Business processes for
Web Services: Principles
and applications

The Business Process Execution Language for Web Services (BPEL4WS or BPEL for
short) is an XML-based language for defining business processes that provides an
interoperable, portable language for both abstract and executable processes and that

R. Khalaf
A. Keller
F. Leymann

was designed from the beginning to operate in the heterogeneity and dynamism that
is commonplace in information technology today. BPEL builds on the layers of

flexibility provided by the Web Services stack, and especially by XML. In this paper, we
provide a brief introduction to BPEL with emphasis on architectural drivers and basic

concepts. Then we survey ongoing BPEL work in several application areas: adding
quality of service to BPEL, extending BPEL to activities involving humans, BPEL for grid
computing, and BPEL for autonomic computing.

INTRODUCTION

Workflow computing aims to automate business
processes by encoding them in a format that can be
processed in a workflow management system
(WFMS).I’2 A workflow consists of activities that
perform actions and a flow of control that governs
the ordering of these activities. Present day
WFMSes” usually run workflows that are defined in
proprietary formats and thus are difficult to share.

Service-oriented architecture (SOA) ,4 which has
recently emerged on the computing scene, is based
on the idea of providing application functions as
services offered on the Internet (or an intranet), in
an intrinsically distributed, heterogeneous, and very
dynamic environment, in which boundaries of both
systems and organizations are crossed. The most
common instantiation of SOA is based on the Web

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Services framework.” The Web Services framework
consists of a set of XML standards and specifications
for describing these services, for exchanging and
managing their endpoints, and for enforcing the
associated quality of service (QoS) requirements.
Service descriptions, around which a large part of
the framework revolves, are defined by using the
Web Services Description Language (WSDL). A
WSDL definition contains the description of the
service function and the mechanism for interacting
with that service. The definition consists of an
interface (portType), the binding of that interface to

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

KHALAF, KELLER, AND LEYMANN 425

Retailer

Purchase Agent

(customer) 7
7

- > —
/
’
/
| /
/
R ~ /
] /
/ //
/
/ P
iy ‘
¥

Warehouse

s
P
\\
\
\
\
\
\\ Shipping Company
AN
AN =
S)
XA | BN —

J P

Figure 1

A business process implemented as a composition of services

a particular protocol (binding), and a service
element that specifies an endpoint (port) for a
particular portType over a specific binding.

Once an organization’s core functions are modeled
as services, the challenge of application integration
becomes one of service composition. A composition
of services can be modeled as a workflow that
interacts with offered services. These workflows
may be owned by the vendor of services, by
consumers of services, or even by third-party
vendors specializing in process modeling. Figure 1
illustrates a business process implemented as a
composition of services. The dotted lines represent
message exchanges, whereas the directed graph at
the center of the figure represents the workflow of
the business process. In this example a purchasing
service offered by a retailer is implemented as a
business process that involves both in-house ser-
vices, such as checking out an item from the
company-owned warehouse, and vendor services,
such as bank and shipping services.

Several initial efforts for defining a composition
language for Web Services have evolved into the
Business Process Execution Language for Web
Services (BPEL4WS or BPEL for short).5 Much has
been written about BPEL, from the full specification

426 KHALAF, KELLER, AND LEYMANN

to details about its constructs, mathematical mod-
eling, and architectural concepts. In this paper, we
provide only a brief overview of the language in
order to acquaint the reader with it. Our focus is on
its architectural drivers and its usage that goes
beyond the traditional applications of workflow.

The area of workflow in general and BPEL in
particular is extremely active at this time. A Web
search in July 2005 produced links to 18 available
BPEL engines, ranging from open-source imple-
mentations to feature-rich fully supported products.
The volume of published material is such that
covering every aspect of BPEL would result in a
large collection of sources. In this paper, we focus
on topics closest to our own direct experience and
expertise, at the same time providing pointers to and
high-level descriptions of other work for the
interested reader.

The rest of the paper is organized as follows. In the
next section, “Business processes in BPEL,” we
present the motivation behind the creation of
BPEL, describe its main constructs, and introduce
not only the executable variant of the language, but
also the abstract variant, about which much less
has been published. In the section “Abstract
processes in BPEL,” usage patterns of abstract

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

processes are laid out, followed by examples of
applying abstract processes to the retail electronics
domain and to process compatibility and search. In
“Adding quality of service using WS-policy,” we
present the addition of QoS capabilities to a process
by using Web-Services policy attachments. In the
following two sections we discuss two application
domains for executable BPEL in which activities
interact with more than just Web services, namely,
workflows involving direct human interaction and
workflows involving grid computing. In “BPEL for
autonomic computing,” we present a case study
involving the use of BPEL in IBM products—in the
dynamic provisioning aspect of autonomic com-
puting. The “Conclusion” section contains our final
comments.

BUSINESS PROCESSES IN BPEL

BPEL was first released on July 2, 2002, as
BPEL4WS V1.0, jointly by BEA Systems, Inc., IBM
Corporation, and Microsoft Corporation. BPEL4WS
V1.0 merges the flat-graph process definition ap-
proach of IBM’s Web Services Flow Language
(WSFL) with the structural constructs approach of
Microsoft’s XLANG. In 2003, BPEL4AWS V1.1 was
released with a set of revisions and an expanded list
of authors; it is the version of the specification that
was submitted to the Organization for the Ad-
vancement of Structured Information Standards
(OASIS) standardization committee where commit-
tee members are working on producing the stan-
dardized version of the language, known as WS-
BPEL 2.0. In this section we discuss the architectural
drivers behind the BPEL language and the overall
structure of a BPEL process and its key capabilities.
Unless otherwise specified, our examples use
Version 1.1.

BPEL'’s architectural drivers

Two major concerns in standardizing a business
process language are: portability and interoperabil-
ity. Portability enables one to standardize certain
business processes for particular functions that can
be published and used in the same manner by
multiple organizations; it ensures that one can
define a business process once and run it on any
compliant system without rewriting. Some people
view BPEL as an export format, referring to it as “the
PDF of business processes.”

Interoperability, on the other hand, enables two
executable business processes, running on different

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

engines at possibly different organizations, to
interact with each other. This is ensured by BPEL’s
layering on top of the Web Services stack. A BPEL
process is itself made visible as one or more Web
Services (with WSDL portType entities) that it offers
to its partners. Its interactions with any other
components also occur as Web-Services invocations
based on the portType of that component. This
recursive composition, where a process is imple-
mented as one or more Web Services and in whose
implementation other Web Services are used,
enables a BPEL process to leverage the interoper-
ability provided by the lower levels of the Web
Services stack, such as WSDL, SOAP, and WS-
Addressing. Web Services interoperability and the
combined usage of these lower levels is the

raison d’etre of the Web Services Interoperability
Organization (WS-I).

Other characteristics (Reference 4, Chapter 6 and
Reference 6) built into the language that support the
service-oriented paradigm include the following:

e Flexible integration

e Support for simultaneous stateful conversations
with multiple partners

e Life-cycle management

e Recoverability

Flexible integration of BPEL processes is mainly
achieved by keeping bindings to physical-partner
endpoints and other such deployment-specific in-
formation out of the definition of the business
process. This allows the binding of a BPEL process
to partners to occur at design time, at deployment
time, or at runtime (through the assign activity or by
using underlying layers such as WS-Addressing).
Other binding schemes are left to the implementa-
tion of a BPEL system and are not restricted by the
speciﬁcation.6 Instead, interactions with Web Ser-
vices are based only on their interfaces (WSDL
portTypes) and thus the same activity in different
running instances of the same process can interact
with different endpoints over different transport
mechanisms.

Multiple instances of a particular BPEL process may
run simultaneously in the same engine, each
interacting with multiple parties. To support this
capability, the language provides a conversation
channel for each partner called a partnerLink.

KHALAF, KELLER, AND LEYMANN

427

BPEL processes have an implied life-cycle model:
instances are created and destroyed based on the
process model and not explicitly by an invoking
party. An instance identification mechanism called
correlation enables a BPEL engine to route a
message coming across a partnerlLink to the correct
instance of a process model.

Recoverability is vital, especially to long-running
processes. BPEL’s recoverability support consists of
advanced rollback capabilities for undoing com-
pleted actions and fault handling for correcting
failures.

By placing these characteristics at the core of its
design, BPEL fits powerfully with the SOA paradigm.
One can even think of BPEL’s approach to partner
interactions as a programming model for SOA
applications regardless of the language or mecha-
nisms used for service implementation.

Language concepts and structure

BPEL provides two main process usage patterns:
executable processes, whose business logic can be
run by a WFMS, and abstract processes that describe
behavior and may omit certain information of no
concern to the process recipient (e.g., sources of
data, values of variables used in conditional
expressions).

A BPEL process consists of a top-level process
element that can contain: variables, event handlers,
fault handlers, compensation handlers, partner
links, and a single (complex structured) activity.
Variables are typed containers that hold data. They
may be typed by using WSDL messages, XML

m BPEL is extensible in that it
allows domain-specific
extensions m

Schema types, or XML Schema elements. The
handlers provide advanced capabilities for event
handling and error recovery that we will discuss
briefly later. The partnerLinks define the connec-
tions of the process to the outside world: they are
named instances of typed connectors that define the
portType that the process offers to a partner or the
portType that it requires from that partner. In the
former case, the process offers certain functionality

428 KHALAF, KELLER, AND LEYMANN

to the partner that the partner can call as regular
Web Services operations (i.e., the process is a
service). In the latter case, the process invokes
functionality offered by a partner again as regular
Web Services operations (i.e., the process is a
client). A two-sided partnerLink therefore repre-
sents a channel over which a two-way, peer-to-peer
conversation occurs between the process and the
partner. The logic of the business process itself is
mainly contained inside the top-level activity. Here
is a skeleton of a BPEL process:

<process>
<variables>
<variable name="x"
messagelype="def:purchasedIltem”/>

</variables>
<partnerlLinks>
<partnerlLink name="inventoryService”
partnerLinkType="def:inventorySerPLT”
partnerRole="inventoryProvider”/>

</partnerlLinks>
<flow>

<invoke partnerLink="inventoryService”
portType="inventoryPT”
operation="removeltem”
inputVariable="x"
outputVariable=";itemRemovalStatus”/>
</flow>
</process>

BPEL activities can be either structured or simple.
The language also provides conditional (directed)
control links. If transitionCondition is true for a
link from activity A to activity B, then A must be
completed before B can be started. An activity that is
the target of multiple links has a joinCondition
(default is or) that determines when it can run,
based on the status of its incoming links. Control
constructs include sequential order using the
sequence activity, parallelism using the f1ow activ-
ity—which is the only activity in which links are
allowed, nondeterministic choice using the pick
activity, the familiar if-then-else using the switch
activity, a looping activity using while, and a scope
activity for scoping variables and handlers. Figure 2
shows an example of BPEL control constructs: a
while activity containing a f1ow activity. Inside the
flow activity are three activities, one of which is a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

sequence. The sequence has two activities, the
lower one also depending on the top-left activity
through a control link.

The simple activities have predefined functions:
invoking Web Services (invoke), receiving a reply to
Web Services invocations (receive and reply),
throwing faults (throw), ending a process
(terminate), waiting (wait), and so on. All activ-
ities involved in messaging must refer to the
relevant partnerlink, operation and portType. A
process with a receive and a reply activity
referring to the same operation exposes that
operation on its WSDL. The invoke activity, how-
ever, refers to the operation offered by the WSDL of
the partner. Finally, data can be manipulated using
the assign activity, which allows copying parts of
one variable into another, as well as copying
between endpoint references and copying of parts of
variables. Below is an example of some simple BPEL
activities.

<!--invoke a partner’s operation -->
<invoke partner="..." portType="..." operation="..."
inputVariable="..." [outputVariable="..."1/>

<!-- copying data between variables -->
<assign>
<copy>
<fromvariable="..."/><tovariable="..."/>
</copy> ...
</assign>

Data is handled in BPEL by using expression
languages. XPath 1.0 is the default and the only one
the specification addresses. BPEL supports its own
XPath functions for obtaining the value of a variable
or the status of a link.

The life cycle of a process starts with the creation of
an instance when the system receives a message that
can be consumed by a receive activity and whose
createlnstance attribute has the value yes. The
process starts by activating its top-level activity. The
process terminates when the top-level activity is
completed, when the process throws a fault for
which a handler is not found, or when a terminate
activity runs.

BPEL correlation is used to maintain conversations
with a particular instance. Correlation enables one
to refer to specific parts of different messages aliased
to named properties. The interaction activities of a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Flow
Sequence

S

While

Figure 2
Example of BPEL control constructs

process can set its correlation values when a
message is received or is about to be sent. A partner
sending a message to a running instance should use
values that match the values of the correlation sets
in the targeted instance. Although this is not the
most natural mechanism in middleware-managed
routing, it is the common case in business applica-
tions where messages are routed based on applica-
tion information (e.g., social security numbers,
confirmation numbers). BPEL does not preempt
middleware-managed routing because correlation is
optional. In the non-correlation case, a middleware-
created token would need to be included in the
headers of all messages exchanged with an instance;
nonetheless, using correlation enables cases to be
supported that would not be possible with middle-
ware-based routing (e.g., a process where a partner
needs to send a message to a running instance
before any exchange of messages has occurred).

Finally, BPEL provides advanced fault handling,
event handling (e.g., messages and alarms), and
compensation capabilities on activities grouped in a
scope construct. A fault handler attempts to remedy
work that failed while running. A compensation
handler enables work that was completed success-
fully to be undone in the case when a fault is thrown
elsewhere.

Consider a process that charges the customer and
simultaneously removes a purchased item from its
own inventory. If the payment is completed but the
inventory removal fails (item not available), the

KHALAF, KELLER, AND LEYMANN

429

compensation handler of the payment activity is
invoked, and it credits the customer’s account.

BPEL supports long-running transactions by using
compensation. Each invocation activity can be
defined as a pair consisting of the actual activity and
an associated compensation activity that can undo
the former’s work when necessary. If a fault occurs,
the compensation activities of already completed
work within the scope of a failing activity are used
to undo the work. Thus, a scope can be seen as a
long-running unit of work.

Short-running units of work can be supported by
using atomic scopes.1 Activities that are imple-
mented as transactional programs can again be
grouped into a scope that has ACID (atomicity,
consistency, isolation, and durability) semantics:
either all completed transactions within a scope are
committed, or all are rolled back. In Reference 7,
this concept is described as a BPEL extension.

ABSTRACT PROCESSES IN BPEL

A BPEL abstract process provides a description of a
related range of behaviors; one can think of it as
representing a set of executable processes. Abstract
processes have access to the same range of syntax
and semantics as executable BPEL processes.
Opaque tokens enable explicit hiding of information,
and in some cases, may themselves be omitted.

In BPEL4 V1.0, the only opacity allowed involves
variable references on activities that exchange
messages and opaque data assignments. In the next
version, there will be three types of opaque tokens:
activities, expressions, and attributes. It was soon
realized that the meaning of these opaque tokens
and the restrictions on them vary greatly based on
the use case one has in mind. The new approach in
BPEL V2.0 is about the base and profiles. A base
defines basic requirements of all abstract BPEL
processes. An abstract process profile defines the
allowed subset of the syntax of the base, a URL to
identify processes belonging to that profile, and the
allowable executable completions. The executable
completions consist of the set of executable pro-
cesses whose behavior the profile represents. Two
profiles are being defined: one for creating process
templates that can later be expanded for specific
scenarios, and the other for observable message
exchanges. The rest of this section focuses on the
newer, more flexible approach to abstract processes.

430 KHALAF, KELLER, AND LEYMANN

The base consists of the full syntax of executable
BPEL, but allows all expressions, activities, and
attributes to be opaque. If a syntactic token is
mandatory by the XML Schema, then its omission
means that it is opaque. The base also mandates that
every abstract process must be flagged as such, be
schema verifiable, and have at least one valid basic
executable completion. This is an executable BPEL
file created by replacing every opaque token in the
abstract process with a corresponding nonopaque
token (including those tokens made opaque through
the omission shortcut).

A profile addresses a particular usage area of BPEL
abstract processes. For example, a templating profile
could only allow replacing opaque tokens, whereas
a message-exchange behavior profile could allow
addition of new activities in arbitrary places as long
as they do not interact with the existing partners of
the abstract process.

Patterns for using abstract processes

People often relate abstract processes to other
processes that are either more general or more
detailed. In this section, we present several patterns8
that help clarify how abstract processes may be
used. These patterns will not be included in the
specification.

e Export pattern—In the export pattern, an abstract
process is created from one or more executable or
other abstract processes by abstracting (through
making opaque or simply deleting) parts that are
not relevant to the behavior one wishes to expose.
For example, one may use an abstract process to
represent common behavior in a set of executables
and drop any nonshared behavior. An executable
process of a more general business model may
need parts tagged as points of variability, and
those are made explicitly opaque. In another case,
one may teach a business partner the interactions
that the partner must follow, in which case the
interactions with all other partners are ignored.

e Import pattern—In the import pattern, an abstract
process is used to create either one or more
executables or one or more abstract processes that
are refinements of the original process. For
example, a user needs to create an implementation
of an abstract process provided as a behavioral
prescription for complying with a known, domain-
specific business function. The abstract process
may have been purchased from a consulting firm

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

as a model of an optimized approach to a problem.
The implementation can be created in a series of
iterative refinements to the abstract process.

e Protocol matching pattern I (mirror-image)—In
this case, one constructs the process of a particular
partner from a given abstract process that the
partner needs to interact with. Then, the import
pattern can be used to create an executable artifact
from that abstract.

e Protocol matching pattern II (search)—This pattern
uses one abstract process to search for another
process (in a repository of processes, for example)
that can perform the same steps as it can. It is
easiest to find an exact replica, but that is
extremely unlikely as the processes have probably
been created by different people.

e Protocol matching pattern Il (compatibility)—This
pattern checks whether several abstract processes
can work together.

Using abstract BPEL processes

Abstract BPEL processes seem to be more difficult to
understand than executable BPEL processes. This
section covers some research work and case studies
involving abstract BPEL processes in order to
provide a more concrete understanding of their use.

Abstract processes for compatibility and search
The usage patterns for the abstract processes above
relate processes to each other. Notions of equiv-
alence and simulation in process models and
software artifacts are not new: different ones’ have
been proposed over the years based on the class of
problems being addressed. For Web Services and
BPEL in particular, there is ongoing work in
checking properties between processes.

Using a Petri-net mapping of (relevant parts of)
BPEL processes, Martens proves such properties as
consistency between processes10 and uses one
process to search for required behavior in a
repository.11 In Reference 10, a syntactic approach
for consistency is discarded in preference to one that
is based on the behavior of the processes at hand.
The main concern here is externally visible behavior
from exchanged messages. After converting the
BPEL process to a Petri net, a communication graph
(c-graph) is created and then used in a consistency-
checking algorithm. Intuitively, two processes are
consistent for Martens if one can be replaced by the
other without requiring changes to the environment
in which they interact. Here, the executable process

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

must receive at least the messages that the abstract
process can receive, but may accept more because of
additional functionality not used by the environ-
ment. On the other hand, it cannot send out more
messages than the abstract process does because the
environment is unable to consume them. This work
focuses on a subset of BPEL and makes certain
assumptions about queuing of messages that are not
generally accepted in the industry. In Reference 12,
new notions of observable equivalence for work-
flows are presented (not focusing on BPEL) with and
without different classes of silent actions.

Abstract processes have been used to search for
desired functional behavior in a repository. Most
Web Services repositories provide WSDL-based, not
behavioral, search. Reference 13 presents a search-
by-example approach in which the searching party

m BPEL can be viewed as an
export format, and some refer
to it as “the PDF of business
processes” m

provides a query containing a service’s desired
behavior. Another approach better suited to
searching for concurrent, multipartner communica-
tion (Reference 14) publishes operating guidelines
for each partner of the process instead of a single
behavioral definition (abstract process) of the
process itself.

Although creating tools and algorithms for checking
relations between different BPEL process definitions
is a very active research area, the results do not

. . pe 12, 15-17
converge yet to any single unified approach.

Standard interfaces for electronic commerce
RosettaNet is a consortium dedicated to standard-
izing interfaces for electronic commerce between
supply chain partners. To encode the business
interactions required to perform a particular busi-
ness function, such as processing a purchase order
or inquiring about a price, RosettaNet defines
Partner Interface Processes (PIPs).18 A PIP definition
consists of a textual description, message Document
Type Definitions (DTDs), and QoS requirements
(time-outs, security, etc.). PIP messages are pack-
aged, routed, and transported by a RosettaNet
Implementation Framework-compliant system.

KHALAF, KELLER, AND LEYMANN

431

Work is under way in RosettaNet to determine
whether the framework can be extended to existing
messaging protocols and infrastructure, and in
particular to Web Services. An approach for porting
RosettaNet to Web Services is described in Refer-
ence 19.

We have used BPEL to represent the business logic
in a PIP.*° A BPEL abstract process encodes exactly
the business behavior of one party, as defined in the
PIP documents; message exchanges and their
ordering are represented by using flow, links, and
the messaging activities in BPEL. RosettaNet time-
outs and the associated faults are represented using
alarm, fault, and event handlers. QoS issues such as
reliable message delivery and security are pushed
down to the appropriate layers of the Web Services
stack. From the abstract process, an executable
process may be derived by using simple rules to be
executed by the partner.

PIP processes for various behaviors follow certain
known patterns, such as the asynchronous two-
action PIP or the asynchronous one-action PIP, with
clearly defined points of variability; therefore, in
Reference 20, we propose the template—specialize—
implement approach to PIP definitions. The first step
is the most abstract—*template” processes are
defined for each of the patterns with clearly defined
points of variability (e.g., a template for all two-
action PIPs). The template can be specialized by
specifying additional details, resulting in abstract
processes for a particular pattern (e.g., a purchase
order two-action PIP). Finally, simple completion
rules are provided for creating executable processes.

ADDING QUALITY OF SERVICE USING WS-POLICY
The specifications and standards of the Web
Services stack are designed to be modular. One can
use just the subset necessary for the task; additional
functionality can be modularly and noninvasively
added at will.

The Web Services Policy Framework (WS—Policy)4
provides a pluggable mechanism for attaching non-
functional requirements to different parts of other
Web Services specifications in a declarative manner.
Most commonly, such policies are attached to a
WSDL definition. In addition to providing clients
with functional service requirements, one can now
attach QoS requirements either to a portType, or
just to a particular operation. Domain-specific policy

432 KHALAF, KELLER, AND LEYMANN

languages currently exist for reliable messaging and
security. Although a syntax for distributed trans-
action policies is presented in Reference 21, it has
not been released yet as a formal proposal. A policy
attachment can contain references to several differ-
ent policies (reliability, security, etc.); these may be
combined by using Boolean operators and may be
tagged as either required or optional.

Some examples of work that specifically uses WS-
Policy attached at the WSDL level are presented in
References 22, 23, and 24. In Reference 24 the issues
involved in using Web Services policies are dis-
cussed and illustrated through the architecture of a
prototype that configures policies on a per-inter-
action basis. Policy-based support is integrated in
the Colombo prototype as described in Reference 23.
In Reference 24, the authors define the GlueQoS
policy language and present a middleware system to
support it. GlueQoS is an extension to WS-Policy
and is geared especially to cases where policies
change during the lifetime of a service. In the
standards arena, Web Services Metadata Exchange
is being proposed as a specification for handling
dynamically changing policies. For example, the
policy below indicates the use of reliable messaging
with a retransmission interval of 4 seconds and a
time-out interval of one hour:

<wsp:Policy wsu:Name="tns:RMPolicy" >
<wsrm:RMAssertion>
<wsrm:InactivityTimeout
MiTliseconds="3600000" />
<wsrm:BaseRetransmissionInterval
MiTliseconds="4000" />
</wsrm:RMAssertion>

</wsp:Policy>

The binding of the service can then refer to the
above policy:

<wsdl:binding name="ServiceSOAPBinding"
type="wsdlins:servicePT"
wsp:PolicyRefs URI="tns:RMPoTicy" />

</wsdl:binding>
Once the invocation request is received by the
underlying (policy-supporting) messaging middle-

ware, the WSDL of the partner is looked up to
determine how and where the message should be

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Container with Policy Support
BPEL Interpreter
Process B <process>
<sequence>
WSDL + Security policy
Web
WSDL + Reliable Service 1
Messaging Policy
<process> Process A
<sequence>
WSDL
T Web
| WSDL + Atomic |, Service 2
Tx Policy
Coordinated
PartnerLink
Figure 3

Attaching policies to WSDL definitions and BPEL processes

sent and whether there are any applicable policies.
In fact, Colombo uses the policy in WSDL as the
default for the particular partner—but the system is
set up to support later updates to this policy on a
per-interaction basis.

For BPEL services, one can attach policies pertaining
to a particular operation, message, or portType to
the WSDLs that represents the portTypes the
process offers. The policies that a process requires of
its partners can also be attached on the partners’
WSDLs. Both can then be handled by policy-
supporting Web Services middleware,”’ just as non-
BPEL services are handled.

It is, however, often necessary to attach policies
directly to BPEL constructs, especially when one
needs a finer grained attachment than WSDL
provides, that is, a policy to be applied only to a
subset of the invoke activities of a particular
operation. This also applies when one requires a
different grouping of attachments than WSDL can
provide, such as a policy on all interactions in a
scope (possibly with several partners). Attaching
policies to BPEL constructs (scopes and
partnerlLinks) is presented in Reference 25, with a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

focus on combining the functionality of the WS-
Transactions specification with BPEL. The model
prescribed in Reference 25 is described next.

Transactional policy assertions, using the syntax in
Reference 21, can be attached to either scopes or
partnerLinks. The coordination protocol of a policy
on a partnerlLink is used in all interactions with
that partnerLink which belong to the same scope.
Figure 3 illustrates attaching policies to WSDL
definitions and BPEL processes. The figure shows a
system with two BPEL processes, A and B, and Web
Services that are invoked by these processes. Also
shown are examples of attaching policies to WSDL
(security, reliable messaging, and atomic-transac-
tion policies) and to BPEL (a WS-AtomicTransac-
tions policy is attached on the partnerLink of
process A, shown by the coordinated partnerLink
pair of arrows).

The partner itself has to be able to support this
policy, and its WSDL should confirm that. A scope
delineates the transaction, either if it has a coordi-
nation policy attached to it (coordinated scope) or if
it has to invoke activities to any partnerLinks with
such policies. The start of the scope begins the

KHALAF, KELLER, AND LEYMANN

433

transaction, and the end of the scope signals the end
of the transaction; any invoke activities in a
coordinated scope and any invoke activities to a
coordinated partnerLink in a regular scope occur as
part of that transaction. To enforce this, the BPEL
engine should be integrated with policy support and
with a subsystem handling the specific policy types
defined on the process. Work is ongoing to consider
advanced uses, such as coordinated partnerLinks
and scopes in the case of scope nesting, and
enabling the process itself to participate in a trans-
action instead of just initiating it.

Although the attachment of policies for different
QoS requirements is neatly modular from an XML
point of view, its implications for the underlying
middleware are not as clear-cut. For example, a
possible clash between the ordering and sequencing
constructs of WS-ReliableMessaging and the control
constraints of the corresponding BPEL activities
would require close coordination between the
reliable-messaging subsystem and the BPEL inter-
preter.25

Approaches that do not use WS-Policy attachments
for adding QoS to BPEL are found in References 26,
27, and 28. For example, References 26 and 27 use
aspect-oriented programming with BPEL, the latter
focusing on aspects for QoS. In Reference 28,
partner-service endpoints are selected while a
process is running so that it can meet global QoS
constraints.

WORKING WITH PEOPLE: EXTENDING BPEL TO
ACTIVITIES INVOLVING HUMANS

BPEL is an extensible language in which domain-
specific extensions may be created, thus avoiding
the necessity to incorporate the needed functionality
into the base language. The result is the creation of
towers on top of the base syntax and semantics, thus
maintaining the separation of concerns. The addi-
tion of tasks involving humans to a BPEL process
can be done with such extensions.

Consider the example of a business process that
combines human activities with application calls.
The process manages maintenance requests of a
multicity maintenance company with several mobile
workers making service calls in the area of coverage.
The process interacts with the accounting depart-
ment for updating client billing records and for
managing maintenance requests. Upon reaching the

434 KHALAF, KELLER, AND LEYMANN

target location of the next maintenance request, the
maintenance person logs into the system and
retrieves the list of remaining service calls for the
day, perhaps optimized according to the current
location. The list contains, say, three service calls.
The maintenance worker selects two of these, logs
off, and proceeds to perform these two tasks. Later,
the worker logs in again from a location that offers
Internet connectivity, updates the database with the
status and costs of the tasks performed, and
retrieves the list of remaining service calls. By that
time the third task is no longer in the to-do list
because it has been picked up by another worker.

In BPEL, direct support for human-facing capability
has been dropped: everything is a Web service
invocation. Of course, one could implement a Web
service that forwards the request to middleware that
handles the human-facing functionality, including
staff resolution (finding the persons who can
perform a particular task) and management of a
worker’s task list, and finally responds to the BPEL
process. Even though that works technically, the
information about the people and skills needed to
perform a task is part of the business logic. Using a
pure Web Services approach hides from a designer
or a user that some activities are to be performed by
humans. Additionally, staff resolution and task-list
management can often be done by the workflow
management system directly.

IBM workflow products already support human-
facing activities™® with the Flow Definition Markup
Language (FDML). It was natural to continue that
support when the products evolved to BPEL.
Therefore, an extension to the invoke activity has
been included in the IBM WebSphere* Application
Server Process Choreographer,31 an example of
which is shown below:

<bpel:invoke partnerLink="null"
portType="abc:maintenancePT"
operation="performMaintenance"
inputVariable="ClientInformation"
outputVariable="statusAndCost">
<wpc:staff>
<wpc:potentialOwner><staff:membersOfRole
role="fieldWorker"/></wpc:potentialOwner>
<wpc:reader><staff:membersOfRole
role="manager"/></wpc:reader>
</wpc:staff>
</bpel:invoke>

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

The staff extension is a subelement of invoke. Each
staff activity includes the operation and portType
identifying the work to be done, and instead of a
partnerLink includes the staff element containing
the information about the people that can edit,
manage, read, or actually execute this activity. Each
gets resolved into one or more userids, relating the
activity to actual people. The lookup can extend to
entire organizational directories and their hierar-
chies, taking roles, memberships, and skills into
account. When such an activity is triggered, a
person must be found to take over the role of
potentialOwner and perform the requested work.

Upon logging into the system, the user can pull up,
in a provided user interface, a list of all the activities
(work items) that require attention. By selecting a
work item the user becomes its owner (the item is
then removed from the lists of all potential owners).
The work item owner can obtain the activity’s input
data, perform its work, and send any resulting
messages when done (possibly a fault notification)
to the system. Because human-facing tasks are
usually far slower than automated tasks, possibly
taking several days or longer, the response is sent
asynchronously.

In addition to enabling human-facing activities, it is
sometimes necessary to allow a human administra-
tor to fix a problem involving a running process,
especially a long-running one.”! By avoiding a
complete rollback and restart of the entire process,
valuable time and resources are saved. A process-
administrator extension in Process Choreographer
has been implemented for this purpose. In the
standards arena, an extension of BPEL is proposed
in Reference 29 toward creating a standard for such
human-facing activities.

BPEL FOR GRID COMPUTING

Grid computing32 enables one to treat a large
number of networked computers and other re-
sources (disks, services, etc.) as a single virtual (and
much bigger) computer. The application that
brought the grid to the masses was the SETI@home
project,33 allowing anyone to aid in the search for
aliens by signing up their computer to perform, in its
spare time, part of the massive data analysis on
radio telescope signals. Placing open standards at its
core,34 the Grid community created an architecture
for the Grid that builds on and extends the XML
specifications and standards created for Web Ser-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

vices, which is known as the Open Grid Services
Architecture (OGSA).

The Grid community, a largely scientific commu-
nity, has considered a number of workflow systems
and languages. Since the OGSA treats Grid compo-
nents as Grid services with WSDL interfaces, there is
momentum towards adopting BPEL as the language
of choice. BPEL meets interoperability and openness
requirements and is designed to operate in a service-
oriented world. Additionally, it enables the scientific
community to use any of the many industrial-
strength workflow engines, or any of the open-
source or free implementations available on the
Web. In Reference 35 the authors justify the
community’s need for a workflow representation

m One can think of BPEL's
approach to partner interactions
as a programming model for
SOA applications m

and present a case study, finding BPEL a suitable
language for scientific flows using Grid services. To
ease process design and make it more accessible to
scientists (in this case, computational chemists),
they provide domain-specific extensions and short-
cuts, such as indexed flows that are expanded into
standard BPEL by a preprocessor or style sheet.

The Grid treats computing resources as a special
kind of services described by the Web Services
Resource Framework (WSRF) speciﬁcations.11 A
WS-Resource is a data context required by a Web
service in order to operate properly on a particular
request. A resource has properties that can be
queried at any time and explicit life-cycle manage-
ment (creation using a factory pattern, destruction,
timed destruction). The Implied Resource Pattern
(WS-Resource Access Pattern) provides a mecha-
nism to identify that context, usually by using
reference properties as part of the endpoint refer-
ence (EPR) identifying the resource that the request
should manipulate.

In References 36 and 37, a number of best practices
are presented for using BPEL in Grid environments,
aimed at streamlining BPEL with WSRF. We high-
light these below. Overcoming challenges using
Grid-specific extensions to BPEL is preferred over

KHALAF, KELLER, AND LEYMANN

435

the option of changing BPEL’s existing capabilities.
Taking advantage of XML extensibility enables the
user to remain compliant with the specification,
reuse much of the available infrastructure, and run
pure BPEL processes in the same engine as the one
that runs the extended processes.

First, one must be able to treat a process as a WS-
Resource. Recall that BPEL uses correlation and not
reference properties for identifying instances. One
must be able to use EPRs with reference properties
to address a BPEL process instance and for its
interactions with its partner (WSRF-compliant)
services. This is possible because using WS-
Addressing is not disallowed by BPEL. The end-
points that a process offers must also support the
implied resource pattern.

The resource life cycle can be explicitly managed,
whereas BPEL processes have an implicit life cycle.
However, explicit life-cycle capabilities can be easily
offered by a BPEL process. The factory pattern
(explicit creation) can be implemented indirectly by
using a dispatcher or directly by the process through
an assign that copies its own EPR and uses it to
reply to the sender of the creating message. A BPEL
event handler can be included in the process to
allow explicit destruction of a process instance; an
alarm handler can be placed to support timed
destruction.

A WS-Resource has resource properties that can be
accessed and modified. A BPEL variable can be
created whose type is that of the resource property
document, and event handlers on the process can
handle calls to get, set, and query the resource
property. Advanced queries can be handled by the
process through delegation to another service.*

In Reference 37, Slominski proposes providing
services commonly used by grid workflows locally
as pseudo-partners, such as the transfer of large
amounts of data using GridFTP or Reliable File
Transfer. The difference between a pseudo-partner
and a regular partner is that invocations to pseudo-
partners can be optimized by allowing the system to
shortcut to them directly. Handling the large
amounts of data used in scientific workflows must
be done efficiently. Although pseudo-partners may
help in the short term, Slominski proposes looking
into using explicit data streams or data links. Other
possibilities include passing endpoint references in

436 KHALAF, KELLER, AND LEYMANN

messages with a pointer to where one can retrieve
. 36
relevant pieces of the data.

Grid QoS requirements are similar to those for Web
services at large and can be provided by using a
combination of local BPEL fault and compensation
capabilities and complementary specifications for
security, reliability, and coordination. Nonfunction-
al requirements can be attached either to WSDL or
to parts of a process as described in the section
“Adding quality of service using WS-policy,” and
executed by middleware supporting the BPEL
engine.23

The Grid community requires open, standardized
process-monitoring capability. However, BPEL
views this capability as a system service to be
provided optionally by a workflow management
system in which a BPEL process runs, and it is not
addressed explicitly in the BPEL specification. One
option for adding nonproprietary monitoring sup-
port37 is to use WS-Notification, an eventing
specification. Another is to provide a BPEL exten-
sion for monitoring.36 However, that would require
an open and standardized state model for BPEL
processes and their activities, which might lead to
conflict because different vendors’ state models
reflect the different capabilities (and extensions) of
their engines, and agreeing on a single model that
contains the necessary information for advanced
monitoring could be a major obstacle.

BPEL FOR AUTONOMIC COMPUTING

Autonomic Cornputingsg’39 is an initiative spear-
headed by IBM that aims at reducing the complexity
of managing computer systems by making them self-
managing and adaptable to changing conditions. A
study shows that operator errors account for the
largest fraction of failures of Internet services; "’
hence, properly managing changes is critical to the
availability of information technology (IT) services.

An autonomic manager automates a set of manage-
ment functions and externalizes these functions
according to the behavior defined by management
interfaces. Examples of autonomic managers are
systems management platforms, mid-level manag-
ers, service provisioning systems, and management
logic embedded in a managed resource, such as the
administration console of a Web application server
or the performance advisor of a database manage-
ment system (DBMS). Managed resources expose

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

management data—such as counters and gauges—
to autonomic managers by means of sensors.
Effectors, on the other hand, allow an autonomic
manager to modify the behavior of a managed
resource by setting its configuration parameters or
tuning knobs to specific values. Managed resources
can be perceived as WS-Resources with sensors and
effectors provided as operations of corresponding
services.''

In the autonomic computing architecture,”’ the
decision process carried out by autonomic managers
is represented by a control loop, which consists of
four functions: monitor, analyze, plan, and execute.
Figure 4 depicts the conceptual architecture of an
autonomic manager.

The monitor function collects sensor data and
organizes them into symptoms that need to be
analyzed. An example for this function is computing
the average response time for a transaction spanning
multiple systems by consolidating performance data
collected at various points of a distributed system.

The analyze function analyzes the observed symp-
toms and determines the change needed to rectify
the problem in conformance with policy rules. This
involves, for example, comparing the obtained
response time to its allowable range, as specified in
a service level agreement (SLA). If the SLA is broken
or at risk of being broken, a change request is issued
for the deployment of additional servers.

The plan function provides the mechanisms that
construct a change plan, a partially ordered set of
tasks needed to achieve goals and objectives. The
component in charge of creating a change plan for a
given change request is the change manager. Its
purpose is to assign tasks to available resources,
according to a variety of cost-based and technical
constraints, such as SLAs, administrator policies,
and compatibility and collocation requirements for
software. In addition to task-to-resource assign-
ments, a change plan comprises deadlines and
maximal durations for each activity as well as for
the overall change plan. It can be represented as a
(BPEL) workflow.

The execute function carries out the change by
interpreting the change plan. This function is

typically implemented by provisioning systems,
such as IBM Tivoli Provisioning Manager.42 An

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

e Sensors

Change
Analyze Request |IEER
Sympt Change
ymptom D Plan
Knowledge
Monitor Execute
Sensors Effectors

Figure 4
Architecture of an autonomic manager

Effectors ———

/

important part of this function is keeping track of the
way changes are rolled out on the target systems
and feeding this status information back to the
change manager.

Note that in addition to interacting with the sensors
and effectors of managed resources, an autonomic
manager may provide sensors and effectors that
expose its functionality to other autonomic manag-
ers. Consequently, sensor and effector interfaces
enable autonomic managers to be aggregated into
hierarchies or peer-to-peer relationships in a manner
that is transparent to the managed resources.

We use BPEL for representing change plans in order
to seamlessly integrate the planning and execution
functions of an autonomic manager and to automate
the provisioning of distributed applications and
services. Expressing the change plan in BPEL
facilitates further manual modification and custom-
ization by an administrator, if needed. In the next
section we introduce the provisioning of a complex
enterprise application as our driving scenario. After
that, we will analyze the features of BPEL that make
it particularly suitable for representing change
plans.

Provisioning the enterprise application

Our case study involves installing and configuring a
J2EE**-based enterprise application and its sup-
porting middleware on multiple machines. The
middleware includes IBM’s HTTP Server, Web-
Sphere Application Server, WebSphere MQ* em-
bedded messaging, DB2* Universal Database* (UDB)

KHALAF, KELLER, AND LEYMANN

437

Web Application Server

Database Server

SPECjAppServer2004
J2EE Solution

HasComponents HasComponents
J2EE Application > Data
HostedBy Uses K—iostedBy
A\ A \\ \\\

WebSphere DB2 Runtime ' Uses DB2 UDB

Application Client v8.1 > Server 8.2

Server v5.1

HasComponents HasComponents
HasComponents

WebSphere Embedded

Application Messaging

Server v5.1

Core

Figure 5

Dependencies between components of a SPECjAppServer solution

server, and DB2 runtime client. The application we
use is the SPECjAppServer2004 (Sp04 for short)
enterprise-application performance benchmark,” a
complex multitiered online e-Commerce application
that emulates applications found in an automobile
manufacturing company and its associated dealer-
ships. Sp04 comprises typical manufacturing, supply
chain, and inventory applications that are imple-
mented with Web, EJB**, messaging, and database
tiers. We jointly refer to the Sp04 enterprise
application, its data, and the underlying middleware
as the Sp04 solution.

The Sp04 solution depicted in Figure 5 spans an
environment consisting of two systems (separated
by the dashed line in the figure): one system hosts
the application server along with the Sp04 J2EE
application, whereas the second system runs the
DBMS that hosts the various types of Sp04 data
(catalog, orders, pricing, user data, etc.). One of the
many challenges in provisioning such a solution
consists in determining the proper order in which its
components need to be deployed, installed, started,
and configured. For example, the HostedBy de-

438 KHALAF, KELLER, AND LEYMANN

pendencies between the components SPECjApp-
Server2004 J2EE Application and WebSphere
Application Server V5.1 state that the latter acts as a
hosting environment for the former. This indicates
that all the WebSphere Application Server compo-
nents need to be operating before one can deploy the
J2EE application.

Change plan requirements and their
representation in BPEL

A change plan is a procedural description of
activities, each of which maps to an operation that
the provisioning system reveals by means of a set of
WSDL interfaces. As these interfaces are known well
in advance before a change plan is created, they can
be referenced by a change plan in a straightforward
manner as portTypes in BPEL partnerlLinks. Every
operation has a set of input parameters; an
operation to install a particular software component
on a target system, for example, requires references
to the software and to the target system as input
parameters. Some of the parameters may be
supplied by a user when the change plan is executed
by means of the receive activity (e.g., the host

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

name of the target system that will serve as the
database server) and need to be forwarded to
several activities in the change plan. The assignment
of these parameters to activities is done by the BPEL
assign and copy statements, which move parameters
between messages by populating the various parts
of a variable. We note that the parts of a variable
typically correspond to configuration parameters of
a system; however, their specific values for a given
system are either obtained from the user (or another
BPEL process) by means of the receive activity, or
extracted from data sources whose interfaces are
defined as partnerLinks in the BPEL workflow.
Whereas the structure of a change plan is known up
front, the values for its parameters are determined at
runtime in order to address the dynamic reconfigu-
ration requirements of autonomic systems.

Precedence constraints reflect the order in which
provisioning activities need to be carried out. Some
of these constraints are implicit (e.g., the contain-
ment relationship HasComponent between software
components), whereas others (typically resulting
from communication dependencies such as uses or
federates) require an explicit representation (e.g.,
the DB2 runtime client needs to be installed on a
system whenever a database located on a remote
host needs to be accessed). In the former case, the
(potentially nested) BPEL flow and sequence con-
structs are used to group activities accordingly; in
the latter case, links represent a convenient means
to specify precedence constraints between activities
that can be nested arbitrarily deep in sequences or
flows.

An important consideration for minimizing the
overall provisioning times lies in the exploitation of
concurrency, especially when fairly large software
packages (the size of middleware installation images
is often several hundreds of megabytes) need to be
installed on different hosting environments. It is
particularly advantageous to define a change plan as
a flow-based business process that comprises
several sequences, each corresponding to a hosting
environment. Unless explicit precedence constraints
are specified by means of BPEL links, a workflow
engine processes them in parallel, thus avoiding
unnecessary delays.

The specification and enforcement of durations and

deadlines for provisioning activities in a change plan
allows a change manager to keep track of whether

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

the rollout of a distributed system proceeds as
planned or whether a schedule overrun is likely.
This is needed because a change manager needs to
make sure that the maintenance intervals specified
in an SLA are respected in order to avoid the
payment of penalties due to the unavailability of a
service. The BPEL scope and onAlarm constructs
help address this requirement, as one can attach a
scope containing a timer to every provisioning
activity and to the overall change plan. If an activity
runs behind schedule, a schedule overrun event is
sent from the workflow engine to the change
manager, which then decides if the execution of the
change plan should be terminated prematurely or if
it should continue despite the delay.

Note that we decided not to perform error recovery
or deal with schedule overruns (e.g., by means of
BPEL compensation handlers) within the change
plan itself. This is because in service provider
environments, resources are often shared among
different customers, and a change of a customer’s
hosted application may affect the quality of service
another customer receives. Before rolling out a
change for a given customer, a service provider

m A change plan should be
represented as a flow-based
business process in BPEL m

needs to trade off the additional benefit it receives
from this customer against a potential monetary loss
because an SLA with another customer may be
violated due to the change. The scheduling of
change plans, a core change manager function, is
the result of solving an optimization problem that
carefully balances the benefits it receives from
servicing one customer’s change request against the
losses it incurs from not being able to service other
customers. In an on demand environment, the cost/
profit situation may change very rapidly as many
change plans are concurrently executed at any given
instant. In some cases, it may be more advantageous
to carry on with a change despite its delay, whereas
in other cases, terminating a change prematurely
and instead servicing another newly submitted
request that is more profitable may lead to a better
global optimum. This big picture, however, is only
available to the change manager, which is why
compensation handlers are not encoded within

KHALAF, KELLER, AND LEYMANN 439

individual change plans. Note that a change
manager implements an autonomic control loop and
can therefore be regarded as a special-purpose
autonomic manager.

Finally, an important requirement for provisioning
composed applications (obtained by composition of
services) is the dynamic aggregation of already
existing and tested change plans. In the case of Sp04
and its underlying middleware, change plans for
provisioning some of its components (such as
WebSphere Application Server or the DB2 DBMS)
may already exist. By exposing a WSDL interface,
BPEL workflows can be aggregated and composed to
reflect the assembly of several software components
into distributed applications. Over time, a library of
best practices for changing and configuring software
systems—codified as BPEL workflows—can evolve
through componentization at a workflow level. Such
best practices may then be further aggregated into
higher-level change management processes to ac-
complish a process-based approach to IT service
management.”* *® While some activities in the IT
service management process can be automated
(e.g., creating change plans and executing them),
other activities (such as approving a change) require
human intervention. The introduction of extensions
for human-facing activities, into BPEL (see the
section “Working with people: Extending BPEL to
activities involving humans”) is an important step
toward addressing this requirement.

Change plans can be created either manually from
scratch or automatically generated from domain-
specific knowledge. Our research prototype of a
CHAnge Manager based on Planning and Scheduling
(CHAMPS)47 relies on software dependency models
specified as Installable Unit Deployment Descrip-
tors™® to automatically generate change plans.

A change plan for SPECjAppServer2004
provisioning

Figure 6 illustrates selected activities of the BPEL
workflow for provisioning and configuring the Sp04
solution, rendered in the BPEL Editor of WebSphere
Process Choreographer. The workflow consists of
two major sequences (Application Server Sequence
and Database Server Sequence), which group the
provisioning and configuration activities according
to the systems on which the activities need to be
carried out. We distinguish between the various
change management operations as well as the

440 KHALAF, KELLER, AND LEYMANN

hosting environments to which they apply. When-
ever no dependencies exist between activities in a
flow, a workflow engine will carry them out
concurrently, which has the potential of significant
time savings, especially if they are to be carried out
on different systems. Additional sequences are
nested in the major sequences. These additional
sequences group the activities for installing and
configuring the WebSphere Application Server, the
Sp04 application, and the DB2 database system.
Each of the sequences contains the individual
deployment and configuration activities, which deal
with deploying the various software products from a
centralized software repository to the target sys-
tems, installing them, and configuring them. Before
installing a component, its hosting environment
needs to be started.

Configuration-related activities cover a wide variety
of tasks, which go beyond the mere setting of
parameters; rather, they involve the creation of
logical structures, such as table spaces and tables in
a database system, populating these logical struc-
tures with data, or creating data sources, connection
pools, and factories in an application server. In
order to keep the workflows at an acceptable level of
granularity, we rely on a set of small configuration
scripts49 that break down each of the configuration
activities in Figure 6 into their atomic tasks and
execute them on the target systems.

Configuration activities sometimes require a set of
input parameters that are produced by other
activities. These parameters need to be passed
between configuration activities; this—in turn—
imposes constraints on their execution order. As an
example, the CREATE JDBC** Provider and
SPECjHostAliases activity in the CONFIGURE Appli-
cation Server (AS) WASS.1 sequence requires
various parameters (such as database name, host
name of the DB server, port number of the database
demon) that result from the CREATE Database
activity, which is carried out on a different system.
Whenever this is the case, one needs to insert a link
between these activities to ensure that the workflow
engine does not start the execution of an activity
before the predecessor activity has finished. This is
especially important when the flow of configuration
parameters crosses system boundaries. In Figure 6,
the two magenta horizontal arrows indicate such
cross-system constraints; they are expressed by
means of the BPEL link construct.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

EApplication Server Sequence

I

QINSTALL AS WAS5.1 Sequence

I

« DEPLOY AS WAS5.1 Package

L

4 INSTALL AS WASS5.1

Y

4 INSTALL WAS Embedded Messaging

l@l
« START AS WAS5.1

Y

~ [CONFIGURE AS WAS5.1 Sequence
LZ]

@ Database Server Sequence

I

EINSTALL DBMS DB2UDBS8.1 Sequence

I

« DEPLOY DBMS DB2UDB8.1 Package

v

« INSTALL DBMS DB2UDBS8.1

?

« START DBMS DB2UDBS.1

v
£/ CONFIGURE DBMS DB2UDB8.1 Sequence

WE]

= CREATE UserAccount

\’

J

« CREATE JDBC Provider and SPECjHostAliases

« CONFIGURE DBRegistry

!

« CREATE Database

v
« CREATE SPECDatasources

7

Q INSTALL J2EE SPECjAppServer Sequence

J/—E

« DEPLOY EAR Files Package

Y

« INSTALL EAR Files

—
.

Figure 6

NV

« LOAD Database

6

Selected activities in the BPEL workflow for provisioning the SPECjAppServer solution

Executing the change plan

Upon receiving a newly submitted change request,
the change manager needs to determine on which
resources and at what time the change will be
carried out. As depicted in Figure 7, the change
manager first inspects the resource pools of the
provisioning system (Resource Availability arrow)

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

to determine which target systems are best assigned
to the change by taking into account the operating
system they run, their system architecture, and the
cost of assigning them to a change request. Based on
this information, the change manager creates a
change plan, which may be composed of already
existing change plans that reside in a change plan

KHALAF, KELLER, AND LEYMANN 441

Look up Change Plan

Change Plan
Repository _—
Change
Plan
\Z

WebSphere Process Choreographer

_

E—

Change Manager

Change
Request

v

Resource Availability

Plan and Task Status

Running

Software.Install
(WebSphere v5, pclab.ibm.com)

RequestID
= 10021

s._l =
=)

Logical Device Operations
(in WSDL)

a
[e]
=

Logical Devices

DB2 Lotus Notes*
WebSphere v5

}

Automation Packages

!

Target Systems

*Trademark of International Business Machines Corporation

Figure 7
Architecture of a workflow-driven change manager prototy

BladeCenter*

Change Plan
A

Request.getStatus (10021) | | Status

= 'Completed successful’

1%}
: =
4R =
% Resource |
I 2,0 " Fools
| Sever | Swich .. Tivol
Provisioning
Manager

Cisco 10S

!

pe

repository (Look Up Change Plan arrow). Once the
change plan is created, it is submitted to the
workflow engine (Change Plan arrow). In our
prototype system, we use IBM WebSphere Process
Choreographer, a general-purpose workflow engine
that is able to interpret and execute change plans
defined in BPEL.

IBM Tivoli* Provisioning Manager, an autonomic
manager that we use in our prototype, maps the
actions defined in the change plan to operations that
are understood by the target systems. Its object-
oriented data model is a hierarchy of Logical Devices

442 KHALAF, KELLER, AND LEYMANN

that correspond to the various types of managed
resources (e.g., software, storage, servers, clusters,
routers, and switches). The methods of these types
correspond to Logical Device Operations (LDOs) that
are exposed as WSDL interfaces, which allow their
inclusion in the change plan as partnerLinks.
Automation Packages are product-specific imple-
mentations of logical devices. For example, an
automation package for the DB2 DBMS would
provide scripts that implement the software.
install, software.start, and software.stop
LDOs. An automation package consists of a set of
Jython scripts, each of which implements an LDO.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Every script can further embed a combination of
PERL, Expect, and bash shell scripts that are
executed on the remote target systems. We note that
the composition pattern applies not only to BPEL
workflows, but occurs in various places within the
provisioning system itself.

The workflow engine inputs the change plan and
starts each provisioning operation by directly
invoking the LDOs of the provisioning system.
These invocations are performed either in parallel or
sequentially, according to the flows, sequences, and
links defined in a change plan. A major advantage of
using a workflow engine for our purposes is that it
automatically performs state checking; that is, it
determines whether all conditions are met for
triggering the next activity in a workflow. Conse-
quently, there is no need for developing additional
program logic to perform such checks. This, how-
ever, is still required when interpreters for scripting
languages are used, as is often the case in traditional
systems management.

In a second step, the provisioning system is invoked
by the workflow engine and performs the requested
operations. It reports the status of each operation
execution back to the workflow engine. This status
information is used by the workflow engine to check if
the workflow constraints defined in the plan (such as
deadlines) are met and to inform the change manager
whether the rollout of changes runs according to the
schedule defined in the change plan. For further
details on our implementation, see Reference 50.

Advantages of using BPEL for autonomic
computing

Our prototype implementation demonstrates that
BPEL is fully applicable to representing change
plans for execution by an autonomic manager. BPEL
offers a number of advantages over other workflow
languages. First, its built-in support of Web Services
and XML allows the invocation of provisioning
operations in a platform-independent and portable
way. Second, the use of a BPEL workflow engine
makes delegation of activity-execution status
checking and compliance monitoring possible, with
specified deadlines. Based on the instructions in a
change plan, the change manager is notified by the
workflow engine whenever an activity is completed
and when a deadline has passed. Third, the
declaration of a change plan as a flow-based
business process ensures a high degree of parallel-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

ism for a set of tasks. In the Sp04 example, the
ability to carry out multiple activities in parallel
allows us to achieve a total time of about 34 minutes
on average (compared to about 50 minutes for
strictly sequential activity execution) for provision-
ing the Sp04 application and its middleware stack.
Fourth, by leveraging the Web service composition

m A library of best practices

for configuring software

systems can be built from tested
BPEL workflows m

capabilities of BPEL, one can aggregate and reuse
already existing change plans. Over time, a library of
tested BPEL workflows for changing and configuring
software systems can be built, which can serve as a
basis for higher-level IT service management pro-
cesses'* whose activities can be either automated or
carried out by humans, if needed. Finally, BPEL
helps in integrating and composing autonomic
managers out of existing autonomic managers,
thereby facilitating the delegation and reuse of
autonomic functions in distributed, heterogeneous
environments.

CONCLUSION

In this paper we have presented the concepts behind
BPEL, focusing on language extensions and several
application areas, which included human-facing
activities, the use of abstract processes, Grid
computing, and a case study in autonomic comput-
ing. We covered upcoming changes to the specifi-
cation, especially with regard to BPEL abstract
processes, which are beginning to see some activity
but are still lagging behind the executable variant in
uptake. We show the strengths of BPEL and point to
its shortcomings and possible future enhancements.

From a strictly technical point of view, BPEL can be
seen as one of many proposed workflow languages.
Considering nontechnical aspects, however, BPEL is
a significant step forward because it brings together
two formerly separated workflow communities
(graph-oriented and calculus-based), and—more
important—is implemented by all major vendors.
This is enormous progress for users because it
provides something they have long required: a single
workflow language portable across environments.

KHALAF, KELLER, AND LEYMANN

443

BPEL uses Web Services to implement core activities
and also renders processes as Web Services. A
criticism of BPEL has been that there are application
domains where a pure Web Services abstraction
does not suffice or is inappropriate. However,
BPEL’s extensibility can be used to adapt it to such
areas. For example, extensions for supporting
subprocesses in order to tie various processes into a
whole are described in Reference 51, whereas
extensions for direct support of Java within BPEL for
applications that do not require Web Services and
XML are described in Reference 7. Such extensions
require standardization to benefit from portability.

The use of extensions to BPEL for supporting the
entire spectrum of business process management
can be viewed as a corollary to the modularity and
composability “axiom” of the Web service plat-
form.” This axiom is responsible for another
criticism of BPEL, namely, its complexity, resulting
from the number of standards needed for a full
solution. For example, specifying deployment in-
formation is not BPEL-specific and therefore left out
of the specification but is required at many places in
the Web Services stack. As a consequence, specify-
ing such information declaratively (e.g., through
policies) results in highly adaptive processes in
terms of partner bindings.

The momentum behind the BPEL specification and
its support from industry and academia is largely due
not only to its architecture and capabilities but also
to its having been layered on top of the Web Services
stack, the standardization effort, and the number of
implementations that quickly became available,
thereby decreasing learning and adoption curves.
Some have seen BPEL as a programming language in
XML, others have described it as the export format
for business processes, while still others (amongst
them the authors) see it as a powerful workflow
language that presents the natural (conversational)
model for programming in-the-large in a service-
oriented world. Most important, if it were not for the
XML base, we would still be talking about propri-
etary languages and platforms.

ACKNOWLEDGMENTS

We acknowledge Dieter Koenig for feedback on
earlier drafts. We thank our colleagues at IBM,

including Stefan Tai, Thomas Mikalsen, and the

444 KHALAF, KELLER, AND LEYMANN

Component Systems Group for collaborations
described in this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries or both.

CITED REFERENCES AND NOTES

1. F.Leymann and D. Roller, Production Workflow, Prentice
Hall, Upper Saddle River, New Jersey (2000).

2. The Workflow Management Coalition, http://www.
wfmc.org.

3. D. Georgakopoulos, M. Hornick, and A. Sheth, “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure,” Dis-
tributed and Parallel Databases 3, No. 2, 119-153 (1995).

4. The Web Services Platform Architecture, S. Weerawarana,
F. Curbera, F. Leymann, T. Storey, and D. Ferguson,
Editors, Addison Wesley, Reading, MA (2005).

5. Business Process Execution Language for Web Services
Version 1.1, BEA Systems, IBM Corporation, Microsoft
Corporation, SAP AG, and Siebel Systems (2002),
developerWorks (updated February 1, 2005), http://
www.ibm.com/developerworks/library/specification/
ws-bpel.

6. R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-
Oriented Composition in BPELAWS,” Proceedings of the
Twelfth International World Wide Conference
(WWW2003), Web Services Track, Budapest, Hungary,
May 20-24, 2003, Kluwer Academic Publishers, Norwell,
MA (2003).

7. M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G.
Pfau, D. Roller, and M. Rowley, BPELJ: BPEL for Java
Technology, BEA Systems and IBM Corporation (2004),
http://www.ibm.com/developerworks/library/
specification/ws-bpelj/.

8. “BPEL Abstract Processes,” S. Thatte and R. Khalaf,
Editors, Input document to the OASIS Technical Com-
mittee’s discussions on possible changes to BPEL abstract
processes (2004), http://lists.oasis-open.org/archives/
wsbpel/200409/doc00000.doc.

9. R.J. van Glabbeek, “The Linear Time—Branching Time
Spectrum,” http://theory.stanford.edu/ ~ rvg/abstracts.
html#19.

10. A. Martens, “Consistency between Executable and
Abstract Processes” Proceedings of the IEEE International
Conference on e-Technology, e-Commerce and e-Services
(EEE 2005), March 29-April 1, 2005, Hong Kong, China,
IEEE, New York (2005), pp. 60-67.

11. K. Czajkowski, D. Ferguson, 1. Foster, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke, “From Open Grid
Services Infrastructure to WS-Resource Framework:
Refactoring and Evolution,” Fujitsu, Globus Alliance,
IBM Corporation, 2004. http://www.globus.org/wsrf/
specs/ogsi_to_wsrf_1.0.pdf.

12. J. Hidders, M. Dumas, W. M. P. van der Aalst, A. H. M.
ter Hofstede, and J. Verelst, “When Are Two Workflows
the Same?” Proceedings of Computing: The 11th Austral-
asian Theory Symposium (CATS), Newcastle, Australia,
February 2005. Australian Computer Society (2005),
pp. 3-11.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

20.

A. Martens, “Process-Oriented Discovery of Business
Partners,” Proceedings of the Seventh International Con-
ference on Enterprise Information Systems (ICEIS’05),
May 25-28, 2005, Miami, Florida (May 2005), pp. 57-64.

P. Massuthe, W. Reisig, and K. Schmidt, “An Operating
Guideline Approach to SOA,” Proceedings of the 2nd
South-East European Workshop on Formal Methods 2005
(SEEFMO05), Ohrid, Republic of Macedonia (2005).

A. Martens, “Analyzing Web Service Based Business
Processes,” Proceedings of the Eighth International
Conference on Fundamental Approaches to Software
Engineering (FASE’05), Edinburgh, Scotland, April 4-8,
2005, in Lecture Notes in Computer Science 3442,
Springer, Berlin (2005), pp. 19-33.

WOMBAT4WS (in German), online from Humboldt
University, Berlin, http://www.informatik.hu-berlin.de/
top/wombat/.

BABEL tools, Queensland University of Technology,
Brisbane, Australia, http://www.bpm.fit.qut.edu.au/
projects/babel/tools/.

S. Damodaran, “B2B Integration over the Internet with XML:
RosettaNet Successes and Challenges,” Proceedings of the
13th International Conference on World Wide Web (WWW
2004)—Alternate Track Papers and Posters, New York, May
17-20, 2004, ACM, New York (2004), pp. 188-195.

P. Bunter, R. Hertlein, R. Khalaf, and A. Nadalin, An
Approach to Moving Industry Business Messaging Stan-
dards to Web Services, developerWorks, IBM Corporation
(2004), http://www.ibm.com/developerworks/
webservices/library/ws-move2ws.html.

R. Khalaf, “From RosettaNet PIPs To BPEL Processes: A
Three Level Approach for Business Protocols,” Third
International Conference on Business Process Manage-
ment (BPM 2005), Nancy, France, September 5-8, 2005,
in Lecture Notes in Computer Science 3649, Springer,
Berlin (2005), pp. 364-373.

S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I.
Rouvellou, “Transaction Policies for Service-Oriented
Computing,” Data and Knowledge Engineering Journal
51, No. 1, 59-79 (2004).

N. K. Mukhi, P. Plebani, I. Silva-Lepe, and T. Mikalsen,
“Supporting Policy-Driven Behaviors in Web Services:
Experiences and Issues,” Proceedings of the 2nd Interna-
tional Conference on Service-Oriented Computing (ICSOC
’04), ACM New York (2004), pp. 322-328.

F. Curbera, M. J. Duftler, R. Khalaf, W. A. Nagy, N.
Mukhi, and S. Weerawarana, “Colombo: Lightweight
Middleware for Service-Oriented Computing,” IBM Sys-
tems Journal 44, No. 4, 799-820 (2005).

E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P.
Devanbu, “GlueQoS: Middleware to Sweeten Quality-of-
Service Policy Interactions,” Proceedings of the 26th
International Conference on Software Engineering (ICSE
2004), May 23-28, 2004, Edinburgh, United Kingdom.
IEEE, New York (2004), pp. 189-199.

S. Tai, R. Khalaf, and T. Mikalsen, “Composition of
Coordinated Web Services,” Proceedings of ACM/IFIP/
USENIX International Middleware Conference (Middle-
ware 2004) Toronto, Canada, October 18-20, 2004, in
Lecture Notes in Computer Science 3231, Springer, Berlin
(2004), pp. 294-310.

C. Courbis and A. Finkelstein, “Weaving Aspects into
Web Service Orchestrations,” Proceedings of the 3rd IEEE
International Conference on Web Services (ICWS 2005),
July 11-15, 2005, Orlando, Florida, IEEE, New York
(2005), pp. 69-77.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

A. Charfi and M. Mezini, “Using Aspects for Security
Engineering of Web Service Compositions,” Proceedings
of the 3rd IEEE International Conference on Web Services
(ICWS 2005), July 11-15, 2005, Orlando, Florida, IEEE,
New York (2005), pp. 59-66.

L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and

Q. Sheng, “Quality Driven Web Services Composition,”

Proceedings of the Twelfth International World Wide Web
Conference (WWW2003), Budapest, Hungary, May 20-
24, 2003, ACM, New York (2003), pp. 411-421.

M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,

A. Rickayzen, C. von Riegen, P. Schmidt, and

1. Trickovic, WS-BPEL Extension for People (BPEL4-
People), IBM Corporation and SAP AG (2005), http://
www.ibm.com/developerworks/webservices/library/
specification/ws-bpeldpeople/.

K. Lind and E. Norman, WebSphere Application Server
Enterprise Process Choreographer: Staff Resolution Archi-
tecture, developerWorks, IBM Corporation (2003), http://
www.ibm.com/developerworks/websphere/library/
techarticles/wasid/WPC_StaffArch/WPC_StaffArch.
html.

M. Kloppmann, D. Konig, F. Leymann, G. Pfau, and D.
Roller, “Business Process Choreography in WebSphere:
Combining the Power of BPEL and J2EE,” IBM Systems
Journal 43, No. 2, 270-296 (2004).

I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kauffman Publishers,
San Francisco, CA (1999).

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.
Werthimer, “SETI@home: An Experiment in Public-
Resource Computing,” Communications of the ACM 45,
No. 11, 56-61 (November 2002).

I. Foster, “What is the Grid: A Three Point Checklist,”
Grid Today (July 20, 2002).

W. Emmerich, B. Butchart, L. Chen, B. Wasserman, and
S. L. Price, Grid-Service Orchestration Using Business
Process Execution Language (BPEL), University College
London, CS Research Note RN/05/07 (June 2005).

F. Leymann, “Choreography for the Grid: Toward Fitting
BPEL to the Resource Framework,” Concurrency and
Computation: Practice and Experience (2006, to appear).

A. Slominski, “On Using BPEL Extensibility to Implement
OGSI and WSRF Grid Workflows,” Concurrency and
Computation: Practice and Experience (2006, to appear).

A.G.GanekandT. A. Corbi, “The Dawning of the Autonomic
Computing Era,” IBM Systems Journal 42, No. 1, 5-18, 2003.

R. Murch, Autonomic Computing, IBM Press/Prentice
Hall (2004).

D. Oppenheimer, A. Ganapathi, and D. A. Patterson,
“Why Do Internet Services Fail, and What Can Be Done
about It?” Proceedings of the 4th Usenix Symposium on
Internet Technologies and Systems, March 26-28, 2003,
Seattle, WA, USENIX Association (2003).

An Architectural Blueprint for Autonomic Computing,
Autonomic Computing White Paper, Third Edition, IBM
Corporation (June 2005), http://www-128.ibm.com/
developerworks/autonomic/library/ac-summary/
ac-blue.html.

IBM Tivoli Provisioning Manager, http://www.ibm.com/
software/tivoli/products/prov-mgr/.

SPECjAppServer2004 Design Document, Version 1.01,
Standard Performance Evaluation Corporation (January

KHALAF, KELLER, AND LEYMANN

445

2005), http://www.spec.org/osg/jAppServer2004/docs/
DesignDocument.html.

44. A. Brown and A. Keller, “A Best Practice Approach for
Automating IT Management Processes,” Proceedings of
2006 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), Vancouver, BC, Canada, IEEE,
New York (April 2006, to appear).

45. IT Infrastructure Library, “ITIL Service Support, Version
2.3,” Office of Government Commerce, United Kingdom
(June 2000).

46. L. Simcox, K. Shah, T. Dunton, and D. Groves,
“Introduction to IT Service Management, Part 1: Auto-
mate Your Key IT Processes,” developerWorks, IBM
Corporation (May 2005), http://www.ibm.com/
developerworks/library/ac-prism1/.

47. A. Keller, J. L. Hellerstein, J. L. Wolf, K.-L. Wu, and
V. Krishnan, “The CHAMPS System: Change Manage-
ment with Planning and Scheduling,” R. Boutaba and
S.-B. Kim, Editors, Proceedings of the 9th IEEE/IFIP
Network Operations and Management Symposium
(NOMS’2004), Seoul, Korea, April 2004. IEEE, New York
(2004), pp. 395-408.

48. M. Vitaletti, (Ed.), “Installable Unit Deployment
Descriptor Specification, Version 1.0,” W3C Member
Submission, IBM Corporation, ZeroG Software,
InstallShield Software Corp., and Novell Inc. (July
2004), http://www.w3.org/Submission/2004/
SUBM-InstallableUnit-DD-20040712.

49. T. Lau, “Set Up a SPECjAppServer2004 Application with
DB2 Universal Database,” developerWorks, IBM Corpo-
ration, July 2004. http://www-106.ibm.com/
developerworks/db2/library/techarticle/dm-0407lau/.

50. A. Keller and R. Badonnel, “Automating the Provisioning
of Application Services with the BPEL4WS Workflow
Language,” Proceedings of the 15th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations &
Management (DSOM 2004), November 15-17, 2004,
Davis, CA, in Lecture Notes in Computer Science 3278,
Springer, Berlin (2004), pp. 15-27.

51. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A.
Rickayzen, C. von Riegen, P. Schmidt, and I. Trickovic,
WS-BPEL Extension for Subprocesses (BPEL-SPE) IBM
Corporation and SAP AG (September 2005).

Accepted for publication December 7, 2005.
Published online May 10, 2006.

Rania Khalaf

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York 10532
(tkhalaf@us.ibm.com). Ms. Khalaf is a software engineer in
the Component Systems group at the Watson Research Center.
She received her Bachelor’s and Master’s degrees in computer
science and electrical engineering from MIT in 2000 and 2001.
Her interests include component-based software engineering,
workflow, and service-oriented computing, Web Services in
particular. Ms. Khalaf is a co-developer and co-architect of the
IBM BPEL4AWS prototype implementation (BPWS4J) and the
Java Record Object Model (JROM). She has published a
number of papers on service-oriented computing and has
served on the program committees of conferences and
workshops in the field. Ms. Khalaf is pursuing her Ph.D.
studies in service aggregation and composition under Prof. Dr.
Frank Leymann at the University of Stuttgart while continuing
to work at IBM.

446 KHALAF, KELLER, AND LEYMANN

Alexander Keller

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (alexk@us.ibm.com). Dr. Keller is a
research staff member and manages the Service Delivery
Technologies department at the Watson Research Center. He
received his M.Sc. and Ph.D. degrees in computer science
from Technische Universitat Miinchen, Germany, in 1994 and
1998, and has published more than 40 refereed papers in the
area of distributed systems management. He joined the IBM
Research Division in 1999. Dr. Keller’s research interests
revolve around change management for applications and
services, information modeling for e-business systems, and
SLAs (service-level agreements). He serves on several
technical program and organizing committees of related
conferences and workshops and is a member of the USENIX
Association, the IEEE, and the DMTF CIM Applications and
Metric Extensions working groups. He was a main contributor
to the IBM Web Service Level Agreement (WSLA) framework,
which served as the basis for the upcoming GGF WS-
Agreement standard.

Frank Leymann

University of Stuttgart, Universitdtsstr.38, 70569 Stuttgart,
Germany and IBM Software Group, Boblingen, Germany
(Frank.Leymann@informatik.uni-stuttgart.de). Prof. Dr.
Leymann is a full professor of computer science and director
of the Institute of Architecture of Application Systems at the
University of Stuttgart, Germany. His research interests
include service-oriented computing, workflow and business
process management, transaction processing, and architecture
patterns. Frank worked for two decades in the IBM Software
Group, building database and middleware products. He was
awarded the title of IBM Distinguished Engineer in 2000 and
was elected to the IBM Academy of Technology in 1994. He
has worked continuously on workflow technology since the
late 1980s, becoming known as the father of IBM’s workflow
product set. He contributed heavily to the architecture and
strategy of IBM’s entire middleware stack and IBM’s on
demand computing strategy and is co-architect of the Web
Services stack. He is co-author of many Web Services
specifications, including WSFL, WS-Addressing, WS-
MetadataExchange, WS-Business Agreement, the WS-
Resource Framework, and, of course, BPEL4WS. Dr. Leymann
has published many papers in journals and proceedings, co-
authored three text books, and holds a multitude of patents
especially in the area of workflow management and
transaction processing. He served on program and organizing
committees of many international conferences, and he is
editor-in-chief or associated editor of several journals. l

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

