
Business processes for
Web Services: Principles
and applications

&

R. Khalaf

A. Keller

F. Leymann

The Business Process Execution Language for Web Services (BPEL4WS or BPEL for

short) is an XML-based language for defining business processes that provides an

interoperable, portable language for both abstract and executable processes and that

was designed from the beginning to operate in the heterogeneity and dynamism that

is commonplace in information technology today. BPEL builds on the layers of

flexibility provided by the Web Services stack, and especially by XML. In this paper, we

provide a brief introduction to BPEL with emphasis on architectural drivers and basic

concepts. Then we survey ongoing BPEL work in several application areas: adding

quality of service to BPEL, extending BPEL to activities involving humans, BPEL for grid

computing, and BPEL for autonomic computing.

INTRODUCTION

Workflow computing aims to automate business

processes by encoding them in a format that can be

processed in a workflow management system

(WFMS).
1,2

A workflow consists of activities that

perform actions and a flow of control that governs

the ordering of these activities. Present day

WFMSes
3
usually run workflows that are defined in

proprietary formats and thus are difficult to share.

Service-oriented architecture (SOA),
4
which has

recently emerged on the computing scene, is based

on the idea of providing application functions as

services offered on the Internet (or an intranet), in

an intrinsically distributed, heterogeneous, and very

dynamic environment, in which boundaries of both

systems and organizations are crossed. The most

common instantiation of SOA is based on the Web

Services framework.
4
The Web Services framework

consists of a set of XML standards and specifications

for describing these services, for exchanging and

managing their endpoints, and for enforcing the

associated quality of service (QoS) requirements.

Service descriptions, around which a large part of

the framework revolves, are defined by using the

Web Services Description Language (WSDL). A

WSDL definition contains the description of the

service function and the mechanism for interacting

with that service. The definition consists of an

interface (portType), the binding of that interface to

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 425

a particular protocol (binding), and a service

element that specifies an endpoint (port) for a

particular portType over a specific binding.

Once an organization’s core functions are modeled

as services, the challenge of application integration

becomes one of service composition. A composition

of services can be modeled as a workflow that

interacts with offered services. These workflows

may be owned by the vendor of services, by

consumers of services, or even by third-party

vendors specializing in process modeling. Figure 1

illustrates a business process implemented as a

composition of services. The dotted lines represent

message exchanges, whereas the directed graph at

the center of the figure represents the workflow of

the business process. In this example a purchasing

service offered by a retailer is implemented as a

business process that involves both in-house ser-

vices, such as checking out an item from the

company-owned warehouse, and vendor services,

such as bank and shipping services.

Several initial efforts for defining a composition

language for Web Services have evolved into the

Business Process Execution Language for Web

Services (BPEL4WS or BPEL for short).
5
Much has

been written about BPEL, from the full specification

to details about its constructs, mathematical mod-

eling, and architectural concepts. In this paper, we

provide only a brief overview of the language in

order to acquaint the reader with it. Our focus is on

its architectural drivers and its usage that goes

beyond the traditional applications of workflow.

The area of workflow in general and BPEL in

particular is extremely active at this time. A Web

search in July 2005 produced links to 18 available

BPEL engines, ranging from open-source imple-

mentations to feature-rich fully supported products.

The volume of published material is such that

covering every aspect of BPEL would result in a

large collection of sources. In this paper, we focus

on topics closest to our own direct experience and

expertise, at the same time providing pointers to and

high-level descriptions of other work for the

interested reader.

The rest of the paper is organized as follows. In the

next section, ‘‘Business processes in BPEL,’’ we

present the motivation behind the creation of

BPEL, describe its main constructs, and introduce

not only the executable variant of the language, but

also the abstract variant, about which much less

has been published. In the section ‘‘Abstract

processes in BPEL,’’ usage patterns of abstract

Purchase Agent
(customer)

Retailer

Bank

Shipping Company

Warehouse

Figure 1
A business process implemented as a composition of services

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006426

processes are laid out, followed by examples of

applying abstract processes to the retail electronics

domain and to process compatibility and search. In

‘‘Adding quality of service using WS-policy,’’ we

present the addition of QoS capabilities to a process

by using Web-Services policy attachments. In the

following two sections we discuss two application

domains for executable BPEL in which activities

interact with more than just Web services, namely,

workflows involving direct human interaction and

workflows involving grid computing. In ‘‘BPEL for

autonomic computing,’’ we present a case study

involving the use of BPEL in IBM products—in the

dynamic provisioning aspect of autonomic com-

puting. The ‘‘Conclusion’’ section contains our final

comments.

BUSINESS PROCESSES IN BPEL

BPEL was first released on July 2, 2002, as

BPEL4WS V1.0, jointly by BEA Systems, Inc., IBM

Corporation, and Microsoft Corporation. BPEL4WS

V1.0 merges the flat-graph process definition ap-

proach of IBM’s Web Services Flow Language

(WSFL) with the structural constructs approach of

Microsoft’s XLANG. In 2003, BPEL4WS V1.1 was

released with a set of revisions and an expanded list

of authors; it is the version of the specification that

was submitted to the Organization for the Ad-

vancement of Structured Information Standards

(OASIS) standardization committee where commit-

tee members are working on producing the stan-

dardized version of the language, known as WS-

BPEL 2.0. In this section we discuss the architectural

drivers behind the BPEL language and the overall

structure of a BPEL process and its key capabilities.

Unless otherwise specified, our examples use

Version 1.1.

BPEL’s architectural drivers

Two major concerns in standardizing a business

process language are: portability and interoperabil-

ity. Portability enables one to standardize certain

business processes for particular functions that can

be published and used in the same manner by

multiple organizations; it ensures that one can

define a business process once and run it on any

compliant system without rewriting. Some people

view BPEL as an export format, referring to it as ‘‘the

PDF of business processes.’’

Interoperability, on the other hand, enables two

executable business processes, running on different

engines at possibly different organizations, to

interact with each other. This is ensured by BPEL’s

layering on top of the Web Services stack. A BPEL

process is itself made visible as one or more Web

Services (with WSDL portType entities) that it offers

to its partners. Its interactions with any other

components also occur as Web-Services invocations

based on the portType of that component. This

recursive composition, where a process is imple-

mented as one or more Web Services and in whose

implementation other Web Services are used,

enables a BPEL process to leverage the interoper-

ability provided by the lower levels of the Web

Services stack, such as WSDL, SOAP, and WS-

Addressing. Web Services interoperability and the

combined usage of these lower levels is the

raison d’etre of the Web Services Interoperability

Organization (WS-I).

Other characteristics (Reference 4, Chapter 6 and

Reference 6) built into the language that support the

service-oriented paradigm include the following:

� Flexible integration
� Support for simultaneous stateful conversations

with multiple partners
� Life-cycle management
� Recoverability

Flexible integration of BPEL processes is mainly

achieved by keeping bindings to physical-partner

endpoints and other such deployment-specific in-

formation out of the definition of the business

process. This allows the binding of a BPEL process

to partners to occur at design time, at deployment

time, or at runtime (through the assign activity or by

using underlying layers such as WS-Addressing).

Other binding schemes are left to the implementa-

tion of a BPEL system and are not restricted by the

specification.
6
Instead, interactions with Web Ser-

vices are based only on their interfaces (WSDL

portTypes) and thus the same activity in different

running instances of the same process can interact

with different endpoints over different transport

mechanisms.

Multiple instances of a particular BPEL process may

run simultaneously in the same engine, each

interacting with multiple parties. To support this

capability, the language provides a conversation

channel for each partner called a partnerLink.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 427

BPEL processes have an implied life-cycle model:

instances are created and destroyed based on the

process model and not explicitly by an invoking

party. An instance identification mechanism called

correlation enables a BPEL engine to route a

message coming across a partnerLink to the correct

instance of a process model.

Recoverability is vital, especially to long-running

processes. BPEL’s recoverability support consists of

advanced rollback capabilities for undoing com-

pleted actions and fault handling for correcting

failures.

By placing these characteristics at the core of its

design, BPEL fits powerfully with the SOA paradigm.

One can even think of BPEL’s approach to partner

interactions as a programming model for SOA

applications regardless of the language or mecha-

nisms used for service implementation.

Language concepts and structure

BPEL provides two main process usage patterns:

executable processes, whose business logic can be

run by a WFMS, and abstract processes that describe

behavior and may omit certain information of no

concern to the process recipient (e.g., sources of

data, values of variables used in conditional

expressions).

A BPEL process consists of a top-level process

element that can contain: variables, event handlers,

fault handlers, compensation handlers, partner

links, and a single (complex structured) activity.

Variables are typed containers that hold data. They

may be typed by using WSDL messages, XML

& BPEL is extensible in that it
allows domain-specific
extensions &

Schema types, or XML Schema elements. The

handlers provide advanced capabilities for event

handling and error recovery that we will discuss

briefly later. The partnerLinks define the connec-

tions of the process to the outside world: they are

named instances of typed connectors that define the

portType that the process offers to a partner or the

portType that it requires from that partner. In the

former case, the process offers certain functionality

to the partner that the partner can call as regular

Web Services operations (i.e., the process is a

service). In the latter case, the process invokes

functionality offered by a partner again as regular

Web Services operations (i.e., the process is a

client). A two-sided partnerLink therefore repre-

sents a channel over which a two-way, peer-to-peer

conversation occurs between the process and the

partner. The logic of the business process itself is

mainly contained inside the top-level activity. Here

is a skeleton of a BPEL process:

,process.

,variables.

,variable name¼00x 00

messageType¼00def:purchasedItem 00/.

. . .

,/variables.

,partnerLinks.

,partnerLink name¼00inventoryService 00

partnerLinkType¼00def:inventorySerPLT 00

partnerRole¼00inventoryProvider 00/.

. . .

,/partnerLinks.

,flow.

. . .

,invoke partnerLink¼00inventoryService 00

portType¼00inventoryPT 00

operation¼00removeItem 00

inputVariable¼00x 00

outputVariable¼00;itemRemovalStatus 00/.

,/flow.

,/process.

BPEL activities can be either structured or simple.

The language also provides conditional (directed)

control links. If transitionCondition is true for a

link from activity A to activity B, then A must be

completed before B can be started. An activity that is

the target of multiple links has a joinCondition

(default is or) that determines when it can run,

based on the status of its incoming links. Control

constructs include sequential order using the

sequence activity, parallelism using the flow activ-

ity—which is the only activity in which links are

allowed, nondeterministic choice using the pick

activity, the familiar if-then-else using the switch

activity, a looping activity using while, and a scope

activity for scoping variables and handlers. Figure 2

shows an example of BPEL control constructs: a

while activity containing a flow activity. Inside the

flow activity are three activities, one of which is a

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006428

sequence. The sequence has two activities, the

lower one also depending on the top-left activity

through a control link.

The simple activities have predefined functions:

invoking Web Services (invoke), receiving a reply to

Web Services invocations (receive and reply),

throwing faults (throw), ending a process

(terminate), waiting (wait), and so on. All activ-

ities involved in messaging must refer to the

relevant partnerLink, operation and portType. A

process with a receive and a reply activity

referring to the same operation exposes that

operation on its WSDL. The invoke activity, how-

ever, refers to the operation offered by the WSDL of

the partner. Finally, data can be manipulated using

the assign activity, which allows copying parts of

one variable into another, as well as copying

between endpoint references and copying of parts of

variables. Below is an example of some simple BPEL

activities.

,!-- invoke a partner’s operation --.

,invoke partner¼". . ." portType¼". . ." operation¼". . ."
inputVariable¼". . ."[outputVariable¼". . ."]/.

,!-- copying data between variables --.

,assign.

,copy.

,from variable¼". . ."/.,to variable¼". . ."/.
,/copy. . . .

,/assign.

Data is handled in BPEL by using expression

languages. XPath 1.0 is the default and the only one

the specification addresses. BPEL supports its own

XPath functions for obtaining the value of a variable

or the status of a link.

The life cycle of a process starts with the creation of

an instance when the system receives a message that

can be consumed by a receive activity and whose

createInstance attribute has the value yes. The

process starts by activating its top-level activity. The

process terminates when the top-level activity is

completed, when the process throws a fault for

which a handler is not found, or when a terminate

activity runs.

BPEL correlation is used to maintain conversations

with a particular instance. Correlation enables one

to refer to specific parts of different messages aliased

to named properties. The interaction activities of a

process can set its correlation values when a

message is received or is about to be sent. A partner

sending a message to a running instance should use

values that match the values of the correlation sets

in the targeted instance. Although this is not the

most natural mechanism in middleware-managed

routing, it is the common case in business applica-

tions where messages are routed based on applica-

tion information (e.g., social security numbers,

confirmation numbers). BPEL does not preempt

middleware-managed routing because correlation is

optional. In the non-correlation case, a middleware-

created token would need to be included in the

headers of all messages exchanged with an instance;

nonetheless, using correlation enables cases to be

supported that would not be possible with middle-

ware-based routing (e.g., a process where a partner

needs to send a message to a running instance

before any exchange of messages has occurred).

Finally, BPEL provides advanced fault handling,

event handling (e.g., messages and alarms), and

compensation capabilities on activities grouped in a

scope construct. A fault handler attempts to remedy

work that failed while running. A compensation

handler enables work that was completed success-

fully to be undone in the case when a fault is thrown

elsewhere.

Consider a process that charges the customer and

simultaneously removes a purchased item from its

own inventory. If the payment is completed but the

inventory removal fails (item not available), the

Figure 2
Example of BPEL control constructs

Flow

SequenceWhile

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 429

compensation handler of the payment activity is

invoked, and it credits the customer’s account.

BPEL supports long-running transactions by using

compensation. Each invocation activity can be

defined as a pair consisting of the actual activity and

an associated compensation activity that can undo

the former’s work when necessary. If a fault occurs,

the compensation activities of already completed

work within the scope of a failing activity are used

to undo the work. Thus, a scope can be seen as a

long-running unit of work.

Short-running units of work can be supported by

using atomic scopes.
1
Activities that are imple-

mented as transactional programs can again be

grouped into a scope that has ACID (atomicity,

consistency, isolation, and durability) semantics:

either all completed transactions within a scope are

committed, or all are rolled back. In Reference 7,

this concept is described as a BPEL extension.

ABSTRACT PROCESSES IN BPEL
A BPEL abstract process provides a description of a

related range of behaviors; one can think of it as

representing a set of executable processes. Abstract

processes have access to the same range of syntax

and semantics as executable BPEL processes.

Opaque tokens enable explicit hiding of information,

and in some cases, may themselves be omitted.

In BPEL4 V1.0, the only opacity allowed involves

variable references on activities that exchange

messages and opaque data assignments. In the next

version, there will be three types of opaque tokens:

activities, expressions, and attributes. It was soon

realized that the meaning of these opaque tokens

and the restrictions on them vary greatly based on

the use case one has in mind. The new approach in

BPEL V2.0 is about the base and profiles. A base

defines basic requirements of all abstract BPEL

processes. An abstract process profile defines the

allowed subset of the syntax of the base, a URL to

identify processes belonging to that profile, and the

allowable executable completions. The executable

completions consist of the set of executable pro-

cesses whose behavior the profile represents. Two

profiles are being defined: one for creating process

templates that can later be expanded for specific

scenarios, and the other for observable message

exchanges. The rest of this section focuses on the

newer, more flexible approach to abstract processes.

The base consists of the full syntax of executable

BPEL, but allows all expressions, activities, and

attributes to be opaque. If a syntactic token is

mandatory by the XML Schema, then its omission

means that it is opaque. The base also mandates that

every abstract process must be flagged as such, be

schema verifiable, and have at least one valid basic

executable completion. This is an executable BPEL

file created by replacing every opaque token in the

abstract process with a corresponding nonopaque

token (including those tokens made opaque through

the omission shortcut).

A profile addresses a particular usage area of BPEL

abstract processes. For example, a templating profile

could only allow replacing opaque tokens, whereas

a message-exchange behavior profile could allow

addition of new activities in arbitrary places as long

as they do not interact with the existing partners of

the abstract process.

Patterns for using abstract processes

People often relate abstract processes to other

processes that are either more general or more

detailed. In this section, we present several patterns
8

that help clarify how abstract processes may be

used. These patterns will not be included in the

specification.

� Export pattern—In the export pattern, an abstract

process is created from one or more executable or

other abstract processes by abstracting (through

making opaque or simply deleting) parts that are

not relevant to the behavior one wishes to expose.

For example, one may use an abstract process to

represent common behavior in a set of executables

and drop any nonshared behavior. An executable

process of a more general business model may

need parts tagged as points of variability, and

those are made explicitly opaque. In another case,

one may teach a business partner the interactions

that the partner must follow, in which case the

interactions with all other partners are ignored.
� Import pattern—In the import pattern, an abstract

process is used to create either one or more

executables or one or more abstract processes that

are refinements of the original process. For

example, a user needs to create an implementation

of an abstract process provided as a behavioral

prescription for complying with a known, domain-

specific business function. The abstract process

may have been purchased from a consulting firm

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006430

as a model of an optimized approach to a problem.

The implementation can be created in a series of

iterative refinements to the abstract process.
� Protocol matching pattern I (mirror-image)—In

this case, one constructs the process of a particular

partner from a given abstract process that the

partner needs to interact with. Then, the import

pattern can be used to create an executable artifact

from that abstract.
� Protocol matching pattern II (search)—This pattern

uses one abstract process to search for another

process (in a repository of processes, for example)

that can perform the same steps as it can. It is

easiest to find an exact replica, but that is

extremely unlikely as the processes have probably

been created by different people.
� Protocol matching pattern III (compatibility)—This

pattern checks whether several abstract processes

can work together.

Using abstract BPEL processes

Abstract BPEL processes seem to be more difficult to

understand than executable BPEL processes. This

section covers some research work and case studies

involving abstract BPEL processes in order to

provide a more concrete understanding of their use.

Abstract processes for compatibility and search

The usage patterns for the abstract processes above

relate processes to each other. Notions of equiv-

alence and simulation in process models and

software artifacts are not new: different ones
9
have

been proposed over the years based on the class of

problems being addressed. For Web Services and

BPEL in particular, there is ongoing work in

checking properties between processes.

Using a Petri-net mapping of (relevant parts of)

BPEL processes, Martens proves such properties as

consistency between processes
10

and uses one

process to search for required behavior in a

repository.
11

In Reference 10, a syntactic approach

for consistency is discarded in preference to one that

is based on the behavior of the processes at hand.

The main concern here is externally visible behavior

from exchanged messages. After converting the

BPEL process to a Petri net, a communication graph

(c-graph) is created and then used in a consistency-

checking algorithm. Intuitively, two processes are

consistent for Martens if one can be replaced by the

other without requiring changes to the environment

in which they interact. Here, the executable process

must receive at least the messages that the abstract

process can receive, but may accept more because of

additional functionality not used by the environ-

ment. On the other hand, it cannot send out more

messages than the abstract process does because the

environment is unable to consume them. This work

focuses on a subset of BPEL and makes certain

assumptions about queuing of messages that are not

generally accepted in the industry. In Reference 12,

new notions of observable equivalence for work-

flows are presented (not focusing on BPEL) with and

without different classes of silent actions.

Abstract processes have been used to search for

desired functional behavior in a repository. Most

Web Services repositories provide WSDL-based, not

behavioral, search. Reference 13 presents a search-

by-example approach in which the searching party

& BPEL can be viewed as an
export format, and some refer
to it as ‘‘the PDF of business
processes’’ &

provides a query containing a service’s desired

behavior. Another approach better suited to

searching for concurrent, multipartner communica-

tion (Reference 14) publishes operating guidelines

for each partner of the process instead of a single

behavioral definition (abstract process) of the

process itself.

Although creating tools and algorithms for checking

relations between different BPEL process definitions

is a very active research area, the results do not

converge yet to any single unified approach.
12, 15–17

Standard interfaces for electronic commerce

RosettaNet is a consortium dedicated to standard-

izing interfaces for electronic commerce between

supply chain partners. To encode the business

interactions required to perform a particular busi-

ness function, such as processing a purchase order

or inquiring about a price, RosettaNet defines

Partner Interface Processes (PIPs).
18

A PIP definition

consists of a textual description, message Document

Type Definitions (DTDs), and QoS requirements

(time-outs, security, etc.). PIP messages are pack-

aged, routed, and transported by a RosettaNet

Implementation Framework-compliant system.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 431

Work is under way in RosettaNet to determine

whether the framework can be extended to existing

messaging protocols and infrastructure, and in

particular to Web Services. An approach for porting

RosettaNet to Web Services is described in Refer-

ence 19.

We have used BPEL to represent the business logic

in a PIP.
20

A BPEL abstract process encodes exactly

the business behavior of one party, as defined in the

PIP documents; message exchanges and their

ordering are represented by using flow, links, and

the messaging activities in BPEL. RosettaNet time-

outs and the associated faults are represented using

alarm, fault, and event handlers. QoS issues such as

reliable message delivery and security are pushed

down to the appropriate layers of the Web Services

stack. From the abstract process, an executable

process may be derived by using simple rules to be

executed by the partner.

PIP processes for various behaviors follow certain

known patterns, such as the asynchronous two-

action PIP or the asynchronous one-action PIP, with

clearly defined points of variability; therefore, in

Reference 20, we propose the template!specialize!
implement approach to PIP definitions. The first step

is the most abstract—‘‘template’’ processes are

defined for each of the patterns with clearly defined

points of variability (e.g., a template for all two-

action PIPs). The template can be specialized by

specifying additional details, resulting in abstract

processes for a particular pattern (e.g., a purchase

order two-action PIP). Finally, simple completion

rules are provided for creating executable processes.

ADDING QUALITY OF SERVICE USING WS-POLICY
The specifications and standards of the Web

Services stack are designed to be modular. One can

use just the subset necessary for the task; additional

functionality can be modularly and noninvasively

added at will.

The Web Services Policy Framework (WS-Policy)
4

provides a pluggable mechanism for attaching non-

functional requirements to different parts of other

Web Services specifications in a declarative manner.

Most commonly, such policies are attached to a

WSDL definition. In addition to providing clients

with functional service requirements, one can now

attach QoS requirements either to a portType, or

just to a particular operation. Domain-specific policy

languages currently exist for reliable messaging and

security. Although a syntax for distributed trans-

action policies is presented in Reference 21, it has

not been released yet as a formal proposal. A policy

attachment can contain references to several differ-

ent policies (reliability, security, etc.); these may be

combined by using Boolean operators and may be

tagged as either required or optional.

Some examples of work that specifically uses WS-

Policy attached at the WSDL level are presented in

References 22, 23, and 24. In Reference 24 the issues

involved in using Web Services policies are dis-

cussed and illustrated through the architecture of a

prototype that configures policies on a per-inter-

action basis. Policy-based support is integrated in

the Colombo prototype as described in Reference 23.

In Reference 24, the authors define the GlueQoS

policy language and present a middleware system to

support it. GlueQoS is an extension to WS-Policy

and is geared especially to cases where policies

change during the lifetime of a service. In the

standards arena, Web Services Metadata Exchange

is being proposed as a specification for handling

dynamically changing policies. For example, the

policy below indicates the use of reliable messaging

with a retransmission interval of 4 seconds and a

time-out interval of one hour:

,wsp:Policy wsu:Name¼"tns:RMPolicy" .

,wsrm:RMAssertion.

,wsrm:InactivityTimeout

Milliseconds¼"3600000" /.

,wsrm:BaseRetransmissionInterval

Milliseconds¼"4000" /.

,/wsrm:RMAssertion.

. . .

,/wsp:Policy.

The binding of the service can then refer to the

above policy:

,wsdl:binding name¼"ServiceSOAPBinding"
type¼"wsdlns:servicePT"
wsp:PolicyRefs URI¼"tns:RMPolicy" /.

. . .

,/wsdl:binding.

Once the invocation request is received by the

underlying (policy-supporting) messaging middle-

ware, the WSDL of the partner is looked up to

determine how and where the message should be

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006432

sent and whether there are any applicable policies.

In fact, Colombo uses the policy in WSDL as the

default for the particular partner—but the system is

set up to support later updates to this policy on a

per-interaction basis.

For BPEL services, one can attach policies pertaining

to a particular operation, message, or portType to

the WSDLs that represents the portTypes the

process offers. The policies that a process requires of

its partners can also be attached on the partners’

WSDLs. Both can then be handled by policy-

supporting Web Services middleware,
23

just as non-

BPEL services are handled.

It is, however, often necessary to attach policies

directly to BPEL constructs, especially when one

needs a finer grained attachment than WSDL

provides, that is, a policy to be applied only to a

subset of the invoke activities of a particular

operation. This also applies when one requires a

different grouping of attachments than WSDL can

provide, such as a policy on all interactions in a

scope (possibly with several partners). Attaching

policies to BPEL constructs (scopes and

partnerLinks) is presented in Reference 25, with a

focus on combining the functionality of the WS-

Transactions specification with BPEL. The model

prescribed in Reference 25 is described next.

Transactional policy assertions, using the syntax in

Reference 21, can be attached to either scopes or

partnerLinks. The coordination protocol of a policy

on a partnerLink is used in all interactions with

that partnerLink which belong to the same scope.

Figure 3 illustrates attaching policies to WSDL

definitions and BPEL processes. The figure shows a

system with two BPEL processes, A and B, and Web

Services that are invoked by these processes. Also

shown are examples of attaching policies to WSDL

(security, reliable messaging, and atomic-transac-

tion policies) and to BPEL (a WS-AtomicTransac-

tions policy is attached on the partnerLink of

process A, shown by the coordinated partnerLink

pair of arrows).

The partner itself has to be able to support this

policy, and its WSDL should confirm that. A scope

delineates the transaction, either if it has a coordi-

nation policy attached to it (coordinated scope) or if

it has to invoke activities to any partnerLinks with

such policies. The start of the scope begins the

Web
Service 1

Web
Service 2

Container with Policy Support

BPEL Interpreter

Figure 3
Attaching policies to WSDL definitions and BPEL processes

<process>
 <sequence>

WSDL

WSDL + Security policy

WSDL + Reliable
Messaging Policy

WSDL + Atomic
Tx Policy

Process B

Coordinated
PartnerLink

<process>
 <sequence>

Process A

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 433

transaction, and the end of the scope signals the end

of the transaction; any invoke activities in a

coordinated scope and any invoke activities to a

coordinated partnerLink in a regular scope occur as

part of that transaction. To enforce this, the BPEL

engine should be integrated with policy support and

with a subsystem handling the specific policy types

defined on the process. Work is ongoing to consider

advanced uses, such as coordinated partnerLinks

and scopes in the case of scope nesting, and

enabling the process itself to participate in a trans-

action instead of just initiating it.

Although the attachment of policies for different

QoS requirements is neatly modular from an XML

point of view, its implications for the underlying

middleware are not as clear-cut. For example, a

possible clash between the ordering and sequencing

constructs of WS-ReliableMessaging and the control

constraints of the corresponding BPEL activities

would require close coordination between the

reliable-messaging subsystem and the BPEL inter-

preter.
25

Approaches that do not use WS-Policy attachments

for adding QoS to BPEL are found in References 26,

27, and 28. For example, References 26 and 27 use

aspect-oriented programming with BPEL, the latter

focusing on aspects for QoS. In Reference 28,

partner-service endpoints are selected while a

process is running so that it can meet global QoS

constraints.

WORKING WITH PEOPLE: EXTENDING BPEL TO
ACTIVITIES INVOLVING HUMANS

BPEL is an extensible language in which domain-

specific extensions may be created, thus avoiding

the necessity to incorporate the needed functionality

into the base language. The result is the creation of

towers on top of the base syntax and semantics, thus

maintaining the separation of concerns. The addi-

tion of tasks involving humans to a BPEL process

can be done with such extensions.

Consider the example of a business process that

combines human activities with application calls.

The process manages maintenance requests of a

multicity maintenance company with several mobile

workers making service calls in the area of coverage.

The process interacts with the accounting depart-

ment for updating client billing records and for

managing maintenance requests. Upon reaching the

target location of the next maintenance request, the

maintenance person logs into the system and

retrieves the list of remaining service calls for the

day, perhaps optimized according to the current

location. The list contains, say, three service calls.

The maintenance worker selects two of these, logs

off, and proceeds to perform these two tasks. Later,

the worker logs in again from a location that offers

Internet connectivity, updates the database with the

status and costs of the tasks performed, and

retrieves the list of remaining service calls. By that

time the third task is no longer in the to-do list

because it has been picked up by another worker.

In BPEL, direct support for human-facing capability

has been dropped: everything is a Web service

invocation. Of course, one could implement a Web

service that forwards the request to middleware that

handles the human-facing functionality, including

staff resolution (finding the persons who can

perform a particular task) and management of a

worker’s task list, and finally responds to the BPEL

process. Even though that works technically, the

information about the people and skills needed to

perform a task is part of the business logic. Using a

pure Web Services approach hides from a designer

or a user that some activities are to be performed by

humans. Additionally, staff resolution and task-list

management can often be done by the workflow

management system directly.

IBM workflow products already support human-

facing activities
30

with the Flow Definition Markup

Language (FDML). It was natural to continue that

support when the products evolved to BPEL.

Therefore, an extension to the invoke activity has

been included in the IBM WebSphere* Application

Server Process Choreographer,
31

an example of

which is shown below:

,bpel:invoke partnerLink¼"null"
portType¼"abc:maintenancePT"
operation¼"performMaintenance"
inputVariable¼"ClientInformation"
outputVariable¼"statusAndCost".

,wpc:staff.

,wpc:potentialOwner.,staff:membersOfRole

role¼"fieldWorker"/.,/wpc:potentialOwner.

,wpc:reader.,staff:membersOfRole

role¼"manager"/.,/wpc:reader.

,/wpc:staff.

,/bpel:invoke.

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006434

The staff extension is a subelement of invoke. Each

staff activity includes the operation and portType

identifying the work to be done, and instead of a

partnerLink includes the staff element containing

the information about the people that can edit,

manage, read, or actually execute this activity. Each

gets resolved into one or more userids, relating the

activity to actual people. The lookup can extend to

entire organizational directories and their hierar-

chies, taking roles, memberships, and skills into

account. When such an activity is triggered, a

person must be found to take over the role of

potentialOwner and perform the requested work.

Upon logging into the system, the user can pull up,

in a provided user interface, a list of all the activities

(work items) that require attention. By selecting a

work item the user becomes its owner (the item is

then removed from the lists of all potential owners).

The work item owner can obtain the activity’s input

data, perform its work, and send any resulting

messages when done (possibly a fault notification)

to the system. Because human-facing tasks are

usually far slower than automated tasks, possibly

taking several days or longer, the response is sent

asynchronously.

In addition to enabling human-facing activities, it is

sometimes necessary to allow a human administra-

tor to fix a problem involving a running process,

especially a long-running one.
31

By avoiding a

complete rollback and restart of the entire process,

valuable time and resources are saved. A process-

administrator extension in Process Choreographer

has been implemented for this purpose. In the

standards arena, an extension of BPEL is proposed

in Reference 29 toward creating a standard for such

human-facing activities.

BPEL FOR GRID COMPUTING

Grid computing
32

enables one to treat a large

number of networked computers and other re-

sources (disks, services, etc.) as a single virtual (and

much bigger) computer. The application that

brought the grid to the masses was the SETI@home

project,
33

allowing anyone to aid in the search for

aliens by signing up their computer to perform, in its

spare time, part of the massive data analysis on

radio telescope signals. Placing open standards at its

core,
34

the Grid community created an architecture

for the Grid that builds on and extends the XML

specifications and standards created for Web Ser-

vices, which is known as the Open Grid Services

Architecture (OGSA).

The Grid community, a largely scientific commu-

nity, has considered a number of workflow systems

and languages. Since the OGSA treats Grid compo-

nents as Grid services with WSDL interfaces, there is

momentum towards adopting BPEL as the language

of choice. BPEL meets interoperability and openness

requirements and is designed to operate in a service-

oriented world. Additionally, it enables the scientific

community to use any of the many industrial-

strength workflow engines, or any of the open-

source or free implementations available on the

Web. In Reference 35 the authors justify the

community’s need for a workflow representation

& One can think of BPEL’s
approach to partner interactions
as a programming model for
SOA applications &

and present a case study, finding BPEL a suitable

language for scientific flows using Grid services. To

ease process design and make it more accessible to

scientists (in this case, computational chemists),

they provide domain-specific extensions and short-

cuts, such as indexed flows that are expanded into

standard BPEL by a preprocessor or style sheet.

The Grid treats computing resources as a special

kind of services described by the Web Services

Resource Framework (WSRF) specifications.
11

A

WS-Resource is a data context required by a Web

service in order to operate properly on a particular

request. A resource has properties that can be

queried at any time and explicit life-cycle manage-

ment (creation using a factory pattern, destruction,

timed destruction). The Implied Resource Pattern

(WS-Resource Access Pattern) provides a mecha-

nism to identify that context, usually by using

reference properties as part of the endpoint refer-

ence (EPR) identifying the resource that the request

should manipulate.

In References 36 and 37, a number of best practices

are presented for using BPEL in Grid environments,

aimed at streamlining BPEL with WSRF. We high-

light these below. Overcoming challenges using

Grid-specific extensions to BPEL is preferred over

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 435

the option of changing BPEL’s existing capabilities.

Taking advantage of XML extensibility enables the

user to remain compliant with the specification,

reuse much of the available infrastructure, and run

pure BPEL processes in the same engine as the one

that runs the extended processes.

First, one must be able to treat a process as a WS-

Resource. Recall that BPEL uses correlation and not

reference properties for identifying instances. One

must be able to use EPRs with reference properties

to address a BPEL process instance and for its

interactions with its partner (WSRF-compliant)

services. This is possible because using WS-

Addressing is not disallowed by BPEL. The end-

points that a process offers must also support the

implied resource pattern.

The resource life cycle can be explicitly managed,

whereas BPEL processes have an implicit life cycle.

However, explicit life-cycle capabilities can be easily

offered by a BPEL process. The factory pattern

(explicit creation) can be implemented indirectly by

using a dispatcher or directly by the process through

an assign that copies its own EPR and uses it to

reply to the sender of the creating message. A BPEL

event handler can be included in the process to

allow explicit destruction of a process instance; an

alarm handler can be placed to support timed

destruction.

A WS-Resource has resource properties that can be

accessed and modified. A BPEL variable can be

created whose type is that of the resource property

document, and event handlers on the process can

handle calls to get, set, and query the resource

property. Advanced queries can be handled by the

process through delegation to another service.
36

In Reference 37, Slominski proposes providing

services commonly used by grid workflows locally

as pseudo-partners, such as the transfer of large

amounts of data using GridFTP or Reliable File

Transfer. The difference between a pseudo-partner

and a regular partner is that invocations to pseudo-

partners can be optimized by allowing the system to

shortcut to them directly. Handling the large

amounts of data used in scientific workflows must

be done efficiently. Although pseudo-partners may

help in the short term, Slominski proposes looking

into using explicit data streams or data links. Other

possibilities include passing endpoint references in

messages with a pointer to where one can retrieve

relevant pieces of the data.
36

Grid QoS requirements are similar to those for Web

services at large and can be provided by using a

combination of local BPEL fault and compensation

capabilities and complementary specifications for

security, reliability, and coordination. Nonfunction-

al requirements can be attached either to WSDL or

to parts of a process as described in the section

‘‘Adding quality of service using WS-policy,’’ and

executed by middleware supporting the BPEL

engine.
23

The Grid community requires open, standardized

process-monitoring capability. However, BPEL

views this capability as a system service to be

provided optionally by a workflow management

system in which a BPEL process runs, and it is not

addressed explicitly in the BPEL specification. One

option for adding nonproprietary monitoring sup-

port
37

is to use WS-Notification, an eventing

specification. Another is to provide a BPEL exten-

sion for monitoring.
36

However, that would require

an open and standardized state model for BPEL

processes and their activities, which might lead to

conflict because different vendors’ state models

reflect the different capabilities (and extensions) of

their engines, and agreeing on a single model that

contains the necessary information for advanced

monitoring could be a major obstacle.

BPEL FOR AUTONOMIC COMPUTING

Autonomic computing
38,39

is an initiative spear-

headed by IBM that aims at reducing the complexity

of managing computer systems by making them self-

managing and adaptable to changing conditions. A

study shows that operator errors account for the

largest fraction of failures of Internet services;
40

hence, properly managing changes is critical to the

availability of information technology (IT) services.

An autonomic manager automates a set of manage-

ment functions and externalizes these functions

according to the behavior defined by management

interfaces. Examples of autonomic managers are

systems management platforms, mid-level manag-

ers, service provisioning systems, and management

logic embedded in a managed resource, such as the

administration console of a Web application server

or the performance advisor of a database manage-

ment system (DBMS). Managed resources expose

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006436

management data—such as counters and gauges—

to autonomic managers by means of sensors.

Effectors, on the other hand, allow an autonomic

manager to modify the behavior of a managed

resource by setting its configuration parameters or

tuning knobs to specific values. Managed resources

can be perceived as WS-Resources with sensors and

effectors provided as operations of corresponding

services.
11

In the autonomic computing architecture,
41

the

decision process carried out by autonomic managers

is represented by a control loop, which consists of

four functions: monitor, analyze, plan, and execute.

Figure 4 depicts the conceptual architecture of an

autonomic manager.

The monitor function collects sensor data and

organizes them into symptoms that need to be

analyzed. An example for this function is computing

the average response time for a transaction spanning

multiple systems by consolidating performance data

collected at various points of a distributed system.

The analyze function analyzes the observed symp-

toms and determines the change needed to rectify

the problem in conformance with policy rules. This

involves, for example, comparing the obtained

response time to its allowable range, as specified in

a service level agreement (SLA). If the SLA is broken

or at risk of being broken, a change request is issued

for the deployment of additional servers.

The plan function provides the mechanisms that

construct a change plan, a partially ordered set of

tasks needed to achieve goals and objectives. The

component in charge of creating a change plan for a

given change request is the change manager. Its

purpose is to assign tasks to available resources,

according to a variety of cost-based and technical

constraints, such as SLAs, administrator policies,

and compatibility and collocation requirements for

software. In addition to task-to-resource assign-

ments, a change plan comprises deadlines and

maximal durations for each activity as well as for

the overall change plan. It can be represented as a

(BPEL) workflow.

The execute function carries out the change by

interpreting the change plan. This function is

typically implemented by provisioning systems,

such as IBM Tivoli Provisioning Manager.
42

An

important part of this function is keeping track of the

way changes are rolled out on the target systems

and feeding this status information back to the

change manager.

Note that in addition to interacting with the sensors

and effectors of managed resources, an autonomic

manager may provide sensors and effectors that

expose its functionality to other autonomic manag-

ers. Consequently, sensor and effector interfaces

enable autonomic managers to be aggregated into

hierarchies or peer-to-peer relationships in a manner

that is transparent to the managed resources.

We use BPEL for representing change plans in order

to seamlessly integrate the planning and execution

functions of an autonomic manager and to automate

the provisioning of distributed applications and

services. Expressing the change plan in BPEL

facilitates further manual modification and custom-

ization by an administrator, if needed. In the next

section we introduce the provisioning of a complex

enterprise application as our driving scenario. After

that, we will analyze the features of BPEL that make

it particularly suitable for representing change

plans.

Provisioning the enterprise application

Our case study involves installing and configuring a

J2EE**-based enterprise application and its sup-

porting middleware on multiple machines. The

middleware includes IBM’s HTTP Server, Web-

Sphere Application Server, WebSphere MQ* em-

beddedmessaging, DB2* Universal Database* (UDB)

Figure 4
Architecture of an autonomic manager

Symptom
Change
Plan

Sensors Effectors

Change
Request

ExecuteMonitor

Analyze Plan

Knowledge

Sensors Effectors

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 437

server, and DB2 runtime client. The application we

use is the SPECjAppServer2004 (Sp04 for short)

enterprise-application performance benchmark,
43

a

complex multitiered online e-Commerce application

that emulates applications found in an automobile

manufacturing company and its associated dealer-

ships. Sp04 comprises typical manufacturing, supply

chain, and inventory applications that are imple-

mented with Web, EJB**, messaging, and database

tiers. We jointly refer to the Sp04 enterprise

application, its data, and the underlying middleware

as the Sp04 solution.

The Sp04 solution depicted in Figure 5 spans an

environment consisting of two systems (separated

by the dashed line in the figure): one system hosts

the application server along with the Sp04 J2EE

application, whereas the second system runs the

DBMS that hosts the various types of Sp04 data

(catalog, orders, pricing, user data, etc.). One of the

many challenges in provisioning such a solution

consists in determining the proper order in which its

components need to be deployed, installed, started,

and configured. For example, the HostedBy de-

pendencies between the components SPECjApp-

Server2004 J2EE Application and WebSphere

Application Server V5.1 state that the latter acts as a

hosting environment for the former. This indicates

that all the WebSphere Application Server compo-

nents need to be operating before one can deploy the

J2EE application.

Change plan requirements and their

representation in BPEL

A change plan is a procedural description of

activities, each of which maps to an operation that

the provisioning system reveals by means of a set of

WSDL interfaces. As these interfaces are known well

in advance before a change plan is created, they can

be referenced by a change plan in a straightforward

manner as portTypes in BPEL partnerLinks. Every

operation has a set of input parameters; an

operation to install a particular software component

on a target system, for example, requires references

to the software and to the target system as input

parameters. Some of the parameters may be

supplied by a user when the change plan is executed

by means of the receive activity (e.g., the host

Figure 5
Dependencies between components of a SPECjAppServer solution

HostedBy HostedBy

HasComponents

Uses

Uses

Uses

HasComponents

HasComponentsHasComponents

HasComponents

Web Application Server Database Server

SPECjApp2004
J2EE Application

SPECjApp2004
Data

HTTP
Server

WebSphere
Application
Server v5.1

WebSphere
Application
Server v5.1
Core

SPECjAppServer2004
J2EE Solution

Embedded
Messaging

DB2 Runtime
Client v8.1

DB2 UDB
Server 8.2

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006438

name of the target system that will serve as the

database server) and need to be forwarded to

several activities in the change plan. The assignment

of these parameters to activities is done by the BPEL

assign and copy statements, which move parameters

between messages by populating the various parts

of a variable. We note that the parts of a variable

typically correspond to configuration parameters of

a system; however, their specific values for a given

system are either obtained from the user (or another

BPEL process) by means of the receive activity, or

extracted from data sources whose interfaces are

defined as partnerLinks in the BPEL workflow.

Whereas the structure of a change plan is known up

front, the values for its parameters are determined at

runtime in order to address the dynamic reconfigu-

ration requirements of autonomic systems.

Precedence constraints reflect the order in which

provisioning activities need to be carried out. Some

of these constraints are implicit (e.g., the contain-

ment relationship HasComponent between software

components), whereas others (typically resulting

from communication dependencies such as uses or

federates) require an explicit representation (e.g.,

the DB2 runtime client needs to be installed on a

system whenever a database located on a remote

host needs to be accessed). In the former case, the

(potentially nested) BPEL flow and sequence con-

structs are used to group activities accordingly; in

the latter case, links represent a convenient means

to specify precedence constraints between activities

that can be nested arbitrarily deep in sequences or

flows.

An important consideration for minimizing the

overall provisioning times lies in the exploitation of

concurrency, especially when fairly large software

packages (the size of middleware installation images

is often several hundreds of megabytes) need to be

installed on different hosting environments. It is

particularly advantageous to define a change plan as

a flow-based business process that comprises

several sequences, each corresponding to a hosting

environment. Unless explicit precedence constraints

are specified by means of BPEL links, a workflow

engine processes them in parallel, thus avoiding

unnecessary delays.

The specification and enforcement of durations and

deadlines for provisioning activities in a change plan

allows a change manager to keep track of whether

the rollout of a distributed system proceeds as

planned or whether a schedule overrun is likely.

This is needed because a change manager needs to

make sure that the maintenance intervals specified

in an SLA are respected in order to avoid the

payment of penalties due to the unavailability of a

service. The BPEL scope and onAlarm constructs

help address this requirement, as one can attach a

scope containing a timer to every provisioning

activity and to the overall change plan. If an activity

runs behind schedule, a schedule overrun event is

sent from the workflow engine to the change

manager, which then decides if the execution of the

change plan should be terminated prematurely or if

it should continue despite the delay.

Note that we decided not to perform error recovery

or deal with schedule overruns (e.g., by means of

BPEL compensation handlers) within the change

plan itself. This is because in service provider

environments, resources are often shared among

different customers, and a change of a customer’s

hosted application may affect the quality of service

another customer receives. Before rolling out a

change for a given customer, a service provider

& A change plan should be
represented as a flow-based
business process in BPEL &

needs to trade off the additional benefit it receives

from this customer against a potential monetary loss

because an SLA with another customer may be

violated due to the change. The scheduling of

change plans, a core change manager function, is

the result of solving an optimization problem that

carefully balances the benefits it receives from

servicing one customer’s change request against the

losses it incurs from not being able to service other

customers. In an on demand environment, the cost/

profit situation may change very rapidly as many

change plans are concurrently executed at any given

instant. In some cases, it may be more advantageous

to carry on with a change despite its delay, whereas

in other cases, terminating a change prematurely

and instead servicing another newly submitted

request that is more profitable may lead to a better

global optimum. This big picture, however, is only

available to the change manager, which is why

compensation handlers are not encoded within

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 439

individual change plans. Note that a change

manager implements an autonomic control loop and

can therefore be regarded as a special-purpose

autonomic manager.

Finally, an important requirement for provisioning

composed applications (obtained by composition of

services) is the dynamic aggregation of already

existing and tested change plans. In the case of Sp04

and its underlying middleware, change plans for

provisioning some of its components (such as

WebSphere Application Server or the DB2 DBMS)

may already exist. By exposing a WSDL interface,

BPEL workflows can be aggregated and composed to

reflect the assembly of several software components

into distributed applications. Over time, a library of

best practices for changing and configuring software

systems—codified as BPEL workflows—can evolve

through componentization at a workflow level. Such

best practices may then be further aggregated into

higher-level change management processes to ac-

complish a process-based approach to IT service

management.
44–46

While some activities in the IT

service management process can be automated

(e.g., creating change plans and executing them),

other activities (such as approving a change) require

human intervention. The introduction of extensions

for human-facing activities, into BPEL (see the

section ‘‘Working with people: Extending BPEL to

activities involving humans’’) is an important step

toward addressing this requirement.

Change plans can be created either manually from

scratch or automatically generated from domain-

specific knowledge. Our research prototype of a

CHAnge Manager based on Planning and Scheduling

(CHAMPS)
47

relies on software dependency models

specified as Installable Unit Deployment Descrip-

tors
48

to automatically generate change plans.

A change plan for SPECjAppServer2004

provisioning
Figure 6 illustrates selected activities of the BPEL

workflow for provisioning and configuring the Sp04

solution, rendered in the BPEL Editor of WebSphere

Process Choreographer. The workflow consists of

two major sequences (Application Server Sequence

and Database Server Sequence), which group the

provisioning and configuration activities according

to the systems on which the activities need to be

carried out. We distinguish between the various

change management operations as well as the

hosting environments to which they apply. When-

ever no dependencies exist between activities in a

flow, a workflow engine will carry them out

concurrently, which has the potential of significant

time savings, especially if they are to be carried out

on different systems. Additional sequences are

nested in the major sequences. These additional

sequences group the activities for installing and

configuring the WebSphere Application Server, the

Sp04 application, and the DB2 database system.

Each of the sequences contains the individual

deployment and configuration activities, which deal

with deploying the various software products from a

centralized software repository to the target sys-

tems, installing them, and configuring them. Before

installing a component, its hosting environment

needs to be started.

Configuration-related activities cover a wide variety

of tasks, which go beyond the mere setting of

parameters; rather, they involve the creation of

logical structures, such as table spaces and tables in

a database system, populating these logical struc-

tures with data, or creating data sources, connection

pools, and factories in an application server. In

order to keep the workflows at an acceptable level of

granularity, we rely on a set of small configuration

scripts
49

that break down each of the configuration

activities in Figure 6 into their atomic tasks and

execute them on the target systems.

Configuration activities sometimes require a set of

input parameters that are produced by other

activities. These parameters need to be passed

between configuration activities; this—in turn—

imposes constraints on their execution order. As an

example, the CREATE JDBC** Provider and

SPECjHostAliases activity in the CONFIGURE Appli-

cation Server (AS) WAS5.1 sequence requires

various parameters (such as database name, host

name of the DB server, port number of the database

demon) that result from the CREATE Database

activity, which is carried out on a different system.

Whenever this is the case, one needs to insert a link

between these activities to ensure that the workflow

engine does not start the execution of an activity

before the predecessor activity has finished. This is

especially important when the flow of configuration

parameters crosses system boundaries. In Figure 6,

the two magenta horizontal arrows indicate such

cross-system constraints; they are expressed by

means of the BPEL link construct.

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006440

Executing the change plan

Upon receiving a newly submitted change request,

the change manager needs to determine on which

resources and at what time the change will be

carried out. As depicted in Figure 7, the change

manager first inspects the resource pools of the

provisioning system (Resource Availability arrow)

to determine which target systems are best assigned

to the change by taking into account the operating

system they run, their system architecture, and the

cost of assigning them to a change request. Based on

this information, the change manager creates a

change plan, which may be composed of already

existing change plans that reside in a change plan

Figure 6
Selected activities in the BPEL workflow for provisioning the SPECjAppServer solution

CREATE JDBC Provider and SPECjHostAliases

INSTALL AS WAS5.1 Sequence

DEPLOY AS WAS5.1 Package

INSTALL AS WAS5.1

INSTALL WAS Embedded Messaging

START AS WAS5.1

CONFIGURE AS WAS5.1 Sequence

CREATE SPECDatasources

INSTALL EAR Files

Database Server Sequence

INSTALL DBMS DB2UDB8.1 Sequence

DEPLOY DBMS DB2UDB8.1 Package

INSTALL DBMS DB2UDB8.1

START DBMS DB2UDB8.1

CONFIGURE DBMS DB2UDB8.1 Sequence

CREATE UserAccount

CONFIGURE DBRegistry

CREATE Database

LOAD Database

Application Server Sequence

DEPLOY EAR Files Package

INSTALL J2EE SPECjAppServer Sequence -

-

-

-

-

-

-

-

-

-

-

-

-

-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 441

repository (Look Up Change Plan arrow). Once the

change plan is created, it is submitted to the

workflow engine (Change Plan arrow). In our

prototype system, we use IBM WebSphere Process

Choreographer, a general-purpose workflow engine

that is able to interpret and execute change plans

defined in BPEL.

IBM Tivoli* Provisioning Manager, an autonomic

manager that we use in our prototype, maps the

actions defined in the change plan to operations that

are understood by the target systems. Its object-

oriented data model is a hierarchy of Logical Devices

that correspond to the various types of managed

resources (e.g., software, storage, servers, clusters,

routers, and switches). The methods of these types

correspond to Logical Device Operations (LDOs) that

are exposed as WSDL interfaces, which allow their

inclusion in the change plan as partnerLinks.

Automation Packages are product-specific imple-

mentations of logical devices. For example, an

automation package for the DB2 DBMS would

provide scripts that implement the software.

install, software.start, and software.stop

LDOs. An automation package consists of a set of

Jython scripts, each of which implements an LDO.

Figure 7
Architecture of a workflow-driven change manager prototype

WebSphere Process Choreographer

Software.Install
(WebSphere v5, pclab.ibm.com)

RequestID
= 10021

Request.getStatus (10021) Status
= ‘Completed successful’

Target Systems

Running
Change Plan

Plan and Task Status

SoftwareLogical Devices

Logical Device Operations
(in WSDL)

Automation Packages

…

Server Switch …

ge
tS

ta
tu

s
DB2

WebSphere v5

Lotus Notes*

BladeCenter* Cisco IOS

Tivoli
Provisioning
Manager

Resource AvailabilityLook up Change Plan

In
st

al
l

St
ar

t

C
on

fig
ur

e

St
op

U
ni

ns
ta

ll

Change Plan
Repository

Resource
Pools

Change
Request

Change
Plan

Change Manager

*Trademark of International Business Machines Corporation

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006442

Every script can further embed a combination of

PERL, Expect, and bash shell scripts that are

executed on the remote target systems. We note that

the composition pattern applies not only to BPEL

workflows, but occurs in various places within the

provisioning system itself.

The workflow engine inputs the change plan and

starts each provisioning operation by directly

invoking the LDOs of the provisioning system.

These invocations are performed either in parallel or

sequentially, according to the flows, sequences, and

links defined in a change plan. A major advantage of

using a workflow engine for our purposes is that it

automatically performs state checking; that is, it

determines whether all conditions are met for

triggering the next activity in a workflow. Conse-

quently, there is no need for developing additional

program logic to perform such checks. This, how-

ever, is still required when interpreters for scripting

languages are used, as is often the case in traditional

systems management.

In a second step, the provisioning system is invoked

by the workflow engine and performs the requested

operations. It reports the status of each operation

execution back to the workflow engine. This status

information is usedby theworkflowengine to check if

the workflow constraints defined in the plan (such as

deadlines) are met and to inform the changemanager

whether the rollout of changes runs according to the

schedule defined in the change plan. For further

details on our implementation, see Reference 50.

Advantages of using BPEL for autonomic
computing

Our prototype implementation demonstrates that

BPEL is fully applicable to representing change

plans for execution by an autonomic manager. BPEL

offers a number of advantages over other workflow

languages. First, its built-in support of Web Services

and XML allows the invocation of provisioning

operations in a platform-independent and portable

way. Second, the use of a BPEL workflow engine

makes delegation of activity-execution status

checking and compliance monitoring possible, with

specified deadlines. Based on the instructions in a

change plan, the change manager is notified by the

workflow engine whenever an activity is completed

and when a deadline has passed. Third, the

declaration of a change plan as a flow-based

business process ensures a high degree of parallel-

ism for a set of tasks. In the Sp04 example, the

ability to carry out multiple activities in parallel

allows us to achieve a total time of about 34 minutes

on average (compared to about 50 minutes for

strictly sequential activity execution) for provision-

ing the Sp04 application and its middleware stack.

Fourth, by leveraging the Web service composition

& A library of best practices
for configuring software
systems can be built from tested
BPEL workflows &

capabilities of BPEL, one can aggregate and reuse

already existing change plans. Over time, a library of

tested BPEL workflows for changing and configuring

software systems can be built, which can serve as a

basis for higher-level IT service management pro-

cesses
44

whose activities can be either automated or

carried out by humans, if needed. Finally, BPEL

helps in integrating and composing autonomic

managers out of existing autonomic managers,

thereby facilitating the delegation and reuse of

autonomic functions in distributed, heterogeneous

environments.

CONCLUSION

In this paper we have presented the concepts behind

BPEL, focusing on language extensions and several

application areas, which included human-facing

activities, the use of abstract processes, Grid

computing, and a case study in autonomic comput-

ing. We covered upcoming changes to the specifi-

cation, especially with regard to BPEL abstract

processes, which are beginning to see some activity

but are still lagging behind the executable variant in

uptake. We show the strengths of BPEL and point to

its shortcomings and possible future enhancements.

From a strictly technical point of view, BPEL can be

seen as one of many proposed workflow languages.

Considering nontechnical aspects, however, BPEL is

a significant step forward because it brings together

two formerly separated workflow communities

(graph-oriented and calculus-based), and—more

important—is implemented by all major vendors.

This is enormous progress for users because it

provides something they have long required: a single

workflow language portable across environments.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 443

BPEL uses Web Services to implement core activities

and also renders processes as Web Services. A

criticism of BPEL has been that there are application

domains where a pure Web Services abstraction

does not suffice or is inappropriate. However,

BPEL’s extensibility can be used to adapt it to such

areas. For example, extensions for supporting

subprocesses in order to tie various processes into a

whole are described in Reference 51, whereas

extensions for direct support of Java within BPEL for

applications that do not require Web Services and

XML are described in Reference 7. Such extensions

require standardization to benefit from portability.

The use of extensions to BPEL for supporting the

entire spectrum of business process management

can be viewed as a corollary to the modularity and

composability ‘‘axiom’’ of the Web service plat-

form.
4
This axiom is responsible for another

criticism of BPEL, namely, its complexity, resulting

from the number of standards needed for a full

solution. For example, specifying deployment in-

formation is not BPEL-specific and therefore left out

of the specification but is required at many places in

the Web Services stack. As a consequence, specify-

ing such information declaratively (e.g., through

policies) results in highly adaptive processes in

terms of partner bindings.

The momentum behind the BPEL specification and

its support from industry and academia is largely due

not only to its architecture and capabilities but also

to its having been layered on top of the Web Services

stack, the standardization effort, and the number of

implementations that quickly became available,

thereby decreasing learning and adoption curves.

Some have seen BPEL as a programming language in

XML, others have described it as the export format

for business processes, while still others (amongst

them the authors) see it as a powerful workflow

language that presents the natural (conversational)

model for programming in-the-large in a service-

oriented world. Most important, if it were not for the

XML base, we would still be talking about propri-

etary languages and platforms.

ACKNOWLEDGMENTS
We acknowledge Dieter Koenig for feedback on

earlier drafts. We thank our colleagues at IBM,

including Stefan Tai, Thomas Mikalsen, and the

Component Systems Group for collaborations

described in this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries or both.

CITED REFERENCES AND NOTES
1. F. Leymann and D. Roller, Production Workflow, Prentice

Hall, Upper Saddle River, New Jersey (2000).

2. The Workflow Management Coalition, http://www.
wfmc.org.

3. D. Georgakopoulos, M. Hornick, and A. Sheth, ‘‘An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure,’’ Dis-
tributed and Parallel Databases 3, No. 2, 119–153 (1995).

4. The Web Services Platform Architecture, S. Weerawarana,
F. Curbera, F. Leymann, T. Storey, and D. Ferguson,
Editors, Addison Wesley, Reading, MA (2005).

5. Business Process Execution Language for Web Services
Version 1.1, BEA Systems, IBM Corporation, Microsoft
Corporation, SAP AG, and Siebel Systems (2002),
developerWorks (updated February 1, 2005), http://
www.ibm.com/developerworks/library/specification/
ws-bpel.

6. R. Khalaf, N. Mukhi, and S. Weerawarana, ‘‘Service-
Oriented Composition in BPEL4WS,’’ Proceedings of the
Twelfth International World Wide Conference
(WWW2003), Web Services Track, Budapest, Hungary,
May 20–24, 2003, Kluwer Academic Publishers, Norwell,
MA (2003).

7. M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G.
Pfau, D. Roller, and M. Rowley, BPELJ: BPEL for Java
Technology, BEA Systems and IBM Corporation (2004),
http://www.ibm.com/developerworks/library/
specification/ws-bpelj/.

8. ‘‘BPEL Abstract Processes,’’ S. Thatte and R. Khalaf,
Editors, Input document to the OASIS Technical Com-
mittee’s discussions on possible changes to BPEL abstract
processes (2004), http://lists.oasis-open.org/archives/
wsbpel/200409/doc00000.doc.

9. R. J. van Glabbeek, ‘‘The Linear Time—Branching Time
Spectrum,’’ http://theory.stanford.edu/~rvg/abstracts.
html#19.

10. A. Martens, ‘‘Consistency between Executable and
Abstract Processes’’ Proceedings of the IEEE International
Conference on e-Technology, e-Commerce and e-Services
(EEE 2005), March 29–April 1, 2005, Hong Kong, China,
IEEE, New York (2005), pp. 60–67.

11. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke, ‘‘From Open Grid
Services Infrastructure to WS-Resource Framework:
Refactoring and Evolution,’’ Fujitsu, Globus Alliance,
IBM Corporation, 2004. http://www.globus.org/wsrf/
specs/ogsi_to_wsrf_1.0.pdf.

12. J. Hidders, M. Dumas, W. M. P. van der Aalst, A. H. M.
ter Hofstede, and J. Verelst, ‘‘When Are Two Workflows
the Same?’’ Proceedings of Computing: The 11th Austral-
asian Theory Symposium (CATS), Newcastle, Australia,
February 2005. Australian Computer Society (2005),
pp. 3–11.

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006444

13. A. Martens, ‘‘Process-Oriented Discovery of Business
Partners,’’ Proceedings of the Seventh International Con-
ference on Enterprise Information Systems (ICEIS’05),
May 25–28, 2005, Miami, Florida (May 2005), pp. 57–64.

14. P. Massuthe, W. Reisig, and K. Schmidt, ‘‘An Operating
Guideline Approach to SOA,’’ Proceedings of the 2nd
South-East European Workshop on Formal Methods 2005
(SEEFM05), Ohrid, Republic of Macedonia (2005).

15. A. Martens, ‘‘Analyzing Web Service Based Business
Processes,’’ Proceedings of the Eighth International
Conference on Fundamental Approaches to Software
Engineering (FASE’05), Edinburgh, Scotland, April 4–8,
2005, in Lecture Notes in Computer Science 3442,
Springer, Berlin (2005), pp. 19–33.

16. WOMBAT4WS (in German), online from Humboldt
University, Berlin, http://www.informatik.hu-berlin.de/
top/wombat/.

17. BABEL tools, Queensland University of Technology,
Brisbane, Australia, http://www.bpm.fit.qut.edu.au/
projects/babel/tools/.

18. S. Damodaran, ‘‘B2B Integration over the Internet with XML:
RosettaNet Successes and Challenges,’’ Proceedings of the
13th International Conference on World Wide Web (WWW
2004)—Alternate Track Papers and Posters,New York, May
17–20, 2004, ACM, New York (2004), pp. 188–195.

19. P. Bunter, R. Hertlein, R. Khalaf, and A. Nadalin, An
Approach to Moving Industry Business Messaging Stan-
dards to Web Services, developerWorks, IBM Corporation
(2004), http://www.ibm.com/developerworks/
webservices/library/ws-move2ws.html.

20. R. Khalaf, ‘‘From RosettaNet PIPs To BPEL Processes: A
Three Level Approach for Business Protocols,’’ Third
International Conference on Business Process Manage-
ment (BPM 2005), Nancy, France, September 5–8, 2005,
in Lecture Notes in Computer Science 3649, Springer,
Berlin (2005), pp. 364–373.

21. S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I.
Rouvellou, ‘‘Transaction Policies for Service-Oriented
Computing,’’ Data and Knowledge Engineering Journal
51, No. 1, 59–79 (2004).

22. N. K. Mukhi, P. Plebani, I. Silva-Lepe, and T. Mikalsen,
‘‘Supporting Policy-Driven Behaviors in Web Services:
Experiences and Issues,’’ Proceedings of the 2nd Interna-
tional Conference on Service-Oriented Computing (ICSOC
’04), ACM New York (2004), pp. 322–328.

23. F. Curbera, M. J. Duftler, R. Khalaf, W. A. Nagy, N.
Mukhi, and S. Weerawarana, ‘‘Colombo: Lightweight
Middleware for Service-Oriented Computing,’’ IBM Sys-
tems Journal 44, No. 4, 799–820 (2005).

24. E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P.
Devanbu, ‘‘GlueQoS: Middleware to Sweeten Quality-of-
Service Policy Interactions,’’ Proceedings of the 26th
International Conference on Software Engineering (ICSE
2004), May 23–28, 2004, Edinburgh, United Kingdom.
IEEE, New York (2004), pp. 189–199.

25. S. Tai, R. Khalaf, and T. Mikalsen, ‘‘Composition of
Coordinated Web Services,’’ Proceedings of ACM/IFIP/
USENIX International Middleware Conference (Middle-
ware 2004) Toronto, Canada, October 18–20, 2004, in
Lecture Notes in Computer Science 3231, Springer, Berlin
(2004), pp. 294–310.

26. C. Courbis and A. Finkelstein, ‘‘Weaving Aspects into
Web Service Orchestrations,’’ Proceedings of the 3rd IEEE
International Conference on Web Services (ICWS 2005),
July 11–15, 2005, Orlando, Florida, IEEE, New York
(2005), pp. 69–77.

27. A. Charfi and M. Mezini, ‘‘Using Aspects for Security
Engineering of Web Service Compositions,’’ Proceedings
of the 3rd IEEE International Conference on Web Services
(ICWS 2005), July 11–15, 2005, Orlando, Florida, IEEE,
New York (2005), pp. 59–66.

28. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng, ‘‘Quality Driven Web Services Composition,’’
Proceedings of the Twelfth International World Wide Web
Conference (WWW2003), Budapest, Hungary, May 20–
24, 2003, ACM, New York (2003), pp. 411–421.

29. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,
A. Rickayzen, C. von Riegen, P. Schmidt, and
I. Trickovic, WS-BPEL Extension for People (BPEL4-
People), IBM Corporation and SAP AG (2005), http://
www.ibm.com/developerworks/webservices/library/
specification/ws-bpel4people/.

30. K. Lind and E. Norman, WebSphere Application Server
Enterprise Process Choreographer: Staff Resolution Archi-
tecture, developerWorks, IBM Corporation (2003), http://
www.ibm.com/developerworks/websphere/library/
techarticles/wasid/WPC_StaffArch/WPC_StaffArch.
html.

31. M. Kloppmann, D. König, F. Leymann, G. Pfau, and D.
Roller, ‘‘Business Process Choreography in WebSphere:
Combining the Power of BPEL and J2EE,’’ IBM Systems
Journal 43, No. 2, 270–296 (2004).

32. I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kauffman Publishers,
San Francisco, CA (1999).

33. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.
Werthimer, ‘‘SETI@home: An Experiment in Public-
Resource Computing,’’ Communications of the ACM 45,
No. 11, 56–61 (November 2002).

34. I. Foster, ‘‘What is the Grid: A Three Point Checklist,’’
Grid Today (July 20, 2002).

35. W. Emmerich, B. Butchart, L. Chen, B. Wasserman, and
S. L. Price, Grid-Service Orchestration Using Business
Process Execution Language (BPEL), University College
London, CS Research Note RN/05/07 (June 2005).

36. F. Leymann, ‘‘Choreography for the Grid: Toward Fitting
BPEL to the Resource Framework,’’ Concurrency and
Computation: Practice and Experience (2006, to appear).

37. A. Slominski, ‘‘On Using BPEL Extensibility to Implement
OGSI and WSRF Grid Workflows,’’ Concurrency and
Computation: Practice and Experience (2006, to appear).

38. A.G.GanekandT.A.Corbi, ‘‘TheDawningof theAutonomic
Computing Era,’’ IBM Systems Journal 42, No. 1, 5–18, 2003.

39. R. Murch, Autonomic Computing, IBM Press/Prentice
Hall (2004).

40. D. Oppenheimer, A. Ganapathi, and D. A. Patterson,
‘‘Why Do Internet Services Fail, and What Can Be Done
about It?’’ Proceedings of the 4th Usenix Symposium on
Internet Technologies and Systems, March 26–28, 2003,
Seattle, WA, USENIX Association (2003).

41. An Architectural Blueprint for Autonomic Computing,
Autonomic Computing White Paper, Third Edition, IBM
Corporation (June 2005), http://www-128.ibm.com/
developerworks/autonomic/library/ac-summary/
ac-blue.html.

42. IBM Tivoli Provisioning Manager, http://www.ibm.com/
software/tivoli/products/prov-mgr/.

43. SPECjAppServer2004 Design Document, Version 1.01,
Standard Performance Evaluation Corporation (January

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KHALAF, KELLER, AND LEYMANN 445

2005), http://www.spec.org/osg/jAppServer2004/docs/
DesignDocument.html.

44. A. Brown and A. Keller, ‘‘A Best Practice Approach for
Automating IT Management Processes,’’ Proceedings of
2006 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), Vancouver, BC, Canada, IEEE,
New York (April 2006, to appear).

45. IT Infrastructure Library, ‘‘ITIL Service Support, Version
2.3,’’ Office of Government Commerce, United Kingdom
(June 2000).

46. L. Simcox, K. Shah, T. Dunton, and D. Groves,
‘‘Introduction to IT Service Management, Part 1: Auto-
mate Your Key IT Processes,’’ developerWorks, IBM
Corporation (May 2005), http://www.ibm.com/
developerworks/library/ac-prism1/.

47. A. Keller, J. L. Hellerstein, J. L. Wolf, K.-L. Wu, and
V. Krishnan, ‘‘The CHAMPS System: Change Manage-
ment with Planning and Scheduling,’’ R. Boutaba and
S.-B. Kim, Editors, Proceedings of the 9th IEEE/IFIP
Network Operations and Management Symposium
(NOMS’2004), Seoul, Korea, April 2004. IEEE, New York
(2004), pp. 395–408.

48. M. Vitaletti, (Ed.), ‘‘Installable Unit Deployment
Descriptor Specification, Version 1.0,’’ W3C Member
Submission, IBM Corporation, ZeroG Software,
InstallShield Software Corp., and Novell Inc. (July
2004), http://www.w3.org/Submission/2004/
SUBM-InstallableUnit-DD-20040712.

49. T. Lau, ‘‘Set Up a SPECjAppServer2004 Application with
DB2 Universal Database,’’ developerWorks, IBM Corpo-
ration, July 2004. http://www-106.ibm.com/
developerworks/db2/library/techarticle/dm-0407lau/.

50. A. Keller and R. Badonnel, ‘‘Automating the Provisioning
of Application Services with the BPEL4WS Workflow
Language,’’ Proceedings of the 15th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations &
Management (DSOM 2004), November 15–17, 2004,
Davis, CA, in Lecture Notes in Computer Science 3278,
Springer, Berlin (2004), pp. 15–27.

51. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A.
Rickayzen, C. von Riegen, P. Schmidt, and I. Trickovic,
WS-BPEL Extension for Subprocesses (BPEL-SPE) IBM
Corporation and SAP AG (September 2005).

Accepted for publication December 7, 2005.

Rania Khalaf
IBM Research Division, Thomas J. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532
(rkhalaf@us.ibm.com). Ms. Khalaf is a software engineer in
the Component Systems group at the Watson Research Center.
She received her Bachelor’s and Master’s degrees in computer
science and electrical engineering from MIT in 2000 and 2001.
Her interests include component-based software engineering,
workflow, and service-oriented computing, Web Services in
particular. Ms. Khalaf is a co-developer and co-architect of the
IBM BPEL4WS prototype implementation (BPWS4J) and the
Java Record Object Model (JROM). She has published a
number of papers on service-oriented computing and has
served on the program committees of conferences and
workshops in the field. Ms. Khalaf is pursuing her Ph.D.
studies in service aggregation and composition under Prof. Dr.
Frank Leymann at the University of Stuttgart while continuing
to work at IBM.

Alexander Keller
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (alexk@us.ibm.com). Dr. Keller is a
research staff member and manages the Service Delivery
Technologies department at the Watson Research Center. He
received his M.Sc. and Ph.D. degrees in computer science
from Technische Universität München, Germany, in 1994 and
1998, and has published more than 40 refereed papers in the
area of distributed systems management. He joined the IBM
Research Division in 1999. Dr. Keller’s research interests
revolve around change management for applications and
services, information modeling for e-business systems, and
SLAs (service-level agreements). He serves on several
technical program and organizing committees of related
conferences and workshops and is a member of the USENIX
Association, the IEEE, and the DMTF CIM Applications and
Metric Extensions working groups. He was a main contributor
to the IBM Web Service Level Agreement (WSLA) framework,
which served as the basis for the upcoming GGF WS-
Agreement standard.

Frank Leymann
University of Stuttgart, Universitätsstr.38, 70569 Stuttgart,
Germany and IBM Software Group, Böblingen, Germany
(Frank.Leymann@informatik.uni-stuttgart.de). Prof. Dr.
Leymann is a full professor of computer science and director
of the Institute of Architecture of Application Systems at the
University of Stuttgart, Germany. His research interests
include service-oriented computing, workflow and business
process management, transaction processing, and architecture
patterns. Frank worked for two decades in the IBM Software
Group, building database and middleware products. He was
awarded the title of IBM Distinguished Engineer in 2000 and
was elected to the IBM Academy of Technology in 1994. He
has worked continuously on workflow technology since the
late 1980s, becoming known as the father of IBM’s workflow
product set. He contributed heavily to the architecture and
strategy of IBM’s entire middleware stack and IBM’s on
demand computing strategy and is co-architect of the Web
Services stack. He is co-author of many Web Services
specifications, including WSFL, WS-Addressing, WS-
MetadataExchange, WS-Business Agreement, the WS-
Resource Framework, and, of course, BPEL4WS. Dr. Leymann
has published many papers in journals and proceedings, co-
authored three text books, and holds a multitude of patents
especially in the area of workflow management and
transaction processing. He served on program and organizing
committees of many international conferences, and he is
editor-in-chief or associated editor of several journals. &

KHALAF, KELLER, AND LEYMANN IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006446

Published online May 10, 2006.

