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Regulatory compliance of business operations is a critical problem for enterprises. As

enterprises increasingly use business process management systems to automate their

business processes, technologies to automatically check the compliance of process

models against compliance rules are becoming important. In this paper, we present a

method to improve the reliability and minimize the risk of failure of business process

management systems from a compliance perspective. The proposed method allows

separate modeling of both process models and compliance concerns. Business

process models expressed in the Business Process Execution Language are

transformed into pi-calculus and then into finite state machines. Compliance rules

captured in the graphical Business Property Specification Language are translated into

linear temporal logic. Thus, process models can be verified against these compliance

rules by means of model-checking technology. The benefit of our method is threefold:

Through the automated verification of a large set of business process models, our

approach increases deployment efficiency and lowers the risk of installing noncom-

pliant processes; it reduces the cost associated with inspecting business process

models for compliance; and compliance checking may ensure compliance of new

process models before their execution and thereby increase the reliability of business

operations in general.

INTRODUCTION

Modern businesses face a broad number of chal-

lenges. While striving to please their customers,

they must meet the expectations of their share-

holders and remain profitable. Due to globalization

and digitization, they are typically confronted with

increased and highly dynamic competition. Conse-

quently, investments in information technology (IT)

have become a necessary condition to stay compet-

itive and remain in business. As a result, many

enterprises have recently shown a growing interest

in business process management (BPM), which
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refers to all activities performed by businesses to

model, automate, optimize, monitor, and adopt their

businesses processes.
1,2

Thus, there has been an

increased acceptance and adoption of business

process management systems (BPMSs) in order to

efficiently support, execute, and monitor business

processes.

The above development has been paralleled by a

growing number of regulatory requirements im-

posed on businesses. Prominent examples in the

United States are the Gramm-Leach-Bliley Act,
3

the

Sarbanes Oxley Act (SOX),
4

and the USA Patriot

Act.
5

While these United States regulations have

very broad coverage, many industry-specific regu-

lations—such as the international Basel II accord,
6

European Money Laundering Regulation,
7

and the

Law of the People’s Republic of China on the

People’s Bank of China
8
—have been enacted around

the globe. Demonstrating compliance with legal

requirements and international standards generally

requires that affected companies document their

business processes. Although many enterprises try

to regard such documentation requirements as an

opportunity to identify their informal processes and

to render their execution more efficient, for large

enterprises with thousands of different business

processes, this alone represents a considerable

challenge.

Enterprises operating in heavily regulated indus-

tries, such as financial services, health care,

government, and national defense, are likely

governed by a large number of regulatory require-

ments. As these requirements must be implemented

and enforced by a multitude of internal business

and IT controls, many regulations now recommend

the use of respected standards, such as COBIT**

(Control Objectives for Information and Related

Technologies)
9

and ITIL** (Information Technolo-

gy Information Library),
10

for the implementation

of an enterprise IT system. These standards consist

of well-defined abstract process definitions that can

be tailored according to a company’s individual

needs.

Because of the increasing number of regulations and

standards, enterprises need a comprehensive com-

pliance-management approach, as discussed in

Abrams et al.
11

and Giblin et al.
12

They need to be

able to understand the implications of new regula-

tions for their business and its processes. As

business processes are increasingly managed using

BPMSs, regulatory requirements that necessitate

changes to the structure of particular workflows

directly impact business process modeling. Thus,

whenever a new regulatory requirement is enacted,

a company needs to know what its impact is. Three

effects are possible: existing business processes

must be adapted or removed; new business pro-

cesses must be introduced; or there is no impact

because all business processes are already compli-

ant with the new requirement.

Business processes that are automated through

BPMS can be used to implement IT processes and

controls, as defined by ITIL or COBIT, and thereby

address existing regulations. The impact of new

regulatory requirements, however, cannot be as-

sessed using these frameworks. For large enterprises

with thousands of business processes deployed on

the BPMS and stored in specific repositories, the

assessment of which existing process definitions

comply with a new regulatory requirement is of

utmost importance. In this paper, we describe an

approach that allows for the static verification of

business process models against a set of formally

expressed regulatory requirements, which include

constraints on the state and execution order of

process activities. We call these formally expressed

regulatory requirements compliance rules. Our

approach helps a company with the identification of

noncompliant business processes before their exe-

cution and, in the case of noncompliance, indicates

the nature of the problem.

Potential benefits of automatic verification of

business process models

To ensure compliance, the impact of each new

regulatory requirement on existing business process

models needs to be identified. Although BPM does

not help here, our approach indicates which

processes are compliant and which are not, hence

providing a valuable tool to ensure that new

requirements are incorporated into the company’s

process models. Hence, the benefit of our method is

threefold:

1. Through automated verification of a large set of

business process models, our approach increases

efficiency during deployment and lowers the risk

of implementing and activating noncompliant

processes.

LIU, MÜLLER, AND XU IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007336



2. By automating a tedious task that must otherwise

be done manually, our method reduces the cost

associated with inspecting business process

models for compliance.

3. Used as a tool during modeling of new business

processes, our approach ensures compliance of

new models before their execution and thereby

increases the reliability of business operations in

general.

Case study

We now introduce a case study, which we shall use

as a running example throughout this paper. We

assume the existence of a Chinese bank called

SimpleBank, whose managers want to know

whether its business operations conform to a set of

relevant compliance rules. For the sake of simplic-

ity, we focus only on SimpleBank’s account-opening

process, whose process definition is portrayed in

Figure 1.

We further assume that at some point SimpleBank is

confronted with a set of new compliance rules

corresponding to the Rules for Anti-Money Laun-

dering by Financial Institutions,
13

as published by

the People’s Bank of China. The two relevant

articles are Article 11 and Article 13. Article 11 states

in part: ‘‘When opening deposit accounts or pro-

viding settlement service for individual customers,

financial institutions shall verify the customers’ IDs

and record the names and ID numbers.’’ Article 13

states: ‘‘Financial institutions shall abide by relevant

rules and report to the People’s Bank of China and/

or the State Administration of Foreign Exchange of

any large-value transactions detected in the process

of providing financial services to customers.

Classification of large-value transactions shall be

determined in line with relevant rules made by

the People’s Bank of China and the State

Administration of Foreign Exchange on reporting

of fund transactions.

For example, if a customer deposits a large amount

of money into his account, the respective transac-

tion must be reported. Compliance with this rule

requires an adequate interpretation of large value

according to the relevant rules made by the People’s

Bank of China and the State Administration of

Foreign Exchange. For the sake of simplicity, we

shall assume this is a parameter that can be flexibly

adjusted.

Given the business process in Figure 1 and a set of

compliance rules, we demonstrate in this paper how

a set of well-defined model transformations enables

the use of model-checking technology to verify

whether the definition of a business process

complies with a set of relevant compliance rules. We

call our method compliance checking.

Overview of the compliance-checking method

Overall, our compliance-checking method includes

six major steps (Figure 2).

In Step 1, we model our business processes using

BPEL (Business Process Execution Language).
14

In

Step 2, we use the visual BPSL
15

to specify relevant

compliance rules. (In the section ‘‘Modeling business

processes and compliance rules,’’ we provide both

the BPEL process model and the compliance rules

formalized in BPSL (Business Property Specification

Language) for the SimpleBank case study.) We

transform the BPEL process model into a represen-

tation using pi-calculus
16

in Step 3.1. Then, in Step

3.2, the pi-calculus is transformed into a finite state

machine (FSM). In Step 4, the BPSL compliance rules

are transformed into linear temporal logic (LTL).
17

(Steps 3.1, 3.2, and 4 are described in the section

‘‘Model transformations.’’) Having thus formalized

both the business processes and compliance rules, in

Step 5 we use model-checking technology
18

to

statically verify whether the business processes

comply with the imposed regulations. In Step 6,

counterexamples (i.e., execution orders of process

activities that demonstrate how the compliance rules

can be violated) are fed back to the business process

layer to demonstrate how the compliance rules have

been violated. (Details about the model checking,

counterexample tracing, and specific optimization

approaches for compliance checking are presented in

the sections ‘‘Compliance-checking framework and

case study results’’ and ‘‘Advanced features of the

compliance-checking framework.’’)

MODELING BUSINESS PROCESSES AND
COMPLIANCE RULES
Before introducing the details of our compliance-

checking method, we briefly explain how to model

business processes with BPEL and how to specify

compliance rules with BPSL.

Business process modeling using BPEL

In the earlier section ‘‘Case study,’’ we introduced a

conceptual account-opening process for Simple-
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CloseAccount

Figure 1
Account-opening process
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Bank. Assuming that SimpleBank wants to take

advantage of a BPMS to manage this process, the

process should be specified with an executable

business process modeling language. BPEL is such a

language. It is a de facto standard for business

application integration and business-to-business

processing based on XML (Extensible Markup

Language), with a specific focus on Web services. It

synthesizes essential aspects of Web Services Flow

Language (e.g., support for graph-oriented process-

es)
19

and XLANG
20

(e.g., structural constructs for

processes) into one cohesive language to support

implementing business processes in a natural

manner. Although there is no formal proof that

BPEL is powerful enough to express all require-

ments related to business processes, BPEL has been

applied in many real customer cases and enjoys

broad industry acceptance. Because of this and its

characteristic features, BPEL has been the business

process modeling language of choice in our com-

pliance-checking method.

A BPEL process, also called a BPEL program,

consists of four major elements: The Variable

section defines the data variables used by the

process, providing their definitions in terms of Web

Services Description Language (WSDL) message

types, XML schema simple types, or XML schema

elements. The PartnerLinks section defines the

different parties that interact with the business. The

FaultHandler elements define the activities that

must be performed in response to faults during

process execution. The rest of the process definition

contains the description of normal behavior with

BPEL activities, including BasicActivity, Structured-

Activity, and ScopeActivity. The BPEL program

corresponding to the account-opening process is

given in Figure 3. (It shows only the behavior

definition section, whose essence is self-explana-

tory.) The precise semantics of BPEL activities and

variables are explained in the section ‘‘Model

transformations.’’

As writing BPEL code manually is relatively

cumbersome, process designers often model busi-

ness processes visually by using a process modeling

tool such as IBM WebSphere* Business Integration

Modeler (WBI Modeler).
21

In addition to providing a

visual user interface, these tools allow graphical

process models to be exported as BPEL programs.

We do not focus on the transformation from Unified

Modeling Language (UML**) to BPEL here; refer to

Mantell
22

for more detailed information. (The visual

process modeling language provided by WBI Mod-

eler is partially compatible with UML activity-

diagram notation.)

Compliance rule modeling using BPSL

Temporal constraints in compliance rules can be

specified formally with temporal logic formulas,

such as LTL and computation tree logic (CTL).

However, for people without a background in

formal logic systems, temporal logic systems are

rather difficult to understand and use. The purpose

of BPSL is to provide a more intuitive formalism to

Figure 2
Compliance-checking method
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Figure 3 (Part 1 of 2)
BPEL program for the account-opening process

<bpws:sequence name="Sequence" ……>
    <bpws:receive createInstance="yes" name="AcceptCustomerReq"
                  partnerLink="ACQ" variable="variable_acq" ……/>
    <bpws:flow name="Flow" ……>
      <bpws:scope name="Scope" ……>
        <bpws:sequence name="HiddenSequence" ……>
          <bpws:invoke inputVariable="variable_oci" 
            name="ObtainCustomerInfo" outputVariable="variable_oci" p……/>
          <bpws:switch name="VIP?" ……>
            <bpws:case ……>
              <bpws:empty name="EmptyAction2" ……/>
            </bpws:case>
            <bpws:otherwise>
              <bpws:sequence name="HiddenSequence1" ……>
                <bpws:invoke inputVariable="variable_rfcd" 
         name="RetrieveFullCustomreDtl" outputVariable="variable_rfcd" ……/>
                <bpws:invoke inputVariable="variable_acr" 
               name="AnalyzeCustomerRelation" outputVariable="variable_acr"
                   partnerLink="ACR" ……/>
              </bpws:sequence>
            </bpws:otherwise>
          </bpws:switch>
        </bpws:sequence>
      </bpws:scope>
      <bpws:sequence name="Sequence1" wpc:displayName="Sequence1" ……>
        <bpws:invoke inputVariable="variable_acr" name="IdentifyCustomerReq" 
                     outputVariable="variable_acr" partnerLink="ICR" ……/>
        <bpws:invoke inputVariable="variable_sds" name="SelectDepositService" 
                     outputVariable="variable_sds" partnerLink="SDS" ……/>
        <bpws:switch name="Deposit?" ……>
          <bpws:case ……>
            <bpws:invoke inputVariable="variable_sdf" name="SubmitDepositForm" 
                         outputVariable="variable_sdf" partnerLink="SDF" ……/>
          </bpws:case>
          <bpws:otherwise>
            <bpws:empty name="EmptyAction" ……/>
          </bpws:otherwise>
        </bpws:switch>
      </bpws:sequence>
    </bpws:flow>
    <bpws:invoke inputVariable="variable_ppd" name="PrepareProposalDoc"  
                 outputVariable="variable_ppd" partnerLink="PPD" ……/>
    <bpws:flow name="Flow1" ……>
      <bpws:links>
        <bpws:link name="Link2" ……/>
        <bpws:link name="Link3" ……/>
      </bpws:links>
      <bpws:invoke inputVariable="variable_vci" name="VerifyCustomerIdentity" 
                   outputVariable="variable_vci" partnerLink="VCI" ……>
        <bpws:targets> <bpws:target linkName="Link3"/> </bpws:targets>
      </bpws:invoke>
      <bpws:invoke inputVariable="variable_ssr" name="ScheduleStatusReview" 
                   outputVariable="variable_ssr" partnerLink="SSR" ……>
        <bpws:sources>
          <bpws:source linkName="Link2"/>
          <bpws:source linkName="Link3"/>
        </bpws:sources>
      </bpws:invoke>
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Figure 3 (Part 2 of 2)
BPEL program for the account-opening process

<bpws:invoke inputVariable="variable_pao" name="ProposeAccountOpenning" 
                   outputVariable="variable_pao" partnerLink="PAO" ……/>
      <bpws:invoke inputVariable="variable_rci" name="RecordCustomerInfo"   
                   outputVariable="variable_rci" partnerLink="RCI" ……/>
      <bpws:invoke inputVariable="variable_oasr" name="OpenAccountStatusReview" 
                   outputVariable="variable_oasr" partnerLink="OASR" ……>
        <bpws:targets> <bpws:target linkName="Link2"/> </bpws:targets>
      </bpws:invoke>
    </bpws:flow>
    <bpws:invoke inputVariable="variable_oa" name="OpenAccount" 
                 outputVariable="variable_oa" partnerLink="OA" ……/>
    <bpws:invoke inputVariable="variable_vai" name="ValidateAccountInfo" 
                 outputVariable="variable_vai" partnerLink="VAI" ……/>
    <bpws:switch name="Valid?" ……>
      <bpws:case ……>
        <bpws:sequence name="HiddenSequence3" ……>
          <bpws:invoke inputVariable="variable_aap" name="ApplyAccountPolicy" 
                       outputVariable="variable_aap" partnerLink="AAP" ……/>
          <bpws:invoke inputVariable="variable_aa" name="ActivateAccount" 
                       outputVariable="variable_aa" partnerLink="AA" ……/>
          <bpws:flow name="ParallelActivities" ……>
            <bpws:links>
              <bpws:link name="Link1" ……/>
              <bpws:link name="Link4" ……/>
            </bpws:links>
            <bpws:invoke inputVariable="variable_rai" name="RecordAccountInfo" 
                         outputVariable="variable_rai" partnerLink="RAI" ……/>
            <bpws:invoke name="EvaluateDepositAmount" ……>
              <bpws:sources> <bpws:source linkName="Link1"/> </bpws:sources>
            </bpws:invoke>
            <bpws:switch name="LargeDeposit?" ……>
              <bpws:targets> <bpws:target linkName="Link1"/> </bpws:targets>
              <bpws:sources> <bpws:source linkName="Link4"/> </bpws:sources>
              <bpws:case wpc:id="66">
                <bpws:invoke inputVariable="variable_rld" name="ReportLargeDeposit" 
                             outputVariable="variable_rld" partnerLink="RLD" ……/>
              </bpws:case>
              <bpws:otherwise>
                <bpws:invoke inputVariable="variable_dd" name="DoDeposit" 
                             outputVariable="variable_dd" partnerLink="DD" ……/>
              </bpws:otherwise>
            </bpws:switch>
            <bpws:reply name="NotifyCustomer1" partnerLink="NC" variable="variable_nc" ……>
              <bpws:targets> <bpws:target linkName="Link4"/> </bpws:targets>
            </bpws:reply>
          </bpws:flow>
        </bpws:sequence>
      </bpws:case>
      <bpws:otherwise>
        <bpws:sequence name="HiddenSequence2" ……>
          <bpws:invoke inputVariable="variable_ca" name="CloseAccount" 
                       outputVariable="variable_ca" partnerLink="CA" ……/>
          <bpws:reply name="NotifyCustomer" partnerLink="NC" 
                      portType="wsdl:ProcessPortType" variable="variable_nc" ……/>
        </bpws:sequence>
      </bpws:otherwise>
    </bpws:switch>
</bpws:sequence>
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express such properties. Therefore, in our compli-

ance-checking method, we use BPSL for specifying

compliance rules.

Four main features of BPSL simplify the specifica-

tion and understanding of temporal properties:

1. Obscure logical operators are replaced with an

intuitive visual notation.

2. Recurring logical patterns from a business or

regulatory domain are defined as dedicated

operators.

3. Domain-specific templates (e.g., the property

patterns
23

) can be predefined and reused in BPSL

to help increase the efficiency of property

specification.

4. BPSL has a direct semantic interpretation in both

LTL and CTL.

In this paper, we focus more on LTL because we

agree with the argument by Vardi
24

that the

branching-time formalism of CTL is unintuitive to

business analysts and does not support composi-

tional reasoning, as does LTL. The complete syntax,

semantics, and notation of BPSL have been de-

scribed by Xu et al.
15

To ease understanding, in

Figure 4 we present the visual BPSL specification of

Article 11 and Article 13 of our case study. (The

precise semantics of these BPSL properties are

explained in the next section.)

In Figure 4, Article 11 is specified by the first two

BPSL properties, Article11_part1 and

Article11_part2, while Article 13 is specified by the

third property, Article13. The rectangles denote

Boolean blocks, which may represent the perform-

ing of business activities (e.g., AcceptCustomerReq,

ObtainCustomerInfo, and VerifyCustomerInfo) or the

processing of data (e.g., names and IDs in the

ParaList). Annotated arrows are used as temporal

operators to define the temporal dependency be-

tween the Boolean blocks. For example, the

temporal operator ExistWithin [inf] specifies that the

next Boolean block must hold within an infinite

amount of time after the previous Boolean block

holds. The combination of these temporal depen-

dencies thus forms a visual temporal sequence in

BPSL. There are simple and compound temporal

Figure 4
BPSL specification of Article 11 and Article 13
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sequences. A simple temporal sequence specifies a

chain of temporal relations among different Boolean

blocks or any other BPSL properties (e.g.,

Article11_part2 and Article13 are simple ones). A

compound temporal sequence is a logical combina-

tion of simple temporal sequences (e.g.,

Article11_part1 is a compound temporal sequence

that consists of two other simple temporal se-

quences combined by a logical AND relation).

The BPSL properties in Figure 4 thus possess the

following semantics: Before a customer account may

be opened, the customer information must first be

obtained and verified (Article11_part1): Whenever a

customer request for opening a deposit account is

received, the customer information must be ob-

tained and the customer name and ID must be later

verified. Finally, the customer information must be

recorded (Article11_part2). Whenever a customer

request for opening a deposit account is received,

the deposit must be checked as to its amount. If it is

a large-value deposit, it must be reported later.

In previous work, Giblin et al.
12

developed REALM

(regulations expressed as logical models), a meta-

model and method to formally specify regulations.

While REALM, which builds on real-time temporal

object logic, is more expressive than BPSL, BPSL

supports visual, and thus more intuitive, property

specification. As REALM properties cannot be

verified by existing model-checking algorithms, we

use BPSL as the specification language in our static

compliance-checking work.

MODEL TRANSFORMATIONS

In this section we introduce the essential model

transformations of our compliance-checking meth-

od. To reuse existing model-checking algorithms, a

series of transformations are performed. We first

explain the transformation from BPEL to pi-calculus

and the transformation from pi-calculus to FSM (see

Steps 3.1 and 3.2 in Figure 2). Then we show how

BPSL properties are transformed into LTL formulas

(see Step 4 in Figure 2).

BPEL to pi-calculus

Some elementary knowledge of pi-calculus is

necessary to understand the content of this section.

Before introducing the transformation from BPEL to

pi-calculus, we thus present an introduction to pi-

calculus.

Pi-calculus

Pi-calculus
16

is a model of concurrent communicat-

ing processes that allows complex communication

patterns to be modeled. We chose pi-calculus as the

formal method to formalize BPEL programs. A

detailed discussion justifying this choice can be

found in the section ‘‘Related work.’’

The syntax of Milner’s polyadic pi-calculus is as

follows:

P ::¼
Xn

i¼1

pi:Pijnew x PjPjQj!Pj/PjAðy1; � � � ; ynÞj0

pi ::¼ x , y.jxðyÞjs

/ ::¼ ½x ¼ y�j/ ^ /j:/

The simplest entities of pi-calculus are names

(denoted by lowercase) and processes (denoted by

uppercase). Processes can evolve by performing

actions. Syntactically, x , y . denotes an output

action that sends name y via x, and x(y) is an input

action, which receives a name y via x. Further, s is a

silent action that expresses unobservable behavior.

A sum p
1
.P

1
þ p

2
.P

2
þ � � � þ p

n
.P

n
denotes a

nondeterministic choice of process execution. In the

restriction new x P, the scope of name x is bound to

P. In the composition PjQ, the processes P and Q can

proceed independently and can interact by means of

shared names. The replication !P can be thought of

as an infinite composition PjPjPj� � � of processes.

Finally, /P represents a process that is guarded by a

Boolean expression / evaluated by name matching.

Transforming BPEL to pi-calculus

The transformation from BPEL to pi-calculus re-

quires a semantic translation of BPEL. The overall

semantics are very complex. Having described the

complete transformation from BPEL to pi-calculus in

our previous work,
25

in this paper we present only

the important basic and structured activities.

BPEL contains program variables to which values

can be assigned. We adopt the approach proposed

by Jacobs and Piessens
26

to formally define a

programming variable as a storage location. Ac-

cordingly, a variable holding a value of x (Varia-

ble(x)) is defined by a register (Reg) as follows (the

expression ¼
def

is used as a definition symbol):

VariableðxÞ ¼def RegðxÞ

RegðxÞ ¼def putðyÞ:RegðyÞ þ get , x. :RegðxÞ

The above formalization means that the stored value

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LIU, MÜLLER, AND XU 343



x of the variable can be read from the storage

location by using get,x., and a new value y can be

written into the location with put(y).

The basic BPEL activities (Receive, Reply, Invoke,

Assign, Empty, and Termination) define how mes-

sage communication, service invocation, and vari-

able assignment are done in a process model. Link

name, Partner name, and Operation name are three

elements in the activities of BPEL, and they often

appear at the same time. Therefore, here the three

elements are denoted as a unified name: ‘. The

partner links and data sharing in these BPEL

activities are mapped to the input and output

prefixes of ‘, get, and put in pi-calculus. In addition,

two special names, start and done, are used to

indicate common internal communication in a BPEL

process.

Receiveðstart; ‘; put; doneÞ ¼def

start:‘ðvÞ:put , v.: done

Replyðstart; get; ‘; doneÞ ¼def

start:getðvÞ:‘, v.: done

Invokeðstart; get; ‘; put; doneÞ ¼def

start:getðvÞ:‘, v.:‘ðwÞput , w.: done

Assignðstart; get; put; doneÞ ¼def

new cðstart:getðvÞ:c , v.jcðxÞ:put , x.: doneÞ

Emptyðstart; doneÞ ¼def start:done

There are some challenges in the transformation,

such as the handling of timeout, synchronizing with

links, message correlation, global termination of

activity, and fault handling and compensation. We

discussed how to solve these problems in another

paper.
25

Because they are not critical to under-

standing our compliance-checking method, we do

not cover them in this paper. We take Receive(start,

‘,put,done) as an example to explain the semantics of

the pi-calculus formalization. The process of Receive

contains some free names (e.g., put and done),

which are defined as the communication channels of

this process. The names start and done are used to

start and terminate the activity. The communication

among different activities through these two chan-

nels thus forms the control flow of the BPEL process.

When the Receive process is triggered by its start

channel, an input action of ‘(v) is enacted to receive

a message through a specific partner link. The output

action of put,v. is then enacted to put the received

message (i.e., v) into the corresponding variable.

Finally, the action done is enacted to indicate the

termination of the Receive activity and to trigger

another activity in the BPEL process.

Structured activities imply different control relations

between the executions of activities in BPEL. We let

function fn define a mapping from a pi-calculus

process to a set of free names, where fn(P) indicates

the set of all free names contained in process P.

Consequently, the semantics of the structured

activities Sequence, Switch, While, Pick, and Flow are

defined as the following:

SequenceðfnðPÞ; fnðQÞÞ ¼def

new startð start=donef gPjQÞ

1 2 def

½b1�P þ ½:b1 ^ b2�Qþ ½:b1 ^ :b2�Empty

def

Pickð‘; fnðP1Þ; ‘0; fnðP2Þ; putÞ ¼def

ðnew cð‘ðvÞ: put , v.: cjc:P1ÞÞ þ

ðnew cð‘0ðv0Þ: put , v0.:cjc:P2ÞÞ

FlowðfnðPÞ; fnðQÞ; doneÞ ¼ def

new ackððnew done 0ð done 0=donef gPj

done 0: ackÞÞj

ðnew done 00ð done 00=donef gQj

done 00:ackÞÞjack:ack:doneÞ

In the formalization, fstart/doneg is a basic name

substitution operation, which means that the name

done is replaced by start so that an internal

interaction can occur between processes P and Q. The

formalization of Switch above implies that in the case

when several branching conditions hold at the same

time, the branches are taken in the order in which

they appear, which reflects exactly the semantics of

BPEL in its specification. Pick is a nondeterministic

choice between process P and Q. Switch, While,

Sequence, and Flow are self-explanatory.

Scope is an important concept in BPEL for defining

an effective scope of the definition and use of

variables, compensation handlers, fault handlers,

and other activities. As these BPEL elements can all

be associated with a scope, we collect all the free

names in a scope with a predefined function,
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Switchðb ; fnðPÞ; b ; fnðQÞÞ ¼

½b�SequenceðfnðPÞ; fnðWhileÞÞ þ ½:b�Empty

While (b; fnðPÞÞ ¼



GetNames(s), where s is the scope. Therefore, the

restriction operator new can be used to restrict the

access to these elements according to their effective

scope. The following is the formalization of Scope:

ScopeðrestnamesÞ ¼def

new GetNamesðsÞ ðP1jP2j � � � jPnÞ

P
i
(i¼ 1, � � � , n) can be a pi-calculus process of basic

activities, structured activities, variables, fault han-

dlers, or compensation handlers. Furthermore,

restnames is defined as a free name set:

ðfnðP1Þ [ fnðP2Þ [ � � � [ fnðPnÞÞ=GetNamesðsÞ

Because everything is a process in pi-calculus, the

semantics of a BPEL process can be formalized as

the composition of the above pi processes for all

considered BPEL activities:

Process
¼ Variable1j � � � jVariablemjActivity1j � � � jActivityn

Pi-calculus to FSM
The application of model checking to verify business

process models against compliance rules requires

the transformation of business process models into a

formalism that can be accepted by a model-checking

algorithm. Most current model-checking tools re-

quire FSM as an input format. We thus first translate

from BPEL to pi-calculus and then from pi-calculus

to FSM. Having the processes formalized in pi-

calculus as an intermediary formalism provides us

the opportunity to apply other verification tech-

niques, such as structural verification (including, for

example, deadlock detection) and bisimulation.

Furthermore, it also helps the future integration of

more practical and efficient model-checking algo-

rithms and tools into our compliance-checking

approach. Despite the detour through pi-calculus,

the static verification result is the same as if the

process models had been transformed into FSM

directly.

The transformation from pi-calculus to FSM yields

the total behavior of the BPEL process by reducing

the pi processes into their corresponding state

spaces. Previous works by Ferrari et al.
27

and

Pistore
28

have already shown the approach and

feasibility of how to correctly transform finitary pi-

calculus processes into the corresponding finite state

automata such that a wide range of powerful formal

verification techniques can be smoothly reused in

the case of mobile processes. In our compliance-

checking method, we exploit the results obtained by

Ferrari et al.
27

to transform a pi process into a

corresponding FSM, based on the early operational

semantics of pi-calculus. The mapping between the

early operational semantics
29

of pi-calculus to the

state transitions in FSM is presented as a set of

transformation rules. For better understanding, each

transformation rule is illustrated with an example

(see Figure 5).

For each transition triggered by an action p in pi-

calculus, three attributes are used to record the

necessary information of p. The action attribute

records its port name port(p); the paralist attribute

records the set of parameters para(p) passed

through the port; and the type attribute is one of the

values of input, output, or tau, which indicates that

p is an input, output, or an invisible action in pi-

calculus.

The choice of pi-calculus as the mediation between

high-level business process models and very formal

models yields several benefits. Specifically, state

space generation from pi processes and not directly

from the business process model provides us with

the following advantages:

� While transforming from the pi process to FSM,

two properties can be directly checked: deadlock

and redundant activities of the BPEL process. A

deadlock exists if there is a pi process that cannot

generate its state space before it changes to an

empty process (‘‘0’’). If a pi process cannot

communicate with any other pi process, then there

is a redundant activity in the corresponding BPEL

process.
� Using pi-calculus and FSM as the formal models of

business processes renders the business process

verification method independent of a specific

model checker. Thus, more practical and efficient

model checkers can be integrated into our

compliance-checking method.

BPSL to LTL

Though BPSL supports semantic mapping to both

LTL and CTL, in this section we explain the mapping

from BPSL specifications to LTL formulas based on

the three compliance rules given earlier in the

section ‘‘Compliance rule modeling using BPSL’’ as

examples. Before discussing the mapping from BPSL

to LTL, an overview of LTL is given as preliminary

information.
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LTL

LTL
17,18

is a widely used language for specifying

temporal properties of software or hardware de-

signs. In LTL, time is treated as if each moment has

just one possible future. Accordingly, linear tempo-

ral formulas are interpreted over linear state

sequences, and we regard them as describing the

behavior of a single computation of a system.

LTL uses formulas of the form Af, where: first, A is

the universal path quantifier, which means that f

has to be true on all possible paths in the future; and

second, f is a path formula (which is true along a

specific path) in which the only state subformulas

permitted are atomic propositions. More precisely:

If p 2 AP (AP is a nonempty set of atomic

propositions), then p is a path formula.

If f and g are path formulas, then :f, f˜g, f^g, Xf, Ff,

Gf, and f U g are path formulas.

The four basic operators of X, F, G, and U are

explained informally as follows:

� X (‘‘next time’’): a formula (f ) is true in the second

state of the path.
� F (‘‘eventually’’): a formula (f ) will be true at

some future state on the path.
� G (‘‘always’’): a formula (f ) is true at every state

on the path.

Figure 5
Transformation rules from pi-calculus to FSMs
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� U (‘‘until’’): there is a state on the path where the

second formula (g) is true, and at every successive

state on the path the first formula (f) is true.

Take the formula G (AcceptCustomerReq ! F

VerifyCustomerId) as an example. This formula is

true in a computation precisely if every state in the

computation in which AcceptCustomerReq holds is

followed by some state in the future in which

VerifyCustomerId holds. Here, AcceptCustomerReq

and VerifyCustomerId represent atomic propositions.

Mapping from BPSL to LTL

Referring to Figure 4, we start with Article11_part2.

As explained, Article11_part2 (and Article13) is a

simple temporal sequence that specifies the tempo-

ral relation among a sequence of Boolean blocks or

other BPSL properties along paths in which time

advances monotonically. The name of each Boolean

block in Article11_part2 represents a business

activity being performed and the data associated

with it. For example, the Boolean block Accept-

CustomerReq is interpreted as action ¼
AcceptCustomerReq, and the Boolean block of

ObtainCustomerInfo with the parameter list (Para-

List) of name and ID is interpreted as action ¼
ObtainCustomerInfo & ParaList ¼ fname, IDg. Note

the diamond symbol under the Boolean block of

AcceptCustomerReq. This is a special feature of BPSL

named compensation property (cp). A cp specifies

that when the Boolean block associated with the cp

does not hold, the whole BPSL property is still

deemed to be correct if cp holds. For this example,

the diamond stands for a shortcut to the cp being

True. It specifies that Article11_part2 will be

evaluated only when a customer request is

accepted (because it is always allowable for

AcceptCustomerReq not to hold). The key word

Always in the formula of Article11_part2 is a global

temporal operator, which has a direct interpretation

in LTL as the G operator.

Four types of global temporal operators are sup-

ported by BPSL: (Possible) Always, (Possible) Even-

tually, Repeat, and Never. (Possible) Always is equal

to G or AG(EG); (Possible) Eventually is equal to F or

AF(EF). Repeat and Never mean that the temporal

sequence must hold at least n times or that it must

not hold at all. Different Boolean blocks are

associated with the temporal operators in BPSL. For

example, in Figure 6A ExistWithin [inf] specifies that

after a customer request is accepted (AcceptCusto-

merReq), the customer information including the

customer name and ID must be obtained. Here inf is

the scope parameter for the operator ExistWithin

with the value of infinity. Seventeen stereotypes of

temporal operators with different semantics are

supported in BPSL to specify temporal relations in

different situations. While some of the temporal

operators have a direct mapping to LTL temporal

operators (e.g., Next [3] for XXX and AllWithin [inf]

for G), others can be used to express rather complex

temporal relations in a simple and compact manner

(e.g., the MultiWithinOnEvt [scope] [n] operator

specifies the scenario that a Boolean block must hold

for n times when a certain event occurs within the

scope). Consequently, the final LTL formula corre-

sponding to Article 11_part2 is:

G ðaction ¼ AcceptCustomerReq! F ððaction ¼

ObtainCustomerInfo & Paralist ¼ name; IDf gÞ&

Fðaction ¼ VerifyCustomerIdentity & Paralist ¼

name; IDf gÞ& Fðaction ¼ RecordCustomerInfoÞÞÞ

The mapping of this formula to the BPSL notations is

shown in Figure 6A.

As to Article13, two new elements need to be

introduced. The rectangle TRUE indicates a Boolean

block that will always hold. The notation of Large-

Deposit, on the other hand, is a post-condition

associated with this Boolean block. In BPSL, a post-

condition specifies whether it is necessary to further

evaluate the rest of the temporal sequence after a

Boolean block. For example, in Article13, the post-

condition of LargeDeposit specifies that Report-

LargeDeposit will (only) be performed after a

LargeDeposit is detected (i.e., action ¼ Large-

Deposit ! F (action ¼ AcceptCustomerReq)). Con-

sequently, the final LTL formula corresponding to

Article13 is:

G ðaction ¼ AcceptCustomerReq! Fðaction ¼

Large Deposit ! Fðaction ¼

ReportLargeDepositÞÞÞ

The mapping of this formula to the BPSL notations is

shown in Figure 6B.

Finally, Article11_part1 is captured using a com-

pound temporal operator which specifies the logical

relation (And) between two simple temporal se-

quences. Here a new temporal operator Precede
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appears. The Precede relation (a Precede b) specifies

that either b never occurs or that there is no

occurrence of b before a holds, that is,

G!ðaction ¼ OpenAccountÞj

ð!ðaction ¼ OpenAccountÞ [

ðaction ¼ ObtainCustomerInfoÞÞ:

Consequently, the final LTL formula corresponding

to Article11_part1 is:

G!ðaction ¼ OpenAccountÞ j

ðð!ðaction ¼ OpenAccountÞ [

ðaction ¼ ObtainCustomerInfoÞÞÞ&

ð!ðaction ¼ OpenAccountÞ j

ðð!ðaction ¼ OpenAccountÞ [

ðaction ¼ VerifyCustomerInfoÞÞÞÞ

The mapping of this formula to the BPSL notations is

shown in Figure 6C. The above mapping follows

Figure 6
Mapping from BPSL to LTL: (A) for Article11_part2, (B) for Article13, and (C) for Article11_part1
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LIU, MÜLLER, AND XU IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007348



exactly the semantics of BPSL
15

and thus ensures its

correctness.

COMPLIANCE-CHECKING FRAMEWORK AND
CASE STUDY RESULTS

With FSM and LTL, model-checking technology can

be used to verify whether the business process

complies with the compliance rules. We briefly

explain the basic concepts of model checking and

then introduce our compliance-checking framework.

Finally, we present a case study result to illustrate

the practical feasibility of this framework.

Model checking

Model checking
18

is an automatic technique for

verifying finite state systems. It has been successfully

applied to many systems, including hardware de-

signs and communication protocols. The main idea

of model checking is to search the state space of a

system model and to verify that it satisfies some user-

defined properties (e.g., temporal constraints, such

as liveness or safety properties). The advantage of

model checking over traditional simulation and

testing is that it can exhaustively search the whole

state space of a system and can prove the system is

indeed error-free. The advantage of model checking

over deductive verification is that it requires less

expertise and experience in logical reasoning on the

part of users. In fact, the procedure of model checking

needs little user intervention; it can be performed

automatically and results in a final yes or no answer.

Model checking generally includes three steps:

1. Transforming the target system that is to be

checked into a formal system model—In our case,

the target is the business process model expressed

in BPEL, and the formal model we chose is pi-

calculus.
16,29

The total behavior of the business

process can thus be obtained in an FSM express-

ing the operational semantics of pi-calculus.

2. Specifying the properties that the formal system

model is expected to satisfy—LTL is often used to

capture such specifications. As writing correct

statements in temporal logic is relatively difficult,

for our compliance-checking method, we devel-

oped BPSL, a visual property specification lan-

guage, to formally express such properties. BPSL

properties are then automatically translated into

LTL formulas.

3. Performing the verification of the formal system

model against desired properties with model-

checking algorithms—The generated result indi-

cates whether the system satisfies the properties.

Our compliance-checking framework, Open Pro-

cess AnaLyzer (OPAL), integrates the binary

decision diagram (BDD)-based symbolic model-

checking algorithm implemented in NuSMV2.
30

The validity and effectiveness of the algorithm

has already been proven from both the academic

and industrial sides. In addition, OPAL also

provides a counterexample tracing capability for

business process models and offers its own

optimization approach for compliance checking.

Compliance-checking framework

Figure 7 is an overview of the OPAL toolkit, our

implementation of the compliance-checking frame-

work. While OPAL supports compliance checking of

different business process models against compli-

ance rules, the OPAL framework is independent of a

specific business-process modeling approach and

model-checking method. OPAL offers an open

framework to integrate different business-process

modeling tools (e.g., WBI Modeler) and model-

checking engines (e.g., NuSMV2
30

and Rule Base
31

)

by means of the process-model-to-pi transformer

and the model-checker adapter, respectively. The

component-process-model-to-pi transformer gener-

ates the pi processes for different business process

models. Compliance rules are specified in the BPSL

editor. Because the elements in a compliance rule

are closely related to the business process model,

there is a graphical user interface (GUI) adapter

between the BPSL editor and the process modeling

tool. For example, some activity elements can be

directly dragged into the BPSL editor from the

process modeling tool through the respective

adapter.

As introduced earlier, we use pi-calculus as the

method to formalize business process models, and

LTL is used to specify temporal properties. The

details of the BPSL-to-LTL transformer, the process

model-to-pi transformer, and pi-to-FSM transformer

were introduced earlier. The model-checker adapter

is used to integrate existing model-checking engines,

such as NuSMV2 and Rule Base, with OPAL. The

framework uses the counterexample tracer to trace

counterexamples in the business process model.

Further, compliance checking results can be gener-
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ated as compliance reports using the compliance-

checking reporting module.

Because this framework is intended for use by

business people for business-process model check-

ing, two aspects must be addressed. The first aspect

is the understandability of the checking results. For

example, if a business process model does not

comply with a compliance rule, business people

require help to position error points in the process

model. The counterexample tracer can help solve

this problem. The other aspect is how to ensure an

acceptable performance of the compliance-checking

method. If a business process model is very

complex, optimization helps improve the perfor-

mance of compliance checking. These important

OPAL features are discussed later.

Running example with results

Recall the SimpleBank account-opening process that

was described in the introduction. It has been used

as a running example throughout the paper to

illustrate our compliance-checking method. We

have applied OPAL to check the compliance of the

account-opening process in Figure 3 against the

compliance rules defined in Figure 4. As explained

in the section ‘‘Model transformations,’’ the account-

opening process was automatically transformed to

pi-calculus and further into an FSM with the help of

OPAL. Likewise, the regulatory requirements of

Article 11 and Article 13 were formalized as

compliance rules using the OPAL BPSL modeler, and

were then automatically transformed into LTL.

OPAL was developed as a plug-in for the Eclipse**

platform, which allows for the integration with

different business process modelers, such as WBI

Modeler and other Eclipse-based BPEL editors.
32

We

tested our case study using OPAL on a Microsoft

Windows** platform with an Intel** Pentium** 4

processor, 3.0 GHz, and 2.5 GB random access

memory (RAM), and obtained the following results:

Figure 7
Compliance-checking framework
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OPAL took 0.056 seconds to transform the account-

opening process expressed in BPEL into pi expres-

sions, as introduced in the section ‘‘Model transfor-

mations.’’ The time consumed for transforming the

pi-calculus formalization into its corresponding FSM

was 49.959 seconds. The final FSM contained 11,832

(i.e., 2^13.5304) reachable states out of 535,840

(i.e., 2^19.0314) states after OPAL applied its

opimization by means of sequentialization of

interleaving actions to compact the FSM (introduced

later in the section ‘‘Sequentialization of interleaving

actions’’). The checking of the three compliance

rules in Figure 4 consumed 121.0 seconds of CPU

time. This also included an additional 21.0 seconds

to generate the needed counterexamples for the

violated compliance rules. The peak memory use

was 71.960 MB.

As the final compliance-checking results showed,

the account-opening process complies with the two

compliance rules Article11_part1 and Article13.

However, it does not comply with the compliance

rule Article11_part2. The counterexample for Arti-

cle11_part2 contains the state trace of 54 states,

which shows there is a possible execution path in

the account-opening business process in Figure 1 in

which the customer information was already re-

corded in the banking system before it was verified

for correctness.

As we have explained so far, OPAL is capable of

automatically checking the compliance of our

account-opening process model against the three

compliance rules in the example. Thus, OPAL users

realize that the current account-opening process is

noncompliant before deployment, which helps

increase deployment efficiency and lowers the risk

of installing noncompliant processes.

Our experience with OPAL has shown that our

current implementation can handle a state space

with 10
6

reachable states out of 10
8

total states

within 15 minutes.

ADVANCED FEATURES

Two important features of the framework, counter-

example tracing and performance optimization, are

addressed in this section.

Counterexample tracing

If a regulation rule is not satisfied by a business

process model, normally a counterexample would

be generated only in the corresponding FSM of the

process model because the model-checking algo-

rithm is executed based on FSM. However, for

business people, a counterexample based on an FSM

is meaningless. Hence, we must provide a mecha-

nism to trace the counterexample back to the

business process model. We have developed such a

mechanism for OPAL.

As the previous counterexample in our running

example is too large (a state trace of 54 states), we

now present a simpler example to explain how the

OPAL counterexample tracing mechanism works.

The BPEL program of the account-opening process

in Figure 3 is simplified to the BPEL program

SimpleAC, given in Figure 8A.

This simple BPEL process can be transformed to the

pi process shown in Figure 8B by using the BPEL-to-

pi transformation rules introduced earlier. (For

simplification, some channel names have been

shortened, for example, AcceptCustomerReq is ab-

breviated as ACR.)

In the formalism shown in Figure 8B, allnames

represents all free names in AccountOpeningProcess,

thus making AccountOpeningProcess a closed sys-

tem with all its names restricted to itself. The

formalization of Variable
acq

, Variable
oci

, and Varia-

ble
vci

is done as explained earlier in the section

‘‘Model transformations,’’ where we also introduced

how to transform a pi process to an FSM.

Accordingly, the pi process can be transformed into

the FSM shown in Figure 9 with the help of OPAL.

Figure 9 shows only part of the FSM of the entire

SimpleAC Process model, which in total contains 69

states as the transformation result of OPAL. Using

OPAL, we may now check the following property,

and we are thus informed that the result is wrong.

Gð!ðaction ¼ VerifyCustomerInfoÞÞj

ð!ðaction ¼ VerifyCustomerInfoÞ [

ðaction ¼ ObtainCustomerInfoÞÞ

OPAL visualizes the transformed FSM and the

counterexample generated by NuSMV2. The coun-

terexample is indicated by the state transitions in

orange lines in Figure 9, showing a possible

execution path in SimpleAC Process where the

customer information may be verified before it is

obtained in the first place.
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Because the counterexample in the preceding

diagram is given at a state machine level and

contains information about many redundant ac-

tions, such as start
ac

and ack, it is hard for business

people to comprehend what the counterexample

stands for from a business perspective. Therefore,

OPAL provides a counterexample mapping from the

FSM to the BPEL process model. Such mapping is

implemented by preserving only the actions that

have a direct connection with the corresponding

BPEL activities (e.g., AcceptCustomerReq, Obtain-

CustomerInfo, VerifyCustomerInfo) and remove any

other redundant information in the counterexample.

The mapped counterexample in BPEL is the

following:

Invoke AcceptCustomerReq

! Invoke VerifyCustomerInfo

! Invoke ObtainCustomerInfo

Performance optimization

The basic idea of model checking is to exhaustively

search the state space of formal system models to

discover potential violations of specific logical

constraints that a user specifies. To make model

checking more applicable to realistic large-scale

models, performance tuning and improvement of

model checking is a critical research area. OPAL

reuses optimized, state-of-the-art model-checking

algorithms and focuses primarily on the business

process level with its own optimizations. Specifi-

Figure 8
BPEL simple account-opening program (A) in XML and (B) transformed to the pi process

A

B

<bpws:partnerLinks>
    <bpws:partnerLink name="ACQ" ……/>
    <bpws:partnerLink name="OCI" ……/>
    <bpws:partnerLink name="VCI" ……/>
  </bpws:partnerLinks>
  <bpws:variables>
    <bpws:variable name="variable_acq" ……/>
    <bpws:variable name="variable_vci" ……/>
    <bpws:variable name="variable_oci" ……/>
  </bpws:variables>
  <bpws:sequence name="HiddenSequence">
    <bpws:invoke inputVariable="variable_acq" name="AcceptCustomerReq"   
                      outputVariable="variable_acq" partnerLink="ACQ"/>
    <bpws:flow name="ParallelActivities">
      <bpws:invoke inputVariable="variable_oci" name="ObtainCustomerInfo" 
                      outputVariable="variable_oci" partnerLink="OCI"/>
      <bpws:invoke inputVariable="variable_vci" name="VerifyCustomerInfo" 
                      outputVariable="variable_vci" partnerLink="VCI"/>
    </bpws:flow>
 </bpws:sequence>

Receive AcceptCustomerReq = Startacq .ACR (v).putacq <v> .doneacq

Invoke ObtainCustomerInfo = Startoci .Getacq (v).OCI <v> .OCI(w).putoci <w>.doneoci

Invoke VerifyCustomerInfo = Startvci .Getoci(v).VCI <v> .VCI(w).putvci <w> .donevci

Flow(Invoke ObtainCustomerInfo,Invoke VerifyCustomerInfo) =

                              new ack((Invoke ObtainCustomerInfo  doneociack

                                          (Invoke VerifyCustomerInfo  donevci .ack)  ack.ack.doneflow

Sequence(Receive AcceptCustomerReq, Flow(Invoke ObtainCustomerInfo,Invoke VerifyCustomerInfo))=

                               (Receive AcceptCustomerReq  Doneacq(Startoci  Startvci)

                               Flow(Invoke ObtainCustomerInfo,Invoke VerifyCustomerInfo)

Partner AcceptCustomerReq = ACR< req>

Partner ObtainCustomerInfo = OCI<w> .OCI < Info>

Partner VerifyCustomerInfo = VCI <w> .VCI < Info>

AccountOpeningProcess = new  all names(Startacq  Sequence(Receive AcceptCustomerReq,

                            Flow(Invoke ObtainCustomerInfo, Invoke VerifyCustomerInfo))

                            Partner AcceptCustomerReq  Partner ObtainCustomerInfo

                            Partner VerifyCustomerInfo  Variableacq(acq)  Variableoci(oci)  Variablevci(vci))

| |
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cally, it improves the performance of compliance

checking by concentrating on the following two

aspects:

1. State space reduction of the business process when

transforming it to an FSM—States that do not

influence the checking result in the FSM are

identified and removed so that the state space of

the business process can be decomposed or

radically reduced. In OPAL, sequentialization of

interleaving actions, explained in the next sec-

tion, is one of the methods implemented to

remove redundant states from the state space.

2. Controlled state-space searching using business

bug patterns—Compliance checking can be ren-

dered more efficient by a guided search for bugs

in the business process.

Sequentialization of interleaving actions

As we know, concurrency is a major cause of state-

space explosion. Accordingly, unnecessary concur-

rencies in business process models may be elimi-

nated to avoid redundant states. Inspired by the idea

of partial order reduction,
18

OPAL tries to remove

unnecessary concurrencies in the pi-calculus spec-

ification that do not affect the semantics of the

62

58

Figure 9
FSM example

action=startacq

type=tau
0

64

66

5

3

4

57

59

6

50

51

52

7

45

44

8

9

36

40

10

1

2

action=ACR
paralist={req}
type=tau

action=putacq
paralist={req}
type=tau

56action=doneacq
type=tau

action=startoci
type=tau

action=startoci
type=tau

action=getoci
paralist={oci}
type=tau

action=VCI
paralist={oci}
type=tau

action=getacq
paralist={reg}
type=tau

action=OCI
paralist={info}
type=tau

action=startoci
type=tau

action=getoci
paralist={oci}
type=tau

action=startvci
type=tau

action=startvci
type=tau

action=OCI
paralist={reg}
type=tau

action=OCI
paralist={reg}
type=tau

action=OCI
paralist={oci}
type=tau

action=getoci
paralist={oci}
type=tau

action=getoci
paralist={oci}
type=tau

action=OCI
paralist={info}
type=tau

action=VCI
paralist={res}
type=tau

action=startvci
type=tau

action=startoci
type=tau

action=startoci
type=tau

action=OCI
paralist={reg}
type=tau

action=VCI
paralist={res}
type=tau

action=VCI
paralist={res}
type=tau

action=putvci
paralist={res}
type=tau

65

action=VCI
paralist={oci}
type=tau

action=OCI
paralist={info}
type=tau

action=putoci
paralist={info}
type=tau

action=getacq
paralist={req}
type=tau

action=getacq
paralist={req}
type=tau

action=getacq
paralist={req}
type=tau

action=startoci
type=tau

action=startvci
type=tau63

• • •

• • •

• • •

• • •

• • •

ACR = AcceptCustomerReq
OCI = ObtainCustomerInfo
VCI = VerifyCustomerInfo
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corresponding business process. We call this ap-

proach sequentialization of interleaving actions.

When a business process is formalized in pi-calculus

and transformed to an FSM, the state space can thus

be made as compact as possible.

To explain the rationale of our approach, we take

the formalization of SimpleAC as an example. In our

SimpleAC example, there are two parallel activities:

ObtainCustomerInfo and VerifyCustomerInfo. It

seems reasonable to model the triggering of the two

activities in a concurrent form, that is, start
oci
jstart

vci

in the formalism of Sequence, as these two activities

are executed independently and in an arbitrary

order. However, it is easy to note that start
oci

and

start
vci

play only the role of triggering the execution

of two pi processes, but do not affect the execution

order of the two activities ObtainCustomerInfo and

VerifyCustomerInfo. Consequently, even if

start
oci
jstart

vci
are sequentialized as start

oci
.start

vci

the internal behavior of the two activities (such as

the retrieval and assignment of variables by means

of Get and Put and the invocation of PartnerLinks ‘)

is still interpreted in an interleaving form. To be

intuitive, the execution of start
oci

and start
vci

in

either order can result in the same global state in the

FSM of SimpleAC. Therefore, we can safely replace

this concurrency with a sequence and reduce the

redundant states caused by the concurrency. The

same situation also holds for the formalism of Flow,

where done
oci

and done
vci

are modeled as

done
oci
jdone

vci
.

Thus OPAL avoids unnecessary concurrencies in the

formalization of a business process model when

transforming it into an FSM. Typical sequentializa-

tions are implemented in OPAL, including the

formalism of the Fork nodes, Join nodes, multiple

inputs and outputs for an activity in the UML

activity diagrams and compatible models, the Flow

structure, and multiple incoming and outgoing links

for an activity in BPEL models. The sequentializa-

tion in the pi-calculus processes does not mean that

the corresponding activities in the BPEL process are

sequentialized.

As an example, the state-transition diagram of

SimpleAC can be simplified. In Figure 10, the states

numbered from 62 to 65 and their transitions

indicated by orange dashed lines show the part of

the FSM that can be reduced by optimization. The

optimized FSM is reduced to 43 states. Internal

experiments have demonstrated the practical value

of state-space reduction using sequentialization of

interleaving actions, especially for complex process

models with many unnecessary parallelisms.

Guided state searching for business bug patterns

Despite great improvements in the performance of

model checking, the exploitation of domain knowl-

edge is crucial to further improve the efficiency of

compliance checking. Because model checking is

more useful to probe hidden bugs in a system than

to prove its correctness, we have developed busi-

ness bug patterns, that is, a set of antipatterns

corresponding to the well-known workflow pat-

terns
33

to represent common behavioral violations

in a business process. A guided search mechanism is

then implemented to more efficiently search for

these business bugs in a business process model.

To explain the main idea of business bug patterns,
34

we take the simple sequential pattern between two

activities, A and B, as an example. To falsify the

semantics that activity A and B are executed in a

sequential order, a business bug pattern Sequen-

tialBug(A, B) is shown below:

SequentialBugðA;BÞ ¼ SimultaneousExecutionðA;BÞ

˜NoResponseðA;BÞ

SimultaneousExecutionðA;BÞ ¼

½��; !A:Exit & B:Startf g

/*After a certain number of steps, a state

is reached in the process where B is started while

the execution of A does not yet take place.

NoResponseðA;BÞ ¼

½��; A:InExecution; A:Exitf g 7!

B:InExecution½¼ 0�f g

/*If A is finished in the process, no B will

be executed afterwards.

The semantics of the SequentialBug pattern are

formally captured with the IEEE Property Specifica-

tion Language (PSL).
35

Contrary to Sequential(A, B),

the sequential bug pattern tries to find that either

both A and B start their execution simultaneously or

that B is never executed after A is done. The above

two aspects can be defined with two more atomic

bug patterns, SimultaneousStart(A, B) and NoRe-
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sponse(A, B), respectively. The symbol ˜ indicates

that the SequentialBug pattern holds when either

SimultaneousStart or NoResponse is satisfied. Here,

the SequentialBug pattern does not necessarily

check whether A is possibly executed after B, as this

is acceptable (e.g., when B loops back to A).

In the above definition, the form of A.Exit indicates

that the execution of activity A is terminated. The

execution status (e.g., Start, InExecution, and Exit)

can be encoded in the FSM model of the business

process according to the actions in the pi-calculus

process that has been enacted. Figure 10 shows an

example of such a mapping for the Receive activity.

A full reference of all the business bug patterns can

be found in our previous work.
34

To more efficiently probe the potential existence of

such bugs in a business process model, our idea is to

always follow a subset of interesting states while

traversing the state space. Interesting states are

those that can lead to the detection of a targeted

business bug pattern within the least number of

transitions. More specifically, we define the follow-

ing:

M(m): the complete state space (universe) of a

business process m, with its initial state in which all

of the activities are NotStarted;

S(m)¼fs(act1),s(act2),. . .g: A state in M(m) that is

encoded as the states of all activities in m, where

act
i
2 m & s(act

i
)2fact

i
.NotStarted, act

i
.Start,

act
i
.InExecution, act

i
.Cancel, act

i
.Failed, act

i
.Exitg;

The distance between two activity states D(s(act)1,

s(act)2) is thus defined as the least number of

transitions from one state s(act)
1

to another state

s(act)
2
. For example, if D(act.Start, act.Exit) ¼ 2, it

means that at least two steps are needed from state

Start to state Exist for action act. Therefore, the

distance between two states in the process is defined

as the weighted average of D:

D SðSðmÞl; SðmÞ2Þ ¼
X

i DðsðactÞli; sðactÞ2iÞ=jSðmÞj

The interesting states for a given commitment state

CS in state set SS are thus:

SðmÞ CS ¼ fSðmÞjSðmÞ 2 SS; 8S0ðmÞ 2 SS D S

ðSðmÞ;CSÞ, D SðS0ðmÞ;CSÞg

A more detailed reference of our guided searching

mechanism and its algorithms can be found in our

previous work.
34

Our experiments have shown that

the guided reasoning of business bug patterns can

help improve the performance of compliance

checking in OPAL. Table 1 shows a set of

experimental results on the compliance checking of

the account-opening process in Figure 1, which has

a total state space of 8,361 (2^13.0295) reachable

states. The guided business bug-searching algorithm

has been implemented in OPAL. The test environ-

ment was again a Windows platform with an Intel

Pentium 4 processor, 3.0 GHz, and 2.5 GB RAM.

The results show that our guided business-bug

searching approach can improve the performance of

finding potential violations in a business process

compared to the original approach. Intuitively

speaking, the reason for the improvement is that our

approach takes advantage of the pre-identified

Figure 10
Mapping example from pi-calculus to FSM 

…

Q
action=x

P

action=x
P

action=x
P

action=x
P

P
Act=Start

P
Act= InExecution

P
Act=Exit

x is the start action
process standing for activity Act 

x is the    action in the pi process 
standing for activity Act

x is the done action in the pi
process standing for activity Act 
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activity status and always follows the shortest path

that may lead to the detection of a targeted bug.

Uninteresting state traces are neglected to narrow

down the state space that needs to be traversed.

Therefore, the guided business-bug searching ap-

proach is useful to check the compliance of complex

large-scale business processes. However, the ap-

proach is not perfect; its merits come at some cost

too:

� It can be used only to falsify a business process

because it does not ensure the full traversal of the

state space of the business process. Because model

checking is more useful for finding system bugs

than to prove them correct,
36

the approach is still

valuable for checking compliance of real industrial

business designs that are too large for classical

model checking to run to completion.
� It is not suitable for application in small-scale

business processes. On the one hand, it is totally

affordable to have a thorough and precise check-

ing of simple business processes with model

checking. On the other hand, the computation of

the interesting states in the approach is not

negligible for the compliance checking of a simple

business process; thereby, giving away the per-

formance advantage of the approach.

RELATED WORK

With the rapid growth of complexity in existing

business applications and their supporting IT

infrastructures, ensuring highly secure and reliable

business process development is becoming a critical

task. In the past few years, there has been a lot of

work modeling business processes and developing

verification techniques and tools for them. A recent

survey was done by Breugel and Koshkina.
37

In this

section, we identify three aspects pertaining to the

compliance checking of business process models.

We report on the literature in each area and clarify

how our work is different.

Pi-calculus as the formal foundation for business

process models

Many researchers generally agree that formal

models should be used as a basis for complex

Table 1 Experimental results on checking-account-opening process

Target
Bug

Original Approach (seconds) Guided Bug
Hunting

(seconds)
Result

From pi to FSM Model checking

Bl

57.218

118.200 2.031 Found

B2 112.700 41.703 Not found

B3 177.600 26.438 Found

B4 129.300 60.469 Found

B5 221.900 72.266 Found

B1 SequentialBug(VerifyCustomerIdentity, RecordCustomerInfo)

B2 MilestoneBug(ProposeAccountOpening.Exit, ActivateAccount.PreStart, ValidateAccountInfo)

B3 InterleavedParallelRoutingBug(OpenAccount, DoDeposit, RecordAccountInfo)

B4 ExclusiveChoiceBug(AcceptCustomerReq, fVerifyCustomerIdentity, ValidateAccountInfog)

B5 SequentialBug(AcceptCustomerReq, PrepareProposalDoc) &&
ParallelSplitBug(PrepareProposalDoc, fVerifyCustomerIdentity, ProposeAccountOpeningg) &&
SequentialBug(ProposeAccountOpening, ActivateAccount) &&
SynchronizingMergeBug(fActivateAccount, VerifyCustomerIdentityg, DoDeposit)

Mlv (the maximum interesting level for the next states to be traversed) ¼ 1;

Gate (the maximum number of times allowed for computing preimages for the current states) ¼ 10
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business-process modeling languages, such as

BPEL.
38

According to Sid Askary, ‘‘It will allow us to

not only reason about the current specification and

related issues, but also uncover issues that would

otherwise go unnoticed.’’
39

In this context, tremen-

dous focus has been concentrated on Petrinet and

pi-calculus. However, this has also led to a long

debate on what is the most suitable formal

foundation for business process models. Smith

supports pi-calculus and argues that ‘‘. . . workflow

is just a pi-calculus.’’
40

The design of Web Services

composition languages, such as XLANG and BPEL,

is also claimed to be based on pi-calculus. Van der

Aalst, on the other hand, has appealed that more

solid work should be done to prove the effectiveness

of pi-calculus in modeling business processes.
38

In

fact, there has been some previous work on

formalizing various business process models with

pi-calculus, including UML statechart diagrams,
41,42

UML (2.0) activity diagrams,
43,44

and workflow

patterns.
45

Previous work has also shown that pi-

calculus is a suitable formal composition language

for software composition and Web service compo-

sition.
46–48

In our work, we have formalized BPEL

process models with pi-calculus instead of using

Petrinets or automata (and their extensions).

We rely on pi-calculus for the following reasons.

First, automata and Petrinets are often used to

model closed systems, whose behavior is completely

determined and controlled by the state of the

system. However, pi-calculus, aside from its mobil-

ity feature, is designed to model open communicat-

ing systems whose behavior is determined by the

state of the system and interaction with the behavior

of the environment.
29,49

For example, FSM model is

under complete control of its transitions, whereas in

pi-calculus, all observable actions are under the

joint control of the process and its environment.

Therefore, one may regard FSM as the processes in

pi-calculus with only internal actions.

We favor pi-calculus over BPEL because, although

BPEL can be regarded as a fully controllable

orchestration of various services, there are also

cases when the behavior of a BPEL process (e.g., a

service invocation according to the WSDL specifi-

cation) needs an interactive feedback from the

environment of the process (e.g., a dynamically

changing service portfolio). For example, when

BPEL is used as an abstract service-composition

language with the automatic discovery and mapping

of the target services for invocation, it becomes

critical to consider the communication with the

environmental information, such as the available

service candidates in the service portfolio and

service selections (which can be best modeled by

the mobility feature of pi-calculus).

Another advantage of pi-calculus is its mobility and

compositionality. Here compositionality means that

there is a natural composition operator in pi-

calculus to model a system from its subcompo-

nents. This operator does not exist in Petrinets.

Therefore, for composing various Web services by

BPEL to form a process, it is more natural and

beneficial to use a compositional language like

pi-calculus instead of FSM or Petrinet, which

involve additional operations and computations

for the composition.

Pi-calculus is theoretically sound and supports

bisimulation analysis and model checking. It enjoys

increasing acceptance and tool support in the

industry. It has also been used as the formal

foundation for business-process modeling languages

such as BPEL and XLANG. However, as pointed out

by van der Aalst,
38

more work needs to be done to

provide formal models, verification approaches, and

automatic tools for business processes based on pi-

calculus. Our work can be regarded as a response to

this appeal.

Formal verification of BPEL process models

Based on the formal semantics, there has been

previous work on the formal verification of BPEL

process models. Fu et al.
50

first translate BPEL

processes into (guarded) automata, and LTL model

checking can thus be performed with SPIN
51

with an

additional transformation from (guarded) automata

to Promela (the input language used by the free

model checker of SPIN, developed by Bell Labora-

tories).
51

Besides, Fu et al.
50

studied the so-called

synchronizability and realizability analysis for the

composition of Web services. Kovács and Gönczy
52

also exploit the model checker of SPIN, although the

intermediate model between BPEL and Promela is a

model of a dataflow network. Foster et al.,
53

on the

other hand, take the BPEL process and translate it

into the form of finite state process calculus and

then compile it into a labeled transition system. The

formal verification is then performed by the existing

labeled-transition-system analyzer tool suite.

Ouyang et al.
54

and Lohmann et al.
55

both provide a
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semantic transformation from BPEL to Petrinet.

However, whereas Ouyang et al.
54

focus on the

analysis of specific process properties, such as

reachability analysis, competing message-consum-

ing activities, and garbage collection of queued

messages, Lohmann et al.
55

focus on the controlla-

bility of the process; that is, whether a strategy can

be constructed to impose the weak termination

property on the corresponding workflow net.

Finally, instead of dealing with the BPEL model,

Koehler et al.
56

propose a pattern-based mapping

approach to model a general business process. Two

typical properties in a process model, reachability

and termination, are formulated with the temporal

logic of CTL, which can be verified later by existing

model checkers.

Our compliance-checking approach differs from

these works in two ways:

1. The theoretical foundation is different. We have

used a pi-calculus-based approach instead of an

automata- or Petri-net-based approach. The

benefits of our selection were addressed in the

previous subsection.

2. The completeness of the approach is different.

We focused on the verification of our formalized

BPEL models against specific structural errors.

More important, our work involves a more

detailed proposal of subjects—including coun-

terexample guiding, performance enhancement,

and visualization of temporal logics—which are

critical to making the formal verification of

business processes practical and usable.

Specifying regulatory rules with temporal logics

Specifying user-desired properties with logical for-

mulas is an important step in the formal verification

of business process models. The intuitiveness and

convenience in the property specification thus

becomes a key issue in making the formal verifica-

tion approach more applicable to business analysts,

who may not be logical experts. The LTL model

checker plug-in in ProM
57

exploits a textual form of

LTL formula directly. The work in Giblin et al.
12

extends a timed propositional temporal logic and is

devoted to the specification of regulatory rules in a

textual form. REALM
12

provides several easy-to-use

features, such as a predefined set of business entity

types (e.g., Artifact, Resource, and Principle) and

relations (e.g., Do, Input, and Output) whose syntax

conforms to a UML profile. Unfortunately, there is

still no tool support for the verification of REALM

specifications.

On the other hand, visual extension to existing

logical languages is an important research direction

to help business analysts understand and specify

logical formulas intuitively. Related visualization

works can be found for commonly used temporal

logics, including CTL,
58

LTL,
59

and interval tempo-

ral logics.
60

Especially in DecSerFlow,
61

a graphical

representation of the so-called Declarative Service

Flow Language is proposed, which can be mapped

onto LTL and enables the LTL verification of Web-

service flow models.

As explained earlier, our OPAL toolkit contains an

editor for BPSL to visually specify various regulatory

rules. BPSL is different from the preceding works in

the following aspects:

� It is a visual specification language which supports

the temporal logics of both LTL and CTL. It is also

compatible with the IEEE standard, Property

Specification Language.
35

� It enables the intuitive and convenient specifica-

tion of regulatory rules by customizing predefined

property templates in BPSL. The source of these

templates comes from existing work on patterns

such as business property specification patterns
23

and business bug patterns.
34

CONCLUSION

We have introduced OPAL, a compliance-checking

framework, and related tools, including a static

method to check business process models against

compliance rules. Compliance-checking tools enable

one to quickly assess the compliance of business

process models in batch mode. The use of high-level

specification languages, such as BPEL (as opposed

to pi-calculus or FSMs directly) and BPSL (as

opposed to LTL specifications) and the definition of

transformations that can be automated into low-

level formalisms yields easier, more intuitive, and

less error-prone process modeling, thus reducing the

risk of implementation errors and noncompliant

operations. If noncompliant business process mod-

els are discovered, counterexamples can be gener-

ated on the level of the business process model. This

capability provides a better understanding of the

nature of the problem and enables a quicker reaction

to address and rectify the noncompliant processes.
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These capabilities make it possible for business

people to use the compliance-checking tool.

Our compliance-checking method builds on classical

model-checking technology. After a business pro-

cess model has been formalized with pi-calculus, it

can be transformed into an FSM representation. The

intermediate models of pi-calculus and FSM enable

our compliance-checking framework to be scalable

to both the future emergence of new business-

process modeling techniques and the reuse of more

powerful model-checking tools. As a matter of fact,

although this paper mainly addresses the application

of the framework in BPEL processes, our current

implementation of the compliance-checking frame-

work (the OPAL toolkit) has also been applied in the

verification of WBI process models. As performance

is always a critical problem in the area of model

checking, we have also proposed the method of

sequentialization of interleaving actions to reduce

the overall state space. The approach of guided state

searching for business bug patterns can further help

improve the efficiency of compliance checking. As

conducted experiments illustrated, these two opti-

mization approaches can greatly help improve the

performance of compliance checking.

We plan to extend the existing compliance-checking

method to support the verification of resource and

data constraints that are related to business process

models. Additionally, we plan to focus on perfor-

mance optimization. Finally, we intend to apply our

compliance-checking method to more real cases to

further validate the capabilities and usability of our

compliance-checking framework.
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