Models for semantic
interoperability in service-
oriented architectures

Although service-oriented architectures go a long way toward providing interoper-
ability in distributed, heterogeneous environments, managing semantic differences in
such environments remains a challenge. We give an overview of the issue of semantic
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interoperability (integration), provide a semantic characterization of services, and
discuss the role of ontologies. Then we analyze four basic models of semantic

interoperability that differ in respect to their mapping between service descriptions
and ontologies and in respect to where the evaluation of the integration logic is
performed. We also provide some guidelines for selecting one of the possible

interoperability models.

INTRODUCTION

Modern information technology (IT) systems based
on service-oriented architectures (SOAs) consist of a
network of service providers. Services are invoked
by client applications (consumers) by means of
messages that conform to descriptive schemas.
Although typically service descriptions are exported
by providers to registries (or directories), some
service descriptions may also be supplied directly to
consumers. What is crucial—and different from
client/server architectures—is that, for each service,
a schema defines its functionality and registries are
available for lookup and binding of services without
knowledge beforehand.

The services supported by a provider give access to
the provider’s state and allow making changes to
that state. Here we use “state” in the classic way, as
the actual values of a given set of attributes. For
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instance, a data service can be seen as a database
management system whose state is the actual data
in the database, and in which client applications can
perform read and write operations through a set of
services described in terms of the allowed get and
set operations, along with a portion of the database
schema exported in a suitable way. In summary, by
using the service descriptions available, applications
can access and manipulate the state of providers.

In order for client applications to use services
effectively, it is crucial that the designers of these
applications understand the service descriptions that
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correspond to the client’s operations and data
structures. Similarly, developers of distributed in-
formation systems that cooperate through services
should have a good understanding of how service
descriptions relate to one another. Methodologies,
artifacts, and techniques aimed at the correct
interpretation and implementation of service de-
scriptions are generally referred to as the “semantic
layer” of service-based infrastructures.

In a service-oriented environment, the semantic
layer ensures that data embedded within messages
are interpreted by providers and consumers as
representing the same concepts, relations, or entities
in a suitable abstraction of the real world. For
instance, the semantic layer helps detect that the
attribute tour-cost at www.grand-tour.com corre-
sponds to ticket-price at www.railways.it. Rephrased
in the “philosophical” jargon currently in use by the
computer science community, the semantic layer is
about how participants can interpret descriptions
and data items in the system with respect to some
ontology1 of the business domain and how this
interpretation can be shared and made transparent
throughout the infrastructure.

The semantic layer also includes operational as-
pects, such as the definition of business transactions
as presented in RosettaNet” standards. In fact, the
semantic layer can be viewed to contain anything
that can be entered in a data vocabulary with the
purpose of characterizing the provider’s service. In
other words, it covers objects, events, states, and
anything else that can be conceived, expressed, and
exchanged over a communication network, which in
fact amounts to the entire coverage of a standard
linguistic dictionary. Designers—consciously or
not—have to decide how to manage the semantic
layer and have to make assumptions about it. The
aim of this paper is to provide SOA developers with
basic conceptual tools to better understand the
semantic layer. Because handling semantics is not
an easy task and important research issues are still
under investigation, this paper aims at giving
general guidelines rather than ready-for-use in-
structions.

Our interest in semantics is not primarily motivated
by advanced functions such as intelligent service
discovery or the composition and choreography of
automatic services, but by the need to make
heterogeneous information systems work in a
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networked world. For this reason, we focus here on
the interoperability of services as is worked out by
humans, and we do not survey the rich literature
related to the use of semantic models for automating
service integration tasks.’

Motivation

In current practices, semantics is usually relegated
to the backstage of design and implementation
activities and is not often given the place it deserves.
Semantic correspondences are captured by message
transformation rules that map names, values, and
structures in these messages exchanged by services.
In general, this approach can be seen as semarnti-
cally neutral, in that it does not require the
mappings to account for the way in which the
source and the target refer to real entities. In other
words, message transformation rules are written
without accounting for the reason why the corre-
sponding mapping holds. This strategy can be seen
as a pragmatic way to address semantic interoper-
ability in many common situations, when it is
reasonable to assume that the interpretations given
the service descriptions by cooperating participants
are consistent. In many cases, this neutrality
presupposes a sort of realism: the idea that
attributes which shape the domain of the service
infrastructure are given by nature, once and for all.
Thus, because services implicitly use the very same
ontology, the role of designers is just to “neutralize”
a number of different naming and structural
renderings of elements of a unique, universal,
immanent conceptualization. This is probably why
SOA technologies are mature in supporting rich-
message mapping and transformation languages,
but are “green” (immature) in providing standard
means to drive the development of specific seman-
tic-oriented artifacts, and are generally silent about
the conditions that must be ensured in order for
message transformations to be semantically sound.
As a matter of fact, whereas current frameworks
provide a fairly good basis to handle descriptive
heterogeneity through a syntactic approach, the
treatment of semantics is generally left to designers,
if and when they feel the need to bring semantics to
the foreground.

Being neutral with respect to semantics is reason-
able in many situations, but it doesn’t work in
general. In fact, this approach assumes the reliability
of some implicit agreement that lives outside the
infrastructure, let us say, in the system’s social
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surroundings. For instance, guessing that two
attributes refer to the same entity if they have the
same name is based on the assumption that labels
are uniformly interpreted by all parties. This could
be acceptable if service infrastructures were built,
deployed, and managed within tight organizational
boundaries, as in enterprise application integration
scenarios, where naming policies can be enforced
and controlled. But SOAs could be used to imple-
ment information systems in large and geographi-
cally distributed organizations, such as supply
chains of cooperating but independent companies,
or even to manage structured information ex-
changes across quite “anarchic” Web commu-
nities. In these cases, designers can hardly make
reliable assumptions about the infrastructure’s
social surroundings. Actually, they cope with
information providers that are only requested to
sketch the kind of services they make available,
mostly from a functional standpoint. Semantics,
which is the way services fulfill what their descrip-
tions promise, is embedded in the “black box” of
service implementation. In these scenarios, the
reach of semantic agreements is problematic:
accurate derivation of meaning cannot be implicit,
and therefore the semantic layer requires specific
tools and methods.

Semantic interoperability between services in an
SOA is not very different from linguistic under-
standing between humans. Linguists and philoso-
phers have been engaged in studying the
foundations of natural language semantics for
centuries, and many authors have even been
skeptical about our real capability to understand
each other.” The attractive idea of realism, which
maintains that humans understand each other
because the language reflects a commonly under-
stood world and that differences are only at the
linguistic surface, has been strongly rejected by
many philosophers, especially in the last century.
Quine, for instance, claimed that “ontological
commitments” are relative, and there is no way to
tell whether an expression uttered by a foreign
speaker in the presence of a rabbit denotes the entity
(i.e., the rabbit) or the event (i.e., the presence of a
rabbit), very different elements from an ontological
standpoint.5 Applied to SOAs, Quine’s assertions
would amount to the statement that there is no
unique interpretation of a service specification, just
based on the specification itself. Although we will
not engage in a philosophical discussion here, if we
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approach semantic interoperability from a relativ-
istic standpoint, there are no naturally safe semantic
assumptions when dealing with cooperating ser-
vices. Therefore, relativism requires much more
focus on semantics than realism, and this maybe
explains the reason why this discipline has gained
popularity within the computer-science community
since the Web became pervasive.6

We believe that awareness of semantic issues when
designing interoperating services helps deliver
better solutions, not only for the Web, but also in
restricted environments such as e-government or
large enterprises, in which designers can rely on
stable semantic conventions. With this in mind, in
the next section we provide some basic concepts for
understanding semantic interoperability. Then, we
classify the models for semantic interoperability in
service-oriented infrastructures, and take into ac-
count whether they reflect a hub-based or endpoint-
based structure, and whether they rely on business
domain models. We also show how problems of
semantic interoperability are close to many of the
issues that have been studied for decades in data
exchange and integration under the lens of logic,7
and how some of the concepts developed in this
field can be usefully applied when designing the
new kind of IT infrastructures.

SEMANTICS OF SERVICE INFRASTRUCTURES

We have shown in the previous section how
services allow accessing and changing the state of
their providers, that is, the values of some exported
attributes, and how this access and manipulation is
carried out by sending and receiving messages. We
have also informally introduced the semantic layer
as a framework that allows a consistent interpreta-
tion of messages sent to and received from services
with respect to some conceptualization underlying
the system. Now we discuss semantics in more
depth, starting from the characterization of a single
service and then considering the interoperability
(integration) of services.

Informally, a service is a system with an internal
state (e.g., values in a database instance) charac-
terized by an internal schema (e.g., a relational one)
that exposes a set of access and manipulation
methods through an interface. The interface of a
service is based on two alphabets of symbols—the
operational alphabet and the data alphabet—and a
set of structuring primitives and logic connectives
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<message name="routeRequest'">
<part name="start" type="eutb:place"/>
<part name="end" type="eutb:place"/>
</message>

<message name="routeReply">
<part name="ID" type="xsd:token"/>
<part name="fare" type="xsd:double"/>
</message>

<portType name="EUTBService™>
<operation name="getRoute">
<input message="routeRequest"/>
<output message="routeReply"/>
</operation>
</portType>

Figure 1
A fragment of a WSDL description that references
an XML Schema

that make up the description language. This
provides designers with means for formulating a
public characterization of the service called de-
scription. For instance, in Figure 1, WSDL (Web
Services Description Language) and XML (Extensi-
ble Markup Language) Schemas jointly provide a
language that informs whether an operation called
getRoute is available and corresponds to a
function that maps places to routes. As such,
descriptions can be regarded as “theories” that
provide definitions and constraints to explain the
service ontology and behavior. The interface is
bound to the internal service state by means of a
suitable implementation.

The problem of semantic integration results from the
fact that, whereas service descriptions are public,
service implementations are not accessible from
outside. Thus, for client and provider alike, the
correspondence between the service description and
the internal state is essentially opaque (i.e., hidden).
Consider, for instance, the client application Grand
Tour Agency in Figure 2. It uses services provided
by European Travel Bureau, which acts as a broker
and which uses services provided by Italian Rail-
ways. To plan a trip, Grand Tour Agency specifies
train as the preferred means of transportation and
requests from European Travel Bureau the set of
routes (and the associated price) between two
destinations. To fulfill the request European Travel
Bureau uses Italian Railways services. As broker,
European Travel Bureau has to be able to interpret
the information on trains that cover the specified
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route supplied by Italian Railways, and thus that the
fare, as interpreted by the client, amounts to the cost
of a train ticket, as intended by the supplier. As
shown in Figure 2, in order to manage this
cooperation, the three participants export schemas
and exchange data based on mappings. Schemas
expose the relational predicates of each service in an
abstract notation, whereas mappings represent
logical implications between these predicates. To
indicate that these mappings can be implemented by
a variety of data transfer policies, we use squiggly
arrows instead of the classic straight ones. Note that
whereas both consumer and provider have internal
systems (databases, files, programs) that implement
functionalities and data structures to fulfill the
exposed schemas, the broker system is mostly
concerned with managing and evaluating schema
mappings.

The client uses the service to get data, then
processes the data and possibly updates its data-
bases. It may also send messages containing data
with the purpose of changing the state of the
provider. The data and operational language that
describes the service must be mapped to data
structures and state transformations at the client.
For developers at Grand Tour Agency this raises two
semantic issues: producing proper messages for the
service (either to get or set data), and correctly
interpreting the information returned, which implies
getting the meaning of the expressions accepted and
produced by the service, making sure that this
meaning is consistent with the way the service-
provided data is used by the client application.
Conversely, for developers at Italian Railways, the
problem is fulfilling the service schema by inter-
preting the meaning of descriptive expressions
provided by European Travel Bureau. But what does
“interpreting the meaning” really mean? Broadly
speaking, this is related to what, in logic, is called
interpretation. To explain this, we start with first-
order logic (FOL) semantics.

FOL semantics

An FOL interpretation of a service interface is
basically a function that associates symbols of the
data language to tuples of data items in the service
provider’s internal state (also known as the exten-
sion of the symbolg), and the meaning of a
description is simply a calculus of its extension
based on logic connectives. It is easy to see that this
corresponds to standard database semantics. For
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example, the meaning of the expression

{id,tm | Train (id, “Rome”, “Milan”, tm)} (i.e. a set
of identifiers and departure times on the relation
Train with departure and destination constraints),
under a FOL interpretation in the service provider’s
domain of Figure 2, would be a set {<id, tm>,,
...,<id, tm>_} of tuples in the internal database. A
model for a service based on its interface is an
interpretation that satisfies all the formulas of the
service description with respect to the service
provider’s state, and any state of a service, if
consistent, is supposed to be a model in some
suitable interpretation. Indeed, FOL semantics is
straightforward: service providers can reasonably be
supposed to provide data according to their models,
and achieving semantic interoperability just requires
consumers to preserve those models, taking the
description language properly into account.

Unfortunately, a number of limitations affect the use
of FOL semantics in loosely coupled scenarios such
as Web Services interoperability. First, observe that
the implementation of the provider is not visible to
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consumers. This means, for instance, that the
extension of predicates (symbols in the data
alphabet) can be changed by providers. Clients have
little control on the way these extensions vary over
time: they cannot poll their providers too often, and
therefore models could easily get out of sync. Also,
consider a data integration scenario in which a client
wants to feed its model with data coming from
different sources (suppose, for instance, two ser-
vices exposing the same interface), and suppose that
models contradict one another (e.g., service o says
that the train will start at 1 p.m., and service f
maintains that the same train will start at 2 p.m.).
How can the client model be determined in a
situation like this? Finally, consider the typical case
in which a consumer integrates data coming from a
provider into the model of a broader theory, which
includes predicates and constraints borrowed from
other services with mappings to bind them together;
how can it be ensured that the ontological commit-
ments made by each provider are correctly under-
stood (e.g., Train is intended as object and not as
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event); thereby ensuring that inter-schema map-
pings are sound?

It seems that extensional FOL semantics is not able
to address problems that originate in the opacity of
service implementation in SOAs. In summary, in
order to manage semantic compliance in an FOL
setting, all the implementations (of both providers
and consumers) should collapse into a single one,
which is clearly not the normal condition in service-
oriented infrastructures. To overcome limitations of
FOL semantics, service descriptions should be
interpreted with respect to conditions that occur in
sets of “possible states of affairs” by providers. This
is the question we examine next.

Modal semantics

The German logician Gottlob Frege called Sinn
(sense), as opposed to Bedeutung (meaning), the
account of the intension of logic predicates, rather
than their extension.’ Informally, an intension is a
condition that objects in a given domain must satisfy
in order to enter the extension of a predicate; for
example, whereas the extension of Train in Figure 2
is precisely a set {train,, ... ,train_} of records in the
database of Italian Railways, the intension is the set
of rules that qualify a generic data object as a Train
specimen (e.g., trivially, the attribute “type” is set to
“Train”) in any database instance. Software devel-
opers can easily grasp the difference between
intension and extension, considering the difference
between an SQL query (intension) and the result set
of that query against a particular database instance
at a given time (extension). After Frege, intensional
semantics was researched in an extension of FOL
called modal logic,10 which introduces the concept
of possible worlds as an extensional model that is not
fully present at the agent that performs the reason-
ing task, thus allowing a formal account of the
interpretation of logic formulas with respect to a set
of different situations.

Now, if we view a provider as a system to which a
client can ascribe a set of possible states, then for
each client we can replace the single FOL interpre-
tation with a set of interpretations, one for each
“possible state” in the provider. What really changes
in this setting? The reason why logicians and
philosophers embraced modal logic during the last
century is the possibility to formalize propositional
attitudes, which can model different ways in which
an agent can take formal statements (propositions)
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into account, with respect to a set of possible worlds
to which it has access. For instance, given a formula
¢ of the service description (e.g., informally, “The
train Peloritano starts from Palermo™), an agent can
believe ¢, or know ¢, or hold ¢ as possible, with
respect to the set of states of affairs it is able to
access, whereas FOL is just suited to talk about the
truth of ¢ in a single, fixed, globally accessible
situation. Such propositional attitudes are formal-
ized by means of specific second-order operators,
which are associated with rules that bind the
interpretation of modal statements to the underlying
FOL setting. For example, in standard epistemic logic,
for an agent A to know a proposition ¢, it is required
that ¢ be true in all the worlds accessible by A;
whereas to believe ¢ does not entail this condition.

Is modal logic useful for characterizing semantics of
service-oriented infrastructures and thus, for en-
hancing interoperability? Certainly, because in the
“open world” of loosely coupled and highly
dynamic services, there is no unique, globally
accessible situation, there are no alternatives:
issuing a request to a service requires the client to
assume an attitude with respect to the propositions
the provider supplies. Nonetheless, even though
modeling distributed systems based on modal logic
is well assessed in literature,'' research on the
application of this paradigm in the field of service
integration in a Web environment is relatively
new.'? Still, clients of distributed services in non-
trivial interoperability scenarios do assume modal-
ity, and this results, in practice, in implementing
policies for the transfer of data from the provider
into the client implementation, taking somehow into
account the fact that these data reflect one of a set of
possible situations. Efforts to let these modal aspects
emerge from the shadow of implementations and
come out in transparent models are under way. The
syntax underlying the recent proposals for ontology
sharing and meta-data exchanges is generally
capable of representing “higher-order” constructs
such as metaclasses. This would allow modal
operators to be syntactically represented. In general,
however, rich-description logic-based languages like
OWL" are conceived for a single agent that accesses
a unique (albeit open) situation. Meta-properties
such as trust are usually framed in meta-level
characterizations attached with some suitable syn-
tactic glue to “first-order” business models.'* As for
formal semantics concerns, recent studies on for-
malizing nonfunctional properties of Web services
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aim at capturing some modal aspect in the sense
outlined here, including temporality and trust.”

Note that, in a modal framework, the client’s
understanding of the provider’s meaning of the
service description’s predicates (e.g., XML ele-
ments) can be thought of as a propositional attitude
(relational mental state connecting a person to a
proposition). For instance, a client of services
provided by Italian Railways could believe that
“Train’ is intended by the provider as a subclass of
Artifact, that is, a Physical Object, and thus, if a
Train is present at the time ¢, then each part of it
exists at the time ¢ as well.'® This is not granted once
and forever by any transcendental reason; it is just
the specific belief of a specific client of Italian
Railways’ services. In effect, Italian Railways could
have used ‘Train’ to denote the run of a train, thus
as a subclass of Event, which if it occurs at t, is not
necessarily fully present at t."” How are clients
provided with means for making reasonably sure
that their own beliefs regarding providers are well-
founded? Certainly, having services described in a
data language in which basic first-order constraints
can be expressed is very helpful, but how can “Train
as Object” be distinguished from “Train as Event”
without means for expressing inclusion depen-
dencies (e.g., “is-a” relations) of the form Train(x)
— Object(x)? In fact, the more logic constraints can
be expressed in a standard way, the more clients can
check providers’ models as valid, and load them in
their knowledge base with, at least, some formal
assurance. Moreover, formal constraints can help
semantic understanding because unclear predicates
can be intended in the light of more basic predicates
to which they are possibly bound. Logic constraints,
however, are not enough: good logic would be quite
useless if predicates and axioms were badly chosen.
For instance, who could tell that the distinction of
Objects from Events is crucial because it is the root
of two fundamentally different ways of “being in
time” and that it is crucial to put this distinction on
top of a dependency inclusion hierarchy? Where is a
consistent set of axioms of this kind of basic
meaning maintained, and how, if it is given at all,
can such semantic foundations be shared? This is
where ontologies come into play.

Ontologies

Following Quine, we consider an ontology as any
intensional account of what exists in a certain
domain, where “to exist” means “to be the value of
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a bound variable”.'® As such, in a framework like
that outlined earlier, any service description is in
fact an ontology. Actually, service-description lan-
guages such as WSDL allow using the expressive-
ness of XML schemas to describe atomic and
composite data types that can be considered as
structures of logic predicates and constraints, which
altogether allow specifying a sort of intensional
description. However, any provider is entitled to set
up its own ontology, and there is no reason to
assume consistency or any immanent unifying
heuristics, such as, for instance, the similarity of
predicate symbols (e.g., XML tags) based on
similarities to natural languages. Interpreting some-
one else’s ontology is a conjecture unless a standard
set of predicates is adopted, shared, understood, and
consistently interpreted by every node in the
distributed environment. The availability and ac-
ceptance of semantic standards is an enabling
condition for widespread adoption of service-ori-
ented infrastructures.'” For this reason, a large
community of people in both research and industry
are currently working on this. A large number of
industry “content standards” that aim at abstracting
the common conceptualization that underlies the
industry sector into well-established data dictio-
naries are already available for use in electronic
exchanges within specific communities. Standard
business-data dictionaries are often used as seman-
tic backbones to implement hub-and-spoke service
integration infrastructures.”’

It is not the purpose of this article to provide
guidance to ontology adoption and development in
the context of distributed environments such as
service infrastructures; this complex and crucial
topic requires extensive treatment. However, the
promulgation of Semantic Web standards such as
RDF (Resource Description Framework) and OWL
has driven important developments in this field, and
applications of semantics-oriented XML schemas in
Web services are currently undergoing study and
experimentation.21 We do not discuss results of this
research here, but it is important to remark that the
adoption of these languages, even by means of
partial implementations, facilitates the development
and the maintenance of broad ontologies in a
distributed way. For instance, defining inclusion
dependencies in terms of sufficient and necessary
membership conditions, as OWL permits, would
relieve the burden of developing the conceptualiza-
tions as complete structures of primitive predicates,
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thus enhancing the coverage of the business
semantics. For instance, provided that CarService (x)
— Service (x),22 a concept like the following:

TrainWithServices (x) = Train (x) A 3y Service(y) A
hasService(x,y)

would allow inferring this inclusion:

Train (x) A CarService (y) A hasService(x,y) —
TrainWithServices (x);

hence eliminating the following primitive from the
ontology:

TrainWithCarService (x) — TrainWithServices(x).

Adopting a solid top-level conceptualization, that is,
a small set of basic concepts valid for any domain
(e.g., SUMO” or DOLCE™), mitigates the risk of
introducing obscure predicates and constraints that
could hardly be interpreted by most clients. For
instance, the introduction of a concept like the
following:

TenMinutesWagon (x) = Wagon (x) A Duration
(x,10)

could be avoided if just Wagon and Duration were
bound to a top-level ontology in which:

Duration (x,y) — Event(x)
(time duration is defined for events)

Object(x) — | Event(x)
(objects are not events)

Wagon (x) — Object(x)
(wagons are objects)

because most of automatic reasoners” would be
able to detect that in every model:

{x | 3y Wagon (x) A Duration (x,y)} =@
(there aren’t temporal wagons)

In conclusion, as ontologists have pointed out, the
reason for investing in the “ontological level” is that
by sharing a sound conceptualization “the potential
misunderstandings and inconsistencies due to con-
flicting intended models are reduced.” % On the
other hand, working out sound and complete
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ontologies is very far from trivial, and acquiring,
evaluating, and adopting available ontological re-
sources is not an easy task. Ontological relativism,
in addition, disallows the faith in a natural, smooth,
and global convergence to a small set of universally
accepted ontologies and suggests that, in many
business domains, we will probably keep going with
many heterogeneous, yet coexisting, conceptual
models.

MODELS FOR SEMANTIC INTEROPERABILITY
SOA technologies and standards provide designers
with a variety of solutions for semantic interoper-
ability in the sense outlined in the previous sections.
In this section, we illustrate the main features of a
number of possible approaches to semantic inter-
operability. The selection of a specific approach
depends upon the business environment in which
the service infrastructure is deployed. These possi-
ble approaches are based on a classification criterion
that captures what is essential from the perspective
of semantic integration and that addresses the main
issues in managing semantics in service-oriented
distributed systems.

The different models for semantic interoperability
are classified based on two fundamental dimen-
sions: 1) choosing one of two possible ways to set
up integration mappings, one in which each service
schema is mapped to any other (any-to-any) and
another in which each one is mapped to a single
schema (any-to-one), and 2) choosing whether the
integration logic is executed in a single, distin-
guished node (centralized) or the execution is
distributed among multiple, functionally equivalent
nodes (decentralized). By using this classification
criterion, we obtain the following four interoper-
ability models.

Any-to-any centralized model

In the any-to-any centralized model illustrated in
Figure 3, services are interpreted and mapped to
others without resorting to ontologies. The semantic
integration function is provided by a special
component, the integrator. The integrator creates a
model for each participating service based on its
own interpretation of the service description. The
figure shows that the integrator holds a model for
each service (inner ellipses), based on its interpre-
tation of the respective service description. On the
other side, providers maintain their own models,
realized through their implementations. Mappings,
however, are applied directly between pairs of inner
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An illustration of the any-to-any centralized model for semantic interoperability

models. Therefore, designers of such applications
determine the integration logic by freely mapping
input/output data from any service in the system to
any other, based on their understanding of what the
descriptions made available by service providers
actually mean. The any-to-any centralized model is
used in the specification of business processes,
supported by standardized languages such as
BPEL,27 which are used in mature production
environments. We now look at some practical
implications of implementing such an integration
model.

In any-to-any centralized scenarios, service pro-
viders are usually noncommital with respect to
integration issues; their contribution to the infra-
structure is limited to service interfaces, and they do
not make any commitments or accept any con-
straints to integrate their services in any superseding
application. Providers are not involved by designers
in making the integration semantically consistent,
which means that integrators can freely use the
service interfaces without the need for any prelimi-
nary or subsequent negotiation with providers.
Services are usually atomic, independent, and self-
contained; they are not affected by what happens
outside their host. This is simultaneously the
strength and the limitation of this approach. Even if
service providers were willing to cooperate in the
integration effort, they would be prevented from
doing so by the requirement to provide the full
specification of their mapping to any service that the
designers plan to include. In practice, to be able to
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contribute to the integration process, each service
provider should receive the integration plan, ana-
lyze it, and specify the mappings of its data
languages to those of other services, which would
require bilateral agreements between all pairs of
participants, a cumbersome process indeed.

In fact, in “choreography” applications, that is
composing and choreographing business-aligned
services, it is not the case that independent service
providers can contribute to any shared semantics to
any extent. Choreography designers are the only
“semantic authorities,” and the overall system
behavior is the product of their understanding
(actually, beliefs) about services, based on available
descriptions. In this context, misinterpreting a single
service operation call could cause errors in data
exchanges that would propagate and eventually
affect the entire choreography application. More-
over, unlike the use of libraries in standard software
engineering, this kind of error could result in
disrupting systems that are in effect supplied by
third parties. Also, because semantic errors can be
detected only at runtime, and setting up test
environments for service infrastructures is not
trivial, there is the concrete possibility that such
errors might occur at any time during the lifetime of
the system with unpredictable consequences. Thus,
it is crucial to reduce the risk of semantic mis-
understanding as much as possible. As we have
seen, the entities that a service provider deals with
are not limited in any way; they may include events,
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properties, abstractions, and whatever else design-
ers have envisioned as part of the system domain.
This envisioning (i.e., ontological commitment) is
neither given by nature, nor is it driven by some-
thing inherent to the business itself; rather, it is a
design choice. Now, either choreography designers
can safely assume that the services they are going to
integrate in fact share the same set of ontological
commitments, or they must find a way to capture
the intended meaning of service descriptions and set
up a complex web of conceptual mappings.

In “closed” environments, such as large enterprises,
service providers may be required to adopt the very
same ontology. Of course, this would solve all the
problems in advance, and this is in fact the best
option whenever available. In this case, however,
the team supporting the service infrastructure would
actually be involved in a process of ontological
standardization, whose impact should be carefully
analyzed and managed. Integrating legacy applica-
tions and databases, for instance, would raise the
nontrivial issue of harmonizing the conceptualiza-
tions they convey with the corporate ontology. If the
adoption of a standardized ontology is out of the
reach, it is still possible that clients and providers
belong to tightly bounded organization units, and
choreographers have access to the service imple-
mentation (for instance, by having access to internal
documentation, which presumably contains much
more information than the exposed service inter-
face). This gives them the possibility of checking the
provider’s interpretation of the public interface and
to make sure that operations and data are correctly
interpreted within the choreography application.
This is the ideal scenario for developing service
integration with any-to-any centralized models.
Unfortunately, this is not the only scenario designers
usually face.

What can help choreographers interpret the service
specification when there are no standardized ontol-
ogies and the only information available is in the
published interface? We recall that the measure of
semantic consistency in the use of a service is
related to how the client’s interpretation matches
the provider’s; a model in the provider’s set of
possible worlds should be a model for the client as
well. In the light of what we have discussed so far,
the only heuristic available comes from the de-
scription language, with the provision that that
language is capable of expressing logic constraints
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(e.g., inclusion dependencies). A language with
constraints would drive the client’s interpretation
through a grid of descriptive predicates, so as to
allow a sort of holistic understanding of each single
predicate based on the entire ontology. Unfortu-
nately, the standard data language for SOAs, that is,
XML, does not standardize logic modeling con-
straints, and this is a serious drawback when
developing choreography applications in loosely
coupled environments. Once again, this reveals the
value of semantics-oriented XML extensions like
RDFS (RDF Schema) or OWL, but industrial support
for these standards is just developing, and their
adoption is still limited.

In conclusion, any-to-any centralized integration
models, like those used with choreography lan-
guages, are well-suited for closed environments
such as enterprise integration infrastructures.
Adopting this model for integration of nontrivial
services in open environments, on the other hand,
would require additional constraints and would
pose some risk, which has to be estimated and
managed.

Any-to-one centralized model

As shown in Figure 4, in the any-to-one centralized
model service, input/output data are mapped to a
single ontology managed by a specialized applica-
tion or service (the component Integrator in Figure
4). As in Figure 3, inner ellipses show that the
integrator holds a model for each service, based on
its interpretation of the available descriptions, while
providers realize their own models through imple-
mentations. Mappings, though, end up at a unique
ontology maintained by the integrator.

The ontology (sometimes called “business informa-
tion model”) is an all-inclusive data language that is
a semantic superset of the union of all data
languages exported by the service providers. This is
the model used, for instance, in a variety of content-
aware hub-and-spoke systems, such as message
brokers in message-driven service architectures,
which are capable of translating and routing
messages based on their content,”® and the more
general Enterprise Service Bus.”’

Generally, providers are not involved in developing
the logic of integrator nodes; thus, designers of the
integrator are in charge of setting up the semantic
layer. The semantic consistency of the system
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depends upon the designers’ understanding and
beliefs, and thus remarks about any-to-any central-
ized models apply here also. In addition, designers
are requested to map service descriptions with
respect to a single, fixed ontological backbone,
which requires additional skills when compared
with the task of mapping services case by case,
based on local knowledge and ad hoc transforma-
tions. Hence, the adoption of business information
models as a unified semantic foundation for service-
oriented infrastructures results in additional cost, at
least in terms of skills requested to roll out the
integration logic. Is this cost justified?

It is often remarked that the number of mappings
required for the entire system is significantly
reduced in any-to-one models, decreasing (in the
limit) from N X (N — 1) to N, where N is the number
of services involved. However, the reduction in the
number of mappings is not the striking difference
here. The real difference is in the existence of a
business model. In fact, whereas any-to-any appli-
cations let semantics scatter in a web of pair-wise
mappings, any-to-one models make semantics a
tangible and manageable object that consists of an
ontology of the business domain plus a set of
mappings that translate providers’ service descrip-
tions in terms of the business model.

We have briefly discussed the impact of adopting

ontologies in the previous section. In any-to-one
interoperability models, the completeness of the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

ontology is the main issue to address; that is, how
do we make sure, in advance, that the business
model adopted will contain anything that service
definitions encompass? If there are no limitations to
the number and variety of the services to be
integrated, of course, this is not generally possible,
and in fact these systems must include some suitable
means to extend the ontology to accommodate new
business entities. Extensibility of the business model
is therefore key to the success of this kind of
integration pattern. Property-centric ontology lan-
guages such as those based on RDF Schema allow
this feature to be implemented properly.

Integration of data in this model can be imple-
mented in one of three Ways.7 In the local-as-view
(LAV) approach, mappings proceed from source
schemas to the global view (i.e., the ontology) by
associating single data-alphabet elements exported
by services to views (queries) over the business
model. In the global-as-view (GAV) approach the
reverse holds; that is, queries on the data alphabet of
sources are mapped to single elements of the
ontology. A third approach, GLAV (global-local-as-
view), includes elements of both modes and is the
typical pattern in data-exchange systems.30

For instance, suppose that the service provider
Italian Railways exports the predicate Ticket (train,
from, to, class, price) to a system whose business
model contains Route (ID, start, end) and Fare
(route, means, amount) (see Figure 2; notice
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however that the model type depicted here could be
either any-to-any or any-to-one, depending on
whether the broker uses ontologies or not). A LAV
mapping could be:

Ticket (_, f, t, _, p) ~> 3r Route (1, f, t) A Fare
(r, “train’, p).

Notice, in this example, that some of the attributes
that characterize Ticket are missing in the trans-
lation (namely, those referring to the concept of
‘train’), while the value of the Route ID should be
injected in the data transfer. In fact, the LAV
approach is valuable if the integration system is
based on a stable and complete ontology; otherwise,
much information provided by the source could be
lost. On the other hand, services are allowed
flexibility in entering or leaving the infrastructure;
having a new service enter the system would result
in enriching the mapping set without changing the
business model, provided that for each item in the
service data language a suitable mapping on the
global schema can be established.

In data integration systems, answering queries
formulated on the global schema by using LAV
mappings is notoriously difficult because the global
view is characterized by potentially complex map-
pings to the available data sources, and inferring
how to use that characterization in order to answer
global queries may be nontrivial in many cases.
Using a business information model to support data
exchange algorithms that translate messages coming
from a mapped service to messages directed to other
mapped services could reveal the same kind of
complexity; consider, for instance, the problem of
deciding whether to route to Italian Railways, as
described in Figure 2, a request message originating
at Grand Tour Agency with content like:

GetRoute (x, ‘Palermo’, ‘Roma’) A Fare
(x, ‘land transport’, y)

For a broker this decision would require determin-
ing that ‘train’ is a kind of ‘land transport’, and
therefore, Italian Railways is eligible as a data
source. Depending on the expressiveness of the
ontology language, a decision like this could involve
complex algorithms, and the brokering system could
therefore be affected by scalability problems. Of
course, simple one-to-one correspondences of local
and global properties could be computed at a
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reasonable cost, but a poor mapping language
would probably require the business model to be
continuously expanded and adapted to data lan-
guages exported by services, with a severe decline of
flexibility.

The GAV approach in a service integration system
would work the other way around: concepts of the
business model would be mapped to views of the
source schemas. With reference to Figure 2,
provided that the broker’s schema coincide with the
ontology, a GAV mapping with the agency’s schema
would look like:

Itinerary (x) A In (x,a) A In (x,b) ~ 3r Route (r, a, b)

Algorithms such as those needed to calculate
content-based routing would be much simpler if
integration systems were limited to this kind of
mapping, because it requires specifying the exact
way to get (put) instances of global concepts out of
(into) the available sources. We notice, however,
that GAV mappings are not well-suited for the
smooth integration of unforeseen data sources into a
given global business model in dynamic environ-
ments, as typically requested in service infrastruc-
tures. In fact, in this approach, the business model
comes first, and sources (i.e., services) are generally
regarded as a means to provide it with a suitable
extension. Mixing GAV with LAV results in the so-
called GLAV approach, where views on the local
sources can be mapped to views on the ontology.
This kind of mapping is the most powerful and
general one, but, of course, requires at least the
complexity associated with the LAV approach.

In summary, any-to-one centralized integration
models are powerful and well-suited for managing
complex and dynamic environments, such as Web
services in business-to-business scenarios. Never-
theless, this approach requires careful studying of
the trade-offs between expressiveness of ontology
languages, generality of schema mappings, and
computability of integration algorithms. Solid any-
to-one centralized solutions should be based on
high-quality ontologies and expressive mapping
languages, but the resulting ability to efficiently
perform complex reasoning tasks is tied to limits on
the scalability of the integration system.

Any-to-any decentralized model

As Figure 5 illustrates, any-to-any decentralized
systems are those where services manage their
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integration with each other without resorting to any
overall business model or integrator component. For
this reason, we could refer to them as pure peer-to-
peer systems. In this context, ‘pure’ means not only
that each node in the network is potentially both
provider and client, but also that there is no
common information model or use of a centralized
integration service. We notice that, whereas most
peer-to-peer systems are very far from pure, basic
Web Services infrastructures fall exactly in this
category, because the only common service that
providers are supposed to use is a very simple kind
of publishing repository that is not involved in the
runtime operation of services. Figure 5 depicts three
peers, A, B, and C, each holding its own model of
the other two (nested ellipses). Integration logic is
distributed among peers and is accomplished by
mapping models to one another.

In pure peer-to-peer systems, as in standard
choreography applications, the integration consists
in a web of pair-wise mapping statements, which
potentially bind the state of each provider with the
state of the other. As in any-to-any centralized
models, providers do not maintain any global
semantics, which in general makes the peer-to-peer
approach robust and scalable. Unlike choreogra-
phies, however, mappings in peer-to-peer systems
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are not established by a centralized application;
instead, they are distributed across the network, and
algorithms that execute the integration logic are
distributed as well. Thus, in a certain sense, any
service can contribute to a sort of emergent
semantics.”’ Nobody has the entire set of mappings
under control; therefore, cyclic mapping may occur,
causing the integration system to be susceptible to
undetectable loops, if not properly designed.32

From a theoretical perspective, data integration in
pure peer-to-peer systems has been shown to
require modal logic (in the sense illustrated in the
section “Modal semantics”) to better suit a number
of requirements such as modularity, generality, and
tractability.33 In fact, integrating a set of independ-
ent and isolated providers by using a first-order
setting would require a supervisor agent to make
sure, at least, that mapping axioms are consistent.
But supervising the integration logic would detract
from the peer-to-peer advantages, because it would
require each provider to cooperate with the infra-
structure on a global level, thus participating in a
tight federation, with a resulting decrease in
robustness, scalability, and flexibility. On the other
hand, an integration framework capable of dealing
with the concept of “possible world” would be able
to handle inconsistencies, cycles, unreliable sources,
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and all the other problems that may occur within an
uncontrolled, self-organizing environment without
imposing central authorities, yet making integration
computationally tractable.

As we have seen, an intensional framework is one in
which each service is modeled as an agent that
contributes to the set of possible worlds accessible
by clients. A mapping is not interpreted as material
implications of FOL formulas,” but as the transfer of
information coming from the source into the client’s
knowledge, according to a propositional attitude of
the client toward the source. In practice, such an
attitude is a policy that rules the way a client gathers
information from providers, taking into account that
they reflect a set of coexisting models. By formaliz-
ing data transfer policies, a system can deal with any
kind of information provider, whether reliable and
well-understood or uncertain and obscure, by
introducing explicit rules for trust, preferences,
temporal reasoning, and so on.”?

Infrastructures of decentralized services also need a
way to handle “vicious circles,” which may be
introduced by the uncontrolled distribution and
proliferation of mappings in the system. This
requires all peers adopting a rule that allows
identifying transactions in the entire system, thus
avoiding request messages that are reprocessed by
the same nodes that created them. This can be easily
implemented in special service-oriented environ-
ments, such as grids, where distributed transactions
can be uniformly identified.*® Technical problems
apart, it is noticeable how intensional reasoning
helps cope with mapping cycles in a sound
theoretical framework, thus allowing integration
algorithms to be designed in a decentralized vvay.33

To conclude, peer-to-peer semantic interoperability,
more than an option, is the only model available
when the possibility of sharing an ontology or
resorting to centralized integration services does not
exist. Even though service infrastructures are peer to
peer by nature, comprehensive frameworks for such
models are still at an experimental stage. In any
case, designers of such kinds of infrastructures face
inherent uncertainty due to the fact that semantics
are distributed in systems that are strongly isolated
from one another. Some hints on how this un-
certainty can be modeled with the conceptual tools
of modal logic have been provided here.
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Any-to-one decentralized model

As illustrated in Figure 6, any-to-one decentralized
systems are peer-to-peer infrastructures in which
endpoints directly connect and exchange informa-
tion with one another, but service descriptions are
mapped to (or directly taken from) a common
shared business model. Figure 6 shows how all the
service descriptions actually belong to a shared
ontology, and each service models the other ones
with interpretations of ontology fragments that
correspond to the union of the their schemas (nested
ellipses).

Shared ontologies can be supplied by specific meta-
data services, or simply provided as network-
addressable vocabularies (e.g., XML Schema docu-
ments). Actually, this is the most common way to
address the semantic layer in Web-based peer-to-
peer architectures, as viewed in the Semantic Web
community. Proposals such as Web Services Mod-
eling Framework, for instance, focus on this model,
and the authors state that “[the use of ontologies]
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ensures consistency of the textual representation of
the concept exchanged and allows the same
interpretation of concepts by all trading partners
involved.””” We observe that, as the quotation
informs, ontologies allow, but do not ensure, the
same interpretation of concepts, for the reasons we
have outlined in the previous sections.

With respect to any-to-one centralized systems like
those based on brokering services, decentralization
requires providers to strictly cooperate with the
infrastructure as a whole, and to adopt a lingua
franca that may significantly differ from their inner
legacy conceptualizations, and therefore involves a
certain adaptation effort. On the other hand,
whereas centralized integration entitles a single
developer (or a few of them) to set up the overall
semantics, the only semantic authorities of decen-
tralized integration models are providers them-
selves. In fact, even if adopting well-established
business models, the way each provider interprets
the shared vocabulary remains in the shadow of
service implementation, which is where semantics
dwells. The distribution of semantic responsibilities,
which is the distinguishing feature of peer-to-peer
systems, is the crucial factor in these scenarios and
should be carefully considered. We observe that,
whereas centralized applications are based on
explicit decisions about how service descriptions
exposed by independent providers map to each
other—or correspond to some reference ontology—
decentralized models require semantic decisions to
be made independently throughout the network.
Nevertheless, as a rule, these decisions are not
assessed by any global authority, and the process of
converging to a uniform semantics can be influ-
enced but not controlled. After all, in a completely
decentralized environment where no authority is
established, who could tell that a service provider
misinterpreted a descriptive predicate of a shared
ontology?

For this reason, coping with an inevitable relativism
is the main issue when adopting shared conceptu-
alizations in decentralized environments. As we
outlined in the previous sections, having business
models specified in a sound and rich ontology
language and having them based on a suitable
foundational layer reduces the risk of misinter-
pretations injected by agents when mapping their
own conceptualizations to such models. A suitable
coverage of primitive concepts with respect to the
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business domain (completeness) that entails the
possibility to progressively enhance conceptual
schemas (extensibility) are also key factors of
success in the adoption of shared ontologies within
service-oriented infrastructures. But still there is the
risk of inaccuracy, misunderstandings, errors, ap-
proximations, lack of knowledge, or even malicious
intent that need to be considered, especially in
uncontrolled, loosely coupled environments. From
the previous sections, we have learned that model-
ing these factors requires the adoption of frame-
works capable of managing modal policies.

In conclusion, although the any-to-one decentral-
ized integration is a viable solution for handling
highly dynamic, peer-to-peer service infrastructures
with a minimum level of centralization, it requires
the nontrivial task of making all participants
compliant with a common conceptualization. To
deploy this model, the availability of well-founded
and broad ontologies is necessary but not sufficient.
In fact, it is crucial to manage specific policies that
allow dealing with the uncertainty that is always
associated with the semantics of data coming from
external information sources.

CONCLUSION

On the way to information systems integration in an
ever growing distributed world, developers come
face to face with one of the earliest and most
venerable disciplines: semantics. SOAs, armed with
suitable descriptive languages and powerful rea-
soning algorithms, provide a solid and standardized
basis that facilitates the design and implementation
of semantics-enabled IT infrastructures. Neverthe-
less, at the current state of the art, although service-
oriented infrastructures are rapidly becoming a
reality, the adoption of specific frameworks to
address the semantic layer is still at an early stage.
Many kinds of difficulties hinder the acceptance of
semantic-oriented artifacts, technologies, method-
ologies, practices, and standards. Above all, we
believe that the lack of awareness of what semantics
is, why it is important, and how it could be modeled
constitute the most significant obstacles in its
application to the semantic layer of service-oriented
infrastructures.

In this paper, we have provided a broad overview of
the issue of semantic interoperability in service-
oriented infrastructures. We have given a specific
definition of what a semantic characterization of
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services is supposed to be, both in an extensional
and intensional setting, and we have explained the
role of ontologies. Then, we have analyzed four
basic models for semantic interoperability that
depend on the way mappings between service
descriptions and ontologies are drawn and where
the integration logic is evaluated. Selecting one of
those four models depends upon nonfunctional
constraints, such as organizational boundaries,
availability of semantic standards, and so on. We
have provided some advice on what designers
should be focusing on when implementing the
semantic layer in the range of the possible inter-
operability models.

In conclusion, semantics is not an easy discipline, as
specialists in this field know very well. Generally,
this is due to the arbitrary, problematical, and
concealed nature of interpretation. As we might
expect, this is reflected in the way semantics can be
dealt with in complex distributed information
systems, and this explains why semantic interoper-
ability is so often neglected. Since the very begin-
ning, and particularly with the expansion of the
Web, developers and researchers in industries and
universities have been tackling semantics based on
the state of the art of our theories on meaning, and
research has continuously improved methods,
standards, technologies, and solutions. Neverthe-
less, there are no “killer solutions™ or “silver
bullets” available—by virtue of pure technological
advances—to put in place a semantic layer. The
quality of semantic interoperability in distributed
systems largely depends on concrete theories of
meaning that humans provide, exchange, under-
stand, and reconcile, as well as concrete processes
that humans execute in order to achieve semantic
agreements. Understanding of semantics can help
developers of service-oriented infrastructures to
deliver better solutions. We hope this paper will
help achieve this understanding.
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