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Although service-oriented architectures go a long way toward providing interoper-

ability in distributed, heterogeneous environments, managing semantic differences in

such environments remains a challenge. We give an overview of the issue of semantic

interoperability (integration), provide a semantic characterization of services, and

discuss the role of ontologies. Then we analyze four basic models of semantic

interoperability that differ in respect to their mapping between service descriptions

and ontologies and in respect to where the evaluation of the integration logic is

performed. We also provide some guidelines for selecting one of the possible

interoperability models.

INTRODUCTION

Modern information technology (IT) systems based

on service-oriented architectures (SOAs) consist of a

network of service providers. Services are invoked

by client applications (consumers) by means of

messages that conform to descriptive schemas.

Although typically service descriptions are exported

by providers to registries (or directories), some

service descriptions may also be supplied directly to

consumers. What is crucial—and different from

client/server architectures—is that, for each service,

a schema defines its functionality and registries are

available for lookup and binding of services without

knowledge beforehand.

The services supported by a provider give access to

the provider’s state and allow making changes to

that state. Here we use ‘‘state’’ in the classic way, as

the actual values of a given set of attributes. For

instance, a data service can be seen as a database

management system whose state is the actual data

in the database, and in which client applications can

perform read and write operations through a set of

services described in terms of the allowed get and

set operations, along with a portion of the database

schema exported in a suitable way. In summary, by

using the service descriptions available, applications

can access and manipulate the state of providers.

In order for client applications to use services

effectively, it is crucial that the designers of these

applications understand the service descriptions that
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correspond to the client’s operations and data

structures. Similarly, developers of distributed in-

formation systems that cooperate through services

should have a good understanding of how service

descriptions relate to one another. Methodologies,

artifacts, and techniques aimed at the correct

interpretation and implementation of service de-

scriptions are generally referred to as the ‘‘semantic

layer’’ of service-based infrastructures.

In a service-oriented environment, the semantic

layer ensures that data embedded within messages

are interpreted by providers and consumers as

representing the same concepts, relations, or entities

in a suitable abstraction of the real world. For

instance, the semantic layer helps detect that the

attribute tour-cost at www.grand-tour.com corre-

sponds to ticket-price at www.railways.it. Rephrased

in the ‘‘philosophical’’ jargon currently in use by the

computer science community, the semantic layer is

about how participants can interpret descriptions

and data items in the system with respect to some

ontology
1

of the business domain and how this

interpretation can be shared and made transparent

throughout the infrastructure.

The semantic layer also includes operational as-

pects, such as the definition of business transactions

as presented in RosettaNet
2

standards. In fact, the

semantic layer can be viewed to contain anything

that can be entered in a data vocabulary with the

purpose of characterizing the provider’s service. In

other words, it covers objects, events, states, and

anything else that can be conceived, expressed, and

exchanged over a communication network, which in

fact amounts to the entire coverage of a standard

linguistic dictionary. Designers—consciously or

not—have to decide how to manage the semantic

layer and have to make assumptions about it. The

aim of this paper is to provide SOA developers with

basic conceptual tools to better understand the

semantic layer. Because handling semantics is not

an easy task and important research issues are still

under investigation, this paper aims at giving

general guidelines rather than ready-for-use in-

structions.

Our interest in semantics is not primarily motivated

by advanced functions such as intelligent service

discovery or the composition and choreography of

automatic services, but by the need to make

heterogeneous information systems work in a

networked world. For this reason, we focus here on

the interoperability of services as is worked out by

humans, and we do not survey the rich literature

related to the use of semantic models for automating

service integration tasks.
3

Motivation
In current practices, semantics is usually relegated

to the backstage of design and implementation

activities and is not often given the place it deserves.

Semantic correspondences are captured by message

transformation rules that map names, values, and

structures in these messages exchanged by services.

In general, this approach can be seen as semanti-

cally neutral, in that it does not require the

mappings to account for the way in which the

source and the target refer to real entities. In other

words, message transformation rules are written

without accounting for the reason why the corre-

sponding mapping holds. This strategy can be seen

as a pragmatic way to address semantic interoper-

ability in many common situations, when it is

reasonable to assume that the interpretations given

the service descriptions by cooperating participants

are consistent. In many cases, this neutrality

presupposes a sort of realism: the idea that

attributes which shape the domain of the service

infrastructure are given by nature, once and for all.

Thus, because services implicitly use the very same

ontology, the role of designers is just to ‘‘neutralize’’

a number of different naming and structural

renderings of elements of a unique, universal,

immanent conceptualization. This is probably why

SOA technologies are mature in supporting rich-

message mapping and transformation languages,

but are ‘‘green’’ (immature) in providing standard

means to drive the development of specific seman-

tic-oriented artifacts, and are generally silent about

the conditions that must be ensured in order for

message transformations to be semantically sound.

As a matter of fact, whereas current frameworks

provide a fairly good basis to handle descriptive

heterogeneity through a syntactic approach, the

treatment of semantics is generally left to designers,

if and when they feel the need to bring semantics to

the foreground.

Being neutral with respect to semantics is reason-

able in many situations, but it doesn’t work in

general. In fact, this approach assumes the reliability

of some implicit agreement that lives outside the

infrastructure, let us say, in the system’s social
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surroundings. For instance, guessing that two

attributes refer to the same entity if they have the

same name is based on the assumption that labels

are uniformly interpreted by all parties. This could

be acceptable if service infrastructures were built,

deployed, and managed within tight organizational

boundaries, as in enterprise application integration

scenarios, where naming policies can be enforced

and controlled. But SOAs could be used to imple-

ment information systems in large and geographi-

cally distributed organizations, such as supply

chains of cooperating but independent companies,

or even to manage structured information ex-

changes across quite ‘‘anarchic’’ Web commu-

nities. In these cases, designers can hardly make

reliable assumptions about the infrastructure’s

social surroundings. Actually, they cope with

information providers that are only requested to

sketch the kind of services they make available,

mostly from a functional standpoint. Semantics,

which is the way services fulfill what their descrip-

tions promise, is embedded in the ‘‘black box’’ of

service implementation. In these scenarios, the

reach of semantic agreements is problematic:

accurate derivation of meaning cannot be implicit,

and therefore the semantic layer requires specific

tools and methods.

Semantic interoperability between services in an

SOA is not very different from linguistic under-

standing between humans. Linguists and philoso-

phers have been engaged in studying the

foundations of natural language semantics for

centuries, and many authors have even been

skeptical about our real capability to understand

each other.
4

The attractive idea of realism, which

maintains that humans understand each other

because the language reflects a commonly under-

stood world and that differences are only at the

linguistic surface, has been strongly rejected by

many philosophers, especially in the last century.

Quine, for instance, claimed that ‘‘ontological

commitments’’ are relative, and there is no way to

tell whether an expression uttered by a foreign

speaker in the presence of a rabbit denotes the entity

(i.e., the rabbit) or the event (i.e., the presence of a

rabbit), very different elements from an ontological

standpoint.
5

Applied to SOAs, Quine’s assertions

would amount to the statement that there is no

unique interpretation of a service specification, just

based on the specification itself. Although we will

not engage in a philosophical discussion here, if we

approach semantic interoperability from a relativ-

istic standpoint, there are no naturally safe semantic

assumptions when dealing with cooperating ser-

vices. Therefore, relativism requires much more

focus on semantics than realism, and this maybe

explains the reason why this discipline has gained

popularity within the computer-science community

since the Web became pervasive.
6

We believe that awareness of semantic issues when

designing interoperating services helps deliver

better solutions, not only for the Web, but also in

restricted environments such as e-government or

large enterprises, in which designers can rely on

stable semantic conventions. With this in mind, in

the next section we provide some basic concepts for

understanding semantic interoperability. Then, we

classify the models for semantic interoperability in

service-oriented infrastructures, and take into ac-

count whether they reflect a hub-based or endpoint-

based structure, and whether they rely on business

domain models. We also show how problems of

semantic interoperability are close to many of the

issues that have been studied for decades in data

exchange and integration under the lens of logic,
7

and how some of the concepts developed in this

field can be usefully applied when designing the

new kind of IT infrastructures.

SEMANTICS OF SERVICE INFRASTRUCTURES

We have shown in the previous section how

services allow accessing and changing the state of

their providers, that is, the values of some exported

attributes, and how this access and manipulation is

carried out by sending and receiving messages. We

have also informally introduced the semantic layer

as a framework that allows a consistent interpreta-

tion of messages sent to and received from services

with respect to some conceptualization underlying

the system. Now we discuss semantics in more

depth, starting from the characterization of a single

service and then considering the interoperability

(integration) of services.

Informally, a service is a system with an internal

state (e.g., values in a database instance) charac-

terized by an internal schema (e.g., a relational one)

that exposes a set of access and manipulation

methods through an interface. The interface of a

service is based on two alphabets of symbols—the

operational alphabet and the data alphabet—and a

set of structuring primitives and logic connectives
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that make up the description language. This

provides designers with means for formulating a

public characterization of the service called de-

scription. For instance, in Figure 1, WSDL (Web

Services Description Language) and XML (Extensi-

ble Markup Language) Schemas jointly provide a

language that informs whether an operation called

getRoute is available and corresponds to a

function that maps places to routes. As such,

descriptions can be regarded as ‘‘theories’’ that

provide definitions and constraints to explain the

service ontology and behavior. The interface is

bound to the internal service state by means of a

suitable implementation.

The problem of semantic integration results from the

fact that, whereas service descriptions are public,

service implementations are not accessible from

outside. Thus, for client and provider alike, the

correspondence between the service description and

the internal state is essentially opaque (i.e., hidden).

Consider, for instance, the client application Grand

Tour Agency in Figure 2. It uses services provided

by European Travel Bureau, which acts as a broker

and which uses services provided by Italian Rail-

ways. To plan a trip, Grand Tour Agency specifies

train as the preferred means of transportation and

requests from European Travel Bureau the set of

routes (and the associated price) between two

destinations. To fulfill the request European Travel

Bureau uses Italian Railways services. As broker,

European Travel Bureau has to be able to interpret

the information on trains that cover the specified

route supplied by Italian Railways, and thus that the

fare, as interpreted by the client, amounts to the cost

of a train ticket, as intended by the supplier. As

shown in Figure 2, in order to manage this

cooperation, the three participants export schemas

and exchange data based on mappings. Schemas

expose the relational predicates of each service in an

abstract notation, whereas mappings represent

logical implications between these predicates. To

indicate that these mappings can be implemented by

a variety of data transfer policies, we use squiggly

arrows instead of the classic straight ones. Note that

whereas both consumer and provider have internal

systems (databases, files, programs) that implement

functionalities and data structures to fulfill the

exposed schemas, the broker system is mostly

concerned with managing and evaluating schema

mappings.

The client uses the service to get data, then

processes the data and possibly updates its data-

bases. It may also send messages containing data

with the purpose of changing the state of the

provider. The data and operational language that

describes the service must be mapped to data

structures and state transformations at the client.

For developers at Grand Tour Agency this raises two

semantic issues: producing proper messages for the

service (either to get or set data), and correctly

interpreting the information returned, which implies

getting the meaning of the expressions accepted and

produced by the service, making sure that this

meaning is consistent with the way the service-

provided data is used by the client application.

Conversely, for developers at Italian Railways, the

problem is fulfilling the service schema by inter-

preting the meaning of descriptive expressions

provided by European Travel Bureau. But what does

‘‘interpreting the meaning’’ really mean? Broadly

speaking, this is related to what, in logic, is called

interpretation. To explain this, we start with first-

order logic (FOL) semantics.

FOL semantics
An FOL interpretation of a service interface is

basically a function that associates symbols of the

data language to tuples of data items in the service

provider’s internal state (also known as the exten-

sion of the symbol
8
), and the meaning of a

description is simply a calculus of its extension

based on logic connectives. It is easy to see that this

corresponds to standard database semantics. For

Figure 1
A fragment of a WSDL description that references 
an XML Schema

<message name="routeRequest">
       <part name="start" type="eutb:place"/>
       <part name="end" type="eutb:place"/>
</message>

<message name="routeReply">
       <part name="ID" type="xsd:token"/>
       <part name="fare" type="xsd:double"/>
</message>

<portType name="EUTBService">
    <operation name="getRoute">
            <input message="routeRequest"/>
            <output message="routeReply"/>
    </operation>
</portType>
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example, the meaning of the expression

fid,tm j Train (id, ‘‘Rome’’, ‘‘Milan’’, tm)g (i.e. a set

of identifiers and departure times on the relation

Train with departure and destination constraints),

under a FOL interpretation in the service provider’s

domain of Figure 2, would be a set f,id, tm.
1
,

. . . ,,id, tm.
n
g of tuples in the internal database. A

model for a service based on its interface is an

interpretation that satisfies all the formulas of the

service description with respect to the service

provider’s state, and any state of a service, if

consistent, is supposed to be a model in some

suitable interpretation. Indeed, FOL semantics is

straightforward: service providers can reasonably be

supposed to provide data according to their models,

and achieving semantic interoperability just requires

consumers to preserve those models, taking the

description language properly into account.

Unfortunately, a number of limitations affect the use

of FOL semantics in loosely coupled scenarios such

as Web Services interoperability. First, observe that

the implementation of the provider is not visible to

consumers. This means, for instance, that the

extension of predicates (symbols in the data

alphabet) can be changed by providers. Clients have

little control on the way these extensions vary over

time: they cannot poll their providers too often, and

therefore models could easily get out of sync. Also,

consider a data integration scenario in which a client

wants to feed its model with data coming from

different sources (suppose, for instance, two ser-

vices exposing the same interface), and suppose that

models contradict one another (e.g., service a says

that the train will start at 1 p.m., and service b

maintains that the same train will start at 2 p.m.).

How can the client model be determined in a

situation like this? Finally, consider the typical case

in which a consumer integrates data coming from a

provider into the model of a broader theory, which

includes predicates and constraints borrowed from

other services with mappings to bind them together;

how can it be ensured that the ontological commit-

ments made by each provider are correctly under-

stood (e.g., Train is intended as object and not as

Figure 2
An example of semantic interoperability involving a client application, a service provider, and a broker 

Tour (itinerary, carrier, cost)
Itinerary (ID)
In (itinerary, city)

E

Route (ID, start, end)
Fare (route, means, amount)

Ticket (_,f,t,_,p)     r Route
(r,f,t)    Fare (r, “train”,p)

Consumer

Grand Tour Agency

European Travel Bureau

S

M

S

M

S

M

Provider

implementation

implementation

Italian Railways

Broker

Route (r,s,e)   Fare (r,m,p)
  i Tour (i,m,p)    Itinerary (i)
   In (i,s)    In (i,e)

E

Get Route (x, “Palermo”,”Roma”)
Fare (x, “train”,y)

Get Ticket (w,”Palermo”,”Roma”,z,y)

Train (ID, dep_station,dest_station,dep_time)
Ticket (train, from, to, class, price)S

Schema

Mapping
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event); thereby ensuring that inter-schema map-

pings are sound?

It seems that extensional FOL semantics is not able

to address problems that originate in the opacity of

service implementation in SOAs. In summary, in

order to manage semantic compliance in an FOL

setting, all the implementations (of both providers

and consumers) should collapse into a single one,

which is clearly not the normal condition in service-

oriented infrastructures. To overcome limitations of

FOL semantics, service descriptions should be

interpreted with respect to conditions that occur in

sets of ‘‘possible states of affairs’’ by providers. This

is the question we examine next.

Modal semantics
The German logician Gottlob Frege called Sinn

(sense), as opposed to Bedeutung (meaning), the

account of the intension of logic predicates, rather

than their extension.
9

Informally, an intension is a

condition that objects in a given domain must satisfy

in order to enter the extension of a predicate; for

example, whereas the extension of Train in Figure 2

1 n

database of Italian Railways, the intension is the set

of rules that qualify a generic data object as a Train

specimen (e.g., trivially, the attribute ‘‘type’’ is set to

opers can easily grasp the difference between

intension and extension, considering the difference

between an SQL query (intension) and the result set

of that query against a particular database instance

at a given time (extension). After Frege, intensional

semantics was researched in an extension of FOL

called modal logic,
10

which introduces the concept

of possible worlds as an extensional model that is not

fully present at the agent that performs the reason-

ing task, thus allowing a formal account of the

interpretation of logic formulas with respect to a set

of different situations.

Now, if we view a provider as a system to which a

client can ascribe a set of possible states, then for

each client we can replace the single FOL interpre-

tation with a set of interpretations, one for each

‘‘possible state’’ in the provider. What really changes

in this setting? The reason why logicians and

philosophers embraced modal logic during the last

century is the possibility to formalize propositional

attitudes, which can model different ways in which

an agent can take formal statements (propositions)

into account, with respect to a set of possible worlds

to which it has access. For instance, given a formula

/ of the service description (e.g., informally, ‘‘The

train Peloritano starts from Palermo’’), an agent can

believe /, or know /, or hold / as possible, with

respect to the set of states of affairs it is able to

access, whereas FOL is just suited to talk about the

truth of / in a single, fixed, globally accessible

situation. Such propositional attitudes are formal-

ized by means of specific second-order operators,

which are associated with rules that bind the

interpretation of modal statements to the underlying

FOL setting. For example, in standard epistemic logic,

for an agent A to know a proposition /, it is required

that / be true in all the worlds accessible by A;

whereas to believe / does not entail this condition.

Is modal logic useful for characterizing semantics of

service-oriented infrastructures and thus, for en-

hancing interoperability? Certainly, because in the

‘‘open world’’ of loosely coupled and highly

dynamic services, there is no unique, globally

accessible situation, there are no alternatives:

issuing a request to a service requires the client to

assume an attitude with respect to the propositions

the provider supplies. Nonetheless, even though

modeling distributed systems based on modal logic

is well assessed in literature,
11

research on the

application of this paradigm in the field of service

integration in a Web environment is relatively

new.
12

Still, clients of distributed services in non-

trivial interoperability scenarios do assume modal-

ity, and this results, in practice, in implementing

policies for the transfer of data from the provider

into the client implementation, taking somehow into

account the fact that these data reflect one of a set of

possible situations. Efforts to let these modal aspects

emerge from the shadow of implementations and

come out in transparent models are under way. The

syntax underlying the recent proposals for ontology

sharing and meta-data exchanges is generally

capable of representing ‘‘higher-order’’ constructs

such as metaclasses. This would allow modal

operators to be syntactically represented. In general,

however, rich-description logic-based languages like

OWL
13

are conceived for a single agent that accesses

a unique (albeit open) situation. Meta-properties

such as trust are usually framed in meta-level

characterizations attached with some suitable syn-

tactic glue to ‘‘first-order’’ business models.
14

As for

formal semantics concerns, recent studies on for-

malizing nonfunctional properties of Web services
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aim at capturing some modal aspect in the sense

outlined here, including temporality and trust.
15

Note that, in a modal framework, the client’s

understanding of the provider’s meaning of the

service description’s predicates (e.g., XML ele-

ments) can be thought of as a propositional attitude

(relational mental state connecting a person to a

proposition). For instance, a client of services

provided by Italian Railways could believe that

‘Train’ is intended by the provider as a subclass of

Artifact, that is, a Physical Object, and thus, if a

Train is present at the time t, then each part of it

exists at the time t as well.
16

This is not granted once

and forever by any transcendental reason; it is just

the specific belief of a specific client of Italian

Railways’ services. In effect, Italian Railways could

have used ‘Train’ to denote the run of a train, thus

as a subclass of Event, which if it occurs at t, is not

necessarily fully present at t.
17

How are clients

provided with means for making reasonably sure

that their own beliefs regarding providers are well-

founded? Certainly, having services described in a

data language in which basic first-order constraints

can be expressed is very helpful, but how can ‘‘Train

as Object’’ be distinguished from ‘‘Train as Event’’

without means for expressing inclusion depen-

dencies (e.g., ‘‘is-a’’ relations) of the form Train(x)

! Object(x)? In fact, the more logic constraints can

be expressed in a standard way, the more clients can

check providers’ models as valid, and load them in

their knowledge base with, at least, some formal

assurance. Moreover, formal constraints can help

semantic understanding because unclear predicates

can be intended in the light of more basic predicates

to which they are possibly bound. Logic constraints,

however, are not enough: good logic would be quite

useless if predicates and axioms were badly chosen.

For instance, who could tell that the distinction of

Objects from Events is crucial because it is the root

of two fundamentally different ways of ‘‘being in

time’’ and that it is crucial to put this distinction on

top of a dependency inclusion hierarchy? Where is a

consistent set of axioms of this kind of basic

meaning maintained, and how, if it is given at all,

can such semantic foundations be shared? This is

where ontologies come into play.

Ontologies
Following Quine, we consider an ontology as any

intensional account of what exists in a certain

domain, where ‘‘to exist’’ means ‘‘to be the value of

a bound variable’’.
18

As such, in a framework like

that outlined earlier, any service description is in

fact an ontology. Actually, service-description lan-

guages such as WSDL allow using the expressive-

ness of XML schemas to describe atomic and

composite data types that can be considered as

structures of logic predicates and constraints, which

altogether allow specifying a sort of intensional

description. However, any provider is entitled to set

up its own ontology, and there is no reason to

assume consistency or any immanent unifying

heuristics, such as, for instance, the similarity of

predicate symbols (e.g., XML tags) based on

similarities to natural languages. Interpreting some-

one else’s ontology is a conjecture unless a standard

set of predicates is adopted, shared, understood, and

consistently interpreted by every node in the

distributed environment. The availability and ac-

ceptance of semantic standards is an enabling

condition for widespread adoption of service-ori-

ented infrastructures.
19

For this reason, a large

community of people in both research and industry

are currently working on this. A large number of

industry ‘‘content standards’’ that aim at abstracting

the common conceptualization that underlies the

industry sector into well-established data dictio-

naries are already available for use in electronic

exchanges within specific communities. Standard

business-data dictionaries are often used as seman-

tic backbones to implement hub-and-spoke service

integration infrastructures.
20

It is not the purpose of this article to provide

guidance to ontology adoption and development in

the context of distributed environments such as

service infrastructures; this complex and crucial

topic requires extensive treatment. However, the

promulgation of Semantic Web standards such as

RDF (Resource Description Framework) and OWL

has driven important developments in this field, and

applications of semantics-oriented XML schemas in

Web services are currently undergoing study and

experimentation.
21

We do not discuss results of this

research here, but it is important to remark that the

adoption of these languages, even by means of

partial implementations, facilitates the development

and the maintenance of broad ontologies in a

distributed way. For instance, defining inclusion

dependencies in terms of sufficient and necessary

membership conditions, as OWL permits, would

relieve the burden of developing the conceptualiza-

tions as complete structures of primitive predicates,
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thus enhancing the coverage of the business

semantics. For instance, provided that CarService (x)

! Service (x),
22

a concept like the following:

TrainWithServices (x) [ Train (x) � 9y Service(y) �
hasService(x,y)

would allow inferring this inclusion:

Train (x) � CarService (y) � hasService(x,y) !
TrainWithServices (x);

hence eliminating the following primitive from the

ontology:

TrainWithCarService (x) ! TrainWithServices(x).

Adopting a solid top-level conceptualization, that is,

a small set of basic concepts valid for any domain

(e.g., SUMO
23

or DOLCE
24

), mitigates the risk of

introducing obscure predicates and constraints that

could hardly be interpreted by most clients. For

instance, the introduction of a concept like the

following:

TenMinutesWagon (x) [ Wagon (x) � Duration

(x,10)

could be avoided if just Wagon and Duration were

bound to a top-level ontology in which:

Duration (x,y) ! Event(x)

(time duration is defined for events)

Object(x) ! ø Event(x)

(objects are not events)

Wagon (x) ! Object(x)

(wagons are objects)

because most of automatic reasoners
25

would be

able to detect that in every model:

fx j 9y Wagon (x) � Duration (x,y)g ¼ ˘
(there aren’t temporal wagons)

In conclusion, as ontologists have pointed out, the

reason for investing in the ‘‘ontological level’’ is that

by sharing a sound conceptualization ‘‘the potential

misunderstandings and inconsistencies due to con-

flicting intended models are reduced.’’
26

On the

other hand, working out sound and complete

ontologies is very far from trivial, and acquiring,

evaluating, and adopting available ontological re-

sources is not an easy task. Ontological relativism,

in addition, disallows the faith in a natural, smooth,

and global convergence to a small set of universally

accepted ontologies and suggests that, in many

business domains, we will probably keep going with

many heterogeneous, yet coexisting, conceptual

models.

MODELS FOR SEMANTIC INTEROPERABILITY

SOA technologies and standards provide designers

with a variety of solutions for semantic interoper-

ability in the sense outlined in the previous sections.

In this section, we illustrate the main features of a

number of possible approaches to semantic inter-

operability. The selection of a specific approach

depends upon the business environment in which

the service infrastructure is deployed. These possi-

ble approaches are based on a classification criterion

that captures what is essential from the perspective

of semantic integration and that addresses the main

issues in managing semantics in service-oriented

distributed systems.

The different models for semantic interoperability

are classified based on two fundamental dimen-

sions: 1) choosing one of two possible ways to set

up integration mappings, one in which each service

schema is mapped to any other (any-to-any) and

another in which each one is mapped to a single

schema (any-to-one), and 2) choosing whether the

integration logic is executed in a single, distin-

guished node (centralized) or the execution is

distributed among multiple, functionally equivalent

nodes (decentralized). By using this classification

criterion, we obtain the following four interoper-

ability models.

Any-to-any centralized model

In the any-to-any centralized model illustrated in

Figure 3, services are interpreted and mapped to

others without resorting to ontologies. The semantic

integration function is provided by a special

component, the integrator. The integrator creates a

model for each participating service based on its

own interpretation of the service description. The

figure shows that the integrator holds a model for

each service (inner ellipses), based on its interpre-

tation of the respective service description. On the

other side, providers maintain their own models,

realized through their implementations. Mappings,

however, are applied directly between pairs of inner
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models. Therefore, designers of such applications

determine the integration logic by freely mapping

input/output data from any service in the system to

any other, based on their understanding of what the

descriptions made available by service providers

actually mean. The any-to-any centralized model is

used in the specification of business processes,

supported by standardized languages such as

BPEL,
27

which are used in mature production

environments. We now look at some practical

implications of implementing such an integration

model.

In any-to-any centralized scenarios, service pro-

viders are usually noncommital with respect to

integration issues; their contribution to the infra-

structure is limited to service interfaces, and they do

not make any commitments or accept any con-

straints to integrate their services in any superseding

application. Providers are not involved by designers

in making the integration semantically consistent,

which means that integrators can freely use the

service interfaces without the need for any prelimi-

nary or subsequent negotiation with providers.

Services are usually atomic, independent, and self-

contained; they are not affected by what happens

outside their host. This is simultaneously the

strength and the limitation of this approach. Even if

service providers were willing to cooperate in the

integration effort, they would be prevented from

doing so by the requirement to provide the full

specification of their mapping to any service that the

designers plan to include. In practice, to be able to

contribute to the integration process, each service

provider should receive the integration plan, ana-

lyze it, and specify the mappings of its data

languages to those of other services, which would

require bilateral agreements between all pairs of

participants, a cumbersome process indeed.

In fact, in ‘‘choreography’’ applications, that is

composing and choreographing business-aligned

services, it is not the case that independent service

providers can contribute to any shared semantics to

any extent. Choreography designers are the only

‘‘semantic authorities,’’ and the overall system

behavior is the product of their understanding

(actually, beliefs) about services, based on available

descriptions. In this context, misinterpreting a single

service operation call could cause errors in data

exchanges that would propagate and eventually

affect the entire choreography application. More-

over, unlike the use of libraries in standard software

engineering, this kind of error could result in

disrupting systems that are in effect supplied by

third parties. Also, because semantic errors can be

detected only at runtime, and setting up test

environments for service infrastructures is not

trivial, there is the concrete possibility that such

errors might occur at any time during the lifetime of

the system with unpredictable consequences. Thus,

it is crucial to reduce the risk of semantic mis-

understanding as much as possible. As we have

seen, the entities that a service provider deals with

are not limited in any way; they may include events,

Figure 3
An illustration of the any-to-any centralized model for semantic interoperability
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properties, abstractions, and whatever else design-

ers have envisioned as part of the system domain.

This envisioning (i.e., ontological commitment) is

neither given by nature, nor is it driven by some-

thing inherent to the business itself; rather, it is a

design choice. Now, either choreography designers

can safely assume that the services they are going to

integrate in fact share the same set of ontological

commitments, or they must find a way to capture

the intended meaning of service descriptions and set

up a complex web of conceptual mappings.

In ‘‘closed’’ environments, such as large enterprises,

service providers may be required to adopt the very

same ontology. Of course, this would solve all the

problems in advance, and this is in fact the best

option whenever available. In this case, however,

the team supporting the service infrastructure would

actually be involved in a process of ontological

standardization, whose impact should be carefully

analyzed and managed. Integrating legacy applica-

tions and databases, for instance, would raise the

nontrivial issue of harmonizing the conceptualiza-

tions they convey with the corporate ontology. If the

adoption of a standardized ontology is out of the

reach, it is still possible that clients and providers

belong to tightly bounded organization units, and

choreographers have access to the service imple-

mentation (for instance, by having access to internal

documentation, which presumably contains much

more information than the exposed service inter-

face). This gives them the possibility of checking the

provider’s interpretation of the public interface and

to make sure that operations and data are correctly

interpreted within the choreography application.

This is the ideal scenario for developing service

integration with any-to-any centralized models.

Unfortunately, this is not the only scenario designers

usually face.

What can help choreographers interpret the service

specification when there are no standardized ontol-

ogies and the only information available is in the

published interface? We recall that the measure of

semantic consistency in the use of a service is

related to how the client’s interpretation matches

the provider’s; a model in the provider’s set of

possible worlds should be a model for the client as

well. In the light of what we have discussed so far,

the only heuristic available comes from the de-

scription language, with the provision that that

language is capable of expressing logic constraints

(e.g., inclusion dependencies). A language with

constraints would drive the client’s interpretation

through a grid of descriptive predicates, so as to

allow a sort of holistic understanding of each single

predicate based on the entire ontology. Unfortu-

nately, the standard data language for SOAs, that is,

XML, does not standardize logic modeling con-

straints, and this is a serious drawback when

developing choreography applications in loosely

coupled environments. Once again, this reveals the

value of semantics-oriented XML extensions like

RDFS (RDF Schema) or OWL, but industrial support

for these standards is just developing, and their

adoption is still limited.

In conclusion, any-to-any centralized integration

models, like those used with choreography lan-

guages, are well-suited for closed environments

such as enterprise integration infrastructures.

Adopting this model for integration of nontrivial

services in open environments, on the other hand,

would require additional constraints and would

pose some risk, which has to be estimated and

managed.

Any-to-one centralized model
As shown in Figure 4, in the any-to-one centralized

model service, input/output data are mapped to a

single ontology managed by a specialized applica-

tion or service (the component Integrator in Figure

4). As in Figure 3, inner ellipses show that the

integrator holds a model for each service, based on

its interpretation of the available descriptions, while

providers realize their own models through imple-

mentations. Mappings, though, end up at a unique

ontology maintained by the integrator.

The ontology (sometimes called ‘‘business informa-

tion model’’) is an all-inclusive data language that is

a semantic superset of the union of all data

languages exported by the service providers. This is

the model used, for instance, in a variety of content-

aware hub-and-spoke systems, such as message

brokers in message-driven service architectures,

which are capable of translating and routing

messages based on their content,
28

and the more

general Enterprise Service Bus.
29

Generally, providers are not involved in developing

the logic of integrator nodes; thus, designers of the

integrator are in charge of setting up the semantic

layer. The semantic consistency of the system
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depends upon the designers’ understanding and

beliefs, and thus remarks about any-to-any central-

ized models apply here also. In addition, designers

are requested to map service descriptions with

respect to a single, fixed ontological backbone,

which requires additional skills when compared

with the task of mapping services case by case,

based on local knowledge and ad hoc transforma-

tions. Hence, the adoption of business information

models as a unified semantic foundation for service-

oriented infrastructures results in additional cost, at

least in terms of skills requested to roll out the

integration logic. Is this cost justified?

It is often remarked that the number of mappings

required for the entire system is significantly

reduced in any-to-one models, decreasing (in the

limit) from N3 (N� 1) to N, where N is the number

of services involved. However, the reduction in the

number of mappings is not the striking difference

here. The real difference is in the existence of a

business model. In fact, whereas any-to-any appli-

cations let semantics scatter in a web of pair-wise

mappings, any-to-one models make semantics a

tangible and manageable object that consists of an

ontology of the business domain plus a set of

mappings that translate providers’ service descrip-

tions in terms of the business model.

We have briefly discussed the impact of adopting

ontologies in the previous section. In any-to-one

interoperability models, the completeness of the

ontology is the main issue to address; that is, how

do we make sure, in advance, that the business

model adopted will contain anything that service

definitions encompass? If there are no limitations to

the number and variety of the services to be

integrated, of course, this is not generally possible,

and in fact these systems must include some suitable

means to extend the ontology to accommodate new

business entities. Extensibility of the business model

is therefore key to the success of this kind of

integration pattern. Property-centric ontology lan-

guages such as those based on RDF Schema allow

this feature to be implemented properly.

Integration of data in this model can be imple-

mented in one of three ways.
7

In the local-as-view

(LAV) approach, mappings proceed from source

schemas to the global view (i.e., the ontology) by

associating single data-alphabet elements exported

by services to views (queries) over the business

model. In the global-as-view (GAV) approach the

reverse holds; that is, queries on the data alphabet of

sources are mapped to single elements of the

ontology. A third approach, GLAV (global-local-as-

view), includes elements of both modes and is the

typical pattern in data-exchange systems.
30

For instance, suppose that the service provider

Italian Railways exports the predicate Ticket (train,

from, to, class, price) to a system whose business

model contains Route (ID, start, end) and Fare

(route, means, amount) (see Figure 2; notice

Figure 4
An illustration of the any-to-one centralized model for semantic interoperability
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however that the model type depicted here could be

either any-to-any or any-to-one, depending on

whether the broker uses ontologies or not). A LAV

mapping could be:

Ticket (_, f, t, _, p) V 9r Route (r, f, t) � Fare

(r, ‘train’, p).

Notice, in this example, that some of the attributes

that characterize Ticket are missing in the trans-

lation (namely, those referring to the concept of

‘train’), while the value of the Route ID should be

injected in the data transfer. In fact, the LAV

approach is valuable if the integration system is

based on a stable and complete ontology; otherwise,

much information provided by the source could be

lost. On the other hand, services are allowed

flexibility in entering or leaving the infrastructure;

having a new service enter the system would result

in enriching the mapping set without changing the

business model, provided that for each item in the

service data language a suitable mapping on the

global schema can be established.

In data integration systems, answering queries

formulated on the global schema by using LAV

mappings is notoriously difficult because the global

view is characterized by potentially complex map-

pings to the available data sources, and inferring

how to use that characterization in order to answer

global queries may be nontrivial in many cases.

Using a business information model to support data

exchange algorithms that translate messages coming

from a mapped service to messages directed to other

mapped services could reveal the same kind of

complexity; consider, for instance, the problem of

deciding whether to route to Italian Railways, as

described in Figure 2, a request message originating

at Grand Tour Agency with content like:

GetRoute (x, ‘Palermo’, ‘Roma’) � Fare

(x, ‘land transport’, y)

For a broker this decision would require determin-

ing that ‘train’ is a kind of ‘land transport’, and

therefore, Italian Railways is eligible as a data

source. Depending on the expressiveness of the

ontology language, a decision like this could involve

complex algorithms, and the brokering system could

therefore be affected by scalability problems. Of

course, simple one-to-one correspondences of local

and global properties could be computed at a

reasonable cost, but a poor mapping language

would probably require the business model to be

continuously expanded and adapted to data lan-

guages exported by services, with a severe decline of

flexibility.

The GAV approach in a service integration system

would work the other way around: concepts of the

business model would be mapped to views of the

source schemas. With reference to Figure 2,

provided that the broker’s schema coincide with the

ontology, a GAV mapping with the agency’s schema

would look like:

Itinerary (x) � In (x,a) � In (x,b) V 9r Route (r, a, b)

Algorithms such as those needed to calculate

content-based routing would be much simpler if

integration systems were limited to this kind of

mapping, because it requires specifying the exact

way to get (put) instances of global concepts out of

(into) the available sources. We notice, however,

that GAV mappings are not well-suited for the

smooth integration of unforeseen data sources into a

given global business model in dynamic environ-

ments, as typically requested in service infrastruc-

tures. In fact, in this approach, the business model

comes first, and sources (i.e., services) are generally

regarded as a means to provide it with a suitable

extension. Mixing GAV with LAV results in the so-

called GLAV approach, where views on the local

sources can be mapped to views on the ontology.

This kind of mapping is the most powerful and

general one, but, of course, requires at least the

complexity associated with the LAV approach.

In summary, any-to-one centralized integration

models are powerful and well-suited for managing

complex and dynamic environments, such as Web

services in business-to-business scenarios. Never-

theless, this approach requires careful studying of

the trade-offs between expressiveness of ontology

languages, generality of schema mappings, and

computability of integration algorithms. Solid any-

to-one centralized solutions should be based on

high-quality ontologies and expressive mapping

languages, but the resulting ability to efficiently

perform complex reasoning tasks is tied to limits on

the scalability of the integration system.

Any-to-any decentralized model
As Figure 5 illustrates, any-to-any decentralized

systems are those where services manage their
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integration with each other without resorting to any

overall business model or integrator component. For

this reason, we could refer to them as pure peer-to-

peer systems. In this context, ‘pure’ means not only

that each node in the network is potentially both

provider and client, but also that there is no

common information model or use of a centralized

integration service. We notice that, whereas most

peer-to-peer systems are very far from pure, basic

Web Services infrastructures fall exactly in this

category, because the only common service that

providers are supposed to use is a very simple kind

of publishing repository that is not involved in the

runtime operation of services. Figure 5 depicts three

peers, A, B, and C, each holding its own model of

the other two (nested ellipses). Integration logic is

distributed among peers and is accomplished by

mapping models to one another.

In pure peer-to-peer systems, as in standard

choreography applications, the integration consists

in a web of pair-wise mapping statements, which

potentially bind the state of each provider with the

state of the other. As in any-to-any centralized

models, providers do not maintain any global

semantics, which in general makes the peer-to-peer

approach robust and scalable. Unlike choreogra-

phies, however, mappings in peer-to-peer systems

are not established by a centralized application;

instead, they are distributed across the network, and

algorithms that execute the integration logic are

distributed as well. Thus, in a certain sense, any

service can contribute to a sort of emergent

semantics.
31

Nobody has the entire set of mappings

under control; therefore, cyclic mapping may occur,

causing the integration system to be susceptible to

undetectable loops, if not properly designed.
32

From a theoretical perspective, data integration in

pure peer-to-peer systems has been shown to

require modal logic (in the sense illustrated in the

section ‘‘Modal semantics’’) to better suit a number

of requirements such as modularity, generality, and

tractability.
33

In fact, integrating a set of independ-

ent and isolated providers by using a first-order

setting would require a supervisor agent to make

sure, at least, that mapping axioms are consistent.

But supervising the integration logic would detract

from the peer-to-peer advantages, because it would

require each provider to cooperate with the infra-

structure on a global level, thus participating in a

tight federation, with a resulting decrease in

robustness, scalability, and flexibility. On the other

hand, an integration framework capable of dealing

with the concept of ‘‘possible world’’ would be able

to handle inconsistencies, cycles, unreliable sources,

Figure 5
An illustration of the any-to-any decentralized model for semantic interoperability
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and all the other problems that may occur within an

uncontrolled, self-organizing environment without

imposing central authorities, yet making integration

computationally tractable.

As we have seen, an intensional framework is one in

which each service is modeled as an agent that

contributes to the set of possible worlds accessible

by clients. A mapping is not interpreted as material

implications of FOL formulas,
34

but as the transfer of

information coming from the source into the client’s

knowledge, according to a propositional attitude of

the client toward the source. In practice, such an

attitude is a policy that rules the way a client gathers

information from providers, taking into account that

they reflect a set of coexisting models. By formaliz-

ing data transfer policies, a system can deal with any

kind of information provider, whether reliable and

well-understood or uncertain and obscure, by

introducing explicit rules for trust, preferences,

temporal reasoning, and so on.
35

Infrastructures of decentralized services also need a

way to handle ‘‘vicious circles,’’ which may be

introduced by the uncontrolled distribution and

proliferation of mappings in the system. This

requires all peers adopting a rule that allows

identifying transactions in the entire system, thus

avoiding request messages that are reprocessed by

the same nodes that created them. This can be easily

implemented in special service-oriented environ-

ments, such as grids, where distributed transactions

can be uniformly identified.
36

Technical problems

apart, it is noticeable how intensional reasoning

helps cope with mapping cycles in a sound

theoretical framework, thus allowing integration

algorithms to be designed in a decentralized way.
33

To conclude, peer-to-peer semantic interoperability,

more than an option, is the only model available

when the possibility of sharing an ontology or

resorting to centralized integration services does not

exist. Even though service infrastructures are peer to

peer by nature, comprehensive frameworks for such

models are still at an experimental stage. In any

case, designers of such kinds of infrastructures face

inherent uncertainty due to the fact that semantics

are distributed in systems that are strongly isolated

from one another. Some hints on how this un-

certainty can be modeled with the conceptual tools

of modal logic have been provided here.

Any-to-one decentralized model

As illustrated in Figure 6, any-to-one decentralized

systems are peer-to-peer infrastructures in which

endpoints directly connect and exchange informa-

tion with one another, but service descriptions are

mapped to (or directly taken from) a common

shared business model. Figure 6 shows how all the

service descriptions actually belong to a shared

ontology, and each service models the other ones

with interpretations of ontology fragments that

correspond to the union of the their schemas (nested

ellipses).

Shared ontologies can be supplied by specific meta-

data services, or simply provided as network-

addressable vocabularies (e.g., XML Schema docu-

ments). Actually, this is the most common way to

address the semantic layer in Web-based peer-to-

peer architectures, as viewed in the Semantic Web

community. Proposals such as Web Services Mod-

eling Framework, for instance, focus on this model,

and the authors state that ‘‘[the use of ontologies]

Figure 6
An illustration of the any-to-one decentralized model 
for semantic interoperability
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ensures consistency of the textual representation of

the concept exchanged and allows the same

interpretation of concepts by all trading partners

involved.’’
37

We observe that, as the quotation

informs, ontologies allow, but do not ensure, the

same interpretation of concepts, for the reasons we

have outlined in the previous sections.

With respect to any-to-one centralized systems like

those based on brokering services, decentralization

requires providers to strictly cooperate with the

infrastructure as a whole, and to adopt a lingua

franca that may significantly differ from their inner

legacy conceptualizations, and therefore involves a

certain adaptation effort. On the other hand,

whereas centralized integration entitles a single

developer (or a few of them) to set up the overall

semantics, the only semantic authorities of decen-

tralized integration models are providers them-

selves. In fact, even if adopting well-established

business models, the way each provider interprets

the shared vocabulary remains in the shadow of

service implementation, which is where semantics

dwells. The distribution of semantic responsibilities,

which is the distinguishing feature of peer-to-peer

systems, is the crucial factor in these scenarios and

should be carefully considered. We observe that,

whereas centralized applications are based on

explicit decisions about how service descriptions

exposed by independent providers map to each

other—or correspond to some reference ontology—

decentralized models require semantic decisions to

be made independently throughout the network.

Nevertheless, as a rule, these decisions are not

assessed by any global authority, and the process of

converging to a uniform semantics can be influ-

enced but not controlled. After all, in a completely

decentralized environment where no authority is

established, who could tell that a service provider

misinterpreted a descriptive predicate of a shared

ontology?

For this reason, coping with an inevitable relativism

is the main issue when adopting shared conceptu-

alizations in decentralized environments. As we

outlined in the previous sections, having business

models specified in a sound and rich ontology

language and having them based on a suitable

foundational layer reduces the risk of misinter-

pretations injected by agents when mapping their

own conceptualizations to such models. A suitable

coverage of primitive concepts with respect to the

business domain (completeness) that entails the

possibility to progressively enhance conceptual

schemas (extensibility) are also key factors of

success in the adoption of shared ontologies within

service-oriented infrastructures. But still there is the

risk of inaccuracy, misunderstandings, errors, ap-

proximations, lack of knowledge, or even malicious

intent that need to be considered, especially in

uncontrolled, loosely coupled environments. From

the previous sections, we have learned that model-

ing these factors requires the adoption of frame-

works capable of managing modal policies.

In conclusion, although the any-to-one decentral-

ized integration is a viable solution for handling

highly dynamic, peer-to-peer service infrastructures

with a minimum level of centralization, it requires

the nontrivial task of making all participants

compliant with a common conceptualization. To

deploy this model, the availability of well-founded

and broad ontologies is necessary but not sufficient.

In fact, it is crucial to manage specific policies that

allow dealing with the uncertainty that is always

associated with the semantics of data coming from

external information sources.

CONCLUSION

On the way to information systems integration in an

ever growing distributed world, developers come

face to face with one of the earliest and most

venerable disciplines: semantics. SOAs, armed with

suitable descriptive languages and powerful rea-

soning algorithms, provide a solid and standardized

basis that facilitates the design and implementation

of semantics-enabled IT infrastructures. Neverthe-

less, at the current state of the art, although service-

oriented infrastructures are rapidly becoming a

reality, the adoption of specific frameworks to

address the semantic layer is still at an early stage.

Many kinds of difficulties hinder the acceptance of

semantic-oriented artifacts, technologies, method-

ologies, practices, and standards. Above all, we

believe that the lack of awareness of what semantics

is, why it is important, and how it could be modeled

constitute the most significant obstacles in its

application to the semantic layer of service-oriented

infrastructures.

In this paper, we have provided a broad overview of

the issue of semantic interoperability in service-

oriented infrastructures. We have given a specific

definition of what a semantic characterization of
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services is supposed to be, both in an extensional

and intensional setting, and we have explained the

role of ontologies. Then, we have analyzed four

basic models for semantic interoperability that

depend on the way mappings between service

descriptions and ontologies are drawn and where

the integration logic is evaluated. Selecting one of

those four models depends upon nonfunctional

constraints, such as organizational boundaries,

availability of semantic standards, and so on. We

have provided some advice on what designers

should be focusing on when implementing the

semantic layer in the range of the possible inter-

operability models.

In conclusion, semantics is not an easy discipline, as

specialists in this field know very well. Generally,

this is due to the arbitrary, problematical, and

concealed nature of interpretation. As we might

expect, this is reflected in the way semantics can be

dealt with in complex distributed information

systems, and this explains why semantic interoper-

ability is so often neglected. Since the very begin-

ning, and particularly with the expansion of the

Web, developers and researchers in industries and

universities have been tackling semantics based on

the state of the art of our theories on meaning, and

research has continuously improved methods,

standards, technologies, and solutions. Neverthe-

less, there are no ‘‘killer solutions’’ or ‘‘silver

bullets’’ available—by virtue of pure technological

advances—to put in place a semantic layer. The

quality of semantic interoperability in distributed

systems largely depends on concrete theories of

meaning that humans provide, exchange, under-

stand, and reconcile, as well as concrete processes

that humans execute in order to achieve semantic

agreements. Understanding of semantics can help

developers of service-oriented infrastructures to

deliver better solutions. We hope this paper will

help achieve this understanding.
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