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MedTAKMI-CDI: Interactive
knowledge discovery for
clinical decision intelligence

This paper describes MedTAKMI-CDI, an online analytical processing system that
enables the interactive discovery of knowledge for clinical decision intelligence (CDI).
CDI supports decision making by providing in-depth analysis of clinical data from
multiple sources. We discuss the fundamental challenges we faced and explain how
we met those challenges and developed a prototype experimental CDI system that
currently handles clinical information for about 7,000 patients at the National Cancer
Center in Japan. We elaborate on a three-layer model (attribute-value pairs, ordered
sequences of events, and time-stamped sequences of events) for clinical information,
which can represent three different levels of abstraction. This flexibility supports a
broad range of analysis, from simple demographic analysis to a mission-critical clinical-
path pattern analysis. Rather than a collection of rigid relational schema for clinical
information, our relational database system employs a metaschema with patient
identifier, time stamp, attribute name, and attribute values. This allows us to modify
the representation of clinical information without having to reload the data and rewrite
the analytic components. We also describe the analytic functions that are used to
understand clinical care practice at the hospital, to obtain an overview of the clinical
information, to navigate the clinical information by using the layers of abstraction and
the ontologies, and to extract the patterns and rules for clinical paths.

INTRODUCTION

All Japanese citizens are covered by health insur-
ance that is managed by public organizations.
Patients can freely choose any clinic or hospital for
consultation and treatment. However, there are
some problems, such as wide variations in hospital
length of stay and in hospital and physician fees.
Health-care costs in Japan are increasing rapidly.
The Japanese government is introducing a reim-
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bursement system, called diagnosis procedure
combination (DPC), that is based on specified fees
for specified services. Without reducing the quality
of clinical treatment, the DPC payment system is
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intended to promote better administrative perfor-
mance by hospitals. To manage clinical quality and
to improve their administrative performance, hos-
pital administrators must obtain evidence and
knowledge from the existing medical data stored in
the hospitals.

In the early 1980s, hospitals in Japan began using
computerized physician order entry systems, and
they are now widely used in hospitals. The
installation of electronic medical record (EMR)
systems, including medical imaging reference func-
tions, is increasing, and personal digital assistants
and notebook PCs with wireless local area networks
and bar-code readers are widely used in patient
wards. A great deal of longitudinal patient clinical
data and administrative data is stored digitally in
EMR repositories. Data items include medical
services (such as prescriptions, injections, labora-
tory test results, radiological examinations, endo-
scope data, surgical procedures, and interventions),
patient status (such as laboratory test results and
pathological diagnoses), outcomes, billing informa-
tion and costs, hospital income data, and more.

Given this warehouse of data, hospitals and medical
institutions need to know which patient groups (for
example, based on diagnoses, laboratory test re-
sults, or ages before treatment) received what kinds
of medical services and in which order (for example,
radiation therapy, chemotherapy, or surgical oper-
ations), and whether the outcomes were good or bad
(for example, in diagnosis stage categorization). The
analytics of such kinds of pattern extraction and rule
finding from the actual data of clinical and admin-
istrative processes would be helpful to support
treatment selection decisions by medical staff
members and patients. The extracted patterns and
rules are also useful for developing clinical path-
ways and guidelines. A clinical pathway is the
sequence of a plan of care, predictable multi-
disciplinary interventions, and expected patient
outcomes, drafted in advance for patient groups.

Multidimensional database technology is one of the
key tools for interactive analysis of large amounts of
data for decision-support purposes. In the traditional
multidimensional data models intended for online
analytic processing (OLAP), data is viewed as
specifying points in multidimensional space. For
example, the sale of a particular item in a particular
store of a retail chain can be viewed as a point in a
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space whose dimensions are the product, location,
and time, and this point is associated with one or
more measures, such as price or profit. Pedersen
and Jensen described nine requirements and pro-
posed a multidimensional data model to analyze
more complex data, such as clinical records, using a
real-world medical case study.1 The proposed model
used a history of each patient as a fact and
aggregated the number of patients grouped by their
diagnoses. The relationship between a fact and each
dimension for the clinical data is not always a many-
to-one mapping. For example, some patients have
several diagnoses, although the relationships in the
classical model are many-to-one mappings. In
accord with some of the requirements for their
conceptual model, this paper further enhances the
OLAP for clinical records to respond to complex
queries on high volumes of data.

In building a decision-support solution, we identi-
fied some fundamental challenges in modeling
clinical information and ontologies. The first chal-
lenge was designing a database and data warehouse
system for clinical information management. The
second was how to implement interconnected
analytic functions for knowledge discovery and rule
generation. Based on our experiences at the National
Cancer Center in Japan, we developed responses to
these challenges and prototyped an experimental
system for clinical decision intelligence (CDI). The
system now runs with clinical information for about
7,000 patients and has been tested for analyzing
correlations among cancers, tumor markers, and
clinical treatments. In this paper, we describe the
technical aspects of these challenges and our
approach to building the CDI solution. In particular,
we elaborate on a three-layer model of clinical
information (using attribute-value pairs, ordered
sequences of events, and time-stamped sequences of
events), which represents three different levels of
abstraction. This flexibility is important to support a
broad range of analyses, from simple demographic
analyses to a mission-critical clinical-path pattern
analysis. Rather than a collection of rigid relational
schema for clinical information, our relational
database system employs a metaschema—a schema
about the schema—with time stamps, patient
identifiers, attribute names, and attribute values.
This allows us to modify the representation of
clinical information without the time-consuming
work of reloading data and rewriting analytic
components. We also describe our collection of
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analytic functions for such uses as understanding
clinical care practice at the hospital, constructing
overviews of the clinical information, navigating the
clinical information by using ontologies (dimen-
sional hierarchies), and extracting the patterns and
rules for clinical paths.

The remainder of this paper is organized as follows.
We describe a traditional multidimensional database
and OLAP and discuss the use of OLAP for clinical
records. We propose a data model and its imple-
mentation to solve the issues that were introduced
and to support rapid computation. We then intro-
duce MedTAKMI-CDI, the prototyped system, and
its functions. We provide some scenarios using real-
world clinical data from the National Cancer Center
in Japan, we put our work in the context of related
work, and then draw our conclusions.

ISSUES FOR OLAP
This section explains traditional databases and OLAP
and lists some issues of OLAP for medical records.

Traditional multidimensional databases

and OLAP

Multidimensional database technology is a key
factor in the interactive analysis of large amounts of
data for decision-making purposes.2 Multidimen-
sional models categorize data either as facts
associated with numerical measures or as textual
dimensions that characterize the facts (Figure 1A).
For a retail business, a purchase would be a fact,
and the purchase amount and price would be
measures; the type of product purchased and the
time and location of the purchase would be
dimensions. OLAP queries aggregate measures over
a range of dimensional values to provide results, for
example, total sales per month of a given product,
which then lead to identifying trends.

An important feature of multidimensional modeling
is to use hierarchical dimensions to provide as much
context as possible for the facts. Dimensions are
used for selecting and aggregating data at the
desired level of detail. Most traditional multidimen-
sional data models assume that dimension hierar-
chies are balanced and nonragged trees, as shown in
Figure 1B. (For an explanation of types of hier-
archies, see Reference 3.)

A multidimensional database lends itself to certain
types of interactive queries:
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Traditional multidimensional database:
(A) cube view of a multidimensional model;
(B) dimension hierarchy of location; (C) star schema

So called “slice-and-dice” queries make selections
for dimensional reduction by focusing on certain
data. Selecting a single dimension value reduces
the dimensionality of the cube. For example, we
can slice the cube by considering only those cells
that relate to a specific dimensional value, and
then further reduce this slice by considering only
the cells for another dimensional value in a
different dimension.

“Drill-down and roll-up” queries are inverse
operations that use dimension hierarchies and
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Table 1 Table schemas in an EMR system

Profile

profile (patientID, gender, birthDate, dateOfFirstVisit, liverDysfunction, renalDysfunction, ...)

History

careHistory (patientID, dateOfAdmission, department, ...)

Examination

laboratoryTest (patientID, date, material, testName, result, ...)

pathologicalDiagnosis (patientID, date, cytoscreeningOrTissueDiagnosis, substance, diagnosis, . ..)
physiologicalExamination(patientID, date, type, ...)

endoscopicalExamination(patientID, date, type, ...)

radiologicalDiagnosis(patientID, date, type, ...)

Therapy

surgery (patientID, date, careGroup, operativeProcedurel, operativeSitel, ..., operativeProcedure 10,

operativeSitel0, ...)

bloodInfusion (patientID, date, type)

radiologicalTherapy(patientID, startDate, endDate, date, equipment, site, ...)
endoscopicTherapy (patientID, date, type, ...)
chemotherapy (patientID, date, type, ...)

injection (patientID, date, number, medicine, ...)
prescription (patientID, date, number, medicine, ...)

Diagnosis

admission (patientID, dateOfAdmission, dateOfDischarge, diseaseNameOnAdmission,
diseaseNameOndischarge, outcome, ...)

dischargeSummary(patientID, dateOfDischarge, number, diseaseName, icd10, stageOfCancer)

measures to perform aggregations. Rolling up to a
top value corresponds with omitting the dimen-
sion from dimension values at a finer granularity
to those at a coarser granularity. For example, in
Figure 1B, rolling from City to Country aggregates
the values for Los Angeles and New York into a
single value, USA.

* Rotating a cube allows users to see the data
grouped by other dimensions.

* Ranking, or “top n” queries, return only those
cells that appear at the top of the specified order.

Relational OLAP, which is one of the implementa-
tions of multidimensional databases, typically uses
star or snowflake schemas, both of which store data
in fact tables and dimension tables. As shown in
Figure 1C, a fact table holds one row for each fact in
the cube, and it has a column for each measure that
contains the measured value for the particular fact
and a column for each dimension that contains a
foreign key referring to a dimension table for the
particular dimension.

OLAP for medical records

Table 1 shows the schemas derived from an EMR
system created by IBM Japan. The schemas are
categorized into five groups. Tables in the first
group store patient profiles, which contain data such
as gender, birth date, medical history of liver
dysfunction, renal dysfunction, and so forth. Tables
in the second group contain medical histories. For
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example, the table “admission” contains the dates of
admission to and discharge from a hospital and the
number of days in each hospital stay. The table
“careHistory” contains the dates when and medical
departments in which patients received medical
treatments. The third group of tables contains data
for examinations, such as laboratory tests, patho-
logical diagnoses, physiological examinations, en-
doscopic examinations, and radiological diagnosis.
Values in the underlined columns, such as “materi-
al” and “testName”, are stored as foreign keys
referring to master tables. The fourth group is tables
containing the treatment events. Although the
operative procedures performed at various operative
sites in a surgical operation event are stored as one
instance in the “surgery” table, drugs dispensed at
the same time are stored in the “dispenseDrug”
table. The fifth group is the diagnosis leading to
hospitalization. Data in the column “outcome” of
the table “admission” is subjectively assigned to
each patient by a physician. The “icd10” value is
determined by the standard classification of dis-
eases.” Except for the birth date, all date values in all
of the tables are stored as time stamps.

Table 2 shows an example of an analysis for the
medical histories of patients admitted to the
hospital. Axes that can be selected besides the
operative procedures and radiological examinations
include the types of chemotherapies, radiation
therapies, endoscopic therapies, laboratory tests,
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Table 2 The number of patients who had the radiological examination and operative procedure

Operative Procedure Radiological Examination
Chest | Abdominal Chest Chest | Liver- Chest Chest | Brain | Liver- Chest
(portable) | CT' | pelvis | (portable), | CT, | MR™™ | pelvis | (portable),
CT upper liver- CT, lower
abdominal | pelvis chest | abdominal
(portable) | CT CT | (portable)
Mastectomy 00 01 02 03 04 05 06 07 08 09
Distal gastrectomy 10 11 12 13 14 15 16 17 18 19
Colectomy 20 21 22 23 24 25 26 27 28 29
Total gastrectomy 30 31 32 33 34 35 36 37 38 39
Transurethral resection [ 40 41 42 43 44 45 46 47 48 49
of the bladder tumor
Thoracoscope 50 51 52 53 54 55 56 57 58 59
Radical prostatectomy 60 61 62 63 64 65 66 67 68 69

 CT = computerized tomography
f MR = magpnetic resonance

and physiological examinations and patient profiles
containing gender, birth date, and so forth. The
dimension selected as an axis may be a hierarchical
dimension. For example, Figure 2 shows the
instances of a therapy dimension for medical
records. Of the therapy dimension’s five levels, the
detailed operative procedure is the lowest level. The

operative-procedure-level values are grouped into
medical-care group level values. For example,
gastrectomy and laparoscopic surgeries are grouped
into the practice group for the stomach.

When we analyze such clinical records with the
traditional commercial multidimensional databases,

T
Therapy _
Type SUrglCal
Operations Chemotherapy
Care
Group Stomach Respiration
O ti . .
P%Eér;d'&/fe Gastrectomy  Laparoscopical Right upper
gastrectomy lobectomy
of lung
Total Distal
gastrectomy  gastrectomy
Figure 2

Hierarchy of therapy dimension
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we encounter the difficulties explained in the
following subsections.

Complex hierarchy and multiple dimension values
For a retail business, a purchase corresponds to a
fact, and each fact can be mapped to a point in a
three-dimensional space, where the dimensions are
the location of the store, the product sold, and the
purchase date. In other words, each fact has exactly
one dimension value in each dimension. In addition,
most traditional multidimensional data models
assume that dimension hierarchies are balanced and
nonragged trees. However, for medical records, each
patient may have many medical treatments, exami-
nations, and records of patient statuses. In addition,
medical treatments are segmented into surgical
operation, chemotherapy, and radiation therapy,
and the patient may have many different types of
treatments and different types of examinations. The
dimension hierarchies that we intend to use are not
balanced trees, as shown in Figure 2. For example,
in the data used in Table 2, the average number of
laboratory tests that a patient had during one
hospital stay was more than 200. The patient also
had physiological examinations, radiological ex-
aminations, and may have had endoscopic exami-
nations. Therefore, it is impossible to store medical
data in a star schema or snowflake schema, which
are often used for OLAP.

Specification of arbitrary intervals

In traditional multidimensional databases, slicing by
a single dimension value reduces the cube’s
dimensionality, which corresponds to narrowing
down all of the facts into a subset. For medical
records, the aggregates returned by a ranking query
for a laboratory test, after slicing by admission to
and discharge from the hospital, contain the tests
performed during the hospital stay and the out-
patient tests performed preadmission. Doctors,
however, would like to aggregate only those tests
performed during the hospital stay. Although one
solution is to assign an identifier to each hospital-
ization, this does not allow for specifying arbitrary
intervals, such as from patient’s first visit until
admission into the hospital or from the date of a
surgical operation until 10 days after discharge from
the hospital.

Measure

For a retail business, the purchase amount and price
would be measures. Measures can be combined
along any dimension, which allows for precompu-
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tation. One of the measures for medical records is
the number of patients, as shown in Table 2.
Because each patient has many values for each
dimension, it is impossible to simply combine
lower-level values along any dimension for rolling
up. In addition, depending on the needs of the
analysis, the numbers of arbitrary intervals and
events would be measures. For example, the data
should be viewed by separately counting each
interval, such as a hospital stay. In addition,
administrators, managers, and medical staff per-
sonnel would like to aggregate the number of
events, such as surgical operations and laboratory
tests, for use in determining how to reduce costs.

Temporal order among dimension values

For medical records, a value in each dimension
corresponds to an event with a time stamp, and
there is a temporal order among the dimensional
values. For example, there are cases in which
patients with larynx cancer have the surgical
operation after reducing the size of the tumor with
chemotherapy or radiation therapy, and where
patients have chemical or radiation therapy to
prevent recurrence of cancer after the surgical
operation on their larynxes. The OLAP system for
medical records needs to have a function to
aggregate the number of patients distinctly for these
various cases.

Performance for interactive analysis

A key strategy to speed up cube-view processing, as
shown in Figure 14, is to use precomputed cube
views. The precomputation makes it possible for
query response time involving potentially huge
amounts of data to be fast enough to allow
interactive data analysis in the traditional ap-
proaches. However, OLAP for medical records
cannot precompute or preaggregate in advance of
receiving queries, because the number of all
combinations of values can be prohibitively large.

To overcome the preceding difficulties, we designed
a prototype system, MedTAKMI-CDI. The predeces-
sor of this system, IBM Text Analysis and Knowl-
edge Mining (TAKMI), is a text-mining system used
to mine customer-support call logs for customer
relationship management™ and to mine biomedical
documents for the life sciences.’ In the next
sections, we give a detailed description of how to
model OLAP for medical records and how to support
fast response times.
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DATA MODEL

In this section, we give formal definitions of a
hierarchy, an ontology, and our data model
according to Bonatti et al.,” Pedersen and Jensen,’
and Inokuchi and Takeda.®

If S is a nonempty set, and <C S X S, then (S, <) is
an ordering. Although a definition of the ordering is
generally represented as <C S X S, this paper uses <
to represent a direct relation between two elements
in the set S, < to represent its transitive closure,
and < to represent its transitive closure or represent
that the elements are equal. If x < x for x € S, then S
isreflexive. f x <yandy<z—x<zforx,y,zeS,
then S is transitive. If x < yand y < x — x =y for x,
y € S, then S is antisymmetric. (S, <) is a partial
ordering if S is a reflexive, transitive, and antisym-
metric binary relation on S.

Definition 1 (better): Let (S, <,) and (S, <,) be two
orderings. We say (S, <,) is better than (S, <,) iff
Vx,y €S (x <,y — x <, y). In addition, we say that
(S, <) is strictly better than (S, <,) iff (S, <) is
better than (S, <,) and (S, <,) is not better than
(S, <)).

Definition 2 (hierarchy): Let (S, <) be a partial
ordering. A hierarchy of S is an ordering (S, <) such
that (S, <) is better than (S, <), (S, <) is the
reflexive, transitive closure of (S, <), and there is no
other ordering (S, <,) satisfying the preceding two
conditions such that (S, <)) is strictly better than
S, <.

Definition 3 (ontology): Suppose X is some finite set
of strings and S is some set. An ontology with
respect to X is a partial mapping 0 from X to
hierarchies for S.

For example, when S is given as {tire, car, hubcap},
where tire is a part of car, hubcap is a part of car,
and hubcap is a part of tire. In addition, everything
is a part of itself. For the set S, a partial order is
defined as {(tire, tire), (car, car), (hubcap, hubcap),
(tire, car), (hubcap, car), (hubcap, tire)}, and only
one hierarchy is defined as {(tire, car), (hubcap,
tire) }.

Given a hierarchy (or an ontology) (S, <), a fact

schema is defined as S’ = (F', T’), where F’ is a fact
type and T" is a hierarchy type, " = (C', <., top,.),
which is strictly better than (S, <), and the relations
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in (S, <) required for analyzing the documents are
remaining in T’. The hierarchy type is a three-tuple
(C', <, topg), where C={C’;, j=1, ..., n} is a set of
category types of T, and <, is a partial order on the
C's, with top,, € C’ being the top element of the
ordering. The intuition is that the top element of the
ordering logically contains all other elements; that
is, VC/]. e C, C/]. < top.. A hierarchy instance T of
type T’ is a two-tuple T = (C, <), where C is a set of
categories ¢ such that Type(cj) = C/]., and < is a
partial order on C. Each category ¢ € C has an
associated set dom(c) called its domain. The
members of dom(c) are called values of the category
c. An element in dom(c) is represented as c : v.

Let F={f, i=1, ..., m} be a set of facts. Each fact
corresponds to a patient. A fact-hierarchy relation-
ship between F and T'is a set R={(f, t, c : v)}, where
feF ceC and v € dom(c). (f, t, c: v) represents
that an event which is described by a term v of
category c occurs at time t for a patient f. Thus, R
links facts to hierarchical values. Our data object is a
four-tuple D={S', F, T, R}, where S’ = (F/, T') is the
fact schema, Fis a set of facts where Type(f)=F, T=
(C, <) is a hierarchy instance where Type(cj) = Cj for
el and C’j € C, and R is a set of fact-hierarchy
relations such that (f,t,c:v) e R—feFA3ce
C(v € dom(c)).

Conceptually, R corresponds to a relation P C
2domic) 5 pdom(e) which is not a normalized
relation. P corresponds to a fact table for a star
schema, and each row and column in P corresponds
to a patient and a category (dimension value in the
star schema), respectively, A naive method cannot
store the data in a relational database and cannot
efficiently aggregate the data along the hierarchy.
The first reason that it cannot do so is that the
relation has many missing values and a set of values
for each attribute c. The second reason is that the
number of attributes in the relation becomes very
large. For example, the number of categories & in
our prototype is about 250,000. The third reason is
that a complex relationship among the attributes
(columns) exists.

IMPLEMENTATION

As explained earlier in the section “Issues for
OLAP,” medical record data cannot be precomputed
and preaggregated in advance of receiving queries.
We must design table schema or data structures to
achieve query response times that are as fast as
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T
(0,300,0)

Profile Therapy Examination
(1,8.1) (10,38,1) (40,50,1)
Gender Ten-year group liverDysfunction Surgical operation  Chemotherapy
(20,2) (312 4.2,2) (11,27,2) (30,34,2)
Stomach Respiration Stomach  Respiration
(12,16,3)  (20,17,3) (31,28,3)  (32,29,3)
Gastric resection
(13,94)
Figure 3

Category tree for medical records

possible. Dimension hierarchies for our medical
OLAP constitute a general tree rather than a set of
balanced trees, and in our schema, each path from
the root node to a leaf node corresponds to a record
in a dimension table of a star schema. For medical
records, the hierarchy is modeled as a tree rather
than a forest to allow for multiple hierarchies. We
call the hierarchy a category tree. The category tree
is stored in the following CATEGORY table, in which
each row contains the information pertaining to a
particular node. The table is defined as

CATEGORY (PATH CHARACTER,
DESCRIPTION CHARACTER,
PREORDER INTEGER,
POSTORDER INTEGER,
DEPTH INTEGER,
PARENT INTEGER).

In the table, PATH represents a path from the root
node to the node corresponding to its record, and
DESCRIPTION is its node’s name. PREORDER,
POSTORDER, and DEPTH are a preorder, postorder, and
depth assigned to the category node for calculation
efficiency, respectively, and PARENT is a preorder of
its parent node. For example, Figure 3 shows an
example of a part of a category tree. All leaves in the
dimension hierarchy of Figure 2 are stored as values
in a table EVENT. A label for each node, such as
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“Surgical operation” or “Chemotherapy”, is stored
as the node name. Numbers below the node name
are the preorder, postorder, and depth that are
assigned to the node, respectively. The 10-year age
group is calculated from each patient’s birth date.

In addition to the CATEGORY table, a table EVENT
whose records correspond to the lowest-level values
in the fact table of a star schema is defined as

EVENT (PATIENTID INTEGER,
DATE DATE,
PREORDER INTEGER,
VALUEL CHARACTER,
VALUE2 DOUBLE,
EVENTID CHARACTER).

In this table, PATIENTID is an identifier for a patient,
DATE is the date when an event occurs. PREORDER is a
preorder of the category node to which the event
refers. It is not necessarily the case that the referred-
to node is a leaf node in the category tree. VALUE1
and VALUE? are detailed values that the event
describes. For example, Table 3A shows a history
containing three surgical events. In preprocessing,
information in the table is converted into instances
in the EVENT schema, as shown in Table 3B, where
values in the column EVENTID represent the IDs to
identify events that occur at the same time. As
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Table 3 Preprocess of MedTAKMI-CDI: (A) example of a table “Surgery”; (B) example of a table “EVENT”

A

PatientID Date Care group | Surgeryl Surgery2 Surgery3
1 2006/04/05 12:51 | stomach Total gastrectomy laparoscopical operation | NULL

1 2006/05/12 08:12 | respiration | Ablation of right upper lobe of lung | NULL NULL

2 2006/04/05 13:22 | stomach Total gastrectomy NULL NULL

B

PATIENTID | DATE PREORDER | VALUE1 VALUE2 EVENTID
1 2006/04/05 12:51 | 13 Total gastrectomy NULL 1

1 2006/04/05 12:51 | 12 Laparoscopical operation NULL 1

1 2006/05/12 08:12 | 20 Ablation of right upper lobe of lung [ NULL 2

2 2006/04/05 13:22 | 13 Laparoscopical operation NULL 3

shown in Table 1, the table “dischargeSummary”
contains information such as diagnosis, which is not
an event but a statement recorded on the date of
discharge. In this case, DATE and VALUEI in a record
for the diagnosis in the EVENT table become the
observed date and the diagnosed disease name,
respectively. In addition, records for laboratory tests
contain information in their numerical results. In
this case, VALUEL and VALUE? in the corresponding
record in the EVENT table become NULL and the
numerical value, respectively.

The preceding data schema allows for fast aggrega-
tion at the desired level of detail rather than for leaf-
level values in the category tree. For example, this
makes it possible to roll up from detailed operative
procedures to care groups. The PREORDER,
POSTORDER, and DEPTH in the tables CATEGORY and
EVENT are used to handle ancestor-descendant
containment in a tree.” The method for checking the
containment is by assigning a preorder and a
postorder to each node in the tree, as shown in
Figure 3, and then comparing the numbers assigned
to the two nodes. If node A is an ancestor of node B,
the preorder of A must be less than the preorder of
B, and the postorder of A must be greater than the
postorder of B. Because the ancestor-descendant
containment can be represented as the relationship
of preorder and postorder without using any
functions to process the strings, the method can
quickly aggregate the various distributions.>"”
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Concretely, the higher-level values are derived using
the following SQL query:

SELECT PATIENTID, DATE, prel, DESCRIPTION AS
VALUEL, NULL, EVENTID

FROM EVENT, CATEGORY

WHERE
PARENT =prel AND EVENT.PREORDER > prel AND
EVENT.PREORDER <= (postl 4+ depl) AND
EVENT.PREORDER >= CATEGORY.PREORDER AND
EVENT.PREORDER <= POSTORDER 4+ DEPTH, (1)

where prel, postl, and depl are a preorder,
postorder, and depth assigned to the parent of the
desired level node in the category tree. Because the
derived result is the same structure as the original
data, we can continue the query process by using
the results of the previous query operations, which
allows physicians to analyze medical records in an
interactive manner.

Here are three examples for ranking, rolling up, and
slicing queries, respectively. The first is a Structured
Query Language (SQL) query to aggregate the
number of patients who had surgical operations in a
stomach care group for each operative procedure
and to rank the aggregated numbers. This query is
represented as

SELECT VALUEL, COUNT(DISTINCT PATIENTID) AS
COUNT
FROM EVENT
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WHERE PREORDER >=pre2 AND PREORDER <= (post2 +
dep?)

GROUP BY VALUE1

ORDER BY COUNT DESC, )

where pre2, post2, and dep2 are the preorder,
postorder, and depth of a care group for stomachs.

Another SQL query to aggregate the number of
surgical events for each care group is represented as

SELECT VALUEL, COUNT(DISTINCT EVENTID) AS COUNT
FROM
(
SELECT PATIENTID, DESCRIPTION AS VALUEL,
EVENTID
FROM EVENT, CATEGORY
WHERE
PARENT =pre3 AND EVENT.PREORDER > pre3 AND
EVENT.PREORDER <= (post3+dep3) AND
EVENT.PREORDER >= CATEGORY.PREORDER AND
EVENT.PREORDER <=POSTORDER+DEPTH) EVENT
)
GROUP BY VALUE1 ORDER BY COUNT DESC, 3)

where pre3, post3, and dep3 are the preorder,
postorder, and depth assigned to the category node
for surgical operation in Figure 3.

When slicing by considering only patients who have
a certain chemotherapy, val4, the SQL (2) query is
modified as

SELECT VALUEL, COUNT(DISTINCT PATIENTID)
FROM EVENT
WHERE
PREORDER >=pre2 AND PREORDER <= (post2+dep?2)
AND
PATIENTID IN (
SELECT PATIENTID
FROM EVENT
WHERE
PREORDER >=pre4 AND
PREORDER <= (post4+dep4) AND
VALUEl=val4
)
GROUP BY VALUETL, 4)

where pre4, post4, and dep4 are the preorder,

postorder, and depth for the category node for that
chemotherapy.

INOKUCHI ET AL

MedTAKMI-CDI always maintains intervals as views
when slicing by considering the patients who satisfy
certain conditions. For example, an SQL query to
specify intervals from admission to discharge from
the hospital is represented as

SELECT PATIENTID, BEGIN, BEGIN+MIN(DATE-BEGIN)
AS END
FROM
(
SELECT A.PATIENTID, DATE, B.BEGIN, B.END
FROM
(SELECT PATIENTID, DATE FROM EVENTM
WHERE PREORDER =pre6 ) A,

SELECT PATIENTID, DATE AS BEGIN,
CURRENT DATE AS END
FROM EVENT WHERE PREORDER =preb
) B
WHERE A.PATIENTID=B.PATIENTID AND
DATE>=BEGIN
) A
GROUP BY PATIENTID, BEGIN, END, (5)

where pre5 and pre6 are the preorders assigned to
the nodes corresponding to admission to and
discharge from the hospital, respectively, when the
nodes have no children nodes. Because patients may
be admitted to a hospital many times, the SQL
specifies the first discharge after each admission by
using the function MIN.

MEDTAKMI-CDI

In the earlier sections, we presented the data models
and the basic implementation. This section de-
scribes representative functions of MedTAKMI-CDI.

Target selection

The target selection is a function to slice by
considering only patients who meet certain con-
ditions. The upper right frame in Figure 4 shows the
results returned by SQL code segment (5). The figure
represents specifying intervals “before” the “first”
discharge from the hospital “after” “all” admissions
for each patient. The first column can be selected
from among “normal”, “before (<)”, “before (<=)”,
“after (>)”, “after (>=)” and “on the same day”.
The “before (<)” means that the selected interval
does not include the day of the event, such as the
day of discharge. The “on the same day” allows a
user to make the start date and the end date of an
interval the same. The second column can select
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Category hierarchy viewer

from “all”, “first”, and “last”. By checking a box in
the third column, a physician can specify intervals
“before” the “first” discharge from the hospital
“after” the date of “all” admissions in which the
patient had surgical operations. By using “offset” in
the fifth column, physicians can select intervals
from the date of admission to 10 days after discharge
from the hospital. By clicking “delete” in the eighth
column, a condition that narrowed down into a
subset of the patients is deleted.

Hierarchical category viewer

The hierarchical category viewer returns the number
of patients, events, or intervals for each child node
of a category node selected by a physician. This
function corresponds to a ranking query in a
traditional multidimensional database. For example,
Figure 4 shows the distribution of patients for each
care group after narrowing down into female
patients by target selection.
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The blue bars in the lower right frame of the viewer
show the numbers of patients. In Figure 4, there are
438 patients who had surgical operations in the care
group for mammary glands. Red bars indicate
relative frequencies, comparing each subset of
patients to the initial set of patients. For defining
this, let S be the initial set of all patients. The target
selection due to some conditions returns S,, which is
the subset of S that satisfies the conditions. The
relative frequency for a category c in the subset S, is
calculated using the following formula:

freq(c, Sl)

| freq(c, S)

relfreq(c, S;) =

where |S,| is the number of patients in the set S, and
freq(c, S,) is the number of patients who have an
event represented by the category c in the collection
S,. As female patients are already narrowed down,
the relative frequencies for the groups of mammary
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gland and gynecology in Figure 4 are higher than the
others.

By selecting one of the radio buttons pointed at by
‘A’ in Figure 4, a physician can aggregate the
numbers for each child node of a selected category
node, for each value with a preorder that is referring
to a selected category node, or for each value with a
preorder that is referring to a descendant of a
selected category node. By selecting one of the radio
buttons pointed at by ‘B’ in Figure 4, the user can
aggregate the number of patients, events, or
intervals for the selected category nodes. By select-
ing one of the radio buttons pointed at by ‘C’ in the
figure, the first event, the last event, or all of the
events for each specified interval in the target
selection can be aggregated.

Clicking one of the results of the category view and
the other functions leads to narrowing down the
patients into a subset of those who satisfy the
condition corresponding to the selected result, and
the condition is added into the set of conditions in
the target selection. Because this system is inter-
active, the physicians are better able to discover
hidden knowledge by using a combination of mining
functions and trial-and-error approaches.

Chronological viewer

This viewer allows a physician to discover trends by
viewing the chronological distribution of a set of
patients. This function supports yearly, quarterly,
monthly, and daily distributions. Using this viewer,
one can investigate how the frequency of some
occurrence changes with time.

Two-dimensional map viewer

The two-dimensional viewer allows a physician to
visualize the strength of an association between
events. Figure 5 shows associations between events
of surgical operations and radiological examinations
for hospital patients. The values in each cell
represent the strength of the association of those two
events—the higher the value, the stronger the
association. For example, the operative group
“stomach” and the radiological examination “chest
X-ray exam” have a strong association, which
means that many patients have a chest X-ray exam
after having surgical operations on their stomach.
The numbers “570 (1.11)” in the cell mean that
there were 570 patients who mentioned both the
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distal gastrectomy and the chest X-ray exam, and
that its relative frequency was 1.11. Formally, the
relative frequency of the two-dimensional maps is
calculated by using the following formula:

freq(c; and c;, S;)
freq(C17 Sl) freq(C27 Sl)
IS |Si

relfreq(ci, 2, Si) =

ISi]

where S, is a set of patients selected by the target
selection and freq(c, and c,, S,) is the number of
patients who have events ¢, and c,. The events c,
and c, belong to the categories of the x- and y-axes,
respectively.

The pull-down menu pointed to by ‘A’ in Figure 5
can select from “default”, “V=C”, “V=(E)=C”,
“V<=C”, “V<C”, “V>=C” and “V>C”. As exam-
ples, “V<C” means that an event on the vertical axis
occurs before an event on the horizontal axis, and
“V=(E)=C” means that events on the vertical axis
and on the horizontal axis happen on the same day
and that their EVENTIDs in the table EVENT are same.

Two-dimensional chronological viewer

The two-dimensional chronological viewer is a
function to display the chronological distribution
around a selected event. Figure 6 shows distribution
of surgical operations around dates of admission
indicated by a vertical red line. In each row of the
figure, a red plot line, a blue plot line, and a black
plot line show the distribution of surgery events in
each care group for male patients, female patients,
and all patients, respectively. The vertical gray grid
lines indicate the number of days following admis-
sion. A physician can find care groups of patients
who spent a long time in the hospital before their
surgical operations, which may be important for
better management of hospitals.

Pattern enumeration

The pattern enumeration viewer is a function to
enumerate frequently concurring patterns from a set
of events or a set of event sequences.“’12 Events
contained in each pattern are interactively selected
before running this function, and it returns gener-
alized patterns by using the category tree.>"*
Figure 7 shows the discovered frequent sequential
patterns when the events of admissions, discharges,
and surgical operations are used as items. For
example, the pattern in the first row means that 398
patients had a surgical operation in the care group
for liver, gallbladder, and pancreas in an average
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Two-dimensional map viewer

time of 4.51 days after their admission and were
released from the hospital in an average of 25.63
days after their admission.

Rule generation

There are two functions to discover rules. The first
function clusters members with higher objective
variables into one group and members with lower
objective variables into another group. By using this
function, a physician may be able to discover the
cause of prolonged hospitalizations. A pattern P to
describe the group is evaluated by a measure of
interclass variance defined as

ICV(P) = [$1|(S1 = 5)* +152/(S2 = 5),

where S is a set of patients and the set S is divided
into S, that satisfies P and S, that does not satisfy P,
|S.| is the number of patients in group i, and S; is
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the mean of the objective variables."® For example,
one result shows that the average number of
hospital days for the 42 patients who have two
surgical operations in the orthopedic surgery group
is 92.19, although the average hospital stay is about
17.59 days.

The second rule-discovery function is a rule
generator based on a traditional decision tree.'®
Because most medical records of laboratory tests are
time series data, it is not easy to feed the data to a
decision tree. Therefore, when a physician selects
one event as a base date, MedTAKMI-CDI inter-
actively collects explanatory variables from the
medical records of the laboratory tests that are the
newest records before the selected base date.
Objective variables are also interactively selected
from the records after the base date. Because
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Two-dimensional chronological viewer

MedTAKMI-CDI supports selecting various objective
variables, the heads of the discovered rules may be
sequences of events. (The head of a rule corre-
sponds to the consequence of a rule: If a rule is
represented as A => B, then the head of the rule is
B.)

Other functions

MedTAKMI-CDI has other auxiliary functions. For
example, all of the results from these functions can
be exported as comma-separated values (CSV) files.
All parameters, including conditions used to narrow
down the numbers of patients, can be saved. When
data in MedTAKMI-CDI is updated on a daily or
weekly basis, the physician can analyze the newly
updated data by using the saved parameters.
Because a category tree may have more than 25,000
nodes and the EVENT table can have more than
280,000 distinct values, it may not be easy to find
the category node that a physician would like to
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analyze or a category node referred to by a preorder
of a value that he or she would like to use; therefore,
MedTAKMI-CDI supports a search function to
search for category nodes and values.

USE SCENARIO
A typical scenario using MedTAKMI-CDI consists of
the following steps:

1. Deciding on a point of clinical care practice to
study—For example, asking, “What is the actual
clinical practice for a specific group of patients
suffering from a certain disease?” This will be the
basis to decide on hypotheses about best prac-
tices, deviations from standard care, and poten-
tial factors influencing the outcomes.

2. Interactive analysis of a collection of clinical
records—After a physician has decided to focus
on a particular disease and a group of patients,
MedTAKMI-CDI provides a suite of analytical

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007



=3 root Clear History
o [ profile |
D) vist Clear History )

o [ hospitalization _predicate position | samedate | _keyword(category) offset |_#of patients

o [ careHistory = fatter(>=) all O *NODE™ ( admission ) 0 ?Ti

o [ examinalions | ' .

o [ therapies before(==) iflrSl =] NODE* ( discharge ) 0 7 I

o [ diagnosis 1] Ml | 'Jl

L dischargeSummal 1

? r_‘!_ £l y patients list |

patterns frequency | # of patients |

C set ® sequence hospitalization.admission(0, 0.0) | =

careHistory order surgeries liver, gallbladder & pancreas(l, 4.51) 437 {398
hospitalization discharge(2, 25.63)
hospitalization.admission(0, 0.0)
S  hospitalization.discharge(, 15.48) Eaa] ‘9”4
¢ default - freq hospitalization.admission(0, 0.0)
careHistory.order. surgeries.apparatus respiratorius(i, 3.54) 795 755
Lhospitalization.discharge(2, 13.43)
_hospitalization. admission(0, 0.0)

) mining ® aggregate  careHistory.order.surgeries.stomach(1, 3.0) 6| 41
.hospitalization.admission(0, 0.0) - '6“
.careHistory.order.surgeries.liver, gallbladder & pancreas(1, 4.51) |437 398
.hospitalization.discharge (2, 25.63)

1 120
Lhospitalization discharge(2, 38.87)
hospitalization.admission(0, 0.0) 138 128
minimum support 100 |Lhospitalization.discharge(0, 0.0)
|| hospitalization.admission(0, 0.0)
|| | careHistory order.surgeries.ophthalmology(1, 1.53) 545 149
|| hospitalization.discharge(2, 4.53)
st Kb | hospitalization.admission(0, 0.0)
o of || careHislory.order.surgeries head & neck(l, 2.5) 280 201
|Lhospitalization discharge(2, 17.24) 1
hospitalization.admission(0, 0.0)
| LcareHistory.order. surgeries.esophagus(1, 4.18) 183 177
run |1 hospitalization discharge(2, 32.56)
 hospitalization.admission(0, 0.0)
. . _careHistory.order.surgeries.glandula mammaria(1, 2.27) 434 422
_ca | _20Map | chr hospitalizati ge(2, 13.34)
2D [ pattern enumeration hospitalization.admission(0, 0.0}
= T  careHislory.order.surgeries.gynecology(1, 2.95) 332 303

| pattern | rule : n B | |

search | category search | Save | I =]

Figure 7
Pattern enumeration

functions that can be used to test and verify the
hypotheses and to gain insight.

3. Extraction of clinical care patterns and predictive
rules—After the group of patients has been
identified, MedTAKMI-CDI can generate a list of
clinical care patterns that are dominant among
these patients. It can also generate a list of
predictive rules about a particular attribute or
attributes that are observed in the group of
patients. This type of knowledge can be further
verified and refined to define the standard of
clinical care.

Figure 6 shows a distribution of surgical operations
in terms of time line, gender, and organ. The span of
the time line starts five days before hospital
admission and ends 15 days after discharge, which
is specified in the menu on the left side of the screen.
We can restrict the data to only the first hospital
admission for each patient, but the view in Figure 6
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shows each hospital admission-event and discharge-
event pair for each patient as a separate entity. The
number of surgical operations each day for male and
female patients is shown by the red and blue plot
lines, respectively. The total number of surgical
operations is shown by the black plot line. Each row
of the view corresponds to a surgical operation for a
particular organ. We can see, for example, that
when the surgical operation takes place within a few
days after hospitalization, the required examina-
tions and diagnosis have been performed on the
patients as outpatients, making it possible for
patients to have surgery shortly after their hospital
admission. Stomach cancer surgery, however,
shows two peaks in the graph—three days and five
days after admission. If the second peak of stomach
cancer surgery is caused by a delay because of
missing or duplicated laboratory tests, then it could
be addressed by improving the outpatient clinical
treatment process. Because many of the categories
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Figure 8

Association between CEA value ranges at hospital admission and discharge

for such analyses are defined hierarchically based
on a standard or local ontology (for example, icd10
or SNOMED CT**U), physicians can work seam-
lessly from coarse-grained to fine-grained concepts
for clinical analysis.

As an example of the analytic functions, Figure 8
shows the two-dimensional map view that captures
the self-correlation between the CEA (carcinoem-
bryonic antigen) values of pancreatic cancer patients
at hospital admission and discharge. CEA is known
as one of the biomarkers for certain cancers. The
two-dimensional map view in Figure 8 shows the
CEA value ranges at hospital admission in the
vertical axis and the CEA value ranges at hospital
discharge in the horizontal axis. The blue cells in the
view indicate strong correlations between two CEA
value ranges. Most of the diagonal blue cells in the
view imply that the patients’ CEA values remain
unchanged at hospital admission and discharge, but
a significant number of blue cells in the area
indicated by the lower left red triangle (with the
darkest blue indicating the strongest correlation)
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indicate that the patients’ CEA values did improve
after hospitalization. Further analysis of those
patients with improved CEA values and/or other
tumor-marker values could lead to better clinical
care for pancreatic cancers.

A clinical care pattern is defined as a sequence of
more than one event for a particular patient
identified from clinical records. A physician can
specify certain types of events that constitute a
sequence. In Figure 7, five types of events—hospital
admission, discharge, surgical operation, endo-
scopic therapy, and radiation therapy—are selected
for pattern enumeration. Most of the extracted
patterns are simple ones, such as from admission to
surgical operation to discharge, but we can observe
that there are cases when two or more surgical
operations and endoscopic therapies take place. We
expect that fine-grained analysis of enumerated
patterns would reveal dependencies of the outcomes
of clinical care upon particular subsequences of
events in some cases. Figure 9 shows one instance
of a predictive rule, showing that among 3,966
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Figure 9
Generation of predictive rules

patients with CEA values higher than 2.8, 33 of them
suffered from a malignant neoplasm of the stomach.
Rule generation is tightly connected with the
underlying event modeling and time-line analysis.
Naive rule generation might easily mislead physi-
cians by concluding there is a disease based on
biomarker values from after or from too long before
the development of the disease. Therefore, Med-
TAKMI-CDI asks for specifications of the spans of
the analysis (as given in Figure 6), together with
explanatory variables.

DISCUSSION AND RELATED WORK

It is critical to achieve query response times that are
as fast as possible when interactively analyzing a
very large number of medical records. A key
strategy to speeding up the aggregation of the
records is to use indexing technology. As mentioned
earlier in the section “Implementation,” we use the
preorders and postorders to check ancestor-de-
scendant containment in a category tree. Although
the method was proposed in 1982, it recently drew
attention as the method to index Extensible Markup
Language (XML) database data and to map XML
data into a relational database,'® as each XML
document is modeled as a Document Object Model
(DOM) tree. Several methods—such as prefix
label,19 Dewey order,20 prime label,21 VLEI code,22
and embedding into a k-ary tree”’—are used to
index XML. A disadvantage of such methods as
preorder-postorder and prime label is that they need
the reassignment of preorders and postorders of
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nodes when inserting some nodes into a tree. As
each node has the same label as a prefix of its
children in such methods as prefix label and Dewey
order, they do not need to reassign the labels when
inserting some nodes. However, because they need
to compute functions to process strings to check
ancestor-descendant containment, they need more
computation time than the preorder-postorder
method. Because we assume that a category tree is
rarely updated and records in the table EVENT are
often inserted, we use the preorder-postorder
method to index the category tree.

The performance evaluation is described in
Reference 8. Although the evaluation was conducted
by using biomedical documents, the model and
implementation used in the evaluation are the same
as those in the work discussed in this paper. In the
evaluation, we selected 503,989 abstracts from
MEDLINE**** which contain structured informa-
tion, such as authors and mesh terms, and
unstructured information, such as titles and ab-
stracts. After preprocessing, the numbers of anno-
tated keywords that correspond to records in the
table EVENT, categories that correspond to records in
the table CATEGORY, and distinct ¢ : v were
193,185,919, 340,154, and 1,4331,595, respectively.
In most cases, the results for various queries
appeared within one second. Although we needed a
few minutes to get results for some queries in the
worst case, we could reduce the response time by
dividing the table EVENT into multiple tables that did
not contain identical patient (document) identifiers.®
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Levene and Loizou™ is an example of the many
papers that mention the design of star and snow-
flake schemas as methods to represent a dimension
hierarchy (paths on an ontology). In these papers
there is no discussion of interactive analysis
specifying arbitrary intervals, although theories of
dependencies, normalizations, and summarizability
are discussed. Some methods need to reconstruct
databases with every change and redesign the
analytical attributes. For example, it is often difficult
to reconstruct the existing data warehouse after any
change of analyzed data and attributes.”® To the best
of our knowledge, few research papers that apply
complex clinical records and genomic data to
multidimensional analysis are published.1’27’28 Re-
cently, BioStar, which has the properties of exten-
sibility and flexibility that are applicable to clinical
records and genomic data, was proposed.28 BioStar
stores complex data containing many-to-many
relationships by introducing tables, called m-tables,
which associate between a central fact table and
each dimension table. The schema is based on the
entity-relationship approach. In contrast, the meth-
od proposed in this paper employs a metaschema
with patient identifier, time stamp, attribute name,
and attribute values, rather than a collection of rigid
relational schema for clinical information. The
advantages of our method are the capabilities to
interactively specify arbitrary intervals, to easily
integrate some ontologies that are not balanced tree,
and to achieve fast response time without precom-
putation.

CONCLUSION

In this paper, we described our approach to building
the CDI solution. The proposed system, called
MedTAKMI-CDI, employs metaschema and uses
ancestor-descendant containment by preorders and
postorders to achieve fast query response times.
MedTAKMI-CDI provides various functions to ana-
lyze medical records in an interactive manner.
MedTAKMI-CDI is still under intense development
and reflects many of the requirements of physicians
and hospital administrators. One of the fundamental
requirements is to incorporate time-stamped events
explicitly in pattern enumeration and rule gener-
ation. This would be easily perceived as showing
that a set of events can be used as an abstraction of
some sequence of events. The former can abstract
all the permutations of event sequences observed in
the latter. Similarly, a simple sequence of events can
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generalize all of the time-stamped sequences of
events by ignoring the time intervals between the
adjacent events in the sequence. The latter could be
used to provide mission-critical analysis of partic-
ular clinical treatments.
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