A. Shaikh
S. Sahu
M.-C. Rosu
M. Shea
D. Saha

On demand platform for online
games

A shared infrastructure, based on emerging on demand computing models, that
supports multiple games offers an attractive option for large-scale multiplayer online
game providers who want to avoid the risk of investing in dedicated resources. In this
paper, we describe a prototype implementation of a service platform for online games.
The platform design follows the on demand computing paradigm. It offers integration
using open standards and off-the-shelf software and embraces virtualization and
simplification to enable sharing resources across games. We describe our experience
with identifying appropriate performance metrics for provisioning game servers and
with implementing reusable platform components that provide useful functionality for

a variety of games.

INTRODUCTION

The traditional approach taken by most publishers
and providers of large-scale multiplayer online games
is to install a dedicated infrastructure for each game.
This approach has many drawbacks. It involves high
risk and investment with little knowledge of how
successful a new game will be. For example, an
examination of subscriber populations of massively
multiplayer online role-playing games (MMORPGS)1
shows that they all follow a similar life cycle
(Figure 1), but predicting at launch how different
titles will perform or how long their subscriber
populations will continue growing remains chal-
lenging—player populations can experience sharp
increases or drops in a period of just a few weeks.

Game publishers and developers face several “pain
points” related to this problem:

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

e Sharing existing infrastructure across game titles—
Repurposing servers, changing software stacks,
and reconfiguring the network to accommodate a
new game or function is often a cumbersome,
manual process.

e Scaling the infrastructure in response to player
demand—Adding and removing servers, support
functions, or other resources is not automated.

* Managing a large, heterogeneous game server
infrastructure—Server and network management
is typically well outside the core competency of
game providers.

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

SHAIKH ET AL.

600 [I I I I

550 | O Ultima™ Online
| © 7 EverQuest™
500 - © Asheron’s Call**
L 7 Dark Age of Camelot™
450 - ° ° RuneScape™
- Final Fantasy™ XI
400 ~ 77 The Sims™ Online

- " Ragnarok Online™ (Japan)
350 = " Star Wars Galaxies™

T 7 City of Heroes™

300 EverQuest™ Il

250

Total Subscribers (in 1000s)

200

150

100

Figure 1

Player subscriptions for popular MMPORPG games (100,000 to 600,000 players)!

The on demand business model proposed by IBM’
addresses similar problems with business applica-
tions, where the issue of infrastructure cost strongly
motivates new models for utility computing offer-
ings. These models provide the flexibility to scale an
application or service in response to user demand by
rapidly adding or removing resources (e.g., servers,
storage, databases, network bandwidth, etc.) from a
pool that may be shared among multiple applica-
tions or customers. With an on demand infra-
structure, online game providers could enjoy similar
benefits by reducing initial investment, scaling
rapidly according to demand, and adding new
services. For example, an on demand infrastructure
based on open standard grid technology3 was
proposed for hosting online games.

In this paper, we describe our work to realize some
of the major components of an on demand service

SHAIKH ET AL.

platform for games. Our work is based on the
premise that an on demand computing architecture
can benefit game applications with some modifica-
tions and key additional game-specific services. We
present a design and implementation that we believe
serves the need of a number of classes of online
games. Hence, this paper intends to provide a proof
of concept that can be used as a starting point for
designing and deploying an on demand gaming
infrastructure.

We demonstrate the feasibility and operation of the
platform by provisioning multiple instances of id
Software Quake II**, a popular action game.
Though Quake II falls in the category of server-based
first-person shooter (FPS) games, the platform is
applicable to a variety of game genres (e.g.,
distributed and single-server FPS, cluster-based
massively multiplayer games, Web-based games,

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

and game support services, such as lobbies, data-
base servers, etc.). For example, traditional FPS
games are played by a group of players on a single
server, but if the game becomes very popular,
additional (disconnected) copies of the game “map”
can be deployed by provisioning additional servers
on demand. Newer game architectures distribute the
game map across multiple servers so that resources
can be added to support a larger number of players
in a seamless world.”® The “shard” (or realm)
model used in most MMPORGSs similarly can benefit
from this approach by adding or removing servers in
a cluster managing a single shard automatically as
the shard population grows or shrinks.

GAMES SERVICE PLATFORM ARCHITECTURE

In this section we discuss the design of the service
platform and follow with an overview of the current
prototype architecture.

Design objectives

The service platform design follows several basic
principles. First, the platform and associated ser-
vices should be minimally intrusive to the game
applications and, at the same time, still provide
value to game providers by relieving them from
managing the system infrastructure. A platform
must be general enough to support many types of
games (so that it can be shared), yet still be able to
be tailored when necessary by an individual game
publisher. A second possibility that follows from
this is a modular platform architecture which allows
game publishers to take advantage of functions that
address their needs and forego others that may not
be as relevant. Finally, to ensure the flexibility and
extensibility of the platform, open standards and
open-source tools should be used wherever possi-
ble, consistent with the principles of the On Demand
Operating Environment (ODOE).7

The objectives just described are somewhat ideal-
ized, and our current prototype does not meet all of
them. Nonetheless, our implementation represents a
first step toward realizing an ODOE for games.

Logical platform architecture

Figure 2 shows the logical relationships of each of
the architecture components. Conceptually, the
platform may be thought of as a layered architec-
ture, with upper layers comprising application-level
services and lower layers acting as system-level
services. At the bottom is the hardware and

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

networking infrastructure, consisting of shared
clusters of game servers, database servers, proxies,
content servers, and wide area network (WAN)
connectivity. We show two sets of server clusters to
emphasize that the platform is not limited to
residing in a single data center. As the number and
distribution of players and games grows, the plat-
form may be deployed in multiple hosting locations.

Above the infrastructure layer are the main system-
level services, which consist of non-game-specific
functions, such as server and network monitoring
and server provisioning. These functions are gen-
erally useful for any game and for many auxiliary
game functions. Server provisioning will be cus-
tomized to install specific application code, but the
basic provisioning operation—for example, on
demand installation of a software stack on a target
server—is common to most game applications. The
first two layers (i.e., distributed server clusters and
server and network management) are also applica-
ble to other networked applications deployed using
ODOE concepts. This similarity stems from our
conscious decision to design the system so that it
leverages components and services that may be
used already to manage business applications in an
on demand fashion.

Control, content, and reporting are more sophisti-
cated functions characterized by higher complexity
and functionality or requiring more substantial
modifications to work with each game application.
For example, the executable deployment function
must interpret the requirements and policies as
specified by the game provider and transform these
into provisioning operations and orchestration
policies for the provisioning manager (PM). Sim-
ilarly, the game and player statistics reporting
function requires interfacing to the game to extract
such information.

Atop this logical functional stack is the game
application itself. At this level, the primary platform
services can dynamically partition and distribute the
game over multiple servers. A number of distributed
game server architectures and middleware solutions
are available that provide this service for games
instrumented to use them.”*® Hence, the partition-
ing and scaling services are shown embedded in the
game application. In addition, an important function
at this level is the game-specific performance
monitoring that is collected directly for use by the

SHAIKH ET AL.

10

l

- Executio
- Content

- Directo l

- Game/p

- Server load monitori
- Server provisioning

- Network monitoring
- Client/server delay

Figure 2
Logical platform architecture

PM or by the distributed game middleware to make
its resource management decisions. In the first
version of our prototype implementation, we dem-
onstrate the platform components by using a server-
based game that is not instrumented for distribution
across multiple servers. However, we are working to
integrate our ODOE for games with the IBM
OptimalGrid approach reported by G. Deen et al.’ to
demonstrate this feature.

Note that the two top layers set the game service
platform apart from a general utility-computing
platform for other applications. These layers repre-
sent the key set of services and components we have
identified that are needed to adapt the on demand
computing model to online games.

Prototype architecture

Figure 3 shows the platform architecture of our
prototype, including the users of the platform—
players, game publishers, and system administra-
tors—who access the platform over the WAN (as
depicted by the dashed lines). The game servers
reside in a shared resource pool that can be used
across different game applications from multiple

SHAIKH ET AL.

publishers. In addition to operating the games
themselves, the servers may perform additional
related functions—such as login management, lobby
services, or matchmaking—for a particular game.
The PM manages and automatically provisions the
game servers. Its main function is to collect
performance and availability metrics from the server
and network infrastructure (as shown in the figure)
and respond to changing resource requirements by
adding or removing server and network resources.
The PM implements a set of data and performance
models that describe the information available from
each game along with its implication for game
performance. This implies that, in general, the PM
must be somewhat tailored to each game, because
these metrics and models may be unique to a
particular game application. The PM also collects
generic system statistics about the server platform,
such as CPU utilization, memory usage, and
bandwidth consumption.

In addition to game server monitoring and provi-
sioning, the platform also provides a number of
other services for users. These functions are
implemented by a separate group of auxiliary

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Players

Figure 3
Prototype platform architecture

Game, System,
and Network
Performance Data

Provisioning

Platform Functions
_ -

™ S

+ Content server

+ Game deployment
 Game directories

* Player redirection

Provisioning
Manager

SOAP/XML
—

Systems
Administration

Publisher/Developer

platform servers that provide an interface to the
platform, apart from actual game play. For example,
a publisher wishing to deploy a new game sends a
request to these auxiliary servers, which process it
and contact the PM to provision servers as
necessary. Platform servers can also provide direc-
tories of games and players, redirection of players to
appropriate game servers, and access to metadata
for the content distribution service. Details of these
services and their current implementation are
described later in the section “Auxiliary platform
services.”

Note that game players continue to access game
servers much as before, directly by means of the
game client code located, for example, on their game
consoles or PCs. Other player services on the
platform are accessed by using the Web-based
player portal. Some minor modifications to game
client software will likely be required to make full
use of the platform. If the publisher wishes to take
advantage of the content distribution service, for

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

example, the game client software must be able to
access the service to obtain patches and new game
content. Also, because the servers running a
particular game may change dynamically as servers
are added and removed, the players must access the
redirection service upon initial connection to the
game.

Game publishers and developers have their own
portal through which they interact with the game
platform. The functionality of this portal is imple-
mented on the platform servers. For example,
requests to deploy a new game with specific policies
(e.g., minimum server requirements) and queries
for information about running games are sent by the
portal to the platform servers. Similarly, system
administrators contact the platform servers to get
information about platform conditions, such as
overall server and network utilization, number of
available servers in the shared pool, and per-game
statistics. Requests from each of the portals may also
trigger commands to the PM server to query or

SHAIKH ET AL

11

12

Workload .
Generators s Redirector | s TIO Ii
= Content Server » = Server = Server and Game
o Software Image Server 0 0 Monitoring
= = = =
-) 100-Mbps LAN
= < = /_—ﬁ
b ~— — a—
Remote = = = =
Client
Bots -3 <
= S T '
Active Server Idle Servers

Figure 4
Prototype testbed configuration

provision game servers. As Figure 3 shows, the PM
has a SOAP/XML (Simple Object Access Protocol/
Extensible Markup Language) interface (in addition
to the native command line interface) to handle
these commands.

PLATFORM IMPLEMENTATION

Together, the provisioning manager, server resource
pool, platform server, and workload generators
constitute the major components of our prototype
implementation. For our experiments with different
provisioning metrics, we used a simplified test bed
with two game servers (Figure 4). One server in the
resource pool is marked active while the other
server is assigned to the shared free pool of idle
servers. The platform actually supports a large
number of servers grouped into pools of similar
machines. To evaluate the platform without having
to recruit a large number of live players, we
implemented remote bots (described later) that
generate synthetic player traffic from a small
number of workload machines. The prototype uses a
single auxiliary platform server to handle several of
the functions described in the previous section and
to serve as a software repository containing, for
example, game server software and operating
system images. The machines in our prototype
implementation are dual-processor 3.0-GHz Intel
Xeon**-based servers with 2 GB of random access
memory (RAM). The game servers are 2.4-GHz Intel
Pentium 4** PCs with 512 MB of RAM. All of the
servers in our test bed run Linux** 2.4 and are

SHAIKH ET AL.

interconnected over a 100-Mbps switched Ethernet
local area network (LAN).

Provisioning and data collection

Our provisioning manager is based on the IBM
Tivoli* Intelligent Orchestrator (TIO), an off-the-
shelf software product that automatically deploys
and configures servers, software applications, and
network devices in a data center or enterprise
environment.” TIO is designed to manage the
performance of multitiered Web-based business
applications by deciding how resources should be
allocated to different clusters in an on demand
fashion. Actual provisioning tasks, such as machine
configuration or software installation, are performed
using workflows that execute low-level operations
in a consistent manner.

The primary function of TIO in our platform is to
collect performance and availability metrics from
game servers and decide how to adjust server
allocations accordingly. Game performance metrics
and system utilization information are collected
continuously from all of the servers in the shared
pool. These metrics are then evaluated against a
performance model that determines the current
resource requirements for each game. TIO has some
built-in performance models, but also allows devel-
opment of plug-ins (called objective analyzers) that
can be fully customized to compute resource
requirements with a variety of metrics and algo-
rithms. The per-application resource requirements

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

are conveyed to the global resource manager
(GRM), which serves as an arbitrator among
requests from different applications (i.e., games and
related applications). If resource allocations need to
be adjusted, the GRM activates the deployment
engine that does the actual work of provisioning (or
deprovisioning) servers and other resources for
different applications.

In our prototype, for example, the TIO server
periodically collects the CPU utilization on the active
game server using Simple Network Management
Protocol (SNMP) queries. If the utilization crosses a
threshold, TIO installs the appropriate game server
software on a new idle server and adds it to the
active set. TIO then executes a custom workflow
that notifies the redirection server that a new game
server is available for joining players. Similarly,
when players leave a game server and it becomes
idle, TIO removes it from the active set and returns it
to the idle pool after all players have disconnected.
The redirection server is an instance of a game
server with a slight modification to the communi-
cation protocol to allow clients to first issue a server
assignment query and receive a redirect response to
connect to the appropriate server, rather than
connecting directly.

Although we have developed some custom work-
flows (e.g., to install game server software and
update the redirection server) and configuration
(e.g., to increase the metric sampling rate), we are
largely using TIO “out of the box” (that is, without
modification, accepting the defaults). Much of our
current effort is aimed at adapting it to use different
performance metrics and more flexible models to
decide when to adjust resources (i.e., more sophis-
ticated than a fixed threshold on CPU utilization).
We present a summary of our examination of the
suitability of different metrics in the section “Auto-
matic provisioning metrics.”

Game metrics and workload generation

We demonstrate our gaming platform by using the
open-source Quake II multiplayer action game with
a few minor modifications to the server and client.
For example, on the server, we removed the fixed
limit on the number of players so that the relatively
powerful game servers can be loaded with a large
enough number of players to cause performance
degradation. We also instrumented the server to
export performance metrics beyond those available

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

from the standard Quake II server interface when
queried by public tools like QStat.10 One of these
metrics is slack time—the time remaining in the
server fixed 100-ms state processing cycle. During
each cycle, the game server computes the full state
of the game based on player and object updates
received from clients and then transmits a relevant
view of the new state to each player. Thus, slack
time indicates how close the server is to exceeding
its time budget, after which the game state is
updated more slowly (as cycles are “skipped”),
noticeably degrading game play at client terminals.
Another metric we introduced is the total network
traffic transmitted by the server, which reflects the
volume of player and object updates that must be
sent to players. We also implemented a fine-grained
CPU load metric from within the server software
that is updated every five computation cycles (i.e.,
every 500 ms). We refer to this as the system CPU
load. Finally, we also evaluate the TIO fixed CPU
utilization metric, which is collected according to a
defined polling interval, along with a smoothing
process similar to a weighted moving average.

On the client side, it is important to recreate actual
client traffic in order to demonstrate the service
platform. Hence, while many server-side bots are
available that emulate multiple players on the
Quake II server itself, we require a client-side game
traffic generator. Unfortunately, we were unable to
find a suitable open implementation of a Quake II
client-side bot. As a result, we made some simple
modifications to the Quake II client itself to act as a
synthetic workload generator. Our bot operates
externally to the client software, sending it native
movement and game play commands (e.g., fire
weapon and turn left) via stdin. We also modified
the client to sleep periodically to reduce the load on
the workload generator machines. This allowed us
to instantiate more bots while still emulating player
behavior. Note that the goal of our bots was not to
accurately re-create real player movements and
actions; rather, they were meant to create load on
the server by using plausible player actions. Real
players might impose an equivalent load at a
different rate or population level than the bots.

Auxiliary platform services

As mentioned previously, the service platform
includes a collection of reusable auxiliary services
that can be accessed through either the player or

SHAIKH ET AL.

13

14

publisher portals. Publisher services help game
providers manage their game titles, control the way
software is deployed onto the platform, and initiate
distribution of game patches or new content. Player
services include common tasks such as authenti-
cating to the game platform (thus providing a hook
for services like accounting and billing), querying
the presence of other players, and tracking the
availability of new games. Our implementation
focuses on two of the key publisher services, as
described next.

Game deployment service

Based on a data center model (DCM),9 TIO
represents the logical and physical assets under its
management. These objects can be enumerated in
an XML document and stored in an IBM DB2*
database during operation. The model includes
information technology objects (e.g., servers, net-
work switches, and software applications) and
logical entities (e.g., customers and application
clusters). In our implementation, we represent a
new game publisher as a customer with an

m A platform must be general
enough to support many types of
games (so that it can be shared),
yet still be able to be tailored
when necessary by an individual
game publisher. m

associated application cluster (i.e., game servers
running the game application). The cluster has an
associated software stack that includes the software
necessary to run the game server, including the
operating system, support libraries, and game
software. For games consisting of components
running on separate servers (e.g., shared database,
game physics computation, etc.), the multitiered
application support of TIO can be leveraged. Each
component (e.g., database, game, authentication) is
represented as a separate cluster belonging to the
same overall application, and each cluster has an
associated software stack. Note that the DCM is
quite general in its treatment of applications and
therefore can be used to represent nearly any type of
game server that consists of a group of software
packages.

SHAIKH ET AL.

Deploying a game on our platform thus requires
creation in the DCM of a new application object
together with the corresponding clusters and soft-
ware stacks. In the current implementation, we have
defined a single game publisher operating two game
applications with their own individual (but similar)
software stacks. We have developed a Web-based
publisher portal that allows game publishers to
upload the game software and an installation script
that is packaged by the portal application into a
suitable software stack object for TIO. The deploy-
ment service also accepts some simple policy
information, such as system requirements, and the
minimum and maximum number of servers that
should be used for the game. This allows a publisher
to control, for example, how much to spend on
infrastructure for each game. Once the publisher or
developer submits this information, an XML speci-
fication file is created that describes the new DCM
objects. The XML file is read by TIO, which then
makes the corresponding incremental additions to
the DCM. The new game software stack is also
transferred to the image server, from which it can be
installed on game servers belonging to the active
pool. In this way, publishers or developers do not
need to know any underlying details of the service
platform implementation; they interact only with a
simple portal from which they can deploy their
games.

Game content distribution

A major cost factor in operating online games is the
significant bandwidth cost associated with game
traffic and downloads of patches and new game
content. Downloads generate significant load on the
publisher servers and access network due to the files
being large, the potentially high frequency of
patches, and, most important, the flash-crowd
nature of the downloads as soon as new content is
released. Soon after new content or a patch for a
popular game is made available, a large number of
players attempt to download it within a very short
time interval. In one example, the Steam distributed-
content delivery network from Value Software,
Inc.—used for in-game authentication and distrib-
uting software patches for a number of gamesu—
reported that 70-80 percent of the patch content is
downloaded in the first two days after a patch is
released.'” Providing enough download servers and
bandwidth is prohibitively expensive and failure to
do so results in customer dissatisfaction and
potential revenue loss.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

In light of these issues, the content distribution
service uses a peer-to-peer architecture to deliver
content to users quickly while conserving band-
width at the publisher’s content servers. Our
implementation is based on the BitTorrent** peer-
to-peer distribution system.13 We have integrated
the Quake II client with a modified BitTorrent client.
The integrated game client is able to initiate down-
loads through the peer-to-peer distribution service.
Some game publishers have recently started em-
ploying similar approaches to mitigate their band-
width costs.

Our modifications to BitTorrent focus on improving
its availability and making it network-aware. Our
version of the content distribution service provides
multiple BitTorrent trackers, thereby eliminating the
single point of failure in the standard system. In
addition, we enhanced the tracker to provide a list of
a client’s nearby peer nodes, which are more likely
to offer better download performance (as opposed to
the current random list). The key challenge is to
determine in a scalable manner which peers are
nearest. In our initial prototype, we propose to map
peers based on their network prefixes and estimate
network distances using Internet coordinate
systems.

AUTOMATIC PROVISIONING METRICS

In this section, we briefly discuss automatic provi-
sioning of game servers with a focus on evaluating
different choices of performance metrics used to
trigger resource allocations. Specifically, we con-
sider three key issues: which candidate metric best
reflects the server load, whether provisioning should
be based on raw or on smoothed measurements,
and whether different player arrival processes affect
the provisioning decision differently.

In our initial implementation, we use two thresholds
to trigger game server provisioning: one for deciding
when resources should be added and the other for
deciding when excess resources should be released.
The two thresholds overlap to avoid frequent
reallocations during transient fluctuation in game
performance or server utilization. We adopted the
TIO default threshold settings and used our experi-
ments to suggest parameter changes that enable
better performance for games.

Candidate metrics
We considered several system-level and game-
specific performance metrics to better understand

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

the variation of resource requirements as a function
of player population dynamics. We identified three
candidates: raw CPU utilization of game servers,
TIO-computed CPU utilization, and Quake IT slack
time.

Raw CPU utilization is collected every 500 ms from
within the game application. The TIO metric is a
smoothed average of CPU utilization collected
roughly every 30 seconds using SNMP. The
smoothing is based on a weighted moving average
that acts as a low-pass filter. Slack time is specific to
the Quake II engine, though it may apply to other
game engines and the games built using them.

Figure 5A plots the first three metrics as a function
of time during the experiment. Each metric is
normalized by the maximum value so that a metric
value of 1.0 represents the maximum, rather than
100 percent (e.g., in Figure 5A, 1.0 on the graph
represents a maximum system CPU utilization of
88 percent, while in Figure 5B 1.0 represents 100-
percent CPU load). Note that this allows relative
comparison between different metric ranges on the
same graph, but does not show the absolute values
of the metrics. The workload is generated by using
bots to simulate remote players; bots connect to the
game server according to a Poisson process with a
mean interarrival time (duration between the arrival
of two consecutive bots) of 1/1 =1 second. The
number of players connected to the server as the
experiment progresses is shown at the bottom of the
graph using a separate y-axis. After the number of
players is sufficient to saturate the server (approx-
imately 200 seconds into the experiment), they are
removed until the load decreases to roughly 50-60
percent CPU utilization. Then players are added to
increase load again during the 300-400 second time
period, after which they begin departing.

We observe that the raw CPU utilization metric
tracks the workload on the game server quite
accurately as the workload changes. The slack time
metric offers similarly accurate tracking. However,
for this rapid interarrival rate, we observe a lag with
the smoothed TIO CPU utilization metric. For
example, most of the second increase in the work-
load is missed by the TIO metric, although the load
reaches roughly 90 percent of the maximum.

This simple experiment shows that using a smoothed
performance metric based on past measurement

SHAIKH ET AL.

15

16

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
o System CPU Load
0. Slack Time
0 —TIO CPU Load
150 -
100 B
50

|

Normalized Metric

Players

‘\ Il

0O S L %00 S S S S S (0006;,)

Time (s)
1_
7—]

Figure 5

|

Q .
= |
=]
©
& i
S
£ 7
o
=]
—TIO CPU Load]
Slack Time
o System CPU Load
gt o~]
. T T -
i) (S P~ 2 R T R T B 1
Bosol L TN
oLt 1 0 b b
Q Q

Time (s)

1_

CPU utilization and slack time for different mean interarrival times

samples is not a good estimator of the real workload,
particularly when game sessions arrive at a high rate
over a short interval. Most important, the smoothed
metric can lead to inefficient resource utilization. For
example, suppose the desired allocation threshold is
set at a CPU utilization of 0.7. Using the TIO-
computed metric then requires that the threshold be
set at approximately 0.3 to achieve the same
allocation and ensure a similar game experience.
This would likely result in overprovisioning (almost
twice the number of servers), even after the actual
load has decreased on the game servers.

Impact of workload

With regard to timescale, we repeated the above
experiment for mean player interarrival times of 10
and 30 seconds, again according to a Poisson
process. Figure 5B, which plots the same metrics as
Figure 5A but for 10-second interarrivals, shows that
with a more slowly varying workload, the smoothed
CPU utilization metric is better able to follow the
instantaneous CPU utilization metric. Here, the
smoothed metric may be preferred as it is less likely
to provision too quickly in response to abrupt but
small changes in the workload.

Next, we examined whether the statistical arrival
process has an impact on the performance of

SHAIKH ET AL.

different metrics. Specifically, we compared the
instantaneous and smoothed CPU utilization metrics
for Poisson and deterministic game session arrival
processes. Our experiments showed that with a
deterministic arrival process, the smoothed metric
tracks the actual utilization extremely well, even
with a very small interarrival time between sessions.
The Poisson arrivals drive the server to peak
utilization earlier than the deterministic arrivals,
likely due to occasional bursts of arrivals inherent in
the stochastic process.

In general, the nature of session arrivals does have a
clear impact on which metrics are suitable for game
server provisioning. Additional results and a more

detailed discussion can be found in A. Shaikh et al.'®

DISCUSSION

In this section, we discuss some of the additional
issues that arise in implementing a shared service
platform for games.

Multiplexing games with business applications
The player population in an online game exhibits a
fairly predictable daily usage pattern, with the peak
time in the evening and on weekends. Therefore,
sharing a server resource pool across games alone
offers little opportunity for statistical multiplexing

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

because the peak and idle periods for all of the
games are expected to occur at roughly the same
time.

If we expand the set of applications using the shared
pool to include business applications, however, the
opportunities to multiplex become clear. For exam-
ple, we compared the load over a one-week period
of the popular multiplayer action game Half-Life**
(collected from GameSpy**) and the normalized
aggregate request volume for a large consumer
credit card Web site. We found that these applica-
tions have similar usage peaks during the week, but
a considerably different profile on Friday evening
and Saturday, which could be exploited for sharing.
Other business applications (e.g., enterprise appli-
cations that are not consumer-facing) may provide
further opportunities for multiplexing. Our adoption
of off-the-shelf provisioning software designed for
enterprises and data centers was strongly motivated
by the potential to integrate our gaming service
platform with utility offerings for business applica-
tions.

The ODOE for games can provide additional
efficiencies, even when managing only gaming
applications. For example, the ability to manage the
server infrastructure and software deployment from
a single point and automatically add or remove
servers based on resource demands simplifies
management tasks considerably.

Designing on demand games

We demonstrated our current implementation by
managing server-based games like FPSes. The
applicability of the platform to such games is clear,
as well as for other gaming functions that scale up
simply by adding additional independent server
resources without requiring coordination or syn-
chronization among servers (e.g., lobby servers for
console games). MMORPGs however, are usually
designed as a cluster of servers with each server
hosting its own copy of the game world (or shard)
for a large, but isolated group of players. In such
games, scaling is on the granularity of shards. In
order to scale such games on a finer scale (e.g., by
adding or removing a single server), the game
application must be written to take advantage of
additional resources in small increments. In this
way, the shard architecture can be replaced with a
single game world in which all players reside. Some
recently proposed distributed game architectures

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

offer communications support to enable a single
large game world to be partitioned across multiple
servers, allowing all players to interact seamlessly
(e.g., see References 5, 6, 8, and 16). In such
architectures, an on demand infrastructure can
dynamically adjust server resources as the player
population in different areas of the game changes.

Usage scenarios for the ODOE for games

The design and features of the on demand platform
for games enable a number of interesting usage
models. Our original intent was to provide a game
hosting infrastructure that could be deployed by
major hosting service providers (e.g., IBM Global
Services). A shared infrastructure that is further
multiplexed with other business applications has the
potential to lower the cost of hosting games,
particularly for smaller game publishers who could
not otherwise afford to build their own infra-
structures. An advantage of lowering the barrier to
entry is to encourage risk and innovation in games
that might not be supported by major game

m If we expand the set of
applications using the shared pool
to include business applications,
the opportunities to multiplex
become clear. m

publishers. The gaming platform can also enable
large game publishers to offer a platform to third-
party game developers (i.e., as opposed to in-house
game studios). For example, console game providers
could use the platform to offer a relatively low-cost
hosting solution to encourage third-party developers
to enable their games for online play. Finally, the
automatic provisioning and software deployment
services of the platform can be applied in next-
generation gaming services. One example is an “on
demand gaming party” service in which customers
select games to play with friends on well-provi-
sioned private servers. The platform automatically
provisions powerful game servers with very good
network connectivity to the corresponding game
server software for the duration of the party
(assuming that the requisite licensing agreements
can be worked out with game publishers). The
customer could invite players by distributing the
game server address and necessary authentication
information.

SHAIKH ET AL.

17

18

Security issues

The fact that provisioning in our current imple-
mentation is done on a server-by-server basis
simplifies the security issues arising from more fine-
grained resource sharing. In practice, however, this
policy can lead to unnecessary overprovisioning, for
example for games with modest resource require-
ments. In such cases, it may be desirable to host
multiple games on a single server, but this clearly
requires sufficient protection between the games
running on the same server (e.g., to prevent one
game from corrupting another or causing it to
crash). Additionally, while the peer-to-peer distri-
bution model is appealing from the standpoint of
lowering bandwidth costs, it also introduces added
liability for game providers who use it to distribute
content. Players must allow unknown and untrusted
machines to connect to their own machines, thus
increasing the risk of exposure to malicious users.

Future work

We plan additional enhancements to the service
platform for use with other types of games and with
new services. For example, we plan to demonstrate
automatic provisioning for persistent world multi-
player role-playing games and some of the new
distributed game architectures. To realize player
services, we plan a number of directory services
based on Lightweight Directory Access Protocol
(LDAP) that account for player preferences when
connecting to game servers. Although we mention
that network resources can also be managed in an
on demand fashion, we have not implemented this
in the first version of our prototype, choosing
instead to focus on server and software provision-
ing. Related research on measuring the network
profile (e.g., in terms of bandwidth consumption)
for various games provides guidance for managing
network bandwidth.'”"” We plan to add support for
monitoring and tuning bandwidth usage for the in-
game network based on these profiles. Finally, we
are investigating the suitability of different game
metrics (i.e., at the application level) for other types
of games.

SUMMARY

In this paper, we described the development of a
shared, on demand infrastructure for hosting large-
scale multiplayer games. Our work is inspired by the
on demand computing environment model and
embraces several of its main concepts. For example,
the platform supports integration through its mod-

SHAIKH ET AL.

ular, service-oriented design in which components
can be used as needed and uses open standards
including Linux, XML, and SOAP. Infrastructure
simplification is achieved in the platform through
the use of automation in the form of provisioning
and workflows and through virtualization, which
allows servers to be used across multiple games,
applications, and customers.

In our prototype, we used commercial off-the-shelf
provisioning software and adapted it for game
applications. We also implemented a number of
services that make it easy for publishers to use and
demonstrate the platform with the Quake II game.

Our experiences illustrate the feasibility of applying
on demand computing concepts to an infrastructure
for hosting multiplayer online games. Through our
ongoing implementation efforts, we have been able
to identify where existing utility computing tech-
nology and open standards may be leveraged and
where game-specific customizations are required.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of id
Software, Inc., Intel Corporation, Linus Torvalds, Origins
Systems, Inc., Sony Computer Entertainment America Inc.,
Turbine, Inc., Mythic Entertainment, Inc., Jagex Software,
Square Enix Co., Ltd., Electronic Arts Inc., Gravity Interactive
LLC, Lucasfilm Entertainment Company Ltd., Cryptic Studios
Inc., NCSoft Corp., BitTorrent, Inc., Valve Corporation, or
IGN Entertainment in the United States, other countries, or
both.

CITED REFERENCES
1. B. S. Woodcock, “An Analysis of MMOG Subscription
Growth,” Version 16, April 2005, http://www.
mmogchart.com.

2. The On Demand Operating Environment, IBM Corpora-
tion, http://www.ibm.com/ebusiness/ondemand/us/
overview/operating_environment.shtml.

3. I Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A.
Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Sub-
ramaniam, J. Treadwell, and J. Von Reich, “The Open
Grid Services Architecture, Version 1.0,” Global Grid
Forum OGSA Working Group GFD-1.031 (January 2005),
http://www.gridforum.org/documents/GFD.30.pdf.

4. D. Saha, S. Sahu, and A. Shaikh, “A Service Platform for
On-Line Games,” Proceedings of 2nd Workshop on Net-
work and System Support for Games (May 2003), pp.
180-184.

5. G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. Thomas,
and J. Kaufman, “Running Quake II on a Grid,” IBM
Systems Journal 45, No. 1, 21-44 (2006, this issue).

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

6. A. Bharambe, J. Pang, and S. Seshan, A Distributed
Architecture for Interactive Multiplayer Games, Technical
Report CMU-CS-05-112, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 15213
(2005).

7. B.Jacob, S. Mui, J. Pannu, S. Park, H. Raguet, J.
Schneider, and L. Vanel, On Demand Operating Envi-
ronment: Creating Business Flexibility, IBM Redbook
(2004), http://www.redbooks.ibm.com/abstracts/
5g246633.html.

8. BigWorld Server, BigWorld Pty., Ltd., http://www.
bigworldtech.com/server.php.

9. E. Manoel, S. C. Brumfield, K. Converse, M. DuMont, L.
Hand, G. Lilly, M. Moeller, A. Nemati, and A. Waisanen,
Provisioning On Demand: Introducing IBM Tivoli Intelli-
gent ThinkDynamic Orchestrator, IBM Redbooks (2003),
http://www.redbooks.ibm.com/redbooks/pdfs/
5g248888.pdf.

10. S. Jankowski, QStat: Real-time Game Server Status,
http://www.qstat.org.

11. Steam, Valve Corporation, Inc., http://www.
steampowered.com.

12. C. Chambers, W.-C. Feng, S. Sahu, and D. Saha,
“Measurement-Based Characterization of a Collection of
On-line Games,” Proceedings of the Internet Measurement
Conference (October 2005), http://www.usenix.org/
events/imc05/tech/full_papers/chambers/chambers.pdf.

13. BitTorrent, Inc., http://www.bittorrent.com, 2005.

14. Blizzard Downloader FAQ, Blizzard Entertainment,
http://www.worldofwarcraft.com/info/faq/
blizzarddownloader.html.

15. A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
“Implementation of a Service Platform for Online
Games,” Proceedings of ACM SIGCOMM Workshops on
NetGames (August 2004), pp. 106-110.

16. P. Rosedale and C. Ondrejka, Enabling Player-Created
Online Worlds with Grid Computing and Streaming,
Gamasutra, GMP Media Inc. (2003), http://www.cs.ubc.
ca/~Kkrasic/cpsc538a-2005/papers/rosedale.pdf.

17. Wu-chang Feng, F. Chang, Wu-chi Feng, and J. Walpole,
“A Traffic Analysis of Popular On-line Games,” IEEE/
ACM Transactions on Networking 13, No. 3, 488-500
(June 2005).

18. K. Chen, P. Huang, C. Huang, and C. Le, “Game Traffic
Analysis: An MMORPG Perspective,” Proceedings of the
International Workshop on Network and Operating
Systems Support for Digital Audio and Video (June 2005),
pp. 19-24.

19. S. Zander and G. Armitage, “A Traffic Model for the Xbox
Game Halo 2,” Proceedings of the International Workshop
on Network and Operating Systems Support for Digital
Audio and Video (June 2005), pp. 13-18.

Accepted for publication July 29, 2005.
Published online January 11, 2006.

Anees Shaikh

IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown
Heights, New York 10598 (aashaikh@uwatson.ibm.com). Dr.
Shaikh is a research staff member in the Networking Software
and Services Group. He received B.S.E.E. and M.S.E.E. degrees
from the University of Virginia, and a Ph.D. degree in
computer science and engineering from the University of

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Michigan in 1999. His research at IBM has focused on Internet
service infrastructure, particularly in the areas of content
distribution, Web and network performance, and Internet
measurement. Dr. Shaikh has also published a number of
papers on load-sensitive routing, middleware for real-time
communication, and multicast routing.

Sambit Sahu

IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (sambits@us.ibm.com).
Dr. Sahu is a research staff member in the Networking
Software and Services Group. He received a Ph.D. degree in
computer science from the University of Massachusetts at
Ambherst in 2001. He joined IBM in 2001. His research has
focused on overlay-based communication, network
configuration management, content distribution architecture,
and design and analysis of high-performance network
protocols. Dr. Sahu has published a number of papers in the
areas of differentiated services, multimedia, overlay-based
communication, and network management and has over 20
patents filed in these areas.

Marcel-Catalin Rosu

IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (rosu@us.ibm.com). Dr.
Rosu is a research staff member in the Ubiquitous and
Wearable Computing Department at IBM Research. He
received M.S. degrees from the Polytechnic University of
Bucharest and Cornell University in 1987 and 1995,
respectively, and a Ph.D. degree from Georgia Institute of
Technology in 1999, all in computer science. His research
interests include operating systems, distributed systems,
multimedia, Web applications and services, and mobile
computing.

Michael Shea

IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (mike.shea@gmail.com).
Mr. Shea received a B.Math. degree in computer science from
the University of Waterloo, Canada, in 2003. He worked as a
co-op at the IBM Thomas J. Watson Research Center in the
Network Software and Services Group in 2004. Mr. Shea is
currently a developer at Tira Wireless, working on a system
for automating the porting of cell phone games.

Debanjan Saha

IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (dsaha@us.ibm.com). Dr.
Saha is with the Security, Privacy, and Networking
Department at IBM Research. He leads a group of researchers
working on different aspects of network software and
services. He received a B.Tech. degree in computer science
and engineering from the Indian Institute of Technology in
1990, and M.S. and Ph.D. degrees in computer science from
the University of Maryland at College Park in 1992 and 1995,
respectively. Dr. Saha has authored more than 50 papers and
standards contributions and is a frequent speaker at academic
and industry events. He serves regularly on the executive and
technical committees of major networking conferences. M

SHAIKH ET AL.

19

