A static compliance-checking
framework for business
process models

Regulatory compliance of business operations is a critical problem for enterprises. As
enterprises increasingly use business process management systems to automate their
business processes, technologies to automatically check the compliance of process
models against compliance rules are becoming important. In this paper, we present a
method to improve the reliability and minimize the risk of failure of business process
management systems from a compliance perspective. The proposed method allows
separate modeling of both process models and compliance concerns. Business
process models expressed in the Business Process Execution Language are

;' I\I;IIililller transformed into pi-calculus and then into finite state machines. Compliance rules

K. Xu captured in the graphical Business Property Specification Language are translated into
linear temporal logic. Thus, process models can be verified against these compliance
rules by means of model-checking technology. The benefit of our method is threefold:
Through the automated verification of a large set of business process models, our
approach increases deployment efficiency and lowers the risk of installing noncom-
pliant processes; it reduces the cost associated with inspecting business process
models for compliance; and compliance checking may ensure compliance of new
process models before their execution and thereby increase the reliability of business
operations in general.

INTRODUCTION itive and remain in business. As a result, many

Modern businesses face a broad number of chal- enterprises have recently shown a growing interest

lenges. While striving to please their customers, in business process management (BPM), which

they must meet the expectations of their share-

holders and remain profitable. Due to globalization
©Copyright 2007 by International Business Machines Corporation. Copying in

and digitization, they are typically confronted with printed form for private use is permitted without payment of royalty provided
. . A . that (1) each reproduction is done without alteration and (2) the Journal
increased and hlghly dynamlc competltlon. Conse- reference and IBM copyright notice are included on the first page. The title
. L. . and abstract, but no other portions, of this paper may be copied or distributed
quently, investments in information technology (IT) royalty free without further permission by computer-based and other
. information-service systems. Permission to republish any other portion of the
have become a necessary condition to stay compet- paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LU, MULLER, AND XU 335

336

refers to all activities performed by businesses to
model, automate, optimize, monitor, and adopt their
. 1,2
businesses processes. ~~ Thus, there has been an
increased acceptance and adoption of business
process management systems (BPMSs) in order to
efficiently support, execute, and monitor business
processes.

The above development has been paralleled by a
growing number of regulatory requirements im-
posed on businesses. Prominent examples in the
United States are the Gramm-Leach-Bliley Act,3 the
Sarbanes Oxley Act (SOX) ,4 and the USA Patriot
Act.” While these United States regulations have
very broad coverage, many industry-specific regu-
lations—such as the international Basel II accord,6
European Money Laundering Regulation,7 and the
Law of the People’s Republic of China on the
People’s Bank of China®—have been enacted around
the globe. Demonstrating compliance with legal
requirements and international standards generally
requires that affected companies document their
business processes. Although many enterprises try
to regard such documentation requirements as an
opportunity to identify their informal processes and
to render their execution more efficient, for large
enterprises with thousands of different business
processes, this alone represents a considerable
challenge.

Enterprises operating in heavily regulated indus-
tries, such as financial services, health care,
government, and national defense, are likely
governed by a large number of regulatory require-
ments. As these requirements must be implemented
and enforced by a multitude of internal business
and IT controls, many regulations now recommend
the use of respected standards, such as COBIT**
(Control Objectives for Information and Related
Technologies)9 and ITIL** (Information Technolo-
gy Information Library),10 for the implementation
of an enterprise IT system. These standards consist
of well-defined abstract process definitions that can
be tailored according to a company’s individual
needs.

Because of the increasing number of regulations and
standards, enterprises need a comprehensive com-
pliance-management approach, as discussed in
Abrams et al."" and Giblin et al.'* They need to be
able to understand the implications of new regula-
tions for their business and its processes. As

LIU, MULLER, AND XU

business processes are increasingly managed using
BPMSs, regulatory requirements that necessitate
changes to the structure of particular workflows
directly impact business process modeling. Thus,
whenever a new regulatory requirement is enacted,
a company needs to know what its impact is. Three
effects are possible: existing business processes
must be adapted or removed; new business pro-
cesses must be introduced; or there is no impact
because all business processes are already compli-
ant with the new requirement.

Business processes that are automated through
BPMS can be used to implement IT processes and
controls, as defined by ITIL or COBIT, and thereby
address existing regulations. The impact of new
regulatory requirements, however, cannot be as-
sessed using these frameworks. For large enterprises
with thousands of business processes deployed on
the BPMS and stored in specific repositories, the
assessment of which existing process definitions
comply with a new regulatory requirement is of
utmost importance. In this paper, we describe an
approach that allows for the static verification of
business process models against a set of formally
expressed regulatory requirements, which include
constraints on the state and execution order of
process activities. We call these formally expressed
regulatory requirements compliance rules. Our
approach helps a company with the identification of
noncompliant business processes before their exe-
cution and, in the case of noncompliance, indicates
the nature of the problem.

Potential benefits of automatic verification of
business process models

To ensure compliance, the impact of each new
regulatory requirement on existing business process
models needs to be identified. Although BPM does
not help here, our approach indicates which
processes are compliant and which are not, hence
providing a valuable tool to ensure that new
requirements are incorporated into the company’s
process models. Hence, the benefit of our method is
threefold:

1. Through automated verification of a large set of
business process models, our approach increases
efficiency during deployment and lowers the risk
of implementing and activating noncompliant
processes.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

2. By automating a tedious task that must otherwise
be done manually, our method reduces the cost
associated with inspecting business process
models for compliance.

3. Used as a tool during modeling of new business
processes, our approach ensures compliance of
new models before their execution and thereby
increases the reliability of business operations in
general.

Case study

We now introduce a case study, which we shall use
as a running example throughout this paper. We
assume the existence of a Chinese bank called
SimpleBank, whose managers want to know
whether its business operations conform to a set of
relevant compliance rules. For the sake of simplic-
ity, we focus only on SimpleBank’s account-opening
process, whose process definition is portrayed in
Figure 1.

We further assume that at some point SimpleBank is
confronted with a set of new compliance rules
corresponding to the Rules for Anti-Money Laun-
dering by Financial Institutions,13 as published by
the People’s Bank of China. The two relevant
articles are Article 11 and Article 13. Article 11 states
in part: “When opening deposit accounts or pro-
viding settlement service for individual customers,
financial institutions shall verify the customers’ IDs
and record the names and ID numbers.” Article 13
states: “Financial institutions shall abide by relevant
rules and report to the People’s Bank of China and/
or the State Administration of Foreign Exchange of
any large-value transactions detected in the process
of providing financial services to customers.

Classification of large-value transactions shall be
determined in line with relevant rules made by
the People’s Bank of China and the State
Administration of Foreign Exchange on reporting
of fund transactions.

For example, if a customer deposits a large amount
of money into his account, the respective transac-
tion must be reported. Compliance with this rule
requires an adequate interpretation of large value
according to the relevant rules made by the People’s
Bank of China and the State Administration of
Foreign Exchange. For the sake of simplicity, we
shall assume this is a parameter that can be flexibly
adjusted.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Given the business process in Figure 1 and a set of
compliance rules, we demonstrate in this paper how
a set of well-defined model transformations enables
the use of model-checking technology to verify
whether the definition of a business process
complies with a set of relevant compliance rules. We
call our method compliance checking.

Overview of the compliance-checking method
Overall, our compliance-checking method includes
six major steps (Figure 2).

In Step 1, we model our business processes using
BPEL (Business Process Execution Language).14 In
Step 2, we use the visual BPSL" to specify relevant
compliance rules. (In the section “Modeling business
processes and compliance rules,” we provide both
the BPEL process model and the compliance rules
formalized in BPSL (Business Property Specification
Language) for the SimpleBank case study.) We
transform the BPEL process model into a represen-
tation using pi-calculus16 in Step 3.1. Then, in Step
3.2, the pi-calculus is transformed into a finite state
machine (FSM). In Step 4, the BPSL compliance rules
are transformed into linear temporal logic (LTL).17
(Steps 3.1, 3.2, and 4 are described in the section
“Model transformations.”) Having thus formalized
both the business processes and compliance rules, in
Step 5 we use model-checking technology18 to
statically verify whether the business processes
comply with the imposed regulations. In Step 6,
counterexamples (i.e., execution orders of process
activities that demonstrate how the compliance rules
can be violated) are fed back to the business process
layer to demonstrate how the compliance rules have
been violated. (Details about the model checking,
counterexample tracing, and specific optimization
approaches for compliance checking are presented in
the sections “Compliance-checking framework and
case study results” and “Advanced features of the
compliance-checking framework.”)

MODELING BUSINESS PROCESSES AND
COMPLIANCE RULES

Before introducing the details of our compliance-
checking method, we briefly explain how to model
business processes with BPEL and how to specify
compliance rules with BPSL.

Business process modeling using BPEL

In the earlier section “Case study,” we introduced a
conceptual account-opening process for Simple-

LIU, MULLER, AND XU

337

338

?
! !
 IdenifyCustomerinfo

l’“”

no

*

yes

~

e =
/
~ PrepareProposalDoc

Valid?

no —yes
ApplyAccountPolicy
—

CloseAccount ;
ActivateAccount

EvaluateDepositAmount ecodiceLiino

l Large deposit? l

no O
\

DoDeposit

i 4

NotifyCustomer

|
®

y

ReportlLargeDeposit

Figure 1
Account-opening process

Deposit?

s

P—

LIU, MULLER, AND XU

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Business Process

(e.g., AccountOpening) BPEL
Business Process _Program Model

(e.g., Anti-Money Laundering) BPEL

Compliance Rule _PrOPerties | yjodel
Modeling
[Step 2] [Step 4]
Figure 2

Compliance-checking method

Pi-Calculus Finite State
Model Machine

Modeling Transformation Transformation Input
[Step 1] [Step 3.1] [Step 3.2]
)) Model
Compliance Checking : Checking
Counterexample Tracing [Step 5]
[Step 6]
Compliance Rules Input

LTL
Formulas

Transformation

Bank. Assuming that SimpleBank wants to take
advantage of a BPMS to manage this process, the
process should be specified with an executable
business process modeling language. BPEL is such a
language. It is a de facto standard for business
application integration and business-to-business
processing based on XML (Extensible Markup
Language), with a specific focus on Web services. It
synthesizes essential aspects of Web Services Flow
Language (e.g., support for graph-oriented process-
es)1 and XLANG™® (e.g., structural constructs for
processes) into one cohesive language to support
implementing business processes in a natural
manner. Although there is no formal proof that
BPEL is powerful enough to express all require-
ments related to business processes, BPEL has been
applied in many real customer cases and enjoys
broad industry acceptance. Because of this and its
characteristic features, BPEL has been the business
process modeling language of choice in our com-
pliance-checking method.

A BPEL process, also called a BPEL program,
consists of four major elements: The Variable
section defines the data variables used by the
process, providing their definitions in terms of Web
Services Description Language (WSDL) message
types, XML schema simple types, or XML schema
elements. The PartnerLinks section defines the
different parties that interact with the business. The
FaultHandler elements define the activities that
must be performed in response to faults during
process execution. The rest of the process definition

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

contains the description of normal behavior with
BPEL activities, including BasicActivity, Structured-
Activity, and ScopeActivity. The BPEL program
corresponding to the account-opening process is
given in Figure 3. (It shows only the behavior
definition section, whose essence is self-explana-
tory.) The precise semantics of BPEL activities and
variables are explained in the section “Model
transformations.”

As writing BPEL code manually is relatively
cumbersome, process designers often model busi-
ness processes visually by using a process modeling
tool such as IBM WebSphere* Business Integration
Modeler (WBI Modeler).21 In addition to providing a
visual user interface, these tools allow graphical
process models to be exported as BPEL programs.
We do not focus on the transformation from Unified
Modeling Language (UML**) to BPEL here; refer to
Mantell** for more detailed information. (The visual
process modeling language provided by WBI Mod-
eler is partially compatible with UML activity-
diagram notation.)

Compliance rule modeling using BPSL

Temporal constraints in compliance rules can be
specified formally with temporal logic formulas,
such as LTL and computation tree logic (CTL).
However, for people without a background in
formal logic systems, temporal logic systems are
rather difficult to understand and use. The purpose
of BPSL is to provide a more intuitive formalism to

LU, MULLER, AND XU 339

<bpws:sequence name="Sequence" .. >
<bpws:receive createlnstance="yes" name="AcceptCustomerReq"

partnerLink="ACQ" variable="variable_acq" ... />
<bpws:flow name="Flow" ... >
<bpws:scope name="Scope" ... >
<bpws:sequence name="HiddenSequence" ... >

<bpws:invoke inputVariable="variable_oci"
name="0btainCustomerInfo" outputVariable="variable_oci" p.../>
<bpws:switch name="VIP?" ... >
<bpws:case ... >
<bpws:empty name="EmptyAction2" ... />
</bpws:case>
<bpws:otherwise>
<bpws:sequence name="HiddenSequencel" ... >
<bpws:invoke inputVariable="variable_rfcd"
name="RetrieveFullCustomreDt1" outputVariable="variable_rfcd" ... />
<bpws:invoke inputVariable="variable_acr"
name="AnalyzeCustomerRelation" outputVariable="variable_acr"
partnerLink="ACR" ... />
</bpws:sequence>
</bpws:otherwise>
</bpws:switch>
</bpws:sequence>
</bpws:scope>

<bpws:sequence name="Sequencel" wpc:displayName="Sequencel" ... >
<bpws:invoke inputVariable="variable_acr" name="IdentifyCustomerReq"
outputVariable="variable_acr" partnerLink="ICR" ... />

<bpws:invoke inputVariable="variable_sds" name="SelectDepositService"
outputVariable="variable_sds" partnerLink="SDS" ... />
<bpws:switch name="Deposit?" ... >
<bpws:case ... >
<bpws:invoke inputVariable="variable_sdf" name="SubmitDepositForm"
outputVariable="variable_sdf" partnerLink="SDF" ... />
</bpws:case>
<bpws:otherwise>
<bpws:empty name="EmptyAction" ... />
</bpws:otherwise>
</bpws:switch>
</bpws:sequence>
</bpws:flow>
<bpws:invoke inputVariable="variable_ppd" name="PrepareProposalDoc"
outputVariable="variable_ppd" partnerLink="PPD" ... />
<bpws:flow name="Flowl" ... >
<bpws:Tinks>
<bpws:Tink name="Link2" ... />
<bpws:Tink name="Link3" ... />
</bpws:Tinks>
<bpws:invoke inputVariable="variable_vci" name="VerifyCustomerIdentity"
outputVariable="variable_vci" partnerLink="VCI" ... >
<bpws:targets> <bpws:target TinkName="Link3"/> </bpws:targets>
</bpws:invoke>
<bpws:invoke inputVariable="variable_ssr" name="ScheduleStatusReview"
outputVariable="variable_ssr" partnerLink="SSR" ... >
<bpws:sources>
<bpws:source TinkName="Link2"/>
<bpws:source TinkName="Link3"/>
<{/bpws:sources>
</bpws:invoke>

Figure 3 (Part 1 of 2)
BPEL program for the account-opening process

340 LU, MULLER, AND XU IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

<bpws:invoke inputVariable="variable_pao" name="ProposeAccountOpenning"
outputVariable="variable_pao" partnerLink="PAQ" ... />
<bpws:invoke inputVariable="variable_rci" name="RecordCustomerInfo"
outputVariable="variable_rci" partnerLink="RCI" ... />
<bpws:invoke inputVariable="variable_oasr" name="0OpenAccountStatusReview"
outputVariable="variable_oasr" partnerlLink="0ASR" ... >
<bpws:targets> <bpws:target TinkName="Link2"/> </bpws:targets>
</bpws:invoke>
</bpws:flow>
<bpws:invoke inputVariable="variable_oa" name="OpenAccount"
outputVariable="variable_oa" partnerLink="0A" ... />
<bpws:invoke inputVariable="variable_vai" name="ValidateAccountInfo"

outputVariable="variable_vai" partnerLink="VAI" ... />
<bpws:switch name="Valid?" ... >
<bpws:case .. >
<bpws:sequence name="HiddenSequence3" ... >

<bpws:invoke inputVariable="variable_aap" name="ApplyAccountPolicy"
outputVariable="variable_aap" partnerlLink="AAP" ... />
<bpws:invoke inputVariable="variable_aa" name="ActivateAccount"
outputVariable="variable_aa" partnerLink="AA"
<bpws:flow name="ParallelActivities" ... >
<bpws:1links>
<bpws:1ink name="Linkl" ... />
<bpws:1ink name="Link4" ... />
</bpws:Tinks>
<bpws:invoke inputVariable="variable_rai" name="RecordAccountInfo"
outputVariable="variable_rai" partnerLink="RAI"
<bpws:invoke name="EvaluateDepositAmount" ... >
<bpws:sources> <bpws:source linkName="Linkl"/> </bpws:sources>
</bpws:invoke>
<bpws:switch name="LargeDeposit?" ... >
<bpws:targets> <bpws:target lTinkName="Linkl"/> </bpws:targets>
<bpws:sources> <bpws:source linkName="Link4"/> </bpws:sources>
<bpws:case wpc:id="66">
<bpws:invoke inputVariable="variable_r1d" name="ReportlLargeDeposit"
outputVariable="variable_r1d" partnerlLink="RLD" ... />
</bpws:case>
<bpws:otherwise>
<bpws:invoke inputVariable="variable_dd" name="DoDeposit"
outputVariable="variable_dd" partnerLink="DD" ... />
</bpws:otherwise>
</bpws:switch>
<bpws:reply name="NotifyCustomerl" partnerLink="NC" variable="variable_nc"
<bpws:targets> <bpws:target lTinkName="Link4"/> </bpws:targets>
</bpws:reply>
</bpws:flow>
</bpws:sequence>
</bpws:case>
<bpws:otherwise>
<bpws:sequence name="HiddenSequence2" ... >
<bpws:invoke inputVariable="variable_ca" name="CloseAccount"
outputVariable="variable_ca" partnerLink="CA"
<bpws:reply name="NotifyCustomer" partnerlLink="NC"
portType="wsdl:ProcessPortType" variable="variable_nc" ... />
</bpws:sequence>
</bpws:otherwise>
</bpws:switch>
</bpws:sequence>

Figure 3 (Part 2 of 2)
BPEL program for the account-opening process

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LU, MULLER, AND xU 341

342

BPSL specification of Article 11 and Article 13

Always Articlel]_part]
And
<=
Precede Precede
ObtainCustomerinfo OpenAccount VerifyCustomerinfo { OpenAccount
Always Articlel1_part2
ExistWithin[Int] ExistWithin[Int] ExistWithin[Int]
AcceptCustomerReq OpenAccount VerifyCustomerld RecordCustomerinfo
paralist |=| {name,ID} paralist o {name,ID}
Always Article13
ExistWithin[Int] *LargeDeposit ExistWithin[Int]
. Boolean Block
AcceptCustomerReq \ TRUE ReportLargeDeposit] Boolean Bloc
Compensation
Property
Figure 4

express such properties. Therefore, in our compli-
ance-checking method, we use BPSL for specifying
compliance rules.

Four main features of BPSL simplify the specifica-
tion and understanding of temporal properties:

1. Obscure logical operators are replaced with an
intuitive visual notation.

2. Recurring logical patterns from a business or
regulatory domain are defined as dedicated
operators.

3. Domain-specific templates (e.g., the property
patternszs) can be predefined and reused in BPSL
to help increase the efficiency of property
specification.

4. BPSL has a direct semantic interpretation in both
LTL and CTL.

In this paper, we focus more on LTL because we
agree with the argument by Vardi* that the
branching-time formalism of CTL is unintuitive to
business analysts and does not support composi-
tional reasoning, as does LTL. The complete syntax,

LIU, MULLER, AND XU

semantics, and notation of BPSL have been de-
scribed by Xu et al.”” To ease understanding, in
Figure 4 we present the visual BPSL specification of
Article 11 and Article 13 of our case study. (The
precise semantics of these BPSL properties are
explained in the next section.)

In Figure 4, Article 11 is specified by the first two
BPSL properties, Articlel1_part]l and
Articlel1_part2, while Article 13 is specified by the
third property, Articlel3. The rectangles denote
Boolean blocks, which may represent the perform-
ing of business activities (e.g., AcceptCustomerReq,
ObtainCustomerInfo, and VerifyCustomerInfo) or the
processing of data (e.g., names and IDs in the
ParaList). Annotated arrows are used as temporal
operators to define the temporal dependency be-
tween the Boolean blocks. For example, the
temporal operator ExistWithin [inf] specifies that the
next Boolean block must hold within an infinite
amount of time after the previous Boolean block
holds. The combination of these temporal depen-
dencies thus forms a visual temporal sequence in
BPSL. There are simple and compound temporal

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

sequences. A simple temporal sequence specifies a
chain of temporal relations among different Boolean
blocks or any other BPSL properties (e.g.,
Articlel1_part2 and Articlel3 are simple ones). A
compound temporal sequence is a logical combina-
tion of simple temporal sequences (e.g.,
Articlel1_partl is a compound temporal sequence
that consists of two other simple temporal se-
quences combined by a logical anp relation).

The BPSL properties in Figure 4 thus possess the
following semantics: Before a customer account may
be opened, the customer information must first be
obtained and verified (Articlel1_partl): Whenever a
customer request for opening a deposit account is
received, the customer information must be ob-
tained and the customer name and ID must be later
verified. Finally, the customer information must be
recorded (Articlel1_part2). Whenever a customer
request for opening a deposit account is received,
the deposit must be checked as to its amount. If it is
a large-value deposit, it must be reported later.

In previous work, Giblin et al.”? developed REALM
(regulations expressed as logical models), a meta-
model and method to formally specify regulations.
While REALM, which builds on real-time temporal
object logic, is more expressive than BPSL, BPSL
supports visual, and thus more intuitive, property
specification. As REALM properties cannot be
verified by existing model-checking algorithms, we
use BPSL as the specification language in our static
compliance-checking work.

MODEL TRANSFORMATIONS

In this section we introduce the essential model
transformations of our compliance-checking meth-
od. To reuse existing model-checking algorithms, a
series of transformations are performed. We first
explain the transformation from BPEL to pi-calculus
and the transformation from pi-calculus to FSM (see
Steps 3.1 and 3.2 in Figure 2). Then we show how
BPSL properties are transformed into LTL formulas
(see Step 4 in Figure 2).

BPEL to pi-calculus

Some elementary knowledge of pi-calculus is
necessary to understand the content of this section.
Before introducing the transformation from BPEL to
pi-calculus, we thus present an introduction to pi-
calculus.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Pi-calculus

Pi-calculus'® is a model of concurrent communicat-
ing processes that allows complex communication
patterns to be modeled. We chose pi-calculus as the
formal method to formalize BPEL programs. A
detailed discussion justifying this choice can be
found in the section “Related work.”

The syntax of Milner’s polyadic pi-calculus is as
follows:
P:=

n
m;.Pi|new x P|P|Q|'P|pP|A(y1, - - -, ¥n)[0
=1

=X <y>|x(y)|c
¢ = [=)l¢ APl

The simplest entities of pi-calculus are names
(denoted by lowercase) and processes (denoted by
uppercase). Processes can evolve by performing
actions. Syntactically, X < y > denotes an output
action that sends name y via x, and x(y) is an input
action, which receives a name y via x. Further, 7 is a
silent action that expresses unobservable behavior.
A sum n,.P| +n,.P, +---+ = P, denotes a
nondeterministic choice of process execution. In the
restriction new x P, the scope of name x is bound to
P. In the composition P|Q, the processes P and Q can
proceed independently and can interact by means of
shared names. The replication !P can be thought of
as an infinite composition P|P|P|- - - of processes.
Finally, ¢P represents a process that is guarded by a
Boolean expression ¢ evaluated by name matching.

Transforming BPEL to pi-calculus

The transformation from BPEL to pi-calculus re-
quires a semantic translation of BPEL. The overall
semantics are very complex. Having described the
complete transformation from BPEL to pi-calculus in
our previous work,25 in this paper we present only
the important basic and structured activities.

BPEL contains program variables to which values
can be assigned. We adopt the approach proposed
by Jacobs and Piessens”’ to formally define a
programming variable as a storage location. Ac-
cordingly, a variable holding a value of x (Varia-
ble(x)) is defined by a register (Reg) as follows (the
expression =def is used as a definition symbol):

Variable(x) =qe Reg(x)
Reg(x) =qer put(y).Reg(y) + get < x> .Reg(x)

The above formalization means that the stored value

LIU, MULLER, AND XU

343

344

x of the variable can be read from the storage
location by using get<x>>, and a new value y can be
written into the location with put(y).

The basic BPEL activities (Receive, Reply, Invoke,
Assign, Empty, and Termination) define how mes-
sage communication, service invocation, and vari-
able assignment are done in a process model. Link
name, Partner name, and Operation name are three
elements in the activities of BPEL, and they often
appear at the same time. Therefore, here the three
elements are denoted as a unified name: ¢. The
partner links and data sharing in these BPEL
activities are mapped to the input and output
prefixes of ¢, get, and put in pi-calculus. In addition,
two special names, start and done, are used to
indicate common internal communication in a BPEL
process.

Receive(start, £, put, done) =gef

start.£(v).put < v>.done
Reply(start, get, £, done) =g.f

start.get(v).l <v>.done
Invoke(start, get, ¢, put, done) =gef

start.get(v).£ <v>.0(w)put < w>.done
Assign(start, get, put, done) =q.f

new c(start.get(v).c < v>|c(x).put < x>.done)
Empty(start,done) =4 start.done

There are some challenges in the transformation,
such as the handling of timeout, synchronizing with
links, message correlation, global termination of
activity, and fault handling and compensation. We
discussed how to solve these problems in another
paper.25 Because they are not critical to under-
standing our compliance-checking method, we do
not cover them in this paper. We take Receive(start,
£,put,done) as an example to explain the semantics of
the pi-calculus formalization. The process of Receive
contains some free names (e.g., put and done),
which are defined as the communication channels of
this process. The names start and done are used to
start and terminate the activity. The communication
among different activities through these two chan-
nels thus forms the control flow of the BPEL process.
When the Receive process is triggered by its start
channel, an input action of £(v) is enacted to receive
a message through a specific partner link. The output
action of put<v> is then enacted to put the received

LIU, MULLER, AND XU

message (i.e., v) into the corresponding variable.
Finally, the action done is enacted to indicate the
termination of the Receive activity and to trigger
another activity in the BPEL process.

Structured activities imply different control relations
between the executions of activities in BPEL. We let
function fn define a mapping from a pi-calculus
process to a set of free names, where fr(P) indicates
the set of all free names contained in process P.
Consequently, the semantics of the structured
activities Sequence, Switch, While, Pick, and Flow are
defined as the following:

Sequence(fn(P),fn(Q)) =aef
new start({start/done}P|Q)
Switch(by, fn(P), ba, fr(Q)) =daef
[01]P 4 [-b1 A b3)Q + [-b1 A —b;|Empty
While (b, fn(P)) =gef
[b]Sequence(fn(P), fn(While)) + [-b]Empty
Pick(¢, fn(P1), ', fn(P,), put) =gef
(new c(£(v). put <v>.Clc.Py)) +
(newc(¢' (v'). put <v'>.t|c.Py))
Flow(fn(P), fn(Q), done) = 4
new ack((new done’({done’ /done}P|
done’. ack))|
(new done’ ({done” /done}Q)|
done” .ack))|ack.ack.done)

In the formalization, {start/done} is a basic name
substitution operation, which means that the name
done is replaced by start so that an internal
interaction can occur between processes P and Q. The
formalization of Switch above implies that in the case
when several branching conditions hold at the same
time, the branches are taken in the order in which
they appear, which reflects exactly the semantics of
BPEL in its specification. Pick is a nondeterministic
choice between process P and Q. Switch, While,
Sequence, and Flow are self-explanatory.

Scope is an important concept in BPEL for defining
an effective scope of the definition and use of
variables, compensation handlers, fault handlers,
and other activities. As these BPEL elements can all
be associated with a scope, we collect all the free
names in a scope with a predefined function,

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

GetNames(s), where s is the scope. Therefore, the
restriction operator new can be used to restrict the
access to these elements according to their effective
scope. The following is the formalization of Scope:

Scope(restnames) =gqef
new GetNames(s) (P1|Pa| - - - |Pn)

P, (i=1,---, n) can be a pi-calculus process of basic
activities, structured activities, variables, fault han-
dlers, or compensation handlers. Furthermore,
restnames is defined as a free name set:

(fn(Py) Ufn(P,) U---Ufn(Py))/GetNames(s)

Because everything is a process in pi-calculus, the
semantics of a BPEL process can be formalized as
the composition of the above pi processes for all
considered BPEL activities:

Process
= Variable,| - - - |Variablen,|Activity; | - - - |Activity,

Pi-calculus to FSM

The application of model checking to verify business
process models against compliance rules requires
the transformation of business process models into a
formalism that can be accepted by a model-checking
algorithm. Most current model-checking tools re-
quire FSM as an input format. We thus first translate
from BPEL to pi-calculus and then from pi-calculus
to FSM. Having the processes formalized in pi-
calculus as an intermediary formalism provides us
the opportunity to apply other verification tech-
niques, such as structural verification (including, for
example, deadlock detection) and bisimulation.
Furthermore, it also helps the future integration of
more practical and efficient model-checking algo-
rithms and tools into our compliance-checking
approach. Despite the detour through pi-calculus,
the static verification result is the same as if the
process models had been transformed into FSM
directly.

The transformation from pi-calculus to FSM yields
the total behavior of the BPEL process by reducing
the pi processes into their corresponding state
spaces. Previous works by Ferrari et al.”” and
Pistore”® have already shown the approach and
feasibility of how to correctly transform finitary pi-
calculus processes into the corresponding finite state
automata such that a wide range of powerful formal
verification techniques can be smoothly reused in
the case of mobile processes. In our compliance-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

checking method, we exploit the results obtained by
Ferrari et al.”’ to transform a pi process into a
corresponding FSM, based on the early operational
semantics of pi-calculus. The mapping between the
early operational semantics” of pi-calculus to the
state transitions in FSM is presented as a set of
transformation rules. For better understanding, each
transformation rule is illustrated with an example
(see Figure 5).

For each transition triggered by an action = in pi-
calculus, three attributes are used to record the
necessary information of . The action attribute
records its port name port(n); the paralist attribute
records the set of parameters para(n) passed
through the port; and the type attribute is one of the
values of input, output, or tau, which indicates that
7 is an input, output, or an invisible action in pi-
calculus.

The choice of pi-calculus as the mediation between
high-level business process models and very formal
models yields several benefits. Specifically, state
space generation from pi processes and not directly
from the business process model provides us with
the following advantages:

* While transforming from the pi process to FSM,
two properties can be directly checked: deadlock
and redundant activities of the BPEL process. A
deadlock exists if there is a pi process that cannot
generate its state space before it changes to an
empty process (“0”). If a pi process cannot
communicate with any other pi process, then there
is a redundant activity in the corresponding BPEL
process.

® Using pi-calculus and FSM as the formal models of
business processes renders the business process
verification method independent of a specific
model checker. Thus, more practical and efficient
model checkers can be integrated into our
compliance-checking method.

BPSL to LTL

Though BPSL supports semantic mapping to both
LTL and CTL, in this section we explain the mapping
from BPSL specifications to LTL formulas based on
the three compliance rules given earlier in the
section “Compliance rule modeling using BPSL” as
examples. Before discussing the mapping from BPSL
to LTL, an overview of LTL is given as preliminary
information.

LIU, MOLLER, AND XU 345

346

X<y>.PE>p

INP x(2)P
x<z> P*>>{y/7} P

TAU TP

x<y>_ - x(2) ,
COMM-L P P'Q Q P|Q
P\Q——>P\Q’
TRANS n n P

PP, p—2>p, . P—E>p

Figure 5
Transformation rules from pi-calculus to FSMs

out ;<y>

action =x
paralist = {y}
type =output
P
action =x
paralist = {y }
type =input
e v, /2P
action =x {yl,,.yn}:fn(‘p) and
paralist = {y,} *is a fresh new name in P
type =input

: {y./2}P
action =x
paralist = {*}
type =input

/ {*/z}P
action =r
paralist = {}
type =tau
yP p
action =x
paralist = {y}
type =tau

PIQ
action =port(m;)
paralist =para(m;)
type =type (m;)

P;

action =port(m,)
paralist =para(m,)
type =type (ny) .

P 2 B
acz‘/or] =port(t,) n=x<y>x()|r
paralist =para(m,) .

=12,...,n
type =type (m,) P,

LTL

LTL"®is a widely used language for specifying
temporal properties of software or hardware de-
signs. In LTL, time is treated as if each moment has
just one possible future. Accordingly, linear tempo-
ral formulas are interpreted over linear state
sequences, and we regard them as describing the
behavior of a single computation of a system.

LTL uses formulas of the form Af, where: first, A is
the universal path quantifier, which means that f
has to be true on all possible paths in the future; and
second, fis a path formula (which is true along a
specific path) in which the only state subformulas
permitted are atomic propositions. More precisely:

LIU, MULLER, AND XU

If p € AP (AP is a nonempty set of atomic
propositions), then p is a path formula.

If fand g are path formulas, then —f, fV g, fAg, Xf, Ff,
Gf, and fU g are path formulas.

The four basic operators of X, F, G, and U are
explained informally as follows:

* X (“next time”): a formula (f) is true in the second
state of the path.

* F (“eventually”): a formula (f) will be true at
some future state on the path.

* G (“always”): a formula (f) is true at every state
on the path.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

e U (“until”): there is a state on the path where the
second formula (g) is true, and at every successive
state on the path the first formula (f) is true.

Take the formula G (AcceptCustomerReq — F
VerifyCustomerld) as an example. This formula is
true in a computation precisely if every state in the
computation in which AcceptCustomerReq holds is
followed by some state in the future in which
VerifyCustomerld holds. Here, AcceptCustomerReq
and VerifyCustomerld represent atomic propositions.

Mapping from BPSL to LTL

Referring to Figure 4, we start with Articlel1_part2.
As explained, Articlel1_part2 (and Articlel13) is a
simple temporal sequence that specifies the tempo-
ral relation among a sequence of Boolean blocks or
other BPSL properties along paths in which time
advances monotonically. The name of each Boolean
block in Articlel1_part2 represents a business
activity being performed and the data associated
with it. For example, the Boolean block Accept-
CustomerReq is interpreted as action =
AcceptCustomerReq, and the Boolean block of
ObtainCustomerInfo with the parameter list (Para-
List) of name and ID is interpreted as action =
ObtainCustomerInfo & ParaList = {name, ID}. Note
the diamond symbol under the Boolean block of
AcceptCustomerReq. This is a special feature of BPSL
named compensation property (cp). A cp specifies
that when the Boolean block associated with the cp
does not hold, the whole BPSL property is still
deemed to be correct if cp holds. For this example,
the diamond stands for a shortcut to the cp being
True. It specifies that Articlel1_part2 will be
evaluated only when a customer request is
accepted (because it is always allowable for
AcceptCustomerReq not to hold). The key word
Always in the formula of Articlel1_part2 is a global
temporal operator, which has a direct interpretation
in LTL as the G operator.

Four types of global temporal operators are sup-
ported by BPSL: (Possible) Always, (Possible) Even-
tually, Repeat, and Never. (Possible) Always is equal
to G or AG(EG); (Possible) Eventually is equal to F or
AF(EF). Repeat and Never mean that the temporal
sequence must hold at least n times or that it must
not hold at all. Different Boolean blocks are
associated with the temporal operators in BPSL. For
example, in Figure 6A ExistWithin [inf] specifies that
after a customer request is accepted (AcceptCusto-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

merReq), the customer information including the
customer name and ID must be obtained. Here inf is
the scope parameter for the operator ExistWithin
with the value of infinity. Seventeen stereotypes of
temporal operators with different semantics are
supported in BPSL to specify temporal relations in
different situations. While some of the temporal
operators have a direct mapping to LTL temporal
operators (e.g., Next [3] for XXX and AllWithin [inf]
for G), others can be used to express rather complex
temporal relations in a simple and compact manner
(e.g., the MultiWithinOnEut [scope] [n] operator
specifies the scenario that a Boolean block must hold
for n times when a certain event occurs within the
scope). Consequently, the final LTL formula corre-
sponding to Article 11_part2 is:

G (action = AcceptCustomerReq — F ((action =
ObtainCustomerInfo & Paralist = {name,ID}) &

F(action = VerifyCustomerldentity & Paralist =

{name, ID}) & F(action = RecordCustomerInfo)))

The mapping of this formula to the BPSL notations is
shown in Figure 6A.

As to Articlel3, two new elements need to be
introduced. The rectangle TRUE indicates a Boolean
block that will always hold. The notation of Large-
Deposit, on the other hand, is a post-condition
associated with this Boolean block. In BPSL, a post-
condition specifies whether it is necessary to further
evaluate the rest of the temporal sequence after a
Boolean block. For example, in Articlel3, the post-
condition of LargeDeposit specifies that Report-
LargeDeposit will (only) be performed after a
LargeDeposit is detected (i.e., action = Large-
Deposit — F (action = AcceptCustomerReq)). Con-
sequently, the final LTL formula corresponding to
Articlel3 is:

G (action = AcceptCustomerReq — F(action =
Large Deposit — F(action =
ReportLargeDeposit)))

The mapping of this formula to the BPSL notations is

shown in Figure 6B.

Finally, Articlel1_partl is captured using a com-
pound temporal operator which specifies the logical
relation (And) between two simple temporal se-
quences. Here a new temporal operator Precede

LIU, MULLER, AND XU

347

™

>Always Article1]1_part2

ExistWithin[Int] ExistWithin[Int] ExistWithin[Int]

ﬂccept!ustomerﬁeq '——V penAccount %ecorgzustomer,n’o

A
@ ((action=AcceptCustomerRe% (((action= ObtainCustomerinfo & Paralist= {name, /D}))

& Fl ((action= VerifyCustomerldentity & ParalList= {name, ID}))& Fl ((adion= RecordCustomerinfo))))
[

]

= Always Articlel13

ExistWithin[Int] *LargeDeposit ExistWithin[Int]

Ecceptgiustomerzeq ’——»ﬁ—» Eeportzargeseposn

@ ((action=AcceptCustom erReQF)((action= LargeDepos@—» F ((action= ReportLargeDeposit))))

=

= Always Article11_part]

\ 4

And
=

Precede

e Coee——
Bpenﬂccount ver/’y!ustomer,n,o i——»)penAccount

|
@ (((action= OpenAccount) | ((\(action= OpenAccount) U (action= ObtainCustomerlnfo))D

G l((act/'on= OpenAccount) | ((\(action= OpenAccount) U (action= VerifyCustomerlnfo))Di

i

Figure 6
Mapping from BPSL to LTL: (A) for Article11_part2, (B) for Article13, and (C) for Articlel1_parti

appears. The Precede relation (a Precede b) specifies G!(action = OpenAccount) |
that either b never occurs or that there is no ((/(action = OpenAccount) U

occurrence of b before a holds, that is,
(action = ObtainCustomerlInfo))) &

G!(action = OpenAccount)) (!(action = OpenAccount) |
(!(action = OpenAccount) U ((Y(action = OpenAccount) U
(action = ObtainCustomerInfo)). (action = VerifyCustomerInfo))))

Consequently, the final LTL formula corresponding The mapping of this formula to the BPSL notations is

to Articlel1_partl is: shown in Figure 6C. The above mapping follows

348 LU, MULLER, AND XU IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

exactly the semantics of BPSL'® and thus ensures its
correctness.

COMPLIANCE-CHECKING FRAMEWORK AND
CASE STUDY RESULTS

With FSM and LTL, model-checking technology can
be used to verify whether the business process
complies with the compliance rules. We briefly
explain the basic concepts of model checking and
then introduce our compliance-checking framework.

Finally, we present a case study result to illustrate
the practical feasibility of this framework.

Model checking

Model checking18 is an automatic technique for
verifying finite state systems. It has been successfully
applied to many systems, including hardware de-
signs and communication protocols. The main idea
of model checking is to search the state space of a
system model and to verify that it satisfies some user-
defined properties (e.g., temporal constraints, such
as liveness or safety properties). The advantage of
model checking over traditional simulation and
testing is that it can exhaustively search the whole
state space of a system and can prove the system is
indeed error-free. The advantage of model checking
over deductive verification is that it requires less
expertise and experience in logical reasoning on the
part of users. In fact, the procedure of model checking
needs little user intervention; it can be performed
automatically and results in a final yes or no answer.

Model checking generally includes three steps:

1. Transforming the target system that is to be
checked into a formal system model—In our case,
the target is the business process model expressed
in BPEL, and the formal model we chose is pi-
calculus.'®* The total behavior of the business
process can thus be obtained in an FSM express-
ing the operational semantics of pi-calculus.

2. Specifying the properties that the formal system
model is expected to satisfy—LTL is often used to
capture such specifications. As writing correct
statements in temporal logic is relatively difficult,
for our compliance-checking method, we devel-
oped BPSL, a visual property specification lan-
guage, to formally express such properties. BPSL
properties are then automatically translated into
LTL formulas.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

3. Performing the verification of the formal system
model against desired properties with model-
checking algorithms—The generated result indi-
cates whether the system satisfies the properties.
Our compliance-checking framework, Open Pro-
cess AnaLyzer (OPAL), integrates the binary
decision diagram (BDD)-based symbolic model-
checking algorithm implemented in Nusmv2.*
The validity and effectiveness of the algorithm
has already been proven from both the academic
and industrial sides. In addition, OPAL also
provides a counterexample tracing capability for
business process models and offers its own
optimization approach for compliance checking.

Compliance-checking framework

Figure 7 is an overview of the OPAL toolkit, our
implementation of the compliance-checking frame-
work. While OPAL supports compliance checking of
different business process models against compli-
ance rules, the OPAL framework is independent of a
specific business-process modeling approach and
model-checking method. OPAL offers an open
framework to integrate different business-process
modeling tools (e.g., WBI Modeler) and model-
checking engines (e.g., NusMVv2*® and Rule Base31)
by means of the process-model-to-pi transformer
and the model-checker adapter, respectively. The
component-process-model-to-pi transformer gener-
ates the pi processes for different business process
models. Compliance rules are specified in the BPSL
editor. Because the elements in a compliance rule
are closely related to the business process model,
there is a graphical user interface (GUI) adapter
between the BPSL editor and the process modeling
tool. For example, some activity elements can be
directly dragged into the BPSL editor from the
process modeling tool through the respective
adapter.

As introduced earlier, we use pi-calculus as the
method to formalize business process models, and
LTL is used to specify temporal properties. The
details of the BPSL-to-LTL transformer, the process
model-to-pi transformer, and pi-to-FSM transformer
were introduced earlier. The model-checker adapter
is used to integrate existing model-checking engines,
such as NuSMV2 and Rule Base, with OPAL. The
framework uses the counterexample tracer to trace
counterexamples in the business process model.
Further, compliance checking results can be gener-

LIU, MULLER, AND XU

349

350

Compliance Business Process
Rule p ‘ Process Model _| Modeling Tool
GUI Adapter between Process Model-to-Pi
BPSL Editor and Transformer
Process Modeling Tool
BPSL Editor
Visualized Pi Calculus
Compliance Rule Specification
Y
/\/ ~_ >
BPSL-to-LTL Pi-to-FSM Counterexample
Transformer Transformer Tracer
LTL FSM
Specification
/\/ /\/ Checking Result Compliance-
Checking Report
Model-Checker
Adapter Compliance ’>
Report)

NuSMV2 I
Figure 7

Compliance-checking framework

ated as compliance reports using the compliance-
checking reporting module.

Because this framework is intended for use by
business people for business-process model check-
ing, two aspects must be addressed. The first aspect
is the understandability of the checking results. For
example, if a business process model does not
comply with a compliance rule, business people
require help to position error points in the process
model. The counterexample tracer can help solve
this problem. The other aspect is how to ensure an
acceptable performance of the compliance-checking
method. If a business process model is very
complex, optimization helps improve the perfor-
mance of compliance checking. These important
OPAL features are discussed later.

Running example with results

Recall the SimpleBank account-opening process that
was described in the introduction. It has been used

LIU, MULLER, AND XU

as a running example throughout the paper to
illustrate our compliance-checking method. We
have applied OPAL to check the compliance of the
account-opening process in Figure 3 against the
compliance rules defined in Figure 4. As explained
in the section “Model transformations,” the account-
opening process was automatically transformed to
pi-calculus and further into an FSM with the help of
OPAL. Likewise, the regulatory requirements of
Article 11 and Article 13 were formalized as
compliance rules using the OPAL BPSL modeler, and
were then automatically transformed into LTL.

OPAL was developed as a plug-in for the Eclipse**
platform, which allows for the integration with
different business process modelers, such as WBI
Modeler and other Eclipse-based BPEL editors.>” We
tested our case study using OPAL on a Microsoft
Windows** platform with an Intel** Pentium** 4
processor, 3.0 GHz, and 2.5 GB random access
memory (RAM), and obtained the following results:

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

OPAL took 0.056 seconds to transform the account-
opening process expressed in BPEL into pi expres-
sions, as introduced in the section “Model transfor-
mations.” The time consumed for transforming the
pi-calculus formalization into its corresponding FSM
was 49.959 seconds. The final FSM contained 11,832
(i.e., 27213.5304) reachable states out of 535,840
(i.e., 2°19.0314) states after OPAL applied its
opimization by means of sequentialization of
interleaving actions to compact the FSM (introduced
later in the section “Sequentialization of interleaving
actions”). The checking of the three compliance
rules in Figure 4 consumed 121.0 seconds of CPU
time. This also included an additional 21.0 seconds
to generate the needed counterexamples for the
violated compliance rules. The peak memory use
was 71.960 MB.

As the final compliance-checking results showed,
the account-opening process complies with the two
compliance rules Articlel1_partl and Articlel3.
However, it does not comply with the compliance
rule Articlel1_part2. The counterexample for Arti-
clel1_part2 contains the state trace of 54 states,
which shows there is a possible execution path in
the account-opening business process in Figure 1 in
which the customer information was already re-
corded in the banking system before it was verified
for correctness.

As we have explained so far, OPAL is capable of
automatically checking the compliance of our
account-opening process model against the three
compliance rules in the example. Thus, OPAL users
realize that the current account-opening process is
noncompliant before deployment, which helps
increase deployment efficiency and lowers the risk
of installing noncompliant processes.

Our experience with OPAL has shown that our
current implementation can handle a state space
with 10° reachable states out of 10° total states
within 15 minutes.

ADVANCED FEATURES

Two important features of the framework, counter-
example tracing and performance optimization, are
addressed in this section.

Counterexample tracing

If a regulation rule is not satisfied by a business
process model, normally a counterexample would

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

be generated only in the corresponding FSM of the
process model because the model-checking algo-
rithm is executed based on FSM. However, for
business people, a counterexample based on an FSM
is meaningless. Hence, we must provide a mecha-
nism to trace the counterexample back to the
business process model. We have developed such a
mechanism for OPAL.

As the previous counterexample in our running
example is too large (a state trace of 54 states), we
now present a simpler example to explain how the
OPAL counterexample tracing mechanism works.
The BPEL program of the account-opening process
in Figure 3 is simplified to the BPEL program
SimpleAC, given in Figure 8A.

This simple BPEL process can be transformed to the
pi process shown in Figure 8B by using the BPEL-to-
pi transformation rules introduced earlier. (For
simplification, some channel names have been
shortened, for example, AcceptCustomerReq is ab-
breviated as ACR.)

In the formalism shown in Figure 8B, allnames
represents all free names in AccountOpeningProcess,
thus making AccountOpeningProcess a closed sys-
tem with all its names restricted to itself. The
formalization of Variableac ” Variableoa,, and Varia-
ble ., is done as explained earlier in the section
“Model transformations,” where we also introduced
how to transform a pi process to an FSM.
Accordingly, the pi process can be transformed into
the FSM shown in Figure 9 with the help of OPAL.

Figure 9 shows only part of the FSM of the entire
SimpleAC Process model, which in total contains 69
states as the transformation result of OPAL. Using
OPAL, we may now check the following property,
and we are thus informed that the result is wrong.

G(!(action = VerifyCustomerInfo))|
((action = VerifyCustomerInfo) U
(action = ObtainCustomerInfo))

OPAL visualizes the transformed FSM and the
counterexample generated by NuSMV2. The coun-
terexample is indicated by the state transitions in
orange lines in Figure 9, showing a possible
execution path in SimpleAC Process where the
customer information may be verified before it is
obtained in the first place.

LIU, MULLER, AND XU

351

352

A <bpws:partnerLinks>
<bpws:partnerLink name="ACQ" ... />
<bpws:partnerLink name="0CI" ... />
<bpws:partnerLink name="VCI" ... />
</bpws:partnerLinks>
<bpws:variables>

<bpws:variable name="variable_acq" ... />
<bpws:variable name="variable_vci" ... />
<bpws:variable name="variable_oci" ... />

</bpws:variables>
<bpws:sequence name="HiddenSequence">
<bpws:invoke inputVariable="variable_acq" name="AcceptCustomerReq"
outputVariable="variable_acq" partnerlLink="ACQ"/>
<bpws:flow name="ParallelActivities">
<bpws:invoke inputVariable="variable_oci" name="0ObtainCustomerInfo"
outputVariable="variable_oci" partnerlLink="0CI"/>
<bpws:invoke inputVariable="variable_vci" name="VerifyCustomerInfo"

</bpws:flow>
</bpws:sequence>

Receive AcceptCustomerReq = Start,,
Invoke ObtainCustomerinfo = Start,; .Get,

oci acq

Partner AcceptCustomerReq = ACR<req>
Partner ObtainCustomerinfo = OCI<w>.0Cl <Info>
Partner VerifyCustomerinfo = VCl <w> VCI <Info>

acq

outputVariable="variable_vci" partnerlLink="VCI"/>

ACR (v).put, ., <v>.doneacq
(vV).0C <v>.0CI(w).put,.; <w>doneod
Invoke VerifyCustomerinfo = Start,, .Get, .(v).VCI <v>.VCI(w).put,., <w>.donevi
Flow(Invoke ObtainCustomerinfo,invoke VerifyCustomerinfo) =
new ack((Invoke ObtainCustomerinfo | done,_ack|
(Invoke VerifyCustomerinfo | done,,.ack) | ack. ack.donefiow
Sequence(Receive AcceptCustomerReq, Flow(Invoke ObtainCustomerinfo,invoke VerifyCustomerinfo))=
(Receive AcceptCustomerReq | Done
Flow(Invoke ObtainCustomerinfo,invoke VerifyCustomerinfo)

(Sf(]/'toci | Sthfvcl) |

acq

AccountOpeningProcess = new a//na—mes(ﬁm | Sequence(Receive AcceptCustomerReq,
Flow(Invoke ObtainCustomerinfo, Invoke VerifyCustomerinfo))|
Partner AcceptCustomerReq | Partner ObtainCustomerinfo |
Partner VerifyCustomerinfo | Variable

(acq) | Variable, (oci) | Variable,;(vci))

Figure 8

BPEL simple account-opening program (A) in XML and (B) transformed to the pi process

Because the counterexample in the preceding
diagram is given at a state machine level and
contains information about many redundant ac-
tions, such as start_ and ack, it is hard for business
people to comprehend what the counterexample
stands for from a business perspective. Therefore,
OPAL provides a counterexample mapping from the
FSM to the BPEL process model. Such mapping is
implemented by preserving only the actions that
have a direct connection with the corresponding
BPEL activities (e.g., AcceptCustomerReq, Obtain-
CustomerlInfo, VerifyCustomerinfo) and remove any
other redundant information in the counterexample.
The mapped counterexample in BPEL is the
following:

LIU, MULLER, AND XU

Invoke AcceptCustomerReq
— Invoke VerifyCustomerInfo
— Invoke ObtainCustomerInfo

Performance optimization

The basic idea of model checking is to exhaustively
search the state space of formal system models to
discover potential violations of specific logical
constraints that a user specifies. To make model
checking more applicable to realistic large-scale
models, performance tuning and improvement of
model checking is a critical research area. OPAL
reuses optimized, state-of-the-art model-checking
algorithms and focuses primarily on the business
process level with its own optimizations. Specifi-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

action=0C|
paralist={info}
type =tau
actior_7=getuc(i e °e
@Z’:Eg}reg action=VCl
paralist={res}
action=VCl 8 type=tau
o paralist={oci} ~_action=0C/ 36
fycpf’e‘ﬁ;ffa’tm type=tau paralist={info}
1 0 action=get,; 7 ' type=tau
, paralist={oci} action=get,, | action=0Cl (40
action=ACR type=tau pgra/jsth;{req? paralist={oci}
g/‘;fllsgaj{req} = type=tau type=tau
= . A
action=start,,; action=get, 44 coe
type=tau para//st;{reqtf action=get,., action=0Cl
2 = type=tau paralist={oci} paralist={reg}
A i —
action=put,, action=start g action=get, .20 type=tay ype=tau N
paralist={req type =tau para//5t={reqi action=start,,; action=0C] , 7T
type=tau " typé=tau type=tau paralist={reg} action=get,;

] 56 type=tau pardlist={oci}
action=done,., - . o A type=tau coe
type=tau action=start,; action=start,,, GCT/O/O —_OC/ L5l

= type=tau type=tau @agftta_jr eg} action=start,; action=0Cl
&2 pe= N type=tau paralist={info}
action=get,; action=start,, 57 type=tau
paralist={oci} type=tau action=VcCl 5 22
type=tau paralist={res} action=start,,
&3 type=tau .| type=tau
action=VCl action=start,; i)
pardlist={oci} type=tau action=put, ;
type=tau paralist={info}
type=tau-._

64 >
action=VCl action=start, a3
paralist={res} type=tau
type=tau vee

65
action=put,,
ACR = AcceptCustomerReq @;rgl;sf:u{res}
OCl = ObtainCustomerinfo
VCI = VerifyCustomerinfo 66
Figure 9
FSM example
cally, it improves the performance of compliance 2. Controlled state-space searching using business
checking by concentrating on the following two bug patterns—Compliance checking can be ren-
aspects: dered more efficient by a guided search for bugs
in the business process.
1. State space reduction of the business process when
transforming it to an FSM—States that do not Sequentialization of interleaving actions
influence the checking result in the FSM are As we know, concurrency is a major cause of state-
identified and removed so that the state space of space explosion. Accordingly, unnecessary concur-
the business process can be decomposed or rencies in business process models may be elimi-
radically reduced. In OPAL, sequentialization of nated to avoid redundant states. Inspired by the idea
interleaving actions, explained in the next sec- of partial order reduction,'® OPAL tries to remove
tion, is one of the methods implemented to unnecessary concurrencies in the pi-calculus spec-
remove redundant states from the state space. ification that do not affect the semantics of the
IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LU, MOLLER, AND XU 353

354

corresponding business process. We call this ap-
proach sequentialization of interleaving actions.
When a business process is formalized in pi-calculus
and transformed to an FSM, the state space can thus
be made as compact as possible.

To explain the rationale of our approach, we take
the formalization of SimpleAC as an example. In our
SimpleAC example, there are two parallel activities:
ObtainCustomerInfo and VerifyCustomerInfo. It
seems reasonable to model the triggering of the two
activities in a concurrent form, that is, start_[start
in the formalism of Sequence, as these two activities
are executed independently and in an arbitrary
order. However, it is easy to note that start_ and
Wtwi play only the role of triggering the execution
of two pi processes, but do not affect the execution
order of the two activities ObtainCustomerInfo and
VerifyCustomerinfo. Consequently, even if
start_|start . are sequentialized as start__.start, .
the internal behavior of the two activities (such as
the retrieval and assignment of variables by means
of Get and Put and the invocation of PartnerLinks ¢)
is still interpreted in an interleaving form. To be
intuitive, the execution of start_, and start_ in
either order can result in the same global state in the
FSM of SimpleAC. Therefore, we can safely replace
this concurrency with a sequence and reduce the
redundant states caused by the concurrency. The
same situation also holds for the formalism of Flow,
where done . and done, , are modeled as
done,__|done, ..

Thus OPAL avoids unnecessary concurrencies in the
formalization of a business process model when
transforming it into an FSM. Typical sequentializa-
tions are implemented in OPAL, including the
formalism of the Fork nodes, Join nodes, multiple
inputs and outputs for an activity in the UML
activity diagrams and compatible models, the Flow
structure, and multiple incoming and outgoing links
for an activity in BPEL models. The sequentializa-
tion in the pi-calculus processes does not mean that
the corresponding activities in the BPEL process are
sequentialized.

As an example, the state-transition diagram of
SimpleAC can be simplified. In Figure 10, the states
numbered from 62 to 65 and their transitions
indicated by orange dashed lines show the part of
the FSM that can be reduced by optimization. The
optimized FSM is reduced to 43 states. Internal

LIU, MULLER, AND XU

experiments have demonstrated the practical value
of state-space reduction using sequentialization of
interleaving actions, especially for complex process
models with many unnecessary parallelisms.

Guided state searching for business bug patterns
Despite great improvements in the performance of
model checking, the exploitation of domain knowl-
edge is crucial to further improve the efficiency of
compliance checking. Because model checking is
more useful to probe hidden bugs in a system than
to prove its correctness, we have developed busi-
ness bug patterns, that is, a set of antipatterns
corresponding to the well-known workflow pat-
terns> to represent common behavioral violations
in a business process. A guided search mechanism is
then implemented to more efficiently search for
these business bugs in a business process model.

To explain the main idea of business bug patterns,34
we take the simple sequential pattern between two
activities, A and B, as an example. To falsify the
semantics that activity A and B are executed in a
sequential order, a business bug pattern Sequen-
tialBug(A, B) is shown below:

SequentialBug (A, B) = SimultaneousExecution (A, B)
V NoResponse(A, B)
SimultaneousExecution(A,B) =
{[#]; 'A.Exit & B.Start}

/*After a certain number of steps, a state
is reached in the process where B is started while
the execution of A does not yet take place.

NoResponse(A,B) =
{[]; A.InExecution; A.Exit} —
{B.InExecution[= 0]}

/*If A is finished in the process, no B will
be executed afterwards.

The semantics of the SequentialBug pattern are
formally captured with the IEEE Property Specifica-
tion Language (PSL).35 Contrary to Sequential(A, B),
the sequential bug pattern tries to find that either
both A and B start their execution simultaneously or
that B is never executed after A is done. The above
two aspects can be defined with two more atomic
bug patterns, SimultaneousStart(A, B) and NoRe-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Figure 10
Mapping example from pi-calculus to FSM

action=x P

x is the start action

- Act=Start process standing for activity Act
- action=x 2 p action=x P xis the £ action in the pi process
Act=InExecution — standing for activity Act
p action=x P x is the done action in the pi
Act=Exit

process standing for activity Act

sponse(A, B), respectively. The symbol V indicates
that the SequentialBug pattern holds when either
SimultaneousStart or NoResponse is satisfied. Here,
the SequentialBug pattern does not necessarily
check whether A is possibly executed after B, as this
is acceptable (e.g., when B loops back to A).

In the above definition, the form of A.Exit indicates
that the execution of activity A is terminated. The
execution status (e.g., Start, InExecution, and Exit)
can be encoded in the FSM model of the business
process according to the actions in the pi-calculus
process that has been enacted. Figure 10 shows an
example of such a mapping for the Receive activity.

A full reference of all the business bug patterns can
be found in our previous work.™

To more efficiently probe the potential existence of
such bugs in a business process model, our idea is to
always follow a subset of interesting states while
traversing the state space. Interesting states are
those that can lead to the detection of a targeted
business bug pattern within the least number of
transitions. More specifically, we define the follow-
ing:

M(m): the complete state space (universe) of a
business process m, with its initial state in which all
of the activities are NotStarted,

S(m) ={s(act1),s(act2),...}: A state in M(m) that is
encoded as the states of all activities in m, where
acte m & s(acti)e{acti.NotStarted, act.Start,
act..InExecution, act.Cancel, act,.Failed, act,.Exit};

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

The distance between two activity states D(s(act)1,
s(act)2) is thus defined as the least number of
transitions from one state s(act), to another state
s(act),. For example, if D(act.Start, act.Exit) = 2, it
means that at least two steps are needed from state
Start to state Exist for action act. Therefore, the
distance between two states in the process is defined
as the weighted average of D:

D_S(S(m)l,S(m)2) = ZiD(s(act)li,s(act)Zi)/\S(m)|

The interesting states for a given commitment state
CS in state set SS are thus:

S(m)_CS = {S(m)|S(m) € SS,VS'(m) € SSD_S
(S(m), CS) <D_S(S'(m),CS)}

A more detailed reference of our guided searching
mechanism and its algorithms can be found in our
previous work.** Our experiments have shown that
the guided reasoning of business bug patterns can
help improve the performance of compliance
checking in OPAL. Table 1 shows a set of
experimental results on the compliance checking of
the account-opening process in Figure 1, which has
a total state space of 8,361 (2213.0295) reachable
states. The guided business bug-searching algorithm
has been implemented in OPAL. The test environ-
ment was again a Windows platform with an Intel
Pentium 4 processor, 3.0 GHz, and 2.5 GB RAM.

The results show that our guided business-bug
searching approach can improve the performance of
finding potential violations in a business process
compared to the original approach. Intuitively
speaking, the reason for the improvement is that our
approach takes advantage of the pre-identified

LIU, MULLER, AND XU

355

356

Table 1 Experimental results on checking-account-opening process

Original Approach (seconds) Guided Bug
Target Hunti
Bug unting Result
From pi to FSM Model checking (seconds)
Bl 118.200 2.031 Found
B2 112.700 41.703 Not found
B3 57.218 177.600 26.438 Found
B4 129.300 60.469 Found
BS 221.900 72.266 Found
B1 SequentialBug(VerifyCustomerldentity, RecordCustomerInfo)
B2 MilestoneBug(ProposeAccountOpening.Exit, ActivateAccount.PreStart, ValidateAccountInfo)
B3 InterleavedParallelRoutingBug(OpenAccount, DoDeposit, RecordAccountinfo)
B4 ExclusiveChoiceBug(AcceptCustomerReq, {VerifyCustomerldentity, ValidateAccountInfo})
BS SequentialBug(AcceptCustomerReq, PrepareProposalDoc) &&
ParallelSplitBug(PrepareProposalDoc, {VerifyCustomerldentity, ProposeAccountOpening}) &&
SequentialBug(ProposeAccountOpening, ActivateAccount) &&
SynchronizingMergeBug({ ActivateAccount, VerifyCustomerldentity}, DoDeposit)

Mlv (the maximum interesting level for the next states to be traversed) = 1;

Gate (the maximum number of times allowed for computing preimages for the current states) = 10

activity status and always follows the shortest path
that may lead to the detection of a targeted bug.
Uninteresting state traces are neglected to narrow
down the state space that needs to be traversed.
Therefore, the guided business-bug searching ap-
proach is useful to check the compliance of complex
large-scale business processes. However, the ap-
proach is not perfect; its merits come at some cost
too:

e It can be used only to falsify a business process
because it does not ensure the full traversal of the
state space of the business process. Because model
checking is more useful for finding system bugs
than to prove them correct,36 the approach is still
valuable for checking compliance of real industrial
business designs that are too large for classical
model checking to run to completion.

e [t is not suitable for application in small-scale
business processes. On the one hand, it is totally
affordable to have a thorough and precise check-
ing of simple business processes with model
checking. On the other hand, the computation of

LIU, MULLER, AND XU

the interesting states in the approach is not
negligible for the compliance checking of a simple
business process; thereby, giving away the per-
formance advantage of the approach.

RELATED WORK

With the rapid growth of complexity in existing
business applications and their supporting IT
infrastructures, ensuring highly secure and reliable
business process development is becoming a critical
task. In the past few years, there has been a lot of
work modeling business processes and developing
verification techniques and tools for them. A recent
survey was done by Breugel and Koshkina.”’ In this
section, we identify three aspects pertaining to the
compliance checking of business process models.
We report on the literature in each area and clarify
how our work is different.

Pi-calculus as the formal foundation for business
process models

Many researchers generally agree that formal
models should be used as a basis for complex

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

business-process modeling languages, such as
BPEL.*® According to Sid Askary, “It will allow us to
not only reason about the current specification and
related issues, but also uncover issues that would
otherwise go unnoticed.”*” In this context, tremen-
dous focus has been concentrated on Petrinet and
pi-calculus. However, this has also led to a long
debate on what is the most suitable formal
foundation for business process models. Smith
supports pi-calculus and argues that “... workflow
is just a pi-calculus.”40 The design of Web Services
composition languages, such as XLANG and BPEL,
is also claimed to be based on pi-calculus. Van der
Aalst, on the other hand, has appealed that more
solid work should be done to prove the effectiveness
of pi-calculus in modeling business processes.38 In
fact, there has been some previous work on
formalizing various business process models with
pi-calculus, including UML statechart diagrarns,éu’42
UML (2.0) activity diagrams,%’44 and workflow
patterns.45 Previous work has also shown that pi-
calculus is a suitable formal composition language
for software composition and Web service compo-
sition.**™*® In our work, we have formalized BPEL
process models with pi-calculus instead of using
Petrinets or automata (and their extensions).

We rely on pi-calculus for the following reasons.
First, automata and Petrinets are often used to
model closed systems, whose behavior is completely
determined and controlled by the state of the
system. However, pi-calculus, aside from its mobil-
ity feature, is designed to model open communicat-
ing systems whose behavior is determined by the
state of the system and interaction with the behavior
of the environment.””*’ For example, FSM model is
under complete control of its transitions, whereas in
pi-calculus, all observable actions are under the
joint control of the process and its environment.
Therefore, one may regard FSM as the processes in
pi-calculus with only internal actions.

We favor pi-calculus over BPEL because, although
BPEL can be regarded as a fully controllable
orchestration of various services, there are also
cases when the behavior of a BPEL process (e.g., a
service invocation according to the WSDL specifi-
cation) needs an interactive feedback from the
environment of the process (e.g., a dynamically
changing service portfolio). For example, when
BPEL is used as an abstract service-composition
language with the automatic discovery and mapping

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

of the target services for invocation, it becomes
critical to consider the communication with the
environmental information, such as the available
service candidates in the service portfolio and
service selections (which can be best modeled by
the mobility feature of pi-calculus).

Another advantage of pi-calculus is its mobility and
compositionality. Here compositionality means that
there is a natural composition operator in pi-
calculus to model a system from its subcompo-
nents. This operator does not exist in Petrinets.
Therefore, for composing various Web services by
BPEL to form a process, it is more natural and
beneficial to use a compositional language like
pi-calculus instead of FSM or Petrinet, which
involve additional operations and computations
for the composition.

Pi-calculus is theoretically sound and supports
bisimulation analysis and model checking. It enjoys
increasing acceptance and tool support in the
industry. It has also been used as the formal
foundation for business-process modeling languages
such as BPEL and XLANG. However, as pointed out
by van der Aalst,”® more work needs to be done to
provide formal models, verification approaches, and
automatic tools for business processes based on pi-
calculus. Our work can be regarded as a response to
this appeal.

Formal verification of BPEL process models
Based on the formal semantics, there has been
previous work on the formal verification of BPEL
process models. Fu et al.*° first translate BPEL
processes into (guarded) automata, and LTL model
checking can thus be performed with SPIN®' with an
additional transformation from (guarded) automata
to Promela (the input language used by the free
model checker of SPIN, developed by Bell Labora-
tories).51 Besides, Fu et al.”° studied the so-called
synchronizability and realizability analysis for the
composition of Web services. Kovacs and Géjnczy52
also exploit the model checker of SPIN, although the
intermediate model between BPEL and Promela is a
model of a dataflow network. Foster et al.,53 on the
other hand, take the BPEL process and translate it
into the form of finite state process calculus and
then compile it into a labeled transition system. The
formal verification is then performed by the existing
labeled-transition-system analyzer tool suite.
Ouyang et al.>* and Lohmann et al.” both provide a

LIU, MULLER, AND XU

357

358

semantic transformation from BPEL to Petrinet.
However, whereas Ouyang et al.>* focus on the
analysis of specific process properties, such as
reachability analysis, competing message-consum-
ing activities, and garbage collection of queued
messages, Lohmann et al.” focus on the controlla-
bility of the process; that is, whether a strategy can
be constructed to impose the weak termination
property on the corresponding workflow net.
Finally, instead of dealing with the BPEL model,
Koehler et al.” propose a pattern-based mapping
approach to model a general business process. Two
typical properties in a process model, reachability
and termination, are formulated with the temporal
logic of CTL, which can be verified later by existing
model checkers.

Our compliance-checking approach differs from
these works in two ways:

1. The theoretical foundation is different. We have
used a pi-calculus-based approach instead of an
automata- or Petri-net-based approach. The
benefits of our selection were addressed in the
previous subsection.

2. The completeness of the approach is different.
We focused on the verification of our formalized
BPEL models against specific structural errors.
More important, our work involves a more
detailed proposal of subjects—including coun-
terexample guiding, performance enhancement,
and visualization of temporal logics—which are
critical to making the formal verification of
business processes practical and usable.

Specifying regulatory rules with temporal logics
Specifying user-desired properties with logical for-
mulas is an important step in the formal verification
of business process models. The intuitiveness and
convenience in the property specification thus
becomes a key issue in making the formal verifica-
tion approach more applicable to business analysts,
who may not be logical experts. The LTL model
checker plug-in in ProM’’ exploits a textual form of
LTL formula directly. The work in Giblin et al.'?
extends a timed propositional temporal logic and is
devoted to the specification of regulatory rules in a
textual form. REALM" provides several easy-to-use
features, such as a predefined set of business entity
types (e.g., Artifact, Resource, and Principle) and
relations (e.g., Do, Input, and Output) whose syntax
conforms to a UML profile. Unfortunately, there is

LIU, MULLER, AND XU

still no tool support for the verification of REALM
specifications.

On the other hand, visual extension to existing
logical languages is an important research direction
to help business analysts understand and specify
logical formulas intuitively. Related visualization
works can be found for commonly used temporal
logics, including CTL,58 LTL,59 and interval tempo-
ral logics.60 Especially in DecSerFlow,”" a graphical
representation of the so-called Declarative Service
Flow Language is proposed, which can be mapped
onto LTL and enables the LTL verification of Web-
service flow models.

As explained earlier, our OPAL toolkit contains an
editor for BPSL to visually specify various regulatory
rules. BPSL is different from the preceding works in
the following aspects:

e It is a visual specification language which supports
the temporal logics of both LTL and CTL. It is also
compatible with the IEEE standard, Property
Specification Language.gS

e It enables the intuitive and convenient specifica-
tion of regulatory rules by customizing predefined
property templates in BPSL. The source of these
templates comes from existing work on patterns
such as business property specification patterns23
and business bug patterns.

CONCLUSION

We have introduced OPAL, a compliance-checking
framework, and related tools, including a static
method to check business process models against
compliance rules. Compliance-checking tools enable
one to quickly assess the compliance of business
process models in batch mode. The use of high-level
specification languages, such as BPEL (as opposed
to pi-calculus or FSMs directly) and BPSL (as
opposed to LTL specifications) and the definition of
transformations that can be automated into low-
level formalisms yields easier, more intuitive, and
less error-prone process modeling, thus reducing the
risk of implementation errors and noncompliant
operations. If noncompliant business process mod-
els are discovered, counterexamples can be gener-
ated on the level of the business process model. This
capability provides a better understanding of the
nature of the problem and enables a quicker reaction
to address and rectify the noncompliant processes.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

These capabilities make it possible for business
people to use the compliance-checking tool.

Our compliance-checking method builds on classical
model-checking technology. After a business pro-
cess model has been formalized with pi-calculus, it
can be transformed into an FSM representation. The
intermediate models of pi-calculus and FSM enable
our compliance-checking framework to be scalable
to both the future emergence of new business-
process modeling techniques and the reuse of more
powerful model-checking tools. As a matter of fact,
although this paper mainly addresses the application
of the framework in BPEL processes, our current
implementation of the compliance-checking frame-
work (the OPAL toolkit) has also been applied in the
verification of WBI process models. As performance
is always a critical problem in the area of model
checking, we have also proposed the method of
sequentialization of interleaving actions to reduce
the overall state space. The approach of guided state
searching for business bug patterns can further help
improve the efficiency of compliance checking. As
conducted experiments illustrated, these two opti-
mization approaches can greatly help improve the
performance of compliance checking.

We plan to extend the existing compliance-checking
method to support the verification of resource and
data constraints that are related to business process
models. Additionally, we plan to focus on perfor-
mance optimization. Finally, we intend to apply our
compliance-checking method to more real cases to
further validate the capabilities and usability of our
compliance-checking framework.

ACKNOWLEDGMENTS

The authors in the author list contributed equally to
this paper. The ordering of the author list follows the
principle of alphabetical ordering according to the
first character of family name. We would like to
express our sincere thanks to Jun Zhu for his great
help in improving this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of
Information Systems Audit and Control Association, Govern-
ment Agency of UK, Object Management Group, Inc., The
Eclipse Foundation, Microsoft Corporation, or Intel Corpora-
tion in the United States, other countries, or both.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

CITED REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Leymann and D. Roller, Production Workflow: Con-
cepts and Techniques, Prentice Hall PTR, Upper Saddle
River, NJ (2000).

. M. Havey, Essential Business Process Modeling, O’Reilly &

Associates, Sebastopol, CA (2005).

Gramm-Leach-Bliley Act of 1999 (GLBA), Public Law 106-
102 (113 Statute 1338), United States Senate Committee
on Banking, Housing, and Urban Affairs (1999).

Sarbanes-Oxley Act of 2002, Public Law 107-204 (116
Statute 745), United States Senate and House of Repre-
sentatives in Congress (2002).

USA Patriot Act of 2001, Public Law 107-56, HR 3162
RDS, United States Senate and House of Representatives
in Congress (2001).

International Convergence of Capital Measurement and
Capital Standards (Basel II), Basel Committee on Banking
Supervision (2004), http://www.federalreserve.gov/
boarddocs/press/bcreg/2004/20040626/attachment.pdf.

The Money Laundering Regulations, Statutory Instrument
2003 No. 3075, Act of Parliament, http://www.opsi.gov.
uk/si/si2003/20033075.htm.

Law of the People’s Republic of China on the People’s
Bank of China, the 8th National People’s Congress
(2003), http://www.pbc.gov.cn/english//detail.
asp?col=6800&ID=22.

Control Objectives for Information and Related Technology
(COBIT), Version 4.0, IT Governance Institute (2005),
http://www itgi.org.

IT Infrastructure Library (ITIL), Office of Government
Commerce (2006), http://www.itil.co.uk.

C. Abrams, J. von Kinel, S. Miiller, B. Pfitzmann, and S.
Ruschka-Taylor, “Optimized Enterprise Risk Manage-
ment,” IBM Systems Journal 46, No. 2, 219-234 (2007,
this issue).

C. Giblin, A. Y. Liu, S. Miiller, B. Pfitzmann, and X. Zhou,
“Regulations Expressed as Logical Models (REALM),”
Proceedings of the 18th Annual Conference on Legal
Knowledge and Information Systems, Brussels, Belgium
(2005), pp. 37-48.

Rules for Anti-Money Laundering by Financial Institu-
tions, The People’s Bank of China (2003), http://www.
pbc.gov.cn/english//detail.asp?col=6800&ID=31.

T. Andrews, F. Cubera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, et al., Business Process Execution
Language for Web Services, Version 1.1, BEA Systems,
International Business Machines Corporation, Microsoft
Corporation, SAP AG, Siebel Systems (2003), ftp://
wwwo6.software.ibm.com/software/developer/library/
ws-bpel.pdf.

K. Xu, Y. Liu, and C. Wu, “BPSL Modeler-Visual
Notation Language for Intuitive Business Property Rea-
soning,” Proceedings of the Sth International Workshop
on Graph Transformation and Visual Modeling Tech-
niques, Vienna, Austria (2006), pp. 205-214.

R. Milner, The Polyadic Pi-Calculus: A Tutorial, Technical
Report CS-LFCS-91-180, School of Informatics, Labora-
tory for Foundations of Computer Science, University of
Edinburgh, Edinburgh, Scotland EH8 9YL (1991).

A. Pnueli, “The Temporal Logic of Programs,” Proceed-
ings of the 18th IEEE Symposium on Foundations of
Computer Science, Providence, RI (1977), pp. 46-57.

E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model
Checking, MIT Press, Cambridge, MA (2000).

LIU, MULLER, AND XU

359

360

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

. F. Leymann, Web Services Flow Language (WSFL 1.0),

IBM Corporation (2001), http://xml.coverpages.org/
WSFL-Guide-200110.pdf.

S. Thatte, XLANG: Web Services for Business Process
Design, Microsoft Corporation (2001).

WebSphere Business Integration Modeler, IBM Corpora-
tion (2006), http://www-306.ibm.com/software/
integration/wbimodeler/library/.

K. Mantell, From UML to BPEL, IBM Corporation (2005),
http://www-128.ibm.com/developerworks/
webservices/library/ws-uml2bpel/.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property
Specification Patterns for Finite-State Verification,” Pro-
ceedings of the 2nd Workshop on Formal Methods in
Software Practice, Clearwater Beach, FL (1998), pp. 7-15.

M. Y. Vardi, “Branching vs. Linear Time: Final Show-
down,” Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, Genova, Italy (2001), pp. 1-22.

K. Xu, Y. Liu, and G. G. Pu, Formalization, Verification
and Restructuring of BPEL Models with Pi Calculus and
Model Checking, Research Report, RC-23962, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 (20006).

B. Jacobs and F. Piessens, “A Pi-Calculus Semantics of
Java: The Full Definition,” Technical Report CW 355,
Department of Computer Science, Katholieke Universiteit
Leuven, Leuven B-3001, Belgium (2003).

G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore, “A
Model-Checking Verification Environment for Mobile
Processes,” ACM Transactions on Software Engineering
and Methodology 12, No. 4, 440-473 (2003).

M. Pistore, History Dependent Automata, Ph.D. thesis,
University of Pisa, Pisa, Italy (1999).

D. Sangiorgi and D. Walker, The Pi Calculus: A Theory of
Mobile Processes, Cambridge University Press, New York,
NY (2001).

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella,
“NuSMV 2: An OpenSource Tool for Symbolic Model
Checking,” Proceedings of the 14th International Confer-
ence on Computer-Aided Verification, Copenhagen, Den-
mark (2002), pp. 359-364.

1. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky,
T. Heyman, A. Landver, et al., “RuleBase: Model
Checking at IBM,” Proceedings of the International
Conference on Computer Aided Verification, Haifa, Israel
(1997), pp. 480-483.

WebSphere Studio Application Developer Integration
Edition, IBM Corporation (2006), http://www-306.ibm.
com/software/integration/wsadie/support/.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, and A. P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases 14, No. 1, pp. 5-51
(2003).

K. Xu, Y. Liu, and C. Wu, “Guided Reasoning of Complex
E-Business Process with Business Bug Patterns,” Pro-
ceedings of the IEEE International Conference on
e-Business Engineering, Shanghai, China (2006),

pp. 195-202.

D. Geist, “The PSL/Sugar Specification Language: A
Language for All Seasons,” Proceedings of The Correct
Hardware Design and Verification Methods Conference,
L’Aquila, Italy (2003), pp. 21-24.

LIU, MULLER, AND XU

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

C. H. Yang and D. L. Dill, “Validation with Guided Search
of the State Space,” Proceedings of the 35th Annual
Conference on Design Automation, San Francisco, CA
(1998), pp. 559-604.

F. van Breugel and M. Koshkina, Models and Verification
of BPEL, Technical Report, York University, Toronto, M3J
1P3, Canada (2006), http://www.cse.yorku.ca/~franck/
research/drafts/tutorial.pdf.

W. M. P. van der Aalst, “Pi Calculus Versus Petri Nets:
Let Us Eat ‘Humble Pie’ Rather Than Further Inflate the
‘Pi Hype’,” BPTrends 3, No. 5, 1-11 (2005).

Issue 42: Need for Formalism, OASIS Web Services
Business Process Execution Language (WSBPEL) Tech-
nical Committee, http://www.oasis-open.org/archives/
wsbpel/200307/msg00177.html.

H. Smith, “Business Process Management—The Third
Wave: Business Process Modeling Language (BPML) and
Its Pi-Calculus Foundations,” Information and Software
Technology 45, No. 15, 1065-1069 (2003).

V. S. W. Lam and J. Padget, “Formalization of UML
Statechart Diagrams in the Pi-Calculus,” Proceedings of
the 13th Australian Software Engineering Conference,
Canberra, Australia (2001), pp. 213-223.

V. S. W. Lam and J. Padget, “Analyzing Equivalences
of UML Statechart Diagrams by Structural Congruence
and Open Bisimulations,” Proceedings of the IEEE
Symposia on Human Centric Computing Languages and
Environments, Auckland, New Zealand (2003),

pp. 137-144.

Y. Dong and Z. Shensheng, “Using /spl Pi/-Calculus

to Formalize UML Activity Diagram for Business Process
Modeling,” Proceedings of the 10th IEEE International
Conference and Workshop on the Engineering of
Computer-Based Systems, Huntsville, AL (2003),

pp. 47-54.

K. Xu, Y. Liu, J. Zhu, and C. Wu, “Pi Calculus Based Bi-
transformation of State-Driven Model and Flow-Driven
Model,” International Journal of Business Process Inte-
gration and Management 2 (In Press 20006).

F. Puhlmann and M. Weske, “Using the Pi-Calculus for
Formalizing Workflow Patterns,” Proceedings of the
International Conference on Business Process Manage-
ment, Nancy, France (2005), pp. 153-168.

0. Nierstrasz and T. D. Meijler, “Requirements for a
Composition Language,” Proceedings of the ECOOP’94
Workshop on Models and Languages for Coordination of
Parallelism and Distribution, Object-Based Models and
Languages for Concurrent Systems, Bologna, Italy (1994),
pp. 147-161.

M. Lumpe, F. Achermann, and O. Nierstrasz, “A Formal
Language for Composition,” in Foundations of Compo-
nent-Based Systems, G. T. Leavens and M. Sitaraman,
Editors, Cambridge University Press, New York (2000),
pp. 69-90.

C. Pahl, “A Formal Composition and Interaction Model
for a Web Component Platform,” Electronic Notes in
Theoretical Computer Science 66, No. 4, 1-15 (2002).

R. Alur, T. A. Henzinger, and O. Kupferman, “Alternat-
ing-Time Temporal Logic,” Proceedings of the 38th
Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach, FL (1998), pp. 100-109.

X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for Formal
Analysis of Web Services,” Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing
and Analysis, Boston, MA (2004), pp. 510-514.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

51. G.J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley Professional, Boston,
MA (2003).

52. M. Kovacs and L. Gonczy, “Simulation and Formal
Analysis of Workflow Models,” Proceedings of the Sth
International Workshop on Graph Transformation and
Visual Modeling Techniques, Vienna, Austria (2006), pp.
215-224.

53. H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS:
A Tool for Model-Based Verification of Web Service
Compositions and Choreography,” Proceedings of the
28th International Conference on Software Engineering,
Shanghai, China (2006), pp. 771-774.

54. C.Ouyang, H. M. W. Verbeek, W. M. P. van der Aalst, S.
Breutel, M. Dumas, and A. H. M. ter Hofstede,
“WOofBPEL: A Tool for Automated Analysis of BPEL
Processes,” Proceedings of the 3rd International Confer-
ence on Service Oriented Computing, Amsterdam, The
Netherlands (2005), pp. 484-489.

55. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg,
“Analyzing Interacting BPEL Processes,” Proceedings of
the 4th International Conference on Business Process
Management, Vienna, Austria (2006), pp. 17-32.

56. J. Koehler, G. Tirenni, and S. Kumaran, “From Business
Process Model to Consistent Implementation: A Case for
Formal Verification Methods,” Proceedings of the 6th IEEE
International Enterprise Distributed Object Computing
Conference, Lausanne, Switzerland (2002), pp. 96-106.

57. H. M. W. Verbeek, B. F. van Dongen, J. Mendling, and
W. M. P. van der Aalst, “Interoperability in the ProM
Framework,” Proceedings of the CAiSE *06 Workshops
and Doctoral Consortium, Luxembourg, Luxembourg
(2006), pp. 619-630.

58. A. Del Bimbo, L. Rella, and E. Vicario, “Visual
Specification of Branching Time Temporal Logic,” Pro-
ceedings of the 11th IEEE International Symposium on
Visual Languages, Darmstadt, Germany (1995), pp.
61-68.

59. M. Brambilla, A. Deutsch, L. Sui, and V. Vianu, “The Role
of Visual Tools in a Web Application Design and
Verification Framework: A Visual Notation for LTL
Formulae,” Proceedings of the 5th International Confer-
ence on Web Engineering, Sydney, Australia (2005), pp.
557-568.

60. A. C. Rao, A. Cau, and H. Zedan, “Visualization of
Interval Temporal Logic,” Proceedings of the Sth Joint
Conference on Information Sciences, Kaohsiung, Taiwan,
ROC (2000), pp. 687-690.

61. W. M. P. van der Aalst and M. Pesic, “DecSerFlow:
Towards a Truly Declarative Service Flow Language,”
Proceedings of the 3rd International Workshop on Web
Services and Formal Methods, Invited Talks, Vienna,
Austria (2006), pp. 1-23.

Accepted for publication October 24, 2006.
Published online May 2, 2007.

Ying Liu

IBM Research Division, IBM China Research Laboratory,
Diamond Building, ZGC Software Park No. 19, Dong Beiwang
Road, ShangDi, Beijing, 100094, Peoples’ Republic of China
(aliceliu@cn.ibm.com). Dr. Liu is a research staff member in
the Service Ecosystem Department at the IBM China Research
Laboratory. She received a Ph.D. degree in applied
mathematics from Peking University. She subsequently joined
the IBM Research Division in Beijing, China, where she began

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

working on business process integration. From 2003 to 2005
she focused on BPM, including process model verification and
model-driven solution engineering management. Dr. Liu’s
current research interests include formal methods, BPM, and
service building technologies.

Samuel Mdiller

IBM Research Division, IBM Zurich Research Laboratory,
Sdumerstrasse 4, 8803 Riischlikon, Switzerland
(sml@zurich.ibm.com). Mr. Miiller obtained an M.S. degree in
computer science and an M.A. degree in economics, both from
the University of Zurich. He joined IBM Research in Zurich in
2004, where he is currently doing research in the area of risk
and compliance. In parallel, he is working toward his
doctorate degree as an external Ph.D. student at the Swiss
Federal Institute of Technology Zurich, where he is a member
of the Information Security group. Mr. Miiller’s research
interests include modal logics, formal methods and modeling,
risk and compliance management, game theory, and
economics.

Ke Xu

Automation Department, Tsinghua University, Beijing,
100084, Peoples’ Republic of China
(xk02@mails.tsinghua.edu.cn). Mr. Xu received a B.S. degree
from the Automation Department of Shanghai JiaoTong
University. He is currently a Ph.D. candidate at the National
Engineering Research Center for Computer Integrated
Manufacturing Systems in Tsinghua University. His main
research interests include process algebra and model checking
and their application in grid computing and business
integration. He serves as a member of the academic committee
in the Automation Department of Tsinghua University. Mr. Xu
is also an IBM Ph.D. Fellow for 2006-2007. W

LU, MULLER, AND XU 361

