P. Case

Enhancing XML search with
XQuery 1.0 and XPath 2.0
Full-Text

Powerful queries of character strings, numbers, dates, and nodes are familiar to users
of relational database systems. Full-text database search systems feature queries that
(1) use logical, proximity, and starts-with operators, (2) offer user control of case and
diacritics, stemming, and wildcards, and (3) support thesauruses, taxonomies, and
ontologies. Two emerging standards, XQuery 1.0 and XQ/XPFT (XQuery 1.0 and XPath
2.0 Full-Text), combine the search capabilities of the aforementioned systems and
promise to change the face of full-text searching. This paper explores the expected
benefits of these standards in searching relational data and full-text documents in XML
from an end user point of view and describes how these benefits would apply to a
search system used at the Library of Congress. These standards have the potential to
solve many real-life full-text search system problems and to restore the end-user
control necessary to enable and facilitate complex searching.

INTRODUCTION

XML promises many things to many people. Some
expect XML to create state-of-the-art tools for
document composition. Others expect it to enable
the production of multiple displays from a single
source document. Still others expect it to facilitate
the interchange of data and documents through Web
services. For full-text searching, the promise lies in
search systems that are more powerful and com-
posable (i.e., have components that can be selected
and assembled in various combinations). Two
forthcoming standards from the World Wide Web
Consortium (W3C**), XQuery1 and XQuery and
XPath Full-Text’ (XQ/XPFT), may represent the first
steps in merging and improving search technologies
for relational databases and full-text documents.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Once relational data and full-text documents are
both stored in XML, end users can profit from being
able to search them together with a single search
engine, exploiting the power of both relational
database querying and full-text searching.

Currently, more and more full-text search function-
ality is being exercised by the use of scoring and
categorization algorithms. Scoring algorithms pro-
duce scores for search results that predict the

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

CASE

353

354

relevance of those results to the full-text search
conditions. Categorization algorithms cluster search
results into categories and display them by category
on the search results page. These and similar
algorithms provide some convenience, but also
diminish user control over the process of obtaining
and displaying search results. In contrast, the intent
of this paper is to urge researchers and vendors to
think about the needs of end users, especially expert
users, and to consider researching and implement-
ing XQ/XPFT, thereby restoring the degree of end
user control that is necessary for complex searching.

XQ/XPFT offers full-text search functionalities
which are becoming less common in full-text search
systems today, such as logical, proximity, and
starts-with operators; user control of case and
diacritics; stemming and wildcards; and support for
thesauruses, taxonomies, and ontologies. The depth
and breadth of the available functionalities are
easily discovered by browsing the XQuery and
XPath Full-Text Use Cases.” These functionalities
have been implemented in the GalaTex XML Full-
Text search engine prototype,4 a conformant im-
plementation of XQ/XPFT.

In January 2005, the Pew Internet and American Life
Project released a report on online activites which
was subtitled: Internet Searchers are confident,
satisfied, and trusting, but they are also unaware
and naive.” It noted that only 7 percent use more
than three search engines on a regular basis and that
those users are less satisfied with open Web
searching. For end users of full-text database search
systems, the number may be higher. Though 7
percent is a small percentage of users, these users
are doing a different kind of search and have higher
expectations. They often must find not just some
results, but all the appropriate results. Their work
may be critical, for example, Congressional staff
giving their member of Congress all the bills on
cloning introduced in the latest session. It is critical
that these advanced users find the results they need.

This paper explores the expected benefits of using
XQuery and XQ/XPFT to search relational data and
full-text documents from an end user’s point of
view. These benefits may be advantageous to all end
users of full-text search systems, but the emphasis
here is on one type of full-text search system,
namely, full-text database search systems. Full-text
databases are defined as databases primarily con-

CASE

taining full-text documents that often contain data
as well, in forms including names, titles, dates, and
numbers. This data may be treated as document
metadata or as related data. The documents and
data are homogenous in format and content and are
currently stored and searched by proprietary soft-
ware. The majority of the vendors of full-text search-
engine software have not participated in standard-
ization efforts, such as the efforts involving SQL
(Structured Query Language) by relational database
vendors. Examples of full-text database search
system implementations include the databases of
LexisNexis’ (containing legal, tax, and regulatory
information), Dialog7 (providing information ser-
vices in such fields as business, science, engineer-
ing, finance, and law), and FirstGov® (the official
United States gateway to all government informa-
tion, including full-text databases available to the
public). Full-text database search differs from
enterprise search and other types of full-text
searching.

This paper focuses narrowly on the expected
benefits of the XQ/XPFT standards to full-text
database searching and on the real-life full-text
search system problems they have the potential to
solve. It illustrates the utility of these standards by
specific examples from a full-text database search
system used at the Library of Congress. The views
expressed in this paper are those of the author and
do not necessarily represent those of the Library of
Congress.

DISTINCTIONS BETWEEN RELATIONAL DATA AND
FULL-TEXT DOCUMENT SEARCHING

Queries in relational databases run against struc-
tured data, such as character strings, dates, num-
bers, and nodes. For example, a character string
query on man may find the character string
semantics; a date range search on the range August
22, 1951 through October 28, 2005 may find data
containing the initial date, ending date, and the
dates in between; a node search may be run to
determine whether a node of that name exists.
Relational database systems have capabilities for
finding and transforming character strings, dates,
numbers, and nodes; these capabilities would be
useful but are not currently available in full-text
database search systems. The dominant markets for
relational database querying are automated business
transactions and content management. These mar-
kets have encouraged standardization and precision

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

in search functionality, but have resulted in a
decrease in the focus on full-text search in relational
databases.

Full-text searches are performed on text that has
been tokenized, that is, broken into a sequence of
words, units of punctuation, and spaces. Searches in
full-text find words and phrases instead of character
strings. A full-text search for the word man returns
the word man and possibly some synonyms, but it
will not return the word semantics. The tokenized
text-search capabilities of full-text search engines
would be useful in relational database querying, but
are not currently available in most relational data-
bases. Full-text searching comes in many varieties,
including open Web searching, Web site searching,
enterprise searching (of varied network and intranet
resources), federated searching (i.e., searching by
transforming a query and broadcasting it to a group
of disparate databases with the appropriate syntax),
full-text database searching, and intra-document
searching. They are similar in some ways and very
different in others.

The dominant market for full-text search systems
has become enterprise search, that is, searching the
networks and intranets within a business or other
organization for information such as phone direc-
tory entries, e-mails, shared documents, guidelines,
databases, and other corporate resources. The focus
of enterprise search is on searching heterogeneous
documents in different formats (i.e., HTML, WPD,
DOC, PDF) with heterogeneous content.

Full-text search engine vendors have tended to
ignore standardization of the fundamental compo-
nents of full-text searching. This has resulted in an
amorphous state of the art, which is compounded by
the tendency to include innovations in full-text
search such as categorization, result clustering, and
visualization in the enterprise search product
category. For example, Gartner, Inc.’s enterprise
search product category was renamed information
access technology in 2005 in order to include the
aforementioned innovations. While these innovative
components are important, they cannot replace the
functionalities addressed here, and building them
into search engines (rather than making them
available as plug-ins or add-ons) has led to a chaotic
product category. This paper addresses only the
fundamental components of full-text search systems
and so continues to use the term enterprise search.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

The distinction between relational databases and
full-text search systems makes sense when looking
at the dominant markets. The concentration of full-
text search products on enterprise search is also
understandable. The distinction, however, has had
negative consequences for full-text database search
systems. Full-text databases are often more homo-
genous in format and content than enterprise search
systems. A simple word search in an enterprise
search system may be more successful than a search
in a full-text database search system. In a full-text

m The use of XML is blurring the
distinction between structured
data and unstructured docu-
ments, making the disjunction
between relational databases
and full-text databases less and
less defensible m

database search system, an end user is more likely
to get lost in too many results and to have difficulty
distinguishing among them. Historically, only li-
brarians and a few academics used multiple full-text
databases. It is to be hoped that the growing number
of end users conducting full-text database searches
by means of Web interfaces, whether without charge
or for a fee, will lead to the creation of products that
better support full-text database searching and these
new users, both novice and expert.

The use of XML is blurring the distinction between
structured data and unstructured documents. Pre-
viously unstructured documents, when they are
converted to XML, gain at least minimal structure
through the addition of semantically meaningful
XML information such as title, author, and text tags.
As this trend continues, it will become harder to tell
data from documents, and the disjunction between
relational databases and full-text databases will
become less and less defensible.

The W3C standards for XQuery and XQ/XPFT also
contribute to this trend. XQ/XPFT uses the XQuery
data model (or infoset), extending it to retain word,
sentence, and paragraph position numbers. The
XQuery and XQ/XPFT standards are fully compos-
able. XQuery relational data queries may be

CASE

355

combined with and nested within XQ/XPFT
searches and vice versa.

AN EXAMPLE OF A FULL-TEXT DATABASE
SEARCH SYSTEM

The Library of Congress stores a wealth of relational
data and full-text documents. Currently, in order to
search data and documents together, the data must
be moved from relational databases into full-text
databases, where it is combined with full-text docu-
ments and then searched by a proprietary full-text
search system. In this process, all of the functionality
and standardization of relational databases is lost.

The example of full-text database search provided
here was developed at the Library of Congress. Our
team designs the search system architecture and
interface for the Legislative Information System
(LIS), a closed system available only to members of
Congress and their staffs. LIS provides access to U.S.
legislative information that is accurate, timely, and
complete. It serves as a portal to House of
Representatives, Senate, and Congressional support
agency resources. It provides search interfaces for
bills, committee reports, and the Congressional
Record. LIS is not unique. It is typical of full-text
database search systems at the Library of Congress
and elsewhere. It is used here as a prototype for a
search system that contains homogenous data and
documents. The THOMAS system,10 providing
legislative information on the Internet, is the public
version of LIS. Its search interface is different from
the LIS interface, with fewer expert user options.

The transition to XML represents an opportunity to
improve searching in LIS. Adding elements and
attributes to structure full text is of course a boon,
but the XQuery and XQ/XPFT standards will do
much more for LIS. The first draft of the standards,
XQuery and XPath Full-Text Use Cases, a W3C
working draft as of this writing,3 was prepared by
Library of Congress end users and search system
developers. It was then edited and enhanced by
W3C XML Query and XSL (XML Stylesheet) Full-
Text Task Force members. The functionalities in the
Use Cases are those required by end users of LIS and
other full-text database search systems at LC and
elsewhere, and they will solve the search problems
described in the following section. These search
problems are typical of full-text database search
systems.

356 case

THE BENEFITS OF THE XQUERY AND XQ/XPFT
STANDARDS

In this section, we use LIS as an example to illustrate
the benefits of the XQ/XPFT standards. Currently,
like many systems, LIS is forced to choose between
relational database query and full-text database
search functionalities. LIS needs to port its data from
arelational database to a database that supports full-
text searching and thus loses the relational-database
querying capabilities. XQ/XPFT-compliant search
engines can offer full-text search functionalities and
the relational database querying functionalities of
XQuery in one package and in one system. In
addition, these search engines should allow end
users to combine and nest relational database
queries with full-text searches, and vice versa.

The XQ/XPFT standards facilitate search engines
that offer the following functions in a single system:
exploiting the order and hierarchy of XML docu-
ments, ad hoc searching of any element and
attribute, exact and scored searching, and provision
of ordered and unordered distance operators. They
also enable searching within a single instance of
element, offer a full array of full-text search
functionalities and of relational database queries on
character strings, numbers, dates, and nodes, and
allow the user to control the display of search
results. These contributions and their application to
LIS are described in the following subsections.

Exploiting the order and hierarchy of XML
documents

The XQ/XPFT standards enable search engines to
offer the user many advanced search options.
Because XML documents are ordered and hierar-
chical, intra-document searches may be performed to
locate documents that arerelated to each other in time
and subject matter. For example, in the LIS system
enhanced by these standards, a user can search for a
document by a given author, which preceded or
followed a given event, such as a speech by a member
of Congress that preceded the introduction of a bill.
Similarly, the user may search for the remarks of a
given member or members of Congress that are
tagged as related to (i.e., in response to) the remarks
of another member of Congress in a particular debate.
Inter-document and intra-document order, essential
for fulfilling these requirements, are currently ignored
by most full-text database search engines except
where data is ordered by date.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Performing ad hoc searching of any element and
attribute

Currently, in order to make a particular item of
document-related information available to be
searched, the related fields must be identified as
searchable, field numbers and names must be
assigned, and search programs and indexes must be
modified. An example of such information would be
“related bill information” (i.e., which bills are
identical or similar to other bills) and the party
designations of members of Congress. This is due to
the format, used by most existing full-text database
search engines, of predesignated fields. “Shoe-horn-
ing” XML elements and attributes into the predes-
ignated field format does not provide unfettered
access to the entire contents of a full-text database.
Modifying predesignated fields is an unwelcome but
common task, such as when a Congressional staffer
calls with a complicated but urgent search request
which necessitates searching on bill-related infor-
mation elements that are not commonly searched,
are not optimized for searching, or are not available
through the graphical user interface.

With XQ/XPFT, these laborious field modifications
will not be necessary (unless search optimization is
desired). Search engines conforming to XQ/XPFT

will be able to search and return the content of any
element and the value of any attribute in any data or
document (or document fragments) in the search

system, treating XML tags as such and not as fields.

Performing exact and scored searching

Today, relational database systems support exact
queries only on character strings, dates, numbers,
and nodes. Scoring is supported only for full-text
word and phrase searches. However, end users
searching full text may want the exact phrase they
search for (allowing for word variants and other full-
text substitutions, such as for case and diacritics),
and end users querying numbers may want to
query, for example, for dollar amounts of roughly
$10 million with results in ranked order, which
requires scoring. XQ/XPFT-compliant search en-
gines will enable both exact and scored searching on
full text, eventually on all data types.

Providing ordered and unordered distance
operators

Many search engines offer the option of advanced
searching, but few people use these advanced search

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Table 1 Disadvantages of operators on advanced
search pages

or Useful only when searching for one of a group
of synonyms; otherwise, finding either of two
words anywhere in a document delivers too
little precision to be useful.

and Seldom useful; finding two words anywhere
in a document still delivers too little precision
to be useful.

not Sometimes fails to return wanted results when
the second operand is a subset of the first
operand.

phrase Often too precise and likely to miss wanted

results.

pages because they offer only marginal and un-
predictable operators. On many full-text database
search systems, the advanced search pages offer the
operators shown in Table 1.

The “or” operator is seldom successful as a full-text
database default operator. The “and” operator may
be useful in open Web searching or enterprise
searching where the content is varied and non-
repetitious, but in full-text database searching there
is almost always a need to reduce the number of
search results returned. As “and” is often the default
operator for basic searching, it often adds nothing
when offered from the advanced search pages. The
“phrase” operator assumes more precision than
usually exists in language. Allowing the user to
specify an appropriate number of intervening words
leads to more useful results; this is accomplished by
the use of distance operators. If the distance
operator is ordered, the words must appear in the
document in the order that they appear in the search
statement; if the distance operator is unordered, the
words may appear in any order.

For example, a user may search for information on
elementary education in the LIS database. The
ordered distance search

(elementary) ordered distance of 10 words (educa-
tion)

returns among other results elementary and
secondary education, a very common phrase in the
bills in LIS, and one that would be missed by the
phrase search

CASE

357

elementary education.
This search is also better than the search

elementary and education,

which returns results such as: denial of the most
elementary forms of personal freedom and human
dignity ... the need for continuing education, which
is unrelated to elementary education.

Few end users realize that the “not” operator
sometimes fails to return wanted results. For
example, in most full-text search engines, the query

mexico not “new mexico”

discards an entire document about Mexico if it
mentions at any point that New Mexico was named
after Mexico. Search engines that implement XQ/
XPFT support a “mild not” operator, which is
written as not in. The “mild not” operator does not
discard a document result that contains both the first
and second operands (Mexico and New Mexico in
our example). For example,

estate tax not in real estate tax

does not discard a document that contains “real
estate tax” if it also contains “estate tax” not
preceded by the word “real.” Currently, pains are
taken to rewrite LIS searches to remove “not”
operators because “mild not” operators are not yet
available. Search engines supporting XQ/XPFT use
ordered and unordered distance operators and the
mild not operators as defaults and offer them on
advanced search pages.

Searching within a single instance of an element
A document, such as a bill in LIS, may have
hundreds of instances of a field (currently) or
element. For example, the bill status and subject
fields of a document may be instantiated multiple
times, as many documents have multiple authors
and multiple subjects. Current full-text search
engines search all instances of a field, which may
lead to unwanted results. An unordered proximity
search for the subject term Housing for the Disabled,
will return the two subject terms Housing and
Disabled when they follow each other among the
assigned subject terms. Because a bill could easily
be about housing and the disabled and not be about
housing for the disabled, the bill returned would be
an unwanted result. XQ/XPFT-compliant search

358 case

engines allow the search to be limited to a single
instance of an element, thus avoiding this problem,
known as “subject term bleed.”

LIS end users also want to find bills with a specified
legislative status step realized on a specified date.
For example, they may want to find only bills with
the status “passed by the Senate” on a given date.
Currently end users can find bills passed by the
Senate where the text of that legislative status step is
close to the date specified, but LIS cannot ensure
that the date does not apply to a preceding or
subsequent legislative status step. Searching within
a single instance of an element, which is easily done
in relational database querying but impossible in
most existing full-text database search systems,
makes these searches return fewer unwanted
results.

Offering a full array of full-text search
functionalities

To deliver quality search results from a single-line
search box, search engines or search engine plug-ins
or add-ons need to perform real semantic searching.
They need to know the difference, for example,
between Congressional bills, bills that are paid, and
ducks’ bills. They need to consider those supposedly
insignificant words, which many search engines
label “stop words” and drop from the search, words
such as du and in in the phrase Hotel du France in
Cannes, France, to determine meaning. The punc-
tuation, such as the comma in this phrase, is also
routinely dropped from searches. They need to
linguistically analyze text and consistently return
appropriate results. There may be some cross-
pollination for full-text database search systems
from the work being done on ontologies and Web
services for the Semantic Web. Until semantic
searching becomes available, full-text database
search engines must return some control over
searching to end users, and search interfaces for
databases will often require more than a single-line
search box.

XQ/XPFT search engines can be the vehicle for this
restoration of user control, providing users with
serious full-text search functionality. This function-
ality includes prefix, infix, and suffix wildcards,
ordered and unordered distance operators, thesau-
rus integration, starts-with functionality, a safe
“not” operator as described previously, and end
user control over diacritics, case, and stop words.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Offering a full array of relational database
queries on character strings, numbers, dates,
and nodes

Like relational database systems, XQ/XPFT-compli-
ant search engines need to enable searches on
character strings, dates, numbers, and nodes. For
example, LIS end users need to find and repurpose
the dollar amounts in appropriation conference
reports. LIS end users often need to search on ranges
of contiguous bill numbers. The current full-text
database search systems often require end users to
enter numbers in a range one by one, not allowing a
simple search such as “hr1-10” on the first 10 bills
of a Congress from the House of Representatives.
Most relational database querying functionalities are
nonexistent or dramatically less robust in existing
full-text search systems.

Offering end-user control of search results
displays

Although not the first to do so, XQ/XPFT-compliant
search engines can return any element, attribute,
document, or document fragment in almost any
combination and order, not only the data elements
searched. End users usually only need a small part
of what appears in standard displays of search
results. The unwanted parts are distracting and
often user-unfriendly. Giving end users control over
the number of results returned or the sort is not
sufficient; end users should be allowed to specify
exactly which elements and attributes and which
documents and document fragments are displayed
and how they are displayed. Some end users repeat
the same search regularly; some end users present
the results to others. These end users and others
would invest the time to customize the display of
their results. XQ/XPFT-compliant search engines
can allow the user to do so.

Although the XQuery and XQ/XPFT standards do
not address highlighting, end users need intelligent
highlighting on words, numbers, and any data
within a result that meets the search criteria.
Highlighting becomes intelligent when it highlights
numbers and other data types as well as words and
character strings, when it highlights words only in
the designated relationships to other words in the
search (such as, in a phrase only if the words appear
within that phrase), when it does not highlight (or
highlights in a different way) words that are
operands of a “not” or “mild not” operator, and

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

when it allows an end user to turn highlighting off
and, if desired, highlight additional or different
words.

CONCLUSION

The XQ/XPFT standards will not solve all of the
problems of full-text database searching. Some
capabilities that full-text database searching cur-
rently lacks are not affected by the XQ/XPFT
standards and are not related to XML. These include
returning fewer search results, returning no results
when appropriate, computing result relevance, and
employing a standard end user syntax.

If widely implemented, the XQ/XPFT standards will
enable full-text database end users to profit from
searches by using the tagging, hierarchy, and order
of XML data and documents, from having access to
functionalities previously only available in rela-
tional databases, from having full-text functional-
ities not offered by current enterprise search
systems, and from standardization. These benefits
will significantly improve searching for both ad-
vanced users and basic users (the latter through
graphical user interfaces).

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology in the United States,
other countries, or both.

CITED REFERENCES
1. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Simeon, XQuery 1.0: An XML Query
Language, World Wide Web Consortium (November
2005), http://www.w3.org/TR/xquery.

2. S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre,
D. McBeath, M. Rys, and J. Shanmugasundaram, XQuery
1.0 and XPath 2.0 Full-Text, World Wide Web Consor-
tium (November 2005), http://www.w3.org/TR/
xquery-full-text/.

3. S. Amer-Yahia and P. Case, XQuery 1.0 and XPath 2.0
Full-Text Use Cases, World Wide Web Consortium
(November 2005), http://www.w3.org/TR/
xmlquery-full-text-use-cases/.

4. S. Amer-Yahia, P. Brown, E. Curtmola, and M. Fernan-
dez, GalaTex: An XML Full Text Search Engine, AT&T
Labs Research, http://www.galaxquery.com/galatex/.

S. Reports: Online Activities and Pursuits, Pew Internet &
American Life Project (2005), http://www.pewinternet.
org/PPF/r/146/report_display.asp.

6. LexisNexis, Reed Elsevier Inc., http://www.lexisnexis.
com/.

7. Dialog, The Thomson Corporation, http://www.dialog.
com/.

CASE

359

360

8. FirstGov.gov, The U.S. Government’s Official Web Portal,
United States General Services Administration, http://
firstgov.gov/.

9. W. Andrews and R. E. Knox, Magic Quadrant for
Information Access Technology, Gartner, Inc. (October
2005).

10. THOMAS, The Library of Congress, http://thomas.loc.
gov.

Accepted for publication December 13, 2005.
Published online April 27, 2006.

Pat Case

Congressional Research Service, Library of Congress, 101
Independence Avenue, SE, LM-223, Washington, DC 20540
(pcase@crs.loc.gov). Ms. Case holds a B.A. degree in
philosophy and a Master’s degree in library science. She has
worked in academic, public, and special libraries. She
currently works as a search-system and interface designer for
the Legislative Information System (LIS), a closed system
available only to members of Congress and their staffs. She is
a member of the W3C XML Query Working Group and the
Full-Text Task Force. M

CASE

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

