
Preface

&

Total sales of software worldwide exceed $200

billion annually, and it has been estimated that

software errors cost the United States economy

$59.5 billion, or .6 percent of the gross domestic

product, each year. Despite this, the practice of

mature software engineering is still, in many ways, a

goal rather than a current reality.

Many attempts have been made to bring more rigor,

predictability, and efficiency to software develop-

ment. Some of these involve the capture of

information relating to the requirements, architec-

ture, and implementation of software systems.

Others focus on the reuse of code and the design of

tools for software development and testing. Model-

driven software development (MDSD), the topic of

this issue of the IBM Systems Journal, is an emerging

technology that offers hope in introducing signifi-

cant efficiencies and rigor to the theory and practice

of software development.

While the use of models in design and testing is not

new, MDSD is innovative in offering cohesive and

comprehensive technologies for the use of models as

the basis for all stages of the software development

life cycle, including the full implementation, testing,

and deployment of complex systems. This method-

ology also facilitates the automatic generation of

significant amounts of code which otherwise would

need to be generated manually. The papers in this

issue of the Journal focus on MDSD’s role in

software engineering, describe several domain-

specific implementations of MDSD-based projects,

and supply an introduction to the standards,

processes, and methodologies of MDSD.

In ‘‘Model-driven development: The good, the bad,

and the ugly,’’ Hailpern and Tarr analyze how and

whether tools incorporating model-driven develop-

ment can be used to meet the challenges presented

by the complexity of today’s products, their short-

ened development cycles, and higher customer

expectations of quality. Brown, Iyengar, and John-

ston, in ‘‘A Rational approach to model-driven

development,’’ explain how the development proc-

ess can be facilitated by the portfolio of IBM

Rational* tools, which have supported model-driven

approaches for over a decade.

In ‘‘Architectural thinking and modeling with the

Architects’ Workbench,’’ Abrams et al. present the

design of and innovations embodied in the Archi-

tects’ Workbench (AWB). AWB is a prototype tool

facilitating the collection and organization of all of a

system’s architectural information (both structured

and unstructured) and the implementation of the

system. Sinha, Williams, and Santhanam, in ‘‘A

measurement framework for evaluating model-

based test generation tools,’’ present a framework

for formulating the metrics of complexity, ease of

learning, effectiveness, efficiency, and scalability of

these tools, and describe a case study. Aizenbud-

Reshef et al., in ‘‘Model traceability,’’ show how

model-driven development provides new opportu-

nities for establishing and using information on

traceability. The establishment and use of informa-

tion on traceability is achieved by defining and

maintaining relationships between artifacts involved

in the software-engineering life cycle.

Batory, in ‘‘Multilevel models in model-driven

engineering, product lines, and metaprogramming,’’

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 PREFACE 4490018-8670/06/$5.00 ª 2006 IBM

introduces a multilevel paradigm of program devel-

opment based on the confluence of model-driven

development, product lines (i.e., creating a family of

related programs) and metaprogramming (viewing

programming as a computation). This paradigm

clarifies the concepts of MDSD. The paper ‘‘Model-

driven development: Assets and reuse,’’ by Larsen

focuses on the identification, organization, and

reuse of reusable models.

A tool for model-driven development is presented by

Leroux, Nally, and Hussey, in ‘‘Rational Software

Architect: A tool for domain-specific modeling.’’

Rational Software Architect provides a powerful

capability for integrating domain-specific languages

with UML** (the Unified Modeling Language**) in a

single toolset. Balmelli et al., in ‘‘Model-driven

systems development,’’ apply model-driven design

principles to the development of systems. The

approach presented in this paper uses the RUP* SE

(Rational Unified Process* for Systems Engineering)

architecture framework and extends traditional

systems engineering methods in order to adapt to a

systems development environment characterized by

rapidly changing conditions and requirements.

Chowdhary et al., in ‘‘Model Driven Development

for Business Performance Management,’’ show how

the model-driven design methodology and frame-

work was used to create a Business Performance

Management solution for monitoring in the Dis-

tributed Enterprise Services (DES) application.

Model-related standards are described by Selic in

‘‘UML 2: A model-driven development tool,’’ and by

Czarnecki and Helsen in ‘‘Feature-based survey of

model transformation approaches.’’ The former

paper explains the reasons for revising UML to

better support MDSD tools and methods and over-

come some of the resistance to MDSD methods. The

latter paper proposes a taxonomy for the classifica-

tion of several existing and proposed approaches for

the transformation of models into other models.

Finally, Chandra et al., in the Technical Forum

paper ‘‘Using logical data models for understanding

and transforming legacy business applications,’’

address the challenges of analyzing and transform-

ing legacy business applications, focusing on main-

frame-based systems written in COBOL (common

business oriented language).

We would like to thank Brent Hailpern and Peri Tarr

for their efforts in the conception and coordination

of all aspects of this issue.

The next issue of the Journal focuses on collabo-

rative computing.

David I. Seidman, Associate Editor

John J. Ritsko, Editor-in-Chief

*Trademark, service mark, or registered trademark of International Business
Machines Corporation.

**Trademark, service mark, or registered trademark of Object Management
Group, Inc. in the United States, other countries, or both.

PREFACE IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006450

