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In this paper we propose an approach to software development that focuses on

architecture decisions and involves the use of ontology. In this approach the

architecture is captured by an instance of an ontology. The ontology has four major

components: architecture assets, architecture decisions, stakeholder concerns, and an

architecture roadmap. We illustrate our approach through a case study involving a real-

time credit-approval system and the use of Protégé, an open-source ontology

development tool.

INTRODUCTION

The IEEE Recommended Practices for Architectural

Description of Software-Intensive Systems (IEEE-

1471)
1

provides a conceptual framework for doc-

umenting software architectures, in which the

documentation is organized as a set of architecture

views. Each view addresses one or more of the

concerns of stakeholders, the parties involved in the

development project, such as executives, software

developers, and software architects. Traditional

view-based approaches, such as the Reference

Model for Open Distributed Processing (RM-ODP),
2

the 4þ1 View Model,
3

and IBM’s Rational* Unified

Process*
4

generally adhere to this standard. For

example, RM-ODP organizes the architectural de-

scription into Enterprise, Information, Computa-

tional, Engineering, and Technology views.

In contrast, in Architecture Decisions: Demystifying

Architecture,
5

we argue that architecture decisions

are the primary representation of architecture.

Rather than starting with view construction, we first

document explicit architecture decisions and then

complement those with views. In this paper we

extend our previous work and submit that software

architecture should foundationally be captured and

maintained as an instance of an architectural

ontology. A similar approach has been used at the

University of California at Irvine.
6

By definition, ontology is an explicit formal specifi-

cation of the concepts (also referred to as classes) in

a domain and the relations among them.
7

Classes

contain properties (also known as slots), which

describe various features and attributes of the class.
8

Ontologies are used in various application domains

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 AKERMAN AND TYREE 813



to facilitate a common understanding of the in-

formation structures in a domain and to enable

reuse of domain knowledge. We view ontology as a

powerful mechanism that can play a similar role in

the world of software architecture.

An architectural ontology provides a common

vocabulary that enables the level of precision

needed for making effective architecture decisions.

Our proposed ontology is composed of four seg-

ments: (1) architecture assets, such as subsystems,

components and interfaces, (2) architecture deci-

sions, (3) stakeholder concerns, and (4) an archi-

tecture roadmap that describes which aspects of the

architecture should be developed and when they

should be tackled. The work we present here offers

the following benefits beyond our original approach:

� The approach ensures the architect is focused on

what is important. Just as viewpoints, or tem-

plates for views, provide guidelines for architec-

tural descriptions, architecture-related decision

making needs appropriate guidelines to focus

attention on those assets that are important to the

organization.
� The ontology-based approach provides a common

vocabulary to enhance precision and clarity. One

benefit of architecture-modeling approaches is the

added degree of precision they provide. Similarly,

an architectural vocabulary provides a higher level

of precision for decision making.
� Tools that provide repository support are available.

In large projects we make hundreds of decisions,

which need documenting. Also required is support

for navigation and reuse. From the various tools

available we have chosen Protégé, an open-source

ontology development tool.
� The approach supports impact analysis. Architecture

decisions change due to changes in business needs,

product experience in the field, changes in sched-

ules, and so on. The approach and the supporting

tools enable us to perform what-if analyses, which

lead to improved architecture decisions.
� The approach supports on-demand view creation.

It has proven difficult to predetermine which

views to construct before the architecture is

documented. This approach gives us the ability to

create views on demand from a structured

repository.
� The approach supports the temporal mapping of

the development of the architecture. Stakeholders

often require a time-based view of the evolution of

the architecture over a number of releases, which

we provide through an architecture roadmap.

The rest of this paper is organized as follows. In the

next section we describe our ontology-based ap-

proach to architecture development. In the section

that follows we illustrate our approach through a

case study that involves a credit-approval system

and the use of Protégé, an open-source ontology

development tool. We then discuss the results of our

case study and the lessons learned, after which we

describe related research and position our work in

its context. We conclude with a summary and ideas

for future work.

OUR APPROACH

Our approach is built on an ontology that connects

stakeholder concerns, architecture decisions, archi-

tecture assets, and an implementation roadmap. The

concerns of the various stakeholders (strategic

business needs, business risks, specific functional

requirements, etc.) drive architecture entities and are

captured as a set of key decisions. The decisions can

be viewed as making changes to the various assets in

the information technology (IT) environment, such

as systems, interfaces, nodes, and components. For

example, a decision may call for decommissioning of

an existing system or for the development of a new

interface. These changes are carried out based on a

technology transformation roadmap.

A high-level view of this ontology is shown in

Figure 1; in this paper, we use the UML** (Unified

Modeling Language**) notation in the diagrams

Figure 1
High-level view of ontology

addressed by implemented by

transforms

Reprinted with permission from A. Akerman and J. Tyree, “Position on 
ontology-based architecture,” Proceedings of the Fifth Working IEEE/IFIP
Conference on Software Architecture (November 2005). ©2005 IEEE
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AKERMAN AND TYREE IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006814



representing ontology structures. The class Concern

has the slot addressed by, whose value is class

Architecture Decision; class Architecture Decision in

turn has slots transforms and implemented by,

whose values are classes Architecture Asset and

Roadmap.

We develop this ontology in five steps: (1) capturing

stakeholder concerns, (2) analyzing the current

architecture, (3) defining the target architecture, (4)

conducting a gap analysis and producing the road-

map, and (5) validating the architecture. These are

the same steps we described in An Architecture

Process for System Evolution,
9

and the process is

similar to the one used by other methodologies such

as The Open Group Architecture Framework

(TOGAF**).
10

In the next section we illustrate our approach

through a case study in which we capture the

ontology using Protégé, an open-source ontology

development tool from Stanford University.
11

Pro-

tégé provides a graphical user interface for modeling

classes, properties, and relations. Protégé generates

interactive forms for domain experts to enter

ontology data, which is then validated by the tool.

The tool comes with a large collection of plug-ins

that query and visualize ontology data. Models

(classes and instances) are loaded and saved in

various formats, including XML (Extensible Markup

Language) and RDF (Resource Description Frame-

work). Protégé models may be stored in any

database supporting JDBC** (Java Database Con-

nectivity).

CASE STUDY
In Architecture Decisions: Demystifying Architec-

ture,
5

a case study introduced a complex real-time

credit-approval process in a predominately batch

environment. We make use of the same scenario

here and present a case study in which our ontology-

based approach to architectural development is

illustrated. In the section ‘‘Discussion,’’ we describe

the way in which our previous results have been

further improved.

The management of a fictional large financial

organization (the company) has determined that it

has to provide an immediate response to customers

when they apply for a new financial product (credit

card, loan, savings account, etc.). The current

approval process is complex; it involves batch

processing of data; and the customers are notified by

mail. A system developed in house (system A)

performs the batch processing. The processing flow

and the business rules are ‘‘hard coded,’’ and there

are few configuration options. The company has

recently deployed a commercial off-the-shelf (COTS)

system (system B) to handle the approval process

for a certain type of financial product. The COTS

package contains a flexible workflow engine that

allows non-IT personnel to enter or modify business

rules. This solution works in both batch mode and

interactive mode, but extending support for addi-

tional product types requires significant custom-

ization work. Both systems interact with numerous

client systems. None of these interactions happens

in real time, as processing involves file transfer via

FTP (File Transfer Protocol). Although the company

has an internally developed middleware platform

that is used by many customer-facing applications,

neither system A nor system B is configured to use

this middleware.

Capturing stakeholder concerns

We articulate the business vision as a set of

stakeholder concerns, which are represented by

class Concern. Figure 2 illustrates the Concern

branch of the ontology, which consists of class

Concern and its five subclasses: Business Need

(business goals, objectives, or issues), Risk, Change

Case (future requirements), Quality (nonfunctional

requirements such as performance, reliability, etc.),

and Capability (functional features of the system).

The arrow pointing to class Concern represents the

relation subclass of. We capture all the ‘‘architec-

turally significant’’ concerns, both pre-existing and

new, in Protégé. Figure 3 shows how the concerns

appear on the screen. Here are some instances of

Concern that we have identified in our case study.

Figure 2
Concern segment of ontology

Concern

Change Case Capability

Business Need Quality

Risk
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� Offer customers a real-time credit-approval service

(Business Need).
� Make credit-approval service available within six

months (Business Need).
� Limit budget overrun to 10 percent (Business

Need).
� Keep disruption of business operations to a

minimum (Business Need).
� Ensure that time to market for future enhance-

ments is under two weeks (Quality).
� Offer credit-approval service to external partners

(Change Case).

Analyzing the current architecture

We almost never develop architecture from scratch.

The existing environment provides a baseline

(which includes architecture assets such as systems,

components, nodes, and interfaces) on which the

new system is built. We begin the process by

populating our ontology with the instances of class

Architecture Asset that correspond to the current

environment. We make use of a simplified version

of the IBM Architecture Description Standard
12,13

for this segment of the ontology (Figure 4). All

classes depicted in Figure 4 are subclasses of

Architecture Asset; the inheritance relation is

omitted for clarity.

We identify five instances of class System: Credit

Approval System, Call Center Desktop System,

Internet Customer Servicing System, Enterprise

Integration System, and Analytical Environment. In

addition, we define 10 instances of class Subsystem,

15 instances of class Component and nine instances

of class Interface. Although the actual environment

contains many more architecture assets, we limit

our scope to the ones that participate in the credit

approval process. Figure 5 shows a traditional

components-and-connectors diagram for this por-

tion of the current environment as an example of an

Figure 3
Class Concern as viewed in Protégé
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on demand view, which could be used to educate

new team members. This view is generated using

Ontoviz, a Protégé plug-in.

As we populate the ontology with architecture

assets, we come across existing concerns, and we

capture these as instances of Business Need and

Risk. In our case study we identified the following

additional concerns:

� Major business risks associated with lack of a real-

time credit-approval offering (Risk)
� High operational costs of current system (Business

Need)

Defining the target architecture
Architecture results from architecture decisions.

Kruchten
14

lays the framework for an ontology of

software-architecture design decisions. We heavily

leverage his work by making use of its key concepts

and connecting them to the other segments of our

ontology. Figure 6 illustrates the Architecture

Decision segment of the ontology. We make an

architecture decision by selecting an appropriate

alternative (represented as an instance of class

Alternative and the relation has), which in turn has

implications (represented as instances of class

Implication and relation implies). Figure 6 also

shows the class Concern-Alternative Relationship,

which establishes a linkage through a selected

alternative between an architecture decision and a

stakeholder concern. Following a soft-goal frame-

work,
15

property addresses as soft concern has

values makes, helps, neutral, hurts, and breaks.

This class embodies the extent to which an alter-

native addresses a concern. Not all concerns affect

architecture decisions. In practice, we only catalog

the architecturally significant concerns, which

means that every concern maps to at least one

alternative, hence, at least one architecture decision.

For each concern, an assessment is made across

selected alternatives as to how adequately the

concern is addressed (makes, helps, etc.).

As Figure 6 illustrates, sometimes concerns play a

role as a result of implications (instances of class

Implication) of architecture decisions made exter-

nally to the ontology, such as a decision within

another project or at the enterprise level. We

normally incorporate these external decisions into

our model and link the implications to our archi-

tecture decision. In addition, we find that an

implication resulting from one architecture decision

often affects other architecture decisions; that is,

some implications become concerns. In practice, we

simply model class Implication as a subclass of

Concern. A better choice would be to define a formal

Implication-Concern relation. The Implication-Asset

Relationship class shown in Figure 6 defines the

way an implication of an alternative affects archi-

tecture assets; it takes the values creates,

modifies, uses, and retires. For example, an

implication may create an instance of Component.

Capturing this relation explicitly enables us to

perform an impact analysis, such as determining the

effect a given alternative has on assets.

For our case study, the primary concern ‘‘offer

customers a real-time credit-approval service’’ leads

to our first decision: ‘‘Extend system B to include

interactive credit-approval processing’’ (decision

D01). The screen capture in Figure 7 shows a view

of the ontology tool when decision D01 and one of

the alternatives are selected.

Figure 4
Architecture Asset segment of ontology

1
composed of

Data

1..n

deployed on

1

1

1..n

1

1..n

1..n

1..n

deployed on

1..n

0..n
uses

1

1..n

+used by

offered by

0..n

0..n

+uses

Note:  All classes are
of type Architecture Asset

Interface (alias Service)

1..n
Node

composed of

composed of

composed of

aggregates

System

Subsystem
1..n

1..n
Component

1..n

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 AKERMAN AND TYREE 817



Table 1 describes the results obtained by applying

an informal architecture-decision-based analysis to

the same scenario as in our case study. The table

includes entries such as the problem definition

(issue), key assumptions (assumptions), alterna-

tives being considered (positions), and the implica-

tions of selecting a particular alternative

(implications). The loosely worded problem analy-

Figure 5
Protégé-generated view of credit-approval system

Figure 6
Architecture Decision segment of ontology
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sis in Table 1 stands in contrast to the formal list of

concerns in the Issue box of Figure 7. The items in

the table listed under Assumptions turn out to be

just additional concerns. Consequently, it is simpler

to add these to the set of concerns and do away with

the category Assumptions. This example illustrates

that our ontology-driven approach yields more

precise descriptions for architecture development.

Based on our understanding of the current envi-

ronment, we create three alternatives (instances of

Alternative). We evaluate these against all the

relevant concerns by using a framework of soft-

goals evaluation.
15

The best alternative is the one

with the most positive assessments (makes or

helps). We also specify how each alternative affects

one or more architecture assets. This is accom-

plished by using the connection from alternatives to

implications to assets (see class Implication-Asset

Relationship in Figure 6). This ensures that we

understand how our systems change as a result of

selecting one or another alternative. It also ensures

that we capture all the appropriate implications,

which may require separate architecture decisions.

In our case, it is important to determine how clients

interface with the new credit-approval system

(system B), which database is used as master

storage, and how system migration is handled.

Often an architecture decision creates more ques-

tions than it answers. In our example, a decision to

use system B as a real-time credit-approval platform

requires that we provide a solution for integration

with clients (desktop and Internet), identify a

system of records for the new product information,

define a migration approach, and so forth. We

document these issues as implications (instances of

class Implication), which automatically allows us to

associate these as concerns with the new architec-

ture decisions (Implication is a subclass of Con-

cern).

Figure 7
Decision DO1 and a selected alternative as viewed in Protégé 
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Should architecture decisions address all implica-

tions? We don’t think so. We create architecture

decisions only for implications that either have high

implementation risk or are not addressed by existing

decisions, company policies, or procedures; for

example, there is an implication to make system B

‘‘mission critical.’’ Because procedures already exist

for transitioning a system to this status, we do not

have to make an explicit decision about it.

We end up with the following eight additional

architecture decisions:

1. Use a message-based middleware platform for

real-time interfaces.

2. Continue to use the system-A database to store

product-specific data.

3. Use a new platform for deploying new financial

products exclusively.

4. Continue to populate the data warehouse from

the system-A database.

5. Use XML as the message format.

6. Replace all batch interfaces.

7. Use API-based middleware for current clients.

8. Create interfaces between message-based and

API-based middleware.

Only the first architecture decision ties directly to

the set of concerns. It is interesting to observe that

the additional eight decisions identified above

address the implications of the first one. We should

point out, however, that all these decisions do not

address all concerns. Specifically, they do not

address the high operational costs of running the IT

infrastructure or reducing the risks associated with

the current batch approval process. We would need

to develop additional architecture decisions. In our

experience, this is a typical problem with less

precise methodologies for developing architectures.

Use of ontologies ensures that the architect does not

miss important stakeholder needs.

Conducting a gap analysis and producing
the roadmap
Figure 8 shows the Roadmap segment of the

ontology, which completes the working model. The

Table 1 Informal architecture-decision-based analysis of the credit-approval system

Issue Current IT infrastructure does not support real-time approval processing for most financial offerings.

Decision Extend system B to implement real-time approval processing. System B will provide real-time approval
processing for all financial products currently handled by system B.

Status Approved

Grouping System structuring

Assumptions � New capabilities will be delivered within six months.
� Budget overrun will not exceed 10 percent.
� Existing client applications will be used

Constraints � None

Positions � Redesign existing batch logic in system A
� Extend system B to handle a new product type
� Develop a replacement for system A

Argument Extending system B to handle approval processing for all financial products will
� reduce duplication of business logic,
� allow all lines of business to use flexible workflow and rules engines to improve time to market for

new products,
� reduce maintenance costs and operational risks, and
� have a solid chance of meeting project time lines, because the IT organization is already familiar

with proposed technology.

Implications Need to develop real-time interface between online and phone transactions to system B.

System B will become a mission-critical platform for the business as several applications depend on it.
There is a need to develop and deploy adequate disaster-recovery procedures.

Rollout strategy should focus on minimizing adverse impact to other financial products supported by
system B.
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roadmap provides direction on migrating from the

current system to the target system. It organizes the

work as a number of instances of class Initiative and

the relation organized by. These instances in turn

are associated with instances of class Project

through the relation implements part of. In other

words, the work consists of a number of initiatives,

each of which is carried out in a number of projects.

An initiative generally covers a cohesive set of

stakeholder concerns, such as improvements to

environment stability, or time-to-market consider-

ations. The projects put architecture decisions into

practice within an overall plan by implementing

their implications. The implementation of a partic-

ularly large or complex architecture decision may

span multiple projects by allocating the implemen-

tation of a subset of its implications to separate

projects. This relation enables a temporal analysis

that provides a view of the architecture following

the execution of a series of projects. It also enables

impact analysis on architecture assets, for example,

upon the cancelation of a project.

For simplicity, the implementation for this case

study relies on a single instance of class Project,

Real-Time Credit Decision Project (see Figure 7).

Because this project has an implementation date, it

is possible to see the architecture at any particular

moment in the future (before and after implemen-

tation). In order to generate a target (future)

architecture view we would have to link a project

with the implications that it implements. The

implications link with the architecture assets

through the creates, modifies, uses, or retires

relations. The target view hides retired assets, while

showing the assets created, used, and modified.

Note that although our model does contain all

necessary information, our current ontology tool

(Protégé) does not support automatic generation of

such views.

Validating the architecture

Architectural reviews are the most common form of

software-architecture validation. We employ several

levels of reviews, such as executive reviews, peer

reviews, and reviews by an architectural review

council. The common approach to describing

architecture is based on a collection of views (logical

structure, physical deployment, runtime processes,

etc.). The format and the specific content of the

reviews differ depending on individual needs,

background, and working styles. The content

needed by all reviewers to validate the architecture

corresponds to the four related ontology segments:

1. A high-level assessment by domain as to how the

architecture meets stakeholder concerns

2. Key architecture decisions

3. Impact on architecture assets, such as legacy

systems to be retired, new components to be

implemented, and batch and real-time interfaces

to be modified

4. A roadmap for migrating to the target architec-

ture, depicted as a series of projects

The proposed ontology enables us to capture this

content as we make architecture decisions. We are

able to construct temporal views, which support

incremental, agile, and ad hoc reviews. In addition,

as the ontology is agnostic with respect to any

specific architecture view, the information can

easily support the construction of any set of views

required by traditional view-based approaches.

DISCUSSION

Earlier we identified a number of possible benefits

that this ontology-based approach offers beyond our

original decision-driven architectural development

approach. We examine now these possible benefits

in the light of our experience from the case study:

� Improved focus on what is important—In our

approach, we start with a prioritized set of

concerns. These concerns lead us to a set of

architecture decisions that address the concerns.

The architecture decisions may generate addi-

tional architecture decisions by way of implica-

tions introducing additional concerns. We achieve

architectural integrity when this iterative process

Roadmap

Figure 8
Roadmap segment of ontology

organized by
1
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implemented by

1..n
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1..n 1
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converges, and there are no more concerns to

address.

� Improved precision and clarity—Our ontology

relies on precisely defined concepts and relations

rather than on free-form descriptions. A problem

description is expressed as one or more concerns;

implications are realized by transforming archi-

tecture assets; and the extent to which architecture

decisions address concerns is evaluated through

concern-alternative relationships.

� Repository support—It is possible to create a

repository of architecture definitions by using one

of the ontology development tools, many of which

are available in open-source form. These tools

support common technology standards like OWL

(Web Ontology Language), XML, and XMI** (XML

Metadata Interchange), which make them inter-

operable with modeling environments from IBM

Rational and Borland Software Corporation.

� Support for impact analysis—An architectural

ontology helps us establish relations between

ontology elements (we refer to this property as

traceability). Performing impact analysis is just a

matter of creating the right queries. For example,

if we change an architecture decision, we can see

all the other architecture decisions depending on it

by using the following SQL statement:

SELECT D.DECISION_ID FROM DECISION D,

XREF_DECISON_RELATED_DECISIONS D_D

WHERE D.ID ¼ D_D.ID2 AND

D_D.ID1 ¼ CHANGED_DECISION_ID.

Note that this SQL query works with our custom

relational database schema generated using data

from the Protégé ontology file. This example of

impact analysis is of the type ‘‘decision to

decision.’’ Analyses of the type ‘‘decision to

concern’’ and ‘‘decision to architecture assets’’ can

be similarly performed.

� On demand view creation—We generate views

automatically as needed from the information in

our repository (see Figure 5). In addition to

diagrams, we also generate HTML-based views.

These are similar to the standard architecture

documentation, but because they are documented

in HTML (Hypertext Markup Language), they are

easier to navigate.

Our experience shows that applying our approach to

real-life situations has some limitations, primarily

due to our tool selection. These limitations can be

addressed by selecting a different tool or by

developing custom Protégé plug-ins.

� Lack of support for reified relations—Relations

(between concepts) that are represented as classes

with their own slots are referred to as reified

relations. Class Concern-Alternative Relationship,

for example, allows us to define how a particular

alternative addresses a concern. Unfortunately,

handling this type of class in Protégé is awkward

because there is no way to establish a connection

between an instance of this class and a relation.

This means that when a relation is removed or

modified, the class has to be deleted or manually

modified.

� Difficulties in generating standard architecture

views—Although there are many Protégé plug-ins

for ontology visualization, the views they create

are often busy and somewhat confusing. Config-

uring the tool to produce acceptable diagrams

using these plug-ins is time consuming, and the

configuration parameters cannot be saved. A

capability is needed to create template-based

views, such as the view found in IBM Rational

SoDA*.

� Inadequate querying tools—It is easy to create

simple queries in Protégé, such as finding all

instances of Concern that have the value critical

for the property priority. It is much more

difficult to find, for example, the architecture asset

that has the value modified for the property

relation type in class Implication-Asset Rela-

tionship. There are a number of plug-ins that

support the RDQL,
16

SPARQL,
17

ARQ,
18

and

F-Logic
19

query languages. However, considerable

skill is required to use these. Protégé can use any

JDBC-compliant relational database to store the

data. Because a database table is used to store an

entire ontology definition, this approach is not

designed for external querying. We prefer to

export our ontology into a relational database in

which each class is stored in a separate database

table. This allows us to query ontology data by

using standard SQL.

RELATED WORK
Defining an architecture metamodel for documen-

tation purposes is well understood (see Booch’s
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metamodel
20

as an example), but, beyond the use of

components and connectors, which is captured by

most architecture description languages, limited

research has been done in architectural ontology.

Kyaruzi and van Katwijk
21

propose an ontology that

contains nine architectural concepts: agent, ar-

rangement, resource, product, location, directive,

mechanism, event and calendar. This ontology is

compelling in that it refines the components-and-

connectors level and provides a more concrete

vocabulary for software architects. In addition, it

guides architectural focus by directing architects to

confine their decisions to this set of concepts.

However, we find the ontology lacks a clear under-

standing of how the elements relate to each other

and how they map to existing architectural con-

cepts. More important, we have found that many of

these elements do not show up in practice. We

suggest leveraging enterprise-modeling languages

with their accompanying ontologies for describing

architecture assets. In addition to the Architecture

Description Standard from IBM, other examples are

Enterprise Architecture Modeling Language from

Infosys Technologies Limited,
22

the modeling lan-

guage defined as part of the ArchiMate project,
23

and the SEAM modeling language (SEAM stands for

Systemic Enterprise Architecture Methodology).
24

Architecture decisions are the centerpiece of the

ontology and of the decision-based process we use.

Our ontology is derived from the REMAP (Repre-

sentation and Maintenance of Process Knowledge)
25

and DRL (Decision Representation Language)

metamodels,
26

and Kruchten’s
14

ontology of soft-

ware architecture decisions. We build on these

results, add the concepts of assets and the roadmap,

and pull them all together by making the con-

nections between them explicit.

Several tools exist for managing design decisions,

such as DREAM (Design Rationale Environment for

Argumentation and Modeling),
27

SEURAT (Software

Engineering Using RATionale),
28

Sysiphus,
29

and

OSC.
30

Of these tools only Sysiphus provides an

extendable modeling environment and user-defined

views over the model. The focus on the underlying

architectural ontology, versus documentation, dis-

tinguishes our approach from that addressed by

Sysiphus.

CONCLUSION

We propose a focal shift in software architectural

practice from diagrams, models and views to

architecture decisions and use of ontology tools. We

submit that this shift starts with the use of a

common vocabulary, one that resonates with busi-

ness and IT stakeholders.

We present the ontology as comprising four major

concepts, Concern, Architecture Decision, Architec-

ture Asset, and Roadmap, which are highly interre-

lated through a set of explicit relations. We advocate

adding them as extensions to the IEEE recommend-

ed standards.
1

We suggest creating reference ontologies, similar to

the way design patterns have emerged. Weiss and

Araujo
31

show patterns mapped to architectural

issues and decisions, resources and qualities. A

catalog of this work is a possible beginning of an

enterprise reference ontology.

We acknowledge that each of the connected seg-

ments of our ontology needs further exploration. In

order to promote standardization as well as tool

development and reuse, experimentation with on-

tologies is needed. The SysML
32

requirements

ontology, for example, can be leveraged to elaborate

concerns. Enterprise modeling languages provide a

starting point in defining an ontology for architec-

ture assets. We should point out, however, that

additional aspects, such as migration, conversion,

deployment, and application disposition, would

have to be included. Finally, every architecture must

be implementable. The architecture roadmap seg-

ment of the ontology requires better integration with

the broad area of enterprise portfolio management.

As practicing architects, we continue to use the

described approach in our architecture development

work. We do not claim that it will fit every

organization, but it is proving to be very effective in

ours. We are committed to refining our approach in

the hope of improving the quality of architectures

and the systems resulting from them.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., The Open Group, or Sun Micro-
systems, Inc. in the United States, other countries, or both.
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