
column is an SDO property. The application logic is
the same: execute a predefined query to read the
database, print and update the data (change “Adam”
to “Kevin”), and save the changes to the database.
The database query returns two rows from the
CUSTOMER table.

What if another application had accessed the data-
base and changed values after our example appli-
cation had obtained its data graph? On a write
operation, the data access service examines the
change summary to determine how to apply that
update to the data source. The database can use
optimistic concurrency control to ensure that the
database last contained the value “Adam” before
this change (otherwise, another application might
have changed the data first, possibly requiring some
error recovery in the application). Some services
implement more advanced forms of optimistic
concurrency; the change history provides the
original values needed for those algorithms.

SERVICE COMPOSITION AND CUSTOMIZATION
Our programming model offers several ways to
compose new services from existing ones. Structural
composition is the assembly of modules and
solutions from existing services. Interfaces that a
service needs are “wired” to interfaces that other
services provide. This wiring metaphor is similar to
defining UML collaboration diagrams.

Behavioral composition is the definition of a
composite service, called a process, through a classic

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

procedural programming metaphor. The services to
call, the order, and the aggregation of the results are
defined. Processes are well-suited for business
workflows because of their state model, lifetime,
and transaction model. BPEL processes and BSMs
(to model complex, stateful business process con-
cepts like purchase orders or trouble tickets) are
examples of process components.

It is commonly thought that the main purpose of
SOA is to enable reuse. The composition model
allows programmers to find services that have the
desired interfaces and infrastructure policies and
aggregate them into new services. These new
services can themselves be composed. It is unlikely,
however, that a service can always be reused as is,
without customization or tailoring. When change is
needed, the current state of the art involves source

public interface Customer {
public String getCustomerlD();
public void setCustomerlD(String customerlD);
public String getFirstName();
public void setFirstName(String firstName);
public String getLastName();
public void setLastName(String lastName);
public String getStockSymbol();
public void setStockSymbol(String stockSymbol);
public int getStockQuantity();
public void setStockQuantity(int stockQuantity);

Figure 5
An SDO type definition in Java

FERGUSON AND STOCKTON

763

764

Table 3 An XML file service

<customers xmlns=“http://customers.com”>
<customer SN=*1" firstName="“Adam”/>
<customer SN=“2” firstName=“Baker”/>
</customers>

DataObject root=xmlService.load(InputStream);

while (i.hasNext()){
DataObject cust=(DataObject) i.next();
String name=cust.getString(“firstName”);
System.out.printin(name);

}

customerl.setString(“firstName”, “Kevin”);

xmlService.save(QutputStream, root);

<customers xmlns=“http://customers.com”>
<customer SN=“1” firstName=“Kevin”/>
<customer SN=“2” firstName=“Baker”/>
</customers>

Iterator i=root.getlList(“customer”).iterator();

DataObject customerl=root.getDatalObject(“customer[1]”);Set the firstName property of the first

Define the XML file to be read as a root

data object corresponding to the root XML
element, and a many-valued customers
property. The customers property contains
one data object for each customer element in the
XML file. Each customer has two properties:
SN and firstName.

Read the file data.

Walk through the list of customer data objects
and print the first name for each.

customer data object to Kevin. The
middleware updates the change summary
(not shown) to indicate what data was
changed.

Write the data objects to the file.

The result is an updated XML document.

code modification. Our SOA programming model
also enables building services and modules that
programmers can customize without source code
modification by using templates, patterns, tailoring,
mediations, and the strategy pattern.

In the strategy pattern, a variable that is computed at
runtime selects one of several possible conditional
execution paths. We extend the strategy pattern so
that this computation can be implemented by
evaluation of a rule or by execution of separately
supplied program logic. This pattern helps us define
reusable software components that can be easily
tailored by a less-skilled person without having to
analyze, change, recompile, and redeploy the source
code.

Structural composition: wiring, assembly, and
mediation

This section discusses collections of services, their
connections, and the ESB.

Connections and modules

In structural composition, services document the
required interfaces to be provided by other services
(imports) and the interfaces they offer (exports), so

FERGUSON AND STOCKTON

that a developer can wire them together. Wiring—
defining logical connections from imports to ex-
ports—is done by a software tool with an asset view,
such as that shown in Figure 6. The wiring
approach improves the usability of a visual pro-
gramming tool. Instead of typing the name of the
reference used by an interface, the programmer
simply places a wire (draws a line) connecting the
output of one interface to the input of another
interface.

A collection of services wired together into a bundle
is called a module. Like a service, a module can
declare imports and exports and be wired into a
larger assembly. Wires defined at assembly time are
not satisfied until, at runtime, they are bound to
deployed component instances.

In summary, programmers implement services that
define the interfaces they implement and require.
Programmers can assemble modules from service
components and document the service interfaces
that a module exports and imports. The model is
recursive; modules can aggregate other modules.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Table 4 Access to a relational database

(A) Database prior to execution of application logic

CUSTOMER ID
(int, primary key)

1
2

CUSTOMER FIRSTNAME ~ CUSTOMER LASTNAME

(String) (String)
Adam Smith
Baker Street

(B) Application logic

DataObject root=rdbService.get();

<ROOT>
<CUSTOMER ID=*1” FIRSTNAME=“Adam” LASTNAME
=“Smith”/>
<CUSTOMER ID=*2" FIRSTNAME=“Baker” LASTNAME
=“Street”/>
</ROOT>

while (i.hasNext()) {
DataObject cust=(DataObject) i.next();
String name=cust.getString(“FIRSTNAME”) ;
System.out.printin(name);

}

DataObject customerl
=root.getDataObject(“CUSTOMER[1]");
customerl.setString(“FIRSTNAME”, “Kevin™);

rdbService.update(root);

Iterator i=root.getlList(“CUSTOMER”).iterator();

The rdbService queries to obtain data from the
database.

The same data could have been equivalently
expressed in XML.

Print each customer’s first name.

Set the FIRSTNAME of the first data object to
Kevin. The middleware updates the change
summary (not shown) to indicate the change.

Write the updated data to the database.

CUSTOMER ID

(C) Database after execution of application logic. Note that row 1 has been updated.

CUSTOMER FIRSTNAME ~ CUSTOMER LASTNAME

(int, primary key) (String) (String)

1 Kevin Smith

2 Baker Street
Mediations 2. Transformation—The mediation transforms

A mediation service defines the “behavior” of a wire
and is invoked by the ESB whenever a message
traverses the wire. Mediations typically do one of
the following; content-based routing, transforma-
tion, augmentation, or “side effect” operations:

1. Content-based routing—The mediation routes the
message to one or more alternative destinations
based on its content. For example, it may route a
message to the proper credit card processor,
based on message payload.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

messages and maps operations, adapting the
required interface to the implemented interface.

3. Augmentation—The mediation retrieves addi-
tional information to put the message into the
form expected by the target service.

4. “Side effect” operations—The mediation performs

an extra operation needed by the infrastructure or
by an enterprise policy, beyond that specified in
the data payload. For example, it may log
financial messages exceeding a certain value.
This policy can be implemented at the infra-

FERGUSON AND STOCKTON

765

766

A B [/*scenarioz.wring X |
D
L addressSync
g) GenericInterface 1
OuthoundMediator :GenericInterface 1
%
» o o
& InboundMediator | QutboundMediator
* . Clarifylnterface 3 Genericlnterface J |
Implements N P e saPOUtboundadapter:SAPOUtboundadapter 1
'Y L
d - " h ‘
& Clarfyirboundadepter 1 SAPOutboundAdapter |
target:ClarifyInterface 3 | SAPOutboundAdapter J
-
@, Carifylnboundadapter
General Marme: ClarifylnboundAdapter]
: Interfaces: References:
T Idesdl Name [T Add wsdl... |
[¥]

Figure 6
Wiring to connect service components

structure level without revising the affected
applications.

Mediations are first-class services with supporting
tools. WebSphere MQ Integrator supports powerful,
complex mediations; for example, one may chain an
augmentation, transformation, and routing media-
tion. Programmers can also implement mediations
using the Web-service capabilities in WebSphere
and other products.

THE ENTERPRISE SERVICE BUS

The ESB performs a variety of functions in the
programming model, for the programmer, assem-
bler, deployer, or administrator. In structural com-
position, the designer wires compatible service
interfaces together. After deployment, those wires
traverse the ESB. Each wire has a mediated
destination (for point-to-point messaging) or topic
(for publish/subscribe and event-based messaging,
including JMS and the evolving WS-Eventing35 and
WS-Notification® standards).

FERGUSON AND STOCKTON

The deployer establishes communication paths
between services by defining wires and attaching
appropriate mediations to them. To create an event-
driven service, one connects an import to a topic
with a filter. To make a service emit an event when
called, one connects an export to a topic. These can
be changed by an administrator.

Physically, the ESB backbone consists of WebSphere
Platform Messaging, WebSphere MQ, and Web-
Sphere MQ Integrator nodes. ESB endpoints are on
WebSphere and other servers. Thus, a mediation
“on a wire” can run in an ESB endpoint container
with a local quality of service. With its multiple
protocols and formats (including WS-I, 1IOP, and
MQSeries), the ESB supports persistent and transient
messages and events, as well as transactional
sending and receiving of messages.

Behavioral composition: Process components

This section introduces two typical kinds of process
components: BPEL processes and BSMs.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

BPEL is a traditional approach to workflow that
builds on SOA and ESB. Programmers often think of
a workflow process as an action or “verb,” for
example: CreatePurchaseOrder or OpenAccount.
Execution of the verb may take multiple steps and
paths, and it may synchronously or asynchronously
invoke many Web services, Java classes, or EJBs.

If a workflow process is a verb, then as a
complementary process, a BSM is a noun that
identifies a thing, such as a purchase order, trouble
ticket, or life-insurance-policy application. Here a
verb, such as createP0 or cancelP0, instead of
being a separate workflow process, is an operation
upon the thing. This model allows BPEL processes
to be invoked in the operations on the BSM. Neither
approach—BPEL or BSM—is superior. Rather, they
are functionally equivalent service abstractions. We
offer a choice to ensure a natural fit for the task at
hand and the programmer’s skills.

BPEL-based business processes

A process is represented by a directed graph of
activity nodes representing a single business activ-
ity, for example, a “quick loan” service in a banking
business. Processes are classified as short-running
or long-running. Short-running processes have a
single transaction per process and can be defined by
using basic process choreography. Long-running
processes persist in their execution state in a
database. They require advanced process choreog-
raphy and support transactions at the activity level.
They may include compensations to roll back
partially completed work in the event of a failure for
long-lived processes that cannot rely on the resource
locking mechanisms of transaction managers or for
operations that lack transaction support.

The business process choreography container in
WBI Server Foundation hosts business processes,
that is, workflows, written in BPEL, which is
described extensively elsewhere. Here we summa-
rize only a few of its features and extensions:

e [ncorporating people into processes—Humans per-
form some of the steps in a typical business
process, including complex context-aware situa-
tions of assigning work to people and the “four
eyes principle,” where a second approval step can
be performed by any approver except the first
approver. The business process choreography
engine and the WebSphere Studio Application

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Developer—Integration Edition tool support in-
corporating human tasks into the workflow.

e Embedding processes into J2EE and using Java as a
first class language within a process—IBM and
BEA Systems, Inc. are proposing Java extensions
for BPEL, including BPELJ, which would let
programmers use Java to implement activities,
formulate BPEL expressions, and manipulate work
data within a process.37

® Quality of service extensions—These include the
ability to fine tune transaction boundaries or
produce audit logs needed by production sys-
tems.

e Integrating the business process choreography
engine with the transaction engine and activity
service in WebSphere—Future integration activ-
ities are planned for WS-Coordination, WS-Atom-
icTransactions, and WS-Business Activity.

A visual editor in the Rational/WebSphere tool suite
can be used to build, test, and deploy BPEL-
implemented business processes as services. The
model can also import service interfaces into an
asset view, making the interface operations avail-
able for invocation from the process.

BSMs

A BSM has an associated state machine definition
that is in a specific state at any given time. A
purchase order, shown in Figure 7, is typical of
objects that are readily modeled by a BSM, objects
that undergo several well-defined state transitions
during their life cycle.

The nodes in Figure 7 (rectangles) represent
possible states of the BSM from the time that it is
created until it is archived. In this example, the
purchase order may be in the state Ready, inAp-
proval, Purchased, Canceled, Shipped or Deliv-
ered. The arcs (arrows) represent events that can
occur. For a BSM implemented by an EJB, an event
is an operation on the EJB’s WSDL port type or
remote interface. The current state determines
which events (operations) are allowed. The runtime
throws an exception if a caller attempts to invoke an
invalid operation. One can also query the current
state to determine an operation’s validity.

When an event occurs (i.e., an operation is called),
the BSM changes to a new state and invokes the
associated operation or method, shown diagram-
matically by an arc. Guards may prevent exiting or
entering a state until some condition is fulfilled, and

FERGUSON AND STOCKTON

767

768

created
v
Ready |
purchase e
approvalRequired
doApprovalAction
¥ cancel _
doCancelApprovalAction
InApproval |
.} v
approved Canceled
doPurchaseAction event timer (1 month)/archive
v > |
Purchased
cancel
shipped doCancelPurchaseAction
doShipAction
Shipped
archive
orderReceived
v
Delivered

event timer (2 months)/archive

archive
doArchiveAction
| 3
v
archived
Figure 7

A business state machine

actions may be performed on state entry and exit.
For example, a guard could ensure that only
purchase orders under $10,000 can change from
Ready to Purchased. In Figure 7, the BSM in the
Ready state has two possible events (enabled
operations): cancel and purchase(approval Re-
quired).

When a caller invokes the purchase(ApprovalRe-
quired) operation, the BSM framework does the
following. It determines if the operation is valid for
the current state and evaluates a state exit guard, if
one exists. The guard is a private operation on the
BSM, for example, a Java method. If the guard
evaluation returns “true,” the BSM can exit the

FERGUSON AND STOCKTON

current state. The framework then executes the
action associated with the transition, in this case
doApprovalAction() (a private operation on the
BSM). For example, this operation could send e-mail
to a sales manager or simply invoke an operation on
another SOA component, similar to the BPEL
“invoke” activity. It then evaluates the guard
associated with state entry, if one exists, and enters
the new state.

A BSM is an EJB EntityBean that may use container-
or bean-managed persistence and that may be
persisted to any supported back-end system. It may
have a WSDL-defined Web-service interface. Like
BPEL processes, BSM instances are stateful. The
runtime provides a stateless SessionBean/WSDL
wrapper for instances of a specific type, with the
guards and state and private methods executing on
the EntityBean.

To implement and test a BSM, a developer creates
UML state diagrams, utilizes a visual design tool and
wizards, or edits an XML source file defining the
state machine, state data, transitions, and embedded
Java for operations and guards. Implementation
includes defining the state machine, its initial state
(e.g., Created), terminal state (e.g., Archived),
transitions, public operations, transition actions
(methods and operations), and guards. The tran-
sition actions and guards must also be implemented,
aided by a simple tool that assists in querying state
data.

Customizing services

A customizable service is one that can be tailored for
reuse in a new context or within an assembly, or
adapted to evolving business policies, without
changing the source code. A point of variability is a
first-class programming model construct that defines
a location in the code intended for subsequent
customization, where the program logic can be
varied, for example, by applying a rule or calling an
external service that conditionally returns a value
specifying one of several execution paths. Our SOA
programming model introduces customizable ser-
vices and points of variability, building on the
strategy pattern and mediations, to facilitate the
creation and usage of customizable services.

For example, if a programmer wants to implement a
decision that determines if adding a line item to a
purchase order is valid, then, instead of coding

“if ... then ... ” statements within the purchase

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

order Java file, the programmer might implement
the method as follows:

Boolean addLineltemToPO(PurchaseOrder p,
Lineltem 11) {

//Locate the the customizing services
POPolicies p=
context.lookUp(“lineltem
ValidityRule”);
if (p.isValidLineltem(1i) ==false) {
return false;

}/Implement the addition Togic below.

In this example, the POPolicies.isValidlLineltem()
logic is moved to the wiring from the main
component and invoked by an operation on a
service to which the purchase order service is wired.
The logic is simply a service look up (perhaps JAX-
RPC, CICS COBOL, BPEL, or a business rule written
in a rule language) and operation invocation. By
being externalized, the policy can be evaluated post-
development, for example, by wiring, administra-
tion, configuration, or operation of a separate
program. This straightforward use of the strategy
pattern is a convention for good service design. The
customizer, mediator, and service being customized
are all arbitrary SOA services of any valid compo-
nent type. This multiple-component example (cus-
tomizer, service, and mediation) does not
necessarily imply a long path length, as the runtime
optimizes execution for co-resident components.

For example, a routing mediation on the wire could
choose a variation of POPolicies, based on date and
time (to vary policies according to season), purchase
order value, customer identity, and so forth. Our
tools make such changes easy for a nonprogram-
ming business analyst. The WBI tools support
decision tables and “if ... then ...” rules. Policies
can be defined in IBM Workplace and WebSphere
Portal Server, or changed at runtime by means of
rule templates. For more information on customiz-
ing software behavior with rules, see Reference 38.

SERVICES AND DATA

Immense quantities of business-critical information
residing in databases can be incorporated in service-
oriented applications. One can publish SQL queries
and stored procedures as Web services, federate

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

XML data sources with databases, and invoke Web
services from SQL and stored procedures, aided by
the capabilities depicted in Figure 8.

WebSphere Information Integrator (WII) enables the
database to consume Web services. It can make data
sources described by XML schema accessible
through standard SQL queries, the form familiar to
DB2 programmers. The tools and runtime convert
XML data sources to relational tables. A set of
adapters provides a common WSDL-described in-
terface for accessing XML information from WIIL. The
basic SQL SELECT, UPDATE, and INSERT commands
are integrated with compatible Web-service oper-
ations.

DB2 can invoke operations on Web services, both in
queries and stored procedures, from SQL. Tools
bridge between Web services and SQL data models
by exposing Web-service parameters and operations
as nicknames or SQL user-defined functions for the
SQL programmer.

To enable developers to publish enterprise infor-
mation as Web services without programming,
WebSphere tools expose SQL queries, database
stored procedures, and XML Extender as Web
services. Some of the supported scenarios are the
following:

1. A Web client sends a Web-service request, which
WebSphere and DB2 convert to SQL for process-
ing in the database; message conversion is
governed by mapping files, or by default, well-
defined mappings between SQL and XML.

2. SQL, SQL/XML, and stored procedures are
published and invoked as Web services through a
feature of DB2 in conjunction with WebSphere
Application Server. In the future, XQuery39
requests will be supported in the same manner.

3. Stored procedures incorporating application
code, SQL, SQL/XML requests, and later XQuery
are published as Web services and can access
Web services.

Figure 9 illustrates a simple Web service (written in
DB2’s DADX [Document Access Definition Exten-
sion]) that generates an SQL request to the database.
This example defines an operation, TistDepart-
ments, on a WSDL Web service. The WebSphere/
DB2 tools automate the generation of the WSDL/
XML and the mapping between the input WSDL
message and the SELECT predicate.

FERGUSON AND STOCKTON

769

770

HTTP/SOAP

WebSphere

DB2 Web Service
Provider

Dynamic DADX

Queries

DB2 provides Web-service data

Figure 8
Information management — \Web-service overview

\ Service Providers

A
DB2 g
<\Q\
Stored N
Procedures
Tables Web Service
Wrapper
>E(ML] or User Defined
xtender Functi
unctions saL
Applications
> < >

DB2 consumes Web-service data

Figure 10 illustrates a response with default XML
tagging (although explicit formatting is also sup-
ported, e.g., through SQL/XML). The tools generate
an XSD to define the columns specified by the
SELECT command and a message expressing the
output of TistDepartments as a set of rows.

In the future, the standards WS-Transaction®’ and
WS-Security8 may be supported. For more informa-
tion on DB2 Web services, see References 41-43.
Standardization is underway for defining Web-
service access to XML Metadata Interchange and
relational databases and files, taking into consid-
eration the Web Services Resource Framework.***’

SERVICES AND USER INTERFACES

This section highlights a few of the major concepts
involved in viewing user interfaces as services. User
interfaces (Uls) occupy the “view” layer in the MVC
pattern. UI technologies can render information on
devices ranging from smart-phones to browsers and
rich clients capable of considerable client-side
processing. IBM middleware and tools connect
view-layer UI technologies to model-layer Web
services.

In an SOA, the environments hosting Ul components
are also abstracted as containers that provide well-
known sets of infrastructure services. Our three

FERGUSON AND STOCKTON

major Ul containers are the basic Web browser, a
Web browser augmented with JavaServer Faces
(JSF)46 and dynamic HTML,47 and a workplace
client—the Eclipse rich client,” in addition to native
WebSphere Application Server client support.

Container services are augmented by supporting
technologies such as servlets, JSPs and JSP tags,
Apache Struts for page sequencing, JSF for advanced
page composition, and portlets to combine views of
multiple applications on the same page. Ul code can
invoke business logic using SDOs, Web services,
and so forth.

Ul development frameworks can simplify the
creation of complex user-facing applications. The
Struts project,14 having a large developer commun-
ity and exceptional tools support, is an Apache
open-source project predating the Java Portlet
Specification, JSR 168."” Struts is a multipage MVC
framework for server-based Ul development using
the servlet/JSP paradigm. A special version of the
Struts Version 1.1 library supports JSR 168 portlets
on WebSphere Portal.

JSF,*® an MVC realization for Java Web applica-
tions, was recently standardized through the Java
Community Process. JSF builds incrementally on
earlier technologies. It is well-suited for portlet

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<ml version="1.0" encoding="UTF-8"?>
<DADX xmlIns="http://schemas.ibm.com/db2/dxx/dadx" >
<documentation> Simple DADX example that accesses the SAMPLE database. </documentation>

<operation name="listDepartments">

<documentation> Lists the departments. </documentation>
<query> <SQL_query>SELECT * FROM DEPARTMENT</SQL_query> </query>

</operation>
</DADX>

Figure 9
Simple SQL query from a Web-service interface

development, offering portlets and servlets, state
handling, validation, and “eventing” (asynchronous
notification of events to interested parties). A JSF
page has one or more local models that interact with
UI controls on the page. These controls render
outputs based on UI properties; sophisticated logic
ensures their presentation at the right location. The
client-side model can be wired into the ESB to send
and receive events. The JSF controls process each
model event affecting a page and update the
rendering. A mechanism routes user input to the
right UI control to cause an appropriate model
event. JSF also includes a library of predefined UI
controls (notebook, tree, table, graph, etc.) and a
“what-you-see-is-what-you-get” tool. WebSphere
Studio includes additional JSF widgets and a JSF-
based visual layout wizard for portlets that connect

<?xml version="1.0" 7>

JSF controls to SDOs. Local caching of SDO data
graphs improves the user experience.

Java Widget Library (JWL), an extended widget set
usable by portal and portlet programmers, adds
JavaScript client-side processing to JSF and will be
supported by Rational Studio. Updating the view
locally on the client saves round trips to the server,
shortens response time by orders of magnitude, and
dramatically improves the user experience. Portlets
using JWL can run on WebSphere Portal just like
any other portlet.

Portals provide first-class UI support in the SOA.
Portlets, their basic building blocks, let developers
focus on the unique aspects of their application,
while the middleware handles common functions

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<xsd1:listDepartmentsResponse xmlns:xsd 1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<return>
<xsd1:listDepartmentsResult xmIns:xsd 1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<listDepartmentsRow>
<DEPTNO>A00</DEPTNO>
<DEPTNAME>SPIFFY COMPUTER SERVICE </DEPTNAME>
</listDepartmentsRow>
<listDepartmentsRow>
<DEPTNO>E21</DEPTNO>
<DEPTNAME>SOFTWARE SUPPORT</DEPTNAME>
</listDepartmentsRow>
</xsd1:listDepartmentsResult>
</return>
</xsd1:listDepartmentsResponse>

Figure 10
Results of DB2 Web service for an SQL request with default XML tagging

FERGUSON AND STOCKTON

771

772

for life-cycle events, per-user customization, aggre-
gation, and integration with other components.

A portal’s powerful integration of the Uls of several
back-end services into a centrally managed Ul can
unify the fractured IT (information technology)
infrastructure and give users a single view of IT
services with a single UI to master. This type of
integration is sometimes called “integration on the
glass,” that is, integration of what is presented to the
end user, as opposed to integration at the applica-
tion layer. Applications originally designed sepa-
rately can be wired together to enable new
functions. For example, an e-mail portlet wired to a
collaboration portlet could filter the “in” box to
display received e-mail only when the sender is
online and available for a chat, a capability which
might be absent from both original applications.

A surprising consequence of the portal model is
improved agility for on demand businesses. Ad-
ministrators become application integrators who
create new applications without programming, by
defining new pages, adding portlets to them, wiring
the portlets together, and setting entitlements (i.e.,
what services a portlet is allowed to access.) A self-
service portal lets users adapt their work environ-
ment to their unique needs. The portal architecture
frees application developers to concentrate on
building new business value.

The service interface and protocol for a local portlet
is defined by the Java Portlet Speciﬁcation.49 Web
Services Remote Portlet (WSRP) is the standard for
remote rendering of portlets, enabling a portal to
aggregate content from multiple sources.”

WSRP extends the integration capabilities of Web
services to presentation-oriented components and
enables the view layer to be shared across plat-
forms, implementation languages, and vendors.
Content and application provider services can be
discovered and plugged into standards-compliant
applications without any extra programming effort.

Instead of deploying each application or portlet on
every server that intends to use it, there are obvious
advantages to sharing applications across network
boundaries. WSRP enables easier administration.
Instead of managing local deployments of pluggable
components, portal administrators can browse a
registry for WSRP services to offer; users benefit

FERGUSON AND STOCKTON

from timely availability of new services and content
integration on demand. Load is distributed across
multiple servers and infrastructure cost is reduced
because applications can share hosting infrastruc-
ture. For example, distributing just the presentation
layer (via WSRP) of a back-end banking application
preserves the application provider’s secured com-
puting environment, while enabling users to interact
with the shared UL

An additional advantage to sharing applications is
control over content presentation. Content and
application providers can vastly expand their reach
to new users, as portals redistribute content.

SERVICES AND MANAGEMENT

This section discusses management using Web
services (MUWS) and management of Web services
(MOWS). The Web Services Distributed Manage-
ment (WSDM) technical committee in OASIS is
defining the architecture for both.”""** MUWS is the
application of Web service technology to manage
distributed systems and applications. MOWS in-
volves the management of Web service-based
applications and services.

MUWSs

MUWS views a systems management agent as a
kind of application adapter that wraps existing
management APIs, artifacts, and protocols (analo-
gous to how SOA integrates distributed applica-
tions). Subsystems typically support multiple
standard management protocols to interact with
their resources. Application adapters encapsulate
these APIs in a WS-I abstraction. A MUWS agent
could, for example, surface the management scripts
that start or stop a system, add or remove users, and
so forth, as Web-service operations on a WSDL
interface. The main benefits are interoperability and
simplification. Normalizing diverse management
approaches into a single WSDL XML type space and
communication protocol lets programmers skilled in
generic Web services build software to interact with
managed systems without mastering all the unique
type spaces and protocols.

MUWS can also simplify complex business systems
when both business and management events are
invoked by Web services. Some typical IT events
that occur when an employee joins an enterprise are
“process employee contact information,” “publish
revised organization chart,” and “update outsourced

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Web services for payroll and direct deposit.” These
are business events. “Issue an X509 certificate,”
“create an e-mail account,” and “allocate workspace
on a file server” are management events. It is
obviously advantageous to orchestrate all of these
events from a single business process.

WSDM management, using Web Services, builds on
the standards WS-ResourceFramework, WS-Event-
ing and WS-Notification by introducing manage-
ability capabilities. These include integrated sets of
operations, properties, events, meta-data and policy.
The operations include Web-service operations for
managing the resource, for example, a printer,
application server, or operating system. Properties
include reading or reading and writing XML
elements that describe the state of the resource, such
as up, down, average CPU utilization, and average
response time. Events include notifications the
resource may emit, such as “CPU critical” or
“maximum logons exceeded.” Meta-data and policy
include additional information on how to interact
with the service, (e.g., using WS-ReliableMessaging
and WS-Security), and on its properties, operations,
and events (e.g., “CPU utilization is between 0 and
100 and the averaging interval is the past 10
minutes”).

WSDM defines common base functions that all
managed systems and resources must support and a
standard event format, based on Common Base
Events (CBE), for interoperable, correlatable man-
agement events. The evolving WSDM standards will
become increasingly prevalent in MUWS.

The Integrated Solution Console (ISC), built on
WebSphere Portal Server, offers an environment for
building systems and application management
workspaces.s'3 Portlets running in ISC can use Web
services to interact with the Web-service interfaces
of managed systems.

Tivoli* products are moving to business process
choreography for complex management processes
such as software change management and user
identity provisioning. Evolving standards in this
area include the IT Infrastructure Library, which is
codifying a set of best practices for IT manage-
ment.”"”

The Common Event Infrastructure (CEI) provides a
common base schema and CBE taxonomy (now

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

standardized in WSDM), a toolkit for adapting
existing IT event logs to the CBE format, and
integration with the ESB to publish events. Mon-
itoring products are adopting the CEI to gain an
integrated, correlated view of IT infrastructure,
application, and business events.”>”” CEl is a key
element of business performance management.58

Management of Web services

All containers that host Web services provide
systems management interfaces for configuring,
operating, and monitoring the services they contain.
In most cases, the container exposes the service
management capability (an API or user interface)
within the management of the container as a whole.
For example, WebSphere Application Server expos-
es the Mbeans (management beans) and UI func-
tions of JMX** (Java Management Extensions) in
the WebSphere Console for managing Web services
in hosts. This allows system administrators familiar
with managing the environment to extend their
skills and tools to include Web services, which in
many cases are defined “bottom-up” from the
existing artifacts that the administrators manage.

Tivoli monitoring and management products are
evolving to provide an end-to-end view of Web-
service solutions, the services they combine, and
communication between the services. WSDM de-
fines a common set of capabilities—interfaces,
events, and properties—that all Web services or
their containers should support in order for all Web
services to have the same core set of functions. This
approach also enables the composition of business
and management functionality into a single end-
point, eliminating the need for additional service
discovery.

DEVELOPMENT TOOLS

IBM provides tools for the entire software life cycle
to help realize the SOA vision. Within the broader
context depicted in Figure 11, this paper highlights
several tools with particular SOA affinity, and
Table 5 maps specific tools to the on demand
software life cycle.

Business process monitoring

Agile businesses need the ability to monitor and
visualize business activities. For example, a factory
manager may want to compare new orders with
fulfillment or monitor inventory levels and idle
capacity; a financial officer may want to scrutinize

FERGUSON AND STOCKTON

773

Integration

Conceive and
Modify
Business Idea

Open Standards

Focus on
What Is Core
and
Differentiating

End-to-End Tools Support

Define Model

=

Implement Model

-

Service-Oriented Architecture

Infrastructure
Management

Acquire and Map
to Infrastructure

=

Monitor and React l

.

Figure 11
Life cycle of an on demand business solution

+ Business modeling
« Bridge to IT tools

» Component creation
(new and legacy-based)

+ Component customization
and assembly

+ Deploy without knowledge
of underlying (virtualized)
infrastructure

« Both on- and off-premise

- Monitor process for
business and IT status

« Actions taken based on
autonomic policy

receivables, payables, and capital expenditures. In
the past, this has been quite difficult. The long lag
between obtaining key financial metrics and being
able to act upon them has hampered profitability or
made it impossible to take needed actions in a timely
manner.

An SOA can help address these needs by moving the
focus to higher-level business processes in a
discipline called business performance manage-
ment.>® The objectives of this discipline are to define
service-level objectives in business terms and then

automate their IT realization. A key IBM offering for
business performance management is WBI and its

tool, the WBI Modeler.

WBI Modeler is a visual process editor that helps
build a choreographed business process in five
simple steps, shown in Figure 12. This editor allows
visual debugging of local or remote process in-
stances. One can view and change process variables,
set breakpoints before or after execution of an
activity, and debug Java code. The resulting
artifacts, in the BPEL language, are service compo-

Table 5 Tools and technologies for the on demand software life cycle

Phase

Tools and Technologies

Define Model

Implementation
Business Rules

Acquire and Map to Infrastructure

Monitor and React

WebSphere Business Integration Modeler, Rational Architect

Component types and patterns, BPEL, BPEL4J, JSR 170/Content Model, and

Solution Packaging, Solution Change Manager, Solution Configuration,
Tivoli Intelligent Orchestrator, Tivoli Provisioning Manager, Tivoli Identity
Manager, Tivoli Directory Integrator, WebSphere Identity Manager, Web-
Sphere Business Integrator, and DB2 Information Integrator

Common Event Infrastructure, Active Correlation Technology, Business
Process Management, and Business Workload Management

774 FERGUSON AND STOCKTON

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Create Create Choreograph Deploy Test and Debug
Services Process Process Process Process
Figure 12
Five simple steps to build a choreographed business process
1

nents of the process type, previously described in
the section “BPEL-based business processes.”

Rational tools

Spanning the spectrum of developer preferences and
conceptual styles, IBM’s Rational tools support two
modes for developing services: bottom-up and top-
down. An example of the bottom-up approach is the
new service wizard in WebSphere Studio Applica-
tion Developer, Integrated Edition. Here, the devel-
oper first decides what kind of technology to use to
implement a service: for example, an EJB, a
JavaBean, or an Enterprise Information System
connected via J2C resource adapters. The bottom-up
approach saves time because the developer need not
be concerned with the specifics of service details
and can incorporate existing artifacts into a service.

The wizard is extensible: any new source of services
can be imported and made available to developers.
Thus, a software vendor can rapidly incorporate a
new application into the SOA by creating a J2C
resource adapter and the corresponding resource
adapter description (RAR) file. IBM offers J2C
adapters for many common services, including
CICS-ECI, CICS-EPI, Host on Demand, and IMS.
These include a development license and commu-
nicate through IMS Connect and the CICS Trans-
action Gateway, respectively. IBM also offers an
adapter for SAP (mySAP.com). WebSphere supports
any J2C adapter that uses the J2C Version 1.0 API.

In addition, numerous partner-developed J2C
adapters are available. iWay, for example, offers 200
tested and certified adapters for use with Web-
Sphere.59 Fifty additional adapters for WBI are
available that communicate through WebSphere MQ
messaging. Future support for J2C Version 1.5 is
anticipated.

A new service can also be created by using a top-
down approach. Here, an abstract service is first

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

created by using the service interface wizard to
generate an empty WSDL file. Focusing on the
abstract service rather than on software artifacts or
program code, the developer then uses a WSDL
editor to define the interface. The editor’s visual
mode makes it easy to visualize relationships—
services and their bindings, messages and their
parts, port types and their operations—or to view
the WSDL source. Finally, one creates an imple-
mentation. Here too, a tool called the service
skeleton wizard aids in the creation of an imple-
mentation, such as a Java or EJB implementation.
This tool reduces the opportunity for introducing
coding errors by generating a skeleton in Java that
matches the previously defined service interfaces.
The programmer can then use a Java editor to
implement the operation in Java by filling in the
skeleton.

ADVANCED CONCEPTS

This section discusses the infrastructure services of
the Web Services standards and the modeling of
stateful Web-service interactions.

Container and infrastructure services

A full treatment of the Web Services infrastructure
standards would require a complete paper on that
topic. This section provides some detail on the
abstract model that brings together infrastructure
services, WS-Policy, endpoint functions, and dis-
tinguished services.

The evolving set of Web Services standards (WS-*)
that build on WSDL, WS-Policy, and WS-Interoper-
ability/SOAP include WS-ReliableMessaging, WS-
Security, and WS-AtomicTransactions. Each speci-
fication introduces several optional elements, in-
cluding the following:

® Headers—These augment a message with infor-

mation for a specification; for example, a WS-
ReliableMessaging header identifies a conversa-

FERGUSON AND STOCKTON

775

776

Policy

) Declarations
==

Security Header
Reliable Messaging Header
Atomic Transaction Header

|

SOAP Message

Implementation

double deposit(Message m) {
checkForDuplicate(m.seqNo);
registerForTransaction(m.context);

This is fragile, changes _» isCAValid(m);

over time, : checkSignature(m);

is complex for business updatePerformancelnfo();
programmers,

& @erHpIonE, balance += m.amount;

up;d..afé.F’erformancelnfo();

}

Figure 13
Typical application logic for infrastructure services

tion and sequence number within it, and a WS-
Security header contains authentication tokens.

e Endpoint protocols—These may define extra op-
erations and specify the endpoint’s model for
processing them. For example, for reliable mes-
saging, it can specify what action to take on
receiving a duplicate or out-of-sequence message.
An extra operation could be a request for
retransmission, which is “extra,” relative to the
main business interface of the sending service.

¢ Distinguished services—These are specification-
defined Web Services that implement a well-
defined interface and semantics. For example, WS-
Coordination, WS-BusinessActivity, and WS-
AtomicTransactions define the behavior of a
coordinator with whom transaction participants
interact to begin and end transactions and
participate in two-phase commit protocols. WS-
Security introduces a Security Token Server (STS)
that issues and validates security tokens.

e WS-Policy extensions—These are typically schema
for specifying expectations and requirements for
infrastructure-provided services. A policy docu-
ment for security, for example, would indicate
which STS an endpoint supports, and a document
for transactions would specify endpoint support

FERGUSON AND STOCKTON

for atomic transactions, business agreements, or
both.

Figure 13 illustrates the logic that might be found in
a typical business application to check for the
accidental double-posting of a bank transaction to a
bank account. Some of the housekeeping logic could
have been delegated to the middleware but is
nevertheless embedded in the application code.
Such applications are obviously very common, yet
fragile and prone to breakage as changes occur in
the computing infrastructure.

The implementor of a simple Web-service solution
would have to code numerous functions, including
header processing, endpoint protocols and extra
operations, and interactions with distinguished
servers. This naive approach has several disadvan-
tages. First, the resulting code is complex and
requires detailed, low-level understanding of WS-*
specifications. Burdening business-application pro-
grammers with this task decreases their productivity
and code quality. Second, placing infrastructure
code into applications reduces flexibility. Adding or
modifying the infrastructure services associated
with a service requires modification of the applica-
tion and retesting and redeploying the service or
solution.

A better solution, shown abstractly in Figure 14, is
for the application to exploit infrastructure services
provided by a container. Web services deployed in a
container are logically wrapped by a container-
provided outer shell. The runtime passes incoming
messages to the shell, which invokes container-
provided code, depending on what message headers
are present and what policies are associated with the
service. After header processing, endpoint protocols,
and interaction with infrastructure services are
completed, the shell passes the message to the
service implementation. The business logic only
receives business messages vetted by the infra-
structure, such as those with a valid security token
whose signatures have been checked and which are
not duplicates or out of order (as per the WS-
ReliableMessaging standard). The left path from the
implementation outbound shows the implementa-
tion before modification, when it does its own
message processing. The right path out of the
implementation shows the same implementation
after modification. In the latter case, the runtime and
shell provide “stubs” that are invoked when the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

service implementation in the container wishes to
send an outbound call or response to an operation.
The runtime intercepts the message to the stub and
performs the infrastructure protocols required for
message delivery. The container approach vastly
simplifies the task of building and deploying robust
Web services and increases the flexibility of these
services over time.

STATEFUL WEB SERVICES

The Web Services standards are evolving to better
model stateful interactions. The literature com-
monly claims that Web services are stateless, but
this is misleading or confusing, as we have already
shown that the process type of service component
(e.g., BPEL, BSM) explicitly models state. Even the
most narrowly defined service manages state data
when it accesses relational databases or invokes
existing applications. Thus most business applica-
tions—and the services comprising them—are in-
herently stateful.

The WS-Addressing, WS-ResourceFramework and
WS-ResourceProperties specifications provide first-
class support for stateful Web services. WS-Ad-
dressing associates XSD with a portType to make the
structures managed by a service explicit. For
example, if a portType supports creating a Customer
object and adding an address to a Customer, a
programmer would infer that customers have
addresses. WS-Addressing makes this kind of
structure explicit, eliminates guesswork, and pro-
vides additional information for looking up and
binding to services. WS-ResourceProperties intro-
duces WSDL operations for getting one or more
properties, setting one or more properties, and
querying properties.

Finally, many programming models—systems man-
agement, for example—are inherently stateful or
resource-oriented. Management protocols such as
Simple Network Management Protocol (SNMP) and
Common Management Information Protocol (CMIP)
model resources that have properties, operations,
and events. WS-Addressing and WS-Resource
Framework provide a Web Services abstraction to
model existing systems management infrastructure.

SUMMARY AND CONCLUSIONS

This paper is a synopsis of IBM’s programming
model in support of SOA, which is the fundamental
principle guiding our programming model, runtime,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

=
—

Security Header

Reliable Messaging Header Wrapper
Atomic Transaction Header
...-» Implementation
AN
SOAP Message P stub
Before After
* Container ¥
Check Certificate = -
Challenge
. Retransmit -
Figure 14

Use of container-provided infrastructure services

systems and application management products, and
development tools. Programmers build services and
assemble them into modules, applications, and
solutions, all of which are services. Our runtime
products are increasingly built as a set of compo-
nents that offer their interfaces through services.
The intrinsic systems management capability of
software products (for example, the management of
WebSphere or operating systems) surfaces through
a service abstraction, and the end-to-end manage-
ment tools are solutions that orchestrate and drive
the management capabilities to support autonomics,
automation, provisioning, problem determination,
and so forth.

The paper has also explored the evolution from an
abstract SOA to a pragmatic component model for
packaging services, simplifying their implementa-
tion, and assembling the components. An SOA
describes services and their interfaces. Our pro-
gramming model defines how to implement ser-
vices, assemble modules, and build solutions using
service components. Supporting tools simplify the
building of specific component types. Components
are deployed into containers that automate qualities
of service, such as security, transactions, and
reliable messaging, upon which services rely. Pro-
grammers document their quality-of-service expec-
tations and requirements by associating policy

FERGUSON AND STOCKTON 777

documents with components. This declarative
model for quality of services simplifies the devel-
opment of business services by keeping tedious,
error-prone logic out of the business component.

It has become increasingly difficult for any individ-
ual programmer, much less a nonprogrammer, to
master and apply the alarming proliferation of
software technologies, practices, tools, and plat-
forms effectively. Yet if business process trans-
formation is to succeed, a significant number of
nonprogrammers will need to use existing IT assets
to carry out their duties, and they cannot be
expected to learn the excruciating details of the
underlying technologies. This paper has described a
new SOA programming model that achieves a
separation of concerns so that persons with different
skill levels and different roles in the enterprise, not
necessarily IT professionals, can create and use IT
assets throughout every stage of the software
development life cycle. The result can be dramati-
cally improved business agility for the on demand
enterprise.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Massachusetts Institute of Technology, or
Object Management Group, Inc.

CITED REFERENCES AND NOTES
1. New to SOA and Web Services, IBM developerWorks,
http://www-128.ibm.com/developerworks/
webservices/newto/; Web Services Architecture, World
Wide Web Consortium (W3C) Working Group Note 11
(February 2004), http://w3.org/TR/ws-arch/.

2. N. Bieberstein, S. Bose, M. Fiammante, K. Joones, and
R. Shah, Service-Oriented Architecture Compass—Busi-
ness Value, Planning and Enterprise Roadmap, Prentice
Hall PTR, 2005.

3. Business Process Execution Language for Web Services
(BPEL4WS) Version 1.1 (February 2005), http://www.
ibm.com/developerworks/library/specification/
ws-bpel/.

4. Java Message Service Specification Version 1.0.2, Sun
Microsystems (November 1999), http://docs-pdf.sun.
com/816-5904-10/816-5904-10.pdf.

S. J2EE Connector Architecture Specification Version 1.5,
Sun Microsystems (November 2003), http://java.sun.
com/j2ee/connector/download.html.

6. W. Farrell, Introduction to the J2EE Connector Architec-
ture, IBM developerWorks (November 2002), http://
www-106.ibm.com/developerworks/edu/j-dw-javajca-i.
html.

7. UDDI Version 3.0, OASIS specification (July 2002),
http://uddi.org/pubs/uddi-v3.00-published-20020719.
htm.

FERGUSON AND STOCKTON

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P.
Hallam-Baker, J. Klein, B. LaMacchia, P. Leach, J.
Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam,
H. Prafullchandra, J. Shewchuk, and D. Simon, Web
Services Security (WS-Security), (April 2002), http://
www.ibm.com/developerworks/webservices/library/
ws-secure.

Web Services Transactions Specifications (November
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-tx.

L. F. Cabrera, G. Copeland, M. Feingold, T. Freund, J.
Johnson, C. Kaler, J. Klein, and D. Langworthy, Editor, A.
Nadalin, D. Orchard, I. Robinson, J. Shewchuk, and T.
Storey, Web Services Coordination (WS-Coordination)
(November 2004), ftp://wwwo6.software.ibm.com/
software/developer/library/ws-coordination200309.pdf.

L. F. Cabrera, G. Copeland, M. Feingold, T. Freund, J.
Johnson, C. Kaler, J. Klein, and D. Langworthy, Editor, A.
Nadalin, D. Orchard, I. Robinson, T. Storey, and S.
Thatte, Web Services Atomic Transaction (WS-Atom-
icTransaction) (November 2004), ftp://www6.software.
ibm.com/software/developer/library/
WS-AtomicTransaction.pdf.

L. F. Cabrera, G. Copeland, T. Freund, J. Klein, D.
Langworthy, F. Leymann, D. Orchard, I. Robinson,

T. Storey, and S. Thatte, Web Services Business Activity
Framework (WS-BusinessActivity) ftp://Wwweé6.
software.ibm.com/software/developer/library/
WS-BusinessActivity.pdf.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture—A
System of Patterns, Wiley Press, Hoboken, NJ (1996).

Apache Struts Web Application Framework, Apache
Software Foundation, http://struts.apache.org.

Web Services Description Language (WSDL) Version 2.0
Part 0: Primer, W3C Working Draft (December 2004),
http://www.w3.0rg/TR/2004/
WD-wsdl20-primer-20041221/.

K. Ballinger, D. Ehnebuske, C. Ferris, M. Godgin,

C. K. Liu, M. Nottingham, and P. Yendluri, Basic
Profile Version 1.1, Web Services Interoperability
Organization (August 2004), http://ws-i.org/Profiles/
BasicProfile-1.1.html.

J. Liu Y. Lu, Build Interoperable Web Services with JSR-
109, IBM developerWorks (August 2003), http://www-
106.ibm.com/developerworks/library/
ws-jsrart/2ca=dnt-431.

R. Bilorusets, D. Box, L. F. Cabrera, D. Davis, D.
Ferguson, C. Ferris, T. Freund, M. A. Hondo, J. Ibbotson,
L. Jin, C. Kaler, D. Langworthy, A. Lewis, R. Limprecht,
S. Lucco, D. Mullen, A. Nadalin, M. Nottingham, D.
Orchard, J. Roots, S. Samdarshi, J. Shewchuk, and T.
Storey, Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), http://specs.xmlsoap.org/ws/2005/
02/rm/ws-reliablemessaging.pdf.

Web Services Policy Framework (WS-Policy) (September
2004), http://www-106.ibm.com/developerworks/
library/specification/ws-polfram/.

The Java API for XML-Based Remote Procedure Call

(JAX-RPC) is a technology for invoking Web services by
using Java classes.

K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S.
Graham, I. Sedukhin, D. Snelling, S. Tuecke, and W.
Vambenepe, The WS-Resource Framework Version 1.0
(March 2004), http://devresource.hp.com/drc/
specifications/wsrf/WSRF_overview-1-0.pdf.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Web Services Addressing (March 2004), http://
www-106.ibm.com/developerworks/library/
specification/ws-add/.

Java 2 Platform Enterprise Edition Specification Version
1.4, Sun Microsystems (November 2003), http://java.
sun.com/j2ee/1.4/download.html#platformspec.

R. Hightower, Enhance J2EE Component Reuse with
XDoclets, IBM developerWorks (May 2003), http://
www-106.ibm.com/developerworks/edu/
ws-dw-ws-j2x-i.html.

S. Kim, Java Web Start: Developing and Distributing Java
Applications for the Client Side, IBM developerWorks
(September 2001), http://www-106.ibm.com/
developerworks/java/library/j-webstart/.

Developing the J2C Plugin, IBM WebSphere Software
Information Center (2004), http://publib.boulder.
ibm.com/infocenter/adiehelp/index.jsp?topic=/com.
ibm.etools.ctc.eab.doc/concepts/cj2cplugn.html.

M. Gudgin, M. Hadley, N. Mendelshon, J.-J. Moreau, and
H. F. Nielsen, Simple Object Access Protocol (SOAP)
Version 1.2 Part 1: Messaging Framework, W3C Recom-
mendation (June 2003), http://www.w3.org/TR/
soapl2-partl/.

Enterprise Generation Language (EGL): An Overview,
IBM Corporation, http://www-128.ibm.com/
developerworks/rational/library/04/r-3190/

egl _overview2.pdf.

The Role of Enterprise Generation Language (EGL) in a
Long History of Innovation on Developer Productivity, IBM
Corporation, http://www-128.ibm.com/
developerworks/rational/library/04/r-3190/
the_role_of_enterprise_generation_language.pdf

Bean Scripting Framework, Apache Jakarta Project,
http://jakarta.apache.org/bsf/.

B. Portier F. Budinsky, Introduction to Service Data
Objects: Next-Generation Data Programming in the Java
Environment (September 2004), http://www-106.ibm.
com/developerworks/java/library/j-sdo/.

JDBC is a Java interface for executing Structured Query
Language (SQL) statements.

Universal Modeling Language 2.0 Superstructure FTF
Convenience Document, Object Management Group
(October 2004), http://omg.org/cgi-bin/doc?ptc/
2004-10-02.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA (1995).

Web Services Eventing (WS-Eventing) (August 2004),
http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-eventing/.

Web Services Notification (March 2004), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-notification/.

IBM and BEA, BPELJ: BPEL for Java Technology, Www.
ibm.com/developerworks/webservices/library/ws-bpel;j.

M. Linehan, “Enable Dynamic Behavior Changes in
Business Performance Management Solutions by Incor-
porating Business Rules,” IBM white paper (December
2004), https://www14.software.ibm.com/webapp/
iwm/web/preLogin.
do?source=dw-bpmé&S_PKG=dlbrd&S_CMP=DWNL.

XQuery 1.0: An XML Query Language, W3C working draft
(April 2005), http://www.w3.org/TR/xquery/.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Web Services Transactions Specifications (November
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-tx/.

IBM DB2 Information Integrator Application Developer’s
Guide Version 8.2, IBM Publication No. SC18-7359-01,

http://publibfp.boulder.ibm.com/epubs/pdf/c1873591.

pdf.

XML for DB2 Information Integration, IBM Publication
No. SG24-6994-00, http://publib-b.boulder.ibm.com/
abstracts/sg246994.html?Open.

DB2 Information Integrator Introduction to Replication
and Event Publishing, IBM Publication No.
GC18-7567-00, http://publibfp.boulder.ibm.com/epubs/
html/c1875670/c1875670tfrm.htm.

XML Metadata Interchange (XMI Version 2.0), Object
Management Group (May 2005), http://www.omg.org/
technology/documents/formal/xmi.htm.

Project Summary—Database Access and Integration
Services Working Group (DAIS-WG), Global Grid Forum,
http://forge.gridforum.org/projects/dais-wg/.

JSR 127:JavaServer Faces, Java Community Process (May
2004), http://jcp.org/en/jsr/detail?id=127.

Dynamic Hypertext Markup Language (dynamic HTML
or DHTML) is not a standard defined by the World Wide
Web Consortium (W3C) but a combination of technolo-
gies used to create dynamic Web sites.

Eclipse Modeling Framework, eclipse.org, http://www.
eclipse.org/emf/.

JSR 168: Portlet Specification, Java Community Process
(October 2003), http://jcp.org/en/jsr/detail?id=168.

Web Services for Remote Portlets (WSRP) Specification
Version 1.0, OASIS (September 2003), http://www.
oasis-open.org/committees/download.php/3343/
0asis-200304-wsrp-specification-1.0.pdf.

H. Kreger and J. Philips, “Toward Web Services
Management Standards—An Architectural Approach to
IT Systems Design,” Web Services Journal 3, No. 10, pp.
18-22 (October 2003).

OASIS Web Services Distributed Management (WSDM)
Technical Committee, http://oasis-open.org/
committees/tc_home.php?wg_abbrev=wsdm.

S. Srivastava, S. Choudhary, and K. Britton, Enable a
Help System within the Integrated Solutions Console, IBM
developerWorks (May 2004), http://www-128.ibm.com/
developerworks/autonomic/library/ac-enable/.

IBM Orchestration and Provisioning Automation Library,
http://www.developer.ibm.com/isv/tivoli/workflow.html.

About the IT Infrastructure Library, Office of Government
Commerce http://www.ogc.gov.uk/index.
asp?id=1000367.

J. Dinger D. Nastacio, Integrate Event Management with
Common Event Infrastructure, IBM developerWorks (July
2004), http://www-128.ibm.com/developerworks/
library-combined/ac-cei/.

A. Watkinson, “Using the Common Base Event in the
Common Event Infrastructure,” IBM WebSphere
Developer Technical Journal (August 2004), http://
www-128.ibm.com/developerworks/websphere/
techjournal/0408_watkinson/0408_watkinson.html.

M. Schroeck, CFOs: Rising to the Challenge of Perfor-
mance Mangement, IBM Business Consulting Services
(2004), http://www-1.ibm.com/services/us/imc/pdf/
g510-3618-cfo-performance-management.pdf.

FERGUSON AND STOCKTON

779

780

59. IBM WebSphere Application Server Partner Adapters,
IBM WebSphere Software, http://www-306.ibm.com/
software/webservers/appserv/was/partneradapters/.

Accepted for publication May 25, 2005.
Published online October 20, 2005.

Donald F. Ferguson

IBM Software Group, 294 Route 100, Somers, NY 10589
(dff@us.ibm.com). Dr. Ferguson is one of 55 IBM Fellows, the
highest technical position in the IBM engineering community
of 200,000 technical professionals. He is the Chief Architect
and technical lead for the IBM Software Group (SWG) family
of products, which includes Lotus, Rational, WebSphere, DB2,
and Tivoli. Dr. Ferguson chairs the SWG Architecture Board,
bringing together the SWG’s lead product architects. His most
recent efforts have focused on Web services, business process
management, client platform, outsourcing/hosting platform,
grid services, and application development for WebSphere. He
was the chief architect for the WebSphere family of products
from its inception until assuming the role of SWG Chief
Architect in 2003.

Marcia L. Stockton

IBM Software Group, 2827 Poso Flat Road, Bakersfield, CA
93308 (mls@us.ibm.com). Ms. Stockton is a Senior Technical
Staff Member and master inventor with the IBM Software
Group in Research Triangle Park, North Carolina (residing in
California), and a senior member of the Institute of Electrical
and Electronics Engineers. She leads the Software Group
Architecture Board’s Programming Model work group, where
she drives horizontal integration initiatives and promotes
programming model simplification across Lotus, Rational,
WebSphere, DB2, and Tivoli products. Her 73 filed U.S.
patents range from networking, Web, security, privacy,
multimedia, wireless, and pervasive devices to radio
frequency ID. In the 1990s, she was the lead architect for
IBM’s Advanced Peer to Peer Networking and High
Performance Routing network protocols. Ms. Stockton joined
IBM in 1988 as a networking software professional. She
earned a B.A. degree from Swarthmore College in 1975. W

FERGUSON AND STOCKTON

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

