
The Enterprise Service Bus:
Making service-oriented
architecture real

&

M.-T. Schmidt

B. Hutchison

P. Lambros

R. Phippen

The Enterprise Service Bus (ESB) is the infrastructure which underpins a fully

integrated and flexible end-to-end service-oriented architecture (SOA). This paper

details the essential meta-data and capabilities of the ESB. It presents a summary of

the key concepts of the ESB and defines the integration model for it, including key user

roles. These roles are fulfilled using meta-data that describes the service endpoints,

such as the service interface and policy requirements and capabilities. The ESB

manages this meta-data through a registry, which supports configuration, connection,

matchmaking, and discovery of service endpoints. Some typical mediation patterns

that are used to satisfy endpoint policies are explored, and usage patterns are

described in which the ESB is used to implement real SOAs.

INTRODUCTION

Many papers in this journal discuss service-oriented

architecture (SOA)—what it is and its benefits and

value propositions. Other papers describe tangible

implementations of SOAs. This paper abstracts and

learns from these and similar experiences to identify

the essential characteristics of an Enterprise Service

Bus (ESB): the meta-data that describes service

requestors and providers, mediations and their

operations on the information that flows between

requestors and providers, and the discovery, rout-

ing, and matchmaking that realize a dynamic and

autonomic SOA.

In particular, this paper explains how the ESB

provides the tools and runtime infrastructure to

realize the promise of SOA formulated in the iconic

‘‘publish-find-bind’’ triangle (see Figure 1) that was

popular in the early days of the SOA revival caused

by Web Services (see Reference 1). As illustrated in

Figure 1, the ESB manages and exploits meta-data

describing interaction endpoints as well as the

domain models used to describe the capabilities of

those endpoints; it supports configuration of links

that bridge between capabilities demanded by

service requestors and those offered by service

providers, dynamically matching requestors with

providers and in the process establishing and

enacting contracts between those interaction end-

points.

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 781

This paper is structured as follows: we begin with an

overview of the main characteristics of the ESB,

followed by a detailed discussion of the concepts of

the ESB programming model and the standards

supporting those concepts. We conclude with a

description of ESB use cases and usage patterns.

ESB IN A NUTSHELL
The ESB enables an SOA by providing the con-

nectivity layer between services. The definition of a

service is wide; it is not restricted by a protocol,

such as SOAP (Simple Object Access Protocol) or

HTTP (Hypertext Transfer Protocol), which con-

nects a service requestor to a service provider; nor

does it require that the service be described by a

specific standard such as WSDL (Web Services

Description Language), though all of these standards

are major contributors to the capabilities and

progress of the ESB/SOA evolution. A service is a

software component that is described by meta-data,

which can be understood by a program. The meta-

data is published to enable reuse of the service by

components that may be remote from it and that

need no knowledge of the service implementation

beyond its published meta-data. Of course, a well-

designed software program may use meta-data to

define interfaces between components and may

reuse components within the program. The distin-

guishing feature of a service is that the meta-data

descriptions are published to enable reuse of the

service in loosely coupled systems, frequently

interconnected across networks.

What do we mean by ‘‘publishing’’ a description of a

service? Descriptions of the services available from a

service provider can be made accessible to devel-

opers at the service requestor, possibly through

shared development tools. The ESB formalizes this

publication by providing a registry of the services

that are available for invocation and the service

requestors that will connect to them. The registry is

accessible both during development and at runtime.

Components such as J2EE** EJBs** (Java** 2

Enterprise Edition Enterprise JavaBeans**) or data-

base-embedded functions may be published as

services, but not every J2EE EJB is a service, and not

every J2EE EJB is accessible by means of the ESB. In

general, EJBs need additional meta-data, and possi-

bly additional bindings, published to the ESB

registry in order to make them available as services.

Publication of the service requestors and providers

allows their meta-data to be administered through

the ESB registry and enables their relationships and

interactions to be visualized and updated. None-

theless, ad hoc requestors and providers may also

Figure 1
ESB underpinnings for SOA

Service
Registry Bind

Service
Requester

Domain
Models

Service
Provider

PatternsLinkMediation

Disco
ver

Discover

Existing
Applications

Service
Provider

Service
Requester

Publish

Find

Service
Registry

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005782

connect to the ESB without first being registered, for

example, subscribers to a ‘‘publish/subscribe’’ topic.

In that case, their interactions will not benefit from

the full dynamic capabilities of the ESB, described

later.

The ESB populates the registry with meta-data about

services in three different ways. When services are

deployed to the runtime environment, they can be

simultaneously and dynamically added to the ESB;

meta-data associated with components already

deployed can be explicitly added to the ESB; or the

ESB can discover services and service interactions

that are already deployed and incorporate meta-data

describing them in the registry.

Note that the ESB is the infrastructure for inter-

connecting services, but the term ESB does not

include the business logic of the service providers

themselves nor the requestor applications, nor does

it include the containers that host the services.

Hosting containers and free-standing applications

are enabled for interaction with ESBs with varying

levels of integration, depending on the range of

protocols and interoperability standards supported.

Most containers (e.g., J2EE application servers,

CICS*, Microsoft .NET**) integrate with an ESB

across the SOAP/HTTP protocols, but fewer have

direct support for SOAP/JMS (Java Messaging

Service) over a particular brand of JMS provider.

After the ESB has delivered its payload to a

container, its responsibilities are fulfilled. Within the

container, the service invocation may be redirected

among the machines in a cluster, or it may be

responded to from a local cache. These are some of

the normal optimizations within an application

server environment, and they complement the

routing and response capabilities of the ESB

between the service providers it interconnects.

Similarly, the ESB is the connectivity layer for

process engines that choreograph the flow of

activities between services. The process engine is

responsible for ensuring that the correct service

capabilities are scheduled in the correct order. It

delegates to the ESB the responsibility for delivering

the service requests, rerouting them if appropriate.

A core tenet of SOA is that service requestors are

independent of the services they invoke. As a result,

it is not surprising that the ESB is essentially

invisible to the service requestors and providers that

use it. A developer can use an API (application

programming interface), such as JAX-RPC (Java API

for XML-based RPC [remote procedure call]) to a

Web service, or distribute messages with the Web-

Sphere* MQI (Message Queue Interface) to a

message queue, without considering whether these

requests are flowing directly to the service or are

traversing an ESB. Similarly, a service provider can

be written as a J2EE EJB or a servlet without any

specific application code to make it accessible

through an ESB. Despite this, one of the values of

the ESB is that it takes on the responsibility for many

of the infrastructure concerns that might otherwise

surface in application code. Thus, although devel-

opers can use APIs for service invocation, they do

not need to add logic to deal with security, for

example.

The ESB virtualizes the services that are made

available through the bus. The service requestor,

both in its application logic and in its deployment,

does not need to have any awareness of the physical

realization of the service provider. The requestor

does not need to be concerned about the program-

ming language, runtime environment, hardware

platform, network address, or current availability of

the service provider’s implementation. In the ESB,

not even a common communication protocol need

be shared. The requestor connects to the bus, which

takes responsibility for delivering its requests to a

service provider, offering the required function and

quality of service. Not surprisingly, the infrastruc-

ture of the bus is itself virtualized, allowing it to

grow or shrink as required by the network and

workload which it is supporting.

The flexibility that comes from an SOA, and the

virtualization it implies, is fully realized by the

dynamic nature of the ESB. All the meta-data,

conditions, and constraints used to enable a

connection from a requestor to a provider can be

discovered, used, and modified at runtime. For

example, a new implementation of a service in a

different geographical region can be published to the

ESB registry, and requests in that region can be

routed to it without reconfiguration of the request-

ors. A service requestor might select a reduced level

of assured delivery and see an improved level of

performance as the ESB determines that it can use a

different delivery protocol. This flexibility is avail-

able as a direct consequence of the role of the ESB

registry. Because all relevant meta-data for the

service provider and service requestors has been

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 783

placed in the ESB registry, it can be subsequently

discovered and used to make dynamic changes.

To achieve much of this flexibility, the ESB accepts

requests as messages, then operates on them, or

‘‘mediates’’ them, as they flow through the bus.

Mediations can be an integral part of the ESB,

providing (for example) transport mapping between

SOAP/HTTP and SOAP/JMS, or routing a message

to an alternate provider if response times fall below

an acceptable value. It is also a feature of the

flexibility of the ESB that mediations can be

provided by third parties—by other products, ISVs

(independent software vendors), or customers—to

operate on messages as they flow through the ESB

infrastructure. This allows, for example, ISV pack-

ages to implement advanced load-balancing features

among services, or customers to add auditing to

meet new legislation. Mediations can be deployed

on the ESB without changing the service requestor

or provider.

Mediations are the means by which the ESB can

ensure that a service requestor can connect suc-

cessfully to a service provider. If a service provider

requires one format for an address field and a

service requestor uses a different one, a mediation

can map from one format to another so that the ESB

can deliver the service request. If the service

provider expects encrypted messages, a mediation

can encrypt the ‘‘in-the-clear’’ service requests as

they pass through the ESB. The ESB can react

dynamically to the requirements of requestors and

providers when they are described in their meta-

data and held in the registry. In the case of message

formats, this is usually achieved through a schema

definition. For other service properties, policy

statements, which may describe the encryption

algorithms to be used or the requirements for

auditing, can be associated with the meta-data of the

service provider and requestor. The ESB consults

this meta-data at runtime and can reconfigure the

mediations between requestor and provider to

match the requirements. By annotating a policy for

the service providers in the ESB registry, the system

administrator can, for example, ensure that the

services meet the company’s new privacy guide-

lines. Thus the ESB implements an autonomic SOA,

reacting to changes in the services it connects.

One of the major uses of mediations is in systems

management. Mediations can be deployed in the

ESB environment to enable request and response

messages to be monitored as they flow through the

system, enabling service-level management or

problem determination. Mediations can route ser-

vice invocations to back-up data centers if there is a

local problem or to new service providers as they

are brought online. They can validate messages in

terms of their format correctness, data values, or

user authentication and authorization. Through

these and other systems management capabilities,

the ESB ensures that a loosely coupled and

dynamically varying SOA is still manageable in a

production environment.
2

Many of the mediation capabilities just described are

core attributes of the ESB, and the mediations are

made available as part of the runtime environment.

They are customizable, so that, for example, a

generic table-driven routing mediation can be

configured to use a specific table and a specific field

in a message as the key. The ESB also provides tools

to configure the interactions between services—to

display the services available in the ESB, to

interconnect them, to add policy requirements to a

service or group of services, to identify mismatches

in the endpoints, and to associate mediations to

correct these, either explicitly or through automatic

reconciliation of their policy declarations.

Much of the preceding discussion uses the terms

service requestor and service provider, as is appro-

priate for the ESB. Service requestors and service

providers are equal partners in the interaction, with

the requestor simply being the endpoint that

initiated the interaction. The interaction may con-

tinue with either endpoint sending or receiving

messages. The ESB supports many different types of

program interaction: one-way messages as well as

requests and responses, asynchronous as well as

synchronous invocation, the publish/subscribe

model, where multiple responses may be generated

for one subscribe request, and complex event

processing, where a series of events may be

observed or consumed to produce one consequential

event. The ESB is also, in principle, transport and

protocol ‘‘agnostic,’’ with the capability to transform

messages to match the requestor’s preferred formats

to those of the provider. In practice, most ESBs

support SOAP/HTTP, which reinforces its role as an

interoperability standard. They also support a range

of other transports and protocols, some for use by

service requestors and providers connected by the

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005784

ESB, and some for internal communication within

the ESB.

THE ESB INTEGRATION MODEL
Having established the basic concepts and features

supported by the ESB, we focus on ESB-based SOA

solutions. The ESB integration model captures those

aspects of the overall solution that are relevant for

the ESB tools and infrastructure to facilitate inter-

actions between ESB-managed service endpoints. It

enables the various user roles involved in creating

and managing those solutions to express the ESB-

relevant information that they contribute or mon-

itor, and the ESB runtimes to manage interactions

accordingly. In essence, the model contains meta-

data describing service endpoint requirements,

capabilities, and relationships, including informa-

tion describing the specific details of interaction

contracts.

Not all user roles use the model directly. A business

analyst, for example, might define a set of key

performance indicators (KPIs) that need to be

translated into events produced by the underlying

implementation artifacts and potentially into pa-

rameters of a service interaction contract. Users in

the architecture and design space, such as a solution

architect, might define service capabilities and

requirements in more abstract terms than those

required by the ESB integration model. Other roles,

such as the application developer, create and use

service capabilities and requirements for the inte-

gration model. The user roles that are the most

interesting from the ESB perspective are those of the

integrator and the solution administrator. We next

discuss how integration specialists assemble solu-

tions from existing service components and how

solution administrators configure and reconfigure

those solutions. We use UML** (Unified Modeling

Language**) models to illustrate the concepts those

user roles deal with; these are high-level conceptual

models not to be confused with product- or

implementation-specific models of the underlying

runtimes or specific standards in this space. We do,

however, hint at relationships to products and

standards where appropriate.

Integration specialists assemble business solutions

from a set of service components. They do not have

to understand the implementation details of those

components (process coordination, existing appli-

cations, interactive tasks, etc.); all they need to

understand is the capabilities offered by components

and the requirements of the components they use,

with respect to other components. The ESB service

registry provides the required information about

those components and, together with the ESB

runtime, enables integration specialists to perform

component-assembly tasks, selecting components

required to implement the solution, resolving

dependencies those components might have on

other components, and interposing the mediations

required to make components interact.

Solution administrators deploy and customize the

solutions they get from their integration specialist

colleagues: they may be given a set of component

relationships which they simply adopt; they may

choose to override the defaults defined by an

integration specialist; they may have to compensate

for the fact that an integration specialist has not

resolved certain variables of a solution; or they may

have to reconfigure a previously deployed solution

due to changes in the solution environment. These

tasks are usually done in the component develop-

ment environment, but the ESB enables flexible

configuration through late binding by providing this

service to the solution-administrator role. The key to

enabling this flexible configuration and reconfigu-

ration of solutions is the explicit declaration of

capabilities and requirements of service interaction

endpoints. The next section explores the underlying

service meta-data management capabilities provided

by the ESB in more detail.

WHAT PROVIDERS OFFER AND REQUESTORS
WANT—SOA META-DATA

The key to service virtualization and dynamic

matchmaking between service requestors and pro-

viders is the explicit declaration of capabilities and

requirements of interaction endpoints. Service meta-

data describes capabilities of software assets inde-

pendent of their implementation specifics. It does

not assume a specific programming model for the

realization of the services that offer their capabilities

for use by other components, nor for the realization

of services that require certain capabilities to be

provided by other components. It facilitates inter-

operability among a broad spectrum of service

providers and requestors; an existing CICS/COBOL

application can declare its service capabilities and

expectations exactly like a business service newly

implemented in J2EE or a Web service offered by a

business partner that uses SOAP/HTTP. Service

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 785

meta-data also supports an ‘‘assembly-from-parts’’

model for implementing new business process

applications from a catalog of services.

Before discussing the kind of meta-data about a

service that is relevant for ESB-managed interactions

in detail, it is important to note that requirements for

explicitly recording meta-data about service inter-

action endpoints are relative to the scope of visibility

of the underlying application artifacts (see

Figure 2). Even in moderately homogenous devel-

opment environments (e.g., departmental integra-

tion projects using messaging features of an

application server) it can make sense to use the

service component abstraction and an ESB to

construct solutions. In that case, a minimal set of

meta-data declarations (e.g., interface declarations

only) for each service component is sufficient to

enable ESB-facilitated service component assembly.

If the principles of SOA are applied on a larger scale

(on an enterprise level, using a message broker, for

example), more explicit declaration of service

component capabilities and requirements are nec-

essary. In this case, not only service interfaces but

also quality-of-service assumptions might have to be

considered to enable service users to understand

under which circumstances they can use a service.

An even more detailed declaration of service

capabilities is required when attempting to apply

SOA on an inter-enterprise scale. In this case,

declaration of interaction patterns, service-level

agreements, and other factors become relevant.

Figure 2 also illustrates the fractal (self-similar)

nature of the ESB. Various ESB agents collaborate to

realize an integration infrastructure that enables a

business process created in a departmental context

to interact with service that may be local to the

department, hosted in other departments of the

same enterprise, or even hosted by other enter-

prises.

Having established the relativity of meta-data needs

for various levels of ESB elements, we take a more

systematic look at the spectrum of meta-data that

could be recorded for a service component. As

established earlier, the main elements of the ESB

programming model are service requestors and

service providers. Most of the ESB-relevant meta-

Figure 2
Scope of service assembly and service meta-data visibility

Department

Enterprise

Interenterprise

ESBScope of Visibility of Meta-data

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005786

data about those interaction endpoints can be

classified as interface declaration or policy annota-

tion.

The objective in recording meta-data is the estab-

lishment of matches between potential partners so

that they can interact. A given requestor matches a

particular provider if their interface and policy

declarations are compatible or can be made com-

patible. The simplest (and in the real world, the

rarest) form of compatibility is a perfect match. In

this ideal case, a requestor needs the exact operation

a provider offers with the qualities of interaction

service defined by the provider’s policies. The only

practical way to make this work is the ‘‘requestor

makes it right’’ principle that is common practice in

traditional RPC-style interactions. Using this princi-

ple, the application developer of a requesting

application consults the ESB service registry to find

a provider and implements the requestor to fit the

provider’s specification. In SOA scenarios, a more

flexible matchmaking model is required. The ESB

supports such a model, but this comes at a price;

namely, potential interaction partners need to

provide sufficient information about their require-

ments and capabilities.

The simplest and most common form of service

meta-data is the interface declaration. Interaction

endpoints describe the messages they can process or

will produce, as well as the message exchange

patterns supported. In Figure 3, service providers

support and service requestors require support for

service interfaces that are made up from service

operations, which in turn represent message inter-

changes in terms of logical messages supported by

the endpoint. Ideally, the interface part of a

declaration of service capabilities and requirements

is described by using WSDL, with XML schema

describing the structure of messages to be ex-

changed. Nevertheless, there are many examples of

successful ESB implementations that use only a

subset of WSDL (e.g., XSDs [W3C** XML Schema

definition language] for message declarations for

processing information, often with specific annota-

tions to capture additional meta-data about message

formats) or home-grown meta-data schema to

capture the information. Those approaches, in

general, do not scale beyond relatively homogenous,

‘‘localized’’ ESBs, but they support the point that it is

more important to make the capabilities and

requirements of services explicit rather than use a

specific declaration formalism.

Policy declarations further qualify capabilities of

interaction endpoints; simply put, a policy expresses

anything a component wants the world to know

about it other than what messages it understands.

This is a very general concept of policy, and it

Figure 3
Service capability and requirements declaration

Service Operation

Service Requester

CapabilityPolicy Requirement

+ providerPolicy

*

matching partners + provider

*+ requester
*

+ dependency* + declaredCapability*

+ requesterPolicy

*

Logical Message

Service Interface

+ input*

+ supports

+ output*

+ supports1..*+ requires 1

0..1

Service Provider

Policy

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 787

actually covers things that are sometimes factored

out into behavior declaration or semantic annota-

tions of services; as explained previously, we

present a very coarse-grained, conceptual model

here that may well be refined during translation into

an operational model.

As discussed previously, in many localized ESB

scenarios, policy declarations are not required. In

the general case, interaction endpoints use policies

to declare the capabilities they offer or policy

requirements they have with respect to other

services. Note that the model illustrated in Figure 3

allows both service providers and requestors to

declare capabilities and requirements by use of a

policy. A requestor can declare not only require-

ments for providers that wish to interact with it, but

also capabilities which specify actions that it is

willing to perform before it dispatches a request to a

provider (e.g., encrypting messages). Service pro-

viders use policies to declare not only the capabil-

ities they offer, but also the requirements they might

have for requestors that want to use them. More

precisely, policy declarations can provide (1) in-

formation about characteristics of the declaring

component’s internal behavior which affect the

interaction, (2) constraints on a peer’s invocation of

the declaring service, (3) constraints on the target

interface of an interaction partner, or (4) informa-

tion about characteristics of the service component’s

internal behavior regarding the respective interface

reference. The WS-Policy
3

declaration establishes a

framework for policy declarations of all sorts and

enables reasoning about the compatibility of policies

declared by potential interaction partners.

The policy declarations discussed here should not be

confused with policy declarations intended for the

service container that hosts the service component

in question, which are outside the scope of this

discussion. As indicated earlier, we use a very broad

definition of policy and include declarations a

service requestor or provider might want to make

about expected or supported behaviors. For exam-

ple, a provider might indicate sequencing con-

straints on its operations (e.g., operation A has to be

invoked before B or C can be invoked), describe

interaction patterns involving more than one oper-

ation (e.g., if you send me a request on operation A,

then I will respond with a message on outbound

operation B and expect you to respond with another

request to my operation C), or maybe even describe

more than one interaction partner (e.g., if you send

a request to my operation A, then I will send a

request to my partner P, and after I hear back from

him, I will send a response to you). Application

developers can represent such behavioral specifica-

tions, for example, using the features for abstract

process declaration provided by BPEL (Business

Process Execution Language).
4

Note that they will in

general not expose the actual behavior of their

services (e.g., an executable BPEL process) but

rather a projection or abstraction of that behavior.

In the very broad definition of policy here, we also

include semantic annotations of service interfaces

that explain the meaning of messages exchanged

with the service or the meaning of the service

operations. Those annotations are useful when the

semantics of services and their operations is not

obvious from the naming conventions used. The

annotations can be as simple as relating elements of

the service declaration to well-known terms, but

they can also include declarations of preconditions

or postconditions for operations. Work on stand-

ardizing semantic annotations is ongoing (see

References 5 and 6).

We describe a conceptual model for the ESB, not a

particular implementation. Service interfaces can be

captured in a variety of ways, and from an abstract

ESB perspective, the specific syntax used to describe

them is far less important than the fact that they are

recorded. Declaration of message sets using XML

Schema, with annotations to capture information

relevant to a specific message formatting, is an

example of ESB-managed meta-data about interac-

tion endpoints (in this case WebSphere MQ appli-

cations that produce and consume those messages).

Where possible, however, we encourage use of the

WS (Web Services) standards to declare capabilities

and requirements of interaction endpoints: WSDL

for service interface declarations, WS-Policy for any

kind of policy annotation to those interfaces, and

BPEL for specification of sequencing constraints.

Standards play an important role in advancing the

syntactic normalization of meta-data about inter-

action endpoints. Nevertheless, in many cases,

especially in ESB scenarios beyond departmental

applications, deeper understanding of the semantics

of the underlying services is required to perform any

meaningful matchmaking. Service interfaces ab-

stracted from a legacy application might make sense

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005788

to requestors that know about the original applica-

tion, but not to requestors outside of that small

circle; often even a ‘‘perfect match’’ between

services on an interface level does not imply that

they can actually interact in any meaningful way. As

indicated earlier, the semantics of services is often

declared through reference to more commonly

known concepts, captured in domain models.

Domain models establish a frame of reference that

makes it possible not only to explain the semantics

of services but also to make statements about

compatibility of services, and that in turn enables

the definition of service interaction contracts which

can be managed by the ESB infrastructure. We

discuss these concepts in more detail in the next

section.

THE ESB SERVICE REGISTRY

Simply put, the ESB plays two main roles in the

service endpoint matchmaking game—the service

registry manages all relevant meta-data about

interaction endpoints (see Figure 4), and it also

takes care of the matchmaking between those

endpoints. This section discusses the service regis-

try; the next section discusses the matchmaking.

The ESB is a service registry in the sense that it

manages not only meta-data about the service

interaction endpoints involved in the SOA, but also

information about domain models. This information

establishes a common understanding of services

beyond the scope of visibility of an individual

service requestor or provider.

The ESB captures information that can be used to

better understand the practical content of the

registry: domain models representing general

knowledge about a topic area, independent of the

specific domain applications represented as services

in the registry. As before, we use a very generic

definition of the term domain model because we

want to establish an implementation-independent

model for the ESB. Our definition covers domain

models as simple as a topic space or a simple

taxonomy that classifies events exchanged in pub-

lish/subscribe style interactions; it includes stan-

dard message sets used in specific industries or a set

of ‘‘generic business objects’’ covering a specific

application domain; and it extends to moderately

complex ontologies describing concepts and their

relations in a particular topic space. In the ESB

integration model, domain models are used to

establish semantics of the practical meta-data

artifacts that the ESB cares about.

In many ‘‘local ESB’’ scenarios, little or no domain

knowledge needs to be formalized—the user com-

munity involved simply knows the semantics, and a

simple hint in the form of well-named interfaces and

messages suffices. In the publish/subscribe mes-

saging model, topic spaces can be used to classify

message instances. Generic business objects or

standard message sets applicable to a domain can be

used to establish a (semantically) normalized view

for messages exchanged within that domain (but

usually not beyond it), thus enabling application

developers to implement endpoint applications

Figure 4
ESB service registry content

Enterprise Service Bus

MediationLinkBus Service Provider

Domain Model

+ link* *+ provider + requester*+ mediation *

Bus Service Requester

Service RequesterService RegistryService Provider

*

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 789

without worrying about the specific semantics of the

underlying service components. This enables ser-

vice-level managers to observe the status of a

system, based on knowledge about events which

adhere to the Common Base Events (CBE) standards

proposal (see Reference 7).

Ontologies can establish a deeper semantic under-

standing of the interaction endpoints and facilitate

use of more sophisticated ways to identify possible

interactions between them (see Reference 8). The

main objective of managing domain models and

establishing semantic understanding of interaction

endpoints is to enable matchmaking between those

endpoints—the more explicit knowledge there is

about capabilities and requirements of the end-

points, the more automated the matchmaking can be.

The main role of the ESB registry is to manage meta-

data about the interaction endpoints themselves. To

participate in ESB-managed interactions, endpoints

need to register with the ESB. The ESB model

represents registered service requestors as bus

service requestors (BSRs) and registered service

providers as bus service providers (BSPs). Service

providers that are not registered as BSPs are

invisible to the ESB for interaction partner selection.

When a BSP or BSR is registered, its service interface

and policy declarations are captured in the ESB

service registry. At this point it is also possible to

provide additional information about the service

endpoint that might not have been provided with

the original declaration. Semantic annotation is one

example. Documenting or discovering relationships

between the newly registered service and other

artifacts in the service registry is another.

Both BSPs and BSRs can be created without any

available ‘‘counterpart’’ that wishes to interact with

them; conceptually, the ESB ensures that it will take

care of connecting each BSP to requestors that send

requests to it and that it will deliver the requests of

each BSR to some matching provider. In a way the

ESB is the ‘‘ideal provider’’ for a BSR and the ‘‘ideal

requestor’’ for a BSP. It is the ESB’s job to make

things right if there actually should not be such an

‘‘ideal counterpart.’’

The ESB registry also holds details of links and

mediations, which are described in the next sub-

sections.

Like any good service registry, the ESB provides the

following features:

� Discovery and management of meta-information

about interfaces and capabilities of existing

applications that can be used as building blocks

for integration solutions. This includes analysis of

legacy applications to discover meta-information

about their interfaces, policies, and behavioral

constraints, as well as exploitation of object

discovery agents to capture meta-information

about packaged applications.
� Management of meta-information about services.

This includes WSDL declarations as well as WS-

Policy declarations describing capabilities pro-

vided by services or required by service requestors

and also BPEL-defined declarations of behavioral

constraints for services (abstract BPEL processes)

or actual behavior of those services.
� Management of domain models describing general

knowledge about an application domain relevant

for SOA-based business integration scenarios.

Examples include industry-standard message sets,

generic business objects, ontologies encoded in

the OWL Web Ontology Language, and ‘‘con-

tracts’’ for SOA interactions.
� Discovery and management of relationships be-

tween ‘‘real world’’ artifacts representing existing

applications, service declarations, and domain

models.
� Enabling generation of artifacts for the ESB

runtime. Examples include Service Data Object
9

(SDO) schema, maps between service interfaces

for ESB mediations, and application adapters.
� Management of runtime meta-information for

matchmaking between service requestors and

service providers (e.g., service declarations with

policies and compatibility rules) and SDO schema

with annotations.

Links and mediations for dynamic SOA

The ESB supports two concepts to facilitate inter-

actions between endpoints: it introduces links

between service requestors and providers that

enable basic connectivity between interaction end-

points with a configurable quality of service, and it

provides the concept of mediations that can be used

to configure and reconfigure the ESB by dynamic

alterations to routing and qualities of service and to

allow interaction endpoints to modify their behav-

iors. Links and mediations basically realize the

contract between interaction partners that is implicit

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005790

in the declarations of the capabilities and require-

ments of those partners.

An ESB link has two endpoints, one for attachment

of BSRs and one for attachment of BSPs; both ends

can be qualified by using interface declarations and

policies just like interaction endpoint declarations. A

link defines the ‘‘ideal counterpart’’ for service

requestors and providers: the provider attachment

part of a link can be designed to provide an exact

match for a particular registered BSP; and the

requestor attachment part of the same link can be

designed to provide an exact match for some

registered BSR. The two ends of the link do not have

to match—ESB-managed mediations on the link can

enact the transformation required to make the ends

meet.

Thus, an ESB link represents and implements the

contract between interaction endpoints. It can be

tailor-made for a particular requestor/provider pair.

An integrator given the task to resolve the require-

ments of a business process component (here in the

role of a service requestor) for services that imple-

ment process activities might select a set of service

providers to be linked to the process and, in

cooperation with the solution deployer, create a BSR

representing the process, a set of BSPs representing

the services invoked, and a set of links between

them, configured to meet the requirements declared

by the process.

Link configuration does not necessarily reflect only

the requirements and capabilities of the endpoints

that it connects; it can just as well implement

requirements defined for a set of interactions, for

example, in enterprise policies (such as logging all

high-value transactions). A solution administrator

can preconfigure ESB-managed links to support a

specific quality of (interaction) service to be used by

a number of interested interaction endpoints.

A link might be configured with a varying number of

interaction endpoints attached to it. A solution

administrator might register a BSP and attach it to a

link that might not have any BSRs attached to it.

Alternatively, the administrator might register an

event source as a requestor and attach it to a link

that will propagate the events it produces—poten-

tially, without anybody listening at the other end. A

link can be configured such that it dynamically

determines the endpoints that need to be attached to

it, e.g., depending on the content of the requests it is

processing.

In the most dynamic case, a link can be created

dynamically to perform matchmaking between

dynamically established requestor/provider pairs.

The configuration of the link can be derived from

the requirements and capabilities of the endpoints

that it is meant to connect.

As illustrated in Figure 5, both endpoints of a link as

well as the link itself can carry policy declarations.

Figure 5
ESB links

Policy

Bus Service Requester Bus Service Provider

- requester 1

Service Interface

*

*

*

0..1

Requester Attachment Provider AttachmentLink

0..1

1

* - provider

- requester

*

- provider

*

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 791

Policies on the endpoints declare the constraints as

well as the capabilities of the endpoints, whereas

policies on the link itself can only represent

capabilities implemented by the link for the benefit

of attached endpoints that require the capability.

Interfaces on the endpoints of a link are optional and

often are omitted to indicate that the link can carry

any type of message between associated endpoints.

Note that service interfaces on both ends of a link

can have different signatures. In this case, some

mediation on the link needs to take care of the

transformation.

SOA holds out the promise that services can be

discovered from service directories and bound

together to form new and exciting, or simply more

efficient, applications. Unfortunately, existing ap-

plications were seldom designed to be linked

together, and the integration specialist is faced with

mismatches of protocol, format, and quality of

service to reconcile, as well as requirements to make

his new applications more flexible and resilient. The

ESB addresses these challenges by interposing

mediations between service requestors and pro-

viders which can reconcile their differences. In

addition, mediations can reconfigure the links

between requestors and providers, for example, to

create an alternative routing or to create a reactive

and autonomic system.

The ESB integration model supports the attachment

of mediations at various points on a link between

interaction endpoints: a mediation can be associated

with the registered service provider, registered with

a service requestor, or attached to a link between

them. This is formalized in the model through the

concept of a mediation point (see Figure 6). A

mediation point inserted at the requestor implies

that the mediation will be performed no matter what

provider the requestor interacts with; a mediation

point activated at the provider end implies that the

mediation will be performed whenever the provider

receives a request, no matter which requestor it

comes from; and a mediation associated with a link

applies only to the specific interactions that occur

through the link.

Mediations process messages as they flow through

the ESB. Interface mediations operate on the

message payload, which contains the information

required by the service provider, and can change its

content and its structure. In addition, the messages

have contextual information associated with them,

usually specified in message headers. This concept

is familiar from SOAP headers, which contain, for

example, the location of the service provider. Within

an ESB, the message context includes additional

quality-of-service and routing information about the

link and the mediations required between the

service requestor and provider. Policy mediations

operate on the message context. In addition to the

information in the messages, the ESB provides

mediations with information about the ESB config-

uration by means of access to the ESB registry.

Figure 6
Mediation in the ESB integration model

Mediation Point

Capability Service Interface

+ provides 1..* + source 1 + target1

Bus Service RequesterBus Service Provider

Mediation

+ mediation0..1

Mediation Service

- uses*

PolicyMediator InterfaceMediator

Link

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005792

Mediations can change the content and format of the

service requests or responses or modify their

intended routing. Although these are useful and

necessary functions of mediations, to fulfill the

flexibility of an ESB, it is also important that a

mediation can be restricted, for example, so that it

cannot see sensitive payload information or change

a particular routing. Mediations are characterized by

the read or update access they require to the context

and payload sections of the message, and this can be

enforced by the ESB.

Mediation patterns

Mediations are not formally restricted in their

capabilities, but their intended role is satisfying

integration and operational requirements within the

infrastructure, rather than implementing business-

level processes. Within this role, there are several

basic patterns, which are seen repeatedly, either as

individual mediations or within more complex

mediations.

The monitor pattern is used to observe messages as

they pass through the ESB without updating them in

any way. Mediations that conform to this pattern

use the information in the context and payload in

many different ways; for example, to monitor

service levels, to assist in problem determination, to

meter usage for subsequent billing to users, or to

record business-level events, such as purchases

above a certain dollar value. This pattern can also be

used to log messages for audits or for subsequent

data mining. The first two examples would require

read access to only the context information in the

message. The others would require read access to

the payload too, though the messages could be

logged as raw bytestreams, for later parsing.

The transcoder pattern changes the format of the

message payload without changing its logical con-

tent. For example, it may convert a SOAP message

into a JMS/Text message with an XML payload that

matches the body of the SOAP message (possibly by

mapping SOAP header fields into JMSProperties).

Mediations which conform to this pattern can often

be created automatically when there is a clear

definition of the two formats and of the relationship

between them. This pattern requires update access

to the payload.

The modifier pattern updates the payload of the

message without any change to the context in-

formation. It requires update access to the payload.

There are two common subpatterns: transformation

and enrichment. In the former, the message payload

is transformed from one format (schema) to

another, to match the definition of a message of the

requestor to that of the provider. This includes

‘‘enveloping and de-enveloping’’ (the process of

putting a message in one network format inside the

format envelope needed for transmission over

another network, or the corresponding removal of

an envelope) and encryption. In the latter, the

payload of the message is updated by adding

information from external data sources, such as

customization parameters of the mediation, or from

database queries.

The validator pattern determines whether a message

should be delivered to its intended destination. If

not, it may silently ignore the message or may return

a rejection response to the requestor. The check can

be against the meta-data of the message, such as the

schema, or permitted values for specific fields.

Alternatively, the check can be against side in-

formation associated with the mediation, which may

relate to one or more fields in the payload of the

message or to information held in the message

context, such as the origin of the message. This

variant of the pattern includes authentication and

authorization checks. Depending on the checks

involved, this pattern requires read access to the

message context or the payload, or both.

The cache pattern returns a valid response to the

requestor without necessarily passing the request to

a service provider. It maintains a cache of requests

and their associated responses, and if it recognizes

the request, it returns the response directly to the

requestor. If the response is not available in the

cache, the message is sent to the provider, and the

cache is updated with the new response on its

return. This pattern requires read access to the

payload of the request and response messages and is

unusual in that it only applies to request/response

interactions.

The router pattern changes the intended route of a

message, selecting between the service providers

associated with the mediation. Simple selection

would include routing between two versions of a

service, with the percentage routed to the new

version being increased by the system administrator

as confidence in its capabilities increases. Another

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 793

example is routing to a local version of a service

until it becomes overloaded, then routing to a more

expensive remote service. This latter case could also

take the importance of the message into consider-

ation, as indicated by a ‘‘gold’’ user status or the size

of a purchase, for example. This pattern requires

update access to the context of the message and read

access to the payload if it is needed for the routing-

selection criteria.

The discovery pattern queries the ESB registry to

discover the set of service providers that match the

requirements of the requestor, selects one of them,

and routes the message to it. This is an enhancement

of the routing pattern; in this case, the set of possible

service providers are not preconfigured at the

mediation. Suitable providers match the requestor’s

message format, the quality of service required, or

the protocol supported from the mediation to the

possible providers. This pattern allows for more

flexible routing, for example in the failover situation

mentioned previously, where a new remote data

center can be brought online and its services

registered, without having to update the configu-

ration of every routing mediation. This pattern

requires update access to the context of the message

and read access to the payload if it is needed for the

routing-selection criteria.

The clone pattern makes a copy of a message and

modifies its route. The new message will then have

a separate existence within the ESB. This pattern is

useful in association with the monitor pattern,

where the monitoring logic must not be allowed to

delay the delivery of the message to its intended

destination; for example, when the message is

logged to a database. This mediation requires read

access for the payload and update access for the

context.

The aggregator pattern monitors messages from one

or more sources over a time period and generates a

new message or event, based on the input it

considers. It defines a set of event types in which it

is interested and uses aggregation rules to derive a

new event. It may simply aggregate a specific set of

events, or it may look for patterns in event streams

and generate a complex event when a pattern is

detected. This pattern is useful in complex event-

processing scenarios.

Mediations can be explicitly configured by the

integration specialist or the solution administrator.

The former might apply in the case of a modifier

mediation, and it would transform from the format

of the requestor to that of the provider and vice

versa. The latter might apply if the solution

administrator wanted to add a monitor mediation to

a particular link in the ESB to measure performance.

The ESB can also configure required mediations

dynamically to match the policy requirements and

capabilities of the requestor and provider. If a

service provider requires encrypted messages, the

ESB can configure an encryption mediation for the

requestor. If the provider changes its algorithm, the

next service request will fail; the ESB will query the

provider’s meta-data, reconfigure the encryption

mediation, and reissue the request.

ESB USAGE PATTERNS

The mediation patterns described provide some

basic building blocks for the ESB. Higher-level

patterns (which might helpfully be described as

‘‘usage patterns’’) provide a means for describing

and defining interactions and component topologies

at the system or solution level and help us to see

how and where the abstract concepts that we have

been describing can be applied to specific imple-

mentation scenarios. Patterns enable and facilitate

the implementation of successful solutions through

the reuse of components and solution elements from

proven successful experiences. IBM’s patterns for e-

business provide one such example and, with

specific relevance to the ESB, introduce a set of

collaboration patterns that design or describe broad

organizational relationships among applications and

a set of interaction patterns that describe required

behavior in greater detail (see Reference 10 for more

information).

The fundamental concept in this case is that of the

broker application pattern, in which distribution

rules are separated from applications, enabling great

flexibility in the distribution of requests and events

and reducing the proliferation of point-to-point

connections, thereby simplifying the management of

the network and system. This basic pattern appears

in several variations, and we will briefly consider

each of these variations in this section.

Service and event-routing pattern: A request or event

is distributed to at most one of multiple target

providers (see Figure 7). Examples may include

simple service selection based on context or the

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005794

content of the request or on more complex models,

in which service requests can be routed to particular

systems based on availability, workload, or detec-

tion of error situations. Service selection may

involve the lookup of appropriate service providers

in a service registry.

Protocol switch pattern: A routing pattern in which

requestors and providers use differing network

protocols (see Figure 8). Examples may include

simple mapping of SOAP/HTTP requests onto a

more reliable SOAP/JMS infrastructure or mapping

between JMS and non-JMS applications.

Proxy or gateway pattern: A variant of the routing

pattern (or protocol switch) which maps service

interfaces or endpoints, possibly providing security

functions (authorization and access control) and

logging or auditing capabilities (see Figure 9). The

proxy may also support disaggregation (and sub-

sequent reaggregation) of a single request into

multiple component subrequests. Examples of this

pattern include service portals, in which a single

point of contact is provided for multiple services and

the details of ‘‘internal’’ services may be hidden

from the service requestors.

Event distribution pattern: Events may be distrib-

uted to more than one target provider, based on a

list of interested parties that is managed by the ESB

(see Figure 10). Services that wish to be notified of

such events may be able to add themselves to the

interested-parties list. An example of this pattern

would be the distribution of business events based

on CBE through the common event infrastructure.

Service transformation pattern: Requestors and

providers use different service interfaces, and the

ESB provides the necessary translation (see Figure

11). This pattern exposes new service interfaces

without requiring change or modification to an

existing application or service. It may also be used

when multiple providers support the same business

function but provide different interfaces, allowing

this difference to be hidden from the service

requestor.

Matchmaking pattern: Another variant of the service

routing pattern in which suitable target services are

discovered dynamically based on a set of policy

definitions (see Figure 12). This pattern is used in

very dynamic environments where there are many

hundreds or even thousands of services attached to

the ESB, and service implementations may or may

not be available when any given request is issued.

These basic interaction patterns may also be used in

conjunction with process-oriented interaction pat-

terns. A process or workflow definition (defined by

using BPEL or some equivalent language) extends

the broker interaction pattern by orchestrating the

execution sequence for a number of service inter-

Figure 7
Service- and event-routing pattern

CICS, IMSMicrosoft

WebSphere
Servers

SAP

Figure 8
Protocol switch pattern

WebSphere
Servers Microsoft .NET

SOAP/HTTP
WebSphere MQ
Q Manager

JMS client C/C++ client

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 795

actions. By using these two patterns together, the

service that orchestrates the interaction pattern can

focus exclusively on business-process requirements,

delegating issues of matchmaking, routing, and

service selection to the ESB infrastructure.

CONCLUSION

We have presented the ESB and its role as the

infrastructure underpinning an integrated and flex-

ible SOA. Our presentation identified service meta-

data managed through a service registry as a key

component of the ESB, allowing integration spe-

cialists and administrators to create and manage

service-oriented solutions. Clear definition of the

interfaces, and of the capabilities and requirements

of the services, enables mediations to reconcile

differences between service requestors and pro-

viders. We discussed a range of mediation patterns.

We described ESB usage patterns in which these

abstract concepts are applied to enterprise scenarios.

These concepts are realized through a variety of

Figure 9
Proxy or gateway pattern

Web Client Support

Web Services Gateway

Figure 10
Event distribution pattern

Topic
Subscribers

Figure 11
Service transformation pattern

XML
Type A

XML
Type B

SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005796

technologies and products in a large and growing

number of customer solutions, including large-scale

retail and brokerage applications. ESB adoption and

use is expected to continue at full strength for the

foreseeable future, and the ESB plays a central role

in the implementation of the architecture for the

IBM On Demand Operating Environment.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun

ment Group, Inc., or Massachusetts Institute of Technology.

CITED REFERENCES
1. Web Services Architecture Overview, IBM developerWorks

(Sept 2000), http://www-106.ibm.com/developerworks/
web/library/w-ovr.

2. D. Cox and H. Kreger, ‘‘Management of the Service-
Oriented-Architecture Life Cycle,’’ IBM Systems Journal
44, No. 4, 709–726 (2005, this issue).

3. Web Services Policy Framework (WS-Policy), IBM, BEA,
Microsoft, SAP, Sonic Software, VeriSign (September
2004), http://www-128.ibm.com/developerworks/
library/specification/ws-polfram/.

4. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N.
Kartha, C. K. Liu, S. Thatte, P. Yendluri, and A. Yiu,
OASIS Web Service Business Process Execution Language
V2.0 Working Draft (May 2005), http://www.
oasis-open.org/committees/download.php/12791/
wsbpel-specification-draft-May-20-2005.html.

5. J. Farrell, R. Akkiraju, and M.-T. Schmidt, Web Services
Semantic Annotations, Technical Note, Version 1.0
(December 2004), http://awwebx04.alphaworks.ibm.
com/ettk/demos/wstkdoc/services/demos/psme/
webapp/WebServicesSemanticAnnotations.htm.

6. OWL-S: Semantic Markup for Web Services, W3C
Member Submission 22 November 2004 http://
www.w3.org/Submission/OWL-S/.

7. D. Ogle, H. Kreger, A. Salahshour, J. Cornpropst, E.
Labadie, M. Chessell, B. Horn, J. Gerken, J. Schoech, and
M. Wamboldt, Canonical Situation Data Format: The
Common Base Event V1.0.1 (2004), http://dev.
eclipse.org/viewcvs/indextools.cgi/;checkout;/
hyades-home/docs/components/common_base_event/
cbe101spec/CommonBaseEvent_SituationData_V1.0.1.
pdf.

8. OWL Web Ontology Language Overview, W3C Recom-
mendation (February 10, 2004), http://www.w3.org/TR/
owl-features/.

9. B. Portier and F. Budinsky, Introduction to Service Data
Objects, (September 28, 2004), http://www-106.
ibm.com/developerworks/java/library/j-sdo/.

10. C. Sadtler, D. Cotignola, B. Crabtree, and P. Michel,
Patterns: Broker Interactions for Intra- and Inter-
Enterprise, IBM Redbooks, SG24-6075 (2004), http://
www.redbooks.ibm.com/redbooks.nsf/0/
532fca172da15c6c85256d6d0046192e?OpenDocument.

Marc-Thomas Schmidt
IBM Software Group, Hursley Park, Hursley SO212JN
(mtschmidt@uk.ibm.com). Mr. Schmidt is an IBM
Distinguished Engineer and has been working on IBM
Business Integration technologies for more than a decade,
from workflow management systems to advanced message-
oriented middleware and business-process-management
technology. In his current role as ESB chief architect, he leads
the work on technical architecture for IBM’s ESB technologies.

Beth Hutchison
IBM Software Group, A2123, MP 189, Hurlsey Park, Winchester
SO21 2JN (beth_hutchison@uk.ibm.com). Ms. Hutchison is a
Senior Technical Staff member and a Web Services architect
working on IBM ESB technologies. Since joining IBM, she has
consistently worked on leading-edge technologies, initially as
the lead developer for the first release of WebSphere MQ on
distributed platforms. Subsequently, she became a
performance architect for IBM Java virtual machines. She has
now rejoined the MQ family and is working on systems
management throughout the ESB.

Peter Lambros
IBM Software Group, Hursley Park, Hursley SO212JN
(lambros@uk.ibm.com). Mr. Lambros is a Senior Technical
Staff Member in the IBM ESB and MQ Development team,
working on the strategy and architecture of IBM’s integration
technologies. He has been the chief architect of WebSphere
Business Integration Message Broker since its inception as
MQSeries Integrator and is also currently working on the
architecture of mediation technologies for IBM’s ESB
products.

Rob Phippen
IBM Software Group, Hursley Park, Hursley SO212JN
(phippen@uk.ibm.com). Mr. Phippen is a senior architect in
the IBM ESB and MQ Development team, responsible for the
specification and development of mediation components for
WebSphere products. He has experience working on IBM’s
messaging technologies for more than five years, including
time in the IBM MQ Strategy and Planning Team. &

Figure 12
Matchmaking pattern

Web Services
Description
Language

Registry
(services and policy)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 SCHMIDT ET AL. 797

Microsystems, Inc. Microsoft Corporation, Object Manage-

Accepted for publication June 3, 2005.

Published online October 24, 2005.

