
Uncovering the to-dos hidden
in your in-box

&

D. M. Sow

J. S. Davis II

M. R. Ebling

A. Misra

L. Bergman

In this paper we present SCOUT, an application that examines the machine-generated

messages within the in-box of an e-mail application, extracts from these messages

information regarding the tasks the recipient is asked to perform, and displays these

messages in a graphical interface where they are grouped by context. The tool is

intended for business managers who receive daily a large number of machine-

generated messages that require some action be taken. SCOUT uses the IBM

Unstructured Information Management Architecture (UIMA) framework to apply rule-

based reasoning for identification of tasks, and it uses contextual data to customize the

presentation of task information to the user. SCOUT’s open, extensible architecture

allows the use of alternate inference models (such as machine learning algorithms) as

well as the integration of additional context sources and client interfaces. SCOUT was

well received by the participants in a small evaluation study.

INTRODUCTION

The beginning of the 21st century has been marked

by an explosion of electronic information. We often

find ourselves inundated with information that

reaches us through a variety of channels, including

e-mail accounts, voice-mail recorders, and most

recently, text-messaging clients on our cellular

phones. This amounts to a deluge of requests,

notices, scheduling invitations, and the like. We

owe the information explosion to the proliferation of

inexpensive and readily available technology that

has led to what most would agree is both a blessing

and a curse. Whereas information facilitates efficient

business and social networking, it also has become a

major burden. Humans simply cannot accommodate

massive information input.

For economic reasons, e-mail is the most acute and

widespread facilitator of this explosion due to the

virtually free cost of generating and distributing

e-mail messages. Even when we ignore spam and

focus on legitimate e-mail (from trusted and

welcome senders), we find that e-mail is still a major

problem.
1–3

One user reports receiving well over 70

legitimate messages per day.
4

Anecdotal evidence

suggests that his experience is not unusual. In an

enterprise environment, a significant portion of

these legitimate e-mails are associated with tasks

that must be acted upon by the recipient.

A key challenge posed by e-mail inundation is how

to effectively manage the tasks and activities that are

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 739

associated with e-mail messages. Herein lies the goal

of our work: to help users manage their tasks

effectively. We consider a task to be a particular

kind of activity. Moran defines ‘‘activity’’ as a set of

mental or physical actions carried out by persons.
5

Through composition, activities can contain sub-

activities, which can themselves contain subactiv-

ities. In this vein, we define a task to be an atomic

level activity, one that may not contain subactiv-

ities. We focus only on tasks that are communicated

by e-mail messages, such that there is at most one

task per message. As an example, the process of

bidding for a product on eBay** is an activity

containing many subactivities. One e-mail associ-

ated with this process alerts the recipient that he or

she has won an auction. The task for the recipient

contained in this e-mail is to initiate a payment to

the seller.

In this work, we focus on the population of business

managers who receive daily a large number of

legitimate, machine-generated e-mails, such as the

ones that are generated by business processes

within a large enterprise. We present here a practical

solution for dealing with such e-mail in the form of a

task management tool called SCOUT,
6

which uses

contextual information about the user and the

environment to recognize, filter, sort, organize and

execute tasks associated with e-mails. By using

information from pervasive sources (i.e., ubiquitous

computing devices), SCOUT alleviates some of the

problems associated with e-mail overload by pre-

senting the core information to the recipient in an

efficient and well-organized fashion.

We hypothesize that tasks contained within e-mail

messages can be automatically identified for pre-

sentation within SCOUT. Tasks can be contained in

one of two types of e-mail messages: human-

generated and machine-generated. For our purpos-

es, the salient difference is that human-generated

messages tend to be unstructured, whereas the

contents of machine-generated messages have a

regular structure. To simplify the problem, we focus

on machine-generated messages. We assume that

every machine-generated message is associated with

some business process (e.g., the eBay bidding

process or the expense reimbursement process in an

enterprise), that we only have access to e-mail

messages generated by business processes, and that

other than inspecting the e-mail messages them-

selves, we have no knowledge of the syntactic

structure used in these messages. Furthermore, we

assume that we make no modifications to messages

or to the business processes that generate them.

SCOUT tracks a set of registered task types, each of

which corresponds to a business process. When

SCOUT identifies an e-mail message associated with

a business process, the task contained within that

e-mail message is specified in a document by using

an Extensible Markup Language (XML) dialect

called TaskML. A task description contains the

following attributes:

� Type—the task type represented by a label unique

to a business process or transaction associated

with the task (e.g., a bidding transaction on eBay,

a password update at Amazon.com Web site).
� Subject—a summary description of the task (e.g.,

you have won the auction)
� Person—an optional list of persons associated

with the task (e.g., a collaborator who can help

complete a task)
� Deadline—an optional deadline by which the task

must be completed
� Thread—the set of related messages associated

with the activity containing this task
� Comments—free-form comments associated with

the task
� Status—the state of completion of the task

By automatically identifying tasks within e-mails

generated by business processes, SCOUT helps

make users aware of the tasks awaiting their

attention. Furthermore, by pulling these e-mail

messages into a task management system, it reduces

the number of legitimate e-mail messages the user

must process each day.

SCOUT provides three main functions: e-mail

analysis, context-based task presentation, and con-

text-based task reminding.

1. E-mail analysis: An e-mail analysis engine rec-

ognizes incoming e-mails as being associated

with known business processes. Such e-mails are

then parsed and further analyzed to extract task

information relevant to that process.

2. Context-based task presentation: SCOUT uses

context associated with a task so that it can be

presented in a graphical interface that is cus-

tomized according to the viewer.

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006740

3. Context-based task reminding: To extend SCOUT

beyond the desktop, context-based reminders

enable task-related messages to be sent to users

on pervasive devices. Users can specify contex-

tual criteria to trigger the reminding process (e.g.,

if my task is to pick up a package, alert me when I

am in the vicinity of the mail room; if my task

involves Steve, alert me when we are both

available).

The e-mail analysis function is implemented using

Unstructured Information Management Architecture

(UIMA) annotators. UIMA
7

is a component-based

software framework used for the development of

applications that process unstructured information.

It focuses on text analysis and isolates the core

algorithms that perform text analytics from system

services such as storage of data, communication

between components, and visualization of results.

By offering a framework with well-defined applica-

tion programming interfaces (APIs), UIMA allows

developers to share and combine text analysis

algorithms in order to build complex applications.

The rest of the paper is organized as follows. In the

next section, we review related work. In the

following section we introduce the SCOUT applica-

tion, describe the way in which the application

requirements were defined, and describe the two

interfaces to SCOUT, the Web portal and the e-mail

client. Next we present the context information used

by SCOUT, the sources of that information, and the

way in which additional context is derived. We then

describe the SCOUT architecture and give an over-

view of the e-mail analysis components. We present

results of a pilot study and conclude with some final

comments, including ideas for future work.

RELATED WORK

Moran and his colleagues identified several meta-

tasks required for efficient task management
2,5

:

� Creating awareness of the core task and related

metatasks
� Prioritization of tasks
� Scheduling of task appointments
� Completion of task prerequisites
� Monitoring of task status
� Notification/reminders of partially completed

tasks
� Delegation of tasks through reassignment

An important focus in task management is the

awareness aspect. Although task management has

received a great deal of attention in the literature,
8–11

most approaches tend to disregard the awareness

problem. A notable exception is the work of Cortson-

Oliver et al.,
12

which deals with general e-mails.

They propose SmartMail, a prototype task-extraction

system that uses linear support vector machines

(machine-learning method used for classification)

and linguistic rules to analyze unstructured e-mails.

Their technique produces task-focused summaries of

action items detected in e-mails. With such a wide

scope on general e-mails, their solution has had only

modest predictive success.

Another exception is the work of Bennett and

Carbonell
13

describing a system that tries to identify

the action items contained in unstructured e-mails.

They compared a standard unigram (1st order

Markov) approach to an n-gram (n � 1 order

Markov) approach applied at both the document

and sentence level. They found that

n-grams applied at the sentence level are most

effective, achieving accuracies of 0.8092, 0.8145 and

0.8173 for a k-nearest neighbor, naı̈ve Bayes, and

support vector machine classifier, respectively. In

contrast to this work, SCOUT limits the e-mail that it

considers to those items that arrive from semi-

structured business processes. In the case of one

SCOUT user with an e-mail corpus consisting of

2,269 messages, the observed accuracy was 0.9996;

similar results were obtained for other SCOUT users.

Much of the work on automatically classifying

e-mails aims at automatically placing e-mail mes-

sages into appropriate folders. Examples of work

addressing the filing problem include Segal and

Kephart’s MailCat system,
14

and the work of

Bekkerman et al. with e-mail data from Enron

Corporation and SRI International.
8

Similar work

has also been performed by Dredze et al.,
15

who

focus on automatically classifying each incoming

e-mail message according to the activity to which it

belongs. In the TaskPredictor system, Shen et al.
16

extend this work by using incoming (unstructured)

e-mail messages to predict a user’s activities. The

focus of all this research, however, is on the

classification of e-mail messages and on predicting a

user’s activities, and not upon the identification of

action items within e-mail messages. In contrast,

SCOUT attempts to help users identify and manage

the tasks that are contained within e-mail messages.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 741

Another related body of work focuses on extracting

information from text-based documents, such as

e-mail messages and Web pages. McCallum pro-

vides a good overview of the challenges of in-

formation extraction,
17

including the trade-offs

involved in the use of various techniques. He argues

that rule-based approaches, such as the one used in

SCOUT, only work on relatively simple text within

applications of limited complexity. Business process

e-mails are generally verbose, but contain relatively

simple requests. Furthermore, assuming future

access to the business processes that generate the

e-mails, a reasonable long-term solution would not

focus on information extraction from the e-mail

messages, but on the use of a task mark-up language

from which SCOUT entries and e-mail messages

could be generated.

Tomasic and his colleagues
18

describe a virtual

information officer (VIO) that accepts e-mailed

requests for updates to corporate databases and

returns partially filled out forms for user confirma-

tion. Like VIO, SCOUT is interpreting an incoming

e-mail message to identify the underlying task.

Unlike VIO, SCOUT’s focus is on helping users

manage tasks presented to them by business

processes. If SCOUT were used in conjunction with

VIO, SCOUT would classify the partially filled out

forms sent to the user for confirmation as a task

from a business process. In addition, SCOUT differs

from VIO in that it employs a rules-based approach

that does not require extensive training to support

each new business process; a new process can be

supported by SCOUT with a minimal investment of

time.

THE SCOUT APPLICATION

In this section, we present the design and realization

of the SCOUT application. We begin by discussing

the application requirements and how they were

determined. We then present the two application

interfaces that we have built—one within a portal

environment and the other within an e-mail client.

Application requirements
There are many ways to support the previously

outlined metatasks in a task management system.

We collected application requirements in a user

study that involved a focus group in a two-phase

process. First, a group of seven participants were

interviewed, and their comments were incorporated

within a tentative set of requirements. The group

consisted of managers (three first-level and four

second-level) representing the target population for

the tool. In the second phase, sketches of a proposed

user interface were reviewed by five additional

participants, three first-level managers and two

second-level managers, and their comments were

incorporated within the final set of requirements.

The participants felt strongly that the task manage-

ment interface should emphasize simplicity with

terse, relevant information displays. As a result, we

decided to limit the set of functions to basic ones.

Another issue that our managers brought up was the

choice between a Web-based user interface and a

client-based user interface. In our survey population

approximately half of the participants preferred a

SCOUT implementation that was accessible via the

Web, whereas the others preferred a SCOUT client

integrated with their e-mail client, which would

periodically synchronize with a back-end server,

allowing them to process tasks while operating in a

mobile environment.

Beyond the preceding design considerations, our

survey group expressed interest in the following list

of novel features for managing e-mail complexity:

1. Automatically generated to-do list—This was the

primary feature that our user study participants

requested. Of the managers we surveyed, only one

actively used the to-do list feature of the available

personal information manager tools. The primary

hindrance to using to-do lists cited by users was the

burden of manually populating and maintaining

such lists.

2. Rich views of to-dos—Related to the issue of

automatically populating the to-do lists is enabling

access to rich and varied views of these lists. Such

views depend on the ability to associate attributes

(e.g., colleagues, task deadline, task type) with

tasks. Manual assignment of these attributes is a

tedious process. The ability to automatically extract

e-mail-based tasks, create to-do entries for these

tasks, and assign appropriate values for attributes

was deemed extremely useful by our study group.

3. Communication and collaboration support—Ma-

chine-generated tasks often contain subtasks that

require human-to-human communication or collab-

oration. Many participants expressed interest in

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006742

having a task management system that allows users

to associate e-mails or other information to auto-

matically generated tasks. In addition, such a task

management system must allow users to delegate

tasks to others.

4. Automated scheduling—The automating of

scheduling tasks received a lukewarm response.

Although no participant expressed interest in a

completely automated tool able to schedule times

for performing tasks without their explicit approval,

there was some support for a feature that assists

with task scheduling. For example, some partic-

ipants thought that an informational calendar

showing deadlines and proposing start dates for

long-running tasks might be beneficial.

5. Automated notification—Participants thought that

notification of imminent and urgent deadlines

through channels other than e-mail would be

beneficial, as long as the notifications were com-

pletely unobtrusive and well-timed (e.g., not sent

during meetings). Such notification mechanisms

had to take into account the users’ context in order

to make intelligent decisions. A few participants

were adamant in opposing the idea of any

notification.

With these requirements in mind, we designed two

interfaces to SCOUT: a portal-based implementation

and an implementation integrated into an e-mail

client application. In spite of the significant addi-

tional implementation effort, we decided on a dual

interface approach because of the strong recom-

mendations from our study group.

The SCOUT Web portal application

The SCOUT Web portal application (SCOUT portal,

for short) presents to the user a dashboard that lists

all pending tasks and their attributes. Figure 1

shows a screen capture of a typical task list in the

SCOUT portal.

Upon visiting the portal, the user can view all

pending tasks, arrange and prioritize them accord-

ing to several automatically extracted attributes

such as task due date, associated users, associated

formal process, and task subject. As shown in Fig-

ure 1, in this view there is a Sort by pull-down

menu in which the user can select different criteria

for sorting the tasks. This list can be sorted by

importance, type, subject, deadlines, or upcoming

meetings. In the task list view shown in Figure 1,

tasks are sorted by upcoming meetings. Taking a

closer look at the fourth row of the task list reveals

that the corresponding task is of type EASubmission,

which means that it is an expense submission task

generated by a business process whose name is

shown in the type column. The subject is Trip to

WMCSA, and its deadline is 12-16-2005. In addition,

SCOUT informs the user that it is Maria R. Ebling

who submitted this travel expense. Should the user

want to meet with Maria to discuss this task, the

next meeting with Maria is scheduled to take place

on 12-19-2005, as shown in the upcoming meetings

column.

By presenting all pending tasks in a single, well-

organized interface, SCOUT helps make users aware

of the tasks awaiting their attention; it also helps

them prioritize those tasks and monitor the status of

pending tasks—all important metatasks associated

with efficient task management.

Task-specific details can be viewed by clicking on

the task Subject link. Figure 2 shows the task detail

view when the user clicks on the fourth task of the

task list shown in Figure 1. From this screen, the

user can edit the importance rating of this task as

well as its deadline and status. (The task status can

be monitored in the task list view.) In addition, if a

task needs to be delegated to a colleague, clicking on

Delegate Task triggers a mechanism for sending

appropriate notifications to others. The user can also

send e-mail from this view or set up a context-aware

reminder. Finally, SCOUT provides a Launch IDP

button to access the application related to this

business process, if available on the Web. (IDP

stands for Individual Development Plan.)

The presentation of tasks within the task list view

(Figure 1) and the management of individual tasks

(Figure 2) can change based upon contextual

information. Our discussion here is based on a

general notion of context; we will discuss the

specific sources of context information and their

derivatives in the next section. Two examples of the

use of contextual data are (1) the availability of a

person required to carry out the task and (2)

context-aware reminders.

The availability of a person required to carry out a

task is needed in order to schedule time for the task

owner to work on the task. SCOUT makes use of

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 743

several contextual data sources to infer a person’s

availability: calendar data, instant messaging (IM)

status, phone status, and so on.

Contextual information is also used for context-

aware delivery of messages to a task owner. Both

proximity-based and availability-based reminders

make use of contextual information. If a pending

task requires the task owner to visit a particular

location, the owner can arrange for a proximity-

based reminder that will send the user a notification

when he is in the vicinity of the location (e.g.,

remind the user to pick up a package from the mail

room when the user is leaving the cafeteria which

happens to be nearby). Similarly, if a pending task

requires consultation with a colleague, the task

owner can arrange for a reminder to be sent when

the colleague becomes available or collocated (in the

same room). In our current implementation, notifi-

cation messages are delivered by means of Short

Message Service (SMS).

E-mail client application

The SCOUT e-mail client application is integrated

into the Lotus Notes* e-mail client used by a

majority of the employees in our organization. The

tasks identified by SCOUT are entered into the to-do

list of the e-mail application. In addition, these tasks

are shown in the calendar. The decision to show the

to-do entries in the calendar is based upon the fact

that the to-do feature of the e-mail application is not

commonly used, whereas the calendar feature has

an extremely high adoption rate within our

organization.

Figure 3 shows a screen capture of the integrated

Lotus Notes view of the to-do list. In this view the

user can inspect the pending tasks and arrange and

Figure 1
SCOUT portal application: task list view

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006744

prioritize them according to several automatically

extracted attributes, such as the due date, type, and

subject. Figure 3 shows a view of tasks organized by

type (Lotus Notes uses the term category instead of

type). For example, the fourth task in category

EASubmission represents a travel expense submis-

sion with subject Hotel Bill WMCSA 2006 and

deadline 02/07/2006. The status of this task is

shown to be In progress, and the task has been

delegated to John S. Davis II. In addition, the entry

shows that John has accepted the assignment.

Clicking on the subject link of a task opens up the

task detail view, as shown at the bottom of Figure 3.

The user can use standard Lotus Notes task

management features to set the importance rating of

the task and edit its deadline and status. In addition,

the user may also delegate a task to a colleague, as

discussed earlier. As can be seen in Figure 3, this

interface supports a number of the metatasks

presented earlier, including the prioritization of

tasks, the monitoring of task status, the notification

regarding partially completed tasks, and the dele-

gation of tasks through explicit reassignment.

The e-mail client interface does not support the

context-aware features provided by the SCOUT

portal. This is because changes to the standard

corporate mail template are difficult to deploy.

Without such changes, context-aware features sim-

ply cannot be integrated into the e-mail client

interface. The e-mail client application runs on the

user’s machine, which represents another important

difference between the Web portal application and

the e-mail client application. Because all processing

is done on the user’s machine (rather than on a

server), this implementation has the benefit of

improved security and privacy.

Figure 2
SCOUT portal application: task detail view

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 745

CONTEXT DATA SOURCES
The organization of a user’s outstanding tasks

should adapt to changing contextual attributes of the

user and of any other individuals associated with the

task. An example of adaptation based on the user’s

own context is modifying the task list according to

the user’s calendar. Examples of adaptation based

on the contextual state of other individuals are

proximity-aware reminders (e.g., when a pending

task requires a conversation with the manager, alert

the user when both are in the same room) or

availability-aware reminders (e.g., when a travel

reimbursement request requires a conversation with

a colleague, alert the user that the individual has

become available by highlighting the task entry in

the task list view).

Most of the research on context-aware computing

implicitly assumes the deployment of infrastructure

to sense and collect context. It is sometimes hard to

justify the capital cost of either the deployment of

necessary sensors or the retooling of existing IT

infrastructure components. Accordingly, our focus

has been on identifying the dynamic user attributes

that are already available and accessible. Contextual

attributes can be classified as either raw or derived.

Raw context refers to attributes obtained directly

from external infrastructure components, such as

sensors or software, and typically includes infor-

mation such as a user’s location, calendar entries, or

IM status. Derived context refers to higher-level user

attributes obtained by composing, or fusing, raw

contextual data. For example, a person’s availability

(or willingness to be interrupted) might be deduced

from a combination of calendar information, IM

status, and phone status.

Context may also be classified as either physical

(referring to physical user attributes such as

location) or virtual (referring to attributes that exist

Figure 3
SCOUT e-mail client application: integrated Lotus Notes view of the to-do list

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006746

only within the IT infrastructure, such as the

number of open IM sessions). As shown in Figure 4,

the raw-derived dimension and the physical-virtual

dimension can be viewed as orthogonal axes in the

space of context sources. In the rest of this section

we discuss the way we use a number of context

sources in SCOUT.

Raw context sources

In this section we describe the following raw context

sources used in SCOUT: calendar, IM presence,

location, and phone status.

Calendar

In an enterprise environment, the calendar provides

a rich source of context information. A SCOUT

component known as the calendar adapter interface

to a calendar server retrieves and parses calendar

information. It gathers information on meeting and

appointment events, which includes a list of

attendees and the location, time, and topic of the

meeting. It is worth noting that not only does

calendar information provide insight about a user’s

current state (e.g., located in room 1401) but also

about the user’s likely future activity (e.g., sched-

uled for an off-site meeting in New York in an hour).

The calendar information is particularly useful in

determining if certain individuals are busy on

specific tasks and should thus be free from

interruption.

IM presence

Given the popularity of IM-based collaboration and

communication within the enterprise, a user’s

current IM status also provides a very useful form of

context. In particular, we use IM APIs for both

synchronous and asynchronous retrieval of a user’s

presence-related events (e.g., online, offline, away

from the computer, or in do-not-disturb mode).

Location

The user’s location may be obtained in a number of

ways. We focus here on the location within a

building in which we have deployed an active badge

infrastructure. The technology consists of radio

frequency identification (RFID) readers installed at

selected points (e.g., entrance and exit to the

cafeteria) that detect when card-shaped badges

(worn by individuals) are in the vicinity. Indoor

location may also be inferred from wireless local

area network (WLAN) connections.

Phone status

The activity status of the user on a phone (e.g., on/

off hook, the identity of the callee) is retrieved

through protocol-specific mechanisms. For Voice

over Internet Protocol (VoIP) traffic based on the

Session Initiation Protocol (SIP) protocol, we use

special SIP OPTION messages to interrogate the SIP

server or the end device about its status. As VoIP

phones become universally deployed and SIP

technology matures, presence-based notification

mechanisms will provide a scalable solution for

obtaining the phone status of individuals or groups.

Derived context sources
Based on the preceding raw sources of context, we

derive the following contextual attributes: proximity

and availability.

Proximity

The typical use of this attribute involves detecting

when two people are in the same vicinity within an

office building. We refer to these people as being

collocated when they are in the same office or the

same public space, such as a cafeteria. In SCOUT the

detection of proximity relies on an active badge

system. Proximity is useful, for example, when a

user is to be reminded at the opportune time of an

outstanding task that requires a face-to-face meeting

with another party.

Availability

At present, availability is by far the most frequently

used derived contextual attribute. Availability is an

extension of the current network-centric notion of

presence, in that the latter refers to the ability to

communicate (e.g., whether an IM can reach the

user), whereas the former refers to the user’s

Figure 4
The space of context sources

Calendar
Activity,
IM Status

Location,
Phone
Status

Proximity

Availability

 physical

 virtual

raw

 derived

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 747

availability to actually participate in a communica-

tion session. In addition, whereas presence is a

binary-valued attribute (a user is either connected or

disconnected from IM), availability is multidimen-

sional; a user may be available for IM but only with

company employees, or the user may be available

for voice calls but only with family members.

Automatic, context-driven determination of avail-

ability (see, for example, References 19–22) is

particularly appealing as it relieves the user of the

responsibility of configuring the access rights

granted to other users. We currently determine an

individual’s availability by combining their IM

presence, voice status, and calendar information.

The addition of proximity further refines the notion

of availability. For example, a user is considered to

be attending a scheduled meeting (according to the

calendar entry) only if SCOUT determines that the

user is either located in the meeting room specified

in the calendar entry or has dialed into the

teleconference specified in that entry.

SYSTEM ARCHITECTURE

Figure 5 illustrates the architecture of the full-

featured version of SCOUT. SCOUT has four main

components: the Mail Agent component for access-

ing e-mail messages, the E-Mail Analysis module,

the Context Services module for aggregating context

data, and the Portlet Application module which

provides the client interface. The SCOUT architec-

ture is extensible so that a variety of client

interfaces, e-mail systems, context sources and

e-mail analysis modules can be supported.

The Mail Agent component serves as a translator

that hides from SCOUT the syntactic details of

proprietary e-mail systems (e.g., Lotus Notes,

Microsoft Outlook**). The Mail Agent component

reads e-mail messages that are stored in the third-

Figure 5
SCOUT system architecture

Context
Services

Task
Adapter

Calendar
Adapter

Context
Logger

Portlet Application

TaskML

Context
Reminder
System

Location
Adapter

CxS API

Composition Engine

Availability
Composer

VoIP
Adapter

IM
Adapter

Proximity
Composer

Context
DB

• • •

• • •

Mail/Calendar
DB

Calendar
Agent

Mail
Agent

Active Badge
System

SIP Server IM Server

E-Mail Analysis

UIMA Framework

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006748

party mail database and translates each e-mail

message into an EmailML document. EmailML is a

simple XML description of an e-mail message that

consists of the following attributes: from-address,

to-address, subject, body, time sent, and unique ID.

The unique ID is assigned by Mail Agent.

The output of the Mail Agent is consumed by the

E-Mail Analysis module. This module is built on the

IBM UIMA framework.
7

It maps incoming EmailML

documents into TaskML documents. Details on this

transformation are provided in the section ‘‘E-mail

task analysis.’’

We use Context Services (CxS) to aggregate all

context data as well as TaskML instances for

delivery to the client interface.
23,24

CxS is designed

for general support (API) of context-aware applica-

tions. The CxS architecture includes three major

parts: a set of adapters, a composition engine, and an

application interface. These parts are described in

more detail below.

Adapter

Each type of context data that CxS supports is

associated with an adapter. Figure 5 shows five

adapters associated with data sources currently

supported by CxS: calendar, location, IM, VoIP, and

task. Each adapter retrieves or receives data of a

given type from its context source. The retrieval of

data occurs according to a specified schema,

whereas a specified communication mechanism

determines the way in which data will be sent to or

retrieved by the adapter. For instance, the task

adapter supports the TaskML schema. This adapter

is essentially a Web service receiving TaskML

documents encapsulated in Simple Object Access

Protocol (SOAP) requests issued by the E-Mail

Analysis module.

Composition engine

The CxS composition engine allows different sourc-

es of context to be aggregated. Specifically, we

implemented availability and proximity composers,

as shown in Figure 5. These derived context

attributes were discussed in the section ‘‘Derived

context sources.’’ By delivering TaskML data

through CxS (instead of uploading it directly into

Context DB), we allow future applications to use the

compositional facilities of CxS to aggregate TaskML

documents with context data.

Application interface (API). The client application of

SCOUT sits on top of CxS. It uses the CxS API shown

in Figure 5 to receive TaskML instances as well as

relevant context data. Our context-aware reminder

system is also a component sitting on top of CxS.

SCOUT can post reminders to the reminder system

based upon user preferences and the received

TaskML.

Applications interface with SCOUT in two ways.

They can access a database (context DB) where

TaskML and calendar events are stored. This data-

base is managed by a Context Logger module that

uses the CxS API to subscribe to TaskML and

calendar events. Applications can also retrieve

contextual data about users (i.e., current location,

current availability) by using the CxS API directly.

SCOUT can be configured to exclude context

features when sensor resources are not available.

The context features discussed in the previous

section are only available in the SCOUT portal

implementation. Figure 6 shows a simplified archi-

tecture for the stand-alone implementation (e-mail

client application). In this simplified version, the

output of the calendar agent and the E-Mail Analysis

module are directly consumed by the client appli-

cation.

E-MAIL TASK ANALYSIS

SCOUT automates the task awareness aspect of the

task management life cycle by analyzing e-mails in

three stages, as illustrated in Figure 7. The first

stage, carried out by the task identification module,

Figure 6
SCOUT architecture of the stand-alone
implementation

E-Mail Analysis

Client
Application

Mail/Calendar
DB Mail

Agent

TaskML

UIMA Framework

Calendar
Agent

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 749

involves identifying the task associated with an

e-mail message and then labeling the message

accordingly. In the second stage, the task extraction

module further analyzes the labeled e-mails to

produce a set of task attributes. Finally, the TaskML

Generator module uses the set of task attributes to

map the incoming e-mail into a TaskML document.

The execution of each of these modules relies on

sets of rules. These rules define the business

processes supported in the system. They are main-

tained by an administrator on a Web server, as

shown on the top part of Figure 7. E-Mail Analysis

modules periodically poll this Web server to make

sure that they are using the latest sets of rules

published by the administrator. The current polling

frequency is a parameter that is currently set to 180

minutes.

The e-mail analysis process is essentially a classi-

fication problem that can be performed either

through statistically-based machine-learning algo-

rithms or by a rule-based system that uses human-

defined rules. Both approaches implement a trans-

lation function that maps e-mail messages to tasks.

In the machine-learning approach, a machine-

learning algorithm is determined through the use of

training examples that consist of e-mail message and

task pairs. In the rule-based approach, the mapping

function is determined by human experts, who enter

the rules into the system.

After reviewing a number of business-process-

generated e-mails, we decided that a rule-based

approach was the best method for performing e-mail

analysis. Our decision was based on the determin-

istic nature of machine-generated e-mails, which

allows humans who have knowledge of business

process domains to easily create the analysis rules.

Looking at e-mail samples sent by a business

process often reveals numerous strings of text that

are invariant throughout all these e-mail samples.

These strings define a unique signature that may be

encapsulated in very simple static rules that

determine the e-mail-to-task translation function.

SCOUT rule-based analysis

The process of defining rules for the SCOUT rule-

based engine starts with collecting samples of

e-mails sent by each registered business process. For

each business process, all sample e-mails are then

aligned to identify a unique signature that is used to

define a regular expression representative of the set

of all task e-mails sent by this process. Such regular

expressions are used to define these rules. For

example, the following regular expression is cur-

rently used to identify all task e-mails sent by the

Course Enrollment business process:

Subject: [] * [eE]nrollment[]þ [cC]onfirmation[]þ
[a�zA-Z,@0–9] * []þ [cC]ourse[]þ [A-Za-z0–9] þ
[] þ [cC]lass[] þ [a-zA-Z0–9] þ

The task identification module is a UIMA annotator

that uses rules to assign task types to each e-mail

that it analyzes. The task extraction module is also a

UIMA annotator in which e-mails tagged by the task

Figure 7
Architecture of the E-Mail Analysis module

Mail DB

Task
Classification

Task
Extraction

TaskML
Generator

UIMA Framework

Mail
Agent

Mapping
Metadata

Task
Types

Classification
Rules

Extraction
Rules

HTTP

EmailML

Web Server

TaskML

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006750

identification module are further analyzed to extract

task attributes. This module uses the task type

identified during the identification stage to load the

appropriate set of rules defining how the e-mail

should be parsed to identify relevant task attributes.

This set of rules consists also of regular expressions

that are used to annotate different parts of the e-mail

corresponding to the different task attributes.

The annotations produced by the task extraction

module are then fed into the TaskML Generator

module which orchestrates the generation of the

TaskML document. It uses user-defined preferences

to assign values for task importance and deadline

attributes when these are not provided in the e-mail.

The TaskML generator module uses two additional

UIMA annotators to validate the received annota-

tions. The first one validates person names against a

Lightweight Directory Access Protocol (LDAP) en-

terprise directory, and the second one formats dates

and times representing task deadlines.

Evaluating the SCOUT rule-based approach

We have performed a series of tests to estimate the

performance of the SCOUT rule-based approach. For

our tests, we have registered 33 business processes

that generate e-mails in the system. We then applied

our analysis module on a corpus of 2,269 e-mails,

corresponding to six weeks of machine-generated

e-mails received by a real user.

As with any expert system, there are two types of

classification errors that can occur in this system:

false alarms and misses. In the case of a false alarm,

SCOUT wrongly tags an e-mail as corresponding to a

business process task, which indicates that the rules

fail to filter out certain unsuitable e-mails. A miss

occurs when SCOUT fails to identify an e-mail as a

business process task; in this case the rules may be

too narrow. In practice, misses are likely to be

caused by changes in the format of some machine-

generated e-mails.

Table 1 reports the results of this study. We note a

very high classification accuracy of 0.9996 (obtained

by subtracting the error rate of 1/2269 from 1) and a

very good precision for detected tasks of 0.9583

(obtained by dividing the number of correctly

predicted BP tasks by the number of BP tasks in the

corpus). These results support our initial hypothesis

on the performance and robustness of the rule-based

approach for the problem at hand. This tendency of

missing very few tasks was further verified with

feedback obtained from end users during user

studies described in the section ‘‘Application evalu-

ation.’’ In fact, only one user reported misses, and in

this case, all such errors were due to an update to

the format of the e-mails sent by our company’s

travel-expense reimbursement process.

A hybrid approach for improved performance

Although the rule-based classification method

achieved a very high rate of accuracy, the nature of

business process e-mails is such that even small

error rates are unacceptable. For example, failure to

properly detect a task requesting a manager to

approve an employee travel-expense report may

result in suspension of the employee’s corporate

credit card—an intolerable situation. To address this

problem, we developed an error detection system

that uses both rule-based and machine-learning

algorithms and allows a SCOUT administrator to

detect when rules need to be updated. This system,

shown in Figure 8, consists of the SCOUT task

identification module, working in conjunction with

a machine-learning document classifier.

The SCOUT error detection system is based on two

premises that are characteristic of the business

process e-mails which we are targeting. First, as

demonstrated by our validation study, a rule-based

system is able to achieve a very small error rate, but

the rules are brittle with respect to business

processes that are likely to change over time. (The

machine-generated business process e-mails are

usually changed over time due to various manage-

ment decisions—unfortunately, such changes are

often not communicated to the company as a whole.

In addition, a few errors are typically present due to

judgment lapses by the rule writers.) Second, a

Table 1 Summary of the SCOUT rule-based classi-

fication result on a real in-box.

Time window 05/12/06–06/28/06

BP tasks in corpus 24

Correctly Predicted BP Tasks 23

Non-BP Tasks 2245

Tasks identified by SCOUT 24

Misclassifications 1

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 751

machine-learning approach suffers from a small but

not insignificant false alarm rate; often such false

alarms result from messages related to a business

process, but the messages do not contain a task for

the recipient to complete. The result is that both

approaches suffer from errors when used alone.

Given these characteristics, we designed our error

detection system to use the machine-learning and

the rule-based approaches in parallel, taking ad-

vantage of their respective strengths and, at the

same time, minimizing errors in handling changing

business processes.

As shown in Figure 8, the outputs of the task

identification module (the rule-based algorithm) and

the statistical classifier module (the machine-learn-

ing approach) are compared. A discrepancy in their

outputs is a hint that either the task identification

module or the statistical classifier module may have

misclassified the corresponding document. In the

former case, the error may be either a false alarm or

a miss, and it requires the administrator to update

the rule set accordingly. In the latter case, the

administrator needs to update the training set of the

statistical classifier to include the current test case

and retrain it.

In the tests we performed to evaluate the perfor-

mance of our error detection scheme, we used the

statistical classifier proposed by Johnson et al.
25

We

selected this text categorization technique for its

efficiency, in terms of both predictive accuracy and

computational complexity. We trained this statisti-

cal classifier with a corpus of 92 e-mail messages.

This training set is composed of 72 machine-

generated e-mails from eight different business

processes and 20 human-generated e-mails selected

randomly from a real in-box. Two of these eight

business processes changed during the lifetime of

the SCOUT project. The format of the messages that

they produced was updated. For our training set, we

used the old mail format for these two processes.

Each of these 92 e-mail messages were then

manually labeled with their corresponding task

type. Human-generated e-mails were labeled ‘‘un-

structured.’’ Finally, in order to avoid overfitting on

the training data, all the messages in this training set

were also made anonymous by replacing certain

fields with random characters. (‘‘Overfitting’’ refers

to the process of training a learning algorithm in

which the learner adjusts to inconsequential details

in the training data, which leads to errors on unseen

data.
26

)

The experimental testing set used to evaluate this

error detection scheme is composed of 119 e-mails.

This experimental corpus was synthesized from real

human-generated e-mails extracted from a real in-

box and simulated business process e-mails with

errors intentionally introduced to test the capabil-

ities of this error detection scheme. More specifi-

cally, 89 of 119 e-mails were generated from the

eight different business processes used in the

generation of the training set. The remaining 30

were human-generated. We used a mixture of old

and new message formats for the two processes that

changed during the lifetime of the project.

On the experimental testing set described above, 40

errors were detected. Interestingly, the statistical

classifier was able to correctly classify all e-mails

sent by the two processes that changed during the

lifetime of the project, despite the message format

updates. On the other hand, the task identification

module failed to correctly classify all the messages

in the new formats, resulting in 20 error detections

(because the rules were based on the old e-mail

format). The remaining 20 errors were false alarms

due to misclassifications from the statistical classi-

fier. Indeed, it wrongly detected expense account

tasks on e-mails that were supposed to be classified

as unstructured. Adding these test cases to the

training set significantly reduced this false alarm

rate.

APPLICATION EVALUATION
We describe here a user study we carried out in

order to evaluate the effectiveness of SCOUT in the

real world. The study, which covered both the

Figure 8
SCOUT error detection mechanism

Task Identification
Module

Statistical Classifier

Rules

Input
E-Mails

Training
Set

Error
Detection

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006752

SCOUT portal application and the SCOUT e-mail

client application, was performed in three phases. In

the first phase, a predeployment survey was sent to

the participants to gauge their perceptions regarding

e-mail-based tasks. Following the collection of the

predeployment survey results, we asked the partic-

ipants to use SCOUT for three to four weeks. Finally,

in the last phase, participants were asked to assess

the strengths and weaknesses of SCOUT by means of

a structured exit interview.

The 14 study participants were split in two groups.

A first group of seven users were asked to use and

evaluate the SCOUT portal application for several

weeks. These participants were not given the ability

to set preferences for task deadlines and urgency

ratings. When these attributes were not available in

the body of the e-mails, they had to assign these

attributes to their tasks manually through the portal

interface. The seven participants in the second

group were asked to use and evaluate the SCOUT

e-mail client application. This study included 33

business processes registered in the system.

Overall, the SCOUT application was well received by

our user population. Figure 9 summarizes the

overall user perception of SCOUT in a histogram

where the X axis represents the user ratings on a

Lickert scale of 1 (extremely useless) to 5 (extremely

useful). The Y axis represents the number of

participants for a given rating. There are two series

of values represented on this figure. The green

histogram refers to ratings obtained when users

were asked, ‘‘How useful did you find SCOUT

overall?’’ The orange histogram refers to ratings

obtained when users were asked, ‘‘For the tasks that

it managed, how useful was SCOUT to you?’’ In both

series, almost all of the respondents gave rating

equal to or above 4.0.

Three participants rated the overall usefulness of the

system with a score of less than 4. These partic-

ipants were all users of the SCOUT portal applica-

tion who complained about the lack of integration of

SCOUT with their e-mail client. These users would

rather deal with just one client application to

manage both their e-mails and their tasks. Unfortu-

nately, a Web-based e-mail solution that we could

integrate with our portal is currently not supported.

Most users found the following SCOUT function-

alities very useful to them:

� Automatic tracking and extraction of tasks from

e-mails
� Creating a task list in which tasks can be executed

in batch
� Sorting tasks into folders
� Sorting tasks by various attributes

To further assess the usefulness of the tool the

participants were asked to answer a number of

detailed questions. A summary of the answers

obtained are shown in Figure 10. Users acknowl-

edged occasionally having tasks ‘‘fall through the

cracks’’ before using SCOUT, with an average rating

of 4.3. The statement ‘‘The tasks that SCOUT

manages will probably not fall though the cracks’’

drew even stronger agreement, with an average

rating of 4.4. Agreement (with an average rating of

4.1) with the statement ‘‘The tasks extracted and

managed by SCOUT are important tasks’’ clearly

shows the utility of this task management system,

despite being restricted to handle machine-gener-

ated e-mails only.

The exit interview also gathered end-user feedback

on the utility of the following specific features

within SCOUT:

Task organization—Participants found the ability to

view tasks in a list (average rating of 4.2), the ability

to sort the list by different attributes (average rating

of 4.0), and the ability to file task e-mails into

specific folders (average rating of 3.9) to be quite

Figure 9
Overall user perception of SCOUT

Lickert Scale of 1 (extremely useless)
to 5 (extremely useful)

1 2 3 4 5

N
um

be
r o

f u
se

rs

How useful did you find SCOUT
For the tasks that it managed, how useful was SCOUT

12

10

8

6

4

2

0

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 753

Figure 10
User perception of SCOUT features

Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

1 2 3 4 5

N
um

be
r o

f u
se

rs
7

6

5

4

3

2

1

0

The tasks that SCOUT manages will probably
not "fall through the cracks"

Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7

6

5

4

3

2

1

0

How useful is the urgency rating in SCOUT task list

Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7

6

5

4

3

2

1

0

How useful is the SCOUT folder in email reader

Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7
8
9

6
5
4
3
2
1
0

I would have found SCOUT more useful if it had been
implemented outside of my email reader

Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7
8
9

6
5
4
3
2
1
0

How useful is the ability to sort tasks by different
attribute

Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

1 2 3 4 5

N
um

be
r o

f u
se

rs 7
6
5

10
9
8

4
3
2
1
0

The tasks extracted and managed by SCOUT are
important tasks

Lickert scale of 1 (extremely useless)
to 5 (extremely usefull)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7
8

6
5
4
3
2
1
0

SCOUT Task List

Lickert scale of 1 (extremely useless)
to 5 (extremely usefull)

1 2 3 4 5

N
um

be
r o

f u
se

rs

7
8

6
5
4
3
2
1
0

How useful is the ability to list deadlines in SCOUT
task list

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006754

useful. Even the users of the e-mail client applica-

tion, with a smaller set of attributes that they could

use to sort their tasks, found this aspect of the

application to be quite useful.

Task attributes—The listing of deadlines in the task

list received an average rating of 4.0. For SCOUT

portal users, because this feature was not auto-

mated, it was of somewhat lesser value. A user of

the SCOUT portal application stated that the manual

entry required for business processes that do not

explicitly state task deadlines within the generated

e-mails makes this feature less useful. In contrast,

the SCOUT e-mail client application users liked this

feature, especially with deadlines being linked with

task reminders placed in their calendar. The

manually assigned urgency rating in SCOUT was

rated low (average rating of 3.0). Participants asked

for a fully automated urgency rating system, without

requiring users to define and manage their

preferences.

Task delegation—The ability to delegate a task

within SCOUT received an average rating of 3.1.

Participants who assigned this feature a low rating

commented that although SCOUT manages the

notifications of task delegation status exchanged

between the delegate and the sender, there is no

automated transfer of authority to perform the task

inside the business process. Moreover, these par-

ticipants often do not delegate the tasks currently

managed by SCOUT.

CONCLUSIONS

The enormous quantity of daily e-mails coupled

with the high degree of importance associated with

some of these messages is turning e-mail manage-

ment into a challenging process. It has become

essential to be able to identify and manage tasks for

which the recipient of the e-mail is responsible. We

designed SCOUT to automate this task management

process by automatically extracting tasks from in-

box messages by using rule-based e-mail analysis.

The population targeted as potential users were

managers who receive daily a large number of

machine-generated e-mail messages.

SCOUT is currently in use by tens of users. It has

been well received and has generated positive end-

user feedback. A participant wrote to us that his use

of the SCOUT portal application enabled him to

discover pending tasks in his in-box that he missed.

A user of the SCOUT e-mail client application was

pleasantly surprised to discover an important and

forgotten task on his calendar.

Given the fact that most e-mail is unstructured, a

future extension of SCOUT will incorporate an

e-mail analysis engine that can extract tasks from

unstructured messages. This extension will allow

tasks to be identified within messages generated by

humans. Initial results on the use of machine-

learning techniques to identify such e-mails are

promising. Our research agenda includes the devel-

opment of mechanisms able to extract task attri-

butes from unstructured e-mails.

Another extension of SCOUT may focus on cluster-

ing tasks belonging to a user-defined activity (e.g.,

all the tasks related to a user’s last trip to Paris). This

capability may improve the productivity of end

users by allowing them to focus on tasks within an

activity, with a common thread that they control.

SCOUT is scheduled to be widely deployed in the

near future. This large-scale deployment presents us

with a unique opportunity to run a large-scale user

study and refine our assessment of the strengths and

weaknesses of our approach.

ACKNOWLEDGMENTS
We thank Guruduth Banavar and Michael

Greenwood for their invaluable contributions. In

addition, we thank all the SCOUT users, with a

special mention to the study participants, for helping

us to improve this system.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of eBay
Inc. or Microsoft Corporation.

CITED REFERENCES
1. S. Whittaker and C. Sidner, ‘‘Email Overload: Exploring

Personal Information Management of Email,’’ Proceedings
of the CHI ’96 Conference on Human Factors in Computing
Systems, Vancouver, BC, Canada, April 13–18, 1996, pp.
276–283.

2. S. Whittaker, T. P. Moran, and S. P. Farrell, ‘‘Why Email
is Not Enough: Combining Communication and Shared
Representation to Support Activity Management,’’ Pro-
ceedings of the 9th European Conference on Computer-
Supported Cooperative Work (ESCSW 2005), Workshop

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 755

on Computer Support for Human Activity, Paris, France,
September 17, 2005 (paper available from authors).

3. E. V. Wilson, ‘‘Email Winners and Losers,’’ Communica-
tions of the ACM 45, No. 10, 121–126 (October 2002).

4. M. Eisenstadt, ‘‘Eight years of email stats, pass 1,’’
February 11, 2005, http://www.corante.com/getreal/
archives/2005/02/11/eight_years_of_email_stats_pass_1.
php.

5. T. P. Moran, ‘‘Activity: Analysis, Design, and Manage-
ment,’’ in Theories and Practice in Interaction Design,
S. Bagnarx and G. Crampton Smith, Editors, Erlbaum
Press, Mahwah, NJ (2006).

6. D. Sow, M. Ebling, R. Lehmann, J. Davis, and L.
Bergman, ‘‘SCOUT Contextually Organizes User Tasks,’’
Proceedings of the IEEE International Conference on
e-Business Engineering, ICEBE 2005, Beijing, China,
October 12–18, 2005, pp. 94–101.

7. D. Ferrucci and A. Lally, ‘‘UIMA: An Architectural
Approach to Unstructured Information Processing in the
Corporate Research Environment,’’ Natural Language
Engineering 10, Nos. 3–4, 327–348 (2004).

8. R. Bekkerman, A. McCallum, and G. Huang, ‘‘Automatic
Categorization of Email into Folders: Benchmark Experi-
ments on Enron and SRI Corpora,’’ CIIR Technical Report
IR-418, University of Massachusetts, Amherst, MA
(2004).

9. V. Bellotti, B. Dalal, E. Good, P. Flynn, D. Bobrow, and N.
Ducheneaut, ‘‘What a To-Do: Studies of Task Manage-
ment Towards the Design of a Personal Task List
Manager,’’ Proceedings of the 2004 Conference on Human
Factors in Computing Systems (CHI 2004), Vienna,
Austria, April 24–29, 2004, pp. 735–742.

10. V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith,
‘‘Taking Email to Task: The Design and Evaluation of a
Task Management Centered Email Tool,’’ Proceedings of
the 2003 Conference on Human Factors in Computing
Systems, CHI 2003, Ft. Lauderdale, Florida, April 5–10,
2003, pp. 345–352.

11. J. Gwizdka, ‘‘Reinventing the Inbox—Supporting the
Management of Pending Tasks in Email,’’ Extended
Abstracts of the 2002 Conference on Human Factors in
Computing Systems, CHI 2002, Minneapolis, Minnesota
(2002), pp. 550–551.

12. S. Corston-Oliver, E. Ringger, M. Gamon, and R. Camp-
bell, ‘‘Task-Focused Summarization of Email,’’ Proceed-
ings of the ACL-04, Workshop on Text Summarization
Branches Out, 42nd Annual Meeting of the Association for
Computational Linguistics, Barcelona (2004), http://acl.
ldc.upenn.edu/acl2004/textsummarization/pdf/Corston.
pdf.

13. P. Bennett and J. Carbonell, ‘‘Detecting Action-Items in
E-mail,’’ Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development on
Information Retrieval (SIGIR ’05), Salvador, Brazil,
August 15–19, 2005, pp. 585–586.

14. R. Segal and J. Kephart, ‘‘MailCat: An Intelligent Assistant
for Organizing E-Mail,’’ Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS ’99, Seattle,
WA, May 1–5, 1999, pp. 276–282.

15. M. Dredze, T. Lau, and N. Kushmerick, ‘‘Automatically
Classifying Emails into Activities,’’ Proceedings of the
2006 International Conference on Intelligent User Inter-
faces, IUI 2006, Sydney, Australia, January 29–February
1, 2006, pp. 70–77.

16. J. Shen, L. Li, T. Dietterich, and J. Herlocker, ‘‘A Hybrid
Learning System for Recognizing User Tasks from Desk-

top Activities and Email Messages,’’ Proceedings of the
2006 International Conference on Intelligent User Inter-
faces, IUI 2006, Sydney, Australia, January 29–February
1, 2006, pp. 86–92.

17. A. McCallum, ‘‘Information Extraction: Distilling Struc-
tured Data from Unstructured Text,’’ ACM Queue 3, No.
9, 48–57 (November 2005).

18. A. Tomasic, J. Zimmerman, and I. Simmons, ‘‘Linking
Messages and Form Requests,’’ Proceedings of the 2006
International Conference on Intelligent User Interfaces, IUI
2006, January 29–February 1, 2006, Sydney, Australia,
pp. 78–85.

19. J. Fogarty, J. Lai, and J. Christensen, ‘‘Presence Versus
Availability: The Design and Evaluation of a Context-
Aware Communication Client,’’ International Journal of
Human-Computer Studies. 61, No. 3, 299–317 (September
2004).

20. E. Horvitz and J. Apacible, ‘‘Learning and Reasoning
about Interruption,’’ Proceedings of the 5th International
Conference on Multimodal Interfaces, ICMI 2003,
Vancouver, Canada, November 5–7, 2003, pp. 20–27.

21. E. Horvitz, C. M. Kadie, T. Paek, and D. Hovel, ‘‘Models
of Attention in Computing and Communications: From
Principles to Applications,’’ Communications of the ACM
46, No. 3, 52–59 (March 2003).

22. S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami, J.
Forlizzi, S. Kiesler, J. Lee, and Jie Yang, ‘‘Predicting
Human Interruptibility with Sensors: A Wizard of Oz
Feasibility Study,’’ Proceedings of the 2003 Conference on
Human Factors in Computing Systems, CHI 2003, Ft.
Lauderdale, Florida, April 5–10, 2003, pp. 257–264.

23. N. Cohen, P. Castro, and A. Misra, ‘‘Descriptive Naming
of Context Data Providers,’’ Proceedings of the 5th
International and Interdisciplinary Conference on Model-
ing and Using Context, CONTEXT 2005, Paris, France,
July 5–8, 2005, pp. 112–125.

24. H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, and M.
Ebling, ‘‘The Design and Applications of a Context
Service,’’ Mobile Computing and Communications Review
6, No. 4, 45–55 (2002).

25. D. E. Johnson, F. J. Oles, T. Zhang, and T. Goetz, ‘‘A
Decision-Tree-Based Symbolic Rule Induction System for
Text Categorization,’’ IBM Systems Journal 41, No. 3,
428–437 (2002).

26. T. Mitchell, Machine Learning, McGraw Hill, New York,
1997.

Accepted for publication July 6, 2006.

Daby M. Sow
IBM Research Division, Thomas J. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532.
(sowdaby@us.ibm.com). Dr. Sow is a research staff member
at the Watson Research Center. His research interests range
from theoretical problems in information theory and machine
learning to middleware and application design in pervasive
computing. He has published extensively and holds several
patents in these fields. Before joining IBM, he spent the
summer of 1998 at Lucent Technologies, Bell Laboratories,
where he worked on high-rate video-coding systems. In the
summer of 1999, he was with Philips Research Laboratories,
working on computational resource scalability and scalable
algorithms in image and video processing. He received a B.Sc.
degree in electrical engineering from Université Laval,
Québec, Canada, in 1994, and M.S. and Ph.D. degrees in

SOW ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006756

Published online October 24, 2006.

electrical engineering from Columbia University in 1996 and
2000. During his graduate studies, he was a member of the
Multimedia Signal Processing Laboratory at Columbia
University.

John S. Davis II
IBM Research Division, Thomas J. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532
(davisjs@us.ibm.com). Dr. Davis is a research staff member at
the Watson Research Center. His research interests include
pervasive computing, privacy, and the intersection of
medicine and technology. Since joining IBM in 2000, he has
participated in the implementation of research prototypes
involving intelligent messaging, contextual pattern
generation, context-aware reminders, and pervasive business
workflow. He has numerous publications and several patents
(filed or pending) in the field of context and location-aware
computing. Before joining IBM, Dr. Davis held positions at
G.E. Medical Systems and Hughes Space and
Communications. He holds bachelor and doctorate degrees in
electrical engineering from Howard University and the
University of California at Berkeley, respectively. During his
graduate work, Dr. Davis was a member of the Ptolemy
research group in system-level design and electronic design
automation.

Maria R. Ebling
IBM Research Division, Thomas J. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532
(ebling@us.ibm.com). Dr. Ebling is a research staff member at
the Watson Research Center, where she manages the Privacy-
Enabled Context Technologies department. Her group builds
middleware to support context-aware computing with a focus
on user privacy concerns and applicability to the health-care
industry. She received a B.S. degree in mathematics from
Harvey Mudd College and M.S. and Ph.D. degrees in computer
science from Carnegie Mellon University. Her research
interests are in distributed systems supporting mobile and
pervasive computing, privacy, and human-computer
interaction. Dr. Ebling is a member of the IEEE Computer
Society and the Association for Computing Machinery.

Archan Misra
IBM Research Division, Thomas J. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532.
(archan@us.ibm.com). Dr. Misra is a research staff member
in the Distributed Computing department at the Watson
Research Center. He received a B. Tech. degree in electronics
and communication engineering from Indian Institute of
Technology, Kharagpur, India in 1993, and M.S. and Ph.D.
degrees in electrical and communication engineering from the
University of Maryland at College Park in 1996 and 2000. At
IBM, for the past five years, he has been working on
middleware and protocols for pervasive and collaborative
computing, including algorithms and architectures for
collaborative applications over converged networks based on
the Session Initiation Protocol (SIP), context-sensitive
middleware technologies, high-performance wireless mesh
networks, and data management for sensor-based
applications. Before joining IBM, Dr. Misra worked at
Telcordia Technologies, researching Internet QoS
architectures and cellular mobility management protocols. He
is a coauthor of papers that received the Best Paper awards at
the ACM WOWMOM 2002 and IEEE MILCOM 2001
conferences. He currently chairs the IEEE Computer Society’s
Technical Committee on Computer Communications (TCCC).

Lawrence Bergman
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Dr., Hawthorne, NY 10532 (bergmanl@us.ibm.com).
Dr. Bergman is a research staff member in the Software
department at the Watson Research Center. He received a B.S.

degree in physical sciences and zoology from the University of
Maryland in 1977, and M.S. and Ph.D. degrees in computer
science from the University of North Carolina at Chapel Hill in
1989 and 1993. He subsequently joined IBM at the Watson
Research Center, where he has worked on computer graphics,
image query, model-based application development tools, and
desktop programming by demonstration. In 2000, he received
an IBM Outstanding Innovation Award for his work on
content-based image retrieval. Dr. Bergman is a member of the
Association for Computing Machinery. &

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 SOW ET AL. 757

