
On demand platform for online
games

&

A. Shaikh

S. Sahu

M.-C. Rosu

M. Shea

D. Saha

A shared infrastructure, based on emerging on demand computing models, that

supports multiple games offers an attractive option for large-scale multiplayer online

game providers who want to avoid the risk of investing in dedicated resources. In this

paper, we describe a prototype implementation of a service platform for online games.

The platform design follows the on demand computing paradigm. It offers integration

using open standards and off-the-shelf software and embraces virtualization and

simplification to enable sharing resources across games. We describe our experience

with identifying appropriate performance metrics for provisioning game servers and

with implementing reusable platform components that provide useful functionality for

a variety of games.

INTRODUCTION

The traditional approach taken by most publishers

and providers of large-scale multiplayer online games

is to install a dedicated infrastructure for each game.

This approach has many drawbacks. It involves high

risk and investment with little knowledge of how

successful a new game will be. For example, an

examination of subscriber populations of massively

multiplayer online role-playing games (MMORPGs)
1

shows that they all follow a similar life cycle

(Figure 1), but predicting at launch how different

titles will perform or how long their subscriber

populations will continue growing remains chal-

lenging—player populations can experience sharp

increases or drops in a period of just a few weeks.

Game publishers and developers face several ‘‘pain

points’’ related to this problem:

� Sharing existing infrastructure across game titles—

Repurposing servers, changing software stacks,

and reconfiguring the network to accommodate a

new game or function is often a cumbersome,

manual process.

� Scaling the infrastructure in response to player

demand—Adding and removing servers, support

functions, or other resources is not automated.

� Managing a large, heterogeneous game server

infrastructure—Server and network management

is typically well outside the core competency of

game providers.

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 7

The on demand business model proposed by IBM
2

addresses similar problems with business applica-

tions, where the issue of infrastructure cost strongly

motivates new models for utility computing offer-

ings. These models provide the flexibility to scale an

application or service in response to user demand by

rapidly adding or removing resources (e.g., servers,

storage, databases, network bandwidth, etc.) from a

pool that may be shared among multiple applica-

tions or customers. With an on demand infra-

structure, online game providers could enjoy similar

benefits by reducing initial investment, scaling

rapidly according to demand, and adding new

services. For example, an on demand infrastructure

based on open standard grid technology
3

was

proposed for hosting online games.
4

In this paper, we describe our work to realize some

of the major components of an on demand service

platform for games. Our work is based on the

premise that an on demand computing architecture

can benefit game applications with some modifica-

tions and key additional game-specific services. We

present a design and implementation that we believe

serves the need of a number of classes of online

games. Hence, this paper intends to provide a proof

of concept that can be used as a starting point for

designing and deploying an on demand gaming

infrastructure.

We demonstrate the feasibility and operation of the

platform by provisioning multiple instances of id

Software Quake II**, a popular action game.

Though Quake II falls in the category of server-based

first-person shooter (FPS) games, the platform is

applicable to a variety of game genres (e.g.,

distributed and single-server FPS, cluster-based

massively multiplayer games, Web-based games,

0

50

100

150

200

250

300

350

400

450

500

550

600

To
ta

l S
ub

sc
rib

er
s

(i
n

10
00

s)

Ju
l-1

99
7

De
c-1

99
7

M
ay

-19
98

O
ct

-19
98

M
ar

-19
99

Au
g-1

99
9

Ja
n-

20
00

Ju
n-

20
00

No
v-2

00
0

Ap
r-2

00
1

Au
g-2

00
1

Ja
n-

20
02

Ju
n-

20
02

No
v-2

00
2

Ap
r-2

00
3

Se
p-

20
03

Fe
b-

20
04

Ju
l-2

00
4

De
c-2

00
4

Ultima** Online

EverQuest**

Asheron’s Call**

Dark Age of Camelot**

RuneScape**

Final Fantasy** XI

The Sims** Online

Ragnarok Online** (Japan)

Star Wars Galaxies**

City of Heroes**

EverQuest** II

Figure 1
Player subscriptions for popular MMPORPG games (100,000 to 600,000 players)1

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 20068

and game support services, such as lobbies, data-

base servers, etc.). For example, traditional FPS

games are played by a group of players on a single

server, but if the game becomes very popular,

additional (disconnected) copies of the game ‘‘map’’

can be deployed by provisioning additional servers

on demand. Newer game architectures distribute the

game map across multiple servers so that resources

can be added to support a larger number of players

in a seamless world.
5,6

The ‘‘shard’’ (or realm)

model used in most MMPORGs similarly can benefit

from this approach by adding or removing servers in

a cluster managing a single shard automatically as

the shard population grows or shrinks.

GAMES SERVICE PLATFORM ARCHITECTURE
In this section we discuss the design of the service

platform and follow with an overview of the current

prototype architecture.

Design objectives

The service platform design follows several basic

principles. First, the platform and associated ser-

vices should be minimally intrusive to the game

applications and, at the same time, still provide

value to game providers by relieving them from

managing the system infrastructure. A platform

must be general enough to support many types of

games (so that it can be shared), yet still be able to

be tailored when necessary by an individual game

publisher. A second possibility that follows from

this is a modular platform architecture which allows

game publishers to take advantage of functions that

address their needs and forego others that may not

be as relevant. Finally, to ensure the flexibility and

extensibility of the platform, open standards and

open-source tools should be used wherever possi-

ble, consistent with the principles of the On Demand

Operating Environment (ODOE).
7

The objectives just described are somewhat ideal-

ized, and our current prototype does not meet all of

them. Nonetheless, our implementation represents a

first step toward realizing an ODOE for games.

Logical platform architecture

Figure 2 shows the logical relationships of each of

the architecture components. Conceptually, the

platform may be thought of as a layered architec-

ture, with upper layers comprising application-level

services and lower layers acting as system-level

services. At the bottom is the hardware and

networking infrastructure, consisting of shared

clusters of game servers, database servers, proxies,

content servers, and wide area network (WAN)

connectivity. We show two sets of server clusters to

emphasize that the platform is not limited to

residing in a single data center. As the number and

distribution of players and games grows, the plat-

form may be deployed in multiple hosting locations.

Above the infrastructure layer are the main system-

level services, which consist of non-game-specific

functions, such as server and network monitoring

and server provisioning. These functions are gen-

erally useful for any game and for many auxiliary

game functions. Server provisioning will be cus-

tomized to install specific application code, but the

basic provisioning operation—for example, on

demand installation of a software stack on a target

server—is common to most game applications. The

first two layers (i.e., distributed server clusters and

server and network management) are also applica-

ble to other networked applications deployed using

ODOE concepts. This similarity stems from our

conscious decision to design the system so that it

leverages components and services that may be

used already to manage business applications in an

on demand fashion.

Control, content, and reporting are more sophisti-

cated functions characterized by higher complexity

and functionality or requiring more substantial

modifications to work with each game application.

For example, the executable deployment function

must interpret the requirements and policies as

specified by the game provider and transform these

into provisioning operations and orchestration

policies for the provisioning manager (PM). Sim-

ilarly, the game and player statistics reporting

function requires interfacing to the game to extract

such information.

Atop this logical functional stack is the game

application itself. At this level, the primary platform

services can dynamically partition and distribute the

game over multiple servers. A number of distributed

game server architectures and middleware solutions

are available that provide this service for games

instrumented to use them.
5,6,8

Hence, the partition-

ing and scaling services are shown embedded in the

game application. In addition, an important function

at this level is the game-specific performance

monitoring that is collected directly for use by the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 9

PM or by the distributed game middleware to make

its resource management decisions. In the first

version of our prototype implementation, we dem-

onstrate the platform components by using a server-

based game that is not instrumented for distribution

across multiple servers. However, we are working to

integrate our ODOE for games with the IBM

OptimalGrid approach reported by G. Deen et al.
5

to

demonstrate this feature.

Note that the two top layers set the game service

platform apart from a general utility-computing

platform for other applications. These layers repre-

sent the key set of services and components we have

identified that are needed to adapt the on demand

computing model to online games.

Prototype architecture

Figure 3 shows the platform architecture of our

prototype, including the users of the platform—

players, game publishers, and system administra-

tors—who access the platform over the WAN (as

depicted by the dashed lines). The game servers

reside in a shared resource pool that can be used

across different game applications from multiple

publishers. In addition to operating the games

themselves, the servers may perform additional

related functions—such as login management, lobby

services, or matchmaking—for a particular game.

The PM manages and automatically provisions the

game servers. Its main function is to collect

performance and availability metrics from the server

and network infrastructure (as shown in the figure)

and respond to changing resource requirements by

adding or removing server and network resources.

The PM implements a set of data and performance

models that describe the information available from

each game along with its implication for game

performance. This implies that, in general, the PM

must be somewhat tailored to each game, because

these metrics and models may be unique to a

particular game application. The PM also collects

generic system statistics about the server platform,

such as CPU utilization, memory usage, and

bandwidth consumption.

In addition to game server monitoring and provi-

sioning, the platform also provides a number of

other services for users. These functions are

implemented by a separate group of auxiliary

Figure 2
Logical platform architecture

Control, Content, and Reporting Services

- Game, database, and multimedia servers
- Game proxies
- Network connectivity

- Dynamic game partitioning
- Object/player migration
- Game performance monitoring

- Execution deployment
- Content distribution service
- Directory services
- Game/player statistics

- Server load monitoring
- Server provisioning
- Network monitoring
- Client/server delay measurements

Game Server Application and Data

Dynamic Game Partitioning and Scaling

Server and Network Management

Distributed
Game/Database
Server Clusters

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200610

platform servers that provide an interface to the

platform, apart from actual game play. For example,

a publisher wishing to deploy a new game sends a

request to these auxiliary servers, which process it

and contact the PM to provision servers as

necessary. Platform servers can also provide direc-

tories of games and players, redirection of players to

appropriate game servers, and access to metadata

for the content distribution service. Details of these

services and their current implementation are

described later in the section ‘‘Auxiliary platform

services.’’

Note that game players continue to access game

servers much as before, directly by means of the

game client code located, for example, on their game

consoles or PCs. Other player services on the

platform are accessed by using the Web-based

player portal. Some minor modifications to game

client software will likely be required to make full

use of the platform. If the publisher wishes to take

advantage of the content distribution service, for

example, the game client software must be able to

access the service to obtain patches and new game

content. Also, because the servers running a

particular game may change dynamically as servers

are added and removed, the players must access the

redirection service upon initial connection to the

game.

Game publishers and developers have their own

portal through which they interact with the game

platform. The functionality of this portal is imple-

mented on the platform servers. For example,

requests to deploy a new game with specific policies

(e.g., minimum server requirements) and queries

for information about running games are sent by the

portal to the platform servers. Similarly, system

administrators contact the platform servers to get

information about platform conditions, such as

overall server and network utilization, number of

available servers in the shared pool, and per-game

statistics. Requests from each of the portals may also

trigger commands to the PM server to query or

Figure 3
Prototype platform architecture

Player Services

Available
Games

Download

Check statistics

Chat room

Publisher Portal

Login

Upload

Game Description

Check statistics

Game Policy

Administration Services
• Server load monitoring
• Directory services
• Player and game statistics
• SLA monitoring

Game, System,
and Network
Performance Data

Platform Functions

SOAP/XML

Provisioning

Provisioning
Manager

Publisher/Developer

• Content server
• Game deployment
• Game directories
• Player redirection

Login

Players

Systems
Administration

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 11

provision game servers. As Figure 3 shows, the PM

has a SOAP/XML (Simple Object Access Protocol/

Extensible Markup Language) interface (in addition

to the native command line interface) to handle

these commands.

PLATFORM IMPLEMENTATION

Together, the provisioning manager, server resource

pool, platform server, and workload generators

constitute the major components of our prototype

implementation. For our experiments with different

provisioning metrics, we used a simplified test bed

with two game servers (Figure 4). One server in the

resource pool is marked active while the other

server is assigned to the shared free pool of idle

servers. The platform actually supports a large

number of servers grouped into pools of similar

machines. To evaluate the platform without having

to recruit a large number of live players, we

implemented remote bots (described later) that

generate synthetic player traffic from a small

number of workload machines. The prototype uses a

single auxiliary platform server to handle several of

the functions described in the previous section and

to serve as a software repository containing, for

example, game server software and operating

system images. The machines in our prototype

implementation are dual-processor 3.0-GHz Intel

Xeon**-based servers with 2 GB of random access

memory (RAM). The game servers are 2.4-GHz Intel

Pentium 4** PCs with 512 MB of RAM. All of the

servers in our test bed run Linux** 2.4 and are

interconnected over a 100-Mbps switched Ethernet

local area network (LAN).

Provisioning and data collection

Our provisioning manager is based on the IBM

Tivoli* Intelligent Orchestrator (TIO), an off-the-

shelf software product that automatically deploys

and configures servers, software applications, and

network devices in a data center or enterprise

environment.
9

TIO is designed to manage the

performance of multitiered Web-based business

applications by deciding how resources should be

allocated to different clusters in an on demand

fashion. Actual provisioning tasks, such as machine

configuration or software installation, are performed

using workflows that execute low-level operations

in a consistent manner.

The primary function of TIO in our platform is to

collect performance and availability metrics from

game servers and decide how to adjust server

allocations accordingly. Game performance metrics

and system utilization information are collected

continuously from all of the servers in the shared

pool. These metrics are then evaluated against a

performance model that determines the current

resource requirements for each game. TIO has some

built-in performance models, but also allows devel-

opment of plug-ins (called objective analyzers) that

can be fully customized to compute resource

requirements with a variety of metrics and algo-

rithms. The per-application resource requirements

Redirector
Content Server

Software Image Server

TIO
Server Server and Game

Monitoring

Active Server Idle Servers

Workload
Generators

Remote
Client
Bots

Figure 4
Prototype testbed configuration

100-Mbps LAN

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200612

are conveyed to the global resource manager

(GRM), which serves as an arbitrator among

requests from different applications (i.e., games and

related applications). If resource allocations need to

be adjusted, the GRM activates the deployment

engine that does the actual work of provisioning (or

deprovisioning) servers and other resources for

different applications.

In our prototype, for example, the TIO server

periodically collects the CPU utilization on the active

game server using Simple Network Management

Protocol (SNMP) queries. If the utilization crosses a

threshold, TIO installs the appropriate game server

software on a new idle server and adds it to the

active set. TIO then executes a custom workflow

that notifies the redirection server that a new game

server is available for joining players. Similarly,

when players leave a game server and it becomes

idle, TIO removes it from the active set and returns it

to the idle pool after all players have disconnected.

The redirection server is an instance of a game

server with a slight modification to the communi-

cation protocol to allow clients to first issue a server

assignment query and receive a redirect response to

connect to the appropriate server, rather than

connecting directly.

Although we have developed some custom work-

flows (e.g., to install game server software and

update the redirection server) and configuration

(e.g., to increase the metric sampling rate), we are

largely using TIO ‘‘out of the box’’ (that is, without

modification, accepting the defaults). Much of our

current effort is aimed at adapting it to use different

performance metrics and more flexible models to

decide when to adjust resources (i.e., more sophis-

ticated than a fixed threshold on CPU utilization).

We present a summary of our examination of the

suitability of different metrics in the section ‘‘Auto-

matic provisioning metrics.’’

Game metrics and workload generation

We demonstrate our gaming platform by using the

open-source Quake II multiplayer action game with

a few minor modifications to the server and client.

For example, on the server, we removed the fixed

limit on the number of players so that the relatively

powerful game servers can be loaded with a large

enough number of players to cause performance

degradation. We also instrumented the server to

export performance metrics beyond those available

from the standard Quake II server interface when

queried by public tools like QStat.
10

One of these

metrics is slack time—the time remaining in the

server fixed 100-ms state processing cycle. During

each cycle, the game server computes the full state

of the game based on player and object updates

received from clients and then transmits a relevant

view of the new state to each player. Thus, slack

time indicates how close the server is to exceeding

its time budget, after which the game state is

updated more slowly (as cycles are ‘‘skipped’’),

noticeably degrading game play at client terminals.

Another metric we introduced is the total network

traffic transmitted by the server, which reflects the

volume of player and object updates that must be

sent to players. We also implemented a fine-grained

CPU load metric from within the server software

that is updated every five computation cycles (i.e.,

every 500 ms). We refer to this as the system CPU

load. Finally, we also evaluate the TIO fixed CPU

utilization metric, which is collected according to a

defined polling interval, along with a smoothing

process similar to a weighted moving average.

On the client side, it is important to recreate actual

client traffic in order to demonstrate the service

platform. Hence, while many server-side bots are

available that emulate multiple players on the

Quake II server itself, we require a client-side game

traffic generator. Unfortunately, we were unable to

find a suitable open implementation of a Quake II

client-side bot. As a result, we made some simple

modifications to the Quake II client itself to act as a

synthetic workload generator. Our bot operates

externally to the client software, sending it native

movement and game play commands (e.g., fire

weapon and turn left) via stdin. We also modified

the client to sleep periodically to reduce the load on

the workload generator machines. This allowed us

to instantiate more bots while still emulating player

behavior. Note that the goal of our bots was not to

accurately re-create real player movements and

actions; rather, they were meant to create load on

the server by using plausible player actions. Real

players might impose an equivalent load at a

different rate or population level than the bots.

Auxiliary platform services

As mentioned previously, the service platform

includes a collection of reusable auxiliary services

that can be accessed through either the player or

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 13

publisher portals. Publisher services help game

providers manage their game titles, control the way

software is deployed onto the platform, and initiate

distribution of game patches or new content. Player

services include common tasks such as authenti-

cating to the game platform (thus providing a hook

for services like accounting and billing), querying

the presence of other players, and tracking the

availability of new games. Our implementation

focuses on two of the key publisher services, as

described next.

Game deployment service

Based on a data center model (DCM),
9

TIO

represents the logical and physical assets under its

management. These objects can be enumerated in

an XML document and stored in an IBM DB2*

database during operation. The model includes

information technology objects (e.g., servers, net-

work switches, and software applications) and

logical entities (e.g., customers and application

clusters). In our implementation, we represent a

new game publisher as a customer with an

& A platform must be general
enough to support many types of
games (so that it can be shared),
yet still be able to be tailored
when necessary by an individual
game publisher. &

associated application cluster (i.e., game servers

running the game application). The cluster has an

associated software stack that includes the software

necessary to run the game server, including the

operating system, support libraries, and game

software. For games consisting of components

running on separate servers (e.g., shared database,

game physics computation, etc.), the multitiered

application support of TIO can be leveraged. Each

component (e.g., database, game, authentication) is

represented as a separate cluster belonging to the

same overall application, and each cluster has an

associated software stack. Note that the DCM is

quite general in its treatment of applications and

therefore can be used to represent nearly any type of

game server that consists of a group of software

packages.

Deploying a game on our platform thus requires

creation in the DCM of a new application object

together with the corresponding clusters and soft-

ware stacks. In the current implementation, we have

defined a single game publisher operating two game

applications with their own individual (but similar)

software stacks. We have developed a Web-based

publisher portal that allows game publishers to

upload the game software and an installation script

that is packaged by the portal application into a

suitable software stack object for TIO. The deploy-

ment service also accepts some simple policy

information, such as system requirements, and the

minimum and maximum number of servers that

should be used for the game. This allows a publisher

to control, for example, how much to spend on

infrastructure for each game. Once the publisher or

developer submits this information, an XML speci-

fication file is created that describes the new DCM

objects. The XML file is read by TIO, which then

makes the corresponding incremental additions to

the DCM. The new game software stack is also

transferred to the image server, from which it can be

installed on game servers belonging to the active

pool. In this way, publishers or developers do not

need to know any underlying details of the service

platform implementation; they interact only with a

simple portal from which they can deploy their

games.

Game content distribution

A major cost factor in operating online games is the

significant bandwidth cost associated with game

traffic and downloads of patches and new game

content. Downloads generate significant load on the

publisher servers and access network due to the files

being large, the potentially high frequency of

patches, and, most important, the flash-crowd

nature of the downloads as soon as new content is

released. Soon after new content or a patch for a

popular game is made available, a large number of

players attempt to download it within a very short

time interval. In one example, the Steam distributed-

content delivery network from Value Software,

Inc.—used for in-game authentication and distrib-

uting software patches for a number of games
11

—

reported that 70–80 percent of the patch content is

downloaded in the first two days after a patch is

released.
12

Providing enough download servers and

bandwidth is prohibitively expensive and failure to

do so results in customer dissatisfaction and

potential revenue loss.

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200614

In light of these issues, the content distribution

service uses a peer-to-peer architecture to deliver

content to users quickly while conserving band-

width at the publisher’s content servers. Our

implementation is based on the BitTorrent** peer-

to-peer distribution system.
13

We have integrated

the Quake II client with a modified BitTorrent client.

The integrated game client is able to initiate down-

loads through the peer-to-peer distribution service.

Some game publishers have recently started em-

ploying similar approaches to mitigate their band-

width costs.
14

Our modifications to BitTorrent focus on improving

its availability and making it network-aware. Our

version of the content distribution service provides

multiple BitTorrent trackers, thereby eliminating the

single point of failure in the standard system. In

addition, we enhanced the tracker to provide a list of

a client’s nearby peer nodes, which are more likely

to offer better download performance (as opposed to

the current random list). The key challenge is to

determine in a scalable manner which peers are

nearest. In our initial prototype, we propose to map

peers based on their network prefixes and estimate

network distances using Internet coordinate

systems.

AUTOMATIC PROVISIONING METRICS
In this section, we briefly discuss automatic provi-

sioning of game servers with a focus on evaluating

different choices of performance metrics used to

trigger resource allocations. Specifically, we con-

sider three key issues: which candidate metric best

reflects the server load, whether provisioning should

be based on raw or on smoothed measurements,

and whether different player arrival processes affect

the provisioning decision differently.

In our initial implementation, we use two thresholds

to trigger game server provisioning: one for deciding

when resources should be added and the other for

deciding when excess resources should be released.

The two thresholds overlap to avoid frequent

reallocations during transient fluctuation in game

performance or server utilization. We adopted the

TIO default threshold settings and used our experi-

ments to suggest parameter changes that enable

better performance for games.

Candidate metrics

We considered several system-level and game-

specific performance metrics to better understand

the variation of resource requirements as a function

of player population dynamics. We identified three

candidates: raw CPU utilization of game servers,

TIO-computed CPU utilization, and Quake II slack

time.

Raw CPU utilization is collected every 500 ms from

within the game application. The TIO metric is a

smoothed average of CPU utilization collected

roughly every 30 seconds using SNMP. The

smoothing is based on a weighted moving average

that acts as a low-pass filter. Slack time is specific to

the Quake II engine, though it may apply to other

game engines and the games built using them.

Figure 5A plots the first three metrics as a function

of time during the experiment. Each metric is

normalized by the maximum value so that a metric

value of 1.0 represents the maximum, rather than

100 percent (e.g., in Figure 5A, 1.0 on the graph

represents a maximum system CPU utilization of

88 percent, while in Figure 5B 1.0 represents 100-

percent CPU load). Note that this allows relative

comparison between different metric ranges on the

same graph, but does not show the absolute values

of the metrics. The workload is generated by using

bots to simulate remote players; bots connect to the

game server according to a Poisson process with a

mean interarrival time (duration between the arrival

of two consecutive bots) of 1/k¼ 1 second. The

number of players connected to the server as the

experiment progresses is shown at the bottom of the

graph using a separate y-axis. After the number of

players is sufficient to saturate the server (approx-

imately 200 seconds into the experiment), they are

removed until the load decreases to roughly 50–60

percent CPU utilization. Then players are added to

increase load again during the 300–400 second time

period, after which they begin departing.

We observe that the raw CPU utilization metric

tracks the workload on the game server quite

accurately as the workload changes. The slack time

metric offers similarly accurate tracking. However,

for this rapid interarrival rate, we observe a lag with

the smoothed TIO CPU utilization metric. For

example, most of the second increase in the work-

load is missed by the TIO metric, although the load

reaches roughly 90 percent of the maximum.

This simple experiment shows that using a smoothed

performance metric based on past measurement

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 15

samples is not a good estimator of the real workload,

particularly when game sessions arrive at a high rate

over a short interval. Most important, the smoothed

metric can lead to inefficient resource utilization. For

example, suppose the desired allocation threshold is

set at a CPU utilization of 0.7. Using the TIO-

computed metric then requires that the threshold be

set at approximately 0.3 to achieve the same

allocation and ensure a similar game experience.

This would likely result in overprovisioning (almost

twice the number of servers), even after the actual

load has decreased on the game servers.

Impact of workload

With regard to timescale, we repeated the above

experiment for mean player interarrival times of 10

and 30 seconds, again according to a Poisson

process. Figure 5B, which plots the same metrics as

Figure 5A but for 10-second interarrivals, shows that

with a more slowly varying workload, the smoothed

CPU utilization metric is better able to follow the

instantaneous CPU utilization metric. Here, the

smoothed metric may be preferred as it is less likely

to provision too quickly in response to abrupt but

small changes in the workload.

Next, we examined whether the statistical arrival

process has an impact on the performance of

different metrics. Specifically, we compared the

instantaneous and smoothed CPU utilization metrics

for Poisson and deterministic game session arrival

processes. Our experiments showed that with a

deterministic arrival process, the smoothed metric

tracks the actual utilization extremely well, even

with a very small interarrival time between sessions.

The Poisson arrivals drive the server to peak

utilization earlier than the deterministic arrivals,

likely due to occasional bursts of arrivals inherent in

the stochastic process.

In general, the nature of session arrivals does have a

clear impact on which metrics are suitable for game

server provisioning. Additional results and a more

detailed discussion can be found in A. Shaikh et al.
15

DISCUSSION
In this section, we discuss some of the additional

issues that arise in implementing a shared service

platform for games.

Multiplexing games with business applications
The player population in an online game exhibits a

fairly predictable daily usage pattern, with the peak

time in the evening and on weekends. Therefore,

sharing a server resource pool across games alone

offers little opportunity for statistical multiplexing

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

Time (s)

0
50

0
1,0

00
1,5

00
2,0

00
2,5

00
3,0

00
3,5

00
4,0

00
4,5

00
5,0

00
5,5

00

Pl
ay

er
s

N
or

m
al

ize
d

M
et

ric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
50

100
150

Figure 5
CPU utilization and slack time for different mean interarrival times

Time (s)

Pl
ay

er
s

N
or

m
al

ize
d

M
et

ric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
50

100
150

1 =1λ
1 =10λ

System CPU Load
Slack Time
TIO CPU Load

TIO CPU Load
Slack Time
System CPU Load

A B

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200616

because the peak and idle periods for all of the

games are expected to occur at roughly the same

time.

If we expand the set of applications using the shared

pool to include business applications, however, the

opportunities to multiplex become clear. For exam-

ple, we compared the load over a one-week period

of the popular multiplayer action game Half-Life**

(collected from GameSpy**) and the normalized

aggregate request volume for a large consumer

credit card Web site. We found that these applica-

tions have similar usage peaks during the week, but

a considerably different profile on Friday evening

and Saturday, which could be exploited for sharing.

Other business applications (e.g., enterprise appli-

cations that are not consumer-facing) may provide

further opportunities for multiplexing. Our adoption

of off-the-shelf provisioning software designed for

enterprises and data centers was strongly motivated

by the potential to integrate our gaming service

platform with utility offerings for business applica-

tions.

The ODOE for games can provide additional

efficiencies, even when managing only gaming

applications. For example, the ability to manage the

server infrastructure and software deployment from

a single point and automatically add or remove

servers based on resource demands simplifies

management tasks considerably.

Designing on demand games

We demonstrated our current implementation by

managing server-based games like FPSes. The

applicability of the platform to such games is clear,

as well as for other gaming functions that scale up

simply by adding additional independent server

resources without requiring coordination or syn-

chronization among servers (e.g., lobby servers for

console games). MMORPGs however, are usually

designed as a cluster of servers with each server

hosting its own copy of the game world (or shard)

for a large, but isolated group of players. In such

games, scaling is on the granularity of shards. In

order to scale such games on a finer scale (e.g., by

adding or removing a single server), the game

application must be written to take advantage of

additional resources in small increments. In this

way, the shard architecture can be replaced with a

single game world in which all players reside. Some

recently proposed distributed game architectures

offer communications support to enable a single

large game world to be partitioned across multiple

servers, allowing all players to interact seamlessly

(e.g., see References 5, 6, 8, and 16). In such

architectures, an on demand infrastructure can

dynamically adjust server resources as the player

population in different areas of the game changes.

Usage scenarios for the ODOE for games
The design and features of the on demand platform

for games enable a number of interesting usage

models. Our original intent was to provide a game

hosting infrastructure that could be deployed by

major hosting service providers (e.g., IBM Global

Services). A shared infrastructure that is further

multiplexed with other business applications has the

potential to lower the cost of hosting games,

particularly for smaller game publishers who could

not otherwise afford to build their own infra-

structures. An advantage of lowering the barrier to

entry is to encourage risk and innovation in games

that might not be supported by major game

& If we expand the set of
applications using the shared pool
to include business applications,
the opportunities to multiplex
become clear. &

publishers. The gaming platform can also enable

large game publishers to offer a platform to third-

party game developers (i.e., as opposed to in-house

game studios). For example, console game providers

could use the platform to offer a relatively low-cost

hosting solution to encourage third-party developers

to enable their games for online play. Finally, the

automatic provisioning and software deployment

services of the platform can be applied in next-

generation gaming services. One example is an ‘‘on

demand gaming party’’ service in which customers

select games to play with friends on well-provi-

sioned private servers. The platform automatically

provisions powerful game servers with very good

network connectivity to the corresponding game

server software for the duration of the party

(assuming that the requisite licensing agreements

can be worked out with game publishers). The

customer could invite players by distributing the

game server address and necessary authentication

information.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 17

Security issues

The fact that provisioning in our current imple-

mentation is done on a server-by-server basis

simplifies the security issues arising from more fine-

grained resource sharing. In practice, however, this

policy can lead to unnecessary overprovisioning, for

example for games with modest resource require-

ments. In such cases, it may be desirable to host

multiple games on a single server, but this clearly

requires sufficient protection between the games

running on the same server (e.g., to prevent one

game from corrupting another or causing it to

crash). Additionally, while the peer-to-peer distri-

bution model is appealing from the standpoint of

lowering bandwidth costs, it also introduces added

liability for game providers who use it to distribute

content. Players must allow unknown and untrusted

machines to connect to their own machines, thus

increasing the risk of exposure to malicious users.

Future work

We plan additional enhancements to the service

platform for use with other types of games and with

new services. For example, we plan to demonstrate

automatic provisioning for persistent world multi-

player role-playing games and some of the new

distributed game architectures. To realize player

services, we plan a number of directory services

based on Lightweight Directory Access Protocol

(LDAP) that account for player preferences when

connecting to game servers. Although we mention

that network resources can also be managed in an

on demand fashion, we have not implemented this

in the first version of our prototype, choosing

instead to focus on server and software provision-

ing. Related research on measuring the network

profile (e.g., in terms of bandwidth consumption)

for various games provides guidance for managing

network bandwidth.
17–19

We plan to add support for

monitoring and tuning bandwidth usage for the in-

game network based on these profiles. Finally, we

are investigating the suitability of different game

metrics (i.e., at the application level) for other types

of games.

SUMMARY
In this paper, we described the development of a

shared, on demand infrastructure for hosting large-

scale multiplayer games. Our work is inspired by the

on demand computing environment model and

embraces several of its main concepts. For example,

the platform supports integration through its mod-

ular, service-oriented design in which components

can be used as needed and uses open standards

including Linux, XML, and SOAP. Infrastructure

simplification is achieved in the platform through

the use of automation in the form of provisioning

and workflows and through virtualization, which

allows servers to be used across multiple games,

applications, and customers.

In our prototype, we used commercial off-the-shelf

provisioning software and adapted it for game

applications. We also implemented a number of

services that make it easy for publishers to use and

demonstrate the platform with the Quake II game.

Our experiences illustrate the feasibility of applying

on demand computing concepts to an infrastructure

for hosting multiplayer online games. Through our

ongoing implementation efforts, we have been able

to identify where existing utility computing tech-

nology and open standards may be leveraged and

where game-specific customizations are required.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of id
Software, Inc., Intel Corporation, Linus Torvalds, Origins
Systems, Inc., Sony Computer Entertainment America Inc.,
Turbine, Inc., Mythic Entertainment, Inc., Jagex Software,
Square Enix Co., Ltd., Electronic Arts Inc., Gravity Interactive
LLC, Lucasfilm Entertainment Company Ltd., Cryptic Studios

IGN Entertainment in the United States, other countries, or
both.

CITED REFERENCES
1. B. S. Woodcock, ‘‘An Analysis of MMOG Subscription

Growth,’’ Version 16, April 2005, http://www.
mmogchart.com.

2. The On Demand Operating Environment, IBM Corpora-
tion, http://www.ibm.com/ebusiness/ondemand/us/

3. I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A.
Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Sub-
ramaniam, J. Treadwell, and J. Von Reich, ‘‘The Open
Grid Services Architecture, Version 1.0,’’ Global Grid
Forum OGSA Working Group GFD-I.031 (January 2005),
http://www.gridforum.org/documents/GFD.30.pdf.

4. D. Saha, S. Sahu, and A. Shaikh, ‘‘A Service Platform for
On-Line Games,’’ Proceedings of 2nd Workshop on Net-
work and System Support for Games (May 2003), pp.
180–184.

5. G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. Thomas,
and J. Kaufman, ‘‘Running Quake II on a Grid,’’ IBM
Systems Journal 45, No. 1, 21–44 (2006, this issue).

SHAIKH ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200618

Inc., NCSoft Corp., BitTorrent, Inc., Valve Corporation, or

overview/operating_environment.shtml.

6. A. Bharambe, J. Pang, and S. Seshan, A Distributed
Architecture for Interactive Multiplayer Games, Technical
Report CMU-CS-05-112, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 15213
(2005).

7. B. Jacob, S. Mui, J. Pannu, S. Park, H. Raguet, J.
Schneider, and L. Vanel, On Demand Operating Envi-
ronment: Creating Business Flexibility, IBM Redbook
(2004), http://www.redbooks.ibm.com/abstracts/
sg246633.html.

8. BigWorld Server, BigWorld Pty., Ltd., http://www.
bigworldtech.com/server.php.

9. E. Manoel, S. C. Brumfield, K. Converse, M. DuMont, L.
Hand, G. Lilly, M. Moeller, A. Nemati, and A. Waisanen,
Provisioning On Demand: Introducing IBM Tivoli Intelli-
gent ThinkDynamic Orchestrator, IBM Redbooks (2003),
http://www.redbooks.ibm.com/redbooks/pdfs/

10. S. Jankowski, QStat: Real-time Game Server Status,
http://www.qstat.org.

11. Steam, Valve Corporation, Inc., http://www.
steampowered.com.

12. C. Chambers, W.-C. Feng, S. Sahu, and D. Saha,
‘‘Measurement-Based Characterization of a Collection of
On-line Games,’’ Proceedings of the Internet Measurement
Conference (October 2005), http://www.usenix.org/
events/imc05/tech/full_papers/chambers/chambers.pdf.

13. BitTorrent, Inc., http://www.bittorrent.com, 2005.

14. Blizzard Downloader FAQ, Blizzard Entertainment,
http://www.worldofwarcraft.com/info/faq/
blizzarddownloader.html.

15. A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
‘‘Implementation of a Service Platform for Online
Games,’’ Proceedings of ACM SIGCOMM Workshops on
NetGames (August 2004), pp. 106–110.

16. P. Rosedale and C. Ondrejka, Enabling Player-Created
Online Worlds with Grid Computing and Streaming,
Gamasutra, GMP Media Inc. (2003), http://www.cs.ubc.
ca/;krasic/cpsc538a-2005/papers/rosedale.pdf.

17. Wu-chang Feng, F. Chang, Wu-chi Feng, and J. Walpole,
‘‘A Traffic Analysis of Popular On-line Games,’’ IEEE/
ACM Transactions on Networking 13, No. 3, 488–500
(June 2005).

18. K. Chen, P. Huang, C. Huang, and C. Le, ‘‘Game Traffic
Analysis: An MMORPG Perspective,’’ Proceedings of the
International Workshop on Network and Operating
Systems Support for Digital Audio and Video (June 2005),
pp. 19–24.

19. S. Zander and G. Armitage, ‘‘A Traffic Model for the Xbox
Game Halo 2,’’ Proceedings of the International Workshop
on Network and Operating Systems Support for Digital
Audio and Video (June 2005), pp. 13–18.

Accepted for publication July 29, 2005.

Anees Shaikh
IBMThomas J.WatsonResearch Center, P.O. Box 704, Yorktown
Heights, New York 10598 (aashaikh@watson.ibm.com). Dr.
Shaikh is a research staff member in the Networking Software
and Services Group. He received B.S.E.E. and M.S.E.E. degrees
from the University of Virginia, and a Ph.D. degree in
computer science and engineering from the University of

Michigan in 1999. His research at IBM has focused on Internet
service infrastructure, particularly in the areas of content
distribution, Web and network performance, and Internet
measurement. Dr. Shaikh has also published a number of
papers on load-sensitive routing, middleware for real-time
communication, and multicast routing.

Sambit Sahu
IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (sambits@us.ibm.com).
Dr. Sahu is a research staff member in the Networking
Software and Services Group. He received a Ph.D. degree in
computer science from the University of Massachusetts at
Amherst in 2001. He joined IBM in 2001. His research has
focused on overlay-based communication, network
configuration management, content distribution architecture,
and design and analysis of high-performance network
protocols. Dr. Sahu has published a number of papers in the
areas of differentiated services, multimedia, overlay-based
communication, and network management and has over 20
patents filed in these areas.

Marcel-Catalin Rosu
IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (rosu@us.ibm.com). Dr.
Rosu is a research staff member in the Ubiquitous and
Wearable Computing Department at IBM Research. He
received M.S. degrees from the Polytechnic University of
Bucharest and Cornell University in 1987 and 1995,
respectively, and a Ph.D. degree from Georgia Institute of
Technology in 1999, all in computer science. His research
interests include operating systems, distributed systems,
multimedia, Web applications and services, and mobile
computing.

Michael Shea
IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (mike.shea@gmail.com).
Mr. Shea received a B.Math. degree in computer science from
the University of Waterloo, Canada, in 2003. He worked as a
co-op at the IBM Thomas J. Watson Research Center in the
Network Software and Services Group in 2004. Mr. Shea is
currently a developer at Tira Wireless, working on a system
for automating the porting of cell phone games.

Debanjan Saha
IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598 (dsaha@us.ibm.com). Dr.
Saha is with the Security, Privacy, and Networking
Department at IBM Research. He leads a group of researchers
working on different aspects of network software and
services. He received a B.Tech. degree in computer science
and engineering from the Indian Institute of Technology in
1990, and M.S. and Ph.D. degrees in computer science from
the University of Maryland at College Park in 1992 and 1995,
respectively. Dr. Saha has authored more than 50 papers and
standards contributions and is a frequent speaker at academic
and industry events. He serves regularly on the executive and
technical committees of major networking conferences. &

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHAIKH ET AL. 19

Published online January 11, 2006.

sg248888.pdf.

