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This paper describes MedTAKMI-CDI, an online analytical processing system that

enables the interactive discovery of knowledge for clinical decision intelligence (CDI).

CDI supports decision making by providing in-depth analysis of clinical data from

multiple sources. We discuss the fundamental challenges we faced and explain how

we met those challenges and developed a prototype experimental CDI system that

currently handles clinical information for about 7,000 patients at the National Cancer

Center in Japan. We elaborate on a three-layer model (attribute-value pairs, ordered

sequences of events, and time-stamped sequences of events) for clinical information,

which can represent three different levels of abstraction. This flexibility supports a

broad range of analysis, from simple demographic analysis to a mission-critical clinical-

path pattern analysis. Rather than a collection of rigid relational schema for clinical

information, our relational database system employs a metaschema with patient

identifier, time stamp, attribute name, and attribute values. This allows us to modify

the representation of clinical information without having to reload the data and rewrite

the analytic components. We also describe the analytic functions that are used to

understand clinical care practice at the hospital, to obtain an overview of the clinical

information, to navigate the clinical information by using the layers of abstraction and

the ontologies, and to extract the patterns and rules for clinical paths.

INTRODUCTION

All Japanese citizens are covered by health insur-

ance that is managed by public organizations.

Patients can freely choose any clinic or hospital for

consultation and treatment. However, there are

some problems, such as wide variations in hospital

length of stay and in hospital and physician fees.

Health-care costs in Japan are increasing rapidly.

The Japanese government is introducing a reim-

bursement system, called diagnosis procedure

combination (DPC), that is based on specified fees

for specified services. Without reducing the quality

of clinical treatment, the DPC payment system is
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intended to promote better administrative perfor-

mance by hospitals. To manage clinical quality and

to improve their administrative performance, hos-

pital administrators must obtain evidence and

knowledge from the existing medical data stored in

the hospitals.

In the early 1980s, hospitals in Japan began using

computerized physician order entry systems, and

they are now widely used in hospitals. The

installation of electronic medical record (EMR)

systems, including medical imaging reference func-

tions, is increasing, and personal digital assistants

and notebook PCs with wireless local area networks

and bar-code readers are widely used in patient

wards. A great deal of longitudinal patient clinical

data and administrative data is stored digitally in

EMR repositories. Data items include medical

services (such as prescriptions, injections, labora-

tory test results, radiological examinations, endo-

scope data, surgical procedures, and interventions),

patient status (such as laboratory test results and

pathological diagnoses), outcomes, billing informa-

tion and costs, hospital income data, and more.

Given this warehouse of data, hospitals and medical

institutions need to know which patient groups (for

example, based on diagnoses, laboratory test re-

sults, or ages before treatment) received what kinds

of medical services and in which order (for example,

radiation therapy, chemotherapy, or surgical oper-

ations), and whether the outcomes were good or bad

(for example, in diagnosis stage categorization). The

analytics of such kinds of pattern extraction and rule

finding from the actual data of clinical and admin-

istrative processes would be helpful to support

treatment selection decisions by medical staff

members and patients. The extracted patterns and

rules are also useful for developing clinical path-

ways and guidelines. A clinical pathway is the

sequence of a plan of care, predictable multi-

disciplinary interventions, and expected patient

outcomes, drafted in advance for patient groups.

Multidimensional database technology is one of the

key tools for interactive analysis of large amounts of

data for decision-support purposes. In the traditional

multidimensional data models intended for online

analytic processing (OLAP), data is viewed as

specifying points in multidimensional space. For

example, the sale of a particular item in a particular

store of a retail chain can be viewed as a point in a

space whose dimensions are the product, location,

and time, and this point is associated with one or

more measures, such as price or profit. Pedersen

and Jensen described nine requirements and pro-

posed a multidimensional data model to analyze

more complex data, such as clinical records, using a

real-world medical case study.
1

The proposed model

used a history of each patient as a fact and

aggregated the number of patients grouped by their

diagnoses. The relationship between a fact and each

dimension for the clinical data is not always a many-

to-one mapping. For example, some patients have

several diagnoses, although the relationships in the

classical model are many-to-one mappings. In

accord with some of the requirements for their

conceptual model, this paper further enhances the

OLAP for clinical records to respond to complex

queries on high volumes of data.

In building a decision-support solution, we identi-

fied some fundamental challenges in modeling

clinical information and ontologies. The first chal-

lenge was designing a database and data warehouse

system for clinical information management. The

second was how to implement interconnected

analytic functions for knowledge discovery and rule

generation. Based on our experiences at the National

Cancer Center in Japan, we developed responses to

these challenges and prototyped an experimental

system for clinical decision intelligence (CDI). The

system now runs with clinical information for about

7,000 patients and has been tested for analyzing

correlations among cancers, tumor markers, and

clinical treatments. In this paper, we describe the

technical aspects of these challenges and our

approach to building the CDI solution. In particular,

we elaborate on a three-layer model of clinical

information (using attribute-value pairs, ordered

sequences of events, and time-stamped sequences of

events), which represents three different levels of

abstraction. This flexibility is important to support a

broad range of analyses, from simple demographic

analyses to a mission-critical clinical-path pattern

analysis. Rather than a collection of rigid relational

schema for clinical information, our relational

database system employs a metaschema—a schema

about the schema—with time stamps, patient

identifiers, attribute names, and attribute values.

This allows us to modify the representation of

clinical information without the time-consuming

work of reloading data and rewriting analytic

components. We also describe our collection of
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analytic functions for such uses as understanding

clinical care practice at the hospital, constructing

overviews of the clinical information, navigating the

clinical information by using ontologies (dimen-

sional hierarchies), and extracting the patterns and

rules for clinical paths.

The remainder of this paper is organized as follows.

We describe a traditional multidimensional database

and OLAP and discuss the use of OLAP for clinical

records. We propose a data model and its imple-

mentation to solve the issues that were introduced

and to support rapid computation. We then intro-

duce MedTAKMI-CDI, the prototyped system, and

its functions. We provide some scenarios using real-

world clinical data from the National Cancer Center

in Japan, we put our work in the context of related

work, and then draw our conclusions.

ISSUES FOR OLAP
This section explains traditional databases and OLAP

and lists some issues of OLAP for medical records.

Traditional multidimensional databases
and OLAP

Multidimensional database technology is a key

factor in the interactive analysis of large amounts of

data for decision-making purposes.
2

Multidimen-

sional models categorize data either as facts

associated with numerical measures or as textual

dimensions that characterize the facts (Figure 1A).

For a retail business, a purchase would be a fact,

and the purchase amount and price would be

measures; the type of product purchased and the

time and location of the purchase would be

dimensions. OLAP queries aggregate measures over

a range of dimensional values to provide results, for

example, total sales per month of a given product,

which then lead to identifying trends.

An important feature of multidimensional modeling

is to use hierarchical dimensions to provide as much

context as possible for the facts. Dimensions are

used for selecting and aggregating data at the

desired level of detail. Most traditional multidimen-

sional data models assume that dimension hierar-

chies are balanced and nonragged trees, as shown in

Figure 1B. (For an explanation of types of hier-

archies, see Reference 3.)

A multidimensional database lends itself to certain

types of interactive queries:

� So called ‘‘slice-and-dice’’ queries make selections

for dimensional reduction by focusing on certain

data. Selecting a single dimension value reduces

the dimensionality of the cube. For example, we

can slice the cube by considering only those cells

that relate to a specific dimensional value, and

then further reduce this slice by considering only

the cells for another dimensional value in a

different dimension.

� ‘‘Drill-down and roll-up’’ queries are inverse

operations that use dimension hierarchies and
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Figure 1
Traditional multidimensional database: 
(A) cube view of a multidimensional model; 
(B) dimension hierarchy of location; (C) star schema
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measures to perform aggregations. Rolling up to a

top value corresponds with omitting the dimen-

sion from dimension values at a finer granularity

to those at a coarser granularity. For example, in

Figure 1B, rolling from City to Country aggregates

the values for Los Angeles and New York into a

single value, USA.
� Rotating a cube allows users to see the data

grouped by other dimensions.
� Ranking, or ‘‘top n’’ queries, return only those

cells that appear at the top of the specified order.

Relational OLAP, which is one of the implementa-

tions of multidimensional databases, typically uses

star or snowflake schemas, both of which store data

in fact tables and dimension tables. As shown in

Figure 1C, a fact table holds one row for each fact in

the cube, and it has a column for each measure that

contains the measured value for the particular fact

and a column for each dimension that contains a

foreign key referring to a dimension table for the

particular dimension.

OLAP for medical records
Table 1 shows the schemas derived from an EMR

system created by IBM Japan. The schemas are

categorized into five groups. Tables in the first

group store patient profiles, which contain data such

as gender, birth date, medical history of liver

dysfunction, renal dysfunction, and so forth. Tables

in the second group contain medical histories. For

example, the table ‘‘admission’’ contains the dates of

admission to and discharge from a hospital and the

number of days in each hospital stay. The table

‘‘careHistory’’ contains the dates when and medical

departments in which patients received medical

treatments. The third group of tables contains data

for examinations, such as laboratory tests, patho-

logical diagnoses, physiological examinations, en-

doscopic examinations, and radiological diagnosis.

Values in the underlined columns, such as ‘‘materi-

al’’ and ‘‘testName’’, are stored as foreign keys

referring to master tables. The fourth group is tables

containing the treatment events. Although the

operative procedures performed at various operative

sites in a surgical operation event are stored as one

instance in the ‘‘surgery’’ table, drugs dispensed at

the same time are stored in the ‘‘dispenseDrug’’

table. The fifth group is the diagnosis leading to

hospitalization. Data in the column ‘‘outcome’’ of

the table ‘‘admission’’ is subjectively assigned to

each patient by a physician. The ‘‘icd10’’ value is

determined by the standard classification of dis-

eases.
4

Except for the birth date, all date values in all

of the tables are stored as time stamps.

Table 2 shows an example of an analysis for the

medical histories of patients admitted to the

hospital. Axes that can be selected besides the

operative procedures and radiological examinations

include the types of chemotherapies, radiation

therapies, endoscopic therapies, laboratory tests,

Table 1 Table schemas in an EMR system

Profile profile (patientID, gender, birthDate, dateOfFirstVisit, liverDysfunction, renalDysfunction, . . .)

History careHistory (patientID, dateOfAdmission, department, . . .)

Examination laboratoryTest (patientID, date, material, testName, result, . . .)
pathologicalDiagnosis (patientID, date, cytoscreeningOrTissueDiagnosis, substance, diagnosis, . . .)
physiologicalExamination(patientID, date, type, . . .)
endoscopicalExamination(patientID, date, type, . . .)
radiologicalDiagnosis(patientID, date, type, . . .)

Therapy surgery (patientID, date, careGroup, operativeProcedure1, operativeSite1, . . ., operativeProcedure 10,
operativeSite10, . . .)

radiologicalTherapy(patientID, startDate, endDate, date, equipment, site, . . .)
endoscopicTherapy (patientID, date, type, . . .)
chemotherapy (patientID, date, type, . . .)
bloodInfusion (patientID, date, type)
injection (patientID, date, number, medicine, . . .)
prescription (patientID, date, number, medicine, . . .)

Diagnosis admission (patientID, dateOfAdmission, dateOfDischarge, diseaseNameOnAdmission,
diseaseNameOndischarge, outcome, . . .)

dischargeSummary(patientID, dateOfDischarge, number, diseaseName, icd10, stageOfCancer)
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and physiological examinations and patient profiles

containing gender, birth date, and so forth. The

dimension selected as an axis may be a hierarchical

dimension. For example, Figure 2 shows the

instances of a therapy dimension for medical

records. Of the therapy dimension’s five levels, the

detailed operative procedure is the lowest level. The

operative-procedure-level values are grouped into

medical-care group level values. For example,

gastrectomy and laparoscopic surgeries are grouped

into the practice group for the stomach.

When we analyze such clinical records with the

traditional commercial multidimensional databases,

Table 2 The number of patients who had the radiological examination and operative procedure

Operative Procedure Radiological Examination

Chest Abdominal Chest
(portable)

Chest
CT�

Liver-
pelvis

CT

Chest
(portable),

upper
abdominal
(portable)

Chest
CT,

liver-
pelvis

CT

Brain
MR��

Liver-
pelvis

CT,
chest

CT

Chest
(portable),

lower
abdominal
(portable)

Mastectomy 00 01 02 03 04 05 06 07 08 09

Distal gastrectomy 10 11 12 13 14 15 16 17 18 19

Colectomy 20 21 22 23 24 25 26 27 28 29

Total gastrectomy 30 31 32 33 34 35 36 37 38 39

Transurethral resection
of the bladder tumor

40 41 42 43 44 45 46 47 48 49

Thoracoscope 50 51 52 53 54 55 56 57 58 59

Radical prostatectomy 60 61 62 63 64 65 66 67 68 69
� CT¼ computerized tomography
�� MR ¼magnetic resonance

Figure 2
Hierarchy of therapy dimension 
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…
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we encounter the difficulties explained in the

following subsections.

Complex hierarchy and multiple dimension values

For a retail business, a purchase corresponds to a

fact, and each fact can be mapped to a point in a

three-dimensional space, where the dimensions are

the location of the store, the product sold, and the

purchase date. In other words, each fact has exactly

one dimension value in each dimension. In addition,

most traditional multidimensional data models

assume that dimension hierarchies are balanced and

nonragged trees. However, for medical records, each

patient may have many medical treatments, exami-

nations, and records of patient statuses. In addition,

medical treatments are segmented into surgical

operation, chemotherapy, and radiation therapy,

and the patient may have many different types of

treatments and different types of examinations. The

dimension hierarchies that we intend to use are not

balanced trees, as shown in Figure 2. For example,

in the data used in Table 2, the average number of

laboratory tests that a patient had during one

hospital stay was more than 200. The patient also

had physiological examinations, radiological ex-

aminations, and may have had endoscopic exami-

nations. Therefore, it is impossible to store medical

data in a star schema or snowflake schema, which

are often used for OLAP.

Specification of arbitrary intervals

In traditional multidimensional databases, slicing by

a single dimension value reduces the cube’s

dimensionality, which corresponds to narrowing

down all of the facts into a subset. For medical

records, the aggregates returned by a ranking query

for a laboratory test, after slicing by admission to

and discharge from the hospital, contain the tests

performed during the hospital stay and the out-

patient tests performed preadmission. Doctors,

however, would like to aggregate only those tests

performed during the hospital stay. Although one

solution is to assign an identifier to each hospital-

ization, this does not allow for specifying arbitrary

intervals, such as from patient’s first visit until

admission into the hospital or from the date of a

surgical operation until 10 days after discharge from

the hospital.

Measure

For a retail business, the purchase amount and price

would be measures. Measures can be combined

along any dimension, which allows for precompu-

tation. One of the measures for medical records is

the number of patients, as shown in Table 2.

Because each patient has many values for each

dimension, it is impossible to simply combine

lower-level values along any dimension for rolling

up. In addition, depending on the needs of the

analysis, the numbers of arbitrary intervals and

events would be measures. For example, the data

should be viewed by separately counting each

interval, such as a hospital stay. In addition,

administrators, managers, and medical staff per-

sonnel would like to aggregate the number of

events, such as surgical operations and laboratory

tests, for use in determining how to reduce costs.

Temporal order among dimension values

For medical records, a value in each dimension

corresponds to an event with a time stamp, and

there is a temporal order among the dimensional

values. For example, there are cases in which

patients with larynx cancer have the surgical

operation after reducing the size of the tumor with

chemotherapy or radiation therapy, and where

patients have chemical or radiation therapy to

prevent recurrence of cancer after the surgical

operation on their larynxes. The OLAP system for

medical records needs to have a function to

aggregate the number of patients distinctly for these

various cases.

Performance for interactive analysis

A key strategy to speed up cube-view processing, as

shown in Figure 1A, is to use precomputed cube

views. The precomputation makes it possible for

query response time involving potentially huge

amounts of data to be fast enough to allow

interactive data analysis in the traditional ap-

proaches. However, OLAP for medical records

cannot precompute or preaggregate in advance of

receiving queries, because the number of all

combinations of values can be prohibitively large.

To overcome the preceding difficulties, we designed

a prototype system, MedTAKMI-CDI. The predeces-

sor of this system, IBM Text Analysis and Knowl-

edge Mining (TAKMI), is a text-mining system used

to mine customer-support call logs for customer

relationship management
5

and to mine biomedical

documents for the life sciences.
6

In the next

sections, we give a detailed description of how to

model OLAP for medical records and how to support

fast response times.
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DATA MODEL

In this section, we give formal definitions of a

hierarchy, an ontology, and our data model

according to Bonatti et al.,
7

Pedersen and Jensen,
1

and Inokuchi and Takeda.
8

If S is a nonempty set, and ,� S 3 S, then (S, ,) is

an ordering. Although a definition of the ordering is

generally represented as �� S 3 S, this paper uses ,

to represent a direct relation between two elements

in the set S, � to represent its transitive closure,

and � to represent its transitive closure or represent

that the elements are equal. If x , x for x 2 S, then S

is reflexive. If x , y and y , z! x , z for x, y, z 2 S,

then S is transitive. If x , y and y , x! x¼ y for x,

y 2 S, then S is antisymmetric. (S, ,) is a partial

ordering if S is a reflexive, transitive, and antisym-

metric binary relation on S.

Definition 1 (better): Let (S, ,
1
) and (S, ,

2
) be two

orderings. We say (S, ,
1
) is better than (S, ,

2
) iff

8x, y 2 S (x ,
1

y! x ,
2

y). In addition, we say that

(S, ,
1
) is strictly better than (S, ,

2
) iff (S, ,

1
) is

better than (S, ,
2
) and (S, ,

2
) is not better than

(S, ,
1
).

Definition 2 (hierarchy): Let (S, ,) be a partial

ordering. A hierarchy of S is an ordering (S, �) such

that (S, �) is better than (S, ,), (S, ,) is the

reflexive, transitive closure of (S, �), and there is no

other ordering (S, ,
1
) satisfying the preceding two

conditions such that (S, ,
1
) is strictly better than

(S, ,).

Definition 3 (ontology): Suppose R is some finite set

of strings and S is some set. An ontology with

respect to R is a partial mapping h from R to

hierarchies for S.

For example, when S is given as ftire, car, hubcapg,
where tire is a part of car, hubcap is a part of car,

and hubcap is a part of tire. In addition, everything

is a part of itself. For the set S, a partial order is

defined as f(tire, tire), (car, car), (hubcap, hubcap),

(tire, car), (hubcap, car), (hubcap, tire)g, and only

one hierarchy is defined as f(tire, car), (hubcap,

tire)g.

Given a hierarchy (or an ontology) (S, ,), a fact

schema is defined as S0 ¼ (F0, T0), where F0 is a fact

type and T0 is a hierarchy type, T0 ¼ (C0, ,
T0, top

T0),

which is strictly better than (S, ,), and the relations

in (S, ,) required for analyzing the documents are

remaining in T0. The hierarchy type is a three-tuple

(C0, ,
T0, top

T0), where C0¼fC0
j
, j¼ 1, ..., ng is a set of

category types of T0, and ,
T0 is a partial order on the

C0s, with top
T0 2 C0 being the top element of the

ordering. The intuition is that the top element of the

ordering logically contains all other elements; that

is, 8C0
j
2 C0, C0

j
� top

T0. A hierarchy instance T of

type T0 is a two-tuple T¼ (C, ,), where C is a set of

categories c
j
such that Type(c

j
) ¼ C0

j
, and , is a

partial order on C. Each category c 2 C has an

associated set dom(c) called its domain. The

members of dom(c) are called values of the category

c. An element in dom(c) is represented as c : v.

Let F ¼ ff
i
, i¼ 1, ..., mg be a set of facts. Each fact

corresponds to a patient. A fact-hierarchy relation-

ship between F and T is a set R¼f(f, t, c : v)g, where

f 2 F, c 2 C, and v 2 dom(c). (f, t, c : v) represents

that an event which is described by a term v of

category c occurs at time t for a patient f. Thus, R

links facts to hierarchical values. Our data object is a

four-tuple D¼fS0, F, T, Rg, where S0¼ (F0, T0) is the

fact schema, F is a set of facts where Type(f)¼F0, T¼
(C, ,) is a hierarchy instance where Type(c

j
)¼C

j
for

c
j
2 C and C0

j
2 C0, and R is a set of fact-hierarchy

relations such that (f, t, c : v) 2 R ! f 2 F ^ 9c 2
C(v 2 dom(c)).

Conceptually, R corresponds to a relation P �
2domðc1Þ3 . . . 2domðcnÞ; which is not a normalized

relation. P corresponds to a fact table for a star

schema, and each row and column in P corresponds

to a patient and a category (dimension value in the

star schema), respectively, A naive method cannot

store the data in a relational database and cannot

efficiently aggregate the data along the hierarchy.

The first reason that it cannot do so is that the

relation has many missing values and a set of values

for each attribute c
j
. The second reason is that the

number of attributes in the relation becomes very

large. For example, the number of categories c
j
in

our prototype is about 250,000. The third reason is

that a complex relationship among the attributes

(columns) exists.

IMPLEMENTATION
As explained earlier in the section ‘‘Issues for

OLAP,’’ medical record data cannot be precomputed

and preaggregated in advance of receiving queries.

We must design table schema or data structures to

achieve query response times that are as fast as
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possible. Dimension hierarchies for our medical

OLAP constitute a general tree rather than a set of

balanced trees, and in our schema, each path from

the root node to a leaf node corresponds to a record

in a dimension table of a star schema. For medical

records, the hierarchy is modeled as a tree rather

than a forest to allow for multiple hierarchies. We

call the hierarchy a category tree. The category tree

is stored in the following CATEGORY table, in which

each row contains the information pertaining to a

particular node. The table is defined as

CATEGORY ðPATH CHARACTER;

DESCRIPTION CHARACTER;

PREORDER INTEGER;

POSTORDER INTEGER;

DEPTH INTEGER;

PARENT INTEGERÞ:

In the table, PATH represents a path from the root

node to the node corresponding to its record, and

DESCRIPTION is its node’s name. PREORDER,

POSTORDER, and DEPTH are a preorder, postorder, and

depth assigned to the category node for calculation

efficiency, respectively, and PARENT is a preorder of

its parent node. For example, Figure 3 shows an

example of a part of a category tree. All leaves in the

dimension hierarchy of Figure 2 are stored as values

in a table EVENT. A label for each node, such as

‘‘Surgical operation’’ or ‘‘Chemotherapy’’, is stored

as the node name. Numbers below the node name

are the preorder, postorder, and depth that are

assigned to the node, respectively. The 10-year age

group is calculated from each patient’s birth date.

In addition to the CATEGORY table, a table EVENT

whose records correspond to the lowest-level values

in the fact table of a star schema is defined as

EVENT ðPATIENTID INTEGER;

DATE DATE;

PREORDER INTEGER;

VALUE1 CHARACTER;

VALUE2 DOUBLE;

EVENTID CHARACTERÞ:

In this table, PATIENTID is an identifier for a patient,

DATE is the date when an event occurs. PREORDER is a

preorder of the category node to which the event

refers. It is not necessarily the case that the referred-

to node is a leaf node in the category tree. VALUE1

and VALUE2 are detailed values that the event

describes. For example, Table 3A shows a history

containing three surgical events. In preprocessing,

information in the table is converted into instances

in the EVENT schema, as shown in Table 3B, where

values in the column EVENTID represent the IDs to

identify events that occur at the same time. As

Figure 3
Category tree for medical records

Respiration
(20,17,3) 

Surgical operation
(11,27,2)

…

…Chemotherapy
(30,34,2) 

Stomach
(31,28,3)

Respiration
(32,29,3) 

…

Therapy
(10,38,1)

Profile
(1,8,1)

Examination
(40,50,1)

Gender
(2,0,2)

Ten-year group
(3,1,2)

…

…liverDysfunction
(4,2,2)

(0,300,0)

Stomach
(12,16,3)

Gastric resection
(13,9,4) 

…

T

INOKUCHI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007122



shown in Table 1, the table ‘‘dischargeSummary’’

contains information such as diagnosis, which is not

an event but a statement recorded on the date of

discharge. In this case, DATE and VALUE1 in a record

for the diagnosis in the EVENT table become the

observed date and the diagnosed disease name,

respectively. In addition, records for laboratory tests

contain information in their numerical results. In

this case, VALUE1 and VALUE2 in the corresponding

record in the EVENT table become NULL and the

numerical value, respectively.

The preceding data schema allows for fast aggrega-

tion at the desired level of detail rather than for leaf-

level values in the category tree. For example, this

makes it possible to roll up from detailed operative

procedures to care groups. The PREORDER,

POSTORDER, and DEPTH in the tables CATEGORY and

EVENT are used to handle ancestor-descendant

containment in a tree.
9

The method for checking the

containment is by assigning a preorder and a

postorder to each node in the tree, as shown in

Figure 3, and then comparing the numbers assigned

to the two nodes. If node A is an ancestor of node B,

the preorder of A must be less than the preorder of

B, and the postorder of A must be greater than the

postorder of B. Because the ancestor-descendant

containment can be represented as the relationship

of preorder and postorder without using any

functions to process the strings, the method can

quickly aggregate the various distributions.
8,10

Concretely, the higher-level values are derived using

the following SQL query:

SELECT PATIENTID, DATE, pre1, DESCRIPTION AS

VALUE1, NULL, EVENTID

FROM EVENT, CATEGORY

WHERE

PARENT ¼ pre1 AND EVENT.PREORDER . pre1 AND

EVENT.PREORDER ,¼ (post1 þ dep1) AND

EVENT.PREORDER .¼ CATEGORY.PREORDER AND

EVENT.PREORDER ,¼ POSTORDER þ DEPTH, (1)

where pre1, post1, and dep1 are a preorder,

postorder, and depth assigned to the parent of the

desired level node in the category tree. Because the

derived result is the same structure as the original

data, we can continue the query process by using

the results of the previous query operations, which

allows physicians to analyze medical records in an

interactive manner.

Here are three examples for ranking, rolling up, and

slicing queries, respectively. The first is a Structured

Query Language (SQL) query to aggregate the

number of patients who had surgical operations in a

stomach care group for each operative procedure

and to rank the aggregated numbers. This query is

represented as

SELECT VALUE1, COUNT(DISTINCT PATIENTID) AS

COUNT

FROM EVENT

Table 3 Preprocess of MedTAKMI-CDI: (A) example of a table ‘‘Surgery’’; (B) example of a table ‘‘EVENT’’

A

PatientID Date Care group Surgery1 Surgery2 Surgery3

1 2006/04/05 12:51 stomach Total gastrectomy laparoscopical operation NULL

1 2006/05/12 08:12 respiration Ablation of right upper lobe of lung NULL NULL

2 2006/04/05 13:22 stomach Total gastrectomy NULL NULL

B

PATIENTID DATE PREORDER VALUE1 VALUE2 EVENTID

1 2006/04/05 12:51 13 Total gastrectomy NULL 1

1 2006/04/05 12:51 12 Laparoscopical operation NULL 1

1 2006/05/12 08:12 20 Ablation of right upper lobe of lung NULL 2

2 2006/04/05 13:22 13 Laparoscopical operation NULL 3
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WHERE PREORDER .¼ pre2 AND PREORDER ,¼ (post2 þ
dep2)

GROUP BY VALUE1

ORDER BY COUNT DESC, (2)

where pre2, post2, and dep2 are the preorder,

postorder, and depth of a care group for stomachs.

Another SQL query to aggregate the number of

surgical events for each care group is represented as

SELECT VALUE1, COUNT(DISTINCT EVENTID) AS COUNT

FROM

(

SELECT PATIENTID, DESCRIPTION AS VALUE1,

EVENTID

FROM EVENT, CATEGORY

WHERE

PARENT¼ pre3 AND EVENT.PREORDER . pre3 AND

EVENT.PREORDER ,¼ (post3þdep3) AND

EVENT.PREORDER .¼ CATEGORY.PREORDER AND

EVENT.PREORDER ,¼ POSTORDERþDEPTH) EVENT

)

GROUP BY VALUE1 ORDER BY COUNT DESC, (3)

where pre3, post3, and dep3 are the preorder,

postorder, and depth assigned to the category node

for surgical operation in Figure 3.

When slicing by considering only patients who have

a certain chemotherapy, val4, the SQL (2) query is

modified as

SELECT VALUE1, COUNT(DISTINCT PATIENTID)

FROM EVENT

WHERE

PREORDER .¼ pre2 AND PREORDER ,¼ (post2þdep2)
AND

PATIENTID IN (

SELECT PATIENTID

FROM EVENT

WHERE

PREORDER .¼ pre4 AND

PREORDER ,¼ (post4þdep4) AND

VALUE1¼val4
)

GROUP BY VALUE1, (4)

where pre4, post4, and dep4 are the preorder,

postorder, and depth for the category node for that

chemotherapy.

MedTAKMI-CDI always maintains intervals as views

when slicing by considering the patients who satisfy

certain conditions. For example, an SQL query to

specify intervals from admission to discharge from

the hospital is represented as

SELECT PATIENTID, BEGIN, BEGINþMIN(DATE-BEGIN)
AS END

FROM

(

SELECT A.PATIENTID, DATE, B.BEGIN, B.END

FROM

(SELECT PATIENTID, DATE FROM EVENTM

WHERE PREORDER ¼ pre6 ) A,

(

SELECT PATIENTID, DATE AS BEGIN,

CURRENT DATE AS END

FROM EVENT WHERE PREORDER ¼ pre5
) B

WHERE A.PATIENTID¼B.PATIENTID AND

DATE.¼BEGIN
) A

GROUP BY PATIENTID, BEGIN, END, (5)

where pre5 and pre6 are the preorders assigned to

the nodes corresponding to admission to and

discharge from the hospital, respectively, when the

nodes have no children nodes. Because patients may

be admitted to a hospital many times, the SQL

specifies the first discharge after each admission by

using the function MIN.

MEDTAKMI-CDI
In the earlier sections, we presented the data models

and the basic implementation. This section de-

scribes representative functions of MedTAKMI-CDI.

Target selection

The target selection is a function to slice by

considering only patients who meet certain con-

ditions. The upper right frame in Figure 4 shows the

results returned by SQL code segment (5). The figure

represents specifying intervals ‘‘before’’ the ‘‘first’’

discharge from the hospital ‘‘after’’ ‘‘all’’ admissions

for each patient. The first column can be selected

from among ‘‘normal’’, ‘‘before (,)’’, ‘‘before (,¼)’’,

‘‘after (.)’’, ‘‘after (.¼)’’ and ‘‘on the same day’’.

The ‘‘before (,)’’ means that the selected interval

does not include the day of the event, such as the

day of discharge. The ‘‘on the same day’’ allows a

user to make the start date and the end date of an

interval the same. The second column can select
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from ‘‘all’’, ‘‘first’’, and ‘‘last’’. By checking a box in

the third column, a physician can specify intervals

‘‘before’’ the ‘‘first’’ discharge from the hospital

‘‘after’’ the date of ‘‘all’’ admissions in which the

patient had surgical operations. By using ‘‘offset’’ in

the fifth column, physicians can select intervals

from the date of admission to 10 days after discharge

from the hospital. By clicking ‘‘delete’’ in the eighth

column, a condition that narrowed down into a

subset of the patients is deleted.

Hierarchical category viewer

The hierarchical category viewer returns the number

of patients, events, or intervals for each child node

of a category node selected by a physician. This

function corresponds to a ranking query in a

traditional multidimensional database. For example,

Figure 4 shows the distribution of patients for each

care group after narrowing down into female

patients by target selection.

The blue bars in the lower right frame of the viewer

show the numbers of patients. In Figure 4, there are

438 patients who had surgical operations in the care

group for mammary glands. Red bars indicate

relative frequencies, comparing each subset of

patients to the initial set of patients. For defining

this, let S be the initial set of all patients. The target

selection due to some conditions returns S
1
, which is

the subset of S that satisfies the conditions. The

relative frequency for a category c in the subset S
i
is

calculated using the following formula:

relfreqðc; SiÞ ¼
freqðc; SiÞ

jSij
freqðc; SÞ
jSj

where jS
i
j is the number of patients in the set S

i
and

freq(c, S
i
) is the number of patients who have an

event represented by the category c in the collection

S
i
. As female patients are already narrowed down,

the relative frequencies for the groups of mammary

A

B

Figure 4
Category hierarchy viewer

Target Selection Female patient

C

Mammary gland
and gynecology
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gland and gynecology in Figure 4 are higher than the

others.

By selecting one of the radio buttons pointed at by

‘A’ in Figure 4, a physician can aggregate the

numbers for each child node of a selected category

node, for each value with a preorder that is referring

to a selected category node, or for each value with a

preorder that is referring to a descendant of a

selected category node. By selecting one of the radio

buttons pointed at by ‘B’ in Figure 4, the user can

aggregate the number of patients, events, or

intervals for the selected category nodes. By select-

ing one of the radio buttons pointed at by ‘C’ in the

figure, the first event, the last event, or all of the

events for each specified interval in the target

selection can be aggregated.

Clicking one of the results of the category view and

the other functions leads to narrowing down the

patients into a subset of those who satisfy the

condition corresponding to the selected result, and

the condition is added into the set of conditions in

the target selection. Because this system is inter-

active, the physicians are better able to discover

hidden knowledge by using a combination of mining

functions and trial-and-error approaches.

Chronological viewer

This viewer allows a physician to discover trends by

viewing the chronological distribution of a set of

patients. This function supports yearly, quarterly,

monthly, and daily distributions. Using this viewer,

one can investigate how the frequency of some

occurrence changes with time.

Two-dimensional map viewer

The two-dimensional viewer allows a physician to

visualize the strength of an association between

events. Figure 5 shows associations between events

of surgical operations and radiological examinations

for hospital patients. The values in each cell

represent the strength of the association of those two

events—the higher the value, the stronger the

association. For example, the operative group

‘‘stomach’’ and the radiological examination ‘‘chest

X-ray exam’’ have a strong association, which

means that many patients have a chest X-ray exam

after having surgical operations on their stomach.

The numbers ‘‘570 (1.11)’’ in the cell mean that

there were 570 patients who mentioned both the

distal gastrectomy and the chest X-ray exam, and

that its relative frequency was 1.11. Formally, the

relative frequency of the two-dimensional maps is

calculated by using the following formula:

relfreqðc1; c2; SiÞ ¼
freqðc1 and c2; SiÞ

jSij
freqðc1; SiÞ
jSij

freqðc2; SiÞ
jSij

where S
i
is a set of patients selected by the target

selection and freq(c
1

and c
2
, S

i
) is the number of

patients who have events c
1

and c
2
. The events c

1

and c
2

belong to the categories of the x- and y-axes,

respectively.

The pull-down menu pointed to by ‘A’ in Figure 5

can select from ‘‘default’’, ‘‘V¼C’’, ‘‘V¼(E)¼C’’,

‘‘V,¼C’’, ‘‘V,C’’, ‘‘V.¼C’’ and ‘‘V.C’’. As exam-

ples, ‘‘V,C’’ means that an event on the vertical axis

occurs before an event on the horizontal axis, and

‘‘V¼(E)¼C’’ means that events on the vertical axis

and on the horizontal axis happen on the same day

and that their EVENTIDs in the table EVENT are same.

Two-dimensional chronological viewer

The two-dimensional chronological viewer is a

function to display the chronological distribution

around a selected event. Figure 6 shows distribution

of surgical operations around dates of admission

indicated by a vertical red line. In each row of the

figure, a red plot line, a blue plot line, and a black

plot line show the distribution of surgery events in

each care group for male patients, female patients,

and all patients, respectively. The vertical gray grid

lines indicate the number of days following admis-

sion. A physician can find care groups of patients

who spent a long time in the hospital before their

surgical operations, which may be important for

better management of hospitals.

Pattern enumeration

The pattern enumeration viewer is a function to

enumerate frequently concurring patterns from a set

of events or a set of event sequences.
11,12

Events

contained in each pattern are interactively selected

before running this function, and it returns gener-

alized patterns by using the category tree.
13,14

Figure 7 shows the discovered frequent sequential

patterns when the events of admissions, discharges,

and surgical operations are used as items. For

example, the pattern in the first row means that 398

patients had a surgical operation in the care group

for liver, gallbladder, and pancreas in an average
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time of 4.51 days after their admission and were

released from the hospital in an average of 25.63

days after their admission.

Rule generation

There are two functions to discover rules. The first

function clusters members with higher objective

variables into one group and members with lower

objective variables into another group. By using this

function, a physician may be able to discover the

cause of prolonged hospitalizations. A pattern P to

describe the group is evaluated by a measure of

interclass variance defined as

ICVðPÞ ¼ jS1jðS1 � SÞ2 þ jS2jðS2 � SÞ2;

where S is a set of patients and the set S is divided

into S
1

that satisfies P and S
2

that does not satisfy P,

jS
i
j is the number of patients in group i, and Si is

the mean of the objective variables.
15

For example,

one result shows that the average number of

hospital days for the 42 patients who have two

surgical operations in the orthopedic surgery group

is 92.19, although the average hospital stay is about

17.59 days.

The second rule-discovery function is a rule

generator based on a traditional decision tree.
16

Because most medical records of laboratory tests are

time series data, it is not easy to feed the data to a

decision tree. Therefore, when a physician selects

one event as a base date, MedTAKMI-CDI inter-

actively collects explanatory variables from the

medical records of the laboratory tests that are the

newest records before the selected base date.

Objective variables are also interactively selected

from the records after the base date. Because

Figure 5
Two-dimensional map viewer

Chest X-ray exam

A

Stomach

V<=C
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MedTAKMI-CDI supports selecting various objective

variables, the heads of the discovered rules may be

sequences of events. (The head of a rule corre-

sponds to the consequence of a rule: If a rule is

represented as A ¼. B, then the head of the rule is

B.)

Other functions

MedTAKMI-CDI has other auxiliary functions. For

example, all of the results from these functions can

be exported as comma-separated values (CSV) files.

All parameters, including conditions used to narrow

down the numbers of patients, can be saved. When

data in MedTAKMI-CDI is updated on a daily or

weekly basis, the physician can analyze the newly

updated data by using the saved parameters.

Because a category tree may have more than 25,000

nodes and the EVENT table can have more than

280,000 distinct values, it may not be easy to find

the category node that a physician would like to

analyze or a category node referred to by a preorder

of a value that he or she would like to use; therefore,

MedTAKMI-CDI supports a search function to

search for category nodes and values.

USE SCENARIO

A typical scenario using MedTAKMI-CDI consists of

the following steps:

1. Deciding on a point of clinical care practice to

study—For example, asking, ‘‘What is the actual

clinical practice for a specific group of patients

suffering from a certain disease?’’ This will be the

basis to decide on hypotheses about best prac-

tices, deviations from standard care, and poten-

tial factors influencing the outcomes.

2. Interactive analysis of a collection of clinical

records—After a physician has decided to focus

on a particular disease and a group of patients,

MedTAKMI-CDI provides a suite of analytical

Figure 6
Two-dimensional chronological viewer

Number of
surgeries

Total Male patients Female patients

Hospitalization
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functions that can be used to test and verify the

hypotheses and to gain insight.

3. Extraction of clinical care patterns and predictive

rules—After the group of patients has been

identified, MedTAKMI-CDI can generate a list of

clinical care patterns that are dominant among

these patients. It can also generate a list of

predictive rules about a particular attribute or

attributes that are observed in the group of

patients. This type of knowledge can be further

verified and refined to define the standard of

clinical care.

Figure 6 shows a distribution of surgical operations

in terms of time line, gender, and organ. The span of

the time line starts five days before hospital

admission and ends 15 days after discharge, which

is specified in the menu on the left side of the screen.

We can restrict the data to only the first hospital

admission for each patient, but the view in Figure 6

shows each hospital admission-event and discharge-

event pair for each patient as a separate entity. The

number of surgical operations each day for male and

female patients is shown by the red and blue plot

lines, respectively. The total number of surgical

operations is shown by the black plot line. Each row

of the view corresponds to a surgical operation for a

particular organ. We can see, for example, that

when the surgical operation takes place within a few

days after hospitalization, the required examina-

tions and diagnosis have been performed on the

patients as outpatients, making it possible for

patients to have surgery shortly after their hospital

admission. Stomach cancer surgery, however,

shows two peaks in the graph—three days and five

days after admission. If the second peak of stomach

cancer surgery is caused by a delay because of

missing or duplicated laboratory tests, then it could

be addressed by improving the outpatient clinical

treatment process. Because many of the categories

Figure 7
Pattern enumeration

.hospitalization.admission(0,  0.0)

.careHistory.order.surgeries.liver, gallbladder & pancreas(1,  4.51)    437              398

.hospitalization.discharge(2,  25.63)

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 INOKUCHI ET AL. 129



for such analyses are defined hierarchically based

on a standard or local ontology (for example, icd10

or SNOMED CT**
17

), physicians can work seam-

lessly from coarse-grained to fine-grained concepts

for clinical analysis.

As an example of the analytic functions, Figure 8

shows the two-dimensional map view that captures

the self-correlation between the CEA (carcinoem-

bryonic antigen) values of pancreatic cancer patients

at hospital admission and discharge. CEA is known

as one of the biomarkers for certain cancers. The

two-dimensional map view in Figure 8 shows the

CEA value ranges at hospital admission in the

vertical axis and the CEA value ranges at hospital

discharge in the horizontal axis. The blue cells in the

view indicate strong correlations between two CEA

value ranges. Most of the diagonal blue cells in the

view imply that the patients’ CEA values remain

unchanged at hospital admission and discharge, but

a significant number of blue cells in the area

indicated by the lower left red triangle (with the

darkest blue indicating the strongest correlation)

indicate that the patients’ CEA values did improve

after hospitalization. Further analysis of those

patients with improved CEA values and/or other

tumor-marker values could lead to better clinical

care for pancreatic cancers.

A clinical care pattern is defined as a sequence of

more than one event for a particular patient

identified from clinical records. A physician can

specify certain types of events that constitute a

sequence. In Figure 7, five types of events—hospital

admission, discharge, surgical operation, endo-

scopic therapy, and radiation therapy—are selected

for pattern enumeration. Most of the extracted

patterns are simple ones, such as from admission to

surgical operation to discharge, but we can observe

that there are cases when two or more surgical

operations and endoscopic therapies take place. We

expect that fine-grained analysis of enumerated

patterns would reveal dependencies of the outcomes

of clinical care upon particular subsequences of

events in some cases. Figure 9 shows one instance

of a predictive rule, showing that among 3,966

Figure 8
Association between CEA value ranges at hospital admission and discharge

CEA value: Decreased in the 
                last examination

CEA value: Increased in the 
                last examination
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patients with CEA values higher than 2.8, 33 of them

suffered from a malignant neoplasm of the stomach.

Rule generation is tightly connected with the

underlying event modeling and time-line analysis.

Naı̈ve rule generation might easily mislead physi-

cians by concluding there is a disease based on

biomarker values from after or from too long before

the development of the disease. Therefore, Med-

TAKMI-CDI asks for specifications of the spans of

the analysis (as given in Figure 6), together with

explanatory variables.

DISCUSSION AND RELATED WORK

It is critical to achieve query response times that are

as fast as possible when interactively analyzing a

very large number of medical records. A key

strategy to speeding up the aggregation of the

records is to use indexing technology. As mentioned

earlier in the section ‘‘Implementation,’’ we use the

preorders and postorders to check ancestor-de-

scendant containment in a category tree. Although

the method was proposed in 1982, it recently drew

attention as the method to index Extensible Markup

Language (XML) database data and to map XML

data into a relational database,
18

as each XML

document is modeled as a Document Object Model

(DOM) tree. Several methods—such as prefix

label,
19

Dewey order,
20

prime label,
21

VLEI code,
22

and embedding into a k-ary tree
23

—are used to

index XML. A disadvantage of such methods as

preorder-postorder and prime label is that they need

the reassignment of preorders and postorders of

nodes when inserting some nodes into a tree. As

each node has the same label as a prefix of its

children in such methods as prefix label and Dewey

order, they do not need to reassign the labels when

inserting some nodes. However, because they need

to compute functions to process strings to check

ancestor-descendant containment, they need more

computation time than the preorder-postorder

method. Because we assume that a category tree is

rarely updated and records in the table EVENT are

often inserted, we use the preorder-postorder

method to index the category tree.

The performance evaluation is described in

Reference 8. Although the evaluation was conducted

by using biomedical documents, the model and

implementation used in the evaluation are the same

as those in the work discussed in this paper. In the

evaluation, we selected 503,989 abstracts from

MEDLINE**
24

which contain structured informa-

tion, such as authors and mesh terms, and

unstructured information, such as titles and ab-

stracts. After preprocessing, the numbers of anno-

tated keywords that correspond to records in the

table EVENT, categories that correspond to records in

the table CATEGORY, and distinct c : v were

193,185,919, 340,154, and 1,4331,595, respectively.

In most cases, the results for various queries

appeared within one second. Although we needed a

few minutes to get results for some queries in the

worst case, we could reduce the response time by

dividing the table EVENT into multiple tables that did

not contain identical patient (document) identifiers.
8

Figure 9
Generation of predictive rules
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Levene and Loizou
25

is an example of the many

papers that mention the design of star and snow-

flake schemas as methods to represent a dimension

hierarchy (paths on an ontology). In these papers

there is no discussion of interactive analysis

specifying arbitrary intervals, although theories of

dependencies, normalizations, and summarizability

are discussed. Some methods need to reconstruct

databases with every change and redesign the

analytical attributes. For example, it is often difficult

to reconstruct the existing data warehouse after any

change of analyzed data and attributes.
26

To the best

of our knowledge, few research papers that apply

complex clinical records and genomic data to

multidimensional analysis are published.
1,27,28

Re-

cently, BioStar, which has the properties of exten-

sibility and flexibility that are applicable to clinical

records and genomic data, was proposed.
28

BioStar

stores complex data containing many-to-many

relationships by introducing tables, called m-tables,

which associate between a central fact table and

each dimension table. The schema is based on the

entity-relationship approach. In contrast, the meth-

od proposed in this paper employs a metaschema

with patient identifier, time stamp, attribute name,

and attribute values, rather than a collection of rigid

relational schema for clinical information. The

advantages of our method are the capabilities to

interactively specify arbitrary intervals, to easily

integrate some ontologies that are not balanced tree,

and to achieve fast response time without precom-

putation.

CONCLUSION

In this paper, we described our approach to building

the CDI solution. The proposed system, called

MedTAKMI-CDI, employs metaschema and uses

ancestor-descendant containment by preorders and

postorders to achieve fast query response times.

MedTAKMI-CDI provides various functions to ana-

lyze medical records in an interactive manner.

MedTAKMI-CDI is still under intense development

and reflects many of the requirements of physicians

and hospital administrators. One of the fundamental

requirements is to incorporate time-stamped events

explicitly in pattern enumeration and rule gener-

ation. This would be easily perceived as showing

that a set of events can be used as an abstraction of

some sequence of events. The former can abstract

all the permutations of event sequences observed in

the latter. Similarly, a simple sequence of events can

generalize all of the time-stamped sequences of

events by ignoring the time intervals between the

adjacent events in the sequence. The latter could be

used to provide mission-critical analysis of partic-

ular clinical treatments.
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