
Integration of SQL and XQuery
in IBM DB2

&

F. Özcan

D. Chamberlin

K. Kulkarni

J.-E. Michels

Relational database systems have dominated the database industry for a quarter

century. However, the advent of the Web has led to requirements for storage of new

kinds of information in which the order of information is important and data structure

can vary over time and from one document to another. These evolving requirements

have given rise to Extensible Markup Language (XML) as a widely accepted data format

and to XQuery as an emerging standard language for querying XML data sources. A set

of extensions to the Structured Query Language (SQL) called SQL/XML enables XML

data to be stored in relational databases, taking advantage of the mature infrastructure

of relational systems and combining the advantages of SQL and XQuery. However,

building a bridge between SQL and XQuery is challenging due to the many syntactic

and semantic differences between the two languages. This paper describes how IBM

DB2t deals with this challenge and provides users with a flexible system for storing

and processing both relational and XML data.

INTRODUCTION

Since the introduction of the first relational database

systems in the early 1980s, the commercial database

field has seen mostly evolutionary changes. Most

large-scale commercial database systems introduced

since that time have been based on the relational

data model and Structured Query Language (SQL).

Recently, however, a new data format, Extensible

Markup Language (XML), and a new query lan-

guage, XQuery, have emerged to challenge the

predominance of pure relational systems. XML and

XQuery represent a significant new approach to

database management. In this paper, we examine

the motivation for this new approach, and we

compare the SQL and XQuery languages to deter-

mine how they can be used cooperatively by sharing

a common infrastructure, thereby taking advantage

of the large existing investment in relational

technology.

In understanding the need for a new approach to

storing and retrieving data, the concept of metadata

is crucial. Metadata is defined as ‘‘data about

data’’—that is, it is information that describes the

structure of stored data. All database systems

provide some means for storing metadata, and all

query languages make use of metadata in processing

queries. In relational systems, metadata is stored

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 245

separately from the data itself, typically in a set of

tables called the system catalog. This is possible

because relational systems are designed for data that

has a regular, repeating structure that can be

described independently of any data instance; for

example, every row of a table contains the same

columns and the same data types. Relational data-

base systems are well optimized for traditional

business applications in which the metadata is well

known and changes slowly, if at all.

SQL is a mature relational database language that

takes advantage of the regular structure of data

stored in tables. For example, consider the following

SQL query:

SELECT itemno, price

FROM product

WHERE description ¼ ‘sweater’ AND price , 100

ORDER BY price

In processing this query, an SQL implementation

can rely on information about the product table that

is stored in the system catalog. For example, each

row of the table might be known to have exactly one

price value of type DECIMAL (possibly null). The

semantics of the query language need not be

concerned with rows that have no price column, or

have more than one price, or have a price of an

unexpected type.

As database systems have evolved toward handling

more complex kinds of information, the need for a

more flexible data format has become evident. For

example, Web services and other forms of e-

commerce exchange information in the form of

messages with complex and flexible formats. Docu-

ments available on the Web vary widely in their

structure and very often rely on an intrinsic (non-

value-based) ordering of their parts.

Even among documents of a single type, a great

variation may exist from one document to another.

For example, in medical records, patients may vary

widely in the numbers of doctors visited, types of

insurance, diseases, medications, procedures, and

so on. Types of data that are present in one patient

record may be absent in another. Each medical

record may be sparse, meaning it contains only a

few of the many possibilities. Because of these

variations, each record must be self-describing; that

is, it must contain metadata that describes its own

structure and content.

The need for documents to be self-describing led to

the notion of markup—descriptive information

associated with the parts of a document. Markup

originated in the publishing industry and was first

used by editors to specify aspects of appearance,

such as font and size. Gradually, markup evolved

toward a logical description (for example, ‘‘citation’’

rather than ‘‘italics’’), which enabled document

components to be rendered differently on different

devices and to be more readily understood by

applications such as information retrieval systems.

A standard notation for logical markup called

Standardized General Markup Language (SGML)

was adopted by the International Organization for

Standardization in 1986.
1

Today’s XML notation is a

direct descendant of SGML.

In self-describing data, such as XML documents,

metadata is separated into two types—markup and

schema. Markup contains information about indi-

vidual instances of stored data—for example, a piece

of data might be identified as an address or as a part

number. A schema, on the other hand, contains

global information about how documents are

assembled from their component parts. (Note that

this use of the term schema is different from the use

of the same term in the SQL Standard.
2
) A schema

for a purchase order, for example, might specify that

a purchase order consists of a date, a customer, a

ship-to address, an optional bill-to address, and an

array of one or more items that in turn contain

lower-level data structures. A schema for a given

type of document specifies the degree of flexibility

that is allowed in constructing documents of that

type, such as alternative content, optional content,

and constraints on the number of occurrences of

various parts. Within the constraints allowed by a

schema, markup is used to identify the structure of

an individual document. At one extreme, the

structure of a document can be completely specified

and constrained by its schema. At the other extreme,

a document may have no schema at all and may rely

entirely on markup for its metadata.

XML provides separate specifications for inserting

descriptive markup into an individual document
3

and for creating a schema that describes the

(possibly flexible) structure of a class of docu-

ments.
4

An XML schema corresponds roughly to a

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006246

relational system catalog, whereas XML markup is a

form of metadata that is largely absent and

unnecessary in relational systems.

Although both XML and the relational data model

are completely general in their ability to represent

all types of data, differences exist in the types of data

typically stored in these respective formats. Some of

these differences are as follows:

� XML data is often sparse—that is, a given data

element may contain only some of many possi-

bilities. Sparse data can also be represented in

relational format, but relational representations of

sparse data tend to be more complex and

inefficient because they lack the self-describing

property of XML.
� Relational data has no intrinsic order that is

independent of its values, but XML is often used to

store intrinsically ordered data, such as para-

graphs in a book.
� XML documents often contain text, which in-

creases the importance of specialized forms of

search. Text search requires linguistic operations,

such as stem matching, and often needs to

combine precise with imprecise forms of search in

a single query. Relevance ranking is an important

form of search in XML data.
� Compared to a typical relational system catalog,

XML schema information is often more complex

and subject to change. An XML query may operate

over multiple documents conforming to different

schemas or to multiple versions of a schema.

Some documents may not have a schema. An XML

database must be prepared to cope with schema

evolution—an environment in which schema

information is heterogeneous and rapidly

changing.

COMPARING SQL AND XQUERY
The first languages to be widely used in retrieving

information from XML documents were XPath
5

and

XSLT.
6

XPath was designed as a notation for

navigating within an XML document, which is

structured as a hierarchy of elements and attributes.

XPath can isolate the elements and attributes that

satisfy a given search criterion, but it is limited in

that it cannot construct a new element. For this

reason, it is not a complete query language. XSLT is

more powerful than XPath, but was designed

primarily for transforming one document into

another. The expressive power of XSLT is sufficient

for a query language, but its recursive pattern-

matching paradigm is difficult to optimize and is

better adapted for document transformation than for

queries.

Recognizing the limitations of XPath and XSLT, the

World Wide Web Consortium (W3C**)
7

organized a

workshop in 1998
8

to begin consideration of a new

query language for XML data sources. One outcome

of the workshop was the formation of a new W3C

working group on XML Query, which has produced

a draft specification of a new language called

XQuery. Participants in the XML Query Working

& In understanding the need for
a new approach to storing and
retrieving data, the concept of
‘‘metadata’’ is crucial &

Group have included database experts and infor-

mation retrieval specialists, engineers and language

theorists, users, and software vendors. Some of the

reasoning that shaped the basic architecture of

XQuery has been documented in Reference 9. The

XQuery specification
10

has now completed its Last

Call period, and in November 2005, it was adopted

as a W3C Candidate Recommendation, an important

step in the W3C standardization process. In the

meantime, several software vendors have developed

products based on the evolving XQuery specifica-

tion. A current list of XQuery implementations is

maintained on the XML Query Working Group’s

public Web page.
11

One of the first activities of the XML Query Working

Group was to define a formal representation for

XML data called the XQuery 1.0 and XPath 2.0 Data

Model.
12

This data model served as the basis for the

development of XQuery. In this paper, we refer to

this data model simply as the XQuery Data Model

(XDM).

Another early activity of the XML Query Working

Group was to evaluate the possibility of extending

SQL to serve as a query language for XML data

sources. Because of XML’s hierarchic structure,

intrinsic ordering, and integrated metadata, the

working group concluded that XML would be better

served by a new query language rather than by

extensions to SQL (for a more complete analysis of

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 247

this decision, see Reference 9). Nevertheless, in

comparing XQuery with SQL, it is apparent that the

languages have many similarities:

� Both are declarative query languages (though

arguably, XQuery is somewhat less declarative

than SQL).
� Both are functional languages defined in terms of a

set of expressions that are closed under a specific

data model.
� The two languages are roughly equivalent in

expressive power (both support joins, quantifica-

tion, recursion, and user-defined functions, but

not second-order functions).
� Both languages have type systems that include

simple and complex data types and inheritance.
� Both languages have set-oriented operators, in-

cluding union and intersection, as well as set-

oriented search operators. To compare these set-

oriented search facilities, the following examples

illustrate how the two languages would express a

query against a database of orders and items to

find the dates on which a customer named Jones

ordered an item with the description hat:

SQL:

SELECT date

FROM order, item

WHERE order.customer ¼ ‘Jones’
AND order.orderno ¼ item.orderno
AND item.description ¼ ‘hat’

XQuery:

/order[customer ¼ ‘‘Jones’’] [item[description ¼
‘‘hat’’]]/date

A closer examination of the two languages, how-

ever, reveals that they also have many significant

differences:

� XML data, unlike relational data, has an intrinsic

order. This fact affects the design of XQuery in

many ways, including positional predicates, ‘‘be-

fore’’ and ‘‘after’’ predicates, and operators, such

as path expressions, that preserve document

order.
� Relational databases represent information only

by values, whereas XML also uses the concept of

nesting (element hierarchies). As a result, some

joins that would be explicit in SQL are implicitly

represented by path expressions in XQuery. In

addition, some kinds of search that would be

complex and recursive in SQL can be represented

compactly by using XQuery operators such as //,

which searches for an object at an unknown depth

in a hierarchy.
� Because XML mixes markup with data, it is

possible in XQuery to express queries that span

both data and metadata, such as, ‘‘What kinds of

things are red?’’ Data and metadata are separated

in relational databases; therefore, SQL does not

provide a facility for expressing this kind of query.
� SQL has a null value, which is needed because

every row of a table has the same set of columns.

XQuery, on the other hand, has no notion of a null

value because XML permits missing data to be

represented by elements that are empty or simply

absent.
� SQL logical operators (and, or, and not) are three-

valued because of the presence of nulls (compar-

ison of a null to any other value returns the

‘‘unknown’’ truth value). XQuery, on the other

hand, uses traditional two-valued Boolean logic.

Certain XQuery operators (such as eq) return an

empty sequence when one operand of a compar-

ison is an empty sequence. The XQuery operators

and and or treat the empty sequence as false.

XQuery users desiring three-valued logic are free

to define their own logical operations as user-

defined functions.
� XQuery has two sets of comparison operators,

called value comparisons (which operate on single

values) and general comparisons (which operate

on sets and look for any matching pair). Thus, in

XQuery, author¼ ‘‘Gray’’ is true if any author of a

given work is equal to Gray, whereas author eq

‘‘Gray’’ requires that Gray be the only author. This

distinction is important in XML, where the

cardinality of an expression such as author may

vary from one element to the next. In SQL, on the

other hand, a value expression always returns a

single value. SQL has the notion of a quantified

predicate such as ¼ ANY or ¼ ALL, but these

predicates can be used only in restricted circum-

stances (when the right side of the comparison is a

table subquery).
� XQuery has a concept of identity that is not

present in SQL. In XQuery, nodes (which corre-

spond to XML concepts such as elements and

attributes) have identity, but atomic values (such

as 47 and ‘‘Hello’’) do not. The concept of identity

affects the XQuery language in several ways. The

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006248

language has expressions called constructors that

create new nodes with new identities. Also,

XQuery set operators, such as union and

intersect, and path expressions eliminate dupli-

cates from their results based on node identity

rather than on value, as in SQL.
� In SQL, every data item has a data type, such as

INTEGER or VARCHAR(100), that governs its be-

havior in various expressions. XQuery supports, in

addition to specific data types resembling those of

SQL, the notion of untyped data. Untyped data is

typically found in documents that have no

schema. XQuery provides special rules for han-

dling untyped data. Generally, for usability and

compatibility with XPath 1.0, XQuery attempts to

cast untyped data to an expected type based on the

context where it is encountered. For example,

untyped data encountered in an arithmetic ex-

pression is cast to the type xs:double.
� SQL supports overloaded functions and performs

function selection based on the data types of the

operands. XQuery, on the other hand, does not

support overloaded functions. Each XQuery func-

tion (identified by its function name and number

of parameters) has a well-defined signature, and

an XQuery function call attempts to coerce its

arguments to the expected types. This approach is

consistent with the XQuery principle of operating

on untyped data and casting it to an expected type

based on its use.
� Names are more complex in XQuery than in SQL

because they conform to the conventions of

QNames in XML namespaces.
13

For example, the

XQuery names a:foo and b:foo might match if the

namespace prefixes a and b are both bound to the

same namespace Uniform Resource Identifier

(URI).
� The type system of XQuery, which is based on

XML Schema,
4

has many more primitive data

types than the SQL-type system and it also has a

different inheritance model. In SQL, user-defined

data types are encapsulated and can be inspected

only by their observer methods. XML values, on

the other hand, are not encapsulated, and their

state can be freely inspected. XQuery supports

derivation by extension, which corresponds

roughly to the subtype concept in SQL, and also

supports other XML Schema concepts, such as

derivation by restriction and substitution groups.

These concepts, required for compatibility with

XML Schema, contribute greatly to the complexity

of XQuery.

The remainder of this paper is organized as follows:

the next section introduces a set of SQL extensions

called SQL/XML, which are designed to bridge the

gap between SQL and XQuery, allowing the lan-

guages to work closely together. The paper then

describes how SQL/XML and XQuery are supported

in IBM DB2* Universal Database* Version 9.1 on the

Linux**, UNIX**, and Windows** platforms, and it

discusses some of the challenges that arise in

& A set of SQL extensions called
SQL/XML bridges the gap
between SQL and XQuery,
allowing the languages to work
closely together &

interfacing SQL and XQuery due to their differences

in low-level syntax, semantics, and type systems. It

then concludes by summarizing how SQL/XML

allows users to combine the advantages of SQL and

XQuery, using each language where it is most

appropriate.

BRIDGING SQL AND XQUERY: SQL/XML

With the increasing acceptance of XML as a standard

data format in many applications, the need is

growing for systems that can store and manage

persistent XML data while supporting a full set of

tools and infrastructure that include backup and

recovery, concurrency, and access control. Of

course, XML data can be stored in special-purpose

database systems designed exclusively for that

purpose, but storing XML data in a relational

database system makes it possible to reuse the

extensive existing infrastructure. Because the data-

base industry has a huge investment in SQL

implementations, application development tools,

and packaged applications, there is a great deal of

interest in extending SQL-based systems to handle

the storage and manipulation of XML data along

with relational data. The resulting hybrid database

systems will allow XML and relational data to

coexist and complement each other in an enterprise

information architecture.

In addition to capabilities for storing and retrieving

XML data, SQL-based systems usually offer another

important XML-related feature: an ability to trans-

form (or ‘‘publish’’) relational data in XML format.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 249

The data to be published is extracted from tables by

SQL queries and may be either native relational data

or data that was derived by shedding (decomposing

XML documents into rows and columns). It is easy

to see why a publishing facility is important: Vast

quantities of business data are stored in SQL

database systems, and there is a great demand for

presenting this data in XML form to various client

applications. Converting relational data to XML

format requires extensions to SQL.

Because some of the techniques for handling XML

data in relational systems require SQL language

extensions, the organizations responsible for the

standardization of SQL (the ANSI INCITS H2

committee in the United States and the ISO/IEC

JTC1 SC32 WG3 committee internationally) have

initiated activities to standardize the required

extensions. These efforts led to the publication in

2003 of a new part of SQL, Part 14: XML-Related

Specifications (SQL/XML),
14

referred to in this paper

as SQL/XML:2003. A revised version, referred to in

this paper as SQL/XML:2006, is expected to appear

in mid 2006.
15

The approach taken by the SQL/XML

specification is consistent with the decision of the

W3C XML Query Working Group to develop a new

query language for XML, because it embeds the

XQuery language in SQL and relies on it for querying

XML data stored in relational systems.

The primary goal of SQL/XML is to act as a bridge

between SQL and the XML world, which includes

the XML standard itself,
3

XQuery,
10

and XML

Schema.
4

SQL/XML provides SQL language exten-

sions in the following major categories:

XML data type—SQL/XML introduces a new SQL

data type called XML for storing XML documents

and provides a set of functions for converting

between the new data type and other SQL data

types.

Publishing functions—SQL/XML provides a set of

functions for publishing relational data in XML

format.

Query functions—SQL/XML provides a set of func-

tions for embedding XML queries inside SQL

queries.

In addition, SQL/XML provides a set of mapping

rules that specify how names, values, and data types

can be mapped between the SQL and XML worlds,

which follow quite different conventions. SQL/

XML:2003 specified many of the language exten-

sions listed previously, and the remaining exten-

sions will be covered by SQL/XML:2006. In the

following sections, we briefly describe these facili-

ties, with emphasis on how they are used in IBM

DB2. The reader is referred to Reference 15 for a

more complete description.

The examples in the remainder of this paper are

based on a relational database containing three

tables. In the books table, each row represents a

book, and the content of the book is contained in a

column of type XML. The articles table contains

ordinary relational data about articles in journals.

The authors table contains information about the

authors of articles and books. Each row of the

authors table contains an association between one

author and one book or article, identified by its

pubid as a foreign key. The SQL CREATE TABLE

statements below show the details of the column

names and data types in the three tables.

CREATE TABLE books(

id CHAR(20) NOT NULL PRIMARY KEY,

bookdoc XML)

CREATE TABLE articles(

id CHAR(20) NOT NULL PRIMARY KEY,

title VARCHAR (250),

year INTEGER,

journal VARCHAR (200));

CREATE TABLE authors(

id CHAR (20) NOT NULL PRIMARY KEY,

name CHAR (60),

affiliation CHAR (50),

pubid CHAR (20));

XML data type

SQL/XML provides a new SQL built-in data type

called XML. Each instance of the XML data type

encapsulates an instance of the XDM—that is, it

contains a sequence of zero or more nodes or atomic

values. (In SQL/XML:2003, the XML type was based

on an extended version of the XML Infoset.
16

The

basis for the XML type will change to the more

flexible XDM in SQL/XML:2006.) A value of the

XML data type is distinct from a textual represen-

tation of the same XML data. The XML data type can

be used in the same ways as any other SQL data

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006250

type, such as to specify the type of a column or a

function parameter.

The following example creates an SQL table named

books with two columns. The column named id is

of type VARCHAR (20), and the column named

bookdoc is of type XML:

CREATE TABLE books (

id VARCHAR (20) NOT NULL PRIMARY KEY,

bookdoc XML)

SQL/XML provides a set of modifiers that can be

used with the XML data type to constrain its

instances in various ways—for example,

XML(DOCUMENT) denotes an XML data type that is

constrained to contain only well-formed XML

documents. DB2 does not support these explicit type

modifiers. In DB2, each instance stored in a column

of type XML must be a well-formed XML document,

but the result of a query or view definition may be

any XDM instance.

As the XML data type is distinct from other SQL data

types, such as VARCHAR and CLOB, SQL/XML pro-

vides a set of functions that can be used for

converting between XML and other data types and

for performing other useful operations on instances

of the XML data type. These functions are sum-

marized in the following subsections.

XMLParse

The XMLParse function converts an SQL character or

binary string into an instance of the XML data type.

It parses the input string according to the rules of

XML Version 1.0
3

and returns a value of type XML.

The syntax of the XMLParse function is illustrated by

the following example, which inserts a value into an

XML column. The value is obtained by parsing the

string contained in the variable :h_var, which must

be of an SQL character or binary string data type

(CHAR, VARCHAR, BLOB, or CLOB). The required key-

word DOCUMENT indicates that the input string must

contain a well-formed XML document. The optional

keywords PRESERVE WHITESPACE indicate that all

white-space characters in the input string are

preserved in the stored document.

INSERT INTO books (id, bookdoc) VALUES (‘1256’,

XMLParse (DOCUMENT :h_varPRESERVE WHITESPACE))

A potential problem with statements such as the one

in the previous example is that DB2 performs code-

page conversions on character strings when they are

exchanged between the client application and the

database server if the client and server are using

different code pages. Code-page conversions should

be avoided in the case of XML data in order to avoid

introducing inconsistencies with the XML encoding

declaration. To avoid code-page conversions, a user

can use a binary host variable (BLOB) to contain XML

data or a special syntax in the SQL DECLARE SECTION

to specify that a host-language variable contains

XML data. When a variable declared in this way is

used as an input variable, no code-page conversion

is performed, and the content of the variable is

& The most important new
functionality in SQL/XML:2006
is the ability to embed an
XQuery expression inside an
SQL statement &

automatically parsed into a value of type XML. The

syntax for declaring a host variable containing XML

data is illustrated in the following example:

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS XML AS CLOB (1M) hv_book;

EXEC SQL END DECLARE SECTION;

XMLSerialize

The XMLSerialize function is the inverse of

XMLParse—it converts a value of type XML into an

SQL character or binary string. It serializes the input

XML value into a value of type CHAR, VARCHAR, BLOB,

or CLOB by using the serialization rules of XQuery.
17

The syntax of the XMLSerialize function is illus-

trated by the following example, which selects the

content of a book and serializes it as a value of type

CLOB:

SELECT XMLSerialize (bookdoc AS CLOB)

FROM books

WHERE id¼ ‘2457’;

Serializing an XML value into a character string host

variable has the same potential problem with code-

page conversion described earlier for XMLParse.

Again, the solution to this problem is to serialize

into a variable of a binary data type or to use the

XML AS CLOB notation in the SQL DECLARE SECTION.

Whenever a variable that is declared using XML AS

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 251

CLOB is used as an output variable, its content is

automatically serialized, and no code-page conver-

sions are performed.

XMLCast

The XMLCast function is a variation of the SQL CAST

function in which either the source or target data

type is XML. In the following example, an SQL

integer value is cast into the XML data type,

resulting in an XDM instance that contains a single

item of type xs:integer:

XMLCast (1234 AS XML)

It is important to distinguish the semantics of

XMLParse from those of XMLCast and XMLSerialize.

Consider an SQL character string containing the

following content:

,part color¼‘‘red’’.Gear,/part.

If this string is passed as input to the XMLParse

function, the result will be an instance of the XML

data type containing a document node, an element

node, an attribute node, and a text node. On the

other hand, if the same string is passed to the

XMLCast function with the target data type XML, the

result will be an XML item containing the original

input string as an instance of xs:string.

If the input to XMLCast is an XML value and the

target data type is an SQL type, the function first

converts the input value to an atomic value by using

XQuery atomization rules.
10

The resulting atomic

value must have a type that can be converted to the

SQL target data type according to the mapping rules

in the SQL/XML specification; otherwise, an error is

raised. Thus, if the XML value produced by parsing

the above example string were passed to XMLCast

with a target data type of VARCHAR (100), the

resulting value would be Gear. On the other hand, if

the same XML value were passed to XMLSerialize,

the result would be the original string: ,part

color¼‘‘red’’.Gear,/part.. If both the input data

type and the target data type are XML, XMLCast

returns references to the input nodes without

actually copying the nodes.

XMLValidate

The XMLValidate function validates an instance of

the XML data type according to the validation rules

of XML Schema.
4

If the input value is a valid

document as defined by the given schema, the

function returns a copy of the input value in which

the element and attribute nodes have been aug-

mented with default values and type annotations. If

the input is not a valid document as defined by the

given schema, an error is raised.

XML schemas are commonly represented as serial-

ized XML documents, frequently in a file with the

extension xsd that resides at some URL outside the

database. It is considered undesirable for a database

server such as DB2 to obtain an XML schema over

the Web, where its contents can change at the whim

of the owner or may simply become unavailable.

Therefore, DB2 requires users to register all XML

schemas to be used for validation and provides an

interface for this purpose. The list of registered

schemas is maintained in a DB2 catalog table.

A registered XML schema can be identified by an

SQL identifier or by the URI of its target namespace.

The schema to be used in an XMLValidate invoca-

tion can be specified explicitly in the function call or

determined from information contained in the input

document, as illustrated by the following examples:

1. This example identifies a registered schema by an

SQL identifier:

XMLValidate (DOCUMENT X

ACCORDING TO XMLSCHEMA ID SCOTT.BOOKS)

2. This example identifies a registered schema by its

target namespace URI:

XMLValidate(DOCUMENT X ACCORDING TO

XMLSCHEMA URI ‘http://example.books.com’)

3. In this example, because no schema is specified,

validation is performed against the registered

schema identified by the xsi:schemaLocation

attribute of the root node of the input document:

XMLValidate(DOCUMENT X)

Publishing functions

As noted earlier, SQL/XML and DB2 provide a set of

functions for converting (‘‘publishing’’) relational

data into XML format. These functions are also

referred to as XML constructor functions, as their

purpose is similar to that of computed node

constructors in XQuery. In this section, we describe

these functions and provide examples of their use.

All the examples in this section are based on the

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006252

articles table (Table 1). When an example query

is followed by the symbol ¼., the text following the

¼. symbol is the result of the query when executed

against the data shown here (query results have

been serialized with added white space for read-

ability).

XMLElement

XMLElement mirrors the functionality of the XQuery

element constructor in that its output is an XDM

element node. XMLElement is at the heart of the XML

publishing functions as it allows for creating an XML

element in any shape or form. Its variable parameter

list makes it possible to create simple constructs,

such as an empty element, or complex constructs,

such as many nested elements with attributes or

namespace declarations at each nesting level.

The first argument of XMLElement is an SQL

identifier that serves as the name of the element to

be constructed. This required argument can be

followed by a variable number of optional argu-

ments that specify namespace declarations, attribute

definitions, element content, and a null handling

option. If more than one optional argument is

supplied, the arguments must be supplied in the just

mentioned order. The arguments of XMLElement

may be provided in any form, including constants,

value expressions, subqueries, and calls to other

SQL/XML functions. The following example illus-

trates the simplest form of XMLElement, which

creates an empty element node.

VALUES (XMLElement (NAME ‘‘Journal’’))

¼.

,Journal/.

The following example illustrates a more complex

invocation of XMLElement whose content includes

nested invocations of XMLElement to construct

nested elements.

SELECT XMLElement (

NAME ‘‘article’’

XMLElement (NAME ‘‘title’’, title)

XMLElement (NAME ‘‘journal’’, journal),

XMLElement (NAME ‘‘year’’, year))

FROM articles

WHERE id¼ ‘ID0001’

¼.

,article.

,title.Web and XML,/title.

,journal.ACM J1,/journal.

,year.2001,/year.

,/article.

As long as at least one of the values specified for the

content of the constructed element is non-null, the

element is constructed, and any null values are

ignored (i.e., they are dropped from the result). If all

of the values specified for the content of the

constructed element are null, the result of

XMLElement is defined by the final parameter, which

specifies a null handling option. The following

options are supported by DB2:

� EMPTY ON NULL (the default behavior): An empty

element is constructed and returned.
� NULL ON NULL: No element is constructed, and an

SQL null value is returned.

The null handling option applies only for the

XMLElement call in which it is specified. It does not

change the behavior of any contained XMLElement

call or any other value expression.

Unlike XML and XQuery, SQL is not (always) case

sensitive. As a result, close attention must be paid to

uppercase and lowercase in function calls, such as

XMLElement, that bridge the two languages. For

example, in XMLElement, the argument supplied for

the name of an XML element is an SQL identifier,

which is always made uppercase by the SQL engine

unless it is delimited by double quotation marks (a

‘‘delimited identifier’’). A user wishing to create an

element named Journal might be surprised that

XMLElement(NAME Journal) creates an element

named JOURNAL instead. The desired result can be

Table 1 ARTICLES

ID TITLE YEAR JOURNAL

ID0001 Web and XML 2001 ACM J1

ID0002 XQuery Support in DB2 2005 ACM J1

ID0003 SQL/XML Progress Report null IEEE J2

ID0004 XSLT and XQuery 2004 Journal X

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 253

obtained by using a delimited identifier: XMLElement

(NAME ‘‘Journal’’).

XMLAttributes

One or more attributes can be specified for an XML

element by means of the XMLAttributes function.

For each attribute, this function associates a value

specified by a value expression with an attribute

name specified by an SQL identifier. The attribute

name is optional if the value expression identifies a

column of a table. If an attribute name is not

specified, the column name serves as the attribute

name. If the value of an attribute is the null value,

then the attribute is not included in the result. To

comply with the XML Recommendation,
3

no two

attribute names can be identical. The following

example shows how XMLAttributes can be nested

inside XMLElement to create an element with three

attributes (in this case, the element has no content):

SELECT XMLElement (NAME ‘‘article’’,

XMLAttributes (journal AS ‘‘journal’’,

title AS ‘‘title’’,

year AS ‘‘year’’))

FROM articles

WHERE id¼ ‘ID0001’

¼.

,article journal ¼ ‘‘ACM J1’’

title ¼ ‘‘Web and XML’’ year¼ ‘‘2001’’/.

XMLNamespaces

Although a namespace declaration is similar in

appearance to an attribute definition, it has different

semantics. Therefore, namespace declarations are

created by a separate function called XMLNamespaces.

A call to XMLNamespaces can create one or more

namespace declarations, each of which binds a

namespace URI, supplied by a character string

literal, to a namespace prefix, supplied by an SQL

identifier, as illustrated by the following example:

SELECT XMLElement (NAME ‘‘lib:article’’,

XMLNamespaces

(‘http://example.com/library’ AS ‘‘lib’’),

XMLAttributes (‘yes’ AS ‘‘lib:bestpaper’’),

XMLElement (NAME ‘‘lib:journal’’, journal),

XMLElement (NAME ‘‘lib:title’’, title))

FROM articles

WHERE title¼‘Web and XML’

¼.

,lib:article xmlns:lib¼‘‘http://example.com/
library’’ lib:bestpaper¼‘‘yes’’.

,lib:journal.ACM J1,/lib:journal.

,lib:title.Web and XML,/lib:title.

,/lib:article.

Another form of namespace declaration specifies the

default namespace that applies to all unprefixed

element names within the scope of a given element.

In a call to XMLNamespaces, a default namespace can

be specified by the keyword DEFAULT followed by a

namespace URI, or, if the element has no default

namespace, by the keywords NO DEFAULT.

A namespace prefix (or default namespace) defined

by XMLNamespaces is valid inside the XMLElement in

which it is specified. Nested calls to XMLElement

inherit the namespace prefixes defined by the outer

XMLElement, unless it is overridden by a nested call

to XMLNamespaces. The following example illustrates

how default namespaces can be controlled by nested

calls to XMLElement and XMLNamespaces. The default

namespace specified for the article element is

valid inside the article and journal elements, but

not inside the title element, which has no default

namespace.

SELECT XMLElement (NAME ‘‘article’’,

XMLNamespaces

(DEFAULT ‘http://example.com/library’),

XMLElement (NAME ‘‘journal’’, journal),

XMLElement (NAME ‘‘title’’,

XMLNamespaces (NO DEFAULT),

title))

FROM articles

WHERE title ¼ ‘Web and XML’

¼.

,article xmlns¼ ‘‘http://example.com/library’’.

,journal.ACM J1,/journal.

,title xmlns¼‘‘’’.Web and XML,/title.

,/article.

To comply with Namespaces in the XML Recom-

mendation,
13

the prefixes xml and xmlns are always

implicitly bound to http://www.w3.org/XML/1998/

namespace and http://www.w3.org/2000/xmlns,

respectively, and cannot be bound to any other

namespace URI. Similarly, no other namespace

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006254

prefix can be explicitly bound to either of these

URIs.

XMLForest

XMLForest provides a simple mechanism for creat-

ing a sequence of XML element nodes. As the name

of the function implies, these element nodes are not

rooted in a common top-level element, distinguish-

ing this function from XMLElement, which always

generates exactly one top-level element node.

The argument to XMLForest is a list of one or more

value/name pairs that are used to construct the

element nodes. Each element content is specified by

a value expression whose declared type can be any

SQL predefined data type (including XML). Each

element name is specified by an SQL identifier. If the

value expression is a column reference, then the

name can be omitted, and the column name serves

as the element name. If the value of an element is

null, then that element is not included in the result.

By default, if all element values are null, then

XMLForest returns the null value. XMLForest is

illustrated by the following example:

SELECT XMLForest (

journal AS ‘‘journal’’,

title,

year)

FROM articles

WHERE title ¼ ‘Web and XML’

¼.

,journal.ACM J1,/journal.

,TITLE.Web and XML,/TITLE.

,YEAR.2001,/YEAR.

Like XMLElement, XMLForest accepts a call to

XMLNamespaces as its first parameter, thus declaring

a set of namespaces that are valid inside all of the

element nodes created by XMLForest. Also like

XMLElement, XMLForest accepts a null handling

option at the end of its parameter list that specifies

the handling of constructed elements whose content

is null. The options are NULL ON NULL and EMPTY ON

NULL, with the same meanings as the equivalent

options in XMLElement. However, in XMLForest, the

default null handling option is NULL ON NULL, which

is the opposite default of XMLElement. This differ-

ence in defaults can be a source of confusion when

comparing a call to XMLElement with a call to

XMLForest. Unlike XMLElement, XMLForest provides

no syntax for specifying attributes for the con-

structed XML elements.

XMLConcat

The XMLConcat function takes a varying number of

parameters, each of which is a (possibly null) XML

value. It returns an XML value that is a sequence

comprising all the non-null input values. If any of

the input values are themselves sequences, the

& Just as there is much interest
in transforming SQL data into
XML data, the reverse is also
true &

result of XMLConcat is ‘‘flattened’’ into a single level

(it contains no nested sequences). If all the input

values are null, XMLConcat returns a null value.

XMLConcat might be thought of as the SQL/XML

counterpart of the comma operator in XQuery.

The semantics of XMLConcat are quite different from

those of the existing DB2 function named concat,

which is a string concatenation function. For

example, concat (‘abc’, ‘123’) returns the single

string abc123. XMLConcat, on the other hand,

operating on two XML values containing the strings

‘abc’ and ‘123’, would return an XML value

containing the sequence (‘abc’, ‘123’). Also,

concat returns null if any of its input values is null,

whereas XMLConcat returns null only if all its input

values are null.

XMLAgg

XMLAgg is different from the other XML publishing

functions in that it is an aggregate rather than a

scalar function. In that respect it is similar to the sum

function for numerical data types, which generates

the sum of all values in a column in a given group of

rows. Similarly, XMLAgg concatenates all the values

of a given column in a given group of rows using the

semantics of the XMLConcat function, i.e., null

values are ignored and only non-null values

contribute to the result. XMLAgg is often useful in

grouping XML values at a particular nesting level

and reconstructing XML values that have been

shredded across multiple tables.

In the following example, a top-level XML element is

generated that contains as subelements all of the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 255

articles published in ACM J1. From the articles

table, all rows qualify whose journal column

contains the value ‘ACM J1’. For each of these rows,

an XML element is created whose name is title and

whose content is the value in the title column. All

of these XML elements are concatenated, and the

resulting sequence forms the content of the top-level

XML element named articles-in-ACMJ1.

SELECT XMLElement (

NAME ‘‘articles-in-ACMJ1’’,

XMLAgg (XMLElement (NAME ‘‘title’’, title)))

FROM articles

WHERE journal ¼ ‘ACM J1’

¼.

,articles-in-ACMJ1.

,title.Web and XML,/title.

,title.XQuery Support in DB2,/title.

,/articles-in-ACMJ1.

As rows in a table are inherently unordered, the

order of the subelements in the above example is not

ensured. To force a certain order XMLAgg accepts an

optional parameter with which the user can specify

the order of the XML values before they are

concatenated into a sequence. The following exam-

ple shows how an ordering can be imposed on the

subelements in the previous example:

SELECT XMLElement (

NAME ‘‘articles-in-ACMJ1’’,

XMLAgg (XMLElement (NAME ‘‘title’’, title)

ORDER BY title DESC))

FROM articles

WHERE journal ¼ ‘ACM J1’

¼.

,articles-in-ACMJ1.

,title.XQuery Support in DB2,/title.

,title.Web and XML,/title.

,/articles-in-ACMJ1.

Other publishing functions

In addition to the functions listed above, SQL/XML

provides publishing functions for comment nodes,

processing instruction nodes, text nodes, and docu-

ment nodes. Each of these functions closely resem-

bles its counterpart node constructor in XQuery.

These publishing functions are illustrated by the

following examples:

1. This function call returns an XDM comment

node:

XMLComment (‘This is a comment’)

2. This function call returns an XDM processing

instruction node whose target is telephone and

whose value is ring:

XMLPI (NAME ‘‘telephone’’, ‘ring’)

3. This function call returns an XDM text node

whose string value is Hello:

XMLText (‘Hello’)

4. This function call returns an XDM document

node with a child element node whose name is

color and whose value is Red:

XMLDocument (

XMLElement (NAME, ‘‘Color’’, ‘Red’))

Query functions

Probably the most important new functionality in

SQL/XML:2006 is the ability to embed an XQuery

expression inside an SQL statement. This facility

provides an easy way to query XML values stored in

or generated by an SQL database. SQL/XML:2006

provides three functions for this purpose: XMLQuery,

which executes an XQuery and returns a scalar

value; XMLExists, which acts as a predicate and

returns true or false, and XMLTable, which

executes an XQuery and returns the result in the

form of a table (and is therefore used in the SQL

FROM clause). These functions are described in the

following subsections.

XMLQuery

The XMLQuery function allows SQL to execute an

XQuery expression, optionally passing named pa-

rameters to XQuery and receiving the result as a

value of type XML. At the language level, the

integration of SQL and XQuery is easily achieved,

which shows the versatility of both languages. Some

of the difficulties and challenges of this integration

are discussed in more detail in the section ‘‘Syntactic

and semantic challenges’’ later.

The simplest form of XMLQuery has a single argu-

ment: a character string literal containing the

XQuery expression to be evaluated. Successful

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006256

execution of this expression returns an XML value

(remember that an XML value is an XDM instance,

which is a sequence of zero or more items). The

XQuery expression is supplied as a character string

literal so that it is known at SQL query compilation

time and can be optimized together with the

enclosing SQL statement.

The following example is a simple XMLQuery

invocation that executes an embedded XQuery

expression without parameters. The result of the

query is a value of type XML containing a sequence

of integers: 2, 6, 12, 20.

XMLQuery (‘for $i in (1,2,3,4)

let $j :¼$i þ 1 return $i * $j’)

The XMLQuery function is much more useful when it

passes a set of named parameters to the embedded

XQuery expression. This can be done by means of a

PASSING clause that specifies the name and value of

each parameter.
18

The parameter name is an SQL

identifier, which can be referred to inside the

XQuery expression as a variable name (with a

leading ‘‘$’’ sign). The parameter value may be any

SQL expression. The result of evaluating this

expression is converted to the XML data type by

using the semantics of XMLCast (see the description

of XMLCast in the section ‘‘XML data type’’) bound to

the named variable and made accessible inside the

XQuery expression.

The following example illustrates how XMLQuery can

pass a parameter to an XQuery expression. For each

row of the books table, the SQL query passes the

content of the XML column bookdoc to XQuery as a

parameter named $book. The XMLQuery function

executes the path expression $book/title and

returns the title of the book as a value of type XML.

SELECT XMLQuery (‘$book/title’

PASSING BY REF bookdoc AS ‘book’)

FROM books

In the above example, the BY REF keywords indicate

that the bookdoc XML documents are passed by

reference to XQuery. When XML values are passed

by reference, no copy is made at the boundary

crossing, and node identities and parent linkages are

preserved. SQL/XML also defines another parame-

ter-passing option called BY VALUE, which copies the

nodes, losing node identities and parent linkages. To

avoid unnecessary copies and to enable use of the

parent axis, DB2 supports parameter passing only by

reference. In DB2, the BY REF keywords are optional

and are omitted in subsequent examples.

As XDM does not have a null value, each named

input argument that is null is converted into an

empty sequence before the XQuery expression is

evaluated. On the other hand, if the result of the

& DB2 unifies management of
relational and XML data,
supporting interfaces for both
SQL/XML and XQuery in a
unified query model &

XQuery expression is an empty sequence, no

conversion is necessary because an empty sequence

is a valid XDM value and therefore a valid value of

the XML data type.

XMLExists

The XMLExists function is similar to XMLQuery in

that it passes named parameters to XQuery and

executes an XQuery expression expressed as a string

literal. However, rather than returning the result of

the XQuery expression, XMLExists serves as a

predicate whose value is false if the result of the

XQuery expression is an empty sequence and is true

otherwise. The XMLExists function can be invoked

wherever a predicate can be used in an SQL query

(for example, in the WHERE clause or HAVING clause).

Note that if XMLExists is used to evaluate an XQuery

expression that returns true or false, the

XMLExists function itself will always return true (as

neither true nor false is an empty sequence). This

is a possible pitfall for unwary users. For example,

suppose that a user wishes to find the number of

books whose title contains the word ‘‘Frog.’’ The

following incorrect formulation of this query simply

returns the total number of rows in the books table,

because every invocation of XMLExists generates a

nonempty result and returns true:

SELECT count (*)

FROM books

WHERE XMLExists (‘contains ($book/title, ‘‘Frog’’)’

PASSING bookdoc as ‘‘book’’)

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 257

The following formulation of the query is correct

because, for books whose title does not contain the

word ‘‘Frog,’’ the embedded XQuery expression

returns an empty sequence, the XMLExists predicate

is false, and the row is not counted.

SELECT count (*)

FROM books

WHEREXMLExists(‘$book [contains (title, ‘‘Frog’’)]’

PASSING bookdoc as ‘‘book’’)

XMLTable

Just as there is much interest in transforming SQL

data into XML data, the reverse is also true. As

discussed earlier in this section, the shredding

technique can transform an XML document with

regular structure into one or more SQL tables based

on schema information. The XMLTable function

provides a more general mechanism for generating a

table from XML data that can be applied dynam-

ically and requires no schema information. As

XMLTable is a table function, it is used in the FROM

clause of an SQL query.

Like XMLQuery and XMLExists, XMLTable has argu-

ments that specify an XQuery expression to be

executed and a set of named parameters to be

passed to the XQuery expression. However, rather

than returning the result of the XQuery expression,

XMLTable uses this result to construct a table. Each

top-level item in the XQuery result generates one

row of the table. The XMLTable invocation has a

COLUMNS clause that specifies the columns to be

generated. Each column is specified by a name, a

data type, and a column-generating XQuery expres-

sion.

The following example uses XMLTable to generate a

table containing the years and titles of books

published by ‘‘Pub1’’:

SELECT x.year, x.title

FROM books b,

XMLTable (‘$book/book [publisher¼‘‘Pub1’’]’
PASSING b.bookdoc AS ‘‘book’’

COLUMNS

‘‘year’’ INTEGER PATH ‘@year’,

‘‘title’’ VARCHAR(60) PATH ‘title’)

AS x(year, title)

In the above example, each invocation of XMLTable

returns a table named x with columns year and

title, computed as follows:

1. The XQuery expression $book/book

[publisher¼‘‘Pub1’’] is evaluated, producing a

sequence of items. In this example, the sequence

will be of length zero or one, depending on the

publisher of the book passed to XMLTable

2. Each item in the sequence produced by the

previous step is used to compute a row of the

table. During the computation of this row, the

given item serves as the XQuery context item (the

beginning point for path expressions).

3. To generate the value for a particular row and

column, the column-generating expression for

that column is evaluated with the context item

described in the previous step. The result is then

cast to the data type specified for that column.

If a column-generating expression is omitted, the

column value is generated by an implicit path

expression using the column name as a name test.

Thus, the column-generating expression PATH

‘title’ can be omitted from the previous example,

as follows:

SELECT x.year, x.title

FROM books b,

XMLTable (‘$book/book [publisher¼‘‘Pub1’’]’
PASSING B.BOOKDOC AS ‘‘book’’

COLUMNS

‘‘year’’ INTEGER PATH ‘@year’,

‘‘title’’ VARCHAR (60))

AS x(year, title);

Table 2 shows what the output of the above

example might look like. In this example, an SQL

delimited identifier is used for the lowercase column

name title to make sure that SQL and XQuery

interpret the names in the same way, as XQuery

names are case-sensitive and SQL names are case-

sensitive only inside delimited identifiers.

NATIVE XML IN DB2
DB2 provides native XML storage, indexing, and

query processing through both XQuery
10

and SQL/

Table 2. Example XMLTable output

year title

1994 TCP/IP Illustrated

2004 XQuery from the Experts

2003 XML Data Management

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006258

XML
15

by using the XML data type introduced by

SQL/XML. DB2 unifies management of relational

and XML data, supporting interfaces for both SQL/

XML and XQuery in a unified query model, as

shown in Figure 1.

DB2 implements all of the SQL language extensions of

SQL/XML:2006 (with some minor exceptions), in-

cluding the XML-data-type XMLParse, XMLSerialize,

XMLValidate, and XMLCast functions, as well as the

publishing and querying functions. Users can query

XML data by using XQuery directly or by calling SQL/

XML query functions. They can also query both

relational and XML data within the same statement by

using XQuery or SQL/XML. After parsing, both

XQuery and SQL/XML queries are mapped into a

unified internal representation and handled by the

hybrid query compiler.
19

DB2 exploits this unified

model to perform powerful cross-language optimi-

zations. XDM
12

plays a vital role in this process

because operating on the same data model allows

XML values to be exchanged between SQL and

XQuery, providing a seamless integration of the two

languages.

DB2 stores XML data in columns of tables. The

physical storage format for the XML data type

preserves all the information in XDM. An important

feature of DB2 is that it does not require an XML

schema to be associated with an XML column. An

XML column can store documents validated ac-

cording to many different and evolving schemas, as

well as schema-less documents. Hence, the associ-

ation between schemas and XML documents is on a

per-document basis, providing maximum flexibility.

The detailed description of native XML support in

DB2 can be found in References 19, 20, and 21. In

the following sections, we show how to insert,

index, validate, and query XML data in DB2. The

examples in these sections are based on the books,

articles, and authors tables defined in the

previous section.

Storing, validating, and indexing XML data in

DB2

DB2 supports the creation of tables having one or

more columns of the new XML data type defined by

SQL/XML. This enables existing SQL applications to

augment their current relational database designs

SQL/XML

DB2 Engine

XQuery

Query Evaluation and Runtime XML Navigation

DB2 Client/Application

XML Interface

SQL/XML Parser XQuery Parser

Hybrid SQL/XQuery Compiler

Figure 1
IBM DB2 architecture overview

Relational Interface

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 259

with additional XML data and provides an evolu-

tionary path for XML support. Currently, each XML

instance stored in DB2 must be a well-formed XML

document. Conceptually, in an XML column, each

row contains an XML document, represented as an

XDM instance.

XML columns are created like other SQL columns,

and their data is inserted and deleted using SQL

INSERT and DELETE statements. Because XQuery

does not yet include update syntax, DB2 only

supports full document replacements at present.

To insert an XML document into a table, it must be

parsed and converted into native XML storage

format. The following example shows how this can

be accomplished using the XMLParse function:

INSERT INTO books (id, bookdoc)

VALUES (‘2457’,

XMLParse (DOCUMENT

‘,?xml version¼‘‘1.0’’ encoding¼‘‘UTF-8’’?.

,book year¼‘‘1994’’.
,title.TCP/IP Illustrated,/title.

,publisher.Addision-Wesley,/publisher.

,price.65.60,/price.

,chapter.

,title.Introduction,/title.. . .

,/chapter.. . .

,/book.’))

Note the bookdoc column in the books table is of

type XML but is not associated with any particular

XML schema. An XML schema is not required in

order to define an XML column or to insert or query

XML data.

If the XML document has an associated schema, it

can be validated by specifying the schema during

insertion. Before an XML schema can be used for

validating documents, it must be registered with the

database. DB2 provides an XML Schema Repository

(XSR)
20,21

to manage XML schemas. Registration of

XML schemas with the XSR is done through DB2

commands, stored procedures, or language-specific

application programming interfaces (APIs). The

following example illustrates registering a schema

with a DB2 command:

REGISTER XMLSCHEMA

http://example.books.com FROM books.xsd

AS bookSchema COMPLETE

In this example, the target namespace URI of the

XML schema is http://example.books.com, the file

that contains the schema document is books.xsd,

and the SQL identifier associated with this schema is

bookSchema.

To validate an XML document during insertion with

a given XML schema, we use the SQL/XML

functions XMLParse and XMLValidate. The docu-

ment is validated after parsing, as shown in the

following example:

INSERT INTO books

VALUES (‘2457’,

XMLValidate (DOCUMENT

XMLParse (DOCUMENT

‘,?xml encoding¼‘‘UTF-8’’?.

,book year¼‘‘1994’’.
,title.TCP/IP Illustrated,/title.

,publisher.Addison-Wesley,/publisher.

,price.65.60,/price.

,chapter.

,title.Introduction,/title.. . .

,/chapter.. . .

,/book.’)

ACCORDING TO XMLSCHEMA ID bookSchema))

In this example, the schema to be used in validation

was identified explicitly by the SQL identifier

bookSchema that was passed to XMLValidate. If no

schema had been explicitly named in the call to

XMLValidate, the document would have been

validated by using the registered schema identified

by the xsi:schemaLocation attribute of the root

element (if no such attribute existed, an error would

be raised).

When a document is validated against an XML

schema, DB2 not only checks the document for

validity but also annotates the nodes in the XML

document with type information. XML nodes in a

validated document are annotated with their prim-

itive data types, and the runtime system uses this

information for dynamic dispatch of functions

during query processing. If an XML document is not

validated, then all of its element nodes are anno-

tated as xdt:untyped, and all of its attribute nodes

are annotated as xdt:untypedAtomic. Type annota-

tions of nodes play an important role in query

processing. For example, a sequence of price

attributes is sorted as strings if the book documents

are not validated, whereas they would be sorted as

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006260

decimal values if they were validated and had the

type annotation xs:decimal.

DB2 supports indexes on particular XML path

expressions called xmlpatterns, which may contain

wildcards, descendant axis navigation, and kind

tests. As DB2 does not require a single XML schema

for all documents in an XML column, and XML

documents in a column may contain both typed and

untyped values, DB2 may not know which data type

to use in the index for a given xmlpattern. Moreover,

untyped values have polymorphic behavior in

XQuery predicates: They are cast to the type of the

other operand. As a result, the user must explicitly

specify a key data type in each create index

statement, and the values of all elements and

attributes represented in the index are cast to this

key data type. Because relational and XML indexes

share a common implementation, the key data type

of an XML index must be an SQL data type, and the

result of the index expression must be castable to

this type. The following examples illustrate the

creation of XML indexes:

CREATE INDEX pubIndex ON books (bookdoc)

GENERATE KEY USING XMLPATTERN ‘/book/publisher’

AS SQL VARCHAR (100);

CREATE INDEX yearIndex ON books (bookdoc)

GENERATE KEY USING XMLPATTERN ‘//@year’

AS SQL INTEGER;

In the first example, publisher element children of

the top-level book element are indexed as strings,

and in the second example, all year attributes in the

documents are indexed as integers.

Querying XML data in DB2

A DB2 application can access XML data in several

ways, using either SQL/XML
15

or XQuery.
10

DB2

allows invoking XQuery within SQL and vice versa.

Queries can use XMLQuery, XMLExists, or XMLTable

to invoke XQuery and retrieve XML fragments. DB2

also supports a stand-alone XQuery interface.

When XQuery is invoked as a top-level language,

DB2 needs a hint to invoke the XQuery parser

instead of the SQL parser. This is achieved by

prefixing XQueries with the xquery keyword. When

invoked through the SQL/XML functions XMLQuery,

XMLExists, or XMLTable, XQuery gets its input data

from the function parameters. When invoked as a

top-level language, XQuery needs a source of input

data. Because XML data is stored in relational tables,

DB2 provides an input function called

db2-fn:xmlcolumn to provide access to XML data.

This function takes the name of an XML column in a

relational table or view as an argument and

& To retrieve XML documents
that satisfy a particular
condition based on their
content, the XMLExists function
can be used &

returns the sequence of XML values stored in that

column. For example, the following query operates

on the bookdoc column of the books table, returning

all chapter titles that contain the word Czar.

xquery db2-fn:xmlcolumn(‘‘BOOKS.BOOKDOC’’)

//chapter/title[contains (., ‘‘Czar’’)]

DB2 also provides another input function,

db2-fn:sqlquery, to invoke an SQL query from

within XQuery. This function takes in an SQL

SELECT statement and returns an XML column as

output. Note that an SQL query may return an XML

result by invoking XQuery, by using SQL/XML

publishing functions, or by selecting data from an

XML column of a relational table or view. The

db2-fn:sqlquery function is useful when users

want to restrict the XML documents seen by XQuery

based on some conditions on relational tables or

views, or when they want to provide an inline XML

view of their relational data.
22

The following query

returns the titles of books written by John Doe. Note

that the relational join between the books and

authors tables and the relational condition on the

name column of the authors table restrict the book

documents input to XQuery.

xquery db2-fn:sqlquery(‘‘SELECT b.bookdoc

FROM books b, authors a

WHERE a.name ¼ ‘John Doe’

AND b.id¼ a.pubid’’)/book/title

Conversely, it is possible to invoke XQuery from

within an SQL query by using the XMLQuery,

XMLExists, and XMLTable functions. Users can

employ the XMLQuery function to retrieve fragments

of XML documents. For example, the following

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 261

query constructs and returns bookinfo elements

containing the book title and chapter titles of books

in which any chapter title contains the word XML:

SELECT XMLQuery (‘for $b in $book/book

where contains ($b//chapter/title, ‘‘XML’’)

return ,book-info.

f$b/titleg
,chapter-titles.

f$b//chapter/titleg
,/chapter-titles.

,/book-info.’

PASSING bookdoc AS ‘‘book’’)

FROM books

The XML column bookdoc is passed to XQuery by

means of the variable book. Execution of the XQuery

expression extracts the title of book and chapters,

applies the predicate, and constructs a new element

book-info. Note that the bookdoc document nodes

are passed by reference to XQuery, thus maintaining

node identities across the language boundary and

avoiding the copying of large documents.

The SQL query in the previous example returns a

result for each row of the books table. For books that

have ‘‘XML’’ in a chapter title, the result is an XML

value containing a book-info element. For other

books, the result is an XML value containing an

empty sequence.
23

To retrieve XML documents that satisfy a particular

condition based on their content, the XMLExists

function can be used. For example, the following

query returns values of the bookdoc column that

contain books written after 1996. In each case, the

entire XML document is returned.

SELECT bookdoc

FROM books

WHERE XMLExists (‘$book/book[@year . 1996]’

PASSING bookdoc AS ‘‘book’’)

If it is desired to retrieve only fragments of XML

documents that satisfy a given condition, the

XMLTable function can be used. For example, the

following query retrieves the titles of books written

after 1996. In this example, each invocation of

XMLTable is passed one book in XML form. If the

year attribute of the book is not greater than 1996,

XMLTable returns no rows. If the year attribute is

greater than 1996, XMLTable returns a row contain-

ing the title of the book. (If a book element contains

more than one title, then all titles of the book are

returned as a sequence in a single row.) As the SQL

query joins the books table with the result of

XMLTable, only the titles of books written after 1996

appear in the query result.

SELECT t.booktitle

FROM books b,

XMLTable(‘$book/book[@year . 1996]’

PASSING b.bookdoc AS ‘‘book’’

COLUMNS

‘‘title’’ XML BY REF PATH ‘title’)

AS t(booktitle)

Some applications may require grouping and anal-

ysis. Although XQuery does not yet have an explicit

group-by construct, grouping queries can be ex-

pressed by using nested queries and self-joins. The

following XQuery computes the number of books

published by each publisher. This query contains a

let clause that computes the group of books for

each distinct publisher.

xquery

for $pub in distinct-values(

db2-fn:xmlcolumn(‘BOOKS.BOOKDOC’)

/book/publisher)

let $group :¼
db2-fn:xmlcolumn(‘BOOKS.BOOKDOC’)

/book[publisher¼$pub]
return

,result.

f$pubg
,count.fcount($group)g,/count.

,/result.

A similar query, which also returns the number of

books for each publisher although in a slightly

different format, is given in the following example.

This query uses XMLTable to extract the publishers

of each book and computes the groups on the SQL

side.

SELECT t.publisher, count(*)

FROM books b,

XMLTable(‘$book/book’

PASSING b.bookdoc AS ‘‘book’’

COLUMNS

‘‘publisher’’ VARCHAR(100)) AS t(publisher)

GROUP BY t.publisher

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006262

In this example, for each book, XMLTable returns a

computed one-column table containing the pub-

lisher of the book. By ‘‘breaking out’’ the publisher

into a separate column, it becomes possible to use

the grouping feature of SQL to count the number of

books from each publisher. This query avoids

scanning the books table twice and performing a

self-join by exploiting the explicit GROUP BY construct

of SQL.

Defining XML and relational views

DB2 provides both a relational and an XML inter-

face. Pure relational applications can access XML

data by creating relational views of XML data, and

XML-centric users can query XML data and XML

views of relational data through XQuery. Users can

use SQL/XML publishing functions to create XML

views of their relational data. The view defined in

the following example consists of a table that

contains only a single row and a single column of

type XML. The XML value contained in this single-

cell table consists of a bib element that contains

many book elements. Each of the book elements in

turn contains zero or more author elements,

computed from relational data stored in the authors

table.

CREATE VIEW bib(doc) AS

(VALUES XMLELEMENT (NAME ‘‘bib’’,

(SELECT XMLAgg(

XMLElement (NAME ‘‘book’’,

XMLATTRIBUTES (b.id),

(SELECT XMLAgg(

XMLElement (NAME ‘‘author’’,

XMLAttributes (au.affiliation),

XMLElement (NAME ‘‘name’’, au. name)))

FROM authors au

WHERE au.pubid ¼ b.id),
XMLQuery (‘$book/book/*’

PASSING b.bookdoc as ‘‘book’’)))

FROM books b)))

For each row of the books table, the XMLQuery

function extracts all the element children of the top-

level book element in the XML column bookdoc. The

enclosing XMLElement function creates a new book

element that has the same element children as the

original book element, but also has an id attribute

and author element children. The view definition

joins the books and authors tables to compute the

authors of each book. An illustrative fragment of the

resulting bib element is shown below.

,bib.

,book id¼ ‘‘2457’’.

,author.,name.W.RichardStevens,/name.,/author.

,title.TCP/IP Illustrated,/title.

,publisher.Addison-Wesley,/publisher.

,price.65.60,/price.

,chapter.

,title.Introduction,/title. ...

,/chapter.

...

,/book.

...

,/bib.

Conversely, SQL/XML query functions can be used

to create relational views of XML data. In particular,

XMLTable can be used to define an on demand

shredding of XML data into relational tables

according to the needs of the application. The

following view definition uses the XMLTable func-

tion to generate a relational table that contains the

title, year, publisher, and price of each book,

extracting this data from the stored XML content.

CREATE VIEW

bookContent (title, year, publisher, price) AS

(SELECT t.title, t.year, t.publisher, t.price

FROM books b,

XMLTable (‘$book/book’

PASSING b.bookdoc AS ‘‘book’’

COLUMNS

title VARCHAR(100) PATH ‘title’,

year INTEGER PATH ‘@year’,

publisher VARCHAR(100) PATH ‘publisher’,

price DECIMAL (6,3) PATH ‘price’)

AS t)

The view definition invokes the XMLTable function

once for each row in the books table. Each

invocation of XMLTable returns as many rows as

there are book elements in the input bookdoc

elements (probably one in our example data). Table 3

shows what the resulting view might look like.

SYNTACTIC AND SEMANTIC CHALLENGES
Integration of the SQL and XQuery languages is

made difficult by various mismatches in their syntax

and semantics. In this section, we discuss some of

these differences and their implications for XML

processing in DB2.

Constructors and node identities
SQL is a value-based language and does not have a

notion of identity. Values can be freely copied

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 263

between SQL operations. XQuery, on the other

hand, is a reference-based language, and the notion

of node identity plays an important role in XDM. For

example, each step of a path expression eliminates

duplicates based on node identity, and XPath allows

reverse (i.e., parent and ancestor) traversals. In

general, nodes cannot be copied between XQuery

operations because copying a node does not

preserve its identity and its parent linkage. There-

fore, the result of an XQuery expression contains

node references rather than copies of nodes. One

exception is XQuery constructor expressions, which

generate new nodes with new identities. For this

reason, constructor expressions are nondeterminis-

tic. Because SQL/XML:2006
15

is based on XDM, the

publishing functions of SQL/XML are also non-

deterministic. This poses several challenges for

query optimization. In particular, certain rewrite

transformations cannot be applied in the presence of

nondeterministic functions, and the order of oper-

ations must be enforced, limiting the options

available to a cost-based optimizer. For example,

consider the following query:

xquery

for $i in (1,2,3)

let $j:¼,comment . hello world ,/comment.

return $j

Here, the let clause needs to be executed once for

each $i value because each comment element

returned by this query has a different identity.

Hence, the optimizer cannot change the order of

execution, although there is no dependency between

the computations of $i and $j. The following

seemingly equivalent query returns a different

result: it returns the same comment element three

times (that is, it returns three references to a single

node with the same identity).

xquery

let $j : ¼,comment. hello world ,/comment.

for $i in (1, 2, 3)

return $j

Constructors also interfere with common subex-

pression detection. For example, consider the bib

view definition in the previous section and the

following query:

xquery

db2-fn:xmlcolumn (‘BIB.DOC’)

/book[author/name¼‘John Doe’]

union

db2-fn:xmlcolumn (‘BIB.DOC’)

/book[publisher ¼ ‘Pub1’]

When each reference to the bib view in the above

query is replaced by its definition, the result is two

distinct BIB documents, as each invocation of the

view produces new nodes with different node

identities. In the result of the query, book elements

that represent books written by John Doe after 1996

will appear twice, once from the first BIB document

and once from the second. Many SQL query

compilers would detect two invocations of the same

view as a common subexpression and would

evaluate it only once. However, XQuery compilers

cannot apply this optimization when the view

definition contains node constructors. This limita-

tion is similar to the limitations caused by SQL

functions that are declared with the keywords

NOT DETERMINISTIC.

To avoid the spurious duplicates returned by the

previous example, a user might choose to rewrite it

as follows:

xquery

let $bib :¼ db2-fn:xmlcolumn(‘BIB.DOC’)
return ($bib/book[.//author/name¼‘John Doe’]
union

$bib/book[publisher ¼ ‘pub1’])

This query will produce only one instance of each

book because the view definition is invoked only

once. In effect, the let clause explicitly defines the

common subexpression.

Because SQL/XML has adopted the XQuery Data

Model, the problems caused by nondeterministic

functions exist in SQL/XML as well as in XQuery.

Before the introduction of the XML data type, there

was no semantic difference between an inline view

Table 3 BOOKCONTENT

TITLE YEAR PUBLISHER PRICE

TCP/IP Illustrated 1994 Addison-Wesley 65.60

Hello World 1997 My Pubs 56.40

XML and Web 2000 Sons and Co. 67.50

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006264

definition (i.e., with clause) and a regular view

definition in SQL. However, if the view definition

contains an SQL/XML constructor function, then an

SQL inline view and a regular SQL view are no

longer semantically equivalent. Fortunately, there

are some opportunities to remedy this obstacle to

optimization. The only operations that are sensitive

to node identities are certain XQuery operations that

include node comparisons, union, intersect,

except, and path expressions. After an XDM

instance has been serialized, its node identities are

no longer distinguishable. Therefore, if a con-

structed XML value is not passed to XQuery, then

the SQL compiler can detect that node identities are

not important and can apply query optimizations,

such as common subexpression detection, join

ordering, and predicate pushdown. However, this

optimization requires global analysis of the query,

as opposed to the more local analysis that is

commonly used in SQL optimization.

Type mismatches
Another important aspect of the integration of SQL

and XQuery is the unification of their type systems.

This is made difficult by the fact that the XQuery

type system is based on XML Schema,
4

which is

different from the type system of SQL. In particular,

the primitive data types of the two languages have

different domains and properties. For example, XML

Schema has durations that mix months and days,

whereas SQL does not have such data types. SQL

has two types of dates, with and without time zones,

and does not allow them to be compared. XML

Schema, on the other hand, has a single date type

with an optional time zone, and XQuery allows

dates without time zones to be compared with dates

with time zones. In XQuery, an implicit time zone is

used in such comparisons. SQL has many string data

types, such as CHAR, VARCHAR, and CLOB, and

requires the maximum length of each string-type

column to be specified. XML Schema, on the other

hand, has a data type called xs:string of indefinite

length and permits subtypes of limited length to be

derived from xs:string. Similarly, SQL decimal

data types have well-defined precision and scale,

whereas XML decimal data types do not necessarily

have such constraints. Therefore, SQL/XML defines

a mapping from XQuery primitive data types to SQL

data types to allow values to be passed back and

forth.

These type system mismatches pose several chal-

lenges for query processing and indexing and for

boundary crossing between SQL and XQuery.

Whenever values are passed from XQuery to SQL,

they need to be cast or cleansed according to the

SQL type system, and vice versa.

Syntax issues

SQL and XQuery have several differences in

syntactic and scoping conventions. For example,

XQuery is based on Unicode, whereas an SQL

database can be in a language-specific code page.

When string values are passed from SQL to XQuery,

they need to be converted into Unicode.

In addition, the conventions for XML identifiers and

SQL identifiers are different. For example, a hyphen

is a valid character in an XML identifier, but not in

an SQL identifier. Moreover, names in XQuery are

QNames, which consist of a namespace and a local

name, whereas SQL uses three-part names that

& Although XQuery does not
yet have an explicit group-by
construct, grouping queries
can be expressed by using
nested queries and self-joins &

consist of a relational schema name,
24

table name,

and column name. While namespaces serve to

disambiguate names in XQuery, schemas serve the

same function in SQL. As a result, different rules and

mechanisms are needed to resolve names in XQuery

and SQL. The differences in lexical conventions and

name resolution prevent the use of a common parser

for SQL and XQuery; hence, DB2 uses two different

parsers.

The low-level syntactic conventions of SQL and

XQuery are different in several ways. SQL uses

single quotation marks for string literals and double

quotation marks for delimited identifiers, whereas

XQuery uses either single or double quotation marks

for string literals and attribute delimiters. Both

languages have conventions for using a pair of

quotation-mark characters to represent a single

quotation-mark character within a string. Users

need to pay special attention to using single or

double quotation marks when using db-fn:

sqlquery, XMLQuery, XMLExists, and XMLTable

functions. Consider the following example:

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 265

xquery

let $bookTitles :¼
db2-fn:xmlcolumn (‘‘BOOKS.BOOKDOC’’)

/book/title

[contains(., ‘Web’)]

let $articleTitles :¼
db2-fn:sqlquery(

‘‘SELECT XMLELEMENT(name ‘‘ ‘‘art-title’’ ’’,

a.title)

FROM articles a

WHERE a.title LIKE ‘Web%’ ’’)

return $bookTitles union $articleTitles

In this query, we use double quotation marks to

delimit the SQL statement in XQuery so that we can

use single quotation marks to represent the SQL

string literal ‘Web%’. Also, note that the SQL

identifier art-title is delimited at each end by a

pair of double quotation marks.

Similar issues involving nested string delimiters

arise when using XMLQuery, as illustrated by the

following example:

SELECT XMLQuery (‘for $chapter in $book//chapter

where contains ($chapter/title,‘‘Czar’’)

return $chapter/title’

PASSING b.bookdoc AS ‘‘book’’)

FROM books b

SQL converts ordinary identifiers into uppercase.

For case-sensitive names, SQL requires the use of

delimited identifiers, enclosed in double quotation

marks. This is especially important when SQL and

XQuery are used together in a query. In general, the

best practice when bound variables are passed from

SQL to XQuery is to use SQL delimited identifiers to

name the variables so that they are interpreted in the

same way by both languages. If the book variable in

the following query were defined using a regular

identifier rather than a delimited identifier, the SQL

compiler would uppercase it into BOOK, and the

$book variable on the XQuery side would be

undefined.

SELECT XMLQuery (‘$book/book/title’

PASSING b.bookdoc AS ‘‘book’’)

FROM books b

Because of the case sensitivity of XQuery, users

must be careful in typing name tests in their path

expressions. For example, if an XML document

contains an element named customerName, that

element would not match the name test

customername or CustomerName.

SQL null values compared with XQuery empty

sequences

SQL uses null values to represent missing or

unknown data. However, the concept of a null value

does not exist in XQuery. In an XML document,

missing or unknown data can be represented simply

by the absence of an element. When a path

expression searches for a value that is not present,

XQuery returns an empty sequence, which is a valid

XDM value.

Because XQuery does not have a null value,

conventions are needed for how to handle null

values whenever a parameter is passed from SQL to

XQuery. The functions XMLQuery, XMLTable, and

XMLExists all convert null values of named argu-

ments to empty sequences before invoking XQuery.

The XMLCast function returns null when its input is

null (which is consistent with other SQL scalar

functions), and XMLAgg simply ignores null values

when computing its output sequence (which is

consistent with other SQL aggregate functions).

XMLElement and XMLForest, on the other hand, have

syntactic options (EMPTY ON NULL, etc.) that permit

the user to choose among several conventions for

handling null inputs, as described in the section on

bridging SQL and XQuery.

Conventions for handling null values are also

needed by the XQuery input functions

db2-fn:xmlcolumn and db2-fn:sqlquery. Like any

other relational column, a column of type XML may

contain null values. The db2-fn:xmlcolumn and

db2-fn:sqlquery functions simply ignore null val-

ues when computing the input sequence. No special

conventions are needed by SQL/XML functions for

returning an empty sequence, because an empty

sequence is a valid XDM instance and is therefore a

valid value of the XML data type.

Similar functions in XQuery and SQL may have

different behavior with respect to missing values.

For example, cast expressions in SQL always return

a null value when the input is null. In XQuery cast

expressions, on the other hand, whether an empty

sequence is allowed or not is controlled by the

occurrence indicator specified with the target data

type. The XQuery expression $x cast as

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006266

xs:integer? will produce an empty sequence if its

input is empty, because the occurrence indicator ?

signifies that an empty sequence is allowed. The

XQuery expression $x cast as xs:integer raises a

type error, however, if the input is empty. XQuery

can also cast values from one data type to another

by means of constructor functions, which always

accept empty arguments. Thus, in XQuery, the

function xs:integer($x) is equivalent to $x cast as

xs:integer?, whereas in DB2 SQL, the function

integer(b.col) is equivalent to cast (b.col as

integer)

IMPLEMENTATION CHALLENGES

One of the challenges in XQuery processing is

caused by multiple interpretations of predicate

expressions (enclosed in square brackets). The

interpretation of a predicate expression depends on

the data type of its result. If the predicate expression

returns a single numeric value, then it is interpreted

as a positional predicate, whereas if it returns a

value of any other data type, it is interpreted as a

Boolean filter, and its effective Boolean value is

computed. This poses several problems for query

transformations as certain transformations cannot

be applied when there is a positional variable. If the

compiler cannot prove that a predicate expression

will return a non-numeric value, it must treat the

predicate as potentially a positional predicate.

Consider the path expression .//name, which is

shorthand for ./descendant-or-self::node()/

child::name. This three-step path expression can be

rewritten into a more efficient single-step version

descendant::name only if there is no positional

predicate on the last step. Note that .//name[2] is

different from descendant::name[2]: The former

expression asks for the second name child of each

descendant of the context node, whereas the latter

one asks for the second name descendant of the

context node.

Another problem relating to positional predicates

arises in the case of a predicate expression that can

return either a numeric value or an empty sequence.

For example, an arithmetic expression returns an

empty sequence if one of its operands is an empty

sequence. In a predicate context, an empty sequence

is interpreted as a Boolean filter and evaluates to

false. Therefore, without static typing,
25

it is not

possible to safely interpret the expression //book

[yearþ1] as a positional predicate. For books that

have a year element child, this is a positional

predicate, but for books that do not have a year

element child, it is a Boolean predicate.

Users can avoid the problems introduced by

multiple interpretations of predicates by explicitly

& SQL is a value-based language
and does not have any notion of
identity &

specifying either a positional or a Boolean predicate.

A positional predicate can be specified as

[position()¼exp], and a Boolean predicate can be

specified by using the fn:boolean()function, as in

[fn:boolean (exp)].

XML Schema and XQuery have generic data types,

which pose special challenges for query processing.

When an XML document is not validated, the

element nodes in the document are annotated as

xdt:untyped and the attribute nodes are annotated

as xdt:untypedAtomic. In XQuery general compar-

isons, if one of the operands is untyped, then it is

dynamically cast to the data type of the other

operand. This semantic of XQuery is challenging for

indexing and requires that untyped data be indexed

in every data type that it can be cast to. For example,

the untyped value ‘2679’ can behave as either an

integer or a string, depending on the context of its

use. To avoid casting untyped data to every possible

data type, DB2 XML indexes require that the user

specify a particular target data type for each index at

index creation time.

Different XQuery functions and operators have

different conventions for handling untyped values.

In general, each function or operator attempts to

cast untyped values into a data type that it knows

how to handle. For example, the max and min

functions cast untyped values to xs:double,

whereas order by clauses and the distinct-values

function treat untyped values as instances of

xs:string.

Even validated documents may contain instances of

generic data types, such as xs:anyType. Moreover,

XML also permits an element to have a type-defining

attribute like xsi:type¼‘‘decimal’’. For example, an

XML schema may declare a given element to have a

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 267

generic data type like xs:anyType, and each instance

of the element could have a different specific data

type, like xs:string, xs:integer, etc. In this case,

the XQuery functions and operators must be

dispatched dynamically because each input instance

may be different.

To support evolving schemas, DB2 does not imple-

ment the static typing feature of XQuery.
19,20,21

Static typing would be too strict when documents

have changing schemas, and it would reject many

valid and useful queries at compilation time. As a

consequence, DB2 relies on dynamic dispatch of

XQuery functions and operators, even when sche-

mas are strongly typed, i.e., they do not have

generic data types. Each operation and function first

checks the type annotations of its inputs and

performs the appropriate operation.

The lack of concrete type information can affect the

search for an eligible index when processing a given

predicate. For example, when joining two XML

values, if their data types are not known by static

analysis, the compiler cannot pick an index. For this

reason, it is suggested to insert explicit cast

functions into join predicates to aid in index

selection.

XQuery allows an expression to be evaluated with-

out accessing all relevant data if accessing further

data could not change the outcome except by raising

an error. For example, an XQuery engine can

evaluate logical expressions in any order and may

not evaluate one of the operands; while evaluating

an and expression, it may stop as soon as one of the

operands evaluates to false. Similarly, an XQuery

engine can stop evaluating a some expression (which

searches for some item in a sequence that satisfies a

condition) as soon as it finds the first item that

satisfies the condition, even if some other item

might have raised an error. DB2 exploits this type of

optimization and is therefore nondeterministic in

the presence of certain types of errors, as permitted

by the XQuery specification.

CONCLUSION

Relational database systems are very well adapted to

traditional business applications in which data has a

known regular structure. The advantages of the

relational data model are as important as ever, and

no one expects XML data and languages to replace

relational data and languages in traditional database

applications.

Native storage of XML data, however, offers some

important advantages for new types of applications.

It allows storage of very diverse forms of informa-

tion while preserving the ability to search or

aggregate that information. It provides a natural

storage model for data that has an intrinsic order, a

hierarchic structure, or a large number of sparsely

populated attributes. It is well adapted to a world of

‘‘schema evolution’’ where it is necessary to store

and process documents conforming to many differ-

ent schemas, including some documents lacking

schemas, and where the set of schemas is rapidly

changing. These kinds of applications are increasing

in importance due to the influence of the Web and

e-commerce.

In many ways, the state of XML database languages

and systems resembles that of relational languages

and systems in the early 1980s. Many research

papers have been published, and a standard query

language is under development. Commercial sys-

tems are beginning to appear, but optimization

technology is still immature. Some important use

cases are still not covered by the existing languages

(for example, XQuery still lacks an update capa-

bility). Some skeptics are doubtful about the value

of the new approach and its ability to be imple-

mented efficiently.

SQL/XML allows users to combine the advantages of

SQL and XQuery by using each language where it is

most appropriate. It allows XML data to be stored in

relational systems, taking advantage of the mature

infrastructure provided by these systems and, at the

same time, preserving and exploiting the special

characteristics of the XML data. By implementing

SQL/XML with XQuery support, DB2 gives users the

flexibility to choose among several techniques for

storing XML data, including shredding and native

XML storage.

Native storage of XML data represents a major

investment for the database industry. Many XML

database products are beginning to appear from

major DB vendors and others. If XML databases are

successful, they will pass through the same evolu-

tionary stages encountered earlier by relational

databases. XQuery will be extended with update

operations and possibly with additional features,

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006268

such as better error recovery, explicit grouping, and

other analytic features. Customer experience will

determine which use modes are most important to

the language. XQuery will continue to evolve to

meet user requirements, and developing optimiza-

tion techniques for access to XML data will be an

active research topic for years to come.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Linus Torvalds, The
Open Group, Microsoft Corporation, or Sun Microsystems,
Inc. in the United States, other countries, or both.

CITED REFERENCES AND NOTES
1. ISO 8879:1986, International Organization for Stan-

dardization (ISO), Information Processing—Text and
Office Systems—Standard Generalized Markup Language
(SGML).

2. ANSI/ISO/IEC 9075-2:2003, International Organization for
Standardization (ISO), Information Technology—Data-
base Languages—SQL—Part 2: Foundation (SQL/Foun-
dation).

3. Extensible Markup Language (XML) 1.0 (Third Edition),
T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, Editors, W3C Recommendation (February 4,
2004), http://www.w3.org/TR/2004/REC-xml-20040204.

4. XML Schema, The XML Schema Working Group, http://
www.w3.org/XML/Schema.

5. XML Path Language (XPath) Version 1.0, J. Clark and
S. DeRose, Editors, W3C Recommendation (November
16, 1999), http://www.w3.org/TR/xpath.

6. XSL Transformations (XSLT) 1.0, J. Clark, Editor, W3C
Recommendation (November 16, 1999), http://www.w3.
org/TR/xslt.

7. World Wide Web Consortium, http://www.w3c.org.

8. QL’98: The W3C Query Languages Workshop, Boston,
MA (1998), http://www.w3.org/TandS/QL/QL98.

9. D. Chamberlin, D. Draper, M. Fernández, M. Kay,
J. Robie, M. Rys, J. Siméon, J. Tivy, and P. Wadler,
XQuery from the Experts: A Guide to the W3C XML Query
Language, H. Katz, Editor, Addison-Wesley, Boston, MA
(2003).

10. XQuery 1.0: An XML Query Language, S. Boag,
D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,
and J. Siméon, Editors, W3C Recommendation (Novem-
ber 3, 2005), http://www.w3.org/TR/xquery.

11. W3C XML Query (XQuery), http://www.w3.org/XML/
Query/.

12. XQuery 1.0 and XPath 2.0 Data Model, M. F. Fernández,
A. Malhotra, J. Marsh, M. Nagy, and N. Walsh, Editors,
W3C Working Draft (November 3, 2005), http://www.
w3.org/TR/xpath-datamodel/.

13. Namespaces in XML, T. Bray, D. Hollander, and A.
Layman, Editors, W3C Recommendation (January 14,
1999), W3C Recommendation, http://www.w3.org/TR/
REC-xml-names/.

14. ANSI/ISO/IEC 9075-14:2003, International Organization
for Standardization (ISO), Information Technology—
Database Language—SQL—Part 14: XML-Related Speci-
fications (SQL/XML).

15. ANSI/ISO/IEC 9075-14:2006, International Organization
for Standardization (ISO). Information Technology—
Database Language SQL—Part 14: XML-Related Specifi-
cations (SQL/XML); document expected to be published
in mid 2006.

16. XML Information Set (Second Edition), J. Cowan and
R. Tobin, Editors, W3C Recommendation (February 4,
2004), http://www.w3.org/TR/xml-infoset/.

17. XSLT 2.0 and XQuery 1.0 Serialization, S. Boag, M. Kay,
J. Tong, N. Walsh, and H. Zongaro, Editors, WC3
Candidate Recommendation (November 3, 2005), http://
www.w3.org/TR/xslt-xquery-serialization/.

18. SQL/XML also provides an optional mechanism for
passing an unnamed ‘‘context item’’ to an embedded
XQuery expression; this mechanism is not currently
supported by DB2.

19. K. S. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein,
G. Lapis, G. M. Lohman, B. Lyle, F. Özcan, H. Pirahesh,
N. Seemann, T. C. Truong, B. van der Linden, B. Vickery,
and C. Zhang, ‘‘System RX: One Part Relational, One Part
XML,’’ Proceedings of the 24th ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore,
MD (2005), pp. 347–358.

20. K. S. Beyer, F. Özcan, S. Saiprasad, and B. van der
Linden, ‘‘DB2/XML: Designing for Evolution,’’ Proceed-
ings of the 24th ACM SIGMOD International Conference
on Management of Data, Baltimore, MD (2005),
pp. 948–952.

21. M. Nicola and B. van der Linden, ‘‘Native XML Support in
DB2 Universal Database,’’ 31st International Conference
on Very Large Data Bases, Trondheim, Norway (2005),
pp. 1164–1175.

22. The db2-fn:sqlquery function does not provide any
mechanism to pass parameters from XQuery to SQL.

23. SQL/XML defines an XMLQuery option called RETURN-
ING CONTENT, which implicitly adds a document node to
the XML value before returning it. DB2 does not support
this option because it causes unnecessary node con-
struction. If a document node is desired, it can be
generated easily by the embedded XQuery expression.

24. Note the SQL use of the term schema is different from that
in XML Schema. In SQL, a schema denotes a collection of
tables, data types, and functions, which is roughly
equivalent to an XML namespace.

25. Even with static typing, it may not always be possible to
distinguish between positional and Boolean predicates
due to generic schema types, such as xs:anyType and
optional elements.

Accepted for publication October 14, 2005.

Fatma Özcan
IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120 (fozcan@us.ibm.com). Dr. Özcan has been a
research staff member since 2001. She received a Ph.D. degree in
computer science from the University of Maryland. Her research
interests include XML query languages and query optimization,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ÖZCAN ET AL. 269

Published online April 27, 2006.

integration of heterogeneous information systems, and software
agents. Dr. Özcan is a member of ACM SIGMOD, and coauthor of
the book, Heterogeneous Agent Systems.

Don Chamberlin
IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120 (chamberl@almaden.ibm.com). Dr.
Chamberlin is an IBM Fellow and represents IBM on the W3C
XML Query Working Group. He is best known as a coinventor
of SQL and author of two books on DB2. He holds a Ph.D. in
electrical engineering from Stanford University and an
honorary degree from the University of Zurich in recognition
of his work on database query languages. He is an ACM
Fellow, a member of the National Academy of Engineering,
and a recipient of the SIGMOD Innovations Award.

Krishna Kulkarni
IBM Silicon Valley Laboratory, 555 Bailey Road, San Jose,
California 95141 (krishnak@us.ibm.com). Dr. Kulkarni is a
member of the IBM Information Management Standards and
Open Source Group. He serves as the primary IBM
representative to the ANSI/INCITS H2 committee and as head
of the United States delegation to the ISO/IEC JTC1 SC32/WG3
committee, responsible for the standardization of SQL/XML.
He holds a Ph.D. degree in computer science from the
University of Edinburgh. He has contributed extensively to the
evolution of the SQL standard for over a decade. Dr. Kulkarni
has published a number of papers on database topics and is a
coauthor of Object-Oriented Databases: A Semantic Data
Model Approach, published by Prentice-Hall.

Jan-Eike Michels
IBM Silicon Valley Laboratory, 555 Bailey Road, San Jose, CA
95141 (janeike@us.ibm.com). Mr. Michels represents IBM on
the ANSI/INCITS/H2 and ISO/JTC1/SC32/WG3 committees
responsible for standardizing SQL and SQL/XML.
Additionally, he is the IBM representative on the JSR 225
Expert Group, responsible for standardizing the XQuery API
for Javae (XQJ), and the editor of the XQJ specification. Mr.
Michels holds an M.S. degree in computer science from the
Technical University of Ilmenau, Germany. &

ÖZCAN ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006270

