Using ontology to support
development of software

architectures

In this paper we propose an approach to software development that focuses on
architecture decisions and involves the use of ontology. In this approach the

A. Akerman

architecture is captured by an instance of an ontology. The ontology has four major

components: architecture assets, architecture decisions, stakeholder concerns, and an

J. Tyree

architecture roadmap. We illustrate our approach through a case study involving a real-

time credit-approval system and the use of Protégé, an open-source ontology

development tool.

INTRODUCTION

The IEEE Recommended Practices for Architectural
Description of Software-Intensive Systems (IEEE-
1471)1 provides a conceptual framework for doc-
umenting software architectures, in which the
documentation is organized as a set of architecture
views. Each view addresses one or more of the
concerns of stakeholders, the parties involved in the
development project, such as executives, software
developers, and software architects. Traditional
view-based approaches, such as the Reference
Model for Open Distributed Processing (RM—ODP),2
the 4+1 View Model,3 and IBM’s Rational* Unified
Process*" generally adhere to this standard. For
example, RM-ODP organizes the architectural de-
scription into Enterprise, Information, Computa-
tional, Engineering, and Technology views.

In contrast, in Architecture Decisions: Demystifying

Architecl.‘ure,5 we argue that architecture decisions
are the primary representation of architecture.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Rather than starting with view construction, we first
document explicit architecture decisions and then
complement those with views. In this paper we
extend our previous work and submit that software
architecture should foundationally be captured and
maintained as an instance of an architectural
ontology. A similar approach has been used at the
University of California at Irvine.’

By definition, ontology is an explicit formal specifi-
cation of the concepts (also referred to as classes) in
a domain and the relations among them.” Classes
contain properties (also known as slots), which
describe various features and attributes of the class.®
Ontologies are used in various application domains

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

AKERMAN AND TYREE

813

to facilitate a common understanding of the in-
formation structures in a domain and to enable
reuse of domain knowledge. We view ontology as a
powerful mechanism that can play a similar role in
the world of software architecture.

An architectural ontology provides a common
vocabulary that enables the level of precision
needed for making effective architecture decisions.
Our proposed ontology is composed of four seg-
ments: (1) architecture assets, such as subsystems,
components and interfaces, (2) architecture deci-
sions, (3) stakeholder concerns, and (4) an archi-
tecture roadmap that describes which aspects of the
architecture should be developed and when they
should be tackled. The work we present here offers
the following benefits beyond our original approach:

* The approach ensures the architect is focused on
what is important. Just as viewpoints, or tem-
plates for views, provide guidelines for architec-
tural descriptions, architecture-related decision
making needs appropriate guidelines to focus
attention on those assets that are important to the
organization.

* The ontology-based approach provides a common
vocabulary to enhance precision and clarity. One
benefit of architecture-modeling approaches is the
added degree of precision they provide. Similarly,
an architectural vocabulary provides a higher level
of precision for decision making.

Tools that provide repository support are available.

In large projects we make hundreds of decisions,

which need documenting. Also required is support

for navigation and reuse. From the various tools
available we have chosen Protégé, an open-source
ontology development tool.

* The approach supports impact analysis. Architecture
decisions change due to changes in business needs,
product experience in the field, changes in sched-
ules, and so on. The approach and the supporting
tools enable us to perform what-if analyses, which
lead to improved architecture decisions.

® The approach supports on-demand view creation.
It has proven difficult to predetermine which
views to construct before the architecture is
documented. This approach gives us the ability to
create views on demand from a structured
repository.

e The approach supports the temporal mapping of
the development of the architecture. Stakeholders
often require a time-based view of the evolution of

814 AKERMAN AND TYREE

Concern Roadmap
addressed by /p/emented by

Architecture Decision

transforms

Architecture Asset

Reprinted with permission from A. Akerman and J. Tyree, “Position on
ontology-based architecture,” Proceedings of the Fifth Working IEEE/IFIP
Conference on Software Architecture (November 2005). ©2005 IEEE

Figure 1
High-level view of ontology

the architecture over a number of releases, which
we provide through an architecture roadmap.

The rest of this paper is organized as follows. In the
next section we describe our ontology-based ap-
proach to architecture development. In the section
that follows we illustrate our approach through a
case study that involves a credit-approval system
and the use of Protégé, an open-source ontology
development tool. We then discuss the results of our
case study and the lessons learned, after which we
describe related research and position our work in
its context. We conclude with a summary and ideas
for future work.

OUR APPROACH

Our approach is built on an ontology that connects
stakeholder concerns, architecture decisions, archi-
tecture assets, and an implementation roadmap. The
concerns of the various stakeholders (strategic
business needs, business risks, specific functional
requirements, etc.) drive architecture entities and are
captured as a set of key decisions. The decisions can
be viewed as making changes to the various assets in
the information technology (IT) environment, such
as systems, interfaces, nodes, and components. For
example, a decision may call for decommissioning of
an existing system or for the development of a new
interface. These changes are carried out based on a
technology transformation roadmap.

A high-level view of this ontology is shown in
Figure T; in this paper, we use the UML** (Unified
Modeling Language**) notation in the diagrams

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

representing ontology structures. The class Concern
has the slot addressed by, whose value is class
Architecture Decision; class Architecture Decision in
turn has slots transforms and implemented by,
whose values are classes Architecture Asset and
Roadmap.

We develop this ontology in five steps: (1) capturing
stakeholder concerns, (2) analyzing the current
architecture, (3) defining the target architecture, (4)
conducting a gap analysis and producing the road-
map, and (5) validating the architecture. These are
the same steps we described in An Architecture
Process for System Evolution,” and the process is
similar to the one used by other methodologies such
as The Open Group Architecture Framework
(TOGAF**)."°

In the next section we illustrate our approach
through a case study in which we capture the
ontology using Protégé, an open-source ontology
development tool from Stanford University.11 Pro-
tégé provides a graphical user interface for modeling
classes, properties, and relations. Protégé generates
interactive forms for domain experts to enter
ontology data, which is then validated by the tool.
The tool comes with a large collection of plug-ins
that query and visualize ontology data. Models
(classes and instances) are loaded and saved in
various formats, including XML (Extensible Markup
Language) and RDF (Resource Description Frame-
work). Protégé models may be stored in any
database supporting JDBC** (Java Database Con-
nectivity).

CASE STUDY

In Architecture Decisions: Demystifying Architec-
ture,5 a case study introduced a complex real-time
credit-approval process in a predominately batch
environment. We make use of the same scenario
here and present a case study in which our ontology-
based approach to architectural development is
illustrated. In the section “Discussion,” we describe
the way in which our previous results have been
further improved.

The management of a fictional large financial
organization (the company) has determined that it
has to provide an immediate response to customers
when they apply for a new financial product (credit
card, loan, savings account, etc.). The current
approval process is complex; it involves batch
processing of data; and the customers are notified by

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Concern

i

Change Case

Capability | | Risk

Business Need Quality

Figure 2
Concern segment of ontology

mail. A system developed in house (system A)
performs the batch processing. The processing flow
and the business rules are “hard coded,” and there
are few configuration options. The company has
recently deployed a commercial off-the-shelf (COTS)
system (system B) to handle the approval process
for a certain type of financial product. The COTS
package contains a flexible workflow engine that
allows non-IT personnel to enter or modify business
rules. This solution works in both batch mode and
interactive mode, but extending support for addi-
tional product types requires significant custom-
ization work. Both systems interact with numerous
client systems. None of these interactions happens
in real time, as processing involves file transfer via
FTP (File Transfer Protocol). Although the company
has an internally developed middleware platform
that is used by many customer-facing applications,
neither system A nor system B is configured to use
this middleware.

Capturing stakeholder concerns

We articulate the business vision as a set of
stakeholder concerns, which are represented by
class Concern. Figure 2 illustrates the Concern
branch of the ontology, which consists of class
Concern and its five subclasses: Business Need
(business goals, objectives, or issues), Risk, Change
Case (future requirements), Quality (nonfunctional
requirements such as performance, reliability, etc.),
and Capability (functional features of the system).
The arrow pointing to class Concern represents the
relation subclass of. We capture all the “architec-
turally significant” concerns, both pre-existing and
new, in Protégé. Figure 3 shows how the concerns
appear on the screen. Here are some instances of
Concern that we have identified in our case study.

AKERMAN AND TYREE

815

Bl Article Example 0.6 Protégé 3.1 beta

File Edt Project Window Tools Help

DEeEHE + BB 8 b ¢ 9

(file:\C:\Documents%20and%20Settings\aakerman\My?%20D... [Z |T[X]

o Classes

_' INSTANCE BROWSER

[’trnsm:as | & Gueries | Ontoviz || ® #lnstance Tres |

For Project: @ Article Example 0.6 For Class: © Cencern
Class Hierarchy S A e X -
STHING # Cannot increase project budget by more than 10% (Busi =
| 3 ISYSTEM-CLASS 4 Disrupt business operations as itlle as possible (Busness [eed)
® Staleholder (4) # High operstional costs (lszu=)
@ Environment & Najor business risks associated with current batch approval process (Rizl)
> o Concem & Needto develop a real-time iMerface between online and phone client spplications and System B (lnpscation)
L] Msslan {13 & Need to develop and deploy adequate disaster. reconrerv procedures for System B (hoplication)
b O Architecture_Asset # Needto have ability to offer cust credt decisioning and approval (Business Need)
P © Decision_Blement # Reduce time to market for future enhancements (Cusity)
@ Decision (4) # Since System A will cortinue to process batch app , need to d " product-specifc data should rennain in Database A or mig
@ ARemative (1) # Start booking new customers in G months (Business
@ Roadmap & Support enterprise principles (Business Nesd)
@ Infliative L 2 System B will become a mission-critical platform because muttiple lines of business depend on it (Inplication)
@ Project (1) # The rollowt strateqy should focus on the risk of System Bs other financial products (Inphcation)
& Use proven technologies to minimize i ion risk (Business Meed)
I] vl
[-| &
Types o o
@ Business Need
| e
Figure 3

Class Concern as viewed in Protégé

Offer customers a real-time credit-approval service
(Business Need).

Make credit-approval service available within six
months (Business Need).

Limit budget overrun to 10 percent (Business
Need).

* Keep disruption of business operations to a
minimum (Business Need).

Ensure that time to market for future enhance-
ments is under two weeks (Quality).

Offer credit-approval service to external partners
(Change Case).

Analyzing the current architecture

We almost never develop architecture from scratch.
The existing environment provides a baseline
(which includes architecture assets such as systems,
components, nodes, and interfaces) on which the
new system is built. We begin the process by
populating our ontology with the instances of class

816 AKERMAN AND TYREE

Architecture Asset that correspond to the current
environment. We make use of a simplified version
of the IBM Architecture Description Standard'*"
for this segment of the ontology (Figure 4). All
classes depicted in Figure 4 are subclasses of
Architecture Asset; the inheritance relation is
omitted for clarity.

We identify five instances of class System: Credit
Approval System, Call Center Desktop System,
Internet Customer Servicing System, Enterprise
Integration System, and Analytical Environment. In
addition, we define 10 instances of class Subsystem,
15 instances of class Component and nine instances
of class Interface. Although the actual environment
contains many more architecture assets, we limit
our scope to the ones that participate in the credit
approval process. Figure 5 shows a traditional
components-and-connectors diagram for this por-
tion of the current environment as an example of an

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

on demand view, which could be used to educate
new team members. This view is generated using
Ontoviz, a Protégé plug-in.

As we populate the ontology with architecture
assets, we come across existing concerns, and we
capture these as instances of Business Need and
Risk. In our case study we identified the following
additional concerns:

* Major business risks associated with lack of a real-
time credit-approval offering (Risk)

* High operational costs of current system (Business
Need)

Defining the target architecture

Architecture results from architecture decisions.
Kruchten'* lays the framework for an ontology of
software-architecture design decisions. We heavily
leverage his work by making use of its key concepts
and connecting them to the other segments of our
ontology. Figure 6 illustrates the Architecture
Decision segment of the ontology. We make an
architecture decision by selecting an appropriate
alternative (represented as an instance of class
Alternative and the relation has), which in turn has
implications (represented as instances of class
Implication and relation implies). Figure 6 also
shows the class Concern-Alternative Relationship,
which establishes a linkage through a selected
alternative between an architecture decision and a
stakeholder concern. Following a soft-goal frame-
Work,15 property addresses as soft concern has
values makes, helps, neutral, hurts, and breaks.
This class embodies the extent to which an alter-
native addresses a concern. Not all concerns affect
architecture decisions. In practice, we only catalog
the architecturally significant concerns, which
means that every concern maps to at least one
alternative, hence, at least one architecture decision.
For each concern, an assessment is made across
selected alternatives as to how adequately the
concern is addressed (makes, helps, etc.).

As Figure 6 illustrates, sometimes concerns play a
role as a result of implications (instances of class
Implication) of architecture decisions made exter-
nally to the ontology, such as a decision within
another project or at the enterprise level. We
normally incorporate these external decisions into
our model and link the implications to our archi-
tecture decision. In addition, we find that an
implication resulting from one architecture decision

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

System
1
composed of
1.n
: - Subsystem
Interface (alias Service) 1.n
composed of

aggregates

1.n

Component

Data 0.n

1.n deployed on

deployed on

1.n 1.n
Node

composed of

Note: All classes are

] composed of

of type Architecture Ass

>

Figure 4
Architecture Asset segment of ontology

often affects other architecture decisions; that is,
some implications become concerns. In practice, we
simply model class Implication as a subclass of
Concern. A better choice would be to define a formal
Implication-Concern relation. The Implication-Asset
Relationship class shown in Figure 6 defines the
way an implication of an alternative affects archi-
tecture assets; it takes the values creates,
modifies, uses, and retires. For example, an
implication may create an instance of Component.
Capturing this relation explicitly enables us to
perform an impact analysis, such as determining the
effect a given alternative has on assets.

For our case study, the primary concern “offer
customers a real-time credit-approval service” leads
to our first decision: “Extend system B to include
interactive credit-approval processing” (decision
DO01). The screen capture in Figure 7 shows a view
of the ontology tool when decision D01 and one of
the alternatives are selected.

AKERMAN AND TYREE

817

Kl Article Example 0.6 Protégé 3.1 beta (file:\C:\Documents%20and%20Settings\aakerman\My%20D... [= |[B|X

fie Edt Project Wndow Tools Hep

DEelE «+« B X wd 9

System B (COTS)

\‘\‘._

‘L«myD«imn Lopcl [Lop:yhh].oﬁe: | Datahase A& l |C0‘1‘S Fules Engine |

Database B

| COTS Real-Time Request Processor

|00’I'SF|hLmdnr

‘offered_interfaces fFered_interfaces

‘offered_interfaces

b ffered_interfaces red_interfaces

| Legacy Batch Credit Decision mum.i

Datshase A Interface | | Datshase B Interface | |COTS Batch Credit Decision Inlemml | COTS Real-Time Credat Decision :Inmrm|

Figure 5
Protégé-generated view of credit-approval system

Table 1 describes the results obtained by applying
an informal architecture-decision-based analysis to
the same scenario as in our case study. The table
includes entries such as the problem definition

1.n 0..n

I
+addresses as soft goals

transforms

Architecture Asset

Figure 6
Architecture Decision segment of ontology

(issue), key assumptions (assumptions), alterna-
tives being considered (positions), and the implica-
tions of selecting a particular alternative
(implications). The loosely worded problem analy-

is related to

818 AKERMAN AND TYREE

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Kl Article Example 0.6 Protégé 3.1 beta (file:\C:\Documents%20and%20Settings\aakerman\My%20D... |~ [O]X|
] . Decision D01 - Extend System B to handle a new product ... - |OX]
D oliss AX e <¢|protége
yr— # Need to have abiity to offer I e
I iR & Start booking new customers in G months
m # Con not increnge profect budget by more then 10%
For Projed
Assumplions W S
Class Hiel ol AN e e X~
_m lEsﬁer\d System B to handle a new product type —
> O Sy
8 Sio Description
& e iorted Akernetive This alernative waoukd modity System B 1o process real-time requests for cradi decisions on o new
> O Cong product type
Extend System B to handle a new product type
@ s
> © A _
b © Deq Ancrnatives Related Concerns ALK Y
L] mr.l # Rearchilact rdstiog bakoh logic n System A # ' Makes® Need to have abitty to offer customers Interactive credit decisioning and approval
@ and | & Extond SyslemB o hencle a new product type # * iakes* Start bogking new customers in 6 months
@ Roog ® Dwvalop areplacement for System A # * Neutral' Major business risks associasted with current bateh approval process
@ Intig # * Neutral* High operational costs
® Profl | iated Decisions | & * Unknown' Disrupt business operations as itle as possible
"Depends_On* Decision D02 - Use message-based Boedicaiine ALK& F
‘Depends_On' Decision D03 - Continue to use Dat 1
D e O Dot DO - # Need 1o develop o real-time interface betwaen oniine and phone client applications and System £+ |
¥ e . ~Folout anly new me | o 1 eedito develop and degloy adecuste dieaster Vi for System B
] # Since System A will continue to process batch apg , need 1o de a teather product.
Sysiem B will become a mission.critical platform because multiple lines of businecs depend on it —
| glails i R A 8|
Implemented By Project A i b |
Real-Time Credi Decision Project S e e
Typed Related Arc Assots A X ¥ ¥ :E] "0
' Maodifies* System B (COTS) -
Types ¢ o
@ Dech1
_a,.‘ start = 2 Internet Ex... ~ @ images El Protege. exe - 3 jave = 3 Jasc Paint Sho... @ KYE C L B 3:08 PM
Figure 7

Decision DO1 and a selected alternative as viewed in Protégé

sis in Table 1 stands in contrast to the formal list of
concerns in the Issue box of Figure 7. The items in
the table listed under Assumptions turn out to be
just additional concerns. Consequently, it is simpler
to add these to the set of concerns and do away with
the category Assumptions. This example illustrates
that our ontology-driven approach yields more
precise descriptions for architecture development.

Based on our understanding of the current envi-
ronment, we create three alternatives (instances of
Alternative). We evaluate these against all the
relevant concerns by using a framework of soft-
goals evaluation.'” The best alternative is the one
with the most positive assessments (makes or
helps). We also specify how each alternative affects
one or more architecture assets. This is accom-
plished by using the connection from alternatives to
implications to assets (see class Implication-Asset
Relationship in Figure 6). This ensures that we

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

understand how our systems change as a result of
selecting one or another alternative. It also ensures
that we capture all the appropriate implications,
which may require separate architecture decisions.
In our case, it is important to determine how clients
interface with the new credit-approval system
(system B), which database is used as master
storage, and how system migration is handled.

Often an architecture decision creates more ques-
tions than it answers. In our example, a decision to
use system B as a real-time credit-approval platform
requires that we provide a solution for integration
with clients (desktop and Internet), identify a
system of records for the new product information,
define a migration approach, and so forth. We
document these issues as implications (instances of
class Implication), which automatically allows us to
associate these as concerns with the new architec-
ture decisions (Implication is a subclass of Con-
cern).

AKERMAN AND TYREE

819

Table 1 Informal architecture-decision-based analysis of the credit-approval system

Current IT infrastructure does not support real-time approval processing for most financial offerings.

Extend system B to implement real-time approval processing. System B will provide real-time approval

® allow all lines of business to use flexible workflow and rules engines to improve time to market for

® have a solid chance of meeting project time lines, because the IT organization is already familiar

System B will become a mission-critical platform for the business as several applications depend on it.

Rollout strategy should focus on minimizing adverse impact to other financial products supported by

Issue
Decision
processing for all financial products currently handled by system B.
Status Approved
Grouping System structuring
Assumptions ® New capabilities will be delivered within six months.
® Budget overrun will not exceed 10 percent.
® Existing client applications will be used
Constraints ® None
Positions ® Redesign existing batch logic in system A
® Extend system B to handle a new product type
® Develop a replacement for system A
Argument Extending system B to handle approval processing for all financial products will
® reduce duplication of business logic,
new products,
® reduce maintenance costs and operational risks, and
with proposed technology.
Implications Need to develop real-time interface between online and phone transactions to system B.
There is a need to develop and deploy adequate disaster-recovery procedures.
system B.

Should architecture decisions address all implica-
tions? We don’t think so. We create architecture
decisions only for implications that either have high
implementation risk or are not addressed by existing
decisions, company policies, or procedures; for
example, there is an implication to make system B
“mission critical.” Because procedures already exist
for transitioning a system to this status, we do not
have to make an explicit decision about it.

We end up with the following eight additional
architecture decisions:

1. Use a message-based middleware platform for
real-time interfaces.

2. Continue to use the system-A database to store
product-specific data.

3. Use a new platform for deploying new financial
products exclusively.

4. Continue to populate the data warehouse from
the system-A database.

5. Use XML as the message format.

6. Replace all batch interfaces.

820 AKERMAN AND TYREE

7. Use API-based middleware for current clients.
8. Create interfaces between message-based and
API-based middleware.

Only the first architecture decision ties directly to
the set of concerns. It is interesting to observe that
the additional eight decisions identified above
address the implications of the first one. We should
point out, however, that all these decisions do not
address all concerns. Specifically, they do not
address the high operational costs of running the IT
infrastructure or reducing the risks associated with
the current batch approval process. We would need
to develop additional architecture decisions. In our
experience, this is a typical problem with less
precise methodologies for developing architectures.
Use of ontologies ensures that the architect does not
miss important stakeholder needs.

Conducting a gap analysis and producing

the roadmap

Figure 8 shows the Roadmap segment of the
ontology, which completes the working model. The

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

roadmap provides direction on migrating from the
current system to the target system. It organizes the
work as a number of instances of class Initiative and
the relation organized by. These instances in turn
are associated with instances of class Project
through the relation implements part of. In other
words, the work consists of a number of initiatives,
each of which is carried out in a number of projects.
An initiative generally covers a cohesive set of
stakeholder concerns, such as improvements to
environment stability, or time-to-market consider-
ations. The projects put architecture decisions into
practice within an overall plan by implementing
their implications. The implementation of a partic-
ularly large or complex architecture decision may
span multiple projects by allocating the implemen-
tation of a subset of its implications to separate
projects. This relation enables a temporal analysis
that provides a view of the architecture following
the execution of a series of projects. It also enables
impact analysis on architecture assets, for example,
upon the cancelation of a project.

For simplicity, the implementation for this case
study relies on a single instance of class Project,
Real-Time Credit Decision Project (see Figure 7).
Because this project has an implementation date, it
is possible to see the architecture at any particular
moment in the future (before and after implemen-
tation). In order to generate a target (future)
architecture view we would have to link a project
with the implications that it implements. The
implications link with the architecture assets
through the creates, modifies, uses, or retires
relations. The target view hides retired assets, while
showing the assets created, used, and modified.
Note that although our model does contain all
necessary information, our current ontology tool
(Protégé) does not support automatic generation of
such views.

Validating the architecture

Architectural reviews are the most common form of
software-architecture validation. We employ several
levels of reviews, such as executive reviews, peer
reviews, and reviews by an architectural review
council. The common approach to describing
architecture is based on a collection of views (logical
structure, physical deployment, runtime processes,
etc.). The format and the specific content of the
reviews differ depending on individual needs,
background, and working styles. The content

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Implication
Roadmap
1.n
1
implemented by organized by
1.n
1 -
Project implements part of Torr e
1.n
Figure 8

Roadmap segment of ontology

needed by all reviewers to validate the architecture
corresponds to the four related ontology segments:

1. A high-level assessment by domain as to how the
architecture meets stakeholder concerns

2. Key architecture decisions

3. Impact on architecture assets, such as legacy
systems to be retired, new components to be
implemented, and batch and real-time interfaces
to be modified

4. A roadmap for migrating to the target architec-
ture, depicted as a series of projects

The proposed ontology enables us to capture this
content as we make architecture decisions. We are
able to construct temporal views, which support
incremental, agile, and ad hoc reviews. In addition,
as the ontology is agnostic with respect to any
specific architecture view, the information can
easily support the construction of any set of views
required by traditional view-based approaches.

DISCUSSION

Earlier we identified a number of possible benefits
that this ontology-based approach offers beyond our
original decision-driven architectural development
approach. We examine now these possible benefits
in the light of our experience from the case study:

* Improved focus on what is important—In our
approach, we start with a prioritized set of
concerns. These concerns lead us to a set of
architecture decisions that address the concerns.
The architecture decisions may generate addi-
tional architecture decisions by way of implica-
tions introducing additional concerns. We achieve
architectural integrity when this iterative process

AKERMAN AND TYREE

821

converges, and there are no more concerns to
address.

Improved precision and clarity—Our ontology
relies on precisely defined concepts and relations
rather than on free-form descriptions. A problem
description is expressed as one or more concerns;
implications are realized by transforming archi-
tecture assets; and the extent to which architecture
decisions address concerns is evaluated through
concern-alternative relationships.

Repository support—TIt is possible to create a
repository of architecture definitions by using one
of the ontology development tools, many of which
are available in open-source form. These tools
support common technology standards like OWL
(Web Ontology Language), XML, and XMI** (XML
Metadata Interchange), which make them inter-
operable with modeling environments from IBM
Rational and Borland Software Corporation.

Support for impact analysis—An architectural
ontology helps us establish relations between
ontology elements (we refer to this property as
traceability). Performing impact analysis is just a
matter of creating the right queries. For example,
if we change an architecture decision, we can see
all the other architecture decisions depending on it
by using the following SQL statement:

SELECT D.DECISION_ID FROM DECISION D,
XREF_DECISON_RELATED_DECISIONS D_D
WHERE D.ID = D_D.ID2 AND

D_D.ID1 = CHANGED_DECISION_ID.

Note that this SQL query works with our custom
relational database schema generated using data
from the Protégé ontology file. This example of
impact analysis is of the type “decision to
decision.” Analyses of the type “decision to
concern” and “decision to architecture assets” can
be similarly performed.

On demand view creation—We generate views
automatically as needed from the information in
our repository (see Figure 5). In addition to
diagrams, we also generate HTML-based views.
These are similar to the standard architecture
documentation, but because they are documented
in HTML (Hypertext Markup Language), they are
easier to navigate.

822 AKERMAN AND TYREE

Our experience shows that applying our approach to
real-life situations has some limitations, primarily
due to our tool selection. These limitations can be
addressed by selecting a different tool or by
developing custom Protégé plug-ins.

* Lack of support for reified relations—Relations
(between concepts) that are represented as classes
with their own slots are referred to as reified
relations. Class Concern-Alternative Relationship,
for example, allows us to define how a particular
alternative addresses a concern. Unfortunately,
handling this type of class in Protégé is awkward
because there is no way to establish a connection
between an instance of this class and a relation.
This means that when a relation is removed or
modified, the class has to be deleted or manually
modified.

* Difficulties in generating standard architecture
views—Although there are many Protégé plug-ins
for ontology visualization, the views they create
are often busy and somewhat confusing. Config-
uring the tool to produce acceptable diagrams
using these plug-ins is time consuming, and the
configuration parameters cannot be saved. A
capability is needed to create template-based
views, such as the view found in IBM Rational
SoDA*.

¢ Inadequate querying tools—It is easy to create
simple queries in Protégé, such as finding all
instances of Concern that have the value critical
for the property priority. It is much more
difficult to find, for example, the architecture asset
that has the value modified for the property
relation type in class Implication-Asset Rela-
tionship. There are a number of plug-ins that
support the RDQL,"® SPARQL,"” ARQ,"® and
F-Logic19 query languages. However, considerable
skill is required to use these. Protégé can use any
JDBC-compliant relational database to store the
data. Because a database table is used to store an
entire ontology definition, this approach is not
designed for external querying. We prefer to
export our ontology into a relational database in
which each class is stored in a separate database
table. This allows us to query ontology data by
using standard SQL.

RELATED WORK
Defining an architecture metamodel for documen-
tation purposes is well understood (see Booch’s

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

metamodel” as an example), but, beyond the use of
components and connectors, which is captured by
most architecture description languages, limited
research has been done in architectural ontology.
Kyaruzi and van Katwijk21 propose an ontology that
contains nine architectural concepts: agent, ar-
rangement, resource, product, location, directive,
mechanism, event and calendar. This ontology is
compelling in that it refines the components-and-
connectors level and provides a more concrete
vocabulary for software architects. In addition, it
guides architectural focus by directing architects to
confine their decisions to this set of concepts.
However, we find the ontology lacks a clear under-
standing of how the elements relate to each other
and how they map to existing architectural con-
cepts. More important, we have found that many of
these elements do not show up in practice. We
suggest leveraging enterprise-modeling languages
with their accompanying ontologies for describing
architecture assets. In addition to the Architecture
Description Standard from IBM, other examples are
Enterprise Architecture Modeling Language from
Infosys Technologies Limited,22 the modeling lan-
guage defined as part of the ArchiMate project,23
and the SEAM modeling language (SEAM stands for
Systemic Enterprise Architecture Methodology).24

Architecture decisions are the centerpiece of the
ontology and of the decision-based process we use.
Our ontology is derived from the REMAP (Repre-
sentation and Maintenance of Process Knowledge)25
and DRL (Decision Representation Language)
metamodels,”® and Kruchten’s'* ontology of soft-
ware architecture decisions. We build on these
results, add the concepts of assets and the roadmap,
and pull them all together by making the con-
nections between them explicit.

Several tools exist for managing design decisions,
such as DREAM (Design Rationale Environment for
Argumentation and Modeling) ;" SEURAT (Software
Engineering Using RATionale),28 Sysiphus,29 and
0SC.> Of these tools only Sysiphus provides an
extendable modeling environment and user-defined
views over the model. The focus on the underlying
architectural ontology, versus documentation, dis-
tinguishes our approach from that addressed by
Sysiphus.

CONCLUSION
We propose a focal shift in software architectural
practice from diagrams, models and views to

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

architecture decisions and use of ontology tools. We
submit that this shift starts with the use of a
common vocabulary, one that resonates with busi-
ness and IT stakeholders.

We present the ontology as comprising four major

concepts, Concern, Architecture Decision, Architec-
ture Asset, and Roadmap, which are highly interre-
lated through a set of explicit relations. We advocate
adding them as extensions to the IEEE recommend-
ed standards.’

We suggest creating reference ontologies, similar to
the way design patterns have emerged. Weiss and
Araujo31 show patterns mapped to architectural
issues and decisions, resources and qualities. A
catalog of this work is a possible beginning of an
enterprise reference ontology.

We acknowledge that each of the connected seg-
ments of our ontology needs further exploration. In
order to promote standardization as well as tool
development and reuse, experimentation with on-
tologies is needed. The SysML32 requirements
ontology, for example, can be leveraged to elaborate
concerns. Enterprise modeling languages provide a
starting point in defining an ontology for architec-
ture assets. We should point out, however, that
additional aspects, such as migration, conversion,
deployment, and application disposition, would
have to be included. Finally, every architecture must
be implementable. The architecture roadmap seg-
ment of the ontology requires better integration with
the broad area of enterprise portfolio management.

As practicing architects, we continue to use the
described approach in our architecture development
work. We do not claim that it will fit every
organization, but it is proving to be very effective in
ours. We are committed to refining our approach in
the hope of improving the quality of architectures
and the systems resulting from them.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., The Open Group, or Sun Micro-
systems, Inc. in the United States, other countries, or both.

CITED REFERENCES

1. IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems, IEEE STD 1471-2000, IEEE
(2000).

AKERMAN AND TYREE

823

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Putman, Architecting with RM-ODP, Prentice Hall PTR,
Upper Saddle River, NJ (2001), p. 834.

P. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software 12, No. 6, 42-50 (1995).

P. Kruchten, The Rational Unified Process: An Introduc-
tion, Addison-Wesley, Reading, MA (2000), p. 298.

J. Tyree and A. Akerman, “Architecture Decisions:
Demystifying Architecture,” IEEE Software 22, No. 2,
19-27 (2005).

M. Arseniev, “Enterprise Architecture Implementation:
Practical Steps Using Open Source Tools,” College and
University Machine Records Conference (CUMREC),
(2004).

T. R. Gruber, “A Translation Approach to Portable
Ontologies,” Knowledge Acquisition S, pp. 199-220
(1993).

N. F. Noy and Deborah L. McGuinness, “Ontology
Development 101: A Guide to Creating Your First
Ontology,” Knowledge Systems Laboratory Technical
Report, Stanford University, Stanford, CA (2001).

A. Akerman, J. Tyree, and L. Coglianese, “An Architec-
ture Process for System Evolution,” Enterprise Architect
Magazine 2 (Spring 2004).

TOGAF 8 “Enterprise Edition,” The Open Group, http://
WWW.opengroup.org/togaf/.

“The Protégé Project,” Stanford Medical Informatics,
Stanford University School of Medicine (2005), http://
protege.stanford.edu.

R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan, “A
Standard for Architecture Description,” IBM Systems
Journal 38, No. 1, 32-50 (1999).

B. Droge, “Methodische Integratie van Verschillende
Service Disciplines in Projecten,” Landelijk Architectuur
Congres (LAC2002), Zeist, Netherlands (November
2002), pp. 1-12. (in Dutch, “Methodical Integration of
Different Service Disciplines in Projects,” Proceedings of
the Nationwide Architecture Conference).

P. Kruchten, “A Taxonomy of Architecture Design
Decisions in Software-Intensive Systems,” Second
Groningen Workshop on Software Variability Manage-
ment (SVM2004), December 2-3, 2004, Groningen,
TheNetherlands, http://www.rug.nl/informatica/
onderzoek/programmas/softwareEngineering/SVM2004.

L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering,
Springer, New York (1999).

A. Seaborne, “Jena Tutorial: A Programmer’s Introduc-
tion to RDQL,” SourceForge.net (2002), http://jena.
sourceforge.net/tutorial/RDQL/.

“SPARQL Query Language for RDF,” E. Prud’hommeaux
and A. Seaborne, Editors, W3C Candidate Recommen-
dation (April 6, 2006), World Web Consortium, http://
www.w3.org/TR/rdf-sparql-query/.

A. Seaborne, ARQ-A SPARQL Processor for Jena (2005),
http://jena.hpl.hp.com/~afs/ARQ/.

“The XSB Programming System (Version 2.2),” Depart-
ment of Computer Science, SUNY at Stony Brook (April
20, 2000), http://www.cs.sunysb.edu/~sbprolog/
xsb-page.html.

G. Booch, “Software Archeology,” Rational User Confer-
ence (2004), http://www.booch.com/architecture/blog/
artifacts/Software%20Archeology.ppt.

John K. Kyaruzi and J. van Katwijk, “Beyond Compo-
nents-Connections-Constraints: Dealing with Software

824 AKERMAN AND TYREE

Architecture Difficulties,” 14th IEEE International Con-
ference on Automated Software Engineering October 12-
15, 1999, Cocoa Beach, Florida, IEEE, New York (1999),
pp. 235-242.

22. S. Sarkar and S. Thonse, “EAML—Architecture Modeling
Language for Enterprise Applications,” Proceedings of the
IEEE International Conference on E-Commerce Technology
for Dynamic E-Business (CEC-East 2004), IEEE, New York
(2004), pp. 40-47.

23. H. Jonkers, B. Buuren, F. Arbab, F. de Boer, M.
Bonsangue, H. Bosma, H. ter Doest, L. Groenewegen,
J. G. Scholten, S. Hoppenbrouwers, M.-E. lacob, W.
Janssen, M. Lankhorst, D. van Leeuwen, E. Proper, A.
Stam, L. van der Torre, and G. V. van Zanten, “Towards a
Language for Coherent Enterprise Architecture Descrip-
tions,” Proceedings of the Seventh International Enterprise
Distributed Object Computing Conference (EDOC’03),
September 16-19, 2003, Brisbane, Australia, IEEE, New
York (2003), pp. 28-39.

24. L.-S. Lé and A. Wegmann, “Definition of an Object-
Oriented Modeling Language for Enterprise Architec-
ture,” Proceedings of the 38th Hawaii International
Conference on System Sciences (HICSS’05), January 3-6,
2005, Big Island, HI, IEEE, New York (2005), pp. 222a.

25. B. Ramesh and V. Dhar, “Supporting Systems Develop-
ment by Capturing Deliberations during Requirements
Engineering,” IEEE Transactions on Software Engineering
and Methodology 18, No. 6, 498-510 (June 1992).

26. J. Lee and K.-Y. Lai, “What’s in the Design Rationale?”
Human-Computer Interactions 6, Nos. 3-4, 251-280
(1991).

27. X. Lacaze, “Design Rationale for Interactive Systems,”
Institut de Recherche en Informatique de Toulouse,
France, http://liihs.irit.fr/lacaze/research.html.

28. J. E. Burge and D. C. Brown, “An Integrated Approach for
Software Design Checking Using Design Rationale,”
Proceedings of the Design, Computing and Cognition
Conference, July 19-21, 2004, Cambridge, MA (2004),
http://web.cs.wpi.edu/~dcb/Papers/DCC-paper-04.pdf.

29. T. Wolf and A. H. Dutoit, “Sysiphus: Combining System
Modeling with Collaboration and Rationale,” http://
pi.informatik.uni-siegen.de/stt/24_4/
01_Fachgruppenberichte/11wolf.pdf.

30. G. Arango, L. Bruneau, J. Cloarec, and A. Feroldi, “A
Tool Shell for Tracking Design Decisions,” IEEE Software
8, No. 2, 75-83 (1991).

31. I Araujo and M. Weiss, “Linking Patterns and Non-
Functional Requirements,” Proceedings of the Ninth
Conference on Pattern Language of Programs (PLoP
2002), September 8-12, 2002, Monticello, II, http://jerry.
cs.uiuc.edu/~plop/plop2002/final/PatNFR.pdf.

32. D. W. Oliver, “Systems Engineering Conceptual Model
(Draft 12)” (March 27, 2003), http://syseng.omg.org/
SE_Conceptual%20Model/SE_Conceptual_Model.htm.

Accepted for publication December 26, 2005.
Published online October 16, 2006.

Art Akerman

Capital One Financial, 15000 Capital One Drive, Richmond,
VA 23238 (art.akerman@capitalone.com). Mr. Akerman is a
system architect at Capital One Financial and a practicing
member of the World Wide Institute of Software Architects.
His research interests include creation of formal education
programs for software architects, communicating architecture

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

to the development community, and making architecture
development more practical and less time consuming. He
received a Master’s degree in management of information
technology from the University of Virginia.

Jeff Tyree

Capital One Financial, 15000 Capital One Drive, Richmond,
VA 23238 (jeff.tyree@capitalone.com). Mr. Tyree is a
solutions architect at Capital One Financial. His research
interests include large-scale system design, system evolution
processes, refactoring, and performance engineering. He
received a Master’s degree in mathematics from the University
of Tennessee at Knoxville. M

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

AKERMAN AND TYREE

825

