The Enterprise Service Bus:
Making service-oriented
architecture real

The Enterprise Service Bus (ESB) is the infrastructure which underpins a fully
integrated and flexible end-to-end service-oriented architecture (SOA). This paper
details the essential meta-data and capabilities of the ESB. It presents a summary of

M.-T. Schmidt
B. Hutchison
P. Lambros

R. Phippen

the key concepts of the ESB and defines the integration model for it, including key user
roles. These roles are fulfilled using meta-data that describes the service endpoints,
such as the service interface and policy requirements and capabilities. The ESB
manages this meta-data through a registry, which supports configuration, connection,

matchmaking, and discovery of service endpoints. Some typical mediation patterns
that are used to satisfy endpoint policies are explored, and usage patterns are
described in which the ESB is used to implement real SOAs.

INTRODUCTION

Many papers in this journal discuss service-oriented
architecture (SOA)—what it is and its benefits and
value propositions. Other papers describe tangible
implementations of SOAs. This paper abstracts and
learns from these and similar experiences to identify
the essential characteristics of an Enterprise Service
Bus (ESB): the meta-data that describes service
requestors and providers, mediations and their
operations on the information that flows between
requestors and providers, and the discovery, rout-
ing, and matchmaking that realize a dynamic and
autonomic SOA.

In particular, this paper explains how the ESB
provides the tools and runtime infrastructure to
realize the promise of SOA formulated in the iconic
“publish-find-bind” triangle (see Figure T) that was

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

popular in the early days of the SOA revival caused
by Web Services (see Reference 1). As illustrated in
Figure 1, the ESB manages and exploits meta-data
describing interaction endpoints as well as the
domain models used to describe the capabilities of
those endpoints; it supports configuration of links
that bridge between capabilities demanded by
service requestors and those offered by service
providers, dynamically matching requestors with
providers and in the process establishing and
enacting contracts between those interaction end-
points.

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

SCHMIDT ET AL

781

Figure 1
ESB underpinnings for SOA

This paper is structured as follows: we begin with an
overview of the main characteristics of the ESB,
followed by a detailed discussion of the concepts of
the ESB programming model and the standards
supporting those concepts. We conclude with a
description of ESB use cases and usage patterns.

ESB IN A NUTSHELL

The ESB enables an SOA by providing the con-
nectivity layer between services. The definition of a
service is wide; it is not restricted by a protocol,
such as SOAP (Simple Object Access Protocol) or
HTTP (Hypertext Transfer Protocol), which con-
nects a service requestor to a service provider; nor
does it require that the service be described by a
specific standard such as WSDL (Web Services
Description Language), though all of these standards
are major contributors to the capabilities and
progress of the ESB/SOA evolution. A service is a
software component that is described by meta-data,
which can be understood by a program. The meta-
data is published to enable reuse of the service by
components that may be remote from it and that
need no knowledge of the service implementation
beyond its published meta-data. Of course, a well-
designed software program may use meta-data to
define interfaces between components and may
reuse components within the program. The distin-

782 SCHMIDT ET AL

guishing feature of a service is that the meta-data
descriptions are published to enable reuse of the
service in loosely coupled systems, frequently
interconnected across networks.

What do we mean by “publishing” a description of a
service? Descriptions of the services available from a
service provider can be made accessible to devel-
opers at the service requestor, possibly through
shared development tools. The ESB formalizes this
publication by providing a registry of the services
that are available for invocation and the service
requestors that will connect to them. The registry is
accessible both during development and at runtime.
Components such as J2EE** EJBs** (Java** 2
Enterprise Edition Enterprise JavaBeans**) or data-
base-embedded functions may be published as
services, but not every J2EE EJB is a service, and not
every J2EE EJB is accessible by means of the ESB. In
general, EJBs need additional meta-data, and possi-
bly additional bindings, published to the ESB
registry in order to make them available as services.

Publication of the service requestors and providers
allows their meta-data to be administered through
the ESB registry and enables their relationships and
interactions to be visualized and updated. None-
theless, ad hoc requestors and providers may also

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

connect to the ESB without first being registered, for
example, subscribers to a “publish/subscribe” topic.
In that case, their interactions will not benefit from
the full dynamic capabilities of the ESB, described
later.

The ESB populates the registry with meta-data about
services in three different ways. When services are
deployed to the runtime environment, they can be
simultaneously and dynamically added to the ESB;
meta-data associated with components already
deployed can be explicitly added to the ESB; or the
ESB can discover services and service interactions
that are already deployed and incorporate meta-data
describing them in the registry.

Note that the ESB is the infrastructure for inter-
connecting services, but the term ESB does not
include the business logic of the service providers
themselves nor the requestor applications, nor does
it include the containers that host the services.
Hosting containers and free-standing applications
are enabled for interaction with ESBs with varying
levels of integration, depending on the range of
protocols and interoperability standards supported.
Most containers (e.g., J2EE application servers,
CICS*, Microsoft .NET**) integrate with an ESB
across the SOAP/HTTP protocols, but fewer have
direct support for SOAP/JMS (Java Messaging
Service) over a particular brand of JMS provider.
After the ESB has delivered its payload to a
container, its responsibilities are fulfilled. Within the
container, the service invocation may be redirected
among the machines in a cluster, or it may be
responded to from a local cache. These are some of
the normal optimizations within an application
server environment, and they complement the
routing and response capabilities of the ESB
between the service providers it interconnects.
Similarly, the ESB is the connectivity layer for
process engines that choreograph the flow of
activities between services. The process engine is
responsible for ensuring that the correct service
capabilities are scheduled in the correct order. It
delegates to the ESB the responsibility for delivering
the service requests, rerouting them if appropriate.

A core tenet of SOA is that service requestors are
independent of the services they invoke. As a result,
it is not surprising that the ESB is essentially
invisible to the service requestors and providers that
use it. A developer can use an API (application

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

programming interface), such as JAX-RPC (Java API
for XML-based RPC [remote procedure call]) to a
Web service, or distribute messages with the Web-
Sphere* MQI (Message Queue Interface) to a
message queue, without considering whether these
requests are flowing directly to the service or are
traversing an ESB. Similarly, a service provider can
be written as a J2EE EJB or a servlet without any
specific application code to make it accessible
through an ESB. Despite this, one of the values of
the ESB is that it takes on the responsibility for many
of the infrastructure concerns that might otherwise
surface in application code. Thus, although devel-
opers can use APIs for service invocation, they do
not need to add logic to deal with security, for
example.

The ESB virtualizes the services that are made
available through the bus. The service requestor,
both in its application logic and in its deployment,
does not need to have any awareness of the physical
realization of the service provider. The requestor
does not need to be concerned about the program-
ming language, runtime environment, hardware
platform, network address, or current availability of
the service provider’s implementation. In the ESB,
not even a common communication protocol need
be shared. The requestor connects to the bus, which
takes responsibility for delivering its requests to a
service provider, offering the required function and
quality of service. Not surprisingly, the infrastruc-
ture of the bus is itself virtualized, allowing it to
grow or shrink as required by the network and
workload which it is supporting.

The flexibility that comes from an SOA, and the
virtualization it implies, is fully realized by the
dynamic nature of the ESB. All the meta-data,
conditions, and constraints used to enable a
connection from a requestor to a provider can be
discovered, used, and modified at runtime. For
example, a new implementation of a service in a
different geographical region can be published to the
ESB registry, and requests in that region can be
routed to it without reconfiguration of the request-
ors. A service requestor might select a reduced level
of assured delivery and see an improved level of
performance as the ESB determines that it can use a
different delivery protocol. This flexibility is avail-
able as a direct consequence of the role of the ESB
registry. Because all relevant meta-data for the
service provider and service requestors has been

SCHMIDT ET AL

783

placed in the ESB registry, it can be subsequently
discovered and used to make dynamic changes.

To achieve much of this flexibility, the ESB accepts
requests as messages, then operates on them, or
“mediates” them, as they flow through the bus.
Mediations can be an integral part of the ESB,
providing (for example) transport mapping between
SOAP/HTTP and SOAP/JMS, or routing a message
to an alternate provider if response times fall below
an acceptable value. It is also a feature of the
flexibility of the ESB that mediations can be
provided by third parties—by other products, ISVs
(independent software vendors), or customers—to
operate on messages as they flow through the ESB
infrastructure. This allows, for example, ISV pack-
ages to implement advanced load-balancing features
among services, or customers to add auditing to
meet new legislation. Mediations can be deployed
on the ESB without changing the service requestor
or provider.

Mediations are the means by which the ESB can
ensure that a service requestor can connect suc-
cessfully to a service provider. If a service provider
requires one format for an address field and a
service requestor uses a different one, a mediation
can map from one format to another so that the ESB
can deliver the service request. If the service
provider expects encrypted messages, a mediation
can encrypt the “in-the-clear” service requests as
they pass through the ESB. The ESB can react
dynamically to the requirements of requestors and
providers when they are described in their meta-
data and held in the registry. In the case of message
formats, this is usually achieved through a schema
definition. For other service properties, policy
statements, which may describe the encryption
algorithms to be used or the requirements for
auditing, can be associated with the meta-data of the
service provider and requestor. The ESB consults
this meta-data at runtime and can reconfigure the
mediations between requestor and provider to
match the requirements. By annotating a policy for
the service providers in the ESB registry, the system
administrator can, for example, ensure that the
services meet the company’s new privacy guide-
lines. Thus the ESB implements an autonomic SOA,
reacting to changes in the services it connects.

One of the major uses of mediations is in systems
management. Mediations can be deployed in the
ESB environment to enable request and response

784 SCHMIDT ET AL

messages to be monitored as they flow through the
system, enabling service-level management or
problem determination. Mediations can route ser-
vice invocations to back-up data centers if there is a
local problem or to new service providers as they
are brought online. They can validate messages in
terms of their format correctness, data values, or
user authentication and authorization. Through
these and other systems management capabilities,
the ESB ensures that a loosely coupled and
dynamically varying SOA is still manageable in a
production environment.

Many of the mediation capabilities just described are
core attributes of the ESB, and the mediations are
made available as part of the runtime environment.
They are customizable, so that, for example, a
generic table-driven routing mediation can be
configured to use a specific table and a specific field
in a message as the key. The ESB also provides tools
to configure the interactions between services—to
display the services available in the ESB, to
interconnect them, to add policy requirements to a
service or group of services, to identify mismatches
in the endpoints, and to associate mediations to
correct these, either explicitly or through automatic
reconciliation of their policy declarations.

Much of the preceding discussion uses the terms
service requestor and service provider, as is appro-
priate for the ESB. Service requestors and service
providers are equal partners in the interaction, with
the requestor simply being the endpoint that
initiated the interaction. The interaction may con-
tinue with either endpoint sending or receiving
messages. The ESB supports many different types of
program interaction: one-way messages as well as
requests and responses, asynchronous as well as
synchronous invocation, the publish/subscribe
model, where multiple responses may be generated
for one subscribe request, and complex event
processing, where a series of events may be
observed or consumed to produce one consequential
event. The ESB is also, in principle, transport and
protocol “agnostic,” with the capability to transform
messages to match the requestor’s preferred formats
to those of the provider. In practice, most ESBs
support SOAP/HTTP, which reinforces its role as an
interoperability standard. They also support a range
of other transports and protocols, some for use by
service requestors and providers connected by the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

ESB, and some for internal communication within
the ESB.

THE ESB INTEGRATION MODEL

Having established the basic concepts and features
supported by the ESB, we focus on ESB-based SOA
solutions. The ESB integration model captures those
aspects of the overall solution that are relevant for
the ESB tools and infrastructure to facilitate inter-
actions between ESB-managed service endpoints. It
enables the various user roles involved in creating
and managing those solutions to express the ESB-
relevant information that they contribute or mon-
itor, and the ESB runtimes to manage interactions
accordingly. In essence, the model contains meta-
data describing service endpoint requirements,
capabilities, and relationships, including informa-
tion describing the specific details of interaction
contracts.

Not all user roles use the model directly. A business
analyst, for example, might define a set of key
performance indicators (KPIs) that need to be
translated into events produced by the underlying
implementation artifacts and potentially into pa-
rameters of a service interaction contract. Users in
the architecture and design space, such as a solution
architect, might define service capabilities and
requirements in more abstract terms than those
required by the ESB integration model. Other roles,
such as the application developer, create and use
service capabilities and requirements for the inte-
gration model. The user roles that are the most
interesting from the ESB perspective are those of the
integrator and the solution administrator. We next
discuss how integration specialists assemble solu-
tions from existing service components and how
solution administrators configure and reconfigure
those solutions. We use UML** (Unified Modeling
Language**) models to illustrate the concepts those
user roles deal with; these are high-level conceptual
models not to be confused with product- or
implementation-specific models of the underlying
runtimes or specific standards in this space. We do,
however, hint at relationships to products and
standards where appropriate.

Integration specialists assemble business solutions
from a set of service components. They do not have
to understand the implementation details of those
components (process coordination, existing appli-
cations, interactive tasks, etc.); all they need to

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

understand is the capabilities offered by components
and the requirements of the components they use,
with respect to other components. The ESB service
registry provides the required information about
those components and, together with the ESB
runtime, enables integration specialists to perform
component-assembly tasks, selecting components
required to implement the solution, resolving
dependencies those components might have on
other components, and interposing the mediations
required to make components interact.

Solution administrators deploy and customize the
solutions they get from their integration specialist
colleagues: they may be given a set of component
relationships which they simply adopt; they may
choose to override the defaults defined by an
integration specialist; they may have to compensate
for the fact that an integration specialist has not
resolved certain variables of a solution; or they may
have to reconfigure a previously deployed solution
due to changes in the solution environment. These
tasks are usually done in the component develop-
ment environment, but the ESB enables flexible
configuration through late binding by providing this
service to the solution-administrator role. The key to
enabling this flexible configuration and reconfigu-
ration of solutions is the explicit declaration of
capabilities and requirements of service interaction
endpoints. The next section explores the underlying
service meta-data management capabilities provided
by the ESB in more detail.

WHAT PROVIDERS OFFER AND REQUESTORS
WANT—-SOA META-DATA

The key to service virtualization and dynamic
matchmaking between service requestors and pro-
viders is the explicit declaration of capabilities and
requirements of interaction endpoints. Service meta-
data describes capabilities of software assets inde-
pendent of their implementation specifics. It does
not assume a specific programming model for the
realization of the services that offer their capabilities
for use by other components, nor for the realization
of services that require certain capabilities to be
provided by other components. It facilitates inter-
operability among a broad spectrum of service
providers and requestors; an existing CICS/COBOL
application can declare its service capabilities and
expectations exactly like a business service newly
implemented in J2EE or a Web service offered by a
business partner that uses SOAP/HTTP. Service

SCHMIDT ET AL

785

Interenterprise
Enterprise

Department

oW

—

J

‘ -
43

- I

Scope of Visibility of Meta-data | ESB

Figure 2

Scope of service assembly and service meta-data visibility

meta-data also supports an “assembly-from-parts”
model for implementing new business process
applications from a catalog of services.

Before discussing the kind of meta-data about a
service that is relevant for ESB-managed interactions
in detail, it is important to note that requirements for
explicitly recording meta-data about service inter-
action endpoints are relative to the scope of visibility
of the underlying application artifacts (see

Figure 2). Even in moderately homogenous devel-
opment environments (e.g., departmental integra-
tion projects using messaging features of an
application server) it can make sense to use the
service component abstraction and an ESB to
construct solutions. In that case, a minimal set of
meta-data declarations (e.g., interface declarations
only) for each service component is sufficient to
enable ESB-facilitated service component assembly.
If the principles of SOA are applied on a larger scale
(on an enterprise level, using a message broker, for
example), more explicit declaration of service
component capabilities and requirements are nec-
essary. In this case, not only service interfaces but

786 SCHMIDT ET AL

also quality-of-service assumptions might have to be
considered to enable service users to understand
under which circumstances they can use a service.
An even more detailed declaration of service
capabilities is required when attempting to apply
SOA on an inter-enterprise scale. In this case,
declaration of interaction patterns, service-level
agreements, and other factors become relevant.
Figure 2 also illustrates the fractal (self-similar)
nature of the ESB. Various ESB agents collaborate to
realize an integration infrastructure that enables a
business process created in a departmental context
to interact with service that may be local to the
department, hosted in other departments of the
same enterprise, or even hosted by other enter-
prises.

Having established the relativity of meta-data needs
for various levels of ESB elements, we take a more
systematic look at the spectrum of meta-data that
could be recorded for a service component. As
established earlier, the main elements of the ESB
programming model are service requestors and
service providers. Most of the ESB-relevant meta-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Service Operation

+ supports

+ requires
|+ input * | +output

Logical Message Service Requester

Service Interface

1 fl.* supports

Service Provider

+ requester

+ requesterPolicy o

matching partners + provider
*

Policy Requirement

+ dependency

Policy

* + providerPolicy

+ declaredCapability

Capability

Figure 3
Service capability and requirements declaration

0.1

data about those interaction endpoints can be
classified as interface declaration or policy annota-
tion.

The objective in recording meta-data is the estab-
lishment of matches between potential partners so
that they can interact. A given requestor matches a
particular provider if their interface and policy
declarations are compatible or can be made com-
patible. The simplest (and in the real world, the
rarest) form of compatibility is a perfect match. In
this ideal case, a requestor needs the exact operation
a provider offers with the qualities of interaction
service defined by the provider’s policies. The only
practical way to make this work is the “requestor
makes it right” principle that is common practice in
traditional RPC-style interactions. Using this princi-
ple, the application developer of a requesting
application consults the ESB service registry to find
a provider and implements the requestor to fit the
provider’s specification. In SOA scenarios, a more
flexible matchmaking model is required. The ESB
supports such a model, but this comes at a price;
namely, potential interaction partners need to
provide sufficient information about their require-
ments and capabilities.

The simplest and most common form of service
meta-data is the interface declaration. Interaction
endpoints describe the messages they can process or

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

will produce, as well as the message exchange
patterns supported. In Figure 3, service providers
support and service requestors require support for
service interfaces that are made up from service
operations, which in turn represent message inter-
changes in terms of logical messages supported by
the endpoint. Ideally, the interface part of a
declaration of service capabilities and requirements
is described by using WSDL, with XML schema
describing the structure of messages to be ex-
changed. Nevertheless, there are many examples of
successful ESB implementations that use only a
subset of WSDL (e.g., XSDs [W3C** XML Schema
definition language] for message declarations for
processing information, often with specific annota-
tions to capture additional meta-data about message
formats) or home-grown meta-data schema to
capture the information. Those approaches, in
general, do not scale beyond relatively homogenous,
“localized” ESBs, but they support the point that it is
more important to make the capabilities and
requirements of services explicit rather than use a
specific declaration formalism.

Policy declarations further qualify capabilities of
interaction endpoints; simply put, a policy expresses
anything a component wants the world to know
about it other than what messages it understands.
This is a very general concept of policy, and it

SCHMIDT ET AL

787

actually covers things that are sometimes factored
out into behavior declaration or semantic annota-
tions of services; as explained previously, we
present a very coarse-grained, conceptual model
here that may well be refined during translation into
an operational model.

As discussed previously, in many localized ESB
scenarios, policy declarations are not required. In
the general case, interaction endpoints use policies
to declare the capabilities they offer or policy
requirements they have with respect to other
services. Note that the model illustrated in Figure 3
allows both service providers and requestors to
declare capabilities and requirements by use of a
policy. A requestor can declare not only require-
ments for providers that wish to interact with it, but
also capabilities which specify actions that it is
willing to perform before it dispatches a request to a
provider (e.g., encrypting messages). Service pro-
viders use policies to declare not only the capabil-
ities they offer, but also the requirements they might
have for requestors that want to use them. More
precisely, policy declarations can provide (1) in-
formation about characteristics of the declaring
component’s internal behavior which affect the
interaction, (2) constraints on a peer’s invocation of
the declaring service, (3) constraints on the target
interface of an interaction partner, or (4) informa-
tion about characteristics of the service component’s
internal behavior regarding the respective interface
reference. The WS-Policy3 declaration establishes a
framework for policy declarations of all sorts and
enables reasoning about the compatibility of policies
declared by potential interaction partners.

The policy declarations discussed here should not be
confused with policy declarations intended for the
service container that hosts the service component
in question, which are outside the scope of this
discussion. As indicated earlier, we use a very broad
definition of policy and include declarations a
service requestor or provider might want to make
about expected or supported behaviors. For exam-
ple, a provider might indicate sequencing con-
straints on its operations (e.g., operation A has to be
invoked before B or C can be invoked), describe
interaction patterns involving more than one oper-
ation (e.g., if you send me a request on operation A,
then I will respond with a message on outbound
operation B and expect you to respond with another
request to my operation C), or maybe even describe

788 SCHMIDT ET AL

more than one interaction partner (e.g., if you send
a request to my operation A, then I will send a
request to my partner P, and after I hear back from
him, I will send a response to you). Application
developers can represent such behavioral specifica-
tions, for example, using the features for abstract
process declaration provided by BPEL (Business
Process Execution Language) % Note that they will in
general not expose the actual behavior of their
services (e.g., an executable BPEL process) but
rather a projection or abstraction of that behavior.

In the very broad definition of policy here, we also
include semantic annotations of service interfaces
that explain the meaning of messages exchanged
with the service or the meaning of the service
operations. Those annotations are useful when the
semantics of services and their operations is not
obvious from the naming conventions used. The
annotations can be as simple as relating elements of
the service declaration to well-known terms, but
they can also include declarations of preconditions
or postconditions for operations. Work on stand-
ardizing semantic annotations is ongoing (see
References 5 and 6).

We describe a conceptual model for the ESB, not a
particular implementation. Service interfaces can be
captured in a variety of ways, and from an abstract
ESB perspective, the specific syntax used to describe
them is far less important than the fact that they are
recorded. Declaration of message sets using XML
Schema, with annotations to capture information
relevant to a specific message formatting, is an
example of ESB-managed meta-data about interac-
tion endpoints (in this case WebSphere MQ appli-
cations that produce and consume those messages).
Where possible, however, we encourage use of the
WS (Web Services) standards to declare capabilities
and requirements of interaction endpoints: WSDL
for service interface declarations, WS-Policy for any
kind of policy annotation to those interfaces, and
BPEL for specification of sequencing constraints.

Standards play an important role in advancing the
syntactic normalization of meta-data about inter-
action endpoints. Nevertheless, in many cases,
especially in ESB scenarios beyond departmental
applications, deeper understanding of the semantics
of the underlying services is required to perform any
meaningful matchmaking. Service interfaces ab-
stracted from a legacy application might make sense

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Service Provider

Service Registry

Service Requester

N\

Enterprise Service Bus

N\

*
Domain Model

+ provider |

Bus Service Provider Link

$+ link + mediation$

* |+ requester

Mediation Bus Service Requester

Figure 4
ESB service registry content

to requestors that know about the original applica-
tion, but not to requestors outside of that small
circle; often even a “perfect match” between
services on an interface level does not imply that
they can actually interact in any meaningful way. As
indicated earlier, the semantics of services is often
declared through reference to more commonly
known concepts, captured in domain models.
Domain models establish a frame of reference that
makes it possible not only to explain the semantics
of services but also to make statements about
compatibility of services, and that in turn enables
the definition of service interaction contracts which
can be managed by the ESB infrastructure. We
discuss these concepts in more detail in the next
section.

THE ESB SERVICE REGISTRY

Simply put, the ESB plays two main roles in the
service endpoint matchmaking game—the service
registry manages all relevant meta-data about
interaction endpoints (see Figure 4), and it also
takes care of the matchmaking between those
endpoints. This section discusses the service regis-
try; the next section discusses the matchmaking.

The ESB is a service registry in the sense that it
manages not only meta-data about the service
interaction endpoints involved in the SOA, but also
information about domain models. This information
establishes a common understanding of services
beyond the scope of visibility of an individual
service requestor or provider.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

The ESB captures information that can be used to
better understand the practical content of the
registry: domain models representing general
knowledge about a topic area, independent of the
specific domain applications represented as services
in the registry. As before, we use a very generic
definition of the term domain model because we
want to establish an implementation-independent
model for the ESB. Our definition covers domain
models as simple as a topic space or a simple
taxonomy that classifies events exchanged in pub-
lish/subscribe style interactions; it includes stan-
dard message sets used in specific industries or a set
of “generic business objects” covering a specific
application domain; and it extends to moderately
complex ontologies describing concepts and their
relations in a particular topic space. In the ESB
integration model, domain models are used to
establish semantics of the practical meta-data
artifacts that the ESB cares about.

In many “local ESB” scenarios, little or no domain
knowledge needs to be formalized—the user com-
munity involved simply knows the semantics, and a
simple hint in the form of well-named interfaces and
messages suffices. In the publish/subscribe mes-
saging model, topic spaces can be used to classify
message instances. Generic business objects or
standard message sets applicable to a domain can be
used to establish a (semantically) normalized view
for messages exchanged within that domain (but
usually not beyond it), thus enabling application
developers to implement endpoint applications

SCHMIDT ET AL

789

without worrying about the specific semantics of the
underlying service components. This enables ser-
vice-level managers to observe the status of a
system, based on knowledge about events which
adhere to the Common Base Events (CBE) standards
proposal (see Reference 7).

Ontologies can establish a deeper semantic under-
standing of the interaction endpoints and facilitate
use of more sophisticated ways to identify possible
interactions between them (see Reference 8). The
main objective of managing domain models and
establishing semantic understanding of interaction
endpoints is to enable matchmaking between those
endpoints—the more explicit knowledge there is
about capabilities and requirements of the end-
points, the more automated the matchmaking can be.

The main role of the ESB registry is to manage meta-
data about the interaction endpoints themselves. To
participate in ESB-managed interactions, endpoints
need to register with the ESB. The ESB model
represents registered service requestors as bus
service requestors (BSRs) and registered service
providers as bus service providers (BSPs). Service
providers that are not registered as BSPs are
invisible to the ESB for interaction partner selection.
When a BSP or BSR is registered, its service interface
and policy declarations are captured in the ESB
service registry. At this point it is also possible to
provide additional information about the service
endpoint that might not have been provided with
the original declaration. Semantic annotation is one
example. Documenting or discovering relationships
between the newly registered service and other
artifacts in the service registry is another.

Both BSPs and BSRs can be created without any
available “counterpart” that wishes to interact with
them; conceptually, the ESB ensures that it will take
care of connecting each BSP to requestors that send
requests to it and that it will deliver the requests of
each BSR to some matching provider. In a way the
ESB is the “ideal provider” for a BSR and the “ideal
requestor” for a BSP. It is the ESB’s job to make
things right if there actually should not be such an
“ideal counterpart.”

The ESB registry also holds details of links and
mediations, which are described in the next sub-
sections.

790 SCHMIDT ET AL

Like any good service registry, the ESB provides the
following features:

* Discovery and management of meta-information
about interfaces and capabilities of existing
applications that can be used as building blocks
for integration solutions. This includes analysis of
legacy applications to discover meta-information
about their interfaces, policies, and behavioral
constraints, as well as exploitation of object
discovery agents to capture meta-information
about packaged applications.

* Management of meta-information about services.
This includes WSDL declarations as well as WS-
Policy declarations describing capabilities pro-
vided by services or required by service requestors
and also BPEL-defined declarations of behavioral
constraints for services (abstract BPEL processes)
or actual behavior of those services.

* Management of domain models describing general
knowledge about an application domain relevant
for SOA-based business integration scenarios.
Examples include industry-standard message sets,
generic business objects, ontologies encoded in
the OWL Web Ontology Language, and “con-
tracts” for SOA interactions.

* Discovery and management of relationships be-
tween “real world” artifacts representing existing
applications, service declarations, and domain
models.

* Enabling generation of artifacts for the ESB
runtime. Examples include Service Data Object9
(SDO) schema, maps between service interfaces
for ESB mediations, and application adapters.

* Management of runtime meta-information for
matchmaking between service requestors and
service providers (e.g., service declarations with
policies and compatibility rules) and SDO schema
with annotations.

Links and mediations for dynamic SOA

The ESB supports two concepts to facilitate inter-
actions between endpoints: it introduces links
between service requestors and providers that
enable basic connectivity between interaction end-
points with a configurable quality of service, and it
provides the concept of mediations that can be used
to configure and reconfigure the ESB by dynamic
alterations to routing and qualities of service and to
allow interaction endpoints to modify their behav-
iors. Links and mediations basically realize the
contract between interaction partners that is implicit

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Bus Service Requester

-requester | 1

0.1

Requester Attachment

Policy

i

Bus Service Provider |

17| - provider

*
- provider |

*
%‘w Provider Attachment
- requester *

Service Interface

0.1

Figure 5
ESB links

in the declarations of the capabilities and require-
ments of those partners.

An ESB link has two endpoints, one for attachment
of BSRs and one for attachment of BSPs; both ends
can be qualified by using interface declarations and
policies just like interaction endpoint declarations. A
link defines the “ideal counterpart” for service
requestors and providers: the provider attachment
part of a link can be designed to provide an exact
match for a particular registered BSP; and the
requestor attachment part of the same link can be
designed to provide an exact match for some
registered BSR. The two ends of the link do not have
to match—ESB-managed mediations on the link can
enact the transformation required to make the ends
meet.

Thus, an ESB link represents and implements the
contract between interaction endpoints. It can be
tailor-made for a particular requestor/provider pair.
An integrator given the task to resolve the require-
ments of a business process component (here in the
role of a service requestor) for services that imple-
ment process activities might select a set of service
providers to be linked to the process and, in
cooperation with the solution deployer, create a BSR
representing the process, a set of BSPs representing
the services invoked, and a set of links between
them, configured to meet the requirements declared
by the process.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Link configuration does not necessarily reflect only
the requirements and capabilities of the endpoints
that it connects; it can just as well implement
requirements defined for a set of interactions, for
example, in enterprise policies (such as logging all
high-value transactions). A solution administrator
can preconfigure ESB-managed links to support a
specific quality of (interaction) service to be used by
a number of interested interaction endpoints.

A link might be configured with a varying number of
interaction endpoints attached to it. A solution
administrator might register a BSP and attach it to a
link that might not have any BSRs attached to it.
Alternatively, the administrator might register an
event source as a requestor and attach it to a link
that will propagate the events it produces—poten-
tially, without anybody listening at the other end. A
link can be configured such that it dynamically
determines the endpoints that need to be attached to
it, e.g., depending on the content of the requests it is
processing.

In the most dynamic case, a link can be created
dynamically to perform matchmaking between
dynamically established requestor/provider pairs.
The configuration of the link can be derived from
the requirements and capabilities of the endpoints
that it is meant to connect.

As illustrated in Figure 5, both endpoints of a link as
well as the link itself can carry policy declarations.

SCHMIDT ET AL

791

Bus Service Provider Link Bus Service Requester

\/

[Mediation Point

0.1 |+ mediation

Capability Mediation Service Interface |
+ provides | 1.* + source | 1 1 [+ target
* | - uses
PolicyMediator ——> Mediation Service }<]7 InterfaceMediator |

Figure 6
Mediation in the ESB integration model

Policies on the endpoints declare the constraints as
well as the capabilities of the endpoints, whereas
policies on the link itself can only represent
capabilities implemented by the link for the benefit
of attached endpoints that require the capability.
Interfaces on the endpoints of a link are optional and
often are omitted to indicate that the link can carry
any type of message between associated endpoints.
Note that service interfaces on both ends of a link
can have different signatures. In this case, some
mediation on the link needs to take care of the
transformation.

SOA holds out the promise that services can be
discovered from service directories and bound
together to form new and exciting, or simply more
efficient, applications. Unfortunately, existing ap-
plications were seldom designed to be linked
together, and the integration specialist is faced with
mismatches of protocol, format, and quality of
service to reconcile, as well as requirements to make
his new applications more flexible and resilient. The
ESB addresses these challenges by interposing
mediations between service requestors and pro-
viders which can reconcile their differences. In
addition, mediations can reconfigure the links
between requestors and providers, for example, to
create an alternative routing or to create a reactive
and autonomic system.

The ESB integration model supports the attachment
of mediations at various points on a link between

792 SCHMIDT ET AL

interaction endpoints: a mediation can be associated
with the registered service provider, registered with
a service requestor, or attached to a link between
them. This is formalized in the model through the
concept of a mediation point (see Figure 6). A
mediation point inserted at the requestor implies
that the mediation will be performed no matter what
provider the requestor interacts with; a mediation
point activated at the provider end implies that the
mediation will be performed whenever the provider
receives a request, no matter which requestor it
comes from; and a mediation associated with a link
applies only to the specific interactions that occur
through the link.

Mediations process messages as they flow through
the ESB. Interface mediations operate on the
message payload, which contains the information
required by the service provider, and can change its
content and its structure. In addition, the messages
have contextual information associated with them,
usually specified in message headers. This concept
is familiar from SOAP headers, which contain, for
example, the location of the service provider. Within
an ESB, the message context includes additional
quality-of-service and routing information about the
link and the mediations required between the
service requestor and provider. Policy mediations
operate on the message context. In addition to the
information in the messages, the ESB provides
mediations with information about the ESB config-
uration by means of access to the ESB registry.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Mediations can change the content and format of the
service requests or responses or modify their
intended routing. Although these are useful and
necessary functions of mediations, to fulfill the
flexibility of an ESB, it is also important that a
mediation can be restricted, for example, so that it
cannot see sensitive payload information or change
a particular routing. Mediations are characterized by
the read or update access they require to the context
and payload sections of the message, and this can be
enforced by the ESB.

Mediation patterns

Mediations are not formally restricted in their
capabilities, but their intended role is satisfying
integration and operational requirements within the
infrastructure, rather than implementing business-
level processes. Within this role, there are several
basic patterns, which are seen repeatedly, either as
individual mediations or within more complex
mediations.

The monitor pattern is used to observe messages as
they pass through the ESB without updating them in
any way. Mediations that conform to this pattern
use the information in the context and payload in
many different ways; for example, to monitor
service levels, to assist in problem determination, to
meter usage for subsequent billing to users, or to
record business-level events, such as purchases
above a certain dollar value. This pattern can also be
used to log messages for audits or for subsequent
data mining. The first two examples would require
read access to only the context information in the
message. The others would require read access to
the payload too, though the messages could be
logged as raw bytestreams, for later parsing.

The transcoder pattern changes the format of the
message payload without changing its logical con-
tent. For example, it may convert a SOAP message
into a JMS/Text message with an XML payload that
matches the body of the SOAP message (possibly by
mapping SOAP header fields into JMSProperties).
Mediations which conform to this pattern can often
be created automatically when there is a clear
definition of the two formats and of the relationship
between them. This pattern requires update access
to the payload.

The modifier pattern updates the payload of the
message without any change to the context in-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

formation. It requires update access to the payload.
There are two common subpatterns: transformation
and enrichment. In the former, the message payload
is transformed from one format (schema) to
another, to match the definition of a message of the
requestor to that of the provider. This includes
“enveloping and de-enveloping” (the process of
putting a message in one network format inside the
format envelope needed for transmission over
another network, or the corresponding removal of
an envelope) and encryption. In the latter, the
payload of the message is updated by adding
information from external data sources, such as
customization parameters of the mediation, or from
database queries.

The validator pattern determines whether a message
should be delivered to its intended destination. If
not, it may silently ignore the message or may return
a rejection response to the requestor. The check can
be against the meta-data of the message, such as the
schema, or permitted values for specific fields.
Alternatively, the check can be against side in-
formation associated with the mediation, which may
relate to one or more fields in the payload of the
message or to information held in the message
context, such as the origin of the message. This
variant of the pattern includes authentication and
authorization checks. Depending on the checks
involved, this pattern requires read access to the
message context or the payload, or both.

The cache pattern returns a valid response to the
requestor without necessarily passing the request to
a service provider. It maintains a cache of requests
and their associated responses, and if it recognizes
the request, it returns the response directly to the
requestor. If the response is not available in the
cache, the message is sent to the provider, and the
cache is updated with the new response on its
return. This pattern requires read access to the
payload of the request and response messages and is
unusual in that it only applies to request/response
interactions.

The router pattern changes the intended route of a
message, selecting between the service providers
associated with the mediation. Simple selection
would include routing between two versions of a
service, with the percentage routed to the new
version being increased by the system administrator
as confidence in its capabilities increases. Another

SCHMIDT ET AL

793

example is routing to a local version of a service
until it becomes overloaded, then routing to a more
expensive remote service. This latter case could also
take the importance of the message into consider-
ation, as indicated by a “gold” user status or the size
of a purchase, for example. This pattern requires
update access to the context of the message and read
access to the payload if it is needed for the routing-
selection criteria.

The discovery pattern queries the ESB registry to
discover the set of service providers that match the
requirements of the requestor, selects one of them,
and routes the message to it. This is an enhancement
of the routing pattern; in this case, the set of possible
service providers are not preconfigured at the
mediation. Suitable providers match the requestor’s
message format, the quality of service required, or
the protocol supported from the mediation to the
possible providers. This pattern allows for more
flexible routing, for example in the failover situation
mentioned previously, where a new remote data
center can be brought online and its services
registered, without having to update the configu-
ration of every routing mediation. This pattern
requires update access to the context of the message
and read access to the payload if it is needed for the
routing-selection criteria.

The clone pattern makes a copy of a message and
modifies its route. The new message will then have
a separate existence within the ESB. This pattern is
useful in association with the monitor pattern,
where the monitoring logic must not be allowed to
delay the delivery of the message to its intended
destination; for example, when the message is
logged to a database. This mediation requires read
access for the payload and update access for the
context.

The aggregator pattern monitors messages from one
or more sources over a time period and generates a
new message or event, based on the input it
considers. It defines a set of event types in which it
is interested and uses aggregation rules to derive a
new event. It may simply aggregate a specific set of
events, or it may look for patterns in event streams
and generate a complex event when a pattern is
detected. This pattern is useful in complex event-
processing scenarios.

Mediations can be explicitly configured by the
integration specialist or the solution administrator.

794 SCHMIDT ET AL

The former might apply in the case of a modifier
mediation, and it would transform from the format
of the requestor to that of the provider and vice
versa. The latter might apply if the solution
administrator wanted to add a monitor mediation to
a particular link in the ESB to measure performance.

The ESB can also configure required mediations
dynamically to match the policy requirements and
capabilities of the requestor and provider. If a
service provider requires encrypted messages, the
ESB can configure an encryption mediation for the
requestor. If the provider changes its algorithm, the
next service request will fail; the ESB will query the
provider’s meta-data, reconfigure the encryption
mediation, and reissue the request.

ESB USAGE PATTERNS

The mediation patterns described provide some
basic building blocks for the ESB. Higher-level
patterns (which might helpfully be described as
“usage patterns”) provide a means for describing
and defining interactions and component topologies
at the system or solution level and help us to see
how and where the abstract concepts that we have
been describing can be applied to specific imple-
mentation scenarios. Patterns enable and facilitate
the implementation of successful solutions through
the reuse of components and solution elements from
proven successful experiences. IBM’s patterns for e-
business provide one such example and, with
specific relevance to the ESB, introduce a set of
collaboration patterns that design or describe broad
organizational relationships among applications and
a set of interaction patterns that describe required
behavior in greater detail (see Reference 10 for more
information).

The fundamental concept in this case is that of the
broker application pattern, in which distribution
rules are separated from applications, enabling great
flexibility in the distribution of requests and events
and reducing the proliferation of point-to-point
connections, thereby simplifying the management of
the network and system. This basic pattern appears
in several variations, and we will briefly consider
each of these variations in this section.

Service and event-routing pattern: A request or event
is distributed to at most one of multiple target
providers (see Figure 7). Examples may include
simple service selection based on context or the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

content of the request or on more complex models,
in which service requests can be routed to particular
systems based on availability, workload, or detec-
tion of error situations. Service selection may
involve the lookup of appropriate service providers
in a service registry.

Protocol switch pattern: A routing pattern in which
requestors and providers use differing network
protocols (see Figure 8). Examples may include
simple mapping of SOAP/HTTP requests onto a
more reliable SOAP/JMS infrastructure or mapping
between JMS and non-JMS applications.

Proxy or gateway pattern: A variant of the routing
pattern (or protocol switch) which maps service
interfaces or endpoints, possibly providing security
functions (authorization and access control) and
logging or auditing capabilities (see Figure 9). The
proxy may also support disaggregation (and sub-
sequent reaggregation) of a single request into
multiple component subrequests. Examples of this
pattern include service portals, in which a single
point of contact is provided for multiple services and
the details of “internal” services may be hidden
from the service requestors.

Event distribution pattern: Events may be distrib-
uted to more than one target provider, based on a
list of interested parties that is managed by the ESB
(see Figure 10). Services that wish to be notified of
such events may be able to add themselves to the
interested-parties list. An example of this pattern
would be the distribution of business events based
on CBE through the common event infrastructure.

Service transformation pattern: Requestors and
providers use different service interfaces, and the
ESB provides the necessary translation (see Figure
17). This pattern exposes new service interfaces
without requiring change or modification to an
existing application or service. It may also be used
when multiple providers support the same business
function but provide different interfaces, allowing
this difference to be hidden from the service
requestor.

Matchmaking pattern: Another variant of the service
routing pattern in which suitable target services are
discovered dynamically based on a set of policy
definitions (see Figure 12). This pattern is used in
very dynamic environments where there are many

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

¢

Microsoft

J

9?9
9
) P
J

)
)

WebSphere p

Servers

.

“

)J

Figure 7
Service- and event-routing pattern

hundreds or even thousands of services attached to
the ESB, and service implementations may or may
not be available when any given request is issued.

These basic interaction patterns may also be used in
conjunction with process-oriented interaction pat-
terns. A process or workflow definition (defined by
using BPEL or some equivalent language) extends
the broker interaction pattern by orchestrating the
execution sequence for a number of service inter-

WebSphere MQ
Q Manager

SOAP/HTTP u u

WebSphere |

Servers u g Microsoft .NET

JMS client u u C/C++ client

Figure 8
Protocol switch pattern

SCHMIDT ET AL

795

Figure 9
Proxy or gateway pattern

et EEEEEEEEE

actions. By using these two patterns together, the
service that orchestrates the interaction pattern can
focus exclusively on business-process requirements,
delegating issues of matchmaking, routing, and
service selection to the ESB infrastructure.

CONCLUSION

We have presented the ESB and its role as the
infrastructure underpinning an integrated and flex-
ible SOA. Our presentation identified service meta-

Figure 10
Event distribution pattern

data managed through a service registry as a key
component of the ESB, allowing integration spe-
cialists and administrators to create and manage
service-oriented solutions. Clear definition of the
interfaces, and of the capabilities and requirements
of the services, enables mediations to reconcile
differences between service requestors and pro-
viders. We discussed a range of mediation patterns.

We described ESB usage patterns in which these
abstract concepts are applied to enterprise scenarios.
These concepts are realized through a variety of

Figure 11
Service transformation pattern

796 SCHMIDT ET AL

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Web Services
Description
Language

> B

Registry
(services and policy)

Figure 12
Matchmaking pattern

technologies and products in a large and growing
number of customer solutions, including large-scale
retail and brokerage applications. ESB adoption and
use is expected to continue at full strength for the
foreseeable future, and the ESB plays a central role
in the implementation of the architecture for the
IBM On Demand Operating Environment.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. Microsoft Corporation, Object Manage-
ment Group, Inc., or Massachusetts Institute of Technology.

CITED REFERENCES
1. Web Services Architecture Overview, IBM developerWorks
(Sept 2000), http://www-106.ibm.com/developerworks/
web/library/w-ovr.

2. D. Cox and H. Kreger, “Management of the Service-
Oriented-Architecture Life Cycle,” IBM Systems Journal
44, No. 4, 709-726 (2005, this issue).

3. Web Services Policy Framework (WS-Policy), IBM, BEA,
Microsoft, SAP, Sonic Software, VeriSign (September
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-polfram/.

4. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N.
Kartha, C. K. Liu, S. Thatte, P. Yendluri, and A. Yiu,
OASIS Web Service Business Process Execution Language
V2.0 Working Draft (May 2005), http://www.
oasis-open.org/committees/download.php/12791/
wsbpel-specification-draft-May-20-2005.html.

5. J. Farrell, R. Akkiraju, and M.-T. Schmidt, Web Services
Semantic Annotations, Technical Note, Version 1.0
(December 2004), http://awwebx04.alphaworks.ibm.
com/ettk/demos/wstkdoc/services/demos/psme/
webapp/WebServicesSemanticAnnotations.htm.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

6. OWL-S: Semantic Markup for Web Services, W3C
Member Submission 22 November 2004 http://
www.w3.org/Submission/OWL-S/.

7. D. Ogle, H. Kreger, A. Salahshour, J. Cornpropst, E.
Labadie, M. Chessell, B. Horn, J. Gerken, J. Schoech, and
M. Wamboldt, Canonical Situation Data Format: The
Common Base Event V1.0.1 (2004), http://dev.
eclipse.org/viewcvs/indextools.cgi/~checkout~/
hyades-home/docs/components/common_base_event/
cbelOlspec/CommonBaseEvent_SituationData_V1.0.1.
pdf.

8. OWL Web Ontology Language Overview, W3C Recom-
mendation (February 10, 2004), http://www.w3.org/TR/
owl-features/.

9. B. Portier and F. Budinsky, Introduction to Service Data
Objects, (September 28, 2004), http://www-106.
ibm.com/developerworks/java/library/j-sdo/.

10. C. Sadtler, D. Cotignola, B. Crabtree, and P. Michel,
Patterns: Broker Interactions for Intra- and Inter-
Enterprise, IBM Redbooks, SG24-6075 (2004), http://
www.redbooks.ibm.com/redbooks.nsf/0/
532fcal72dal5c6c85256d6d0046192e?0penDocument.

Accepted for publication June 3, 2005.
Published online October 24, 2005.

Marc-Thomas Schmidt

IBM Software Group, Hursley Park, Hursley SO212JN
(mtschmidt@uk.ibm.com). Mr. Schmidt is an IBM
Distinguished Engineer and has been working on IBM
Business Integration technologies for more than a decade,
from workflow management systems to advanced message-
oriented middleware and business-process-management
technology. In his current role as ESB chief architect, he leads
the work on technical architecture for IBM’s ESB technologies.

Beth Hutchison

IBM Software Group, A2123, MP 189, Hurlsey Park, Winchester
SO21 2JN (beth_hutchison@uk.ibm.com). Ms. Hutchison is a
Senior Technical Staff member and a Web Services architect
working on IBM ESB technologies. Since joining IBM, she has
consistently worked on leading-edge technologies, initially as
the lead developer for the first release of WebSphere MQ on
distributed platforms. Subsequently, she became a
performance architect for IBM Java virtual machines. She has
now rejoined the MQ family and is working on systems
management throughout the ESB.

Peter Lambros

IBM Software Group, Hursley Park, Hursley SO212JN
(lambros@uk.ibm.com). Mr. Lambros is a Senior Technical
Staff Member in the IBM ESB and MQ Development team,
working on the strategy and architecture of IBM’s integration
technologies. He has been the chief architect of WebSphere
Business Integration Message Broker since its inception as
MQSeries Integrator and is also currently working on the
architecture of mediation technologies for IBM’s ESB
products.

Rob Phippen

IBM Software Group, Hursley Park, Hursley SO212JN
(phippen@uk.ibm.com). Mr. Phippen is a senior architect in
the IBM ESB and MQ Development team, responsible for the
specification and development of mediation components for
WebSphere products. He has experience working on IBM’s
messaging technologies for more than five years, including
time in the IBM MQ Strategy and Planning Team. M

SCHMIDT ET AL

797

