
Role of an auditing and reporting
service in compliance
management

&

J. Ramanathan

R. J. Cohen

E. Plassmann

K. Ramamoorthy

Regulatory compliance has become a major focus in today’s business environment as

companies adapt to comply with regulations such as Sarbanes-Oxley, Basel II, and

HIPAA (the Health Insurance Portability and Accountability Act). Runtime audit data

that records information such as operational logs represents a key element needed for

compliance management. An audit service that manages the life cycle of audit data is

thus a critical component of any compliance management system. This service should

support mechanisms to submit, centrally collect, persistently store, and report on audit

data, as well as enable the archiving and restoration of audit data. This paper describes

an audit service technology that is included in some IBM products to enhance their

auditing capabilities and explains how this audit service can be used to support a

company’s compliance strategy. Using scenarios as examples, we show how reports

provided by one of the products that uses this audit service can be instrumental in

demonstrating compliance.

INTRODUCTION

Auditing is the process of maintaining detailed,

secure records of critical activities in a business

environment. Such records are referred to as audit

logs. The critical activities recorded could be related

to security, content management, business transac-

tions, and so on. Security-related critical activities

that could be audited include login failures, unau-

thorized access to protected resources, modification

of security policy, noncompliance with a specified

security policy, and the status of security servers.

Business-related critical activities that could be

audited include bank transactions, insurance claims

processing, and order processing. Critical activities

related to content management that could be audited

include updates and deletions of critical documents.

Usage of audit logs

Customers must comply with many regulations,

including the Sarbanes-Oxley (SOX) Act,
1

the Health

Insurance Portability and Accountability Act

(HIPAA),
2

the Basel II International Banking Accord

(BASEL II),
3

and the Payment Card Industry Data

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 305

Security Standard (PCI-DSS).
4

To support their

compliance initiatives from an information technol-

ogy (IT) perspective, customers define and imple-

ment IT controls in their enterprise to enable them

to test, measure, and understand how well they are

complying with these regulations. Audit logs pro-

vide runtime data which demonstrates that such

controls are being implemented. Thus, IT organiza-

tions can use information contained in audit logs to

help demonstrate their compliance with certain

aspects of these regulations.

In order to demonstrate a history of implementing IT

controls, such audit logs must be archived (stored),

sometimes for years, and procedures need to be put

into place to allow the archived audit logs to be

processed. As a result, the management of audit logs

involves both technology and human resources. The

National Institute of Standards and Technology’s

Guide to Computer Security Log Management out-

lines guidelines for managing audit logs.
5

Audit logs are also useful in checking the enforce-

ment and effectiveness of IT controls for account-

ability, vulnerability, and risk analysis. For example,

an IT organization can use the audit logs of security-

related critical activities to aid in the forensic

investigation of security incidents. When a security

incident occurs, the audit logs enable analysis of the

history of activities that occurred before the incident

so that appropriate corrective actions can be taken.

This paper focuses exclusively on the use of audit

logs for compliance management and does not

discuss these other uses of audit logs.

Scenarios for use of audit logs in compliance

Best practices
6

recommend that companies set up IT

governance structures to enforce compliance in their

IT infrastructure. This governance structure in-

volves setting up IT control structures to meet IT

compliance objectives. Once controls are in place,

procedures must be defined to test the controls and

ensure that they are effective. Testing controls

usually involves analyzing compliance data to

determine that the controls are working properly.

Compliance data can consist of configuration and

policy data to show that the compliance policies

have been implemented and history audit data to

show that compliance policies are being enforced.

One key aspect of all compliance initiatives is

gathering the compliance data needed to test IT

controls. Gathering the required data has proven to

be a problem area for customers because compli-

ance data may be scattered throughout a company’s

IT infrastructure. Manual collection of the data can

be a daunting task, in particular during an audit. IT

employees frequently are required to discontinue all

other work in order to satisfy an auditor’s request

for control test data.

Centralized collection of audit logs can help

automate the collection of compliance history data,

thus reducing the cost of collecting compliance data

in support of control testing. In the following, we

present several scenarios to illustrate how audit data

can be used to support a company’s compliance

initiative.

The following compliance questions can be used as

samples of the questions that need to be answered

during an audit: (1) Are critical business applica-

tions being used by authorized users only? (2) Are

user passwords being changed every 90 days? (3)

Are user accounts removed in a timely manner after

an employee leaves the company?

To answer the first of these questions, a control must

be documented which defines the compliance

objective that only authorized users should use

critical business applications. In order to set up the

tests for this control objective, critical applications

must be identified, and a list of authorized users

must then be created for each critical application.

After the control test has been defined, the compli-

ance tester can then look at the history audit data and

ensure that all accesses to the critical applications

were made by users on the specified list.

Many companies have policies regarding how

frequently passwords must be changed. A corre-

sponding control objective would state that proce-

dures must exist to enforce frequent password

changes. In order to set up the test for this control

objective, the desired password-change frequency

must be determined. This should be specified in the

company security policies. To test for compliance

with this objective, an audit report must be run and

the resulting data analyzed to see if there are any

passwords that are not being changed frequently

enough.

Finally, to test the control objectives related to user

management procedures, the control tester must

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007306

first obtain a list of all the employees that have left

the company during the test period. A report can

then be run against the audit data to show all userid

deletion events. If a userid deletion event cannot be

matched up with each employee that has left the

company, the test results indicate a compliance

violation.

There are various responsible parties in an organi-

zation who are involved in the preceding process.

The chief compliance officer specifies an organiza-

tion’s high-level compliance policies. The security

policy officer specifies security-related policies,

including those that involve the generation of

runtime audit data which implement the high-level

compliance policies. The security administrator

ensures that the systems are appropriately config-

ured to collect the runtime audit data. The auditor

uses the reports on runtime audit data to test

whether the control objectives are met.

The preceding scenarios are related to IT controls

that apply to the security aspect of the IT infra-

structure. However, this is just one of the areas that

need to be considered from a compliance perspec-

tive. Other areas that need to be considered are

change management, business process manage-

ment, document management, and so forth.

Requirements for managing audit logs

Because file-based audit logs cannot be easily

processed for producing operational and trend

reports, audit logs are typically made available in

relational databases. The databases can be easily

queried to generate operational and trend reports.

Reporting facilities such as IBM DB2* Alphablox
7

or

other popular business intelligence tools can then be

used to analyze the data. Trend audit reports

provide summarized audit data that enable a user to

determine whether there are any long-term trends in

critical activities. Operational audit reports enable

detailed reviews of audit data to help analyze

specific critical activities.

Based on the usage scenarios of audit data discussed

previously, the management of audit logs has the

following (not exhaustive) list of critical require-

ments:

1. Provide a process for managing audit logs that is

tamper-resistant; that is, audit logs must be kept

safe when generated, during movement, and

when stored.

2. Collect and store large volumes of data for long

periods of time.

3. Ensure that audit records are not lost or

duplicated.

4. Stage the data periodically (daily or weekly) into

report tables for data analysis.

5. Produce trend and operational reports on recent

audit data.

6. Allow various reporting tools to be used to

produce ‘‘out of the box’’ (ready to use without

modification) and custom reports that show

audit data.

7. Archive the audit data for long periods of time

(months or years) with archiving scheduled on a

regular basis.

8. Enable the review of audit logs for critical

activities that occurred in the past (e.g., what a

particular user did a month ago), which requires

the ability to process archived audit logs.

9. Produce trend and operational reports on

archived audit data.

10. Provide auditing functionality for changes to the

configuration and policies for collecting audit

data and for pruning audit logs.

An audit service technology

IBM products for distributed platforms currently

generate audit logs that contain different formats for

audit data of a specific type (e.g., authentication

data, change management data, etc.). In addition,

each product has its own way of managing the life

cycle of audit data. An audit service provides

mechanisms to manage the life cycle of audit logs. It

provides mechanisms to submit, centrally collect,

and persistently store, archive, restore, and report

on current and restored audit data, and it satisfies

the previously mentioned requirements for manag-

ing audit logs. A common audit service technology

reduces the development effort of building an audit

service for each specific domain and also enables

customers to manage the life cycle of audit data

consistently for all domains.

The audit service discussed in this paper supports

auditing of data that is in a base format for which

extensions can be defined for various domains.

Currently, this audit service supports audit logs that

are in the Common Base Event (CBE) Version 1.0.1
8

format. It also implements the extensions to the

Common Base Event format for security events that

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 307

have been defined by IBM. It stores the audit logs in

a relational database that is tailored for storing large

volumes of data and also provides utilities that help

with the life cycle (reporting, archiving and resto-

ration, etc.) of audit logs.

The audit service discussed in this paper is a

technology that can be used by a given IBM product

to enhance its auditing capabilities. This audit

service is currently used by the following products:

IBM Tivoli* Access Manager for e-business Version

6.0,
9

the IBM Tivoli Access Manager for Operating

Systems Version 6.0,
10

and the IBM Tivoli Federated

Identity Manager Version 6.1.
11

This audit service is

not available on its own as an IBM product offering.

For multiproduct log aggregation capability for

security events, IBM offers the Tivoli Security

Operations Manager product.
12

In the remainder of this paper, we first discuss the

programming model, architecture, and various

components of the audit service. We then discuss

how this audit service is currently used by some IBM

products to enhance their auditing capabilities. We

conclude by providing sample scenarios of how a

specific IBM product (Tivoli Access Manager for

e-business Version 6.0) manages its audit data by

using this audit service and reports on its audit data

in support of compliance management.

This paper uses the terms audit data, audit log, and

event to denote an audit record. Also, the term

exploiter is used to refer to an IBM product that uses

this audit service to enhance its auditing capabili-

ties.

AUDIT SERVICE PROGRAMMING MODEL

The audit service provides interfaces for the creation

and submission of audit records. These interfaces

are available only for IBM products and are not

available outside of IBM. The interfaces separate the

creation of audit data and the submission of audit

data into two separate steps.

Creation of audit data for C-based exploiters is done

by using the C client. Creation of audit data for

Java**-based exploiters is done using ‘‘event facto-

ries.’’ An event factory is a set of interfaces in a

particular language that allows creation of events in

a given format. The audit service technology

provides a security event factory that allows

creation of security events which conform to the

security event format that has been defined by IBM.

In addition, exploiting applications can develop

event factories for other domains.

Audit data can be submitted by using any of the

following software. (In the text below, an emitter is

a software entity that emits an object, in this case an

event. A Java emitter is meant for use by Java-based

exploiters. A provider implements the interface

defined by the emitter.)

1. Java-emitter lightweight provider—The light-

weight provider allows submission of audit

records that are in the CBE format to a local CBE

text-file log. This provider can be used by Java-

based exploiters for their proof-of-concept solu-

tions. No tools are provided to process audit data

that is stored in this text-file log.

2. Java-emitter enterprise provider—The enterprise

provider allows submission of audit records that

are in the CBE format to a relational database by

using a Common Audit Web Service. The

Common Audit Web Service in turn submits

these CBEs to the Common Event Infrastructure

(CEI) server. Whether a specific event is audited

is determined by the event group configuration,

and ‘‘auditable’’ events are sent to the audit plug-

in to which the audit database is registered as an

audit provider for the CEI server. This enterprise

provider can be used by Java-based exploiters to

add enterprise audit capability for their product

offerings.

3. C client—This client submits CBEs to a relational

database by using the Common Audit Web

Service. This interface is used by C-based

exploiters.

Exploiters can embed the audit-service client files

into their product so that these files are installed as

part of their product’s installation. The Common

Audit Web Service is not externalized directly to

IBM products or customers.

AUDIT SERVICE ARCHITECTURE

As shown in Figure 1, the server side of the audit

service consists of the CEI server, the Common

Audit Web Service, the relational database to store

audit logs (referred to as the audit database), the

audit plug-in for the CEI server, the staging utility,

and the XML store utility. The Common Audit Web

Service receives CBEs from the C client and the Java-

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007308

emitter enterprise provider and submits them to the

CEI server. The server routes the CBEs that are

configured to be ‘‘auditable’’ (using event groups) to

the audit plug-in, which then stores them in the

audit database. The staging utility stages the audit

data from the main tables to report tables. These

report tables could be the out-of-the-box report

tables needed by the exploiting product’s audit

reports or custom report tables created by customers

for their custom audit reports. The XML store utility

helps with the archiving and restoration of the audit

data from and to the audit database by using third-

party archival tools.

Audit service components

The components of the audit service are the

following: the C client, the security event factory,

the Java emitter, the Common Audit Web Service,

the audit plug-in, the audit database, the staging

utility, and the XML store utility.

The C-client component provides the interfaces for

use by C-based exploiting products for both creation

and submission of security events. This component

allows creation of security events that conform to

the IBM-defined security extensions for CBE. It

submits the CBEs to the Common Audit Web

Figure 1
Audit service architecture

Chief
Compliance
Officer Auditor

Security
Policy
Officer

Security
Administrator

Auditable Events

IBM Products/Components

Common Event Infrastructure Server

IBM WebSphere

XML Store Utility

Common Audit Web Service

C Client, Security Event Factory, Java Emitter

Audit Plug-in

Staging Utility

Reports provided by IBM products and customers

Archive
Audit Database

Custom Report
Tables

Out-of-the-Box
Report Tables

IBM DB2

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 309

Service. The C client and the Common Audit Web

Service communicate by means of the SOAP (Simple

Object Access Protocol) protocol. This component

also provides a disk cache that caches CBEs locally

when the Common Audit Web Service is unavailable

or nonresponsive and submits them at a later time.

In order to enable the audit service server to detect

duplicate CBEs sent by this component (e.g., due to a

timeout), this component generates a unique iden-

tifier for each CBE. The interfaces provided by this

component are not made available outside of IBM.

The security-event-factory component enables the

creation of security events in the IBM standard format

for such events. This component allows Java ex-

ploiters to generate security events in the CBE format.

The Java-emitter component supports two providers

that allow submission of CBEs. One of them is the

lightweight provider that stores CBEs in a local text

file. No form of processing of CBEs stored in this text

file is provided. This implementation is meant to be

used by exploiting products to meet their require-

ment for an out-of-the-box file-based audit log and

for their proof-of-concept solutions. The other

provider is the enterprise provider that submits

CBEs to the Common Audit Web Service, which in

turn stores them in the relational database to enable

reporting and archiving. This provider includes a

local disk cache for storage of CBEs when the

Common Audit Web Service is nonresponsive or

unavailable. In order to enable the audit service

server to detect duplicate CBEs sent by this

component, for instance, due to a timeout, this

component generates a unique identifier for each

CBE. These functions are supplied by the Java

emitter for Java applications and by the C client for

C-based applications.

The security event factory and the Java emitter are

together referred to as the embeddable Java client.

This client can be embedded by Java-based ex-

ploiting products as part of their product’s installa-

tion files. Configuration for these components is

provided through objects of the Java Properties

class. Exploiters need to use product-specific con-

figuration mechanisms to obtain configuration

information and pass it to these components.

The Common Audit Web Service component ser-

vices one or more CBE events from the C client and

the Java-emitter enterprise provider and submits

them to the CEI server. It is secured by role-based

access control so that only authorized entities can

submit audit events to it. In addition, the commu-

nication between the C and Java clients and this

Web service can be secured with secure socket layer

(SSL) mechanisms.

The audit plug-in component allows the audit

database to be registered as an audit provider for the

CEI server. By doing so, events that are denoted to

be ‘‘auditable’’ by means of event group configura-

tion are routed by the CEI server to this audit plug-

in, which stores them in the audit database.

Audit database

The schema of the audit database must allow it to

store a large number of events in a space-efficient

format. It also needs to allow customers to generate

operational reports. This schema uses several sets of

tables to accomplish these objectives: active, inac-

tive, restore, and report tables and metatables.

Active tables store events as the audit service server

receives them. Inactive tables contain data that is to

be archived and purged. Once the inactive tables are

purged (emptied), they are eligible to become active.

The customer decides, based on the volume of

events and available disk space, the frequency with

which tables can become active. Restore tables

restore previously archived data. Typically, users

would restore data from an earlier archive if they

wanted to run a report against the archived data.

Report tables store a subset of attributes from an

event for operational reporting purposes. The

customer decides the subset of attributes to store in

the report tables. Metatables store meta-information,

such as the set of XML event tables in the ‘‘active

bucket’’ (i.e., the set in which incoming events are

stored), the number of tables, the version of the CEI

code that the schema supports, and so forth.

The schema for the audit database also uses a

sequence object to ensure that an event is unique

across active, inactive, and restore tables. When the

schema was designed, the following functional and

performance requirements were taken into consid-

eration:

1. Flexibility—The schema allows for various ver-

sions of events to be stored in the same table.

This is accomplished by storing each event

completely and normalizing only a minimal

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007310

number of attributes. The schema must also

handle variable-sized events. Events (i.e., audit

reports) that are less than 7793 characters are

stored in a main table. Events that do not fit in the

main table are stored in an overflow table. When

compression for storage of audit events in the

audit database is enabled, longer events will

normally fit in the main table.

2. Concise storage—The large number of events

necessitates that the schema provide a concise

storage mechanism. The schema achieves this by

allowing the events to be stored in a compressed

format and allowing the users to select and store

only a subset of attributes in the report tables for

operational reporting purposes.

3. Externalizing the schema and ease of migration—

The schema has to be made available to end users

for archival purposes. One of the problems

typically associated with externalizing a schema

is the requirement to migrate data when the

schema changes. Because all the attributes of an

event are stored in a single database column, the

data migration due to any change in the format of

events is eliminated.

4. High insertion performance—Because the ex-

ploiting products’ performance could be impact-

ed, the schema allows for high performance

during event insertion (for typical events) be-

cause of reduced disk I/O due to compressing the

event.

5. Fast purging of archived data—The schema

enables the purging of old audit data without

causing the DB2 transactional log to become full.

It accomplishes this by keeping active and

inactive tables and by using the DB2 load utility

to purge the data instead of using SQL (Structured

Query Language) commands for this purpose.

6. Incremental staging of data to report tables—The

volume of data requires that only new events,

that is, those recorded since the last staging

operation, are staged to the report tables. In order

to support this requirement, the events need to be

identified by a key that is unique and monoton-

ically increasing in nature. The schema accom-

plishes this by using a record identifier generated

by a sequence object.

Staging utility
As shown in Figure 2, the staging utility supports a

procedure for defining the subset of data for each

audit event that is recorded in the report tables.

Custom reports can then be created to analyze the

custom subset of data for each event. These custom

definitions need to be based on the compliance

needs of the organization and are designed to

demonstrate compliance with the IT controls that

Figure 2
Staging utility and custom audit reports

Event Details
Java Stored Procedure

Staging Utility

Out-of-the-Box
Event Details Report

Custom Event
Details Report

Custom Audit
Reports

Custom
Staging Utility
Configuration

Content of audit reports Design of report tables Staging Utility Configuration

Out-of-the-Box
Audit Reports

Out-of-the-Box
Staging Utility
Configuration

Audit Database (with recent
audit data or data restored
from archives)

Custom Report
Tables

Out-of-the-Box
Report Tables

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 311

are being tracked in the organization and require the

use of audit data. Any reporting tool that queries

data from a relational database can be used to build

the custom reports that process this data. As custom

reports are developed, the event types and specific

elements of each event type that are of interest need

to be identified and specified for configuring the

staging utility. The customer needs to create and

manage the additional report tables to hold data for

custom reports. The staging utility can then be

executed to stage custom data into these newly

defined report tables.

Each event stored in the audit database has a unique

identifier associated with it. All details of a

particular event can be obtained by providing this

unique identifier to the Java stored procedure which

handles event details.

To support custom reports, a custom Data Definition

Language (DDL) file needs to be written and run to

create custom report tables in the audit database.

Specific guidelines need to be followed in creating

the custom report tables to allow joining of data

from these tables with data from the default report

tables and to allow the staging utility to prune data

in the custom report tables. The configuration of the

staging utility must be updated in order to stage the

additional attributes needed for the custom report

when the staging utility is run.

XML store utility

The XML store utility enables the archiving and

restoration of audit data contained in the main

tables of the audit database by using third-party

archival tools. Figure 3 shows an example scenario

of archiving and restoration.

The archive operation includes the following steps:

(1) execute the XML store utility with the ‘‘pre-

archive’’ option to get information about the names

of the inactive tables and the time stamps of the

events being archived; (2) archive the inactive tables

by using the third-party tool; and (3) execute the

XML store utility with the ‘‘post-archive’’ option to

purge events from the inactive tables that were just

archived.

Restore Tables

Which tables are active?

Audit Database

Inactive Tables

Archived audit data

Local File
c:\\Archive081205

Figure 3
Audit-database archive and restore example

Returns names of
inactive tables and
time stamp of audit
records

Purges audit data in
the inactive tables

Cleans restore tables

Restores archived audit data
to restore tables

Regular Operations

Archived audit data
that needs to be restored

Local File
c:\\Archive081205

Audit records sent to active tables
during regular operations

Archive (using third-party
archive/restore tool)

XML Store Utility
Post-Archive

XML Store Utility
CleanRestore

Restore (using third-party
archive/restore tool)

Active Tables

XML Store Utility
Pre-Archive

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007312

The restore operation includes the following steps:

(1) optionally, execute the XML store utility with the

‘‘clean-restore’’ option to purge existing events in

the restore tables, and (2) restore events to the

restore tables by using a third-party tool.

The period of time for which archives are main-

tained depends on the business policy of the

organization. The life cycle of audit data needs to

include proper disposal of the archives as specified

by this business policy.

Functionality
In this section, we discuss how the functionality

supplied by the audit service addresses most of the

requirements for managing audit logs that were

listed in the section ‘‘Requirements for managing

audit logs.’’

The requirement for a tamper-resistant process for

managing audit logs is met by the audit service in

the following manner. The audit service uses

authentication, access control, and secure commu-

nication to ensure that only authorized clients can

submit audit records to the audit-service server,

which stores such records in the audit database.

Access to the audit database must be restricted by

using database access control mechanisms. Access

control must be enforced also for the original

sources of audit data (e.g., Tivoli Access Manager

for Operating System binary audit log files).

The requirement for collecting and storing large

volumes of data is met by the design of the schema

of the audit database as discussed earlier in this

paper. The requirement for preventing lost or

duplicate audit records is met by the disk cache

mechanism and by generation of a unique ID per

audit event, implemented in both the C client and

the Java emitter enterprise provider, and is also met

by using DB2 mechanisms to detect duplicate

records in the audit database and discarding them

without storing them again.

The requirements for periodic staging of data into

report tables, producing trend and operational

reports and enabling various reporting tools to

produce out-of-the-box and custom reports are met

by the ability of the staging utility to stage recent

audit data for custom operational reports.

The requirements for archiving and processing of

archival logs are met by the schema design of the

audit database and also by providing the XML store

utility that assists in the archival and restoration

process. Producing trend and operational reports on

archived data is enabled for operational reports by

the staging utility’s ability to stage archived audit

data into custom report tables. Note that the

archived audit data is restored from archives to the

restore tables of the audit database, and the staging

utility then stages the data from those tables to the

report tables.

Staging for trend reports is not supported for either

current or archived audit data.

Guidelines for using the audit service

To use the audit service, a product must define the

out-of-the-box reports for audit data to be generated

and the report tables needed to support the out-of-

the-box reports. The audit data needed for the

defined reports must be created in the CBE format. If

security events are being generated, the security

event factory must be used.

The audit data is then submitted by using the C or

Java interfaces. It is staged in the report tables based

on a defined configuration by the staging utility.

Audit reports are then developed by using a

reporting tool. The files for the clients of the audit

service are embedded in the product’s installation

files, and the end-user installation package is

shipped to the server side of the audit service.

USES OF THE AUDIT SERVICE

IBM Tivoli Access Manager for e-business Version

6.0 uses the C and Java interfaces to audit the

following security events using the audit service

described in this paper: authentication, configura-

tion, authorization, runtime operations for security

servers, resource access events, user self-care

password-change operations, and management op-

erations for resources, security policies, users, and

groups.

IBM Tivoli Access Manager for Operating Systems

Version 6.0 uses the C interfaces to audit the same

set of security events with the addition of credential

modification operations, and is limited to manage-

ment operations for resources, security policies, and

users.

IBM Tivoli Federated Identity Manager Version 6.1

users the Embeddable Java Client to audit security

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 313

events for authentication, federation, trust, signing,

encryption and management operations for security

policies using this audit service.

In the following section, we provide examples to

illustrate how reports generated for the security

events of one of these products can be used for

compliance management.

Compliance management

IBM Tivoli Access Manager for e-business Version

6.0 provides the following reports for audit data

logged by its components using the audit service:

� General Audit Event Details Report—Displays all

information about a single auditable event denot-

ed by the event reference ID parameter. Typically,

a user runs this report after running other reports

and deciding that an event ‘‘drill down’’ (i.e.,

detailed analysis) is desired.
� General Audit Event History—Displays the total

number of auditable events for each event type

during a specified time period. It also shows all

events of a specified event type and product name,

sorted by a selectable sort criterion and time

stamp. This report can be used for incident

investigation and assuring compliance.
� Audit Event History by User—Displays the total

number of events for a specified user during a

specified time period. It also presents a list of all

events of the specified event type and product

name, sorted by time stamp and grouped by

session ID during the time period. The purpose of

this report is to investigate activity of a particular

user during a specified time period.
� Failed Authentication History—Presents a list of all

failed authentication events over a time period,

sorted by selectable sort criteria such as time

stamps. This report can be used by an adminis-

trator to investigate security incidents.
� Failed Authorization History—Lists all of the failed

authorization events during a specified time

period.
� Locked Account History—Displays all of the

accounts that have been locked during a specified

time period.
� User Password Change History—Displays events

related to password changes performed by the

users themselves during a specified time period.
� Administrator and Self-Care Password-Change

History—Displays events related to password

changes performed by the user and the adminis-

trator during a specified time period.
� Server Availability Report—Shows the availability

status of security servers on a specific machine.

The user can display data for all protected

machines in the report or limit the report by

entering a single host name as the subject of the

report.
� Certificate Expiration Report—Allows detection of

soon-to-expire certificates and highlights the need

to replace the certificate to ensure 24/7 operabil-

ity. It shows the number of clients that have

server/SSL certificates which expire in a certain

number of days. It also shows a table of client host

names, the days until their certificates expire, and

the server they are associated with.
� Most-Active-Accessors Report—Shows a list of

users who are the most active in the system. This

can lead administrators to investigate improper

use of resources.
� General Authorization Event History—Displays

the total number of authorization events, failed

authorization events, successful authorization

events, and unauthenticated events during the

specified time period. Additionally, it shows a list

of all authorization events, sorted by a selectable

sort criterion (time stamp, resource, or user name)

during the time period. The purpose of this report

is to analyze the authorization event history for

incident investigation and assuring compliance.
� Authorization Event History by Action—Displays a

list of all authorization events that contain the

specified action, sorted by resource and then

time stamp during the time period specified.
� General Administration Event History—Shows the

history of general management actions done over

a specified time interval. The administrator can

use the report to track the actions of a user for

administrative events.
� User Administration Event History—Can be used

to investigate security incidents and to track

changes made by administrators which affect

users.
� Group Administration Event History—Can be used

to investigate security incidents and to track

changes to groups by administrators.
� Security Server Audit Event History—Presents a list

of auditable events related to security servers that

occurred during the specified time period.
� Resource-Access-by-Accessor Report—Shows the

top resources in terms of access or authorization

events during a time period for each machine

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007314

name identified. The report identifies who is

repeatedly accessing resources and what resources

are being accessed.
� Resource-Access-by-Resource Report—Shows the

top accessors in terms of access authorization

events during a time period for each machine

name identified. The report identifies which

resources are most heavily accessed and which

users are accessing those resources.

Table 1 shows how some of the reports described in

the preceding subsections can be used to support

control objective testing in the specified compliance

categories.

Sample scenarios

In this subsection, we present three sample scenar-

ios which illustrate the use of reports to support

various compliance categories.

Figure 4 shows how the Audit-Event-History-by-

User report can be used to look into violations of

policies related to segregation of duties. ‘‘Segrega-

tion of duties’’ refers to policies wherein a user

assigned to perform a particular task is not allowed

to perform another task. For example, a user who

accesses a Web application cannot be the one

deciding who can access a given Web application. In

Figure 5, the Resource-Access-by-Resource report

monitors accesses to a critical resource, such as a

critical application. In Figure 6, the Resource-

Access-by-Resource report is used to review

whether only authorized entities have access to a

critical file.

CONCLUSION

In this paper, we have discussed the key role an

audit service plays in compliance management. We

illustrated this role by showing how an audit service

Table 1 Use of reports in compliance testing

Compliance Category IBM Tivoli Access Manager for e-business Report

Authenticating all users General Audit Event History
Failed Authentication History

Maintaining effective access and authentication User Administration Event History
Group Administration Event History
Server Availability Report
General Authorization Event History
Locked Account History
User Password Change History
Administrator and Self-Care Password-Change History

Defining user account management procedures User Password Change History
Administrator and Self-Care Password-Change History
User Administration Event History
Group Administration Event History
Security Server Audit Event History

Following appropriate segregation of duties General Administration Event History

Monitoring and logging security activities General Audit Event Details Report
General Audit Event History
Audit Event History by User
Failed Authentication History
Failed Authorization History
Locked Account History
User Password Change History
Administrator and Self-Care Password-Change History
Certificate Expiration Report
Most Active Accessors Report
Authorization Event History by Action
General Administration Event History
User Administration Event History
Group Administration Event History
Security Server Audit Event History
Resource-Access-by-Accessor Report
Resource-Access-by-Resource Report

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 315

Is a person accessing a resource
also specifying the access control
policy for the resource?

Figure 4
Segregation of duties

System Administrator

Initiate corrective
action if needed

Audit Database
Report
Tables

IBM Tivoli Access Manager
for e-business

IBM Tivoli Access Manager
for Operating Systems

Resource Access, Administration, Authorization Events Audit-Event-History-by-User Report

Figure 5
Monitoring critical resources

System Administrator

Who is accessing a specific resource?

Initiate corrective
action if needed

Audit Database
Report
Tables

Resource Access and Authorization Events Resource-Access-by-Resource Report

IBM Tivoli Access Manager
for e-business

IBM Tivoli Access Manager
for Operating Systems

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007316

can be used for compliance management by

discussing its architecture, how products can use it,

and how a particular product that uses this audit

service can generate reports from its audit logs that

can be used in support of compliance management.

This paper focused on only the compliance-man-

agement-related scenarios for usage of audit events.

Other solutions using audit events include those

related to risk analysis (e.g., IBM Identity and Risk

and Investigation Solution
13

), security information

and event management (e.g., IBM Tivoli Security

Operations Manager), and incident investigation.

These solutions represent potential areas for further

research.

ACKNOWLEDGMENTS
The authors would like to thank Anthony Nadalin,

Nataraj Nagaratnam, Robert High, Randy Forlenza,

Timothy Hahn, Jim Fletcher, and John Dinger for

providing architecture direction for the work

discussed in this paper. The authors would also like

to thank Arvind Krishna, Steve Wojtowecz, Brian

Turner, Jody Hasten, Ann Graham, Lisa Zinna, Lee

Hagy, Vincent Abbosh, Winton Campbell, Patricia

Griffin, Chris Lita, Phil Klickman, and Kellie

Lecompte for their contributions to the development

of the audit service discussed in this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries, or
both.

CITED REFERENCES
1. Public Law 107-204, Sarbanes Oxley Act of 2002, 107th

Congress of the United States of America (2002), http://
www.sec.gov/about/laws/soa2002.pdf.

2. H. R. 3103, Health Insurance Portability and Account-
ability Act of 1996, 104th Congress of the United States of
America (1996), http://frwebgate.access.gpo.gov/
cgi-bin/getdoc.cgi?dbname¼104_cong_bills&docid¼
f:h3103enr.txt.pdf.

3. International Convergence of Capital Measurement and
Capital Standards—A Revised Framework, Basel Com-
mittee on Banking Supervision (2004), http://www.
federalreserve.gov/boarddocs/press/bcreg/2004/
20040626/attachment.pdf.

4. Payment Card Industry (PCI) Data Security Standard,
Version 1.1, PCI Security Standards Council (2006),
https://www.pcisecuritystandards.org/pdfs/
pci_dss_v1-1.pdf.

Figure 6
Monitoring specific file access

System Administrator

Initiate corrective
action if needed

Audit Database
Report
Tables

Authorization Events

Application Access File Access

Resource-Access-by-Resource
Report for specific file

IBM Tivoli Access Manager
for e-business

IBM Tivoli Access Manager
for Operating Systems

Are only authorized people
accessing a specific file?

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 RAMANATHAN ET AL. 317

5. K. Kent and M. Souppaya, Guide to Computer Security Log
Management, National Institute of Standards and Tech-
nology, Special Publication 800-92 (2006), http://csrc.
nist.gov/publications/nistpubs/800-92/SP800-92.pdf.

6. CobIT—Control Objectives for Information and Related
Technology, IT Governance Institute http://www.
itgovernance.co.uk/page.cobit.

7. DB2 Alphablox, IBM Corporation, https://www-306.ibm.
com/software/data/db2/alphablox/.

8. D. Ogle, et al., Canonical Situation Data Format: The
Common Base Event V1.0.1, http://www.eclipse.org/
tptp/platform/documents/resources/cbe101spec/
CommonBaseEvent_SituationData_V1.0.1.pdf.

9. Tivoli Access Manager for e-business, Tivoli Information
Center, IBM Corporation, http://publib.boulder.ibm.
com/infocenter/tivihelp/v2r1/index.jsp?topic¼/com.
ibm.itame.doc/welcome.htm.

10. Tivoli Access Manager for Operating Systems, Tivoli
Information Center, IBM Corporation, http://publib.
boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.
ibm.itamos.doc/welcome.htm.

11. Tivoli Federated Identity Manager, Tivoli Information
Center, IBM Corporation, http://publib.boulder.ibm.
com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.
doc/welcome.htm.

12. Tivoli Netcool Security Operations Manager Version 3.1,
Tivoli Information Center, IBM Corporation, http://
publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.
jsp?toc¼/com.ibm.netcool_som.doc/toc.xml.

13. IBM Identity Risk and Investigation Solution (2006),
http://www-935.ibm.com/services/us/bcs/pdf/
g510-6527-ibm-identity-risk.pdf.

Accepted for publication November 21, 2006.

Jayashree Ramanathan
IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (jramanat@us.ibm.com). Dr. Ramanathan
is a security architect in the IBM Austin Development
Laboratory. She received an M. Tech. degree in computer
science from the Indian Institute of Technology in Mumbai,
India in 1985 and a Ph.D. degree in computer science from
Michigan State University in 1992. She joined IBM in 1992,
and has worked in the areas of clustering, access control,
auditing, security events, and compliance. She is the lead
architect for the audit service discussed in this paper.

Richard J. Cohen
IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (rcohen@us.ibm.com). Mr. Cohen is a
compliance and security architect for Tivoli Security products
at the IBM Austin Development Laboratory. He received a
B.A. degree in computer science and a B.S. degree in computer
science from the University of Texas at Austin in 1980 and
1987, respectively. Mr. Cohen joined IBM at the Austin
Development Laboratory and started his career working in
various areas related to compilers and operating systems.
From 1991 to 1992, he was on assignment at the Information
Technology Center at Carnegie Mellon University. For the last
14 years, Mr. Cohen has worked on distributed systems and
security products, focusing in the last three years on the
compliance area. As part of his distributed systems work, he
was the primary author of the DCE Event Management System
(EMS) specification.

Ernst Plassmann
IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (eplassma@us.ibm.com). Mr. Plassmann is
a software engineer at the IBM Austin Development
Laboratory. He is the development technical lead for the audit
service discussed in this paper. Prior to this, Mr. Plassmann
worked as a developer on the IBM Tivoli Access Manager for
e-Business product. He received a B.S. degree in computer
science from the University of Houston in 1987.

Karthikeyan Ramamoorthy
IBM Software Division, Tivoli, 11501 Burnet Road, Austin,
Texas 78758-3400 (kramamoo@us.ibm.com). Mr.
Ramamoorthy has been a software engineer with IBM since
1998 and a member of the audit-service development team
since 2004. He received an M.S degree in computer science
from the University of Michigan in 1993. Prior to joining IBM,
Mr. Ramamoorthy worked as a software engineer for the
University of Michigan Digital Library Project (JSTOR). He
also worked at FAME Information Services on a proprietary
database product to store time-series data and delivery
mechanisms for daily stock market data. &

RAMANATHAN ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007318

Published online April 11, 2007.

