F. Ozcan

D. Chamberlin
K. Kulkarni
J.-E. Michels

Integration of SQL and XQuery
In IBM DB2

Relational database systems have dominated the database industry for a quarter
century. However, the advent of the Web has led to requirements for storage of new
kinds of information in which the order of information is important and data structure
can vary over time and from one document to another. These evolving requirements
have given rise to Extensible Markup Language (XML) as a widely accepted data format
and to XQuery as an emerging standard language for querying XML data sources. A set
of extensions to the Structured Query Language (SQL) called SQL/XML enables XML
data to be stored in relational databases, taking advantage of the mature infrastructure
of relational systems and combining the advantages of SQL and XQuery. However,
building a bridge between SQL and XQuery is challenging due to the many syntactic
and semantic differences between the two languages. This paper describes how 1BM
DB2® deals with this challenge and provides users with a flexible system for storing

and processing both relational and XML data.

INTRODUCTION

Since the introduction of the first relational database
systems in the early 1980s, the commercial database
field has seen mostly evolutionary changes. Most
large-scale commercial database systems introduced
since that time have been based on the relational
data model and Structured Query Language (SQL).
Recently, however, a new data format, Extensible
Markup Language (XML), and a new query lan-
guage, XQuery, have emerged to challenge the
predominance of pure relational systems. XML and
XQuery represent a significant new approach to
database management. In this paper, we examine
the motivation for this new approach, and we
compare the SQL and XQuery languages to deter-
mine how they can be used cooperatively by sharing
a common infrastructure, thereby taking advantage

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

of the large existing investment in relational
technology.

In understanding the need for a new approach to
storing and retrieving data, the concept of metadata
is crucial. Metadata is defined as “data about
data”—that is, it is information that describes the
structure of stored data. All database systems
provide some means for storing metadata, and all
query languages make use of metadata in processing
queries. In relational systems, metadata is stored

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

OZCAN ET AL

245

separately from the data itself, typically in a set of
tables called the system catalog. This is possible
because relational systems are designed for data that
has a regular, repeating structure that can be
described independently of any data instance; for
example, every row of a table contains the same
columns and the same data types. Relational data-
base systems are well optimized for traditional
business applications in which the metadata is well
known and changes slowly, if at all.

SQL is a mature relational database language that
takes advantage of the regular structure of data
stored in tables. For example, consider the following
SQL query:

SELECT itemno, price

FROM product

WHERE description= ‘sweater’” AND price < 100
ORDER BY price

In processing this query, an SQL implementation
can rely on information about the product table that
is stored in the system catalog. For example, each
row of the table might be known to have exactly one
price value of type DECIMAL (possibly null). The
semantics of the query language need not be
concerned with rows that have no price column, or
have more than one price, or have a price of an
unexpected type.

As database systems have evolved toward handling
more complex kinds of information, the need for a
more flexible data format has become evident. For
example, Web services and other forms of e-
commerce exchange information in the form of
messages with complex and flexible formats. Docu-
ments available on the Web vary widely in their
structure and very often rely on an intrinsic (non-
value-based) ordering of their parts.

Even among documents of a single type, a great
variation may exist from one document to another.
For example, in medical records, patients may vary
widely in the numbers of doctors visited, types of
insurance, diseases, medications, procedures, and
so on. Types of data that are present in one patient
record may be absent in another. Each medical
record may be sparse, meaning it contains only a
few of the many possibilities. Because of these
variations, each record must be self-describing; that

246 OZCAN ET AL

is, it must contain metadata that describes its own
structure and content.

The need for documents to be self-describing led to
the notion of markup—descriptive information
associated with the parts of a document. Markup
originated in the publishing industry and was first
used by editors to specify aspects of appearance,
such as font and size. Gradually, markup evolved
toward a logical description (for example, “citation”
rather than “italics”), which enabled document
components to be rendered differently on different
devices and to be more readily understood by
applications such as information retrieval systems.
A standard notation for logical markup called
Standardized General Markup Language (SGML)
was adopted by the International Organization for
Standardization in 1986." Today’s XML notation is a
direct descendant of SGML.

In self-describing data, such as XML documents,
metadata is separated into two types—markup and
schema. Markup contains information about indi-
vidual instances of stored data—for example, a piece
of data might be identified as an address or as a part
number. A schema, on the other hand, contains
global information about how documents are
assembled from their component parts. (Note that
this use of the term schema is different from the use
of the same term in the SQL Standard.z) A schema
for a purchase order, for example, might specify that
a purchase order consists of a date, a customer, a
ship-to address, an optional bill-to address, and an
array of one or more items that in turn contain
lower-level data structures. A schema for a given
type of document specifies the degree of flexibility
that is allowed in constructing documents of that
type, such as alternative content, optional content,
and constraints on the number of occurrences of
various parts. Within the constraints allowed by a
schema, markup is used to identify the structure of
an individual document. At one extreme, the
structure of a document can be completely specified
and constrained by its schema. At the other extreme,
a document may have no schema at all and may rely
entirely on markup for its metadata.

XML provides separate specifications for inserting
e 3
descriptive markup into an individual document
and for creating a schema that describes the
(possibly flexible) structure of a class of docu-
ments.* An XML schema corresponds roughly to a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

relational system catalog, whereas XML markup is a
form of metadata that is largely absent and
unnecessary in relational systems.

Although both XML and the relational data model
are completely general in their ability to represent
all types of data, differences exist in the types of data
typically stored in these respective formats. Some of
these differences are as follows:

e XML data is often sparse—that is, a given data
element may contain only some of many possi-
bilities. Sparse data can also be represented in
relational format, but relational representations of
sparse data tend to be more complex and
inefficient because they lack the self-describing
property of XML.

e Relational data has no intrinsic order that is
independent of its values, but XML is often used to
store intrinsically ordered data, such as para-
graphs in a book.

e XML documents often contain text, which in-
creases the importance of specialized forms of
search. Text search requires linguistic operations,
such as stem matching, and often needs to
combine precise with imprecise forms of search in
a single query. Relevance ranking is an important
form of search in XML data.

* Compared to a typical relational system catalog,
XML schema information is often more complex
and subject to change. An XML query may operate
over multiple documents conforming to different
schemas or to multiple versions of a schema.
Some documents may not have a schema. An XML
database must be prepared to cope with schema
evolution—an environment in which schema
information is heterogeneous and rapidly
changing.

COMPARING SQL AND XQUERY

The first languages to be widely used in retrieving
information from XML documents were XPath® and
XSLT.® XPath was designed as a notation for
navigating within an XML document, which is
structured as a hierarchy of elements and attributes.
XPath can isolate the elements and attributes that
satisfy a given search criterion, but it is limited in
that it cannot construct a new element. For this
reason, it is not a complete query language. XSLT is
more powerful than XPath, but was designed
primarily for transforming one document into
another. The expressive power of XSLT is sufficient

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

for a query language, but its recursive pattern-
matching paradigm is difficult to optimize and is
better adapted for document transformation than for
queries.

Recognizing the limitations of XPath and XSLT, the
World Wide Web Consortium (W3C* *)7 organized a
workshop in 1998° to begin consideration of a new
query language for XML data sources. One outcome
of the workshop was the formation of a new W3C
working group on XML Query, which has produced
a draft specification of a new language called
XQuery. Participants in the XML Query Working

m In understanding the need for
a new approach to storing and
retrieving data, the concept of
“metadata” is crucial m

Group have included database experts and infor-
mation retrieval specialists, engineers and language
theorists, users, and software vendors. Some of the
reasoning that shaped the basic architecture of
XQuery has been documented in Reference 9. The
XQuery speciﬁcation10 has now completed its Last
Call period, and in November 2005, it was adopted
as a W3C Candidate Recommendation, an important
step in the W3C standardization process. In the
meantime, several software vendors have developed
products based on the evolving XQuery specifica-
tion. A current list of XQuery implementations is
maintained on the XML Query Working Group’s
public Web page.11

One of the first activities of the XML Query Working
Group was to define a formal representation for
XML data called the XQuery 1.0 and XPath 2.0 Data
Model."” This data model served as the basis for the
development of XQuery. In this paper, we refer to
this data model simply as the XQuery Data Model
(XDM).

Another early activity of the XML Query Working
Group was to evaluate the possibility of extending
SQL to serve as a query language for XML data
sources. Because of XML’s hierarchic structure,
intrinsic ordering, and integrated metadata, the
working group concluded that XML would be better
served by a new query language rather than by
extensions to SQL (for a more complete analysis of

OZCAN ET AL

247

this decision, see Reference 9). Nevertheless, in
comparing XQuery with SQL, it is apparent that the
languages have many similarities:

* Both are declarative query languages (though
arguably, XQuery is somewhat less declarative
than SQL).

* Both are functional languages defined in terms of a

set of expressions that are closed under a specific

data model.

The two languages are roughly equivalent in

expressive power (both support joins, quantifica-

tion, recursion, and user-defined functions, but
not second-order functions).

* Both languages have type systems that include
simple and complex data types and inheritance.

¢ Both languages have set-oriented operators, in-
cluding union and intersection, as well as set-
oriented search operators. To compare these set-
oriented search facilities, the following examples
illustrate how the two languages would express a
query against a database of orders and items to
find the dates on which a customer named Jones
ordered an item with the description hat:

SQL:

SELECT date

FROM order, item

WHERE order.customer = *Jones’
AND order.orderno=1item.orderno
AND item.description= ‘hat’

XQuery:

/order[customer =*“Jones”] [item[description=
“hat”]]/date

A closer examination of the two languages, how-
ever, reveals that they also have many significant
differences:

e XML data, unlike relational data, has an intrinsic
order. This fact affects the design of XQuery in
many ways, including positional predicates, “be-
fore” and “after” predicates, and operators, such
as path expressions, that preserve document
order.

Relational databases represent information only
by values, whereas XML also uses the concept of
nesting (element hierarchies). As a result, some
joins that would be explicit in SQL are implicitly

248 OZCAN ET AL

represented by path expressions in XQuery. In
addition, some kinds of search that would be
complex and recursive in SQL can be represented
compactly by using XQuery operators such as //,
which searches for an object at an unknown depth
in a hierarchy.

Because XML mixes markup with data, it is
possible in XQuery to express queries that span
both data and metadata, such as, “What kinds of
things are red?” Data and metadata are separated
in relational databases; therefore, SQL does not
provide a facility for expressing this kind of query.
SQL has a null value, which is needed because
every row of a table has the same set of columns.
XQuery, on the other hand, has no notion of a null
value because XML permits missing data to be
represented by elements that are empty or simply
absent.

SQL logical operators (and, or, and not) are three-
valued because of the presence of nulls (compar-
ison of a null to any other value returns the
“unknown” truth value). XQuery, on the other
hand, uses traditional two-valued Boolean logic.
Certain XQuery operators (such as eq) return an
empty sequence when one operand of a compar-
ison is an empty sequence. The XQuery operators
and and or treat the empty sequence as false.
XQuery users desiring three-valued logic are free
to define their own logical operations as user-
defined functions.

XQuery has two sets of comparison operators,
called value comparisons (which operate on single
values) and general comparisons (which operate
on sets and look for any matching pair). Thus, in
XQuery, author =“Gray” is true if any author of a
given work is equal to Gray, whereas author eq
“Gray” requires that Gray be the only author. This
distinction is important in XML, where the
cardinality of an expression such as author may
vary from one element to the next. In SQL, on the
other hand, a value expression always returns a
single value. SQL has the notion of a quantified
predicate such as = ANY or = ALL, but these
predicates can be used only in restricted circum-
stances (when the right side of the comparison is a
table subquery).

XQuery has a concept of identity that is not
present in SQL. In XQuery, nodes (which corre-
spond to XML concepts such as elements and
attributes) have identity, but atomic values (such
as 47 and “Hel10”) do not. The concept of identity
affects the XQuery language in several ways. The

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

language has expressions called constructors that
create new nodes with new identities. Also,
XQuery set operators, such as union and
intersect, and path expressions eliminate dupli-
cates from their results based on node identity
rather than on value, as in SQL.

e In SQL, every data item has a data type, such as
INTEGER or VARCHAR(100), that governs its be-
havior in various expressions. XQuery supports, in
addition to specific data types resembling those of
SQL, the notion of untyped data. Untyped data is
typically found in documents that have no
schema. XQuery provides special rules for han-
dling untyped data. Generally, for usability and
compatibility with XPath 1.0, XQuery attempts to
cast untyped data to an expected type based on the
context where it is encountered. For example,
untyped data encountered in an arithmetic ex-
pression is cast to the type xs:double.

e SQL supports overloaded functions and performs
function selection based on the data types of the
operands. XQuery, on the other hand, does not
support overloaded functions. Each XQuery func-
tion (identified by its function name and number
of parameters) has a well-defined signature, and
an XQuery function call attempts to coerce its
arguments to the expected types. This approach is
consistent with the XQuery principle of operating
on untyped data and casting it to an expected type
based on its use.

e Names are more complex in XQuery than in SQL
because they conform to the conventions of
QNames in XML namespaces.13 For example, the
XQuery names a: foo and b: foo might match if the
namespace prefixes a and b are both bound to the
same namespace Uniform Resource Identifier
(URI).

* The type system of XQuery, which is based on
XML Schema,4 has many more primitive data
types than the SQL-type system and it also has a
different inheritance model. In SQL, user-defined
data types are encapsulated and can be inspected
only by their observer methods. XML values, on
the other hand, are not encapsulated, and their
state can be freely inspected. XQuery supports
derivation by extension, which corresponds
roughly to the subtype concept in SQL, and also
supports other XML Schema concepts, such as
derivation by restriction and substitution groups.
These concepts, required for compatibility with
XML Schema, contribute greatly to the complexity
of XQuery.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

The remainder of this paper is organized as follows:
the next section introduces a set of SQL extensions
called SQL/XML, which are designed to bridge the
gap between SQL and XQuery, allowing the lan-
guages to work closely together. The paper then
describes how SQL/XML and XQuery are supported
in IBM DB2* Universal Database* Version 9.1 on the
Linux**, UNIX**, and Windows** platforms, and it
discusses some of the challenges that arise in

m A set of SQL extensions called
SQL/XML bridges the gap
between SQL and XQuery,
allowing the languages to work
closely together m

interfacing SQL and XQuery due to their differences
in low-level syntax, semantics, and type systems. It
then concludes by summarizing how SQL/XML
allows users to combine the advantages of SQL and
XQuery, using each language where it is most
appropriate.

BRIDGING SQL AND XQUERY: SQL/XML

With the increasing acceptance of XML as a standard
data format in many applications, the need is
growing for systems that can store and manage
persistent XML data while supporting a full set of
tools and infrastructure that include backup and
recovery, concurrency, and access control. Of
course, XML data can be stored in special-purpose
database systems designed exclusively for that
purpose, but storing XML data in a relational
database system makes it possible to reuse the
extensive existing infrastructure. Because the data-
base industry has a huge investment in SQL
implementations, application development tools,
and packaged applications, there is a great deal of
interest in extending SQL-based systems to handle
the storage and manipulation of XML data along
with relational data. The resulting hybrid database
systems will allow XML and relational data to
coexist and complement each other in an enterprise
information architecture.

In addition to capabilities for storing and retrieving
XML data, SQL-based systems usually offer another
important XML-related feature: an ability to trans-

form (or “publish”) relational data in XML format.

OZCAN ET AL

249

The data to be published is extracted from tables by
SQL queries and may be either native relational data
or data that was derived by shedding (decomposing
XML documents into rows and columns). It is easy
to see why a publishing facility is important: Vast
quantities of business data are stored in SQL
database systems, and there is a great demand for
presenting this data in XML form to various client
applications. Converting relational data to XML
format requires extensions to SQL.

Because some of the techniques for handling XML
data in relational systems require SQL language
extensions, the organizations responsible for the
standardization of SQL (the ANSI INCITS H2
committee in the United States and the ISO/IEC
JTC1 SC32 WG3 committee internationally) have
initiated activities to standardize the required
extensions. These efforts led to the publication in
2003 of a new part of SQL, Part 14: XML-Related
Specifications (SQL/XML),14 referred to in this paper
as SQL/XML:2003. A revised version, referred to in
this paper as SQL/XML:2006, is expected to appear
in mid 2006." The approach taken by the SQL/XML
specification is consistent with the decision of the
W3C XML Query Working Group to develop a new
query language for XML, because it embeds the
XQuery language in SQL and relies on it for querying
XML data stored in relational systems.

The primary goal of SQL/XML is to act as a bridge
between SQL and the XML world, which includes
the XML standard itself,’)(Query,10 and XML
Schema.” SQL/XML provides SQL language exten-
sions in the following major categories:

XML data type—SQL/XML introduces a new SQL
data type called XML for storing XML documents
and provides a set of functions for converting
between the new data type and other SQL data

types.

Publishing functions—SQL/XML provides a set of
functions for publishing relational data in XML
format.

Query functions—SQL/XML provides a set of func-
tions for embedding XML queries inside SQL
queries.

In addition, SQL/XML provides a set of mapping
rules that specify how names, values, and data types

250 GzCAN ET AL

can be mapped between the SQL and XML worlds,
which follow quite different conventions. SQL/
XML:2003 specified many of the language exten-
sions listed previously, and the remaining exten-
sions will be covered by SQL/XML:2006. In the
following sections, we briefly describe these facili-
ties, with emphasis on how they are used in IBM
DB2. The reader is referred to Reference 15 for a
more complete description.

The examples in the remainder of this paper are
based on a relational database containing three
tables. In the books table, each row represents a
book, and the content of the book is contained in a
column of type XML. The articles table contains
ordinary relational data about articles in journals.
The authors table contains information about the
authors of articles and books. Each row of the
authors table contains an association between one
author and one book or article, identified by its
pubid as a foreign key. The SQL CREATE TABLE
statements below show the details of the column
names and data types in the three tables.

CREATE TABLE books(
id CHAR(20) NOT NULL PRIMARY KEY,
bookdoc XML)

CREATE TABLE articles(
id CHAR(20) NOT NULL PRIMARY KEY,
title VARCHAR (250),
year INTEGER,
journal VARCHAR (200));

CREATE TABLE authors(
id CHAR (20) NOT NULL PRIMARY KEY,
name CHAR (60),
affiliation CHAR (50),
pubid CHAR (20));

XML data type

SQL/XML provides a new SQL built-in data type
called XML. Each instance of the XML data type
encapsulates an instance of the XDM—that is, it
contains a sequence of zero or more nodes or atomic
values. (In SQL/XML:2003, the XML type was based
on an extended version of the XML Infoset.'® The
basis for the XML type will change to the more
flexible XDM in SQL/XML:2006.) A value of the
XML data type is distinct from a textual represen-
tation of the same XML data. The XML data type can
be used in the same ways as any other SQL data

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

type, such as to specify the type of a column or a
function parameter.

The following example creates an SQL table named
books with two columns. The column named id is
of type VARCHAR (20), and the column named
bookdoc is of type XML:

CREATE TABLE books (
id VARCHAR (20) NOT NULL PRIMARY KEY,
bookdoc XML)

SQL/XML provides a set of modifiers that can be
used with the XML data type to constrain its
instances in various ways—for example,
XML(DOCUMENT) denotes an XML data type that is
constrained to contain only well-formed XML
documents. DB2 does not support these explicit type
modifiers. In DB2, each instance stored in a column
of type XML must be a well-formed XML document,
but the result of a query or view definition may be
any XDM instance.

As the XML data type is distinct from other SQL data
types, such as VARCHAR and CLOB, SQL/XML pro-
vides a set of functions that can be used for
converting between XML and other data types and
for performing other useful operations on instances
of the XML data type. These functions are sum-
marized in the following subsections.

XMLParse

The XMLParse function converts an SQL character or
binary string into an instance of the XML data type.
It parses the input string according to the rules of
XML Version 1.0° and returns a value of type XML.
The syntax of the XMLParse function is illustrated by
the following example, which inserts a value into an
XML column. The value is obtained by parsing the
string contained in the variable :h_var, which must
be of an SQL character or binary string data type
(CHAR, VARCHAR, BLOB, or CLOB). The required key-
word DOCUMENT indicates that the input string must
contain a well-formed XML document. The optional
keywords PRESERVE WHITESPACE indicate that all
white-space characters in the input string are
preserved in the stored document.

INSERT INTO books (id, bookdoc) VALUES (12567,
XMLParse (DOCUMENT :h_var PRESERVE WHITESPACE))

A potential problem with statements such as the one
in the previous example is that DB2 performs code-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

page conversions on character strings when they are
exchanged between the client application and the
database server if the client and server are using
different code pages. Code-page conversions should
be avoided in the case of XML data in order to avoid
introducing inconsistencies with the XML encoding
declaration. To avoid code-page conversions, a user
can use a binary host variable (BL0OB) to contain XML
data or a special syntax in the SQL DECLARE SECTION
to specify that a host-language variable contains
XML data. When a variable declared in this way is
used as an input variable, no code-page conversion
is performed, and the content of the variable is

m The most important new
functionality in SQL/XML:2006
is the ability to embed an
XQuery expression inside an
SQL statement m

automatically parsed into a value of type XML. The
syntax for declaring a host variable containing XML
data is illustrated in the following example:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB (1IM) hv_book;
EXEC SQL END DECLARE SECTION;

XMlLSerialize

The XMLSerialize function is the inverse of
XMLParse—it converts a value of type XML into an
SQL character or binary string. It serializes the input
XML value into a value of type CHAR, VARCHAR, BLOB,
or CLOB by using the serialization rules of XQuery.17
The syntax of the XMLSerialize function is illus-
trated by the following example, which selects the
content of a book and serializes it as a value of type
CLOB:

SELECT XMLSerialize (bookdoc AS CLOB)
FROM books
WHERE id = 24577 ;

Serializing an XML value into a character string host
variable has the same potential problem with code-
page conversion described earlier for XMLParse.
Again, the solution to this problem is to serialize
into a variable of a binary data type or to use the
XML AS CLOB notation in the SQL DECLARE SECTION.
Whenever a variable that is declared using XML AS

OZCAN ET AL

251

CLOB is used as an output variable, its content is
automatically serialized, and no code-page conver-
sions are performed.

XMLCast

The XMLCast function is a variation of the SQL CAST
function in which either the source or target data
type is XML. In the following example, an SQL
integer value is cast into the XML data type,
resulting in an XDM instance that contains a single
item of type xs:integer:

XMLCast (1234 AS XML)

It is important to distinguish the semantics of
XMLParse from those of XMLCast and XMLSerialize.
Consider an SQL character string containing the
following content:

<part color=‘red”>Gear</part>

If this string is passed as input to the XMLParse
function, the result will be an instance of the XML
data type containing a document node, an element
node, an attribute node, and a text node. On the
other hand, if the same string is passed to the
XMLCast function with the target data type XML, the
result will be an XML item containing the original
input string as an instance of xs:string.

If the input to XMLCast is an XML value and the
target data type is an SQL type, the function first
converts the input value to an atomic value by using
XQuery atomization rules.'’ The resulting atomic
value must have a type that can be converted to the
SQL target data type according to the mapping rules
in the SQL/XML specification; otherwise, an error is
raised. Thus, if the XML value produced by parsing
the above example string were passed to XMLCast
with a target data type of VARCHAR (100), the
resulting value would be Gear. On the other hand, if
the same XML value were passed to XMLSerialize,
the result would be the original string: <part
color="red”>Gear</part>. If both the input data
type and the target data type are XML, XMLCast
returns references to the input nodes without
actually copying the nodes.

XMLvalidate

The XMLValidate function validates an instance of
the XML data type according to the validation rules
of XML Schema.” If the input value is a valid
document as defined by the given schema, the

252 (OzCAN ET AL

function returns a copy of the input value in which
the element and attribute nodes have been aug-
mented with default values and type annotations. If
the input is not a valid document as defined by the
given schema, an error is raised.

XML schemas are commonly represented as serial-
ized XML documents, frequently in a file with the
extension xsd that resides at some URL outside the
database. It is considered undesirable for a database
server such as DB2 to obtain an XML schema over
the Web, where its contents can change at the whim
of the owner or may simply become unavailable.
Therefore, DB2 requires users to register all XML
schemas to be used for validation and provides an
interface for this purpose. The list of registered
schemas is maintained in a DB2 catalog table.

A registered XML schema can be identified by an
SQL identifier or by the URI of its target namespace.
The schema to be used in an XMLValidate invoca-
tion can be specified explicitly in the function call or
determined from information contained in the input
document, as illustrated by the following examples:

1. This example identifies a registered schema by an
SQL identifier:

XMLValidate (DOCUMENT X
ACCORDING TO XMLSCHEMA ID SCOTT.BOOKS)

2. This example identifies a registered schema by its
target namespace URI:

XMLValidate(DOCUMENT X ACCORDING TO
XMLSCHEMA URT “http://example.books.com”)

3. In this example, because no schema is specified,
validation is performed against the registered
schema identified by the xsi:schemalocation
attribute of the root node of the input document:

XMLValidate(DOCUMENT X)

Publishing functions

As noted earlier, SQL/XML and DB2 provide a set of
functions for converting (“publishing”) relational
data into XML format. These functions are also
referred to as XML constructor functions, as their
purpose is similar to that of computed node
constructors in XQuery. In this section, we describe
these functions and provide examples of their use.
All the examples in this section are based on the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Table 1 ARTICLES

ID TITLE YEAR JOURNAL
ID0001 Web and XML 2001 ACMJ1
ID0002 XQuery Support in DB2 2005 ACMIJ1
ID0003 SQL/XML Progress Report — null IEEE J2
ID0004 XSLT and XQuery 2004 Journal X

articles table (Table 1). When an example query
is followed by the symbol =>, the text following the
=> symbol is the result of the query when executed
against the data shown here (query results have
been serialized with added white space for read-
ability).

XMLElement

XMLETement mirrors the functionality of the XQuery
element constructor in that its output is an XDM
element node. XMLETement is at the heart of the XML
publishing functions as it allows for creating an XML
element in any shape or form. Its variable parameter
list makes it possible to create simple constructs,
such as an empty element, or complex constructs,
such as many nested elements with attributes or
namespace declarations at each nesting level.

The first argument of XMLETement is an SQL
identifier that serves as the name of the element to
be constructed. This required argument can be
followed by a variable number of optional argu-
ments that specify namespace declarations, attribute
definitions, element content, and a null handling
option. If more than one optional argument is
supplied, the arguments must be supplied in the just
mentioned order. The arguments of XMLETement
may be provided in any form, including constants,
value expressions, subqueries, and calls to other
SQL/XML functions. The following example illus-
trates the simplest form of XMLElement, which
creates an empty element node.

VALUES (XMLETement (NAME “Journal”))

<Journal/>

The following example illustrates a more complex
invocation of XMLElement whose content includes

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

nested invocations of XMLETement to construct
nested elements.

SELECT XMLETement (
NAME “article”
XMLETement (NAME “title”, title)
XMLETement (NAME “journal”, journal),
XMLETement (NAME “year™, year))
FROM articles
WHERE id = “1D0001"

==

<article>
<title>Web and XML</title>
<journal>ACM J1</journal>
<year>2001</year>
</article>

As long as at least one of the values specified for the
content of the constructed element is non-null, the
element is constructed, and any null values are
ignored (i.e., they are dropped from the result). If all
of the values specified for the content of the
constructed element are null, the result of
XMLETement is defined by the final parameter, which
specifies a null handling option. The following
options are supported by DB2:

® EMPTY ON NULL (the default behavior): An empty
element is constructed and returned.

® NULL ON NULL: No element is constructed, and an
SQL null value is returned.

The null handling option applies only for the
XMLETement call in which it is specified. It does not
change the behavior of any contained XMLETement
call or any other value expression.

Unlike XML and XQuery, SQL is not (always) case
sensitive. As a result, close attention must be paid to
uppercase and lowercase in function calls, such as
XMLETement, that bridge the two languages. For
example, in XMLETement, the argument supplied for
the name of an XML element is an SQL identifier,
which is always made uppercase by the SQL engine
unless it is delimited by double quotation marks (a
“delimited identifier”). A user wishing to create an
element named Journal might be surprised that
XMLETement (NAME Journal) creates an element
named JOURNAL instead. The desired result can be

OZCAN ET AL

253

obtained by using a delimited identifier: XMLE1ement
(NAME “Journal”).

XMLAttributes

One or more attributes can be specified for an XML
element by means of the XMLAttributes function.
For each attribute, this function associates a value
specified by a value expression with an attribute
name specified by an SQL identifier. The attribute
name is optional if the value expression identifies a
column of a table. If an attribute name is not
specified, the column name serves as the attribute
name. If the value of an attribute is the null value,
then the attribute is not included in the result. To
comply with the XML Recommendation,3 no two
attribute names can be identical. The following
example shows how XMLAttributes can be nested
inside XMLElement to create an element with three
attributes (in this case, the element has no content):

SELECT XMLETement (NAME “article”,

XMLAttributes (journal AS “journal”,
title AS “title”,
year AS “year”))

FROM articles

WHERE id= *1D0001"

==

<article journal =<“ACM J1”
title=“Web and XML” year =<2001"/>

XMLNamespaces

Although a namespace declaration is similar in
appearance to an attribute definition, it has different
semantics. Therefore, namespace declarations are
created by a separate function called XMLNamespaces.
A call to XMLNamespaces can create one or more
namespace declarations, each of which binds a
namespace URI, supplied by a character string
literal, to a namespace prefix, supplied by an SQL
identifier, as illustrated by the following example:

SELECT XMLETement (NAME “lib:article”,

XMLNamespaces
(‘http://example.com/library’ AS“1ib”),

XMLAttributes (‘yes’ AS“lib:bestpaper”),
XMLETement (NAME “1ib:journal”, journal),
XMLETement (NAME “Tib:title”, title))

FROMarticles

WHERE title= ‘Web and XML’

254 (zCAN ET AL

<lib:articlexmins:1ib=“http://example.com/
library” Tib:bestpaper=‘yes”>
<lib:journal>ACMJ1</1lib:journal>
<lib:title>Weband XML</1ib:title>
</lib:article>

Another form of namespace declaration specifies the
default namespace that applies to all unprefixed
element names within the scope of a given element.
In a call to XMLNamespaces, a default namespace can
be specified by the keyword DEFAULT followed by a
namespace URI, or, if the element has no default
namespace, by the keywords NO DEFAULT.

A namespace prefix (or default namespace) defined
by XMLNamespaces is valid inside the XMLETement in
which it is specified. Nested calls to XMLETement
inherit the namespace prefixes defined by the outer
XMLETlement, unless it is overridden by a nested call
to XMLNamespaces. The following example illustrates
how default namespaces can be controlled by nested
calls to XMLETement and XMLNamespaces. The default
namespace specified for the article element is
valid inside the article and journal elements, but
not inside the title element, which has no default
namespace.

SELECT XMLETement (NAME “article”,
XMLNamespaces
(DEFAULT “http://example.com/library’),
XMLETement (NAME “journal”, journal),
XMLETement (NAME “title”,
XMLNamespaces (NO DEFAULT),
title))
FROM articles
WHERE title = ‘Web and XML’

<article xmins=“http://example.com/Tibrary”>
<journal>ACM J1</journal>
<title xmlins=">Web and XML</title>
</article>

To comply with Namespaces in the XML Recom-
mendation, " the prefixes xm1 and xmins are always
implicitly bound to http://www.w3.0rg/XML/1998/
namespace and http://www.w3.0rg/2000/xmlns,
respectively, and cannot be bound to any other
namespace URI. Similarly, no other namespace

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

prefix can be explicitly bound to either of these
URIs.

XMLForest

XMLForest provides a simple mechanism for creat-
ing a sequence of XML element nodes. As the name
of the function implies, these element nodes are not
rooted in a common top-level element, distinguish-
ing this function from XMLETlement, which always
generates exactly one top-level element node.

The argument to XMLForest is a list of one or more
value/name pairs that are used to construct the
element nodes. Each element content is specified by
a value expression whose declared type can be any
SQL predefined data type (including XML). Each
element name is specified by an SQL identifier. If the
value expression is a column reference, then the
name can be omitted, and the column name serves
as the element name. If the value of an element is
null, then that element is not included in the result.
By default, if all element values are null, then
XMLForest returns the null value. XMLForest is
illustrated by the following example:

SELECT XMLForest (
journal AS “journal”,
title,
year)

FROM articles

WHERE title = ‘Web and XML’

<journal>ACM J1</journal>
<TITLE>Web and XML</TITLE>
<YEAR>2001</YEAR>

Like XMLElement, XMLForest accepts a call to
XMLNamespaces as its first parameter, thus declaring
a set of namespaces that are valid inside all of the
element nodes created by XMLForest. Also like
XMLETement, XMLForest accepts a null handling
option at the end of its parameter list that specifies
the handling of constructed elements whose content
is null. The options are NULL ON NULL and EMPTY ON
NULL, with the same meanings as the equivalent
options in XMLETement. However, in XMLForest, the
default null handling option is NULL ON NULL, which
is the opposite default of XMLETement. This differ-
ence in defaults can be a source of confusion when
comparing a call to XMLETement with a call to
XMLForest. Unlike XMLElement, XMLForest provides

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

no syntax for specifying attributes for the con-
structed XML elements.

XMLConcat

The XMLConcat function takes a varying number of
parameters, each of which is a (possibly null) XML
value. It returns an XML value that is a sequence
comprising all the non-null input values. If any of
the input values are themselves sequences, the

m Just as there is much interest
in transforming SQL data into
XML data, the reverse is also
true m

result of XMLConcat is “flattened” into a single level
(it contains no nested sequences). If all the input
values are null, XMLConcat returns a null value.
XMLConcat might be thought of as the SQL/XML
counterpart of the comma operator in XQuery.

The semantics of XMLConcat are quite different from
those of the existing DB2 function named concat,
which is a string concatenation function. For
example, concat (“abc’, “123") returns the single
string abc123. XMLConcat, on the other hand,
operating on two XML values containing the strings
‘abc’ and ‘123’7, would return an XML value
containing the sequence (“abc’, “123"). Also,
concat returns null if any of its input values is null,
whereas XMLConcat returns null only if all its input
values are null.

XMLAgg

XMLAgg is different from the other XML publishing
functions in that it is an aggregate rather than a
scalar function. In that respect it is similar to the sum
function for numerical data types, which generates
the sum of all values in a column in a given group of
rows. Similarly, XMLAgg concatenates all the values
of a given column in a given group of rows using the
semantics of the XMLConcat function, i.e., null
values are ignored and only non-null values
contribute to the result. XMLAgg is often useful in
grouping XML values at a particular nesting level
and reconstructing XML values that have been
shredded across multiple tables.

In the following example, a top-level XML element is
generated that contains as subelements all of the

OZCAN ET AL

255

articles published in ACM J1. From the articles
table, all rows qualify whose journal column
contains the value ‘ACM J1°. For each of these rows,
an XML element is created whose name is title and
whose content is the value in the title column. All
of these XML elements are concatenated, and the
resulting sequence forms the content of the top-level
XML element named articles-in-ACMJ1.

SELECT XMLETement (

NAME “articles-in-ACMJ1”,

XMLAgg (XMLETement (NAME “title”, title)))
FROM articles
WHERE journal = “ACM J1°

==

<articles-in-ACMJ1>
<title>Web and XML</title>
<title>XQuery Support in DB2</title>
</articles-in-ACMJ1>

As rows in a table are inherently unordered, the
order of the subelements in the above example is not
ensured. To force a certain order XMLAgg accepts an
optional parameter with which the user can specify
the order of the XML values before they are
concatenated into a sequence. The following exam-
ple shows how an ordering can be imposed on the
subelements in the previous example:

SELECT XMLETement (
NAME “articles-in-ACMJ1”,
XMLAgg (XMLETement (NAME “title”, title)
ORDER BY title DESC))
FROM articles
WHERE journal = “ACM J1°

==

<articles-in-ACMJ1>
<title>XQuery Support in DBZ2</title>
<title>Web and XML</title>
</articles-in-ACMJ1>

Other publishing functions

In addition to the functions listed above, SQL/XML
provides publishing functions for comment nodes,
processing instruction nodes, text nodes, and docu-
ment nodes. Each of these functions closely resem-
bles its counterpart node constructor in XQuery.
These publishing functions are illustrated by the
following examples:

256 OzCAN ET AL

1. This function call returns an XDM comment
node:

XMLComment (*This is a comment’)

2. This function call returns an XDM processing
instruction node whose target is telephone and
whose value is ring:

XMLPI (NAME “telephone”, ‘ring’)

3. This function call returns an XDM text node
whose string value is Hello:

XMLText (‘Hello’)

4. This function call returns an XDM document
node with a child element node whose name is
color and whose value is Red:

XMLDocument (
XMLETement (NAME, “Color”, ‘Red’))

Query functions

Probably the most important new functionality in
SQL/XML:2006 is the ability to embed an XQuery
expression inside an SQL statement. This facility
provides an easy way to query XML values stored in
or generated by an SQL database. SQL/XML:2006
provides three functions for this purpose: XMLQuery,
which executes an XQuery and returns a scalar
value; XMLExists, which acts as a predicate and
returns true or false, and XMLTable, which
executes an XQuery and returns the result in the
form of a table (and is therefore used in the SQL
FROM clause). These functions are described in the
following subsections.

XMLQuery

The XMLQuery function allows SQL to execute an
XQuery expression, optionally passing named pa-
rameters to XQuery and receiving the result as a
value of type XML. At the language level, the
integration of SQL and XQuery is easily achieved,
which shows the versatility of both languages. Some
of the difficulties and challenges of this integration
are discussed in more detail in the section “Syntactic
and semantic challenges” later.

The simplest form of XMLQuery has a single argu-

ment: a character string literal containing the
XQuery expression to be evaluated. Successful

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

execution of this expression returns an XML value
(remember that an XML value is an XDM instance,
which is a sequence of zero or more items). The
XQuery expression is supplied as a character string
literal so that it is known at SQL query compilation
time and can be optimized together with the
enclosing SQL statement.

The following example is a simple XMLQuery
invocation that executes an embedded XQuery
expression without parameters. The result of the
query is a value of type XML containing a sequence
of integers: 2, 6, 12, 20.

XMLQuery (“for $i in (1,2,3,4)
let $j :=$i +1 return $i *$j")

The XMLQuery function is much more useful when it
passes a set of named parameters to the embedded
XQuery expression. This can be done by means of a
PASSING clause that specifies the name and value of
each parameter.18 The parameter name is an SQL
identifier, which can be referred to inside the
XQuery expression as a variable name (with a
leading “$” sign). The parameter value may be any
SQL expression. The result of evaluating this
expression is converted to the XML data type by
using the semantics of XMLCast (see the description
of XMLCast in the section “XML data type”) bound to
the named variable and made accessible inside the
XQuery expression.

The following example illustrates how XMLQuery can
pass a parameter to an XQuery expression. For each
row of the books table, the SQL query passes the
content of the XML column bookdoc to XQuery as a
parameter named $book. The XMLQuery function
executes the path expression $book/title and
returns the title of the book as a value of type XML.

SELECT XMLQuery (“$book/title’
PASSING BY REF bookdoc AS “book’)
FROM books

In the above example, the BY REF keywords indicate
that the bookdoc XML documents are passed by
reference to XQuery. When XML values are passed
by reference, no copy is made at the boundary
crossing, and node identities and parent linkages are
preserved. SQL/XML also defines another parame-
ter-passing option called BY VALUE, which copies the
nodes, losing node identities and parent linkages. To

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

avoid unnecessary copies and to enable use of the
parent axis, DB2 supports parameter passing only by
reference. In DB2, the BY REF keywords are optional
and are omitted in subsequent examples.

As XDM does not have a null value, each named
input argument that is null is converted into an

empty sequence before the XQuery expression is
evaluated. On the other hand, if the result of the

m DB2 unifies management of
relational and XML data,
supporting interfaces for both
SQL/XML and XQuery in a
unified query model m

XQuery expression is an empty sequence, no
conversion is necessary because an empty sequence
is a valid XDM value and therefore a valid value of
the XML data type.

XMLEXxists

The XMLExists function is similar to XMLQuery in
that it passes named parameters to XQuery and
executes an XQuery expression expressed as a string
literal. However, rather than returning the result of
the XQuery expression, XMLExists serves as a
predicate whose value is false if the result of the
XQuery expression is an empty sequence and is true
otherwise. The XMLExists function can be invoked
wherever a predicate can be used in an SQL query
(for example, in the WHERE clause or HAVING clause).

Note that if XMLEx1ists is used to evaluate an XQuery
expression that returns true or false, the
XMLExists function itself will always return true (as
neither true nor false is an empty sequence). This
is a possible pitfall for unwary users. For example,
suppose that a user wishes to find the number of
books whose title contains the word “Frog.” The
following incorrect formulation of this query simply
returns the total number of rows in the books table,
because every invocation of XMLExists generates a
nonempty result and returns true:

SELECT count (*)

FROM books

WHERE XMLExists (“contains ($book/title, “Frog”)”’
PASSING bookdoc as “book™)

OZCAN ET AL

257

Table 2. Example XMLTable output

year title

1994 TCP/IP Illustrated

2004 XQuery from the Experts
2003 XML Data Management

The following formulation of the query is correct
because, for books whose title does not contain the
word “Frog,” the embedded XQuery expression
returns an empty sequence, the XMLExists predicate
is false, and the row is not counted.

SELECT count (*)

FROM books

WHERE XMLExists (“$book [contains (title, “Frog”)]’
PASSING bookdoc as “book™)

XMLTable

Just as there is much interest in transforming SQL
data into XML data, the reverse is also true. As
discussed earlier in this section, the shredding
technique can transform an XML document with
regular structure into one or more SQL tables based
on schema information. The XMLTable function
provides a more general mechanism for generating a
table from XML data that can be applied dynam-
ically and requires no schema information. As
XMLTable is a table function, it is used in the FROM
clause of an SQL query.

Like XMLQuery and XMLExists, XMLTable has argu-
ments that specify an XQuery expression to be
executed and a set of named parameters to be
passed to the XQuery expression. However, rather
than returning the result of the XQuery expression,
XMLTable uses this result to construct a table. Each
top-level item in the XQuery result generates one
row of the table. The XMLTable invocation has a
COLUMNS clause that specifies the columns to be
generated. Each column is specified by a name, a
data type, and a column-generating XQuery expres-
sion.

The following example uses XMLTable to generate a
table containing the years and titles of books
published by “Pub1”:

SELECT x.year, x.title
FROM books b,

258 GzCaN ET AL

XMLTable (“$book/book [publisher=Publ™]’
PASSING b.bookdoc AS “book”
COLUMNS
“year” INTEGER PATH ‘@year’,
“title” VARCHAR(60) PATH “title’)
AS x(year, title)

In the above example, each invocation of XMLTable
returns a table named x with columns year and
title, computed as follows:

1. The XQuery expression $book/book
[publisher=*Publ”] is evaluated, producing a
sequence of items. In this example, the sequence
will be of length zero or one, depending on the
publisher of the book passed to XMLTable

2. Each item in the sequence produced by the
previous step is used to compute a row of the
table. During the computation of this row, the
given item serves as the XQuery context item (the
beginning point for path expressions).

3. To generate the value for a particular row and
column, the column-generating expression for
that column is evaluated with the context item
described in the previous step. The result is then
cast to the data type specified for that column.

If a column-generating expression is omitted, the
column value is generated by an implicit path
expression using the column name as a name test.
Thus, the column-generating expression PATH
‘title’ can be omitted from the previous example,
as follows:

SELECT x.year, x.title
FROM books b,
XMLTable (“$book/book [publisher=“Publ>]’
PASSING B.BOOKDOC AS “book”
COLUMNS
“year” INTEGER PATH ‘@year’,
“title” VARCHAR (60))
AS x(year, title);

Table 2 shows what the output of the above
example might look like. In this example, an SQL
delimited identifier is used for the lowercase column
name title to make sure that SQL and XQuery
interpret the names in the same way, as XQuery
names are case-sensitive and SQL names are case-
sensitive only inside delimited identifiers.

NATIVE XML IN DB2
DB2 provides native XML storage, indexing, and
query processing through both XQueryw and SQL/

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Figure 1
IBM DB2 architecture overview

XML" by using the XML data type introduced by
SQL/XML. DB2 unifies management of relational
and XML data, supporting interfaces for both SQL/
XML and XQuery in a unified query model, as
shown in Figure 1.

DB2 implements all of the SQL language extensions of
SQL/XML:2006 (with some minor exceptions), in-
cluding the XML-data-type XMLParse, XMLSerialize,
XMLValidate, and XMLCast functions, as well as the
publishing and querying functions. Users can query
XML data by using XQuery directly or by calling SQL/
XML query functions. They can also query both
relational and XML data within the same statement by
using XQuery or SQL/XML. After parsing, both
XQuery and SQL/XML queries are mapped into a
unified internal representation and handled by the
hybrid query compiler.19 DB2 exploits this unified
model to perform powerful cross-language optimi-
zations. XDM ' plays a vital role in this process
because operating on the same data model allows
XML values to be exchanged between SQL and
XQuery, providing a seamless integration of the two
languages.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

DB2 stores XML data in columns of tables. The
physical storage format for the XML data type
preserves all the information in XDM. An important
feature of DB2 is that it does not require an XML
schema to be associated with an XML column. An
XML column can store documents validated ac-
cording to many different and evolving schemas, as
well as schema-less documents. Hence, the associ-
ation between schemas and XML documents is on a
per-document basis, providing maximum flexibility.

The detailed description of native XML support in
DB2 can be found in References 19, 20, and 21. In
the following sections, we show how to insert,
index, validate, and query XML data in DB2. The
examples in these sections are based on the books,
articles, and authors tables defined in the
previous section.

Storing, validating, and indexing XML data in
DB2

DB2 supports the creation of tables having one or
more columns of the new XML data type defined by
SQL/XML. This enables existing SQL applications to
augment their current relational database designs

OZCAN ET AL

259

with additional XML data and provides an evolu-
tionary path for XML support. Currently, each XML
instance stored in DB2 must be a well-formed XML
document. Conceptually, in an XML column, each
row contains an XML document, represented as an
XDM instance.

XML columns are created like other SQL columns,
and their data is inserted and deleted using SQL
INSERT and DELETE statements. Because XQuery
does not yet include update syntax, DB2 only
supports full document replacements at present.

To insert an XML document into a table, it must be
parsed and converted into native XML storage
format. The following example shows how this can
be accomplished using the XMLParse function:

INSERT INTO books (id, bookdoc)
VALUES (2457,
XMLParse (DOCUMENT
‘<?xml version="1.0" encoding="UTF-8"7>
<book year=1994">
<title>TCP/IP ITlustrated</title>
<publisher>Addision-Wesley</publisher>
<price>65.60</price>
<chapter>
<title>Introduction</title>. ..
</chapter>. . .
</book>"))

Note the bookdoc column in the books table is of
type XML but is not associated with any particular
XML schema. An XML schema is not required in
order to define an XML column or to insert or query
XML data.

If the XML document has an associated schema, it
can be validated by specifying the schema during
insertion. Before an XML schema can be used for
validating documents, it must be registered with the
database. DB2 provides an XML Schema Repository
(XSR)ZO’21 to manage XML schemas. Registration of
XML schemas with the XSR is done through DB2
commands, stored procedures, or language-specific
application programming interfaces (APIs). The
following example illustrates registering a schema
with a DB2 command:

REGISTER XMLSCHEMA
http://example.books.com FROM books.xsd
AS bookSchema COMPLETE

260 OzCAN ET AL

In this example, the target namespace URI of the
XML schema is http://example.books.com, the file
that contains the schema document is books.xsd,
and the SQL identifier associated with this schema is
bookSchema.

To validate an XML document during insertion with
a given XML schema, we use the SQL/XML
functions XMLParse and XMLValidate. The docu-
ment is validated after parsing, as shown in the
following example:

INSERT INTO books
VALUES (2457,
XMLValidate (DOCUMENT
XMLParse (DOCUMENT
‘<?xml encoding=“UTF-877>
<book year=1994">
<title>TCP/IP ITlustrated</title>
<publisher>Addison-Wesley</publisher>
<price>65.60</price>
<chapter>
<title>Introduction</title>. ..
</chapter>. . .
</book>")
ACCORDING TO XMLSCHEMA ID bookSchema))

In this example, the schema to be used in validation
was identified explicitly by the SQL identifier
bookSchema that was passed to XMLValidate. If no
schema had been explicitly named in the call to
XMLValidate, the document would have been
validated by using the registered schema identified
by the xsi:schemalocation attribute of the root
element (if no such attribute existed, an error would
be raised).

When a document is validated against an XML
schema, DB2 not only checks the document for
validity but also annotates the nodes in the XML
document with type information. XML nodes in a
validated document are annotated with their prim-
itive data types, and the runtime system uses this
information for dynamic dispatch of functions
during query processing. If an XML document is not
validated, then all of its element nodes are anno-
tated as xdt:untyped, and all of its attribute nodes
are annotated as xdt:untypedAtomic. Type annota-
tions of nodes play an important role in query
processing. For example, a sequence of price
attributes is sorted as strings if the book documents
are not validated, whereas they would be sorted as

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

decimal values if they were validated and had the
type annotation xs:decimal.

DB2 supports indexes on particular XML path
expressions called xmlpatterns, which may contain
wildcards, descendant axis navigation, and kind
tests. As DB2 does not require a single XML schema
for all documents in an XML column, and XML
documents in a column may contain both typed and
untyped values, DB2 may not know which data type
to use in the index for a given xmlpattern. Moreover,
untyped values have polymorphic behavior in
XQuery predicates: They are cast to the type of the
other operand. As a result, the user must explicitly
specify a key data type in each create index
statement, and the values of all elements and
attributes represented in the index are cast to this
key data type. Because relational and XML indexes
share a common implementation, the key data type
of an XML index must be an SQL data type, and the
result of the index expression must be castable to
this type. The following examples illustrate the
creation of XML indexes:

CREATE INDEX pubIndex ON books (bookdoc)
GENERATE KEY USING XMLPATTERN “/book/publisher”’
AS SQL VARCHAR (100);

CREATE INDEX yearIndex ON books (bookdoc)
GENERATE KEY USING XMLPATTERN *//@year’
AS SQL INTEGER;

In the first example, publisher element children of
the top-level book element are indexed as strings,
and in the second example, all year attributes in the
documents are indexed as integers.

Querying XML data in DB2

A DB2 application can access XML data in several
ways, using either SQL/XML15 or XQuery.m DB2
allows invoking XQuery within SQL and vice versa.
Queries can use XMLQuery, XMLExists, or XMLTable
to invoke XQuery and retrieve XML fragments. DB2
also supports a stand-alone XQuery interface.

When XQuery is invoked as a top-level language,
DB2 needs a hint to invoke the XQuery parser
instead of the SQL parser. This is achieved by
prefixing XQueries with the xquery keyword. When
invoked through the SQL/XML functions XMLQuery,
XMLExists, or XMLTable, XQuery gets its input data
from the function parameters. When invoked as a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

top-level language, XQuery needs a source of input
data. Because XML data is stored in relational tables,
DB2 provides an input function called
db2-fn:xmlcolumn to provide access to XML data.
This function takes the name of an XML column in a
relational table or view as an argument and

m To retrieve XML documents
that satisfy a particular
condition based on their
content, the XMLExists function
can be used m

returns the sequence of XML values stored in that
column. For example, the following query operates
on the bookdoc column of the books table, returning
all chapter titles that contain the word Czar.

xquery db2-fn:xmlcolumn(“BOOKS.BOOKDOC”)
//chapter/titlelcontains (., “Czar”)]
DB2 also provides another input function,
db2-fn:sqlquery, to invoke an SQL query from
within XQuery. This function takes in an SQL
SELECT statement and returns an XML column as
output. Note that an SQL query may return an XML
result by invoking XQuery, by using SQL/XML
publishing functions, or by selecting data from an
XML column of a relational table or view. The
db2-fn:sqlquery function is useful when users
want to restrict the XML documents seen by XQuery
based on some conditions on relational tables or
views, or when they want to provide an inline XML
view of their relational data.”* The following query
returns the titles of books written by John Doe. Note
that the relational join between the books and
authors tables and the relational condition on the
name column of the authors table restrict the book
documents input to XQuery.

xquery db2-fn:sqlquery(“SELECT b.bookdoc
FROM books b, authors a
WHERE a.name = “John Doe’
AND b.id=a.pubid”)/book/title

Conversely, it is possible to invoke XQuery from
within an SQL query by using the XMLQuery,
XMLExists, and XMLTable functions. Users can
employ the XMLQuery function to retrieve fragments
of XML documents. For example, the following

OZCAN ET AL

261

query constructs and returns bookinfo elements
containing the book title and chapter titles of books
in which any chapter title contains the word XML:

SELECT XMLQuery (“for $b in $book/book
where contains ($b//chapter/title, “XML™)
return <book-info>
{$b/title}
<chapter-titles>
{$b//chapter/title}
</chapter-titles>
</book-info>"’
PASSING bookdoc AS “book™)
FROM books

The XML column bookdoc is passed to XQuery by
means of the variable book. Execution of the XQuery
expression extracts the title of book and chapters,
applies the predicate, and constructs a new element
book-info. Note that the bookdoc document nodes
are passed by reference to XQuery, thus maintaining
node identities across the language boundary and
avoiding the copying of large documents.

The SQL query in the previous example returns a
result for each row of the books table. For books that
have “XML” in a chapter title, the result is an XML
value containing a book-info element. For other
books, the result is an XML value containing an
empty sequence.23

To retrieve XML documents that satisfy a particular
condition based on their content, the XMLExists
function can be used. For example, the following
query returns values of the bookdoc column that
contain books written after 1996. In each case, the
entire XML document is returned.

SELECT bookdoc

FROM books

WHERE XMLExists (*$book/book[@year > 1996]"
PASSING bookdoc AS “book™)

If it is desired to retrieve only fragments of XML
documents that satisfy a given condition, the
XMLTable function can be used. For example, the
following query retrieves the titles of books written
after 1996. In this example, each invocation of
XMLTable is passed one book in XML form. If the
year attribute of the book is not greater than 1996,
XMLTab1e returns no rows. If the year attribute is
greater than 1996, XMLTable returns a row contain-

262 OZCAN ET AL

ing the title of the book. (If a book element contains
more than one title, then all titles of the book are
returned as a sequence in a single row.) As the SQL
query joins the books table with the result of
XMLTable, only the titles of books written after 1996
appear in the query result.

SELECT t.booktitle
FROM books b,

XMLTable(“$book/book[@year > 199671
PASSING b.bookdoc AS “book”
COLUMNS

“title” XML BY REF PATH “title”)

AS t(booktitle)

Some applications may require grouping and anal-
ysis. Although XQuery does not yet have an explicit
group-by construct, grouping queries can be ex-
pressed by using nested queries and self-joins. The
following XQuery computes the number of books
published by each publisher. This query contains a
Tet clause that computes the group of books for
each distinct publisher.

xquery
for $pub indistinct-values(
db2-fn:xmlcolumn(*BOOKS.BOOKDOC ")
/book/pubTisher)
let $group :=
db2-fn:xmlcolumn(*BOOKS.BOOKDOC ")
/book[publisher=$pub]
return
<result>
{spub}
<count>{count($group)}</count>
</result>

A similar query, which also returns the number of
books for each publisher although in a slightly
different format, is given in the following example.
This query uses XMLTable to extract the publishers
of each book and computes the groups on the SQL
side.

SELECT t.publisher, count(*)
FROM books b,
XMLTable(“$book/book”’
PASSING b.bookdoc AS “book”
COLUMNS
“publisher” VARCHAR(100)) AS t(pubTlisher)
GROUP BY t.publisher

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

In this example, for each book, XMLTable returns a
computed one-column table containing the pub-
lisher of the book. By “breaking out” the publisher
into a separate column, it becomes possible to use
the grouping feature of SQL to count the number of
books from each publisher. This query avoids
scanning the books table twice and performing a
self-join by exploiting the explicit GROUP BY construct
of SQL.

Defining XML and relational views

DB2 provides both a relational and an XML inter-
face. Pure relational applications can access XML
data by creating relational views of XML data, and
XML-centric users can query XML data and XML
views of relational data through XQuery. Users can
use SQL/XML publishing functions to create XML
views of their relational data. The view defined in
the following example consists of a table that
contains only a single row and a single column of
type XML. The XML value contained in this single-
cell table consists of a bib element that contains
many book elements. Each of the book elements in
turn contains zero or more author elements,
computed from relational data stored in the authors
table.

CREATE VIEW bib(doc) AS
(VALUES XMLELEMENT (NAME “bib™,
(SELECT XMLAgg(
XMLETement (NAME “book™,
XMLATTRIBUTES (b.id),
(SELECT XMLAgg(
XMLETement (NAME “author”,
XMLAttributes (au.affiliation),
XMLETement (NAME “name”, au. name)))
FROM authors au
WHERE au.pubid=b.id),
XMLQuery (“$book/book/*’
PASSING b.bookdoc as “book™)))
FROM books b)))

For each row of the books table, the XMLQuery
function extracts all the element children of the top-
level book element in the XML column bookdoc. The
enclosing XMLElement function creates a new book
element that has the same element children as the
original book element, but also has an id attribute
and author element children. The view definition
joins the books and authors tables to compute the
authors of each book. An illustrative fragment of the
resulting bib element is shown below.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<bib>
<book id=“2457">
<author><mname>W. Richard Stevens</name></author>
<title>TCP/IP ITlustrated</title>
<publisher>Addison-Wesley</publisher>
<price>65.60</price>
<chapter>
<title>Introduction</title> ...
</chapter>

</book>
</bib>
Conversely, SQL/XML query functions can be used
to create relational views of XML data. In particular,
XMLTable can be used to define an on demand
shredding of XML data into relational tables
according to the needs of the application. The
following view definition uses the XMLTable func-
tion to generate a relational table that contains the

title, year, publisher, and price of each book,
extracting this data from the stored XML content.

CREATE VIEW
bookContent (title, year, publisher, price) AS
(SELECT t.title, t.year, t.publisher, t.price
FROM books b,
XMLTable (“$book/book’
PASSING b.bookdoc AS “book”

COLUMNS
title VARCHAR(100) PATH “title’,
year INTEGER PATH ‘@year’,

pubTisher VARCHAR(100) PATH ‘publisher’,
price DECIMAL (6,3) PATH “price’)

AS t)

The view definition invokes the XMLTab1le function
once for each row in the books table. Each
invocation of XMLTable returns as many rows as
there are book elements in the input bookdoc
elements (probably one in our example data). Table 3
shows what the resulting view might look like.

SYNTACTIC AND SEMANTIC CHALLENGES
Integration of the SQL and XQuery languages is
made difficult by various mismatches in their syntax
and semantics. In this section, we discuss some of
these differences and their implications for XML
processing in DB2.

Constructors and node identities
SQL is a value-based language and does not have a
notion of identity. Values can be freely copied

OZCAN ET AL

263

Table 3 BOOKCONTENT

TITLE YEAR PUBLISHER PRICE
TCP/IP Illustrated 1994 Addison-Wesley 65.60
Hello World 1997 My Pubs 56.40
XML and Web 2000 Sons and Co. 67.50

between SQL operations. XQuery, on the other
hand, is a reference-based language, and the notion
of node identity plays an important role in XDM. For
example, each step of a path expression eliminates
duplicates based on node identity, and XPath allows
reverse (i.e., parent and ancestor) traversals. In
general, nodes cannot be copied between XQuery
operations because copying a node does not
preserve its identity and its parent linkage. There-
fore, the result of an XQuery expression contains
node references rather than copies of nodes. One
exception is XQuery constructor expressions, which
generate new nodes with new identities. For this
reason, constructor expressions are nondeterminis-
tic. Because SQL/XML:200615 is based on XDM, the
publishing functions of SQL/XML are also non-
deterministic. This poses several challenges for
query optimization. In particular, certain rewrite
transformations cannot be applied in the presence of
nondeterministic functions, and the order of oper-
ations must be enforced, limiting the options
available to a cost-based optimizer. For example,
consider the following query:

xquery
for $i in (1,2,3)
let $j: =<comment > hello world </comment>
return $j

Here, the 1et clause needs to be executed once for
each $i value because each comment element
returned by this query has a different identity.
Hence, the optimizer cannot change the order of
execution, although there is no dependency between
the computations of $i and $j. The following
seemingly equivalent query returns a different
result: it returns the same comment element three
times (that is, it returns three references to a single
node with the same identity).

xquery

let $j : =<comment> hello world </comment>

264 OZCAN ET AL

for $iin (1, 2, 3)
return $j

Constructors also interfere with common subex-
pression detection. For example, consider the bib
view definition in the previous section and the
following query:

xquery
db2-fn:xmlcolumn (“BIB.DOC”)
/book[author/name=*John Doe’]
union
db2-fn:xmlcolumn (*BIB.DOC”)
/book[publisher = ‘Publ’]

When each reference to the bib view in the above
query is replaced by its definition, the result is two
distinct BIB documents, as each invocation of the
view produces new nodes with different node
identities. In the result of the query, book elements
that represent books written by John Doe after 1996
will appear twice, once from the first BIB document
and once from the second. Many SQL query
compilers would detect two invocations of the same
view as a common subexpression and would
evaluate it only once. However, XQuery compilers
cannot apply this optimization when the view
definition contains node constructors. This limita-
tion is similar to the limitations caused by SQL
functions that are declared with the keywords

NOT DETERMINISTIC.

To avoid the spurious duplicates returned by the
previous example, a user might choose to rewrite it
as follows:

xquery
let $bib :=db2-fn:xmlcolumn(‘BIB.DOC")
return ($bib/book[.//author/name=*John Doe’]
union
$bib/book[publisher = ‘publ’])

This query will produce only one instance of each
book because the view definition is invoked only
once. In effect, the Tet clause explicitly defines the
common subexpression.

Because SQL/XML has adopted the XQuery Data
Model, the problems caused by nondeterministic
functions exist in SQL/XML as well as in XQuery.
Before the introduction of the XML data type, there
was no semantic difference between an inline view

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

definition (i.e., with clause) and a regular view
definition in SQL. However, if the view definition
contains an SQL/XML constructor function, then an
SQL inline view and a regular SQL view are no
longer semantically equivalent. Fortunately, there
are some opportunities to remedy this obstacle to
optimization. The only operations that are sensitive
to node identities are certain XQuery operations that
include node comparisons, union, intersect,
except, and path expressions. After an XDM
instance has been serialized, its node identities are
no longer distinguishable. Therefore, if a con-
structed XML value is not passed to XQuery, then
the SQL compiler can detect that node identities are
not important and can apply query optimizations,
such as common subexpression detection, join
ordering, and predicate pushdown. However, this
optimization requires global analysis of the query,
as opposed to the more local analysis that is
commonly used in SQL optimization.

Type mismatches

Another important aspect of the integration of SQL
and XQuery is the unification of their type systems.
This is made difficult by the fact that the XQuery
type system is based on XML Schema,” which is
different from the type system of SQL. In particular,
the primitive data types of the two languages have
different domains and properties. For example, XML
Schema has durations that mix months and days,
whereas SQL does not have such data types. SQL
has two types of dates, with and without time zones,
and does not allow them to be compared. XML
Schema, on the other hand, has a single date type
with an optional time zone, and XQuery allows
dates without time zones to be compared with dates
with time zones. In XQuery, an implicit time zone is
used in such comparisons. SQL has many string data
types, such as CHAR, VARCHAR, and CLOB, and
requires the maximum length of each string-type
column to be specified. XML Schema, on the other
hand, has a data type called xs:string of indefinite
length and permits subtypes of limited length to be
derived from xs:string. Similarly, SQL decimal
data types have well-defined precision and scale,
whereas XML decimal data types do not necessarily
have such constraints. Therefore, SQL/XML defines
a mapping from XQuery primitive data types to SQL
data types to allow values to be passed back and
forth.

These type system mismatches pose several chal-
lenges for query processing and indexing and for

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

boundary crossing between SQL and XQuery.
Whenever values are passed from XQuery to SQL,
they need to be cast or cleansed according to the
SQL type system, and vice versa.

Syntax issues

SQL and XQuery have several differences in
syntactic and scoping conventions. For example,
XQuery is based on Unicode, whereas an SQL
database can be in a language-specific code page.
When string values are passed from SQL to XQuery,
they need to be converted into Unicode.

In addition, the conventions for XML identifiers and
SQL identifiers are different. For example, a hyphen
is a valid character in an XML identifier, but not in
an SQL identifier. Moreover, names in XQuery are
QNames, which consist of a namespace and a local
name, whereas SQL uses three-part names that

m Although XQuery does not
yet have an explicit group-by
construct, grouping queries
can be expressed by using
nested queries and self-joins m

consist of a relational schema name,24 table name,
and column name. While namespaces serve to
disambiguate names in XQuery, schemas serve the
same function in SQL. As a result, different rules and
mechanisms are needed to resolve names in XQuery
and SQL. The differences in lexical conventions and
name resolution prevent the use of a common parser
for SQL and XQuery; hence, DB2 uses two different
parsers.

The low-level syntactic conventions of SQL and
XQuery are different in several ways. SQL uses
single quotation marks for string literals and double
quotation marks for delimited identifiers, whereas
XQuery uses either single or double quotation marks
for string literals and attribute delimiters. Both
languages have conventions for using a pair of
quotation-mark characters to represent a single
quotation-mark character within a string. Users
need to pay special attention to using single or
double quotation marks when using db-fn:
sqlquery, XMLQuery, XMLExists, and XMLTable
functions. Consider the following example:

OZCAN ET AL

265

xquery
let $bookTitles :=
db2-fn:xmlcolumn (“BOOKS.BOOKDOC™)
/book/title
[contains(., ‘Web’)]
let $articleTitles :=
db2-fn:sqlquery(
“SELECT XMLELEMENT (name ““art-title””,
a.title)
FROM articles a
WHERE a.title LIKE ‘Web%” ™)
return $bookTitles union $articleTitles

In this query, we use double quotation marks to
delimit the SQL statement in XQuery so that we can
use single quotation marks to represent the SQL
string literal ‘Web% . Also, note that the SQL
identifier art-title is delimited at each end by a
pair of double quotation marks.

Similar issues involving nested string delimiters
arise when using XMLQuery, as illustrated by the
following example:

SELECT XMLQuery (“for $chapter in $book//chapter
where contains ($chapter/title,“Czar”)
return $chapter/title’

PASSING b.bookdoc AS “book™)

FROM books b

SQL converts ordinary identifiers into uppercase.
For case-sensitive names, SQL requires the use of
delimited identifiers, enclosed in double quotation
marks. This is especially important when SQL and
XQuery are used together in a query. In general, the
best practice when bound variables are passed from
SQL to XQuery is to use SQL delimited identifiers to
name the variables so that they are interpreted in the
same way by both languages. If the book variable in
the following query were defined using a regular
identifier rather than a delimited identifier, the SQL
compiler would uppercase it into B00OK, and the
$book variable on the XQuery side would be
undefined.

SELECT XMLQuery (“$book/book/title’
PASSING b.bookdoc AS “book™)
FROM books b

Because of the case sensitivity of XQuery, users
must be careful in typing name tests in their path
expressions. For example, if an XML document

266 OZCAN ET AL

contains an element named customerName, that
element would not match the name test
customername or CustomerName.

SQL null values compared with XQuery empty
sequences

SQL uses null values to represent missing or
unknown data. However, the concept of a null value
does not exist in XQuery. In an XML document,
missing or unknown data can be represented simply
by the absence of an element. When a path
expression searches for a value that is not present,
XQuery returns an empty sequence, which is a valid
XDM value.

Because XQuery does not have a null value,
conventions are needed for how to handle null
values whenever a parameter is passed from SQL to
XQuery. The functions XMLQuery, XMLTable, and
XMLExists all convert null values of named argu-
ments to empty sequences before invoking XQuery.
The XMLCast function returns null when its input is
null (which is consistent with other SQL scalar
functions), and XMLAgg simply ignores null values
when computing its output sequence (which is
consistent with other SQL aggregate functions).
XMLElement and XMLForest, on the other hand, have
syntactic options (EMPTY ON NULL, etc.) that permit
the user to choose among several conventions for
handling null inputs, as described in the section on
bridging SQL and XQuery.

Conventions for handling null values are also
needed by the XQuery input functions
db2-fn:xmlcolumn and db2-fn:sqlquery. Like any
other relational column, a column of type XML may
contain null values. The db2-fn:xmlcolumn and
db2-fn:sqlquery functions simply ignore null val-
ues when computing the input sequence. No special
conventions are needed by SQL/XML functions for
returning an empty sequence, because an empty
sequence is a valid XDM instance and is therefore a
valid value of the XML data type.

Similar functions in XQuery and SQL may have
different behavior with respect to missing values.
For example, cast expressions in SQL always return
a null value when the input is null. In XQuery cast
expressions, on the other hand, whether an empty
sequence is allowed or not is controlled by the
occurrence indicator specified with the target data
type. The XQuery expression $x cast as

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

xs:integer? will produce an empty sequence if its
input is empty, because the occurrence indicator ?
signifies that an empty sequence is allowed. The
XQuery expression $x cast as xs:integer raises a
type error, however, if the input is empty. XQuery
can also cast values from one data type to another
by means of constructor functions, which always
accept empty arguments. Thus, in XQuery, the
function xs:integer($x) is equivalent to $x cast as
xs:integer?, whereas in DB2 SQL, the function
integer(b.col) is equivalent to cast (b.col as
integer)

IMPLEMENTATION CHALLENGES

One of the challenges in XQuery processing is
caused by multiple interpretations of predicate
expressions (enclosed in square brackets). The
interpretation of a predicate expression depends on
the data type of its result. If the predicate expression
returns a single numeric value, then it is interpreted
as a positional predicate, whereas if it returns a
value of any other data type, it is interpreted as a
Boolean filter, and its effective Boolean value is
computed. This poses several problems for query
transformations as certain transformations cannot
be applied when there is a positional variable. If the
compiler cannot prove that a predicate expression
will return a non-numeric value, it must treat the
predicate as potentially a positional predicate.

Consider the path expression .//name, which is
shorthand for ./descendant-or-self::node()/
child::name. This three-step path expression can be
rewritten into a more efficient single-step version
descendant: :name only if there is no positional
predicate on the last step. Note that .//name[2] is
different from descendant::name[2]: The former
expression asks for the second name child of each
descendant of the context node, whereas the latter
one asks for the second name descendant of the
context node.

Another problem relating to positional predicates
arises in the case of a predicate expression that can
return either a numeric value or an empty sequence.
For example, an arithmetic expression returns an
empty sequence if one of its operands is an empty
sequence. In a predicate context, an empty sequence
is interpreted as a Boolean filter and evaluates to
false. Therefore, without static typing,25 it is not
possible to safely interpret the expression //book
[year +1] as a positional predicate. For books that

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

have a year element child, this is a positional
predicate, but for books that do not have a year
element child, it is a Boolean predicate.

Users can avoid the problems introduced by
multiple interpretations of predicates by explicitly

m SQL is a value-based language
and does not have any notion of
identity m

specifying either a positional or a Boolean predicate.
A positional predicate can be specified as
[position()=exp], and a Boolean predicate can be
specified by using the fn:boolean()function, as in
[fn:boolean (exp)].

XML Schema and XQuery have generic data types,
which pose special challenges for query processing.
When an XML document is not validated, the
element nodes in the document are annotated as
xdt:untyped and the attribute nodes are annotated
as xdt:untypedAtomic. In XQuery general compar-
isons, if one of the operands is untyped, then it is
dynamically cast to the data type of the other
operand. This semantic of XQuery is challenging for
indexing and requires that untyped data be indexed
in every data type that it can be cast to. For example,
the untyped value 2679 can behave as either an
integer or a string, depending on the context of its
use. To avoid casting untyped data to every possible
data type, DB2 XML indexes require that the user
specify a particular target data type for each index at
index creation time.

Different XQuery functions and operators have
different conventions for handling untyped values.
In general, each function or operator attempts to
cast untyped values into a data type that it knows
how to handle. For example, the max and min
functions cast untyped values to xs:double,
whereas order by clauses and the distinct-values
function treat untyped values as instances of
xs:string.

Even validated documents may contain instances of
generic data types, such as xs:anyType. Moreover,

XML also permits an element to have a type-defining
attribute like xsi:type=“decimal”. For example, an
XML schema may declare a given element to have a

OZCAN ET AL

267

generic data type like xs:anyType, and each instance
of the element could have a different specific data
type, like xs:string, xs:integer, etc. In this case,
the XQuery functions and operators must be
dispatched dynamically because each input instance
may be different.

To support evolving schemas, DB2 does not imple-
ment the static typing feature of XQuery.w’ZO’21
Static typing would be too strict when documents
have changing schemas, and it would reject many
valid and useful queries at compilation time. As a
consequence, DB2 relies on dynamic dispatch of
XQuery functions and operators, even when sche-
mas are strongly typed, i.e., they do not have
generic data types. Each operation and function first
checks the type annotations of its inputs and
performs the appropriate operation.

The lack of concrete type information can affect the
search for an eligible index when processing a given
predicate. For example, when joining two XML
values, if their data types are not known by static
analysis, the compiler cannot pick an index. For this
reason, it is suggested to insert explicit cast
functions into join predicates to aid in index
selection.

XQuery allows an expression to be evaluated with-
out accessing all relevant data if accessing further
data could not change the outcome except by raising
an error. For example, an XQuery engine can
evaluate logical expressions in any order and may
not evaluate one of the operands; while evaluating
an and expression, it may stop as soon as one of the
operands evaluates to false. Similarly, an XQuery
engine can stop evaluating a some expression (which
searches for some item in a sequence that satisfies a
condition) as soon as it finds the first item that
satisfies the condition, even if some other item
might have raised an error. DB2 exploits this type of
optimization and is therefore nondeterministic in
the presence of certain types of errors, as permitted
by the XQuery specification.

CONCLUSION

Relational database systems are very well adapted to
traditional business applications in which data has a
known regular structure. The advantages of the
relational data model are as important as ever, and
no one expects XML data and languages to replace

268 OzCAN ET AL

relational data and languages in traditional database
applications.

Native storage of XML data, however, offers some
important advantages for new types of applications.
It allows storage of very diverse forms of informa-
tion while preserving the ability to search or
aggregate that information. It provides a natural
storage model for data that has an intrinsic order, a
hierarchic structure, or a large number of sparsely
populated attributes. It is well adapted to a world of
“schema evolution” where it is necessary to store
and process documents conforming to many differ-
ent schemas, including some documents lacking
schemas, and where the set of schemas is rapidly
changing. These kinds of applications are increasing
in importance due to the influence of the Web and
e-commerce.

In many ways, the state of XML database languages
and systems resembles that of relational languages
and systems in the early 1980s. Many research
papers have been published, and a standard query
language is under development. Commercial sys-
tems are beginning to appear, but optimization
technology is still immature. Some important use
cases are still not covered by the existing languages
(for example, XQuery still lacks an update capa-
bility). Some skeptics are doubtful about the value
of the new approach and its ability to be imple-
mented efficiently.

SQL/XML allows users to combine the advantages of
SQL and XQuery by using each language where it is
most appropriate. It allows XML data to be stored in
relational systems, taking advantage of the mature
infrastructure provided by these systems and, at the
same time, preserving and exploiting the special
characteristics of the XML data. By implementing
SQL/XML with XQuery support, DB2 gives users the
flexibility to choose among several techniques for
storing XML data, including shredding and native
XML storage.

Native storage of XML data represents a major
investment for the database industry. Many XML
database products are beginning to appear from
major DB vendors and others. If XML databases are
successful, they will pass through the same evolu-
tionary stages encountered earlier by relational
databases. XQuery will be extended with update
operations and possibly with additional features,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

such as better error recovery, explicit grouping, and
other analytic features. Customer experience will
determine which use modes are most important to
the language. XQuery will continue to evolve to
meet user requirements, and developing optimiza-
tion techniques for access to XML data will be an
active research topic for years to come.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Linus Torvalds, The
Open Group, Microsoft Corporation, or Sun Microsystems,
Inc. in the United States, other countries, or both.

CITED REFERENCES AND NOTES
1. ISO 8879:1986, International Organization for Stan-
dardization (ISO), Information Processing—Text and
Office Systems—Standard Generalized Markup Language
(SGML).

2. ANSI/ISO/IEC 9075-2:2003, International Organization for
Standardization (ISO), Information Technology—Data-
base Languages—SQL—Part 2: Foundation (SQL/Foun-
dation).

3. Extensible Markup Language (XML) 1.0 (Third Edition),
T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, Editors, W3C Recommendation (February 4,
2004), http://www.w3.0rg/TR/2004/REC-xml-20040204.

4. XML Schema, The XML Schema Working Group, http://
www.w3.org/XML/Schema.

5. XML Path Language (XPath) Version 1.0, J. Clark and
S. DeRose, Editors, W3C Recommendation (November
16, 1999), http://www.w3.org/TR/xpath.

6. XSL Transformations (XSLT) 1.0, J. Clark, Editor, W3C
Recommendation (November 16, 1999), http://www.w3.
org/TR/xslt.

7. World Wide Web Consortium, http://www.w3c.org.

8. QL’98: The W3C Query Languages Workshop, Boston,
MA (1998), http://www.w3.org/TandS/QL/QL9S.

9. D. Chamberlin, D. Draper, M. Ferndndez, M. Kay,
J. Robie, M. Rys, J. Siméon, J. Tivy, and P. Wadler,
XQuery from the Experts: A Guide to the W3C XML Query
Language, H. Katz, Editor, Addison-Wesley, Boston, MA
(2003).

10. XQuery 1.0: An XML Query Language, S. Boag,
D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie,
and J. Siméon, Editors, W3C Recommendation (Novem-
ber 3, 2005), http://www.w3.org/TR/xquery.

11. W3C XML Query (XQuery), http://www.w3.org/XML/
Query/.

12. XQuery 1.0 and XPath 2.0 Data Model, M. F. Fernandez,
A. Malhotra, J. Marsh, M. Nagy, and N. Walsh, Editors,
W3C Working Draft (November 3, 2005), http://www.
w3.org/TR/xpath-datamodel/.

13. Namespaces in XML, T. Bray, D. Hollander, and A.
Layman, Editors, W3C Recommendation (January 14,
1999), W3C Recommendation, http://www.w3.org/TR/
REC-xml-names/.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

14. ANSI/ISO/IEC 9075-14:2003, International Organization
for Standardization (ISO), Information Technology—
Database Language—SQL—Part 14: XML-Related Speci-
fications (SQL/XML).

15. ANSI/ISO/IEC 9075-14:2006, International Organization
for Standardization (ISO). Information Technology—
Database Language SQL—Part 14: XML-Related Specifi-
cations (SQL/XML); document expected to be published
in mid 2006.

16. XML Information Set (Second Edition), J. Cowan and
R. Tobin, Editors, W3C Recommendation (February 4,
2004), http://www.w3.org/TR/xml-infoset/.

17. XSLT 2.0 and XQuery 1.0 Serialization, S. Boag, M. Kay,
J. Tong, N. Walsh, and H. Zongaro, Editors, WC3
Candidate Recommendation (November 3, 2005), http://
www.w3.org/TR/xslt-xquery-serialization/.

18. SQL/XML also provides an optional mechanism for
passing an unnamed “context item” to an embedded
XQuery expression; this mechanism is not currently
supported by DB2.

19. K. S. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein,
G. Lapis, G. M. Lohman, B. Lyle, F. Ozcan, H. Pirahesh,
N. Seemann, T. C. Truong, B. van der Linden, B. Vickery,
and C. Zhang, “System RX: One Part Relational, One Part
XML,” Proceedings of the 24th ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore,
MD (2005), pp. 347-358.

20. K. S. Beyer, F. Ozcan, S. Saiprasad, and B. van der
Linden, “DB2/XML: Designing for Evolution,” Proceed-
ings of the 24th ACM SIGMOD International Conference
on Management of Data, Baltimore, MD (2005),
pp. 948-952.

21. M. Nicola and B. van der Linden, “Native XML Support in
DB2 Universal Database,” 31st International Conference
on Very Large Data Bases, Trondheim, Norway (2005),
pp. 1164-1175.

22. The db2-fn:sqglquery function does not provide any
mechanism to pass parameters from XQuery to SQL.

23. SQL/XML defines an XMLQuery option called RETURN-
ING CONTENT, which implicitly adds a document node to
the XML value before returning it. DB2 does not support
this option because it causes unnecessary node con-
struction. If a document node is desired, it can be
generated easily by the embedded XQuery expression.

24. Note the SQL use of the term schema is different from that
in XML Schema. In SQL, a schema denotes a collection of
tables, data types, and functions, which is roughly
equivalent to an XML namespace.

25. Even with static typing, it may not always be possible to
distinguish between positional and Boolean predicates
due to generic schema types, such as xs:anyType and
optional elements.

Accepted for publication October 14, 2005.
Published online April 27, 2006.

Fatma Ozcan

IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120 (fozcan@us.ibm.com). Dr. Ozcan has been a
research staff member since 2001. She received a Ph.D. degree in
computer science from the University of Maryland. Her research
interests include XML query languages and query optimization,

OZCAN ET AL

269

integration of heterogeneous information systems, and software
agents. Dr. Ozcan is a member of ACM SIGMOD, and coauthor of
the book, Heterogeneous Agent Systems.

Don Chamberlin

IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120 (chamberl@almaden.ibm.com). Dr.
Chamberlin is an IBM Fellow and represents IBM on the W3C
XML Query Working Group. He is best known as a coinventor
of SQL and author of two books on DB2. He holds a Ph.D. in
electrical engineering from Stanford University and an
honorary degree from the University of Zurich in recognition
of his work on database query languages. He is an ACM
Fellow, a member of the National Academy of Engineering,
and a recipient of the SIGMOD Innovations Award.

Krishna Kulkarni

IBM Silicon Valley Laboratory, 555 Bailey Road, San Jose,
California 95141 (krishnak@us.ibm.com). Dr. Kulkarni is a
member of the IBM Information Management Standards and
Open Source Group. He serves as the primary IBM
representative to the ANSI/INCITS H2 committee and as head
of the United States delegation to the ISO/IEC JTC1 SC32/WG3
committee, responsible for the standardization of SQL/XML.
He holds a Ph.D. degree in computer science from the
University of Edinburgh. He has contributed extensively to the
evolution of the SQL standard for over a decade. Dr. Kulkarni
has published a number of papers on database topics and is a
coauthor of Object-Oriented Databases: A Semantic Data
Model Approach, published by Prentice-Hall.

Jan-Eike Michels

IBM Silicon Valley Laboratory, 555 Bailey Road, San Jose, CA
95141 (janeike@us.ibm.com). Mr. Michels represents IBM on
the ANSI/INCITS/H2 and ISO/JTC1/SC32/WG3 committees
responsible for standardizing SQL and SQL/XML.
Additionally, he is the IBM representative on the JSR 225
Expert Group, responsible for standardizing the XQuery API
for Java™ (XQJ), and the editor of the XQJ specification. Mr.
Michels holds an M.S. degree in computer science from the
Technical University of [lmenau, Germany. l

270 OzCAN ET AL IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

