D. M. Sow
J. S. Davis II
M. R. Ebling
A. Misra

L. Bergman

Uncovering the to-dos hidden
in your in-box

In this paper we present SCOUT, an application that examines the machine-generated
messages within the in-box of an e-mail application, extracts from these messages
information regarding the tasks the recipient is asked to perform, and displays these
messages in a graphical interface where they are grouped by context. The tool is
intended for business managers who receive daily a large number of machine-
generated messages that require some action be taken. SCOUT uses the IBM
Unstructured Information Management Architecture (UIMA) framework to apply rule-
based reasoning for identification of tasks, and it uses contextual data to customize the
presentation of task information to the user. SCOUT's open, extensible architecture
allows the use of alternate inference models (such as machine learning algorithms) as
well as the integration of additional context sources and client interfaces. SCOUT was
well received by the participants in a small evaluation study.

INTRODUCTION

The beginning of the 21st century has been marked
by an explosion of electronic information. We often
find ourselves inundated with information that
reaches us through a variety of channels, including
e-mail accounts, voice-mail recorders, and most
recently, text-messaging clients on our cellular
phones. This amounts to a deluge of requests,
notices, scheduling invitations, and the like. We
owe the information explosion to the proliferation of
inexpensive and readily available technology that
has led to what most would agree is both a blessing
and a curse. Whereas information facilitates efficient
business and social networking, it also has become a
major burden. Humans simply cannot accommodate
massive information input.

For economic reasons, e-mail is the most acute and
widespread facilitator of this explosion due to the

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

virtually free cost of generating and distributing
e-mail messages. Even when we ignore spam and
focus on legitimate e-mail (from trusted and
welcome senders), we find that e-mail is still a major
problem.l_3 One user reports receiving well over 70
legitimate messages per day.4 Anecdotal evidence
suggests that his experience is not unusual. In an
enterprise environment, a significant portion of
these legitimate e-mails are associated with tasks
that must be acted upon by the recipient.

A key challenge posed by e-mail inundation is how
to effectively manage the tasks and activities that are

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

SOW ET AL

739

associated with e-mail messages. Herein lies the goal
of our work: to help users manage their tasks
effectively. We consider a task to be a particular
kind of activity. Moran defines “activity” as a set of
mental or physical actions carried out by persons.5
Through composition, activities can contain sub-
activities, which can themselves contain subactiv-
ities. In this vein, we define a task to be an atomic
level activity, one that may not contain subactiv-
ities. We focus only on tasks that are communicated
by e-mail messages, such that there is at most one
task per message. As an example, the process of
bidding for a product on eBay** is an activity
containing many subactivities. One e-mail associ-
ated with this process alerts the recipient that he or
she has won an auction. The task for the recipient
contained in this e-mail is to initiate a payment to
the seller.

In this work, we focus on the population of business
managers who receive daily a large number of
legitimate, machine-generated e-mails, such as the
ones that are generated by business processes
within a large enterprise. We present here a practical
solution for dealing with such e-mail in the form of a
task management tool called SCOUT,’ which uses
contextual information about the user and the
environment to recognize, filter, sort, organize and
execute tasks associated with e-mails. By using
information from pervasive sources (i.e., ubiquitous
computing devices), SCOUT alleviates some of the
problems associated with e-mail overload by pre-
senting the core information to the recipient in an
efficient and well-organized fashion.

We hypothesize that tasks contained within e-mail
messages can be automatically identified for pre-
sentation within SCOUT. Tasks can be contained in
one of two types of e-mail messages: human-
generated and machine-generated. For our purpos-
es, the salient difference is that human-generated
messages tend to be unstructured, whereas the
contents of machine-generated messages have a
regular structure. To simplify the problem, we focus
on machine-generated messages. We assume that
every machine-generated message is associated with
some business process (e.g., the eBay bidding
process or the expense reimbursement process in an
enterprise), that we only have access to e-mail
messages generated by business processes, and that
other than inspecting the e-mail messages them-
selves, we have no knowledge of the syntactic

740 sow ET AL

structure used in these messages. Furthermore, we
assume that we make no modifications to messages
or to the business processes that generate them.

SCOUT tracks a set of registered task types, each of
which corresponds to a business process. When
SCOUT identifies an e-mail message associated with
a business process, the task contained within that
e-mail message is specified in a document by using
an Extensible Markup Language (XML) dialect
called TaskML. A task description contains the
following attributes:

¢ Type—the task type represented by a label unique
to a business process or transaction associated
with the task (e.g., a bidding transaction on eBay,
a password update at Amazon.com Web site).

* Subject—a summary description of the task (e.g.,
you have won the auction)

* Person—an optional list of persons associated
with the task (e.g., a collaborator who can help
complete a task)

® Deadline—an optional deadline by which the task
must be completed

* Thread—the set of related messages associated
with the activity containing this task

* Comments—free-form comments associated with
the task

e Status—the state of completion of the task

By automatically identifying tasks within e-mails
generated by business processes, SCOUT helps
make users aware of the tasks awaiting their
attention. Furthermore, by pulling these e-mail
messages into a task management system, it reduces
the number of legitimate e-mail messages the user
must process each day.

SCOUT provides three main functions: e-mail
analysis, context-based task presentation, and con-
text-based task reminding.

1. E-mail analysis: An e-mail analysis engine rec-
ognizes incoming e-mails as being associated
with known business processes. Such e-mails are
then parsed and further analyzed to extract task
information relevant to that process.

2. Context-based task presentation: SCOUT uses
context associated with a task so that it can be
presented in a graphical interface that is cus-
tomized according to the viewer.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

3. Context-based task reminding: To extend SCOUT
beyond the desktop, context-based reminders
enable task-related messages to be sent to users
on pervasive devices. Users can specify contex-
tual criteria to trigger the reminding process (e.g.,
if my task is to pick up a package, alert me when I
am in the vicinity of the mail room; if my task
involves Steve, alert me when we are both
available).

The e-mail analysis function is implemented using
Unstructured Information Management Architecture
(UIMA) annotators. UIMA is a component-based
software framework used for the development of
applications that process unstructured information.
It focuses on text analysis and isolates the core
algorithms that perform text analytics from system
services such as storage of data, communication
between components, and visualization of results.
By offering a framework with well-defined applica-
tion programming interfaces (APIs), UIMA allows
developers to share and combine text analysis
algorithms in order to build complex applications.

The rest of the paper is organized as follows. In the
next section, we review related work. In the
following section we introduce the SCOUT applica-
tion, describe the way in which the application
requirements were defined, and describe the two
interfaces to SCOUT, the Web portal and the e-mail
client. Next we present the context information used
by SCOUT, the sources of that information, and the
way in which additional context is derived. We then
describe the SCOUT architecture and give an over-
view of the e-mail analysis components. We present
results of a pilot study and conclude with some final
comments, including ideas for future work.

RELATED WORK
Moran and his colleagues identified several meta-
tasks required for efficient task managementz’sz

® Creating awareness of the core task and related
metatasks

e Prioritization of tasks

® Scheduling of task appointments

e Completion of task prerequisites

e Monitoring of task status

¢ Notification/reminders of partially completed
tasks

¢ Delegation of tasks through reassignment

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

An important focus in task management is the
awareness aspect. Although task management has
received a great deal of attention in the literature,”™"'
most approaches tend to disregard the awareness
problem. A notable exception is the work of Cortson-
Oliver et al.,'* which deals with general e-mails.
They propose SmartMail, a prototype task-extraction
system that uses linear support vector machines
(machine-learning method used for classification)
and linguistic rules to analyze unstructured e-mails.
Their technique produces task-focused summaries of
action items detected in e-mails. With such a wide
scope on general e-mails, their solution has had only
modest predictive success.

Another exception is the work of Bennett and
Carbonell® describing a system that tries to identify
the action items contained in unstructured e-mails.
They compared a standard unigram (1st order
Markov) approach to an n-gram (n — 1 order
Markov) approach applied at both the document
and sentence level. They found that

n-grams applied at the sentence level are most
effective, achieving accuracies of 0.8092, 0.8145 and
0.8173 for a k-nearest neighbor, naive Bayes, and
support vector machine classifier, respectively. In
contrast to this work, SCOUT limits the e-mail that it
considers to those items that arrive from semi-
structured business processes. In the case of one
SCOUT user with an e-mail corpus consisting of
2,269 messages, the observed accuracy was 0.9996;
similar results were obtained for other SCOUT users.

Much of the work on automatically classifying
e-mails aims at automatically placing e-mail mes-
sages into appropriate folders. Examples of work
addressing the filing problem include Segal and
Kephart’s MailCat system,14 and the work of
Bekkerman et al. with e-mail data from Enron
Corporation and SRI International.® Similar work
has also been performed by Dredze et al.,”> who
focus on automatically classifying each incoming
e-mail message according to the activity to which it
belongs. In the TaskPredictor system, Shen et al.'®
extend this work by using incoming (unstructured)
e-mail messages to predict a user’s activities. The
focus of all this research, however, is on the
classification of e-mail messages and on predicting a
user’s activities, and not upon the identification of
action items within e-mail messages. In contrast,
SCOUT attempts to help users identify and manage
the tasks that are contained within e-mail messages.

SOW ET AL

741

Another related body of work focuses on extracting
information from text-based documents, such as
e-mail messages and Web pages. McCallum pro-
vides a good overview of the challenges of in-
formation extraction,’ including the trade-offs
involved in the use of various techniques. He argues
that rule-based approaches, such as the one used in
SCOUT, only work on relatively simple text within
applications of limited complexity. Business process
e-mails are generally verbose, but contain relatively
simple requests. Furthermore, assuming future
access to the business processes that generate the
e-mails, a reasonable long-term solution would not
focus on information extraction from the e-mail
messages, but on the use of a task mark-up language
from which SCOUT entries and e-mail messages
could be generated.

Tomasic and his colleagues18 describe a virtual
information officer (VIO) that accepts e-mailed
requests for updates to corporate databases and
returns partially filled out forms for user confirma-
tion. Like VIO, SCOUT is interpreting an incoming
e-mail message to identify the underlying task.
Unlike VIO, SCOUT’s focus is on helping users
manage tasks presented to them by business
processes. If SCOUT were used in conjunction with
VIO, SCOUT would classify the partially filled out
forms sent to the user for confirmation as a task
from a business process. In addition, SCOUT differs
from VIO in that it employs a rules-based approach
that does not require extensive training to support
each new business process; a new process can be
supported by SCOUT with a minimal investment of
time.

THE SCOUT APPLICATION

In this section, we present the design and realization
of the SCOUT application. We begin by discussing
the application requirements and how they were
determined. We then present the two application
interfaces that we have built—one within a portal
environment and the other within an e-mail client.

Application requirements

There are many ways to support the previously
outlined metatasks in a task management system.
We collected application requirements in a user
study that involved a focus group in a two-phase
process. First, a group of seven participants were
interviewed, and their comments were incorporated
within a tentative set of requirements. The group

742 SOw ET AL

consisted of managers (three first-level and four
second-level) representing the target population for
the tool. In the second phase, sketches of a proposed
user interface were reviewed by five additional
participants, three first-level managers and two
second-level managers, and their comments were
incorporated within the final set of requirements.

The participants felt strongly that the task manage-
ment interface should emphasize simplicity with
terse, relevant information displays. As a result, we
decided to limit the set of functions to basic ones.

Another issue that our managers brought up was the
choice between a Web-based user interface and a
client-based user interface. In our survey population
approximately half of the participants preferred a
SCOUT implementation that was accessible via the
Web, whereas the others preferred a SCOUT client
integrated with their e-mail client, which would
periodically synchronize with a back-end server,
allowing them to process tasks while operating in a
mobile environment.

Beyond the preceding design considerations, our
survey group expressed interest in the following list
of novel features for managing e-mail complexity:

1. Automatically generated to-do list—This was the
primary feature that our user study participants
requested. Of the managers we surveyed, only one
actively used the to-do list feature of the available
personal information manager tools. The primary
hindrance to using to-do lists cited by users was the
burden of manually populating and maintaining
such lists.

2. Rich views of to-dos—Related to the issue of
automatically populating the to-do lists is enabling
access to rich and varied views of these lists. Such
views depend on the ability to associate attributes
(e.g., colleagues, task deadline, task type) with
tasks. Manual assignment of these attributes is a
tedious process. The ability to automatically extract
e-mail-based tasks, create to-do entries for these
tasks, and assign appropriate values for attributes
was deemed extremely useful by our study group.

3. Communication and collaboration support—Ma-
chine-generated tasks often contain subtasks that
require human-to-human communication or collab-
oration. Many participants expressed interest in

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

having a task management system that allows users
to associate e-mails or other information to auto-
matically generated tasks. In addition, such a task
management system must allow users to delegate
tasks to others.

4. Automated scheduling—The automating of
scheduling tasks received a lukewarm response.
Although no participant expressed interest in a
completely automated tool able to schedule times
for performing tasks without their explicit approval,
there was some support for a feature that assists
with task scheduling. For example, some partic-
ipants thought that an informational calendar
showing deadlines and proposing start dates for
long-running tasks might be beneficial.

5. Automated notification—Participants thought that
notification of imminent and urgent deadlines
through channels other than e-mail would be
beneficial, as long as the notifications were com-
pletely unobtrusive and well-timed (e.g., not sent
during meetings). Such notification mechanisms
had to take into account the users’ context in order
to make intelligent decisions. A few participants
were adamant in opposing the idea of any
notification.

With these requirements in mind, we designed two
interfaces to SCOUT: a portal-based implementation
and an implementation integrated into an e-mail
client application. In spite of the significant addi-
tional implementation effort, we decided on a dual
interface approach because of the strong recom-
mendations from our study group.

The SCOUT Web portal application

The SCOUT Web portal application (SCOUT portal,
for short) presents to the user a dashboard that lists
all pending tasks and their attributes. Figure 1
shows a screen capture of a typical task list in the
SCOUT portal.

Upon visiting the portal, the user can view all
pending tasks, arrange and prioritize them accord-
ing to several automatically extracted attributes
such as task due date, associated users, associated
formal process, and task subject. As shown in Fig-
ure 1, in this view there is a Sort by pull-down
menu in which the user can select different criteria
for sorting the tasks. This list can be sorted by
importance, type, subject, deadlines, or upcoming

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

meetings. In the task list view shown in Figure 1,
tasks are sorted by upcoming meetings. Taking a
closer look at the fourth row of the task list reveals
that the corresponding task is of type EASubmission,
which means that it is an expense submission task
generated by a business process whose name is
shown in the type column. The subject is Trip to
WMCSA, and its deadline is 12-16-2005. In addition,
SCOUT informs the user that it is Maria R. Ebling
who submitted this travel expense. Should the user
want to meet with Maria to discuss this task, the
next meeting with Maria is scheduled to take place
on 12-19-2005, as shown in the upcoming meetings
column.

By presenting all pending tasks in a single, well-
organized interface, SCOUT helps make users aware
of the tasks awaiting their attention; it also helps
them prioritize those tasks and monitor the status of
pending tasks—all important metatasks associated
with efficient task management.

Task-specific details can be viewed by clicking on
the task Subject link. Figure 2 shows the task detail
view when the user clicks on the fourth task of the
task list shown in Figure 1. From this screen, the
user can edit the importance rating of this task as
well as its deadline and status. (The task status can
be monitored in the task list view.) In addition, if a
task needs to be delegated to a colleague, clicking on
Delegate Task triggers a mechanism for sending
appropriate notifications to others. The user can also
send e-mail from this view or set up a context-aware
reminder. Finally, SCOUT provides a Launch 1DP
button to access the application related to this
business process, if available on the Web. (IDP
stands for Individual Development Plan.)

The presentation of tasks within the task list view
(Figure 1) and the management of individual tasks
(Figure 2) can change based upon contextual
information. Our discussion here is based on a
general notion of context; we will discuss the
specific sources of context information and their
derivatives in the next section. Two examples of the
use of contextual data are (1) the availability of a
person required to carry out the task and (2)
context-aware reminders.

The availability of a person required to carry out a

task is needed in order to schedule time for the task
owner to work on the task. SCOUT makes use of

SOW ET AL

743

&)1BM WebSphere Portal - Microsoft Internet Explorer

BE)

Fle Edit View Favorites Tools Help : Google - | :J» a
» | : — ———-
: 1 A : 8 . . = 2
@ Back - "> _ﬂ @]] : Links | Research : Address E httns:f.l’ctalor.watson.nbm.cnmm-psﬂnywtia Go
Task Management
Task List for Daby M. Sow
Task List for Daby M. Sow
Sort by [Upcoming Meetings [w] ¥ Descending 4 Ascending
Subject Type Person Deadline
% Meeting with W.J.
Approval r + William
BuyOnDemand 12-16-2005 Mon 12/19/05 at 09:00
A22YHH Jeroma/Watson/IBM Presence FOAK weekly meetings
: Meeting with 1.5.D.1.
PEC Goals Submitted PEC e 12-16-2005 Wed 12/21/05 at 05:00
g PEP weekly meeting
ntire Midd! r PubClearanceReminder Barry Leiba/Watson/IEM 12-16-2005
Maria R Meeting with M.R.E.
Trip to WMSCA EASubmission 12-16-2005 Mon 12/19/05 at 09:00
Ebling/Watson/IBM Presence FOAK weekly meetings
i Meeting with J.5.D.1.
P notificati 10P Iff&'_‘:gi};'a’” 12-19-2005 Wad 12/21/05 at 09:00
PBP weekly meeting
Meeting with J.5.D.1.
YOR820040445 Disclosure il 12-27-2005 Wed 12/21/0S at 09:00
PEP weekly meeting
| Daby M Meeting with D.M.S.
e, PubClearanceReminder g 00l T 0y unassigned Mon 12/15/03 st 09100,
Maria R Maeeting with M.R.E.
Visit XpertUniverse 23456 EASub . unassigned Mon 12/19/05 at 09:00
Ebling/Watson/IBM Presence FOAK weekly meetings
ot e-A ivity f eAMTActivity unknown unassigned
your Employees
ACTION REQUIRED: [
Management Invoice InvoiceSummary unknown unassioned ¥
&] Done 8 @ intemet
Figure 1

SCOUT portal application: task list view

several contextual data sources to infer a person’s
availability: calendar data, instant messaging (IM)
status, phone status, and so on.

Contextual information is also used for context-
aware delivery of messages to a task owner. Both
proximity-based and availability-based reminders
make use of contextual information. If a pending
task requires the task owner to visit a particular
location, the owner can arrange for a proximity-
based reminder that will send the user a notification
when he is in the vicinity of the location (e.g.,
remind the user to pick up a package from the mail
room when the user is leaving the cafeteria which
happens to be nearby). Similarly, if a pending task
requires consultation with a colleague, the task
owner can arrange for a reminder to be sent when
the colleague becomes available or collocated (in the
same room). In our current implementation, notifi-

744 sow ET AL

cation messages are delivered by means of Short
Message Service (SMS).

E-mail client application

The SCOUT e-mail client application is integrated
into the Lotus Notes* e-mail client used by a
majority of the employees in our organization. The
tasks identified by SCOUT are entered into the to-do
list of the e-mail application. In addition, these tasks
are shown in the calendar. The decision to show the
to-do entries in the calendar is based upon the fact
that the to-do feature of the e-mail application is not
commonly used, whereas the calendar feature has
an extremely high adoption rate within our
organization.

Figure 3 shows a screen capture of the integrated

Lotus Notes view of the to-do list. In this view the
user can inspect the pending tasks and arrange and

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

€]1BM WebSphere Portal - Microsoft Internet Explorer

. File Edit

em > ll‘] Lﬁ f:]):->Seard1 *;}(Fawomes &

: Address 8] hitps: ctailor.watson.ibm.com/wps/myportal/iut/p/_s.7_0_Af7_0_100/.cmdad/.arfsa.scout. ScoutPor tetuser Action/. c,.fﬁ 0_30/.ce/7_0 105'_] = [

mE]
View Favorites Tools Help o~

08

Links [C3) Research #&] IBM Business Transformation Homepage #&] I6M Internal Help Homepage 4&] IBM Standard Software Installer

Carnagie Mallon (CMU) E2FormApproval

on

IDP for John S Davis II/Watson/IBM

Delegated: gpingali@us.ibm.com

i Google - | ~] |G Search ~ @ | §0 Shasblocked | ¥ Check - i Auclin i [options
Sow/Watson/Tef Rcvio\dng Ana!vsis for SCOUT [~
Joint arch betw R
mr?e!\-:e::serir:hea;‘:en Maria R Mesting with M0 =,

Ebling/Watson/IBM

IDP notification
Status Importance Deadline (MM-dd-yyyy AT HH:mm)
: Delegated i:“ Mld_ium !ll 10-11-2005 AT 00:00
Comments place your comments here | Sawve Tack Info]
Emails
| Delegate Task |

Mon 10/24/05 at 09:00
Project discussion

unassigned

I Original Message |

| Setup Reminder

8 @ Internet

Figure 2
SCOUT portal application: task detail view

prioritize them according to several automatically
extracted attributes, such as the due date, type, and
subject. Figure 3 shows a view of tasks organized by
type (Lotus Notes uses the term category instead of
type). For example, the fourth task in category
EASubmission represents a travel expense submis-
sion with subject Hotel Bi11 WMCSA 2006 and
deadline 02/07/2006. The status of this task is
shown to be In progress, and the task has been
delegated to John S. Davis II. In addition, the entry
shows that John has accepted the assignment.

Clicking on the subject link of a task opens up the
task detail view, as shown at the bottom of Figure 3.
The user can use standard Lotus Notes task
management features to set the importance rating of
the task and edit its deadline and status. In addition,
the user may also delegate a task to a colleague, as
discussed earlier. As can be seen in Figure 3, this

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

interface supports a number of the metatasks
presented earlier, including the prioritization of
tasks, the monitoring of task status, the notification
regarding partially completed tasks, and the dele-
gation of tasks through explicit reassignment.

The e-mail client interface does not support the
context-aware features provided by the SCOUT
portal. This is because changes to the standard
corporate mail template are difficult to deploy.
Without such changes, context-aware features sim-
ply cannot be integrated into the e-mail client
interface. The e-mail client application runs on the
user’s machine, which represents another important
difference between the Web portal application and
the e-mail client application. Because all processing
is done on the user’s machine (rather than on a
server), this implementation has the benefit of
improved security and privacy.

SOW ET AL

745

[OEs-73:] | AROR|ILTOCLLE =< BAAE G
~[fa

CEE

| Address
|

%wm]gbﬁvus«-mx 2 Nerw verson of pager X E’\H mmdmx[gﬁsﬂuﬂ Froject_Flemcts Heal. XIBM”&--MNQW [y New verson o paper xig’\ﬂuwﬂrwx

S ORI e e e
for Dby M Sow 4
@ — | Subject ~ | |puepate ~ |status ~ |Assigned To ~ |
a & A1 ToDo's ¥ BadgeRequest .
@ B Personal ¥ BuyOnDemand
& Growp Approval requesied - cant 234057 In Progress
=l @ ByCas Hpproval requested - can 384251 In Progress
Q Approval requested - can 111599 In Progress
+ Approval requested - con 121234 Compieled on
) Complete 01092008
Approval requestad - can A44NXD In Progeess
ﬁ ¥ CommaercialSysteml DValidation
@ ¥ CommadityBillingSystem
* ¥ CourseEnroliment
S ¥ DatabaseOhMatic
ﬁ ¥ EMpproval
D Tripto China 011262006 Overdue
= ® DemotoHR test1 02262006 Overdue
B Vedzen Bill (082006 Overdus
wil Hotel Bill, WMCSA 2008 020772006 Overdue John 5 Dws Il
*® John S Duris 1l has accepled your sssignment |
= = - 1=
Wark Incomplete
Deadling junkngwn i
Related 1o [Daby M Sow/WatsonIBMEIBMUS
|AppBcation link hitips: w3-1ibm comiprocurementbuyondems WE:
lext=HESTREL_DISPLAY_PENDING_APPROVALS
{Comments
Az parc of ISM Procurement's Buy on demand process, your approval 13 required for shopping cart A2IVHH. Click on the following link to
approve or reject the carc:
nEEps://w3-1, ik, con/ spericas/procect/FeatrellopinServiet. waa?nexs=KESTREL OPEN APFROVALEREQ ID=AJZvis
Click on the following link to wiew all carts swaiting your approvals
| T— heeps://ui-1. ibm. com/ /protect/KestrelloginServiet. ¥ESTREL DISPLAY PENDING APPROVALS B
=0 | (=0 [=] [Dscomected =] [Home D=
Figure 3

SCOUT e-mail client application: integrated Lotus Notes view of the to-do list

CONTEXT DATA SOURCES

The organization of a user’s outstanding tasks
should adapt to changing contextual attributes of the
user and of any other individuals associated with the
task. An example of adaptation based on the user’s
own context is modifying the task list according to
the user’s calendar. Examples of adaptation based
on the contextual state of other individuals are
proximity-aware reminders (e.g., when a pending
task requires a conversation with the manager, alert
the user when both are in the same room) or
availability-aware reminders (e.g., when a travel
reimbursement request requires a conversation with
a colleague, alert the user that the individual has
become available by highlighting the task entry in
the task list view).

Most of the research on context-aware computing
implicitly assumes the deployment of infrastructure
to sense and collect context. It is sometimes hard to

746 sSOw ET AL

justify the capital cost of either the deployment of
necessary sensors or the retooling of existing IT
infrastructure components. Accordingly, our focus
has been on identifying the dynamic user attributes
that are already available and accessible. Contextual
attributes can be classified as either raw or derived.
Raw context refers to attributes obtained directly
from external infrastructure components, such as
sensors or software, and typically includes infor-
mation such as a user’s location, calendar entries, or
IM status. Derived context refers to higher-level user
attributes obtained by composing, or fusing, raw
contextual data. For example, a person’s availability
(or willingness to be interrupted) might be deduced
from a combination of calendar information, IM
status, and phone status.

Context may also be classified as either physical
(referring to physical user attributes such as
location) or virtual (referring to attributes that exist

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

only within the IT infrastructure, such as the
number of open IM sessions). As shown in Figure 4,
the raw-derived dimension and the physical-virtual
dimension can be viewed as orthogonal axes in the
space of context sources. In the rest of this section
we discuss the way we use a number of context
sources in SCOUT.

Raw context sources

In this section we describe the following raw context
sources used in SCOUT: calendar, IM presence,
location, and phone status.

Calendar

In an enterprise environment, the calendar provides
a rich source of context information. A SCOUT
component known as the calendar adapter interface
to a calendar server retrieves and parses calendar
information. It gathers information on meeting and
appointment events, which includes a list of
attendees and the location, time, and topic of the
meeting. It is worth noting that not only does
calendar information provide insight about a user’s
current state (e.g., located in room 1401) but also
about the user’s likely future activity (e.g., sched-
uled for an off-site meeting in New York in an hour).
The calendar information is particularly useful in
determining if certain individuals are busy on
specific tasks and should thus be free from
interruption.

IM presence

Given the popularity of IM-based collaboration and
communication within the enterprise, a user’s
current IM status also provides a very useful form of
context. In particular, we use IM APIs for both
synchronous and asynchronous retrieval of a user’s
presence-related events (e.g., online, offline, away
from the computer, or in do-not-disturb mode).

Location

The user’s location may be obtained in a number of
ways. We focus here on the location within a
building in which we have deployed an active badge
infrastructure. The technology consists of radio
frequency identification (RFID) readers installed at
selected points (e.g., entrance and exit to the
cafeteria) that detect when card-shaped badges
(worn by individuals) are in the vicinity. Indoor
location may also be inferred from wireless local
area network (WLAN) connections.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

virtual .
o derived
Availability
Calendar o
Activity, Proximity
IM Status
Location,
Phone
raw Status
physical
Figure 4

The space of context sources

Phone status

The activity status of the user on a phone (e.g., on/
off hook, the identity of the callee) is retrieved
through protocol-specific mechanisms. For Voice
over Internet Protocol (VoIP) traffic based on the
Session Initiation Protocol (SIP) protocol, we use
special SIP OPTION messages to interrogate the SIP
server or the end device about its status. As VoIP
phones become universally deployed and SIP
technology matures, presence-based notification
mechanisms will provide a scalable solution for
obtaining the phone status of individuals or groups.

Derived context sources

Based on the preceding raw sources of context, we
derive the following contextual attributes: proximity
and availability.

Proximity

The typical use of this attribute involves detecting
when two people are in the same vicinity within an
office building. We refer to these people as being
collocated when they are in the same office or the
same public space, such as a cafeteria. In SCOUT the
detection of proximity relies on an active badge
system. Proximity is useful, for example, when a
user is to be reminded at the opportune time of an
outstanding task that requires a face-to-face meeting
with another party.

Availability

At present, availability is by far the most frequently
used derived contextual attribute. Availability is an
extension of the current network-centric notion of
presence, in that the latter refers to the ability to
communicate (e.g., whether an IM can reach the
user), whereas the former refers to the user’s

SOW ET AL

747

Portlet Application

Context Context Context
Logger DB Reminder
System
Context CxS API
Services
Composition Engine
Availability Proximity .o
Composer Composer
Calendar Location VolP IM Task
Adapter Adapter Adapter Adapter Adapter
Active Badge| SIP Server IM Server TaskML
System
Calendar E-Mail Analysis
Agent
Mail/Calendar
DB Mail | | | |
Agent UIMA Framework ‘
Figure 5

SCOUT system architecture

availability to actually participate in a communica-
tion session. In addition, whereas presence is a
binary-valued attribute (a user is either connected or
disconnected from IM), availability is multidimen-
sional; a user may be available for IM but only with
company employees, or the user may be available
for voice calls but only with family members.
Automatic, context-driven determination of avail-
ability (see, for example, References 19-22) is
particularly appealing as it relieves the user of the
responsibility of configuring the access rights
granted to other users. We currently determine an
individual’s availability by combining their IM
presence, voice status, and calendar information.

The addition of proximity further refines the notion
of availability. For example, a user is considered to
be attending a scheduled meeting (according to the
calendar entry) only if SCOUT determines that the

user is either located in the meeting room specified

748 sow ET AL

in the calendar entry or has dialed into the
teleconference specified in that entry.

SYSTEM ARCHITECTURE

Figure 5 illustrates the architecture of the full-
featured version of SCOUT. SCOUT has four main
components: the Mail Agent component for access-
ing e-mail messages, the E-Mail Analysis module,
the Context Services module for aggregating context
data, and the Portlet Application module which
provides the client interface. The SCOUT architec-
ture is extensible so that a variety of client
interfaces, e-mail systems, context sources and
e-mail analysis modules can be supported.

The Mail Agent component serves as a translator
that hides from SCOUT the syntactic details of
proprietary e-mail systems (e.g., Lotus Notes,
Microsoft Outlook**). The Mail Agent component
reads e-mail messages that are stored in the third-

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

party mail database and translates each e-mail
message into an EmailML document. EmailML is a
simple XML description of an e-mail message that
consists of the following attributes: from-address,
to-address, subject, body, time sent, and unique ID.
The unique ID is assigned by Mail Agent.

The output of the Mail Agent is consumed by the
E-Mail Analysis module. This module is built on the
IBM UIMA framework.” It maps incoming EmailML
documents into TaskML documents. Details on this
transformation are provided in the section “E-mail
task analysis.”

We use Context Services (CxS) to aggregate all
context data as well as TaskML instances for
delivery to the client interface.””** CxS is designed
for general support (API) of context-aware applica-
tions. The CxS architecture includes three major
parts: a set of adapters, a composition engine, and an
application interface. These parts are described in
more detail below.

Adapter

Each type of context data that CxS supports is
associated with an adapter. Figure 5 shows five
adapters associated with data sources currently
supported by CxS: calendar, location, IM, VoIP, and
task. Each adapter retrieves or receives data of a
given type from its context source. The retrieval of
data occurs according to a specified schema,
whereas a specified communication mechanism
determines the way in which data will be sent to or
retrieved by the adapter. For instance, the task
adapter supports the TaskML schema. This adapter
is essentially a Web service receiving TaskML
documents encapsulated in Simple Object Access
Protocol (SOAP) requests issued by the E-Mail
Analysis module.

Composition engine

The CxS composition engine allows different sourc-
es of context to be aggregated. Specifically, we
implemented availability and proximity composers,
as shown in Figure 5. These derived context
attributes were discussed in the section “Derived
context sources.” By delivering TaskML data
through CxS (instead of uploading it directly into
Context DB), we allow future applications to use the
compositional facilities of CxS to aggregate TaskML
documents with context data.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Client
Application
Calendar
Agent TaskML
Mail/Calendar
DB Mail E-Mail Analysis
Agent

UIMA Framework

Figure 6
SCOUT architecture of the stand-alone
implementation

Application interface (API). The client application of
SCOUT sits on top of CxS. It uses the CxS API shown
in Figure 5 to receive TaskML instances as well as
relevant context data. Our context-aware reminder
system is also a component sitting on top of CxS.
SCOUT can post reminders to the reminder system
based upon user preferences and the received
TaskML.

Applications interface with SCOUT in two ways.
They can access a database (context DB) where
TaskML and calendar events are stored. This data-
base is managed by a Context Logger module that
uses the CxS API to subscribe to TaskML and
calendar events. Applications can also retrieve
contextual data about users (i.e., current location,
current availability) by using the CxS API directly.

SCOUT can be configured to exclude context
features when sensor resources are not available.
The context features discussed in the previous
section are only available in the SCOUT portal
implementation. Figure 6 shows a simplified archi-
tecture for the stand-alone implementation (e-mail
client application). In this simplified version, the
output of the calendar agent and the E-Mail Analysis
module are directly consumed by the client appli-
cation.

E-MAIL TASK ANALYSIS

SCOUT automates the task awareness aspect of the
task management life cycle by analyzing e-mails in
three stages, as illustrated in Figure 7. The first
stage, carried out by the task identification module,

SOW ET AL

749

Web Server

Task P . Mapping
Classification Extraction
Types giles R Metadata
HTTP I E t I
Mail Task Task TaskML TaskML
Agent EmailmL | Classification Extraction Generator
Mail DB
UIMA Framework ‘
Figure 7

Architecture of the E-Mail Analysis module

involves identifying the task associated with an
e-mail message and then labeling the message
accordingly. In the second stage, the task extraction
module further analyzes the labeled e-mails to
produce a set of task attributes. Finally, the TaskML
Generator module uses the set of task attributes to
map the incoming e-mail into a TaskML document.
The execution of each of these modules relies on
sets of rules. These rules define the business
processes supported in the system. They are main-
tained by an administrator on a Web server, as
shown on the top part of Figure 7. E-Mail Analysis
modules periodically poll this Web server to make
sure that they are using the latest sets of rules
published by the administrator. The current polling
frequency is a parameter that is currently set to 180
minutes.

The e-mail analysis process is essentially a classi-
fication problem that can be performed either
through statistically-based machine-learning algo-
rithms or by a rule-based system that uses human-
defined rules. Both approaches implement a trans-
lation function that maps e-mail messages to tasks.
In the machine-learning approach, a machine-
learning algorithm is determined through the use of
training examples that consist of e-mail message and
task pairs. In the rule-based approach, the mapping
function is determined by human experts, who enter
the rules into the system.

After reviewing a number of business-process-
generated e-mails, we decided that a rule-based

750 sow ET AL

approach was the best method for performing e-mail
analysis. Our decision was based on the determin-
istic nature of machine-generated e-mails, which
allows humans who have knowledge of business
process domains to easily create the analysis rules.
Looking at e-mail samples sent by a business
process often reveals numerous strings of text that
are invariant throughout all these e-mail samples.
These strings define a unique signature that may be
encapsulated in very simple static rules that
determine the e-mail-to-task translation function.

SCOUT rule-based analysis

The process of defining rules for the SCOUT rule-
based engine starts with collecting samples of
e-mails sent by each registered business process. For
each business process, all sample e-mails are then
aligned to identify a unique signature that is used to
define a regular expression representative of the set
of all task e-mails sent by this process. Such regular
expressions are used to define these rules. For
example, the following regular expression is cur-
rently used to identify all task e-mails sent by the
Course Enrollment business process:

Subject: [] * [eElnrollment[] + [cClonfirmation[] +
[a—zA-Z,@0-9] * [] + [cClourse[| + [A-Za-z0-9] +
[1+ [cCllass[]| + [a-zA-Z0-9] +

The task identification module is a UIMA annotator
that uses rules to assign task types to each e-mail

that it analyzes. The task extraction module is also a
UIMA annotator in which e-mails tagged by the task

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

identification module are further analyzed to extract
task attributes. This module uses the task type
identified during the identification stage to load the
appropriate set of rules defining how the e-mail
should be parsed to identify relevant task attributes.
This set of rules consists also of regular expressions
that are used to annotate different parts of the e-mail
corresponding to the different task attributes.

The annotations produced by the task extraction
module are then fed into the TaskML Generator
module which orchestrates the generation of the
TaskML document. It uses user-defined preferences
to assign values for task importance and deadline
attributes when these are not provided in the e-mail.
The TaskML generator module uses two additional
UIMA annotators to validate the received annota-
tions. The first one validates person names against a
Lightweight Directory Access Protocol (LDAP) en-
terprise directory, and the second one formats dates
and times representing task deadlines.

Evaluating the SCOUT rule-based approach

We have performed a series of tests to estimate the
performance of the SCOUT rule-based approach. For
our tests, we have registered 33 business processes
that generate e-mails in the system. We then applied
our analysis module on a corpus of 2,269 e-mails,
corresponding to six weeks of machine-generated
e-mails received by a real user.

As with any expert system, there are two types of
classification errors that can occur in this system:
false alarms and misses. In the case of a false alarm,
SCOUT wrongly tags an e-mail as corresponding to a
business process task, which indicates that the rules
fail to filter out certain unsuitable e-mails. A miss
occurs when SCOUT fails to identify an e-mail as a
business process task; in this case the rules may be
too narrow. In practice, misses are likely to be
caused by changes in the format of some machine-
generated e-mails.

Table 1 reports the results of this study. We note a
very high classification accuracy of 0.9996 (obtained
by subtracting the error rate of 1/2269 from 1) and a
very good precision for detected tasks of 0.9583
(obtained by dividing the number of correctly
predicted BP tasks by the number of BP tasks in the
corpus). These results support our initial hypothesis
on the performance and robustness of the rule-based
approach for the problem at hand. This tendency of

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Table 1 Summary of the SCOUT rule-based classi-
fication result on a real in-box.

Time window 05/12/06-06/28/06

BP tasks in corpus 24
Correctly Predicted BP Tasks 23
Non-BP Tasks 2245
Tasks identified by SCOUT 24
Misclassifications 1

missing very few tasks was further verified with
feedback obtained from end users during user
studies described in the section “Application evalu-
ation.” In fact, only one user reported misses, and in
this case, all such errors were due to an update to
the format of the e-mails sent by our company’s
travel-expense reimbursement process.

A hybrid approach for improved performance
Although the rule-based classification method
achieved a very high rate of accuracy, the nature of
business process e-mails is such that even small
error rates are unacceptable. For example, failure to
properly detect a task requesting a manager to
approve an employee travel-expense report may
result in suspension of the employee’s corporate
credit card—an intolerable situation. To address this
problem, we developed an error detection system
that uses both rule-based and machine-learning
algorithms and allows a SCOUT administrator to
detect when rules need to be updated. This system,
shown in Figure 8, consists of the SCOUT task
identification module, working in conjunction with
a machine-learning document classifier.

The SCOUT error detection system is based on two
premises that are characteristic of the business
process e-mails which we are targeting. First, as
demonstrated by our validation study, a rule-based
system is able to achieve a very small error rate, but
the rules are brittle with respect to business
processes that are likely to change over time. (The
machine-generated business process e-mails are
usually changed over time due to various manage-
ment decisions—unfortunately, such changes are
often not communicated to the company as a whole.
In addition, a few errors are typically present due to
judgment lapses by the rule writers.) Second, a

SOW ET AL

751

Rules

Task Identification

Module
Input
E-Mails
- - Error
Statistical Classifier Detection
Training
Set
Figure 8

SCOUT error detection mechanism

machine-learning approach suffers from a small but
not insignificant false alarm rate; often such false
alarms result from messages related to a business
process, but the messages do not contain a task for
the recipient to complete. The result is that both
approaches suffer from errors when used alone.
Given these characteristics, we designed our error
detection system to use the machine-learning and
the rule-based approaches in parallel, taking ad-
vantage of their respective strengths and, at the
same time, minimizing errors in handling changing
business processes.

As shown in Figure 8, the outputs of the task
identification module (the rule-based algorithm) and
the statistical classifier module (the machine-learn-
ing approach) are compared. A discrepancy in their
outputs is a hint that either the task identification
module or the statistical classifier module may have
misclassified the corresponding document. In the
former case, the error may be either a false alarm or
a miss, and it requires the administrator to update
the rule set accordingly. In the latter case, the
administrator needs to update the training set of the
statistical classifier to include the current test case
and retrain it.

In the tests we performed to evaluate the perfor-
mance of our error detection scheme, we used the
statistical classifier proposed by Johnson et al.”® we
selected this text categorization technique for its
efficiency, in terms of both predictive accuracy and
computational complexity. We trained this statisti-
cal classifier with a corpus of 92 e-mail messages.
This training set is composed of 72 machine-
generated e-mails from eight different business

752 sow ET AL

processes and 20 human-generated e-mails selected
randomly from a real in-box. Two of these eight
business processes changed during the lifetime of
the SCOUT project. The format of the messages that
they produced was updated. For our training set, we
used the old mail format for these two processes.
Each of these 92 e-mail messages were then
manually labeled with their corresponding task
type. Human-generated e-mails were labeled “un-
structured.” Finally, in order to avoid overfitting on
the training data, all the messages in this training set
were also made anonymous by replacing certain
fields with random characters. (“Overfitting” refers
to the process of training a learning algorithm in
which the learner adjusts to inconsequential details
in the2 6training data, which leads to errors on unseen
data.”)

The experimental testing set used to evaluate this
error detection scheme is composed of 119 e-mails.
This experimental corpus was synthesized from real
human-generated e-mails extracted from a real in-
box and simulated business process e-mails with
errors intentionally introduced to test the capabil-
ities of this error detection scheme. More specifi-
cally, 89 of 119 e-mails were generated from the
eight different business processes used in the
generation of the training set. The remaining 30
were human-generated. We used a mixture of old
and new message formats for the two processes that
changed during the lifetime of the project.

On the experimental testing set described above, 40
errors were detected. Interestingly, the statistical
classifier was able to correctly classify all e-mails
sent by the two processes that changed during the
lifetime of the project, despite the message format
updates. On the other hand, the task identification
module failed to correctly classify all the messages
in the new formats, resulting in 20 error detections
(because the rules were based on the old e-mail
format). The remaining 20 errors were false alarms
due to misclassifications from the statistical classi-
fier. Indeed, it wrongly detected expense account
tasks on e-mails that were supposed to be classified
as unstructured. Adding these test cases to the
training set significantly reduced this false alarm
rate.

APPLICATION EVALUATION

We describe here a user study we carried out in
order to evaluate the effectiveness of SCOUT in the
real world. The study, which covered both the

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

SCOUT portal application and the SCOUT e-mail
client application, was performed in three phases. In
the first phase, a predeployment survey was sent to
the participants to gauge their perceptions regarding
e-mail-based tasks. Following the collection of the
predeployment survey results, we asked the partic-
ipants to use SCOUT for three to four weeks. Finally,
in the last phase, participants were asked to assess
the strengths and weaknesses of SCOUT by means of
a structured exit interview.

The 14 study participants were split in two groups.
A first group of seven users were asked to use and
evaluate the SCOUT portal application for several
weeks. These participants were not given the ability
to set preferences for task deadlines and urgency
ratings. When these attributes were not available in
the body of the e-mails, they had to assign these
attributes to their tasks manually through the portal
interface. The seven participants in the second
group were asked to use and evaluate the SCOUT
e-mail client application. This study included 33
business processes registered in the system.

Overall, the SCOUT application was well received by
our user population. Figure 9 summarizes the
overall user perception of SCOUT in a histogram
where the X axis represents the user ratings on a
Lickert scale of 1 (extremely useless) to 5 (extremely
useful). The Y axis represents the number of
participants for a given rating. There are two series
of values represented on this figure. The green
histogram refers to ratings obtained when users
were asked, “How useful did you find SCOUT
overall?” The orange histogram refers to ratings
obtained when users were asked, “For the tasks that
it managed, how useful was SCOUT to you?” In both
series, almost all of the respondents gave rating
equal to or above 4.0.

Three participants rated the overall usefulness of the
system with a score of less than 4. These partic-
ipants were all users of the SCOUT portal applica-
tion who complained about the lack of integration of
SCOUT with their e-mail client. These users would
rather deal with just one client application to
manage both their e-mails and their tasks. Unfortu-
nately, a Web-based e-mail solution that we could
integrate with our portal is currently not supported.

Most users found the following SCOUT function-
alities very useful to them:

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

12
10
2 s
=)
S g
@
Na)
E 4
z
2
0 2 3 4 5
Lickert Scale of 1 (extremely useless)
to 5 (extremely useful)
How useful did you find SCOUT
For the tasks that it managed, how useful was SCOUT
Figure 9

Overall user perception of SCOUT

* Automatic tracking and extraction of tasks from
e-mails

* Creating a task list in which tasks can be executed
in batch

® Sorting tasks into folders

* Sorting tasks by various attributes

To further assess the usefulness of the tool the
participants were asked to answer a number of
detailed questions. A summary of the answers
obtained are shown in Figure 10. Users acknowl-
edged occasionally having tasks “fall through the
cracks” before using SCOUT, with an average rating
of 4.3. The statement “The tasks that SCOUT
manages will probably not fall though the cracks”
drew even stronger agreement, with an average
rating of 4.4. Agreement (with an average rating of
4.1) with the statement “The tasks extracted and
managed by SCOUT are important tasks” clearly
shows the utility of this task management system,
despite being restricted to handle machine-gener-
ated e-mails only.

The exit interview also gathered end-user feedback
on the utility of the following specific features
within SCOUT:

Task organization—Participants found the ability to
view tasks in a list (average rating of 4.2), the ability
to sort the list by different attributes (average rating
of 4.0), and the ability to file task e-mails into
specific folders (average rating of 3.9) to be quite

SOW ET AL

753

Number of users
O - N WA G o N

Number of users

Number of users

Number of users

The tasks that SCOUT manages will probably
not "fall through the cracks"

mm
O —=NWMUONXO

1 2 3 4
Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

The tasks extracted and managed by SCOUT are
important tasks
1

O—=NWIMUONOWOO

2 3 4 5

Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

How useful is the ability to sort tasks by different
attribute

9
8
7
6
5
4
3
2
1
0

mm

2 3 4
Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

How useful is the urgency rating in SCOUT task list

O — N W~ U OO N

2 3 4 5
Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

Figure 10
User perception of SCOUT features

Number of users

Number of users

Number of users

O = N W D U OO N ©

Number of users

| would have found SCOUT more useful if it had been
implemented outside of my email reader

2 3 4 5
Lickert scale of 1 (strongly disagree)
to 5 (strongly agree)

SCOUT Task List

O = N W D U OO N ©

2 3 4 5

Lickert scale of 1 (extremely useless)
to 5 (extremely usefull)

How useful is the ability to list deadlines in SCOUT

=
~
L

|||I oY)
%)
l G

N
W
o~
ul

Lickert scale of 1 (extremely useless)
to 5 (extremely usefull)

How useful is the SCOUT folder in email reader

O = N W » U1 OO N

2 3 4 5
Lickert scale of 1 (extremely useless)
to 5 (extremely useful)

754 sow ET AL

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

useful. Even the users of the e-mail client applica-
tion, with a smaller set of attributes that they could
use to sort their tasks, found this aspect of the
application to be quite useful.

Task attributes—The listing of deadlines in the task
list received an average rating of 4.0. For SCOUT
portal users, because this feature was not auto-
mated, it was of somewhat lesser value. A user of
the SCOUT portal application stated that the manual
entry required for business processes that do not
explicitly state task deadlines within the generated
e-mails makes this feature less useful. In contrast,
the SCOUT e-mail client application users liked this
feature, especially with deadlines being linked with
task reminders placed in their calendar. The
manually assigned urgency rating in SCOUT was
rated low (average rating of 3.0). Participants asked
for a fully automated urgency rating system, without
requiring users to define and manage their
preferences.

Task delegation—The ability to delegate a task
within SCOUT received an average rating of 3.1.
Participants who assigned this feature a low rating
commented that although SCOUT manages the
notifications of task delegation status exchanged
between the delegate and the sender, there is no
automated transfer of authority to perform the task
inside the business process. Moreover, these par-
ticipants often do not delegate the tasks currently
managed by SCOUT.

CONCLUSIONS

The enormous quantity of daily e-mails coupled
with the high degree of importance associated with
some of these messages is turning e-mail manage-
ment into a challenging process. It has become
essential to be able to identify and manage tasks for
which the recipient of the e-mail is responsible. We
designed SCOUT to automate this task management
process by automatically extracting tasks from in-
box messages by using rule-based e-mail analysis.
The population targeted as potential users were
managers who receive daily a large number of
machine-generated e-mail messages.

SCOUT is currently in use by tens of users. It has
been well received and has generated positive end-
user feedback. A participant wrote to us that his use
of the SCOUT portal application enabled him to
discover pending tasks in his in-box that he missed.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

A user of the SCOUT e-mail client application was
pleasantly surprised to discover an important and
forgotten task on his calendar.

Given the fact that most e-mail is unstructured, a
future extension of SCOUT will incorporate an
e-mail analysis engine that can extract tasks from
unstructured messages. This extension will allow
tasks to be identified within messages generated by
humans. Initial results on the use of machine-
learning techniques to identify such e-mails are
promising. Our research agenda includes the devel-
opment of mechanisms able to extract task attri-
butes from unstructured e-mails.

Another extension of SCOUT may focus on cluster-
ing tasks belonging to a user-defined activity (e.g.,
all the tasks related to a user’s last trip to Paris). This
capability may improve the productivity of end
users by allowing them to focus on tasks within an
activity, with a common thread that they control.

SCOUT is scheduled to be widely deployed in the
near future. This large-scale deployment presents us
with a unique opportunity to run a large-scale user
study and refine our assessment of the strengths and
weaknesses of our approach.

ACKNOWLEDGMENTS

We thank Guruduth Banavar and Michael
Greenwood for their invaluable contributions. In
addition, we thank all the SCOUT users, with a
special mention to the study participants, for helping
us to improve this system.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of eBay
Inc. or Microsoft Corporation.

CITED REFERENCES
1. S. Whittaker and C. Sidner, “Email Overload: Exploring
Personal Information Management of Email,” Proceedings
of the CHI *96 Conference on Human Factors in Computing
Systems, Vancouver, BC, Canada, April 13-18, 1996, pp.
276-283.

2. S. Whittaker, T. P. Moran, and S. P. Farrell, “Why Email
is Not Enough: Combining Communication and Shared
Representation to Support Activity Management,” Pro-
ceedings of the 9th European Conference on Computer-
Supported Cooperative Work (ESCSW 2005), Workshop

SOW ET AL

755

10.

11.

12.

13.

14.

15.

16.

on Computer Support for Human Activity, Paris, France,
September 17, 2005 (paper available from authors).

E. V. Wilson, “Email Winners and Losers,” Communica-
tions of the ACM 45, No. 10, 121-126 (October 2002).

M. Eisenstadt, “Eight years of email stats, pass 1,”
February 11, 2005, http://www.corante.com/getreal/
archives/2005/02/11/eight_years_of _email_stats_pass_1.
php.

T. P. Moran, “Activity: Analysis, Design, and Manage-
ment,” in Theories and Practice in Interaction Design,
S. Bagnarx and G. Crampton Smith, Editors, Erlbaum
Press, Mahwah, NJ (2006).

D. Sow, M. Ebling, R. Lehmann, J. Davis, and L.
Bergman, “SCOUT Contextually Organizes User Tasks,”
Proceedings of the IEEE International Conference on
e-Business Engineering, ICEBE 2005, Beijing, China,
October 12-18, 2005, pp. 94-101.

D. Ferrucci and A. Lally, “UIMA: An Architectural
Approach to Unstructured Information Processing in the
Corporate Research Environment,” Natural Language
Engineering 10, Nos. 3-4, 327-348 (2004).

R. Bekkerman, A. McCallum, and G. Huang, “Automatic
Categorization of Email into Folders: Benchmark Experi-
ments on Enron and SRI Corpora,” CIIR Technical Report
IR-418, University of Massachusetts, Amherst, MA
(2004).

V. Bellotti, B. Dalal, E. Good, P. Flynn, D. Bobrow, and N.
Ducheneaut, “What a To-Do: Studies of Task Manage-
ment Towards the Design of a Personal Task List
Manager,” Proceedings of the 2004 Conference on Human
Factors in Computing Systems (CHI 2004), Vienna,
Austria, April 24-29, 2004, pp. 735-742.

V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith,
“Taking Email to Task: The Design and Evaluation of a
Task Management Centered Email Tool,” Proceedings of
the 2003 Conference on Human Factors in Computing
Systems, CHI 2003, Ft. Lauderdale, Florida, April 5-10,
2003, pp. 345-352.

J. Gwizdka, “Reinventing the Inbox—Supporting the
Management of Pending Tasks in Email,” Extended
Abstracts of the 2002 Conference on Human Factors in
Computing Systems, CHI 2002, Minneapolis, Minnesota
(2002), pp. 550-551.

S. Corston-Oliver, E. Ringger, M. Gamon, and R. Camp-
bell, “Task-Focused Summarization of Email,” Proceed-
ings of the ACL-04, Workshop on Text Summarization
Branches Out, 42nd Annual Meeting of the Association for
Computational Linguistics, Barcelona (2004), http://acl.
ldc.upenn.edu/acl2004/textsummarization/pdf/Corston.
pdf.

P. Bennett and J. Carbonell, “Detecting Action-Items in
E-mail,” Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development on
Information Retrieval (SIGIR *05), Salvador, Brazil,
August 15-19, 2005, pp. 585-586.

R. Segal and J. Kephart, “MailCat: An Intelligent Assistant
for Organizing E-Mail,” Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS ’99, Seattle,
WA, May 1-5, 1999, pp. 276-282.

M. Dredze, T. Lau, and N. Kushmerick, “Automatically
Classifying Emails into Activities,” Proceedings of the
2006 International Conference on Intelligent User Inter-
faces, IUI 2006, Sydney, Australia, January 29-February
1, 2006, pp. 70-77.

J. Shen, L. Li, T. Dietterich, and J. Herlocker, “A Hybrid
Learning System for Recognizing User Tasks from Desk-

756 sow ET AL

top Activities and Email Messages,” Proceedings of the
2006 International Conference on Intelligent User Inter-
faces, IUI 2006, Sydney, Australia, January 29-February
1, 2006, pp. 86-92.

17. A. McCallum, “Information Extraction: Distilling Struc-
tured Data from Unstructured Text,” ACM Queue 3, No.
9, 48-57 (November 2005).

18. A. Tomasic, J. Zimmerman, and I. Simmons, “Linking
Messages and Form Requests,” Proceedings of the 2006
International Conference on Intelligent User Interfaces, IUI
2006, January 29-February 1, 2006, Sydney, Australia,
pp. 78-85.

19. J. Fogarty, J. Lai, and J. Christensen, “Presence Versus
Availability: The Design and Evaluation of a Context-
Aware Communication Client,” International Journal of
Human-Computer Studies. 61, No. 3, 299-317 (September
2004).

20. E. Horvitz and J. Apacible, “Learning and Reasoning
about Interruption,” Proceedings of the Sth International
Conference on Multimodal Interfaces, ICMI 2003,
Vancouver, Canada, November 5-7, 2003, pp. 20-27.

21. E. Horvitz, C. M. Kadie, T. Paek, and D. Hovel, “Models
of Attention in Computing and Communications: From
Principles to Applications,” Communications of the ACM
46, No. 3, 52-59 (March 2003).

22. S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami, J.
Forlizzi, S. Kiesler, J. Lee, and Jie Yang, “Predicting
Human Interruptibility with Sensors: A Wizard of Oz
Feasibility Study,” Proceedings of the 2003 Conference on
Human Factors in Computing Systems, CHI 2003, Ft.
Lauderdale, Florida, April 5-10, 2003, pp. 257-264.

23. N. Cohen, P. Castro, and A. Misra, “Descriptive Naming
of Context Data Providers,” Proceedings of the Sth
International and Interdisciplinary Conference on Model-
ing and Using Context, CONTEXT 2005, Paris, France,
July 5-8, 2005, pp. 112-125.

24. H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, and M.
Ebling, “The Design and Applications of a Context
Service,” Mobile Computing and Communications Review
6, No. 4, 45-55 (2002).

25. D. E. Johnson, F. J. Oles, T. Zhang, and T. Goetz, “A
Decision-Tree-Based Symbolic Rule Induction System for
Text Categorization,” IBM Systems Journal 41, No. 3,
428-437 (2002).

26. T. Mitchell, Machine Learning, McGraw Hill, New York,
1997.

Accepted for publication July 6, 2006.
Published online October 24, 2006.

Daby M. Sow

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York 10532.
(sowdaby@us.ibm.com). Dr. Sow is a research staff member
at the Watson Research Center. His research interests range
from theoretical problems in information theory and machine
learning to middleware and application design in pervasive
computing. He has published extensively and holds several
patents in these fields. Before joining IBM, he spent the
summer of 1998 at Lucent Technologies, Bell Laboratories,
where he worked on high-rate video-coding systems. In the
summer of 1999, he was with Philips Research Laboratories,
working on computational resource scalability and scalable
algorithms in image and video processing. He received a B.Sc.
degree in electrical engineering from Université Laval,
Québec, Canada, in 1994, and M.S. and Ph.D. degrees in

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

electrical engineering from Columbia University in 1996 and
2000. During his graduate studies, he was a member of the
Multimedia Signal Processing Laboratory at Columbia
University.

John S. Davis Il

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York 10532
(davisjs@us.ibm.com). Dr. Davis is a research staff member at
the Watson Research Center. His research interests include
pervasive computing, privacy, and the intersection of
medicine and technology. Since joining IBM in 2000, he has
participated in the implementation of research prototypes
involving intelligent messaging, contextual pattern
generation, context-aware reminders, and pervasive business
workflow. He has numerous publications and several patents
(filed or pending) in the field of context and location-aware
computing. Before joining IBM, Dr. Davis held positions at
G.E. Medical Systems and Hughes Space and
Communications. He holds bachelor and doctorate degrees in
electrical engineering from Howard University and the
University of California at Berkeley, respectively. During his
graduate work, Dr. Davis was a member of the Ptolemy
research group in system-level design and electronic design
automation.

Maria R. Ebling

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York 10532
(ebling@us.ibm.com). Dr. Ebling is a research staff member at
the Watson Research Center, where she manages the Privacy-
Enabled Context Technologies department. Her group builds
middleware to support context-aware computing with a focus
on user privacy concerns and applicability to the health-care
industry. She received a B.S. degree in mathematics from
Harvey Mudd College and M.S. and Ph.D. degrees in computer
science from Carnegie Mellon University. Her research
interests are in distributed systems supporting mobile and
pervasive computing, privacy, and human-computer
interaction. Dr. Ebling is a member of the IEEE Computer
Society and the Association for Computing Machinery.

Archan Misra

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York 10532.
(archan@us.ibm.com). Dr. Misra is a research staff member
in the Distributed Computing department at the Watson
Research Center. He received a B. Tech. degree in electronics
and communication engineering from Indian Institute of
Technology, Kharagpur, India in 1993, and M.S. and Ph.D.
degrees in electrical and communication engineering from the
University of Maryland at College Park in 1996 and 2000. At
IBM, for the past five years, he has been working on
middleware and protocols for pervasive and collaborative
computing, including algorithms and architectures for
collaborative applications over converged networks based on
the Session Initiation Protocol (SIP), context-sensitive
middleware technologies, high-performance wireless mesh
networks, and data management for sensor-based
applications. Before joining IBM, Dr. Misra worked at
Telcordia Technologies, researching Internet QoS
architectures and cellular mobility management protocols. He
is a coauthor of papers that received the Best Paper awards at
the ACM WOWMOM 2002 and IEEE MILCOM 2001
conferences. He currently chairs the IEEE Computer Society’s
Technical Committee on Computer Communications (TCCC).

Lawrence Bergman

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Dr., Hawthorne, NY 10532 (bergmanl@us.ibm.com).
Dr. Bergman is a research staff member in the Software
department at the Watson Research Center. He received a B.S.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

degree in physical sciences and zoology from the University of
Maryland in 1977, and M.S. and Ph.D. degrees in computer
science from the University of North Carolina at Chapel Hill in
1989 and 1993. He subsequently joined IBM at the Watson
Research Center, where he has worked on computer graphics,
image query, model-based application development tools, and
desktop programming by demonstration. In 2000, he received
an IBM Outstanding Innovation Award for his work on
content-based image retrieval. Dr. Bergman is a member of the
Association for Computing Machinery. W

SOW ET AL

757

