
Service-oriented architecture:
Programming model and
product architecture

&

D. F. Ferguson

M. L. Stockton

IBM products increasingly implement a service-oriented architecture (SOA), in which

programmers build services, use services, and develop solutions that aggregate

services. IBM Software Group middleware products and tools support the develop-

ment and deployment of SOA solutions, and increasingly make functional interfaces

between components and products visible through a service model. Software Group

components will increasingly use SOA standards for intracomponent communications.

Our move to SOA encompasses both the programming model and lower-level

infrastructure software, for example, systems-management and storage-management

application programming interfaces and functions. This paper concisely defines the

IBM SOA programming model and the product architecture that supports it. We

provide the motivation for our programming-model and design decisions. This paper

also focuses on the architectural concepts that underlie our programming model and

product architecture.

INTRODUCTION

This paper provides an overview of IBM’s pro-

gramming model and product architecture in sup-

port of service-oriented architecture (SOA). The

profound implications of SOA and Web services for

IBM products and programmers who use them are

too sweeping for a single paper to cover in detail.

Instead, this paper focuses on a broad overview of

the concepts and architecture. We refer the reader to

other sources, in this issue and elsewhere,
1,2

for

more detail.

The programming model concept

A programming model defines the concepts and

abstractions that developers build and use. In this

paper, we use the terms developer and programmer

loosely. A key element of our SOA programming

model and supporting development tools is to

enable nontraditional roles to implement services

and assemble solutions by using services. A busi-

ness analyst defining business processes and a

marketing specialist defining policies that classify

customers and compute product discounts illustrate

what we mean by role.

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 753

Runtime products, such as WebSphere* Application

Server, DB2* and CICS* (Customer Information

Control System), run or ‘‘host’’ the programming

model artifacts. Development tools support the

modeling and implementation of programming

model artifacts, their assembly into applications

(solutions), and their deployment into the runtimes.

Finally, systems management products, agents, and

instrumentation support the administration of the

runtimes and the programming model artifacts they

host.

Although there is no generally accepted definition

for a programming model, for the purposes of this

paper we define it to be a set of part types that

programmers build and a set of roles grouping

members of the development and administrative

community who have similar skills and knowledge.

Part types encompass the diversity of programming

model artifacts: Hypertext Markup Language

(HTML) files, database stored procedures, Java**

classes, XML (Extensible Markup Language) Sche-

ma definitions, C structs (C programming language

syntax for defining data structures) defining

MQSeries* messages, and so forth.

Categorizing developers by role helps us produce

role-appropriate tools that enable nonprogrammers

to implement services and assemble solutions from

services. This enables the participation of new kinds

of developers, such as a business analyst defining

business processes and a marketing specialist

defining policies that classify customers and com-

pute product discounts. For each role, a set of skills

is defined, for example, a user interface developer

develops interfaces presenting the functional arti-

facts of the application or solution. This role is

assumed to know the application under develop-

ment and its business goals, to understand the

application’s users and their tasks, to be an expert in

several user-interface design methods, and to create

easy-to-use user interfaces by choosing the right

kind for each task.

Each role is associated with part types and

application interfaces with which the role interacts

(consumes or produces). For example, those in the

role of designers of dynamic pages produce the part

type JavaServer Pages** (JSPs**) and consume the

part type JavaBeans**. These part types wrap

existing sources of information and applications.

Each role is also associated with the tools that the

role uses; for example, a role-appropriate tool for a

Web developer is a ‘‘what-you-see-is-what-you-get’’

page design tool for building dynamic pages, using

controls associated with HTML and JSP tag libraries,

and wiring the controls to JavaBeans.

This paper focuses primarily on the part types

comprising the SOA programming model. Incre-

mental extension of a person’s existing skills and

knowledge is the key to making Web services easy

to implement and use. A service in the form of CICS

COBOL transaction programs bears little resem-

blance to one written in the Business Process

Execution Language for Web Services (BPEL4WS or

BPEL, for short).
3

Calling a service from a database

stored procedure differs from calling it from a JSP;

the skills and expectations are different. We offer an

assortment of tools to adapt the part types to various

skills and to the stages of the development process.

Product architecture
Products supporting IBM’s service-oriented archi-

tecture fall into two broad categories: service

endpoints and the message transport fabric inter-

connecting them. This general architecture, popu-

lated by many products, which jointly constitute the

delivery vehicle for IBM’s SOA, is illustrated in

Figure 1.

At the core is an Enterprise Service Bus (ESB)

supplying connectivity among services. The ESB is a

multiprotocol bus and supports ‘‘point-to-point’’ and

‘‘publish/subscribe’’-style communication, as well

as mediation services that process messages in

flight. IBM WebSphere MQ, WebSphere MQ Inte-

grator Broker, and WebSphere’s support for Web

services and Java Message Services (JMS)
4

are all in

the first category.

A service resides in an abstract hosting environment

known as a container and provides a specific

programming metaphor. The container loads the

service’s implementation code, provides connectiv-

ity to the ESB, and manages service instances.

Different types of services reside in different

containers. (In a notable example of design recur-

sion, the ESB itself is considered a container for

mediation services.) Table 1 lists some of IBM’s

major SOA hosting environments and the kinds of

components hosted.

The evolution of SOA will bring access, through the

bus, to an increasingly rich set of distinguished (i.e.,

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005754

well-known) services for use by applications and

containers. These services could include directory

services; for example, Universal Description, Dis-

covery, and Integration (UDDI) for locating and

binding to service instances,
7

authentication ser-

vices by using WS-Security secure token services,
8

coordination services provided by WS-Coordina-

tion,
9,10

WS-AtomicTransaction,
9,11

and WS-Busi-

ness Activity
9,12

to manage the outcome of

multiservice computations and management and

monitoring.

The Model-View-Controller (MVC) paradigm

underlies most modern user interface application

frameworks.
13

SOA operations provide the model

layer. WebSphere’s Web container provides the

view and controller functions through its support for

Java servlets, JSPs and Apache Struts.
14

WebSphere

Portal Server builds on this capability.

The remainder of this paper is organized as follows.

The next section introduces concepts fundamental

to the programming model and explains how they

simplify the development experience. It covers Web

Services as a component model, Service Data

Objects (SDOs), codified design patterns for ser-

vices, and the association between component types

and hosting containers.

This section also introduces the most basic compo-

nent types—POJOs (plain old Java objects), Enter-

prise JavaBeans** (EJB**) and adapters—and

several simple component types for other environ-

ments and languages, for example COBOL trans-

action programs running in CICS or IMS**

(Information Management System).

The section ‘‘Service composition and customiza-

tion’’ describes the programming model for aggre-

Figure 1
Product architecture

Portal
Service

Business-to-Business
Interactions

Enterprise Service Bus:
Transformation, Routing, Notification, Augmentation, “Side Effect” Operations

Workflow
Business Activity

Enterprise
Information
System Adapter

Script, POJO,
Stateless
SessionBean

Information
Management
XML Database

Distinguished
Services

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 755

gating individual services into composite services

and solutions. It introduces the business process

component type with two realizations: BPEL and

business state machines (BSMs). Communication

between services is intrinsic to service composition.

In our architecture, the ESB is responsible for

mediating these message exchanges. This section

covers the ESB architecture and product realization

and explains our programming model and architec-

ture for customizing business services. Business

policies (for example, the definition of a ‘‘gold

customer’’) change over time. This section docu-

ments our approach to customizing and evolving

business rules without source code changes or

application redeployment.

Much of the literature on SOA ignores the data

dimension. Referring to services as ‘‘stateless’’ is

quite common. SDOs are one aspect of the inter-

section of SOA and data. The section ‘‘Services and

data’’ explains the integration of SOA with database

management: how to publish data through services

and integrate services into database operations. The

section ‘‘Services and user interfaces’’ outlines the

programming model and product architecture for

user access to services. SOA also underpins the Web

Services Remote Portlet specification, which uses

Web services to integrate portal systems.

IBM’s integration technology is based on SOA

concepts; our SOA strategy includes both manage-

ment using Web services and management of Web

services. The section ‘‘Services and management’’

describes our architecture for building distributed

systems and application management solutions

from SOA and Web services. Once SOA applications

become pervasively deployed, it is necessary to

manage them; this section discusses architectural

approaches and evolving standards for this. The

section ‘‘Development tools’’ summarizes SOA sup-

port in our development tools; a thorough treatment

of this topic would require a separate paper. The

concluding section, ‘‘Advanced concepts,’’ examines

some of the current areas for research, standards,

and advanced development.

THE BASICS: WHAT IS A SERVICE?

Despite the fact that many customers and inde-

pendent software vendors have been implementing

SOA-based applications, integration layers, and

solutions for years, there is still no generally

accepted definition of ‘‘service’’ or ‘‘service-ori-

ented.’’ This paper employs a very narrow, technical

Table 1 Containers hosting various component and service types

Service/Component type Container

Transaction programs written
in COBOL, PL/I and other
languages

CICS or IMS. Programmers can use SOAP/HTTP, WebSphere MQ and
J2EE (Java 2 Enterprise Edition) Connector Architecture
connections to access the services.

5,6

Business Process
Choreography

WebSphere Business Integration Server Foundation (WBISF).
This container supports long-lived workflow processes that
implement Web Services interfaces and invoke operations on
other Web services. It also supports long-running business
activity transactions.

Application adapters, providing
an SOA/Web service façade for
existing applications and systems

Application adapter container provided by WBISF. An adapter
converts from SOA protocols and formats to those of
existing applications and systems. For example, an adapter for
SAP converts from SOA-encoded XML-over-Hypertext
Transport Protocol to SAP’s existing business application
programming interface formats and remote function calls.

Services implemented by pre-
defined SQL or XML
queries or as database stored
procedures

DB2 in conjunction with WebSphere Application Server.
Parameters for the query come from an SOA operation’s input
message, and the result provides the output message.

Services implemented using
Java classes and EJBs

WebSphere Application Server

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005756

definition; a service has a well-defined interface

(with a set of messages that the service receives and

sends and a set of named operations or verbs), an

implementation of the interface, and, if deployed, a

binding to a documented network address. Exam-

ples of services falling within the scope of our

definition include a message-driven application that

processes WebSphere MQ messages, a set of CICS or

IMS transaction programs, and a Java class.

A Web service is a service that, at minimum, defines

its interface by using the Web Services Description

Language (WSDL)
15

and is accessible by using a

protocol that is compliant with Web Services

Interoperability (WS-I).
16,17

Because automatic

transformation between Web-service constructs and

more traditional approaches to defining services (for

example COBOL, C, and Java) is a feature of the IBM

runtimes and tools, the terms ‘‘service’’ and ‘‘Web

service’’ are often used interchangeably.

Our programming model and architecture do not

burden programmers with the complexity of writing

WSDL or the overhead of using SOAP (Simple

Object Access Protocol) and HTTP (HyperText

Transport Protocol). Programmers using Java can

build and use Web services relying only on Java

interfaces and classes; COBOL programmers can do

the same while relying solely on COBOL transaction

programs. The runtime architecture optimizes

bindings for service access, using Java Remote

Method Invocation over Internet Inter-Orb Protocol

(RMI-IIOP) or JMS. These optimizations are trans-

parent to programmers. Application development

tools automate the generation of WSDL from

COBOL, C, Java, and so forth. The IBM SOA

supports standards, however. The WSDL is avail-

able for exchanging interface information, and a

WS-Interoperability binding is available for com-

munication.

An evolving component model
Most of the literature on Web services, especially

standards, focuses on service interfaces and their

use; this paper focuses instead on the programming

model for implementing services and assembling

them into solutions. A component model simplifies

the process of building and assembling services.

Logically, a component is defined by the set of six

values listed in Table 2.

The programming model offers two formats for

component definition. The first is a control file: this

is a document that, by reference, associates all the

parts of the component. For example, referring again

to the six values in Table 2, the file references the

WSDL definition (i.e., the interface provided), the

Java class that implements the component (the

implementation artifact), the associated policy

documents (policy assertions), and so forth. These

can be references to the file system, class path,

source code control system, or Web URLs (uniform

resource locators). The control file format gathers

several individual programmer-developed artifacts

into a collection that comprises the component.

Application development tools aid in defining the

control file. The second format uses pragmas: these

are structured comments specifying the same

information, but contained within the body of a

single source file. Each component type has an

associated source file format for its implementation

artifact, for example a Java file or an SQL

(Structured Query Language) file. WebSphere Rapid

Deployment is a tool that simplifies defining a

service in Java by using the pragma format. The

annotations supported in WebSphere Rapid De-

ployment can generate all the individual elements

comprising a component from a source file con-

taining pragmas. For example, structured comments

in a Java source file can indicate which Java

methods will become Web-service operations in the

generated WSDL defining the component’s service

interfaces. We will illustrate this concept further in

the discussion of individual component types.

Component types and simplifying development

Before the architecture described herein, our pro-

gramming model and tool experience was focused

on the infrastructure, as (the tongue-in-cheek)

Figure 2 illustrates. Our tools would demand,

‘‘Which type of Enterprise JavaBean do you want to

build?’’ This exasperating question evaded the

programmer’s true intent: to implement an element

of a business solution, for example, converting

documents from one format to another. The

programming model presented here enables devel-

opers to define business logic without being

concerned with what the business logic becomes

upon deployment.

To achieve this transparency, we introduced an

extensible set of service component types, each

suited for a developer with a given set of skills who

performs a specific task by using a certain tool

optimized for that task. For queries, the programmer

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 757

implements an SQL file; for document conversion,

Extensible Stylesheet Language Transformations

(XSLTs), and so forth. There is no need for the

developer to know that a Web service, EJB, or other

artifact is generated upon deployment. Each service

component type also supports templates: that is,

recurring design patterns for implementing services

within a type. The programming model and tools

support extension of a set of templates.

Figure 3 lists some service component types,

showing the relationship between more specific

types (at the bottom of the tree) and more general

types (at the top of the tree). Programmers build the

leaf elements of this tree, concentrating on the

problem to be solved and the tool for doing so, not

on the resulting artifacts. The focus is thus on the

skills of the developers and the concepts they

understand. The remainder of this paper elaborates

on this theme and provides detail on elements of the

taxonomy.

The basic types of service component

This section presents several typical component

types by way of illustrating the extensible set of

service component types just mentioned.

POJO and stateless SessionBeans

The most basic type of service component imple-

mentation is a POJO. JSR (Java Specification

Table 2 Six values that define a component

Interfaces Provided How one invokes the component; typically WSDL, although the
programming model and tools also support other languages.

Implementation
Artifact

The component’s executable to be hosted in a container at runtime; for
example, a Java file, BPEL document, SQL file, and so forth.

Policy Assertions Declaration of the services that the component expects the infrastructure (container) to pro-
vide. Each Web Services standard (such as WS-ReliableMessaging18 or WS-AtomicTransac-
tions) enables a service to document its requirements via WS-Policy extensions.19 The contain-
er reads the policy assertions and automates their implementation in a manner analogous to
container-managed transactions and security in J2EE. Programmers using the service may also
examine the policy assertions to determine how to correctly call the service. For example, the
policy assertions may document expectations about message signing and acceptable certificate
authorities.

Interfaces required

(optional)
The component’s dependencies on external services. Although a service’s implementation calls
the interface in the native way (for example, via a BPEL invoke or a JAX-RPC20 stub), docu-
menting its dependencies aids in application and solution assembly.

Resource Type

Managed
(optional)

Support for WS-ResourceFramework (WSRF), expressed by an XML Schema definition asso-
ciated with the component’s WSDL-defined interface; may also support other WSRF inter-
faces.21 All Web services, even stateless ones, manage state. Coupled with WS-Addressing,22

WSRF enables support for state within the service itself, mirroring the J2EE EntityBean model.

Valid Operation

Sequences

(optional)

An abstract process defining supplemental machine-readable information about a service’s cor-
rect usage, for example the order in which to invoke its WSDL-defined operations. For exam-
ple, modifyPurchaseOrder must follow createPurchaseOrder and cannot occur after
submitPurchaseOrder. Although this concept was introduced by BPEL, an abstract process
can be associated with any service.

Figure 2
Programmer impasse

Daddy, Mommy gave
me these documents
to convert.

What type of EJB do
you want to build?

Maybe you didn’t
understand the
question.
Your choices are
SLSB, SFSB, CMP
Entity, BMP Entity,
MDB...

1

You’re not very nice!
5

2

4
Um. I do not want to build
an EJB. You see,
Mommy gave me this...

3

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005758

Request) 109 defines the model and architecture for

implementing Web services in J2EE** (Java 2

Enterprise Edition).
23

WebSphere Studio can publish

a Java class through a Web-service abstraction. The

Java class runs in the Web container and has full

access to the J2EE programming model’s facilities.

The WebSphere tools and runtime automate the

conversion from SOA-encoded XML to the Java

interface and operations of the POJO and vice versa.

Programmers may also use stateless SessionBeans to

implement services. WebSphere Studio tools auto-

mate publishing a stateless SessionBean through a

WSDL/SOA abstraction.

WebSphere Rapid Deployment is a tool that sim-

plifies defining a service in Java by using the pragma

format described previously. Using an editor, a

programmer annotates the Java source file with

control tags derived from the XDoclet model.
24

These tags specify whether the component is a POJO

or a stateless SessionBean, the values for deploy-

ment descriptors (e.g., for a transaction model), and

operations that become part of the remote interface

and WSDL. Placing the file into a certain directory

causes ‘‘rapid deployment’’ of the service defined by

the annotations. The model is similar to the tool

support for JSPs and Java Web Start.
25

Application adapters
An application adapter is another very common

service component type. WebSphere Business In-

tegration (WBI), WebSphere Portal Server, and

WebSphere Information Integrator (WII) exploit a

common programming model and adapter portfolio.

An application adapter makes an existing system or

application look like a Web service or a JavaBean.

The functions performed by an application adapter

fall into three categories, which are described in the

following: protocol and connection adaptation,

message format adaptation, and sequence or oper-

ation adaptation.

Protocol and connection adaptation. Most existing

systems invoke applications or transaction programs

through remote procedure call (RPC) or messaging

protocols. For example, CICS uses the External Call

Interface and Advanced Program-to-Program Com-

munication (APPC); IMS uses various APPC and

other Systems Network Architecture (SNA) proto-

cols; and SAP uses Remote Function Call and

MQSeries messaging interfaces.

In the most primitive case, the application adapter

must simulate the inputs expected by an existing

terminal user interface: a terminal and a user. For

existing protocols, the application adapter imple-

Figure 3
Some service component types

Service Component

Process Component Mediation Adapter PortletData Service

Rule Set

XMLSQL Queries

Stateless SessionBeanPOJO

Business State Machine BPEL4WS Process

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 759

ments a connection manager and connection pool

following the J2EE Connector Architecture (J2C).

The connection manager pools connections for

efficiency and manages reuse across users and

transactions. It also provides global sign-on by

integrating with the application server’s support for

user credential mapping; in addition, it integrates

the legacy protocol’s transaction model with that of

the application server.

Message format adaptation. The existing system

expects inputs in a specific format, for example 3270

screen layouts, C ‘‘structs’’ (i.e., C programming

language syntax for defining data structures),

COBOL records, or a vector of name/value pairs.

The J2C model with WebSphere or Rational* tools

can import message or structure definitions from

existing systems.
26

The tools generate a trans-

formation artifact that converts from XML (or Java)

to the back-end system’s binary format. The set of

transformation artifacts can be deployed as a

SessionBean or Web service. The following example

typifies this message format adaptation logic.

A caller invokes an operation on a Web service

implementing the adapter pattern. The adapter does

the following:

� Calls the transformation artifact, for example, a

generated Java transformation class, to convert

from the XML input message to the back-end

system’s binary format, for example, a byte array

overlay for a C structure.
� Reads configuration information to determine the

transaction program (interaction specification) to

invoke by using the converted data.
� Accesses the connection manager to obtain a

connection to the back-end system. The connec-

tion manager returns the optimal connection,

supporting affinity and reuse for the user and the

transaction as well as other policies.
� Invokes the back-end application through the

connection, passing the verb and converted

message.
� Receives the response and invokes a transforma-

tion artifact to convert from the back-end message

format to the XML (or Java) format for the

response.

The result is returned to the caller.

Sequence or operation adaptation. In some cases,

neither protocol nor message format adaptation will

suffice. The adapter might require a highly custom-

ized approach, tailored to the existing system’s

nuances. It may modify the sequence of operations

to match that of the existing system, or it may emit

multiple messages to the back-end system in

response to a single input message carrying multiple

parameters. This level of adaptation is distinguished

by mappings that are more complex than one-to-

one.

CICS and IMS transactions
The abundance of transaction-oriented business

application programs (and data) for the CICS and

IMS environments can be rendered as service

components. New IBM-provided functionality and

tools unlock significant business value by weaving

these existing programs into the service-oriented

paradigm. The transactional style typical of IMS and

CICS programs lends itself to publication of these

programs as services and operations. Because these

applications are usually structured around verb-like

transaction programs, each of which receives a

message and responds with a message, it is natural

and intuitive to map a transaction to an SOA

operation and a message to XML.

CICS

Most existing CICS applications can be exposed as

Web services, provided they have a well-established

‘‘commarea’’-type interface. A commarea is a

formatted message buffer which programmers typ-

ically define for messages that a transaction program

receives and returns using COBOL, PL/I, or C. At the

protocol level, CICS Transaction Server for z/OS*

Version 3.1 supports SOAP 1.1 and 1.2
27

for Web

Services Interoperability (WS-I); optional plug-ins

add WS-Security (SOAP Message Security), and WS-

AtomicTransactions. Interaction styles including

synchronous interactions over Hypertext Transport

Protocol (HTTP) or Secure HTTP, WebSphere MQ-

based asynchronous interactions, and one-way

asynchronous interactions are supported.

Infrastructure components can examine and trans-

form entire SOAP messages, or specific SOAP

headers, through an easy-to-use runtime interface. A

complementary tool generates converters to map

between SOAP payloads and commarea structures.

It can also generate XSDs (W3C** XML Schema

definition language) describing the interface. New

XML-aware CICS applications can benefit from the

high-performance z/OS XML parser of the Enterprise

COBOL and PL/I compilers.

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005760

To let applications written in any CICS-supported

language access Web services offered on other

servers, the familiar EXEC CICS application pro-

gramming interface (API) is extended in a manner

that is very natural to a CICS programmer. The tools

enable CICS-hosted Web services to be published as

standard WSDL-described services, enabling sup-

port for standard Web-service requestor patterns. It

will be possible to provide standard WSDL descrip-

tions of all significant services provided by CICS

applications.

IMS

The IMS SOAP gateway affords the ability to

seamlessly expose existing and newly created IMS

application assets as Web services, in conjunction

with IMS Connect capabilities in IMS Version 9. The

rollout of the gateway will start with SOAP server

support for synchronous interactions over HTTP

and HTTPS (to enable the IMS application to receive

inbound service requests). Additional functions

such as SOAP client outbound support and addi-

tional Web Services protocols such as WS-Security,

WS-Atomic transaction, and WS-Endpoint Support

are expected. Future additions may include the use

of a WebSphere MQ-based asynchronous transport

and the ability for IMS to act as an ESB endpoint.

The mapping of an IMS transaction to a Web-service

operation is implemented by a collection of several

files: an XML-COBOL converter, a WSDL Web-

service interface definition, and an XML correlator.

The correlator relates the Uniform Resource Name

(URN) of the application to the name of the

associated XML-COBOL converter. The URN speci-

fies the appropriate data conversion for each

incoming SOAP message. The correlator also con-

tains protocol details enabling connection estab-

lishment between the SOAP runtime and IMS

Connect. An XML enablement utility in WebSphere

Studio Enterprise Developer generates these file

artifacts to repurpose IMS COBOL applications as

Web services.

A gateway tool automatically deploys server- and

client-side artifacts. From information in the WSDL

file, the tool automatically generates and deploys a

Java application, including an internal service file

and all Java beans in the SOAP Gateway server, to

invoke the IMS transaction. From the same WSDL

file, the tool also generates a Java SOAP client that

can run the IMS transaction by invoking the Web

service.

Enterprise Generation Language and other lan-

guages

The Rational software development platform defines

the Enterprise Generation Language (EGL) and a

supporting tool suite.
28

EGL is a classic fourth-

generation language that simplifies business appli-

cation development through abstract concept defi-

nition.
29

EGL generates Java code, and from Java, it

obtains its support for building Web applications

and Web services.

WebSphere supports JavaScript** within JSPs

through the extensible Bean Scripting Framework

(BSF).
30

BSF transforms scripting functions and

their parameters into Java bean operations within

the Java runtime, and vice versa. Because Java

beans inherently support Web services (via POJO

and JSR 109), one can program in a scripting

language and publish the result as a Web service.

Simplified data access through SDOs

SDOs are a fundamental concept in IBM’s SOA.
31

SDOs make developers more productive by freeing

them from technical details concerning how to

access particular back-end data sources, so that they

can focus on business logic. Currently, the pro-

gramming models for accessing Java Data Base

Connectivity (JDBC**),
32

a WSDL service, an EJB,

and so forth, from a Java program are similar, but

different enough to create difficulties. SDOs replace

these diverse data access models with a uniform

abstraction for creating, retrieving, updating, and

deleting business data used by service implementa-

tions.

SDOs define a uniform paradigm of data graphs to

access and manipulate data from heterogeneous

sources, including relational databases, XML data

sources, Web services, and enterprise information

systems. A data graph is a collection of tree-

structured objects that may be disconnected from

the data source. With SDOs, an application does not

connect to a data source directly. Instead, it accesses

an intermediary called a data access service (DAS)

and receives a data graph in response.

A DAS is an adapter that handles the technical

details for a particular kind of data source. It

transforms the data into an SDO graph for the client.

The client application interacts with the data graph

to get and change data. To apply an update to the

original data source, the application returns the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 761

updated graph to the DAS, which in turn interacts

with the data source. In general, the runtime

provides the implementations of the DASes, and

application development tools provide support for

the data graphs.

In addition, SDOs offer a meta-data API enabling

applications, tools, and frameworks to introspect the

data model (i.e., programmatically examine its

meta-data to determine its structure) in a uniform

way, regardless of its origin. The DAS translates

back-end meta-data to the standard SDO format.

Implementors can define SDO types using Java

interfaces, XML schema, or the Unified Modeling

Language** (UML**).
33

Simple Java types are valid

SDO types, saving a step for the Java implementor.

SDOs support both dynamic and static data access.

The dynamic model for SDOs (which is the default)

lets programmers get and set data elements in the

data graph by name. This is particularly useful when

the type of the SDO is not known at compilation

time. The client program or service queries the SDO

to learn its structure, then reads and updates any

element by name. For example, one could write a

generic SDO-access function and then populate it

with element-specific meta-data in order to access

individual SDOs. The static model employs named,

typed Java interfaces. Each data element has its own

individual ‘‘getter’’ and ‘‘setter’’ method. A tool

generates static interfaces from dynamic ones.

SDOs are important for data representation even if

there is no classic data source present. Examples of

this kind of usage include XML messages exchanged

with Web services, JMS messages, XML files, and

many others.

Figure 4 (in XML) shows the basis for the SDO type.

The Java interface in Figure 5, generated from the

preceding XML, illustrates the use of static inter-

faces.

The following examples—defining a data object

containing customer data—illustrate how easy it is

to define SDOs and use them with either Java or

XML. Storage is allocated for the data objects by

passing the SDO type definition to the SDO data

factory, a runtime component that instantiates SDO

data objects from SDO type definitions. The follow-

ing two examples show the creation of an SDO by

passing an XML schema namespace and complex

type name (Example 1) as the argument or a Java

interface class (Example 2) as the argument.

DataObject customer¼DataFactory.INSTANCE.
create(‘‘http://www.myvalue.com’’,

‘‘Customer’’); (1)

Customer customer ¼ (Customer)DataFactory.

INSTANCE.create(service.customerinfo.

Customer.class); (2)

After SDO instantiation, an implementation can

access the SDO. The following code sample shows

dynamic access to the customer SDO.

DataObject customer ¼ . . .;

customer.setString(‘‘customerID’’, customerID);

. . .

customer.setlnt(‘‘stockQuantity’’, 100);

. . . ¼ customer.getString(‘‘customerID’’);

. . .

. . . ¼ customer.getlnt(‘‘stockQuantity’’);

This code sample shows static access to the

customer SDO:

Customer customer ¼ . . .;

customer.setCustomerID(customerID);

. . .

customer.setStockQuantity(100);

. . . ¼ customer.getCustomerID();

. . .

. . . ¼ customer.getStockQuantity();

In Table 3 and Table 4, we further illustrate the

simplicity of the programming model promoted by

SDOs with examples of access to an XML file service

and to a relational database. These applications can

be seen to be quite similar, despite technology

differences. The application developer can focus on

business logic and let the service handle the

implementation details of updating a persistent data

store.

The simple example shown in Table 3 loads data

from an XML file into an SDO data graph, prints and

updates the data, then writes it back to a file. (The

business goal is to change ‘‘Adam’’ to ‘‘Kevin’’.)

Although complex relational-to-SDO mappings are

possible, the example shown in Table 4 uses a very

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005762

simple one: each database table is an SDO type, each

row in the table is an SDO data object, and each

column is an SDO property. The application logic is

the same: execute a predefined query to read the

database, print and update the data (change ‘‘Adam’’

to ‘‘Kevin’’), and save the changes to the database.

The database query returns two rows from the

CUSTOMER table.

What if another application had accessed the data-

base and changed values after our example appli-

cation had obtained its data graph? On a write

operation, the data access service examines the

change summary to determine how to apply that

update to the data source. The database can use

optimistic concurrency control to ensure that the

database last contained the value ‘‘Adam’’ before

this change (otherwise, another application might

have changed the data first, possibly requiring some

error recovery in the application). Some services

implement more advanced forms of optimistic

concurrency; the change history provides the

original values needed for those algorithms.

SERVICE COMPOSITION AND CUSTOMIZATION
Our programming model offers several ways to

compose new services from existing ones. Structural

composition is the assembly of modules and

solutions from existing services. Interfaces that a

service needs are ‘‘wired’’ to interfaces that other

services provide. This wiring metaphor is similar to

defining UML collaboration diagrams.

Behavioral composition is the definition of a

composite service, called a process, through a classic

procedural programming metaphor. The services to

call, the order, and the aggregation of the results are

defined. Processes are well-suited for business

workflows because of their state model, lifetime,

and transaction model. BPEL processes and BSMs

(to model complex, stateful business process con-

cepts like purchase orders or trouble tickets) are

examples of process components.

It is commonly thought that the main purpose of

SOA is to enable reuse. The composition model

allows programmers to find services that have the

desired interfaces and infrastructure policies and

aggregate them into new services. These new

services can themselves be composed. It is unlikely,

however, that a service can always be reused as is,

without customization or tailoring. When change is

needed, the current state of the art involves source

Figure 4
An SDO type definition in XML

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.myvalue.com">
 <element name="customer" type="Customer"></element>
 <complexType name="Customer">
 <sequence>
 <element name="customerID" type="string"></element>
 <element name="firstName" type="string"></element>
 <element name="lastName" type="string"></element>
 <element name="stockSymbol" type="string"></element>
 <element name="stockQuantity" type="int"></element>
 </sequence>
 </complexType>
</schema>

Figure 5
An SDO type definition in Java

public interface Customer {
 public String getCustomerID();
 public void setCustomerID(String customerID);
 public String getFirstName();
 public void setFirstName(String firstName);
 public String getLastName();
 public void setLastName(String lastName);
 public String getStockSymbol();
 public void setStockSymbol(String stockSymbol);
 public int getStockQuantity();
 public void setStockQuantity(int stockQuantity);
}

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 763

code modification. Our SOA programming model

also enables building services and modules that

programmers can customize without source code

modification by using templates, patterns, tailoring,

mediations, and the strategy pattern.
34

In the strategy pattern, a variable that is computed at

runtime selects one of several possible conditional

execution paths. We extend the strategy pattern so

that this computation can be implemented by

evaluation of a rule or by execution of separately

supplied program logic. This pattern helps us define

reusable software components that can be easily

tailored by a less-skilled person without having to

analyze, change, recompile, and redeploy the source

code.

Structural composition: wiring, assembly, and
mediation

This section discusses collections of services, their

connections, and the ESB.

Connections and modules

In structural composition, services document the

required interfaces to be provided by other services

(imports) and the interfaces they offer (exports), so

that a developer can wire them together. Wiring—

defining logical connections from imports to ex-

ports—is done by a software tool with an asset view,

such as that shown in Figure 6. The wiring

approach improves the usability of a visual pro-

gramming tool. Instead of typing the name of the

reference used by an interface, the programmer

simply places a wire (draws a line) connecting the

output of one interface to the input of another

interface.

A collection of services wired together into a bundle

is called a module. Like a service, a module can

declare imports and exports and be wired into a

larger assembly. Wires defined at assembly time are

not satisfied until, at runtime, they are bound to

deployed component instances.

In summary, programmers implement services that

define the interfaces they implement and require.

Programmers can assemble modules from service

components and document the service interfaces

that a module exports and imports. The model is

recursive; modules can aggregate other modules.

Table 3 An XML file service

,customers xmlns¼‘‘http://customers.com’’.
,customer SN¼‘‘1’’ firstName¼‘‘Adam’’/.
,customer SN¼‘‘2’’ firstName¼‘‘Baker’’/.

,/customers.

Define the XML file to be read as a root
data object corresponding to the root XML
element, and a many-valued customers
property. The customers property contains
one data object for each customer element in the
XML file. Each customer has two properties:
SN and firstName.

DataObject root¼xmlService.load(InputStream); Read the file data.

Iterator i¼root.getList(‘‘customer’’).iterator();
while (i.hasNext())f

DataObject cust¼(DataObject) i.next();
String name¼cust.getString(‘‘firstName’’);
System.out.println(name);

g

Walk through the list of customer data objects
and print the first name for each.

DataObject customer1¼root.getDataObject(‘‘customer[1]’’);
customer1.setString(‘‘firstName’’, ‘‘Kevin’’);

Set the firstName property of the first
customer data object to Kevin. The
middleware updates the change summary
(not shown) to indicate what data was
changed.

xmlService.save(OutputStream, root); Write the data objects to the file.

,customers xmlns¼‘‘http://customers.com’’.
,customer SN¼‘‘1’’ firstName¼‘‘Kevin’’/.
,customer SN¼‘‘2’’ firstName¼‘‘Baker’’/.

,/customers.

The result is an updated XML document.

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005764

Mediations

A mediation service defines the ‘‘behavior’’ of a wire

and is invoked by the ESB whenever a message

traverses the wire. Mediations typically do one of

the following; content-based routing, transforma-

tion, augmentation, or ‘‘side effect’’ operations:

1. Content-based routing—The mediation routes the

message to one or more alternative destinations

based on its content. For example, it may route a

message to the proper credit card processor,

based on message payload.

2. Transformation—The mediation transforms

messages and maps operations, adapting the

required interface to the implemented interface.

3. Augmentation—The mediation retrieves addi-

tional information to put the message into the

form expected by the target service.

4. ‘‘Side effect’’ operations—The mediation performs

an extra operation needed by the infrastructure or

by an enterprise policy, beyond that specified in

the data payload. For example, it may log

financial messages exceeding a certain value.

This policy can be implemented at the infra-

Table 4 Access to a relational database

(A) Database prior to execution of application logic

CUSTOMER ID
(int, primary key)

CUSTOMER FIRSTNAME
(String)

CUSTOMER LASTNAME
(String)

1 Adam Smith

2 Baker Street

(B) Application logic

DataObject root¼rdbService.get(); The rdbService queries to obtain data from the
database.

,ROOT.
,CUSTOMER ID¼‘‘1’’ FIRSTNAME¼‘‘Adam’’ LASTNAME

¼‘‘Smith’’/.
,CUSTOMER ID¼‘‘2’’ FIRSTNAME¼‘‘Baker’’ LASTNAME

¼‘‘Street’’/.
,/ROOT.

The same data could have been equivalently
expressed in XML.

Iterator i¼root.getList(‘‘CUSTOMER’’).iterator();
while (i.hasNext()) f
DataObject cust¼(DataObject) i.next();
String name¼cust.getString(‘‘FIRSTNAME’’);
System.out.println(name);

g

Print each customer’s first name.

DataObject customer1
¼root.getDataObject(‘‘CUSTOMER[1]’’);

customer1.setString(‘‘FIRSTNAME’’, ‘‘Kevin’’);

Set the FIRSTNAME of the first data object to
Kevin. The middleware updates the change
summary (not shown) to indicate the change.

rdbService.update(root); Write the updated data to the database.

(C) Database after execution of application logic. Note that row 1 has been updated.

CUSTOMER ID
(int, primary key)

CUSTOMER FIRSTNAME
(String)

CUSTOMER LASTNAME
(String)

1 Kevin Smith

2 Baker Street

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 765

structure level without revising the affected

applications.

Mediations are first-class services with supporting

tools. WebSphere MQ Integrator supports powerful,

complex mediations; for example, one may chain an

augmentation, transformation, and routing media-

tion. Programmers can also implement mediations

using the Web-service capabilities in WebSphere

and other products.

THE ENTERPRISE SERVICE BUS

The ESB performs a variety of functions in the

programming model, for the programmer, assem-

bler, deployer, or administrator. In structural com-

position, the designer wires compatible service

interfaces together. After deployment, those wires

traverse the ESB. Each wire has a mediated

destination (for point-to-point messaging) or topic

(for publish/subscribe and event-based messaging,

including JMS and the evolving WS-Eventing
35

and

WS-Notification
36

standards).

The deployer establishes communication paths

between services by defining wires and attaching

appropriate mediations to them. To create an event-

driven service, one connects an import to a topic

with a filter. To make a service emit an event when

called, one connects an export to a topic. These can

be changed by an administrator.

Physically, the ESB backbone consists of WebSphere

Platform Messaging, WebSphere MQ, and Web-

Sphere MQ Integrator nodes. ESB endpoints are on

WebSphere and other servers. Thus, a mediation

‘‘on a wire’’ can run in an ESB endpoint container

with a local quality of service. With its multiple

protocols and formats (including WS-I, IIOP, and

MQSeries), the ESB supports persistent and transient

messages and events, as well as transactional

sending and receiving of messages.

Behavioral composition: Process components

This section introduces two typical kinds of process

components: BPEL processes and BSMs.

Figure 6
Wiring to connect service components

Implements

Requires

Implements

A

B

B

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005766

BPEL is a traditional approach to workflow that

builds on SOA and ESB. Programmers often think of

a workflow process as an action or ‘‘verb,’’ for

example: CreatePurchaseOrder or OpenAccount.

Execution of the verb may take multiple steps and

paths, and it may synchronously or asynchronously

invoke many Web services, Java classes, or EJBs.

If a workflow process is a verb, then as a

complementary process, a BSM is a noun that

identifies a thing, such as a purchase order, trouble

ticket, or life-insurance-policy application. Here a

verb, such as createPO or cancelPO, instead of

being a separate workflow process, is an operation

upon the thing. This model allows BPEL processes

to be invoked in the operations on the BSM. Neither

approach—BPEL or BSM—is superior. Rather, they

are functionally equivalent service abstractions. We

offer a choice to ensure a natural fit for the task at

hand and the programmer’s skills.

BPEL-based business processes

A process is represented by a directed graph of

activity nodes representing a single business activ-

ity, for example, a ‘‘quick loan’’ service in a banking

business. Processes are classified as short-running

or long-running. Short-running processes have a

single transaction per process and can be defined by

using basic process choreography. Long-running

processes persist in their execution state in a

database. They require advanced process choreog-

raphy and support transactions at the activity level.

They may include compensations to roll back

partially completed work in the event of a failure for

long-lived processes that cannot rely on the resource

locking mechanisms of transaction managers or for

operations that lack transaction support.

The business process choreography container in

WBI Server Foundation hosts business processes,

that is, workflows, written in BPEL, which is

described extensively elsewhere. Here we summa-

rize only a few of its features and extensions:

� Incorporating people into processes—Humans per-

form some of the steps in a typical business

process, including complex context-aware situa-

tions of assigning work to people and the ‘‘four

eyes principle,’’ where a second approval step can

be performed by any approver except the first

approver. The business process choreography

engine and the WebSphere Studio Application

Developer—Integration Edition tool support in-

corporating human tasks into the workflow.
� Embedding processes into J2EE and using Java as a

first class language within a process—IBM and

BEA Systems, Inc. are proposing Java extensions

for BPEL, including BPELJ, which would let

programmers use Java to implement activities,

formulate BPEL expressions, and manipulate work

data within a process.
37

� Quality of service extensions—These include the

ability to fine tune transaction boundaries or

produce audit logs needed by production sys-

tems.
� Integrating the business process choreography

engine with the transaction engine and activity

service in WebSphere—Future integration activ-

ities are planned for WS-Coordination, WS-Atom-

icTransactions, and WS-Business Activity.

A visual editor in the Rational/WebSphere tool suite

can be used to build, test, and deploy BPEL-

implemented business processes as services. The

model can also import service interfaces into an

asset view, making the interface operations avail-

able for invocation from the process.

BSMs

A BSM has an associated state machine definition

that is in a specific state at any given time. A

purchase order, shown in Figure 7, is typical of

objects that are readily modeled by a BSM, objects

that undergo several well-defined state transitions

during their life cycle.

The nodes in Figure 7 (rectangles) represent

possible states of the BSM from the time that it is

created until it is archived. In this example, the

purchase order may be in the state Ready, inAp-

proval, Purchased, Canceled, Shipped or Deliv-

ered. The arcs (arrows) represent events that can

occur. For a BSM implemented by an EJB, an event

is an operation on the EJB’s WSDL port type or

remote interface. The current state determines

which events (operations) are allowed. The runtime

throws an exception if a caller attempts to invoke an

invalid operation. One can also query the current

state to determine an operation’s validity.

When an event occurs (i.e., an operation is called),

the BSM changes to a new state and invokes the

associated operation or method, shown diagram-

matically by an arc. Guards may prevent exiting or

entering a state until some condition is fulfilled, and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 767

actions may be performed on state entry and exit.

For example, a guard could ensure that only

purchase orders under $10,000 can change from

Ready to Purchased. In Figure 7, the BSM in the

Ready state has two possible events (enabled

operations): cancel and purchase(approval Re-

quired).

When a caller invokes the purchase(ApprovalRe-

quired) operation, the BSM framework does the

following. It determines if the operation is valid for

the current state and evaluates a state exit guard, if

one exists. The guard is a private operation on the

BSM, for example, a Java method. If the guard

evaluation returns ‘‘true,’’ the BSM can exit the

current state. The framework then executes the

action associated with the transition, in this case

doApprovalAction() (a private operation on the

BSM). For example, this operation could send e-mail

to a sales manager or simply invoke an operation on

another SOA component, similar to the BPEL

‘‘invoke’’ activity. It then evaluates the guard

associated with state entry, if one exists, and enters

the new state.

A BSM is an EJB EntityBean that may use container-

or bean-managed persistence and that may be

persisted to any supported back-end system. It may

have a WSDL-defined Web-service interface. Like

BPEL processes, BSM instances are stateful. The

runtime provides a stateless SessionBean/WSDL

wrapper for instances of a specific type, with the

guards and state and private methods executing on

the EntityBean.

To implement and test a BSM, a developer creates

UML state diagrams, utilizes a visual design tool and

wizards, or edits an XML source file defining the

state machine, state data, transitions, and embedded

Java for operations and guards. Implementation

includes defining the state machine, its initial state

(e.g., Created), terminal state (e.g., Archived),

transitions, public operations, transition actions

(methods and operations), and guards. The tran-

sition actions and guards must also be implemented,

aided by a simple tool that assists in querying state

data.

Customizing services

A customizable service is one that can be tailored for

reuse in a new context or within an assembly, or

adapted to evolving business policies, without

changing the source code. A point of variability is a

first-class programming model construct that defines

a location in the code intended for subsequent

customization, where the program logic can be

varied, for example, by applying a rule or calling an

external service that conditionally returns a value

specifying one of several execution paths. Our SOA

programming model introduces customizable ser-

vices and points of variability, building on the

strategy pattern and mediations, to facilitate the

creation and usage of customizable services.

For example, if a programmer wants to implement a

decision that determines if adding a line item to a

purchase order is valid, then, instead of coding

‘‘if . . . then . . . ’’ statements within the purchase

Figure 7
A business state machine

created

purchase
approvalRequired
doApprovalAction

 approved
doPurchaseAction

InApproval

Purchased

Shipped

archived

shipped
doShipAction

orderReceived

cancel

archive

cancel
doCancelPurchaseAction

cancel
doCancelApprovalAction

archive
doArchiveAction

Canceled
event timer (1 month)/archive

Ready

Delivered
event timer (2 months)/archive

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005768

order Java file, the programmer might implement

the method as follows:

Boolean addLineItemToPO(PurchaseOrder p,

LineItem li) f

//Locate the the customizing services

POPolicies p ¼
context.lookUp(‘‘lineItem

ValidityRule’’);

if (p.isValidLineItem(li) ¼¼ false) f
return false;

g

g/Implement the addition logic below.

In this example, the POPolicies.isValidLineItem()

logic is moved to the wiring from the main

component and invoked by an operation on a

service to which the purchase order service is wired.

The logic is simply a service look up (perhaps JAX-

RPC, CICS COBOL, BPEL, or a business rule written

in a rule language) and operation invocation. By

being externalized, the policy can be evaluated post-

development, for example, by wiring, administra-

tion, configuration, or operation of a separate

program. This straightforward use of the strategy

pattern is a convention for good service design. The

customizer, mediator, and service being customized

are all arbitrary SOA services of any valid compo-

nent type. This multiple-component example (cus-

tomizer, service, and mediation) does not

necessarily imply a long path length, as the runtime

optimizes execution for co-resident components.

For example, a routing mediation on the wire could

choose a variation of POPolicies, based on date and

time (to vary policies according to season), purchase

order value, customer identity, and so forth. Our

tools make such changes easy for a nonprogram-

ming business analyst. The WBI tools support

decision tables and ‘‘if . . . then . . .’’ rules. Policies

can be defined in IBM Workplace and WebSphere

Portal Server, or changed at runtime by means of

rule templates. For more information on customiz-

ing software behavior with rules, see Reference 38.

SERVICES AND DATA

Immense quantities of business-critical information

residing in databases can be incorporated in service-

oriented applications. One can publish SQL queries

and stored procedures as Web services, federate

XML data sources with databases, and invoke Web

services from SQL and stored procedures, aided by

the capabilities depicted in Figure 8.

WebSphere Information Integrator (WII) enables the

database to consume Web services. It can make data

sources described by XML schema accessible

through standard SQL queries, the form familiar to

DB2 programmers. The tools and runtime convert

XML data sources to relational tables. A set of

adapters provides a common WSDL-described in-

terface for accessing XML information from WII. The

basic SQL SELECT, UPDATE, and INSERT commands

are integrated with compatible Web-service oper-

ations.

DB2 can invoke operations on Web services, both in

queries and stored procedures, from SQL. Tools

bridge between Web services and SQL data models

by exposing Web-service parameters and operations

as nicknames or SQL user-defined functions for the

SQL programmer.

To enable developers to publish enterprise infor-

mation as Web services without programming,

WebSphere tools expose SQL queries, database

stored procedures, and XML Extender as Web

services. Some of the supported scenarios are the

following:

1. A Web client sends a Web-service request, which

WebSphere and DB2 convert to SQL for process-

ing in the database; message conversion is

governed by mapping files, or by default, well-

defined mappings between SQL and XML.

2. SQL, SQL/XML, and stored procedures are

published and invoked as Web services through a

feature of DB2 in conjunction with WebSphere

Application Server. In the future, XQuery
39

requests will be supported in the same manner.

3. Stored procedures incorporating application

code, SQL, SQL/XML requests, and later XQuery

are published as Web services and can access

Web services.

Figure 9 illustrates a simple Web service (written in

DB2’s DADX [Document Access Definition Exten-

sion]) that generates an SQL request to the database.

This example defines an operation, listDepart-

ments, on a WSDL Web service. The WebSphere/

DB2 tools automate the generation of the WSDL/

XML and the mapping between the input WSDL

message and the SELECT predicate.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 769

Figure 10 illustrates a response with default XML

tagging (although explicit formatting is also sup-

ported, e.g., through SQL/XML). The tools generate

an XSD to define the columns specified by the

SELECT command and a message expressing the

output of listDepartments as a set of rows.

In the future, the standards WS-Transaction
40

and

WS-Security
8

may be supported. For more informa-

tion on DB2 Web services, see References 41–43.

Standardization is underway for defining Web-

service access to XML Metadata Interchange and

relational databases and files, taking into consid-

eration the Web Services Resource Framework.
44,45

SERVICES AND USER INTERFACES

This section highlights a few of the major concepts

involved in viewing user interfaces as services. User

interfaces (UIs) occupy the ‘‘view’’ layer in the MVC

pattern. UI technologies can render information on

devices ranging from smart-phones to browsers and

rich clients capable of considerable client-side

processing. IBM middleware and tools connect

view-layer UI technologies to model-layer Web

services.

In an SOA, the environments hosting UI components

are also abstracted as containers that provide well-

known sets of infrastructure services. Our three

major UI containers are the basic Web browser, a

Web browser augmented with JavaServer Faces

(JSF)
46

and dynamic HTML,
47

and a workplace

client—the Eclipse rich client,
48

in addition to native

WebSphere Application Server client support.

Container services are augmented by supporting

technologies such as servlets, JSPs and JSP tags,

Apache Struts for page sequencing, JSF for advanced

page composition, and portlets to combine views of

multiple applications on the same page. UI code can

invoke business logic using SDOs, Web services,

and so forth.

UI development frameworks can simplify the

creation of complex user-facing applications. The

Struts project,
14

having a large developer commun-

ity and exceptional tools support, is an Apache

open-source project predating the Java Portlet

Specification, JSR 168.
49

Struts is a multipage MVC

framework for server-based UI development using

the servlet/JSP paradigm. A special version of the

Struts Version 1.1 library supports JSR 168 portlets

on WebSphere Portal.

JSF,
46

an MVC realization for Java Web applica-

tions, was recently standardized through the Java

Community Process. JSF builds incrementally on

earlier technologies. It is well-suited for portlet

Web Service
Wrapper
or User Defined
Functions

Figure 8
Information management – Web-service overview

H
TT

P/
SO

A
P

H
TT

P/
G

ET

WebSphere

HTT
P/

SO
AP

DB2 consumes Web-service data

DB2

DB2 provides Web-service data

Service Providers

DB2 Web Service
Provider

DADXDynamic
Queries

XML
Extender

Stored
Procedures

SQL
Applications

SQL

Tables

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005770

development, offering portlets and servlets, state

handling, validation, and ‘‘eventing’’ (asynchronous

notification of events to interested parties). A JSF

page has one or more local models that interact with

UI controls on the page. These controls render

outputs based on UI properties; sophisticated logic

ensures their presentation at the right location. The

client-side model can be wired into the ESB to send

and receive events. The JSF controls process each

model event affecting a page and update the

rendering. A mechanism routes user input to the

right UI control to cause an appropriate model

event. JSF also includes a library of predefined UI

controls (notebook, tree, table, graph, etc.) and a

‘‘what-you-see-is-what-you-get’’ tool. WebSphere

Studio includes additional JSF widgets and a JSF-

based visual layout wizard for portlets that connect

JSF controls to SDOs. Local caching of SDO data

graphs improves the user experience.

Java Widget Library (JWL), an extended widget set

usable by portal and portlet programmers, adds

JavaScript client-side processing to JSF and will be

supported by Rational Studio. Updating the view

locally on the client saves round trips to the server,

shortens response time by orders of magnitude, and

dramatically improves the user experience. Portlets

using JWL can run on WebSphere Portal just like

any other portlet.

Portals provide first-class UI support in the SOA.

Portlets, their basic building blocks, let developers

focus on the unique aspects of their application,

while the middleware handles common functions

Figure 10
Results of DB2 Web service for an SQL request with default XML tagging

<?xml version="1.0" ?>
<xsd1:listDepartmentsResponse xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<return>
<xsd1:listDepartmentsResult xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<listDepartmentsRow>
 <DEPTNO>A00</DEPTNO>
 <DEPTNAME>SPIFFY COMPUTER SERVICE </DEPTNAME>
</listDepartmentsRow>
<listDepartmentsRow>
 <DEPTNO>E21</DEPTNO>
 <DEPTNAME>SOFTWARE SUPPORT</DEPTNAME>
</listDepartmentsRow>
</xsd1:listDepartmentsResult>
</return>
</xsd1:listDepartmentsResponse>

Figure 9
Simple SQL query from a Web-service interface

<?xml version="1.0" encoding="UTF-8"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx" >
<documentation> Simple DADX example that accesses the SAMPLE database. </documentation>
 <operation name="listDepartments">
 <documentation> Lists the departments. </documentation>
 <query> <SQL_query>SELECT * FROM DEPARTMENT</SQL_query> </query>
 </operation>
</DADX>

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 771

for life-cycle events, per-user customization, aggre-

gation, and integration with other components.

A portal’s powerful integration of the UIs of several

back-end services into a centrally managed UI can

unify the fractured IT (information technology)

infrastructure and give users a single view of IT

services with a single UI to master. This type of

integration is sometimes called ‘‘integration on the

glass,’’ that is, integration of what is presented to the

end user, as opposed to integration at the applica-

tion layer. Applications originally designed sepa-

rately can be wired together to enable new

functions. For example, an e-mail portlet wired to a

collaboration portlet could filter the ‘‘in’’ box to

display received e-mail only when the sender is

online and available for a chat, a capability which

might be absent from both original applications.

A surprising consequence of the portal model is

improved agility for on demand businesses. Ad-

ministrators become application integrators who

create new applications without programming, by

defining new pages, adding portlets to them, wiring

the portlets together, and setting entitlements (i.e.,

what services a portlet is allowed to access.) A self-

service portal lets users adapt their work environ-

ment to their unique needs. The portal architecture

frees application developers to concentrate on

building new business value.

The service interface and protocol for a local portlet

is defined by the Java Portlet Specification.
49

Web

Services Remote Portlet (WSRP) is the standard for

remote rendering of portlets, enabling a portal to

aggregate content from multiple sources.
50

WSRP extends the integration capabilities of Web

services to presentation-oriented components and

enables the view layer to be shared across plat-

forms, implementation languages, and vendors.

Content and application provider services can be

discovered and plugged into standards-compliant

applications without any extra programming effort.

Instead of deploying each application or portlet on

every server that intends to use it, there are obvious

advantages to sharing applications across network

boundaries. WSRP enables easier administration.

Instead of managing local deployments of pluggable

components, portal administrators can browse a

registry for WSRP services to offer; users benefit

from timely availability of new services and content

integration on demand. Load is distributed across

multiple servers and infrastructure cost is reduced

because applications can share hosting infrastruc-

ture. For example, distributing just the presentation

layer (via WSRP) of a back-end banking application

preserves the application provider’s secured com-

puting environment, while enabling users to interact

with the shared UI.

An additional advantage to sharing applications is

control over content presentation. Content and

application providers can vastly expand their reach

to new users, as portals redistribute content.

SERVICES AND MANAGEMENT
This section discusses management using Web

services (MUWS) and management of Web services

(MOWS). The Web Services Distributed Manage-

ment (WSDM) technical committee in OASIS is

defining the architecture for both.
51,52

MUWS is the

application of Web service technology to manage

distributed systems and applications. MOWS in-

volves the management of Web service-based

applications and services.

MUWS

MUWS views a systems management agent as a

kind of application adapter that wraps existing

management APIs, artifacts, and protocols (analo-

gous to how SOA integrates distributed applica-

tions). Subsystems typically support multiple

standard management protocols to interact with

their resources. Application adapters encapsulate

these APIs in a WS-I abstraction. A MUWS agent

could, for example, surface the management scripts

that start or stop a system, add or remove users, and

so forth, as Web-service operations on a WSDL

interface. The main benefits are interoperability and

simplification. Normalizing diverse management

approaches into a single WSDL XML type space and

communication protocol lets programmers skilled in

generic Web services build software to interact with

managed systems without mastering all the unique

type spaces and protocols.

MUWS can also simplify complex business systems

when both business and management events are

invoked by Web services. Some typical IT events

that occur when an employee joins an enterprise are

‘‘process employee contact information,’’ ‘‘publish

revised organization chart,’’ and ‘‘update outsourced

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005772

Web services for payroll and direct deposit.’’ These

are business events. ‘‘Issue an X509 certificate,’’

‘‘create an e-mail account,’’ and ‘‘allocate workspace

on a file server’’ are management events. It is

obviously advantageous to orchestrate all of these

events from a single business process.

WSDM management, using Web Services, builds on

the standards WS-ResourceFramework, WS-Event-

ing and WS-Notification by introducing manage-

ability capabilities. These include integrated sets of

operations, properties, events, meta-data and policy.

The operations include Web-service operations for

managing the resource, for example, a printer,

application server, or operating system. Properties

include reading or reading and writing XML

elements that describe the state of the resource, such

as up, down, average CPU utilization, and average

response time. Events include notifications the

resource may emit, such as ‘‘CPU critical’’ or

‘‘maximum logons exceeded.’’ Meta-data and policy

include additional information on how to interact

with the service, (e.g., using WS-ReliableMessaging

and WS-Security), and on its properties, operations,

and events (e.g., ‘‘CPU utilization is between 0 and

100 and the averaging interval is the past 10

minutes’’).

WSDM defines common base functions that all

managed systems and resources must support and a

standard event format, based on Common Base

Events (CBE), for interoperable, correlatable man-

agement events. The evolving WSDM standards will

become increasingly prevalent in MUWS.

The Integrated Solution Console (ISC), built on

WebSphere Portal Server, offers an environment for

building systems and application management

workspaces.
53

Portlets running in ISC can use Web

services to interact with the Web-service interfaces

of managed systems.

Tivoli* products are moving to business process

choreography for complex management processes

such as software change management and user

identity provisioning. Evolving standards in this

area include the IT Infrastructure Library, which is

codifying a set of best practices for IT manage-

ment.
54,55

The Common Event Infrastructure (CEI) provides a

common base schema and CBE taxonomy (now

standardized in WSDM), a toolkit for adapting

existing IT event logs to the CBE format, and

integration with the ESB to publish events. Mon-

itoring products are adopting the CEI to gain an

integrated, correlated view of IT infrastructure,

application, and business events.
56,57

CEI is a key

element of business performance management.
58

Management of Web services
All containers that host Web services provide

systems management interfaces for configuring,

operating, and monitoring the services they contain.

In most cases, the container exposes the service

management capability (an API or user interface)

within the management of the container as a whole.

For example, WebSphere Application Server expos-

es the Mbeans (management beans) and UI func-

tions of JMX** (Java Management Extensions) in

the WebSphere Console for managing Web services

in hosts. This allows system administrators familiar

with managing the environment to extend their

skills and tools to include Web services, which in

many cases are defined ‘‘bottom-up’’ from the

existing artifacts that the administrators manage.

Tivoli monitoring and management products are

evolving to provide an end-to-end view of Web-

service solutions, the services they combine, and

communication between the services. WSDM de-

fines a common set of capabilities—interfaces,

events, and properties—that all Web services or

their containers should support in order for all Web

services to have the same core set of functions. This

approach also enables the composition of business

and management functionality into a single end-

point, eliminating the need for additional service

discovery.

DEVELOPMENT TOOLS
IBM provides tools for the entire software life cycle

to help realize the SOA vision. Within the broader

context depicted in Figure 11, this paper highlights

several tools with particular SOA affinity, and

Table 5 maps specific tools to the on demand

software life cycle.

Business process monitoring
Agile businesses need the ability to monitor and

visualize business activities. For example, a factory

manager may want to compare new orders with

fulfillment or monitor inventory levels and idle

capacity; a financial officer may want to scrutinize

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 773

receivables, payables, and capital expenditures. In

the past, this has been quite difficult. The long lag

between obtaining key financial metrics and being

able to act upon them has hampered profitability or

made it impossible to take needed actions in a timely

manner.

An SOA can help address these needs by moving the

focus to higher-level business processes in a

discipline called business performance manage-

ment.
58

The objectives of this discipline are to define

service-level objectives in business terms and then

automate their IT realization. A key IBM offering for

business performance management is WBI and its

tool, the WBI Modeler.

WBI Modeler is a visual process editor that helps

build a choreographed business process in five

simple steps, shown in Figure 12. This editor allows

visual debugging of local or remote process in-

stances. One can view and change process variables,

set breakpoints before or after execution of an

activity, and debug Java code. The resulting

artifacts, in the BPEL language, are service compo-

Figure 11
Life cycle of an on demand business solution

Integration

Focus on
What Is Core
and
Differentiating

• Deploy without knowledge
 of underlying (virtualized)
 infrastructure
• Both on- and off-premise

• Monitor process for
 business and IT status
• Actions taken based on
 autonomic policy

• Business modeling
• Bridge to IT tools

• Component creation
 (new and legacy-based)
• Component customization
 and assembly

Se
rv

ic
e-

O
rie

nt
ed

 A
rc

hi
te

ct
ur

e

O
pe

n
St

an
da

rd
s

En
d-

to
-E

nd
 T

oo
ls

 S
up

po
rt

Infrastructure
Management

Conceive and
Modify
Business Idea

Define Model

Acquire and Map
to Infrastructure

Monitor and React

Implement Model

Table 5 Tools and technologies for the on demand software life cycle

Phase Tools and Technologies

Define Model WebSphere Business Integration Modeler, Rational Architect

Implementation Component types and patterns, BPEL, BPEL4J, JSR 170/Content Model, and
Business Rules

Acquire and Map to Infrastructure Solution Packaging, Solution Change Manager, Solution Configuration,
Tivoli Intelligent Orchestrator, Tivoli Provisioning Manager, Tivoli Identity
Manager, Tivoli Directory Integrator, WebSphere Identity Manager, Web-
Sphere Business Integrator, and DB2 Information Integrator

Monitor and React Common Event Infrastructure, Active Correlation Technology, Business
Process Management, and Business Workload Management

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005774

nents of the process type, previously described in

the section ‘‘BPEL-based business processes.’’

Rational tools

Spanning the spectrum of developer preferences and

conceptual styles, IBM’s Rational tools support two

modes for developing services: bottom-up and top-

down. An example of the bottom-up approach is the

new service wizard in WebSphere Studio Applica-

tion Developer, Integrated Edition. Here, the devel-

oper first decides what kind of technology to use to

implement a service: for example, an EJB, a

JavaBean, or an Enterprise Information System

connected via J2C resource adapters. The bottom-up

approach saves time because the developer need not

be concerned with the specifics of service details

and can incorporate existing artifacts into a service.

The wizard is extensible: any new source of services

can be imported and made available to developers.

Thus, a software vendor can rapidly incorporate a

new application into the SOA by creating a J2C

resource adapter and the corresponding resource

adapter description (RAR) file. IBM offers J2C

adapters for many common services, including

CICS-ECI, CICS-EPI, Host on Demand, and IMS.

These include a development license and commu-

nicate through IMS Connect and the CICS Trans-

action Gateway, respectively. IBM also offers an

adapter for SAP (mySAP.com). WebSphere supports

any J2C adapter that uses the J2C Version 1.0 API.

In addition, numerous partner-developed J2C

adapters are available. iWay, for example, offers 200

tested and certified adapters for use with Web-

Sphere.
59

Fifty additional adapters for WBI are

available that communicate through WebSphere MQ

messaging. Future support for J2C Version 1.5 is

anticipated.

A new service can also be created by using a top-

down approach. Here, an abstract service is first

created by using the service interface wizard to

generate an empty WSDL file. Focusing on the

abstract service rather than on software artifacts or

program code, the developer then uses a WSDL

editor to define the interface. The editor’s visual

mode makes it easy to visualize relationships—

services and their bindings, messages and their

parts, port types and their operations—or to view

the WSDL source. Finally, one creates an imple-

mentation. Here too, a tool called the service

skeleton wizard aids in the creation of an imple-

mentation, such as a Java or EJB implementation.

This tool reduces the opportunity for introducing

coding errors by generating a skeleton in Java that

matches the previously defined service interfaces.

The programmer can then use a Java editor to

implement the operation in Java by filling in the

skeleton.

ADVANCED CONCEPTS

This section discusses the infrastructure services of

the Web Services standards and the modeling of

stateful Web-service interactions.

Container and infrastructure services

A full treatment of the Web Services infrastructure

standards would require a complete paper on that

topic. This section provides some detail on the

abstract model that brings together infrastructure

services, WS-Policy, endpoint functions, and dis-

tinguished services.

The evolving set of Web Services standards (WS-*)

that build on WSDL, WS-Policy, and WS-Interoper-

ability/SOAP include WS-ReliableMessaging, WS-

Security, and WS-AtomicTransactions. Each speci-

fication introduces several optional elements, in-

cluding the following:

� Headers—These augment a message with infor-

mation for a specification; for example, a WS-

ReliableMessaging header identifies a conversa-

Figure 12
Five simple steps to build a choreographed business process

Create
Services

Create
Process

Choreograph
Process

Deploy
Process

Test and Debug
Process

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 775

tion and sequence number within it, and a WS-

Security header contains authentication tokens.
� Endpoint protocols—These may define extra op-

erations and specify the endpoint’s model for

processing them. For example, for reliable mes-

saging, it can specify what action to take on

receiving a duplicate or out-of-sequence message.

An extra operation could be a request for

retransmission, which is ‘‘extra,’’ relative to the

main business interface of the sending service.
� Distinguished services—These are specification-

defined Web Services that implement a well-

defined interface and semantics. For example, WS-

Coordination, WS-BusinessActivity, and WS-

AtomicTransactions define the behavior of a

coordinator with whom transaction participants

interact to begin and end transactions and

participate in two-phase commit protocols. WS-

Security introduces a Security Token Server (STS)

that issues and validates security tokens.
� WS-Policy extensions—These are typically schema

for specifying expectations and requirements for

infrastructure-provided services. A policy docu-

ment for security, for example, would indicate

which STS an endpoint supports, and a document

for transactions would specify endpoint support

for atomic transactions, business agreements, or

both.

Figure 13 illustrates the logic that might be found in

a typical business application to check for the

accidental double-posting of a bank transaction to a

bank account. Some of the housekeeping logic could

have been delegated to the middleware but is

nevertheless embedded in the application code.

Such applications are obviously very common, yet

fragile and prone to breakage as changes occur in

the computing infrastructure.

The implementor of a simple Web-service solution

would have to code numerous functions, including

header processing, endpoint protocols and extra

operations, and interactions with distinguished

servers. This naı̈ve approach has several disadvan-

tages. First, the resulting code is complex and

requires detailed, low-level understanding of WS-*

specifications. Burdening business-application pro-

grammers with this task decreases their productivity

and code quality. Second, placing infrastructure

code into applications reduces flexibility. Adding or

modifying the infrastructure services associated

with a service requires modification of the applica-

tion and retesting and redeploying the service or

solution.

A better solution, shown abstractly in Figure 14, is

for the application to exploit infrastructure services

provided by a container. Web services deployed in a

container are logically wrapped by a container-

provided outer shell. The runtime passes incoming

messages to the shell, which invokes container-

provided code, depending on what message headers

are present and what policies are associated with the

service. After header processing, endpoint protocols,

and interaction with infrastructure services are

completed, the shell passes the message to the

service implementation. The business logic only

receives business messages vetted by the infra-

structure, such as those with a valid security token

whose signatures have been checked and which are

not duplicates or out of order (as per the WS-

ReliableMessaging standard). The left path from the

implementation outbound shows the implementa-

tion before modification, when it does its own

message processing. The right path out of the

implementation shows the same implementation

after modification. In the latter case, the runtime and

shell provide ‘‘stubs’’ that are invoked when the

Figure 13
Typical application logic for infrastructure services

Security Header
Reliable Messaging Header
Atomic Transaction Header

SOAP Message

double deposit(Message m) {
checkForDuplicate(m.seqNo);
registerForTransaction(m.context);
isCAValid(m);
checkSignature(m);
updatePerformanceInfo();

balance += m.amount;

//… …
updatePerformanceInfo();
}

This is fragile, changes
over time,
is complex for business
programmers,
is error-prone,

Policy
Declarations

Implementation

•
•

•

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005776

service implementation in the container wishes to

send an outbound call or response to an operation.

The runtime intercepts the message to the stub and

performs the infrastructure protocols required for

message delivery. The container approach vastly

simplifies the task of building and deploying robust

Web services and increases the flexibility of these

services over time.

STATEFUL WEB SERVICES

The Web Services standards are evolving to better

model stateful interactions. The literature com-

monly claims that Web services are stateless, but

this is misleading or confusing, as we have already

shown that the process type of service component

(e.g., BPEL, BSM) explicitly models state. Even the

most narrowly defined service manages state data

when it accesses relational databases or invokes

existing applications. Thus most business applica-

tions—and the services comprising them—are in-

herently stateful.

The WS-Addressing, WS-ResourceFramework and

WS-ResourceProperties specifications provide first-

class support for stateful Web services. WS-Ad-

dressing associates XSD with a portType to make the

structures managed by a service explicit. For

example, if a portType supports creating a Customer

object and adding an address to a Customer, a

programmer would infer that customers have

addresses. WS-Addressing makes this kind of

structure explicit, eliminates guesswork, and pro-

vides additional information for looking up and

binding to services. WS-ResourceProperties intro-

duces WSDL operations for getting one or more

properties, setting one or more properties, and

querying properties.

Finally, many programming models—systems man-

agement, for example—are inherently stateful or

resource-oriented. Management protocols such as

Simple Network Management Protocol (SNMP) and

Common Management Information Protocol (CMIP)

model resources that have properties, operations,

and events. WS-Addressing and WS-Resource

Framework provide a Web Services abstraction to

model existing systems management infrastructure.

SUMMARY AND CONCLUSIONS

This paper is a synopsis of IBM’s programming

model in support of SOA, which is the fundamental

principle guiding our programming model, runtime,

systems and application management products, and

development tools. Programmers build services and

assemble them into modules, applications, and

solutions, all of which are services. Our runtime

products are increasingly built as a set of compo-

nents that offer their interfaces through services.

The intrinsic systems management capability of

software products (for example, the management of

WebSphere or operating systems) surfaces through

a service abstraction, and the end-to-end manage-

ment tools are solutions that orchestrate and drive

the management capabilities to support autonomics,

automation, provisioning, problem determination,

and so forth.

The paper has also explored the evolution from an

abstract SOA to a pragmatic component model for

packaging services, simplifying their implementa-

tion, and assembling the components. An SOA

describes services and their interfaces. Our pro-

gramming model defines how to implement ser-

vices, assemble modules, and build solutions using

service components. Supporting tools simplify the

building of specific component types. Components

are deployed into containers that automate qualities

of service, such as security, transactions, and

reliable messaging, upon which services rely. Pro-

grammers document their quality-of-service expec-

tations and requirements by associating policy

Figure 14
Use of container-provided infrastructure services

Security Header
Reliable Messaging Header
Atomic Transaction Header

SOAP Message

Check Certificate
Challenge

Before After

Container

Security

Reliability

Transactions

Ack
Retransmit

Wrapper

stub

Implementation

•
•

•

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 777

documents with components. This declarative

model for quality of services simplifies the devel-

opment of business services by keeping tedious,

error-prone logic out of the business component.

It has become increasingly difficult for any individ-

ual programmer, much less a nonprogrammer, to

master and apply the alarming proliferation of

software technologies, practices, tools, and plat-

forms effectively. Yet if business process trans-

formation is to succeed, a significant number of

nonprogrammers will need to use existing IT assets

to carry out their duties, and they cannot be

expected to learn the excruciating details of the

underlying technologies. This paper has described a

new SOA programming model that achieves a

separation of concerns so that persons with different

skill levels and different roles in the enterprise, not

necessarily IT professionals, can create and use IT

assets throughout every stage of the software

development life cycle. The result can be dramati-

cally improved business agility for the on demand

enterprise.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Massachusetts Institute of Technology, or
Object Management Group, Inc.

CITED REFERENCES AND NOTES
1. New to SOA and Web Services, IBM developerWorks,

http://www-128.ibm.com/developerworks/
webservices/newto/; Web Services Architecture, World
Wide Web Consortium (W3C) Working Group Note 11
(February 2004), http://w3.org/TR/ws-arch/.

2. N. Bieberstein, S. Bose, M. Fiammante, K. Joones, and
R. Shah, Service-Oriented Architecture Compass—Busi-
ness Value, Planning and Enterprise Roadmap, Prentice
Hall PTR, 2005.

3. Business Process Execution Language for Web Services
(BPEL4WS) Version 1.1 (February 2005), http://www.
ibm.com/developerworks/library/specification/
ws-bpel/.

4. Java Message Service Specification Version 1.0.2, Sun
Microsystems (November 1999), http://docs-pdf.sun.
com/816-5904-10/816-5904-10.pdf.

5. J2EE Connector Architecture Specification Version 1.5,
Sun Microsystems (November 2003), http://java.sun.
com/j2ee/connector/download.html.

6. W. Farrell, Introduction to the J2EE Connector Architec-
ture, IBM developerWorks (November 2002), http://
www-106.ibm.com/developerworks/edu/j-dw-javajca-i.
html.

7. UDDI Version 3.0, OASIS specification (July 2002),
http://uddi.org/pubs/uddi-v3.00-published-20020719.
htm.

8. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P.
Hallam-Baker, J. Klein, B. LaMacchia, P. Leach, J.
Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam,
H. Prafullchandra, J. Shewchuk, and D. Simon, Web
Services Security (WS-Security), (April 2002), http://
www.ibm.com/developerworks/webservices/library/
ws-secure.

9. Web Services Transactions Specifications (November
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-tx.

10. L. F. Cabrera, G. Copeland, M. Feingold, T. Freund, J.
Johnson, C. Kaler, J. Klein, and D. Langworthy, Editor, A.
Nadalin, D. Orchard, I. Robinson, J. Shewchuk, and T.
Storey, Web Services Coordination (WS-Coordination)
(November 2004), ftp://www6.software.ibm.com/
software/developer/library/ws-coordination200309.pdf.

11. L. F. Cabrera, G. Copeland, M. Feingold, T. Freund, J.
Johnson, C. Kaler, J. Klein, and D. Langworthy, Editor, A.
Nadalin, D. Orchard, I. Robinson, T. Storey, and S.
Thatte, Web Services Atomic Transaction (WS-Atom-
icTransaction) (November 2004), ftp://www6.software.
ibm.com/software/developer/library/
WS-AtomicTransaction.pdf.

12. L. F. Cabrera, G. Copeland, T. Freund, J. Klein, D.
Langworthy, F. Leymann, D. Orchard, I. Robinson,
T. Storey, and S. Thatte, Web Services Business Activity
Framework (WS-BusinessActivity) ftp://www6.
software.ibm.com/software/developer/library/
WS-BusinessActivity.pdf.

13. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture—A
System of Patterns, Wiley Press, Hoboken, NJ (1996).

14. Apache Struts Web Application Framework, Apache
Software Foundation, http://struts.apache.org.

15. Web Services Description Language (WSDL) Version 2.0
Part 0: Primer, W3C Working Draft (December 2004),
http://www.w3.org/TR/2004/
WD-wsdl20-primer-20041221/.

16. K. Ballinger, D. Ehnebuske, C. Ferris, M. Godgin,
C. K. Liu, M. Nottingham, and P. Yendluri, Basic
Profile Version 1.1, Web Services Interoperability
Organization (August 2004), http://ws-i.org/Profiles/
BasicProfile-1.1.html.

17. J. Liu Y. Lu, Build Interoperable Web Services with JSR-
109, IBM developerWorks (August 2003), http://www-
106.ibm.com/developerworks/library/
ws-jsrart/?ca¼dnt-431.

18. R. Bilorusets, D. Box, L. F. Cabrera, D. Davis, D.
Ferguson, C. Ferris, T. Freund, M. A. Hondo, J. Ibbotson,
L. Jin, C. Kaler, D. Langworthy, A. Lewis, R. Limprecht,
S. Lucco, D. Mullen, A. Nadalin, M. Nottingham, D.
Orchard, J. Roots, S. Samdarshi, J. Shewchuk, and T.
Storey, Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), http://specs.xmlsoap.org/ws/2005/
02/rm/ws-reliablemessaging.pdf.

19. Web Services Policy Framework (WS-Policy) (September
2004), http://www-106.ibm.com/developerworks/
library/specification/ws-polfram/.

20. The Java API for XML-Based Remote Procedure Call
(JAX-RPC) is a technology for invoking Web services by
using Java classes.

21. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S.
Graham, I. Sedukhin, D. Snelling, S. Tuecke, and W.
Vambenepe, The WS-Resource Framework Version 1.0
(March 2004), http://devresource.hp.com/drc/
specifications/wsrf/WSRF_overview-1-0.pdf.

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005778

22. Web Services Addressing (March 2004), http://
www-106.ibm.com/developerworks/library/
specification/ws-add/.

23. Java 2 Platform Enterprise Edition Specification Version
1.4, Sun Microsystems (November 2003), http://java.
sun.com/j2ee/1.4/download.html#platformspec.

24. R. Hightower, Enhance J2EE Component Reuse with
XDoclets, IBM developerWorks (May 2003), http://
www-106.ibm.com/developerworks/edu/
ws-dw-ws-j2x-i.html.

25. S. Kim, Java Web Start: Developing and Distributing Java
Applications for the Client Side, IBM developerWorks
(September 2001), http://www-106.ibm.com/
developerworks/java/library/j-webstart/.

26. Developing the J2C Plugin, IBM WebSphere Software
Information Center (2004), http://publib.boulder.
ibm.com/infocenter/adiehelp/index.jsp?topic¼/com.
ibm.etools.ctc.eab.doc/concepts/cj2cplugn.html.

27. M. Gudgin, M. Hadley, N. Mendelshon, J.-J. Moreau, and
H. F. Nielsen, Simple Object Access Protocol (SOAP)
Version 1.2 Part 1: Messaging Framework, W3C Recom-
mendation (June 2003), http://www.w3.org/TR/
soap12-part1/.

28. Enterprise Generation Language (EGL): An Overview,
IBM Corporation, http://www-128.ibm.com/
developerworks/rational/library/04/r-3190/
egl_overview2.pdf.

29. The Role of Enterprise Generation Language (EGL) in a
Long History of Innovation on Developer Productivity, IBM
Corporation, http://www-128.ibm.com/
developerworks/rational/library/04/r-3190/
the_role_of_enterprise_generation_language.pdf

30. Bean Scripting Framework, Apache Jakarta Project,
http://jakarta.apache.org/bsf/.

31. B. Portier F. Budinsky, Introduction to Service Data
Objects: Next-Generation Data Programming in the Java
Environment (September 2004), http://www-106.ibm.
com/developerworks/java/library/j-sdo/.

32. JDBC is a Java interface for executing Structured Query
Language (SQL) statements.

33. Universal Modeling Language 2.0 Superstructure FTF
Convenience Document, Object Management Group
(October 2004), http://omg.org/cgi-bin/doc?ptc/
2004-10-02.

34. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA (1995).

35. Web Services Eventing (WS-Eventing) (August 2004),
http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-eventing/.

36. Web Services Notification (March 2004), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-notification/.

37. IBM and BEA, BPELJ: BPEL for Java Technology, www.
ibm.com/developerworks/webservices/library/ws-bpelj.

38. M. Linehan, ‘‘Enable Dynamic Behavior Changes in
Business Performance Management Solutions by Incor-
porating Business Rules,’’ IBM white paper (December
2004), https://www14.software.ibm.com/webapp/
iwm/web/preLogin.
do?source¼dw-bpm&S_PKG¼dlbrd&S_CMP¼DWNL.

39. XQuery 1.0: An XML Query Language, W3C working draft
(April 2005), http://www.w3.org/TR/xquery/.

40. Web Services Transactions Specifications (November
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-tx/.

41. IBM DB2 Information Integrator Application Developer’s
Guide Version 8.2, IBM Publication No. SC18-7359-01,
http://publibfp.boulder.ibm.com/epubs/pdf/c1873591.
pdf.

42. XML for DB2 Information Integration, IBM Publication
No. SG24-6994-00, http://publib-b.boulder.ibm.com/
abstracts/sg246994.html?Open.

43. DB2 Information Integrator Introduction to Replication
and Event Publishing, IBM Publication No.
GC18-7567-00, http://publibfp.boulder.ibm.com/epubs/

44. XML Metadata Interchange (XMI Version 2.0), Object
Management Group (May 2005), http://www.omg.org/
technology/documents/formal/xmi.htm.

45. Project Summary—Database Access and Integration
Services Working Group (DAIS-WG), Global Grid Forum,
http://forge.gridforum.org/projects/dais-wg/.

46. JSR 127:JavaServer Faces, Java Community Process (May
2004), http://jcp.org/en/jsr/detail?id¼127.

47. Dynamic Hypertext Markup Language (dynamic HTML
or DHTML) is not a standard defined by the World Wide
Web Consortium (W3C) but a combination of technolo-
gies used to create dynamic Web sites.

48. Eclipse Modeling Framework, eclipse.org, http://www.
eclipse.org/emf/.

49. JSR 168: Portlet Specification, Java Community Process
(October 2003), http://jcp.org/en/jsr/detail?id¼168.

50. Web Services for Remote Portlets (WSRP) Specification
Version 1.0, OASIS (September 2003), http://www.
oasis-open.org/committees/download.php/3343/
oasis-200304-wsrp-specification-1.0.pdf.

51. H. Kreger and J. Philips, ‘‘Toward Web Services
Management Standards—An Architectural Approach to
IT Systems Design,’’ Web Services Journal 3, No. 10, pp.
18–22 (October 2003).

52. OASIS Web Services Distributed Management (WSDM)
Technical Committee, http://oasis-open.org/
committees/tc_home.php?wg_abbrev¼wsdm.

53. S. Srivastava, S. Choudhary, and K. Britton, Enable a
Help System within the Integrated Solutions Console, IBM
developerWorks (May 2004), http://www-128.ibm.com/
developerworks/autonomic/library/ac-enable/.

54. IBM Orchestration and Provisioning Automation Library,
http://www.developer.ibm.com/isv/tivoli/workflow.html.

55. About the IT Infrastructure Library, Office of Government
Commerce http://www.ogc.gov.uk/index.
asp?id¼1000367.

56. J. Dinger D. Nastacio, Integrate Event Management with
Common Event Infrastructure, IBM developerWorks (July
2004), http://www-128.ibm.com/developerworks/
library-combined/ac-cei/.

57. A. Watkinson, ‘‘Using the Common Base Event in the
Common Event Infrastructure,’’ IBM WebSphere
Developer Technical Journal (August 2004), http://
www-128.ibm.com/developerworks/websphere/
techjournal/0408_watkinson/0408_watkinson.html.

58. M. Schroeck, CFOs: Rising to the Challenge of Perfor-
mance Mangement, IBM Business Consulting Services
(2004), http://www-1.ibm.com/services/us/imc/pdf/
g510-3618-cfo-performance-management.pdf.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 FERGUSON AND STOCKTON 779

html/c1875670/c1875670tfrm.htm.

59. IBM WebSphere Application Server Partner Adapters,
IBM WebSphere Software, http://www-306.ibm.com/
software/webservers/appserv/was/partneradapters/.

Donald F. Ferguson
IBM Software Group, 294 Route 100, Somers, NY 10589
(dff@us.ibm.com). Dr. Ferguson is one of 55 IBM Fellows, the
highest technical position in the IBM engineering community
of 200,000 technical professionals. He is the Chief Architect
and technical lead for the IBM Software Group (SWG) family
of products, which includes Lotus, Rational, WebSphere, DB2,
and Tivoli. Dr. Ferguson chairs the SWG Architecture Board,
bringing together the SWG’s lead product architects. His most
recent efforts have focused on Web services, business process
management, client platform, outsourcing/hosting platform,
grid services, and application development for WebSphere. He
was the chief architect for the WebSphere family of products
from its inception until assuming the role of SWG Chief
Architect in 2003.

Marcia L. Stockton
IBM Software Group, 2827 Poso Flat Road, Bakersfield, CA
93308 (mls@us.ibm.com). Ms. Stockton is a Senior Technical
Staff Member and master inventor with the IBM Software
Group in Research Triangle Park, North Carolina (residing in
California), and a senior member of the Institute of Electrical
and Electronics Engineers. She leads the Software Group
Architecture Board’s Programming Model work group, where
she drives horizontal integration initiatives and promotes
programming model simplification across Lotus, Rational,
WebSphere, DB2, and Tivoli products. Her 73 filed U.S.
patents range from networking, Web, security, privacy,
multimedia, wireless, and pervasive devices to radio
frequency ID. In the 1990s, she was the lead architect for
IBM’s Advanced Peer to Peer Networking and High
Performance Routing network protocols. Ms. Stockton joined
IBM in 1988 as a networking software professional. She
earned a B.A. degree from Swarthmore College in 1975. &

FERGUSON AND STOCKTON IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005780

Accepted for publication May 25, 2005.

Published online October 20, 2005.

