
Enhancing XML search with
XQuery 1.0 and XPath 2.0
Full-Text

&

P. Case

Powerful queries of character strings, numbers, dates, and nodes are familiar to users

of relational database systems. Full-text database search systems feature queries that

(1) use logical, proximity, and starts-with operators, (2) offer user control of case and

diacritics, stemming, and wildcards, and (3) support thesauruses, taxonomies, and

ontologies. Two emerging standards, XQuery 1.0 and XQ/XPFT (XQuery 1.0 and XPath

2.0 Full-Text), combine the search capabilities of the aforementioned systems and

promise to change the face of full-text searching. This paper explores the expected

benefits of these standards in searching relational data and full-text documents in XML

from an end user point of view and describes how these benefits would apply to a

search system used at the Library of Congress. These standards have the potential to

solve many real-life full-text search system problems and to restore the end-user

control necessary to enable and facilitate complex searching.

INTRODUCTION

XML promises many things to many people. Some

expect XML to create state-of-the-art tools for

document composition. Others expect it to enable

the production of multiple displays from a single

source document. Still others expect it to facilitate

the interchange of data and documents through Web

services. For full-text searching, the promise lies in

search systems that are more powerful and com-

posable (i.e., have components that can be selected

and assembled in various combinations). Two

forthcoming standards from the World Wide Web

Consortium (W3C**), XQuery
1

and XQuery and

XPath Full-Text
2

(XQ/XPFT), may represent the first

steps in merging and improving search technologies

for relational databases and full-text documents.

Once relational data and full-text documents are

both stored in XML, end users can profit from being

able to search them together with a single search

engine, exploiting the power of both relational

database querying and full-text searching.

Currently, more and more full-text search function-

ality is being exercised by the use of scoring and

categorization algorithms. Scoring algorithms pro-

duce scores for search results that predict the

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 CASE 353

relevance of those results to the full-text search

conditions. Categorization algorithms cluster search

results into categories and display them by category

on the search results page. These and similar

algorithms provide some convenience, but also

diminish user control over the process of obtaining

and displaying search results. In contrast, the intent

of this paper is to urge researchers and vendors to

think about the needs of end users, especially expert

users, and to consider researching and implement-

ing XQ/XPFT, thereby restoring the degree of end

user control that is necessary for complex searching.

XQ/XPFT offers full-text search functionalities

which are becoming less common in full-text search

systems today, such as logical, proximity, and

starts-with operators; user control of case and

diacritics; stemming and wildcards; and support for

thesauruses, taxonomies, and ontologies. The depth

and breadth of the available functionalities are

easily discovered by browsing the XQuery and

XPath Full-Text Use Cases.
3

These functionalities

have been implemented in the GalaTex XML Full-

Text search engine prototype,
4

a conformant im-

plementation of XQ/XPFT.

In January 2005, the Pew Internet and American Life

Project released a report on online activites which

was subtitled: Internet Searchers are confident,

satisfied, and trusting, but they are also unaware

and naive.
5

It noted that only 7 percent use more

than three search engines on a regular basis and that

those users are less satisfied with open Web

searching. For end users of full-text database search

systems, the number may be higher. Though 7

percent is a small percentage of users, these users

are doing a different kind of search and have higher

expectations. They often must find not just some

results, but all the appropriate results. Their work

may be critical, for example, Congressional staff

giving their member of Congress all the bills on

cloning introduced in the latest session. It is critical

that these advanced users find the results they need.

This paper explores the expected benefits of using

XQuery and XQ/XPFT to search relational data and

full-text documents from an end user’s point of

view. These benefits may be advantageous to all end

users of full-text search systems, but the emphasis

here is on one type of full-text search system,

namely, full-text database search systems. Full-text

databases are defined as databases primarily con-

taining full-text documents that often contain data

as well, in forms including names, titles, dates, and

numbers. This data may be treated as document

metadata or as related data. The documents and

data are homogenous in format and content and are

currently stored and searched by proprietary soft-

ware. The majority of the vendors of full-text search-

engine software have not participated in standard-

ization efforts, such as the efforts involving SQL

(Structured Query Language) by relational database

vendors. Examples of full-text database search

system implementations include the databases of

LexisNexis
6

(containing legal, tax, and regulatory

information), Dialog
7

(providing information ser-

vices in such fields as business, science, engineer-

ing, finance, and law), and FirstGov
8

(the official

United States gateway to all government informa-

tion, including full-text databases available to the

public). Full-text database search differs from

enterprise search and other types of full-text

searching.

This paper focuses narrowly on the expected

benefits of the XQ/XPFT standards to full-text

database searching and on the real-life full-text

search system problems they have the potential to

solve. It illustrates the utility of these standards by

specific examples from a full-text database search

system used at the Library of Congress. The views

expressed in this paper are those of the author and

do not necessarily represent those of the Library of

Congress.

DISTINCTIONS BETWEEN RELATIONAL DATA AND
FULL-TEXT DOCUMENT SEARCHING

Queries in relational databases run against struc-

tured data, such as character strings, dates, num-

bers, and nodes. For example, a character string

query on man may find the character string

semantics; a date range search on the range August

22, 1951 through October 28, 2005 may find data

containing the initial date, ending date, and the

dates in between; a node search may be run to

determine whether a node of that name exists.

Relational database systems have capabilities for

finding and transforming character strings, dates,

numbers, and nodes; these capabilities would be

useful but are not currently available in full-text

database search systems. The dominant markets for

relational database querying are automated business

transactions and content management. These mar-

kets have encouraged standardization and precision

CASE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006354

in search functionality, but have resulted in a

decrease in the focus on full-text search in relational

databases.

Full-text searches are performed on text that has

been tokenized, that is, broken into a sequence of

words, units of punctuation, and spaces. Searches in

full-text find words and phrases instead of character

strings. A full-text search for the word man returns

the word man and possibly some synonyms, but it

will not return the word semantics. The tokenized

text-search capabilities of full-text search engines

would be useful in relational database querying, but

are not currently available in most relational data-

bases. Full-text searching comes in many varieties,

including open Web searching, Web site searching,

enterprise searching (of varied network and intranet

resources), federated searching (i.e., searching by

transforming a query and broadcasting it to a group

of disparate databases with the appropriate syntax),

full-text database searching, and intra-document

searching. They are similar in some ways and very

different in others.

The dominant market for full-text search systems

has become enterprise search, that is, searching the

networks and intranets within a business or other

organization for information such as phone direc-

tory entries, e-mails, shared documents, guidelines,

databases, and other corporate resources. The focus

of enterprise search is on searching heterogeneous

documents in different formats (i.e., HTML, WPD,

DOC, PDF) with heterogeneous content.

Full-text search engine vendors have tended to

ignore standardization of the fundamental compo-

nents of full-text searching. This has resulted in an

amorphous state of the art, which is compounded by

the tendency to include innovations in full-text

search such as categorization, result clustering, and

visualization in the enterprise search product

category. For example, Gartner, Inc.’s enterprise

search product category was renamed information

access technology in 2005
9

in order to include the

aforementioned innovations. While these innovative

components are important, they cannot replace the

functionalities addressed here, and building them

into search engines (rather than making them

available as plug-ins or add-ons) has led to a chaotic

product category. This paper addresses only the

fundamental components of full-text search systems

and so continues to use the term enterprise search.

The distinction between relational databases and

full-text search systems makes sense when looking

at the dominant markets. The concentration of full-

text search products on enterprise search is also

understandable. The distinction, however, has had

negative consequences for full-text database search

systems. Full-text databases are often more homo-

genous in format and content than enterprise search

systems. A simple word search in an enterprise

search system may be more successful than a search

in a full-text database search system. In a full-text

& The use of XML is blurring the
distinction between structured
data and unstructured docu-
ments, making the disjunction
between relational databases
and full-text databases less and
less defensible &

database search system, an end user is more likely

to get lost in too many results and to have difficulty

distinguishing among them. Historically, only li-

brarians and a few academics used multiple full-text

databases. It is to be hoped that the growing number

of end users conducting full-text database searches

by means of Web interfaces, whether without charge

or for a fee, will lead to the creation of products that

better support full-text database searching and these

new users, both novice and expert.

The use of XML is blurring the distinction between

structured data and unstructured documents. Pre-

viously unstructured documents, when they are

converted to XML, gain at least minimal structure

through the addition of semantically meaningful

XML information such as title, author, and text tags.

As this trend continues, it will become harder to tell

data from documents, and the disjunction between

relational databases and full-text databases will

become less and less defensible.

The W3C standards for XQuery and XQ/XPFT also

contribute to this trend. XQ/XPFT uses the XQuery

data model (or infoset), extending it to retain word,

sentence, and paragraph position numbers. The

XQuery and XQ/XPFT standards are fully compos-

able. XQuery relational data queries may be

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 CASE 355

combined with and nested within XQ/XPFT

searches and vice versa.

AN EXAMPLE OF A FULL-TEXT DATABASE

SEARCH SYSTEM

The Library of Congress stores a wealth of relational

data and full-text documents. Currently, in order to

search data and documents together, the data must

be moved from relational databases into full-text

databases, where it is combined with full-text docu-

ments and then searched by a proprietary full-text

search system. In this process, all of the functionality

and standardization of relational databases is lost.

The example of full-text database search provided

here was developed at the Library of Congress. Our

team designs the search system architecture and

interface for the Legislative Information System

(LIS), a closed system available only to members of

Congress and their staffs. LIS provides access to U.S.

legislative information that is accurate, timely, and

complete. It serves as a portal to House of

Representatives, Senate, and Congressional support

agency resources. It provides search interfaces for

bills, committee reports, and the Congressional

Record. LIS is not unique. It is typical of full-text

database search systems at the Library of Congress

and elsewhere. It is used here as a prototype for a

search system that contains homogenous data and

documents. The THOMAS system,
10

providing

legislative information on the Internet, is the public

version of LIS. Its search interface is different from

the LIS interface, with fewer expert user options.

The transition to XML represents an opportunity to

improve searching in LIS. Adding elements and

attributes to structure full text is of course a boon,

but the XQuery and XQ/XPFT standards will do

much more for LIS. The first draft of the standards,

XQuery and XPath Full-Text Use Cases, a W3C

working draft as of this writing,
3

was prepared by

Library of Congress end users and search system

developers. It was then edited and enhanced by

W3C XML Query and XSL (XML Stylesheet) Full-

Text Task Force members. The functionalities in the

Use Cases are those required by end users of LIS and

other full-text database search systems at LC and

elsewhere, and they will solve the search problems

described in the following section. These search

problems are typical of full-text database search

systems.

THE BENEFITS OF THE XQUERY AND XQ/XPFT

STANDARDS

In this section, we use LIS as an example to illustrate

the benefits of the XQ/XPFT standards. Currently,

like many systems, LIS is forced to choose between

relational database query and full-text database

search functionalities. LIS needs to port its data from

a relational database to a database that supports full-

text searching and thus loses the relational-database

querying capabilities. XQ/XPFT-compliant search

engines can offer full-text search functionalities and

the relational database querying functionalities of

XQuery in one package and in one system. In

addition, these search engines should allow end

users to combine and nest relational database

queries with full-text searches, and vice versa.

The XQ/XPFT standards facilitate search engines

that offer the following functions in a single system:

exploiting the order and hierarchy of XML docu-

ments, ad hoc searching of any element and

attribute, exact and scored searching, and provision

of ordered and unordered distance operators. They

also enable searching within a single instance of

element, offer a full array of full-text search

functionalities and of relational database queries on

character strings, numbers, dates, and nodes, and

allow the user to control the display of search

results. These contributions and their application to

LIS are described in the following subsections.

Exploiting the order and hierarchy of XML

documents

The XQ/XPFT standards enable search engines to

offer the user many advanced search options.

Because XML documents are ordered and hierar-

chical, intra-document searches may be performed to

locate documents that are related to each other in time

and subject matter. For example, in the LIS system

enhanced by these standards, a user can search for a

document by a given author, which preceded or

followed a given event, such as a speech by a member

of Congress that preceded the introduction of a bill.

Similarly, the user may search for the remarks of a

given member or members of Congress that are

tagged as related to (i.e., in response to) the remarks

of another member of Congress in a particular debate.

Inter-document and intra-document order, essential

for fulfilling these requirements, are currently ignored

by most full-text database search engines except

where data is ordered by date.

CASE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006356

Performing ad hoc searching of any element and

attribute

Currently, in order to make a particular item of

document-related information available to be

searched, the related fields must be identified as

searchable, field numbers and names must be

assigned, and search programs and indexes must be

modified. An example of such information would be

‘‘related bill information’’ (i.e., which bills are

identical or similar to other bills) and the party

designations of members of Congress. This is due to

the format, used by most existing full-text database

search engines, of predesignated fields. ‘‘Shoe-horn-

ing’’ XML elements and attributes into the predes-

ignated field format does not provide unfettered

access to the entire contents of a full-text database.

Modifying predesignated fields is an unwelcome but

common task, such as when a Congressional staffer

calls with a complicated but urgent search request

which necessitates searching on bill-related infor-

mation elements that are not commonly searched,

are not optimized for searching, or are not available

through the graphical user interface.

With XQ/XPFT, these laborious field modifications

will not be necessary (unless search optimization is

desired). Search engines conforming to XQ/XPFT

will be able to search and return the content of any

element and the value of any attribute in any data or

document (or document fragments) in the search

system, treating XML tags as such and not as fields.

Performing exact and scored searching

Today, relational database systems support exact

queries only on character strings, dates, numbers,

and nodes. Scoring is supported only for full-text

word and phrase searches. However, end users

searching full text may want the exact phrase they

search for (allowing for word variants and other full-

text substitutions, such as for case and diacritics),

and end users querying numbers may want to

query, for example, for dollar amounts of roughly

$10 million with results in ranked order, which

requires scoring. XQ/XPFT-compliant search en-

gines will enable both exact and scored searching on

full text, eventually on all data types.

Providing ordered and unordered distance

operators

Many search engines offer the option of advanced

searching, but few people use these advanced search

pages because they offer only marginal and un-

predictable operators. On many full-text database

search systems, the advanced search pages offer the

operators shown in Table 1.

The ‘‘or’’ operator is seldom successful as a full-text

database default operator. The ‘‘and’’ operator may

be useful in open Web searching or enterprise

searching where the content is varied and non-

repetitious, but in full-text database searching there

is almost always a need to reduce the number of

search results returned. As ‘‘and’’ is often the default

operator for basic searching, it often adds nothing

when offered from the advanced search pages. The

‘‘phrase’’ operator assumes more precision than

usually exists in language. Allowing the user to

specify an appropriate number of intervening words

leads to more useful results; this is accomplished by

the use of distance operators. If the distance

operator is ordered, the words must appear in the

document in the order that they appear in the search

statement; if the distance operator is unordered, the

words may appear in any order.

For example, a user may search for information on

elementary education in the LIS database. The

ordered distance search

(elementary) ordered distance of 10 words (educa-

tion)

returns among other results elementary and

secondary education, a very common phrase in the

bills in LIS, and one that would be missed by the

phrase search

Table 1 Disadvantages of operators on advanced

search pages

or Useful only when searching for one of a group
of synonyms; otherwise, finding either of two
words anywhere in a document delivers too
little precision to be useful.

and Seldom useful; finding two words anywhere
in a document still delivers too little precision
to be useful.

not Sometimes fails to return wanted results when
the second operand is a subset of the first
operand.

phrase Often too precise and likely to miss wanted
results.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 CASE 357

elementary education.

This search is also better than the search

elementary and education,

which returns results such as: denial of the most

elementary forms of personal freedom and human

dignity . . . the need for continuing education, which

is unrelated to elementary education.

Few end users realize that the ‘‘not’’ operator

sometimes fails to return wanted results. For

example, in most full-text search engines, the query

mexico not ‘‘new mexico’’

discards an entire document about Mexico if it

mentions at any point that New Mexico was named

after Mexico. Search engines that implement XQ/

XPFT support a ‘‘mild not’’ operator, which is

written as not in. The ‘‘mild not’’ operator does not

discard a document result that contains both the first

and second operands (Mexico and New Mexico in

our example). For example,

estate tax not in real estate tax

does not discard a document that contains ‘‘real

estate tax’’ if it also contains ‘‘estate tax’’ not

preceded by the word ‘‘real.’’ Currently, pains are

taken to rewrite LIS searches to remove ‘‘not’’

operators because ‘‘mild not’’ operators are not yet

available. Search engines supporting XQ/XPFT use

ordered and unordered distance operators and the

mild not operators as defaults and offer them on

advanced search pages.

Searching within a single instance of an element
A document, such as a bill in LIS, may have

hundreds of instances of a field (currently) or

element. For example, the bill status and subject

fields of a document may be instantiated multiple

times, as many documents have multiple authors

and multiple subjects. Current full-text search

engines search all instances of a field, which may

lead to unwanted results. An unordered proximity

search for the subject term Housing for the Disabled,

will return the two subject terms Housing and

Disabled when they follow each other among the

assigned subject terms. Because a bill could easily

be about housing and the disabled and not be about

housing for the disabled, the bill returned would be

an unwanted result. XQ/XPFT-compliant search

engines allow the search to be limited to a single

instance of an element, thus avoiding this problem,

known as ‘‘subject term bleed.’’

LIS end users also want to find bills with a specified

legislative status step realized on a specified date.

For example, they may want to find only bills with

the status ‘‘passed by the Senate’’ on a given date.

Currently end users can find bills passed by the

Senate where the text of that legislative status step is

close to the date specified, but LIS cannot ensure

that the date does not apply to a preceding or

subsequent legislative status step. Searching within

a single instance of an element, which is easily done

in relational database querying but impossible in

most existing full-text database search systems,

makes these searches return fewer unwanted

results.

Offering a full array of full-text search

functionalities

To deliver quality search results from a single-line

search box, search engines or search engine plug-ins

or add-ons need to perform real semantic searching.

They need to know the difference, for example,

between Congressional bills, bills that are paid, and

ducks’ bills. They need to consider those supposedly

insignificant words, which many search engines

label ‘‘stop words’’ and drop from the search, words

such as du and in in the phrase Hotel du France in

Cannes, France, to determine meaning. The punc-

tuation, such as the comma in this phrase, is also

routinely dropped from searches. They need to

linguistically analyze text and consistently return

appropriate results. There may be some cross-

pollination for full-text database search systems

from the work being done on ontologies and Web

services for the Semantic Web. Until semantic

searching becomes available, full-text database

search engines must return some control over

searching to end users, and search interfaces for

databases will often require more than a single-line

search box.

XQ/XPFT search engines can be the vehicle for this

restoration of user control, providing users with

serious full-text search functionality. This function-

ality includes prefix, infix, and suffix wildcards,

ordered and unordered distance operators, thesau-

rus integration, starts-with functionality, a safe

‘‘not’’ operator as described previously, and end

user control over diacritics, case, and stop words.

CASE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006358

Offering a full array of relational database

queries on character strings, numbers, dates,

and nodes

Like relational database systems, XQ/XPFT-compli-

ant search engines need to enable searches on

character strings, dates, numbers, and nodes. For

example, LIS end users need to find and repurpose

the dollar amounts in appropriation conference

reports. LIS end users often need to search on ranges

of contiguous bill numbers. The current full-text

database search systems often require end users to

enter numbers in a range one by one, not allowing a

simple search such as ‘‘hr1–10’’ on the first 10 bills

of a Congress from the House of Representatives.

Most relational database querying functionalities are

nonexistent or dramatically less robust in existing

full-text search systems.

Offering end-user control of search results

displays

Although not the first to do so, XQ/XPFT-compliant

search engines can return any element, attribute,

document, or document fragment in almost any

combination and order, not only the data elements

searched. End users usually only need a small part

of what appears in standard displays of search

results. The unwanted parts are distracting and

often user-unfriendly. Giving end users control over

the number of results returned or the sort is not

sufficient; end users should be allowed to specify

exactly which elements and attributes and which

documents and document fragments are displayed

and how they are displayed. Some end users repeat

the same search regularly; some end users present

the results to others. These end users and others

would invest the time to customize the display of

their results. XQ/XPFT-compliant search engines

can allow the user to do so.

Although the XQuery and XQ/XPFT standards do

not address highlighting, end users need intelligent

highlighting on words, numbers, and any data

within a result that meets the search criteria.

Highlighting becomes intelligent when it highlights

numbers and other data types as well as words and

character strings, when it highlights words only in

the designated relationships to other words in the

search (such as, in a phrase only if the words appear

within that phrase), when it does not highlight (or

highlights in a different way) words that are

operands of a ‘‘not’’ or ‘‘mild not’’ operator, and

when it allows an end user to turn highlighting off

and, if desired, highlight additional or different

words.

CONCLUSION

The XQ/XPFT standards will not solve all of the

problems of full-text database searching. Some

capabilities that full-text database searching cur-

rently lacks are not affected by the XQ/XPFT

standards and are not related to XML. These include

returning fewer search results, returning no results

when appropriate, computing result relevance, and

employing a standard end user syntax.

If widely implemented, the XQ/XPFT standards will

enable full-text database end users to profit from

searches by using the tagging, hierarchy, and order

of XML data and documents, from having access to

functionalities previously only available in rela-

tional databases, from having full-text functional-

ities not offered by current enterprise search

systems, and from standardization. These benefits

will significantly improve searching for both ad-

vanced users and basic users (the latter through

graphical user interfaces).

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology in the United States,
other countries, or both.

CITED REFERENCES
1. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,

J. Robie, and J. Simeon, XQuery 1.0: An XML Query
Language, World Wide Web Consortium (November
2005), http://www.w3.org/TR/xquery.

2. S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre,
D. McBeath, M. Rys, and J. Shanmugasundaram, XQuery
1.0 and XPath 2.0 Full-Text, World Wide Web Consor-
tium (November 2005), http://www.w3.org/TR/
xquery-full-text/.

3. S. Amer-Yahia and P. Case, XQuery 1.0 and XPath 2.0
Full-Text Use Cases, World Wide Web Consortium
(November 2005), http://www.w3.org/TR/
xmlquery-full-text-use-cases/.

4. S. Amer-Yahia, P. Brown, E. Curtmola, and M. Fernán-
dez, GalaTex: An XML Full Text Search Engine, AT&T
Labs Research, http://www.galaxquery.com/galatex/.

5. Reports: Online Activities and Pursuits, Pew Internet &
American Life Project (2005), http://www.pewinternet.
org/PPF/r/146/report_display.asp.

6. LexisNexis, Reed Elsevier Inc., http://www.lexisnexis.
com/.

7. Dialog, The Thomson Corporation, http://www.dialog.
com/.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 CASE 359

8. FirstGov.gov, The U.S. Government’s Official Web Portal,
United States General Services Administration, http://
firstgov.gov/.

9. W. Andrews and R. E. Knox, Magic Quadrant for
Information Access Technology, Gartner, Inc. (October
2005).

10. THOMAS, The Library of Congress, http://thomas.loc.
gov.

Accepted for publication December 13, 2005.

Pat Case
Congressional Research Service, Library of Congress, 101
Independence Avenue, SE, LM-223, Washington, DC 20540
(pcase@crs.loc.gov). Ms. Case holds a B.A. degree in
philosophy and a Master’s degree in library science. She has
worked in academic, public, and special libraries. She
currently works as a search-system and interface designer for
the Legislative Information System (LIS), a closed system
available only to members of Congress and their staffs. She is
a member of the W3C XML Query Working Group and the
Full-Text Task Force. &

CASE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006360

Published online April 27, 2006.

