
Following the sun:
Case studies in global
software development

&

J. J. Treinen

S. L. Miller-Frost

Advances in global network connectivity over the past 10 years have significantly

reduced the effects that physical separation has on geographically distributed

development teams. It is increasingly clear that time zones, rather than physical

distances, are becoming the most significant factor which separates potential

collaborators. Collaboration across time zones often involves modifications to the

typical work day, with remote team members collaborating either very late at night or

extremely early in the morning. Though this presents obvious problems, a natural

question is whether it is possible to exploit this diversity as a competitive differentiator,

instead of treating time zones as an impediment to productivity. In two case studies,

we examine whether it is possible to create a development environment in which

tasks can ‘‘follow the sun,’’ allowing teams to work during extended local business

hours and assign or hand off tasks at the end of their day to teams that are just starting

their day, effectively yielding a 24-hour development clock. We examine the factors

that influenced the success or failure of the respective projects and conclude with a

discussion of best practices for using this approach successfully.

INTRODUCTION
Global telecommunications networks have matured

in the past decade, providing a vehicle for relatively

inexpensive communication between teams that are

separated by great physical distances. This new

reality provides an opportunity for teams to collab-

orate in a much more effective manner than ever

before. Because the teams are now able to commu-

nicate effectively and economically, they can work

together on common goals with groups who are

located not only in different regions of their native

countries but also across the entire globe. Many new

tools that enable this type of collaboration have

emerged, and although these tools greatly reduce

the effects of physical distance, a new separating

factor has been exposed; that presented by signifi-

cant differences in time zone.

For example, in order to communicate in a form

other than e-mail, leaders of teams (if not the whole

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 773

team itself) are often forced to work well outside of

their normal working hours. This is inconvenient at

best and completely unworkable at worst. Although

problems such as this exist, it may be possible to

& Globalization of software
development introduces a great
deal of complexity to an already
complex process &

exploit the phenomenon of global software devel-

opment in a positive manner, giving the distributed

team a competitive advantage.

In this paper, in the context of two globally

distributed software development projects, we

examine whether it is possible to create a develop-

ment environment in which tasks can be assigned in

such a manner that work can ‘‘follow the sun.’’ We

examine the effects of moving work across the globe

so that each team is working during their local

normal business hours and assigning or handing off

tasks at the end of their day to teams that are

beginning their normal work day, effectively yield-

ing a 24-hour development clock. There are advan-

tages and disadvantages to using this method, and

we explore these in the context of two case studies.

In the first case study, it was possible to use this

approach successfully; in the second, a series of

projects met with greater challenges. We examine,

in depth, which factors were most influential

regarding the success of the respective efforts and

which factors limited it. Because the workforce is

becoming increasingly global in nature, we conclude

with a discussion of best practices for using this

global workforce to its maximum potential, thus

creating higher value for customers and increasing

the ability to compete in this new marketplace.

Related work

Although little has been published regarding a

‘‘follow the sun’’ approach to global software

development, the topic of global software-develop-

ment practices has been the subject of much

discussion in recent years. The general consensus

has been that globalization introduces a great deal of

complexity to an already complex process. Specifi-

cally, the use of globally distributed development

teams has been found to extend time lines and to

require more development resources in order to

complete a project of the same complexity when

compared to projects staffed with collocated

teams.
1,2

A major factor that has been repeatedly

discussed is the loss of informal communication

channels, which occur naturally in collocated

teams.
1,3–7

The loss of these channels, which are

often taken for granted when all team members are

in the same location, has been found to make it

increasingly difficult to find experts who can answer

questions,
1
and can lead to a loss of trust between

team members in different locations.
3,8

In addition

to these social challenges, the effect that the loss of

communication has on the requirements manage-

ment process is discussed in Reference 9, whose

authors are among the few to note that time zone

diversity can be viewed as an advantage.

Suggestions for mitigating these problems are

discussed in Reference 3, whose authors propose the

inclusion of face-to-face kickoff meetings, recurring

face-to-face meetings among the team leaders when

possible, increased cultural awareness training for

the teams in general, and the implementation of

tools that help to re-enable informal communica-

tions. A discussion on how to address communica-

tion issues from an organizational perspective is

presented in References 9 and 10, and it is argued

that for distributed teams in particular soft skills

(such as those related to social interaction) might be

even more critical than technical skills (such as

those related to tool deployment).

Iterative development methodologies have been

found to be helpful in mitigating some of the risks

inherent to global software development, as they

help build trust between distributed teams by

forcing synchronization by requiring frequent de-

liverables.
3,11

A case study evaluating this approach

in terms of the ‘‘eXtreme’’ programming model is

presented in Reference 12.

An interesting set of patterns and ‘‘anti-patterns’’

(i.e., methodologies that consistently produce un-

successful projects) for effective global software

development is proposed in Reference 13. The

problem of globally distributed code control systems

is discussed in Reference 14. A study of global

software development from an anthropological

viewpoint is presented in Reference 15, whose

authors agree with previous work
9
that most failures

TREINEN AND MILLER-FROST IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006774

are not due to tools, but to a web of social factors,

not one of which can be blamed exclusively.

CASE STUDY: BUSINESS INTELLIGENCE

This case study focuses on a project whose goal was

to deploy a second instance of a custom-built

business intelligence solution. The original solution

was designed, developed, and deployed in the

United States. The second instance was to be

deployed at an IBM location in Australia. While

some of the components of this project were

commercially available software products, the

middleware layer was comprised of custom-built

application code which required significant gener-

alization and rework before the second instance

could be deployed.

The project was broken into four major phases. The

first phase was the infrastructure set up at the data

center in Sydney. The second phase consisted of

creating the required installation scripts for the data

warehouse and later building the warehouse on the

Australian infrastructure. The third phase comprised

the writing of the front-end Web page code. The

fourth phase consisted of the design, test, and

deployment of the middleware code used to collect

the data from the source systems and populate the

data warehouse so that the front-end Web pages

could display the results.

The teams

In order to complete this project, we were required

to merge two geographically distant development

groups into one cohesive team. The local develop-

ment team was based in Boulder, Colorado. The

Boulder team also had a management sponsor and

an executive sponsor who assisted with the

resolution of any business-related issues. The

remote team was distributed across three locations

in Australia. The discussion in this paper is limited

to the interactions between the teams as they

occurred over international boundaries and does

not discuss the dynamics between the three teams

in Australia.

Challenges

Because this was a custom-built solution and not a

packaged software product, there were no ready-

made installation scripts. Much of the code was

specifically tailored for the Boulder environment

and as such, required significant modification before

it would function properly in the two data centers

simultaneously.

The two teams had never met each other face-to-

face. When the project was first proposed to the

sponsoring executives, the two teams, with no

previous experience working together, had to

present a unified front in order to secure funding.

The lack of previous experience working together

between the two teams and the resulting lack of

mutual trust made promoting the business case

difficult. When a development team is collocated,

trust generally develops early in the project.

Unfortunately, before we could secure funding for

face-to-face meetings, we had to convince our

sponsors that the project itself was worth doing. As

such, the early phases of the project had to be

completed before the two teams met in person.

Funding for future phases was contingent upon

successful completion of the proof of concept.

Our approach

After funding was secured for the initial phase, the

lead developer of the Australian team flew to

Boulder for two weeks of training on the various

components of the solution. These two weeks

served a dual purpose. The primary purpose, as

perceived then, was to bring the development team

in Australia up to speed on the inner workings of the

code that would be deployed in Australia. The

secondary goal was for this developer to meet the

team in Boulder so that he could associate faces of

team members with their names when questions

arose. Building personal knowledge about the team

and building mutual trust, however, was actually

more important than resolving the technical issues.

It was, in fact, this trust which allowed us to resolve

future technical issues efficiently by conference calls

that stretched halfway around the world. This

foundation of trust resulted in increased efficiency.

After training was completed in Boulder, the lead

project manager for the overall effort was assigned.

With this team member in place, we outlined high-

level milestones and specified the tasks that would

allow us to meet those objectives. Because we only

had funding for the initial proof of concept, it was

critical that we achieve these milestones. Each

milestone resulted in a review with the architectural

control board in Australia and a request to approve

funding for subsequent phases of the project. As

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 775

such, failure to meet target dates would jeopardize

the project, delaying it or halting it completely.

After we defined the milestones and the detailed

task list for the first phase, the actual development

began. Note that we did not attempt to define the

& Constant communication and
face-to-face meetings helped
build trust in the local team
very quickly &

complete end-to-end project plan before beginning

work on the first phase. This was primarily because

we were working within a compressed time frame.

Furthermore, we were aware that the project was to

be completed in the context of a dynamic service

delivery environment. This type of environment

differs from that of traditional software development

projects in that the development iterations tend to

be very compressed due to constantly changing

circumstances driven by real-time changes in

requirements. Thus, we initially concentrated on

high-level tasks and on managing the details only of

the phase that we were developing at the time.

Managing the milestones

Once the project plan was defined, we approached

the actual development in the following manner.

Every Monday at 2:00 p.m. or 4:00 p.m. Boulder

time, we held a 1-hour project status meeting. The

start time varied because the United States moved

from Standard Time to Daylight Savings Time, and

the clocks moved ahead one hour. At the same time,

the exact opposite occurred in Australia, where, the

clocks move back one hour, resulting in a time zone

difference of two hours. These meetings involved

two main work products—the agenda, which was

sent out to all participants the day before the

meeting, and the meeting minutes, which were sent

to each participant immediately following the

meeting, detailing who was present and who had

agreed to which action items, with deadlines to be

completed before the next meeting. The minutes

were the more important of the two, as they clearly

defined who had signed up for which tasks in the

next seven-day iteration. It was well known early in

the project that if you agreed to a time frame for a

specific task and took ownership of its completion,

then you were expected to get it done on time,

barring something which was completely out of

your control. We worked together to ensure that the

goals we set were realistic, and once everyone

agreed that they were, failure to meet those goals on

any individual’s part almost never occurred.

The structure of each review meeting was as

follows. The minutes of the previous week’s meet-

ing were reviewed, including a description of each

action item and its status. Any outstanding issues

were discussed. The project plan was updated based

on status reported, and any changes (additions or

deletions) of tasks were made. High-level milestones

were reviewed to ensure that we were on track. New

actions were reviewed and assigned based on the

requirements of the project plan. Once a month, a

status call was held with the executive sponsors of

the project. If an emergency arose that required

executive intervention, appropriate escalation

meetings were scheduled as needed.

There are a large number of similarities between the

process just described and the Scrum
16

approach to

agile software development. Agile software devel-

opment is a relatively new paradigm for the

production of high quality software in shortened

time frames. The goal is to be able to quickly

respond to changes in requirements and to provide

frequent releases of the product, ensuring that the

highest priority requirements are met in a timely

manner. Effectively, the process we employed was a

watered-down version of the Scrum methodology,

which we tailored to meet our specific needs. Rather

than use a more traditional development approach

in which requirements were gathered in detail at the

onset, we chose to use this more flexible method-

ology. The reasons are twofold: first, we needed to

show incremental results quickly to ensure that we

could secure funding for future phases of the

project; second, we were working in a very dynamic

service delivery environment. Because of this, we

had to be able to adapt to the changing needs of our

customers, and at the same time build the actual

system that would fulfill our commitments.

When this type of approach is used, discipline is

critical. Our project maintained a delicate balance

between keeping a good-natured, amicable atmo-

sphere among team members and making them

aware that failure to complete tasks in a timely

manner could have very serious implications to the

project. The only way we were able to meet

aggressive time lines and simultaneously remain

TREINEN AND MILLER-FROST IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006776

flexible was by requiring that once a set of tasks was

agreed to, those tasks would be executed by the

specified time. There were instances where delays

did occur, but these were almost exclusively due to

outside forces.

A high-performance project culture is important in

any development effort, but even more so when

teams are globally distributed for the following

reason: If the team that is beginning their work day

is expecting a set of inputs based on a certain set of

tasks and those tasks are not completed, then that

team effectively loses an entire day waiting for the

other team to sleep, wake up, complete their tasks,

and hand them over 24 hours behind schedule. In a

more traditional environment, the team that is

waiting for behind-schedule tasks is sleeping at the

same time as the other team. Clearly, for work

across time zones, timely completion of tasks is

crucial.

About halfway through the project, we received

some unpleasant news. We were forced to give up

our lead project manager due to needs in other parts

of the business. The loss of a key leader in a

complex project such as ours introduces significant

risks. Had the change not been handled appropri-

ately, it could have sent the project into a severe

decline from which we might never have recovered.

The geographically dispersed teams had only just

become accustomed to working together when the

key leader change occurred. However, given the

gradual manner in which the transition occurred,

coupled with the maturity and experience of the rest

of the team, we were able to get through it with

relatively little disruption.

Coincidently, at roughly the same time that this

transition was happening, the lead architect and

lead developer from the Boulder team were sched-

uled to conduct two weeks of training for the

development team in Australia. Aware of the change

in leadership, we scheduled the project transfer

activities when both project managers and the two

key technical leaders from the Boulder team were

present in Sydney. By actively adjusting our

schedule, we enabled many of the transfer activities

to be handled face to face.

The cultural factor

Given that the two teams came from opposite sides

of the globe, culture was something that required

special attention. Because both teams came from

English-speaking countries, it might have been

assumed that culture would play a minimal role in

our success. In truth, cultural understanding was

something that had to be practiced by both teams.

& A high-performance project
culture is important in any
development effort, but even
more so when teams are
globally distributed &

For example, a comment intended as a small joke

could potentially derail the project if it were

misunderstood as an insult. In our case, culture did

cause some minor friction in the early phases, but

we were able to resolve this by being honest with

each other and working out issues as they arose.

Another aspect of culture that is easily overlooked is

how executive communications are handled in

different parts of a globally diverse organization. We

learned early in the project that it was important that

the senior project managers and architects on each

team have the responsibility for coordinating any

communications regarding political or management-

related issues locally. Both sets of team leaders were

accustomed to managing executive communications

with their respective management teams, but to

avoid inadvertently sending a message which could

be misinterpreted by the executives on the other

team, it was beneficial to have each team read any

communication before sending it out.

Results
After completing the initial proof-of-concept phase

of the project, we were authorized to begin the full

development and deployment of the global business

intelligence solution. The same geographically dis-

persed team worked on the follow-on project and

completed the roll-out of the project over a 12-

month time period. The implementation was a

success, and funds were made available for the

implementation of a second project to expand on the

work that we completed in the first 12 months. The

solution is now functioning in a production steady

state, with incremental functionality additions being

made in much the same manner as the process

described previously.

Lessons learned
Anyone who has tried to schedule a truly global

meeting knows that it is impossible to find a time

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 777

that is acceptable for all participants. If one divides

the globe into only three geographical areas, as is

commonly done, it is still quite difficult. If this is

reduced to one more level of granularity and an

attempt is made to accommodate each individual

time zone in each of the three geographical areas,

the problem becomes impossible. A simple way of

illustrating this is to attempt to schedule a meeting

using a Web site such as timeanddate.com.
17

The main opportunity for project optimization came

in the following form. The time difference between

Boulder, Colorado and Canberra, Australia (which

we will use because this is where the primary

development team was located) is either 16 or 18

hours, depending on the time of year, as previously

noted. Also, because Australia is so far ahead, our

Sunday evening was Monday morning in Australia,

and when the team in Boulder was working on a

Friday, the team in Australia was away on their

weekend. Surprisingly, this was actually a benefit

rather than a detriment—the team leaders from

Boulder were able to get an early start on any issues

for the upcoming week by signing on briefly on

Sunday evenings and either reviewing e-mail or

conducting brief online chats with the team in

Australia. Because it was Monday morning in

Australia, we were able to get this early information

without causing any of the rest of the team, in either

Boulder or Australia, to work outside of normal

hours. If any pressing issues arose, we were able to

prepare any special meetings or action plans and

have them ready before the Boulder team arrived on

Monday morning, local time. As such, we did not

have to waste any of the Boulder team’s time

catching up with the day’s work that had already

been completed in Australia. Conversely, this gave

the team in Australia an extra day to prepare any

issues, and have the receiving team in Boulder work

on them with effectively one extra day, because

working on Friday (Boulder time), we could resolve

these issues on what was a weekend day (Saturday)

in Australia. Thus, we were effectively working to

resolve any outstanding issues with the code during

Australian weekend hours, while allowing the

development team in Boulder to maintain a standard

work week (Monday through Friday) in Boulder.

The net effect was that the project plan gave the

appearance that the team was working six out of

seven days, each of these six days being effectively

16 hours in length, without the exhaustion resulting

from having any single individual work 96-hour

weeks. The result was that each team member was

really working a normal schedule (aside from some

variable work hours on the part of the team leaders),

but the project plan looked as though we were

working roughly double that.

On occasion, an issue would arise which required

attention by the team in the other hemisphere while

they were asleep. When this happened, the issue

was logged and an e-mail was sent by the initiating

team to the support team, who dealt with it when

they came online. Because the two teams were

effectively opposites with respect to geography,

once the support team received the e-mail and any

crossover communications were handled, they

could work to resolve the problem while the

initiating team was sleeping. In most cases, when

the initiating team came back online, they had an

answer waiting for them. They no longer had to

waste their working hours waiting for the support

team to fix the problem; the issue was resolved

while they slept.

CASE STUDY: WEB APPLICATION DEVELOPMENT

This section discusses a case study in which the

follow-the-sun approach was not as successful as in

the previous case study. We discuss several projects,

all of which involved distributed Web application

development efforts with the local team based in the

United States and the remote team based in India.

After a brief discussion of the projects, we highlight

critical factors that contributed to the lack of success

encountered with this model. As in the first case

study, the projects involve the deployment of both

packaged software products and significant custom

coding efforts. Before the projects described here,

the two teams had never met face to face, nor had

they worked together.

The teams

The location of the two teams in this case study

resulted in time zone differences of 10.5 to 13.5

hours, depending on the customer location. These

projects involved larger teams than the previous

case study: the local teams had from 20 to 40 team

members; the remote teams were somewhat

smaller.

The local teams were brought together many times

specifically for the project. They did not necessarily

know each other before the project, but they did

TREINEN AND MILLER-FROST IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006778

have experience in the technologies that were being

implemented, and, they did have the advantage of

constant communication and face-to-face meetings

to help build the trust in the local team very quickly.

Challenges

The remote and local teams were often working on

different configurations of the development envi-

ronment. This occurred primarily when the projects

involved the customer’s code configuration and

deployment system. Many times the remote teams

could not gain access to the customer’s system and

therefore could not store and configure their code

directly on the customer’s source control system.

The next challenge was related directly to the time

zone issues; if the remote team had a question

regarding the specifications for the code they were

writing, they could not seek immediate resolution of

these issues. As such, they often made assumptions

that were based on their local preference and culture.

These choices often clashed with the assumptions

that were made by the team in the United States and

in some cases, caused a great deal of rework. For

example, because there was no specification calling

for left justification of all Web content, the remote

team assumed content was to be centered and

developed their code based on this assumption.

In order to mitigate the impact of this challenge, the

design specifications should have included a sig-

nificant amount of low-level detail, but this level of

detail was not provided. This shortcoming of the

specification made it impossible for the remote team

to work in complete autonomy.

Another challenge involved the cost estimates for

the project. These estimates did not take into

consideration the time required for the overall

coordination of the local and remote development

environment. With such large teams on both sides

of the project, situations arose where rework was

required due to an incorrect understanding of the

requirements. This often had an effect on the overall

project schedule. Given that our project plans were

comprised of thousands of tasks, one project

manager was not enough to manage the complex-

ities of the two development environments.

Finally, shortcomings in each team’s cultural

awareness of the other team led to project chal-

lenges in the areas of respect and overall cohesive-

ness. For example, the local team would have

benefited from being aware of cultural aspects such

as the holidays and work week for the remote team.

We expand our discussion of the challenges in the

following sections.

Our approach
All of the projects we describe in this section

followed a similar development process. For these

projects, the remote teams were primarily com-

prised of developers. In a typical project of this size,

the development staff is engaged later in the life

cycle, but in two of the projects, the staff in India

was engaged earlier than necessary in the project

time line in order to reserve them. To ensure the

time that the remote teams were billing to the

projects was used effectively, they took on the tasks

of setting up development environments and coding

the common modules which would be required for

the projects. Unfortunately, because the specifica-

tions were not available yet for the common

modules, the remote team was forced to code with

very little direction. This led to a large rework effort

later in the project.

During the design phase, the local teams developed

the design specifications to a level of detail that was

adequate for use by the local development team.

Unfortunately, because the design team had never

worked with the remote team in India, the specifi-

cations were often based on assumptions that were

easily misinterpreted by the remote team. This was

generally due to the specification not being detailed

enough to allow the remote team to do development

effectively. In many cases, the local team needed to

develop designs almost to the point of code

specifications before handing off the code to the

Indian team. Unfortunately, due to time constraints,

the local team would often simply take on the

rework and development themselves, regardless of

project budget. As one can imagine, this had several

ripple effects. First, members of the remote team

were sitting idle while local team members were

working double time. Second, the project schedule

was placed at risk, as it was impossible for the local

team to maintain the extended hours without

extreme exhaustion. Third, the costs rose dramati-

cally as the per-hour cost of local personnel was

typically three to four times the cost of the remote

personnel. Last, and most important, customer

confidence in the global delivery environment began

to erode as a result of these effects.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 779

The three projects in this case study attempted a true

follow-the-sun approach where several different

developers were working on the same code base.

This was extremely difficult and not successful for

several reasons. When the local team developers

would finish the code to a certain point, they would

document their progress and leave instructions for

the remote team to follow up. They tried to assign

the same developers to work together on tasks, but

due to scheduling conflicts, developers were con-

stantly being reassigned, and the continuity of the

code development was lost. All three projects

resorted to assigning discrete components of the

development to the remote team and the local team.

For example, in most cases, the Web page develop-

ment was assigned to the remote team. This

assignment allowed the remote team to work on

components of the overall system development that

were not affected by deep system integration issues

or a complete understanding of the business

requirements.

One issue that was common to all of the projects

was that the India team needed to connect to the

customer’s development environment in order to

access the source control system. In two out of the

three projects, this connectivity was never achieved.

As such, the team in India could not effectively

access and maintain their code in the customer’s

development environment. This led to the develop-

ment of an ineffective temporary solution in which

the team in India was forced to send their software

updates by e-mail or FTP (File Transfer Protocol) to

the team in the United States. Another method

required the use of a Lotus Notes* TeamRoom (a

Lotus Domino application that provides a tool for

information sharing and collaboration) in which the

code was stored as an intermediate step. The team

in the United States would then load the code into

the customer’s development environment. The team

in India would try to replicate the source control

system with the help of the United States team, but

often, these environments were out of sync. As

expected, this led to inaccuracies, misunderstand-

ings, and defective code development. If a build

(configuration) was sent to the local team or remote

team and it did not replicate to the development

environment correctly, this often led to a delay of 12

hours until the other team came back online and could

help to find the source of the newly appearing issue.

During the testing phase of the project, when certain

defects were assigned to the remote teams, many of

the same issues described previously occurred. If the

problem was not specified in great detail, it was very

difficult for the remote team to function effectively

during the testing process. In addition, the remote

team’s environment was often not in sync with the

customer’s test environment, making it very difficult

to work on problem determination and recovery.

Project structure

In all three projects, during the sales cycle, only one

project manager was assigned in the overall project

estimates. The projects were complex due to the

custom coding requirements as well as the distrib-

uted development environment. Instead of manag-

ing issues, risk, and customer relationship, the

project manager ended up spending the bulk of the

time managing the detailed project plan. These

projects involved thousands of lines of detailed tasks

in the overall plan, and it took days to normalize the

plan after the slightest change in schedule. Due to

the challenges that were discussed in the previous

section, the project manager’s role became largely

administrative in nature. Adding a full-time project

executive and a full-time project administrator

helped to redress this issue, but again, at the

expense of cost and overall project schedule

slippage. To generalize, globally distributed projects

are inherently more complex than other projects,

and their budget should include the appropriate

number of governance personnel.

The cultural factor

As in the previous case study, the teams were from

opposite ends of the globe, and the resulting cultural

differences contributed to the overall challenges.

Furthermore, the projects we describe here had the

additional challenge of difficulties in forming a sense

of camaraderie due to the troubled-project environ-

ment. Often, the remote teams were very polite and

did not ask many questions. When asked if they had

a good understanding of the requirements and if

they would be able to meet a scheduled date for a

task, the answer was often yes, but the local team

did not have enough cultural awareness to under-

stand that the responses given by the remote team

might need additional probing.

Another issue was respect for the holidays and work

week of the remote team. The local teams had

deadlines and unhappy customers and were work-

ing significant amounts of overtime. They expected

the remote teams to be available at all hours

TREINEN AND MILLER-FROST IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006780

regardless of holidays or typical work weeks, which

was not always possible. This eroded the team

relationships even further. Some basic cultural

awareness training (built into the project startup)

could have gone a long way in helping both sides to

understand and respect the various differences in

working styles and schedules, potentially eliminat-

ing these issues. Cultural differences must be met

with sensitivity, or the project will incur more risk

due to a breakdown of relationships between geo-

graphically distributed teams.

Results

As challenges continued to arise in these projects,

the overall effect was a slip in schedule and a

significant decrease in profitability. In two of the

three projects, the gross profit was negative. In the

third project, there was a significant net loss. The

project did manage a positive gross profit, but its

percentage was in the single digits. In all cases, there

was a major slip in schedule, unhappy customers,

and exhausted project teams. As one can imagine,

this also led to issues between the local and remote

project teams, as it was easy to lay blame for overall

project problems on the other team.

Lessons learned

The following lessons learned were common to all

three projects in the second case study and apply to

any global software development effort.

� Time should be spent in defining the source-code

management processes and infrastructure. In

many cases with global development teams,

infrastructure accessibility can be an issue; this

issue should be identified and mitigated early in

the project.

� The level of detail needed for handoff activities

(i.e., coding specifications, defect descriptions,

etc.) should be well-understood. This becomes

paramount for global development teams, as the

next opportunity for the remote team to commu-

nicate for clarification could be as far off as 24

hours.

� The project structure should be built from the start

to handle the complexities of managing in a

globally distributed software development envi-

ronment. This includes a project management

team instead of one overall project manager,

additional time for the setup of processes for

managing code, and time to build and explain

detailed specifications, if necessary.

� Cultural awareness training should be incorpo-

rated in the startup activities for the project

kickoff. Strong communication and relationships

should be built between the teams. The managers

should get to know the teams, understand their

& Project estimates must
include time to build detailed
specifications &

cultural differences, and determine what they

know and what they do not know. The interfaces

and communication plan should be constructed

accordingly.

CONCLUSION

Based on the previous discussion, we have formu-

lated a set of characteristics that help make a

distributed development effort successful, as well as

some best practices that can help make follow-the-

sun projects work successfully.

It is very important that a project which involves

distributed development work spanning time zones

allocate sufficient time and money in the project

estimates so that appropriate oversight activities can

be executed in an effective manner. These estimates

must include time to build detailed specifications to

accommodate the remote teams, because when they

are developing the code, they will not be able to ask

questions about details, as they would if they were

collocated in similar time zones. Additional over-

sight time should be included in the daily schedule

to facilitate the handoff of tasks from one team to

the next, as well as to describe any outstanding

issues.

If the source control system must be replicated due

to connectivity issues, a process must be in place,

ensuring that the two environments remain

synchronized. Ideally, each team will use the same

source control system and development environ-

ment. If this is not possible, it should be noted from

the start that this situation could potentially impact

not only the project estimates and time line, but also

ongoing project activities required for

synchronization.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 781

Both teams must understand the level of the

specifications that will be necessary in order to

perform each task. Time and budget must be

sufficient to generate detailed specifications if

necessary. With time-zone-challenged projects,

strong communication between the two teams is

mandatory to ensure there are no misunderstand-

ings on the tasks and detail required. One way to

accomplish this would be to have the remote team

document their understanding of the requirements

of each meeting that they attend. It is essential to

& If the teams share an egalitarian
environment, the project is more
likely to succeed &

ensure that the teams are in sync during the handoff

calls or meetings, as the next checkpoint could be as

long as 24 hours later. One of the goals of using the

follow-the-sun approach is to compress the time line

for a project to be completed. If misunderstandings

arise that require resolution by the off-shift team,

the efficiencies gained are easily lost.

Effective communication should be encouraged and

required during the project. The remote team should

be encouraged to always ask questions and not to

make assumptions, at least not in the very early

stages of the project. The team leader should try not

to ask ‘‘yes or no’’ questions; instead, questions

should be phrased so that they solicit a response that

demonstrates a complete understanding of the task

at hand. Another way to minimize the impact of

assumptions made is to employ some of the

recommendations of an agile methodology, such as

Scrum, which includes in the development process

daily status meetings to facilitate the handoff and

assignment of tasks and to address any outstanding

issues or questions. Ideally, these meetings are very

brief, on the order of 15 minutes per day, but the

time investment is well worth the advantage of not

having to go back and fix defects further in the

process. The length of the meetings may be

extended if required, especially in early stages. This

is an effective means of handing off tasks on a daily

basis when employing a follow-the-sun

methodology.

Mutual success criteria should be developed for the

teams. When working in a distributed development

environment, it is important to give both teams a

mutual goal and mutual sharing in the overall

success. Success should be recognized when it

occurs, and factors that are causing failures should

be addressed immediately as they occur. Mutual

ownership of success criteria breeds commitment

from all involved teams. If each team feels some

ownership for the success of the project, it is much

more likely to succeed. If the teams share an

egalitarian environment, as opposed to relegating

one of the teams to secondary status, the project is

more likely to succeed.

In both of the case studies described in this paper,

though many times the teams were working 12-hour

days, we were coordinating across only two geo-

graphic areas, and as such, the methodology was

not a follow-the-sun methodology in the strictest

sense, which involves 24-hour development. Ex-

ploration still needs to be done regarding how this

approach would work when extended to three

geographic areas, thus providing a true 24-hour

development clock. Many of the same recommen-

dations made here would still apply, especially

regarding building in time for coordination activ-

ities. We contend that in this case, the management

structure would actually have to be designed

specifically to facilitate this type of approach, not

retrofitted from a model that was designed for

traditional development methodologies.

In summary, although it does introduce new

variables into the development process, we believe

that using the follow-the-sun approach for software

development can work. Given the project charac-

teristics listed previously, successful communication

between team members and an overall project

structure designed to fit the complexities of these

projects, this approach can be a successful way to

decrease overall project costs and shorten sched-

ules, provided the methodology is specifically

designed to facilitate project success. We believe

that as more experience is gained in this area, such

advantages will be used more and more as a

competitive differentiator in the software develop-

ment marketplace.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

CITED REFERENCES
1. J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, ‘‘An

Empirical Study of Global Software Development: Dis-
tance and Speed,’’ Proceedings of the 23rd International

TREINEN AND MILLER-FROST IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006782

Conference on Software Engineering, Toronto, Ontario,
Canada; IEEE Computer Society, Los Alamitos, CA
(2001), pp. 81–90.

2. D. Boland and B. Fitzgerald, ‘‘Transitioning From a Co-
located to a Globally-Distributed Software Development
Team: A Case Study at Analog Devices Inc.,’’ Proceedings
of the International Workshop on Global Software Devel-
opment at the 26th International Conference on Software
Engineering, Edinburgh, Scotland; The Institution of
Engineering and Technology, Stevenage, Hertfordshire,
UK (2004), pp. 4–7.

3. F. Lanubile, D. Damian, and H. Oppenheimer, ‘‘Global
Software Development: Technical, Organizational, and
Social Challenges,’’ ACM SIGSOFT Software Engineering
Notes 28, No. 6, 1–4 (2003).

4. D. Damian, J. Chisan, P. Allen, and B. Corrie, ‘‘Aware-
ness Meets Requirements Management: Awareness
Needs in Global Software Development,’’ Proceedings of
the International Workshop on Global Software Develop-
ment at the 25th International Conference on Software
Engineering, Portland, Oregon (2003), pp. 7–12, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

5. S. Cherry and P. Robillard, ‘‘Communication Problems in
Global Software Development: Spotlight on a New Field
of Investigation,’’ Proceedings of the International Work-
shop on Global Software Development at the 26th
International Conference on Software Engineering, Edin-
burgh, Scotland; The Institution of Engineering and
Technology, Stevenage, Hertfordshire, UK (2004), pp.
48–52.

6. J. Herbsleb and R. Grinter, ‘‘Splitting the Organization
and Integrating the Code: Conway’s Law Revisited,’’
Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, CA; ACM Press, NY
(1999), pp. 85–95.

7. J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter,
‘‘Distance, Dependencies, and Delay in Global Collabo-
ration,’’ Proceedings of the 2000 ACM Conference on
Computer Supported Coooperative Work, Philadelphia,
PA; ACM Press, NY (2000), pp. 319–328.

8. J. Pyysiainen, ‘‘Building Trust in Global Inter-Organiza-
tional Software Development Projects: Problems and
Practices,’’ Proceedings of the International Workshop on
Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 69–75, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

9. R. Prikladnicki, J. Audy, and R. Evaristo, ‘‘Requirements
Management in Global Software Development: Prelimi-
nary Findings from a Case Study in a SW-CMM Context,’’
Proceedings of the International Workshop on Global
Software Development at the 25th International Confer-
ence on Software Engineering, Portland, Oregon (2003),
pp. 53–58, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

10. M. Paasivaara, ‘‘Communication Needs, Practices, and
Supporting Structures in Global Inter-Organizational
Software Development Projects,’’ Proceedings of the
International Workshop on Global Software Development
at the 25th International Conference on Software Engi-
neering, Portland, Oregon (2003), pp. 59–63, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

11. M. Paasivaara and C. Lassenius, ‘‘Using Iterative and
Incremental Processes in Global Software Development,’’
Proceedings of the International Workshop on Global
Software Development at the 26th International Confer-
ence on Software Engineering, Edinburgh, Scotland; The
Institution of Engineering and Technology, Stevenage,
Hertfordshire, UK (2004), pp. 42–47.

12. S. Butler and S. Hope, ‘‘Evaluating Effectiveness of Global
Software Development Using the eXtreme Programming
Development Framework (XPDF),’’ Proceedings of the
International Workshop on Global Software Development
at the 25th International Conference on Software Engi-
neering, Portland, Oregon (2003), pp. 75–77, http://
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf.

13. E. MacGregor, Y. Hsieh, and P. Kruchten, ‘‘Cultural
Patterns in Software Process Mishaps: Incidents in Global
Projects,’’ Proceedings of the Workshop on Human and
Social Factors of Software Engineering (HSSE), St. Louis,
Missouri; ACM Press, NY (2005), pp. 1–5.

14. K. Fujieda and K. Ochimizu, ‘‘Investigation of Repository
Replication Models in Globally Distributed Configuration
Management,’’ Proceedings of the International Workshop
on Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 21–23, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

15. L. Kiel, ‘‘Experiences in Distributed Development: A Case
Study,’’ Proceedings of the International Workshop on
Global Software Development at the 25th International
Conference on Software Engineering, Portland, Oregon
(2003), pp. 44–47, http://gsd2003.cs.uvic.ca/
gsd2003proceedings.pdf.

16. Control Chaos (2006), http://www.controlchaos.com.

17. The World Clock Meeting Planner, timeanddate.com,
http://www.timeanddate.com/worldclock/meeting.
html.

Accepted for publication April 19, 2006.

James J. Treinen
IBM Global Services, 6300 Diagonal Highway, Mail Stop 025T,
Boulder, Colorado, 80301 (jamestr@us.ibm.com). Mr. Treinen
is an IT Architect with IBM’s Security Intelligence mission
in the managed security service-delivery department in
Boulder, Colorado. He received a B.S. degree in computer
science and mathematics from Regis University in 1999, an
M.S. degree in computer science from the University of
Denver in 2003, and is currently a doctoral candidate at the
University of Denver, with an expected graduation date of
2008. He joined IBM Global Services in 1999 as a member of
the stratetic outsourcing business-intelligence team. He has
since moved to the security field, where he specializes in
creating business-intelligence solutions based on large
security-related data sets.

Susan L. Miller-Frost
IBM Business Consulting Services, 2710S Gateway Oaks Drive,
Suite 200, Sacramento, CA 95833 (smfrost@us.ibm.com). Ms.
Miller-Frost is an IBM Distinguished Engineer and is the
service area leader for enterprise architecture and technology
services. She received a B.S. degree in mechanical engineering
from California Polytechnic State University at San Luis
Obispo in 1988 and an M.B.A. degree in finance from the
University of California at Davis in 1998. Ms. Miller-Frost
joined IBM in 1994; before that, she worked for Andersen
Consulting (now Accenture) and a startup company. The
majority of her experience has been in the area of application
development and application architecture. She was promoted
to Distinguished Engineer in 2004 and elected to the IBM
Academy of Technology in 2005. Ms. Miller-Frost is a member
of the Society for Women Engineers (SWE) and the
Association for Information and Image Management
(AIIM). &

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 TREINEN AND MILLER-FROST 783

Published online September 29, 2006.

