Following the sun:
Case studies in global
software development

Advances in global network connectivity over the past 10 years have significantly
reduced the effects that physical separation has on geographically distributed
development teams. It is increasingly clear that time zones, rather than physical
distances, are becoming the most significant factor which separates potential
collaborators. Collaboration across time zones often involves modifications to the
typical work day, with remote team members collaborating either very late at night or

J. J. Treinen
S. L. Miller-Frost

extremely early in the morning. Though this presents obvious problems, a natural
question is whether it is possible to exploit this diversity as a competitive differentiator,
instead of treating time zones as an impediment to productivity. In two case studies,

we examine whether it is possible to create a development environment in which
tasks can “follow the sun,” allowing teams to work during extended local business
hours and assign or hand off tasks at the end of their day to teams that are just starting
their day, effectively yielding a 24-hour development clock. We examine the factors
that influenced the success or failure of the respective projects and conclude with a
discussion of best practices for using this approach successfully.

INTRODUCTION

Global telecommunications networks have matured
in the past decade, providing a vehicle for relatively
inexpensive communication between teams that are
separated by great physical distances. This new
reality provides an opportunity for teams to collab-
orate in a much more effective manner than ever
before. Because the teams are now able to commu-
nicate effectively and economically, they can work
together on common goals with groups who are
located not only in different regions of their native
countries but also across the entire globe. Many new
tools that enable this type of collaboration have

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

emerged, and although these tools greatly reduce
the effects of physical distance, a new separating
factor has been exposed; that presented by signifi-
cant differences in time zone.

For example, in order to communicate in a form
other than e-mail, leaders of teams (if not the whole

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

TREINEN AND MILLER-FROST

773

team itself) are often forced to work well outside of
their normal working hours. This is inconvenient at
best and completely unworkable at worst. Although
problems such as this exist, it may be possible to

m Globalization of software
development introduces a great
deal of complexity to an already
complex process m

exploit the phenomenon of global software devel-
opment in a positive manner, giving the distributed
team a competitive advantage.

In this paper, in the context of two globally
distributed software development projects, we
examine whether it is possible to create a develop-
ment environment in which tasks can be assigned in
such a manner that work can “follow the sun.” We
examine the effects of moving work across the globe
so that each team is working during their local
normal business hours and assigning or handing off
tasks at the end of their day to teams that are
beginning their normal work day, effectively yield-
ing a 24-hour development clock. There are advan-
tages and disadvantages to using this method, and
we explore these in the context of two case studies.
In the first case study, it was possible to use this
approach successfully; in the second, a series of
projects met with greater challenges. We examine,
in depth, which factors were most influential
regarding the success of the respective efforts and
which factors limited it. Because the workforce is
becoming increasingly global in nature, we conclude
with a discussion of best practices for using this
global workforce to its maximum potential, thus
creating higher value for customers and increasing
the ability to compete in this new marketplace.

Related work

Although little has been published regarding a
“follow the sun” approach to global software
development, the topic of global software-develop-
ment practices has been the subject of much
discussion in recent years. The general consensus
has been that globalization introduces a great deal of
complexity to an already complex process. Specifi-
cally, the use of globally distributed development
teams has been found to extend time lines and to

774 TREINEN AND MILLER-FROST

require more development resources in order to
complete a project of the same complexity when
compared to projects staffed with collocated
teams.'” A major factor that has been repeatedly
discussed is the loss of informal communication
channels, which occur naturally in collocated
teamns.'”” The loss of these channels, which are
often taken for granted when all team members are
in the same location, has been found to make it
increasingly difficult to find experts who can answer
questions,1 and can lead to a loss of trust between
team members in different locations.”® In addition
to these social challenges, the effect that the loss of
communication has on the requirements manage-
ment process is discussed in Reference 9, whose
authors are among the few to note that time zone
diversity can be viewed as an advantage.

Suggestions for mitigating these problems are
discussed in Reference 3, whose authors propose the
inclusion of face-to-face kickoff meetings, recurring
face-to-face meetings among the team leaders when
possible, increased cultural awareness training for
the teams in general, and the implementation of
tools that help to re-enable informal communica-
tions. A discussion on how to address communica-
tion issues from an organizational perspective is
presented in References 9 and 10, and it is argued
that for distributed teams in particular soft skills
(such as those related to social interaction) might be
even more critical than technical skills (such as
those related to tool deployment).

Iterative development methodologies have been
found to be helpful in mitigating some of the risks
inherent to global software development, as they
help build trust between distributed teams by
forcing synchronization by requiring frequent de-
liverables.”'" A case study evaluating this approach
in terms of the “eXtreme” programming model is
presented in Reference 12.

An interesting set of patterns and “anti-patterns”
(i.e., methodologies that consistently produce un-
successful projects) for effective global software
development is proposed in Reference 13. The
problem of globally distributed code control systems
is discussed in Reference 14. A study of global
software development from an anthropological
viewpoint is presented in Reference 15, whose
authors agree with previous work’ that most failures

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

are not due to tools, but to a web of social factors,
not one of which can be blamed exclusively.

CASE STUDY: BUSINESS INTELLIGENCE

This case study focuses on a project whose goal was
to deploy a second instance of a custom-built
business intelligence solution. The original solution
was designed, developed, and deployed in the
United States. The second instance was to be
deployed at an IBM location in Australia. While
some of the components of this project were
commercially available software products, the
middleware layer was comprised of custom-built
application code which required significant gener-
alization and rework before the second instance
could be deployed.

The project was broken into four major phases. The
first phase was the infrastructure set up at the data
center in Sydney. The second phase consisted of
creating the required installation scripts for the data
warehouse and later building the warehouse on the
Australian infrastructure. The third phase comprised
the writing of the front-end Web page code. The
fourth phase consisted of the design, test, and
deployment of the middleware code used to collect
the data from the source systems and populate the
data warehouse so that the front-end Web pages
could display the results.

The teams

In order to complete this project, we were required
to merge two geographically distant development
groups into one cohesive team. The local develop-
ment team was based in Boulder, Colorado. The
Boulder team also had a management sponsor and
an executive sponsor who assisted with the
resolution of any business-related issues. The
remote team was distributed across three locations
in Australia. The discussion in this paper is limited
to the interactions between the teams as they
occurred over international boundaries and does
not discuss the dynamics between the three teams
in Australia.

Challenges

Because this was a custom-built solution and not a
packaged software product, there were no ready-
made installation scripts. Much of the code was
specifically tailored for the Boulder environment
and as such, required significant modification before

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

it would function properly in the two data centers
simultaneously.

The two teams had never met each other face-to-
face. When the project was first proposed to the
sponsoring executives, the two teams, with no
previous experience working together, had to
present a unified front in order to secure funding.
The lack of previous experience working together
between the two teams and the resulting lack of
mutual trust made promoting the business case
difficult. When a development team is collocated,
trust generally develops early in the project.
Unfortunately, before we could secure funding for
face-to-face meetings, we had to convince our
sponsors that the project itself was worth doing. As
such, the early phases of the project had to be
completed before the two teams met in person.
Funding for future phases was contingent upon
successful completion of the proof of concept.

Our approach

After funding was secured for the initial phase, the
lead developer of the Australian team flew to
Boulder for two weeks of training on the various
components of the solution. These two weeks
served a dual purpose. The primary purpose, as
perceived then, was to bring the development team
in Australia up to speed on the inner workings of the
code that would be deployed in Australia. The
secondary goal was for this developer to meet the
team in Boulder so that he could associate faces of
team members with their names when questions
arose. Building personal knowledge about the team
and building mutual trust, however, was actually
more important than resolving the technical issues.
It was, in fact, this trust which allowed us to resolve
future technical issues efficiently by conference calls
that stretched halfway around the world. This
foundation of trust resulted in increased efficiency.

After training was completed in Boulder, the lead
project manager for the overall effort was assigned.
With this team member in place, we outlined high-
level milestones and specified the tasks that would
allow us to meet those objectives. Because we only
had funding for the initial proof of concept, it was
critical that we achieve these milestones. Each
milestone resulted in a review with the architectural
control board in Australia and a request to approve
funding for subsequent phases of the project. As

TREINEN AND MILLER-FROST 775

such, failure to meet target dates would jeopardize
the project, delaying it or halting it completely.

After we defined the milestones and the detailed
task list for the first phase, the actual development
began. Note that we did not attempt to define the

m Constant communication and
face-to-face meetings helped
build trust in the local team
very quickly m

complete end-to-end project plan before beginning
work on the first phase. This was primarily because
we were working within a compressed time frame.
Furthermore, we were aware that the project was to
be completed in the context of a dynamic service
delivery environment. This type of environment
differs from that of traditional software development
projects in that the development iterations tend to
be very compressed due to constantly changing
circumstances driven by real-time changes in
requirements. Thus, we initially concentrated on
high-level tasks and on managing the details only of
the phase that we were developing at the time.

Managing the milestones

Once the project plan was defined, we approached
the actual development in the following manner.
Every Monday at 2:00 p.m. or 4:00 p.m. Boulder
time, we held a 1-hour project status meeting. The
start time varied because the United States moved
from Standard Time to Daylight Savings Time, and
the clocks moved ahead one hour. At the same time,
the exact opposite occurred in Australia, where, the
clocks move back one hour, resulting in a time zone
difference of two hours. These meetings involved
two main work products—the agenda, which was
sent out to all participants the day before the
meeting, and the meeting minutes, which were sent
to each participant immediately following the
meeting, detailing who was present and who had
agreed to which action items, with deadlines to be
completed before the next meeting. The minutes
were the more important of the two, as they clearly
defined who had signed up for which tasks in the
next seven-day iteration. It was well known early in
the project that if you agreed to a time frame for a
specific task and took ownership of its completion,
then you were expected to get it done on time,

776 TREINEN AND MILLER-FROST

barring something which was completely out of
your control. We worked together to ensure that the
goals we set were realistic, and once everyone
agreed that they were, failure to meet those goals on
any individual’s part almost never occurred.

The structure of each review meeting was as
follows. The minutes of the previous week’s meet-
ing were reviewed, including a description of each
action item and its status. Any outstanding issues
were discussed. The project plan was updated based
on status reported, and any changes (additions or
deletions) of tasks were made. High-level milestones
were reviewed to ensure that we were on track. New
actions were reviewed and assigned based on the
requirements of the project plan. Once a month, a
status call was held with the executive sponsors of
the project. If an emergency arose that required
executive intervention, appropriate escalation
meetings were scheduled as needed.

There are a large number of similarities between the
process just described and the Scrum'° approach to
agile software development. Agile software devel-
opment is a relatively new paradigm for the
production of high quality software in shortened
time frames. The goal is to be able to quickly
respond to changes in requirements and to provide
frequent releases of the product, ensuring that the
highest priority requirements are met in a timely
manner. Effectively, the process we employed was a
watered-down version of the Scrum methodology,
which we tailored to meet our specific needs. Rather
than use a more traditional development approach
in which requirements were gathered in detail at the
onset, we chose to use this more flexible method-
ology. The reasons are twofold: first, we needed to
show incremental results quickly to ensure that we
could secure funding for future phases of the
project; second, we were working in a very dynamic
service delivery environment. Because of this, we
had to be able to adapt to the changing needs of our
customers, and at the same time build the actual
system that would fulfill our commitments.

When this type of approach is used, discipline is
critical. Our project maintained a delicate balance
between keeping a good-natured, amicable atmo-
sphere among team members and making them
aware that failure to complete tasks in a timely
manner could have very serious implications to the
project. The only way we were able to meet
aggressive time lines and simultaneously remain

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

flexible was by requiring that once a set of tasks was
agreed to, those tasks would be executed by the
specified time. There were instances where delays
did occur, but these were almost exclusively due to
outside forces.

A high-performance project culture is important in
any development effort, but even more so when
teams are globally distributed for the following
reason: If the team that is beginning their work day
is expecting a set of inputs based on a certain set of
tasks and those tasks are not completed, then that
team effectively loses an entire day waiting for the
other team to sleep, wake up, complete their tasks,
and hand them over 24 hours behind schedule. In a
more traditional environment, the team that is
waiting for behind-schedule tasks is sleeping at the
same time as the other team. Clearly, for work
across time zones, timely completion of tasks is
crucial.

About halfway through the project, we received
some unpleasant news. We were forced to give up
our lead project manager due to needs in other parts
of the business. The loss of a key leader in a
complex project such as ours introduces significant
risks. Had the change not been handled appropri-
ately, it could have sent the project into a severe
decline from which we might never have recovered.
The geographically dispersed teams had only just
become accustomed to working together when the
key leader change occurred. However, given the
gradual manner in which the transition occurred,
coupled with the maturity and experience of the rest
of the team, we were able to get through it with
relatively little disruption.

Coincidently, at roughly the same time that this
transition was happening, the lead architect and
lead developer from the Boulder team were sched-
uled to conduct two weeks of training for the
development team in Australia. Aware of the change
in leadership, we scheduled the project transfer
activities when both project managers and the two
key technical leaders from the Boulder team were
present in Sydney. By actively adjusting our
schedule, we enabled many of the transfer activities
to be handled face to face.

The cultural factor

Given that the two teams came from opposite sides
of the globe, culture was something that required
special attention. Because both teams came from
English-speaking countries, it might have been

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

assumed that culture would play a minimal role in
our success. In truth, cultural understanding was
something that had to be practiced by both teams.

m A high-performance project
culture is important in any
development effort, but even
more so when teams are
globally distributed m

For example, a comment intended as a small joke
could potentially derail the project if it were
misunderstood as an insult. In our case, culture did
cause some minor friction in the early phases, but
we were able to resolve this by being honest with
each other and working out issues as they arose.

Another aspect of culture that is easily overlooked is
how executive communications are handled in
different parts of a globally diverse organization. We
learned early in the project that it was important that
the senior project managers and architects on each
team have the responsibility for coordinating any
communications regarding political or management-
related issues locally. Both sets of team leaders were
accustomed to managing executive communications
with their respective management teams, but to
avoid inadvertently sending a message which could
be misinterpreted by the executives on the other
team, it was beneficial to have each team read any
communication before sending it out.

Results

After completing the initial proof-of-concept phase
of the project, we were authorized to begin the full
development and deployment of the global business
intelligence solution. The same geographically dis-
persed team worked on the follow-on project and
completed the roll-out of the project over a 12-
month time period. The implementation was a
success, and funds were made available for the
implementation of a second project to expand on the
work that we completed in the first 12 months. The
solution is now functioning in a production steady
state, with incremental functionality additions being
made in much the same manner as the process
described previously.

Lessons learned
Anyone who has tried to schedule a truly global
meeting knows that it is impossible to find a time

TREINEN AND MILLER-FROST

777

that is acceptable for all participants. If one divides
the globe into only three geographical areas, as is
commonly done, it is still quite difficult. If this is
reduced to one more level of granularity and an
attempt is made to accommodate each individual
time zone in each of the three geographical areas,
the problem becomes impossible. A simple way of
illustrating this is to attempt to schedule a meeting
using a Web site such as timeanddate.com.'”

The main opportunity for project optimization came
in the following form. The time difference between
Boulder, Colorado and Canberra, Australia (which
we will use because this is where the primary
development team was located) is either 16 or 18
hours, depending on the time of year, as previously
noted. Also, because Australia is so far ahead, our
Sunday evening was Monday morning in Australia,
and when the team in Boulder was working on a
Friday, the team in Australia was away on their
weekend. Surprisingly, this was actually a benefit
rather than a detriment—the team leaders from
Boulder were able to get an early start on any issues
for the upcoming week by signing on briefly on
Sunday evenings and either reviewing e-mail or
conducting brief online chats with the team in
Australia. Because it was Monday morning in
Australia, we were able to get this early information
without causing any of the rest of the team, in either
Boulder or Australia, to work outside of normal
hours. If any pressing issues arose, we were able to
prepare any special meetings or action plans and
have them ready before the Boulder team arrived on
Monday morning, local time. As such, we did not
have to waste any of the Boulder team’s time
catching up with the day’s work that had already
been completed in Australia. Conversely, this gave
the team in Australia an extra day to prepare any
issues, and have the receiving team in Boulder work
on them with effectively one extra day, because
working on Friday (Boulder time), we could resolve
these issues on what was a weekend day (Saturday)
in Australia. Thus, we were effectively working to
resolve any outstanding issues with the code during
Australian weekend hours, while allowing the
development team in Boulder to maintain a standard
work week (Monday through Friday) in Boulder.

The net effect was that the project plan gave the
appearance that the team was working six out of
seven days, each of these six days being effectively
16 hours in length, without the exhaustion resulting

778 TREINEN AND MILLER-FROST

from having any single individual work 96-hour
weeks. The result was that each team member was
really working a normal schedule (aside from some
variable work hours on the part of the team leaders),
but the project plan looked as though we were
working roughly double that.

On occasion, an issue would arise which required
attention by the team in the other hemisphere while
they were asleep. When this happened, the issue
was logged and an e-mail was sent by the initiating
team to the support team, who dealt with it when
they came online. Because the two teams were
effectively opposites with respect to geography,
once the support team received the e-mail and any
crossover communications were handled, they
could work to resolve the problem while the
initiating team was sleeping. In most cases, when
the initiating team came back online, they had an
answer waiting for them. They no longer had to
waste their working hours waiting for the support
team to fix the problem; the issue was resolved
while they slept.

CASE STUDY: WEB APPLICATION DEVELOPMENT
This section discusses a case study in which the
follow-the-sun approach was not as successful as in
the previous case study. We discuss several projects,
all of which involved distributed Web application
development efforts with the local team based in the
United States and the remote team based in India.
After a brief discussion of the projects, we highlight
critical factors that contributed to the lack of success
encountered with this model. As in the first case
study, the projects involve the deployment of both
packaged software products and significant custom
coding efforts. Before the projects described here,
the two teams had never met face to face, nor had
they worked together.

The teams

The location of the two teams in this case study
resulted in time zone differences of 10.5 to 13.5
hours, depending on the customer location. These
projects involved larger teams than the previous
case study: the local teams had from 20 to 40 team
members; the remote teams were somewhat
smaller.

The local teams were brought together many times

specifically for the project. They did not necessarily
know each other before the project, but they did

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

have experience in the technologies that were being
implemented, and, they did have the advantage of
constant communication and face-to-face meetings
to help build the trust in the local team very quickly.

Challenges

The remote and local teams were often working on
different configurations of the development envi-
ronment. This occurred primarily when the projects
involved the customer’s code configuration and
deployment system. Many times the remote teams
could not gain access to the customer’s system and
therefore could not store and configure their code
directly on the customer’s source control system.

The next challenge was related directly to the time
zone issues; if the remote team had a question
regarding the specifications for the code they were
writing, they could not seek immediate resolution of
these issues. As such, they often made assumptions
that were based on their local preference and culture.
These choices often clashed with the assumptions
that were made by the team in the United States and
in some cases, caused a great deal of rework. For
example, because there was no specification calling
for left justification of all Web content, the remote
team assumed content was to be centered and
developed their code based on this assumption.

In order to mitigate the impact of this challenge, the
design specifications should have included a sig-
nificant amount of low-level detail, but this level of
detail was not provided. This shortcoming of the
specification made it impossible for the remote team
to work in complete autonomy.

Another challenge involved the cost estimates for
the project. These estimates did not take into
consideration the time required for the overall
coordination of the local and remote development
environment. With such large teams on both sides
of the project, situations arose where rework was
required due to an incorrect understanding of the
requirements. This often had an effect on the overall
project schedule. Given that our project plans were
comprised of thousands of tasks, one project
manager was not enough to manage the complex-
ities of the two development environments.

Finally, shortcomings in each team’s cultural

awareness of the other team led to project chal-
lenges in the areas of respect and overall cohesive-

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

ness. For example, the local team would have
benefited from being aware of cultural aspects such
as the holidays and work week for the remote team.
We expand our discussion of the challenges in the
following sections.

Our approach

All of the projects we describe in this section
followed a similar development process. For these
projects, the remote teams were primarily com-
prised of developers. In a typical project of this size,
the development staff is engaged later in the life
cycle, but in two of the projects, the staff in India
was engaged earlier than necessary in the project
time line in order to reserve them. To ensure the
time that the remote teams were billing to the
projects was used effectively, they took on the tasks
of setting up development environments and coding
the common modules which would be required for
the projects. Unfortunately, because the specifica-
tions were not available yet for the common
modules, the remote team was forced to code with
very little direction. This led to a large rework effort
later in the project.

During the design phase, the local teams developed
the design specifications to a level of detail that was
adequate for use by the local development team.
Unfortunately, because the design team had never
worked with the remote team in India, the specifi-
cations were often based on assumptions that were
easily misinterpreted by the remote team. This was
generally due to the specification not being detailed
enough to allow the remote team to do development
effectively. In many cases, the local team needed to
develop designs almost to the point of code
specifications before handing off the code to the
Indian team. Unfortunately, due to time constraints,
the local team would often simply take on the
rework and development themselves, regardless of
project budget. As one can imagine, this had several
ripple effects. First, members of the remote team
were sitting idle while local team members were
working double time. Second, the project schedule
was placed at risk, as it was impossible for the local
team to maintain the extended hours without
extreme exhaustion. Third, the costs rose dramati-
cally as the per-hour cost of local personnel was
typically three to four times the cost of the remote
personnel. Last, and most important, customer
confidence in the global delivery environment began
to erode as a result of these effects.

TREINEN AND MILLER-FROST

779

The three projects in this case study attempted a true
follow-the-sun approach where several different
developers were working on the same code base.
This was extremely difficult and not successful for
several reasons. When the local team developers
would finish the code to a certain point, they would
document their progress and leave instructions for
the remote team to follow up. They tried to assign
the same developers to work together on tasks, but
due to scheduling conflicts, developers were con-
stantly being reassigned, and the continuity of the
code development was lost. All three projects
resorted to assigning discrete components of the
development to the remote team and the local team.
For example, in most cases, the Web page develop-
ment was assigned to the remote team. This
assignment allowed the remote team to work on
components of the overall system development that
were not affected by deep system integration issues
or a complete understanding of the business
requirements.

One issue that was common to all of the projects
was that the India team needed to connect to the
customer’s development environment in order to
access the source control system. In two out of the
three projects, this connectivity was never achieved.
As such, the team in India could not effectively
access and maintain their code in the customer’s
development environment. This led to the develop-
ment of an ineffective temporary solution in which
the team in India was forced to send their software
updates by e-mail or FTP (File Transfer Protocol) to
the team in the United States. Another method
required the use of a Lotus Notes* TeamRoom (a
Lotus Domino application that provides a tool for
information sharing and collaboration) in which the
code was stored as an intermediate step. The team
in the United States would then load the code into
the customer’s development environment. The team
in India would try to replicate the source control
system with the help of the United States team, but
often, these environments were out of sync. As
expected, this led to inaccuracies, misunderstand-
ings, and defective code development. If a build
(configuration) was sent to the local team or remote
team and it did not replicate to the development
environment correctly, this often led to a delay of 12
hours until the other team came back online and could
help to find the source of the newly appearing issue.

During the testing phase of the project, when certain
defects were assigned to the remote teams, many of

780 TREINEN AND MILLER-FROST

the same issues described previously occurred. If the
problem was not specified in great detail, it was very
difficult for the remote team to function effectively
during the testing process. In addition, the remote
team’s environment was often not in sync with the
customer’s test environment, making it very difficult
to work on problem determination and recovery.

Project structure

In all three projects, during the sales cycle, only one
project manager was assigned in the overall project
estimates. The projects were complex due to the
custom coding requirements as well as the distrib-
uted development environment. Instead of manag-
ing issues, risk, and customer relationship, the
project manager ended up spending the bulk of the
time managing the detailed project plan. These
projects involved thousands of lines of detailed tasks
in the overall plan, and it took days to normalize the
plan after the slightest change in schedule. Due to
the challenges that were discussed in the previous
section, the project manager’s role became largely
administrative in nature. Adding a full-time project
executive and a full-time project administrator
helped to redress this issue, but again, at the
expense of cost and overall project schedule
slippage. To generalize, globally distributed projects
are inherently more complex than other projects,
and their budget should include the appropriate
number of governance personnel.

The cultural factor

As in the previous case study, the teams were from
opposite ends of the globe, and the resulting cultural
differences contributed to the overall challenges.
Furthermore, the projects we describe here had the
additional challenge of difficulties in forming a sense
of camaraderie due to the troubled-project environ-
ment. Often, the remote teams were very polite and
did not ask many questions. When asked if they had
a good understanding of the requirements and if
they would be able to meet a scheduled date for a
task, the answer was often yes, but the local team
did not have enough cultural awareness to under-
stand that the responses given by the remote team
might need additional probing.

Another issue was respect for the holidays and work
week of the remote team. The local teams had
deadlines and unhappy customers and were work-
ing significant amounts of overtime. They expected
the remote teams to be available at all hours

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

regardless of holidays or typical work weeks, which
was not always possible. This eroded the team
relationships even further. Some basic cultural
awareness training (built into the project startup)
could have gone a long way in helping both sides to
understand and respect the various differences in
working styles and schedules, potentially eliminat-
ing these issues. Cultural differences must be met
with sensitivity, or the project will incur more risk
due to a breakdown of relationships between geo-
graphically distributed teams.

Results

As challenges continued to arise in these projects,
the overall effect was a slip in schedule and a
significant decrease in profitability. In two of the
three projects, the gross profit was negative. In the
third project, there was a significant net loss. The
project did manage a positive gross profit, but its
percentage was in the single digits. In all cases, there
was a major slip in schedule, unhappy customers,
and exhausted project teams. As one can imagine,
this also led to issues between the local and remote
project teams, as it was easy to lay blame for overall
project problems on the other team.

Lessons learned

The following lessons learned were common to all
three projects in the second case study and apply to
any global software development effort.

* Time should be spent in defining the source-code
management processes and infrastructure. In
many cases with global development teams,
infrastructure accessibility can be an issue; this
issue should be identified and mitigated early in
the project.

¢ The level of detail needed for handoff activities
(i.e., coding specifications, defect descriptions,
etc.) should be well-understood. This becomes
paramount for global development teams, as the
next opportunity for the remote team to commu-
nicate for clarification could be as far off as 24
hours.

* The project structure should be built from the start
to handle the complexities of managing in a
globally distributed software development envi-
ronment. This includes a project management
team instead of one overall project manager,
additional time for the setup of processes for

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

managing code, and time to build and explain
detailed specifications, if necessary.

e Cultural awareness training should be incorpo-
rated in the startup activities for the project
kickoff. Strong communication and relationships
should be built between the teams. The managers
should get to know the teams, understand their

m Project estimates must
include time to build detailed
specifications m

cultural differences, and determine what they
know and what they do not know. The interfaces
and communication plan should be constructed
accordingly.

CONCLUSION

Based on the previous discussion, we have formu-
lated a set of characteristics that help make a
distributed development effort successful, as well as
some best practices that can help make follow-the-
sun projects work successfully.

It is very important that a project which involves
distributed development work spanning time zones
allocate sufficient time and money in the project
estimates so that appropriate oversight activities can
be executed in an effective manner. These estimates
must include time to build detailed specifications to
accommodate the remote teams, because when they
are developing the code, they will not be able to ask
questions about details, as they would if they were
collocated in similar time zones. Additional over-
sight time should be included in the daily schedule
to facilitate the handoff of tasks from one team to
the next, as well as to describe any outstanding
issues.

If the source control system must be replicated due
to connectivity issues, a process must be in place,
ensuring that the two environments remain
synchronized. Ideally, each team will use the same
source control system and development environ-
ment. If this is not possible, it should be noted from
the start that this situation could potentially impact
not only the project estimates and time line, but also
ongoing project activities required for
synchronization.

TREINEN AND MILLER-FROST 781

Both teams must understand the level of the
specifications that will be necessary in order to
perform each task. Time and budget must be
sufficient to generate detailed specifications if
necessary. With time-zone-challenged projects,
strong communication between the two teams is
mandatory to ensure there are no misunderstand-
ings on the tasks and detail required. One way to
accomplish this would be to have the remote team
document their understanding of the requirements
of each meeting that they attend. It is essential to

m If the teams share an egalitarian
environment, the project is more
likely to succeed m

ensure that the teams are in sync during the handoff
calls or meetings, as the next checkpoint could be as
long as 24 hours later. One of the goals of using the
follow-the-sun approach is to compress the time line
for a project to be completed. If misunderstandings
arise that require resolution by the off-shift team,
the efficiencies gained are easily lost.

Effective communication should be encouraged and
required during the project. The remote team should
be encouraged to always ask questions and not to
make assumptions, at least not in the very early
stages of the project. The team leader should try not
to ask “yes or no” questions; instead, questions
should be phrased so that they solicit a response that
demonstrates a complete understanding of the task
at hand. Another way to minimize the impact of
assumptions made is to employ some of the
recommendations of an agile methodology, such as
Scrum, which includes in the development process
daily status meetings to facilitate the handoff and
assignment of tasks and to address any outstanding
issues or questions. Ideally, these meetings are very
brief, on the order of 15 minutes per day, but the
time investment is well worth the advantage of not
having to go back and fix defects further in the
process. The length of the meetings may be
extended if required, especially in early stages. This
is an effective means of handing off tasks on a daily
basis when employing a follow-the-sun
methodology.

Mutual success criteria should be developed for the
teams. When working in a distributed development
environment, it is important to give both teams a

782 TREINEN AND MILLER-FROST

mutual goal and mutual sharing in the overall
success. Success should be recognized when it
occurs, and factors that are causing failures should
be addressed immediately as they occur. Mutual
ownership of success criteria breeds commitment
from all involved teams. If each team feels some
ownership for the success of the project, it is much
more likely to succeed. If the teams share an
egalitarian environment, as opposed to relegating
one of the teams to secondary status, the project is
more likely to succeed.

In both of the case studies described in this paper,
though many times the teams were working 12-hour
days, we were coordinating across only two geo-
graphic areas, and as such, the methodology was
not a follow-the-sun methodology in the strictest
sense, which involves 24-hour development. Ex-
ploration still needs to be done regarding how this
approach would work when extended to three
geographic areas, thus providing a true 24-hour
development clock. Many of the same recommen-
dations made here would still apply, especially
regarding building in time for coordination activ-
ities. We contend that in this case, the management
structure would actually have to be designed
specifically to facilitate this type of approach, not
retrofitted from a model that was designed for
traditional development methodologies.

In summary, although it does introduce new
variables into the development process, we believe
that using the follow-the-sun approach for software
development can work. Given the project charac-
teristics listed previously, successful communication
between team members and an overall project
structure designed to fit the complexities of these
projects, this approach can be a successful way to
decrease overall project costs and shorten sched-
ules, provided the methodology is specifically
designed to facilitate project success. We believe
that as more experience is gained in this area, such
advantages will be used more and more as a
competitive differentiator in the software develop-
ment marketplace.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

CITED REFERENCES

1. J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “An
Empirical Study of Global Software Development: Dis-
tance and Speed,” Proceedings of the 23rd International

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Conference on Software Engineering, Toronto, Ontario,
Canada; IEEE Computer Society, Los Alamitos, CA
(2001), pp. 81-90.

2. D. Boland and B. Fitzgerald, “Transitioning From a Co-
located to a Globally-Distributed Software Development
Team: A Case Study at Analog Devices Inc.,” Proceedings
of the International Workshop on Global Software Devel-
opment at the 26th International Conference on Software
Engineering, Edinburgh, Scotland; The Institution of
Engineering and Technology, Stevenage, Hertfordshire,
UK (2004), pp. 4-7.

3. F. Lanubile, D. Damian, and H. Oppenheimer, “Global
Software Development: Technical, Organizational, and
Social Challenges,” ACM SIGSOFT Software Engineering
Notes 28, No. 6, 1-4 (2003).

4. D. Damian, J. Chisan, P. Allen, and B. Corrie, “Aware-
ness Meets Requirements Management: Awareness
Needs in Global Software Development,” Proceedings of
the International Workshop on Global Software Develop-
ment at the 25th International Conference on Software
Engineering, Portland, Oregon (2003), pp. 7-12, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

5. S. Cherry and P. Robillard, “Communication Problems in
Global Software Development: Spotlight on a New Field
of Investigation,” Proceedings of the International Work-
shop on Global Software Development at the 26th
International Conference on Software Engineering, Edin-
burgh, Scotland; The Institution of Engineering and
Technology, Stevenage, Hertfordshire, UK (2004), pp.
48-52.

6. J. Herbsleb and R. Grinter, “Splitting the Organization
and Integrating the Code: Conway’s Law Revisited,”
Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, CA; ACM Press, NY
(1999), pp. 85-95.

7. J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter,
“Distance, Dependencies, and Delay in Global Collabo-
ration,” Proceedings of the 2000 ACM Conference on
Computer Supported Coooperative Work, Philadelphia,
PA; ACM Press, NY (2000), pp. 319-328.

8. J. Pyysiainen, “Building Trust in Global Inter-Organiza-
tional Software Development Projects: Problems and
Practices,” Proceedings of the International Workshop on
Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 69-75, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

9. R. Prikladnicki, J. Audy, and R. Evaristo, “Requirements
Management in Global Software Development: Prelimi-
nary Findings from a Case Study in a SW-CMM Context,”
Proceedings of the International Workshop on Global
Software Development at the 25th International Confer-
ence on Software Engineering, Portland, Oregon (2003),
pp. 53-58, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

10. M. Paasivaara, “Communication Needs, Practices, and
Supporting Structures in Global Inter-Organizational
Software Development Projects,” Proceedings of the
International Workshop on Global Software Development
at the 25th International Conference on Software Engi-
neering, Portland, Oregon (2003), pp. 59-63, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

11. M. Paasivaara and C. Lassenius, “Using Iterative and
Incremental Processes in Global Software Development,”
Proceedings of the International Workshop on Global
Software Development at the 26th International Confer-
ence on Software Engineering, Edinburgh, Scotland; The
Institution of Engineering and Technology, Stevenage,
Hertfordshire, UK (2004), pp. 42-47.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

12. S. Butler and S. Hope, “Evaluating Effectiveness of Global
Software Development Using the eXtreme Programming
Development Framework (XPDF),” Proceedings of the
International Workshop on Global Software Development
at the 25th International Conference on Software Engi-
neering, Portland, Oregon (2003), pp. 75-77, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

13. E. MacGregor, Y. Hsieh, and P. Kruchten, “Cultural
Patterns in Software Process Mishaps: Incidents in Global
Projects,” Proceedings of the Workshop on Human and
Social Factors of Software Engineering (HSSE), St. Louis,
Missouri; ACM Press, NY (2005), pp. 1-5.

14. K. Fujieda and K. Ochimizu, “Investigation of Repository
Replication Models in Globally Distributed Configuration
Management,” Proceedings of the International Workshop
on Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 21-23, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

15. L. Kiel, “Experiences in Distributed Development: A Case
Study,” Proceedings of the International Workshop on
Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 44-47, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

16. Control Chaos (2006), http://www.controlchaos.com.

17. The World Clock Meeting Planner, timeanddate.com,
http://www.timeanddate.com/worldclock/meeting.
html.

Accepted for publication April 19, 2006.
Published online September 29, 2006.

James J. Treinen

IBM Global Services, 6300 Diagonal Highway, Mail Stop 025T,
Boulder, Colorado, 80301 (jamestr@us.ibm.com). Mr. Treinen
is an IT Architect with IBM’s Security Intelligence mission

in the managed security service-delivery department in
Boulder, Colorado. He received a B.S. degree in computer
science and mathematics from Regis University in 1999, an
M.S. degree in computer science from the University of
Denver in 2003, and is currently a doctoral candidate at the
University of Denver, with an expected graduation date of
2008. He joined IBM Global Services in 1999 as a member of
the stratetic outsourcing business-intelligence team. He has
since moved to the security field, where he specializes in
creating business-intelligence solutions based on large
security-related data sets.

Susan L. Miller-Frost

IBM Business Consulting Services, 2710S Gateway Oaks Drive,
Suite 200, Sacramento, CA 95833 (smfrost@us.ibm.com). Ms.
Miller-Frost is an IBM Distinguished Engineer and is the
service area leader for enterprise architecture and technology
services. She received a B.S. degree in mechanical engineering
from California Polytechnic State University at San Luis
Obispo in 1988 and an M.B.A. degree in finance from the
University of California at Davis in 1998. Ms. Miller-Frost
joined IBM in 1994; before that, she worked for Andersen
Consulting (now Accenture) and a startup company. The
majority of her experience has been in the area of application
development and application architecture. She was promoted
to Distinguished Engineer in 2004 and elected to the IBM
Academy of Technology in 2005. Ms. Miller-Frost is a member
of the Society for Women Engineers (SWE) and the
Association for Information and Image Management

(AIIM). &

TREINEN AND MILLER-FROST

783

