J. Ramanathan
R. J. Cohen

E. Plassmann

K. Ramamoorthy

Role of an auditing and reporting
service in compliance
Management

Regulatory compliance has become a major focus in today’s business environment as
companies adapt to comply with regulations such as Sarbanes-Oxley, Basel II, and
HIPAA (the Health Insurance Portability and Accountability Act). Runtime audit data
that records information such as operational logs represents a key element needed for
compliance management. An audit service that manages the life cycle of audit data is
thus a critical component of any compliance management system. This service should
support mechanisms to submit, centrally collect, persistently store, and report on audit
data, as well as enable the archiving and restoration of audit data. This paper describes
an audit service technology that is included in some IBM products to enhance their
auditing capabilities and explains how this audit service can be used to support a
company's compliance strategy. Using scenarios as examples, we show how reports
provided by one of the products that uses this audit service can be instrumental in
demonstrating compliance.

INTRODUCTION

Auditing is the process of maintaining detailed,
secure records of critical activities in a business
environment. Such records are referred to as audit
logs. The critical activities recorded could be related
to security, content management, business transac-
tions, and so on. Security-related critical activities
that could be audited include login failures, unau-
thorized access to protected resources, modification
of security policy, noncompliance with a specified
security policy, and the status of security servers.
Business-related critical activities that could be
audited include bank transactions, insurance claims
processing, and order processing. Critical activities

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

related to content management that could be audited
include updates and deletions of critical documents.

Usage of audit logs

Customers must comply with many regulations,
including the Sarbanes-Oxley (SOX) Act,1 the Health
Insurance Portability and Accountability Act
(HIPAA),2 the Basel II International Banking Accord
(BASEL H),3 and the Payment Card Industry Data

©Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

RAMANATHAN ET AL

305

Security Standard (PCI—DSS).4 To support their
compliance initiatives from an information technol-
ogy (IT) perspective, customers define and imple-
ment IT controls in their enterprise to enable them
to test, measure, and understand how well they are
complying with these regulations. Audit logs pro-
vide runtime data which demonstrates that such
controls are being implemented. Thus, IT organiza-
tions can use information contained in audit logs to
help demonstrate their compliance with certain
aspects of these regulations.

In order to demonstrate a history of implementing IT
controls, such audit logs must be archived (stored),
sometimes for years, and procedures need to be put
into place to allow the archived audit logs to be
processed. As a result, the management of audit logs
involves both technology and human resources. The
National Institute of Standards and Technology’s
Guide to Computer Security Log Management out-
lines guidelines for managing audit logs.S

Audit logs are also useful in checking the enforce-
ment and effectiveness of IT controls for account-
ability, vulnerability, and risk analysis. For example,
an IT organization can use the audit logs of security-
related critical activities to aid in the forensic
investigation of security incidents. When a security
incident occurs, the audit logs enable analysis of the
history of activities that occurred before the incident
so that appropriate corrective actions can be taken.
This paper focuses exclusively on the use of audit
logs for compliance management and does not
discuss these other uses of audit logs.

Scenarios for use of audit logs in compliance

Best practices.6 recommend that companies set up IT
governance structures to enforce compliance in their
IT infrastructure. This governance structure in-
volves setting up IT control structures to meet IT
compliance objectives. Once controls are in place,
procedures must be defined to test the controls and
ensure that they are effective. Testing controls
usually involves analyzing compliance data to
determine that the controls are working properly.
Compliance data can consist of configuration and
policy data to show that the compliance policies
have been implemented and history audit data to
show that compliance policies are being enforced.

One key aspect of all compliance initiatives is
gathering the compliance data needed to test IT

306 RAMANATHAN ET AL.

controls. Gathering the required data has proven to
be a problem area for customers because compli-
ance data may be scattered throughout a company’s
IT infrastructure. Manual collection of the data can
be a daunting task, in particular during an audit. IT
employees frequently are required to discontinue all
other work in order to satisfy an auditor’s request
for control test data.

Centralized collection of audit logs can help
automate the collection of compliance history data,
thus reducing the cost of collecting compliance data
in support of control testing. In the following, we
present several scenarios to illustrate how audit data
can be used to support a company’s compliance
initiative.

The following compliance questions can be used as
samples of the questions that need to be answered
during an audit: (1) Are critical business applica-
tions being used by authorized users only? (2) Are
user passwords being changed every 90 days? (3)
Are user accounts removed in a timely manner after
an employee leaves the company?

To answer the first of these questions, a control must
be documented which defines the compliance
objective that only authorized users should use
critical business applications. In order to set up the
tests for this control objective, critical applications
must be identified, and a list of authorized users
must then be created for each critical application.
After the control test has been defined, the compli-
ance tester can then look at the history audit data and
ensure that all accesses to the critical applications
were made by users on the specified list.

Many companies have policies regarding how
frequently passwords must be changed. A corre-
sponding control objective would state that proce-
dures must exist to enforce frequent password
changes. In order to set up the test for this control
objective, the desired password-change frequency
must be determined. This should be specified in the
company security policies. To test for compliance
with this objective, an audit report must be run and
the resulting data analyzed to see if there are any
passwords that are not being changed frequently
enough.

Finally, to test the control objectives related to user
management procedures, the control tester must

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

first obtain a list of all the employees that have left
the company during the test period. A report can
then be run against the audit data to show all userid
deletion events. If a userid deletion event cannot be
matched up with each employee that has left the
company, the test results indicate a compliance
violation.

There are various responsible parties in an organi-
zation who are involved in the preceding process.
The chief compliance officer specifies an organiza-
tion’s high-level compliance policies. The security
policy officer specifies security-related policies,
including those that involve the generation of
runtime audit data which implement the high-level
compliance policies. The security administrator
ensures that the systems are appropriately config-
ured to collect the runtime audit data. The auditor
uses the reports on runtime audit data to test
whether the control objectives are met.

The preceding scenarios are related to IT controls
that apply to the security aspect of the IT infra-
structure. However, this is just one of the areas that
need to be considered from a compliance perspec-
tive. Other areas that need to be considered are
change management, business process manage-
ment, document management, and so forth.

Requirements for managing audit logs

Because file-based audit logs cannot be easily
processed for producing operational and trend
reports, audit logs are typically made available in
relational databases. The databases can be easily
queried to generate operational and trend reports.
Reporting facilities such as IBM DB2* Alphablox7 or
other popular business intelligence tools can then be
used to analyze the data. Trend audit reports
provide summarized audit data that enable a user to
determine whether there are any long-term trends in
critical activities. Operational audit reports enable
detailed reviews of audit data to help analyze
specific critical activities.

Based on the usage scenarios of audit data discussed
previously, the management of audit logs has the
following (not exhaustive) list of critical require-
ments:

1. Provide a process for managing audit logs that is
tamper-resistant; that is, audit logs must be kept

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

safe when generated, during movement, and
when stored.

2. Collect and store large volumes of data for long
periods of time.

3. Ensure that audit records are not lost or
duplicated.

4. Stage the data periodically (daily or weekly) into
report tables for data analysis.

5. Produce trend and operational reports on recent
audit data.

6. Allow various reporting tools to be used to
produce “out of the box” (ready to use without
modification) and custom reports that show
audit data.

7. Archive the audit data for long periods of time
(months or years) with archiving scheduled on a
regular basis.

8. Enable the review of audit logs for critical
activities that occurred in the past (e.g., what a
particular user did a month ago), which requires
the ability to process archived audit logs.

9. Produce trend and operational reports on
archived audit data.

10. Provide auditing functionality for changes to the
configuration and policies for collecting audit
data and for pruning audit logs.

An audit service technology

IBM products for distributed platforms currently
generate audit logs that contain different formats for
audit data of a specific type (e.g., authentication
data, change management data, etc.). In addition,
each product has its own way of managing the life
cycle of audit data. An audit service provides
mechanisms to manage the life cycle of audit logs. It
provides mechanisms to submit, centrally collect,
and persistently store, archive, restore, and report
on current and restored audit data, and it satisfies
the previously mentioned requirements for manag-
ing audit logs. A common audit service technology
reduces the development effort of building an audit
service for each specific domain and also enables
customers to manage the life cycle of audit data
consistently for all domains.

The audit service discussed in this paper supports
auditing of data that is in a base format for which
extensions can be defined for various domains.
Currently, this audit service supports audit logs that
are in the Common Base Event (CBE) Version 1.0.1°
format. It also implements the extensions to the
Common Base Event format for security events that

RAMANATHAN ET AL

307

have been defined by IBM. It stores the audit logs in
a relational database that is tailored for storing large
volumes of data and also provides utilities that help
with the life cycle (reporting, archiving and resto-
ration, etc.) of audit logs.

The audit service discussed in this paper is a
technology that can be used by a given IBM product
to enhance its auditing capabilities. This audit
service is currently used by the following products:
IBM Tivoli* Access Manager for e-business Version
6.0,” the IBM Tivoli Access Manager for Operating
Systems Version 6.0,10 and the IBM Tivoli Federated
Identity Manager Version 6.1."" This audit service is
not available on its own as an IBM product offering.
For multiproduct log aggregation capability for
security events, IBM offers the Tivoli Security
Operations Manager product.12

In the remainder of this paper, we first discuss the
programming model, architecture, and various
components of the audit service. We then discuss
how this audit service is currently used by some IBM
products to enhance their auditing capabilities. We
conclude by providing sample scenarios of how a
specific IBM product (Tivoli Access Manager for
e-business Version 6.0) manages its audit data by
using this audit service and reports on its audit data
in support of compliance management.

This paper uses the terms audit data, audit log, and
event to denote an audit record. Also, the term
exploiter is used to refer to an IBM product that uses
this audit service to enhance its auditing capabili-
ties.

AUDIT SERVICE PROGRAMMING MODEL

The audit service provides interfaces for the creation
and submission of audit records. These interfaces
are available only for IBM products and are not
available outside of IBM. The interfaces separate the
creation of audit data and the submission of audit
data into two separate steps.

Creation of audit data for C-based exploiters is done
by using the C client. Creation of audit data for
Java**-based exploiters is done using “event facto-
ries.” An event factory is a set of interfaces in a
particular language that allows creation of events in
a given format. The audit service technology
provides a security event factory that allows
creation of security events which conform to the

308 RAMANATHAN ET AL.

security event format that has been defined by IBM.
In addition, exploiting applications can develop
event factories for other domains.

Audit data can be submitted by using any of the
following software. (In the text below, an emitter is
a software entity that emits an object, in this case an
event. A Java emitter is meant for use by Java-based
exploiters. A provider implements the interface
defined by the emitter.)

1. Java-emitter lightweight provider—The light-
weight provider allows submission of audit
records that are in the CBE format to a local CBE
text-file log. This provider can be used by Java-
based exploiters for their proof-of-concept solu-
tions. No tools are provided to process audit data
that is stored in this text-file log.

2. Java-emitter enterprise provider—The enterprise
provider allows submission of audit records that
are in the CBE format to a relational database by
using a Common Audit Web Service. The
Common Audit Web Service in turn submits
these CBEs to the Common Event Infrastructure
(CEI) server. Whether a specific event is audited
is determined by the event group configuration,
and “auditable” events are sent to the audit plug-
in to which the audit database is registered as an
audit provider for the CEI server. This enterprise
provider can be used by Java-based exploiters to
add enterprise audit capability for their product
offerings.

3. C client—This client submits CBEs to a relational
database by using the Common Audit Web
Service. This interface is used by C-based
exploiters.

Exploiters can embed the audit-service client files
into their product so that these files are installed as
part of their product’s installation. The Common
Audit Web Service is not externalized directly to
IBM products or customers.

AUDIT SERVICE ARCHITECTURE

As shown in Figure 1, the server side of the audit
service consists of the CEI server, the Common
Audit Web Service, the relational database to store
audit logs (referred to as the audit database), the
audit plug-in for the CEI server, the staging utility,
and the XML store utility. The Common Audit Web
Service receives CBEs from the C client and the Java-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

IBM Products/Components

l

C Client, Security Event Factory, Java Emitter

Y

Common Audit Web Service

|

Common Event Infrastructure Server

Y

Audit Plug-in

Auditable Events

IBM WebSphere

\
Staging Utility

Audit Database
IBM DB2

XML Store Utility

Archive

< ‘

N

Figure 1
Audit service architecture

_
Out-of-the-Box Custom Report
Report Tabl Tabl
epor f s 9 ables l »
Reports provided by IBM products and customers
Chief Security
Compliance Security Policy
Officer Administrator Auditor Officer

emitter enterprise provider and submits them to the
CEI server. The server routes the CBEs that are
configured to be “auditable” (using event groups) to
the audit plug-in, which then stores them in the
audit database. The staging utility stages the audit
data from the main tables to report tables. These
report tables could be the out-of-the-box report
tables needed by the exploiting product’s audit
reports or custom report tables created by customers
for their custom audit reports. The XML store utility
helps with the archiving and restoration of the audit
data from and to the audit database by using third-
party archival tools.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Audit service components

The components of the audit service are the
following: the C client, the security event factory,
the Java emitter, the Common Audit Web Service,
the audit plug-in, the audit database, the staging
utility, and the XML store utility.

The C-client component provides the interfaces for
use by C-based exploiting products for both creation
and submission of security events. This component
allows creation of security events that conform to
the IBM-defined security extensions for CBE. It
submits the CBEs to the Common Audit Web

RAMANATHAN ET AL

309

Service. The C client and the Common Audit Web
Service communicate by means of the SOAP (Simple
Object Access Protocol) protocol. This component
also provides a disk cache that caches CBEs locally
when the Common Audit Web Service is unavailable
or nonresponsive and submits them at a later time.
In order to enable the audit service server to detect
duplicate CBEs sent by this component (e.g., dueto a
timeout), this component generates a unique iden-
tifier for each CBE. The interfaces provided by this
component are not made available outside of IBM.

The security-event-factory component enables the
creation of security events in the IBM standard format
for such events. This component allows Java ex-
ploiters to generate security events in the CBE format.

The Java-emitter component supports two providers
that allow submission of CBEs. One of them is the
lightweight provider that stores CBEs in a local text
file. No form of processing of CBEs stored in this text
file is provided. This implementation is meant to be
used by exploiting products to meet their require-
ment for an out-of-the-box file-based audit log and
for their proof-of-concept solutions. The other
provider is the enterprise provider that submits
CBEs to the Common Audit Web Service, which in
turn stores them in the relational database to enable
reporting and archiving. This provider includes a
local disk cache for storage of CBEs when the
Common Audit Web Service is nonresponsive or
unavailable. In order to enable the audit service
server to detect duplicate CBEs sent by this
component, for instance, due to a timeout, this
component generates a unique identifier for each
CBE. These functions are supplied by the Java
emitter for Java applications and by the C client for
C-based applications.

The security event factory and the Java emitter are
together referred to as the embeddable Java client.
This client can be embedded by Java-based ex-
ploiting products as part of their product’s installa-
tion files. Configuration for these components is
provided through objects of the Java Properties
class. Exploiters need to use product-specific con-
figuration mechanisms to obtain configuration
information and pass it to these components.

The Common Audit Web Service component ser-
vices one or more CBE events from the C client and
the Java-emitter enterprise provider and submits

310 RAMANATHAN ET AL.

them to the CEI server. It is secured by role-based
access control so that only authorized entities can
submit audit events to it. In addition, the commu-
nication between the C and Java clients and this
Web service can be secured with secure socket layer
(SSL) mechanisms.

The audit plug-in component allows the audit
database to be registered as an audit provider for the
CEI server. By doing so, events that are denoted to
be “auditable” by means of event group configura-
tion are routed by the CEI server to this audit plug-
in, which stores them in the audit database.

Audit database

The schema of the audit database must allow it to
store a large number of events in a space-efficient
format. It also needs to allow customers to generate
operational reports. This schema uses several sets of
tables to accomplish these objectives: active, inac-
tive, restore, and report tables and metatables.

Active tables store events as the audit service server
receives them. Inactive tables contain data that is to
be archived and purged. Once the inactive tables are
purged (emptied), they are eligible to become active.
The customer decides, based on the volume of
events and available disk space, the frequency with
which tables can become active. Restore tables
restore previously archived data. Typically, users
would restore data from an earlier archive if they
wanted to run a report against the archived data.
Report tables store a subset of attributes from an
event for operational reporting purposes. The
customer decides the subset of attributes to store in
the report tables. Metatables store meta-information,
such as the set of XML event tables in the “active
bucket” (i.e., the set in which incoming events are
stored), the number of tables, the version of the CEI
code that the schema supports, and so forth.

The schema for the audit database also uses a
sequence object to ensure that an event is unique
across active, inactive, and restore tables. When the
schema was designed, the following functional and
performance requirements were taken into consid-
eration:

1. Flexibility—The schema allows for various ver-
sions of events to be stored in the same table.
This is accomplished by storing each event
completely and normalizing only a minimal

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Content of audit reports = Design of report tables =p Staging Utility Configuration

Out-of-the-Box Custom Event
Event Details Report Details Report
/_T N /—\\F

Event Details
Java Stored Procedure

Out-of-the-Box Custom Audit
Audit Reports ~ Reports
\ //—\T -
Out-of-the-Box Custom Report
Report Tables Tables

| T

Audit Database (with recent ———— Staging Utility ‘

audit data or data restored
from archives)

Figure 2
Staging utility and custom audit reports

T T

Out-of-the-Box Custom
Staging Utility Staging Utility
Configuration Configuration

number of attributes. The schema must also
handle variable-sized events. Events (i.e., audit
reports) that are less than 7793 characters are
stored in a main table. Events that do not fit in the
main table are stored in an overflow table. When
compression for storage of audit events in the
audit database is enabled, longer events will
normally fit in the main table.

. Concise storage—The large number of events

necessitates that the schema provide a concise
storage mechanism. The schema achieves this by
allowing the events to be stored in a compressed
format and allowing the users to select and store
only a subset of attributes in the report tables for
operational reporting purposes.

. Externalizing the schema and ease of migration—

The schema has to be made available to end users
for archival purposes. One of the problems
typically associated with externalizing a schema
is the requirement to migrate data when the
schema changes. Because all the attributes of an
event are stored in a single database column, the
data migration due to any change in the format of
events is eliminated.

. High insertion performance—Because the ex-

ploiting products’ performance could be impact-
ed, the schema allows for high performance
during event insertion (for typical events) be-

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

cause of reduced disk I/O due to compressing the
event.

5. Fast purging of archived data—The schema
enables the purging of old audit data without
causing the DB2 transactional log to become full.
It accomplishes this by keeping active and
inactive tables and by using the DB2 load utility
to purge the data instead of using SQL (Structured
Query Language) commands for this purpose.

6. Incremental staging of data to report tables—The
volume of data requires that only new events,
that is, those recorded since the last staging
operation, are staged to the report tables. In order
to support this requirement, the events need to be
identified by a key that is unique and monoton-
ically increasing in nature. The schema accom-
plishes this by using a record identifier generated
by a sequence object.

Staging utility

As shown in Figure 2, the staging utility supports a
procedure for defining the subset of data for each
audit event that is recorded in the report tables.
Custom reports can then be created to analyze the
custom subset of data for each event. These custom
definitions need to be based on the compliance
needs of the organization and are designed to
demonstrate compliance with the IT controls that

RAMANATHAN ET AL

311

Audit records sent to active tables
during regular operations

Audit Database

Which tables are active?

>

Active Tables Inactive Tables

Restore Tables

1

Returns names of
inactive tables and
time stamp of audit
records

XML Store Utility

Pre-Archive |

Archived audit data

Archive (using third-party
archive/restore tool)

Local File
> c\\Archive081205

-« @000

l

XML Store Utility
Post-Archive

Purges audit data in
the inactive tables

Regular Operations

Cleans restore tables

Restores archived audit data
to restore tables

XML Store Utility

CleanRestore Archived audit data

Figure 3
Audit-database archive and restore example

l that needs to be restored

Local File
Restore (using third-party c:\\Archive081205

archive/restore tool)

are being tracked in the organization and require the
use of audit data. Any reporting tool that queries
data from a relational database can be used to build
the custom reports that process this data. As custom
reports are developed, the event types and specific
elements of each event type that are of interest need
to be identified and specified for configuring the
staging utility. The customer needs to create and
manage the additional report tables to hold data for
custom reports. The staging utility can then be
executed to stage custom data into these newly
defined report tables.

Each event stored in the audit database has a unique
identifier associated with it. All details of a
particular event can be obtained by providing this
unique identifier to the Java stored procedure which
handles event details.

To support custom reports, a custom Data Definition
Language (DDL) file needs to be written and run to
create custom report tables in the audit database.
Specific guidelines need to be followed in creating
the custom report tables to allow joining of data

312 RAMANATHAN ET AL.

from these tables with data from the default report
tables and to allow the staging utility to prune data
in the custom report tables. The configuration of the
staging utility must be updated in order to stage the
additional attributes needed for the custom report
when the staging utility is run.

XML store utility

The XML store utility enables the archiving and
restoration of audit data contained in the main
tables of the audit database by using third-party
archival tools. Figure 3 shows an example scenario
of archiving and restoration.

The archive operation includes the following steps:
(1) execute the XML store utility with the “pre-
archive” option to get information about the names
of the inactive tables and the time stamps of the
events being archived; (2) archive the inactive tables
by using the third-party tool; and (3) execute the
XML store utility with the “post-archive” option to
purge events from the inactive tables that were just
archived.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

The restore operation includes the following steps:
(1) optionally, execute the XML store utility with the
“clean-restore” option to purge existing events in
the restore tables, and (2) restore events to the
restore tables by using a third-party tool.

The period of time for which archives are main-
tained depends on the business policy of the
organization. The life cycle of audit data needs to
include proper disposal of the archives as specified
by this business policy.

Functionality

In this section, we discuss how the functionality
supplied by the audit service addresses most of the
requirements for managing audit logs that were
listed in the section “Requirements for managing
audit logs.”

The requirement for a tamper-resistant process for
managing audit logs is met by the audit service in
the following manner. The audit service uses
authentication, access control, and secure commu-
nication to ensure that only authorized clients can
submit audit records to the audit-service server,
which stores such records in the audit database.
Access to the audit database must be restricted by
using database access control mechanisms. Access
control must be enforced also for the original
sources of audit data (e.g., Tivoli Access Manager
for Operating System binary audit log files).

The requirement for collecting and storing large
volumes of data is met by the design of the schema
of the audit database as discussed earlier in this
paper. The requirement for preventing lost or
duplicate audit records is met by the disk cache
mechanism and by generation of a unique ID per
audit event, implemented in both the C client and
the Java emitter enterprise provider, and is also met
by using DB2 mechanisms to detect duplicate
records in the audit database and discarding them
without storing them again.

The requirements for periodic staging of data into
report tables, producing trend and operational
reports and enabling various reporting tools to
produce out-of-the-box and custom reports are met
by the ability of the staging utility to stage recent
audit data for custom operational reports.

The requirements for archiving and processing of
archival logs are met by the schema design of the

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

audit database and also by providing the XML store
utility that assists in the archival and restoration
process. Producing trend and operational reports on
archived data is enabled for operational reports by
the staging utility’s ability to stage archived audit
data into custom report tables. Note that the
archived audit data is restored from archives to the
restore tables of the audit database, and the staging
utility then stages the data from those tables to the
report tables.

Staging for trend reports is not supported for either
current or archived audit data.

Guidelines for using the audit service

To use the audit service, a product must define the
out-of-the-box reports for audit data to be generated
and the report tables needed to support the out-of-
the-box reports. The audit data needed for the
defined reports must be created in the CBE format. If
security events are being generated, the security
event factory must be used.

The audit data is then submitted by using the C or
Java interfaces. It is staged in the report tables based
on a defined configuration by the staging utility.
Audit reports are then developed by using a
reporting tool. The files for the clients of the audit
service are embedded in the product’s installation
files, and the end-user installation package is
shipped to the server side of the audit service.

USES OF THE AUDIT SERVICE

IBM Tivoli Access Manager for e-business Version
6.0 uses the C and Java interfaces to audit the
following security events using the audit service
described in this paper: authentication, configura-
tion, authorization, runtime operations for security
servers, resource access events, user self-care
password-change operations, and management op-
erations for resources, security policies, users, and
groups.

IBM Tivoli Access Manager for Operating Systems
Version 6.0 uses the C interfaces to audit the same
set of security events with the addition of credential
modification operations, and is limited to manage-
ment operations for resources, security policies, and
users.

IBM Tivoli Federated Identity Manager Version 6.1
users the Embeddable Java Client to audit security

RAMANATHAN ET AL

313

314

events for authentication, federation, trust, signing,
encryption and management operations for security
policies using this audit service.

In the following section, we provide examples to
illustrate how reports generated for the security
events of one of these products can be used for
compliance management.

Compliance management

IBM Tivoli Access Manager for e-business Version
6.0 provides the following reports for audit data
logged by its components using the audit service:

® General Audit Event Details Report—Displays all
information about a single auditable event denot-
ed by the event reference ID parameter. Typically,
a user runs this report after running other reports
and deciding that an event “drill down” (i.e.,
detailed analysis) is desired.

® General Audit Event History—Displays the total
number of auditable events for each event type
during a specified time period. It also shows all
events of a specified event type and product name,
sorted by a selectable sort criterion and time
stamp. This report can be used for incident
investigation and assuring compliance.

* Audit Event History by User—Displays the total
number of events for a specified user during a
specified time period. It also presents a list of all
events of the specified event type and product
name, sorted by time stamp and grouped by
session ID during the time period. The purpose of
this report is to investigate activity of a particular
user during a specified time period.

e Failed Authentication History—Presents a list of all
failed authentication events over a time period,
sorted by selectable sort criteria such as time
stamps. This report can be used by an adminis-
trator to investigate security incidents.

* Failed Authorization History—Lists all of the failed
authorization events during a specified time
period.

e Locked Account History—Displays all of the
accounts that have been locked during a specified
time period.

e User Password Change History—Displays events
related to password changes performed by the
users themselves during a specified time period.

* Administrator and Self-Care Password-Change
History—Displays events related to password

RAMANATHAN ET AL.

changes performed by the user and the adminis-
trator during a specified time period.

® Server Availability Report—Shows the availability
status of security servers on a specific machine.
The user can display data for all protected
machines in the report or limit the report by
entering a single host name as the subject of the
report.

e Certificate Expiration Report—Allows detection of
soon-to-expire certificates and highlights the need
to replace the certificate to ensure 24/7 operabil-
ity. It shows the number of clients that have
server/SSL certificates which expire in a certain
number of days. It also shows a table of client host
names, the days until their certificates expire, and
the server they are associated with.

* Most-Active-Accessors Report—Shows a list of
users who are the most active in the system. This
can lead administrators to investigate improper
use of resources.

® General Authorization Event History—Displays
the total number of authorization events, failed
authorization events, successful authorization
events, and unauthenticated events during the
specified time period. Additionally, it shows a list
of all authorization events, sorted by a selectable
sort criterion (time stamp, resource, or user name)
during the time period. The purpose of this report
is to analyze the authorization event history for
incident investigation and assuring compliance.

* Authorization Event History by Action—Displays a
list of all authorization events that contain the
specified action, sorted by resource and then
time stamp during the time period specified.

e General Administration Event History—Shows the
history of general management actions done over
a specified time interval. The administrator can
use the report to track the actions of a user for
administrative events.

e User Administration Event History—Can be used
to investigate security incidents and to track
changes made by administrators which affect
users.

e Group Administration Event History—Can be used
to investigate security incidents and to track
changes to groups by administrators.

e Security Server Audit Event History—Presents a list
of auditable events related to security servers that
occurred during the specified time period.

® Resource-Access-by-Accessor Report—Shows the
top resources in terms of access or authorization
events during a time period for each machine

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Table 1 Use of reports in compliance testing

Compliance Category

IBM Tivoli Access Manager for e-business Report

Authenticating all users

General Audit Event History
Failed Authentication History

Maintaining effective access and authentication

User Administration Event History

Group Administration Event History

Server Availability Report

General Authorization Event History

Locked Account History

User Password Change History

Administrator and Self-Care Password-Change History

Defining user account management procedures

User Password Change History

Administrator and Self-Care Password-Change History
User Administration Event History

Group Administration Event History

Security Server Audit Event History

Following appropriate segregation of duties

General Administration Event History

Monitoring and logging security activities

General Audit Event Details Report
General Audit Event History

Audit Event History by User

Failed Authentication History

Failed Authorization History

Locked Account History

User Password Change History
Administrator and Self-Care Password-Change History
Certificate Expiration Report

Most Active Accessors Report
Authorization Event History by Action
General Administration Event History
User Administration Event History
Group Administration Event History
Security Server Audit Event History
Resource-Access-by-Accessor Report
Resource-Access-by-Resource Report

name identified. The report identifies who is
repeatedly accessing resources and what resources
are being accessed.

® Resource-Access-by-Resource Report—Shows the
top accessors in terms of access authorization
events during a time period for each machine
name identified. The report identifies which
resources are most heavily accessed and which
users are accessing those resources.

Table 1 shows how some of the reports described in
the preceding subsections can be used to support
control objective testing in the specified compliance
categories.

Sample scenarios

In this subsection, we present three sample scenar-
ios which illustrate the use of reports to support
various compliance categories.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Figure 4 shows how the Audit-Event-History-by-
User report can be used to look into violations of
policies related to segregation of duties. “Segrega-
tion of duties” refers to policies wherein a user
assigned to perform a particular task is not allowed
to perform another task. For example, a user who
accesses a Web application cannot be the one
deciding who can access a given Web application. In
Figure 5, the Resource-Access-by-Resource report
monitors accesses to a critical resource, such as a
critical application. In Figure 6, the Resource-
Access-by-Resource report is used to review
whether only authorized entities have access to a
critical file.

CONCLUSION

In this paper, we have discussed the key role an
audit service plays in compliance management. We
illustrated this role by showing how an audit service

RAMANATHAN ET AL

315

Is a person accessing a resource
also specifying the access control
policy for the resource?

Initiate corrective
action if needed

IBM Tivoli Access Manager IBM Tivoli Access Manager
for e-business for Operating Systems
System Administrator
Resource Access, Administration, Authorization Events) Audit-Event-History-by-User Report

- gl B
Audit Data $§t?lg

. .-

Figure 4
Segregation of duties

Who is accessing a specific resource?

Initiate corrective
action if needed

IBM Tivoli Access Manager IBM Tivoli Access Manager
for e-business for Operating Systems
System Administrator
Resource Access and Authorization Events Resource-Access-by-Resource Report
& // -l
. Repo
Audit Data Table
\ \

Figure 5
Monitoring critical resources

316 RAMANATHAN ET AL IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Are only authorized people

IBM Tivoli Access Manager
for e-business

accessing a specific file?

Initiate corrective
action if needed

IBM Tivoli Access Manager
for Operating Systems

Application Access) File Access

System Administrator

Y

Authorization Events)

N

Audit Database

—

Figure 6
Monitoring specific file access

—

Resource-Access-by-Resource
Report for specific file

Report
Tables

can be used for compliance management by
discussing its architecture, how products can use it,
and how a particular product that uses this audit
service can generate reports from its audit logs that
can be used in support of compliance management.

This paper focused on only the compliance-man-
agement-related scenarios for usage of audit events.
Other solutions using audit events include those
related to risk analysis (e.g., IBM Identity and Risk
and Investigation Solution), security information
and event management (e.g., IBM Tivoli Security
Operations Manager), and incident investigation.
These solutions represent potential areas for further
research.

ACKNOWLEDGMENTS

The authors would like to thank Anthony Nadalin,
Nataraj Nagaratnam, Robert High, Randy Forlenza,
Timothy Hahn, Jim Fletcher, and John Dinger for
providing architecture direction for the work
discussed in this paper. The authors would also like
to thank Arvind Krishna, Steve Wojtowecz, Brian
Turner, Jody Hasten, Ann Graham, Lisa Zinna, Lee
Hagy, Vincent Abbosh, Winton Campbell, Patricia

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Griffin, Chris Lita, Phil Klickman, and Kellie
Lecompte for their contributions to the development
of the audit service discussed in this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries, or
both.

CITED REFERENCES
1. Public Law 107-204, Sarbanes Oxley Act of 2002, 107th
Congress of the United States of America (2002), http://
www.sec.gov/about/laws/s0a2002.pdf.

2. H. R. 3103, Health Insurance Portability and Account-
ability Act of 1996, 104th Congress of the United States of
America (1996), http://frwebgate.access.gpo.gov/
cgi-bin/getdoc.cgi?dbname=104_cong_bills&docid=
f:h3103enr.txt.pdf.

3. International Convergence of Capital Measurement and
Capital Standards—A Revised Framework, Basel Com-
mittee on Banking Supervision (2004), http://www.
federalreserve.gov/boarddocs/press/bcreg/2004/
20040626/attachment.pdf.

4. Payment Card Industry (PCI) Data Security Standard,
Version 1.1, PCI Security Standards Council (2006),
https://www.pcisecuritystandards.org/pdfs/
pci_dss_v1-1.pdf.

RAMANATHAN ET AL

317

5. K. Kent and M. Souppaya, Guide to Computer Security Log
Management, National Institute of Standards and Tech-
nology, Special Publication 800-92 (2006), http://csrc.
nist.gov/publications/nistpubs/800-92/SP800-92.pdf.

6. CobIT—Control Objectives for Information and Related
Technology, IT Governance Institute http://www.
itgovernance.co.uk/page.cobit.

7. DB2 Alphablox, IBM Corporation, https://www-306.ibm.
com/software/data/db2/alphablox/.

8. D. Ogle, et al., Canonical Situation Data Format: The
Common Base Event V1.0.1, http://www.eclipse.org/
tptp/platform/documents/resources/cbel01spec/
CommonBaseEvent_SituationData_V1.0.1.pdf.

9. Tivoli Access Manager for e-business, Tivoli Information
Center, IBM Corporation, http://publib.boulder.ibm.
com/infocenter/tivihelp/v2rl/index.jsp?topic=/com.
ibm.itame.doc/welcome.htm.

10. Tivoli Access Manager for Operating Systems, Tivoli
Information Center, IBM Corporation, http://publib.
boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.
ibm.itamos.doc/welcome.htm.

11. Tivoli Federated Identity Manager, Tivoli Information
Center, IBM Corporation, http://publib.boulder.ibm.
com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.
doc/welcome.htm.

12. Tivoli Netcool Security Operations Manager Version 3.1,
Tivoli Information Center, IBM Corporation, http://
publib.boulder.ibm.com/infocenter/tivihelp/v8rl/index.
jsp?toc=/com.ibm.netcool_som.doc/toc.xml.

13. IBM Identity Risk and Investigation Solution (2006),
http://www-935.ibm.com/services/us/bcs/pdf/
g510-6527-ibm-identity-risk.pdf.

Accepted for publication November 21, 2006.
Published online April 11, 2007.

Jayashree Ramanathan

IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (jramanat@us.ibm.com). Dr. Ramanathan
is a security architect in the IBM Austin Development
Laboratory. She received an M. Tech. degree in computer
science from the Indian Institute of Technology in Mumbai,
India in 1985 and a Ph.D. degree in computer science from
Michigan State University in 1992. She joined IBM in 1992,
and has worked in the areas of clustering, access control,
auditing, security events, and compliance. She is the lead
architect for the audit service discussed in this paper.

Richard J. Cohen

IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (rcohen@us.ibm.com). Mr. Cohen is a
compliance and security architect for Tivoli Security products
at the IBM Austin Development Laboratory. He received a
B.A. degree in computer science and a B.S. degree in computer
science from the University of Texas at Austin in 1980 and
1987, respectively. Mr. Cohen joined IBM at the Austin
Development Laboratory and started his career working in
various areas related to compilers and operating systems.
From 1991 to 1992, he was on assignment at the Information
Technology Center at Carnegie Mellon University. For the last
14 years, Mr. Cohen has worked on distributed systems and
security products, focusing in the last three years on the
compliance area. As part of his distributed systems work, he
was the primary author of the DCE Event Management System
(EMS) specification.

318 RAMANATHAN ET AL.

Ernst Plassmann

IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (eplassma@us.ibm.com). Mr. Plassmann is
a software engineer at the IBM Austin Development
Laboratory. He is the development technical lead for the audit
service discussed in this paper. Prior to this, Mr. Plassmann
worked as a developer on the IBM Tivoli Access Manager for
e-Business product. He received a B.S. degree in computer
science from the University of Houston in 1987.

Karthikeyan Ramamoorthy

IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (kramamoo@us.ibm.com). Mr.
Ramamoorthy has been a software engineer with IBM since
1998 and a member of the audit-service development team
since 2004. He received an M.S degree in computer science
from the University of Michigan in 1993. Prior to joining IBM,
Mr. Ramamoorthy worked as a software engineer for the
University of Michigan Digital Library Project (JSTOR). He
also worked at FAME Information Services on a proprietary
database product to store time-series data and delivery
mechanisms for daily stock market data. l

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

