APL2 Programming:

System Services Reference

Version 2 Release 2

SH21-1054-01

APL2 Programming:

System Services Reference

Version 2 Release 2

SH21-1054-01

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’|

Second Edition (March 1994)

This edition replaces and makes obsolete the previous edition, SH21-1054-0. The technical changes for this edition are summarized
under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Version 2 Release 2 of APL2, 5688-228, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1994. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xii
Programming Interface Information Xii
Trademarks Xiii
About This Book Xiv
Who Should Use This Book Xiv
APL2 Publications Xiv
Conventions Used in This Library XV
Summaryof Changes XVii
Product Xvii
Part 1. Interactive and Batch Processing 1
Chapter 1. Introduction to APL2 System Services 3
APL2 System Structure 3
APL2 Support Features 5
Invocation Options 5
APL2 Session Manager 5
APL2 Libraries, Workspaces, and Data Files 6
Batch Processing of APL2 6
Shared Variables and Auxiliary Processors 6
Workspaces Distributed with APL2 6
External Names 7
Chapter 2. APL2 Invocation and Termination 8
Starting APL2—The APL2 Command under CMS and TSO 8
Continuing with the Invocation Options 8
Description of Invocation Options 11
Session Termination under CMS L. 32
Session Termination under TSO 33
Chapter 3. The APL2 Session Manager 36
Features of the APL2 Session Manager 37
The Session Manager Screen 37
Entering Multiple Lines of Input L. 41
The Session ManagerLog 41
Reusing Previous Lines in the SessionLog 41
Controlling the Size of and Saving the SessionlLog 42
APL2 Session Manager Commands 43
Session Manager Command Summary 43
COLUMN . . . 44
COPY . 46
DISPLAY . . . 50
FIND . . . e 53
HELP . 54
LINE . . . 54
LOG . . . e 55
PAGE e 56

© Copyright IBM Corp. 1984, 1994 iii

PEK 57

PROFILE 58
SUPPRESS 61
Session Manager Messageso 62
Chapter 4. APL2 Libraries: Workspaces and Data Files 63
APL2 Libraries, Workspaces, and Data Files under CMS 63
Updating LIBTAB APL2 to Create New APL2 Libraries 64
Accessing Libraries, Workspaces, and Data Files 65
Workspace Names 65
Data File Names 66
Transfer Filesunder CMS 66
Library Passwords 67
APL2 Libraries, Workspaces, and Data Files Under TSO 67
Virtual Storage Access Method (VSAM) Library System 68
Sequential Access Method (SAM) Library System 70
Transfer Filesunder TSO 73
Security and Integrity of APL2 Data 73
Chapter 5. Named Editors 74
Restrictions Using Named System Editors 74
Using Named System Editors under CMS 75
Using Named System Editors under TSO 75
Chapter 6. Batch Processing 78
Batch Jobs under CMS 78
CMS Batch Facility Input 78
CMS Batch Facility Output 79
Batch Jobs under TSO 80
TSO Batch Input 80
TSO Batch OQutput 80
Chapter 7. Controlling APL2 Invocation 82
Providing Input to APL2 82
Directing APL2's Output 83
Controlling APL2's Use of the Screen 84
DBCS and APLIN/APLPRINT Files 84
DBCS in Other IBM Products 84
DBCS in APL2 85
Reading DBCS from APLIN 85
Writing DBCS to APLPRINT 85
Chapter 8. Using APL2 across Systems 86
Cooperative Processing 86
Processor Network Identification 86
Processor Profile Structure 87
Using the Port Server 88
Sending a Share Offer 88
Receiving a Share Offer 88
Processor Profile Syntax 89
Processor Profile Examples 91
Transferring Workspaces 94
Workspace Transfer between APL2 Systems 94
Migration of TryAPL2 Workspaces 95

iV APL2 Programming: System Services Reference

Migration of VS APL Workspaces 95

Transferring AP 211 Files 95
Part 2. Auxiliary Processors 97
Chapter 9. Summary of Auxiliary Processors Distributed with APL2 . . . 102
Using Auxiliary Processors 103
Using the Share-Offer Utilities 104
Suggestions for Use of Auxiliary Processors 105

Chapter 10. AP 100—Host System Command Processor Under CMS . . . 107

Associated Workspace 107
Shared Variable Overview 107
Initial Value 108
Communication Procedure 108
Querying the Operating System 109
CMS Communication and IMPCP and IMPEX Settings 109
Cautions 110
Return Codes 110

Chapter 11. AP 100—Host System Command Processor Under TSO . . . 112

Associated Workspace 112
Shared Variable Overview 113
Communication Procedure 113

Querying the Operating System, 114
Return Codes 114
AP 100 Built-ln Commands 116
Chapter 12. AP 101—Alternate Input (Stack) Processor 127
Associated Workspaces 127
Shared Variable Overview 128

Data Formats 128

Initial Values 128
Communication Procedure 129

AP 101 Commands 129

Using AP 101 within a Defined Function 130
Using AP 101 with the TSO Fence Option 131
Cautions 132
Return Codes 133
Chapter 13. AP 102—Main Storage Access Processor 134
Shared Variable Overview 134

Commands 135
Communication Procedure 135

Formatting the Result from AP 102 136
Cautions 136
Return Codes 137
Chapter 14. AP 110—CMS File Processor 138
Associated Workspace 138
Shared Variable Overview 138

Initial Values 139
Communication Procedure 140

Contents V

Vi

Record Variable 141

Control Variable 141
Cautions 143
Return Codes 144
Chapter 15. AP 111—QSAM File Processor 146
Associated Workspaces 146
Shared Variable Overview 146

Initial Values 147
Communication Procedure 148
Cautions 150
Return Codes 151
Chapter 16. AP 119—Socket Interface Processor 154
Shared Variable Overview 154
The APL2 Socket Application Program Interface 154

IUCV Paths and Sockets 155
AP 119 and TCP/IP Commands Summary 155
Definition of TCP/IP Terms ... 156
Blocking 158
Using AP 119—The TCPIP Commands 158

ACCEPT 158

BIND 159

CLOSE . . . 159

CONNECT . . . 159

FCNTL 160

GETHOSTID 160

GETHOSTNAME 161

GETPEERNAME 161

GETSOCKNAME 162

GETSOCKOPT 162

LISTEN 163

READ e 163

RECV . . 164

RECVFROM 164

SELECT 165

SEND . . . 166

SENDTO 166

SETSOCKOPT 167

SHUTDOWN 167

SOCKET 168

WRITE 168
Using AP 119—The AP Commands 168

The APL2 Port Server 169

PSLIST—Send LIST Command to the Port Server 169

PSCLEAR—Send CLEAR Command to the Port Server 170

PSSHUTD—Send SHUTDOWN Command to the Port Server 170

UNREGSTR—Send an UNREGISTER Command to the Port Server 170

Listening Ports 170

GETLPORT—Get Listening Port 171

SETLPORT—Set Listening Port 171
Starting AP 119 171
Sample AP 119 Session Using the APL2 Socket APl 172
Returncodes 175

APL2 Programming: System Services Reference

Chapter 17. AP 120—APL2 Session Manager Command Processor 179

Shared Variable Overview 179
Data Formats 180
Communication Procedure 180
Return Codes 181
Chapter 18. AP 121—APL2 Data File Processor 182
Associated Workspaces 182
Shared Variable Overview 182
Access Control Considerations 183
APL2 Data Files 183
File Identification 183
APL2 Data File Organization 184
Communication Procedure 185
Commands 185
OpeningaFile 187
Checking forEnd of File, 190
APL2 Data File Maintenance 190
Library Query 190
Space Requirements for Storing APL2 Variables 191
Size Limitations 191
Cautions 191
Return Codes 192
Chapter 19. AP 123—VSAM File Processor 195
Associated Workspaces 195
Shared Variable Overview 195
VSAM Files—General Information 195
File ldentification 196
File Formats and Keys 196
Commands 197
Communication Procedure 198
Openinga VSAM File 199
Processinga VSAM File 200
Obtaining the Key of the Last I/O Operation 201
Positioning the Record Pointer 202
Specifying Character Conversion 203
Closinga VSAM File 203
Cautions 203
Return Codes 204
Chapter 20. AP 124—Text Display Auxiliary Processor 207
Shared Variable Overview 207
Understanding Screen Management 208
Communications Procedure 209
Return Codes 221
Chapter 21. AP 126—GDDM Processor 222
Associated Workspaces 222
Licensed Program Requirements 223
Shared Variable Overview 223
Data Formats 224
Communication Procedure 226
GDDM Calls 228

Contents Vi

AP 126 Commands 228
Obtaining Copies through AP 126 237
GDDM FSOPEN Request or DSOPEN, DSUSE Sequence 237
Alternating Paths 237
Implications of Multiple Data Paths 237
Page Sharing with the APL2 Session Manager 238
Handling Attentions 239
APL2/370 and GDDM EBCDIC Code Page Differences 240
GDDM Error Diagnosis 241
Return and Reason Codes, . 241
Chapter 22. AP 127—SQL Processor 244
Shared Variable Overview 245
Communication Procedure 245
AP 127 Commands 246
Return Codes 247
Chapter 23. AP 210—BDAM File Processor (TSOOnly) 248
Associated Workspace 248
Shared Variable Overview 248
BDAM File Requirements 249
Communication Procedure 249
Initial Values 249
Formatting a Direct File Using AP 210 250
BDAM File Processing Procedure 251
Cautions 253
Return Codes 253
Data Management Error Codes 254
Chapter 24. AP 211—The APL2 Object File Processor 255
Shared Variable Overview 255
Commands Accepted by AP 211 255
Return Codes 259
Chapter 25. APL2 Shared Variable Interpreter Interface 261
Shared Variable Interpreter Interface Protocols 261
Shared Variable Overview 262
Interpreter Input Data 262
Interpreter Output Data 263
Part 3. Associated Processors 265
Chapter 26. External Names and Associated Processors 268
Applications of External Names 268
Managing External Names from APL 270
Creating and Destroying an Association 270
Invoking an External Name 271
Querying an Associated Name L. 271
Avoiding Name Conflicts 272
Environmental Considerations 273
Chapter 27. Processor 10—Communication with REXX 274
Overview 274

viii

APL2 Programming: System Services Reference

Detailed Description 275

Using REXX Functions 275
Accessing REXX Variables and Constants 279
Built-in Functions 280
Unexpected Errors and Other Considerations 286
Failure when Associatinga Name 286
APL Errors 287
Non-APL Error Messages 287
REXX Return Code 20040 287
“Missing” Argument Strings 288
Truncated Data Returned under TSO/E 289
Other Considerations 289
Chapter 28. Processor 11—Calling Compiled Programs 291
ONA Syntax for Non-APL Programs 292
Processor 11 Overview 292
Introduction 293
Processor 11 Glossary 293
Usage Overview e 295
Routine Descriptions 295
Routine Lists 298
BUILDRL and Interface Management Routines 301
BUILDRL Interface Management and Self-Describing Routines 302
Environments 303
Interface Details 307
Routine Description Tags 307
Argument Patterns 310
Result Patterns 314
Explicit Results, Function Valence, and Operator Valence 317
NAMES Files 318
Processor 11 Non-APL Routine Description Tag Rules 319
System Usage Guidelines 321
Linkage Conventions 321
Unexpected Errors 322
Processor 11 Routine Search Order Guidelines 325
External Function Names o 325
CMS Search Order Guidelines 325
TSO Search Order Guidelines 326
Link-Editing External Routines 327
Link-Edit Tools 328
Link-Editing External Routineson CMS 329
Link-Editing External Routineson TSO 330
Installation of External Routines 331
Extended Addressing Considerations 331
Preloading and Sharing External Routines 331
Execution Time Libraries 332
Other Processor 11 Considerations 332
Using Self-Describing Routines from Non-APL Programs 332
Using Modules with Routine Lists from Non-APL Programs. 332
FORTRAN Considerations 332
Chapter 29. Processor 11—Access to Namespaces 334
Overview 334
Detailed Description 336

Contents iX

Creating Namespaces 338

Workspace Names L 340
Accessing Objects in Namespaces 340
NAMES Files 342
Using Namespaces 343
Namescopes 344
Combining Several Namespaces ina Member 347
CMS Namespace Routine List Example 348
TSO Namespace Routine List Example 349
Link-Editing Namespaces 349
Unexpected Errors and Other Considerations 349
Chapter 30. Processor 12—Files as Arrays 352
ONA Syntax for Processor 12 352
Supported Primitive Operations 354
APL Files as External Variables 355
Record-oriented Files as External Variables 356
Format Descriptors for External Variables 358
Processor 12 Errors e 359
Appendixes 363
Appendix A. Implementation Limits 365

Appendix B. Deviations from APL2 Programming: Language Reference . 366

System Functions and Variables 366
Full-Screen Editor—Editor2 366
System Commands 367
Appendix C. National Languages Supported by APL2 368
Appendix D. Auxiliary Processor Conversion Options 370
APL . e 370
3700r BCD 371
BIT . 371
BYTE . . 371
CDR . . 372
COD1T . . 372
DBCS[(NNN)] 372

ReadingDBCS Data 373

Writing DBCS Data 374
EBCD or 192 e 374
TN 374
VAR . e 374
Appendix E. Conversion of Atomic Vector Characters 376
Appendix F. APL2 Filesand DataSets 381
CMS Files 381
CMS Filedef (DD) Names 382
TSODD Names e 382
TSO Data Set Names 383

X APL2 Programming: System Services Reference

Appendix G. Sample Non-APL Programs to be Called through Processor

11 e 385
C/370 Examples 386
Updating Arguments with C/370 386
PL/l Examples 388
Updating Arguments with PL/L. 388
VS FORTRAN Examples 390
Updating Arguments with VS FORTRAN 390
Link-Editing Examples 392
Link-Editing on TSO usinga CLIST 392
Link-Editingon TSO usingJCL 392
Link-Editingon CMS 393
Generatinga MODULEon CMS 393
Appendix H. Summary of Terminal Information for APL2 Tasks 394
IBM 2741 Communication Terminal 394
IBM 3270 Information Display System 396
Appendix I. Printer Fonts Supplied with APL2 399
Bibliography 401
APL2 Publications 401
Other Books You Might Need 401
Index 404

Contents XI

| Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject material in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Corporation,

IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States
06904.

Programming Interface Information

Xii

This reference is intended to help programmers code APL2 applications in APL2.
This reference primarily documents General-use Programming Interface and Asso-
ciated Guidance Information provided by APL2.

General-use programming interfaces allow the customer to write programs that
obtain the services of APL2.

However, this reference also documents Product-sensitive Programming Interface
and Associated Guidance Information provided by APL2.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
APL2. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming inter-
faces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that pro-
grams written to such interfaces may need to be changed in order to run with new
product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

| Product-sensitive programming interface |

Product-sensitive Programming Interface and Associated Guidance Information...

| End of Product-sensitive programming interface

© Copyright IBM Corp. 1984, 1994

| Trademarks

I The following terms, denoted by an asterisk (*) in this publication, are trademarks of
I the IBM Corporation in the United States or other countries or both:

I ACF/NTAM MVS/XA

I AlX 0Ss/2

I AlX/6000 RACF

I APL2 RISC System/6000
| APL2/6000 Selectric

I BookMaster SQL/DS

I DATABASE 2 System/370
I DB2 System/390
I GDDM VM/ESA

I IBM VM/XA

I MVS/DPA VTAM

I MVS/ESA 3090

I The following terms, denoted by a double asterisk (**) in this publication, are trade-
I marks of other companies:

[Sun Sun Microsystems, Inc.
[Solaris Sun Microsystems, Inc.
I UNIX AT&T Corporation

Notices Xiii

About This Book

This manual describes the services and facilities that, together with the language
processor, make up the IBM* APL2* Licensed Program. These services support
efficient APL2 program development.

Most of the services described in this manual are available under both CMS and
TSO. Differences in availability and in use do exist, however, and they are noted
throughout the manual. The standard order of presenting the differences is first to
provide the information specific to CMS and then to discuss the comparable infor-
mation for TSO.

The APL2 Licensed Program has several options or parameters that can be speci-
fied when it is installed. These options enable the product to be tailored to the
services available in your computing system and allow consistency with the naming
conventions established at your site. Your site, therefore, may not have chosen all
the services described in this manual. Furthermore, your site may have overridden
some of the default installation options used in this book. Where your installation of
APL2 can differ from the default installation, the manual provides appropriate
remarks. To find out whether your APL2 environment differs from the default envi-
ronment described in this manual, check with your system administrator.

Who Should Use This Book

This manual assumes you are familiar with both APL2 and the host system (CMS
or TSO). It neither describes the language nor provides details on the operating
system. The manuals listed at the end of this preface are sources for this informa-
tion.

[Part 2. Auxiliary Processors.” assumes you are an experienced VS APL or APL2
application programmer or has had a VS APL or APL2 course that includes the use
of auxiliary processors.

[Part 3. Associated Processors.” assumes you are an| experienced application pro-

grammer in either APL2 or another language. Some of the material covered in this
part requires an understanding of the operating system level interfaces used by
other languages.

APL2 Publications

Xiv

Figure 1 lists the books in the APL2 library. This table shows the books and how
they can help you with specific tasks.

Figure 1 (Page 1 of 2). APL2 Publications

Publica-

tion
Information Book Number
General product APL2 Fact Sheet GH21-1090

© Copyright IBM Corp. 1984, 1994

Figure 1 (Page 2 of 2). APL2 Publications

Publica-
tion
Information Book Number
Warranty APL2/370 Application Environment
Licensed Program Specifications GH21-1063
APL2/370 Licensed Program Spec- GH21-1070
ifications
APL2 for AIX/6000 Licensed GC23-3058
Program Specifications
APL2 for Sun Solaris Licensed GC26-3359
Program Specifications
Introductory language material APL2 Programming: An Introduc- SH21-1073
tion to APL2
Common reference material APL2 Programming: Language Ref- SH21-1061
erence SX26-3999
APL2 Reference Summary
System interface APL2/370 Programming: System
Services Reference SH21-1056
APL2/370 Programming: Using the
Supplied Routines SH21-1054
APL2/370 Programming: Processor
Interface Reference SH21-1058
APL2 for OS/2: User's Guide SH21-1091
APL2 for Sun Solaris: User's Guide SH21-1092
APL2 for AIX/6000: User's Guide SC23-3051
APL2 GRAPHPAK: User's Guide SH21-1074
and Reference
APL2 Programming: Using Struc- SH21-1057
tured Query Language SH21-1069
APL2 Migration Guide
Mainframe system programming APL2/370 Installation and
Customization under CMS SH21-1062
APL2/370 Installation and
Customization under TSO SH21-1055
APL2/370 Messages and Codes SH21-1059
APL2/370 Diagnosis Guide LY27-9601
For the titles and order numbers of other related publications, see the
[‘Bibliography” on page 401
Conventions Used in This Library
This section discusses the conventions used in this library.
lower Lowercase italicized words in syntax represent values you must
provide.
UPPER In syntax blocks, uppercase words in an APL character set represent
keywords that you must enter exactly as shown.
L1 Usually, brackets are used to delimit optional portions of syntax;

however, where APL2 function editor commands or fragments of code
are shown, brackets are part of the syntax.

About This Book XV

Xvi

[AIB|C] Alist of options separated by | and enclosed in brackets indicates that
you can select one of the listed options. Here, for example, you could
specify either 4, B, C, or none of the options.

{A|B|C} Braces enclose a list of options (separated by |), one of which you
must select. Here, for example, you would specify either 4, B, or C.

An ellipsis indicates that the preceding syntactic item can be repeated.
{-.. An ellipsis following syntax that is enclosed in braces indicates that the
enclosed syntactic item can be repeated.

The term workstation refers to all platforms where APL2 is implemented except
those based on System/370* and System/390* architecture.

Throughout this book, the following product names apply:

Product Name Platform
APL2/2 os/2*

APL2 for Sun Solaris Sun** Solaris**
APL2/6000* AlIX/6000*
APL2/370 MVS or VM
APL2/PC DOS

APL2 Programming: System Services Reference

. Summary of Changes

Product

APL2/370, Version 2 Release 2
Date of Publication: March 1994

Form of Publication: Revision, SH21-1054-01

Document Changes

Added the NLT invocation option

Updated all version numbers

Changed default for the QUIET invocation option to OFF
Added session manager GDDM* information

Updated cooperative processing and migration information
Updated AP 101 commands

Updated AP 127 operations syntax

Added RENAME command for AP 211

Added new return codes for AP 211

Added implementation limits table

Added deviations appendix

Added listing of national language support

© Copyright IBM Corp. 1984, 1994

Xvii

XViii APL2 Programming: System Services Reference

Part 1. Interactive and Batch Processing

Chapter 1. Introduction to APL2 System Services 3
APL2 System Structure 3
APL2 Support Features 5
Invocation Options 5
APL2 Session Manager 5
APL2 Libraries, Workspaces, and Data Files 6
Batch Processing of APL2 6
Shared Variables and Auxiliary Processors 6
Workspaces Distributed with APL2 6
External Names 7
Chapter 2. APL2 Invocation and Termination 8
Starting APL2—The APL2 Command under CMS and TSO 8
Continuing with the Invocation Options 8
Description of Invocation Options 11
Session Termination under CMS 32
Session Interruption under CMS 33
Session Termination under TSO 33
Session Interruption under TSO L 34
Chapter 3. The APL2 Session Manager 36
Features of the APL2 Session Manager 37
The Session Manager Screen 37
Entering Multiple Lines of Input L 41
The Session ManagerLog 41
Reusing Previous Lines in the SessionLog 41
Scrolling through the SessionLog 42
Controlling the Size of and Saving the SessionlLog 42
APL2 Session Manager Commands 43
Session Manager Command Summary 43
COLUMN . . . e 44
COPY . e 46
DISPLAY . . . 50
FIND . . e 53
HELP . . 54
LINE . . . 54
LOG . . . e 55
PAGE e 56
PEK e 57
PROFILE 58
SUPPRESS 61
Session Manager Messages 62
Chapter 4. APL2 Libraries: Workspaces and Data Files 63
APL2 Libraries, Workspaces, and Data Files under CMS 63
Updating LIBTAB APL2 to Create New APL2 Libraries 64
Accessing Libraries, Workspaces, and Data Files 65
Workspace Names 65
Data File Names 66
Transfer Filesunder CMS 66

© Copyright IBM Corp. 1984, 1994 1

Library Passwords 67

APL2 Libraries, Workspaces, and Data Files Under TSO 67
Virtual Storage Access Method (VSAM) Library System 68
Creating APL2 VSAM Libraries 68
Accessing VSAM Libraries L 69
Sequential Access Method (SAM) Library System 70
Workspace Names 71
CONTINUE workspace 72
Transfer Filesunder TSO 73
Security and Integrity of APL2 Data 73
Chapter 5. Named Editors, ... 74
Restrictions Using Named System Editors 74
Using Named System Editors under CMS 75
Using Named System Editors under TSO 75
Chapter 6. Batch Processing 78
Batch Jobs under CMS 78
CMS Batch Facility Input 78
CMS Batch Facility Output 79
Other APL2 Considerations 79
Batch Jobs under TSO 80
TSO Batch Input 80
TSO Batch Output 80
Chapter 7. Controlling APL2 Invocation 82
Providing Input to APL2 82
Directing APL2's Output 83
Controlling APL2's Use of the Screen 84
DBCS and APLIN/APLPRINT Files 84
DBCS in Other IBM Products 84
DBCSin APL2 85
Reading DBCS from APLIN 85
Writing DBCS to APLPRINT 85
Chapter 8. Using APL2 across Systems 86
Cooperative Processing 86
Processor Network Identification 86
Processor Profile Structure 87
Using the Port Server 88
Sending a Share Offer 88
Receiving a Share Offer 88
Processor Profile Syntax 89
Identification Entries 89
Authorization Entries 90
Communicating with Version 2 Release 1 90
Processor Profile Examples 91
Transferring Workspaces 94
Workspace Transfer between APL2 Systems 94
Migration of TryAPL2 Workspaces 95
Migration of VS APL Workspaces 95
Transferring AP 211 Files 95

2 APL2 Programming: System Services Reference

Chapter 1. Introduction to APL2 System Services

APL2 consists of a language processor, or interpreter, and a collection of services
or features external to the language. These services are designed to increase the
efficiency of your work with APL2 and to expand the capabilities of the APL2 imple-
mentation of the language.

The APL2 language processor is described in APL2 Programming: Language Ref-
erence. The features described in this publication are:

¢ The options available when you invoke APL2
e The APL2 session manager

e APL2 libraries and workspaces

e Batch processing of APL2

e Editing APL2 functions and variables

e Shared variables and auxiliary processors

» Associated processors

APL2 System Structure

APL2 consists of several system components. Optionally, the services of several
other IBM licensed programs, such as the Graphical Data Display Manager
(GDDM) and SQL/Data System (SQL/DS*) or DATABASE 2* (DB2*), can be used
with APL2{ Figure 2 on page 4 illustrates the basic components of an APL2
system. The numbers in the figure correspond to the numbered explanations.

1. Your terminal. Connects you to the host operating system when you log on.

2. Your host operating system, either CMS or TSO. When you invoke APL2,
you are connected to the facilities of APL2.

3. APL2 session manager. An optional feature that requires the use of the
Graphical Data Display Manager (GDDM), the session manager provides full-
screen interface to APL2 during your APL2 session.

4. APL2 executor (different for CMS and TSO because it interfaces with the host
system). Receives your APL2 requests and passes them to the APL2 inter-
preter.

5. APL2 interpreter (same for CMS and TSO because it does only APL2 proc-
essing and is independent of the host system). Processes your requests and
interfaces with your active workspace.

6. Active workspace. This is where you define APL2 variables and their defined
functions and operators, process APL2 expressions, functions, and operators,
and communicate with other processors.

7. APL2 libraries. Stores saved workspaces, data files, and the optional session
manager log.

© Copyright IBM Corp. 1984, 1994 3

8. Shared Variable Processor (SVP). Manages the shared variable communi-
cation between your workspace and an auxiliary processor or other user.

9. Auxiliary processors. For access to facilities and data outside the active
workspace, auxiliary processors receive your requests from the SVP and com-
municate with the host system.

10. Associated processors. Allows processing of routines written in other pro-
gramming languages.

@ @ AUXILIARY

‘ PROCESSORS
: AP 100 AP 120
AP 101 AP 121
@ AP 102 AP 123
ACTIVE WORKSPACE AP 124
AP 111 AP 126
AP 119 AP 127
AP 211
@ AP 110 (CMS only)
APL2 INTERPRETER AP 210 (TSO only)
SHARED
@ fVARIABLE PROCESSOR
APL2 EXECUTOR (SVP)

@ ASSOCIATED PROCESSORS
APL2 5
SESSION MANAGER rocessor 10
Processor 11
Processor 12

OPERATING SYSTEM
(AND OTHER PRODUCTS)

@

APL2 LIBRARIES

Figure 2. APL2 System Structure

4 APL2 Programming: System Services Reference

APL2 Support Features

This section discusses some of the support features supplied with APL2.

Invocation Options

You invoke APL2 from the host system by command. The name of the command
is APL2. Since your installation may have designated another name for the
command, check with your system administrator for APL2 invocation requirements
on your computing system.

The command to invoke APL2 allows you to specify several options that affect your
APL2 session. These options include:

» The characteristics of the terminal you are using

e The size of your workspace and the size of storage areas used with auxiliary
processors

e Debugging options to be in effect

[Chapter 2, “APL2 Invocation and Termination,” describes each option and the pro-
cedures for invoking APL2, terminating your APL2 session, and resuming your
session after a break in service.

APL2 Session Manager

The APL2 session manager is an optional facility of APL2. Its use requires the IBM
Graphical Data Display Manager (GDDM) Version 2 Release 3 or later, and
GDDM-compatible display stations, such as the IBM 3270 family of terminals.

The session manager has many features that can increase your productivity during
an APL2 session, including:

* A log file containing a history of the input/output transactions between you and
APL2

e The ability to scroll backward and forward through the log file

* The facility to reuse and reprocess previous lines in the log without having to
reenter the lines

* An easy way to print, or copy to a file, lines from the session

e Definition and use of function keys to automatically enter predefined commands
or data

e The ability to enter and display DBCS characters on terminals that support
them, such as the IBM 5550 running Japanese PC/G Version 6 software

[Chapter 3, “The APL2 Session Manager,” describes the features, commands,|and
display screen of the APL2 session manager. Session manager commands can be
issued during immediate execution mode, or they can be issued from within a
defined function using AP 120, the Session Manager Command Processor. See
[Chapter 17, “AP_120—APL2 Session Manager Command Processor” on page 179,

Chapter 1. Introduction to APL2 System Services 9

APL2 Libraries, Workspaces, and Data Files

Saved APL2 workspaces, APL2 data files, and the APL2 session manager log are
all stored in special files called APL2 libraries. Structure and naming requirements
for these libraries and files differ, depending on whether your host system is CMS

or TSO.

Also, differences exist under TSO, depending on whether you have chosen a
Virtual Storage Access Method (VSAM) library system or a Sequential Access
Method (SAM) library system for storing workspaces{ Chapter 4, “APL2 Libraries|
[Workspaces and Data Files” on page 63, describes the characteristics and require-
ments for the various files used with APL2] Appendix F, “APL2 Files and Datal
[Sets” on page 381 lists the default files and data sets distributed with APL2.

Batch Processing of APL2

Although APL2 is designed to be used interactively at your terminal, there may be
occasions when APL2 processing is more efficiently processed in batch mode.
Such situations include the processing of a function that produces a printed report.
[Chapter 6, “Batch Processing” on page 78, describes how APL2 can be processed
in batch mode. It specifies the requirements for submitting the job and the require-
ments for the input stream containing the job| Chapter 7, “Controlling APL2)|
[Invocation” on page 82 describes APL invocation by display terminal-oriented
application development programs. With this type of invocation, APL runs without a
terminal, much the same as it does under TSO batch in the TSO environment or in
a disconnected virtual machine in the CMS environment.

Shared Variables and Auxiliary Processors

Shared variables are used to communicate with other APL2 users or to interface
with auxiliary processors. Auxiliary processors allow you to communicate with other
services of the host system such as those that:

e Process files

¢ Issue commands to the host system (CMS or TSO)

e Execute user programs not written in APL2

e Provide information about the environment in which APL2 is running

Control information and data are passed between your workspace and an auxiliary
processor by shared variables. Each auxiliary processor provided with APL2 is
described later in this manual.

Your installation may not provide all the processors documented in this manual.
Also, your installation may have additional processors, written by your systems
staff, that are not described in this reference. To find out what is available on your
computing system, see your system administrator.

Workspaces Distributed with APL2

APL2 is distributed with several APL2 workspaces that contain defined functions
you can use to facilitate your APL2 coding. These functions use APL2 primitive
functions, operators, and other objects to provide useful programming tools. Many
of the defined functions are cover functions for use with auxiliary processors.
Cover functions provide the necessary communication protocol so that you do not
have to code the detailed protocol yourself.

6 APL2 Programming: System Services Reference

The workspaces supplied with APL2 are contained in public libraries 1 and 2. The
WSINFO workspace contains a list and a description of the supplied workspaces.
Each individual workspace contains a DESCR I BE variable or function that
describes the functions in the workspace in more detail. Each workspace also con-
tains a HOW variable or function that explains how to use the defined functions.

For additional information about the workspaces, see APL2/370 Programming:
Using the Supplied Routines.

External Names

External names have a variety of uses in APL2 applications. They provide the
ability to organize APL2 applications more effectively and allow access to non-APL
facilities using normal APL2 syntax. By providing additional ways for you to
process information using APL2, external names improve productivity. You can use
external names for some of the following reasons:

* To access files quickly and easily

e To isolate APL programs to prevent name conflicts
e To use existing non-APL programs

* To improve performance

e To allow synchronous access to system information
e To maintain shared code

Chapter 1. Introduction to APL2 System Services 7

Chapter 2. APL2 Invocation and Termination

APL2 is invoked from the host system environment as a command. The default
command name is APL2, but your installation may have changed the name of the
command. Whatever its name, you can do any one of the following:

e Enter it manually after logging on to the host system.
e Process a CMS EXEC or TSO CLIST that invokes the APL2 command.

* Have the command automatically invoked when you enter CMS or log on to
TSO. This is normally done through a CMS PROFILE EXEC or a TSO
CLIST.CLIST(DEFAULT) member.

The YOFF or)CONTINUE system command terminates your APL2 session and
allows either you or the invoking EXEC or CLIST to continue with your CMS or
TSO session.

For more description of the underlying system during invocation and termination,
see the appropriate user's guide for your system.

For information about requirements for APL2 library access when you initiate APL2,
see[Chapter 4, “APL2 Libraries: Workspaces and Data Files” on page 63

|[Appendix F, “APL2 Files and Data Sets,” contains| TSO CLIST and AP2EXIT EXEC

samples.

Starting APL2—The APL2 Command under CMS and TSO

You can invoke APL2 under either CMS or TSO with the following command:
APL2 option1 option2 ... option
where:

option Is one of the keyword parameters used to tailor the APL2 environment
for a particular APL2 session. See [‘Continuing with the Invocation|

[Options” for the invocation options list.

Continuing with the Invocation Options

Invocation options entered by keyword parameters to the APL2 command are avail-
able to tailor the APL2 environment for a particular APL2 session. The invocation
options are summarized alphabetically by keyword in [Figure 3 on page 9/and
described in detail starting on page . To see what the option keywords are,
enter:

HELP APL2

8 © Copyright IBM Corp. 1984, 1994

Figure 3. Summary of APL2 Invocation Options

Keyword

Description

AISIZE(size)

TSO only. Specifies the number of bytes of data that can be stacked by AP 101,
the alternate input (stack) processor.

APNAMES(namel (string) 1...)

Specifies the auxiliary processors to be used in addition to those automatically
loaded.

CASE(n) Identifies the cases of the alphabets to be used when APL2 accepts, returns, or
displays the names of the APL objects.

CODE(nnnnn) Same as TERMCODE option.

DATEFORM(ISOIESIEU) Specifies the format for time and date stamps.

DBCS(TRYIONIOFFInnn) Indicates whether mixed APL2/DBCS is supported for I/O during the APL2 session.

DEBUG(nnn) Alters normal error recovery actions of APL2 for debugging purposes.

DSOPEN(device-token)

Specifies a device-token to be passed to GDDM (if it is available) on a DSOPEN
call.

EXCLUDE(name...)

Specifies the auxiliary processors you do not want loaded into your session.

FREESIZE(size)

Specifies a minimum limit on the amount of virtual storage not used for the active
workspace or shared variables.

HILIGHT (setting)

Specifies whether input, output, or both are to be highlighted on the screen.

ID(nnnnnnn)

Specifies an identifier number to be associated with the current APL2 session.

INPUT(' string" ...)

Specifies one or more input lines to be given to APL2 upon invocation.

LOADLIB(dsname ...)

TSO Only. Specifies one or more private load libraries from which APL2 modules,
auxiliary processors, or AP 100 commands can be loaded.

NLT(/language)

Specifies the national language to be in effect when APL2 is started. This can
later be changed by assigning a new value to ONLT.

PROFILE(name)

Identifies the name of the APL2 session manager profile to be loaded on invoca-
tion.

QUIET[(ONIOFF)]

Prevents APL2 from displaying output until it prompts for input.

RUN([' locator'] function)

Specifies name of a niladic function in a namespace as a part of entry to APL2.

SHRSIZE(size) Specifies the amount of virtual storage to be reserved for the shared variable
processor.

SMAPL(TRYIONIOFFInnnn) Specifies whether the APL2 session manager is to be used during your APL2
session or whether the interpreter should share a variable with processor nnnn.

SVMAX(nnnnn) Specifies the maximum number of shared variables that you can concurrently
share.

SYSDEBUG(nnn) Specifies special debugging settings for use by system programmers.

TERMCODE(nnnnn) Identifies the type of terminal you are using.

or CODE(nnnnn)

TRACE(nnn) Provides special debugging aids for use by system programmers.

WSSIZE(size) Specifies the amount of virtual storage in your CMS virtual machine or TSO region
to be reserved for your active workspace.

XA(nn) Identifies whether working storage in an XA or ESA system should be allocated

above or below the 16-megabyte address boundary.

Chapter 2. APL2 Invocation and Termination 9

Each keyword option is usually followed by a value in parentheses. Default values
are supplied for the options, and these are generally satisfactory for beginning
APL2 users. You may, however, want to override some of the options to customize
the APL2 session to meet your needs. To override one or more options, enter the
APL2 command followed by the keyword and value of the option(s) you want to
override. For example, you enter the following command to invoke APL2 when the
APL2 session manager is to be suppressed:

APL2 SMAPL(OFF)

You can specify keyword options in any order after the APL2 command, and you
can abbreviate the keywords. The abbreviation must be at least the first two char-
acters of the keyword.

If the same keyword appears more than once in the APL2 command, the value of
the last one entered is used. For example, the following APL2 command initiates
an APL2 session without the session manager:

APL2 SMAPL(ON) ID(1007) SMAPL(OFF)

You can specify the DEBUG, SYSDEBUG, and TRACE options as positive or neg-
ative integers. The system treats them as binary flags and turns the corresponding
flags on if the integer is positive or turns them off if the integer is negative. For

example:

DEBUG(7) A value of 7 is treated as binary 1 1 1 and specifies setting DEBUG
(4 21)on.

DEBUG(-5) A value of -5 is treated as binary -(1 0 1) and specifies setting

DEBUG(4 1) off.

Successive specifications successively turn the corresponding flags on and off. For
example:

DEBUG(6) DEBUG(-3) First, the 4 and 2 DEBUG flags are set; next, the 2 and 1
DEBUG flags are turned off. The result is a setting of DEBUG(4).

The defaults supplied with APL2 are given with the detailed descriptions of the
options beginning on page[11] Check with your system administrator to find out
which of these options may have been changed during the installation of APL2 at
your site.

10 APL2 Programming: System Services Reference

Description of Invocation Options
This section lists the invocation options in alphabetic order by keyword. The

headings show the syntax of the options; the descriptions explain how to use each
option and what values to specify.
Four options allow you to specify an integer size value. These options are:
AISIZE(size)
FREESIZE(size)
SHRSIZE(size)
WSSIZE(size)

Unless otherwise restricted by the maximum value allowed for the option, size can
be specified as bytes, kilobytes, or megabytes. To specify kilobytes or megabytes,
follow size with a K or M, respectively. To specify a size in bytes, enter a number
only. For example, all the following are valid values for the FREESIZE option:

FREESIZE(2048000)
FREESIZE(2000K)
FREESIZE(2M)
You can also express size as a percentage. For example, to reserve 50% of the
CMS virtual machine size or TSO logon size for your workspace, you can specify:
WSSIZE(50%)
Your installation of APL2 can provide defaults for each of the invocation options.
Your installation can also prevent you from changing some of these options by pro-

viding system overrides for them. Check with your system administrator to find out
if any options have system overrides.

AISIZE(size) (TSO Only)

Specifies the maximum number of bytes of data that can be stacked by AP 101,
the alternate input (stack) processor.

size
Integer, expressed in bytes or kilobytes. For example:
AISIZE(8192)

or
AISIZE(8K)

Note: “M” and “%” are permitted, but are not normally useful.

Minimum size: 0
Maximum size: Limited by region size
IBM-supplied default: 512 bytes

Note: The number of lines that can be stacked through AP 101 depends on the
length of each line and the stack size specified by this option. If you attempt to
place more lines than can fit on the stack, the entire stack is cleared, as indicated
by a nonzero return code on the stack request.

Chapter 2. APL2 Invocation and Termination 11

APNAMES(name](string)]...)

Identifies auxiliary processors not automatically available but that you plan to use
during your APL2 session. Processors named with this option can be those distrib-
uted with APL2 or those written by your system programming staff.

name
Name of the load module for the auxiliary processor you want available. More
than one name can be specified. For example:

APNAMES (USERAP1 USERAP?2)

Your installation normally provides resident auxiliary processors that are auto-
matically available to your session. If you specify a name in this option that is
the same as the name of a resident auxiliary processor, the resident version is
ignored and a load module with the specified hame is searched for and loaded.
If you specify an auxiliary processor that uses the same number as the resident
auxiliary processor, the specified auxiliary processor should have the same
name as the resident, or you must use the exclude option to exclude the resi-
dent. For example:

APN(A0121) EXC(AP2X121)

[Figure 4 on page 19| contains the names of the auxiliary processor load
modules supplied with APL2.

Under CMS: The following are searched to locate the specified module name:

¢ Nucleus extensions. One way to load a module as a CMS nucleus exten-
sion is the CMS NUCXLOAD command.

e Members of a CMS LOADLIB defined by the CMS FILEDEF command as
AP2LOAD. For information on creating auxiliary processor LOADLIB files,
see APL2/370 Installation and Customization under CMS.

Under TSO: The following are searched to locate the specified module name:

e Task libraries (including those specified in the LOADLIB invocation
option—see the description of the LOADLIB option on page

e Link pack area
e Link libraries
('string")

Optional character string of parameters to be passed to the auxiliary processor.
For example:

APNAMES (USERAP1 USERAP2('EBCD') USERAP3('L"'))

Most auxiliary processors distributed with APL2 ignore any character strings
specified as parameters. The string parameter may be used with user-written
auxiliary processors and with AP 119 and AP 127.

12 APL2 Programming: System Services Reference

AP 119 Access: The following options can be specified with the APNAMES
parameter:

SERVPORT(nnn)
Normally, the local port server is listening on port number 31415. If the port
server is using a different port number, this parameter must be used to allow
AP 119 to communicate with the server. Allowable values are 256 to 65535.

LISTEN(nnn)
AP 119 does not normally open a listening connection until a variable is offered
to a remote processor. If you want AP 119 to open a listening connection on
startup, use this parameter. AP 119 attempts to use the number specified as
its listening port. If this number is unavailable, the listening connection is not
started. Allowable values are 256 to 65535, or 0 to let TCP/IP assign an arbi-
trary number.

TCPID('ccc')
AP 119 expects the name of the local TCP/IP machine (under CMS) or started
task name (under TSO) to be TCPIP. If the name is different, this parameter
must be used to allow AP 119 to successfully communicate with TCP/IP.

This is an example of using the startup parameters:

APL2 APNAMES (AP2X119(SERVPORT(1234) LISTEN(2345) TCPID('TCPTEST')))

If no options are specified using APNAMES, the default is:
SERVPORT(31415) TCPID('TCPIP')

AP 127 Access: You can use APNAMES to override some default values for AP
127:

Under TSO:

APNAMES (AP2X127 (RRPLAN(name) CSPLAN(name) SSID(sys) ISOL(level)))

name
Identifies a DB2 application plan. The default values are APL2V22R (for
RRPLAN) and APL2V22C (for CSPLAN).

sys
Identifies the DB2 subsystem. The default is DSN.

level
Specifies the starting isolation level. Must be RR or CS. The default is RR.

Under CMS:

APNAMES (AP2X127 (ISOL(Tevel)))

level
Character string that specifies the starting isolation level. Must be RR or CS.
The default is RR.

Chapter 2. APL2 Invocation and Termination 13

You need to specify AP 127 on APL2 invocation only if you want to override one or
more of these defaults. For any keyword not specified, the defaults from the instal-
lation options module are used.

CASE(n)

Identifies the cases of the alphabets to be used when APL2 returns or displays the
names of APL objects.

n One of the following:

0 Both lowercase and underbarred characters are valid and synony-
mous when evaluating names. Primitives that return names as
results (ONL, OCR, OFX, OSVE, OTF), and system commands
and messages that produce names, produce them using the under-
barred rather than the lowercase alphabet.

1 Both lowercase and underbarred characters are valid and synony-
mous when evaluating names. Primitives that return names as
results, and system commands and messages that produce names,
produce them using the lowercase rather than the underbarred
alphabet.

2 In general, underbarred characters are not valid in names and are
not accepted or produced in system functions, commands, or mes-
sages. Underbarred letters in the arguments to) COPY,)PCOPY,
JMCOPY, and)IN are accepted as lowercase letters to aid
migration.

Note: The response to) ERASE, given underbarred letters, is the
underbarred letters.

The default shipped by IBM is CASE(1). Your installation can change the default or
specify an overriding value.

The CASE(n) invocation parameter does not apply to all work done by you during
the APL2 session. Instead, it is interpreted as an implicit parameter of a)CLFEAR
command. CASE is, in fact, a workspace attribute in all workspaces. (CASE(0)
was the default for workspaces created by APL2 Version 1.) The workspace attri-
bute is saved with the workspace and is not changed when the workspace is
loaded.

Objects may be copied into the active workspace using) COPY,)PCOPY,
)JMCOPY or)IN without affecting the workspace attribute. The names of copied
objects, as well as names referred to by copied functions or defined operators, are
converted appropriately.

Note: Literal strings and comments within functions, and the content of indirect
copy lists, are not converted.

No matter what CASE setting or workspace attribute is in effect, shared variable
names containing underbarred characters are never transferred from the APL2
interpreter to the SVP The underbarred characters are instead translated to lower-
case. Names returned to the interpreter from the SVP are handled and displayed
in accordance with the workspace attribute.

14 APL2 Programming: System Services Reference

CODE(nnnnn)

Used by APL2 to identify the type of terminal you are using. CODE is a synonym
for TERMCODE. See the description of the TERMCODE invocation option on page

DATEFORM(ISOIUSIEU)

Specifies the format for date and time stamps displayed during operations such as
JLOAD and)SAVE.

ISO
International Standards Organization convention, which follows the format yyyy-
mm-dd hh.mm.ss.

ISO is the IBM-supplied default.

us
United States preferred convention, which follows the format mm/dd/yyyy
hh.mm.ss.

EU
European convention, which follows the format dd.mm.yyyy hh.mm.ss.

For example, to display the European format, you specify:
DATEFORM(EU)

The date and time are formatted as:
27.03.1992 11.30.52 (GMT+1)

Note: The APL2 date and time display is always followed by the user's time zone
offset from Greenwich Mean Time (GMT).

DBCS(TRYIONIOFFInnn)

Used to tell APL2 what double-byte character set (DBCS) data to display and input
during the APL2 session. It also sets the default DBCS number for the DBCS
translation option of various auxiliary processors and external functions.

Many languages have more characters than can fit in the APL2 atomic vector,
0A4V. Japanese, Korean, and Chinese are examples. IBM has defined DBCS to
represent these languages. These characters can be displayed on displays that
support the DBCS, such as the IBM 5550 multistation. Each DBCS character occu-
pies two columns on the screen. DBCS characters and characters from AV can
be mixed on the screen.

Note: APL2 supports the display of DBCS only through the session manager, AP
126, and)EDITOR 2. GDDM is required. For testing purposes, GDDM can
provide limited, emulated DBCS support on displays that do not actually support
DBCS.

Chapter 2. APL2 Invocation and Termination 15

APL2 also supports DBCS in APLIN and APLPRINT files.

When DBCS data is being processed, the DBCS invocation option can control the
identification of the DBCS used. In particular, a user with a display that does not
support real DBCS or with a display supporting one DBCS can simulate operation
on a display with a different DBCS.

If the DBCS invocation option is not used, APL2 determines whether or not mixed
APL2/DBCS data is to be displayed based on the presence of DBCS support as
reported by GDDM. If GDDM reports that the display has a DBCS, or that GDDM
emulated DBCS support is available, then APL2 allows mixed DBCS data. For dis-
plays that have real DBCS support, the DBCS ID defaults to the CPGID of the
DBCS display. For GDDM emulated DBCS support, the DBCS ID defaults to 0.

TRY If GDDM indicates that the display has a DBCS, then activate DBCS
support and use the CPGID as the DBCS identifier.

If GDDM indicates that emulated DBCS support is being used, then
treat as DBCS(0).

If GDDM is not available, or it indicates that no DBCS support is avail-
able, then treat as DBCS(OFF).

Note: DBCS(TRY) is the default in the installation options module as
distributed by IBM, but your installation can choose a different default.

ON Behaves like DBCS(TRY), except this ends the APL2 session if DBCS
is not available rather than treating as DBCS(OFF).

OFF
e Substitute 'w ' for any DBCS characters on terminal output.
e Do not accept DBCS on terminal input.
e Use 0 as the DBCS identifier when auxiliary processors and func-
tion routines convert DBCS data to APL data.
e Permit any DBCS identifier when auxiliary processors and function
routines convert APL data to DBCS data.
nnn Use the decimal value nnn as the DBCS identifier and activate DBCS
display support. The value of nnn must be between 0 and 32,767
inclusive.

Only APL data with the specified DBCS identifier can be converted to
DBCS data by auxiliary processors, function routines, or terminal
output processors.

Note: DBCS(0) is not equivalent to DBCS(OFF), even for auxiliary
processors or function routines.

You can change this invocation option during the APL2 session by either the
OPTION external function or)CHECK SYSTEM DBCS. This restarts APL2
display support. For the session manager, this means that any in-storage log file is
discarded.

16 APL2 Programming: System Services Reference

DEBUG(nnn)

Alters normal error recovery actions taken by APL2. It can assist in debugging

errors.

Note: Your installation can supply one or more debug settings that you cannot

override.

nnn

One or more numbers (positive or negative) of the debug settings you want to
change. A positive number turns on one or more settings, whereas a negative
number turns off one or more settings. Several settings can be turned on or
turned off with a single number equal to the sum of the numbers for the indi-
vidual settings. For example, to specify debug settings 2 and 4, specify either:

DEBUG (2 4)

or
DEBUG (6)

To turn off setting 4, specify:

DEBUG (-4)

IBM-supplied default value: 0

Your installation can provide a default DEBUG value other than 0.

The debug settings and their meanings are:

1—MSG

2—ECHO

4—XDUMP

8—ESTIMATE

32—MSGID

64—NOLX

Displays secondary error messages without prompting.

Note: Use of this setting produces messages for exceptional
conditions that are not necessarily error conditions. For
example, end of file may or may not be an error, depending on
the situation. An error message is displayed immediately,
before an attempt to determine if the condition is acceptable.

Causes all input to APL2 from the AP 101 input stack to be
“echoed” (displayed) at your terminal. Normally, input from the
AP 101 stack is not displayed at the terminal as it is executed.

Default setting. Provides more complete dumps. Typical
dumps are about 50 pages long. Under this setting, they can
be 200 to 500 pages or more, depending on the workspace
size. For a further explanation of APL2 storage dumps, see
APL2/370 Diagnosis Guide.

TSO Only. Provides estimates of the progress of long-running
library operations, such as)LOAD,)COPY, or)SAVE.

Provides the message identifier number, along with the text of
any message produced by APL2. For example, the following
message:

DOMAIN ERROR
displays with DEBUG(32) as:

AP2TAPL254% DOMAIN FERROR
Suppresses processing of (L X, the latent expression, when
workspaces are loaded with the) LOAD command.

Chapter 2. APL2 Invocation and Termination 17

128—NOQUEMSG Discards secondary messages rather than queuing them.
While 1—MSG is turned on, secondary messages are imme-
diately displayed rather than queued, so the setting of this flag
is irrelevant.

DSOPEN(device-token)

Specifies a value to be passed to the Graphical Data Display Manager (GDDM) as
the device-token parameter on a GDDM DSOPEN call. This option permits more
precise declaration of the terminal type when GDDM cannot automatically deter-
mine the correct terminal characteristics.

You must specify a device token with DSOPEN if you want to access GDDM
through AP 126 while running APL2 in TSO batch or in a CMS disconnected virtual
machine. Otherwise AP 126 issues GDDM calls during AP 126 initialization that tell
GDDM to use device characteristics of the current terminal type. Since no terminal
exists in TSO batch or in a CMS disconnected virtual machine, GDDM may hang or
otherwise fail to initialize.

You also may need to specify a device token with DSOPEN if you are using a
24-line display screen under TSO. In this case, GDDM cannot determine whether
the terminal type is a 3277 or a 3278, and simply assumes some terminal type that
may not be correct. For more information about terminal types, see the description
of the TERMCODE option below.

This option is meaningful only when the APL2 session manager, AP 126, or
JEDITOR 2 is used.

device-token

Selected device tokens supplied by GDDM include:

ADMK772A 3277 model 2 with APL
ADMK782A 3278 model 2 with APL

For more values, see the description of the device tokens in GDDM Base Appli-
cation Programming Reference.

An example of using the DSOPEN option is:
DSOPEN (ADMK782A)

18 APL2 Programming: System Services Reference

EXCLUDE(name...)

Specifies the module names of auxiliary processors normally available but that you
do not want loaded at the start of your APL2 session. For example, to exclude AP
127, the SQL processor, from being loaded when you invoke APL2 in the TSO
environment, include the EXCLUDE option in the APL2 command as follows:

EXCLUDE (AP2X127)
Figure 4 contains the load module names of auxiliary processors supplied with

APL2. Check with your system administrator to find out the names of any addi-
tional processors that may be automatically available at your installation.

Figure 4. Module Names of Auxiliary Processors Sup-
plied with APL2

Auxiliary CMS TSO
Processor Module Name Module Name
AP 100 AP2V100 AP2T100

AP 101 AP2V101 AP2T101
AP 102 AP2V102 AP2T102
AP 110 AP2V110 not available
AP 111 AP2V111 AP2T111

AP 119 AP2X119 AP2X119
AP 120 AP2X120 AP2X120
AP 121 AP2X121 AP2X121
AP 123 AP2V123 AP2T123
AP 124 AP2X124 AP2X124
AP 126 AP2X126 AP2X126
AP 127 AP2X127 AP2X127
AP 210 not available AP2T210
AP 211 AP2X211 AP2X211

Note: Excluding auxiliary processors can reduce storage requirements for APL2,
particularly on TSO. However, excluding certain IBM auxiliary processors can
cause problems because of internal APL2 dependencies on these processors. The
following auxiliary processors can be safely excluded, if users do not need them:
AP 119, AP 120, AP 121, AP 123, AP 124, AP 127, AP 210, and AP 211.

Chapter 2. APL2 Invocation and Termination 19

FREESIZE(size)

Specifies the amount of virtual storage that must remain unused after space is allo-
cated for the active workspace, shared variables, and other areas allocated during
invocation. These areas include modules and work areas used by other products
such as VSAM and GDDM. FREESIZE may be needed during the session for the
APL2 interpreter module, auxiliary processor modules, access method buffers,
dynamically loaded modules, storage control blocks, and program products such as
GDDM.

size
An integer expressed in bytes, kilobytes, or megabytes. For example:
FREESIZE(65536)

or
FREESIZE (64K)

A percentage of your virtual machine size. For example:
FREESIZE(10%)

Your installation provides a default value for FREESIZE. If the minimum amount of
FREESIZE is not available, APL2 invocation fails.

Because of the number of variable factors associated with APL2 storage allo-
cations, you may find it better to omit the FREESIZE option and use the WSSIZE
and SHRSIZE options to reduce the amount of space allocated to the active work-
space and shared variables. If you cannot reasonably reduce WSSIZE and
SHRSIZE and you have virtual storage problems, increase your CMS virtual
machine size or your TSO region size.

20 APL2 Programming: System Services Reference

HILIGHT(setting)

Specifies whether input, output, or both are to be highlighted on the screen.
Under CMS: This option applies only when the APL2 session manager is used.

Under TSO: This option applies, regardless of whether the APL2 session manager
is being used.

setting
One of the following:

INPUT Highlight only input lines. (CMS defaulit.)
OUTPUT Highlight only output lines. (TSO default.)
ON Highlight all lines.
OFF Highlight no lines.

For example, to have no lines highlighted during your APL2 session, specify:
HILIGHT (OFF)
CMS Comments: If the session manager is not used, the setting of the CP TER-

MINAL HILIGHT command determines whether or not user input lines are high-
lighted.

ID(nnnnnnn)

Specifies a numeric identifier to be associated with your current APL2 session. The
number becomes the first item in the system variable OAI. (For a description, see
APL2 Programming: Language Reference.) This number identifies your:

e Default library for saved workspaces (including any CONTINUE workspace)
e Default library for files created through AP 121, the APL2 data file processor
e Library for APL2 session manager log files

e Library for) COPY work files (TSO only)

The number you enter in the parameter to the ID option is also used to identify you
as a possible share partner for shared variable communication between users on
the same system. The value of the ID parameter does not affect a user's ability to
share variables across systems. TCP/IP profile files are used to define potential

cross-system partners. (See [Processor Profile Structure” on page 87])

nnnnnnn
Should be at least 1000 to avoid conflict with auxiliary processor identifiers
(usually 100 through 999). The number cannot be greater than 9999999.

For example, to identify yourself as user 1234 when you invoke APL2, specify:
ID(1234)

If two or more APL2 users or auxiliary processors have the same ID number, only
one of these users can communicate with the shared variable processor (SVP).

Chapter 2. APL2 Invocation and Termination 21

Your installation can set or change your ID and override any value you provide. It
can also restrict the use of user-to-user shared variables on the same system.
Check with your system administrator for APL2 ID requirements at your site.

Unless your installation overrides your specification, if you do not specify an ID (or
if you specify ID(0)) when you invoke APL2, you are not permitted to share vari-
ables with other users except using cross-systems shared variables.

INPUT(' string"')

Specifies one or more input lines used when APL2 is invoked. See
[‘Controlling APL2 Invocation” on page 82| for the relationship between the different
methods for providing input to APL2.

'string' . . .
Each character string represents a line of input to APL2. Strings are separated
by one or more blanks or commas.

Each string is enclosed in a pair of quotation marks. If quotation marks are a
part of an expression, a pair of single quotation marks must be entered for
each single quotation mark in the expression.

The example below illustrates the use of the INPUT option to load an APL2
workspace named PAYROLL, and then execute a function named START
with an argument 'ABC"'.

INPUT(')LOAD PAYROLL' ' START ''ABC''')

If you do not specify the INPUT option when invoking APL2, the APL2 session
begins with the CLEAR W.S message or the loading of a CONTINUE workspace.
If you have a damaged CONTINUE workspace and want to suppress the auto-
matic loading of it, you can specify the INPUT invocation option with no data:

INPUT(').

TSO Note: If you specify the INPUT option and a CONTINUE workspace exists,
you receive a message warning that a CONTINUE workspace exists, but it is not
loaded. If the warning appears, you may want to load the contents of your CON-
TINUE workspace and save it into a workspace of a different name. Otherwise,
forced termination of your session may cause your active workspace to be saved in
the CONTINUE workspace, whose previous contents are lost.

If you invoke APL2 from a CLIST and pass a quoted string as a parameter, the
CLIST processor strips off the single quotation marks around the strings. The
sample CLIST below shows the recommended method of invoking APL2 with a
symbolic INPUT parameter:

APL2.CLIST

PROC O IN('"'") /* specify INPUT as a parameter */
CONTROL NOLIST NOPROMPT NOMSG

APL2 IN('&IN') /* note the enclosing quotation marks =*/

You can invoke the CLIST by typing:
APL2 IN(')LOAD PAYROLL')

22 APL2 Programming: System Services Reference

When APL2 is invoked from a CLIST, all lowercase characters and numbers are
folded to uppercase. Some APL2 characters cannot be passed to APL2 if the
INPUT option is used within a CLIST. You can avoid this restriction by invoking
APL2 without using a CLIST.

For more information, see OS/VS2 TSO Terminal User's Guide.

The AISIZE parameter must provide enough space to hold all INPUT strings.

LOADLIB(dsname...) (TSO Only)

Specifies one or more MVS private load libraries from which auxiliary processors,
Processor 11 programs, or secondary APL2 modules (including the interpreter) can
be loaded. The LOADLIB option is an alternative to the ALLOCATE command
issued for load libraries needed during your APL2 session. You can use this option
to:

¢ Specify the load library that contains an auxiliary processor specified in the
APNAMES invocation option

¢ Replace, for your current APL2 session, the APL2 interpreter module,
AP2INTRP (to test an APAR fix, for example)

¢ |dentify a task library for modules that are loaded by AP 100 in response to the
APL ATTACH built-in command

¢ |dentify a library of modules loaded by Processor 11.

When you specify a load library with this option, APL2 makes the listed data sets
part of the MVS TASKLIB search for the duration of the APL2 session.

Library names are separated by one or more blanks. For example, to specify that
user library userid MY.LOADLIB and system library PROD.PAY.LOADLIB are to be
searched for modules that are used during your APL2 session, specify the
following:

LOADLIB(MY.LOADLIB 'PROD.PAY.LOADLIB')

A maximum of 111 data set names can be specified. If ddname LOADLIB was
previously allocated, it is replaced. The ddnames LOADLIBO through LOADLIB9
are used temporarily as needed, and if more than 11 data sets are listed, ddnames
LOADLIOO through LOADLIQ9 are also used temporarily. These names must not
be in use when APL2 is invoked with the LOADLIB option.

Note: If an auxiliary processor is in none of the load libraries specified in the
LOADLIB option, the MVS system libraries are searched. You can duplicate the
effect of the LOADLIB option by using the ALLOCATE command. Prior to invoking
APL2, allocate your libraries with the ddname LOADLIB. If you use the LOADLIB
option in addition to allocation with the ddname LOADLIB, the LOADLIB invocation
option overrides the allocation.

Chapter 2. APL2 Invocation and Termination 23

NLT(/anguage)

Allows users to override the installation default for the national language in their
invocation EXEC or CLIST, and allows the language to be set before APL2 is
running. For example:

APL2 NLT(ESPANOL)

For a list of the national languages supported by APL2, see [Appendix C, “Nationall
|[Languages Supported by APL2” on page 368|

PROFILE(name) (SMAPL Only)

Specifies the name of the file containing the profile to be used by the APL2 session
manager. During its initialization, the session manager executes a PROFILE LOAD
command using the name that you specify. (See the description of the PROFILE
LOAD session manager command under [PROFILE” on page 58})

name
CMS: File name of the profile to be loaded. The file type of the named profile
must be VSAPLPR.

TSO: Second-level qualifier of the profile to be loaded. The first-level qualifier
is the TSO profile-prefix and the third-level qualifier is VSAPLPR.

If you are using the session manager without specifying the PROFILE option, the
profile named DEFAULT is loaded. (If more than one DEFAULT profile exists, the
host system search order determines which one is loaded.)

If you are not using the session manager, the PROFILE option is ignored.

If you specify PROFILE()—no profile name—the session manager does not
execute a PROFILE LOAD command.

For further information on session manager profiles, see [Chapter 3, “The APL2|
[Session Manager,” especially [PROFILE” on page 58] .

QUIET[(ONIOFF)]

ON
Prevents APL2 from displaying any output until APL2 prompts for input.

OFF
Permits APL2 to display all output from the beginning of the session. It is the
default.

For instance, if you use the INPUT option and the QUIET option in an APL2
command stack using AP 101, the alternate input (stack) processor, you can load a
workspace and start an application without displaying the APL2 initiation messages
that would normally be displayed. If that application uses AP 101 to stack an

) OF F system command, APL2 termination messages are suppressed.

24 APL2 Programming: System Services Reference

Note: The QUIET option applies only to output from the APL2 language
processor. All other output, such as that from AP 126, is not suppressed.

If you are using the session manager, the QUIET option does not suppress the
initial display of the session manager screen if the session manager profile includes
the DISPLAY(ON) command. To suppress initial display of the session manager
screen, specify the PROFILE() option or load a session manager profile that does
not include the DISPLAY(ON) command.

Use the external function OPTION to change the QUIET setting. See APL2/370
Programming: Using the Supplied Routines for more information.

RUN([' locator'] function)

This option is designed to simplify invocation of an external function as a part of
entry to APL2.

locator
Optional information to be used by Processor 11 to locate the external function.
If provided, this must be a character string that can be used as the first item of
the left argument to OV A for processor 11. When this information is provided,
the external function must either reside in a namespace or be self-describing.
The possible formats are:

'member’
For CMS, the name of a nucleus extension, MODULE file, or TEXT file
containing the external function. For TSO, the name of a load module that
is available through the normal load library search order (including any
LOADLIB ddname or invocation option.)

'library.member'
For CMS, library is the filename of a LOADLIB file, and member is the
name of a member in the library containing the function. For TSO, library
is a ddname to which a load library must be allocated before invoking
APL2, and member is the name of a member in the library containing the
function.

If locator is omitted, the function must be described in a NAMES file entry for
the function using the defaults NAMES files for the APL2 session.

function
A 1 to 8 character APL name containing only alphanumeric characters (no A,
_, ,orunderbarred characters.) Note that lowercase letters are converted to
uppercase while processing the invocation RUN option.

For more information, see|Chapter 28, “Processor 11—Calling Compiled Programs’]
[on page 291 and [Chapter 29, “Processor 11—Access to Namespaces” onl

The RUN option produces a pair of statements that are executed before
anything provided by the INPUT option, the stack, or the APLIN file. The first state-
ment is a ONA for the requested function, and the second is a simple niladic invo-
cation of it.

RUN provides only minimum control of application invocation. For more complex
situations, use the INPUT option or provide an APLIN file.

Chapter 2. APL2 Invocation and Termination 25

SHRSIZE(size)

Specifies the amount of virtual storage to be reserved for the shared variable
processor. The maximum size of data in a variable shared with a local auxiliary
processor is typically limited to 10 to 15 thousand bytes less than this value, though
it can be limited further by available free storage, available workspace storage, or
auxiliary processor limits.

size
An integer expressed as bytes, kilobytes, or megabytes, as in the following
example:

SHRSIZE (256000)
or
SHRSIZE(250K)

A percentage of the CMS virtual machine size or TSO logon size. For
example:

SHRSIZE (5%)

Minimum size: 16K bytes
Maximum size: 16 megabytes
IBM-supplied default: 40K bytes

These sizes can be changed by your installation.

Note: Because of rounding, the actual SHRSIZE size assigned to your APL2
session can be slightly different from what you specify. Issue the)QUOTA system
command to display the actual share size used. Your installation can allocate addi-
tional space for shared storage to support user-to-user shared variables. This
space is not reported in the)QUOTA command. The)QUOTA command is
described in APL2 Programming: Language Reference.

Typically, SHRSIZE values should be smaller than WSSIZE. If SHRSIZE is too
small, the interpreter may signala SYSTEM LIMIT+ error during the APL2
session, with a)MORE message indicating Tnterface capacity.

In a non-XA environment, SHRSIZE and WSSIZE specify areas that are allocated

below the 16M line; in an XA environment, they specify areas that can be allocated
above the line, unless invocation XA(24) is specified.

26 APL2 Programming: System Services Reference

SMAPL(TRYIONIOFFInnnn)

Indicates whether you want to use the APL2 session manager for your APL2
session. The session manager requires GDDM and an IBM 3270 series display
station.

TRY
Invokes the APL2 session manager if it is available.

TRY is the default setting.

ON
Invokes the APL2 session manager.

If the session manager is not available and you specify SMAPL(ON), you
receive a message, and your APL2 session is not initialized.

OFF
Does not invoke the APL2 session manager.

If you specify SMAPL(OFF), APL2 uses the standard input/output protocol of
the host system—CMS or TSO. If you do not use the APL2 session manager,
but GDDM is available, you can still use the Editor 2 and AP 126, the GDDM
Processor.

nnnn
If the SMAPL value is numeric, it indicates that the Shared Variable Interpreter
Interface is to be used. The APL2 interpreter shares a variable with processor
nnnn. All subsequent input and output to the interpreter is performed through
the shared variable.

The Shared Variable Interpreter Interface is designed to allow the interpreter to
be controlled by another user ID, using an APL2 session manager or an APL2
function. The other ID can be on the same VM or MVS system, or can be on a
different system, provided the two systems are connected through TCP/IP.
Once a variable is shared with the interpreter, the interpreter sends messages,
arrays, and requests for input through the shared variable.

For further details about the shared variable interpreter's protocols, consult
[Chapter 25, “APL2 Shared Variable Interpreter Interface” on page 261] For
information about how to interactively communicate with the interpreter from
another CMS or TSO session, consult the discussion of the RAPL 2 function in
APL2/370 Programming: Using the Supplied Routines.

Chapter 2. APL2 Invocation and Termination 27

SVMAX(nnnnn)

Specifies the maximum number of shared variables you can share concurrently.

nnnnn
Must be a positive integer.

Minimum value: 4
IBM-supplied default: 88
Maximum value: 32767

The default value may have been changed during installation.

To display the current value of this option after you invoke APL2, issue the
)QUOTA system command.)QUOTA is described in APL2 Programming: Lan-
guage Reference.

Note: The maximum number of shared variables is also limited by the size of
shared storage. Each shared variable requires at least 128 bytes of space in
shared storage.

SYSDEBUG(nnn)

Establishes special debug settings for your APL2 session. These settings provide
information beyond that provided by the DEBUG option. They are intended for use
by system programmers in diagnosing system or internal APL2 problems or prob-
lems with writing an auxiliary processor. They are not for use during normal APL2
operation; their use can significantly degrade APL2 performance.

For a description of the SYSDEBUG option, see APL2/370 Diagnosis Guide.

TERMCODE(nnnnn)
or
CODE(nnnnn)

Used by APL2 to identify the type of terminal you are using.

Under TSO, if you do not specify this option, you may be prompted to enter a
shift-6 character if APL2 cannot determine your terminal type dynamically. This
shift-6 character allows APL2 to identify your terminal.

If you are using the session manager or AP 126 and GDDM is unable to correctly
identify your terminal type, use the DSOPEN invocation option rather than
TERMCODE to specify the correct terminal type.

nnnnn
Code identifying the terminal.

The value for the TERMCODE option must be one of the IBM-supplied device
codes shown in[Figure 5 on page 30|

TERMCODE(-1) can be used to request controlled invocation.

28 APL2 Programming: System Services Reference

The invocation parameter TERMCODE(-1) indicates that APL2:
* |s being invoked in a “controlled invocation” environment

e |s to use the file allocated (FILEDEFed under CMS) to ddname APLIN to
satisfy its input requirements.

e |s to put all its output to the file allocated to the ddname APLPRINT.

The use of TERMCODE(-1) is described in detail in|Chapter 7, “Controlling APL2)|
[Invocation” on page 82|

Note: All values other than -1 are TSO only.
On CMS, the APLIN and APLPRINT file requirements are as follows:

The APLIN file can be defined on any input device supported by the FILEDEF
command.

The APLPRINT file can be defined on any output device supported by the FILEDEF
command. The default is variable length records with a data length limit of 121,
including ASA print control characters. If the record format was specified as fixed,
then the default record length is 80.

On TSO, the APLIN and APLPRINT file requirements are as follows:

The APLIN file can have the following characteristics:
e The record format (RECFM) can be U, F, FB, V, or VB.

e For fixed-length record files (RECFM=F or FB), the record length (LRECL) can
be up to 255.

e For variable-length record files, (RECFM=V or VB), the record length (LRECL)
can be up to 255, including the record descriptor word (RDW).

e For undefined record format files (RECFM=U), the record length (LRECL) or
block size (BLKSIZE), whichever is specified, can be up to 255.

The APLPRINT file can have the following characteristics:

e The record format (RECFM) can be F, FB, V, or VB. The default RECFM is
VB.

e The record format can also indicate either ANSI carriage control (A) or machine
carriage control (M).

e The record length (LRECL) can be up to 255, including the record descriptor
word (RDW) for variable-length record files (RECFM=V or VB). The default
LRECL is 125. The default block size (BLKSIZE) is LRECL for fixed-length
record files (RECFM=F or FB) or LRECL plus 4, which is the length of the
block descriptor word (BDW) for variable-length record files (RECFM=V or VB).

Chapter 2. APL2 Invocation and Termination 29

Figure 5 (Page 1 of 2). Device Codes for the TERMCODE Option

Code

Description

-1

Controlled invocation. APL2 avoids using the terminal if controlled invocation is
used. Instead, APL2 redirects input and output requests to files, much as if it
were running in TSO batch or on a disconnected virtual machine under CMS.
Controlled invocation is intended for use by applications that are themselves
using the terminal and that do not want APL2 to interfere with their terminal
input and output. See|Chapter 7, “Controlling APL2 Invocation” on page 82|for
more information.

Note: TSO translates certain characters when entered using a CLIST. If you
want to specify this termcode using a TSO CLIST, use the TSO minus character
(*-') instead of the APL overbar ('~ ').

Unknown terminal type. APL2 attempts to determine the terminal code from the
available system information. If insufficient information is available, the APL2
characters can be displayed or translated incorrectly.

Pass through translation. The APL2 system passes characters to TSO without
translation.

In MVS batch execution, this code uses the Technical Notation (TN) translation
for output directed to the data set identified by ddname APLPRINT.

Such translation is useful when output is directed to impact printers that have
the TN print chain (train), instead of the APL print character set.

27411

IBM 2741 terminal with correspondence code using type element 987 for the
APL feature.

27412

IBM 2741 terminal with BCD or EBCD code using type element 988 for the APL
feature.

3101

IBM 3101 terminal.

3178

IBM 3178 terminal without the APL feature.

3179

IBM 3179 terminal without the APL feature.

31791

IBM 31791 terminal with the APL feature.

3180

IBM 3180 terminal without the APL feature.

31801

IBM 3180 terminal with the APL feature.

3232

IBM 3232 terminal.

3270

IBM 3270 terminal with no lowercase or APL feature. Lowercase input and
output are folded to uppercase.

32702

IBM 3270 family terminal with the APL feature, including the characters [, N,
€% 7, 1,and [.

3277

IBM 3277 terminal without the APL feature. Uppercase and lowercase charac-
ters are permitted.

32771

IBM 3277 display station with the Data Analysis-APL feature code 1066.

3278

IBM 3278 without the APL feature.

32781

IBM 3278 with the APL feature code 1120.

3279

IBM 3279 terminal without the APL feature.

32791

IBM 3279 terminal with the APL feature code 1120.

3290

IBM 3290 terminal without the APL feature.

32901

IBM 3290 terminal with the APL feature.

3335

ASCII terminal without the APL feature.

30 APL2 Programming: System Services Reference

Figure 5 (Page 2 of 2). Device Codes for the TERMCODE Option

Code Description
33351 ASCII terminal with APL typewriter-pairing keyboard arrangement.
33352 ASCII terminal with APL bit-pairing keyboard arrangement.
3767 IBM 3767 without the APL feature.
37671 IBM 3767 with the APL feature.
8775 IBM 8775 without the APL feature.
87751 IBM 8775 with the APL feature.
TRACE(nnn)

Provides system diagnostic output during your APL2 session. The option is
intended for use by system programmers in diagnosing system or internal APL2
problems. It is not for use during normal APL2 operation and can significantly
degrade APL2 performance; its use also interferes with normal terminal communi-
cation.

For a description of the TRACE option, see APL2/370 Diagnosis Guide.

WSSIZE(size)

Specifies the amount of contiguous virtual storage in your virtual machine to be
reserved for your active workspace.

size
Integer expressed in bytes, kilobytes, or megabytes, as in the following:
WSSIZE(1048576)

WSSIZE(10624K)

WSSIZE (1M)

The size can also be expressed as a percentage of the CMS virtual machine
size or the TSO logon size. For example:

WSSIZE (40%)

Note: Under MVS/XA*, you can use numbers larger than 100% to obtain an
extended region size larger than your TSO private region.

In CMS, the size can also be specified as a negative amount. In that case, the
workspace allocated is the largest size possible greater than the specified
amount:

WSSIZE(-1M)
WSSIZE (-1024K)

WSSIZE(-40%)

Chapter 2. APL2 Invocation and Termination 31

Minimum size: 16K bytes

Maximum size: APL supports up to 2047 megabytes under CMS and
1008 megabytes under TSO (except that the TSO
VSAM library system imposes a limit of 128 mega-
bytes). The available storage may be limited further by
your system.

IBM-supplied default: 25% of CMS virtual machine size or TSO logon size

You can issue the)QUOTA system command after invoking APL2 to display the
default size of the active workspace. The)QUOTA command is described in
APL2 Programming: Language Reference.

XA(nn)

Identifies the address range from which working storage should be allocated on XA
or ESA systems.

nn One of the following:

24 Working storage should only be allocated below the 16-megabyte
boundary.
31 Working storage can be allocated either above or below the

16-megabyte boundary.

If no XA() value is specified, then working storage is allocated where ever it is
available. On XA or ESA systems, this may be above the 16-megabyte boundary.

IBM does not supply a default setting for XA(). Your installation can supply a
default, or specify an overriding value.

If you are on a system that does not support XA or ESA mode addressing, speci-
fying XA(31) causes invocation to fail.

Even when XA(31) is specified or defaulted, some pieces of working storage must
be allocated below the 16-megabyte line due to macro or access method
restrictions.

Session Termination under CMS

When you enter the system command)OFF or)CONTINUE, APL2 calls the
AP2EXIT EXEC again and processes the commands that reset your terminal for
the continuation of your CMS session. Control then returns to CMS or to the
program or the EXEC that invoked APL2.

APL2 returns return code 0 if an)OFF or)CONTINUE system command suc-
cessfully ended the session.

APL2 returns return code 4 if all sources of input are exhausted but no)OFF or
)CONTINUE system command was encountered. This situation can occur, for
instance, under CMS batch, when there is no system command to end the APL2
session in the input stream. APL2 saves the active workspace in CONTINUE
before terminating if this situation does occur.

32 APL2 Programming: System Services Reference

APL2 returns return code 8 if an error occurs that prevents APL2 from initializing.
This situation can occur, for instance, if there is insufficient storage.

APL2 returns return code 16 if an error occurs after initialization that forces APL2 to
terminate further processing abnormally. This situation can occur, for instance,
when APL2 has part of its program storage over-written by another program.

Any input lines remaining on the AP 101 alternate input stack after)OFF or
YJCONTINUE are available to CMS, unless APL2 was invoked with
TERMCODE(-1).

Session Interruption under CMS

If a system interrupt occurs during your session and you are disconnected, you can
attempt to save any new work since your last) SAVE by reconnecting to your
virtual machine. Do the following:

1. Log on to the same type of terminal you were using before. If you log on to a
different type of terminal, APL2 may be unable to properly process your ter-
minal input and output.

2. If you are reconnected to the control processor (CP), a message similar to the
following appears:

RECONNECTED AT 07:47:31 PDT MONDAY 03/30/92

Your installation can impose a time limit on how long you can be disconnected.
If you do not reconnect within the time limit, CP logs off your virtual machine,
and you lose the contents of your active workspace. When logging back on,
you see the usual initialization messages instead of the RECONNECTED
message.

3. Restore the CP settings established by AP2EXIT EXEC before you attempt to
restart APL2. (When you reconnect, AP2EXIT EXEC is not processed.)

The CP settings in the AP2EXIT EXEC supplied with APL2 for a display ter-
minal are:

TERMINAL APL ON
TERMINAL ATTN OFF (for non-3270 terminals)

4. Enter the CP command:
BEGIN (or B)

This command takes you from CP mode and returns you to your APL2 session.

Session Termination under TSO

When you issue the system command)OFF or)CONTINUE, control returns to
TSO so that you can continue your TSO session. If APL2 was invoked from a
CLIST, the CLIST may regain control if coded to do so.

When APL2 is successfully terminated, any unused lines on the AP 101 input stack
are passed to TSO as if they formed a command procedure (CLIST).

Chapter 2. APL2 Invocation and Termination 33

If APL2 is restarted as a result of a stacked APL2 command, the input stack for the
new session is empty, but any previously stacked lines following the APL2
command remain in the CLIST, which regains control when APL2 terminates again.

Session Interruption under TSO

A line interrupt, repeated attention signals, or a system or operator cancel can force
termination of an APL2 session. An abnormal termination purges lines on the AP
101 input stack. During such termination, however, APL2 attempts to save your
active workspace into a workspace named CONTINUE in your default library.
Your default library is the one identified by the ID invocation parameter.

If you log on again and a CONTINUE workspace exists in your default library,
APL2 displays a message such as the one below, instead of the CLEAR WS
message:

SAVED 1994-03-27 18.22.57 (GMT-4)

Check the contents of the CONTINUE workspace using the)NMS command. If
you want to save the data, you can use the APL2)W SID and)SAVE system
commands to rename and save the CONTINUE workspace. If you do not save
the data and another interrupt occurs, APL2 writes the contents of the active work-
space into the CONTINUE workspace, replacing any previous data.

The CONTINUE workspace is autosaved into the user's default library, which can
be either SAM or VSAM:

e If a WO ddname (or Wnnn ddname where nnn is the default library) was allo-
cated, the CONTINUE is saved in that VSAM library.

 If the autosave into the user's VSAM default library fails, APL2 attempts to save
the CONTINUE workspace into the user's default SAM library.

e Whether or not the first autosave is into the VSAM or SAM default library, APL2
attempts to drop the SAM library CONTINUE workspace, and tries the
autosave again if the autosave into the SAM library fails.

 |f the drop or the second autosave into the SAM default library fails, APL2
attempts to dump the active workspace (as DUMPnnnn) into the user's default
SAM library.

¢ If none of these operations can be done, then APL2 terminates without saving
an active workspace.

If the active workspace was either autosaved or dumped into the user's SAM
default library, the user has to invoke APL2 with a different ID, or without allocating
a VSAM default library in order to retrieve the data. You can allocate other VSAM
libraries while retrieving the data. For example, if your ID was 1001 when the
CONTINUE workspace was autosaved into the SAM library, you could allocate
your normal default library as W1000. This allocation would permit you to resave
the data in your normal default library by specifying library 1000.

When your TSO user ID is not the same as the PREFIX setting of the TSO
PROFILE command, APL2 uses the ddname CONTINUE to access the CON -
TINUE workspace in your default SAM library. Because of this, you can prevent
simultaneous access of the CONTINUE workspace by two TSO users sharing the
same prefix, or by a batch job and your TSO session.

34 APL2 Programming: System Services Reference

Allocate a data set to ddname CONTINUE. If you do not, and you attempt to
access the CONTINUE workspace in your default SAM library, you receive the
error message IMPROPER LIBRARY REFERENCE. If this happens during a
forced session termination, your active workspace is dumped.

If you allocate the ddname CONTINUE and you use the)L IB system command
to list the names of the workspaces in your default SAM library, the name CON -
TINUE appears as the first workspace in the library. All other names appear in
alphabetic order following it. Only during)LOAD and) COPY operations does
APL2 check whether the file allocated to the ddname CONTINUE actually contains
a real APL workspace.

If you use the) DROP system command to drop the CONTINUE workspace in
your default SAM library, APL2 empties the data set allocated to the ddname CON-
TINUE. The empty data set remains allocated, and the name CONTINUE appears
in)L I B reports for your default library.

Chapter 2. APL2 Invocation and Termination 35

Chapter 3. The APL2 Session Manager

36

The APL2 session manager provides a full-screen interface to APL2 for users of
the IBM 3270 family of display stations at installations where the Graphical Data
Display Manager (GDDM) Licensed Program is installed. The APL2 session
manager may be used to enter input and display output in immediate execution
mode. It can be used to respond to [0 and [l prompts. With the line editor, it can
also be used to control input and output in definition mode. The two APL2 editors
are described in APL2 Programming: Language Reference.

Use of the session manager is optional and is controlled by the availability of
GDDM and the value of the SMAPL invocation option: The APL2 session manager
requires GDDM. The default setting for the SMAPL option is TRY (try to invoke the
session manager). If GDDM is available, the session manager is invoked. If
GDDM is not available, the session manager is not invoked.

If the session manager is not used, the terminal is under control of your system's
standard input/output protocol.

When the session manager is used, a session manager profile is automatically
loaded as part of APL2 invocation. The profile contains settings for function keys,
specifications for the display of data, and default settings for copying lines of APL2
I/O to another file.

You can supply the name of the session manager profile to be loaded in the
PROFILE option of the APL2 command. If you do not supply a name, the name
DEFAULT is used. For more information about the session manager profile, see
[‘PROFILE” on page 58| For more information on APL2 invocation, see
FAPL2 Invocation and Termination” on page 8

The APL2 session manager assumes GDDM is installed with EBCDIC code page
351 as the default code page. If your installation has customized GDDM so that
some other code page is the default, then APL characters may not be handled
properly. To correct this you must reset the default with a GDDM external defaults
file. GDDM external defaults files are described in detail in GDDM System
Customization and Administration.

Under CMS, you do this by creating a file on an accessed disk. By default, GDDM
expects the name for this file to be PROFILE ADMDEFS, but this name can be
customized at your installation.

Under TSO, you do this by creating a sequential data set with RECFM(F) and
LRECL(80). Any data set name can be used, but the data set must be allocated as
a specific FILENAME before APL2 is invoked. By default, GDDM expects the data
set to be allocated as FILENAME(ADMDEFS), but this name can be customized at
your installation.

In either case, the file or data set should contain the following record:
ADMMDFT APPCPG=351

Note: The leading blank is required before ADMMDFT.

© Copyright IBM Corp. 1984, 1994

Features of the APL2 Session Manager

When an APL2 session is started with the session manager active, normal input
and output are mediated by the session manager. Editor 2 and AP 126 are inde-
pendent of the session manager.

If the line editor is invoked, the session manager works with the line editor to
control input to the definition of a defined function or operator.

The full-screen interface to APL2 provided by the session manager allows you to:

e Create, modify, and reuse one or more lines of input or output as new lines of
input in immediate execution mode in response to 0 and [1 and in definition
mode with the line editor.

» Define program function (PF) key settings to reduce the need to type commonly
entered lines.

» Tailor the session manager profile to make the session manager more efficient
for you.

e Create a log of APL2 input/output lines to be saved between sessions.
* Print portions of the log.

e Use the features of the IBM 3270 and 3290 series of terminals for scrolling and
other display control facilities.

» Display the seven new APL2 characters on terminals that have the Pro-
grammed Symbol Set (PSS) feature (unavailable on IBM 3277 display stations).
The complete APL2 character set is loaded into a PSS in your terminal when
GDDM is activated. The new characters must be entered at a display terminal
using the printable backspace character, which is activated by entering the
APL2 system command)PBS ON.

If the session manager is not used or if PSS is unavailable, the new characters
are not displayed as expected. The difference in the display of the characters
does not affect the execution of the objects containing new characters.

Session manager keywords and messages can be translated.

The Session Manager Screen

The session manager replaces the standard CMS or TSO screen on your terminal
with its own display screen. The size and position of the session manager screen
in relation to the terminal's physical display screen can be controlled by the SIZE
and ORIGIN operands of the session manager DISPLAY command, described
under [‘DISPLAY” on page 50, The default size and position cause the session
manager screen to completely fill the display screen so that the session manager
alone controls the terminal screen. The session manager screen is illustrated in
|[Figure 6 on page 38|

Chapter 3. The APL2 Session Manager 37

command line

- N

control line

cursor

LINE 1 COLUMN 1 APL2 2.2.00 INPUT
APL?2 2.2.00 (ENGLISH)
CLEAR WS
JLOAD MYWS
SAVED 1993-09-18 12.59.47 (GMT-8)
JENS
ANALYZE REPORT
JVARS
DATA DATA 6 EASTREPS MRKTDEPT VUM PER
REPNAME'S REPS WESTREPS YEAR YRSALES
REPORT DATA
GROUP ITEM 1 ITEM 2 ITEM 3
DEPT A: $12,345.67 $1.00 $50.55 CR
DEPT B: $34.15 $1,234.56 CR $4.500.00
DEPT C: $227.50 $56.789.00 CR
TOTAL : $12,607.32 $1,233.56 CR $52,339.55 CR

/

Figure 6. Session Manager Screen

Command Line: The top row of the screen is the command line at which you
enter session manager commands. For a description of the session manager com-
mands, see FAPL2 Session Manager Commands” on page 43

Control Line: The second line of the screen is the control line, which contains:

e LINE nnnn—the number of the session log line currently displayed on line 3 of

the session manager screen (line 1 of the input/output area). You can enter
any valid session manager LINE command operand after the word LINE.

For valid operands, see[‘LINE” on page 54}
COLUMN—displays either a number or WRAP:

— A number indicates which column of the session manager screen is the
leftmost column displayed on the terminal screen. For example, COLUMN
1 means that the first character of each line appears in screen column one.
COLUMN 40 indicates that the 40th character of each line appears in
column one of the session manager screen. Thus, only the portion of each
line that fits within the current columns is visible, and each row contains
data from a different line.

— WRAP indicates that input or output longer than the width of the screen is
wrapped onto multiple screen rows so that complete lines are displayed,
regardless of whether they are longer than the display width. Thus, one
line can occupy more than one row of the session manager screen.

You can enter any valid operand of the COLUMN command over the current
value displayed after the word COLUMN. For valid operands, see [[COLUMN”
on page 44

Relationship between [Pk and the COLUMN Field: The value of the
system variable [PW, printing width, determines the length of the line stored on
the session manager log file. If the length of an input or output line is greater

38 APL2 Programming: System Services Reference

than the value of OPW, the number of characters displayed on the terminal
depends on the value of the COLUMN field.

— If a number is the value of the COLUMN field, that number designates
which position of each line is displayed in column 1. The width of each line
displayed is either the width of the screen or the width of OPW, whichever
is the lesser value.

— If the value of the COLUMN field is WRAP, the length of the line displayed
is equal to the value of PW. Characters displayed beyond the width of the
screen are wrapped to column 1 of the next line.

User field initially displays the characters APL 2 and the release level you are
using. You can type anything you want in this field. It remains displayed until
you change it, remove it, or end the session.

If the cursor is in this field when you press either Enter or a function key, the
session manager processes the entry in the field as if it were made on the
command line.

In this field you can enter a session manager command that you want to use
several times during the session. For example, to find repeated occurrences of
the character string VALUE:

1. Enter the following in the user field:
FIND /VALUE/
2. Leave the cursor in the user field and press Enter.

3. If the character string exists in the current log file, the line containing the
string is displayed on line 1 of the input/output area. To display the next
occurrence of the string, repeat step 2—leave the cursor in the user field
and press Enter.

For a description of the session manager FIND command, see [‘FIND” o

bage 53

Mode field displays one of the following:
MODE MEANING

INPUT APL2 is waiting for input in the input/output (I/O) area of the session
manager screen. If the cursor is not already in the I/O area, you
can use the terminal's cursor movement keys to position the cursor
in the input/output area, or you can press Enter once or twice,
causing the session manager to position the cursor at the next avail-
able input line.

The session manager indents the cursor six spaces to indicate that
it is prepared for input. You can, however, enter input anywhere on
the screen. You can even type over lines already displayed. For
more information on input lines, see[*Reusing Previous Lines in the]
[Session Log” on page 41] and[Entering Multiple Lines of Input” on]
page 41

RUNNING APL2 is processing input. Processing can include writing to the
screen lines of output generated by your input. You cannot enter
additional input lines in RUNNING mode, but you can signal an
interrupt during RUNNING mode. For more information about sig-

nalling interrupts, see [Appendix H, “Summary of Terminal Informa-|
ion for APL2 Tasks” on page 394

Chapter 3. The APL2 Session Manager 39

RUNNING mode is also displayed when your terminal is interlocked,
because a shared variable specification or reference does not follow
the protocol established by the access control for a variable. In this
case, you must enter an interrupt to return to INPUT mode.

If AP 126, the GDDM processor, issued an ASREAD command
while the session manager is active, RUNNING mode can indicate
that AP 126 is waiting for input.

MORE This is displayed only if the command DISPLAY HOLD OFF was
issued. A one-second delay is in effect before the next screen of
output is displayed. This delay gives you the opportunity to signal
an attention to halt further display.

HOLDING The input/output area of the screen is full and the session manager
has more lines to display.

You must scroll the session manager screen to the newest lines in
your log until there is room on the screen to display the lines. Pro-
vided that your cursor is not in the user field (see above), pressing
Enter without changing any fields scrolls you immediately to the
newest lines. You can also use the LINE or PAGE command or
press a function key set to a scroll command. Under CMS (but not
TSO), you can also use the CLEAR key to scroll to the newest lines.

You can prevent the session manager from entering HOLDING
mode by entering the DISPLAY HOLD OFF command described
under [FDISPLAY” on page 50

During HOLDING mode, you can select displayed lines for reuse as
described in ['Reusing Previous Lines in the Session Log” on|

OFF You ended your APL2 session, but control has not yet returned to
the host system.

Any input you enter during OFF mode is ignored.

Input/Output Area: The input/output (I/O) area (all lines of the session manager
screen except the first two) is where APL2 work is done. You enter input to APL2,
and APL2 displays its output. When you first begin your APL2 session, the 1/O
area normally displays two pieces of information:

1. The first identifies the release level of APL2 and the national language in use.

You can change the national language by specifying ONL T< ' national lan-
guage'. For the available national languages and their appropriate spellings,
see APL2 Programming: Language Reference.

2. The second indicates one of these:
e CLEAR WS toindicate a clear workspace
e SAVED timestamp to indicate that APL2 has loaded a workspace

If a workspace is loaded, it may be one that was saved with the system
command)CONTINUE at the end of a previous session, or it may be
one that was loaded as part of APL2 invocation using the INPUT option.

* Messages resulting from APL2 invocation options such as INPUT,
PROFILE, or DEBUG

40 APL2 Programming: System Services Reference

Entering Multiple Lines of Input
Under the session manager, you can reduce the response time required to process
several lines of input by typing more than one input line before pressing Enter. The
lines are processed in the order in which they appear on the screen (from top to
bottom).

The Session Manager Log

The session manager creates a file, called the session log, containing the lines of
input and output from the session. APL2 adds records to the session log as you
process APL2 statements. During the session, you have online access to this file.

Each line of input and output during the session is recorded in the session log.
Some long input and output lines can be wrapped so that they cover more than one
physical row on the screen, but they create only one logical line in the log. The
length of lines in the log is equal to the value of the system variable, OPW¥. (See
the discussion of the relationship between 0PI and the value of the session
manager COLUMN field on page[38]) The lines in the session log are implicitly
numbered, and scrolling through the log is controlled by line number. For informa-
tion about the wrapping of input and output lines and about scrolling, see the
COLUMN, LINE, and PAGE commands later in this chapter.

The session manager command SUPPRESS can be used to suppress the display
and logging of APL2 output. For a description of this session manager command,
see['SUPPRESS” on page 61}

Note: The only output recorded in the session manager log file is output from
APL2 itself. Output from CMS or TSO, AP 126 screens, and editing done with the
Editor 2 are not recorded in the session log.

Reusing Previous Lines in the Session Log
Because you have online access to the session log, the session manager allows
you to scroll to previous records (lines) and select them for reuse. You can reuse
previous lines by completing two steps:

1. Do one or more of the following:

* Retype a character or blank anywhere on the line

e Key new data anywhere on the line

e Change one or more characters by keying over displayed data
* Insert one or more characters

» Delete characters

2. Press Enter.
After Enter is pressed, the original line from the session log is restored, and the

modified line, including columns not visible, is placed at the end of the session log
and processed.

If you select several lines in the log before pressing ENTER, the lines are proc-

essed as new lines of input in the order in which they appear in the log, not in the
order in which you select them.

Chapter 3. The APL2 Session Manager 41

Scrolling through the Session Log

Scrolling can be controlled by program function (PF) key settings and the LINE,
PAGE, and COLUMN session manager commands described later in this chapter.
Also, if you position the cursor on a line in the session log and then press ENTER
without making any changes to the line, that line becomes the first line shown on
the screen.

Controlling the Size of and Saving the Session Log

The session manager LOG command, described later in this chapter, determines
the size of the session log and whether it is saved after each session.

As supplied by IBM, the session manager log defaults to a size of 8192 bytes (8K),
or about 200 lines, depending on the length of the lines. During installation of
APL2, your system administrator may have changed this default size. You can
change the size using the session manager LOG command, which can be included
in your session manager profile data set.

After changing the size of a permanent session log, you should process the
PROFILE SAVE command to store the size changes in your session manager
profile. Failure to do so can damage the session log and lose all its data.

The session log is normally saved as a file in your default private library. This
permanent log, and the input/output lines, are available the next time you invoke
APL2; this allows you to review work and reuse lines from a previous APL2
session. If, during a session, you create more lines than your log file can contain,
the oldest ones are discarded.

You can use the LOG command to specify that the session manager is to maintain
only a temporary in-storage log file. An in-storage log contains input/output lines
from the current session only. It is not available after)OFF or)CONTINUE.

When you switch from a permanent log to an in-storage log, the permanent log is
deleted. When you switch from an in-storage log to a permanent log, lines in the
in-storage log are not transferred to the permanent log. Therefore, whenever you
switch from in-storage to permanent (or vice versa), the first entry in the log is the
next input/output line of your session.

CMS: Two physical files are required for the session manager log. The session log
files are contained in the private library. The two files both have a file name of
@LOG1 or @LOG2 (the name switches when you change the log size). The file
type and file mode depend on LIBTAB APL2.

42 APL2 Programming: System Services Reference

TSO: The session log is kept in a VSAM cluster that can also contain files proc-
essed by AP 121, the APL2 Data File Processor. If your installation chose a VSAM
library system for APL2 workspaces, the VSAM cluster also contains your default
private APL2 library. For more information about APL2 VSAM files, see [APL2]
[Libraries, Workspaces, and Data Files Under TSO” on page 67|

APL2 Session Manager Commands
The APL2 session manager provides several commands that allow you to:

e Scroll through the session log by lines, pages, or columns

e Search for character strings with the FIND command

e Print (or write to a file) portions of the session log

e Control the size of the log and specify whether it is to be saved

» Set the function keys to provide either APL2 input or issue session manager
commands

e Create or replace a session manager profile, or do both

» Control the display characteristics of the session manager

e Obtain help about the session manager commands

Session manager commands may be issued on the command line of the session
manager screen, in the user field on the control line, or from within APL2-defined
functions using AP 120, the session manager command processor (see

[Chapter 17, “AP_120—APL2 Session Manager Command Processor” on|

page 179).

Session Manager Command Summary

[Figure 7 on page 44]lists each session manager command and its operands and
summarizes the purpose of each command.

Note: All Session manager command name and operand keywords are shown in
uppercase in the following descriptions, and fields to be substituted with user data
are shown in lowercase. In actual usage, keyword characters may be entered in
upper-, lower-, or mixed-case format. Some case restrictions exist for user-
supplied values, and are described with the affected commands.

Command and Operand Abbreviations: Most of the session manager com-
mands and operands that are entered in uppercase letters have valid abbreviations.
The length of an abbreviation varies because of other commands or operands that
begin with the same letters.

The shortest valid abbreviation for each command is given in|Figure 7 on page 44|
and in the command format figure when the command is described in detail. The
shortest valid abbreviation for an operand is given as part of the detailed
description of the operand.

Chapter 3. The APL2 Session Manager 43

Figure 7. Summary of APL2 Session Manager Commands

Command Operands Purpose
COLUMN — Controls the display of lines longer than the width of the session
coL number manager screen.
+number
-number
WRAP
COPY ~ Copies a portion of the session log.
COP ON | OFF
SCREEN
first last
[ID destination] [CODE n]
DISPLAY ~ Controls how the session displays.
DI ON | OFF
CODE n
EDS ON | OFF
HOLD ON | OFF
ORIGIN DEFAULT | row col
SIZE DEFAULT rows cols
FIND /string/ Locates a specific character string in the session log.
Fl
HELP Displays a summary of session manager commands.
HE
LINE Scrolls forward or backward through the session log by line
LI number number.
+number
-number
LOG [SIZE n] [RENUMBER] Controls the session log.
LO
PAGE r Scrolls forward or backward through the session log by a specified
PA +number] number of pages.
-number
PFK . Sets a function key to a specified value.
PF nn [APL] IMMEDIATE [text]
DELAY
PROFILE . Loads, stores, creates, or replaces a session manager profile.
PR LOAD [name]
SAVE [name]
SUPPRESS Prevents display and session log recording of output until APL2
SuU needs further input.
The session manager commands are described in detail below in alphabetic order.

44 APL2 Programming: System Services Reference

The COLUMN command controls how the session manager displays lines of APL2
input and output that are longer than the width of the screen. The current setting is
indicated in the column field in the session manager control line.

The setting of the COLUMN command is included in session manager profiles
created with the PROFILE SAVE command, as described under ['PROFILE” on

COLUMN Command Format

number
COLUMN +number
COL -number

WRAP

COLUMN Command Operands

COLUMN (no operands)
Displays the current COLUMN command setting in the format:

* COLUMN nn
or
* COLUMN WRAP

number
An integer between 1 and 1024 indicating the specific column you want dis-
played on the leftmost edge of your session manager screen. When a number
is specified, lines greater than the width of the screen are truncated on display,
not wrapped.

+number
Number of columns to move the column number setting toward the right (higher
column number).

If you specify a number that would take you beyond column 1024, the session
manager sets the column field to 1024.

-number
Number of columns to move the column number setting toward the left (lower
column number).

If you specify a number that would take you beyond column 1, the session
manager sets the column field to 1.

Spaces between the sign and the number do not affect the command.

WRAP

W Specifies that lines longer than the width of the screen are displayed on mul-
tiple rows. Characters displayed beyond the width of the screen are wrapped
to column 1 of the next line. For more information, refer to the discussion of
the relationship between OPW and the COLUMN field following
on page 38

Entering these operands after the word COLUMN in the column field on row two of
the session manager screen is equivalent to entering the COLUMN command and
the operand on the command line (row one).

See the discussion of the relationship between the value of the OPW system vari-
able and the value of the COLUMN field on page [38

Chapter 3. The APL2 Session Manager 45

COPY

The COPY command enables you to write portions of the session log to either a file
or a printer and to specify a code that determines how the copied data is trans-
lated. Log lines copied to a printer are folded to printer width. Using the COPY
command you can obtain:

e Continuous copy of the APL2 session

e Copy of the terminal screen, including the session manager screen and any
display created by sharing the terminal screen with AP 126, the GDDM
processor

e Copy of a range of lines from the session log
The COPY command is included in session manager profiles created with the

PROFILE SAVE command. Possible settings of the COPY command for the pro-
files are described later in this section.

If you are copying to a GDDM destination and are using a CODE 0, you can over-
ride the default GDDM print control options by using a GDDM nicknames file.

For information on file identifiers and on other copy destinations, see the separate
CMS and TSO discussions following the description of the COPY command oper-

ands.
COPY Command Format
ON
COPY OFF
COP SCREEN [ID destination] [CODE n]
first last
COPY Command Operands

COPY (no operands)
Displays the current setting of the COPY command on the command line in the
format:

* COPY operands

ON
Starts a continuous copy of the APL2 session, beginning with the next line
entered or displayed in the session manager input/output area.

Unless you have previously entered a COPY ID (see the ID operand below),
the COPY ON command requires that you also specify ID destination to tell the
session manager where to send the copy.

OFF
OF
Ends the continuous copy function.

SCREEN

SCR
Specifies that a copy of the current session manager screen is to be copied to
the specified ID destination.

46 APL2 Programming: System Services Reference

first last
Specifies beginning and ending numbers of a range of lines to be copied to the
specified ID destination.

ID destination
Specifies where the copy is to be sent; destination differs for CMS and TSO, as
described below under the appropriate system.

Copy output can be directed to a sequential data set or directly to a 328X
printer. Output directed to a 328X printer is handled by facilities outside of
APL2. For more information, see your system administrator.

If you specify only an ID and destination (and not SCREEN, first last, or ON),
the destination is used for future COPY requests.

If you specify an ID destination (and SCREEN, first last, or ON), the specified
destination is temporarily used. Subsequent copy requests then use the desti-
nation, if any, in your current session manager profile or the destination estab-
lished by the COPY ID command.

On a query of the COPY command (entered without operands), a destination of
asterisk () indicates that no destination has been defined.

CODE n

COD n
nis a number that determines how the copy output is translated. The value of
n depends on whether the output is to be processed by GDDM or by the
system, as specified by the ID destination. (See the CMS or TSO discussion
below.)

e GDDM Processed Output: If the output is to be processed by GDDM, the
data is translated on the basis of what GDDM knows about the type of
output device. In some cases, GDDM has insufficient information about a
device to translate the data properly. For example, an output device that
combines APL characters with a special character set, such as Katakana or
Canadian French, requires a special translate table to ensure that the data
is translated properly.

For a file that is to be processed by GDDM, n identifies a translate table
that is device dependent. The number is passed to GDDM by the
FSOPEN function.

If this parameter is not specified, a default of 0 is assumed, and GDDM
translates the data on the basis of what it can determine about the output
device.

For values other than the default of 0, see GDDM Base Application Pro-
gramming Reference or the person at your installation responsible for the
GDDM program product.

e System Processed Output: If the output is to be processed by the
system and you specify a number, it must be in the range 0 to 9999.

If nis other than 0, APL2 uses it to form a CMS file or TSO module name
APLXnnnn containing a translate table to translate the EBCDIC data of
APL2 to the desired code points for the output device you are using. nnnn
is the number n right justified and preceded by 0's to fill four digits.
APLXnnnn TEXT =* is the name of the CMS file. APLXnnnn is the name of
the TSO load module.

Chapter 3. The APL2 Session Manager 47

Note: If a translate table is not available, the session manager issues an
error message with a return code of 1 54 from AP 126 (copy translate table
unavailable).

Destination under CMS: Under CMS, the destination can be one of the following:

* File name of a GDDM format disk file to be printed later using the GDDM print
utility, ADMOPUV

* File name of a CMS QSAM file identified by the FILEDEF command. The file
can be associated with a particular output device, such as a printer or tape
drive, or the file can default to disk.

GDDM Format Disk File: A GDDM file is created if the destination does not begin
with the three characters APL. For example, either of the following commands
creates the file SAMPLE ADMPRINT A:

COPY ON ID SAMPLE
COPY SCREEN ID SAMPLE

ADMPRINT is the GDDM file type for print files from the GDDM environments

defaults module for VM/SP. Both sample commands use the default CODE 0. In
the case of a continuous copy, the file does not appear in the disk directory until a
COPY OFF or)OFF command is issued, at which time the file is implicitly closed.

After the APL2 session is ended, the file can be printed with the GDDM print utility.

Note: A COPY command for a GDDM file that already exists generates the error
message:

COPY ID ALREADY EXISTS

A different destination must be specified, or the existing file must be erased.

CMS QSAM File: APL2 creates a CMS QSAM file identified by the FILEDEF
command if the destination begins with the letters APL (in upper-, lower-, or mixed-
case format). The IBM-supplied default for the file name is FILE. The destination
becomes the file type. For example, either of the following commands creates the
file FILE APLSAMPL A:

COPY ON ID APLSAMPL
COPY SCREEN ID APLSAMPL

If a FILEDEF command had been issued to associate APLSAMPL with a printer,
the file would be spooled to your virtual printer. Files created by APL2 as a result
of the COPY command contain EBCDIC data and can be printed using normal
CMS procedures, such as the PRINT command, or be routed through the remote
spooling communications subsystem (RSCS). APL characters in the log are pre-
served in the file.

If you use the COPY command to copy log lines and specify a destination of an
existing file, the existing data on the file is overwritten and hence lost. To avoid
overwriting a disk file, explicitly define the file with the CMS FILEDEF command
and specify a disposition of MOD.

Print and tape files must be explicitly defined. To avoid overwriting lines stored on
tape, specify DISP MOD in the FILEDEF command.

48 APL2 Programming: System Services Reference

Data sets allocated to the ddname used in destination can have fixed-length or
variable-length (not spanned) records. If you specify ASA print control in the
FILEDEF, the output is single spaced. Disposition MOD should be specified so that
subsequent COPY commands do not overwrite existing data.

Each line copied from the session log creates a record in this data set. Each
record has a maximum length of 132 characters; session log entries longer than
132 characters create multiple records.

Destination under TSO: Under TSO, destination specifies either:

e [Logical terminal identifier (LTID) for the printer where you want the output
printed

e ddname of a previously allocated data set
The destination name you specify is passed to GDDM, using the FSOPEN call.

Logical Terminal Identifier (LTID): If destination specifies an LTID, GDDM
dynamically creates the data sets necessary to pass the request to the GDDM
output print utility (ADMOPUT). (For details on the GDDM output print utility, see
GDDM User's Guide.)

ddname: |f GDDM does not recognize or accept the destination as a printer
defined when GDDM was installed by the system administrator, APL2 uses destina-
tion as the ddname for a data set. You must allocate the data set before issuing
the COPY command, and you are responsible for printing and disposing of the data
set.

Data sets allocated to the ddname used in destination can have fixed-length or
variable-length (not spanned) records. If you specify ASA print control in the
ATTRIBUTE command, the output is single spaced. Disposition MOD should be
specified so that subsequent COPY commands do not overwrite existing data.

Each line copied from the session log creates a record in this data set. Each
record has a maximum length of 132 characters; session log entries longer than
132 characters create multiple records.

For more information on the TSO ALLOCATE and ATTRIBUTE commands, see
OS/VS2 TSO Command Language Reference.

COPY Command in Session Manager Profiles: The COPY command is
included in session manager profiles created with the PROFILE SAVE command,
as described in FPROFILE” on page 58, To create a COPY command for inclusion
in a profile or to create a COPY command that can be used at another time, you
can specify either of the following: COPY ID destination [CODE n] COPY CODE n[ID
destination]

The first form allows you to enter COPY ON or COPY SCREEN and, optionally,
CODE and number. APL2 uses the predefined destination to determine where to
send the output.

The second form allows you to enter COPY ON or COPY SCREEN and a destina-
tion; thus you should always use the translate table identified by CODE n.

Chapter 3. The APL2 Session Manager 49

DISPLAY

Note: If the destination identifies a file created without disposition MOD specified,
the file is overwritten each time the COPY command is issued.

The DISPLAY command controls several aspects of the session manager screen
configuration. Some of the DISPLAY command options are for experienced APL2
users who program applications that use the GDDM auxiliary processor (AP 126).
These options are noted in the description of the operands.
With the DISPLAY command you can specify:

e Whether or not APL2 output is displayed

e That the session manager should automatically scroll to the newest line in the
log rather than entering HOLDING mode

e The size, shape, and location of the session manager screen as it appears on
the terminal screen

e A code telling GDDM how to translate data for your terminal

The DISPLAY command is included in session manager profiles. For more infor-
mation on session manager profiles, see FPROFILE” on page 58

DISPLAY Command Format
ON
OFF
DISPLAY CODE n]
DI -

EDS ON
OFF

HOLD ON
OFF

ORIGIN DEFAULT
row column

SIZE DEFAULT
rows columns

DISPLAY Command Operands

DISPLAY (no operands)
Displays the current settings of the DISPLAY command on the command line in
the format:

* DISPLAY settings

50 APL2 Programming: System Services Reference

ON
Lines of output are stored in the session log and displayed on the screen.

OFF

OF
Lines of output do not appear on the screen until input is required. Currently
running APL2-defined functions and operators continue to process, and their
output updates the session log, even though it does not appear.

When APL2 requires input that is not satisfied by alternative means (such as
an input stack generated with AP 101), it issues the command DISPLAY ON
and requests the input.

Output from AP 126, from the GDDM Processor, and from the system (both
CMS and TSO) always appears, regardless of whether or not DISPLAY OFF
specified.

CODE n
COD n

is

Identifies the appropriate device-dependent translate table for the terminal. To
identify the translate table, the value of n is passed to GDDM by the GDDM call

ASTYPE.

This option is primarily for APL2 users who need access to graphics that are

not required by and not normally available to APL2 (for example, Katakana and

Canadian French).

If CODE is not specified, n defaults to 0. If the default is used or 0 is specified

for n, GDDM attempts to determine the appropriate value to be used on the
basis of what it knows about the terminal.

The values allowed depend on the GDDM alphanumerics defaults module

defined for your system. Some of the valid values in the module as it is sup-

plied by GDDM are listed in Figure 8. For a complete list of valid codes other

than 0, see GDDM Base Application Programming Reference or the person
responsible for GDDM at your installation.

Figure 8. Some of the Valid DISPLAY CODE Values as Sup-

plied by GDDM
Code Description
0 Use default GDDM code for the device

(session manger default)
1 No additional translation. One-for-one
EBCDIC used for Canadian French or
katakana character sets

3277 IBM 3277 terminal with no APL feature

32771 IBM 3277 terminal with the Data
Analysis-APL feature code 1066

3279 IBM 3276, 3278, 3279, or 3290 terminal with
no APL feature

32791 IBM 3276, 3278, 3279, 3290, or 8775 display
terminal with the APL feature

Chapter 3. The APL2 Session Manager

51

EDS ONIOFF
E ONIOFF
Maintained for compatibility with previous versions of APL.

This operand indicates the value to be used in the TYPE parameter of the
GDDM FSPCRT call. ON indicates TYPE=3; OFF indicates TYPE=0. Under
current releases of GDDM, these values are ignored.

The default is OFF.

HOLD ONIOFF

HO ONIOFF
Determines what the APL2 session manager does when there is data to be
displayed but no space for it in the input/output area.

HOLD ON allows the terminal to enter HOLDING mode. You must scroll
forward to make space in the input/output area.

HOLD OFF specifies that the session manager automatically scrolls to the
newest line in the session log to make space for the output display. There is a
one-second delay before the scrolling takes place (identified by MORE in the
mode field) to give you an opportunity to signal Attention.

The default is ON.

ORIGIN DEFAULTIrow column

OR DEFAULTIrow column
Defines where the upper left corner of the session manager screen appears on
the terminal screen.

The upper left corner of the terminal screen is row 1, column 1. This location is
used when ORIGIN DEFAULT is specified.

row column specified must be a valid row and column for your device type.
Also, see the restrictions below given after the description of the SIZE operand.

SIZE DEFAULTIrows columns

S| DEFAULTIrows columns
Defines the size of the session manager screen to be displayed on the terminal
screen.

SIZE DEFAULT selects the largest size that can be used for the device type.

rows columns are numbers that specify the size of the session manager screen
in rows and columns.

Restrictions: The SIZE of the screen must be at least 3 rows and 39 columns.
ORIGIN must be such that all the defined rows and columns fit on the screen.

Note: On the 3270 and 3290 series display terminals, an attribute byte is
appended to each row. You do not include this byte in the column specifica-
tion, but your terminal screen must be at least one byte longer than the column
specification. Attribute bytes are not included in the session log.

52 APL2 Programming: System Services Reference

FIND

The FIND command searches for a specific string of characters in the session log.

FIND Command Format

FIND /string/
F

FIND Command Operand

Istringl
Specifies the string of characters to be located. No monocasing of characters
is done; they must be entered exactly as they exist in the session log.

The delimiting character, here represented by /, can be any nonalphanumeric
character not included in the string. Invalid delimiting characters include blanks
and national use characters. A complete list of national use characters is pro-
vided in APL2 Programming: Language Reference.

The leading delimiter is required. The terminating delimiter is optional. If the
terminating delimiter is used, trailing blanks after the character string, but
before the delimiter, are significant. For example, the command FIND /ABC
/ (two blanks) locates the result of 54 'ABC ', but not the result of

44 'ABC'. The command FIND /ABC locates either result.

The search initiated by the FIND command begins with the first line previous to the
session log line currently displayed as the top line on the session manager screen.
The search proceeds backward until a match is found.

If a match is found, the session manager automatically scrolls, and the line con-
taining the match becomes the top line of the session manager screen.

Each logical line is searched for the string.

Note: If the command COLUMN WRAP is on, a logical line can occupy more than
one physical row. A match may be found in a wrapped line that crosses the
boundary of a physical row. Matching strings never cross logical line boundaries.

If the top (oldest) line of the session log is reached before a match is found, the
search continues with the last (newest) line in the log until every line in the log is
searched, except the line currently displayed on the top of the session manager
screen.

If the string is not found, the message AP2AFIND437 TEXT NOT FOUND: is dis-
played on the control line. No scrolling occurs, and the FIND command remains
displayed on the command line as entered, preceded by an asterisk (*).

Chapter 3. The APL2 Session Manager 53

HELP

The HELP command displays a list of session manager commands and their
syntax.

HELP Command Format

HELP
HE

In contrast with most other session manager commands, the HELP command has
no operands, and any that can be supplied are ignored.

The session manager portion of the terminal screen is displaced by a display of the
session manager commands and their syntax. [f the display is too wide for the
session manager screen, the output is folded to fit the width of the screen. If there
are more lines than can fit on the screen, you can review the additional lines by
pressing ENTER.

To return to the session manager screen, press ENTER after reviewing the last line
of the HELP display. Or, to return immediately to the session manager screen:

Under CMS: Press PA2.

Under TSO: Press PA1 or ATTN, depending on how your terminal is con-
nected to TSO.

LINE

The LINE command controls scrolling backward and forward through the session
log by line number. The LINE field on the control line of the session manager
screen indicates the number of the line currently displayed as the top line of the
session manager input/output area.

If the LINE command is issued through AP 120 and a line number or number of
lines to scroll is included in the command, then the text of the line scrolled to is
returned in the DAT variable if a 0 O return code is returned in the CTL variable.

LINE Command Format

number
LINE +number
LI -number

54 APL2 Programming: System Services Reference

LOG

LINE Command Operands

number
Number of the line in the session manager log to be displayed on the top line
of the session manager screen.

+number
Number of lines to scroll toward the newest line in the session log (scrolling
forward).

-number
Number of lines to scroll toward the oldest line in the session log (scrolling
backward).

Entering any of these operands after the word LINE on the control line is equivalent
to entering the full LINE command on the command line.

The LOG command controls the use and size of a permanent session log.

LOG Command Format

LOG [SIZE n][RENUMBER]
LO

LOG Command Operands

LOG (no operands)
Displays the current setting of the LOG command in the format:

* LOG SIZE n

SIZE n

Sin
n is the number of bytes to be allocated to the APL2 session log. If nis 1 or
more, the session manager can round up the size by as much as 4K bytes.
The APL2-supplied default, which may be changed during installation, is
approximately 8K bytes.

SIZE 0 specifies an in-storage log, which means that the log is not saved at the
end of the session. There is no way to control the size of the in-storage log.

Note: Once SIZE 0 has been specified, it is not possible to resume use of the
permanent session log during that same APL2 session.

If nis greater than 0, a permanent session log is maintained, and the SIZE
operand can be changed during the session. If you change it to a size smaller
than the current log size, the oldest lines in the log are discarded so that new
lines can be added to the log file. If you do not want a permanent session log,
specify LOG SIZE 0 and the log is deleted.

After changing the size of a permanent session log, you should process the
PROFILE SAVE command to store the size changes in your session
manager profile. Failure to do so can damage the session log and lose all its
data (error message AP2AINI439 Session log file replaced).

Chapter 3. The APL2 Session Manager 955

RENUMBER (R)
Specifies that the lines in the session log are to be renumbered. The oldest
line in the log becomes line 0, and the remaining lines are renumbered sequen-
tially.

SIZE and RENUMBER may be entered independently, or both may be part of the
same LOG command. Either operand can be specified first.

If a log does not already exist at the start of a session, a permanent log is always
created unless:

e LOG SIZE 0 is specified in the default VSAPLPR file
e Under CMS there is no writable private library disk

e Under TSO there is no allocated FO library

e The private library or disk is full

e An /O error occurs trying to create the file

For more information on the session manager log under CMS and TSO, see [The]
Session Manager Log” on page 41| and also Chapter 4.

PAGE

The PAGE command controls scrolling backward and forward through the session
log by a specified number of pages. A page is defined as the number of rows
displayed in the input/output area of the session manager screen. (For information
on defining the size of the session manager screen and where it is displayed, see
[‘'DISPLAY” on page 50})

PAGE Command Format

PAGE +number
PA -number

PAGE Command Operands

+number
Number of pages to scroll toward the newest line in the session log (scrolling
forward).

-number
Number of pages to scroll toward the oldest line in the session log (scrolling
backward).

The number may be expressed with a decimal point. The number can be viewed
as:

number x rows in input/output area

The number you specify is rounded to the nearest number of screen rows. At least
one line is scrolled even if PAGE +0 is specified.

56 APL2 Programming: System Services Reference

PFK

The PFK command controls the setting of the program function (PF) keys for the
session manager. The PFK command for each function key can be changed at
any time during the APL2 session. The PFK command for each function key is
also saved in session manager profiles created with a PROFILE SAVE command.
For information on session manager profiles, see fPROFILE” on page 58

PFK Command Format

PFK nn [APL] IMMEDIATE [text]
PF DELAY

PFK Command Operands

PFK (no operands)
Displays the current setting of all 24 function keys.

The display shows settings for function keys 1 through 24, even when your ter-
minal has only 12 function keys.

The output from the PFK command with no operands replaces the area of the
terminal defined for the session manager screen. If the output is too wide for
display in the area, the lines are folded; if there are more lines than can be
displayed on the screen, the remaining lines can be reviewed by pressing
ENTER.

To return to the session manager screen, press ENTER after reviewing the last
line of the PFK display. Or, to return immediately to the session manager
screen:

Under CMS: press PA2.

Under TSO: press PA1 or ATTN, depending on how your terminal is con-
nected to TSO.

nn A number from 1 through 24, representing the function key to be queried or set
by the command. PFK nn with no other operands displays the setting of the
specified function key.

APL
A Indicates that the next operand sets input for APL2 to be activated by the func-
tion key specified by nn.

APL is required if the text operand specifies an APL2 input line.

If specified, it must be the first operand following the function key number.

IMMEDIATE
IM Indicates that the result of pressing the function key is to be as if the text were
typed in the appropriate area and ENTER were pressed.

IMMEDIATE is the default.

DELAY

DEL
Indicates that the text for the function key is to be displayed in the appropriate
input area with the cursor positioned following the text.

Chapter 3. The APL2 Session Manager 957

DELAY allows you to press ENTER to activate the entry without change, or to
modify the text before pressing ENTER.

text
Input is to be entered when the specified function key is pressed.

Any line of APL2 input or any session manager command can be specified. No
monocasing of characters is done; they are retained exactly as entered.

If an APL2 input line is specified, the APL operand must be specified as the
first operand following the function key number.

To set a function key to move the cursor to the session manager input/output area,
specify:

PFKnn APL DELAY

The following sets a function key to move the cursor to the session manager
command line. (In the default session manager profile supplied by IBM, this
command has been assigned to PF2.)

PFKnn DELAY

PROFILE

The PROFILE command allows you to load a session manager profile and to save
the settings of the following session manager commands to create a new profile or
to replace an existing one:

e COLUMN
 COPY

DISPLAY

e LOG

e PFK 1 through 24

These commands are saved automatically by the command PROFILE SAVE, but
any session manager command can be placed in a session manager profile by
using a CMS or TSO editor to edit the file that contains the profile.

58 APL2 Programming: System Services Reference

PROFILE Command Format

PROFILE SAVE [name]
PR LOAD [name]

PROFILE Command Operands

PROFILE (no operands)
Displays the command settings that are currently in effect and that would be
saved with the PROFILE SAVE command.

The output from the PROFILE command with no operands replaces the area of
the terminal screen defined as the session manager screen. |If the output is too
wide for the area, the lines are folded; if there are more lines than can be dis-

played on the screen, the remaining lines can be reviewed by pressing ENTER.

To return to the session manager screen, press ENTER after reviewing the last
line of the PFK display. Or, to return immediately to the session manager
screen:

Under CMS: Press PA2.

Under TSO: Press PA1 or ATTN, depending on how your terminal is con-
nected to TSO.

SAVE

SA
Stores a copy of the current settings of the COLUMN, COPY, DISPLAY, LOG,
and PFK commands under the name specified.

LOAD

LOA
Retrieves a copy of the session manager profile identified in name and proc-
esses the commands in it.

name
Name of the file containing the settings to be saved or loaded. The name must
begin with an alphabetic character and be no more than eight characters long.
Alphabetic characters can be entered in upper-, lower-, or mixed-case format,
and are treated as uppercase. If you do not specify a name, DEFAULT is
assumed.

Under CMS: name is the file name of the CMS file containing the profile. The
IBM-supplied default file type is VSAPLPR, but this file type may have been
changed by your system administrator during installation of APL2.

When saving a profile, the session manager uses file mode A. For example, if
the session manager command PROFILE SAVE MYPROFIL were issued, the
full name of the CMS file containing the saved profile would be

MYPROFIL VSAPLPR A.

A profile to be loaded can be on any accessed disk. When PROFILE LOAD
name is specified, the disks are searched in standard CMS search order until a
file with the proper file name and file type is found.

Under TSO: name specifies the second-level qualifier of the data set con-
taining the profile to be stored or loaded. The IBM-supplied default third-level

Chapter 3. The APL2 Session Manager 59

qualifier of a profile data set is VSAPLPR, but your installation may have
changed this name.

When saving a profile, the session manager uses your TSO profile-prefix as the
first-level qualifier of the data set. For example, if your TSO profile-prefix
(which may be the same as your TSO logon user ID) is GB02 and if you issue
the session manager command PROFILE SAVE MYPROFIL, the fully-qualified
name of the saved data set is GB02.MYPROFIL.VSAPLPR.

If the named profile is not found using your profile-prefix, a data set with the
name publib.name.VSAPLPR is searched for, where publib is your installation's
default public library workspace qualifier. The IBM-supplied default library iden-
tifier for workspaces in public libraries is AP2V2R02. The fully-qualified data
set name for the profile in the example above is therefore
AP2V2R02.MYPROFIL.VSAPLPR.

Normally, the session manager automatically processes a PROFILE LOAD
command as part of APL2 invocation when the session manager is used. You can
supply the name of the session manager profile to be loaded in the PROFILE
option of the APL2 command. If you do not enter a PROFILE option, the profile
name DEFAULT is used. If you enter the PROFILE option without a name, that is,
PROFILE(), the initial PROFILE LOAD command is suppressed. For more informa-
tion on APL2 invocation, see [Chapter 2, “APL2 Invocation and Termination” on|

Default Session Manager Profile: As supplied by IBM, the default session
manager profile contains the commands and default settings listed in
[bage 61 Your system administrator may have changed the default profile during
installation.

60 APL2 Programming: System Services Reference

SUPPRESS

COLUMN WRAP

COPY OFF ID * CODE 0

DISPLAY ON EDS OFF HOLD ON ORIGIN DEFAULT SIZE DEFAULT CODE 0
LOG SIZE 8140

PFK1 IMMEDIATE HELP

PFK2 DELAY

PFK3 APL DELAY)LOAD

PFK4 IMMEDIATE COPY SCREEN
PFK5 IMMEDIATE SUPPRESS
PFK6 APL DELAY)SAVE

PFK7 IMMEDIATE PAGE -1

PFK8 IMMEDIATE PAGE +1

PFK9 APL DELAY ~0LC

PFK10 IMMEDIATE COLUMN -40
PFK11 IMMEDIATE COLUMN +40
PFK12 APL DELAY -

PFK13 IMMEDIATE HELP

PFK14 DELAY

PFK15 APL DELAY)LOAD
PFK16 IMMEDIATE COPY SCREEN
PFK17 IMMEDIATE SUPPRESS
PFK18 APL DELAY)SAVE
PFK19 IMMEDIATE PAGE -1
PFK20 IMMEDIATE PAGE +1
PFK21 APL DELAY ~[LC

PFK22 IMMEDIATE COLUMN -40
PFK23 IMMEDIATE COLUMN +40
PFK24 APL DELAY -

Figure 9. Default Session Manager Profile

The SUPPRESS command prevents the display of all output on the terminal screen
and stops all output to the session log until the next input prompt that requires a
response from the keyboard. For example, if you process an expression that gen-
erates more output than you care to look at, you can enter the SUPPRESS
command when your screen goes into HOLDING mode; the remaining output is
abandoned.

Chapter 3. The APL2 Session Manager 61

SUPPRESS Command Format

SUPPRESS
SuU

The SUPPRESS command has no operands.

The DISPLAY OFF command is similar to the SUPPRESS command, except that
DISPLAY OFF generates the output and records it in the session log, but does not
display it on the screen. SUPPRESS cancels output completely.

Session Manager Messages

If an error is detected in the processing of a session manager command, the
command in error is displayed on the command line preceded by an asterisk (*);
the cursor is positioned below the asterisk. A message describing the error is dis-
played on the control line. To reissue the command, delete the asterisk, correct the
entry, and press Enter. If you press Enter without deleting the asterisk, the session
manager command and control lines are restored to the values that existed prior to
the erroneous session manager command.

Session manager messages, their causes, and suggested responses are described
in APL2/370 Messages and Codes.

Note: Under CMS, if you are using the session manager or another full-screen
application such as AP 126 or an editor, CP messages may not be displayed
immediately, but are instead displayed at the end of the session or when you press
PA1.

62 APL2 Programming: System Services Reference

Chapter 4. APL2 Libraries: Workspaces and Data Files

Workspaces that you or other APL2 users have saved, files used by the APL2 data
file processors, and session manager log files are stored in libraries that are identi-
fied to APL2 by a library number. Library numbers can range from 1 to 9999999.

Workspaces files are created by the)SATVE system command to store the current
workspace's contents. They are used by the)LOAD,)COPY, and)PCOPY
system commands to retrieve the contents of previously saved workspaces.

APL2 data files are used by auxiliary processor 121 and Processor 12 to hold appli-
cation data. They can contain arbitrary APL2 arrays.

Session manager log files are used if the session manager LOG command speci-
fies a nonzero value. They provide a permanent record of APL2 sessions.

The remainder of this chapter is divided into two sections. The first section dis-
cusses APL2 libraries under CMS. If you are a TSO user, skip to the second
section, [YAPL2 Libraries, Workspaces, and Data Files Under TSO” on page 67|

[Appendix F, “APL2 Files and Data Sets” on page 381| lists files and data sets that
are used for creating and modifying APL2 libraries.

APL2 Libraries, Workspaces, and Data Files under CMS

APL2 workspaces, data files, and session manager log files are CMS files. Each of
these files is associated with an APL2 library number. Your default private library
number is +0JATI. Each APL2 library number is associated with a virtual disk. The
association of a library number to a virtual disk is defined in a sequential CMS file
with the file name and file type of LIBTAB APL2.

You should have access to a LIBTAB APL2 file, whether on your A disk or on a
system disk. The system LIBTAB APL2 file is usually on the same disk that con-
tains the APL2 executable modules. To use a workspace or an APL2 data file, the
library number must be defined in LIBTAB APL2.

If you do not have access to a LIBTAB file, the system behaves as if you had the
sole entry PRIVATE 0 @ A as your LIBTAB file. Each record in the LIBTAB APL2
file contains:

e Type of library (public or private)
e Numeric library identification (one library number or a range of library numbers)
e Disk address of each library

Each APL2 user can have available a LIBTAB APL2 file tailored for that user's
exclusive use. This personal LIBTAB file could define libraries for a specific appli-
cation whose universal access is undesirable.

To create your own LIBTAB file, follow this procedure:

1. Copy the LIBTAB APL2 file from your installation's system disk to one of your
own disks.

© Copyright IBM Corp. 1984, 1994 63

2. Update the file to define new libraries (see [Updating LIBTAB APL2 to Create]
[New APL2 Libraries’).

3. Ensure that the disk containing your own LIBTAB file is accessed before (in
CMS search order) the system disk that contains the system LIBTAB file.

Updating LIBTAB APL2 to Create New APL2 Libraries
The format of the records in the LIBTAB file is:

library-type library-number(s) library-address

library-type
Is either PUBLIC or PRIVATE. It can be shortened to the first three characters
(PUB or PRI).

library-number(s)
Identify one number or a range of numbers. If a range, the first and last
numbers are specified in a pair of parentheses. The first number must be less
than or equal to the last number; a specified 0 means the first element of JAT.

library-address
Identifies the CMS disk on which the libraries reside. There are two different
formats for the library address:

@ file mode
or
owner device [link-mode]

The components of the library address are:

@ file mode The @ sign indicates a previously accessed disk.
The file mode specifies the virtual disk on which the
library resides.

owner device CMS user ID of the owner of the disk, and the virtual
device address of the disk in the owner's VM direc-
tory.

link-mode The link-mode for writing, used in the CP LINK

command. The default is "W".

Note: Both forms of the library address can be used for the PUBLIC and
PRIVATE library types.

Figure 10 is a listing of a sample LIBTAB APL2 file.

PUBLIC (1 2) @ Y

PUBLIC (3 99) @ K

PUBLIC (1002 2000) JONES 393
PRIVATE 1001 @ A

PRIVATE 3001 @ Q

PRIVATE 2000 LEE 191 M
PUBLIC 314159 LOPEZ 192 W

Figure 10. Sample LIBTAB APL2 File

64 APL2 Programming: System Services Reference

Accessing Libraries, Workspaces, and Data Files

To be able to access the contents of an APL2 library, the LIBTAB APL2 file must
point to the disk on which the library is defined and APL2 must have the appro-
priate access (for example, read/write or read only) to the virtual disk that the
LIBTAB file specifies as the residence of the library.

APL2 can access libraries in either of two ways, depending on their definition in
LIBTAB APL2.

 If the LIBTAB entry indicates that the library is on a virtual disk accessed as a
specific file mode, APL2 assumes that a disk with that file mode has already
been accessed and merely reads or writes workspace records using the given
file mode.

 If the LIBTAB entry specifies a specific disk address belonging to a specific
user, APL2 dynamically links to the disk and accesses it with an unused file
mode, reads or writes as necessary, and then releases the disk.

When you use the APL2 system commands, you must include the library number if
you want to access a library other than the library specified (or defaulted to) in the
ID option of the APL2 invocation command.

Because the file type for all private workspaces is the same (the default file type is
APLWSV2), it generally serves no purpose to define more than one private library
on the same virtual disk. You might inadvertently lose a workspace saved in one

library that has the same name as a workspace saved in another library. The file

name, file type, and file mode of the workspaces would be the same.

Public libraries can be shared by several APL2 users. Because workspaces and
files in public libraries have file types that vary depending on the library number,
many public libraries can be mixed on one disk.

Workspace Names
Each stored APL2 workspace is a CMS file on the disk defined by the LIBTAB

APL2 file. A workspace file can be deleted, copied, renamed, and so forth through
the facilities of CMS, but the file is unintelligible outside of APL2.
The file mode of a workspace file is defined in LIBTAB APL2.

The file name and file type are:

PRIVATE WORKSPACE: wkspcname APLWSV2
PUBLIC WORKSPACE: wkspcname V'nnnnnnn

wkspcname is the 1- to 8-character workspace name you specified through the
)SAVE or)WSID system commands.

The last two characters (V2) of the 7-character file type for private libraries and the
first character (V) of the 8-character file type for public libraries can be changed by
your installation. The sixth character of the file type for private libraries is always
the first character of the file type for public libraries. nnnnnnn is the library number,
padded with leading Os.

Chapter 4. APL2 Libraries: Workspaces and Data Files 65

Data File Names
Each APL2 data file is a CMS file on the disk defined by the LIBTAB APL2 file. A

data file can be deleted, copied, renamed, and so forth through the facilities of
CMS, but the file is unintelligible outside of APL2.
The filemode of a data file is defined in LIBTAB APL2.

The file name and file type are:

PRIVATE DATA FILE: filename VSAPLFL
PUBLIC DATA FILE: filename Fnnnnnnn

filename
Is the 1- to 8-character file name specified in AP 121 create command or the
Processor 12 VA expression.

nnnnnnn
Is the library number specified and includes leading zeros to pad the name to
eight characters.

Note: Your installation may have changed the default file types used for APL2
data files. Check with your system administrator.

Transfer Files under CMS
Data from an active APL2 workspace can be written to a transfer file through the
)OUT system command. Data in a transfer file can be read into an active work-
space through the) I NV system command. Transfer files generally require less
storage space than a workspace, but use more processing time while reading and
writing.

When you use the) 0UT command to write a transfer file, a sequential CMS file is
created. If you specify only a file name in the command, the file type defaults to
APLTF and the file mode defaults to A.

With the) IV command, the standard CMS disk search order is used to find the
specified name.

You can specify the full file name, file type, and file mode of a file created or
retrieved with the) I N and) 0UT commands by separating the three components
with periods (or dots).

For example, the command)OUT MYFILE creates a file whose complete name
is MYFILE APLTF A. The command)OUT MYFILE .MINE .L creates a file
with the name MYFILE MINE L (provided that the L disk was accessed, along with
write access).

The) IN command, when specified with only a file name, retrieves a workspace

with the default name of file name APLTF * (where * is whatever disk pertains to
the standard CMS search order).

66 APL2 Programming: System Services Reference

To retrieve a transfer file with a file type and file mode other than the default, enter
the file's name, type, and mode separated by periods. For example, to retrieve
transfer file MYFILE WKSP L, enter:

)IN MYFILE.WKSP.L

Library Passwords

You cannot protect individual workspaces or AP 121 files through the facilities of
APL2. Instead, you must use the security features of VM by assigning passwords
to the virtual disk containing the libraries you want to protect from unauthorized
reading or writing. You can specify virtual disk passwords on the APL2 system
commands, and the passwords are passed to VM for verification. If you do not
specify a password when one is required, VM prompts you for it.

APL2 Libraries, Workspaces, and Data Files Under TSO

Libraries are divided into three groups according to their number. All libraries num-
bered below an installation defined maximum are treated as public libraries.

Private libraries can be numbered either 1001 or 404 I depending on access
method. All libraries numbered between the installation defined maximum and
9999999 (except for private libraries) are treated as project libraries. Users can
obtain the installation defined maximum by using the) USER built-in command of
AP 100 (its range is 1 to 32767). For more information on the) USER command,
see|Chapter 10, “AP 100—Host System Command Processor Under CMS” on|

Under TSO, workspace libraries are handled separately from file libraries.

File libraries are always stored in virtual storage access method (VSAM) clusters.
They are used for:

¢ Associated Processor 12 APL files

e AP 121, the APL2 Data File Processor, files
e Permanent session manager log files

e)COPY work files

The discussion here does not apply to files accessed by AP 123, the VSAM file
processor. AP 123 does not manage files in terms of APL2 libraries.

Workspaces can be stored either in VSAM clusters or in individual sequential data
sets. You must allocate a specific file name for each library that is to be accessed
in a VSAM cluster. See [‘Accessing VSAM Libraries” on page 69, for more details.
For any other library numbers, sequential (SAM) files are used. Your installation
may have provided TSO logon PROCs or CLISTs that allocate files for the VSAM
libraries you are using.

APL2 does not attempt to calculate workspace library information under TSO. Both
current and limit values are returned as 0 in)QUOTA.

Chapter 4. APL2 Libraries: Workspaces and Data Files 67

Virtual Storage Access Method (VSAM) Library System

When VSAM is being used, each APL2 library number is associated with one or
two VSAM clusters. Workspaces are stored separately from files. Workspace
library ddnames always begin with a W, while file library ddnames begin with an F.
[‘Accessing VSAM Libraries” on page 69| describes these ddnames further.

For both workspace and file libraries, 4+0A I is used as a private library number.
Private, project, and public libraries are distinguished by their capability to be
shared:

» Private libraries can be read by others, but cannot be written into by any other
user during your APL session or dynamically deallocated.

» Public libraries can be written into by multiple users (one at a time), but cannot
be dynamically deallocated (TSO FREE)

* Project libraries can be written into by multiple users (one at a time) and can be
dynamically deallocated

The additional sharing capabilities of public and project libraries result in additional
overhead during their use, with project libraries having more overhead than public
libraries. You should keep this in mind when choosing library numbers, and use
public, or especially project, numbers only when sharing is required.

Your private file library is especially important to you if you intend to use the APL
session manager, because this is where the session manager's permanent log is
kept. If you do not have a private file library, your session manager log is main-
tained for the current session only.

You should normally allocate CPYSPILL and CPYSWAP files for work files created
during)COPY,)MCOPY, and) PCOPY processing. If you have not done so,
and you do have a private file library allocated, the system attempts to allocate
work files there during copy operations.

Creating APL2 VSAM Libraries
Your installation may have supplied VSAM libraries for your use. If so, you need
not be concerned with this section.

The DEFINE command of access method services must be used to create a VSAM
cluster for each APL2 private, project, and public library. The file must have a key-
sequenced organization, with key length 14, offset 0. The data set name can be
any allowed by MVS. Figure 11 shows the format of the DEFINE command to
create a VSAM cluster for an APL2 library.

DEFINE CLUSTER (NAME (dataset.name) VOLUME(volid)
RECORDS (primary secondary) SHR(2) SPEED)
INDEX (IMBED REPL)
DATA (KEYS(14 0) CISZ (4096) RECSZ(1024 4088))
CATALOG (name)

Figure 11. Access Method Services DEFINE Command for APL2 Libraries

68 APL2 Programming: System Services Reference

You may be able to model a new library on an existing one. Figure 12 shows the
format of a DEFINE command.

DEFINE CL(NAME (dataset.name)
RECORDS (primary secondary)
MODEL(old.dataset))

Figure 12. New Library Based on Access Method Services DEFINE Command

The primary and secondary fields shown in Figure 11 and Figure 12 tell access
method services how much space to reserve initially for the cluster, and by how
much to expand it, if it overflows. The unit of space is the first number after
RECSZ. If, for example, you follow the above form and specify RECORDS(500
100), the cluster is created with 500K bytes of space, and expanded in increments
of 100K bytes as necessary.

You need to estimate the amount of data you intend to store in the library.
RECORDS(500 100) may be reasonable for a private file library if you do not have
private AP 121 files, but it would probably not be large enough for a workspace
library.

You need to specify SHR(2) because APL2 does not support SHR(3) or SHR(4).
SHR(1) is supported, but unnecessarily restrictive. It prevents any update to public
libraries that have been accessed by another APL2 user (until APL termination) and
may prevent a user from accessing his own private library.

You may want to place password protection on the library. This can be done when
the cluster is first defined or later changed by the ALTER command of access
method services. Password protection can only be placed on the entire library, not
on individual workspaces or files.

Accessing VSAM Libraries

Use the TSO ALLOCATE command to allocate a library to your TSO session. The
allocation can be done in TSO mode or during an APL2 session. In most cases,
the libraries you use should be allocated automatically by your TSO logon PROC or
by a CLIST. In a batch TSO session, the JCL DD statement can also be used.

The ddname of the cluster must be specified as Wnnnnnnn for workspaces, or
Fnnnnnnn for files, where nnnnnnn is the library number without leading Os.

Note: This ddname should not be confused with the term “filename” as used in
Chapter 18, “AP 121—APL2 Data File Processor” on page 182 and [Chapter 30,
“Processor 12—Files as Arrays” on page 352 A ddname describes a library that
can contain many individual workspaces or AP 121 files.

As a special case, WO and FO can be used to name your private workspace and
file libraries. On all private library references, APL2 first looks for a WO or FO
ddname, whichever is appropriate. If that ddname is not found, it looks for the
corresponding Wnnnnnnn or Fnnnnnnn ddname, where nnnnnnn is the first item of
OAI. For an example of the ALLOC command see Figure 13.

ALLOC F(FO) DA(dataset.name) REU

Figure 13. ALLOCATE for Private Files and Session Log

Chapter 4. APL2 Libraries: Workspaces and Data Files 69

After a library is allocated to your session, each time you)SAVE a new workspace
or create an APL2 data file in the library you add records to the VSAM file. The 1-
to 8-character workspace name you specify on an APL2 system command, or the
file name you specify in an AP 121 command or Processor 12 ONA expression, is
recorded by VSAM to associate the new records with the correct workspace or file.

If the library is password protected, you must supply the password to access any
file or workspace in it. VSAM passwords can be specified on the APL2 system
commands, and are passed on to VSAM for verification. If you do not specify a
password when one is required, or give an incorrect value, VSAM prompts you for
it (unless your TSO PROFILE specifies NOPROMPT). If the library is RACF* pro-
tected, you must have access authorization.

Using ALLOCATE to associate a library number with any desired data provides a
flexible design with both advantages and dangers. For example, it allows you to
access another user's private library as a project library for your session, or to have
a nonstandard set of public libraries.

If your installation is using the Hierarchical Storage Manager (HSM), you should be
aware that VSAM clusters are staged as a unit. HSM cannot separate active work-
spaces or files from inactive ones within a library.

Sequential Access Method (SAM) Library System

This discussion applies only to workspaces. File libraries under TSO are always
stored in VSAM clusters.

Under the sequential library system, each saved workspace is stored as an indi-
vidual MVS sequential data set. The data set name is generated by APL2, and
includes both the library number and workspace name. This means that project
and public libraries are known globally to the system. Specifically, all users of the
same MVS master catalog and the same APL2 load module have project and
public libraries containing the same data.

The data set names for private library workspaces include the user's TSO
PROFILE PREFIX. This gives each user, or group of users with a common prefix,
a unique private library. It also means that, if you change your PROFILE PREFIX,
your private library seem to disappear and be replaced with a different one.

Library 1001 is always your private library, regardless of +JAI. It allows you to
share workspaces on the same basis as shared variables. That is, the left argu-
ment of SV O used to share a variable with a user is the same as the library
number used to load a workspace that the user saved without qualification.

70 APL2 Programming: System Services Reference

New libraries are created automatically by the first user to save a workspace in
them. After it is created, a project library is “owned” under the TSO PROFILE
PREFIX of the user who created it. No user can) SAVE workspaces in the library
or) DROP them from it unless the PROFILE PREFIX matches. Ownership is
retained, even if all workspaces in the library are) DEO Ped, until the special
system command)DROP libno OWNERSHIP is issued. Installations can set
other controls, independent of PROFILE PREFIX, which limit an individual user's
access to certain library numbers. The distinction among private, public, and
project libraries is that:

e Your private library can only be accessed by someone having the same
PROFILE PREFIX that you do, and can only be accessed as that person's
private library.

* A project library is owned by a single PROFILE PREFIX, but can be used by
others.)SAVE and) DROP authority can be extended to others in a limited
group, but is normally limited to the owner.

e A public library is owned by the system. It is not normally modifiable except by
a system administrator.

Workspaces can be password protected by the TSO PROTECT command. Pass-
words can be specified on the APL2 system commands, and are passed on to
MVS for verification. If you do not specify a password when one is required, or
give an incorrect value, MVS prompts you for it (unless your TSO PROFILE speci-
fies NOPROMPT). If the workspace is RACF protected, you must have the appro-
priate access authorization.

Workspace Names

Fully-qualified names for all APL2 workspace data sets consist of three qualifiers.
Different formats exist for workspaces in each type of library, but all library types
(private, project, and public) have as the third-level qualifier the 1- to 8-character
workspace name given on APL2 system commands.

Figure 14 shows the format of the data set name for each of the three types of
libraries. In the figure:

» The letters APL2 in the first-level index can be changed by your installation to
a different qualifier.

e The letter V in the second-level index can be changed by your installation to
another letter or letters.

e nnnnnnn is the library number of a project or public workspace. Because a
user can have only one private library, the number of the private library is not a
part of the private workspace second-level qualifier.

Figure 14. Data Set Names for Workspaces in a Sequential Library System

Library Type Level 1 Level 2 Level 3

PRIVATE user's-profile-prefix Vv workspace-name
PROJECT owner's-profile-prefix Vnnnnnnn | workspace-name
PUBLIC APL2 Vnnnnnnn workspace-name

Chapter 4. APL2 Libraries: Workspaces and Data Files 71

CONTINUE workspace

In most cases the CONTINUE workspace is handled just like other workspaces in
your default library. It can be)L OADed,)SAVEd, or)DROPped explicitly, and is
displayed as a part of that library by the) LT B command. It is, of course, handled
specially at the beginning and end of your APL2 session, as described in APL2
Programming: Language Reference.

If, however, you are using TSO batch, or your TSO user ID is not the same as the
PREFIX setting of the TSO PROFILE command, APL2 uses a CONTINUE
ddname, which you must allocate, to access the CONTINUE workspace. This is
done so that you can prevent conflicting usage of the CONTINUE workspace by
two TSO users sharing the same prefix, or by a batch job and your interactive TSO
session.

e Create a sequential file that can be used to contain future CONTINUE work-
spaces for batch sessions or your interactive sessions if you do not have a
unique PREFIX. The easiest way to do this is online in a TSO APL2 session:

)CLEAR
JWSID 1001 CONBATCH
)SAVE

This normally creates a data set named prefix.V.CONBATCH, but you can
verify the name by entering the command)H0ST APL WSNAME 1001
CONBATCH. Actually, the data set name is arbitrary for most purposes, but
using this technique makes it possible in an interactive session to load a CON -
TINUF that was saved in a batch session. The use of CONBATCH is com-
pletely arbitrary, but it is used in the examples provided.

Note: If)HOST APL WSNAME does notreturn a data set name that ends
with CONBATCH, then you probably have a VSAM library currently allocated
as W1001, and the above sequence does not work.

 Either before or after invoking APL2, ALLOCATE FI(CONTINUE)
DA(V.CONBATCH). If you do not, and you attempt to)LOAD,)SAVE, or
)JDROP CONTINUE, error message IMPROPER LIBRARY REFER-
ENCE is displayed. If your session ends with)CONTINUE, or MVS forces
session termination, and you have no CONTINUE ddname allocated, APL2
attempts to save a DUMPnnnn workspace, and the following message is dis-
played:

YOUR WORKSPACE HAS JUST BEEN DUMPED TO WORKSPACE DATA
SET DUMPnnnn

In all of these cases,)YORE message DDNAME CONTINUE REQUIRED
BUT NOT ALLOCATED is queued.

* You can issue)DROP against a CONTINUE ddname, but it does not delete or
unallocate the data set. It, however, removes all data from the data set. If you
later attempt to) LOAD from a CONTINUE that was “dropped” in this way (or
have it allocated during APL2 invocation), error message IMPROPER
LIBRARY REFERENCE is displayed.)MORE message THE WORK-
SPACE DATA SET IS EMPTY is queued.

 If you issue the) LIB command while a CONTINUE ddname is in effect,
CONTINUE is reported as the first name, regardless of its normal alphabetical
position. The name is reported so long as the CONTINUE ddname is allo-
cated, even if)DROP CONTINUE has been issued.

72 APL2 Programming: System Services Reference

Transfer Files under TSO
Data from an active APL2 workspace can be written to a transfer file by the)OUT
system command. Data in a transfer file can be read into an active workspace
through the) I N system command. Transfer files generally require less storage
space than a workspace, but use more processing time while reading and writing.

The file specified in the)IN and)0UT commands, unless enclosed in quotation
marks, are qualified with first- and second-level qualifiers to form a fully-qualified
data set name of the form:

prefix .APLTF.file

where prefix is the user's TSO PROFILE PREFIX. Note that file can be itself
simple or qualified. If the file is given in quotation marks, it is used without further
qualification.

A data set transferred by the) IV command must be cataloged. APL2 does the
allocation. A data set transferred through the) 0UT command is created if one
does not already exist.

Security and Integrity of APL2 Data
To protect your APL2 data, you can use the security features of any of the fol-
lowing:

e TSO PROTECT command
e RACF
e Password protection by Access Method Services

See your system administrator to find out what security features are available on
your computing system.

Chapter 4. APL2 Libraries: Workspaces and Data Files 73

Chapter 5. Named Editors

APL2 provides two built-in editors for APL2: a line editor known as Editor 1 and a
full-screen editor known as Editor 2. APL2 also allows you to use a named system
editor or named APL2 editor. You select these options by specifying the name of
the editor in eithera)EDITOR or)EDITOR 2 system command.

Regardless of the setting of) EDITOR, Editor 1 is used to process V-commands
that include both a [O. . .] display request of some sort and a closing V. Such
commands simply display all or part of a function without performing any actual
editing.

If you specified the name of a system editor using the)EDITOR command, you
can then use V followed by the name of a function or a character vector or matrix
to begin editing that object using your editor.

When you are using a named system editor, if the name following the V is a func-
tion in the workspace, APL2 writes the canonical representation of the function to a
CMS file or a TSO data set. If the name following the V is a variable of rank two or
less, APL2 writes the variable itself in a canonical representation. If the name fol-
lowing the V does not exist in the workspace, APL2 assumes you want to create a
function of that name and writes a single record containing the rest of your V
command. APL2 then invokes your editor through AP 100 with the name of the file
or data set as your editor's argument.

If your editor ends with a return code of 0 and if the file or data set still exists when
your editor returns to APL2, APL2 reads the file or data set and, based on its con-
tents, reestablishes the object being edited in the workspace. APL2 then deletes
the file or data set.

If you specified the name of an APL editor using the Y)EDITOR 2 command, you

can then use V followed by an expression to invoke the editor. APL2 associates a

name with the specified editor and calls it passing the V expression as a right argu-
ment. It is the responsibility of the APL editor to parse the expression and provide

editing facilities.

Restrictions Using Named System Editors

S A stop vectors and T'A trace vectors are not updated when lines are inserted into
or deleted from a function or operator.

The ' ... 1'editinstructions are not allowed when a named editor was speci-
fied unless a closing V is also present and the command is processed by Editor 1.
When editing variables, some named editors may delete trailing columns that
contain only blanks.

74 © Copyright IBM Corp. 1984, 1994

Using Named System Editors under CMS

The file written by APL2 has a file name equal to a number. The file type is
AP2EDPGM for new names, functions, operators; AP2EDCHR for simple arrays;
and AP2EDEVL for nonsimple arrays. The file mode is A. Your named editor can
be any CMS command, module, EXEC, or any CP command. XEDIT is an
example of a valid name. If you use XEDIT, you should consider the following:

e Your PROFILE XEDIT file should contain ‘COMMAND SET APL ON’, at least
for file types of AP2ED*.

¢ For all names other than names of character matrixes, APL2 writes a file with
an LRECL of 80 or the longest record, whichever is larger. If you want to add
or extend lines longer than this, then the LOAD subcommand in your PROFILE
XEDIT file should include a WIDTH option of a sufficient size.

For names of character matrixes, APL2 writes a file with an LRECL equal to the
width of the matrix or the length of the name, whichever is larger. When
reading the file after the editor has terminated, APL2 does not strip trailing
blanks from the file's records. Some editors provide facilities that can be used
to change the LRECL and record format of the file. These facilities can be
used to change the width of the matrix.

The PDF editor can also be used if APL2 is invoked under ISPF. To invoke ISPF
editor under VM:

1. Write a CMS EXEC called ISPFAPL2 to invoke APL2 under ISPF:

&TRACE OFF

&COMMAND VMFCLEAR

&SUBCOMMAND ISPEXEC SELECT CMD (APL2 &ARGSTRING AP(ISPAPAUX)) LANG(APL)
&COMMAND VMFCLEAR

2. Write a CMS EXEC called PDFEDIT to invoke the PDF editor:

&TRACE

&COMMAND VMFCLEAR

&SUBCOMMAND ISPEXEC EDIT FILE (&1 &2 &3)
&COMMAND VMFCLEAR

3. Start ISPF:
ISPFV2

4. Start APL from Panel 6:
ISPFAPL2

5. Use)EDITOR and specify the EXEC that invokes the PDF editor:
JEDITOR PDFEDIT

Using Named System Editors under TSO

The file written by APL2 has a ddname of APL2EDIT. If that ddname was not
preallocated, it is dynamically allocated. ATTR APL2EDIT is used for the dynamic
allocation if such an ATTR exists. Otherwise the ATTR is also dynamically created.
The dynamic allocation of the APL2EDIT ddname is to the data set name

‘prefix. APL2.EDIT’. Anything dynamically allocated is freed or deleted when editing
ends.

Chapter 5. Named Editors 75

For all names other than names of character matrixes, APL2 allocates a data set
with attributes of RECFM(V,B), LRECL(259), and BLOCK(263).

For names of character matrixes, APL2 allocates a file with an LRECL equal to the
width of the matrix or the length of the name, whichever is larger. RECFM(F,B) is
used. When reading the file after the editor has terminated, APL2 does not strip
trailing blanks from the file's records. Some editors provide facilities that can be
used to change the LRECL and record format of the file. These facilities can be
used to change the width of the matrix.

To avoid the performance overhead of dynamic allocation, you can preallocate a
data set for APL2 editing using the ddname and data set name described above.
However, because APL2 does not have control of the file allocation at the time of
entering edit, the file's LRECL is not adjusted to the object's width. If you preallo-
cate a data set, you should use RECFM(V) or RECFM(VB), LRECL(259), and
BLOCK(263).

Under TSO, the named system editor is invoked with a preceding ‘%’, and thus
must be a CLIST in one of the data sets allocated to the ddname SYSPROC. The
argument to the CLIST is the positional parameter ‘APL2.EDIT’. The CLIST or
EXEC can invoke TSO commands such as EDIT or ISPF.

To invoke APL2 from ISPF (using panel 6, for example):
1. Define CLIST ISPFAPL2:

PROC O AI() AP()........
ISPEXEC SELECT CMD(APL2 AI(&AI) AP(&AP)....) LANG(APL)

2. Under ISPF panel 6, issue the command:
%ISPFAPL2

If the ISPF AP is to be used under APL2, specify AP(ISPAPAUX...) in the APL2
command parameters. See the ISPF documentation for information regarding the
ISPF AP and its use.

To use the ISPF editor from APL2 when APL2 is NOT running under ISPF:

1. Define CLIST ISPFEDIT:

PROC 1 DSN
ISPSTART CMD(%PDFEDIT &DSN)

2. Define CLIST PDFEDIT:

PROC 1 DSN
ISPEXEC EDIT DATA SET(&DSN)

3. Under APL2, issue the command:
YEDITOR PDFEDIT

4. Under APL2, when you open function FNCTNX for editing, FNCTNX is written
to data set 'prefix. APL2.EDIT', and APL2 issues the command

YJHOST %PDFEDIT APL2.EDIT

76 APL2 Programming: System Services Reference

To use the ISPF editor from APL2 when APL2 is running under ISPF:

1.

2.

Define CLIST PDFEDIT:

PROC 1 DSN
ISPEXEC EDIT DATA SET(&DSN)

Under APL2, issue the command:
JEDITOR PDFEDIT

3. Under APL2, when you open function FNCTNX for editing, FNCTNX is written

to data set 'prefix. APL2.EDIT', and APL2 issues the command
YJHOST %PDFEDIT APL2.EDIT

The following notes apply to the use of ISPF under APL2:

The terminal type must be properly set under ISPF option 0.1. The ISPF
product includes terminal translate tables that support APL2 characters.
Consult APL2/370 Installation and Customization under TSO for information
about how to enable this support.

If ISPF is running, CLISTs to be executed, specified directly to AP 100, or in
the)HOST command (as clistname, %clisthname, or EXEC clistname), are
passed for execution to ISPF as though the command ISPEXEC SELECT
CMD(clistname) were issued.

If ISPF is not running, CLISTs to be executed, specified directly to AP100, or in
the)H0ST command, are executed by APL2. These CLISTs may not include
the ISPEXEC command.

CLISTs to be executed, specified directly to AP 100, or in the)HOST
command (as TSO clistname), are passed for execution to the TSO CLIST
processor.

When CLISTs are passed to ISPF for execution, APL2 has issued the
command ISPEXEC CONTROL ERROR RETURUN; hence, return codes
are passed back by ISPF.

The minimum record length that APL2 allocates for rank 2 arrays is 10 charac-
ters to support PDF Edit's minimum LRECL restriction.

Chapter 5. Named Editors 77

Chapter 6. Batch Processing

When you do not have a terminal available or when your processing need not be
done online (for example, when you are printing a long-running report), APL2 can
be processed as a batch job. You can continue to use APL2 interactively for other
work while your batch job is running.

When APL2 is processed in batch mode, the session manager cannot be used. If
your installation defaults to use of the session manager, make sure you code the
APL2 command with the option SMAPL(OFF). To preventa CONTINUE work-
space from being loaded at the start of batch APL2, include the option INPUT()
with the APL2 command.

The next section discusses batch jobs under CMS. If you are a TSO APL2 user,
ignore the next section and continue with fBatch Jobs under TSO” on page 80.

Batch Jobs under CMS

You can submit a batch job containing APL2 expressions and commands from your
terminal by spooling the card images to the virtual card reader of the CMS batch
facility. Your installation probably provides one or more virtual machines (such as
CMSBATCH) to run all batch jobs.

When submitting a job from the terminal, you spool the input deck to the CMS
batch machine either as a CMS file or as virtual punched output from you.

CMS Batch Facility Input

The input must include:

1. Control statements for the CMS batch machine. For the statements required in
your installation, contact your system administrator.

2. CP and CMS commands to give the CMS batch machine access to virtual disks
required by APL2.

The CP and CMS commands you use and the information you specify depend
on what your batch job is intended to do.

3. The APL2 invocation command.
4. APL2 input statements.
The APL2 statements you enter depend on the work you want done.

5. CP and CMS commands to route the results of your batch job to the desired
output device.

78 © Copyright IBM Corp. 1984, 1994

Figure 15 contains a sample batch job to the CMS batch machine.

/JOB myuserid account# jobname «—————Job identification.

CP SPOOL CONSOLE TO myuserid

CP LINK myuserid 191 192 RR password

ACCESS 192 B/A

CP SPOOL PRT TO myuserid <«— Send report to your reader.
APL2 SMAPL(OFF)——

)LOAD MYWS APL2 commands; use MYWS

REPORT QUOTAS workspace to produce a report.

)OFF —

CP SPOOL PUN TO myuserid <«— (P commands to transfer any
DISK DUMP * APLWSVZ2 A error report to your reader.
/*

Figure 15. Sample Batch Job

Spool the file to the CMS batch machine card reader to submit the job. A sample
spool and punch command to spool the file APLFILE BATCH are shown below:

CP SPOOL PUNCH TO batchid NOCONT
PUNCH APLFILE BATCH (NOHEADER)

CMS Batch Facility Output

The CMS batch machine output consists of all the input statements submitted
together with all “terminal” output generated while processing the batch job. Unless
you specify otherwise, all the CMS batch machine output is directed to the system
printer.

To redirect the CMS batch machine output to your terminal, spool the output to
your virtual machine by including the following command in your batch job:

CP SPOOL CONSOLE TO userid

userid is your user identifier. After the job finishes processing, the batch output is
placed in your virtual card reader.

Other APL2 Considerations
The following considerations apply to CMS batch machine jobs using APL2:

e The host system command processor, AP 100, should not be used to issue
commands that are prohibited by the CMS batch machine. For a discussion of
CP and CMS command restrictions, see the appropriate user's guide for your
system.

e The initial value of OPW is 120.

e If a password is required in an APL2 system command, you must specify the
password in the card that contains the command. The CMS batch machine
does not prompt for a missing password. For example, to load the workspace
TESTWKSP in library 1234 that is protected by the password SECRET, enter:

JLOAD 1234 TESTWKSP:SECRET
e The word BATCH is passed to the AP2EXIT EXEC.

Chapter 6. Batch Processing 79

Batch Jobs under TSO

To submit a batch APL2 job, you can use the SUBMIT facility of TSO or any other
submit technique, such as a job entry subsystem.

TSO Batch Input

[Figure 16 on page 80| contains sample JCL for submitting a batch job to run APL2.
Note the following information about the JCL:

e |IKJEFTO1 is the TSO program that allows TSO commands to be invoked in
batch mode.

e SYSTSPRT is the ddname for non-APL2 output.

e APLPRINT is the ddname for output from the APL2 batch session. For infor-
mation regarding this file, see [‘Directing APL2's Output” on page 83

e SYSTSIN is the ddname for input to TSO.

e APLIN is the ddname for input to APL2. For information regarding this file, see
FProviding Input to APL2” on page 82]

//APLBATCH JOB job card information

//STEP EXEC PGM=IKJEFTO1,DYNAMNBR=50,REGION=4096K

//SYSTSPRT DD SYSOUT=A

//APLPRINT DD SYSOUT=A

//SYSTSIN DD = <«——Commands issued to TSO
ALLOC FI(CONTINUE) DA(V.CONBATCH) OLD

APL2 SMAPL(OFF) INPUT() CODE(1) <«—APL2 = CLIST name
LOGOFF <«—Logoff when APLIN done
//APLIN DD =*

)LOAD 1234 MYWORKSP:SECRET <«——Data passed to APL2

)OFF
/*

Figure 16. Sample JCL for Submitting a Batch Job under TSO

TSO Batch Output

SYSTSPRT and APLPRINT output can be printed, sent to a file, directed to another
network node, or held for viewing from your interactive TSO session. Your installa-
tion should provide information on SYSOUT classes and JES control statements to
use.

An IBM 3800 printing subsystem can print the APL2 character set if your installation
has installed the APL printer fonts in the MVS image library. On other printers,
compound symbols and overstrike characters may not print correctly.

The CONTINUE ddname identifies a data set that can be used for any of the following
purposes:

» Automatically loading a workspace at the beginning of the session
e Satisfyinga)CONTINUE command at the end of the session
e Preserving your work if MVS forces a premature end of session

80 APL2 Programming: System Services Reference

This ddname is ignored if a VSAM private library is allocated. See [Sequential
|[Access Method (SAM) Library System” on page 70|for further details.

Chapter 6. Batch Processing 81

Chapter 7. Controlling APL2 Invocation

Several facilities are provided that can be used to control the invocation of APL2
and automatically invoke APL2 applications. This chapter discusses these facilities
and highlights the interaction among them. Here are several reasons for automat-
ically invoking applications as APL2 is invoked:

» To prepare an interactive session environment
e To run a specific APL2 application from within a non-APL program
e To run a specific APL2 application in batch

When controlling the invocation of APL2 and running an application, several types
of information are of concern:

e How to provide input data

* Where to direct output data

¢ How to minimize screen disturbance

e How DBCS data is handled
The following options are used to control APL2 invocation:
INPUT To provide input to be executed
RUN To specify an application to run

TERMCODE To control whether input and output files and in some cases the
stack are used

QUIET To control whether APL2 displays output data

SMAPL To control whether the APL2 session manager is started or
whether the cooperative interpreter interface is to be used

Providing Input to APL2

82

Several invocation options, and the stack on CMS, can be used to provide line
input to APL2 at invocation. APL2 line input includes system commands and
expressions to be processed. Expressions that are provided through any of these
options can also use AP 101 to stack more line input. The input provided by the
RUN and INPUT invocation options and the APLIN file, if TERMCODE(-1) is used,
are stacked FIFO by APL2 in the following order:

1. RUN
2. INPUT
3. APLIN

The expressions provided by these options can use AP 101 to stack data in either
LIFO or FIFO stack order. This can cause data stacked by an APL application to
be processed before processing of data provided at invocation. For example, if the
program invoked using RUN stacked data LIFO, this data would be processed
before data provided through the INPUT option.

APLIN is a ddname defined before APL2 is started by using the CMS FILEDEF or
TSO ALLOCATE command, or the MVS JCL DD statement. It is used to supply
APL2 with input only if TERMCODE(-1) was specified (or defaulted for TSO batch.)

© Copyright IBM Corp. 1984, 1994

Consult the discussion of the TERMCODE option on page P8 for information about
the requirements of the APLIN and APLPRINT files.

On CMS, TERMCODE(-1) also controls whether the CMS stack is used for input. If
TERMCODE(-1) is specified, data on the CMS stack is ignored; any data in the
stack at invocation is retained until exit from APL2. If TERMCODE(-1) is not speci-
fied, data on the CMS stack is used in place of APLIN.

On TSO, an APL stack is maintained independently of the TSO stack. The use of
TERMCODE(-1) controls the disposition of data left on the APL stack at APL2 ter-
mination. If TERMCODE(-1) is used, data left on the APL stack is discarded at
termination. If TERMCODE(-1) is not used, data left on the APL stack is placed on
the TSO stack at termination. The TSO stack is never used to provide input to
APL2,

After all these input facilities are exhausted, APL2 prompts for more input either
using the session manager, the standard input protocol of the operating system in
use, or through the cooperative interpreter interface if it is active. If
TERMCODE(-1) is used, when all these input facilities are exhausted, and proc-
essing of the last expression is complete, APL2 terminates.

Directing APL2's Output

APLPRINT is a ddname defined before APL2 is started by using the CMS FILEDEF
or TSO ALLOCATE command, or the MVS JCL DD statement. It is used for APL2
line output only if TERMCODE(-1) was specified (or defaulted for TSO batch.)
APL2 line output includes data displayed by system commands, results of proc-
essed expressions, and error and other messages.

If TERMCODE(-1) is specified, APL2 line output is directed to the file allocated to
the ddname APLPRINT. If the ddname APLPRINT is not allocated, APL2 discards
line output. Any output data longer than the allocated record length is wrapped.

If TERMCODE(-1) is not specified, APL2 line output is either displayed using the
session manager, displayed using the standard output protocol of the operating
system in use, or transmitted through the cooperative interpreter interface.

Consult the discussion of the TERMCODE option on page 8] for information about
the requirements of the APLIN and APLPRINT files.

When TERMCODE(-1) is used and an)OFF or)CONTINUE command was
processed, the default return code is 0. Ifan YOFF or)CONTINUE command
was not processed before the sources of input were exhausted, then a CON -
TINUE workspace is saved and the default return code is 4.

On TSO, when APL2 is invoked in a batch environment, a CONTINUE ddname
must be preallocated if a)CONTINUE workspace is to be saved.

Chapter 7. Controlling APL2 Invocation 83

Controlling APL2's Use of the Screen

When invoking APL2 from an interactive program, it is frequently desirable to
control APL2's use of the screen. This may be because you want to avoid dis-
turbing data displayed by APL2's invoker or are invoking an application that uses
AP 124, AP 126, or ISPF for displays and want to enter that display environment
directly.

The SMAPL(OFF) invocation option can be used to prevent APL2 from starting the
session manager. The QUIET(ON) invocation option can be used to prevent APL2
from displaying any data until the first input request is made.

It is often desirable to invoke APL2 quietly and conceal from the end-user the invo-
cation of an application. Occasionally however, the application is written to use
APL2's default display and prompt mechanisms rather than a full-screen interface.
In these cases, QUIET can be too silent. QUIET suppresses all APL2 line output
until input is requested. This could cause suppression of the lines explaining why
input is needed.

The OPTION external function can be used to set the QUIET option either ON or
OFF. In the scenario described above, the application could be invoked with
QUIET(ON) and it could then use OPTION to set QUIET(OFF) before issuing its
prompt.

DBCS and APLIN/APLPRINT Files

Many written languages such as Japanese Kanji use a character set with more
than 256 characters, which is the most that can be encoded on a computer using a
single 8-bit byte. To process such languages on a computer, a double-byte char-
acter set (DBCS) is used. In a DBCS, two bytes are used to encode each char-
acter, so tens of thousands of characters can be encoded.

DBCS in Other IBM Products

Many IBM products use a convention for storing characters that allows DBCS char-
acters and characters from languages with one-byte codes to be mixed in strings or
files.

In this convention, DBCS characters are distinguished from single-byte characters
by enclosing strings of DBCS with a shift-out (SO) character and a shift-in (SI)
character. The code point used for SO is X'OE'. The code point used for Sl is
X'OF'.

When this convention is used, a string of bytes must be interpreted in the following
manner to understand what string of characters it represents:

e Until an SO character is found, each byte is interpreted as a single-byte char-
acter.

e After an SO character is found, and until a matching Sl character is found,
each pair of bytes is interpreted as one double-byte character.

84 APL2 Programming: System Services Reference

DBCS in APL2

To support more than one DBCS concurrently, and to provide superior performance
when character strings are being processed, APL2 uses a different convention with
the APL workspace for storing and processing character strings containing DBCS.

In an APL workspace, DBCS characters are represented as extended characters
and occupy 4 bytes of storage each. Each extended character contains a char-
acter set identifier (2 bytes) and the character itself (2 bytes). When DBCS charac-
ters are stored in extended character format in an APL workspace, the first 2 bytes
of each character represents the character set identifier and the last 2 bytes repre-
sent the DBCS character. When non-DBCS characters are stored in extended
character format in an APL workspace, the first 2 bytes of each character repres-
ents the character set identifier, the third byte is zero and the last byte represents
the character. APL characters (those mapped by 04 V), have the character set
identifier zero, and thus the first 3 bytes of each such character is zero.

Reading DBCS from APLIN

1. If the DBCS invocation option is OFF or was omitted, then the input is not
checked for DBCS.

2. If DBCS is ON, TRY, or 0 then the input is scanned for a shift-out character.
Until an SO is encountered the input is treated as single byte characters in
OAvV.

If an SO is encountered, then the input following is treated as a sequence of
double-byte characters, up until a corresponding shift-in character is encount-
ered. A matching Sl character must exist in the same line of input, or an
ENTRY ERROR is generated and the line is ignored. If data exists following
the S, then the SO scan starts again.

Each double-byte character is verified to check that either the character is
X'4040', or the first and second bytes are both in the range X'41' and X'FE".
If any character is not valid an ENTRY ERROR is generated and the line is
ignored.

If an ENTRY ERROR is not generated, then the double-byte characters are
converted into extended APL2 characters with a character set ID of 0.

3. If DBCS is set to a specific number other than 0, then the input is scanned for
double-byte characters as in step 2, and the number is used as the character
set ID if any are found.

Writing DBCS to APLPRINT

1. If the DBCS invocation option is OFF or was omitted, then extended characters
outside of AV are output as the character 'w"'.

2. If DBCS is ON, TRY, or 0 then the last two bytes of extended characters
outside of AV are output as is, with sequences of these two-byte pairs
enclosed by shift-out (X'1E"') and shift-in (X'1F') characters.

3. If DBCS is set to a specific number other than 0, then the number is compared
to the first two bytes of extended characters outside of JA V. If the number
matches, than the last two bytes are output as is, with sequences of two-byte
pairs enclosed by shift-out and shift-in characters. If the number does not
match then a 'w"' is output.

Chapter 7. Controlling APL2 Invocation 85

. Chapter 8. Using APL2 across Systems

This chapter describes how to communicate between APL2 sessions on different
systems, and how to transfer programs and data between systems.

Cooperative Processing

APL2 sessions can communicate either with each other or with other non-APL pro-
grams across a Transmission Control Protocol/Internet Protocol (TCP/IP) network.

There are four major facilities within APL2/370's support for cooperative processing:
e Cross-System Shared Variables

This facility allows a user to share variables with other processors on a TCP/IP
network using normal APL2 shared variable techniques. It provides APL2's
most convenient program-to-program cross network communication path.

e Shared Variable Interpreter Interface

This interface provides a set of protocols whereby an APL2 interpreter can be
controlled through a shared variable. It provides a way for a program to control
a remote session.

e Remote Session Managers

The external function RAPL2 can be used to control a remote interpreter. The
APL2 workstation products each include session managers that can also be
used to control remote interpreters. These facilities allow the user to conduct
an interactive session with a remote intepreter using the Shared Variable Inter-
preter Interface.

e TCP/IP Auxiliary Processor (AP 119)

This processor allows users and applications to make direct requests to
TCP/IP. It provides APL2's most flexible program-to-program cross network
communication path. The interface can also be used for communication
between APL2 and non-APL programs across a network.

Processor Network Identification

86

An APL2 session consists of a collection of processors. From the point of view of
an APL2 program, each processor is identified by a single nonnegative integer.
The APL2 user is identified with a processor number greater than 1000. Other
processors in the session are called auxiliary processors (APs) and are normally
identified with a processor number less than 1000.

A single integer is not enough to address processors in multiple sessions and
processors in sessions on a network. Therefore a Processor Profile provides a
cross reference between the single processor number used by APL2 programs and
a processor network identification.

Under CMS, the processor profile is file AP2TCPIP APL2PROF. Under TSO, the
processor profile is member AP2TCPIP in the data set pointed to by DDNAME
APL2PROF.

© Copyright IBM Corp. 1984, 1994

The profile is used for both outgoing offers from a processor and for incoming
offers from other processors. It is read for each offer and can be dynamically modi-
fied.

Every processor on the network has a unique name consisting of the following
parts:

IP_address user_id processor number[,parent[,grandparent]]
For example:

123.45.6.78 BROWN 1002
123.45.6.78 BROWN 127,1001

A processor named with only an IP address, user ID, and processor number is
called an independent processor. In the first example above, 1002 is an inde-
pendent processor. Normally, the APL2 interpreter runs as an independent
processor.

A processor with a parent (or any ancestor) is called a dependent processor. A
dependent processor is notified when its immediate ancestor signs off. In the
second example above, 127 depends on 1001 and 1001 is independent. Normally,
the APL2 interpreter runs as an independent processor with its auxiliary processors
dependent on it. This scheme allows processor 127 to be informed (and normally
to terminate itself) when the APL2 session ends.

A third level of dependency is defined if a processor is started with a grandparent
processor number. This scheme allows APL applications to serve as dependent
auxiliary processors, since they in turn need to use other dependent auxiliary
processors. Longer sequences of ancestors would be meaningful but are not sup-
ported.

Processor Profile Structure

Each line in the processor profile can contain one or more tags and its associated
data. Tags can be written in uppercase, lowercase, or mixed case. Any line
starting with the character “x” is ignored.

Each processor entry must begin with either an :svopid tag or a :procauth tag and
continues to the next occurrence of one of these tags or to the end of the profile. A
processor entry beginning with an :svopid tag is known as an identification or ID
entry. Here is an example of an ID entry that defines 33586 as a remote user
signed on as ID 1002 under BROWN at 123.45.6.78.

* user BROWN at STLAPL

:svopid.33586
:address.123.45.6.78
:userid.BROWN
:processor.1002

Chapter 8. Using APL2 across Systems 87

A processor entry beginning with a :procauth tag is known as an authorization
entry. Here is an example of an entry that authorizes the remote processor identi-
fied by an svopid of 33586 to share with a local processor 100, which is a
dependent of processor 1001:

* AP100 authorization
:procauth.100,1001
:rsvopid.33586

Using the Port Server

APL2 includes a program called the port server that manages the establishment of
communication links across TCP/IP networks. Each system in the network should
have a port server running. When a user first attempts to use TCP/IP (either
through cross-system sharing or AP 119), TCP/IP assigns the user a TCP/IP port
number. This port number is registered with the user's local port server. When a
cross-system share offer is made, APL2 contacts the port server at the partner's
system to find out the partner's TCP/IP port number.

APL2 port servers also have port numbers. The default port number for the servers
is 31415. However, some sites may choose to install the port server with a dif-
ferent port number. If APL2 cannot contact your partner's port server, a message
is displayed stating this fact and the port number that was used in the attempt to
make contact. In these cases, you need to specify the server's port number in your
TCP/IP profile file. Consult your partner's system programmer to find out their sys-
tem's port number.

It is also possible to share variables across systems even if one or both of the
systems do not have a port server running. The AP 119 command GETLPORT is
used to find out what your own port number is. The command SETLPORT is used
to inform the cross-systems shared variable facility what your potential partner's
port number is. For further details, please refer to[‘Listening Ports” on page 170,

Sending a Share Offer

When a shared variable offer is extended, the left argument of .SV O is first
matched against the list of local processors that are signed on to the SVP. If a
match is found, the offer is extended to that local processor. If no match is found,
the number is matched against the data in the :svopid tags in the processor profile.
If a match is found, the offer is extended to the processor described by the
:processor, :address, and :userid values.

If no match is found in the processor profile, the offer is extended to the global
processor identified by the left argument of 0.5V 0 whether or not it is presently
signed on to the SVP.

Receiving a Share Offer

When receiving an offer to share, the processor profile serves to identify the remote
processor and to authorize the share. First, the processor identification of the
processor originating the share is matched against the :address, user ID, and
:processor tags of each ID entry in the processor profile. Limited “wildcard” support
is provided as discussed in [‘Processor Profile Syntax” on page 89,

88 APL2 Programming: System Services Reference

If a matching entry is found, the svopid of this entry must be identified in the
:rsvopid tag of an authorization entry for the local processor with whom the caller is
trying to share. If this is true, the share is allowed to proceed.

Processor Profile Syntax

Each line in the processor profile can contain one or more tags and its associated
data. Tags can be written in uppercase, lowercase, or mixed case. Any line
starting with the character “*” is ignored.

Identification Entries
Each processor ID entry must begin with a :svopid tag and continues to the next
occurrence of a :svopid or :procauth tag or to the end of the profile.

:svopid.id

This tag identifies the beginning of an entry and is required. It specifies the number
to be used in the left argument of SV 0 when sharing with the processor
described by this entry. For incoming offers its value is returned by 057 §. It must
be a positive number. This value can be coded as 0 to allow incoming offers to be
assigned a unique processor number. Such an entry could not, however, be used
to initiate an offer.

:processor.id],id[,id]]

This tag gives one, two, or three processor numbers separated by commas and is
required. These numbers represent the actual procid, parent and grandparent of
the share partner.

Because offers to processors with procids less than 1000 are considered to be
offers to dependent processors, a profile ID entry is required to share with a
processor running independently on the same machine and user ID. In this case,
the svopid can be the same or different than the actual procid of the independent
processor. Note that if the same number is used, it is impossible to share with a
dependent processor using that number as its procid.

id can be coded as “*” in which case the entry identifies any remote processor with
the corresponding :svopid.

:address.addr

This tag gives the IP address of the partners machine in IP “dotted decimal” nota-
tion consisting of four decimal numbers between 0 and 255 separated by periods
and is optional.

addr can be coded as “*” in which case the entry identifies processors from any
address with the corresponding :svopid.

Chapter 8. Using APL2 across Systems 89

:userid.userid

This tag gives the character identification of the user ID of the partner and is
optional. It can be one to eight characters and is case sensitive.

userid can be coded as “*” in which case the entry identifies processors from any
user ID with the corresponding :svopid.

Here is an example of a processor entry that defines SV 0 argument 33586 as a
remote user.

* user BROWN at STLAPL

:svopid.33586
:address.123.45.6.78
:userid.BROWN
:processor.1002

Authorization Entries
Each processor authorization entry must begin with a :procauth tag and continues
to the next occurrence of a :procauth or :svopid tag, or to the end of the profile.

:procauth.idf,id[,id]]

This tag identifies the procid, parent and pparent that is authorized to receive
shares and is required. id can be coded as “*” in which case the entry serves to
authorize all local processors.

:rsvopid.idf,idf,...]]

This tag lists the svopid numbers that identify remote processors that are author-
ized to share with the processor named in the corresponding :procauth tag. Mul-
tiple numbers can be listed separated by commas.

id can be coded as “*” in which case the entry authorizes any remote processor to
share with the corresponding :procauth.

Here is an example of an entry that authorizes the processor identified by
:svopid.33586 to share with a local processor 100 dependent on processor 1001:

* AP100 authorization
:procauth.100,1001
:rsvopid.33586

Communicating with Version 2 Release 1

The processor profile syntax has been changed from Version 2 Release 1. Version
2 Release 2 recognizes cross-system share requests from Version 2 Release 1. If
you are initiating a share to a Version 2 Release 1 system, you must use the
processor profile syntax defined for Version 2 Release 1. See APL2/370
Programming: System Services Reference for Version 2 Release 1 for syntax infor-
mation.

90 APL2 Programming: System Services Reference

Processor Profile Examples

The technical reference material you need to share variables between processors
running on different machines was presented in fProcessor Network Identification’]
[on page 86] and [Processor Profile Structure” on page 87] This section provides
examples of how to code processor profile entries for some typical application
needs.

For the purposes of these examples, assume that there are three users running
interpreters on three different machines. Each interpreter process is identified with
a unique IP address, user ID, and processor number. The processor numbers cor-
respond to +0A I as reported by the interpreters themselves.

For clarity, these sample interpreters are referred to as Users 1, 2, and 3. You
need the following information:

User Address User ID +04AI
1 9.10.11.123 BARB 1001
2 9.10.11.222 jsmith 32739
3 123.45.6.77 djones 6666

User to User Shared Variables: Assume that User 1 wants to share variables
with User 2. The information needed is as follows:

1. In order to offer to share a variable with another processor, you need to identify
that processor with some number. A processor profile entry is then used to
associate that number with the user's network information.

Assume that User 1 wants to refer to User 2 with the number 777. The fol-
lowing entry is required in User 1's profile:

:svopid.777
:address.9.10.11.222
:userid.jsmith
:processor.32739

This entry allows User 1 to extend an offer to User 2.

2. User 1 needs to authorize User 2 to share variables. User 2 is already identi-
fied as 777 with the :svopid tag, and it is known that User 1 is running as
processor 1001, so the following entry can be used:

:procauth.1001
:rsvopid.777

This authorizes remote processor 777 to share variables with local processor
1001.

Remember that there are always two sides to every share. User 2 also needs a
number to use to refer to User 1. Assume that User 2 wants to use the number
3456. The following entry is required in User 2's profile:

:svopid.3456
:address.9.10.11.123
:userid.BARB
:processor. 1001

Chapter 8. Using APL2 across Systems 91

User 2 also needs to authorize User 1:

:procauth.32739
:rsvopid.3456

Note that the :rsvopid values correspond to the :svopid values shown above, and
the :procauth values correspond to the processor numbers of the interpreters as
reported by 4+0A41T.

If Users 1 and 3 also wanted to share variables, they would have to code identifica-
tion and authorization entries just as Users 1 and 2 did. However, when coding the
authorization entry, User 1 can take either of two approaches. First, User 1 could
simply add another authorization entry. Assume User 3 has been identified as
processor 8888:

:procauth.1001
:rsvopid.8888

You can have as many authorization entries in your processor profile as you want,
but there is another way. The :rsvopid. tag can provide a list of processors. So,
User 1 could add User 3's number to the existing entry like this:

:procauth.1001
:rsvopid.777,8888

This entry authorizes the remote users associated with the numbers 777 and 8888
to share variables with User 1's 1001 processor.

User 1 could authorize more users by adding more entries or by just adding
numbers to the :rsvopid tag.

User to Auxiliary Processor Shared Variables: For another example, assume
that User 1 wants to share a variable with AP 127, which is running under inter-
preter processor 6666 on User 3's machine. This might be useful if User 3's
machine contained a database that User 1 needed access to.

User 1 needs to add another identification entry to associate a number with the
remote processor 127. Assume that User 1 wants to use the number 9127 to refer
to the remote processor. The entry is as follows:

:svopid.9127
:address.123.45.6.77
:userid.djones
:processor.127,6666

Notice the :processor tag now lists two processor numbers. This indicates that AP
127 is a dependent of processor 6666.

User 1 also needs to authorize shares with the remote processor 127 so the
authorization entry becomes:

:procauth.1001
:rsvopid.777,8888,9127

92 APL2 Programming: System Services Reference

If Users 1 and 3 are set up for user to user sharing, User 3 already has identifica-
tion entry for User 1. However, AP 127 is a new processor on User 3's machine,
and is sharing variables, so another authorization entry needs to be added for User
3. Assuming User 3 has identified User 1 as 2229:

:procauth.127,6666
:rsvopid.2229

Like the :processor. tag shown above, the :procauth. tag in this authorization entry
lists two numbers. In this case, however, it does not refer to two separate
processors. Only a single processor (in this case 127, dependent of 6666) can be
listed in a :procauth tag. The exception to this rule is the use of an asterisk as
mentioned below.

Using Asterisks in Processor Profile Entries: The examples shown demon-
strate how to identify specific remote processors and authorize them to establish
shares with specific local processors. Sometimes however, it is not possible to
identify all the potential share partners. Similarly, sometimes you want to give one
or more share partners access to all your processors. Asterisks are used as
wildcards in processor profile entries to provide general identification and authori-
zation

Suppose that User 1 needs to identify and authorize shares from any processor
running under a particular user ID. Rather than coding separate identification
entries for each processor, an asterisk can be coded in the :processor tag. For
example:

:svopid.1234
:address.111.222.333.111
:userid.JANE
:processor.*

This entry identifies any processor on JANE's machine as processor ID 1234.
Notice that because only one processor can be associated at a time with an :svopid
tag, variables can only be shared with one processor on JANE's machine at a time
when this technique is used.

Asterisks can also be coded in the :address and :userid tags. For example, if User
1 needs to identify any processor 127's running on the network, the following entry
could be used:

:svopid.1234
:address.*
:userid.*
:processor.127

Notice again that this technique requires that only one processor at a time can be
associated with the :svopid 1234.

By using several identification entries each of which can identify several
processors, you have now handled the problem of identifying multiple processors,
and can now deal with authorization. An asterisk can also be used in the :rsvopid
tag like this:

:procauth.1001
:rsovpid.*

Chapter 8. Using APL2 across Systems 93

This entry authorizes any identified processor for shares with processor 1001.

Finally, assume that User 1 not only wanted to authorize remote users to share
with processor 1001, but with any processor. The following entry can be used:

:procauth.*
:rsvopid.*

This entry authorizes all remote processors, indicated by the asterisk in the
:rsvopid. tag, to establish shares with any processor on the machine, indicated by
the asterisk in the :procauth. tag.

Transferring Workspaces

Workspaces are easily transferred between APL2 systems. Transfer file formats

have been defined to permit exchange of workspace objects among all IBM APL2
implementations. Additional tools are provided for migration of the older VS APL

format to APL2.

Workspace Transfer between APL2 Systems

In general, APL2 workspaces must be sent to other APL2 systems as transfer form
files. Transfer forms have the following default file naming conventions:

CMS filename APLTF =
TSO prefix. APLTF.filename
0S/2 or DOS path\filename.ATF
AIX* or UNIX** path/filename.atf

The APL2 commands used to create and read transfer form files are)OUT,)IN,
and)PIN. To transfer a workspace, start APL2 on the system where the work-
space resides, and issue the following commands:

YLOAD wsid
)SIC (or)RESET)
YOUT filename

A transfer file is created by the) OUT command.

Once the transfer file is created, it then must be moved to the target APL2 system,
and be saved with a name following the conventions of the target system. The
techniques for physically moving files from one system to another can vary
depending on the types of systems and what connections exist between them.

¢ One key issue is that some systems (for example MVS/TSO and VM/CMS) use
an EBCDIC character encoding, while others (for example OS/2 and AlX/6000)
use an ASCII encoding. Both ASCII and EBCDIC transfer file formats are
defined, and all IBM APL2 systems accept both formats. No data conversion
should be attempted within the file itself when transferring it from one system to
another. The receiving APL2 system performs any necessary conversion. |If
the transfer is done electronically through a network connection, the programs
controlling that transfer must be told that this is a “binary” rather than
“character” file. (The exact terminology used may vary depending on the
system and network control programs being used.)

e Some systems use “record-oriented” files while others use stream files. If
stream files are being transferred to a system that expects record-oriented files,

94 APL2 Programming: System Services Reference

an arbitrary record length may be used, but the existing record separators (“LF”
or “CR/LF”) must be retained. Conversely, separators should not be inserted
when record-oriented files are being transferred to a system that expects
stream files. Again, the receiving APL2 system adjusts to these differences.

¢ Within these constraints, standard data transmission commands appropriate to
the system such as “fip put,” “SEND,” “SENDFILE,” or “TRANSMIT” can be
used for network transmission, with corresponding commands such as “ftp get”
or “RECEIVE” as appropriate to the receiving system.

e Because the receiving APL2 system performs all necessary conversions, it is
also possible to use shared DASD, remote file systems, removable media, or
other such facilities to transport the data.

When the file has been transferred to the target system, it can then be read into
APL2 and saved as a workspace:

JCLEAR
YIN filename
YSAVE wsid

Migration of TryAPL2 Workspaces

Workspaces saved under TryAPL2 can be read by APL2/2, APL2/6000, and APL2
for Sun Solaris. The function TRYLOAD in the FILE workspace can be used to
read these files. Once migrated to one of the workstations, the)OUT and)IN
processes can be used to migrate to the mainframe.

Migration of VS APL Workspaces

VS APL workspaces can be migrated to the mainframe platforms using the
YMCOPY command. For more information, see APL2 Migration Guide.

Transferring AP 211 Files

Files created by AP 211 are portable between APL2/370, APL2/2, APL2/6000, and
APL2 for Sun Solaris. The files must be transferred in binary mode. The receiving
APL2 system performs all necessary conversions of data. Files to be uploaded to

the mainframe must be uploaded as fixed format files, with a record length equal to
the AP 211 blocksize for the file. The blocksize can be obtained by issuing an AP

211 'USE' command against the file.

In addition, files created by AP 211 on APL2/PC can be read by APL2/2,
APL2/6000, and APL2 for Sun Solaris. Writing back to these files is not allowed.
The function REBUILD211 in the public workspace 2 FILE can be used to per-
manently convert the APL2/PC file to the new format if desired. Once migrated to
one of the workstations, the file can then be uploaded to the mainframe.

Chapter 8. Using APL2 across Systems 95

96 APL2 Programming: System Services Reference

Part 2. Auxiliary Processors

Chapter 9. Summary of Auxiliary Processors Distributed with APL2 . 102
Using Auxiliary Processors 103
Using the Share-Offer Utilities 104
Suggestions for Use of Auxiliary Processors 105
Chapter 10. AP 100—Host System Command Processor Under CMS . 107
Associated Workspace 107
Shared Variable Overview 107
Initial Value 108
Communication Procedure 108
Querying the Operating System 109
CMS Communication and IMPCP and IMPEX Settings 109
Cautions 110
Return Codes 110
Chapter 11. AP 100—Host System Command Processor Under TSO . 112
Associated Workspace 112
Shared Variable Overview 113
Communication Procedure 113
Querying the Operating System 114
Return Codes 114
AP 100 Built-In Commands 116
Chapter 12. AP 101—Alternate Input (Stack) Processor 127
Associated Workspaces 127
Shared Variable Overview 128
Data Formats 128
Initial Values 128
Communication Procedure 129
AP 101 Commands 129
Using AP 101 within a Defined Function 130
Disposition of Data on the Stack 130
Exiting and Returning to APL2 within a Defined Function 131
Using the INPUT Invocation Option in a Stacked APL2 Command . 131
Using AP 101 with the TSO Fence Option 131
Fence Commands 132
Cautions 132
Return Codes 133
Chapter 13. AP 102—Main Storage Access Processor 134
Shared Variable Overview 134
Commands 135
Communication Procedure 135
Formatting the Result from AP 102 136
Cautions 136
Return Codes 137
Chapter 14. AP 110—CMS File Processor 138
Associated Workspace 138
Shared Variable Overview 138
© Copyright IBM Corp. 1984, 1994 97

Initial Values 139

Communication Procedure 140
Record Variable 141
Control Variable 141

Specifying the Control Variable 141

Cautions 143

Return Codes 144

Chapter 15. AP 111—QSAM File Processor 146

Associated Workspaces 146

Shared Variable Overview 146
Initial Values 147

Communication Procedure 148

Cautions 150

Return Codes 151

Undiagnosed Errors 152

Chapter 16. AP 119—Socket Interface Processor 154

Shared Variable Overview 154

The APL2 Socket Application Program Interface 154
IUCV Paths and Sockets 155

AP 119 and TCP/IP Commands Summary 155

Definition of TCP/IP Terms 156

Blocking 158

Using AP 119—The TCPIP Commands 158
ACCEPT 158
BIND 159
CLOSE . . . 159
CONNECT . . . 159
FCNTL 160
GETHOSTID 160
GETHOSTNAME 161
GETPEERNAME 161
GETSOCKNAME 162
GETSOCKOPT 162
LISTEN 163
READ e 163
RECV . . 164
RECVFROM 164
SELECT 165
SEND . . . 166
SENDTO 166
SETSOCKOPT 167
SHUTDOWN 167
SOCKET 168
WRITE 168

Using AP 119—The AP Commands 168
The APL2 Port Servero 169
PSLIST—Send LIST Command to the Port Server 169
PSCLEAR—Send CLEAR Command to the Port Server 170
PSSHUTD—Send SHUTDOWN Command to the Port Server 170
UNREGSTR—Send an UNREGISTER Command to the Port Server 170
Listening Ports 170
GETLPORT—Get Listening Port 171

98 APL2 Programming: System Services Reference

SETLPORT—Set Listening Port 171

Starting AP 119 171
Sample AP 119 Session Using the APL2 Socket APl 172
Returncodes L 175

Chapter 17. AP 120—APL2 Session Manager Command Processor 179

Shared Variable Overview 179
Data Formats 180
Specification 180
Reference 180
Communication Procedure 180
Return Codes e 181
Chapter 18. AP 121—APL2 Data File Processor 182
Associated Workspaces 182
Shared Variable Overview 182
Access Control Considerations 183
APL2 Data Files 183
File Identification 183
APL2 Data File Organization 184
Communication Procedure 185
Commands 185
OpeningaFile 187
Open for Sequential Write (SWC orSW) 187
Open for Sequential Read (SR) 187
Open for Direct Read (DR) 187
Open for Direct Update (DUC orDU) 188
Checking forEndof File, 190
APL2 Data File Maintenance 190
Library Query 190
Space Requirements for Storing APL2 Variables 191
Size Limitations 191
Cautions 191
Return Codes 192
Chapter 19. AP 123—VSAM File Processor 195
Associated Workspaces 195
Shared Variable Overview 195
VSAM Files—General Information 195
File Identification 196
File Formatsand Keys 196
Commands 197
Communication Procedure 198
Openinga VSAM File 199
Processinga VSAM File 200
ReadingaFile 200
Writinga File 200
Replacinga Record 201
Erasing (Deleting) a Record 201
Obtaining the Key of the Last I/O Operation 201
Positioning the Record Pointer, ... 202
Specifying Character Conversion 203
Closinga VSAM File 203
Cautions 203

Part 2. Auxiliary Processors 99

Return Codes 204

Chapter 20. AP 124—Text Display Auxiliary Processor 207
Shared Variable Overview 207
Understanding Screen Management 208
Logical Screens 208
Screen Fields 208
Field Attributes 209
Communications Procedure 209
Screen Management Commands 210
Delayed Clear of the Screen 210
Formatting the Screen 211
Immediate Write of Datato Screen L. 214
Read and Wait 214
Writingtothe Screen 216
GettingData 217
Modifying Field Attributeso 217
Returning Screen Information 0L 218
Reading the Screen Format 218
Sounding the Alarm 219
Settingthe Cursor 219
Modifying Input Field Attributes 220
Erasingthe Screen 220
Return Codes 221
Chapter 21. AP 126—GDDM Processor 222
Associated Workspaces 222
Licensed Program Requirements 223
Shared Variable Overview 223
Data Formats 224
Returned Values 224
Communication Procedure 226
GDDM Calls e 228
Restrictions 228

AP 126 Commands 228
Query GDDM Calls 229

Set Error Threshold 230

Set Protection Key 231

Set EBCDIC Translation 231

Set Default Buffer Size 232

Set AP 126 Options 232
Query AP 126 Options 233
Query Subset of Fields for Modifications 233
Query Current Hard-Copy Destination 234
Issue CHART Call 234
Obtaining Copies through AP 126 237
GDDM FSOPEN Request or DSOPEN, DSUSE Sequence 237
Alternating Paths 237
Implications of Multiple Data Paths 237
Page Sharing with the APL2 Session Manager 238
Guidelines for Sharing with the Session Manager 238
Handling Attentions 239
APL2/370 and GDDM EBCDIC Code Page Differences 240
GDDM Error Diagnosis 241

100 APL2 Programming: System Services Reference

Return and Reason Codes 241

Chapter 22. AP 127—SQL Processor 244
Shared Variable Overview 245
Communication Procedure 245
AP 127 Commands 246
Return Codes 247
Chapter 23. AP 210—BDAM File Processor (TSOOnly) 248
Associated Workspace 248
Shared Variable Overview 248
BDAM File Requirements 249
DCB Attributes Provided by AP 210 249
Communication Procedure 249
Initial Values 249
Formatting a Direct File Using AP 210 250
BDAM File Processing Procedure 251
Cautions 253
Return Codes 253
Data Management Error Codes 254
Chapter 24. AP 211—The APL2 Object File Processor 255
Shared Variable Overview 255
Commands Accepted by AP 211 255
CREATE 255
DROP e 256

USE . . . 257
RELEASE 257

SET . 258
GET . . 258
RENAME 258
ERASE e 258
LIST . . . 259
Return Codes 259
Chapter 25. APL2 Shared Variable Interpreter Interface 261
Shared Variable Interpreter Interface Protocols 261
Shared Variable Overview 262
Interpreter Input Data 262
Interpreter Output Data 263

Part 2. Auxiliary Processors 101

Summary of APs

Chapter 9. Summary of Auxiliary Processors Distributed with

APL2

102

An auxiliary processor is an autonomous program that performs services for APL2
users. Such services include access to files and databases, control of the user's

display screen, interaction with other subsystems, and inspection or modification of
the system and application environment.

Auxiliary processors may be supplied with APL2 or they may be written by your
system programming staff. Information on writing auxiliary processors can be found
in APL2/370 Programming: Processor Interface Reference.

Figure 17 lists, in sequence by numeric identifier, the auxiliary processors supplied
with APL2. With the exceptions noted below, all processors are available under

both CMS and TSO.

e AP 110 is available only under CMS.
e AP 210 is available only under TSO.

These two processors provide comparable file access facilities appropriate to their

respective host systems.

In the Protocol column of Figure 17, if the processor requires a pair of variable
names that start with CTL and DAT, the names CTL and DAT are so identified.
Otherwise, if no naming conventions are required, the number and type of required
variables are indicated without a specific name.

Figure 17 (Page 1 of 2). Auxiliary Processors Supplied with APL2

Processor Purpose Protocol
AP 100 Issue commands to the host One variable.
Host System Command system; execute user-written
P programs.

rocessor
AP 101 Create a stack of program- One variable.
Alternate Input (Stack) mable input to APL2 (pr to the
Processor host system after ending an

APL2 session).

AP 102 Obtain the contents of speci- Two variables—CTL and DAT.

Main Storage Access Processor

fied areas of main storage.

AP 110
CMS File Processor

Sequential or direct access to
CMS files.

CMS Only

One or two variables (record
and control)

AP 111
QSAM File Processor

Sequential access to QSAM
files.

One or two variables (record
and control). Control variable is
optional.

AP 119

Socket Interface Processor

Controls the TCP/IP socket
interface and cross-system
shared variables.

One variable.

AP 120

Session Manager Command
Processor

Issue session manager com-
mands from within a defined
function.

One or two variables—CTL and
DAT. DAT variable is
optional.

© Copyright IBM Corp. 1984, 1994

Summary of APs

Figure 17 (Page 2 of 2). Auxiliary Processors Supplied with APL2

Processor

Purpose

Protocol

AP 121
APL2 Data File Processor

Stores and retrieves APL
arrays by object number
within a special
APL-formatted file.

One variable—C T, —for
sequential access.

Two variables—CTL and
DA T—for direct access.

AP 123 Access VSAM data. Two variables—CTL and DAT.
VSAM File Processor
AP 124 Controls the screen of an IBM Two variables—CTL and DAT.

Text Display Processor

3270 Information Display
System terminal.

AP 126
GDDM Processor

Use the facilities of the
Graphical Data Display
Manager.

Two variables—CTL and DAT.

AP 127

SQL Processor

Use the facilities of the Struc-
tured Query Language.

One variable—data variable.

AP 210
BDAM File Processor for TSO

Relative-record access to
fixed-length, unkeyed BDAM
data sets.

TSO Only.

Two variables—record and
control.

AP 211
APL2 Object File Processor

Stores and retrieves APL
arrays by name in an
APL-formatted file.

One variable.

Shared Variable Interpreter
Interface

Control APL2 interpreter
through shared variable

One variable named APL?2.

Using Auxiliary Processors

To use an auxiliary processor requires a shared variable, or for some auxiliary
processors, a pair of shared variables, to pass commands and data between the
APL2 application and the auxiliary processor. Since auxiliary processors can run
asynchronously with the APL2 interpreter, applications must follow a proper Shared
Variable Processor (SVP) protocol when establishing shared variable communi-
cation with an auxiliary processor, to avoid potential timing problems with the two
processes running in parallel. For a complete description of the SVP system func-

tions, refer to APL2 Programming: Language Reference.

The examples given for most auxiliary processors in the following chapters show
0S70 and OSVC followed immediately by a specification of the first request in the
variable and a reference to get a return code. This approach works well if the
auxiliary processor is known to be available, but if the auxiliary processor is not
responding, the APL2 session hangs on the reference, and you must interrupt it.
An alternative approach is to wait until the variable is fully coupled before making
the first request. This can be accomplished using OSVE and O0SV0 in a loop, and
the loop can be written to time out if it appears the auxiliary processor is not
responding. This has the disadvantage that the time chosen may not be long
enough for some situations, but the advantage that the application can recover

without your intervention.

Chapter 9. Summary of Auxiliary Processors Distributed with APL2 103

Summary of APs

| Using the Share-Offer Utilities

To simplify the establishment of fully-coupled shares, and to ensure that the neces-
sary access control is set for typical communication with an auxiliary processor, two
functions are distributed in the library 1 UTILITY workspace for application devel-
opers. The two functions are SVOFFER and SVOPAIR. SVOFFER is for use
with auxiliary processors employing a single shared variable interface.

SVOPAIR is used for auxiliary processors such as AP 124 and AP 210 that
require a control and a data variable for communication.

The SVOFFER function must return a “degree of coupling” of 2 for each variable
offered, before the shared variable can be used to pass commands and data. This
indicates that the auxiliary processor has accepted the share offer. An indetermi-
nate amount of time is required for the auxiliary processor to accept the offer. Typi-
cally, an auxiliary processor accepts the shared variable offer immediately, but the
SVOFFER function queries the degree of coupling for a maximum of 15 seconds
before exiting with a result of 1 indicating that the auxiliary processor has not
matched the offer.

The SVOPAIR function is used for auxiliary processors that support a two-variable
interface, where the control variable name begins with “CTL” and the data variable
name begins with “DAT.” SVOPAIR waits up to 15 seconds for all control vari-
able offers to be accepted. It returns the final degree of coupling for all variables
offered. The expected coupling for the control variables is 2 (fully coupled), and the
data variables can properly return either 1 or 2, depending on the auxiliary
processor.

Prior to sending commands to an auxiliary processor, shared variable access
control should be set to ensure that the SVP maintains the necessary sequencing
of sets and references of the shared variable by both the APL2 application program
and the auxiliary processor. SVOFFER and SVOPAIR setthe necessary
access controls for typical auxiliary processor communication. SVOFFER sets
access control on all of the variables offered, and SVOPAIR sets access control
only on the variables with names starting with the letters “CTL” (that is, control
variables only—no access control is applied to data variables). The access control
appliedis 1 0 1 0, which prevents two successive sets of the variable by the
application without an intervening access by the auxiliary processor, and also
ensures that the auxiliary processor sets a new value in the variable between suc-
cessive uses by the APL2 application. This is the most common access protocol
used for shared variable communication with the auxiliary processors.

Note: The SVOPAIR function was written for use with the workstation 2-variable
auxiliary processors, AP 124 and AP 210. ltis included with the mainframe APL2
for compatibility and is useful for writing portable code that uses AP 124. However,
the mainframe 2-variable auxiliary processors are written to an older interface. Var-
iables are matched immediately, if matched at all, and there might be different
access control requirements for the data variable. The logic of the SVOPAIR
function is not necessary or appropriate for all these auxiliary processors.

104 APL2 Programming: System Services Reference

Summary of APs

Example 1

A Single offer to host auxiliary processor
100 SVOFFER 'CMD'
2

A Offer multiple variables to one AP
100 SVOFFER 'V1' 'V2!
2 2

A Offer multiple variables to multiple APs
100 211 SVOFFER 'V100' 'V211"
2 2

A Check degree of coupling for multiple variables
SVOFFER 'V100' 'V211'
2 2

A Invalid shared variable offer
211 SVOFFER 'BAD+NAME'

A Offer and trap errors
OES (2v.zAP SVOFFER VARS)/'Share offer unaccepted by AP',3sAP

Example 2

A Offer a set of variables to the fullscreen processor
124 SVOPAIR 'CTL124' 'DAT124!
2 2

A Offer using surrogates
124 SVOPAIR 'Control C' 'Data D'
2 2

an Note: Access control set for control, not data
gsvc 'Control' 'Data'
1 0 1 1 0 0 0O

A Check degree of coupling
SVOPAIR 'Control' 'Data'
2 2

Suggestions for Use of Auxiliary Processors

The display of a shared variable constitutes a use of the variable. To avoid being
interlocked when you need to use the returned value more than once, first assign
the variable to another variable, and then use that variable instead of the shared
variable.

To ensure that an interface has been established with your intended partner, use
0SVO0 to query an offer.

It is good programming practice to share local variables. The localized shared vari-
able is automatically retracted even if the function aborts.

When using localized names or surrogates, it is possible to share two variables with
the same name. Ensure that your functions are coded such that you can avoid a
mismatched variable when using an auxiliary processor that can share either one
variable or a pair of variables. Otherwise, use of duplicate names can cause a
data variable to be paired with the wrong control variable. To avoid this problem,

Chapter 9. Summary of Auxiliary Processors Distributed with APL2 105

Summary of APs

always offer to share a pair when using an auxiliary processor with a 2-variable
protocol, even when you do not need a pair.

106 APL2 Programming: System Services Reference

AP 100 (CMS Only)

Chapter 10. AP 100—Host System Command Processor
Under CMS

The CMS version of AP 100, the host system command processor, can be used
within an APL2 session to pass commands to CP or CMS, to process user-written
programs, or to process CMS EXECs.

Associated Workspace

APL2 is distributed with the CMS workspace. The workspace contains cover func-
tions that can be used to communicate with AP 100. For information on these
functions, type DESCRIBE, HOW, or ABSTRACT after loading the CMS work-
space.

Shared Variable Overview

Figure 18 provides an overview for sharing variables with AP 100 under CMS.

Figure 18. Shared Variable Overview for AP 100 under CMS
SV Protocol AP 100 Conventions

General One variable.
Each specification passes a command to CP or CMS.

Each reference obtains the return code from the most recent specification.

Maximum Number of 14
Shared Variables

Name Any valid APL2 variable name not exceeding 77 characters.
Initial Value See [Initial Value” on page 108
Subsequent Values Specify a character vector not exceeding a length of 200.

Reference a scalar integer or a character vector.

Data Types Supported Character vectors.

Access Control 0001

© Copyright IBM Corp. 1984, 1994 107

AP 100 (CMS Only)

Initial Value

The initial value of a variable offered to AP 100 specifies whether subsequent spec-
ifications are CP or CMS commands and indicates whether conversion is to be
applied to the commands.

The format of the initial value is:

CMS100+" target(conversion)'

where the options are:

target Target system for commands subsequently passed through the vari-
able. Valid targets are:

CMS (default)
CP
SUBCOM (for CMS subcommands)

conversion Conversion to be applied to the commands. Valid conversion
options for AP 100 under CMS are:

BCD (default)
EBCD

If no initial value is specified or if the initial value is empty or invalid, defaults of
CMS and BCD are assumed.

The default conversion is BCD for compatibility with existing applications coded
under previous implementations of APL. However, it is recommended that new
applications using AP 100 specify the EBCD option because the internal encoding
of APL2 is EBCDIC. Standard CMS translation as controlled by the CMS SET
INPUT command is applied, so with the conversion option EBCD commands can
be entered in mixed uppercase and lowercase. With the conversion option BCD,
commands can be entered in mixed uppercase and underbarred case.

Note: The)HO0ST command uses the EBCD translation option.

Communication Procedure

[Figure 19 on page 109 shows a sample APL2 session to communicate with AP
100. In the sample, AP 100 is being used to issue the FILEDEF command for a
QSAM file, query and set IMPEX, and process a user-written CMS EXEC.

108 APL2 Programming: System Services Reference

AP 100 (CMS Only)

CMS100<'CMS(EBCD" A Optional Initialization
100 OSVo 'CMS100! A Offer to Share
2 <«—Degree of coupling 0K
1 0 1 0 OsSvc 'CcMS100! A Set Access Control
1 0 1 1
CMS100
0 <+— Return code 0K

DCB<«'(RECFM F LRECL 60)'
CMS100«'FILEDEF QSAMFIL DISK USERFILE TEST ',DCB

CMS100 A Check Return Code from FILEDEF
0
CMS100<«'QUERY IMPEX' A Display IMPEX Setting
IMPEX = OFF <+—— Display from CMS, not APL2
CMS100
0 <+— Return code 0K
CMS100<«'SET IMPEX ON' A Set IMPEX for Executing EXEC
CMS5100
0

CMS100«'USEREXEC"' A Execute User-Written EXEC

Figure 19. Sample CMS APL2 Session to Communicate with AP 100

To cancel output from a CP command, press the PA1 key or the attention key. To
cancel output from a CMS command, enter the HT command (halt terminal output)
from the terminal.

Querying the Operating System
AP 100 returns a character string containing the name of the operating system if a

null character vector is specified. This allows applications that need to run on mul-
tiple systems to determine dynamically which environment they are running in.

CMS100<«""
CMS100
CMus

CMS Communication and IMPCP and IMPEX Settings

When the target in the initial value of the shared variable is CM.S (the default) or
SUBCOM, the settings of two operands of the CMS SET command (IMPCP and
IMPEX) affect the way you issue a CP command or process an EXEC using AP
100.

On issuing a CP command:

e If IMPCP is set OFF, you must precede a CP command with the letters CP.
For example:

CMS100«'CP QUERY FILES'

e |f IMPCP is set ON, you may omit the letters CP. For example:
CMS100<«'QUERY FILES'

User-written CMS EXECs can be processed through AP 100 by specifying the
name of the EXEC in the shared variable.

Chapter 10. AP 100—Host System Command Processor Under CMS 109

AP 100 (CMS Only)

e If IMPEX OFF is the setting, you must precede the name of the EXEC with the
characters EXEC. For example:

CMS100«'EXEC USEREXEC'

e If IMPEX ON is in effect, only the name of the EXEC need be specified. For
example:

CMS100<«'USEREXEC"'

For information on IMPCP and IMPEX, see VM/SP CP Command Reference for
General Users.

Cautions

Entry of any CMS command, EXEC, or module that requires or resets OS storage
or that overlays CMS storage may cause an abrupt termination of an auxiliary
processor, an entry defined using ONA4, or even APL2 itself. These include com-
mands such as EXECOS, LOAD, LOADMOD, and START.

On the 3270 family of terminals when running the session manager or AP 126, CP
messages may not be displayed immediately, but rather are displayed at the end of
the session, when you press the PA1 key, or when you press the key assigned
using the CP TERMINAL BRKKEY command.

Return Codes

After the share offering is complete, unless specified with a null character string,
each reference of the variable shared with AP 100 returns a scalar integer. This
return code can originate from several sources:

« AP 100

e CP

« CMS

e User-written program

Return Codes from AP 100: Figure 20 contains the possible numeric values that
AP 100 can generate.

Figure 20. Return Codes Issued by AP 100 under CMS

Code Description

100 CMS command ended abnormally. A CMS message containing an ABEND code
is displayed at the user's terminal. The failing command may have damaged the
integrity of CMS or APL2.

0 No error exists; the initial value was accepted or the command completed suc-
cessfully.

1 Unknown CP command or improper initial value.

444 Invalid value assigned to the shared variable. It is the wrong shape, size, or data
type.

Return Codes from CMS: CMS return codes may indicate that the command
could not be found or processed. They may also be returned when the command
finishes processing.

110 APL2 Programming: System Services Reference

AP 100 (CMS Only)

For information about CMS return codes, see VM/SP System Messages and
Codes.

Return Codes from CP: The CP codes returned through AP 100 are extracted
from the numeric portion of the CP message id. For example, the CP message id
DMKCQGO20E generates a return code of 20.

For definitions of CP messages, see VM/SP System Messages and Codes.

Return Codes from User Programs: CMS EXECs and user-written programs
can generate any return code. The meanings of these codes must be supplied by
the author of the program.

Chapter 10. AP 100—Host System Command Processor Under CMS 111

AP 100 (TSO Only)

Chapter 11. AP 100—Host System Command Processor

Under TSO

The TSO version of AP 100, the host system command processor, can be used
within an APL2 session to process TSO commands or CLISTs (including ISPF
CLISTs), or to call special AP 100 built-in commands.

TSO commands are normally processed in an environment separate from APL2.
That is, task libraries associated with APL2 or with any tasks that started APL2 are
not searched for the commands, and authorized commands can be used even
though APL2 is not authorized. There is a special TSO built-in command described
at the end of this chapter that permits commands to be issued within the APL2
environment.

CLISTs to be processed should normally be preceded by EXEC or %. If this is not
done, any command of the same name is used in preference to the desired CLIST.
You must always use the EXEC or % form to process a CLIST in an ISPF environ-
ment that invoked APL2. Except for the ISPF case, CLISTs are executed in an
environment separate from APL2, as described for commands above. AP 100 can
be used to process CLISTs and REXX execs. They can be processed either
directly or through the built-in commands EXEC and TSO. However, if ISPF is
active, commands that are prefixed with either % or that are run using the built-in
command EXEC are passed to ISPF for processing. In these cases, ISPF is
usually able to detect changes that may have been made to the screen, and
refresh it if necessary. When processing commands that can invoke ISPF display
services, either the command should be prefixed with % or the EXEC built-in
command should be used. Otherwise, an ISPF CONTROL DISPLAY REFRESH
service request should be issued to avoid unpredictable screen results.

The)HOST system command can be used interactively to invoke any command,
CLIST, or built-in command with exactly the same support provided by AP 100,
except that the return code or result is displayed rather than assigned to a variable.

Associated Workspace

112

The APL2 Licensed Program is distributed with the TSO workspace, which your
installation may have placed in public library 1 or 2. The workspace contains cover
functions that can be used to communicate with AP 100. For information on these
functions, type DESCRIBE, HOW, or ABSTRACT after loading the TSO work-
space.

© Copyright IBM Corp. 1984, 1994

AP 100 (TSO Only)

Shared Variable Overview
Figure 21 provides an overview for sharing variables with AP 100.

Figure 21. Shared Variable Overview for AP 100 under TSO
SV Protocol AP 100 Conventions

General One variable.
Each specification passes a command.

Each reference obtains the return code from the command or
data returned from an AP 100 built-in command.

Maximum Number of Shared Vari- 14

ables

Name Any valid APL2 variable name not exceeding 77 characters.
Initial Value BCD or EBCD conversion option. (Default is EBCD.)
Subsequent Values Specify a character vector not exceeding a length of 32765.

Reference a vector of integers or a character array.

Data Types Supported Character and integer scalars, vectors, and matrixes.

Access Control 0001

Communication Procedure

Figure 22 shows a sample APL2 session to communicate with AP 100. The
sample uses AP 100 to pass the ATTRIB and ALLOCATE commands to TSO for a
QSAM file that can be subsequently processed using AP 111.

Using AP 100, commands are passed with 370 or EBCD conversion.

To cancel output from a TSO command or CLIST, signal attention.

TS0100<«"" aSet Initial Value
100 OSvo '7TS0100" a0ffer to Share
2 <«—Degree of Coupling OK
1 0 1 0 Osvec 'TSo100! aSet Access Control
1 0 1 1

A<'"ATTR ATTRNAME DSORG(DA) '
TS0100<«A,"'LRECL(80) BLKSIZE(800) RECFM(F B)'

750100 aCheck Success of ATTR Command
0 <«—— Return Code 0K

A<'"ALLOCATE DDNAME(QSAMFIL) DSN(AP111FIL) '
A<A,'SPACE(200,5) BLOCK(800) NEW
TS0100<«A,'USING (ATTRNAME)'

750100 aCheck Success of ALLOCATE Command
0 <«—Return Code 0K
TS0100<«"'"EXEC USERCLST' AExecute CLIST Immediately

Figure 22. Sample TSO APL2 Session to Communicate with AP 100

Chapter 11. AP 100—Host System Command Processor Under TSO 113

AP 100 (TSO Only)

Querying the Operating System
AP 100 returns a character string containing the name of the operating system if a
null character vector is specified. This allows applications that need to run on mul-
tiple systems to determine dynamically which environment they are running in.

Trso

TS0100<""
TsS0100

Return Codes

Each reference of the variable shared with AP 100 returns a vector of integers or a
character vector or matrix. The variable can be specified by several sources:

e AP 100, while trying to analyze the request

 The requested built-in command (see [‘AP_100 Built-In Commands” on|
page 116)

e The TSOLNK command invocation facility

e The requested command or CLIST

e Operating system ABEND codes

Figure 23 and Figure 24 identify the return codes that AP 100 controls.

Note: A command or CLIST can create any possible return code, but there is little
ambiguity if it follows the MVS standard of creating only return codes that are multi-
ples of 4 between 0 and 4090.

Figure 23. TSO Return Codes Issued by AP 100 and Related Routines under TSO

Code

Description

0

The TSO command completed successfully.

1

Invalid TSO command or unauthorized use of the command.

You terminated the command with an attention interrupt.

Insufficient virtual storage to process command.

2
3
4

Insufficient shared storage to return the result. This may happen if you have specified one
of the AP 100 built-in commands that return a large result value.

Action: Reference other shared variables or reinvoke APL2 with a larger SHRSIZE value.

444

An invalid data type was set into the shared variable. It is the wrong size, shape, or type.

Figure 24.

Additional Return Codes from AP 100 DDI, DSI, and PDSI Built-In Commands

Code

Description

1

Invalid syntax in command argument, or data set not available for PDSI command.

Insufficient free storage to process command.

Insufficient free storage for result.

3
5
8

Data set or ddname not found, or, for the PDSI command, the data set has been migrated
or is not a valid PDS.

114 APL2 Programming: System Services Reference

AP 100 (TSO Only)

Return Codes from AP 100: Only return code 444 is normally generated by AP
100 itself. This return code is used if the APL workspace has set the shared vari-
able to anything other than a character vector (or scalar) whose length is 1 to 256.
It is also used if the APL ATTACH built-in command returns an invalid array.

AP 100 does generate return code 4 if the result produced by a built-in command is
too large to fit in available shared storage.

Return Codes from a Built-In Command: As indicated in
page 114} these commands may issue return code 4 or 8. The context should
show which command was issued, and that it was a built-in command.

Return codes from TSOLNK: The TSOLNK facility provides both a return code
and a reason code, as documented in TSO Extensions User's Guide. Most of the
return codes deal with actions by AP 100 or the attached command or CLIST, and
are treated separately here. The TSOLNK return code indicating that attention was
signalled is mapped into return code 2. TSOLNK return code 20 deals with a
number of problems, more precisely defined by the reason code. These problems
are mapped into return code 1, but a)YORE message is queued that lists the
specific reason code:

PROCESSOR 100 ERROR reason
The most likely reason code is 44, a syntax error in the command name.

Return Codes from the Command or CLIST: This includes three cases:

e The contents of &LASTCC when a CLIST terminates
e The contents of register 15 when a command terminates normally
* The code associated with any ABEND issued by a command

In the third case a) MORE message is also queued:
TSO COMMAND name ABEND - SYSTEM CODE - 000 - USER CODE - code

Return Codes from an Operating System ABEND: The system abend code
value (in decimal) is multiplied by 4096 to yield a very large return code value. An
80A abend, for example, is really X'80A000', and becomes 8429568. A)MORFE
message is also queued, listing the original code:

TSO COMMAND name ABEND - SYSTEM CODE - hex - USER CODE - 0

Chapter 11. AP 100—Host System Command Processor Under TSO 115

AP 100 (TSO Only)

AP 100 Built-in Commands

With the TSO version of AP 100, you can display several types of data that
describe the processing environment in which APL2 is running. The built-in com-
mands provided by AP 100 allow you to obtain accounting information for the
session, reset terminal translation options, reset debugging options, suppress ter-
minal output, and more. Figure 25 lists and summarizes the available built-in com-
mands. These commands are detailed following the figure.

Figure 25. AP 100 Built-In Commands

Command Description

Al Return TSO-oriented accounting information

ATTACH Attach user-written modules

CODE Obtain and set terminal translation options

DEBUG Obtain and set debugging options

DDI Return descriptive information on a file

DSl Return descriptive information on a data set, or list data set names associated with
an index level

LIB Return a list of workspace names in a given APL2 library

LIBS Return a list of APL2 public and project library numbers

NOMSG Process a TSO command as if from a CLIST with CONTROL NOMSG

PDSI Return descriptive information on the members of a partitioned data set

QUIET Suppress APL2 terminal output until next terminal read request

QUOTA Return a 10-item vector of integers

USER Return information about the system environment in which APL2 is running

WSID Return the name of the active workspace and the date last saved

WSNAME Return the TSO data set name for a given workspace or library

EXEC Process a TSO command procedure

TSO Process a TSO command

Built-in Command Format: When you specify a built-in command in the variable
shared with AP 100, you precede the command either with the characters APL and
a space or with a right parenthesis. For example, either of the following specifica-
tions is valid for the Al accounting information built-in command:

TS0100«'"APL AI"
TS0100<«')AI"

There are two exceptions to this format—the EXEC and TSO built-in commands.
These are entered without a leading APL or).

APL Al

The APL Al command returns a 10-item vector of integers containing TSO-oriented
accounting information. The information supplements the information obtained from
the APL2 system variable JAT. The returned vector is summarized in
on page 117

116 APL2 Programming: System Services Reference

AP 100 (TSO Only)

Note: All items are numeric, and APL2 suppresses leading zeros on numeric dis-
plays.

Figure 26. Data Returned with the APL Al Command
Item Example Description
1 92087 The MVS system date

The last three digits are the day of the year (for example, 087=MARCH
27) and the preceding digits are the year relative to 1900 (for example,
92=1992 and 100=2000).

2 1657241 Time of day HHMMSST
MVS system clock time (hours, minutes, seconds, tenths)
3 1240 Session time HHMMSST

Total connect time for this TSO session, including time not spent in APL2
(hours, minutes, seconds, tenths)

4 1888467 Session processor time MMMM

Total processor time recorded for this TSO session, including time not
spent in APL2 (micro-seconds)

5% 4698 MVS service units NNNN

Total number of MVS service units recorded for this TSO session,
including time not spent in APL2. Service unit numbers (NNNN) are
established by MVS and installation parameters.

6* 31168 MVS transaction active time

Total transaction active time for all transactions.

7* 10 Total number of MVS transactions recorded for this session, including time
not spent in APL2.

8 8 Total number of TSO terminal input requests for this session, including time
not spent in APL2.

9 31 Total number of TSO terminal output requests for this session, including time
not spent in APL2.

10 11 MVS EXCP requests

Total number of 1/O requests recorded by the System Management
Facility (SMF) for allocated direct access data sets. Data sets that were
deallocated by the TSO FREE command are not counted.

Note:

e x Units displayed are those returned by system event code X'26'. See OS/VS2 MVS System
Programming Library Initialization and Tuning Guide.

Chapter 11. AP 100—Host System Command Processor Under TSO 117

AP 100 (TSO Only)

APL ATTACH modulename [parameter-list]

The ATTACH built-in command can be used to attach other subtasks during an
APL2 session. It is for use by experienced system programmers.

One blank must separate the command name and the 1- to 8-character name of
the module to be attached. An optional parameter list to be passed to the module
can follow the module name.

If the LOADLIB option or DDNAME was specified when APL2 was invoked, the
associated data sets are used as a TASKLIB for the module specified in the
ATTACH command.

The attached module can pass results back as an APL2 formatted shared variable.
It is recommended that all modules specified in the APL ATTACH command be
invoked from APL2 functions that can ensure the proper data format for data
passed.

APL CODE [code]

The APL CODE built-in command enables you to query and define the type of ter-
minal you are using. Issued without an operand, the CODE built-in command
returns the current setting of the terminal device code in effect. This code is the
same as that set by the TERMCODE (or CODE) invocation option. These codes
are listed in [Figure 5 on page 30|in|Chapter 2, “APL2 Invocation and Termination.”|
Your installation may have added other terminal device codes.

When APL2 is invoked by another program with the TERMCODE(-1) invocation
parameter, the APL CODE 2 built-in command can be used to provide for TN trans-
lation of output to the file allocated with the DDNAME APLPRINT. The APL CODE
1 built-in command can be used to return to no translation of output. See the
description of the TERMCODE invocation parameter in|Chapter 2, “APL2 Invoca-|
ftion and Termination” on page 8l

APL DDI name

The APL DDI built-in command returns a matrix of descriptive information about the
file entered in the name operand. The name must be a currently allocated ddname
(or FILE name in an ALLOCATE statement)] Figure 27 on page 119 shows the
data that is returned from the DDI built-in command. The information returned is
the same as that from the DSI command when a data set name is entered with that
command.

118 APL2 Programming: System Services Reference

AP 100 (TSO Only)

DSNAME ('fully.qualified.name'
DDNAME(ddname

VOLUME(volume

UNIT(name

DIR(nnn /* nnn USEDx/
SPACE(nnn

/*UNIT*/ alloc_unit

)
)
)
)
)
)

/*DISP*/ use disp

MEMB(nnn /*MEMBER COUNTx/)
SPACE(nnn TRACKS /*ALLOC*/)
SPACE(nnn TRACKS /*USED =/)

/*EXT *x/ extents
DSORG(org

RECFM(fmt attr
LRECL(nnn

BLKSIZE(nnn

/*CRDT*/ dd-mm-yy.ddd
/*RFDT+*/ dd-mm-yy.ddd
/*EXDT+*/ dd-mm-yy.ddd
/*SEC */ auth

~

Figure 27. Descriptive Data Returned with the DDI and DSI Built-In Commands

alloc_unit TRACKS, CYLINDERS, or BLOCKS

use SHR, OLD, NEW, or MOD

disp KEEP, CATALOG, or DELETE

org PS, PO,DA,or VS

fmt F, V,orU

attr B and/or S and/or M and/or A

auth RACF, PASSWORD WRITE, PASSWORD R/W or blank.
APL DSI name

The APL DSI built-in command, depending on the value of the name operand,
returns either a character matrix containing descriptive information on the data set
entered as the name operand, or a list of data set names associated with the name
operand.

* If a fully- or partially-qualified data set name is specified in the name operand,
the DSI built-in command returns the descriptive data shown in Figure 27.

e If an incomplete name is entered as the name operand, the command returns a
list of data set names associated with the incomplete name.

The relationship between the value specified in the name operand and the matrix
that is returned is detailed in Figure 28.

Figure 28. Relationship of DSI Name Operand and Data Returned

Value of
Name Operand Action by AP 100
Partially-qualified (or simple) name User's profile-prefix is used to form a fully-qualified name.

using TSO conventions Matrix of data set descriptive information is returned.

Fully-qualified data set name Matrix of data set descriptive information is returned.
enclosed in single quotation marks.

Incomplete name (with or without List of qualified data set names beginning with the specified
single quotation marks) incomplete name. One data set per row.

Chapter 11. AP 100—Host System Command Processor Under TSO 119

AP 100 (TSO Only)

[Figure 27 on page 119 shows the 20 rows of descriptive information returned from
the DSI command when specified with a partially- or fully-qualified data set name.
The matrix is the same as that returned from the DDI built-in command. If a blank
ddname is returned, the data set is not currently allocated to your user ID. If the
volume serial number is MIGRAT, APL2 assumes that the Hierarchical Storage
Manager (HSM) has migrated the data set, and no additional information is
returned.

For offline devices, APL2 can return only the data set name. The device a data set
resides on must be online in order for APL2 to find it. For MSS, use a TSO ALLO-
CATE statement to force the device online if possible. If the data set resides on
MSS and is not allocated, MVS treats it as if the device is offline.

When the DSI command is entered with a name operand of one or more index
levels, the number of rows in the returned matrix depends on the number of data
sets associated with the specified level(s). Each data set is one row of the matrix.

If the output is too much for the program to handle, partial contents are output with
the last row of the matrix being all dots.

The number of columns in the matrix depends on the size of the data set name.
The variable information starts in column 10. To eliminate the display of the
keywords, use:

0 9v0 ~1+4DATA

APL DEBUG [code]

The APL DEBUG built-in command enables you to dynamically query and set the
debug options in effect for the session. Issued without an operand, the DEBUG
built-in command returns the current setting of the debug option. To set the debug
option, specify one of the codes discussed with the DEBUG invocation option in

Chapter 2, “APL2 Invocation and Termination” on page 8/ Unlike the DEBUG
invocation option, only a single code can be specified. The specified code replaces
the current DEBUG settings.

This command is retained for compatibility with previous releases. See also option
'DEBUG' defined in APL2/370 Programming: Using the Supplied Routines.
OPTION 'DEBUG:' behaves more like the invocation option, and is compatible
across environments.

APL LIB [n]

The APL LIB built-in command returns a character matrix of workspace names,
found in the library, specified as n. Each workspace name is one row of the
8-column matrix.

If nis omitted, the workspace names in your private library are returned. If nis an
invalid library number, the command returned is either IMPROPER LIBRARY
REFERENCE or INCORRECT COMMAND.

120 APL2 Programming: System Services Reference

AP 100 (TSO Only)

APL LIBS

The APL LIBS built-in command returns a character matrix of both public and
project library numbers.

e All currently allocated VSAM public and project library numbers are displayed.

e All currently defined SAM public and project library numbers, including empty
project libraries, are displayed.

Note: There must be enough free storage, defined by the FREESIZE invoca-
tion option, to invoke Access Method Services, which requires 250K bytes. If
sufficient storage is not found, the return code is 3.

The column width of the returned matrix is eight characters, as shown in the fol-
lowing example:

TSO0100«'"APL LIBS'
O<«LIBNOS<«TS0100
00000001
00000002
00001980

APL NOMSG commandname commandparms

The APL NOMSG built-in command processes commandname as if APL NOMSG
had not been specified, except that:

* Messages normally controlled by the CONTROL NOMSG command within a
TSO CLIST are suppressed for the duration of the command. When the
command is completed, message display is restored to its prior state.

e The command cannot be another built-in command.

e The command cannot be an ISPF EXEC. (But the ISPEXEC command can be
used to invoke such an EXEC indirectly.)

APL PDSI name

The APL PDSI built-in command returns a character matrix containing descriptive
information on the members of a partitioned data set entered as the name operand.
The format of this information consists of one row for each member and 77
columns corresponding in format to the display provided by the ISPF browse
facility. If AP 100 cannot allocate enough storage for the complete result, the
number of columns is 8 and only member names are returned.

In the following examples, column headings are shown for orientation. They are
not part of the character matrix returned by the command.

Chapter 11. AP 100—Host System Command Processor Under TSO 121

AP 100 (TSO Only)

Libraries edited by ISPF appear as follows:

NAME VV.MM CREATED CHANGED SIZE INIT MOD ID
----+----1----+----2----+----8----+----4----4----5----4----6----+----T----+--
CADD 01:01 91/08/26 91/08/26 08:5L 10 10 0 L460581
CENV 01:02 91/02/19 91/08/26 08:32 21 18 0 L460581
CSUB 01:02 91/08/26 91/10/01 15:1L 10 10 0 L460581

Load module libraries appear as follows:

NAME SIZE TTR ALIAS-OF AC --------- ATTRIBUTES ---------
----+4+----1----+4+----2----4+----8----4+----4----4----5----4----6----4+----T----+--
CMEMBER 001288 00022F 00 FO
CRDRL 000408 000204 00 FO NX RN RU
CRL 001178 000214 00 FO RN RU

APL QUIET

The APL QUIET built-in command enables you to suppress messages from APL2
until the terminal opens for input. The effect is the same as if the session manager
SUPPRESS command had been issued.

The APL QUIET command is provided for compatibility with previous releases.
New applications should use the more general OPTION 'QUIET' as defined in
APL2/370 Programming: Using the Supplied Routines.

APL QUOTA

The APL QUOTA built-in command returns a 10-item vector of integers. The first
six items contain the same information displayed by the APL2 system command
YQUOTA; however, the first two items are 0 because LIB and FREE are not meas-
urable in TSO. (See APL2 Programming: Language Reference for information on
YQUOTA.) The last four items are:

SVMAX Maximum permitted size of a shared variable
REGION Region size of your TSO session

FREESIZE Amount of free space available in your TSO region
AISIZE The size of the alternate input stack

Except for the workspace size, these figures do not reflect extended size for
MVS/XA systems.

APL USER

You can use the APL USER built-in command to obtain miscellaneous information
about the TSO environment in which APL2 is running. The information returned is
an 8-column character matrix. Rows of the matrix are described in Figure 29.

122 APL2 Programming: System Services Reference

AP 100 (TSO Only)

Figure 29 (Page 1 of 2). Data Returned from the AP 100 APL USER Built-In

Command

Row Example Description

1 APLUSER TSO user ID (7 characters)

2 1001 Workspace library number

3 UTILITY Workspace name

4 (Reserved)

5 32791 Terminal type code

6 24 80 Terminal screen height and width (two
4-character fields)

7 APL2 APL2 module name

8 2.2.00 APL2 licensed program release level

9 TSO/E Subsystem type

10 2.04.0 Subsystem (TSO) release level

11 MVS/SP4 Operating system name

12 SP4.3.0 System Product Name

13* ACF/VTAM= TP access method name

14 2.0 TP access method level

15* GDDM Graphical Data Display Manager

16* V3R1.0 GDDM level (can be obtained more reliably by
using call 122 of AP 126)

17* RACF Resource Access Control Facility

18* 1.09.2 RACF level

19* HSM Hierarchical Storage Manager

20* 2.2.1 HSM level

21.0 B If batch processing

211 .J If user has job submit authority

21.2 ..0 If user has operator authority

21.3 .V V if VTAM*

21.4ABCD Sysout classes available

22 REMOTE1 Sysout remote destination

Chapter 11. AP 100—Host System Command Processor Under TSO

123

AP 100 (TSO Only)

Figure 29 (Page 2 of 2). Data Returned from the AP 100 APL USER Built-In

27

28

29

30~

31-33

34-35

36-nn*

installed.

SYSDA

APLUNIT

APLVOL

999

*khkkkk

kkkkk

Command

Row Example Description

23.0 3090+ Processor model number

23.4SYSA SMF processor identification

24 APL4 TSO project number (account)

25 APLOGON Logon procedure name

26 APLUSER Profile prefix (from TSO PROFILE command)

The following four fields are used only with a SAM library system.

UNIT name for data set allocations

UNIT name for new workspaces

VOLSER for new workspaces

Maximum public library number

Reserved for IBM use

Information from user field in the TSO user
attribute data set (UADS). The information
contained in these rows is installation
dependent. Consult your system administrator

regarding the data content.

Reserved for installation fields.

* For the rows marked with asterisks, the values shown in the Example column are supplied as
defaults with the licensed program. The values can be changed by your installation when APL2 is

124 APL2 Programming: System Services Reference

AP 100 (TSO Only)

APL WSID

The APL WSID built-in command can be used to return the active workspace iden-
tification. The result is a 3-row character matrix containing:

¢ Name of the active workspace (WSID).

e Date and time stamp when the workspace was last saved. The format of this
information is set by the DATEFORM invocation option. For information on
DATEFORM, see [Chapter 2, “APL2 Invocation and Termination” on page 8|

e The TSO user ID that saved the workspace, if under a SAM library system.
Under a VSAM library system, the third row is blank.

This command is used only to query the active workspace identification. It cannot
be used to change the workspace identifier. If any nonblank characters follow the
APL WSID command, the return code is 1.

APL WSNAME [/ibno] wsid

The data returned from the APL WSNAME built-in command depends on whether
the identified library is in SAM or VSAM format.

e With a SAM library system, the APL WSNAME command returns the fully-
qualified data set name of the specified workspace (prefix.libno.workspace-
name) if the specified library was defined. If the library number specified does
not exist, no information is returned.

e With a VSAM library system, the APL WSNAME command returns the fully-
qualified data set name of the VSAM cluster (the APL2 library) containing the
specified workspace.

If the specified workspace does not exist, the command indicates only the name
that would be used if the workspace existed.

EXEC clisthame

The EXEC built-in command invokes a command procedure (CLIST) specified by
clistname. The name must conform to TSO data set naming conventions.

Chapter 11. AP 100—Host System Command Processor Under TSO 125

AP 100 (TSO Only)

TSO commandname

This built-in command processes commandname much as if TSO had not been
specified, but the following differences:

e The present tasklib concatenation (including LOADLIB) is searched for the
command and passed as a tasklib to it. Without the TSO prefix only the TSO
session joblib/steplib is used.

¢ The command is invoked nonauthorized. Authorized commands fail.

e Certain APL2 tasks can continue to run asynchronously while the command is
processing.

Formally, TSO commandname attaches the command as a subtask of APL2;
without the TSO prefix it would be attached using the TSOLINK facility.

Note: TSO clistname is an invalid command. However, TSO %clisthname, and
TSO EXEC %clistname, are valid commands. In earlier APL2 systems, such
CLISTs were not processed until APL2 terminated. They now process immediately,
but as if TSO had not been specified. See EXEC above.

126 APL2 Programming: System Services Reference

AP 101

Chapter 12. AP 101—Alternate Input (Stack) Processor

The alternate input (stack) processor (AP 101) is used to create a stack of pro-
grammable input to either APL2 or the host system (CMS or TSO). Commands to
the host system are stacked for processing after a programmed AP 101 exit from
the APL2 environment. Under CMS, you can also stack input to a CMS command
or EXEC.

Conceptually, the alternate input stack is a character vector of vectors. Each item
is one stacked input line of variable length. The value of the AISIZE invocation
option (TSO only) determines the number of characters that can be stacked.

Although any one user can maintain only one stack, several shared variables can
be used to add entries to the stack. Entries can be added in either first in, first out
(FIFO) or last in, first out (LIFO) order. One variable can add FIFO entries while
another adds LIFO entries.

An input stack is normally created within a defined function. The top entry (the first
item) in the stack is used when the terminal opens for input. This occurs when:

e An APL2 statement prompts for user input (O or [M).

e The APL2 line editor, invoked by)EDITOR 1, prompts for input.

* APL2 opens the keyboard for immediate execution.

e APL2 execution is suspended as a result of an error or stop control (SA).

Under TSO, you can set a fence within the stack. Data behind the fence is not
passed to APL2 until the keyboard is opened for immediate processing. Estab-
lishing a fence in the input stack can be useful in providing recovery from interrupts
or errors from APL2 or TSO. Only one fence is allowed, and it is allowed only
under TSO.

Associated Workspaces

The CMS workspace (under CMS) and the TSO workspace (under TSO) contain a
cover function that can be used to generate user-defined functions that add stack
entries. For more information about this function, type DESCRIBE, HOW, or
ABSTRACT after loading these workspaces.

© Copyright IBM Corp. 1984, 1994 127

AP 101

Shared Variable Overview

Data Formats

Initial Values

Figure 30 provides an overview for sharing variables with AP 101.

Figure 30. Shared Variable Overview for AP 101
SV Protocol AP 101 Conventions

General One variable.

Each specification adds an entry to the stack (or, under TSO,
sets a fence option).

Each reference obtains the return code from the most recent
stack operation.

Maximum Number 14
of Shared Variables

Name Any valid APL2 variable name.
Initial Value Stacking order—FIFO (default) or LIFO.
Subsequent Values Character vectors not exceeding a length of 256, or integer

scalars or vectors.

Exception: TSO fence requests are numeric scalars.

Data Types Sup- Character vectors or scalars.
ported
Access Control CMS: 0001

TSO: 0011

With the exception of the fence options available under TSO (see below), all spec-
ifications of the variables shared with AP 101 must be character vectors or char-
acter scalars.

You indicate the order in which lines are to be stacked by specifying an initial value
in the variable before it is shared. Stack order can be FIFO (the default) or LIFO.
For compatibility with previous versions of APL, FIFO and LIFO can be specified as
END and BEG, respectively. Stacking order can also be changed later (see [AP|
[101 Commands” on page 129).

The format of the initial value is:

SHR101<«'[([LLIFO|FIFOIL)11"

If the shared variable has no initial value or contains an empty vector, the default is
FIFO.

Input lines are always removed from the stack, starting at the top. When you
specify FIFO stacking, new lines are added to the bottom of the stack. When you
specify LIFO stacking, new lines are added to the top of the stack.

128 APL2 Programming: System Services Reference

AP 101

If the initial value is invalid, a return code of 1 is set and continues to be set for all
subsequent requests until a valid initial value is provided.

Communication Procedure

The steps to build a stack of input are summarized below.

1. Initialize the variable to be shared with the type of stack order you want. You
can omit this step if you accept the default of FIFO and the variable you are
sharing is empty or has no value. See [‘Initial Values” on page 128,

. Offer the variable to AP 101 and ensure that the degree of coupling is 2.
. Set the access control.

. Check the return code from the initial value.

a A WO DN

. Specify the shared variable with the data you want stacked or a numeric
command as described in [‘AP_101 Commands.”| Check the return code.
Repeat this step for each entry to the stack.

Under TSO, you can set a fence in the stack. The optional fence is discussed
in [‘Using AP 101 with the TSO Fence Option” on page 131}

6. Stack entries can be used any time after being stacked. There can be several
cycles of alternately filling and using the stack.

7. Retract the shared variable when your stack processing is finished.

Although AP 101 is ordinarily used in a defined function, Figure 31 shows a sample
APL2 session that illustrates the communication procedure. Note that the data
assigned to SHR101 is immediately processed, because the terminal returns to
input mode immediately after the specification.

101 0OSvVOo 'SHR101! A offer to share
2 K—mmmmmmmmmmm - - - A degree of coupling 1is ok
1 0 1 0 OSvCc 'SHR101' A set access control
1 01 1
SHR101<«"'")WSID'
CLEAR WS K—mmmmmmmmm - m - - - A JWSID executed immediately

SHR101<«"'")SAVE TEST101"
1992-03-27 10.53.15 (GMT-8) <---a)SAVE executed immediately

Figure 31. Sample APL2 Session to Communicate with AP 101

AP 101 Commands

In addition to assigning character vectors to the variable to add lines to the stack,
numeric codes can be used to purge the stack of all entries or to control stacking
order.

e SHR101<«0 — Purges the entire stack.
e SHR101<10 — Queries the state of the stack (LIFO/FIFO)
e SHR101<«10 1 — Sets the stack to LIFO

Chapter 12. AP 101—Alternate Input (Stack) Processor 129

AP 101

e SHR101<«10 ~ 1 — Sets the stack to FIFO (the default)

See also the additional codes described in[‘Using AP 101 with the TSO Fence|

[Option” on page 131|

Using AP 101 within a Defined Function
AP 101 is most useful when used in a defined function. Otherwise, as illustrated in
Figure 31, each row of stacked data is immediately processed as it is stacked. For
a sample defined function that uses AP 101, see [Figure 32 on page 130.

To try this sample function, replace CMD with a name you have already defined,
and specify the command or EXEC you normally issue to invoke APL2.

utility function for
queue data

return empty if ok
else return zero
after printing message

offer to share

if coupling not ok,
set access control
if rc not ok, then return
save cont. wss;return on error
execute cmdi;return on error
restart APL2; return on e€error

exit

\Y
0] Z<QUEUE STRING A
[1] SHR101<STRING A
[2] Z«<SHR101

\Y

\Y
[0] Z«<CHK N
[1] Z<(0=z4N)/0 A
[2] +(0=pZ)/0 A
[3] 'AP 101 ERROR:' N A

v

v
(0] CMD AP101SAMPLE INVOC3;SHR101:Z
[1] Z<101 0OSVO 'SHR101' A
[2] +(2=2101 0OSVO 'SHR101')/0
[3] Z<0 0 1 1 0OSvCc 'SHR101! A
C4] +~CHK SHR101 A
[5] +~CHK QUEUE ')CONTINUE' A
[6] +~CHK QUFEUFE CMD A
[7] +~CHK QUFEUFE INVOC A

\Y

Figure 32. Sample APL2 Defined Function That Uses AP 101

Disposition of Data on the Stack

When data is stacked by a defined function using AP 101, the top entry on the
stack is treated as the response to an input request when the user's terminal opens
for input. The entry is then deleted from the stack.

The entire stack is deleted if:

* An attention signal is issued; if the TSO fence option is in use, the stack is

deleted up to the fence.

A stack overflow condition occurs (TSO only). See return code 12 in

fon page 133

130 APL2 Programming: System Services Reference

AP 101

Exiting and Returning to APL2 within a Defined Function
Whatever remains in the stack afteran)OFF or)CONTINUE, is passed to the
host system (CMS/TSO). If the stack contains the command to reenter the APL2
environment, any input stacked after the APL2 command is:

CMS Processed by APL2.
TSO Not passed to APL2. Use the INPUT invocation option (described next)
to automatically run expressions upon return to APL2.

Using the INPUT Invocation Option in a Stacked APL2 Command
When the APL2 command is stacked to return to APL2 from the host system, you
can include the INPUT invocation option in the command. With this option you can
specify a string of input to be processed upon reentering APL2. For example:

101 OSVO 'SHR101'

1 0 1 1 08SVC 'SHR101'

SHR101<"')OFF"'

INP<' INPUT('')LOAD MYWS'' ''RESTART'')'
SHR101<«'APL2 WSSIZE(500K)',INP

When the stacked APL2 command is processed, the MYWS workspace is loaded
and restarted.

The INPUT invocation option is also discussed in [Chapter 2, “APL2 Invocation and|

ermination.”

Using AP 101 with the TSO Fence Option

To understand the purpose of the TSO fence option, you need to understand the
difference between user-initiated input requests and system-initiated input requests.
Data behind a fence is used only for APL2 system-initiated input requests. Data
added after a fence was set (data in front of the fence) is used for either user-
initiated or system-initiated input requests.

User-initiated input requests include prompts for user input (O or 1) from a defined
function.

System-initiated input requests are those issued by APL2 in immediate execution
mode. When a fence is set, all data currently on the stack is placed behind the
fence, regardless of how it was stacked (FIFO or LIFO). Entries behind the fence
are not processed until the terminal returns to immediate execution mode.

Returning to immediate execution mode clears the fence, and the stacked data is
passed to APL2 (one line per input request). For example, if two lines of data are
stacked behind the fence and the first invokes a function, a 0 or [l prompt from the
function is satisfied by the second stacked line, unless the function first sets a new
fence.

Returning to immediate processing mode can occur for any one of the following
reasons:
¢ The line editor prompts for input.

e The function you are running terminates normally.

Chapter 12. AP 101—Alternate Input (Stack) Processor 131

AP 101

e A function has a stop control (SA) set for a function line. (Note that stop
control is not honored in a nonsuspendable function or in functions called from
a nonsuspendable function.)

e An error occurs (such as a VALUE FRROR) during function processing.

e A terminal or line interrupt occurs.

Fence Commands
There are two additional commands you can specify in the shared variable under
TSO. They are:

1—Set or move the fence.
2—Purge the stack up to the fence.

When you specify the shared variable with a 1, all current entries on the stack are
placed behind the fence. If a fence already exists in the stack, the fence is moved
to the top of the stack.

Command 2 deletes all entries on the stack except those behind the fence,
assuming a fence was set. If no fence exists, all entries on the stack are deleted.
A command of 2 can be used in a function that conditionally prompts for input.

Command 0 (see [FAP_101 Commands” on page 129) deletes all entries on the
stack—including those behind the fence. It can be used when you have set an
error recovery trap behind the fence, but it did not have to be processed.

Note: Even if you set a numeric value in the shared variable (requests to set a
fence or purge stack entries), you should check the return code. The stack is not
cleared if a nonzero return code results. AP 101 may be indicating that the initial
value supplied was invalid. All subsequent specifications of the shared variable are
ignored until a valid initial value is supplied. No additional data can be stacked until
you obtain a return code of 0.

Cautions

If an interrupt is signaled or if a system error occurs as the stack is being proc-
essed, the entire stack (including a TSO fence and the data following it) is deleted
and the terminal returns to immediate execution mode.

Under CMS, the two CMS immediate commands HT (halt terminal output) and RT
(resume terminal output) cannot be stacked for deferred execution. These com-
mands are executed when you stack them.

Under TSO, you cannot use the DATA/ENDDATA statements of TSO CLISTS to
supply APL2 input.

By selecting characters from AV, you can generate characters that cannot
normally be entered from a terminal. If you stack lines that include characters gen-
erated in this way and if the stacked lines are read by a program not prepared for
these characters, unexpected results can occur. For a stack read by APL2, this
includes characters other than the blank character or displayable APL2 characters.

132 APL2 Programming: System Services Reference

AP 101

Return Codes

After a variable is first shared and after each specification of the shared variable, a
simple scalar is returned with the next reference of the variable. This return code
indicates whether or not the last specification of the variable was successful.
Return codes from AP 101 are listed and explained in Figure 33.

Figure 33. Return Codes from AP 101

Code Description

0 Success. The initial value or the last user specification of the shared vari-
able was successful.

1 Invalid initial value. Subsequent specifications of the variable are inter-
preted as attempts to assign a valid initial value.

Action: Specify a valid initial value. Input is not stacked until a return
code of 0 is returned from the initial value.

12 TSO Only: Stack overflow. You have specified a data value that was too
large to fit into the remaining space on the stack. The stack is purged up
to the fence if a fence is present; otherwise, the entire stack is purged.
Action: If there is no program logic error on your part, restart APL2 with a
larger value specified in the AISIZE option. For more information on the
AISIZE operand and the default stack size for AP 101, see
[FAPL2 Invocation and Termination” on page 8

444 Invalid value specified in the shared variable. It is the wrong size, shape,

or data type.

TSO only: The stack is purged up to the fence if a fence is present; other-
wise, the entire stack is purged.

CMS only: The invalid specification is not used.

Chapter 12. AP 101—Alternate Input (Stack) Processor

133

AP 102

Chapter 13. AP 102—Main Storage Access Processor

This chapter contains Product-Sensitive Programming Interface and Associated
Guidance Information.

The main storage access processor is used by system programmers to obtain the
contents of specified areas of main storage. It is used primarily as a tool for moni-
toring the systems environment in which APL2 runs.

The storage accessed with this processor can only be read, not updated. Storage
areas that can be accessed include:

e CMS: Any part of the user's virtual machine in addition to any currently-loaded
shared segments.

e TSO: All addressable storage in the user's storage protect key. Under
MVS/XA, this includes storage addresses above 16 megabytes. A storage
block that is fetch-protected cannot be accessed.

There are no significant differences between CMS and TSO in the use of this
processor.

Shared Variable Overview

Figure 34 provides an overview for sharing variables with AP 102.

Figure 34. Shared Variable Overview for AP 102
SV Protocol AP 102 Conventions

General Two variables—control and data.

Each specification of the control variable passes a service request
to the auxiliary processor; each reference obtains the return code
from the most-recent request.

Any specification of the data variable is ignored. Each reference,
however, returns the result of the request specified in the control

variable.

Maximum Number of Shared Six pairs.

Variables

Names Must start with CTL and DAT. Suffixes pair the variables. Names
cannot exceed 12 characters.

Initial Values Same as subsequent values. If a CTL initial value is provided,
DAT should be offered before CTL; otherwise, the return code is 2.

Subsequent Values CTL: Specify a service request (scalar integer or one- to three-
item vector of integers). Reference a return code (scalar integer).
DAT: Reference a vector of one or more integers.

Data Types Supported Nonnegative integers.

Access Control CTL: 0001

DAT: 0000

134 © Copyright IBM Corp. 1984, 1994

AP 102

| Commands
Two types of information can be returned in the data variable:

¢ Address of the active workspace

Specify the control variable as a scalar integer (or a one-item integer vector)
with a value of 0.

e Contents of a specified area of primary storage
Specify the control variable as a two- or three-item vector:
Item 1 = 1 (Service request: required.)

Item 2 = address (Displacement, in decimal, from storage location O:
required.)

Item 3 = length (Number of bytes to be returned; optional—default is four
bytes.) The processor rounds the specification up to a multiple of four.

Figure 35 summarizes the formats for the control and data variables.

Figure 35. AP 102 Commands

Request CTL Specification Result of DAT Refer-
ence

Obtain address of active CTL102<0 One-item integer vector.

workspace.

Obtain contents of storage. CTL102+«1 address [length] Vector of integers; each

item represents four bytes
of storage as an integer
between ~2147483648
and 2147483647.

Communication Procedure

[Figure 36 on page 136| shows a sample APL2 session that uses AP 102 to obtain
the SHRSIZE and WSSIZE limits for the session. The PERTERM address
accessed in the figure is an internal control block for your terminal. Mapping
macros for it are provided with the product, but the offsets within it are not guaran-
teed for future releases.

Chapter 13. AP 102—Main Storage Access Processor 135

AP 102

102 OSVO™'CTL102' 'DAT102! a offer to share
2 2
1 0 1 0 0O8Sve 'CcrL102! A set access control
101 1
CTL102<«0 A request workspace address
CTL102
0 <«—Return code 0K
GWS<«DAT102 A save workspace address
CTL102<«1,GWS+U4 A request PERTERM address
CTL102
0 <«—Return code 0K
PTH«DAT102 A save PERTERM address
CTL102<«1,(PTH+20),16 A request SHRSIZE and WSSIZE
CTL102
0
DAT102
32768 0 0 1048576 <«—SHRSIZE, [unused], [unused], WSSIZE
OSVR © 'CTL102' 'DAT102' a retract shared variables
2 2

Figure 36. Sample APL2 Session to Communicate with AP 102

Formatting the Result from AP 102

The value returned in the data variable is always a vector of integers. This is
useful for following storage chains, but, if the data is character, you may want to
convert it to character or hexadecimal format. Use the following expression to
convert the data variable to character format:

OAF ,8(4p256)TDAT102

The UTILITY workspace contains the function HEXDUMP, which can be used to
format the result returned in the data variable into hexadecimal format.

Cautions

APL2 control blocks and workspace formats may be changed, without notice, by
program temporary fixes (PTFs) or future releases of APL2. Consequently, applica-
tions that use AP 102 to access information from these areas should be designed
in such a way that they can easily be modified if the internal structure of APL2
changes.

136 APL2 Programming: System Services Reference

AP 102

Return Codes

The return code issued by AP 102 is a scalar integer. Figure 37 describes the AP
102 return codes.

Figure 37. Return Codes from AP 102

Code Description

0 Successful completion of requested function.

2 The request specified in the control variable cannot be satisfied because you did not offer a
data variable. The AP offered the data variable to you, but you did not match that offer.
Action: Offer the data variable, ensure the degree of coupling is 2, and respecify the
request.
Invalid service request. The first item specified in the control variable was not a 0 or 1.

4 Invalid number of parameters for specified service request.
Invalid APL2 data specified in the control variable. It is the wrong size, shape, data type, or
outside the range -231 to 231-1.

6 Invalid address specified in the control variable. The value is negative or represents an
address that is outside the range of accessible storage.

7 Invalid length specified in the control variable. The value is negative or zero.

Insufficient storage available for AP 102 to return the contents of storage in the data vari-
able.

Action: Either specify a smaller length in the control variable or restart APL2 with a larger
size specified in either the SHRSIZE or FREESIZE option.

Chapter 13. AP 102—Main Storage Access Processor 137

AP 110

Chapter 14. AP 110—CMS File Processor

AP 110, the CMS file processor, is used to sequentially or directly access records
on a CMS file. These records must be on a disk that is under the control of the
CMS file system. CMS files can be created, updated, or merely read with AP 110.

AP 110 is not available under TSO. BDAM files, however, can be similarly proc-
essed under TSO using AP 210, the BDAM file processor.

Associated Workspace

The CMS workspace contains several cover functions that can be used to access
CMS files with AP 110. For information on the functions and how to use them, type
DESCRIBE, HOW,or ABSTRACT after loading the CMS workspace.

Shared Variable Overview

Figure 38 provides an overview for sharing variables with AP 110.

Figure 38. Shared Variable Overview for AP 110

SV Protocol

AP 110 Conventions

General

One or two variables.

Sequential Access: Only a record variable is required.
Each specification writes a record; each reference reads a
record.

Direct Access: A control variable and a data variable are
required.

¢ Each specification of the control variable sets the
read/write pointer and/or the number of records to be
read/written; each reference obtains return codes from
the read or write operation.

¢ Each specification of the record variable writes the
record(s) identified in the control variable. Each refer-
ence reads the record(s) requested in the control vari-
able.

Maximum Number of Shared Variables

40

Names Any valid APL2 variable names not exceeding a length of
77 characters.
Initial Value The name of the file you want to access must be specified

in the initial value of both variables. Matching file names
pair the control and record variables.

Optionally, you can specify:

¢ Fixed-length file
e Conversion option
e Type of access

Subsequent Values

Record: Depends on conversion option

Control: One- to four-item vector of integers

Data Types Supported

Any valid type for the conversion option specified

Access Control

Record: 0011
Control: 001 1

138

© Copyright IBM Corp. 1984, 1994

Initial Values

AP 110

The format of the initial value for the record and control variables is shown below.
The fileid is required for both variables. The option CTL is required for the control

variable.

If the initial value is invalid (return code other than 0), subsequent specifications of
the variable are treated as attempts to assign a valid initial value.

Initial values are specified as follows:

REC110<"fileid ([F I X][access][conversion][)]

CTL110<"fileid (CTLL)]1"

where:

fileid

FIX

access

Specifies the file name, file type, and file mode of the CMS file to be
accessed. The default file mode is A1. A file mode specified as an
asterisk (*), indicating that the file mode can be anything, can be
used only for an existing file.

In general, it is a good idea to explicitly state the file type. It defaults
to VMAPLCEF for the record variable (where 'c' represents the con-
version option), but it always defaults to VMAPLVF for the control vari-
able. Therefore, it is essential that the file types match when
specifying a conversion option. See the conversion parameter
described below.

AP 110 converts the fileid with the 370 option. The fileid can consist
of characters that convert to uppercase and lowercase letters,
numbers, the at sign (@), number sign (#), and dollar sign ($). If you
want to access a file whose converted fileid contains lowercase
letters, you must specify underbarred letters (such as 4) for the lower-
case letters.

Indicates that the new file being created is to contain fixed-length
records; the record length is determined from the first specification of
the record variable after its initial value is accepted. All subsequently
written records must be this length.

If the FITX parameter is omitted, the file is created with variable-length
records. If the file already exists, the existing record format is used,
and this parameter is ignored.

Indicates the type of access to be associated with the file. Valid
values of the access options are:

U The file can be read or written. This is the default.

R The file can only be read. Any specification of the record variable
(except for its initial value) is ignored unless you set the access
control vector to control your specifications, in which case your ter-
minal is locked when you specify the record variable.

W The file can only be written.

Chapter 14. AP 110—CMS File Processor 139

AP 110

conversion

CTL

Indicates the conversion to be applied to the processed data. (Valid
conversion options are listed below.)

If no conversion option is specified and if no file type is entered for the
file name, conversion defaults to VAR and the file type defaults to
VMAPLVF.

The sixth position of the file type of the format VMAPLCF relates to
the conversion option as follows:

« If the file type is specified in the VMAPLCF format, the conversion
option defaults to the matching option specified in the sixth posi-
tion (c) of the file type.

e |f a conversion option but not file type is specified, the file type
defaults to VMAPLCF, with the sixth position being the matching
code for the conversion option in the table below.

The conversion options and matching default file type (sixth position)
are:

APL AT
BIT 'B!
BYTE vy
CDR ol
coD1 rX!
DBCS "D
EBCD (or 192) vq
VAR "y
BCD (or 370) 13

This auxiliary processor provides no conversion assistance in
accessing files with character encoding other than EBCDIC or APL
(either APL2 or VS APL) internal code. Applications that use the
BYTE option to translate other encodings into APL internal characters
should continue to do so. However, these applications must be modi-
fied to run under APL2.

For a description of all conversion options, see [Appendix D, “Auxiliary|
[Processor Conversion Options” on page 370}

Indicates that this variable is a control variable. If the CTL parameter
is omitted, the variable is assumed to be a record variable.

Communication Procedure

CMS files can be processed with AP 110, using either sequential or direct access.
Only the record variable is required to process a file sequentially, but, with only one
variable, you cannot check the return code of read/write operations and can read or
write only one record at a time.

When you share a pair of variables with AP 110, you can process a CMS file by
using direct access, check the return codes, and read or write multiple records for
each request.

When a pair of variables is shared with AP 110, the record variable must be offered
before the control variable.

140 APL2 Programming: System Services Reference

AP 110

Record Variable

The record variable is used to transmit the data content of records between the
active workspace and a CMS file. The record variable is always required.

The first reference of the variable after sharing returns the return code for the initial
value. Subsequent references obtain records from the file if the access option
specified in the initial value was U (update—read or write) or R (read only). Each
specification of the record variable after the initial value writes one or more records
on the file.

The value of the control variable determines which and how many records are read,
and which and how many records are written. If the control variable is not used,
processing is done sequentially, one record at a time.

Control Variable

When shared, the control variable is a one- to four-item vector of integers used to
control 1/0O operations. The four items are:

1. CTL110[1 J—Return code of the previous /O operation. (See[‘Return]
[Codes” on page 144})

2. CTL110[21—Next record to be read (initial default = 1).
3. CTL110[3]1—Next record to be written (initial default = end of file + 1).

4. CTL110[4 J—Number of records to be read or written (blocking factor; initial
default = 1).

Specifying the Control Variable
You have the option of specifying the control variable before each input or output
operation.

* If you specify a scalar or a one-item vector, the read pointer is reset.
 If you specify a two-item vector, the read and write pointers are reset.

* If you specify a three-item vector, the read pointer, the write pointer, and the
blocking factor are reset.

 If you specify a four-item vector, the first item is ignored, and the last three
items reset the read and write pointers and the blocking factor.

If you specify a 0 for any of the items in the control variable vector, the respective
item is left unchanged.

An indexed specification of the control variable can also be used to change one or
more of the values of the control vector (CTL110[I J<«value). Considerations for
specifying the read pointer, the write pointer, and the blocking factor are given
below. Note, however, that:

 If you specify a 0 or a negative number as any item, the corresponding value in
the control variable remains unchanged.

 If you specify an unacceptable value (that is, a noninteger, a vector with more
than four elements, or a matrix), the entire control variable remains unchanged.

e Specifying the return code (CTL110L[1 1) has no effect.

Chapter 14. AP 110—CMS File Processor 141

AP 110

Specifying the Read Pointer (CTL110[21): The read pointer can be set to any
positive integer. If it exceeds the number of records in the file, an end-of-file (EOF)
condition occurs on the next input (read) operation (return code 12).

Specifying the Write Pointer (CTL110[31]): If the write pointer is set to the
number of an existing record, that record is replaced by the next output (write)
operation.

If the write pointer is set to one more than the number of existing records, the next
output (write) operation appends one or more records to the end of the file.

If the write pointer is set to a value greater than end of file (EOF) + 1 and the file
contains fixed-length records, the next output (write) appends empty records to fill
the file until the specified output record is written to the file.

If the write pointer is set beyond EOF+1 and the file contains variable-length
records, an error occurs (return code 7) on the next output (write) operation.

Specifying the Blocking Factor (CTL110[41]): The blocking factor is always 1
(and any change is ignored) when:

The file contains variable-length records.

Conversion option CDR, VAR, or APL is specified.

When records are fixed length, and the conversion option is not CDR, VAR, or
APL, you can decrease the time it takes to access a file by increasing the blocking
factor.

If the blocking factor is set to a value greater than 1, that number of records is read
as a matrix; each row is one record.

If the blocking factor is set greater than 1 and the data to be written is a matrix,
each row is written as one record; the number of rows in the output matrix cannot
exceed the blocking factor.

If you specify a blocking factor too large for the processor's buffer, it is ignored.
The acceptance of a large blocking factor by AP 110 does not ensure that a suffi-
cient amount of shared storage is available when the record variable is actually
transmitted.

[Figure 39 on page 143 shows how to create a CMS file to store APL2 objects.
This file can later be read or updated, using either sequential or direct access.

142 APL2 Programming: System Services Reference

AP 110

REC110«'AP110FIL VMAPLCF (FIX CDR)' A initialize REC var.

CTL110<«'"AP110FIL VMAPLCF (CTL)' A initialize CTL var.
110 OSVO"'REC110' 'CTL110' a offer record variable first
2 2 <«—Degree of coupling 0K
(c1 0 1 0) OSVC ™ 'REC110' 'CTL110' a set access control
1011 1011
REC110 A check return codes
0111 <«——Pointers set to 1st record
CTL110

REC110«80+'THE FIRST RECORD ESTABLISHES MAX RECORD LENGTH'

CTL110

01 21 <«——rite pointer set to 2nd
REC110«1 2 3 A specify a numeric vector
CTL110

01 3 1 <«——Return code 0K
REC110<90p'ABC"! A specify too long a vector
CTL110

15 1 3 1 <«——Incorrect length code
REC110<«2 3p16 A specify a matrix
CTL110

01 4 1 <«——Return code 0K
REC110 A read first record

THE FIRST RECORD ESTABLISHES MAX RECORD LENGTH

Crrni11o0 A check return code and pointers
0 2 41 <+—— Read pointer at 2nd record
REC110 A read second record
1 2 3 <«— Second record
CTrn110 A check return code
0 3 4 1
REC110 A read third record
1 2 3
4 5 6
CTrn110 A check return code
O 4 4 1
CTL110[31]<2 A prepare to update 2nd record
CTL110 A display read/write pointers
04 21
REC110<«'REPLACED SECOND RECORD'
Crrni11o0 A check return code
0O 4 3 1
REC110 A read next sequential record
<«—FEmpty vector returned
CTL110
12 4 3 1 <«——Ffnd of file confirmed

Figure 39. Example of Use of AP 110 to Create a CMS File

Cautions

If you replace a variable-length record with a record of different length, the
remainder of the file is deleted.

VM/SP does not normally rewrite a disk directory until all files on that disk are
closed. For APL2, this may not occur until you end your APL2 session. APL2
attempts to force directory rewrites whenever an output file is closed, but it cannot
guarantee that the directory is rewritten. If APL2 does not terminate normally, all
data written during the session could be lost.

Chapter 14. AP 110—CMS File Processor 143

AP 110

Return Codes

Return Codes from Initial Values: If the initial value of the record variable is
invalid, a code of 1 is returned in the record variable. Otherwise, if the initial value
is valid, the record variable contains a four-item vector whose first item is 0.

If the initial value of the control variable is invalid, a code of 1 is returned in the
control variable. Otherwise, the control variable contains a 0.

If you reference the control variable again, AP 110 returns a 4-element vector as
described below.

Return Codes from I/O Operations: After each read or write operation, the
control variable, if any, contains a four-item vector, with the first item containing the
return code of the most recent I/0O operation. If no control variable is shared with
this processor, it is not possible to check the return codes from 1/O operations.

Figure 40 lists the return codes that can be returned using AP 110. Codes O, 1,
and 443 through 445 are returned by the auxiliary processor. All other codes are
returned by the CMS FSREAD and FSWRITE macros. The codes listed in

Figure 40 are some of the more frequently issued codes. For a complete list, see
VM/SP: CMS Command and Macro Reference. For CMS limits exceeded when
code 6, 10, 17, or 19 is returned, see the appropriate user's guide for your system.

Figure 40 (Page 1 of 2). Return Codes Using AP 110

Code Description
0 No error exists
1 Attempt to read a nonexistent file, or improper initial value
3 Permanent 1/O error
4 First character of file mode is invalid
5 Attempt to read more records than the maximum allowed by CMS
6 Attempt to write too many records in a CMS file
7 Attempt to write past the end of a variable-length file
8 Attempt to read a record with incorrect record length
10 Attempt to create a file when you already have the maximum allowed by CMS
12 End-of-file read or attempt to write on a read-only disk
13 Attempt to write on a full disk
14 Attempt to write on an unformatted disk
15 Attempt to write a record with incorrect length into a file with fixed format
17 Attempt to write a record that is too large into a variable-length file
19 Attempt to write in a file already containing as many data blocks as CMS allows
22 Virtual storage capacity exceeded
25 Insufficient storage for CMS file system
26 Iltem number is invalid
27 Attempt to replace a variable-length record with one of different length

144 APL2 Programming: System Services Reference

AP 110

Figure 40 (Page 2 of 2). Return Codes Using AP 110

Code Description

443 Insufficient free storage for input/output buffers
Note: The amount of free storage allocated is based on the specified shared
storage size.
Action: Restart APL2, increasing the value of the SHRSIZE invocation option. If
the resultant workspace is too small, restart CMS with more virtual storage.

444 The value assigned to the shared variable is invalid. It is the wrong shape, size,
or data type

445 Attempt to read a record larger than shared storage. If the blocking factor was

greater than 1, then check that enough shared storage is available to handle the
number of records read or written as a matrix.

Action: Try again with a reduced blocking factor value or restart APL2 and
increase the value of the SHRSIZE invocation option. If the resultant workspace
is too small, restart CMS with more virtual storage.

Chapter 14. AP 110—CMS File Processor 145

AP 111

Chapter 15. AP 111—QSAM File Processor

The QSAM file processor, AP 111, is used to process sequential data files on 1/O
devices supported by the operating system. These devices include printers,
punches, readers, disks, and tapes. Before using this processor, the file must be
allocated with either ALLOCATE or FILEDEF. The definition or allocation can be
done at any time, provided it is done before the shared variables for the file are
offered to AP 111.

Associated Workspaces

The TSO workspace contains cover functions that can be used to access QSAM
files from within an APL2 session. Type DESCRIBE, HOW, or ABSTRACT after
loading this workspace for information on the functions and how to use them.

Shared Variable Overview

Figure 41 provides an overview for sharing variables with AP 111.

Figure 41. Shared Variable Overview for AP 111
SV Protocol AP 111 Conventions

General One or two variables.

Control variable is optional. Any specification is ignored; each refer-
ence obtains the return code from the most recent read/write opera-
tion.

Record variable is required to pass the content of data records. Each
specification writes a record; each reference reads a record.

Maximum Number of Shared 14

Variables

Names Any valid APL2 variable names not exceeding a length of 77 charac-
ters.

Initial Value The ddname of the file you defined or allocated for access must be

specified in the initial value of both variables. Matching ddnames pair
the control and record variables.

Optionally, you can specify a conversion option.

Subsequent Values Record: Depends on the conversion option. See

121—APL2 Data File Processor” on page 182 as well as
Appendix D, “Auxiliary Processor Conversion Options” on page 370

for more information.

Control: Reference a scalar integer.

Data Types Supported Record variable: Any valid type for the conversion option specified.
The default is VAR.

Access Control Record: 0011
Control: 0011

146 © Copyright IBM Corp. 1984, 1994

Initial Values

AP 111

The initial values for the control and record variables must include the ddname (or
file name) specified in the FILEDEF (CMS) or ALLOCATE (TSO) command. The
ddname pairs the two variables.

In the record variable, you can, optionally, specify a conversion option. Under
TSO, you can also specify the type of access allowed on the file (read only, write
only, or both).

The initial value of the control variable, if used, must contain the letters CTL.

The formats for the initial values of the record and control variables are:

REC111<"'ddname ([access][conversion][)]"
CTL111<"ddname (CTL[)]"

ddname

access

conversion

Is the ddname of the file or device to be accessed. It must be the
ddname specified in a FILEDEF command already issued to CMS, or
the ddname (FILE name) specified in an ALLOCATE command
already issued to TSO.

Indicates the type of processing you want to do.

Note that this option is only available under TSO.

Valid values of the access option are:

R

U

The data set can only be read. Any specification of the data vari-
able or an attempt to open the data set for output results in a
return code of 440.

The data set can only be written. Any reference of the data vari-
able or an attempt to open the data set for input results in a return
code of 441.

The data set can be either read or written. If no access option is
specified, this is the default.

Indicates the conversion to be applied to the file data. Valid conver-
sion options with this processor are:

APL

BCD (or370)
BIT

BYTFE

CDR

coD1

DBCS

EBCD (or192)
TN (TSO only)
VAR (default)

For a description of conversion options, see |Appendix D, “Auxiliary|

|Processor Conversion Options” on page 370|

Chapter 15. AP 111—QSAM File Processor 147

AP 111

CTL Specified only for the control variable. If CTL is not specified, the
offered variable is assumed to be a record variable.

The control variable is paired with the most recently offered record
variable whose ddname matches that specified in the control variable.

Any conversion or access option specified in the control variable is
ignored.

Communication Procedure

The procedure for communicating with AP 111 to process a sequential file is:

1. Define (with a FILEDEF command in CMS) or allocate (with an ALLOCATE
command in TSO) the file you want to access. AP 100 or the YHOST
command can be used to do this from within your APL2 session.

If the file contains variable length records, you must specify a maximum record
length and/or block size in the CMS FILEDEF or TSO ALLOCATE command.

2. Initialize the variable(s) you intend to share (see [Initial Values” on page 147).

3. Offer the variables to AP 111 and ensure that the degree of coupling is 2.

If you are sharing both control and record variables, offer the record variable
before the control variable.

4. Set the access control.

5. Check the return codes from the initial values of the control and record vari-
ables.

6. Process the file.

After checking the return codes as described in step 5, the record variable can be
referenced or specified.

At any given time, the file can be open for input or output depending on whether
the record variable is referenced or specified.

The first reference of the record variable causes the file to be opened for input and
its first record to be returned. Each subsequent reference of the record variable
returns the next sequential record read from the file.

The first specification of the record variable causes the file to be opened for output.
Unless a disposition of MOD was specified in the FILEDEF or ALLOCATE
command, specification of the record variable causes records to be written sequen-
tially to the file beginning with the first record in the file. If MOD was specified as
the disposition, specification of the record variable causes records to be written
sequentially after the last existing record in the file.

Access is changed from input to output when the record variable is first specified
after it has been referenced. Access is changed from output to input when the
record variable is first referenced after it has been specified. When access is
changed with one of these operations, the file is first closed and then reopened for
input or output as appropriate. When the file is reopened in this way, read and
write operations begin with the first record in the file, unless MOD was specified, in
which case, write operations cause records to be written sequentially after the last
record in the file.

148 APL2 Programming: System Services Reference

AP 111

If CDR or VAR was specified as the conversion option for the file, each logical
record in the file contains a single APL array (of any shape or rank within the con-
straints of the logical record size for the file). For files with fixed-length records,
(RECFM = F or FB), arrays whose size is less than the logical record length of the
file are padded transparently to match the record length when the record variable is
specified. More information on this subject is provided in |Appendix D, “Auxiliary|
[Processor Conversion Options” on page 370|under the descriptions of the CDR
and VAR options. For conversion options other than CDR or VAR, no padding of
short records occurs (except with option BIT where records are padded with binary
zeros to a byte boundary); if the file has RECFM F or FB, records written must
match the file's logical record length in size.

If a conversion option other than CDR, VAR, or BIT was specified, each logical
record in the file contains a character vector. For conversion option BIT, each
logical record in the file contains a bit vector.

When the record variable is referenced, a single logical record is read from the file
and returned. For conversion options other than CDR, VAR, or BIT, a character
vector representing that record is returned. For conversion option BIT, a bit vector
representing that record is returned. For conversion options CDR or VAR, an APL
array is returned.

When the record variable is specified, one or more logical records are written
sequentially to the file. For conversion options CDR or VAR, specification of the
record variable causes a single logical record to be written to the file. For a con-
version option other than CDR or VAR, specification of the record variable with a
scalar or vector causes a single logical record to be written to the file. Specification
of The record variable with a matrix causes each row of the matrix to be written as
a single logical record in the file. Note that the file's blocking factor (typically
BLKSIZE divided by LRECL) does not limit the number of rows in a matrix that can
be written with a single specification of the record variable; more than one block
can be written when a matrix is specified.

¢ To obtain the return code from a read or write, reference the control variable
after the reference or specification of the record variable.

e To close the file, retract the record variable first. Check the return code in the
control variable.

[Figure 42 on page 150 shows a sample APL2 session that creates a fixed-length
file with AP 111. It includes the use of AP 100 to issue a FILEDEF command to
CMS for the file being created. (Under TSO, the ATTRIB and ALLOCATE com-
mands would be issued instead of the FILEDEF command.) The file name, type,
and mode are AP 111FIL TEST A1. The ddname is QFILE. The file contains
60-byte fixed-length records.

Chapter 15. AP 111—QSAM File Processor 149

AP 111

100 0OSvVo 'CMS100! A offer to share with AP 100

1 0 1 0 Osvc 'CcMS100! A set access control

1 0 1 1
CMS100«'FILEDEF QFILE DISK AP111FIL TEST (RECFM F LRECL 60)'
CMS100 A check return code from FILEDEF

REC111<'QFILE (EBCD)' A initialize record variable

CTL111<'"QFILE (CTL)"' A Iinitialize control variable

111 0OSVo ™ 'REC111' 'CTL111' e offer to share with AP 111
2 2

(cO 0 1 1) 0O8Sve ™ '"REC111' 'CTL111' a set access control

0011 0011

REC111 A check return codes
0

Crrn111
0

REC111<60+'FIRST RECORD' m write first record

Crri111 A check return code from 1st write
0

REC111<60p'HELLO ' A write second record

CTrn111 a check return code from 2nd write
0

REC111 A implicit close; reopen for read
FIRST RECORD

REC111 A continue reading
HELLO HELLO HELLO HELLO HELLO HELLO HELLO HELLO HELLO HELLO

REC111

< Empty vector returned

CTnL111
12 < End of file confirmed

REC111<«604+'NEW FIRST REC' A Iimplicit close; reopen for

Crri11 A write from the beginning
0

REC111 p Iimplicit close; reopen for read
NEW FIRST REC

REC111

< Original 2nd record gone; empty vector returned

Crrn111
12 < End of file confirmed

OSVE 'REC111! A retract to explicitly close file
2

CTn111 A check return code

0

Figure 42. Sample Creation of QSAM Disk File Using AP 111

Cautions

CMS: CMS does not normally rewrite a disk directory until all files on that disk are
closed. For APL2, this may not occur until you end your APL2 session. APL2
attempts to force directory rewrites whenever an output file is closed, but there is
no guarantee that the directory is rewritten. Therefore, if APL2 does not terminate
normally, all data written during the session could be lost.

AP 111 files must be closed before the file definition is cleared. Otherwise, you
may lose your APL2 session, lose the file, and have to reinitialize CMS. Unless
you are sure that the file is closed, do not issue a FILEDEF ddname CLEAR
command from within your active workspace.

150 APL2 Programming: System Services Reference

AP 111

When AP 111 is active you must be careful about the CMS commands you specify.
CMS QSAM simulation uses GETMAIN storage for buffers, and many CMS com-
mands release all GETMAIN storage.

Files containing variable-spanned records (RECFM=VBS or VS) cannot be read or
written.

TSO: AP 111 files must be closed (by implicit or explicit retraction of the record
variable) before the file allocation is freed. Otherwise, you may lose your APL2
session and your file. Unless you are sure that the file is closed, do not issue the
FREE FILE(ddname) command from within your active workspace.

Files containing variable-spanned records (RECFM=VBS or VS) can be read but
not written.

Return Codes

Return Codes from Initial Values: |If the initial value of the record or control vari-
able is invalid, a code of 1 is returned in the first reference of the variable. Other-
wise, a 0 is returned.

When the return code from the initial value is a 1, you must retract the variables,
specify a valid syntax for the initial value and reoffer the variables.

A return code of 0 on the initial offer means that the syntax of the initial value was
correct. No check is made that the specified ddname is correctly defined or allo-
cated.

Return Codes from /O Operations: When you reference or specify the data vari-
able, the control variable contains the return code associated with the QSAM data
set GET/PUT operation. When you retract the data variable, the control variable
contains the return code associated with the QSAM data set CLOSE operation.

Figure 43 lists the return codes returned by AP 111. For other return codes you
can receive, see[{Undiagnosed Errors” on page 152

Figure 43 (Page 1 of 2). AP 111 Return Codes

Code Description

0 The initial value in the shared variable offer was accepted; or successful completion of the
requested I/O operation.

1 The control variable was specified and no matching data variable could be found, or one of
the two variables contains an invalid initial value:

¢ No initial value was specified.
¢ The value is not a character vector.
¢ The syntax is incorrect.

Action: Retract the variables offered, specify a valid syntax for the initial values, and
reoffer the variables.

12 End of file. The value in the record variable is empty. The last record from the data set
was passed in the previous read request.

Action: To close the data set, retract the record variable.

15 Wrong length record on fixed-length output.

When RECFM=F or FB, all records must be exactly equal to the record length specified in
the FILEDEF or ALLOCATE command.

Chapter 15. AP 111—QSAM File Processor 151

AP 111

Figure 43 (Page 2 of 2). AP 111 Return Codes

Code

Description

17

Record too large for output.

This error occurs when a record to be written exceeds the LRECL specified for a data set
with variable or undefined record lengths (RECFM=U, V, or VB).

440

Error in open for output.
This error occurs under the following conditions:

e CMS or TSO: The open routine for the data set has failed. System error messages
accompany this return code. It usually means you did not properly define or allocate
the data set.

e TSO Only: The R access option was specified in the initial value of the shared variable
and you specified the data variable, indicating output (write) processing.

e TSO Only: Your installation prohibited your access to the data set. Additional MVS
error messages are displayed.

Action: Verify your allocation, initial values, and authorization. Verify the data set attri-
butes on direct access by using the CMS LISTFILE or the TSO LISTDS command. Verify
the options you have selected, using the CMS FILEDEF or TSO ATTRIB command to see
whether there is a conflict.

441

Error in open for input.
This error can occur in the following situations:
¢ You did not properly allocate the data set using the appropriate options.

e The data set was opened for output, and you referenced the data variable. CLOSE
processing failed.

e TSO Only: Your installation prohibited your access to the data set with security mech-
anisms.

Action: Verify your allocation, initial values, and authorization. Compare the data set attri-
butes on direct access by using the CMS LISTFILE or TSO LISTDS command with the
options you selected in the CMS FILEDEF or TSO ATTRIB command to see whether there
is conflict.

443

Insufficient space to process output data.

Action: Try reinvoking APL2, increasing the value of the FREESIZE invocation option.

444

Invalid data type or shape. There is a conflict between the conversion option you selected
and the APL value you specified in the record variable.

445

Insufficient shared storage for input data.
Action: Reinvoke APL2 and specify a larger value in the SHRSIZE invocation option.

Note: If you are using the VAR or CDR conversion option and you think the SHRSIZE
invocation option is set properly, verify that the record you are trying to read has a valid
APL internal form. Functions are available in the UTILITY workspace to read a record
from your data set (specified with the BYTE conversion option) to verify the APL internal
format.

Undiagnosed Errors

If a return code other than any of those listed in Figure 43 is returned, it is a
decimal value that represents either an ABEND code or sense and status bytes
returned by QSAM as a result of an I/O error. When sense and status are
returned, a)¥ORE message is also queued that contains additional information
provided by the operating system.

The decimal value can be converted to its 4-byte hexadecimal representation in
0-origin by the following expression:

'0123456789ABCDEF'[OI0 + 2 4p(8p16)TCTL]

152 APL2 Programming: System Services Reference

AP 111

If the second row of the resulting matrix is 0, the result is an ABEND code. If the
second row is nonzero, the first row contains status bytes and the second row con-
tains sense bytes. For sense and status byte information, see MVS/DFP: Using
Data Sets or the status information in the macro instruction manual appropriate to

your system:

e OS/VS Data Management Macro Instructions.
e MVS/XA Data Administration: Macro Instruction Reference
e MVS/ESA Data Administration: Macro Instruction Reference

Chapter 15. AP 111—QSAM File Processor 153

AP 119

Chapter 16. AP 119—Socket Interface Processor

The socket interface processor, AP 119, is used to pass requests to the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) product. TCP/IP provides com-
munication facilities across networks.

AP 119 also provides commands to control how APL2's cross-system shared vari-
able interface uses TCP/IP.

Shared Variable Overview

Figure 44 provides an overview for sharing variables with auxiliary Processor 119.

Figure 44. Shared Variable Overview for AP 119

SV Protocol AP 119 Conventions

General One variable for commands and responses

Maximum number of shared vari- 128 (includes cross-system shared variables)

ables

Name No restrictions

Initial Values None. Initial values are ignored by AP 119.

Subsequent values Specify a command, reference a 3 element array: AP
return code, subsystem return code, and data

Access Control 00 11

AP 119 supports access to up to 64 sockets through a single shared variable.

The APL2 Socket Application Program Interface

154

The APL2 Socket API gives an APL application access to applications on other
computers on a network using TCP/IP. The calls used in the API are similar to the
C socket interface calls.

A socket is an endpoint for communication. It is represented by a socket number
(usually 3 or greater). A socket number is allocated by the SOCKET call. Before a
socket number can be used in other calls it must be associated with a port number
and an IP address. This association is accomplished with the BIND call.

Port numbers are used to distinguish individual processes within a system. Some
applications always use the same port on every system. These port numbers are
called “well-known ports” and include applications such as FTP (File Transfer Pro-
tocol), NFS (Network File System) and TELNET. Other ports are arbitrary numbers
assigned to a user by TCP/IP.

An IP address consists of a dotted decimal number such as '123.45.678.9'. Each
IP address on a TCP/IP network must be unique. A computer can have more than
one address if it is attached to more than one network.

Once a socket is bound to a port and IP address, the LISTEN call can be used to
make that port/address combination available for connections. Another process

© Copyright IBM Corp. 1984, 1994

AP 119

can then use the CONNECT call to attempt to form a connection. The ACCEPT
call is then used by the listening process to complete the connection. The
ACCEPT call allocates a new socket number that is associated with the new con-
nection. The original socket remains in listening mode.

Once a connection is completed, one or both sides can read and write data with
the SEND, RECV, READ, and WRITE calls.

Other socket calls return information about the system (GETHOSTID,
GETHOSTNAME) or a connection (GETPEERNAME,GETSOCKNAME). FCNTL
and IOCTL are used to change the characteristics of a socket. Finally, SHUT-
DOWN and CLOSE are used to terminate one or both sides of a connection. For
details about the meaning and use of the socket calls, consult: TCP/IP Version 2.0
for VM: Programmer's Reference or TCP/IP Version 2.0 for MVS: Programmer's
Reference.

IUCV Paths and Sockets

The APL2 Socket API uses IUCV to communicate with TCP/IP. Initially, one IUCV
path is used for cross-system shared variables and one path is used for each vari-
able shared directly with AP 119. Under CMS, the number of concurrent IUCV
paths is controlled by the MAXCONN parameter in the user's directory entry. This
may need to be changed if a large number of variables are to be shared with AP
119.

A maximum of 64 sockets are available for each IUCV path. For the cross-system
shared variable path, 2 sockets are always used for a listening connection and
communication with the port servers. This leaves a maximum of 62 sockets avail-
able for use. One socket is used for each processor number specified in a shared
variable offer. Each variable shared with AP 119 can allocate up to 64 unique
sockets to be used in other APL2 Socket API calls.

AP 119 and TCP/IP Commands Summary

To use AP 119, the user shares a variable with the AP and passes vectors of
vectors that request various actions. The first element of the value assigned to the
variable determines which of two types of commands is being issued:

e Commands to TCP/IP - 'TCPIP"'
e Commands to AP 119 - 'AP!

The general form of the result is a three-element vector:

1. An AP 119 return code
2. A TCP/IP return code
3. Data returned by the command

For example, to issue the TCP/IP command GETHOSTID, you assign to the shared
variable:

SV119«'TCPIP' 'GETHOSTID'
(AP119_RC TCPIP_RC DATA)<SV119

Chapter 16. AP 119—Socket Interface Processor 155

AP 119

Figure 45. Auxiliary Processor 119 Commands

Command

TCP/IP Commands Blocking
'"TCPIP' 'ACCEPT' socket Yes
'TCPIP' 'BIND"' socket local_port local_addr No
'"TCPIP' 'CLOSE' socket No
'TCPIP' '"CONNECT' socket remote_port remote_addr Yes
'TCPIP' '"FCNTL' socket command data No
'"TCPIP' 'GETHOSTID' No
'"TCPIP' 'GETHOSTNAME' No
'"TCPIP' 'GETPEERNAME" socket No
'"TCPIP' 'GETSOCKNAME" socket No
'TCPIP' 'GETSOCKOPT' socket level option No
'"TCPIP' 'LISTEN' socket backlog No
'"TCPIP' 'READ' socket type Yes
'TCPIP' '"RECV' socket flags type Yes
'"TCPIP' 'RECVFROM' socket flags type Yes
'TCPIP' 'SELECT' num_sockets read_mask write_mask exception_mask timeout No
'TCPIP' 'SEND"' socket flags type data Yes
'TCPIP' 'SENDTO' socket flags type data family remote_port remote_addr Yes
'TCPIP' 'SETSOCKOPT' socket level option optvalue1 [optvalue2] No
'"TCPIP' 'SHUTDOWN' socket how No
'"TCPIP' 'SOCKET' No
'"TCPIP' "WRITE' socket type data Yes

AP Commands

'AP' 'GETLPORT'

'"AP' 'SETLPORT' processor_id listening_port

'"AP' 'PSLIST' password

'AP' 'PSCLEAR' password

'AP' 'PSSHUTD' password

'"AP' '"UNREGSTR'

Definition of TCP/IP Terms

address. An IP address represented as a character string containing four decimal

numbers separated by dots (such as '11.222.3.444")

backlog. The maximum length for the queue of pending connections on a lis-

tening socket.

data. The data sent or received.

exception mask. A Boolean vector use to identify socket numbers for which notifi-

cation of exceptional conditions is desired.

family. Defines the addressing family used for IP addresses. For the APL socket

interface, use 2 (AF_INET).

156 APL2 Programming: System Services Reference

AP 119

flags. An integer representing options to the SEND and RECV commands.
hostname. A character vector representing the name of the host processor.
how. Defines the condition of a SHUTDOWN command.

IP address. An address assigned to a host connected to TCP/IP network. A host
has one IP address for each network connection.

length. Number of characters sent or received.

level. The level of communication specified on a GETSOCKOPT or
SETSOCKOPT command. When using the APL socket interface, the level must be
6 (SOL_SOCKET).

listening port. A port available for a connection.
local address. The IP address of the host on which you are running.
number of sockets. The number of sockets to check in a SELECT command.

option. An integer identifying an option for the GETSOCKOPT and
SETSOCKOPT commands.

option value. Value assigned to a particular option by the SETSOCKOPT
command.

password. The password for the local port server. You are prompted for this
password when starting the port server. It is also required on the AP commands
PSLIST, PSCLEAR, and PSSHUTD.

port. Number used to distinguish your process from others on the host. This
number can be selected by you or assigned by TCP/IP.

read mask. A Boolean vector use to identify socket numbers for which notification
of ready-to-read conditions is desired.

remote address. The IP address of the host with which you are communicating.
socket. An endpoint for communication.

socket number. An integer used to represent a socket. For compatibility with the
C socket interface, socket numbers 0, 1, and 2 are not used.

type. A character scalar that identifies translation options for data sent or
received.

write mask. A Boolean vector use to identify socket numbers for which notification
of ready-to-write conditions is desired.

Chapter 16. AP 119—Socket Interface Processor 157

AP 119

Blocking

Some socket calls may not return control until a condition is satisfied. For example,
the READ and RECYV calls may not return control until data is available. The
default state of a socket is blocking mode, which means that these calls do not
return control immediately.

Using the APL2 socket interface with sockets in the default mode, AP 119 does not
receive control back from TCP/IP until blocking calls are complete. Since AP 119
does not have control, it is not able to set the shared variable until the blocking
condition is satisfied. A reference of the variable causes a shared variable interlock
until the blocking call completes.

A socket can be set to nonblocking mode with the FCNTL socket call. If this is
done, AP 119 receives control on subsequent calls and returns the
EWOULDBLOCK return code.

Using AP 119—The TCPIP Commands

ACCEPT

The TCPIP commands provide a means to make calls to TCP/IP. The AP 119
TCP/IP interface closely matches the TCP/IP C socket interface. The following
sections describe the APL2 syntax used for making TCP/IP calls through AP 119.

Accepts a connection request. This call accepts the first connection on its queue of
pending connections. A new socket number is returned for the connection and the
original socket remains available to accept more connection requests. This call
blocks if there are no pending connections, and if the socket is in blocking mode.

SV119<«'TCPIP' '"ACCEPT' sn
(APRC TCPIPRC CMDRC)<SV119
(ns rp ra)<«CMDRC

Where:

sn Is the socket number.

ns Is the new socket number assigned by TCP/IP.

rp Is the port number of the remote process that connected with you.
ra Is the IP address of the remote process that connected with you.
Example:

SV119«'TCPIP' 'ACCEPT' 3
(APRC TCPIPRC CMDRC)<SV119
CMDRC

4 1023 9.113.12.92

158 APL2 Programming: System Services Reference

BIND

CLOSE

CONNECT

AP 119

Associates a local IP address and port with a socket number.

SV119«'TCPIP' 'BIND' sn 1lp la
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.
Ip Is the local port number. If this number is 0, TCP/IP assigns an unused
port number.
la Is the local IP address. If this address is '0.0.0.0', the socket can be
used with any local network.
CMDRC IsO.
Example:
SV119«'TCPIP' 'BIND' 3 1023 '9.112.12.92"
SV119
0 0O

Shuts down a socket. If the socket is associated with an open TCP connection, the
connection is closed.

SV119«'TCPIP' 'CLOSE' sn
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.
CMDRC IsO.

Example:

SV119«'TCPIP' 'CLOSE' 4
SV119

Completes the binding necessary for a socket if BIND was not issued and estab-
lishes a connection to a socket in listening mode. If the socket is in blocking mode,
this call blocks until the connection is complete or an error is returned.

SV119«'TCPIP' 'CONNECT' sn rp ra
(APRC TCPIPRC CMDRC)<SV119

Chapter 16. AP 119—Socket Interface Processor 159

AP 119

Where:

sn Is the socket number.

rp Is the remote port number.
ra Is the remote IP address.
CMDRC IsO.

Example:

SV119«'TCPIP' 'CONNECT' 3 1002 '9.113.14.90"
SV119

FCNTL

Allows an application to change the operating characteristics of a socket.

SV119<«'TCPIP' '"FCNTL' sn cmd cdata
(APRC TCPIPRC CMDRC)<SV119

Where:

sn Is the socket number.

cmd Is the command (see below).

cdata Is the data associated with the command (see below).

CMDRC s O (if setting the status) or the status flags (if getting the status).
Note: Ifthe cmd is 'F_GETFL', the, cdat a parameter is ignored.

The possible values for cmd are 'F_GETFL ' and
'"F_SETFL".

The possible values for cdata are 0 and 'FNDELAY'.

Example:

SV119«'TCPIP' 'FCNTL' 3 'F_SETFL' 'FNDELAY'
SV119

GETHOSTID

Returns the IP address for the host. If the host has more than one IP address, the
primary one is returned.

SV119<«'TCPIP' 'GETHOSTID'
(APRC TCPIPRC ia)<SV119

Where:

ia Is the primary host IP address.

160 APL2 Programming: System Services Reference

AP 119

Example:

SV119<«'TCPIP' 'GETHOSTID'
(APRC TCPIPRC CMDRC)<SV119
CMDRC

9.113.12.92

GETHOSTNAME

Returns the name of the host processor on which the user is running.

SV119«'TCPIP' 'GETHOSTNAME'
(APRC TCPIPRC hn)<SV119

Where:

hn Is the name of the host.

Example:

SV119«'TCPIP' 'GETHOSTNAME'
(APRC TCPIPRC CMDRC)<SV119
CMDRC

STLVM20

GETPEERNAME

Returns the family, port, and IP address of a peer connected to a given socket.

SV119<«'TCPIP' 'GETPEERNAME' sn
(APRC TCPIPRC CMDRC)<SV119
(fm rp ra)<«CMDRC

Where:

sn Is the socket number.

fm Is the family (always 2 - AF_INET).
rp Is the remote port.

ra Is the remote IP address.
Example:

SV119«'TCPIP' 'GETPEERNAME' 3
(APRC TCPIPRC CMDRC)<SV119
CMDRC

2 1002 9.113.14.90

Chapter 16. AP 119—Socket Interface Processor 161

AP 119

GETSOCKNAME

Returns the family, port, and IP address of a given socket.

SV119<«'TCPIP' 'GETSOCKNAME' sn
(APRC TCPIPRC CMDRC)<SV119
(fm 1p la)<CMDRC

Where:

sn Is the socket number.

fm Is the family (always 2 - AF_INET).
Ip Is the local port.

la Is the local IP address.

Example:

SV119«'TCPIP' 'GETSOCKNAME' 3
(APRC TCPIPRC CMDRC)<SV119
CMDRC

2 1023 9.113.12.92

GETSOCKOPT

Gets options associated with a socket.

SV119«'TCPIP' 'GETSOCKOPT' sn 1v op
(APRC TCPIPRC ov)<SV119

Where:

sn Is the socket number.

1v Is the communication level.
op Is the option name.

ov Is the option value.

Figure 46 provides the values and levels that are defined for the GETSOCKOPT
and SETSOCKOPT calls.

Figure 46. TCP/IP Socket Options

Option Level

SO_BROADCAST SOL_SOCKET
SO_DONTROUTE SOL_SOCKET
SO_ERROR SOL_SOCKET
SO_LINGER SOL_SOCKET
SO_OOBINLINE SOL_SOCKET
SO_REUSEADDR SOL_SOCKET
SO_TYPE SOL_SOCKET

162 APL2 Programming: System Services Reference

LISTEN

READ

AP 119

Example:

LEV<'SOL_SOCKET'
OPT<'SO_BROADCAST'
SV119«'TCPIP' 'GETSOCKOPT' 4 LEV OPT
SV119
0 01

Note: If the option specified is SO_LINGER, the third item is a vector of two inte-
gers, representing the timeout value in seconds and microseconds, respectively.
For all other options, the third item is a single integer.

Completes the binding necessary for a socket if BIND has not been issued, and
creates a connection request queue.

SV119«'TCPIP' 'LISTEN' sn bl
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.

bl Is the length of the request queue.

Example:

SV119«'TCPIP' 'LISTEN' 3 5
SV119

Reads data from a given socket. If the socket is in blocking mode and no data is
available to read, this call blocks.

SV119«'TCPIP' 'READ' sn type
(APRC TCPIPRC CMDRC)<SV119

Where:

sn Is the socket number.

type Is one of:
'B! To receive data as is
'E! To receive EBCDIC character data
L/ To receive ASCII character data

CMDRC s the data read from the socket.

Chapter 16. AP 119—Socket Interface Processor 163

AP 119

Example:

SV119<«'TCPIP' 'READ' 4 'B!
(APRC TCPIPRC CMDRC)<SV119
CMDRC

(data sent by partner)

RECV
Receives data from a given socket. If the socket is in blocking mode and no data
is available to receive, this call blocks.
SV119«'TCPIP' 'RECV' sn flg tp
(APRC TCPIPRC CMDRC)<SV119
Where:
sn Is the socket number.
flg Is receive option parameters (see below).
tp Is the type and is one of:
'B! To receive data as is
'E! To receive EBCDIC character data
'A! To receive ASCII character data
Possible flag values are 0, 1 (MSG_OOB) or 2 (MSG_PEEK)
Example:
SV119«'TCPIP' 'RECV' 4 0 'B!
(APRC TCPIPRC CMDRC)<SV119
CMDRC
(data sent by partner)
RECVFROM

Receives data from a socket and identifies the source of the data.

SV119<«'TCPIP' 'RECVFROM' sn flg tp
(APRC TCPIPRC CMDRC)<SV119

(dat add)<«CMDRC

(fam rp ra)<add

Where:
sn Is the socket number.
flg Is the recvfrom option parameters (see RECV above).
tp Is the type and is one of:
'B! To receive data as is
'E! To receive EBCDIC character data
T4 To receive ASCII character data

164 APL2 Programming: System Services Reference

SELECT

AP 119

dat Is the data received from the socket.
fam Is the family (always 2 - AF_INET).
rp Is the remote port.

ra Is the remote IP address.

Example:

SV119«'TCPIP' 'RECVFROM' 4 0 'B'
(APRC TCPIPRC CMDRC)<SV119
CMDRC

(data sent by partner) 2 1003 9.113.14.90

Monitors activity on a set of sockets as specified by three masks. The first argu-
ment indicates how many sockets to check. This is normally 1 plus the largest
socket number allocated. The masks must be at least as long as this value. A 1 in
the mask specifies a corresponding socket to check. Three masks are returned as
soon as something happens on a selected socket. For example, the read mask
has a 1 if the corresponding socket has data ready to read. If the connection to a
listening socket is completed, the read mask is set to indicate that a connection has
been made to the socket and an ACCEPT call can be made. A socket is normally
always ready to write. The except mask is set if out of band data is received. The
timeout value specifies the number of seconds to wait for the call to be completed.
A value of zero means to wait indefinitely.

SV119<«"'TCPIP' '"SELECT' ns rm wm xm to
(APRC TCPIPRC CMDRC)<SV119
(rm wm xm)<CMDRC

Where:

ns Is the number of sockets to check.
rm Is a read mask.

wm Is a write mask.

xm Is an exception mask.

to Is the timeout value.

Example:

R_MASK<0 0 0 1 1
W_MASK<O 0 0 0 O
X _MASK<0 0 0 0 0
SV119<'TCPIP' 'SELECT' 5 R_MASK W_MASK X_MASK 0
(APRC TCPIPRC CMDRC)<SV119
DATA

00010 00000 00000

Chapter 16. AP 119—Socket Interface Processor 165

AP 119

SEND

SENDTO

Transmits data to a remote user whose remote address and port were bound to the
socket. If the socket is in blocking mode, this call blocks until TCP/IP can send the
data.

SV119«'TCPIP' 'SEND' sn flg tp dat
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.
flg Is the send option parameters (0 or 1 - MSG_OOB).
tp Is the type and is one of:
'B! To send data as is
'E! To send EBCDIC character data
T4 To send ASCII character data
dat The data to be sent.

CMDRC Is the number of characters sent.

Example:

SV119«'TCPIP' 'SEND' 3 0 'B' 'CHARACTERS'
(APRC TCPIPRC CMDRC)<SV119
0 0 10

Transmits data to a remote user whose remote address and port are specified in
the command. For APL2, the family is normally 2.

SV119«'TCPIP' 'SENDTO' sn fl1 tp dat fm rp ra
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.
fl Is the sendto option parameters (0 or 1 - MSG_OOB).
tp Is one of:
'B! To send data as is
'E! To send EBCDIC character data
'4! To send ASCII character data
dat The data to be sent.
fm Is the family (always 2 - AF_INET).
rp Is the remote port number.
ra Is the remote IP address.

166 APL2 Programming: System Services Reference

SETSOCKOPT

SHUTDOWN

AP

CMDRC Is the number of characters sent.

Example:

(FAM R_PORT R_ADDR)<«2 1002 '9.113.12.92"
DATA<'These are characters.'
SV119<«'TCPIP' 'SENDTO' 3 0 'B' DATA FAM R_PORT R_ADDR
SV119
0 0 23

Sets options associated with a socket.

119

SV119«'TCPIP' 'SETSOCKOPT' sn 1v op ol [02]
(APRC TCPIPRC CMDRC)<SV119

Where:

sn Is the socket number.

1v Is the level of communication.

op Is the option name.

ol Is the option value.

02 Is the optional second option value. This is used only if op is

SO_LINGER.

[Figure 46 on page 162 provides the values and levels that are defined for the
GETSOCKOPT and SETSOCKOPT calls.

Example:

LEV<'SOL_SOCKET'

OPT<'SO_BROADCAST'

SV119«'TCPIP' 'SETSOCKOPT' 4 LEV OPT 1
SV119

Shuts down all or part of a duplex connection.

SV119«'TCPIP' 'SHUTDOWN' sn how
(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.

how Is the type of shutdown (0, 1, or 2).

Example:

SV119<«'TCPIP' 'SHUTDOWN' 4 1
SV119

Chapter 16. AP 119—Socket Interface Processor

167

AP 119

SOCKET
Creates an endpoint for communication. A socket number is allocated for use in
other socket calls.
SV119<«'TCPIP' 'SOCKET'
(APRC TCPIPRC CMDRC)<SV119
Where:
CMDRC Is the socket number allocated.
Example:
SV119«'TCPIP' 'SOCKET'
SV119
0 0 3
WRITE
Writes data to a given socket.
SV119«'TCPIP' 'WRITE' sn tp dat

(APRC TCPIPRC CMDRC)<SV119

Where:
sn Is the socket number.
tp Is one of:
'B! To send data as is
'E! To send EBCDIC character data
/R To send ASCII character data
dat Is the data to be sent.

CMDRC Is the number of characters written.

Example:

SV119«'TCPIP'
SV119
0 0 15

'"WRITE'

3

|B|

'Many characters'

Using AP 119—The AP Commands

The AP commands provide a means to talk to the AP itself. They support using
the cross-system shared variable interface without port servers and issuing com-

mands to the local port server.

168 APL2 Programming: System Services Reference

AP 119

The APL2 Port Server

APL2's cross-system shared variable facility provides communication across TCP/IP
networks through APL2 shared variables.

TCP/IP's addressing is designed to support server machines, not individual user
IDs. TCP/IP talks to port numbers that users, and servers, must acquire. Standard
servers are assigned standard ports on all TCP/IP systems. A server's standard
port is called its “well-known” port number. Port numbers from 1 to 255 are
reserved for this purpose. For example, the FTP file transfer server is always on
port 21. Other applications can use port numbers between 256 and 65535.

TCP/IP provides no way for APL2 to know the port that an individual on a given
system may be using.

To provide this ability, APL2 includes a program called the port server that
manages the communication of individual port numbers across the network.
However, users need to be able to contact APL2's port server. APL2 has not been
assigned a well-known port number. Therefore, APL2's cross-system shared vari-
able facility assumes a nonstandard port is available on all systems. For this
purpose, APL2 uses the number 31415 as its “not-so-well-known” port number.
The APL2 port server is a program that listens on TCP/IP port number 31415.

The server can be started with a different port number if 31415 is not available, for
debugging purposes or for use between host systems that agree to use the dif-
ferent number. All users who want to perform cross-system shares from or to a
system using a different port number must be informed of the number in use. The
users should specify the port number in their TCP/IP profile files.

An APL2 port server should be run on each machine that has users who want to
use cross-system shared variables. However, it is possible to use the interface
without having a port server running.

The port server has three functions:

* Accept requests to register users on the same system. This function tells the
server which port number a given user is using to accept connections from
other users. This port number is arbitrarily assigned to the user by TCP/IP.

* Accept requests to unregister users. This notifies the server that a given user
is no longer accepting communication. This is automatically issued when the
user's APL2 session ends.

e Accept requests from remote users who want to know the port number that has
been registered by a user.

PSLIST—Send LIST Command to the Port Server

This command causes the port server to list the registration entries (if any) that are
active. This list occurs on the console of the port server only, no data is returned
to the user issuing the command.

SV<«'AP' 'PSLIST' password
SV

Chapter 16. AP 119—Socket Interface Processor 169

AP 119

Where:

password Is the password used when starting the port server.

PSCLEAR—Send CLEAR Command to the Port Server

This command causes the port server to clear all registration entries (if any) that
are active.

SV<'"AP' '"PSCLEAR' password
SV

Where:

password Is the password used when starting the port server.

PSSHUTD—Send SHUTDOWN Command to the Port Server

This command causes the port server to shut down.

SV<«'"AP' '"PSSHUTD' password
SV

Where:

password Is the password used when starting the port server.

UNREGSTR—Send an UNREGISTER Command to the Port Server

This command causes the port server to erase the current registration entry for the
user.

SV<'AP' '"UNREGSTR'
SV

Listening Ports

The APL2 cross-system shared variable interface lets users share variables across
systems connected by TCP/IP networks. It uses AP 119 to communicate with port
servers across the network. AP 119 provides two commands through which a user
can use cross-system shared variables even if the partner's port server is not avail-
able.

APL2's port server manages a list of the ports in use by individuals on the system
on which it is running. When you make an offer to share a variable across systems
through a TCP/IP network, the interface uses AP 119 to contact the port server on
the remote system and requests the port number of your partner.

170 APL2 Programming: System Services Reference

AP 119

If there is no port server running on the remote system, you need a way to give the
cross-system shared variable interface the listening port your partner is using.
Likewise, if there is no port server running on your machine, you need a way to find
out what port you are using (to tell your partner.) The GETLPORT and SETLPORT
AP 119 commands provide these functions.

GETLPORT—Get Listening Port

Acquires a listening port (if one is not already in use) and returns the port number.
The number can then be given to a remote user to contact you even if your system
does not have a port server running.

SV<«'"AP' 'GETLPORT'
(APRC TCPIPRC PORT)<SV

Where:
APRC Is the AP 119 return code.
TCPIPRC Isthe TCPIP return code.

PORT Is your listening port number.

SETLPORT—Set Listening Port

Lets you inform AP 119, and thereby the cross-system shared variable interface,
the listening port number that is in use by a session on a remote system. If the
SETLPORT command was issued for a specific processor ID, AP 119 uses the
specified port number rather than attempting to contact the port server on the
remote system. This allows you to then share a variable with the remote user even
if there is no port server running on the remote system.

SV<«'AP' '"SETLPORT' PROC_ID PORT
SV

Where:

PROC_1ID Is the processor ID number by which you need to refer to the remote
partner. This number must be defined in the TCP/IP profile file.

PORT Is the listening port number that your remote partner is using. Your
partner can determine this number by using the GETLPORT
command.

Starting AP 119

Auxiliary Processor 119 automatically starts when APL2 is invoked unless the
EXCLUDE option is used to prevent it. The following options can be specified with
the APNAMES parameter:

SERVPORT(nnn)
Normally, the local port server is listening on port number 31415. If the
port server is using a different port number, this parameter must be

Chapter 16. AP 119—Socket Interface Processor 171

AP 119

used to allow AP 119 to communicate with the server. Allowable values
are 256 to 65535.

LISTEN(nnn)
AP 119 does not normally open a listening connection until a variable is
offered to a remote processor. If you want AP 119 to open a listening
connection on startup, use this parameter. AP 119 attempts to use the
number specified as its listening port. If this number is unavailable, the
listening connection is not started. Allowable values are 256 to 65535,
or 0 to let TCP/IP assign an arbitrary number.

TCPID('ccc')
AP 119 expects the name of the local TCP/IP machine (under CMS) or
started task name (under TSO) to be TCPIP. If the name is different,
this parameter must be used to allow AP 119 to successfully communi-
cate with TCP/IP.

This is an example of using the startup parameters:

APL2 APNAMES (AP2X119(SERVPORT(1234) LISTEN(2345) TCPID('TCPTEST')))

Figure 47. Sample AP 119 startup parameters

If no options are specified, the IBM-supplied default for AP2X119 is:
SERVPORT(31415) TCPID('TCPIP')

This may have been changed by your installation.

Sample AP 119 Session Using the APL2 Socket API

In this example, one user shares the variable 4 and the other user shares variable
B.

A User 1 shares a variable with AP 119
119 0Osvo'A!
1
0 0 1 1 0Osvec 'Ar
00 11
A User 1 allocates a socket
A<'TCPIP' 'SOCKET'
A
0 0 3

The return code shows that socket number 3 was allocated. This is a stream
socket that is allocated to the user but not bound to a particular port or address and
is not connected.

A User 1 binds socket to a port
A<«'TCPIP' 'BIND' 3 1023 '0.0.0.0'"
A

0 0 O

172 APL2 Programming: System Services Reference

AP 119

Notice that a zero IP address was specified. If a machine is connected to more
than one network (and therefore has more than one IP address), you can bind to a
particular network, or specify '0.0.0.0' as the address meaning that you accept a
connection to any network. Using '0.0.0.0' as the IP address helps maintain the
portability of your application.

Port number 1023 is an arbitrary number agreed upon by both users. If the port
number is being used by anyone else on the local system, an EADDRINUSE error
is returned and the BIND is unsuccessful.

A User 1 listens for a connection
A<'"TCPIP' 'LISTEN' 3 5
A

0 0 O

? User 2 shares a variable with AP 119
119 0O8vVo 'B!

0 0 1 1 0Osvc 'B!
0011

n Allocates a socket

B<'TCPIP' 'SOCKET'

B
0 0 3
A Binds it to user 1's port and address
B<'TCPIP' 'BIND' 3 1055 '0.0.0.0"
B
0 0O

Although user 2 also gets socket number 3, this has no relationship with the socket
allocated to user 1.

A User 2 connects to user 1
B<'TCPIP' 'CONNECT' 3 1023 '9.113.14.90"
B

0 00

A User 1 accepts the connection
A<'TCPIP' '"ACCEPT' 3
A

00 4 1055 9.113.14.,90

When user 1 does an ACCEPT, a new socket is allocated (4 in this case) and the
connection is completed using the new socket. The original socket (3 in this case)
remains listening for new connections.

Chapter 16. AP 119—Socket Interface Processor 173

AP 119

There is now an established connection between the two users. The result from
the ACCEPT call has as its third item the new socket number allocated and user
2's port number and IP address.

A User 1 sends data to user 2
A<'TCPIP' '"SEND' 4 0 'E' 'SOME DATA'
A

0 0 9

The 'E' means that EBCDIC characters are being sent. In this case, specifying
type 'E' is the same as type 'B' since both sides are already using EBCDIC. If
the receiving side was ASCII-based then type 'A' on the SEND would cause trans-
lation to ASCII before the data is sent.

Note that you can send noncharacter data so long as you and your partner agree
on formats. In this case, you should always use the 'B' type option. When the
data is received by the partner, it is received as characters and the external func-
tion RTA can be used to restore the data to the expected format.

A User 2 receives the data
B<«'TCPIP' 'RECV' 3 0 'E'
B

0 0 SOME DATA

In this case, all the data was received at once but this may not always be the case.
Stream socket protocol does not guarantee that data that was sent is received in
one RECV call. It is up to the users to agree on a convention for saying how much
data is sent so that the partner can tell when all data has been received.

Since a user cannot predict when data
will arrive, it 1s not known when a
receive should be done. User 1 issues
a SELECT that requests that he be
informed when data arrives.

_MASK<0 0 0 0 1

W_MASK<0 0 0 0 O

X _MASK<0 0 0 0 O

A<«<'TCPIP' 'SELECT' 5 R_MASK W_MASK X_MASK

WD®D®D®D®D

Because the largest socket is 4, you must specify 5 as the number of of sockets
and provide three length 5 masks. The one in the first mask says that user 1
wants to be informed when socket 4 is ready to read. You can specify more than
one socket by specifying more than one 1.

Since RECV is a blocking call, if user 1 now references 'A', processing stops until
data arrives. Alternately user 1 can do other computing. The user can use [0OSVS
'A" and check for 0 1 0 1 to see if AP 119 has assigned data to the variable.

The user can use SVE to wait for an event on any of his shared variables or until
a specified amount of time has passed, whichever comes first.

174 APL2 Programming: System Services Reference

AP 119

A User 2 sends some data
B<'TCPIP' 'SEND' 3 0 'E' 'DATA BACK TO YOU'
B

000

A User 1 notices that data is available
gsvs A
01 0 1
A
0 0 0 0 0 0 1 0 0 0 0O 0 0 0 0O

The 1 in the read mask means that socket 4 is ready to read. The masks returned
from the SELECT may have zero or more 1 bits on but never more than originally
specified in the SELECT call.

n User 1 reads the data
A<'TCPIP' 'RECV' 4 0 'E'
A
0 0O DATA BACK TO YOU
A User 1 closes all his connections
A<'TCPIP' 'CLOSE' 4

A
0 0 O
A<'"TCPIP' 'CLOSE' 3
A
0 0 O
a User 2 closes his connection
B<«'TCPIP' 'CLOSE' 3
B
0 0 O

Return codes

The result passed back to the user in the shared variable is always a three item
vector: AP 119 return code, subsystem (AP, TCP/IP or IUCV) return code, and
data.

Figure 48 (Page 1 of 2). AP 119 Return Codes

Code Definition

0 Success

1 Incorrect command
2 Wrong type

Chapter 16. AP 119—Socket Interface Processor 175

AP 119

Figure 48 (Page 2 of 2). AP 119 Return Codes

Code Definition

Wrong rank

Wrong shape

ltem is wrong type

ltem is wrong rank

Iltem is wrong shape

O IN|oO ||~ W

ltem data is wrong

10 AP 119 subsystem support error. Second element of result is defined as follows:

1 No more sockets available through this variable.
2 Insufficient storage available to process the command.

11 TCP/IP error occurred. Second element of result is TCP/IP return code.

12 IUCV error occurred. Second element of result is IUCV return code.

AP codes 2, 3, 4, 5, 6, 7, and 8 return in the second item of the return code the
index to the item being processed when the error was detected. The first item is
numbered 0.

If the first item of the return code is 11, the second item is set to one of the char-
acter values listed under Errno in Figure 49. The numeric code is used in mes-
sages AP2...304 and AP2...305.

Figure 49 (Page 1 of 3). TCP/IP Return Codes

Code Errno Definition

0 Success

1 EPERM Not Owner

2 ENOENT No such file or directory
3 ESRCH No such process

4 EINTR Interrupted system call
5 EIO I/O error

6 ENXIO No such device or address
7 E2BIG ARG list too long

8 ENOEXEC EXEC format error

9 EBADF Bad file number

10 ECHILD No children

11 EAGAIN No more processes
12 ENOMEM Not enough core

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required
16 EBUSY Mount device busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument

176 APL2 Programming: System Services Reference

AP 119

Figure 49 (Page 2 of 3). TCP/IP Return Codes

Code Errno Definition

23 ENFILE File table overflow

24 EMFILE Too many open files

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE llegal seek

30 EROFS Read-only file system

31 EMLINK Too many links

32 EPIPE Broken pipe

33 EDOM Argument too large

34 ERANGE Result too large

35 EWOULDBLOCK Operation would block

36 EINPROGRESS Operation now in progress

37 EALREADY Operation already in progress

38 ENOTSOCK Socket operation on nonsocket

39 EDESTADDRREQ Destination address required

40 EMSGSIZE Message too long

41 EPROTOTYPE Protocol wrong type for socket

42 ENOPROTOOPT Protocol not available

43 EPROTONOSUPPORT Protocol not supported

44 ESOCKTNOSUPPORT Socket type not supported

45 EOPNOTSUPP Operation not supported on socket
46 EPFNOSUPPORT Protocol family not supported

47 EAFNOSUPPORT Address family not supported by protocol family
48 EADDRINUSE Address already in use

49 EADDRNOTAVAIL Cannot assign requested address
50 ENETDOWN Network is down

51 ENETUNREACH Network is unreachable

52 ENETRESET Network dropped connection on reset
53 ECONNABORTED Software caused connection abort
54 ECONNRESET Connection reset by peer

55 ENOBUFS No buffer space available

56 EISCONN Socket is already connected

57 ENOTCONN Socket is not connected

58 ESHUTDOWN Cannot send after socket shutdown
59 ETOOMANYREFS Too many references: cannot splice
60 ETIMEDOUT Connection timed out

61 ECONNREFUSED Connection refused

62 ELOOP Too many levels of symbolic links
63 ENAMETOOLONG File name too long

64 EHOSTDOWN Host is down

65 EHOSTUNREACH No route to host

Chapter 16. AP 119—Socket Interface Processor

177

AP 119

Figure 49 (Page 3 of 3). TCP/IP Return Codes

Code Errno Definition

66 ENOTEMPTY Directory not empty
67 EPROCLIM Too many processes
68 EUSERS Too many users

69 EDQUOT Disk quota exceeded
70 EVDBAD RVD related disk error

178 APL2 Programming: System Services Reference

AP 120

Chapter 17. AP 120—APL2 Session Manager Command

Processor

The APL2 session manager command processor, AP 120, allows you to issue
APL2 session manager commands through shared variables. For a description of
session manager commands and their syntax, see [Chapter 3, “The APL2 Session|

[Manager” on page 36

AP 120 requires the Graphical Data Display Manager (GDDM).

Shared Variable Overview

Figure 50 provides an overview for sharing variables with AP 120.

Figure 50. Shared Variable Overview for AP 120

SV Protocol

AP 120 Conventions

General

Two variables—control and data.

The control variable is used to pass APL2 session manager com-
mands to AP 120 and to pass return codes from AP 120. The control
variable must be a simple character scalar or vector.

The data variable is used to pass data from AP 120 to the work-
space. The data variable is a character matrix.

Maximum Number of Shared 14 pairs

Variables

Names Must start with CTL and DAT. Suffixes pair the variables. Names
cannot exceed 11 characters.

Initial Values No special requirements. If an initial value exists for the control vari-

able when it is shared, the value is treated as the first specification of
the variable.

Subsequent Values

CTL: Required. Character vector containing the command to be
processed. There is no limit on the length of the command, except
as noted below.

Reference a return code from the request (two-item numeric vector)
before referencing DAT.

DAT: Optional. Reference a character matrix returned from AP
120.

If the data variable is not shared, you cannot retrieve any results
returned by session manager commands. Command processing,
however, is unaffected.

Note: The SHRSIZE invocation option or installation default may
limit the size of a shared variable.

Data Types Supported

Simple character vector (CTL only). Character matrix (DAT only).

Access Control

CTL: 1111
DAT: 0000

© Copyright IBM Corp. 1984, 1994

179

AP 120

Data Formats

Specification
The control variable (CTL) must be specified with a character vector that repres-
ents the session manager command to be processed.

AP 120 specifies the data variable (DAT). If you specify it, your specification is

ignored.

Reference
AP 120 returns:

e Two-item numeric vector return code in the CTL variable. The return codes
and their meanings are listed in [Figure 52 on page 181]

e Character matrix in the optional DAT variable. The character matrix contains
one of the following:

Text that is normally returned on the command line of the screen when the
command is issued from the session manager itself.

Text that is normally returned from the command as a series of screens of
information (for example, the HELP command or the PROFILE command
with no operands).

Error message.

Text of the line, if the LINE command was successfully processed and you
had supplied a line number or a number of lines to scroll.

Empty character matrix if the command does not normally return text (for
example, COLUMN +number command) or if the command was not passed
to AP 120 (return code 1 nn).

Communication Procedure

The steps to issue an APL2 session manager command through AP 120 are out-
lined below.

1

6.

. Offer to share the control variable and, if appropriate, the data variable with AP

120.

. Assign a character vector containing the command to the control variable.

. Check the control variable for a return code of 0 0, indicating successful com-

pletion of the request and processing of the command.

. Reference the contents of the data variable, if necessary.
5.

Repeat steps 2 through 4 until you have issued all the commands you require.

Retract the control and data variables.

Although AP 120 is normally used within a defined function, Figure 51 shows a
sample APL2 session that illustrates the communication procedure.

180 APL2 Programming: System Services Reference

AP 120

120 0Osvo 'CTL120' '"DAT120' m offer to share
2 2 <«——Degree of coupling OK
CTL120<«'COPY ON ID APLAP120' a assign Sess. Mgr. command
CTL120 A check return code
0 0
DAT120 A copy command returns no data
CTL120<«'COPY" A request copy settings
CTL120 A check return code
0 0
DAT120 A data variable contains
COPY ON ID APLAP120 CODE O <+«—Current COPY setting
OSVR ™ 'CTL120' 'DAT120 A retracts shared variables
2 1

Figure 51. Sample APL2 Session to Communicate with AP 120

Return Codes

Figure 52 lists the return codes from AP 120, their descriptions, and suggested

actions.

Figure 52. AP 120 Return Codes

Code Description
00 Normal return. Command was successful.
111 Rank error on control variable. Rank is greater than 1.
113 Domain error on control variable. Control variable contains noncharacter data.
153 Required storage is unavailable.
Action: Restart APL2, specifying a larger value for the FREESIZE option.
156 Shared variable size exceeded.
160 The APL2 session manager is not available.
4 nnn Command was passed to the session manager, and an error was encount-

ered. nnnis the numeric part of the session manager error message identi-
fier.

Action: Examine the DAT variable; it contains the text of the error message.

Chapter 17. AP 120—APL2 Session Manager Command Processor 181

AP 121

Chapter 18. AP 121—APL2 Data File Processor

AP 121, the APL2 data file processor, allows you to read and write APL2 arrays
stored outside the active workspace in a sequential or direct access file. For
example, you can use this processor to store large arrays that otherwise consume
excessive space in the workspace. This processor writes arrays in their APL2
internal form, and, when it reads arrays, it expects their internal form.

APL2 data files can also be created and accessed using associated Processor 12.
That Processor provides asynchronous access to data files using APL2 syntax
rather than through auxiliary processor commands.

Under CMS, the arrays are stored in a CMS file in a library defined in the LIBTAB
APL2 file.

Under TSO, the arrays are stored in a VSAM library, which must be allocated to
your session before you use AP 121. This library can be the same library used for
your session manager log file.

Associated Workspaces

Functions in the two public workspaces APLDATA and VAPLFILE can be used
to read and write APL2 arrays to data files and to create, drop, and change file
sizes. For information on the contents of these workspaces and where they can be
found see APL2/370 Programming: Using the Supplied Routines.

Shared Variable Overview
Figure 53 provides an overview for sharing variables with AP 121.

Figure 53 (Page 1 of 2). Shared Variable Overview for AP 121
SV Protocol AP 121 Conventions

General One or two variables.

Sequential Access: Only a control variable is required. Each specifi-
cation passes a service request or an array to be written. Each refer-
ence obtains a return code or an array read.

Direct Access: A control variable and a data variable are required.

e Each specification of the control variable passes a service
request; each reference obtains the return code from a requested
operation.

¢ A specification of the data variable contains an array to be
written; a reference returns the array requested in the control vari-

able.
Maximum Number of Shared 14 pairs
Variables
Names Must start with CTL and DAT. Suffixes pair the variables. Names
cannot exceed 11 characters.
Initial Value None required. However, if specified, it is treated as if it were the

first assignment to the variable after sharing.

182 © Copyright IBM Corp. 1984, 1994

AP 121

Figure 53 (Page 2 of 2). Shared Variable Overview for AP 121
SV Protocol AP 121 Conventions

Subsequent Values CTL: Specify a service request (character vector). Reference a
return code (one-item numeric vector).

DAT: Specify and reference any valid APL2 array that can be manip-
ulated within the active workspace.

Data Types Supported All valid APL2 data types.
Access Control CTL: 1111
DAT: 0000

Access Control Considerations

AP 121 sets no access control on the data variable. If you choose to control the
processor's specification of the data variable (0 1 0 0 0OSVC 'DAT121"'),
you must reference the data variable each time you receive a 0 return code for a
successful direct read operation. If you do not reference the data variable, the
return code from the next direct read request is 42.

If you choose to control your own access to the data variable

(0 0 1 0 OSVC 'DAT121"'), you should not reference DAT when the return
code from a direct read request is anything other than 0. If you do, your terminal is
interlocked, and you must enter a strong interrupt to resume your APL2 session.

APL2 Data Files

Under CMS, APL2 data files created and processed using AP 121 are managed by
the CMS file system. Each file is associated with an APL2 library number defined
in the LIBTAB APL2 file, just as are workspace libraries. Workspaces and AP 121
files can coexist in the same library.

Under TSO, an APL2 data file resides in a VSAM library. The library must be
defined as a VSAM key-sequenced data set with key length 14, offset 0. If the
session manager is used, AP 121 files can reside in the same VSAM library as the
session manager log file. Before any service request to AP 121 is issued, the
VSAM library must be allocated to your TSO session.

To define and allocate VSAM libraries, see pages [68 through

File Identification
An APL2 data file is identified to AP 121 as follows:

[libno] file name [:password]

where:

libno Is the number of the private, project, or public library that contains, or is
to contain, the APL2 data file. If this option is omitted, the library
number defaults to the first item of JA I (the user's APL2 account
number). Unless changed by your installation, or unless you specify a
different number in the ID option when you invoke APL2, the library
number defaults to 1001.

Chapter 18. AP 121—APL2 Data File Processor 183

AP 121

CMS: The LIBTAB APL2 file associates the library number with the
virtual disk on which the library resides.

TSO: The library number is associated with a ddname of Fnnnnnnn for
the VSAM file (leading Os are suppressed). FO can be used for the
default library number.

Note: This ddname should not be confused with the term “filename.”
A ddname describes a library that can contain many individual files.

file name |s the name of the file. The name must be one to eight alphanumeric
characters, the first being alphabetic. It can contain neither national
use characters (such as @, $, or #) nor the extended APL characters
A, A, ~, _, and underbarred letters.

CMS: AP 121 assigns a file type and file mode to files created with AP
121. For private-library files, the file type defaults to:

VSAPLFL

For files in public libraries, the file type defaults to Fnnnnnnn, where
nnnnnnn is the library number and includes leading zeros to pad the
name to eight characters.

Note: Your installation may have changed the default file types this
processor assigns. Check with your system administrator.

The file mode assigned to the file is the same as that defined for the
library in the LIBTAB APLZ2 file.

password |s an optional password associated with:
e CMS: Virtual disk on which the file resides.

For read requests, the password is the virtual disk read password.
For all other requests, it must be the virtual disk write password.

e TSO: VSAM cluster.

For read requests, the password is the file's VSAM password at
read-level or higher. For all other requests, it must be the file's
VSAM password at update-level or higher.

If specified, the password must be preceded by a colon (:).

If you do not supply a password when one is required, you may be
prompted for the password. If you supply an incorrect password, the
auxiliary processor returns a return code of 34.

APL2 Data File Organization

An APL2 data file is organized as either a sequential file or a direct access file.
Both organizations require the file to be created sequentially and extended sequen-
tially (new arrays are added to the end of the file).

The record length of a direct file is specified in the service request to create the file.
You can choose to use either limited or arbitrary data length. The maximum limited
record length is 4070 bytes. Array sizes can be changed (up to the maximum)
during update. To create a direct file with arbitrary data length you must specify 0
in the length field.

184 APL2 Programming: System Services Reference

AP 121

Arbitrary data length direct files are more flexible, easier to use, and better pro-
tected from program or system failures. But they require more space to store, may
be slower to access, and are incompatible with APL Licensed Programs prior to
APL2 Version 1 Release 3. If you decide to create limited data length direct

files fSpace Requirements for Storing APL2 Variables” on page 191 discusses how
to determine the size of various types of APL2 arrays.

Communication Procedure

Commands

You can open and process multiple files in the same APL2 session with AP 121.
The number of files that can be processed concurrently depends on the available
space in your virtual machine (CMS) or address space (TSO), and on the limit of
number of shared variables. The same control and data variables can be used to
pass requests and data for multiple files. However, if you only have one pair of
shared variables, you can process (read, write, or update) only one file at a time.
After a file is opened by a shared variable, that variable remains dedicated to the
same file until it is used to close the file.

AP 121 commands are specified in the control variable{ Figure 54 on page 186
lists the service requests that are available with AP 121.

Communicating with AP 121 is summarized as follows:

1. Offer to share a control and data variable. Although sequential processing
does not require a data variable, it is recommended you share one to avoid the
possibility of a mismatched pair if another function localizes and reoffers vari-
ables with the same names.

Either the control variable or the data variable can be offered first. However,
the data variable is not coupled until after a matching control variable is offered.

2. Create the file. If the file already exists, omit this step.

If the file does not yet exist, specify the control variable with the service request
to create either a sequential (S) or a direct (D) file.

You use the create (C) request for both files that are accessed by VS APL and
for files that contain data types new to APL2.

3. Open the file for one of the following types of processing:

Sequential write: CTL<"'SWC fileid[length] '
Sequential write: CTL~<"'SW fileid [length] '
Sequential read: CTL<"'SR fileid"

Direct read: CTL+<«"'DR fileid"

Direct update: CTL<'DUC fileid'

Direct update: CTL~<"'DU fileid"

If you are creating a file, you must open it for sequential write. If you create a
direct file, you must specify a data length in the sequential write open request.
It can be either an arbitrary length by indicating 0 in the length field or a limited
length that cannot exceed 4070 bytes.

Using the SWC and DUC open requests, you open files that allow any valid
APL2 data types to be written or updated. You should use SWC and DUC when
you are enhancing VS APL applications for use in APL2 or when creating new
APL2 applications.

Chapter 18. AP 121—APL2 Data File Processor 185

AP 121

Using the SW and DU open requests, you open files that are compatible with
VS APL. Such files allow data to be written and updated in a format that is
compatible with VS APL, but they cannot contain any data types new to APL2.

FOpening a File” on page 187 provides more information on each open
request.

4. Process the file sequentially or directly, depending on the file's organization and
the open request.

5. Close the file.

When you are finished reading, writing, or updating an APL2 data file, you
should explicitly close the file by specifying the control variable with an empty
vector.

If you want to change from sequential reading to writing (or vice versa), you
must close the file and reopen it.

See [‘Checking for End of File” on page 190

6. After a file is closed, the variable (or pair) is available for reuse to create or
open another file. Repeat the procedure.

Two commands allow you to drop (delete) an APL2 data file or change its file size.
For information on these two operations, see [fAPL2 Data File Maintenance” on|

Library query command is described in FLibrary Query” on page 190l

Command Operation
' C fileid S Create a sequential file
' C fileid D! Create a direct file
Open for sequential write
'SWC fileid [length]' APL2-only
' SW fileid [length]' VS APL-compatible
' SR fileid" Open for sequential read
' DR fileid" Open for direct read
Open for direct update
'DUC fileid' APL2-only
' DU fileid" VS APL-compatible
0, recnum Direct read
1, recnum Direct write
''"or10 Close a file
' D fileid"' Drop a file
'F'S fileid size' Change file size limit
'@ libno [:password]"' Library query

Figure 54. Commands for APL2 Data File Operations Using AP 121

186 APL2 Programming: System Services Reference

AP 121

Opening a File
This section describes how to open a file for:

e Sequential write
e Sequential read
e Direct read

e Direct update

Open for Sequential Write (SWC or SW)
When you open a file for sequential write:

e The file can be either sequential or direct organization.

e For direct files, you must specify a data length or zero in the first S request.
For a new file, see Step 3 under [‘Commands” on page 185 for details.

If you want to write records on an existing direct file that already contains
records, do not specify a record length in the SW request. If you do, the length
must equal that specified in the original SW¥ request when the first array was
written.

* Each subsequent specification of the control variable writes the next sequential
array to the file. (Arrays are always added to the end of the file.)

* The file must be closed before it is reopened for any other type of processing in
the same APL2 session.

Note: Results are unpredictable if a sequential write (S¥) is active through
one shared variable at the same time a sequential read (SR) is active through
another shared variable for the same file.

Open for Sequential Read (SR)
When you open a file for sequential read:

e The file can be organized either directly or sequentially.

* The first reference of the control variable (after the return code from the read
request is obtained) returns the first array of the file. Subsequent references
return arrays sequentially.

¢ |f you reach the end of the file (return code 5) on a read operation, the
processor accepts another open request for the file without an intervening close
request.

e No return code is provided unless an error (including end of file) is detected, in
which case the processor first assigns an empty vector to the control variable
and then returns an error return code.

Open for Direct Read (DR)
When you open a file for direct read:

e The file must be of a direct organization.

e A data variable must be shared with the auxiliary processor to pass the con-
tents of arrays read.

To read an array, you must:
—Specify the control variable as:

CTL<«0,recnum

Chapter 18. AP 121—APL2 Data File Processor 187

AP 121

where recnum is the array number (beginning with 1 for the first array in
the file) of the array you want read into your active workspace.

—Reference the data variable. The data variable contains the specified
array.

Open for Direct Update (DUC or DU)

When you open a file for direct update:

e The file must have been created with a direct organization.

* A data variable must be shared.
You can read and write arrays in any sequence you want. You specify the array
you want to read or write by relative array number (the first array is array 1).
If you want to read an array:

—Specify the direct read request as:
CTL<0,recnum
—Reference the data variable.
If you want to replace an array:
—Specify the data variable with the APL2 array you want to write.
DAT<"variable'
—Specify the control variable with the direct write request:
CTL<1 ,recnum
Note: When using direct update, it is possible to write an empty vector to the file.

Should this occur, it may be impossible on a sequential read to detect whether an
error occurred or whether end of file was encountered.

Example:: [Figure 55 on page 189 shows a sample APL2 session that creates a
direct file, initially loads it with arrays, and processes it for direct update.

188 APL2 Programming: System Services Reference

AP 121

CTL121<«'C DIRFIL1 D'
CTL121

CTL121

CTL121<«'FIRST ARRAY'
CTL121

CTL121

CTL121<«""
CTL121

CTL121<«'SR DIRFIL1'
CTL121

O«X«CTL121
FIRST ARRAY

O«X«CTL121
SECOND ARRAY

O«X<CTL121

pX
CTL121

CTL121<«'DUC DIRFIL1'
CTrL121

CTL121<«0,2
CTrLn121

DAT121

SECOND ARRAY
DAT121<«'NESTED' 1J2
CTL121<«1,2
CTrL121

CTL121<«""
CTL121
0

121 0O8VO™ 'CTL121' 'DAT121"

CTL121<«'SWC DIRFIL1 80'

CTL121<«'SECOND ARRAY'

offer to share a pair

Degree of coupling OK
create a direct file

Return code 0K
open for sequential write

Return code OK
begin writing sequentially

close file

reopen for sequential read

begin reading

A

Empty vector returned?

A

Yes

end of file?
Yes

A

reopen for update

point to second array

read second array

replace second array

close file

Figure 55. Sample APL2 Session of Direct File Processing with AP 121

Chapter 18. AP 121—APL2 Data File Processor

189

AP 121

Checking for End of File

On a sequential read, an empty vector is returned when end of file is reached or
when an error occurs. The next reference of the control variable returns the return
code.

¢ |f end of file was reached, the return code is 5.
¢ |f an error has occurred, the return code is other than 0 or 5.

An array that is a simple empty vector can be written only to a direct access file
when an array is replaced (otherwise, the file is closed when you specify an empty
vector).

APL2 Data File Maintenance

Two service requests exist to allow you to:
e Drop (delete) an APL2 data file
¢ Change the total size allowed for an APL2 data file
An APL2 file can be deleted from a library by the drop file service request:

CTL<"'D fileid'

To change the total size allowed for an APL2 file in a library, issue the following
service request:

CTL<"FS fileid size'

where size is the maximum size in bytes to be allowed for the file. size can be
specified as more or less than that currently allocated to the file, but it cannot be
less than that currently occupied by the file.

The file size is the total size required for the file, not the maximum data length for a
single array.

Library Query

A list of file names contained in a specific library can be obtained through the query
service request:

'@ libno [: password]"'

The result is a matrix of file names returned in the DAT variable. The matrix
always contains 9 columns with trailing blanks as needed. If the library is empty, O
9 p '' isreturned.

Note: When library number 0 is specified, the query is performed on the user's
current private library.

190 APL2 Programming: System Services Reference

AP 121

Space Requirements for Storing APL2 Variables

The only restrictions on the size of APL2 arrays written to sequential files or direct
files that use an arbitrary data length are those imposed by available storage. (See
[‘Size Limitations.”)| Each array in a direct file using limited data length, however, is
limited in size to the number of bytes specified on the initial sequential write request
when the file was loaded (' SWC fileid length'). Also, the largest data length you
can specify for a limited length direct file is 4054 bytes.

The encoding of APL2 variables used by AP 121 is common data representation
(CDR). Different types of APL2 variables require different amounts of space. In
addition, each variable requires space for an APL2 variable descriptor, or the CDR
header. To calculate the space required for a variable written in CDR, use

the attributes AT system function with the integer 4 as a left argument. AT
returns a two-item integer vector:

DAT121<«2 2p'VOLUME' 1021 'CHANGE' 23
4 0AT 'DAT121'
80 20

The first item is the total number of bytes required by the variable in CDR format.
Four bytes must be added to this to obtain the AP 121 data length.

Note: If the file was created with SW rather than S¥C, and your data consists
only of integers between 0 and 255, the values returned by 0AT are too small.

For a further description of AT, see APL2 Programming: Language Reference.

Size Limitations

The APL2 arrays you write to a file can be any that are small enough to be:

* Manipulated within your active workspace
* Processed by the shared variable processor (SVP)
o Buffered by AP 121

You can control the size of your active workspace, the space allotted to the SVP,
and the dynamic buffer space used by APL2 by specifying the APL2 invocation
options WSSIZE, SHRSIZE, and FREESIZE, respectively.

Cautions

CMS: An APL2 data file resides on a virtual disk. The maximum size of the file is
restricted to the available space on the disk. For more information on file sizes,
see the appropriate user's guide for your system.

CMS does not normally rewrite a disk directory until all files on that disk have been
closed. For APL2, this may not occur until you end your APL2 session. APL2
attempts to force directory rewrites whenever an output file is closed, but there is
no guarantee that the directory is rewritten. Therefore, if APL2 does not terminate
normally, all data written during the session could be lost.

TSO: AP 121 files reside in VSAM data sets. Depending on VSAM resource avail-
ability, you may be put in a wait queue if you try to access VSAM libraries used by
other APL2 users. This can happen when your AP 121 file is opened for write (SW

Chapter 18. AP 121—APL2 Data File Processor 191

AP 121

or SWC) or update (DU or DUC). Repeated attention procedures may cause you to
exit from APL2.

Always explicitly close a VSAM file by issuing the close service request (' ' or 10)
and check the return code. If you allow the file to close implicitly (the control vari-
able being retracted), you cannot check the return code from the close, and the
integrity of your data is exposed. If, for example, an 1/O error occurs on the last
buffer written, your file would be incomplete and you would not know it.

Return Codes

Return codes from AP 121 are passed in the control variable as a one-item
numeric vector. Figure 56 lists the possible return codes from AP 121.

Figure 56 (Page 1 of 3). Return Codes from AP 121

Code

Description

0

Operation successful.

1

Array not found for a direct read or update request.

Action: Specify an existing array number and reissue the request.

CMS Only: File on a virtual disk blocked 800 contains maximum number of records. As a
result, the file is closed. Maximum file size is 64K.

Action: Move the file to a disk that is not formatted with 800-byte blocks.

Attempted to write an APL2-only object with SW or DU.

Action: Use the SWC and DUC requests if you want to write or update APL2 objects in a
file; or, reformat the data so it is compatible with VS APL.

Either an internal logic error or the file being read contains invalid data. Action: Notify your
system administrator that the file is unusable.

End of file. As a result, the file is closed. Also, for sequential read operations, an empty
vector is assigned to the control variable.

You attempted a direct read or direct update on a sequential file.

Record length error. The buffer supplied to receive data is not large enough, or the record
provided is too large for the file. When AP 121 is being used, buffer size problems are
normally resolved automatically by the AP, even though a queued message may appear.
Such queued messages may also appear (and be automatically resolved) during system
command processing on TSO when a VSAM library is used.

CMS: Virtual disk is full. As a result, the file is closed.
TSO: VSAM library is full. As a result, the file is closed.

10

TSO: User interrupted the operation with an attention key. If a write or drop was in
progress, the array or file can be in an unusable state, and later may be deleted implicitly
by the system or explicitly by another drop request.

11

Defined file size limit exceeded, or request to reduce file size limit would cause data loss.
As a result, the file is closed.

Action: Increase the file size limit (via the FS service request), reopen the file, and retry.

192 APL2 Programming: System Services Reference

AP 121

Figure 56 (Page 2 of 3). Return Codes from AP 121

Code

Description

12

Invalid service request, or syntax error in request.

This code is returned for several error conditions associated with a service request:
¢ Control variable does not contain a character vector when a service request is required.
¢ An invalid service request code was specified.

¢ A library number or the file size was not specified as a number, or it was too large a
number.

¢ File name or password is too long or has invalid characters.
¢ A required field for the service request was omitted.
¢ Unexpected fields were found.

¢ Invalid direct read or update request. It was not a two-item numeric vector with the first
item being either zero or one.

15

File not open. An attempt is being made to issue read or write requests against a file that
is not open.

23

You have tried to replace an array on a direct file, but the file is not opened for direct
update.

24

Improper library reference.
CMS Action: Check LIBTAB APL2 for correct library numbers.

TSO Action: Make sure the library is allocated.

25

File already exists.

26

File does not exist.

CMS Only: This can also indicate that you were trying to write to a file that is stored on a
read-only disk.

28

File in use by others. Your shared or exclusive file request is blocked.

Action: Retry later. Be sure you do not already have the file open through another vari-
able.

32

Either no space for I/O buffer or SHRSIZE is too small to contain the data.

Action: Restart APL2 with more free space (by getting a larger virtual machine or region or
specifying the FREESIZE invocation option described in|Chapter 2, “APL2 Invocation and|

[Termination” on page 8), or a larger SHRSIZE.

33

You attempted to replace an array on a direct file, but you did not specify the data variable
before you issued the write service request.

34

Incorrect or missing password.

TSO Only: This return code also can indicate that you were trying to write to a file that is
available to you only for read access.

35

Hardware I/O error or APL2 product failure. As a result, the file is closed. Also, for sequen-
tial read operations, an empty vector is assigned to the control variable.

CMS Action: Retry request. If problem persists, notify your system administrator.

TSO Action: Verify that the library is a VSAM cluster defined with KEYS(14 0). Retry
request. If problem continues, notify your system administrator.

36

CMS Only: Named file is not an APL2 data file.
TSO Only: Named Data Set is an invalid VSAM cluster.

37

File size limit was reduced below the previous file size limit.

This code is issued as a warning only; the FS operation is successful. There is still space
for all arrays currently on the file.

38

Invalid length specified on an S or SIWC service request. The number is not within the
valid range of 0 through 4070, is more than 8 characters long, or does not agree with the
value given when the file was first written. If this return code appears in response to an FC
Processor Service call, it indicates that the value is neither O nor a positive integer from 5
through 4074.

Chapter 18. AP 121—APL2 Data File Processor 193

AP 121

Figure 56 (Page 3 of 3). Return Codes from AP 121

Code

Description

39

Required record length is not specified in the sequential write (SW) open request to load
records on a newly-created direct file.

42

Data variable has not been referenced.

50

Invalid request for CMS/TSO, or the file system is not operational.

Action: See your system administrator.

194 APL2 Programming: System Services Reference

AP 123

Chapter 19. AP 123—VSAM File Processor

AP 123, the VSAM processor, allows you to perform file operations on entry-
sequenced, key-sequenced, or relative-record VSAM files. Although AP 123 cannot
create VSAM data sets, it can be used to read, write, update, and delete records
on existing files.

Associated Workspaces

Public library 2 normally contains two workspaces that can be used with AP 123.
Functions in the VSAMDATA workspace can be used to pass service requests to
this processor. Functions in the UTILITY workspace are available to convert key
and record data to System/370* data types. For information on these functions and
how they are used, type DESCRIBE, HOW, or ABSTRACT after loading this
workspace.

Shared Variable Overview

Figure 57 provides an overview for sharing variables with AP 123.

Figure 57. Shared Variable Overview for AP 123
SV Protocol AP 123 Conventions

General Two variables—control and record.

The control variable is used to pass service requests to the AP and
return codes from requested operations.

The record variable is used to pass the content of records between
the workspace and the VSAM file.

Maximum Number of Shared 14 pairs.

Variables

Names Must start with CTL and DAT. Suffixes pair the variables. Names
cannot exceed 24 characters.

Initial Values None. Initial values are ignored by the processor.

Subsequent Values CTL: Specify a service request (character string). Reference a return

code (two-item integer vector).
DAT: Specify and reference a character scalar or character vector.

Note: The SHRSIZE invocation option or installation default may
limit the size of a shared variable.

Data Types Supported Simple character vectors or scalars.
Access Control CTL: 0001
DAT: 0000

VSAM Files—General Information

Before a VSAM file can be processed with AP 123, the file must have been previ-
ously created using the DEFINE command of Access Method Services. Under
CMS, the DLBL command for the file must be issued before the APL2 session is
initiated. Under TSO, the ALLOCATE command for the file must be issued at any
time before the file is opened with AP 123.

© Copyright IBM Corp. 1984, 1994 195

AP 123

File Identification

With AP 123, a VSAM data set or file is identified as follows:

| ddname[:password]

ddname Is the ddname specified for the VSAM file in the CMS DLBL command

or the FILE name specified in the TSO ALLOCATE command.

For more information on the DLBL command, see the CMS Command
Reference manual for your VM system.

For more information on the TSO ALLOCATE command, see TSO/E
Command Reference. The file can also be allocated to your TSO
session by a DD statement in your logon procedure. For information
on DD statements, see the JCL reference for your MVS system.

password Is an optional password assigned to the VSAM file by the DEFINE or

ALTER command of Access Method Services. The password can
consist of up to eight arbitrary characters entered immediately after a
colon.

If you try to access a file that is password protected and you either do
not supply a password or supply the wrong password, you receive an
error return code. Under TSO, you are first prompted for the pass-
word, unless you disabled the prompt for the TSO session. If
NOPROMPT is specified in your current profile, you receive the error
return code.

File Formats and Keys
A VSAM file is defined as one of three formats:

An entry-sequenced file contains variable-length records that are organized
sequentially. New records are written at the end of the file. Existing records
can be read or rewritten either sequentially or directly. Direct write operations
may not change the length of a record.

When an entry-sequenced file is accessed directly, the byte offset (relative byte
address, or RBA) of a record is specified as the key. The RBA must be speci-
fied as a character vector containing up to 15 digits. The RBA is returned in
the data variable when a key feedback (KF) request is specified in the control
variable. The RBA is returned as a 10-character vector.

A relative-record file contains fixed-length records that can be read or written
either sequentially or directly. When accessed directly, the relative-record
number (RRN) of the desired record must be specified as the key. This key is
not contained in the record itself, but is derived solely from the position of the
record within the file. Empty slots, where records were erased or not yet
written, are counted when determining relative-record numbers. The first record
in the file has an RRN of 1.

The key feedback (KF) request returns the key of a relative-record file as a
10-character vector. You may want your program to manipulate this value.
The APL2 execute (¢) primitive function can be used to convert character
numbers to numeric data, and the format (¥) function can be used to convert
numeric data to character.

196 APL2 Programming: System Services Reference

AP 123

* A key-sequenced file contains variable-length records and is organized
according to a key field contained in each record. Key-sequenced files can be
read or written either sequentially or directly. The length of an existing record
can be changed when it is rewritten.

When accessed directly, a record's key is specified as a character vector of any
length up to the key length specified in the Access Method Services DEFINE
command when the file was created. Keys can be recorded as System/370
packed decimal, binary, or other data formats. Keys not encoded in EBCDIC,
however, must be translated to EBCDIC before they are specified in the control
variable.

VSAM alternate index support is available for entry-sequenced and key-sequenced
files when processed by AP 123.

| Commands

Requests for file processing are made by specifying the control variable. Figure 58
contains a description of each possible command and the corresponding value to
specify in the control variable.

Command Operation

' OR ddnamel :password] "' Open file for read

' OW ddnamel :password] "' Open file for write

' OU ddnamel(:password] ' Open file for update

' 0C ddnamel(:password] "' Open and clear reusable file

'R Sequential read

'RU! Sequential read for update

'R :key' Direct read

'"RU : key' Direct read for update

W Write a record

"W key' Write new record (relative record)

"E: key' Erase a record (key sequenced or relative)
'"POL : key1' Position record pointer

'"KF! Key feedback

'c Close file

7 Transfer data without translation (default)
71 Translate to or from VS APL

72! Translate to or from EBCDIC

Figure 58. Commands for VSAM File Operations

Chapter 19. AP 123—VSAM File Processor 197

AP 123

Communication Procedure

Figure 59 shows a sample session to read and write records on a VSAM file.

123 OSVO™ 'CTL123' 'DAT123' a offer to share
2 2 < Degree of Coupling OK
0 0 1 1 0OSVC 'CTL123! A set access control
00 1 1
CTL123<«'0C MYFILE' A open and clear reusable file
CTL123
00 < Return code 0K
DAT123<«'"FIRST RECORD'
CTL123<"W" A write first record
CTL123
0 0 - Return code 0K
DAT123«'SECOND RECORD'
CTL123<"'W" A write second record
CTL123
0 0 - Return code 0K
CTL123<«'(C" A close file
CTL123
00 < Return code 0K
CTL123<«'0U MYFILE"' A reopen for update
CTL123
00 < Return code 0K
CTL123<«'RU" A read for update
CTL123
0 0 < Return code 0K
HOLDAREA<DAT123 A save record contents
. < Manipulate HOLDAREA
DAT123<HOLDAREA
CTL123<"'W" A rewrite record
CTL123
0 0 - Return code 0K
CTL123<«'(C" A close file
CTL123
0 0 < Return code 0K
OSVR™ 'CTL123' 'DAT123! A retract variables
2 2

Figure 59. Sample Session to Communicate with AP 123

The steps below summarize the procedure for communicating with AP 123.

1. Offer to share a pair of variables. Either variable can be offered first.
However, AP 123 does not match your DAT offer until you offer a corre-
sponding control variable.

Verify the degree of coupling, but do not try to obtain a return code. Because
neither partner has specified a value yet, you are interlocked if you try to use
the control variable.

2. Set the access control.
3. Open the VSAM file.

A file can be opened for read, write, update, or clear. Check the return code
from the open request.

198 APL2 Programming: System Services Reference

4. Process the file.

AP 123

Records can be read, written, erased, or replaced—either sequentially or
directly. How you process the file depends on how the file was opened (see
Figure 60). Check the return code after each service request is issued.

5. Close the file.

The file should be closed explicitly by a close service request. Check the

return code.

Note: Although the file can be closed implicitly by retracting the control vari-
able, data integrity is exposed if you do so. You cannot check the return code
from an implicit close, which may indicate an 1/O error on the last buffer written.

6. Steps 2, 3, and 4 can be repeated with the same file or a different file without
retracting and reoffering the pair of variables.

Opening a VSAM File

A VSAM file can be opened for read only, for reading and writing, or for updating
(reading, writing, replacing, and erasing records). Figure 60 shows the file proc-
essing requests allowable with each OPEN option.

If you do not specify a password and one is required, you are prompted, perhaps

more than once, for one.

Figure 60 (Page 1 of 2). Cross-Reference of OPEN and Processing Requests for AP 123

OPEN Option Possible Record Processing

' OR ddnamel :password] "' 'R[:keyl'

Open file for reading only. Read sequentially; or, if a key is specified, read directly.

' OW ddname[:password] ' 'R[:key]l'

Open file for reading or writing new Read file sequentially; or, if a key is specified, read directly.
records. WL key]!

Write a record.

¢ A key must be specified (except during update) to write
a record to a relative-record data set.

¢ A key must not be specified to write a record to an
entry-sequenced or key-sequenced data set.

' OU ddnamel:password] '

Open file for update (reading, writing,
erasing, and replacing records).

'R[:keyl'

Read sequentially [or directly].

'WL:keyl!

Write a record. (Same conditions as ' W[: key]' above.)
"RUL : keyl"

Read for update. (The next WRITE operation replaces this
record.) Either the next sequential record is read, or the
record belonging to the specified key is read.

'E:key'

Erase the record whose key is specified.

Chapter 19. AP 123—VSAM File Processor 199

AP 123

Figure 60 (Page 2 of 2). Cross-Reference of OPEN and Processing Requests for AP 123

OPEN Option Possible Record Processing

' 0C ddnamel:password] "' 'WL :keyl!'

Open and clear contents of reusable The only service request allowed with an OPEN request of
file. 0C is to write records in ascending sequence.

A file opened with the OC request must have been defined
with the REUSE attribute.

Processing a VSAM File
Processing a VSAM file includes reading, writing, updating, and erasing records
from the file. The processing options available with this processor are included in
Figure 60. The processing options are dependent upon how the file was opened.

Reading a File

All three types of VSAM files can be read sequentially or directly. To read sequen-
tially, you merely specify the control variable with a value of 'R '. To read directly,
you specify a key, as 'R : key'. The procedure consists of three steps:

1. Specify the control variable.
2. Reference the control variable (obtain the return code).
3. Reference the data variable.

Note: When you read a VSAM file, you must reference the data variable if the
return code from the read request was 0 0. If you omit the reference of the data
variable, the return code from the next read request is 1 42. To recover, merely
reference the data variable before the next read request.

If the return code from a read request is other than 0 0 or 1 42, do not reference
the data variable. If you do, you probably get a record from an earlier read
request.

If the internal encoding of the data records in the file is other than EBCDIC, you
may need to convert the data so that APL2 can process it. The public library work-
space UTILITY contains defined functions to make these conversions. Also, trans-
late options are available as service requests (see T, T1, and T2).

Writing a File

New records can be written to all three types of VSAM files. Note that, when you
write to a VSAM file, you must specify a value in the data variable before specifying
the write request in the control variable. If you fail to specify the data variable first,
the return code from the write request is 1 33. To recover, merely specify the data
variable and reissue the write request.

The format of the write service request is:
CTL123«"'"W:[keyl'
You do not specify a key if the file is key sequenced or entry sequenced. You

must specify the key if the file is relative-record, because the key is not embedded
in the record itself.

200 APL2 Programming: System Services Reference

AP 123

The procedure to write a record consists of three steps:

1. Specify the data variable with the record contents.
2. Specify the control variable with the write request.
3. Reference the control variable to obtain the return code.

Replacing a Record

Records can be replaced in any type of VSAM file with AP 123 by opening the file
for update (' OU ddname"') and issuing the read-for-update service request
("RU[:key]'). Omit the key for sequential update; specify the key for direct update.
The procedure consists of five steps:

1. Specify the control variable with the OU request.
Reference the control variable for the return code.

2. Specify the control variable with the U request.
Reference the control variable for the return code.

3. Reference the data variable to read the record.

4. Specify the data variable with new record contents.

5. Specify the control variable with the ' W' write request without a key.
Reference the control variable for the return code.

Restriction on Entry-Sequenced or Relative-Record Files: When replacing a record

on an entry-sequenced or relative-record VSAM file, the record that is written must
be the same length as the record that was retrieved.

Erasing (Deleting) a Record

Records can be erased from a VSAM file with AP 123, provided that the file is not
an entry-sequenced file. The file must be opened for update (' OU ddname').
You must specify the key of the record to be erased in the service request. The
format of the request to erase a record in a key-sequenced or relative-record data
set is:

CTL123<"E: key'

Check the return code from the erase request.

Obtaining the Key of the Last I/0O Operation

This service request, which is specified as:
CTL123<«'KF'

can be issued only after a successful read, write, or erase request. The file can be
open for read, write, update, or clear.

The key is returned in the data variable. For entry-sequenced and relative-record
data sets, the key is returned as a character vector of 10 integers. For a key-
sequenced data set, you must convert the key to EBCDIC if it is not already in that
encoding.

Chapter 19. AP 123—VSAM File Processor 201

AP 123

Positioning the Record Pointer

When you read a file sequentially, a pointer is automatically set, pointing to the next
record to be read. You can explicitly set the record pointer to another point in the
file by issuing this service request:

CTL123<'PO[: keyl"

When a key is specified and found in the file, the record pointer is positioned at the
specified record. When a key is omitted, the pointer is positioned at the beginning
of the file.

Key-Sequenced Data Set: If the specified key is shorter than the key length of
the VSAM file, the pointer is positioned at the first record whose key starts with the
value entered as the key.

If no match for the specified key is found in the file:

e The return code is 8 16 (record not found).
e The pointer is positioned at the first record whose key is higher than the speci-
fied key.

If the specified key is higher than any in the file, the return code in the control
variable is 8 4 (end of file).

You may need to convert numeric keys to System/370 data format. Conversion
functions are available in the public workspace UTILITY.

The example below uses the function I 0 to position the record pointer to the
record whose key is defined as a 4-byte binary number, 50.

CTL123«'PO:"',4 I0 50

Entry-Sequenced Data Sets: Zero (0) is the relative byte address (RBA) of the
first record. The only efficient way for you to determine the RBA of subsequent
records is to issue a key feedback (KF) request.

Relative-Record Data Sets: The key of the first record of a relative-record data
setis 1. The key of the second record is 2; that of the third record is 3. To posi-
tion the pointer to record 8, issue this request:

CTL123«'P0:8"

202 APL2 Programming: System Services Reference

AP 123

Specifying Character Conversion
If the data in a file is encoded in EBCDIC, you need no character conversion to
process records under APL2, but you may want to specify a translate request of
' 72" for records you read or write with AP 123.

AP 123 provides three translate options. A translate service request for a shared
variable pair can be issued at any time; it remains in effect for that pair until a new
translate request is issued or the control variable is retracted. The options are:

'T72' Keys and data are assumed to be encoded in EBCDIC, the same encoding
used by APL2.

This translate option is the same as the EBCD conversion option described
in [Appendix_D. “Auxiliary Processor Conversion Options” on page 370l

'T1' Keys and data are assumed to be encoded in VS APL internal format.
They are translated to and from EBCDIC when records are read and
written.

This translate option is the same as the COD1 conversion option.

'T' This is the default option. Data is transferred byte-for-byte without trans-
lation.

This translate option is the same as the BYTE conversion option.
Your VSAM file can require some other character conversion. The public library

workspace UTILITY contains several data conversion functions that can be used to
convert keys and data to various System/370 data types.

Closing a VSAM File

When you complete processing a VSAM file with AP 123, close the file by doing
either of the following:

» Specify the control variable with the close service request.
CTL123«'(C"!
Check the return code from the explicit close.

¢ Retract the control variable.

Cautions

Always explicitly close a VSAM file by issuing the close service request (' C '), and
check the return code. If you allow the file to close implicitly (the control variable
being retracted), you cannot check the return code from the close and the integrity
of your data is exposed. If, for example, an 1/O error occurs on the last buffer
written, your file would be incomplete and you would not know it.

Chapter 19. AP 123—VSAM File Processor 203

AP 123

CMS: Under CMS, VSAM is supported as it is under DOS. The CMS/DOS and
APL2 environments impose the following restrictions:

1. AP 100 commands must be acceptable to CMS/DOS.

2. SET DOS ON, which must be set to issue the DLBL command, and must not
be issued from within your APL2 session. To do so causes your session to
abort, and you have to re-IPL CMS.

3. SET DOS OFF must not be issued while VSAM files are open. You lose your
data.

If the command is issued from within APL2, no VSAM files can be accessed
after the setting takes effect.

4. After the first use of CMS VSAM, you must issue the ASSGN command when-
ever you issue a DLBL command.

5. When your session ends normally, AP 123 issues the CMS command
DMSVSR to reset the CMS VSAM environment.

For more information about CMS/DOS and VSAM, see the appropriate user's guide
for your system.

TSO: Depending on VSAM resource availability, you may be put on a wait queue if
you try to access VSAM libraries used by other TSO users. This can happen when
your AP 123 file is opened for write (OW) or update (OU). Repeated attention pro-
cedures may cause AP 123 to be unavailable for the remainder of your APL2
session.

Return Codes

Because initial values of the shared variables are ignored by AP 123, a return code
is not returned in these variables as a result of the offer. However, after a service
request is issued, the control variable contains a return code consisting of a two-
item integer vector.

» |f both items are 0, the service request has successfully completed.

 |If the first item is 1, the return code was issued by AP 123. The second item
indicates the type of error. Figure 61 lists the codes and descriptions returned
by the auxiliary processor.

« If the first item is not 1, the return code was issued by VSAM
lists some of the more common VSAM return codes.

For more information about VSAM return codes, see OS/VS Virtual Storage
Access Method (VSAM) Programming Guide.

204 APL2 Programming: System Services Reference

AP 123

Figure 61. Return Codes from AP 123

Code Description

112 Syntax error in the value specified in the control variable.

113 You issued a service request to open the file. The file is already open.
No action is required. Processing continues.

115 The RU, W, or E service request specified is not permitted by the current open mode.
RU and E require an OU open. W requires OW, OU, or OC.

116 The service request is not valid for the type of VSAM file being processed. ERASE was
specified for an entry-sequenced data set.

117 Length of record key specified in a service request was too long, or it was too short on a
RU key request. Note that blanks are included in the count of the key length.

118 VSAM MODCB error.

119 VSAM SHOWCSB error.

120 Something other than a character vector was specified in the data variable.

121 Data variable was specified with an incorrect record length.

122 You issued a service request to process a file that is not currently open.

127 VSAM TESTCB error.

1 32 Insufficient free storage for 1/0O buffers.
Action: Restart the APL2 session with a larger value in the FREESIZE invocation
option. If the resultant freespace size or workspace size is too small:

e CMS: In CP mode, define a larger virtual machine size; re-IPL CMS; and restart
APL2.
e TSO: Logoff; log on with a larger region size specified in the LOGON command; and
restart APL2.

1 33 No value has been assigned to the data variable for a write request.

1 42 You set access control on the data variable, but you have not yet used it for an earlier
request. (The first read request resulted in a return code of 0 0.)

1 45 VSAM GENCB error.

1 48 Invalid sequence of service requests.

¢ A key feedback (X F) request followed an open request or an error.

¢ A relative-record write without a key () was requested without a preceding read-for-
update request (RU).

Chapter 19. AP 123—VSAM File Processor 205

AP 123

Figure 62. Selected VSAM Return Codes Applicable to AP 123

Code

Description

0 8

More than one record has the specified key. The first is returned.

4 116

The file was not properly closed after the last usage.

Action: Use the Access Method Services VERIFY command to check the status of the
file.

End of file; or specified key is greater than the highest key on the file.

Duplicate key.

16

Record not found.

20

Record is in use by another user.

28

Data set is full.

32

Invalid relative byte address.

40

Insufficient virtual storage.

88

Sequential read requested without prior positioning.

96

Attempt to change key of record.

100

Attempt to change length of record on an entry-sequenced or relative-record data set.

110

Attempt to open an empty file for read or update.

128

Attempt to open file that has not been properly allocated.

136

Insufficient virtual storage.

152

Password error.

168

The data set is not available in the mode requested. It is in use by another job.

00 |00 |00 | 00| OO | 0O |00 |OCO|OO|O|O|O|O]|O]|OW]|O®

192

Invalid relative record number.

206 APL2 Programming: System Services Reference

AP 124

Chapter 20. AP 124—Text Display Auxiliary Processor

Use the Text Display Auxiliary Processor (AP 124), through an APL application
program, to control the screen of an IBM 3270 Information Display System terminal.

It allows your application to:

e Define a logical screen

* Format the logical screen into text fields

¢ Write text to the fields

e Prompt for input, and determine the type of input

¢ Read text from the fields

AP 124 provides only text support. It does not provide graphics support. AP 126
does provide graphics support for 3270's, but requires the GDDM program product.

Shared Variable Overview

Figure 63 provides an overview for sharing variables with AP 124.

Figure 63. Shared Variable Overview for AP 124

SV Protocol

AP 124 Conventions

General

Two variables—control and data.

The control variable is used to pass operation codes and
some parameters to the AP, and to pass return codes back
from the AP.

The data variable is used to pass additional information
related to the operation codes. The type of the data and
whether it is passed to the AP or received from it depends
on the operation code.

Maximum Number of Shared 6 pairs

Variables

Names Must start with CTL and DAT or with ¢ and D. Suffixes
pair the variables. To avoid ambiguity, AP 124 does not
match offers of variables whose names begin with CAT or
DTL. Names cannot exceed 12 characters.

Initial Values No special handling. Initial values, if specified, are treated

like any other operation.

Subsequent Values

Control variable: required. Specify one AP 124 operation
as described below. Some operations require that informa-
tion be provided in the data variable first.

Data variable: may be required depending on the operation.
May return data depending on the operation.

Data Types Supported

Control variable: simple numeric scalar or vector. Data var-
iable: depends on the operation.

Access Control

Control variable: 1 01 0
Data variable: 000 0

Your APL application requests screen management services by assigning to the
control variable a numeric scalar or vector that specifies the requested action. In
response, the auxiliary processor issues a return code in the control variable indi-

© Copyright IBM Corp. 1984, 1994

207

AP 124

cating whether the requested action was successful. If data is to be sent to or from
the screen, it is transmitted in the data variable.

When a screen management service request is issued, the IBM 3270 enters full-
screen mode under control of AP 124. When this happens, your application is in
full control of the screen and can issue additional screen management requests.
When full-screen mode is interrupted, the IBM 3270 is returned either to host ter-
minal (CMS or TSO) line by line mode, or to session manager full-screen mode. In
this mode, the screen is under control of CMS or TSO or the session manager, and
the standard formatted screen is displayed.

Full-screen mode is interrupted if:

e An interrupt signal is issued (by pressing the PA1 key)
¢ A normal (nonscreen management) input/output request is issued
e An error message is issued

When the IBM 3270 leaves full-screen mode and returns to Host terminal mode,
the current screen image is saved. It is restored when the next screen manage-
ment service request is issued.

Since APL2 issues a normal input/output request when a defined function com-
pletes processing, the duration of the full-screen image can be extremely short.
Your application must provide an intervening delay (such as a screen management
read request) to extend the duration of the full-screen image.

Understanding Screen Management

To use AP 124, certain general information about the screen and its attributes is
required. This information is provided in the discussions below.

Logical Screens

AP 124 is capable of handling multiple logical screens, each of which is defined to
be exactly the size of the physical screen. Each logical screen is accessed through
a pair of shared variables. When you share a pair of variables, a logical screen is
created, and upon retraction of the variables, the logical screen is destroyed. Each
pair of variables is kept logically separate from the other variables, and the limit to
the number of logical screens that may be open at any time is mainly controlled by
the amount of free storage available to the auxiliary processor.

Screen Fields

AP 124 logically views the screen of an IBM 3270 display device in terms of rectan-
gular areas called screen fields. It is only in these areas that data can be entered
or displayed. Each screen field has a starting position, a width, and height the
application defines when it formats the screen. The starting position of each field is
the row and column address of the upper left-hand character in the field. (The
upper left-hand position of the screen is row 1 column 1.)

208 APL2 Programming: System Services Reference

AP 124

Field Attributes

Each screen field has associated with it certain field attributes that qualify its
content. For instance, a field attribute can indicate that a field is to contain alpha-
betic or numeric data or that its characters are to be displayed in a particular color.
In addition, input fields can have additional attributes that are not meaningful for
output-only fields. Your application can set the attributes for a field through various
screen management service requests. If attributes are not explicitly set, the auxil-
iary processor supplies default values.

The IBM 3270 display system notes the attributes of a screen field by preceding the
field with a column of attribute characters. These characters appear as blanks and
are not considered part of the field. If a screen field begins in column 1, its attri-
bute characters are wrapped around the screen; that is, the characters occupy
column 80 in the previous row. A screen field that begins in row 1, column 1, has
an attribute character in column 80 on the bottom row of the screen.

It is generally good practice to leave at least one column for attribute characters
between adjacent fields. Otherwise, the column of attribute characters preceding
the right-hand field obscures any data written to the last column of the left-hand
field.

Communications Procedure

The following discussions describe the operations that can be made through AP
124. The discussions frequently indicate various representative items as follows:

e cvar represents the name of the control variable.
e dvar represents the name of the data variable.

These items should be replaced with the appropriate names when you issue your
service requests.

Because multiple pairs of variables are allowed to be shared with AP 124, the
processor must have a way to associate the pairs of variables. This is accom-
plished by having a rigid naming convention for the variables:

e Control variables can begin with the letters CTL. If one does, AP 124 associ-
ates it with a data variable beginning with the letters DAT and having the same
letters following the first 3 (with the exceptions noted below.)

e Control variables can also begin with the letter C. If one does, AP 124 associ-
ates it with a data variable beginning with the letter D and having the same
letters following the first (with the exceptions noted below.)

» To avoid possible ambiguity between the first two rules, control variables
cannot begin with CAT, and data variables cannot begin with DTL.

e In any case, names cannot exceed 12 characters.

For instance, the following variables are paired together: CTLXYZ and DATXY Z;
CTL and DAT; and C124 and D124,

Before any useful operations can be issued with AP 124, both a control and data

variable must be shared. The discussions assume that sharing has been com-
pleted for the control and data variables.

Chapter 20. AP 124—Text Display Auxiliary Processor 209

AP 124

Screen Management Commands

Figure 64 summarizes the valid commands that can be specified to the control vari-
able to request service from AP 124. Figure 64 shows the values that should be
specified in both the control and data variables.

Figure 64. Screen Management Commands

cvar variable dv ar variable Description

OorO,n Delayed clear of screen

1 format Format the screen

1,fieldnum format Reformat selected fields
2,fieldnum data Immediate write to screen
3or 3,0 Read and wait

4, fieldnum data Buffered write to screen
5,fieldnum Get data

6,fieldnum type Change field type

7.fieldnum color Change field color or intensity
8,2 Get device information

8,n (Ignored for n omitted or not 2)
9 Read screen format

11 or 11,0 Sound alarm (delayed)

11,1 Sound alarm (immediate)
11,2 Cancel delayed alarm

12 position Set the cursor

16, fieldnum attribute Change input field attributes
20 Erase the screen

Delayed Clear of the Screen
A request for a delayed clearing of the screen is made through the following
assignment:

cvar <« 0
or

cvar <« 0 n

where n is an integer that is allowed for compatibility with other implementations of
AP 124 but that is ignored.

The screen is cleared on the next operation requiring a screen update. In CMS,
this operation eliminates the MORE. .. state before the full-screen appears.

210 APL2 Programming: System Services Reference

AP 124

Formatting the Screen
Format: This operation is used to describe the position and size of all screen
fields.

A request to format the display screen is made through the following assignments:

dvar <« format
cvar <« 1

where dv ar is assigned a four-, five-, or six-column numeric matrix with one row
for each field to be formatted. If only one field is to be formatted, it can be a
numeric vector, but is treated as a one row matrix. The first or only row of the
matrix defines the first field, the second row defines the second field, and so on.
The first screen field becomes field number 1 for subsequent screen management
operations. The second screen field becomes field number 2, and so on.

Each row of format consists of the following fields:

row col height width [type] [color]

where
row Indicates the display screen row (origin 1) at which the field begins.
col Indicates the display screen column (origin 1) at which the field begins.

height Indicates the height (number of rows) of the field.
width Indicates the width (number of columns) of the field.
type Indicates the type attribute of the field.
0 Character input/output allowed
1 Character output allowed, numeric and uppercase input allowed

On terminals with the numeric protection feature, this field accepts
only numeric and uppercase input. On terminals that do not have

the numeric protection feature, any characters can be entered, and
type 1 is thus equivalent to type O.

2 Character output only

3 Character output/light pen interruptible
4 Character output/light pen selectable
The default field type is 2—character output.

color Indicates the color or intensity of the field. Values from 0 through 255
are accepted.

0 Off or do not display
1 Normal intensity
2 Highlighted intensity

On terminals without color support, values larger than 2 but less than
256 are accepted and treated as either normal or intensified in groups of
8. If the quotient of the number divided by 8 is even, normal display is
used. For odd quotients, intensified display is used.

Most 3270 terminals with color support provide 7 character colors and
do not permit background control except in graphics mode. On this

Chapter 20. AP 124—Text Display Auxiliary Processor 211

AP 124

class of terminals the remainder of dividing the color number by 8 is
used to select a color as follows:

Device default color, either normal or intensified
Blue

Green

Turquoise

Red

Pink

Yellow

White

~NOo o F w NN e o

The quotient from the division by 8 produces normal display if even, or
reverse video display if odd (default intensified display if the quotient is
odd and the remainder is zero).

3270 architecture defines interfaces for up to 14 character colors as well
as the same number of background colors. On any devices or emula-
tors where this full capability is implemented, AP 124 provides a
mapping for values greater than 2 based on the quotient and remainder
when divided by 16. (But values of 0, 1, or 2 continue to be treated as
default intensities as described above.) The quotient specifies the back-
ground color, and the remainder specifies the character color. Both are
interpreted as follows:

Black

Dark Blue
Green
Turquoise
Red

Purple
Yellow
Grey

Grey

Blue

10 Light Green
11 Light Turquoise
12 Pink

13 Purple

14 Orange

15 White

30 0 F WwN - O

©

The default display attribute is 1—normal intensity.

The starting position (upper left-hand corner) of a field must be a valid screen posi-
tion. The enclosed area described by the starting position and field height and
width must not extend beyond the screen boundaries. Fields with height 1 can

wrap to succeeding rows.

A zero in any of the first 4 elements in any row effectively undefines a field. This
removes the field from the formatted screen area but does not change the field

numbers associated with the remaining fields.

When a display screen is formatted, the new screen format overlays the previous
screen format. The data in all fields are initialized to blanks. The new screen
format is transmitted to the display screen on the next operation requiring a screen

update.

212 APL2 Programming: System Services Reference

AP 124

After a pair of control and data variables are shared, but before a successful format
operation is made, a default format is used by the AP. This format has one field
that starts in screen position row 1 column 1, and has a height and width equal to
the physical screen dimensions.

The following example shows how to do simple formatting. Here, two screen fields
are defined. The first field is to begin at row 3 column 5; it is to have a height of 10
rows and a width of 15 columns. The second field begins at row 3 column 30; it is
to have a height of 12 rows and a width of 25 columns. Start by defining the
format matrix MATX:

MATX<2 4p3 5 10 15, 3 30 12 25

MATX
3 5 10 15
3 30 12 25

Now use MATX as an argument to a function FORMAT, in which the appropriate
formatting service requests are issued:

V FORMAT MAT;X;C
[1] n SHARE VARIABLES WITH AP 124 AND TEST
[21 X<124 OSVO © 'CTL' 'DAT'
[3] +(22X)/FAIL
[u] DAT<«MAT
[5] o ISSUE REQUEST AND TEST RETURN CODE
[6] CTL<«1
[7] +>(0=C<CTL)/0

[81] 'REQUEST NOT HONORED, CODE IS ',sC

[9] >0

[10] FAIL:'OFFER TO SHARE VARIABLFE NOT MATCHED'
[11] v

FORMAT MATX

Reformatting Selected Fields: This operation is used to redefine selected screen
fields. A request to format the display screen is made through the following assign-
ments:

dvar <« format
cvar <« 1, fieldnum

where format is a four-, five-, or six-column numeric matrix, each row of which
contains the field definition for the corresponding field number in £ ie Idnum.
fieldnumis a numeric vector of one or more field numbers. Each field number
represents a screen field to be reformatted.

The format of the format matrix is the same as in the Format operation described
above. When a display screen is reformatted, the new screen format definitions
are merged with the pre-existing format definitions. The new screen format is
transmitted to the display screen on the next operation requiring a screen update.

The reformat operation cannot be used to format additional field numbers beyond
the pre-existing format definition. For instance, if in the original format screen defi-
nition, 17 fields were defined, the reformat operation may not be used to reformat a
field number 18. If this effect is desired, then on the original format definition, the
format matrix should contain some additional undefined rows (that is, one or more
zero elements) at the end of the format matrix. The reformat operation can then
subsequently be used to reformat these undefined fields to valid field definitions.

Chapter 20. AP 124—Text Display Auxiliary Processor 213

AP 124

If a screen is formatted and then subsequently reformatted so that all fields are
undefined, the screen format reverts to the default format. The AP ensures that the
screen is never in a totally undefined state.

Immediate Write of Data to Screen
A request to write to the screen is made through the following assignments:

dvar < data
cvar <« 2, fieldnum

where dat a is a matrix of characters, each row of which contains the data for the
corresponding field number in f ieldnum. fieldnum is a numeric vector of
one or more field numbers. Each field number represents a screen field to be
written and corresponds to the respective row in the formatting operation matrix that
defined that field.

When a write operation is processed, the auxiliary processor maps the data in the
first row of dat a into the screen field represented by the first element of

f ieldnum, the second row of dat a into the screen field represented by the
second element in £ ieldnum, and so on. The auxiliary processor automatically
skips over any unformatted areas of the screen. If a field number in f ie Ildnum
is larger than the number of rows specified in the format operation matrix, or if the
field number does not currently apply to a defined field, that field number and the
corresponding row of data are ignored. Similarly, if dat a has more rows than field
numbers in £ ie ldnum, the extra rows are ignored. Finally, if more field numbers
are provided in £ ie l1dnum than there are rows in dat a, the extra fields are filled
with nulls or blanks.

Each line of a screen field is filled with data from left to right, starting at the begin-
ning of the field. Any trailing blanks padding out a field line are replaced with nulls
on the screen, subject to the setting of the field attributes by the field attribute oper-
ation. If too much or too little data is specified in a row of dat a, the data is
respectively truncated or extended with nulls or blanks to fit the full field area.

All non-3270 characters are displayed as double quotation marks (").

Erasing: The write request also doubles as an erase operation, where each
erased field is filled with null characters. If dat a is empty, all fields identified in
fieldnum are erased. If data contains fewer rows than fields in f ie Idnum,
the extra rows are erased. Fields not identified in £ 1e Idnum are not affected by
this operation.

Read and Wait

This step serves three purposes: first, it directs the auxiliary processor to wait for
the user to complete the current input operation; second, it directs the auxiliary
processor to return information about the current screen; third, based on how the
user completed input, it can direct the auxiliary processor to read all the defined
fields on the screen into an internal data area. Data is read only if the user com-
pleted the input operation using the ENTER key or a function key. (Note that modi-
fied data is not available with PA keys and the CLEAR key.)

214 APL2 Programming: System Services Reference

AP 124

An application requests this operation by specifying:
cvar <« 3

or
cvar « 3 0

The two forms are equivalent.

Check the return code in the control variable, then reference the data variable to
determine how the input was completed:

code <« cvar
data < dvar

In response, dat a contains a vector of one or more numbers that indicate:

* The type of action that completed the current input operation. This is returned
no matter how input was completed.

* A modifier for the type of action. This information is returned if the user com-
pleted the input operation using a PF or PA key or the ENTER key. For a PF
or PA key it is the number of the key used. For the ENTER key, 0 is always
returned.

e The current cursor position. This information is returned if the user completed
the input operation using the ENTER key or a function key.

e The field numbers of the modified fields. A field is modified when the user
enters data into it and stays modified until the application writes to the screen.
This information is returned if the user completed the input operation using the
ENTER key or a function key.

The possible values in this step are shown in Figure 65.

Chapter 20. AP 124—Text Display Auxiliary Processor 215

AP 124

Figure 65. Data Variable Returned by Read and Test Requests

Vector Elements
1 2 3 4 5 6...
Completion Cursor Cursor Cursor Modified
User Action Code Modifier Field1 Row2 Column2 Fields
Enter Key 0 0 fldnum row column fldnums 3
Function 1 1-24 fldnum row column fldnums 3
Keys
PA Keys 4 1-3 4 - - - -
Clear Key 55 - - - - -
No Input 6 - - - - -
Notes:

1.

Indicates the field number of the field containing the cursor when input was completed. If this element is 0,
the cursor was not found in a defined field. Elements 4 and 5 are then physical (relative to row 1, column 1)
position indicators.

. Indicates the position of the cursor when input was completed. The position is indicated by the row and

column relative to the first row and column position in the field.

. Indicates one field number for each field modified since the last preceding write operation. If no fields were

modified, this element is not returned.

. Pressing the PA1 key generates a weak interrupt signal. The function is suspended, and consequently the

screen is returned to Host Terminal Mode. For CMS: The auxiliary processor enters CP mode when the PA1
key is pressed. The CP command BEGIN can be used to resume full-screen mode without completing input.

. If the Clear key was used, the current screen format and field attributes are reestablished at the next read or

write operation. For TSO: Some OS terminal access methods may not pass back the Clear key attention
identifier to the APL2 full-screen manager. Consequently, PA2 forces a regeneration of the entire screen
image, independent of the APL application program.

Writing to the Screen

To avoid unnecessary flickering in an interactive application, the display is not
updated when this type of write request is issued. When requesting this type of
write request, the screen is updated when the auxiliary processor encounters the
next request to read and wait for input.

A request to make a delayed write to the screen is made through the following
assignments:

dvar < data
cvar < U4, fieldnum

where: data is a matrix of characters, each row of which contains the data for
the corresponding field number in fieldnum. fieldnum is a numeric
vector of one or more field numbers. Each field number represents a screen field
to be written and corresponds to the respective row in the formatting operation
matrix that defined that field, following the same rules as for an immediate write of
data to the screen.

216 APL2 Programming: System Services Reference

AP 124

Getting Data

This step completes the read operation. It obtains data from one or more screen
fields (usually the modified fields indicated in the read status vector) after a read
and wait has been performed.

To request this step the application specifies:

cvar < 5, fieldnum
code < cvar
data <« dvar

where £ ie ldnum is a numeric vector of one or more field numbers. Each field
number represents a screen field to be read and corresponds to the respective row
in the formatting operation matrix that defined that field.

When the operation is complete, dat a contains a matrix of characters, each row
of which is the data for the corresponding field in £ e Idnum. If an undefined
field number is specified in £ 1e Idnum, a row of blanks is returned. The matrix is
padded to the right with blanks so that the number of columns is equal to the length
of the longest field.

Note that the data returned in this step might be altered if the application issued
any intervening write or format requests.

Modifying Field Attributes
These operations are used to explicitly set the attributes of one or more screen
fields. Two kinds of attributes can be set:

e The type of data permitted in the field
e The color or display intensity of the field

These attributes are set as described below. In each of these descriptions the term
fieldnumis a numeric vector of one or more field numbers. Each field number
represents a screen field whose attributes are to be set and corresponds to the
respective row in the format operation matrix that defined that field.

Modifying Field Type: This operation is used to indicate what type of data is per-
mitted in a field. It takes effect at the next screen management read or write oper-
ation and applies until changed explicitly or until the screen is reformatted.
Your application can request this operation by specifying:

dvar <« type

cvar <« 6, fieldnum

where type is a numeric vector of field type indicators. Each value in type
indicates the data type for the corresponding field in f ieIdnum. If typeis a
single value, it is the field type indicator for all the fields specified in £ ie Idnum.
The field type indicators are:

0 Character input/output allowed

1 Character output allowed, numeric and uppercase input allowed

On terminals with the numeric protection feature this field accepts only numeric
and uppercase input. On terminals that do not have the numeric protection

Chapter 20. AP 124—Text Display Auxiliary Processor 217

AP 124

feature, any characters may be entered, and type 1 is thus equivalent to type
0.

2 Character output only
3 Character output/light pen interruptible

4 Character output/light pen selectable
The default field type indicator is 2—character output.

Modifying Display Attribute: This operation sets the color or intensity of one or
more fields. It takes effect at the next screen management read or write operation
and applies until changed explicitly or until the screen is reformatted.

Your application can request this operation by specifying:

dvar < color
cvar <« 7, fieldnum

where color is a numeric vector of values between 0 and 255. Each item in
color indicates the color or intensity of the corresponding field in £ ieldnum.

If color is a single item, it is the color or intensity attribute for all the fields speci-
fied in fieldnum.

The color or intensity attribute values are as defined for the format request.

Returning Screen Information
AP 124 provides an easy way of determining certain information about the screen:

cvar <« 8 2
code <« cvar
data < dvar

When the operation is complete, dat a contains the following information:

datal1] - 1 if the display supports APL, else O
datal2] - 0

datal3] - 1 if the display supports color, else O
datalu4] - 1 if an alarm request is pending, else O
datalb5] - 0

datal6] - 0

For compatibility with other implementations of AP 124, you can also issue the
operation:

cvar <« 8 n

where n is omitted or not 2. The only effect is that 0 is returned in the cvar.

Reading the Screen Format

AP 124 provides an easy way of determining what format matrix it is currently
using. A request to display the current format matrix is made by the following
assignment:

cvar <« 9
code <« cvar
format < dvar

218 APL2 Programming: System Services Reference

AP 124

When the operation is complete, format contains the current format matrix. This
matrix contains 1 row for each field up to the highest valid field defined and is 6
columns wide. If a new format matrix is pending, the new format matrix is returned.

After a pair of control and data variables have been shared, but before a successful
format request has been made, a default format is used by the AP. This format
has one field that starts in screen position row 1 column 1, and has a height and
width equal to the physical screen dimensions. Reading the default format before
formatting the screen allows you to tailor your application to the actual screen size
available.

If a screen is formatted and then subsequently reformatted so that all fields are
undefined, the screen format reverts to the default format. The AP ensures that the
screen is never in a totally undefined state.

Sounding the Alarm

In your screen operations, you may find it useful at times to sound an audible
alarm. For instance, you might want an alarm sounded when a field of particular
importance is filled or to generate a warning to the user of an application. Several
operations are available to control the sounding of the alarm.

To request that the alarm be sounded the next time the screen is updated, specify:
cvar <« 11
or

cvar <« 11 0

These are requests for a delayed alarm, which takes effect at the next screen man-
agement read or write request. The two forms are equivalent. To find out whether
an alarm is pending, specify cvar <« 8 2 and examine the fourth element
returned in dvar.

To request that the alarm be sounded immediately, specify:

cvar <« 11 1

To cancel a request for a delayed alarm, specify:

cvar <« 11 2

Setting the Cursor
This operation positions the cursor during the next screen update operation. Your
application can request this operation by specifying:

dvar <« position

cvar <« 12

where posit ion is a three-element vector whose first element indicates the
number of the screen field in which the cursor is to be positioned. The second and
third elements contain respectively the relative row and column position of the
cursor in the field. If the first element is zero, the second and third elements are
interpreted as the row and column position of the cursor from the upper left-hand
position on the screen.

Chapter 20. AP 124—Text Display Auxiliary Processor 219

AP 124

If either of the last two elements of pos it ion is zero or negative, the position of
the cursor is not changed in the next read, write, or erase operation. (This too, is
the default condition until you issue this service request.)

When the auxiliary processor is first invoked, the cursor appears on the screen in
position row 1 column 1. The cursor defaults to this position after any new screen
format takes effect.

Modifying Input Field Attributes

This operation is used to modify additional attributes for one or more fields. It takes
effect at the next screen management read or write operation and applies until
changed explicitly or until the screen is reformatted. The additional attributes
control the handling of (1) trailing nulls, and (2) the auto-skip feature. These attri-
butes are only useful for input fields, but can be specified for any field.

Your application can request this operation by specifying:

dvar <« attribute
cvar <« 16, fieldnum

where attribute is a numeric vector of attribute indicators. Each value in
attribute indicates the attribute of the corresponding field in £ ie ldnum. If
attribute is a single value, it is the attribute indicator for all the fields specified
in f ieldnum.

The attribute indicators are:

0 No autoskip or trailing blank processing
1 Autoskip, but no trailing blank processing
2 No autoskip, but trailing blank processing
3 Autoskip and trailing blank processing

The default input field attribute is 3—autoskip and trailing blank processing.

If autoskip is in effect, the cursor automatically jumps to the beginning of the next
input field when the user types a character in the last position of the current field.

If trailing blank processing is specified, then all trailing blanks in data written to the
field are converted to nulls upon presentation to the physical screen. This allows
the terminal user to use the INSERT MODE key on the 3270 to insert data into the
field. If this option is turned off, the user's data is not modified upon presentation to
the 3270 (that is, trailing blanks remain true blanks on the screen).

Erasing the Screen
A request to erase the screen immediately is made by the following assignment:

cvar <« 20

The screen is erased as soon as the request is processed. Note that the delayed
clear (operation 0) and erase screen operations apply only to the physical screen.
They do not change the contents of any logical fields. This is in contrast to the
write and immediate write operations that erase the screen by erasing the data that
is in the logical fields.

220 APL2 Programming: System Services Reference

AP 124

Return Codes

Figure 66 lists and describes the codes returned in the control variable in response
to a screen management service request. The codes are scalar integers. The
auxiliary processor returns a code each time a value is specified for the control
variable.

Figure 66. Return Codes from AP 124

Code Description
0 Normal return—request is successful.
11 Control variable rank error.
12 Control variable length error.
13 Control variable domain error.
14 Invalid operation.
15 Request to position cursor in an undefined field.
21 Data variable rank error.
22 Data variable length error.
23 Data variable domain error.
24 Data variable not shared.
30 Invalid field number.
32 Defined field extends beyond the screen.
33 Reference outside field definition.
35 Light pen field starts in column 1.
36 Light pen field not contained in one physical screen line.
37 Invalid field type.
38 Invalid field color or intensity.
41 Data variable was not specified in the correct sequence.
42 Data variable was not referenced in the correct sequence.
52 Device is not a 3270.
53 Required storage unavailable -- increase the SHRSIZE parameter or decrease the WSSIZE
parameter when invoking APL2.
89 Unknown shared variable return code.
91 Physical field table overflow.
92 Physical field table error; interrupt field not found.
94 Device not available.
95 Unexpected I/O error.
96 Chained CCW string not complete.
97 Bad 3270 orders in output data.
98 Full-screen support not available.
99 Unknown 3270 device error.

Chapter 20. AP 124—Text Display Auxiliary Processor 221

AP 126

Chapter 21. AP 126—GDDM Processor

Use the GDDM processor, AP 126, to pass requests to the Graphical Data Display
Manager (GDDM) Licensed Program. GDDM enables you to develop interactive
APL2 applications that accept input and display output on full-screen panels. It
also provides the means to create pictures and other graphics or to print informa-
tion on many of IBM's display terminals and printers. Graphical Data Display
Manager General Information gives examples of pictures and alphanumeric applica-
tions you can create with GDDM and contains a list of the terminals and printers
supported by GDDM.

The GDDM auxiliary processor handles two types of requests:

* GDDM call requests, which direct GDDM to process one of the calls available
through GDDM's application programmer interfaces (APls). Each GDDM call
has a corresponding numeric AP 126 code that must be used when you issue
the GDDM call request.

e AP 126 commands, which change certain AP 126 options or issue queries
about the processing.

[FAP 126 Commands” on page 228| describes these commands and their codes.

Associated Workspaces
The following APL2-supplied workspaces are associated with AP 126:

GRAPHPAK
FSM
FSC126
GDMX
CHARTX

The GRAPHPAK workspace contains functions that create standard graphics, such
as pie charts, the APL apple, and bar graphs. In addition, functions are available
that aid you in defining your own graphic displays.

The use of the GRAPHPAK workspace functions is described in APL2
GRAPHPAK: User's Guide and Reference.

The F'SM workspace contains functions that facilitate use of GDDM, including its
presentation graphics feature (PGF). FSM contains a defined function corre-
sponding to each of the GDDM subroutines for full-screen management of graphics
input and output.

For more information, type DESCRIBE, HOW,or ABSTRACT after loading the
FSM workspace.

The F'SC126 workspace contains functions to aid in the design of full-screen
panels and in the definition of functions that present the panels to the user and
retrieve the user's responses.

For more information, type DESCRIBE, HOW, or ABSTRACT, and process the
HOWSD and PRINTHOWSD functions in the F.SC126 workspace. For further
information, see APL2/370 Programming: Using the Supplied Routines.

222 © Copyright IBM Corp. 1984, 1994

AP 126

Licensed Program Requirements
Use of AP 126, the GDDM processor, requires:

e GDDM, Version 2 Release 3, or later. Base GDDM provides a low-level inter-
face for alphanumerics and graphics.

For a detailed description of GDDM, see Graphical Data Display Manager Base
Application Programming Reference.

e Presentation Graphics Feature (PGF) of the GDDM Program Product, if you
want to use the higher-level GDDM calls available with this feature.

For a detailed description of the PGF Program Product, see GDDM-PGF Pro-
gramming Reference.

Shared Variable Overview

Figure 67 provides an overview for sharing variables with AP 126.

Figure 67. Shared Variable Overview for AP 126

SV Protocol AP Conventions

General Two variables—control and data.

The control variable is used to pass requests and numeric parame-
ters to AP 126 and to pass return codes and numeric parameters
from resulting AP 126 and GDDM operations. The control variable
must be a simple numeric scalar or vector.

The data variable is used to pass character parameters from the
workspace to GDDM and data from GDDM to the workspace. The
data variable must be a simple character scalar or vector.

Maximum Number of Shared 7 pairs
Variables
Names Must start with CTL and DAT. Suffixes pair the variables. Names

cannot exceed 11 characters.

Initial Values No special handling. Initial values, if specified, are treated like any
other request.

Subsequent Values CTL: Required. Simple numeric vector. Specify one or more AP
126 commands or GDDM calls and associated numeric parameters.

Reference a return code and numeric parameters returned by the
request (a simple vector of at least five items).

DAT: Specify a simple character vector as required by the GDDM
call(s). Size of the character vector is not limited except as noted
below.

Reference character data returned as a result of the GDDM call(s) or
AP 126 command(s).

Note: The SHRSIZE invocation option or installation default and the
amount of free space for AP 126 buffers may limit the size of a
shared variable.

Data Types Supported Simple numeric vector (CTL only). Simple character vector (DAT
only).

Access Control CTL: 1111
DAT: 0000

Chapter 21. AP 126—GDDM Processor 223

AP 126

Data Formats
Each AP 126 request consists of:

e A required control variable (simple numeric scalar or vector). The first item is
the request code; subsequent items are numeric input parameters for the
request, concatenated to the request code. Whether numeric input parameters
are required depends on the individual request.

All codes for AP 126 commands are less than 0. All codes for GDDM calls are
greater than 0. A request code of 0 causes no call to GDDM and no action by
AP 126 (a no-op).

e Data variable (simple character scalar or vector) contains character input, if
any, required by the request. Some requests do not require character data
passed by the data variable. When the data variable is required, it must be
specified before the control variable is specified.

Multiple requests can be made at one time by first catenating the character items (if
any), assigning them to the data variable, then catenating the numeric items, and
assigning them to the control variable.

Parameters for GDDM calls must be in the order required by GDDM. Any parame-
ters in matrix form (for example, a table that defines screen fields) must be ravelled
before they are passed to GDDM. Ravelling allows data for multiple parameters to
be combined in a way that is easy for AP 126 to process.

GDDM requires a length parameter for all string and array data of variable length.
AP 126 uses the length data to determine the parameters in the control and data
variables.

Returned Values
When a single request is made, the value returned in the control variable is a return
code vector (re-vector) in the following form:

hre re rs nnp led np

hrc Highest return code from GDDM, or 20 if AP 126 found an error and did
not pass the request to GDDM.

If a single request was made, this item is usually the same as the return
code (rc) for the request.

rc Return code for the request. It indicates:
0 Request successfully processed.
1 AP 126 detected an error associated with the request.

These return codes and their associated reason codes are
described in [Figure 76 on page 242|

2 Abend in APL2 outside of AP 126, but not in GDDM. rsis
the reason code.

224 APL2 Programming: System Services Reference

AP 126

4,8,12, 16 Severity code for an error detected by GDDM.

For 4, 8, or 12, rs contains the GDDM return code corre-
sponding to the GDDM message number.

For 16, GDDM abnormally terminated and rs indicates the
abnormal termination (ABEND) code.

rs Reason code associated with the return code (rc) for the request. For
the meanings of the return and reason codes, see

nnp Number of numeric parameters. These parameters are returned as the
last items of the vector, as indicated by np.

led Length of character data returned in the data variable for the request.

np Numeric parameters. There may be none. nnp is a count of their
number.

For example, Figure 68 shows the return code vector from the GDDM call
ASREAD (request code 101).

a ISSUE AN ASREAD CALL (REQUEST CODE 101)
126 0SVO0 © 'CTL126' 'DAT126'

CTL126<101
CTL126

00030000
OSVR™'CTL126' 'DAT126"

@ RETURN CODES HRC, RC, AND RS ARE 0
a 3 ITEMS OF NUMERIC PARAMETERS, NO CHARACTER DATA

o ASREAD ISSUED FROM WITHIN THE SESSION MANAGER

A CAUSES A BLANK SCREEN TO REPLACE THE

A SESSION MANAGER SCREEN

@ THE THREE NUMERIC PARAMETERS RETURNED ARE ALL ZERO
A ALSO SEE [Handling Attentions” on page 239

Figure 68. Return Code Vector from a Single AP 126 Request
When more than one request was made with a single specification of the control
variable, a reference of it yields:
e hrc as the first item.
e rc,rs,nnp,lcd,,np (if any) for each request in the order the requests were speci-
fied.

Character data, if any, is concatenated in the data variable.

For example, Figure 69 shows the return code vector from a query of the AP 126
options and the hard-copy destination] “Query AP 126 Options” on page 23
describes AP 126 command ~ 7, and FQuery Current Hard-Copy Destination” on|
describes the request associated with ~ 9.

Chapter 21. AP 126—GDDM Processor 225

AP 126

A QUERY AP 126 OPTIONS (~7,4)
@ AND QUERY HARDCOPY DESTINATION (~9)

CTL126< 7,4, 9
CTL126

20 0 0 4 0 80 1 512 1 66 0O
DAT126

a HRC = 20
A QUERY AP 126 OPTIONS REQUEST (~7,4)
A RC,RS 00
NNP 4 (4 NUMERIC PARAMETERS RETURNED)
LCD 0 (LENGTH 0 CHARACTER DATA)
NP NEXT 4 ITEMS (8 0 1 512)
QUERY HARDCOPY DESTINATION REQUEST (~9)
RC, RS 1 66 NO HARDCOPY DESTINATION DEFINED
NNP 0
LCD 0
NP NONE

®» ®» ® ® ® ® ® D
o n n

Figure 69. Return Code Vector from Multiple AP 126 Requests

Communication Procedure

In general, when you use the GDDM processor, you follow the steps summarized
below:

1. Share a control and a data variable with AP 126.
2. Assign character data for the next request, if any, to the data variable.

3. Assign the request code and associated numeric parameters, if any, to the
control variable.

. Retrieve the return code and numeric data, if any, from the control variable.
. Retrieve character data, if any, from the data variable.

. Repeat steps 2 through 5, as necessary, for additional requests.

N OO O B~

. When finished with AP 126, retract the control and data variables.

If not already started for the session manager, GDDM initializes when you make
the first AP 126 request. If the APL2 session manager is not active, GDDM termi-
nates when the last control variable is retracted.

Before issuing a GDDM call through AP 126, you must be familiar with the parame-
ters required by the GDDM request and the format required by AP 126. For the
detailed information about the GDDM requests, see Graphical Data Display
Manager User's Guide and Presentation Graphic Feature User's Guide.

Although AP 126 is usually used in a series of defined functions that make up an
application, [Figure 70 on page 227| shows a sample APL2 session that illustrates
the communication procedure. The sample session shows the formatting of a
screen and the retrieval of data from that screen. Similar coding can be used
within a defined function.

226 APL2 Programming: System Services Reference

AP 126

N

0

n
7
7

0

n SHARE WITH AP 126. CONFIRM COUPLING OF 2.
126 0SVO ™ 'CTL126' 'DAT126"'

A DEFINE A FORMAT MATRIX FOR TWO ALPHANUMERIC FIELDS.
FORMAT<«3 6 p 1 4 11 1 383 2 2 7 11 1 6 2 3 7 18 1 33 0
FORMAT

11 1 383 2
1171 6 2
18 1 33 0

0

a THE MEANING OF THE MATRIX IS DEFINED IN GDDM BASE APPLICATION
A PROGRAMMING REFERENCE DESCRIPTION OF THE CALL ASDFMT.
] FOR EXAMPLE, ROW 1 DEFINES FIELD NUMBER 1 AS

A STARTING IN ROW 4 COLUMN 11, 1 ROW DEEP,

(] 33 COLUMNS WIDE, PROTECTED ALPHANUMERIC (INPUT

A FROM TERMINAL NOT ALLOWED WHEN GDDM DISPLAYS SCREEN).
A ROW 2 DEFINES A SIMILAR, BUT SHORTER FIELD ON ROW 7

A OF 6 COLUMNS.

A ROW 3 DEFINES A THIRD FIELD ON ROW 7 BEGINNING

(] IN COLUMN 18, 33 COLUMNS WIDE, BUT UNPROTECTED (INPUT
A ALLOWED FROM THE TERMINAL).

a ISSUE GDDM CALL ASDFMT USING THE MATRIX.

A ASDFMT DEFINES THE THREE FIELDS AND

A SUPPLIES SIX ATTRIBUTES PER FIELD.

CTL126+«402 3 6 ,,FORMAT

CTL126

00

A PREPARE LITERALS FOR WRITING TO THE SCREEN.
MESSAGE<'ENTER YOUR NAME(1ST MID LAST)'
FLDNAME<'NAME: "'

a ASSIGN MESSAGE TO DATA VARIABLE.

A ISSUE ASCPUT TO WRITE MESSAGE TO THE SCREEN
DAT126<«MESSAGE

CTL126<«424 1,pMESSAGE

CTL126

0 0

a ASSIGN FLDNAME TO DATA VARIABLE.

A ISSUE ASCPUT TO WRITE FLDNAME TO THE SCREEN
DAT126<«FLDNAME

CTL126<«424 2,0FLDNAME

CTL126

0 0

a ISSUE ASFCUR TO POSITION THE CURSOR TO FIELD 3.
CTL126<«430 3 1 1

CTL126

00

a ISSUE ASREAD TO TRANSMIT THE SCREEN TO THE TERMINAL

A AND WAIT FOR A RESPONSE. (NOTE: YOUR SCREEN WILL
A GO BLANK MOMENTARILY AND THEN YOU WILL SEE THE

A MESSAGE 'ENTER YOUR NAME'.)

CTL126+«101

CTL126

3 0001

A ISSUE ASCGET TO RETRIEVE THE CONTENTS OF FIELD 3.
CTL126+«422 3 33

CTL126

0 33

DAT126

HERBERT R. POCKET

n RETRACT THE SHARED VARIABLES
OSVR™'CTL126' 'DAT126"

Figure 70. Sample Communication Procedure for AP 126

Chapter 21. AP 126—GDDM Processor

227

AP 126

GDDM Calls
Most GDDM calls can be issued through AP 126. Those that cannot are listed in

For detailed information about the GDDM calls, their APL2 equivalent codes, and
the format of the input and output, see GDDM Base Application Programming Ref-
erence and GDDM-PGF Programming Reference.

Restrictions
The GDDM call CHART can be issued only indirectly through the AP 126 command
~10. You cannot issue the following calls:

ESPCB
FSEXIT
FSINIT
FSRNIT
FSTERM
SPINIT

The last two calls, FSTERM and SPINIT, are automatically issued by AP 126, as
necessary. The GDDM call FSQERR can be used to accomplish the operation
provided by FSEXIT (see [‘'GDDM Error Diagnosis” on page 241). ESPCB is not
supported because it is only meaningful under the IBM Information Management
System/Virtual Storage (IMS/VS). It has no meaning under CMS or TSO.

The PGF calls can be used only if the presentation graphics feature (PGF) of
GDDM is installed.

Some PGF calls allow parameters with a maximum length of eight characters, a
minimum abbreviated length of four characters, and no length parameters. AP 126,
however, requires that these parameters have four characters.

| AP 126 Commands
AP 126 provides 10 services that allow you to query and set certain AP 126 options
and to issue the GDDM call CHART. All AP 126 command codes are negative
integers. Return and reason codes for the options are described in

Figure 71 summarizes the codes corresponding with the AP 126 commands. Each
of the commands is then described in detail.

Figure 71 (Page 1 of 2). AP 126 Commands
Code AP 126 Command
"1 Query GDDM calls

Set error threshold

2

3 Set protection key

4 Set EBCDIC translation
5

6

7

Set default buffer size

Set AP 126 options

Query AP 126 options

228 APL2 Programming: System Services Reference

AP 126

Figure 71 (Page 2 of 2). AP 126 Commands

Code AP 126 Command

~8 Query subset of fields for modifications
9 Query current hard-copy destination
10 Issue GDDM CHART call

Query GDDM Calls

CTL<+ 1
CTL
re-vector,request-codes
DAT
list of mnemonic GDDM call names

This request (~ 1) returns a list of the available GDDM calls and the corresponding
AP 126 request codes. You can use this request to determine whether the presen-
tation graphics feature (PGF) is installed, because the codes returned are those
actually available. (Calls with AP 126 request codes in the 700s are examples of
PGF calls.)

The request codes are concatenated to the return code vector in the control vari-
able.

GDDM call names are returned in the DAT variable as a simple character vector.
GDDM call mnemonics are extended with blanks to eight characters. This exten-
sion makes it possible to define a pair of functions that allow you to retrieve the
corresponding request code for a GDDM mnemonic.

[Figure 72 on page 230|illustrates two functions: The first (I NI TGDDM) makes
the connection with GDDM through AP 126, issues AP 126 request code ~ 1, and
assigns the results to two variables—NAME S and CALLS. The second
(GDDMNUM) assumes that the first has been processed and returns the AP 126
request code for the GDDM mnemonic presented as an argument.

Chapter 21. AP 126—GDDM Processor 229

AP 126

(o]
(11
[2]
(3]
Cu]
[5]
[6]
(71
[8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]

(0]
(11
[2]
[31]
[u1]
[5]

111

v
INITGDDM;RC;CTL1263;DAT126
A FUNCTION: SHARE CTL126 AND DAT126 WITH AP 126

A ASSIGN NAMES AND CALLS

A

RC<126 OSVO"'CTL126' 'DAT126" a SHARE WITH AP 126
+~(2eRC)/SHAREOK A BRANCH IF COUPLED
"SHARED VARIABLE OFFER NOT ACCEPTED BY AP 126'
RC<OSVR"'CTL126' 'DAT126" A RETRACT OFFER

>0

SHAREOK:CTL126<«" 1 A QUERY GDDM CALLS
+>(0=14RC<CTL126)/QUERYOK A BRANCH IF QUERY OK
"NON-ZERO RC FROM AP 126, CALL WAS ~1, RC WAS ',sRC
RC<0OSVR"'CTL126"' 'DAT126" A RETRACT OFFER

>0

QUERYOK :CALLS<5+RC a ASSIGN CALL NUMBERS
NAMES<((143+RC),8)pDAT126 a ASSIGN CALL NAMES
v

v

N<GDDMNUM NAME ;I
a FUNCTION: RETURN AP 126 CALL CODE FOR GDDM CALL 'NAME'.
a (THIS FUNCTION ASSUMES EXECUTION OF 'INITGDDM'.)
a RETURNS 0 IF NAME IS NOT A VALID, SUPPORTED CALL
I<«(NAMESA .=84NAME)11

N<(CALLS,0)[I]

V 13.45.46 7/15/83 (GMT-U4)

INITGDDM

GDDMNUM 'ASTYPE'

GDDMNUM ~ ‘'ASTYPE' 'ASREAD' 'CHFINE'

111 101 799

Figure 72. Retrieving Request Codes for GDDM Calls

Set Error Threshold

CTL<«" 2,threshold
CTL
re-vector

This request (™ 2) allows you to establish a threshold for GDDM error severities—4

812 16.

When a GDDM error is encountered that has a severity greater than or equal to the
threshold value, AP 126 terminates processing of the current string of requests.

This threshold applies only to GDDM requests. An error from AP 126 (rc=1) auto-

matically terminates processing of the current string of requests.

threshold is any nonnegative integer. The default threshold value is 8, which allows

processing to continue when a warning is encountered.

230 APL2 Programming: System Services Reference

AP 126

Set Protection Key

CTL<" 3,key
CTL
re-vector

The ~ 3 service request has no effect in APL2. It is maintained for compatibility
with previous versions of APL. This request allowed you to use pages normally
reserved for the APL2 session manager. With APL2, you no longer need to issue
this call to gain access to those pages.

key values for this request are:

0 = Default, no access to reserved pages.

1 = Access to reserved pages permitted.

Set EBCDIC Translation

CTL~<" U4,translation-value
CTL
re-vector

Under most conditions, AP 126 need not translate character data in a request
before passing it to GDDM, because APL2/370 and GDDM use very similar

EBCDIC code pages for character data. See FAPL2/370 and GDDM EBCDIC Code]

|Page Differences” on page 240

However, when migrating character data from VS APL, the)MCOPY system
command translates all character data from VS APL character codes to EBCDIC.
This translation is appropriate for all character data passed to AP 126, with the
following exceptions:

e Symbol set values—the data parameter in SSREAD, SSWRT, PSDSS, and
GSDSS.

e Translate table values—input and output table value parameters in ASDTRN.
¢ Graphics Data File (GDF) data processed by GSGET and GSPUT.
¢ Image data processed by GSIMG and GSIMGS.

These values are scrambled by the translation.

There are two ways to resolve this problem: use the EBCDIC translation option or
bypass the translation option by migrating the A V indexes of the characters in the
symbol sets, translation tables, GDF, and image data.

Using the Translation Option: To unscramble the symbol set and other data
values, this request (" 4) provides an option to make your VS APL workspaces
containing symbol sets and translation tables compatible with AP 126 under APL2.
translation-value can be either:

0 = special EBCDIC translation off (default)

1 = special EBCDIC translation on

Chapter 21. AP 126—GDDM Processor 231

AP 126

By inserting the AP 126 request ~ 4 in the appropriate functions, you can ensure
that the necessary translation takes place.

Circumventing the EBCDIC Translation Option: You can perform the translation of
VS APL symbol sets, translation tables, and GDF and image data only once.
Follow the steps outlined below.

1. In VS APL, retrieve the OAV indexes of the characters in the symbol set, trans-
lation table, or GDF AV, assigning the indexes to a temporary variable. For
example:

TEMPVAR < [0AV 1 SYMSET

2. Use the)MCOPY command to migrate the temporary variable to an APL2
workspace. For example:

JMCOPY 1001 VSAPLWS TEMPVAR

3. Use bracket indexing of AV to re-create the original variable in APL2. For
example:

SYMSET <« UOAVLTEMPVAR]

When completed successfully, this procedure eliminates the need for the use of the
EBCDIC translation option (code ~ 4) for symbol sets, translation tables, and GDF.

Set Default Buffer Size

CTL~<" 5,buffer-size
CTL
re-vector

The size of the AP 126 buffer is normally determined by the auxiliary processor
itself, but this request (~ 5) enables you to specify the default buffer size for the
data path associated with a shared variable pair.

Regardless of how the buffer size is determined, if a request requires a larger
buffer than is currently available, AP 126 dynamically obtains the necessary buffer
space for the request and frees it after the request has completed. The buffer size
is then reestablished to its default size.

buffer-size is specified in number of bytes and is rounded up to the next 8-byte
multiple.

Set AP 126 Options

CTL<" 6,count,options-vector
CTL
re-vector

This request (~ 6) allows you to set, in one request, the AP 126 options described
above and controlled by individual request codes ~ 2 through ~ 5.

232 APL2 Programming: System Services Reference

AP 126

You must specify a one- to four-item vector of options. Each item in the vector
corresponds to one of the four options requests in the following order:

1. Error threshold
2. Protection key
3. EBCDIC translation
4, Default buffer size

A one-item vector specifies only the error threshold; a two-item vector specifies
error threshold and protection key; and so forth.

You retain the current value of the option by entering ~ 1 in the corresponding posi-
tion of the options vector. Other values are the same as for the individual options.

count is the length of the options vector being passed.

Query AP 126 Options

CTL<"7,count
CTL
re-vector,options-vector

This request (~ 7) allows you to query the AP 126 options described above.

The result of the request is a numeric vector that contains items corresponding to
the options in the following order:

1. Error threshold
2. Protection key
3. EBCDIC translation
4. Default buffer size

count is the number of options to be queried. 1 for count returns the setting of the
error threshold; 2 returns the settings of the error threshold and protection key, and
so forth.

Query Subset of Fields for Modifications

CTL<" 8,countfield-id-vector
CTL
re-vector,modf-vector, tlength vector, ilength vector

This request (~ 8) allows you to query a specified subset of fields to determine
which members of that subset were modified.

It is recommended that you use this request when sharing the page of the session
manager.

count is the number of field identifiers in the subset of fields.

field-id-vector is a vector of the field identifiers that are to be queried. This vector is
assumed to be a subset of fields.

Chapter 21. AP 126—GDDM Processor 233

AP 126

modf-vector is a list of any fields from the field-id-vector that were actually modified.
These fields are returned in the same order as modified fields are returned by the
GDDM request ASQMOD, not necessarily in the order specified by the field-id-
vector. The vector is of length count with trailing, unused entries in the vector set
to 0.

tlength-vector is a list of total lengths, in the corresponding order and padded with
0s, for each member of modf-vector.

ilength-vector is a list of input lengths, in the corresponding order and padded with
0s, for each member of modf-vector.

As the subset of modified fields is returned, the fields become no longer modified,
just as with ASQMOD.

Query Current Hard-Copy Destination

CTL<" 9
CTL
rc-vector,open-options-vector
DAT
destination-name

This request (~ 9) allows you to query the current hard-copy destination.

open options vector contains the options specified on the FSOPEN call for the des-
tination.

destination name, returned in the data variable, identifies the current hard-copy
destination name, padded with blanks to a length of eight characters, if necessary.

If destination name is all blanks, the destination was selected through the DSOPEN
and DSUSE calls and not through FSOPEN. Issue DSQUSE, DSDROP, and
DSUSE to retrieve the destination name.

Using this service request, an application can save the vector of FSOPEN options
before changing the destination and restore them at a later time.

Issue CHART Call

DA T« chart-control,keys,labels,heading
CTL<"10,len-chart-control,
len-data-control,data-control,
len-x,x,len-y,y,
len-keys,len-labels,len-heading
CTL
rc-vector

Because AP 126 is unable to determine the lengths of the parameters to the
GDDM call CHART from the call descriptor tables provided by GDDM, a special AP
126 service request is required to allow you to issue the CHART request.

234 APL2 Programming: System Services Reference

AP 126

The GDDM CHART call has seven parameters:

chart-control (character input)
data-control (numeric input)
X (numeric input)

y (numeric input)

keys (character input)

labels (character input)
heading (character input)

This service request (~ 1 0) requires you to provide a length with each CHART
parameter, yielding the following 14 parameters:

len-chart-control (numeric input)
chart-control (character input)

len-data-control (numeric input)
data-control (numeric input)

len-x (numeric input)
X (numeric input)

len-y (numeric input)
y (numeric input)

len-keys (numeric input)
keys (character input)

len-labels (numeric input)
labels (character input)

len-heading (numeric input)
heading (character input)

Applying the standard AP 126 rules for passing character and numeric data yields
the vectors for the data variable and the control variable, as specified in the list
above] Figure 73 on page 236|shows a defined function that issues this service
request.

You process this function by entering the name CHART. The CHART function
invokes the interactive chart utility of PGF.

The I0 function is contained inthe UTILITY workspace, which is provided with
APL2.

Chapter 21. AP 126—GDDM Processor 235

AP 126

VCHARTLO1V
[0] RC<CHART ;CHRTCTL ;CTL ;DAT ; DATACTL ;HEADING ; KEYS ; LABELS ;XY ;0010
(1] O01o0<«1
[2] >(2A.=RC<«126 0OSVO 2 3p'CTLDAT')/SHAREOK
[3] AP 126 NOT SHARING'
Cu] +0
[51] SHAREOK:a INIT CHART-CTL TO BLANKS
[6] CHRTCTL<76p" "
[71] an LEVEL O
[8] CHRTCTL[14]1<4 IO O
[9] an DISPLAY 2
[10] CHRTCTLL4+14]<«4 IO 2
[117] A HELP O
[12] CHRTCTLL8+14]1«4 I0 O
[13] n ISOLATE O
[14] CHRTCTL[12+14]<«4 I0 O
[15] A FORMNAME '=*'
[16] CHRTCTL[17]<«"*"
[17] a DATANAME '=*!
[18] CHRTCTL[25]«"*"
[19] A PAIRING O
[20] CHRTCTL[32+14]<«4 IO O
[21] =a NG 2
[22] CHRTCTL[36+14]<«4 TO 2
[23] n NE 3
[24] CHRTCTLLu4O0+14]<«4 TO 3
[25] A KEYL 4
[26] CHRTCTL[4u+14]<«l4 TO 4
[27] n LABELL 6
[28] CHRTCTL[u48+14]<«4 IO 6
[29] n HEADINGL 7
[30] CHRTCTL[52+14]<«4 10 7
[31] A PRTNAME '
[32] CHRTCTL[57]«"*"
[33] n PRTDEP 0 PRTWID 80 PRTCOPY 2
[3u4] CHRTCTLL64+112]<«,4 I0 0 80 2
[35] a NO DATACTL DATA
[36] DATACTL<0p0
[37] a X 1 2 3
[38] X<«1 2 3
[39] pAY 21 2.5 3 21
[40] Y<«2 1 2.5 3 2 1
[u41] an KEYS '"KEY1KEY2'
[42] KEYS<'KEY1KEY?2'
[43] n LABELS 'LABEL1LABEL2LABEL3'
Cuy] LABELS<«'LABEL1LABEL2LABEL3"
[u45] n HEADING 'HEADING'
[46] HEADING<'HEADING'
[u71] DAT<«CHRTCTL ,KEYS ,LABFELS ,HEADING
[48] CTL< 10,(pCHRTCTL),(pDATACTL),DATACTL ,(pX),X,(pY),Y,(pKEYS),
(pLABELS) ,pHEADING
[49] RC<CTL
V 1983-07-09 9.23.40 (GMT-8)

Figure 73. Sample Function that Issues the CHART Service Request

236 APL2 Programming: System Services Reference

AP 126

Obtaining Copies through AP 126

You can copy a screen image from AP 126 through the GDDM FSOPEN request or
a sequence of the DSOPEN, DSUSE calls for alternate devices.

GDDM FSOPEN Request or DSOPEN, DSUSE Sequence

The GDDM call FSOPEN (request code 604) or the sequence of calls DSOPEN,
DSUSE for alternate devices can be used to open either an APL2 or GDDM copy
destination.

If the FSOPEN request fails, you should issue the AP 126 service request to query
the current hard-copy destination (request code ~ 9) and save the result. If the
query (~ 9) does not return a destination name, the destination was used by the
DSUSE call and was not opened by FSOPEN. In such a case, issue DSQUSE to
query the destination rather than the AP 126 service request.

Note: While the AP 126 application's destination is open, any continuous copy
lines generated from the session manager go to that destination rather than to the
session manager destination.

If an AP 126 application uses the destination specified in the session manager
profile, no FSOPEN call is necessary if the session manager already has the desti-
nation open for continuous copy. If the destination was specified in the profile, but
the destination is not in use, the application can find the current session manager
COPY ID and COPY CODE values through AP 120. It can then issue an appro-
priate AP 126 FSOPEN request based on those values.

If the session manager continuous copy is turned off while AP 126 is using the
hard-copy destination, the AP 126 destination is closed and must be reopened.

Alternating Paths

To use AP 126 and to take full advantage of the available facilities, you need to be
aware of several aspects of path coordination:

e Implications of multiple data paths
e Page sharing with the APL2 session manager

Implications of Multiple Data Paths

A data path is established for each control variable used to request AP 126 func-
tions. APL2 tracks the current primary device and partition set by data path. If the
partition set is the default partition set, APL2 also tracks the current page.

Before issuing a call for a given data path, APL2 checks the current device and
partition set. If the device and partition set are not the same as the path, APL2
switches to the device and partition set of the path.

If the partition set is the default partition set, APL2 also checks the current page
and switches pages if necessary.

The result is that paths are somewhat insulated from one another.

The alternation of devices, partition sets, and pages on the display screen follows
the same rules when multiple AP 126 paths are contending for the screen as it

Chapter 21. AP 126—GDDM Processor 237

AP 126

does when a single AP 126 path is contending for the screen with the session
manager.

Page Sharing with the APL2 Session Manager

An application can share the session manager page by specifying the same page
number. The APL2 session manager currently uses the default primary device, the
default partition set, and page 1001. The application should not access any fields
that are being used by the session manager.

Guidelines for Sharing with the Session Manager
Follow the guidelines below when designing an application that shares a page with
the session manager.

Size of the Session Manager Screen: Limit the session manager to only a portion
of the terminal screen by issuing the session manager commands:

e DISPLAY SIZE rows columns
e DISPLAY ORIGIN row column

When you change DISPLAY SIZE or DISPLAY ORIGIN, all alphanumeric fields are
deleted. Therefore, you should set these two commands before defining any appli-
cation fields| Chapter 3, “The APL2 Session Manager’ on page 36|contains
descriptions of the session manager DISPLAY command and its SIZE and ORIGIN
operands.

Page Selection and Formatting: You can select a session manager page within an
application, but you must not delete it. You cannot create a session manager page
through an application.

Within the application, the page must never be formatted completely (as with
ASDFMT); all format requests must be either ASDFLD (code 402) or ASRFMT
(code 405).

Field Definitions: Avoid using field numbers 1000 through 1999, which are
reserved for the session manager. If an application redefines a field being used by
the session manager, unpredictable results can occur. The application can use any
other numbers for its own fields.

Within an application, you cannot define new alphanumeric or graphic fields in the
portion of the terminal screen being used by the session manager. The portion of a
graphic field that overlaps the session manager's part of the screen does not
appear.

Input/Output Requests: You can choose to restrict the application to output
requests when addressing the session manager page through AP 126. Any simple
command input can be handled by 0 or [1, which causes the session manager to
issue an ASREAD GDDM request, thus displaying all the contents of the page. If
the output needs to be updated on the screen only at times when the session
manager schedules /O, the application need not request the FSFRCE call.

238 APL2 Programming: System Services Reference

AP 126

If the application handles input from the session manager page through AP 126,
the following guidelines apply:

1. An ASREAD request returns the total number of modified fields on the page,
whether they are session manager or application fields. The ASQMOD request
also returns the modified fields.

In addition, ASQMOD resets the status of each field to unmodified regardless
of whether it is a session manager field.

The session manager does not know that data was entered in its fields,
although the data continues to display if the ASREAD or ASQMOD had been
issued by AP 126. Likewise, AP 126 does not know that data in its fields was
modified if the session manager issues the ASREAD or ASQMOD.

Given the effects of ASREAD and ASQMOD, it follows that the AP 126 service
request to query a subset of fields for modifications (request code ~ 8) should
be used rather than ASQMOD when a page is shared with the session
manager. This service request allows you to query from within the application
the modification status of a restricted list of fields. Provided this list does not
include any session manager fields, the status of these fields is the same after
the request as before.

2. An ASREAD from AP 126, which is completed with a function key, must be
handled by the application. When pages are shared, the session manager
profile function key definitions do not apply.

3. If the session manager unexpectedly issues an I/O request (for example,
because of a syntax error in a function), it may be difficult for the terminal oper-
ator to determine whether a read request is handled by the application or the
session manager.

4. If the application uses cursor positioning prior to issuing an AP 126 ASREAD
request, it must position the cursor after any session manager terminal 1/0
request (most of which move the cursor).

Handling Attentions

If AP 126 issues an ASREAD that completes with an attention key (ATTN, PA1, or
PA2, depending on the environment), the APL2 session receives either:

» Attention if no previous attention was signaled since the last APL2 processing
e |Interrupt if an attention was just processed

AP 126 also returns the appropriate PA key completion (as returned by GDDM) to
the application in response to the ASREAD request. The key completions can be
affected by various PROCOPT settings, such as 'TSOINTRP, PA1'.

If attention is signaled when the AP 126 page is displayed, but no ASREAD was
issued, the APL2 session merely receives the appropriate attention signal.

Chapter 21. AP 126—GDDM Processor 239

APL2/370 and GDDM EBCDIC Code Page Differences

Although APL2/370 and GDDM both use EBCDIC-based character sets, there are
some differences between the APL2 EBCDIC character set and the EBCDIC char-
acter set used by default by GDDM.

The APL2 EBCDIC character set, EBCDIC code page 293, is described in APL2
Programming: Language Reference. The GDDM default EBCDIC character set,
EBCDIC code page 351, is described in GDDM Base Application Programming
Reference, in the description of the GDDM ASTYPE call.

Of the characters for which specific graphics are defined in the APL2 EBCDIC char-
acter set, all but five are at the same code points in the GDDM default EBCDIC
code page.

The characters that are in different code points are described by Figure 74.

Figure 74. Code Page Differences

APL2 Code Point GDDM Code Point
Character Hex OAF Hex OAF
) 73 115 FA 250
1 74 116 26 38
£ 75 117 3C 60
= 76 118 2E 46
- 77 119 2F 47

For practical purposes, this means if you read a field of input from GDDM in which
someone might haved typed the characters “[d1 e --,” and you want them to be
treated as “[l1 e ——” within APL2, then you must translate any instances of the
GDDM code points to the APL2 code points. The converse is true when writing
APL2 characters out through GDDM.

This can be done simply as follows. Initialize a translate table to JAV.
0ro<o am SO UOAF VALUE WILL INDEX 0OAV
TT<0AV

For each APL2 codepoint to be translated, substitute the GDDM code point:
TTC 115 116 117 118 119 1 <« [OAVL 250 38 60 46 47 1

For each GDDM codepoint to be translated, substitute the APL2 code point:
TTL 250 38 60 46 47 1 <« OAVL 115 116 117 118 119 1]

Character strings from GDDM can now be translated for APL2:
APLIN<OAVL TT 1 GDDMIN]

and APL2 character strings can be translated for output to GDDM:
GDDMOUT<OAVL TT 1 APLOUT]

240 APL2 Programming: System Services Reference

AP 126

GDDM Error Diagnosis

If you receive a GDDM error return code (rcz1), you can retrieve further information
about the error by issuing the FSQERR call immediately after GDDM returns an
error. The data variable returns the text of the message associated with the GDDM
error return code. Figure 75 illustrates a sequence of entries that create a GDDM
error and retrieve the text of the GDDM error message.

126 OSVOo © 'CTL126' 'DAT126"

2 2
n FORMAT VARIABLE SPECIFIES OVERLAPPING FIELDS.
FORMAT <« 3 6 p 1 2 3 1 20 2 2 4 3 1 25 2 3 4 8 1 6 0
FORMAT

1231 20 2

2 4 31 25 2

3 481 60
A ATTEMPT TO FORMAT THE SCREEN RETURNS GDDM ERROR.
CTL126<«402 3 6, ,FORMAT
CTL126
8 8 206 0 O
A RC=8, RS=206, GDDM MESSAGE NUMBER.
A FSQERR CALL RETRIEVES THE MESSAGE FROM GDDM.
A DATA VARIABLE CONTAINS THE MESSAGE TEXT.
CTL126<«107,160
CTL126
0 0 0 0 160
20¥1004DAT126
ADM0206 E ALPHANUMERIC FIELD 3 OVERLAPS ALPHANUMERIC FIELD 2

Figure 75. Retrieving a GDDM Error Message

Return and Reason Codes

The return (rc) and reason codes (rs) are returned as items of the return code
vector (rc-vector) in the control variable. (See [‘Returned Values” on page 224|)

When AP 126 detects an error, the first item in the return code vector is 20. The rc
and rs items for the request that failed then contain a 1 and a reason code, respec-
tively. The 20 appears even if only a single request has been passed.

The codes, their descriptions, and suggested responses are summarized in
[Figure 76 on page 2420 The first item in the Code column of the table corre-
sponds to the rc in the return code vector; the second item is returned as the rs
item in the return code vector.

Chapter 21. AP 126—GDDM Processor 241

AP 126

Figure 76 (Page 1 of 2). Return Codes Issued by AP 126

Code

Description

0

0

Normal return.

1

6

Copy destination unsupported.

1

7

Data variable is wrong length.

Action: Supply data of correct length in the data variable, then respecify the control
variable.

Copy destination full or print limit exceeded.

11

1<ppCTL
Action: Ravel the value in the control variable, and respecify it.

12

Syntax error in request.

Action: Reconstruct the value in the control variable.

13

Control variable contains character data, complex numbers, or a mixed or nonsimple
array.

14

Invalid request code in the control variable.

21

1<ppDAT

Action: Ravel the value in the data variable.

22

Copy destination disabled or closed.

23

DOMAIN FERROR on data variable; it contains numeric data or a mixed or non-simple
array.

26

Copy destination not defined.

28

Copy destination enquiry failed or enquiry lost due to sync point.

30

Authorization check for copy destination failed.

35

Copy destination I/O error.

41

Data variable not specified.

Action: Assign the required data to the data variable and respecify the control variable.

53

Required storage is not available.

Action: If requests were concatenated, reduce the number of requests in one specifica-
tion.

Or try to retract other shared variable pairs to free up storage.

54

Copy translation table unavailable.

56

Insufficient space in shared variable quota.

Action: If requests were concatenated, reduce the number of requests in one specifica-
tion.

60

GDDM not available.

61

Invalid parameter for service request.

62

Invalid count, code, or length value on request.

63

Hard-copy translation table not available.

65

GSCOPY attempted to an APL destination.

Action: Use GDDM destination rather than an APL destination.

66

Hard-copy destination not available. If this occurs on a request issued after a successful
open, the destination was closed.

Action: Issue an FSOPEN request for the destination.

67

A hard-copy destination is already open.

Action: Query the hard-copy destination (request code ~ 9); if no name is returned,
issue DSQUSE instead; issue FSCLS for that destination; issue FSOPEN for the new
destination.

242 APL2 Programming: System Services Reference

AP 126

Figure 76 (Page 2 of 2). Return Codes Issued by AP 126

Code Description
1 96 Invalid request.
Action: Notify your system administrator; this code indicates an APL2 or system
problem.
2 nnn Abend occurred in APL2 outside of AP 126 and GDDM. nnn is the ABEND code.
ss nnn A return code greater than 2 indicates a GDDM warning or error. ss is the severity of the
error. nnn is the return code or ABEND code from GDDM.
4 nnn Warning. nnnis the return code from GDDM.
8 nnn Error. nnn is the return code from GDDM.
12 nnn Severe error. nnnis the return code from GDDM.
16 nnn ABEND. nnnis the ABEND code issued by the failed GDDM module.

Action: Refer to GDDM User's Guide; consult GDDM request made and message
ADMOnNnn; issue FSQERR to retrieve the message text.

Chapter 21. AP 126—GDDM Processor 243

AP 127

Chapter 22. AP 127—SAQL Processor

Through AP 127, the SQL processor, APL2 provides access to the database man-
agement systems (IBM program products) Structured Query Language/Data
System (SQL/DS) under CMS and IBM DATABASE 2 (DB2) under TSO.

Under CMS, AP 127 requires SQL/DS Version 3 Release 3 or higher. Under TSO,
AP 127 requires DB2 Version 2 Release 3 or higher.

SQL is a high-level language that uses the relational data model. A relation in the
relational data model can be thought of as a simple two-dimensional table—a
matrix in APL2 terms. SQL provides access to the tables through SQL statements.
SQL is a query, data manipulation, data definition, and authorization language.

The APL2/SQL interface consists of:

e The auxiliary processor AP 127, which accepts requests by shared variables,
transforms them into standard run-time SQL requests, and passes them on to
SQL/DS or DB2.

AP 127 shared variable use is characterized by operation codes based on
dynamic SQL, straightforward protocol, and simple, consistent syntax.

* The APL2 workspace named S@L, containing:
— Data access functions, which pass SQL requests to AP 127

— User support functions, which create common sequences of requests and
pass them to AP 127

— Task control functions, which allow you to manage the APL2/SQL interface
environment

— A defined operator, UNT I L, which creates a derived function that proc-
esses a stack of requests to AP 127.

The facilities in the SQL workspace ease the task of communicating with the
auxiliary processor. They allow matrix processing and command stacking with
error recovery. In this way, they provide compatibility with the array processing
capabilities of APL2 without compromising procedural control.

For information on how to use the APL2/SQL interface, see APL2 Programming:
Using Structured Query Language.

The remainder of this chapter presents an overview of AP 127.

244 © Copyright IBM Corp. 1984, 1994

AP 127

Shared Variable Overview

AP 127 allows multiple share offers but processes transactions for only one shared

variable at a time.

Figure 77 provides an overview for sharing variables with AP 127.

Figure 77. Shared Variable Overview for AP 127

SV Protocol

AP 127 Conventions

General

One variable.

The variable is used to pass requests, value-lists, and options-lists to
AP 127 and to pass return codes and result data from AP 127 and
SQL operations.

The variable is assigned the operation code and any parameters
required by that operation code.

Maximum Number of Shared
Variables

10.

AP 127 allows multiple share offers but processes transactions for
only one shared variable at a time. Up to ten shared variables can
be coupled at one time, but the active variable is the first one speci-
fied. It becomes inactive when it is retracted. This capability allows
multiple applications to offer variables. The shared variable limit is
not related to the limit of 40 simultaneously prepared cursors.

If a variable specified or referenced is not the one currently active, an
error message is returned.

Names

Any valid APL2 variable name of up to 255 characters. The variable
DAT is shared by the SQL workspace.

Initial Values

Ignored.

Subsequent Values

Depend on the requested AP 127 operations.

Reference a result vector that contains a return code and a data item
that can contain values or can be empty.

Access Control

1001

Note that for effective use, the user or the workspace function should
convert this to 1 0 1 1. This prevents a reference before the auxiliary
processor has specified a result.

Communication Procedure

1. Offer to share a variable with AP 127.

a A W0 N

. Set the access control.

. Wait for a degree of coupling of 2.

. Use a specification statement to assign an AP 127 operation to the variable.

. Reference the variable to ensure that the operation was completed successfully

and to retrieve any data returned by AP 127.

A 5-item vector of zeros is returned if the operation was successful. Whether
data is returned from AP 127 depends on the particular operation performed.

6. When you finish using AP 127, request retraction of the shared variable.

Chapter 22. AP 127—SQL Processor 245

AP 127

AP 127 Commands

Figure 78 shows the syntax of the AP 127 commands in which DAT represents a
variable that is shared with AP 127.

Figure 78. Summary of AP 127 Commands

Syntax

Description

DAT<'CALL"' name [values]

Processes defined SQL statement name that was previously processed
by a PREP operation. AP 127 substitutes each item of values for the
column index in name.

DAT<'CLOSE"' name

Closes cursor (SELECT) statement name.

DAT<'COMMIT' ["RELEASE"']

Makes permanent all of the changes you made to the database since
you shared the variable or since the most recent COMMIT or
ROLLBACK operation.

DAT<«'CONNECT" [id password] [database]
DAT<'CONNECT' [database| 'RESET']

Specifies user ID or database name (SQL/DS)
Specifies database name (DB2)

DAT<'DECLARE' name['HOLD' | 'NOHOLD"]

Declares a cursor name with hold attributes

DAT<'DESCRIBE"' name [options]

Returns information about an open statement. option can be
'NAMES "', "LABELS"', 'ANY"',or 'BOTH"'.

DAT<'"EXEC" statement

Immediately processes statement.

DAT<'FETCH' name [options]

Returns new result table data as the second item of the shared variable
result.

DAT<«'GETOPT'

Returns the values of the AP 127 options.

DAT<«'ISOL" [level]l

Sets or returns the isolation level setting.

DAT<'"MSG"' rcode

Returns the error message text associated with return code rcode.

DAT<'NAMES"

Returns the names of all statements known to AP 127.

DAT<«"'OPEN' name [values]

Opens previously prepared statement name.

DAT<'"PREP' name statement

Prepares SQL statement name for later processing by a CALL or
OPEN operation.

DAT<"'"PURGE"' name

Removes statement name from the list of active names in AP 127; if
name is empty, all statements are removed from the list.

DAT<'"PUT' name values

(CMS only.) Sends data to SQL/DS for INSERT

DAT<'ROLLBACK' ['RELEASE"]

Removes all of the changes you made to the database since you
shared the variable with AP 127 or since the most recent COMMIT or
ROLLBACK operation.

DAT<«'SETOPT"' options

Sets the values of the AP 127 options.

DAT<'SQLCA"

Returns current contents of SQLCA control block.

DAT<«'SQLSTATE"

Returns current value of SQLSTATE variable.

DAT<«'SSID' [name]

(TSO only.) Sets or queries the DB2 subsystem name.

DAT<'STATE' name

Yields the current state of SQL statement name.

DAT<"'STMT' name

Yields SQL statement name.

DAT<'TRACE"' (n1n2)

Yields an event trace of functions within AP 127; n1 specifies the AP
127 module number and n2 specifies the trace level.

246 APL2 Programming: System Services Reference

AP 127

Return Codes

Figure 79. Return Codes from AP 127

Code Description

00O0ODO Normal return. All operations completed. Table retrieved by a FETCH
request is complete.

010 n msgn Normal return, but a warning message was issued. For example, cursor is
beyond end of table on a FETCH request or DELETE statement deletes
nothing.
n=1 Indicates a warning from AP 127.
n=2 Indicates a warning from SQL/DS or DB2.

00100 Normal return, but a result table cannot have been completely retrieved.

110 n msgn

Transaction backout. All changes made to tables since the last COMMIT or
ROLLBACK were discarded. Application must restore processing to point of
last COMMIT or ROLLBACK.

1001 msgn Error in AP 127. msgn is the number of the AP 127 error message.

100 2 msgn Error detected in DB2 or SQL/DS. msgn gives the value of DB2 or SQL/DS
return code.

100 3 msgn Error detected in an SQL workspace function. msgn gives the message

number.

Chapter 22. AP 127—SQL Processor 247

AP 210 (TSO Only)

Chapter 23. AP 210—BDAM File Processor (TSO Only)

AP 210, the BDAM file processor for TSO, provides relative record access to fixed-
length, unkeyed disk files through the Basic Direct Access Method (BDAM). Files
can be read, written, or updated with AP 210.

This processor is not available under CMS. CMS files, however, can be similarly
processed using AP 110, the CMS file processor (see [Chapter 14, “AP 110—CMS|

|[File Processor’ on page 138).

Associated Workspace

The TSO workspace contains several cover functions that can be used in the allo-
cation procedure for BDAM files. For information on these functions and how they
are used, type DESCRIBE, HOW, or ABSTRACT in the TS0 workspace.

Shared Variable Overview

Figure 80 provides an overview for sharing variables with AP 210.

Figure 80. Shared Variable Overview for AP 210

SV Protocol

AP 210 Conventions

Protocol

Two variables—control and record. The record variable must be
offered before the control variable.

Specify the control variable to position the record pointer. Reference
it to obtain the return code from the most-recent read/write operation.

Specify the record variable to write a record. Reference it to read a
record.

Maximum Number of Shared 40

Variables

Names Can be any APL2 variable names not exceeding a length of 77 char-
acters.

Initial Values Control and record variables are paired by a matching ddname in

their initial values. (Seel’Initial Values” on page 249})

Subsequent Values

Record: Specify or reference a character scalar or character vector
not exceeding the LRECL of the file. (See |'BDAM File
|Requirements” on page 249|)

Control: Specify a relative record number (scalar integer). Reference
a return code (one-item integer vector).

Data Types Supported

All types.

Access Control

Record: 0011
Control: 0011

248

© Copyright IBM Corp. 1984, 1994

AP 210 (TSO Only)

BDAM File Requirements

Before using this processor on a BDAM file, you must allocate the file to the TSO
session. The allocation can be done any time before AP 210 is invoked to perform
some action on the file.

In addition, before you can read or write data on the file, the file must be formatted,
or loaded, with representative records—one for each record the file contains. The
file can be formatted in any one of three ways:

e By an MVS program written in a language other than APL

* By the QSAM auxiliary processor, AP 111, using fixed-length, unblocked
records

By the separate formatting protocol of AP 210 described in[‘BDAM File Proc-
[essing Procedure” on page 251 |

DCB Attributes Provided by AP 210

Figure 81 lists DCB attributes the processor automatically assigns to the BDAM
file. When the FMT option is specified in the initial value of the record variable, you
are using AP 210 to format the file.

Figure 81. DCB Attributes Provided by AP 210

With FMT Option Without FMT Option
DSORG=PS DSORG=DA

RECFM=F RECFM=F

MACRF=WL MACREF=(RIC,WIC)

Communication Procedure

Initial Values

This section discusses the communication procedure for AP 210.

The initial values of each pair of record and control variables associate the pair with
the ddname of the file to be processed.

The formats for the initial value of the record (REC210) and control (CTL210)
variables are:

REC210<«"'ddname ([FMT]1 [access] [conversion])"

CTL210<«'"ddname (CTL)"'

The options following the ddname can be entered in any order.

ddname Identifies the ddname of the previously allocated file to be processed.
FMT Specifies that you are formatting (or reformatting) the file. (See

[matting a Direct File Using AP 210” on page 250})

Chapter 23. AP 210—BDAM File Processor (TSO Only) 249

AP 210 (TSO Only)

access Specifies the type of access to be used on the file. The access
options are:

U The file can be read, written, or updated. This is the default.

R The file can only be read. This option is mutually exclusive
with the FMT option.

w The file can only be written.

conversion Specifies the type of conversion applied to the data when records are
transferred between the physical file and the active workspace. Avail-
able conversion options are:

BCD (370)
BIT

BYTE

CDR

coD1

DBCS

EBCD

TN

VAR (default)

Note: With conversion options VAR and CDR, the record variable
can be specified with values that are less than or equal to the LRECL
of the file. With all other conversion options, each specification of the
record variable must be exactly equal to LRECL (for the BIT option,
the length must be 8xLRECL).

See [‘Calculating the Length of APL2 Variables” on page 252| All
conversion options are explained in[Appendix D, “Auxiliary Processor|
|Conversion Options” on page 370

CTL Indicates that this variable is a control variable. FMT, access, and
conversion options, if specified, are ignored.

If the CTL parameter is omitted, the variable is assumed to be a
record variable.

Formatting a Direct File Using AP 210

If the file you want to process using AP 210 does not yet contain records, you can
format it by following the first five steps of [BDAM File Processing Procedure,’|

To format with AP 210, you must provide the record count for the
file and specify typical record contents for all records in the file.

You can reformat a file that already contains records using the AP 210 formatting
procedure. You can also format using AP 111 or other non-APL formatters. Refor-
matting a file removes any data in the file.

250 APL2 Programming: System Services Reference

AP 210 (TSO Only)

BDAM File Processing Procedure

The following procedure is used to process a BDAM file with AP 210
contains a sample APL2 session that illustrates this procedure.

1. Initialize the record and control variables.

Both variables contain the ddname of the file as the first positional parameter.
See [Initial Values” on page 249]

2. Offer the initialized variables (the record variable first), and check the degree of
coupling.

3. Set the access control.
4. Check the return codes from the offer.

5. To format the file (omit this step if the file is already formatted to your
satisfaction):

a. Specify the control variable with the number of records you want the file to
contain.

b. Specify the record variable to initialize the file with typical record contents.
c. Check the return code from the format request.
6. Process the file sequentially.

Sequential processing starts with the relative record number last specified in
the control variable, or from the beginning of the file, if the control variable was
never specified with a relative record number.

To process the file sequentially:
a. Specify or reference the record variable.

b. Reference the control variable for the return code from the read or write
operation.

7. To process the file directly:

a. Specify the control variable with the relative record number of the record
you want to access.

b. Specify the record variable to write the specified record, or reference the
record variable to read the specified record.

c. Reference the control variable for the return code from the read or write
operation.

8. Retract the variables to close the file.

Chapter 23. AP 210—BDAM File Processor (TSO Only) 251

AP 210 (TSO Only)

[File Allocation—DDNAME=AP210FIL LRECL=40]
REC210<«'"AP210FIL (FMT U EBCD' A initialize variables
CTL210<«'"AP210FIL (CTL" A with ddname
210 0O8SVO™ 'REC210' 'CTL210"' A offer (REC210 first)
2 2 < Degree of coupling OK
(c0 0 1 1) OSVC ™ 'REC210' 'CTL210' a set access control
00 1 1 00 1 1
REC210 A check return codes
0
CTL210
0
a To format a file:
CTL210<«2000 A specify number of records
REC210<404 " A specify typical file record
CTL210 a check return code
0
A Sequential processing example:
REC210<«404"'FIRST' A write first record
CTL210 a check return code
0
REC210<«404'SECOND" A write second record
REC210<«404'THIRD' A write third record
CTL210<1 A position record pointer
REC210 A read, from beginning
FIRST
A Direct processing example:
CTL210<3 A position record pointer
REC210 A read that record
THIRD
REC210«40+"'NEW THIRD' A replace that record
REC210«40+'FOURTH"' A write next sequential record
CTL210 a check return code
0
O8VR™ 'REC210' 'CTL210"' A retract to close the file
2 2

Figure 82. Sample APL2 Session to Communicate with AP 210

Calculating the Length of APL2 Variables: When a BDAM file is written using

the CDR conversion option, a variable is written that contains header information

describing the data in the variable. To calculate the space required for a variable
written in CDR, use the attributes (A T) system function. Enter the left argument
as the integer 4. [0AT returns a two-item integer vector:

REC210<«2 2p'VOLUME' 1021 'CHANGE' ~23
4 0OAT '"REC210!
80 20

The first item is the total number of bytes required by the variable. The second
item is the number of bytes required by the data portion. The difference between
the two items is the number of bytes required by the CDR header.

For a further description of AT, see APL2 Programming: Language Reference.

252 APL2 Programming: System Services Reference

AP 210 (TSO Only)

Cautions

The following restrictions apply to the use of AP 210:

o After the file has been formatted, records can neither be added to the end of
the file nor be physically deleted from the file using AP 210.

» Existing records cannot be changed in size except with the VAR or CDR con-
version option.

Return Codes

The BDAM auxiliary processor reports return codes as a one-item numeric vector
through the control variable. Figure 83 contains the return codes returned from the
processor.

Figure 83 (Page 1 of 2). Return Codes from AP 210

Code Description

-nn Negative number: During formatting, the file was too small to contain the number of
records requested. The value returned represents the number of records not formatted.

0 Successful completion of requested function.

If returned for the initial offer, it means that the syntax of the value was correct. It does
not mean that the specified ddname is correctly allocated to a file.

1 Invalid initial value.

Action: Retract the variable, specify a valid syntax for the initial value, and reoffer the
variable.

12 End of file on a sequential read request. The value in the data variable is empty.

Action: To continue reading the file, reposition the record pointer using the control vari-
able.

To close the file, retract the record variable.

15 Wrong-length record on fixed-length output.

All conversion options other than VAR or CDR require that all records on the file be
exactly equal to the LRECL.

17 Record too large for file.

With conversion option CDR or VAR, you specified the record variable with a value
greater than the LRECL of the file.

30 Record not found.

This error occurs when you try to read or write a record that is beyond the range of
existing record numbers in the file.

440 Error in open for output.
This error occurs under the following conditions:
¢ You did not properly allocate the file.
¢ You allocated a file that cannot be processed by BDAM.

¢ A system error occurred in an attempt to find the allocation information to open the
file.

¢ Your installation prohibited your access to the file.
¢ You requested formatting, but did not specify a valid number of records to format.

¢ You specified read-only access (the R access option), and you specified a value in
the record variable, indicating output processing.

Action: Verify your allocation, authorization, and initial values.

Chapter 23. AP 210—BDAM File Processor (TSO Only) 253

AP 210 (TSO Only)

Figure 83 (Page 2 of 2). Return Codes from AP 210

Code

Description

441

Error in open for input.
This error occurs under the following conditions:
¢ You did not properly allocate the file.
e You allocated a file that cannot be processed by BDAM.

¢ A system error occurred in an attempt to find the allocation information to open the
file.

¢ Your installation prohibited your access to the file.

¢ You specified write-only access (the W access option), and you referenced the
record variable, requesting a read operation.

Action: Verify your allocation, authorization, and initial values.

443

Error in writing a record. The value assigned to the shared variable exceeds 32760
bytes.

444

Invalid data specified. It is the wrong size, shape, or data type.

445

Insufficient shared storage (SHRSIZE) for input data on a read request.
Action: Reinvoke APL2 and specify a larger value for the SHRSIZE invocation option.

Note: If you are using conversion option VAR or CDR and you think your SHRSIZE
value is properly set, verify that the record you are trying to read was written by AP 210
using the VAR or CDR option. Try reading the record, using the BYTE conversion
option.

901

1/0O error in an attempt to read data.

This return code is accompanied by detailed TSO messages that describe the error. It is
issued in place of the system ABEND code 001 that would have been issued if the AP
had not isolated and detected the error.

Normally, this error means that you are trying to process the file with DCB attributes that
do not match the physical data in the file.

Action: Verify your allocation, initial values, and authorization.

Data Management Error Codes

For I/O errors not covered in [Figure 83 on page 253] a decimal value is returned,
representing internal error flags set by the operating system. The decimal value
can be converted to its 4-byte hexadecimal representation in 0-origin by:

'0123456789ABCDEF'[0I0+2 4p(8p16)TCTL210]

If the top row of the resulting matrix contains all zeros, the bottom row indicates a
system ABEND code.

Otherwise, the first two bytes represent the exception code for BDAM, and the last
two are the status bytes for the SYNAD routine. For exception codes and status
byte information, see MVS/DFP: Using Data Sets, or the status information in the
macro instruction manual appropriate to your system:

e OS/VS Data Management Macro Instructions.

MVS/XA Data Administration: Macro Instruction Reference
MVS/ESA Data Administration: Macro Instruction Reference

254 APL2 Programming: System Services Reference

AP 211

Chapter 24. AP 211—The APL2 Obiject File Processor

AP 211 provides a facility for storing APL2 arrays by name in an object file.

The AP 211 in APL2 Version 2 allows compatibility in APL2 object storage between
versions of APL2 on different platforms. Its syntax is compatible with AP 211 found
on all the APL2 platforms. In addition, it writes and reads a special file format that
can be used directly by any AP 211 that reads and writes the same file format.
Currently, this format is used in the VM, TSO, OS/2, Sun Solaris, and RISC
System/6000* environments. For information about transferring files between plat-
forms, see FCooperative Processing” on page 86

Shared Variable Overview

Figure 84. Shared Variable Overview for AP 211
SV Protocol AP 211 Conventions

General One variable.

The variable is assigned the operation code and any parameters
required by that operation code.

Maximum Number of Shared Limited only by SYVMAX and SHRSIZE.

Variables
Names Any valid APL2 variable name up to 255 characters.
Initial Values Ignored.
Subsequent Values Depend on the requested AP 211 operations.
Reference a result that contains a return code, data, or both.
Access Control 1001

Note that for effective use, the user or the workspace function should
convert this to 1 0 1 1. This prevents a reference before the auxiliary
processor has specified a result.

Commands Accepted by AP 211

The following description of the commands accepted by AP 211 assumes that a
variable called SHR211 has been shared with AP 211. For example:

211 0OSvVO 'SHR211'

1
0Svo 'SHR211'

2

CREATE

SHR211<«'CREATE"' filename[rec_size]
return_code<SHR211

This command creates an AP 211 object file.

© Copyright IBM Corp. 1984, 1994 255

AP 211

filename (under TSO)
The name of an MVS data set. Note that the TSO convention is fol-
lowed, so that if the name is not enclosed in quotation marks, the
current TSO PROFILE PREFIX is added to it.

Note: Do not confuse the quotation marks that delimit the filename
itself with the quotation marks used for a fully-qualified data set name.
If a fully qualified name is a literal, it must be entered as:

""'"fully.qualified.dataset.name'"'"'

filename (under CMS)
The name of a CMS file, in this format:

'filename filetype [filemodel!'

The filemode defaults to A1 on CREATE. On USE and DROP, standard
CMS search order is used.

rec_size The record size used to store APL2 objects in the file.

APL2 objects stored in the file use one or more records depending on
size. Objects smaller than the record size still use a full record and any
excess space is unused. Large objects that span several records cause
more file input/output. Therefore, you should carefully select a record
size that optimizes file space utilization and I/O count.

AP 211 uses a default record size of 1024 if none is specified. The
record size must be at least 128, not greater than 32704, and a multiple
of 64. If the user specifies a record size within the limits, but not a mul-
tiple of 64, it is rounded to the next multiple of 64.

return_code
An integer return code.

On CMS, the CREATE command is required to set up an AP 211 file. Once
created, the file can grow to a size limited only by space available on the minidisk.

On TSO, the CREATE command is optional. If the CREATE command is issued,
AP 211 allocates a file that starts at about 70K bytes, but under ideal conditions is
expandable to nearly 10 megabytes. If the user wishes to have a file with different
size parameters, the CREATE can be bypassed by preallocating a data set meeting
the requirements for AP 211. The data set must be DSORG(PS) or DSORG(PSU),
RECFM(FB), with a record length between 128 and 32704 that is a multiple of 64.
Any block size that is a multiple of the record length and is less than or equal to
32704 is accepted, but larger block sizes in general give better performance.

DROP

SHR211<«'DROP"' filename
return_code<SHE211

This command deletes an entire APL2 object file from disk.

256 APL2 Programming: System Services Reference

AP 211

USE

SHR211<«'USE"' filename [user_id] [access]
(return_code rec_size)«SHR211

Opens an AP 211 file. It is then in a state where it can be managed by the SET,
GET, ERASE, and LIST commands.

user_id A scalar integer that can be used to implement an audit trail of updates,
particularly when a file is shared among users. The default value is

+0AT.

access Specifies the type of access desired. 'READ' provides read-only
access. 'UPDATE' and 'PRIVATE"' both provide read/write
access.
In APL2/6000 the terms 'UPDATE ' and 'PRIVATE ' have different
meanings. 'UPDATE"' provides shared read/write access, and

'PRIVATE" provides exclusive read/write access.

In the mainframe AP 211, 'UPDATE "' and 'PRIVATE "' are both
accepted for compatibility, but have the same effect. File sharing capa-
bilities are not built in to AP 211, but are governed by the operating
system.

In CMS, the mode in which the disk is linked determines what sharing is
possible. Note, however, that write access by multiple simultaneous
users can result in corruption of the file and is not advised.

In TSO, AP 211 uses DISP=0LD when read/write access is requested to
provide exclusive read/write access.

If no access mode is specified, read/write access is provided.

rec_size The record size of the file.

RELEASE

SHR211<«'RELEASE"
return_code<SHR211

Releases the object file that was associated with a shared variable. This command
is issued implicitly when retracting or expunging the shared variable, or if a subse-
quent USE, CREATE, or DROP are specified to the same shared variable.

Chapter 24. AP 211—The APL2 Object File Processor 257

AP 211

SET

SHR211 <'SET"' name APLZ object
return_code<SHE211

Stores an APL2 array in the object file
name A character string identifier to be assigned to the object in the file.
The maximum permitted length of name is 31 characters.

If the name is already in use, the new definition is added to the object
file, and the old definition is deleted. The space taken by the old defi-
nition is freed for later use.

APL2_object
Any APL2 array. Either a variable name or literal data can be given.
Because the SET command requires a three-element vector to be spec-
ified to the shared variable, parentheses might be needed to form the
array if it is entered as literal data.

GET

SHR211<"'"GET"' name
(return_code APL2 object)«SHR211

This command returns the array (if any) associated with a given name.

RENAME

SHR211<«'RENAME' oldname newname

Renames an object stored in an AP 211 file.

ERASE

SHR211<«'"ERASE" name
return_code<SHR211

This command allows you to remove an APL2 array from an object file, and makes
its storage available for other updates. Note, however, that the overall size of the
file remains unchanged.

258 APL2 Programming: System Services Reference

AP 211

LIST
SHR211<«"LIST"' 'NAMES'
pd«SHR211
Objectl
Object?2
Object3
3 31
SHR211<«'"LIST' 'ATTS'
o0<«SHE211
1 1001 1993 1 2 12 30 14 12
2 1001 1993 1 2 12 30 14 12
1 1001 1993 1 2 12 30 14 12
3 9

This command allows you to list the names or attributes of all objects in the file.

For the attributes form, the information returned is:
1. Number of records used for this object

2. User ID number (as specified on the USE command) of the user who last
updated this object

3. The date and time the object was updated (in 075 format, GMT)

Each row in this list corresponds to the equivalent row in the list of object names.

Return Codes

The following figure lists the AP 211 return codes.

The negative return codes from AP 211 are compatible across all the APL2 envi-
ronments. The positive return codes, however, can be different, since these are file
system services return codes. Applications written to run on different machines
should not depend on specific positive return codes, instead having more general
error handling routines for those cases.

Figure 85 (Page 1 of 2). Return Codes from AP 211

Code Description

0 Success
2 File, data set or DDname not found
L Attempt to write when open for read-only access
7 Unsupported RECFM
8 Insufficient storage for file services

10 General File I/O Error

14 Unsupported file type

15 File Space Exceeded

2 Rank error

~3 Length error

Chapter 24. AP 211—The APL2 Object File Processor 259

AP 211

Figure 85 (Page 2 of 2). Return Codes from AP 211

Code Description
Ty Type error
7 Invalid command
~8 Invalid block size
9 Not an AP 211 file
10 No file accessed
11 Name has no value
“12 Invalid object name
13 Error encountered during set operation
1y Invalid file name
15 Invalid access mode
16 Invalid user ID
“17 Filename already exists or is in use
18 Insufficient user authority
“19 Name already exists
“20 Object CDR type not recognized
21 Temporary interlock
T22 Unexpected SVP return code
T2y Media full
25 Data out of range
26 Insufficient storage for AP 211 work areas
T27 Abend. AP 211 has restarted. Variables are still shared, but all files have been released.

260 APL2 Programming: System Services Reference

Shared Variable Interpreter Interface

Chapter 25. APL2 Shared Variable Interpreter Interface

APL2's Shared Variable Interpreter Interface provides a set of protocols whereby an
APL2 interpreter can be controlled through a shared variable rather than through a
terminal or file input. The normal session input and output are replaced with a
single shared variable through which communication occurs. This shared variable,
and hence the interpreter, can then be managed by a user or program running
under another user ID.

The shared variable interpreter interface is started by use of the APL2 invocation
keyword SMAPL. If the SMAPL parameter is numeric, the interpreter uses it as the
processor ID with which it should share a variable called APL 2. This variable is
then used for all input and output to the interpreter. The variable is shared within
the interpreter and is not available to nor does it conflict with variables and pro-
grams being run by the interpreter.

The Remote-Session Manager, RAPL 2 uses this interface to give a user the ability
to conveniently control a remote interpreter. For information, consult the discussion
of the RAPL 2 function in APL2/370 Programming: Using the Supplied Routines.

Using the shared variable interface to an interpreter has some impact on the use of
system resources. For example, WS FULL, can happen on any output as the
resulting array is prepared for a shared variable assignment when in a directly con-
trolled session, no space would be required.

Once an interpreter is running using the shared variable interface, it operates
normally except that its input and output is through the shared variable. It is the
responsibility of the interpreter's shared variable partner to manage the variable.
The interpreter processes requests until instructed to shutdown either by a shut-
down control signal or an)OFF or)CONTINUE command.

The rest of this chapter describes the protocols that are used when communicating
with an interpreter through the shared variable interface.

Shared Variable Interpreter Interface Protocols

The Shared Variable Interpreter Interface is designed to allow an APL2 function or
user running under another user ID to control the interpreter. When the shared
variable interpreter's shared variable offer is matched, the interpreter sends its
current system variable values and any output produced during invocation. When
the shared variable interpreter exhausts the input provided during invocation, the
interpreter sends a control code indicating it is ready to receive input.

The interpreter executes any expressions or commands sent to it and sends back
any messages and arrays generated through the shared variable. When the
expression or command has completed, the interpreter again sends a control code
indicating it is ready to receive input.

Two types of data can be sent to the shared variable interpreter:

e Character vectors are sent to represent terminal input to the interpreter, in
response to a [or [1 request in an APL statement, or in response to an imme-

© Copyright IBM Corp. 1984, 1994 261

Shared Variable Interpreter Interface

diate execution or editor 1 prompt from the interpreter itself. Character vectors
sent at any other times are likely to be ignored.

e Simple two element integer vectors may be sent as control signals to the APL2
session where the shared variable interpreter is running. They include exe-
cution control signals that can be sent at any time, and output control signals
that can only be sent when input has been requested. These codes are
defined in [“Interpreter Input Data.”|

Communication from the shared variable interpreter is always in the form of 3-item
nested arrays, as described in FInterpreter Output Data” on page 263 The first two
items indicate the type of output in the third item. Array output (implicit display at
the end of an APL statement, and output produced by T A -tracing) is sent as an
arbitrarily structured array in the third item. Other output is sent as character
vectors in the third item.

Some messages generated during executing commands cannot be sent in a single
specification of the shared variable. In these cases, the interpreter sends these
messages in pieces. A control code is defined that indicates that a message is
incomplete. This code is typically used if the expression being executed uses [1
output.

When an)OFF or)CONTINUE system command or a shutdown request is sent
to the shared variable interpreter, the interpreter sends termination messages and
retracts the shared variable. If the interpreter's partner retracts the shared variable
before the interpreter retracts it, the interpreter does not shut down; the interpreter
simply continues to execute the expression it is processing or wait for the next
input.

Shared Variable Overview

Figure 86 provides an overview for sharing variables with an interpreter.

Figure 86. Shared Variable Overview for Interpreter

SV Protocol Interpreter Conventions

General One variable for passing input to and receiving output from
interpreter.

Maximum number of shared variables 1 per interpreter

Name APL2

Initial Values None. Initial values are ignored by the interpreter.

Subsequent values Input to the interpreter is either character vectors or pairs of
scalar integer control codes.
Output from the interpreter is 3-element vectors: return
code, type code, and data.

Access Control Interpreter sets 1 1 1 1.

Interpreter Input Data

Input data for the interpreter may be either control signal codes or character vectors
for execution. Control signal codes are pairs of scalar integers. Execution Control
codes can be sent at any time. Character vectors for execution and other types of
control codes should only be sent when the interpreter has indicated it is ready for
input. When the interpreter has not indicated it is ready for input, a shared variable
interlock may occur if data is sent. If the interpreter has not indicated it is ready for

262 APL2 Programming: System Services Reference

Shared Variable Interpreter Interface

input, it may ignore any data it receives except for defined execution control signal
codes.

It is possible for the interpreter's partner to not be able to reference the shared
variable (a WS FULL may occur during the reference.) In these cases, the
partner should specify a no operation control signal. This frees the interlock condi-
tion and allows the interpreter to again reference and specify the variable.

Figure 87. Interpreter Control Signal Codes

Execution Control Signal Codes

00 No operation
01 Attention

0 2 Interrupt

0 3 Suppress output
0 4 Shutdown

Output Control Signal Codes

10 Set output to array mode (default)

11 Set output to line mode - Formats array output and sends data line by line.

Interpreter Output Data

The shared variable interpreter sends messages and arrays in 3 item arrays. The
first item is an integer scalar return code. If the return code is not negative, then it
and the rest of the array is defined as £ C output. If the return code is negative,
then it indicates whether the rest of the array provides message, system variable,
stacked input, or array output data. The second item is a 2 element integer vector.
The item is always 0 O for data other than messages and input requests. For mes-
sages, the first element of the second item indicates what type of message is sent
or is an indication what type of prompt is requested. The second element indicates
whether the message is complete. If the second element is 0, then the message is
complete. If the second element is 1, then more information is sent to complete the
message. 1 is used for [1 output from an APL statement, and also for input
requests when prompt data is provided.

Chapter 25. APL2 Shared Variable Interpreter Interface 263

Shared Variable Interpreter Interface

Figure 88. Interpreter Output

Messages and Input Requests

In the following definitions, n may be 0 indicating the message is complete or 1 indicating the message

is incomplete.

1 0 n System message

1 1 n APL (immediate execution) prompt - The interpreter is ready for normal
input. The interpreter provides the normal 6 blank prompt.

1 2 n Quad prompt - The interpreter is ready for 0 input. The interpreter does
not provide the O :

1 3 n Function definition prompt - The interpreter is ready for function defi-
nition input. The interpreter provides the line nhumber prompt.

1 4 n Function line display

"1 5 n Function time stamp

1 7 n Function name line number (stop or trace)

1 8 n Error message

1 9 n System command result

1 10 n Traced result

"1 11 n Quad output

1 12 n Quad-Prime output

1 13 n Debug output

"1 14 n Quad-Prime prompt - The interpreter is ready for [input. The inter-
preter provides [M1 prompt.

System Variable Values.

This value is sent whenever one or more of the system variables important to a session are changed.
The value is sent just before an output is sent. The third item contains the values of the listed items that
currently exist in the shared variable interpreter. They can be used to modify the local value so that
displays and prompts appear correctly.

2 | 00 | opw OPP PBS OPR OFC
Stacked Input

This value is sent whenever the interpreter requests input and the input stack is not empty.

3 | 0 0 | The character vector that was stacked.

264 APL2 Programming: System Services Reference

Part 3. Associated Processors

Chapter 26. External Names and Associated Processors 268
Applications of External Names, 268
Managing External Names from APL 270
Creating and Destroying an Association 270
Invoking an External Name 271
Querying an Associated Name L. 271
Checking the Association Information 271
Checking for Active Associations 272
Avoiding Name Conflicts 272
Environmental Considerations L. 273
Chapter 27. Processor 10—Communication with REXX 274
Overview 274
Detailed Description 275
Using REXX Functions 275
Constructing the Argument 277
Handling Results and Errors L 278
Accessing REXX Variables and Constants 279
Associating Names 279
Values e 280
Built-in Functions 280
Reading and Writing CMS Files 281
Reading and Writing MVS Sequential Data Sets 282
Queryinga CMS File Status 284
Querying an MVS Data Set Status 285
Executing APL Arrays as REXX Programs 285
Unexpected Errors and Other Considerations 286
Failure when Associatinga Name, ... 286
APL Errors 287
Non-APL Error Messages 287
REXX Return Code 20040 287
“Missing” Argument Strings 288
Truncated Data Returned under TSO/E 289
Other Considerations 289
Environment 289
Chapter 28. Processor 11—Calling Compiled Programs 291
ONA Syntax for Non-APL Programs 292
Processor 11 Overview 292
Introduction 293
Processor 11 Glossary 293
Usage Overview 295
Routine Descriptions 295
Building Routine Descriptions 296
Building NAMES Files 297
Self-Describing Routines and NAMES File: Prosand Cons 298
Routine Lists 298
BUILDRL and Interface Management Routines 301
BUILDRL Interface Management and Self-Describing Routines 302
C/370 Scalar Integer Results L. 303

© Copyright IBM Corp. 1984, 1994 265

Environments 303

Interface Details 307
Routine Description Tags 307
Argument Patterns 310
Updated Arguments and Results 313
Result Patterns 314
C/B70 Results 316
(LINK.FUNCTION Arguments 317
Explicit Results, Function Valence, and Operator Valence 317
Explicit Results 317
Function Valence 318
Operator Valence 318
NAMES Files 318
Processor 11 Non-APL Routine Description Tag Rules 319
System Usage Guidelines 321
Linkage Conventions 321
OBJECT and FORTRAN Linkage 321
FUNCTION linkage 322
Unexpected Errors 322
Processor 11 Routine Search Order Guidelines 325
External Function Names 325
CMS Search Order Guidelines 325
Using Routines Defined as Nucleus Extensions 326
Using Routines in TEXT Decks or TXTLIBs 326
TSO Search Order Guidelines 326
Using Routines in TSO Load Libraries 326
Using Routines in the Standard TSO Search Order 327
Link-Editing External Routines o 327
Link-Edit Tools 328
Using AP2MP11L and AP2MP11M 328
Link-Editing External Routineson CMS 329

Link-Editing External Routineson TSO 330

Installation of External Routines 331
Extended Addressing Considerations 331
Preloading and Sharing External Routines 331
Execution Time Libraries 332

VS FORTRAN Execution Time Libraries 332

Other Processor 11 Considerations 332
Using Self-Describing Routines from Non-APL Programs 332
Using Modules with Routine Lists from Non-APL Programs. 332
FORTRAN Considerations 332

APL2 versus FORTRAN Array Ordering 332
FORTRAN External Names 333
FORTRAN Linkage Convention 333
FORTRAN Common 333
FORTRAN Functions 333

Chapter 29. Processor 11—Access to Namespaces 334

Overview e 334

Detailed Description 336

Creating Namespaces 338

Workspace Names 340

Accessing Objects in Namespaces 340

NAMES Files 342

266 APL2 Programming: System Services Reference

Using Namespaces 343

Namescopes 344
Combining Several Namespaces ina Member 347

CMS Namespace Routine List Example 348

TSO Namespace Routine List Example 349
Link-Editing Namespaces 349
Unexpected Errors and Other Considerations 349
Chapter 30. Processor 12—Files as Arrays 352
ONA Syntax for Processor 12 352
Supported Primitive Operations 354
APL Files as External Variables, 355
Record-oriented Files as External Variables 356
Format Descriptors for External Variables 358
Processor 12 Errors e 359

Part 3. Associated Processors 267

External Names and Associated Processors

Chapter 26. External Names and Associated Processors

Names are used in APL expressions to identify variables, defined functions and
operators, and constants (such as labels). When APL encounters names during
the execution of expressions, it passes control to the appropriate routines in the
interpreter for evaluation.

Through the use of 0N 4, and by associating a name with a specific processor, an
APL application program can cause that name to be processed by routines in the
specified associated processor instead of the APL interpreter. Associated
processors provide an alternate mechanism for handling the evaluation of APL
names.

Three processors are provided with APL2:

e Processor 10 provides facilities through which programs written in REXX may
be executed. It also provides facilities to reference or specify REXX variables
and to create or manipulate REXX EXEC's.

e Processor 11 provides facilities through which programs written in languages
other than APL may be called. The processor provides services so that you
can specify how to map APL data to and from the data structures that can be
required by these programs.

Processor 11 also provides facilities that allow access to APL objects in
“namespaces.” Because each namespace has its own namescope, an applica-
tion placed in a namespace can avoid name conflicts with other applications.

* Processor 12 provides facilities through which APL data files and operating
system files can be accessed using normal APL2 syntax. The processor
makes the file appear to exist as an object in the workspace although it may
actually be larger than the available workspace size.

Applications of External Names

268

A name associated with a processor is called an external name.

External names have a variety of uses in building production applications. By
giving you additional options in the ways in which you process information from
APL, external names help improve productivity. Some of the reasons you might
use external names are:

* Reuse of Existing Programs

A principal objective of Processor 11 is to permit you to reuse many existing
programs without any need to modify them. Processor 11 provides mech-
anisms by which you describe where the programs exist, what data structures
they require in arguments, and what execution environment, if any, is needed.
This information is provided to Processor 11 either in a file or link-edited with
the program. Once the information has been provided, you can then use
Processor 11 to access these programs from your workspace just as if they
were APL functions.

© Copyright IBM Corp. 1984, 1994

External Names and Associated Processors

e Synchronous Access to System Information

Sometimes an application needs easy access to information about the host
system or from another application subsystem. Since information, like account
codes, varies widely among installations, it is impractical for APL to provide it
directly. You can use external names, however, to temporarily “escape” APL,
access the information, and bring back the results to the workspace for use by
the application.

¢ Improve Performance

It is common for an application to have a uniquely tailored data structure or
algorithm that is used widely by the application's own functions. This
application-specific feature often assumes a fundamental, what APL might term
“primitive,” nature and frequently becomes the bottleneck that limits either the
capacity or performance of the application. External objects can be used to
overcome such problems by permitting you to enclose the definition in compiled
code. Because external objects are syntactically equivalent to the APL object
from which they were derived, you need only replace the APL definition in the
workspace with the external name association; much like copying an object.
The remainder of the application is unmodified.

¢ Maintain Shared Code

Shared code is also important to installations because only a single copy need
exist in the system, no matter how many users are accessing it. This can sig-
nificantly reduce input/output and real storage requirements.

Sometimes an application is built on gate functions that control access to crit-
ical resources like files. These functions mask the application from the internal
structure, location, or other attributes of the resource so that these may be
changed in a transparent manner. If a gate function is modified, it must be
updated in all the saved workspaces where it exists. This can be a burden in
practice. However, since only the information that characterizes the association
is known about an external function in a saved workspace, an external function
can be replaced and be available to all subsequently activated application
workspaces.

¢ Avoid Name Conflicts

Users who attempt to combine APL applications or parts of applications
together often encounter situations where the same name exists in more than
one of the applications. Since names in the active workspace must be unique,
the applications must be modified to have unique names if they are to be com-
bined into a single workspace. Namespaces, supported through Processor 11
provide an alternative solution to this problem since each namespace contains
its own name space. Names need only be unique to the namespace in which
they reside.

¢ Increase Effective Workspace Size

Processor 11 permits the use of large applications, and Processor 12 permits
the use of large files, as if they resided within your own workspace. In fact, the
storage requirements within the workspace may be a small fraction of the size
of the file or application.

Chapter 26. External Names and Associated Processors 269

External Names and Associated Processors

Managing External Names from APL

The system function, [0V 4, is used to associate a name with a processor or to
query the association of an existing name. A formal and detailed description of
ONA is included in APL2 Programming: Language Reference.

Creating and Destroying an Association

Briefly, ONA in its dyadic form is used to associate a name with a processor. The
right argument lists the name or names to be associated with the processor and
then activated. The left argument of N A4 identifies the processor and provides
information that is passed to the processor when the name is activated. For
example:

0 11 ONA 'OPTION?
1

causes the name OPTION to be associated with Processor 11. The result, 1, indi-
cates that the name has been accepted by Processor 11 and the association is
active; a result of 0 would indicate the processor was unable to activate the associ-
ation due to an error, or perhaps due to a lack of resources. When a name is
successfully associated with a processor and activated, the processor specifies the
name class and valence (1 [OAT) for the name. The association, name class,
and valence remain in effect until the object is deleted from the workspace. The
association, name class and valence remain in effect even after using the com-
mands)SAVE,)LOAD, or)COPY. The information necessary to produce an
association is produced by 2 0OTF and)OUT foruse by 2 OTF or)IN.

A name may be disassociated from a processor by deleting it from the workspace
with OFX, YERASE, or by completing execution of a function that localized the
name. A name is also disassociated when)IN or)COPY replaces an associ-
ated object with another object of the same name.

When a name is disassociated from a processor, or when the active workspace is
replaced with)CLEAR,)LOAD, YOFF,or)CONTINUE, the processor is con-
tacted to allow it to free resources associated with that name. At this point the
name is said to be inactive, even though it may still be associated with the
processor in a workspace that was previously saved. If the workspace is subse-
quently reloaded, the processor is be contacted to reactivate the name when the
name is first encountered in the execution of an APL expression or in the right
argument of dyadic ONA. If the processor is unable to reactivate a name encount-
ered during the execution of an APL expression, a VALENCE ERROR or VALUE
ERROR generated.

270 APL2 Programming: System Services Reference

External Names and Associated Processors

Invoking an External Name

When a name that has been associated with a processor is encountered during
execution of an APL expression, control is passed, along with any arguments asso-
ciated with the operation, to the processor. The processor then manages the exe-
cution of the requested routine and returns results or an error condition to APL.

For example:
3 11 ONA '"MEAN' p AN AVERAGE FUNCTION
1
MEAN 1 2 3 4
2.5
O<«RESULT<«2+MEAN 1 2 3 4
4.5
MEAN 'ABCD'
DOMAIN ERROR
MEAN 'ABCD'

A

Names defined and associated with processors through the use of dyadic ONA
appear and act like any other names in the APL workspace. They are reported by
YNMS, Y)FNS,)VARS,)OPS, and ONL, and they may be used in APL
expressions. They are saved as part of a saved workspace and retain their name
class and association when subsequently loaded or copied. When such a name is
erased or otherwise deleted (as the result of localization,)COPY, JERASE, etc.),
it is no longer associated with any processor. Since the name is then undefined, it
is then available to be defined as an APL function, operator or variable, or associ-
ated with another processor.

Querying an Associated Name

Checking the Association Information
Monadic O/NA4 is used to query the name class and associated processor for one or
a list of names. For example:

3 11 0ONA 'GEORGE'
1

ONVA 'GEORGE'
3 11

The following expression lists all names that are associated with processors other
than APL:

(02,0 1+0NA ONL 1 2 3)/0NL 1 2 3
GEORGE
MEAN

Chapter 26. External Names and Associated Processors 271

External Names and Associated Processors

Checking for Active Associations

Dyadic (JNA can be used to query a previously associated name to find out if it is
currently active. A result of 1 indicates the association is active, while a result of 0
indicates that it is inactive. An inactive association is most likely to result after
loading a saved workspace. Usually, the processor can no longer find the file or
program requested by the association. An attempt to use a function whose associ-
ation is currently inactive results in VALENCE ERROR. For example:

ONA™ 'GEORGE' 'SALLY'
3 11 3 11
a GEORGE AND SALLY ARE
p 'ASSOCIATED' WITH PROCESSOR 11
(c3 11) ONA” 'GEORGE' 'SALLY'

a SALLY IS 'ASSOCIATED' BUT NOT 'ACTIVE'

SALLY 'GO ROUND THE ROSES'
VALENCE ERROR

SALLY 'GO ROUND THE ROSES'
A

Objects in the APL workspace that are not associated with an external processor
are associated with the APL interpreter, which can also be thought of as a
processor. Monadic ONA returns a 0 for the processor number for such names to
indicate that they are handled by the APL interpreter. For example:

VAR<1 2 3

OFX '"Z<FN A' 'Z<134"
FN

ONA 2 3p'VARFN !

20
3 0

Specifying processor 0 in dyadic ONA4, while valid, has no effect for an undefined

name:
2 0 ONA '"MARY'
0
ONA 'MARY!
0 0
ayvc 'MARY'
0

Avoiding Name Conflicts

A second, or surrogate, name may be used with the name of any object in monadic
or dyadic ONA:

3 11 ONA 'NANCY LIL'
1

In such cases, the first name, NANCY, is used to refer to the function in APL
expressions in the workspace. The second or surrogate nhame, on the other hand,
is used to identify the object, LT L, to the processor. Surrogate names are partic-
ularly useful when a processor requires a specific name that would cause a name
conflict with other names in the application.

272 APL2 Programming: System Services Reference

External Names and Associated Processors

Use of a wrong or conflicting surrogate name in dyadic ONA causes ONA to return
a 0 result. The OTF function can be used to determine the correct surrogate
name:

3 11 0ONA 'NANCY MCGILL'
0

2 OTF 'NANCY'
3 11 0ONA '"NANCY LIL'

Environmental Considerations

Associated Processors and any programs they may call execute as direct exten-
sions of the APL language. The programs themselves are presumed to be well-
behaved production programs. As such, they are expected to preserve the APL
execution environment and not compromise the integrity of the APL workspace. |If
an application requires isolation from the APL environment rather than the synchro-
nous behavior of external names, you should consider a solution based on shared
variables and Auxiliary Processors as described in Part 2.

While you are testing and debugging external functions, it is recommended that you
invoke APL2 with the DEBUG(1) invocation option. This causes any)¥ORE mes-
sages generated by an associated processor to be displayed automatically as soon
they are generated.

Chapter 26. External Names and Associated Processors 273

Processor 10

Chapter 27. Processor 10—Communication with REXX

REXX is a computer language available, like APL2, under CMS and TSO/E.

Processor 10 provides:

e Use of REXX functions as APL functions

e Access to REXX variables

e Manipulation of REXX programs as APL arrays

e Access to CMS files and MVS sequential data sets

This chapter provides a very brief introduction to REXX, and some examples of
using the REXX language, but does attempt to provide a tutorial on REXX.
Detailed information on REXX can be found in manuals supplied with CMS or
TSO/E.

Overview

The REXX language provides functions and variables, objects that are familiar to
users of APL. REXX functions are similar to APL monadic functions and REXX
variables are like APL character vectors. REXX communicates exclusively with
character strings so that not only REXX variables, but also the arguments and
results of REXX functions, are characters.

To use a REXX function from APL, you must first establish an association with
dyadic ONA (See [Using REXX Functions” on page 275). The function thus estab-
lished is monadic, and its argument is either a character vector or vector of char-
acter vectors (See [‘Constructing the Argument” on page 277). The function may
be built-in to REXX, part of a REXX function package, a REXX program in an
EXEC file, or a module. The result of invoking a REXX function successfully is
always a character vector. If REXX detects an error while interpreting the function,
the result is a numeric scalar giving the REXX return code. (See [‘Handling Results|
land Errors” on page 278).

As an example, consider the use of the REXX built-in functions DELWORD, FIND,
and WORDS that operate on blank-delimited substrings of vectors, called “words.”

DELWORD (string, offset,length)
deletes length words from string beginning at offset

FIND (string,target)
returns the offset in string of the target

WORDS (string)
returns the number of words in the string

274 © Copyright IBM Corp. 1984, 1994

Processor 10

1

3 10 On

DELWORD

Now time

Now 1is

Now 1is the time

20040

DELWORD

DELWORD

DELWORD

A DELWORD requires two arguments

(c3 10)

HERBS<+'
SUBHERB

FIND HERBS SUBHERBS

WORDS S

A NOTE THAT THE RESULT IS CHARACTER

2=WORDS

2=9WORD

A NOTE THAT CHARACTER RESULT CAN BE USEFUL

DELWORD

Parsley, and

[11
[2]
[31]
[u]

VZ<«PHRA

Z«STRING A ASSUME NOT FOUND

—)('0':
Z<DELWO
v

SUBHERBS REMOVE_FROM HERBS

Parsley, and

START OFF SIMPLY -----

A 'DELWORD'
'Now is the time' '2' '2!
'Now is the time' '3'
'Now is the time' '5!

'Now is the time'

See DMSREX475FE Error 40 message
NOW FOR A MORE PERENNIAL EXAMPLE -----
ONA™ 'FIND' 'WORDS'
Parsley, sage, rosemary and thyme'
S<«'sage, rosemary'

UBHERBS

SUBHERBS

S SUBHERBS

HERBS (FIND HERBS SUBHERBS) (WORDS SUBHERBS)

t hyme

COMBINE APL and REXX -----

SE REMOVE_FROM STRING;POSITION

POSITION<«FIND STRING PHRASE)/0 a - DONE IF NOT FOUND
RD STRING (POSITION) (WORDS PHRASE) a DELETE 'PHRASE'

t hyme

The example illustrates the basic technique for building APL applications that use
REXX functions. Although the example limited itself to built-in REXX functions, you
may also access REXX external functions. These external functions may be written
as modules or as REXX programs. By writing your own functions in REXX, you
can enhance the power of APL with the string handling and system access of
REXX.

Detailed Description

This section provides a detailed description of how you can use processor 10.

Using REXX Functions

Before you can invoke a REXX function, you must first use dyadic ONA to asso-
ciate the name of the function with Processor 10. Processor 10 nearly always
accepts a name association from ONA provided there is virtual storage available to
build any required internal control blocks. Since there is no way for Processor 10
to validate the existence of any REXX function, it assumes that you know what
you're doing and returns a 1 to show that the association is active.

Chapter 27. Processor 10—Communication with REXX 275

Processor 10

Processor 10 expects that the first item in each row of the left argument of dyadic
ONA be the name class of the name to be associated with Processor 10. Name
classes of 1, 2 and 3 are valid.

3 10 ONA 'DELWORD'
1

requests association with the REXX function DELWORD.
2 10 ONA 'SYSTEM!

1 10 ONA 'VERSION'
1

request association of the variable SYSTEM and the constant VERSION. If 0 is
specified as the first item of a row in the left argument of ONA and if the name
already exists, Processor 10 assumes the correct name class. If the name does
not exist, it assumes the name class 3.

Because names (and surrogate names) used with 0N A must also be valid, ordinary
APL names, you cannot directly access REXX functions whose names contain the
characters '#.$@!&?'. If you need to use a function that has any of these charac-
ters, you can easily write a REXX function that has a valid APL name and invoke it
to use the other function.

Processor 10 also provides a set of built-in functions for use in manipulating REXX
programs and files. The names of these built-in functions are distinguished by
beginning with the character 'A'. They are described in [‘Built-in Functions” on|

External names persist in the workspace. Once you have associated a name with
a REXX function, you can continue to use the function (as long as the REXX inter-
preter can find it) just as if it were a defined function in your workspace.

When the function is invoked, Processor 10 calls REXX to execute it. If the func-
tion is built-in to REXX, REXX executes it directly. Otherwise REXX searches for
an external REXX function of that name.

Under CMS, REXX searches for an external function by first prefixing the name
with 'RX" and searching for a module or function package. If the prefixed name is
not found, REXX uses the name without a prefix to search for an EXEC or
MODULE. If the function still cannot be found, then REXX returns a numeric 20043
(Routine Not Found) as the result.

Under TSO/E, REXX searches for an external function by looking for a partitioned
data set member of the same name in the DDNAMES SYSEXEC and SYSPROC.
The member must include a comment in the first line containing the word 'REXX'.
If the function still cannot be found, then REXX returns a numeric 20043 (Routine
Not Found) as the result.

276 APL2 Programming: System Services Reference

Processor 10

Constructing the Argument
The argument to a REXX function contains from 1 to 20 items. Each item may be
either:

* A string—that is, a character vector or scalar
or
e Omitted—indicated by either:
1. (10) - an empty numeric vector

2. (0pc' ') -an empty enclosed character vector. The vector is enclosed
because empty character vectors are valid REXX strings.

For example, the function USERID expects no strings at all and would be invoked
in a REXX program with USERID(). To invoke it from Processor 10, you must
provide an argument that contains one omitted string. An omitted string is not the
same as an empty one.

3 10 ONA 'USERID'

USERID 10
WHEELS

USERID "'
20040

The argument is always a character vector in form, even though the intent of the
argument may be numeric. For example, the REXX function SUBWORD expects
at least two strings: a list of words, and the index of the first word to be returned.

3 10 0ONA 'SUBWORD'

X<2
SUBWORD 'Now is the time' X
DOMAIN ERROR
SUBWORD 'Now is the time' X
A
A But it is easy to use the FORMAT primitive
SUBWORD 'Now is the time' (3%X)
is the time

All of the items of the argument to a function must be character vectors or scalars.

SUBWORD 'Now is the time' (1 2p' 2')
RANK ERROR

SUBWORD 'Now is the time' (1 2p' 2')

A

If you attempt to invoke a REXX function with an argument consisting of more than
20 strings, Processor 10 signals an APL error.

SUBWORD 21pc'FRED'
LENGTH ERROR

SUBWORD 21pc'FRED'

A

Chapter 27. Processor 10—Communication with REXX 277

Processor 10

If you provide either too few or too many strings for a specific function, REXX gen-
erates Error 40, which is returned to APL as a numeric return code.

SUBWORD 1pc'FRED'
20040

This can sometimes happen inadvertently if you forget that when simple scalars are
juxtaposed, you get a simple vector, not a nested vector.

DELWORD 'A B' '2!

A
DELWORD 'A ' '2!
A
DELWORD 'A' '2!
20040
|A| |2|
A2
5]
@ USE OF 'RAVEL EACH' WILL OVERCOME THIS
3]
DELWORD ,~ 'A' 12!
A

Handling Results and Errors

The result of a successful REXX function is always a character vector. If the result
is needed in a numeric context, you can use one of the APL EXECUTE functions
(e ,0E4 ,0EC) or the CTN function of Processor 11 to convert from character to
numeric.

Some REXX functions return a character vector that is really several strings joined
together by a separator character; the New-Line character (x'15"'), for example.

An example of this under CMS is the DIAG function, which can return the results of
a CP command. You can use the PARTITION function (<) to convert such a
partitioned string into an APL vector of vectors.

Other REXX functions, such as STORAGE under CMS, are capable of returning a
vector that might represent a structure of data containing both numbers and charac-
ters. You can often use the RT'A function of Processor 11 to remap such data into
an APL2 general array.

There are two classes of errors that can occur using Processor 10: either an APL
error in the workspace, or some kind of REXX error outside of APL.

The first situation usually is caused by an attempt to invoke the function with some-
thing other than a character vector. The error may be reported as DOMAIN,
RANK, or LENGTH (see[*Constructing the Argument” on page 277).

REXX errors are typically some sort of syntax error in a REXX EXEC producing a

value in the range 20001 through 20100. These are always returned as a numeric
scalar result, so if you check for such a result you can always positively determine
if an error occurred.

278 APL2 Programming: System Services Reference

Processor 10

Accessing REXX Variables and Constants

REXX has a direct interface to its current variable pool through the EXECCOMM
subcommand interface under CMS, or IRXEXCOM under TSO/E. The interface
permits you to inspect or change the value of REXX variables in the pool. In addi-
tion, there are constants in the pool that contain status information such as the
level of REXX, the source of the active EXEC, etc. Since REXX limits access only
to variables of the most current program, this facility is principally of value in an
application where an EXEC invokes APL and wants to communicate parameters or
get return codes.

The EXECCOMM and IRXEXCOM interfaces are available only when REXX is
active. Thus REXX variables and constants can only be accessed when APL2 has
been invoked from a REXX exec.

Associating Names

Before you can use a REXX variable, you must first use dyadic ONA to associate
the name of the variable with Processor 10. Processor 10 accepts a name associ-
ation from ONA as long as there is virtual storage available to build the required
internal control block and as long as the EXECCOMM subcommand or IRXEXCOM
has been made available by REXX. If the EXECCOMM or IRXEXCOM environ-
ment is not available when a request is received to associate a name with a vari-
able or constant, Processor 10 queues the following messages and returns 0 to
ONA.

Under CMS:
AP2VNO1011 EXECCOMM UNAVAILABLE

Under TSO/E:
AP2TNO1011 IRXEXCOM UNAVAILABLE

This message displays in response to)MORE.

Name Length: REXX limits name length to 250 characters. Processor 10,
however, only enforces the APL limit of 255 characters. Use of a hame that is
between 250 and 255 characters in length results in SYSTEM ERROR with OET
setto 1 2.

Character Set: Because names (and surrogate names) used with ONA must also

be valid ordinary APL names, you cannot access REXX variables whose names
contain the characters ‘#.$@!&?’.

Chapter 27. Processor 10—Communication with REXX 279

Processor 10

Name Class: Processor 10 uses the name class provided by you to decide how
to reference the variable. Name class 1 (constant) is used to refer to REXX Private
Information while name class 2 (variable) denotes other data. You must specify
one of these classes if want to access data through EXECCOMM and IRXEXCOM.
If Processor 10 is given name class 0 with a name, it assumes that you want a
function and return a 3 as the name class to APL.

1 10 ONA 'VERSION'

VERSION
REXX370 3.46 31 May 1988

2 10 0ONA '"FRED'

1
FRED

VALUE ERROR+
FRED
A
FRED<'ABC'
FRED

ABC

Stemmed Variables: REXX stemmed variables are accessed by coding 'A'
instead of ' . "' in the name. For example, 2 10 [ONA 'FREDA2' accesses
the REXX variable FRED.2 in the current pool.

Uninitialized Variables: Processor 10 permits you to have an association with an
uninitialized variable, but causes a VALUFE ERROR if you attempt to reference it
before setting a value.

Values

REXX deals exclusively in character strings. An attempt to assign anything other
than a character vector or scalar to a REXX variable results in SYSTEM LIMIT
with JET setto 1 12 to indicate an unrepresentable value.

If an uninitialized REXX variable is referenced, then Processor 10 signals VALUE
ERROR with JET setto 3 1.

When APL ends the association with the name, it remains defined to REXX. This
is important for applications that need to return results to a REXX program, but it
means that there is no way to use Processor 10 to drop a REXX variable.

Built-in Functions

Processor 10 provides a limited set of built-in functions to aid the manipulation of
REXX files by applications. Functions are provided to read and write CMS files or
MVS sequential data sets, query file or data set status, and execute REXX pro-
grams that are contained in APL2 arrays. All built-in functions begin with the char-
acter 'A'.

280 APL2 Programming: System Services Reference

Processor 10

Reading and Writing CMS Files
The built-in functions 'AFM' and 'AFV"' read and write CMS files directly to and
from APL arrays.

* Reading Files

AFM o Reads afile 'w' and returns a matrix. For files with variable length
records, records are padded on the right with blanks to the length of
the longest record.

AFV w Reads a file 'w' and returns a vector of vectors. Trailing blanks in
any record are deleted.

* Writing Files

o AFM w Writes the data from the matrix or vector of vectors 'o.' to the
file 'w'. A file with fixed-length records is created by padding
the records with blanks as necessary.

o AFV w Writes the data from the matrix or vector of vectors 'a' to the
file 'w'. A file with variable length records is created. Trailing
blanks in each record are deleted.

When a file is written, if a file of the name 'w' already exists the original file is
erased and a new file is created. Thus AFM always writes a file with fixed
length records, and AFV always writes a file with variable length records.

In the above, the argument 'w' is a character string containing the file name, file
type, and file mode separated by blanks. File type and file mode default to '+ ' for
reading. File mode defaults to 'A"' for writing.

AFM and AFV return a character matrix or vector of vectors if a file is successfully
read, or a numeric return code if a file is written or if the operation results in a CMS
file system error. A complete description of the CMS file system return codes can
be found in the description of the file system macros in the VM manuals. The most
common return codes are:

0 Successful operation

12 Attempt to write on read-only disk

13 Disk is full

17 Record length exceeds 65,535 characters
20 Invalid character in fileid

28 File not found

36 Disk not accessed

Chapter 27. Processor 10—Communication with REXX 281

Processor 10

In the following example, a function is created to return CMS disk statistics.

X<'TRACE ''0'' ' 'Q DISK ARG(1) ''(LIFO''' 'PULL R' 'PULL' 'RETURN R'
3 10 ONA '"AFV!
1
X AFV 'DISKQ EXEC A'
0
3 10 ONA 'DISKQ'
1
DISKQ ‘A"
JAG191 191 A R/W 10 3380 102u 177 3528-76 1121 465
3]
a MODIFY FUNCTION TO REMOVE DUPLICATE BLANKS
A
SAFV 'DISKQ'
TRACE '0°'
@ DISK ARG(1) '(LIFO'
PULL R
PULL
RETURN R

Y«AFV 'DISKQ'
T14Y
RETURN R
(T14Y)<<'RETURN SPACE(R)'
Y AFV 'DISK@ EXEC A'
0
DISKG 'A!
JAG191 191 A R/W 10 3380 1024 177 3530-76 1118 4650

Reading and Writing MVS Sequential Data Sets
The built-in functions 'AFM' and 'AFV' read and write MVS sequential data sets
(or members of a partitioned data sets) to and from APL arrays.

e Reading Data Sets

AFM w Reads a sequential data set 'w' and returns a matrix. For data sets
with variable length records, records are padded on the right with
blanks to the length of the longest record.

AFV w Reads a sequential data set 'w' and returns a vector of vectors.
Trailing blanks in any record are deleted.
e Writing Files

o AFM w Writes the data from the matrix or vector of vectors 'a' to the
sequential data set 'w'. If the data set does not already exist, a
sequential data set with fixed-length records is created.

o AFV w Writes the data from the matrix or vector of vectors 'o.' to the
sequential data set 'w'. If the data set does not already exist, a
sequential data set with variable length records is created.

When writing to a data set that already exists, the data set is not reallocated.
The record format and other data set attributes are not changed.

When writing to fixed length data sets, records are padded with blanks as nec-
essary.

When writing to variable length data sets, trailing blanks are dropped before
records are written.

282 APL2 Programming: System Services Reference

Processor 10

In the above, the argument 'w' is a character string containing the data set name.
The character string should include beginning and ending quotes when the name is
fully qualified. The profile prefix is added if the name does not start with a quote
character. A member name must be included in parentheses if a PDS is to be
accessed.

AFM and AFV return a character matrix or vector of vectors if a data set is suc-
cessfully read, or a numeric return code if a data set is written or if the operation
results in an error.

The possible return codes from AFM and AFV under TSO/E are:

0 Successful operation

12 Data set not available

13 No space available

16 Data set cannot be processed through REXX

17 Lrecl exceeds 32760 or is O

20 Invalid data set name

28 Data set not found

New Data Set Allocation Considerations Under TSO

AFM If a data set is to be written that does not already exist, one is allocated on
a default DASD device using record format FB (other record formats are
supported for existing data sets.)

The LRECL is set to the number of columns in the matrix being written.

The BLKSIZE is set to the LRECL if the LRECL is larger than 7250. If the
LRECL is less than 7250, the BLKSIZE is set to the largest integer mul-
tiple of the LRECL that is less than or equal to 7250.

If the data set is a simple sequential (not partitioned) data set, the primary
SPACE is set to the number of bytes in the matrix, plus 25%. If the data
set is a partitioned data set, the primary SPACE is set to 16 times that
size.

The secondary SPACE is set to half the primary SPACE.
If the data set is a partitioned data set, the DIR is set to 60.

AFV If a data set is to be written that does not already exist, one is allocated on
a default DASD device using record format VB (other record formats are
supported for existing data sets.)

The LRECL is set to 4 plus the length of the longest vector being written if
that number is greater than 259; otherwise the LRECL is set to 259.

The BLKSIZE is set to 4 plus the LRECL if that number is larger than
7250; otherwise the BLKSIZE is set to 7250.

If the data set is a simple sequential (not partitioned) data set, the primary
SPACE is set to the number of bytes in the vectors, plus 25%. If the data
set is a partitioned data set, the primary SPACE is set to 16 times that
size.

The secondary SPACE is set to half the primary SPACE.

Chapter 27. Processor 10—Communication with REXX 283

Processor 10

If the data set is a partitioned data set, the DIR is set to 60.

Querying a CMS File Status

The function AF w returns file status information obtained from CMS FSSTATE
macro (in the FST and ADT data areas). Its argument 'w' is a character string
containing the file name, file type, and file mode separated by blanks. File type
and file mode default to ' *'. The result of AF is a nine-element nested vector with
the following contents:

1 - File Identification.
20 element character vector of file name, file type, and file mode

2 - Record Format.
Character scalar from FSTRECFM ('F' or 'V")

3 - Record Length.
Integer scalar from FSTLRECL

4 - Number of Records.
Integer scalar from FSTAIC

5 - Number of Data Blocks.
Integer scalar from FSTADBC

6 - When Last Written.
Seven element APL time stamp from FSTATADI

7 - Disk Label.
Six element character vector from ADTID

8 - Disk Mode (and parent).
Two element character vector:

e A 'W' if writable disk, an 'R' if read-only, or an 'E' if a read-only
extension.

and
e A ' ' if writable disk, otherwise the mode letter of the parent disk.

9 - Disk Block Size.
Integer scalar from ADTDBSIZ

3 10 0ON4 'AF?

9 1pAF 'LIBTAB APL2'
LIBTAB APL?2 D1
14
61
46
2
1984 1 26 14 37 29 0
CMS192
W
1024

If a CMS file system error occurs during the execution of AF, a numeric return
code is returned instead of the character result. See [‘Reading and Writing CMS|
[Files” on page 281|for additional information.

284 APL2 Programming: System Services Reference

Processor 10

Querying an MVS Data Set Status

The function AF w returns status information about an MVS sequential data set, or
a member of a PDS. Its argument 'w' is a character string containing the data set
name, constructed following the same rules as a data set name for AFM or AFV.
The result of AF is a nine-element nested vector with the following contents:

1 - File Identification
56 element character vector containing the data set name

2 - Record Format.
2 element character vector: first element 'F' or 'V', second element ' ' or
IBI

3 - Record Length.
Integer scalar

4 - Number of Records.
Integer scalar

5 - Number of Data Blocks (unknown).
one element character vector: '?'

6 - When Last Written (unknown).
one element character vector: '?'

7 - Disk Label (unknown).
one element character vector: '?'

8 - Disk Mode (not applicable).
one element character vector: '?'

9 - Block Size.
Integer scalar

If an error occurs during the execution of AF, a numeric return code is returned
instead of the character result. See [Reading and Writing MVS Sequential Data|

[Sets” on page 282 for additional information.

Executing APL Arrays as REXX Programs

o AEXEC w Executesthe REXX program contained in 'a' with the items of
'w' as the argument strings. 'a' is a character vector, matrix, or
vector of vectors containing the REXX program. 'w' is a vector of
1 to 10 character vectors that are the strings passed as arguments
to the REXX program.

The right argument of AEXE C does not include the 'name’' of the EXEC. In
effect, the temporary program contained in the left argument array is invoked in the

same way as described in fUsing REXX Functions” on page 275|

The 'AF' and 'AEXEC" built-in functions provide the basis to build tools for main-
taining and testing REXX EXECs.

Note: You can use APL operators like EACH (~) with AEXEC to test a REXX
function with many combinations of arguments or use operators with AFM to
compare the results of different EXECs on the same arguments.

The following APL function demonstrates the use of AEXEC in an application that
issues a CMS command but suppresses any output.

Chapter 27. Processor 10—Communication with REXX 285

Processor 10

VQUIET_CMDLOIV
v
[0] Z<QUIET_CMD CMD;AEXEC;X
[1] OES(1%3 10 ONA 'AEXEC')/'AEXEC UNAVAILABLE®

[2] =~

[31] A SEE VM REXX MANUALS FOR INFO ON HT AND RT
(4]

[5] A ISSUE COMMAND BUT SUPPRESS OUTPUT

[6] =~

[71] X<«c'TRACE ''0'"!
[81] X<«X,c'TF=CMSFLAG(CMSTYPE)"
[9] X<«X,c'"IF TF THEN ''SET CMSTYPE HT'' '
[10] X<«X,c'''"'""ARG(1)"
[11] X<«X,c'R=R(C"
[12] X<«X,c'IF TF THEN ''SET CMSTYPE RT'"' !
[13] X<«X,<'RETURN R'
[14] Z<«eX AEXEC CMD
V 1984-05-30 8.51.14 (GMT-4)

QUIET_CMD 'STATEW x * A

0

QUIET_CMD 'STATEW * x B!
36

QUIET_CMD 'STATEW = = S!
28

Unexpected Errors and Other Considerations

This section discusses unexpected errors and other programming considerations.

Failure when Associating a Name

You cannotdoa 2 10 [WNA association with an already existing variable (even if
it is a character string). The following example fails:

FILEID<«'TEST SCRIPT A"
2 10 ONA '"'FILEID'
0

but this example works:
2 10 ONA '"FILEID'

FILEID<'TEST SCRIPT A'

For variables, there is an additional requirement that the EXECCOMM subcom-
mand or IRXEXCOM be declared by REXX as described in [‘Associating Names” on|
page 279

Under CMS, be careful to ensure that EXECCOMM was established by REXX and
not by EXEC2. Processor 10 operates only with REXX.

286 APL2 Programming: System Services Reference

Processor 10

APL Errors
e DOMAIN ERROR, RANK EFRROR, LENGTH ERROR

These errors generally indicate a problem with the argument. REXX communi-
cates exclusively with character strings. The arguments to any function associ-
ated with Processor 10 must be APL character vectors or vectors of vectors.

(See[‘Constructing the Argument” on page 277|and [‘Handling Results and|
[Errors” on page 278).

e VALENCE FERROR

This error is generated when APL invokes a function and either:
1. The association is not active

An association is inactive whenever 0 is the result of applying dyadic O~NVA
to the name. It means that Processor 10 cannot accept the name. This
could happen after loading a saved workspace and invoking a function
associated with Processor 10 for the first time.

or
2. The wrong number of APL arguments was given.

Processor 10 defines all REXX functions as monadic APL functions so APL
would cause this error if the invocation is dyadic. A common cause of this
when you compose a line in REXX-style using blanks to concatenate
strings. APL employs the comma for catenation.

Non-APL Error Messages
REXX, CMS, CP, or TSO may issue messages while executing your request.
Without APL2's session manager, such messages are intermixed with your APL
output. With APL2's session manager, these messages cause a 3270 terminal to
leave APL2's session manager mode to display the message. In addition, this
message does not become part of APL2's session manager Log.

The following is an example of a common REXX error as it would appear with
session manager off:

3 10 [ONA 'INDEX'

1

INDEX 'FRED' 'R'
2

INDEX 'FRED'
20040

REXX Return Code 20040

This can be a cryptic REXX return code. It normally indicates that the function has
been invoked with the wrong number of arguments. If that does not seem to be the
case, you may want to note the following three situations.

1. Simple scalars

A list of APL simple scalars is a simple vector. If all the items forming the
argument to a REXX function happen to be simple scalars, then the argument
is not a vector of vectors, but a simple vector. This can be remedied by using
. that always creates a vector of vectors from a simple vector.

Chapter 27. Processor 10—Communication with REXX 287

Processor 10

2. Commas and Blanks

It is easy to confuse the use of commas and blanks when trying to simultane-
ously program in REXX and APL. See|“Missing” Argument Strings.”|

3. Old CMS commands

Most CMS commands were not designed to be invoked as REXX functions. If
by accident you invoke a command that is not designed to be a REXX function,
it is normally unable to successfully analyze its operands and returns an error
as well as print a message on the terminal. REXX interprets the error code to
mean the program was invoked improperly and itself returns a numeric 20040
(Incorrect Call to Routine).

3 10 ONA 'STATE'

STATE 'OF UNION'
20040

You can, however, use the built-in function 'AEXEC' to execute such a
command.

3 10 ONA 'AEXEC'

'STATE OF UNION' 'RETURN RC' AEXEC 10
28

Note: The ‘28’ is two characters and not a number. Had the clause
'"RETURN RC' been omitted, the result would have been numeric 0, indi-
cating that REXX had successfully completed execution.

“Missing” Argument Strings
Comma and blank mean decidedly different things to REXX than they do to APL. It
is reasonably accurate to say that REXX's use of a comma is like APL's use of a
blank and vice versa. The two facilities are catenation and string separation. APL
uses a comma for catenation and a blank for string separation. REXX uses a blank
for catenation and a comma to separate strings when invoking functions.

288 APL2 Programming: System Services Reference

Processor 10

A 3 COMMAS IN REXX REQUIRES 3 STRINGS FROM APL

]

'PARSE ARG X , Y , Z' 'RETURN Y' AEXEC 'AB' 'CD' 'EF'
CD

A REMOVING COMMAS IMPLIES 1 STRING TO REXX

] WITHOUT THEM 'CD' AND 'EF' SEEM INACCESSIBLE

A

'PARSE ARG X Y Z' '"RETURN Y' AEXEC 'AB' 'CD' 'EF'

'"PARSE ARG X Y Z' 'RETURN X' AEXEC 'AB' 'CD' 'EF'
AB

]

A IF YOU REMOVE COMMAS FROM REXX,

] USE A SIMPLE APL VECTOR

'PARSE ARG X Y Z' '"RETURN Y' AEXEC 'AB CD EF"
CD

a THE OTHER MISTAKE IS JUST AS EASY TO MAKE

A 3 COMMAS IN REXX REQUIRES 3 STRINGS FROM APL

] S0 1 STRING FROM APL BECOMES 'X'

'PARSE ARG X , Y , Z' '"RETURN X' AEXEC 'AB CD EF"

AB CD EF

Truncated Data Returned under TSO/E

APL2 under TSO/E allocates a buffer of 2048 bytes for data returned from REXX
functions. If REXX is already active when processor 10 is used, and a function
generates more bytes of data than fit in the buffer, then REXX for TSO/E does not
allow APL2 to dynamically allocate a larger buffer for the data. If this occurs,
Processor 10 produces a SYSTEM ERROR and no result is returned.

Your installation may change the size of the buffer APL2 allocates to something
other than 2048 bytes by using the P10EVSZ parameter of the AP2TITOP macro in
the AP2TIOPT or AP2TIOPX options modules.

Other Considerations
Processor 10 uses standard REXX interfaces from an APL environment. REXX
programs that make assumptions about the environment in which they run may
behave differently.

Environment

REXX programs that alter the environment when invoked and do not restore it
when finished may cause unpredictable failures in APL. In particular, the following
areas must be carefully considered when using REXX applications.

e Error Recovery

REXX provides no error recovery for program checks and ends abnormally
when one occurs. If that happens, APL2 error exits gain control. System
resources, like storage acquired by the REXX program, cannot be recovered by
APL2. In most cases, the APL2 session can continue unaffected, but there is
no way APL can guarantee the integrity of the CMS or TSO/E system.

Chapter 27. Processor 10—Communication with REXX 289

Processor 10

e Terminal Handling

REXX programs may read from and write to the terminal, but they should not
disturb the terminal handling environment. If a REXX program needs to control
attentions and immediate commands, you should use it through the Host
System Command Processor (AP 100) rather than through Processor 10.

Programs that operate in full-screen mode may need to be modified to refresh
the screen when invoked from APL with the Session Manager.

Compiled REXX

REXX Execs can be compiled into either EXECs or MODULEs on CMS and
used with no change.

REXX Execs can be compiled into either EXECs or MODULEs on TSO and
used with no change also. However, on TSO, the object file produced by the
compiler must be link-edited with a stub module. Four stub modules are pro-
vided with the REXX/370 compiler. Different stubs are used depending upon
what sort of environment is going to be used to call the routine. Only two stubs
can be used if the routine is going to be called from APL2 through P10.

The names and uses of the stub modules are:

Name Use Useable with P10
EAGSTCAL CALL Command Yes

EAGSTCPP CPPL No

EAGSTEFP EFPL Yes

EAGSTMVS MVS No

Figure 89. REXX Interface Stubs

For further information about compiling REXX programs, consult the REXX
compiler manuals.

290 APL2 Programming: System Services Reference

Processor 11

Chapter 28. Processor 11—Calling Compiled Programs

Processor 11 provides facilities that allow access to objects outside the active work-
space that are either objects in APL2 namespaces or are routines written in lan-
guages other than APL2. Non-APL routines may be functions or operators and
may be any valence just like APL2 defined functions and operators. Once access
to a routine is established through Processor 11, the routine is treated like a locked
APL function or operator.

This chapter describes access to routines written in languages other than APL2.
The beginning of the chapter describes how to access non-APL routines from
APL2, and gives an overview of the services provided by Processor 11. The
middle portion of the chapter explains how the different facilities are used to design
and prepare non-APL routines for use from APL2. The rest of the chapter gives
detailed descriptions of the interfaces available to non-APL routines, and is
intended for readers who are writing such routines. Access to APL objects in
namespaces is described in[Chapter 29, “Processor 11—Access to Namespaces’|

fon page 334

There are several reasons why it is desirable to be able to call non-APL programs
from APL2:

* Access operating system services that are unavailable from APL2

» Use of preferred language
* Reuse of existing non-APL program libraries
e APL2 provides an interactive environment for calling programs.

» Performance bottlenecks in APL applications can be recoded in compiled lan-
guage for improved overall application performance.

No changes to most existing C/370, PL/I, Fortran, or Assembler Language routines
are required to access them from the APL2 environment under either VM/CMS or
MVS/TSO. APL2 and Processor 11 manage the necessary housekeeping and
argument and result conversion based upon descriptive information provided for
each routine by the user.

Routines can be written that receive arguments and return results using standard
operating system, Fortran, or some C/370 conventions. Routines can also be
written to use APL2 conventions. The APL2 conventions provide additional argu-
ment information such as data type, shape, and length. All non-APL routines are
given access to services that can be used to access the APL2 workspace and
operating system services.

APL2 also includes a programming interface called APL2PI that can be used to call
APL2 from programs written in other high-level languages. APL2PI provides the
ability to start APL2, make calls to execute expressions, retrieve results, switch
namescopes, and terminate APL2. APL2PI is discussed in APL2/370
Programming: Processor Interface Reference.

© Copyright IBM Corp. 1984, 1994 291

Processor 11

ONA Syntax for Non-APL Programs

The APL2 system function VA is used to establish an association between a
workspace name and an external routine that Processor 11 manages. The syntax
of the N4 function can take four forms.

The first two forms are used only with self-describing non-APL routines and objects
in APL2 namespaces.

* A load library name and a member name may be specified in the left argument
of ONA.

'1ib.memb' 11 0ONA 'gnaname'

This directs Processor 11 to load member memb from 11ib LOADLIB * on CMS
or from the load library currently allocated to ddname 1 ib on TSO.

e Just a member name may be specified in the left argument of ONA.
'memb' 11 0ONA 'gnaname'

This directs Processor 11 to load member memb using the default search
order. Consult[Processor 11 Routine Search Order Guidelines” on page 325|
for information about Processor 11's search order rules.

The second two forms always cause Processor 11 to read a NAMES file. They
may be used with self-describing routines.

e The CMS filename or TSO ddname of a private NAMES file may be specified
between parentheses in the left argument of ONA.

'"(private)' 11 0ONA 'gnaname'

This directs Processor 11 to search private NAMES * on CMS or the
NAMES file library allocated to ddname private on TSO for a names file
entry for the external routine gnaname.

e The name class of the object may be specified in the left argument of ONA.
3 11 0ONA 'gnaname'

This directs Processor 11 to search the default NAMES files for a names file
entry for the external routine gnaname.

Surrogate names may be used to avoid name conflicts in the current namescope.
For example:

3 11 ONA 'OBJNAME EXTNAME'

could be coded to associate the name 0BJ NAME with the external routine
EXTNAME.

Processor 11 Overview

Processor 11 manages the interface between the APL2 active workspace and
non-APL routines outside the workspace. Processor 11 has the responsibility to
load the non-APL routine, translate arguments from the APL2 workspace to a form
the non-APL routine can work with, call the non-APL routine, and translate the rou-
tine's results to a form the APL2 interpreter can work with.

Conceptually, non-APL routines are merely called by Processor 11. Every time the
user executes an expression that mentions the non-APL program, Processor 11 is

292 APL2 Programming: System Services Reference

Processor 11

called by the APL2 interpreter and it in turn calls the routine. Processor 11 requires
several types of information to perform this task.

Processor 11 needs to know about the arguments and results for each routine it
calls. Since Processor 11 translates arguments from APL2 workspace format to
the non-APL routine's format, it needs to know what format the routine is expecting.
Likewise, when the routine returns results, Processor 11 needs to understand their
format to be able to translate them to a workspace format.

Before Processor 11 can call a routine, it must locate the routine. Routines typi-
cally reside in modules and modules can reside in load libraries. Modules can
contain multiple routines and libraries can contain multiple modules. For each
routine Processor 11 calls, it needs to be informed what library and module contain
the routine and where the routine is located within the module.

Processor 11 also needs to know about any special environments required by the
routines it calls. Some language compilers produce programs that start and
depend on environments. Processor 11 can be instructed to run a program to start
an environment on behalf of a routine and leave it running until it is no longer
needed.

Finally, Processor 11 can call programs using a variety of linkage conventions.
These conventions provide different formats for arguments and results and provide
different levels of access to the APL2 interpreter. Processor 11 needs to know
what convention to use when calling a routine.

This chapter describes each of these topics in detail:

» Associating APL workspace names with external routines
e Argument and result descriptions

¢ Routine location

e Environments

» Linkage conventions

The information is introduced using a series of examples that demonstrate the uses
of each of Processor 11's facilities.

Introduction

Processor 11 provides a wide variety of facilities for preparing and using non-APL
routines. These facilities and the routines they support can be quite complicated.

To facilitate accurate descriptions of the facilities, here is a short glossary of terms
that are used in APL2 publications for referring to Processor 11 concepts.

Processor 11 Glossary

Non-APL Language Concepts

program. A set of computer instructions. Programs start any environment that
they may require. The requirement of an environment is usually predicated by the
language in which the program is written.

subroutine. A set of computer instructions that requires a environment to be
active. An appropriate program must have been run prior to use of a subroutine.

routine. A generic term used to refer to both subroutines and programs.

Chapter 28. Processor 11—Calling Compiled Programs 293

Processor 11

module or member. A member of a TSO partitioned data set or CMS loadlib file,
or a CMS module file. A module can contain one or more routines. The term
member is used interchangeably with module in many cases.

environment. An environment established by a program that persists across mul-
tiple calls to one or more subroutines. Environments usually provide services to
subroutines such as virtual storage allocation, file access, and error recovery.

environment program. A program that initializes anr environment.
Processor 11 Concepts

routine description. Information that informs Processor 11 how a routine should
be found and used. Each routine must have a corresponding routine description.

NAMES file. A human readable file containing one or more routine descriptions.

self-describing. An adjective applied to routines that contain their own routine
descriptions.

routine list. An object file used for informing Processor 11 of the names and
locations of the routines within a module.

linkage convention. The convention specified for a routine that Processor 11
uses to call the routine. Depending on the linkage convention, processor 11
passes arguments, receive results, and provides access to APL2 services using dif-
ferent techniques. Three conventions are provided: OBJECT, FORTRAN, and
FUNCTION. They are used for programs using standard, Fortran, and APL2 entry
and exit linkage conventions respectively.

interface management routines. Routines that assist Processor 11 in managing
the interface between APL2 and non-APL routines.

APL2 Tools

BUILDRD. An APL2 function that builds a routine description in object file form
that is suitable for link-editing with a routine to make the routine self-describing.

BUILDRL. An APL2 function that builds a routine list in object file form that is
suitable for link-editing several routines together into a single module.

AP2XCMAP. An interface management routine supplied with APL2 to help call
C/370 programs.

AP2TNL and AP2VNL. Programs supplied with APL2 that are used by environ-
ment programs to pass control back to APL2 without terminating. AP2TNL is used
on TSO; AP2VNL is used on VM.

AP2MP11L and AP2MP11M. EXECs that can be used to link-edit one or more
routines, their corresponding descriptions, and a routine list into a useable member
of a load library or a CMS module.

Many of these terms refer to information or programs that you must supply to use
Processor 11. However, defaults are provided for many of them. Depending on

294 APL2 Programming: System Services Reference

Processor 11

your external routine, you may need to concern yourself with only a few of these
definitions.

Usage Overview

Routine Descriptions

Our first example of a non-APL routine demonstrates Routine Descriptions. Each
non-APL routine to be called using Processor 11 must have a routine description.
Processor 11 requires specific pieces of information be supplied for each routine.
For each of these pieces of information, a different tag is used in the routine
description to supply the data. Tags have a form that is familiar to Script users.
For example:

:DESC.Sample Tag

In this example, the :DESC. portion is the tag name. Each tag starts with a colon
and ends with a period. The tag name can written in upper-, lower-, or mixed-case
format. The Sample Tag portion is the data supplied with the tag. The :DESC. tag
is used for routine description comments. As with most of the tags, the :DESC. tag
is optional. If an optional tag is omitted, Processor 11 provides default values
based on other information.

Here is an Assembler routine to add three numbers.

* Routine to add three integers

ASMADD CSECT
ST™M
L

rrr

L
AR
AR
ST
LM
BR
END

14,12,12(13) Save registers

2,0(,1) Retrieve address of first argument
3,0(,2) Load first argument

4,4(,1) Retrieve address of second argument
4,0(,4) Load second argument

5,8(,1) Retrieve address of third argument
5,0(,5) Load second argument

3, Add first two arguments

3, Add third argument to result
3,0(,2) Replace first argument with result
14,12,12(13) Restore registers

14 And return to caller

Figure 90. Assembler routine to add 3 integers

Note: Don't worry if you aren't familiar with assembler language. This example
merely demonstrates building a routine description. There are more exam-
ples in other languages and there are complete examples in C/370, PL/I,
and VS FORTRAN at the back of the book in |[Appendix G, “Sample|
Non-APL Programs to be Called through Processor 11” on page 385

This routine takes three integer arguments, adds them, and updates the storage
used to pass the first argument with the result. Consider what would be needed to
use this routine with processor 11. We would need to tell Processor 11 what argu-

Chapter 28. Processor 11—Calling Compiled Programs 295

Processor 11

ments and results the routine expects. Here is what the routine description would
look like:

:LINK.OBJECT :RARG.(GO 1 3)(1 <14 *)(1 14 *)(1 14 %)

The :LINK. tag specifies that the routine should be called using standard OS
linkage conventions. This topic is discussed in more detail later.

External functions accessed through Processor 11 are viewed from from APL as
taking zero, one, or two arguments, like all APL functions. Our Assembler routine
expects three arguments and in fact, most non-APL routines are designed to accept
argument lists that can contain many arguments. This apparent incompatibility is
resolved by calling normal non-APL routines as if they were APL functions
expecting only a simple or nested right argument. Processor 11 creates a param-
eter list acceptable to the external routine from each of the items of the APL argu-
ment.

Programs written specifically to be called by APL2 can also use the :LARG. tag to
describe the left argument. The :RSLT. tag is used to describe a non-APL routine's
results.

Argument tags are used to specify the general structure and data types required of
the arguments. The sample :RARG. tag's value states that the routine expects an
argument containing a rank 1 length 3 array (G0 1 3), each of whose elements
contains 1 integer, (1 14 *). The array is explicitly described as a list of three
separate items so that the first item can be identified with the less-than sign, <.

There are no facilities in languages like Fortran or Assembler to differentiate
between argument and result data. Routines in those languages often update
argument data passed to them. APL functions, on the other hand, take arguments
that are never updated and produce explicit results that are not arguments to the
function. Processor 11 provides facilities to resolve this apparent conflict. Speci-
fied argument items can be updated or made the explicit result of the external func-
tion. More detailed information on this topic can be found in section
[Arguments and Results” on page 313, Our Assembler function returns its result by
updating the storage that contained the first argument. This fact is indicated by the
< in the tag value.

There are two ways to provide the routine description to processor 11. The first is
to place the routine description in the module containing the non-APL routine. This
is done by using the external function BUILDRD to build an object file containing
the description and link-editing this object file with the routine. This makes the
routine self- describing. The second way to provide the routine description is to
place it in a separate file that Processor 11 has access to. This file is called a
NAMES file.

Building Routine Descriptions

If the BUILDRD technique is used, the resulting module can be placed in the
normal search order and used directly with processor 11. Here is how we would
use BUILDRD to build an object file.

296 APL2 Programming: System Services Reference

Processor 11

3 11 ONA 'BUILDRD'

RD<«':LINK.OBJECT '
RD<RD,':RARG.(GO 1 3)(1 <I4% *)(1 I4 *)(1 I4 =*)!'
"ADDRD TEXT' BUILDRD 'ADDRD' 'ASMADD' RD

Figure 91. Build routine description for ASMADD function. On TSO, BUILDRD's left argument would be a data set

name.

ADDRD is the name we want assigned to the routine description; it must be dif-
ferent than the routine name. In addition, this is the name we specify in the right
argument to VA when we associate a name with the routine. Processor 11 uses
it when searching for the routine. ASMADD is the name of the routine. RD is
simply our routine description.

Once we have assembled our routine and built our routine description, we must
link-edit them together into a module. Link-edit techniques differ between operating
systems, languages, and even sites. Discussions and examples of several link-
editing techniques for different languages are provided in [Link-Editing External]
[Routines on CMS” on page 329, FLink-Editing External Routines on TSO” on|
[page 330] and [Appendix_G. “Sample Non-APL Programs to be Called throughl
[Processor 11” on page 385,

Once we have link-edited the object files produced by assembling our routines and
the object files produced by BUILDRD, we can discard the object files. They were
only required as intermediate steps in the process.

A sample of the CSECT that BUILDRD produces can be found in APL2/370
Programming: Processor Interface Reference.

Building NAMES Files

If the names file technique is used on CMS we add a :NICK. tag to our description.
The :NICK. tag provides the association between the last name specified in the
right argument to ONA and our routine description in the NAMES file entry.

On CMS, many routine descriptions can be combined in a single NAMES file. In
order to separate and distinguish the descriptions, each description is preceded
with a :NICK. tag. When Processor 11 is looking for a routine description in a CMS
NAMES file, it searches for a :NICK. tag with the same name specified in the right
argument to JNA. The routine description immediately following the tag is then
used.

If the names file technique is used on TSO the routine description is placed in a
member of a partitioned data set. When Processor 11 is looking for a routine
description on TSO, it looks for a NAMES file member with the same name as the
last word specified in the right argument to ONA. The contents of the member are
then used as the routine's description. The :NICK. tag is redundant in TSO names
files and so is not required, although it is allowed.

When using NAMES files, the NAMES file must inform Processor 11 how to locate
the member containing the routine. This is done using the :MEMB., and optionally

Chapter 28. Processor 11—Calling Compiled Programs 297

Processor 11

the :LOAD., tags. The :MEMB. tag is used to identify which module, or member of
a load library, contains a routine. The :LOAD. tag is used to identify which load
library contains the member that contains the routine.

With the addition of the :NICK., :LOAD., and :MEMB., tags, our routine description
looks like this:

:NICK.ADD

:LOAD.ASMLOAD

:MEMB.ASMADD

:LINK.OBJECT

:RARG.(GO 1 3)(1 <14 *)(1 14 *)(1 14)

Self-Describing Routines and NAMES File: Pros and Cons

On both CMS and TSO, there is a benefit to using NAMES files over self-describing
routines. Because Processor 11 searches for a nickname (or member on TSO)
with the same name as the last word in the argument of N4, the nickname does
not have to be the same as our routine name. Therefore, we can refer to our
routine ASMADD by another name, for example ADD. Notice that the :NICK. tag in
our NAMES file entry specifies that we are referring to the routine using the name
ADD.

The :NICK. tag can be used either in NAMES files or in self-describing routines.
However, if a NAMES file is not used, the :NICK. tag is not used to locate the
routine description. If it in the routine's self-description it must match the name
specified in (ONVA's right argument.

NAMES files can point to self-describing routines. In this case, the NAMES file is
used only to specify where to find the routine; the routine's argument descriptions
and calling convention information are located with the routine. The NAMES file
entry may contain only :NICK., :LOAD., :MEMB., :ENTRY., and :DESC. tags. Any
other descriptive tags must be in the routine description link-edited with the routine.

Using routine descriptions allows you to not have to manage NAMES files. Self-
describing routines can generally be installed more easily since NAMES files do not
have to be provided. Also, slightly better performance during name association is
possible since the overhead of reading NAMES files is not incurred.

Routine Lists

The next topic concerns building routine lists that are used when combining several
routines into a module. This is desirable if they are used together or if they are
interdependent and call one another. This is frequently done with groups of rou-
tines that are part of the same application or that are written in the same language.
In fact, we shall see that it is required for routines written in C/370 and PL/I.

Processor 11 can only locate, by itself, one routine within a module. Any other
routines that may reside within the module are not accessible to Processor 11
because it cannot locate them. This apparent dilemma is solved by the introduction
of a routine list.

298 APL2 Programming: System Services Reference

Processor 11

A routine list is a table of all the routines within a module. It is used by Processor
11 for locating routines within the module. When a group of routines' object files
are link-edited together with a routine list, the name of the routine list is specified as
the main routine within the module. This is done so that Processor 11 can find it.
Once Processor 11 has found the routine list, the list can be used to locate the
other routines within the module.

We have seen that the :MEMB. tag provides the name of the module. If several
routines are combined into a single module, the :ENTRY. tag provides the name of
the routine within the module. If the :ENTRY. tag is not provided, Processor 11
uses the name specified in N A4's right argument as a default. If the :ENTRY. tag
is provided, Processor 11 searches the routine list for the routine named in the
:ENTRY. tag.

The BUILDRL function is provided to build routine lists. Assuming we had two
routines we wanted to combine into a module, we could use BUILDRL like this:

3 11 ONA 'BUILDRL'
'"ASMRL TEXT' BUILDRL 'ASMRL' 'ASMADD' 'ASMSUB'

Figure 92. Build routine list for two functions

ASMRL is the name we want assigned to the routine list. Like with BUILDRD,
the name must be different from any of the names specified in the rest of the argu-
ment. ASMADD and ASMSUB are the names of the routines that are link-edited
with the routine list.

A sample of the CSECT that BUILDRL produces can be found in APL2/370
Programming: Processor Interface Reference.

Once we have built the routine list and link-edited it with our routines, you can then
build this NAMES file containing the routine descriptions:

:NICK.ADD

:MEMB.ASMRL

:ENTRY.ASMADD

:LINK.OBJECT

:RARG. (GO 1 3)(1 <I4 *)(1 I4 *)(1 14 =)

:NICK.SUB

:MEMB . ASMRL

:ENTRY . ASMSUB

:LINK.OBJECT

:RARG. (GO 1 2) (1 <I4 *)(1 14 *)

Figure 93. Descriptions for Assembler Routines
Notice that both routines have :MEMB. tags pointing to the same member and that

its name is the same as the routine list's name. Each of the routine descriptions
contains an :ENTRY. tag whose value is the name of the actual routine.

Chapter 28. Processor 11—Calling Compiled Programs 299

Processor 11

If we want to include the routine descriptions in the module rather than a names
file, our use of BUILDRL is a little more complicated. In the example below we
have used BUILDRD differently to demonstrate the difference in BUTLDRL.

RD<«':LINK.OBJECT '
RD<RD,':RARG.(GO 1 3)(1 <I4% *)(1 I4 *)(1 I4 =)'
"ADDRD TEXT' BUILDRD 'ADDRD' 'ASMADD' RD

RD<«':LINK.OBJECT '
RD<RD,':RARG.(GO 1 2)(1 <Iu *=)(1 T4 =*)°
'SUBRD TEXT' BUILDRD 'SUBRD' 'ASMSUB' RD

R1<'ADD ADDRD'
R2<«'SUB SUBRD'
'ASMRL TEXT' BUILDRL 'ASMRL' R1 R2

Figure 94. Build routine list for two self-describing functions

ASMADD and ASMSUB are the names of the actual routines for which we build
descriptions. Recall that when using self-describing routines, Processor 11 does
not know the name of the actual routine; it only knows the name of the routine
description. Hence, the names of the routine descriptions built using BUILDRD
are specified in BUILDRL's argument.

ASMRL is still the name we want assigned to the routine list. The rest of
BUILDRL's argument has changed though.

A routine list actually contains two lists of names, the list of names Processor 11
searches through to find the name mentioned in the right argument of ONA4, and
the list of names of the non-APL routines (or their descriptions.) If you code only
the name of the routine in a BUTLDRL argument, like in|[Figure 92 on page 299
BUILDRL places the name in both lists. This works well for non-self-describing
routines when the name of the routine is usually convenient to use. However,
since routine description names must be different than the names of routines they
describe, it would be convenient to be able to specify another name to be used in
the right argument of ONA

ADD and SUB are the names that Processor 11 searches through when trying to
locate a routine in the routine list. These names are specified in the right argument
of ONA, or are the value of the :ENTRY. tag in NAMES files,

Since the names of our routines are not very convenient to use, we could have use
convenient names for our routine descriptions and provided them directly to
BUILDRL] Figure 95 on page 301|demonstrates this simpler technique of using
the same name for the routine descriptions and ONA arguments.

300 APL2 Programming: System Services Reference

Processor 11

RD<':LINK.OBJECT '
RD<RD,"':RARG.(GO 1 3)(1 <I4 =)(1 Iu =)(1 Ik
'ADD TEXT' BUILDRD 'ADD' 'ASMADD' RD

0
RD<«':LINK.OBJECT
RD<RD,':RARG.(GO 1 2)(1 <I4 *=)(1 T4 =)
'SUB TEXT' BUILDRD 'SUB' 'ASMSUB' RD
0
'ASMRL TEXT' BUILDRL 'ASMRL' 'ADD' 'SUB'
0

Figure 95. Build simplified routine list for two self-describing functions

A module can contain one or more routines. If the module contains more than one
routine, the module must contain a routine list. (It may contain a routine list even if
it contains only one routine.)

A module can be composed of both self-describing and non-self-describing rou-
tines. Processor 11 identifies that a routine is self-describing when it finds the
routine. Note that routines can be self-describing but that modules are never self-
describing. Modules are not executable; only routines within them are executable.

BUILDRL and Interface Management Routines

This section covers a still more complicated use of the BUILDRL function. Many
first time readers may want to skip this section, but it is required for some C/370
and PL/I routines.

Conceptually at least we can now use most non-APL programs from APL2 with
Processor 11. Or can we?

Suppose there is a program that expects its arguments to be passed in a particular
style for which Processor 11 has no provisions. Further, suppose it returns its
results in a form that processor 11 also has no provisions for. In such a case, you
might want to write an intermediate program that could be called by Processor 11,
manipulate the data passed by Processor 11 into a form acceptable to the routine
and call the routine. It could perform a similar function with the routine's results.
Processor 11 and BUILDRL support just this type of intermediate program. They
are called Interface Management Routines. Here's how our calls to BUILDRL
would look if we had an intermediate program called TNTMAN.

R1<'"ADD INTMAN ASMADD'
R2<'SUB INTMAN ASMSUB'
'ASMRL TEXT' BUILDRL 'ASMRL' R1 R2

Figure 96. Build routine list for two self-describing functions

Once again, ASMRL is still the name we want assigned to the routine list.

However, the rest of the argument has changed even more.

Chapter 28. Processor 11—Calling Compiled Programs 301

Processor 11

ADD and SUB are still the names that Processor 11 uses when searching the
routine list.

INTMAN is now the name of the routine that Processor 11 calls. Processor 11 is
calling the second name in each entry. In this case, this is the name of the inter-
face manager program. It is the name of a routine that is included when the group
of routines is link-edited together. ASMADD and ASMSUB are the names of the
routines that the interface manager calls. For further details on the interfaces used
by Processor 11 for interface manager programs, consult APL2/370 Programming:
Processor Interface Reference.

BUILDRL Interface Management and Self-Describing Routines

There is still one more complication in the possible uses of BUTLDRIL. Suppose
you wanted to make a routine requiring an interface manager self-describing. In
this case, the calls to BUILDRD change again.

RD<"':LINK.OBJECT
RD<RD,':RARG.(GO 1 3)(1 <I4% *)(1 I4 *)(1 I4 =)'
"ADDRD TEXT' BUILDRD 'ADDRD' 'INTMAN' RD

RD<':LINK.OBJECT '
RD<RD,':RARG.(GO 1 2)(1 <I4 *=)(1 Tu =*)°
'SUBRD TEXT' BUILDRD 'SUBRD' 'INTMAN' RD

R1<'ADD ADDRD ASMADD'
R2<«'SUB SUBRD ASMSUB'
'ASMRL TEXT' BUILDRL 'ASMRL' R1 R2

Figure 97. Building routine lists. Builds a routine list object file for two self-describing functions called through Inter-

face Manager routines.

Processor 11 recognizes that a routine is self-describing by examining the routine
that it calls. Processor 11 calls the routine that is listed second in the name list
entries passed to BUI LDRL; that routine, which in this case is an interface
manager, calls the routine that does work. Therefore, you make the interface
manager self-describing.

In Figure 97 the uses of BUILDRD are creating routine descriptions for an inter-
face manager routine. The argument of BUILDRL then specifies that Processor
11 is calling these self-describing instances of the interface manager and that it
should in turn call the Assembler routines.

If you use languages like C/370 or PL/I, the Interface Managers can become quite
important. Both C/370 and PL/I store arrays, pass arguments, and return results
using their own non-standard conventions. You need an interface manager routine
to call many C/370 and PL/I programs)| “C/370 Scalar Integer Results” on|

provides further information on this topic.

302 APL2 Programming: System Services Reference

Processor 11

C/370 Scalar Integer Results

When a :RSLT. tag is coded for a :LINK.OBJECT routine specifying that a scalar
integer result is returned, Processor 11 expects that result is returned in register 0.
C/370 routines return scalar integer results in register 15. To resolve this dilemma,
APL2 includes an interface manager routine named AP2XCMAP.

A routine list is needed to use AP2XCMAP. For example:

RD<«'":LINK.OBJECT '

'"CADDRD TEXT' BUILDRD 'CADDRD' 'AP2XCMAP' RD

RL<«'CRL' 'ADD CADDRD CADD' 'CENVRD'
'CRL TEXT' BUILDRL RL

RD<RD,"'
RD<RD,"'
RD<«RD,"'
0
0

tRARG.(GO 1 2)(1 I4 *)(1 T4 =) !
:RSLT.(I4% 0)
:INIT.CENVRD'

Figure 98. Using AP2XCMAP

Environments

In this case, we have a routine called CADD. CADD returns a scalar integer result.
Because C/370 returns scalar integer results in a different register than Processor
11 expects, we use the interface manager program AP2XCMAP. We build a
routine description for the interface manager. We state in the BUI LDRD argument
that the interface manager's argument is two integers and that it returns a scalar
integer. We name the Routine Description CADDRD.

We then build a Routine List called CRL. It lists ADD as the name that is associ-
ated with ONA, CADDRD as the name that Processor 11 calls, and finally CADD,
the name of the routine that the interface manager calls.

In use, AP2XCMAP is called by Processor 11, and pass the arguments on to
CADD. When CADD completes, AP2XCMAP copies the contents of register 15
(CADD's result) to register 0 (where Processor 11 expects to find it.)

The AP2XCMAP program is provided because it is common to call a routine that
returns a scalar integer. C/370 also returns non-integer scalar results using its own
conventions. These are described in[FC/370 Results” on page 316]

You may notice that the BUILDRD and BUILDRL arguments include a routine
description called CENVRD. This describes a program that starts the C/370 envi-
ronment and is discussed later.

Certain applications and languages such as Fortran, C/370 and PL/I require an
environment to be established prior to calling routines that make use of environ-
mental services such as input/output, error processing, or interrupt facilities.
Normally, the necessary environment is established by specifying that the routine is
a main program, since main programs typically establish the environment as a
matter of course while subroutines do not.

Chapter 28. Processor 11—Calling Compiled Programs 303

Processor 11

When calling a non-APL routine from APL2, it is undesirable to start the environ-
ment on each call to the routine. It is preferable to start the environment once and
leave it running between calls to subroutines. This is accomplished by separating
the program into two (or more) parts: an environment program (sometimes referred
to as the main program), and one or more subroutines. When the main program is
called, the environment is started and the program then returns control to APL2
before terminating. APL2 can then make calls to subroutines that require the envi-
ronment. The main program must not terminate before returning control to APL2,
since the main program termination process typically involves shutting down the
environment.

APL2 includes a program through which a environment program can return control
to processor 11 without terminating. It is called AP2TNL on TSO and AP2VNL on
CMS. When the main program is called, it should call AP2TNL (or AP2VNL on
CMS). AP2TNL returns control to Processor 11 in such a way that the environment
established by the main program is left available to subroutines. APL2 can then
call the subroutines without the overhead of reestablishing the environment.

Processor 11 also ensures that such a program is allowed to terminate normally
before it is deleted. When all the name associations to the subroutines are deleted
from the workspace (either through OEX,)CLEAR, JOFF, or Y)CONTINUE)
Processor 11 returns control to the main program through AP2TNL. The main
program can then end and the environment terminates. This process ensures that
the necessary termination tasks, such as closing of data sets, can be accomplished
in an orderly fashion.

A subroutine can be identified as requiring an environment through the use of the
:INIT. tag in its Routine Description. In this case the name of the program that
starts the required environment is coded as the value of the :INIT. tag.

The :INIT. tag is also used to identify that a program starts an environment. In this
case a value of INITIAL is coded as the value of the :INIT. tag. Processor 11
ensures that the program has been successfully called before calls to the subrou-
tine are made. The word INITIAL is prefixed with either an #, @, +, or - character
to indicate what type of environment program the routine is.

In the following figure, the external function COMPUTE is identified as requiring the
environment FORTENYV that, in turn, is tagged as an environment program.

304 APL2 Programming: System Services Reference

Processor 11

:NICK.FORTENV
:LOAD. FORTLOAD
:MEMB. FORTENV
:LINK.OBJECT
:INIT.#INITIAL
:RARG. (C1 1 *)
:DESC.FORTRAN environment program

:NICK.COMPUTE
:LOAD. FORTLOAD
:MEMB.CALC
:LINK.FORTRAN
:INIT.FORTENV
:RARG. (GO 1 3)(1 I4 *)(E4 1 *)(<E8 1 =)
:DESC.Executable subroutine requiring an environment

Figure 99. NAMES file Routine Descriptions for FORTRAN routines

In the description of FORTENYV in the example, note the following:

* An environment program is described in the routine description in the same
way any other routine would be, except that :INIT. has a value of INITIAL(pre-
ceded with a @, #, +, or - character.)

e LINK. is specified as OBJECT rather than FORTRAN. This is because
FORTRAN main routines use OS linkage conventions.

¢ :RARG. is specified for the environment program. Processor 11 may automat-
ically invoked environment program in which case no argument is passed to the
FORTENV program. FORTENV can, however, be invoked specifically before
calling COMPUTE, and can be passed initialization parameters by treating it as
a normal external function. For example:

0 11 ONA '"FORTENV'
FORTENV 'NOXUFLOW'

Any attempt to specifically invoke an environment that is already active results in a
SYSTEM LIMIT error (HET=1 6)anda)MORE message queued, indicating
that the environment program is already active.

When an routine is invoked through Processor 11, Processor 11 first checks to see
if any environment is necessary and whether it has been established. If it has not
and if the environment is identified :INIT.#INITIAL, it is automatically invoked, other-
wise a VALENCE ERROR is signalled and a)MORE message queued indicating
that the environment routine is unavailable.

More than one subroutine can be associated with a single environment program by
coding the same name in the :INIT. tags for each of the subroutines.

It is good practice to use the same environment program for all executable subrou-
tines written in a given language, since this ensures proper handling of common
resources such as ddnames.

On TSO, processor 11 creates a task for the environment program; it switches to

that task before calling the program or any subroutines dependent on the environ-
ment. Before calling subroutines associated with an environment, Processor 11

Chapter 28. Processor 11—Calling Compiled Programs 305

Processor 11

also reestablishes any abend and interrupt trapping exits established during the call
to the environment program.

On TSO, if the :TASKLIB. tag is specified in the environment program's routine
description, Processor 11 also creates a tasklib that it activates during calls to the
main program or subroutines associated with an environment. This makes it pos-
sible to build an application with a unique search order.

Certain languages have an additional requirement concerning environment pro-
grams and subroutines. The Fortran language allows its environment programs
and subroutines to each be in separate modules. C/370 and PL/I however, unless
specially coded, each require that the environment program and all the subroutines
be link-edited into a single load module. Because Processor 11 can only locate the
main routine within a module this requires that a Routine List must be link-edited
into modules containing C/370 and PL/I routines. The C/370 and PL/I languages
also specify the names that may be used for the environment program names.
Unless specially coded, the main entry point of C/370 environment programs are
automatically named CEESTART, and PL/I environment programs are named
PLISTART. Sample C/370 and PL/I routines can be found in [Appendix G, “Sample]
[Non-APL Programs to be Called through Processor 11” on page 385

When an environment program is called by Processor 11, it is expected to establish
the environment and return control to Processor 11 by calling AP2VNL in CMS/VM
or AP2TNL in MVS/TSO (AP2VNL and AP2TNL are provided with APL2 and may
be link-edited with user implemented environment programs). If the program
returns control to Processor 11, at this point, other than by calling AP2VNL or
AP2TNL, Processor 11 judges that the environment initialization has failed. The
environment program and all routines that depend on its environment are marked
unusable. Attempts to use them resultin a VALENCE ERROR with a NAME
UNAVAILABLE message queued.

When all the routines that use an environment program have been expunged (pos-
sibly because of an)OFF,)CLEAR,)LOAD, etc.), processor 11 returns control
to the environment program as a return from AP2VNL or AP2TNL. When the
program then returns control to Processor 11, it too is expunged.

The following program can be used as an environment for FORTRAN subroutines if
compiled and link-edited with the AP2VNL (CMS) or AP2TNL (TSO). Notice that
this program has no real function except to call AP2VNL. There is no explicit code
to start the FORTRAN environment; the fact that the routine is a program rather
than a subroutine causes FORTRAN to start its environment when the routine is
called.

Program FORTENV

FORTRAN Environment Program
CALL AP2VNL (for CMS, or CALL AP2TNL for TSO)
END

Figure 100. FORTRAN Environment Program

306 APL2 Programming: System Services Reference

Processor 11

Interface Details

Routine Description Tags
Every non-APL external routine to be accessed through Processor 11 must be
described by a routine description. The routine description informs Processor 11
about the arguments and results of the routine, what linkage convention should be
used in calling the routine, what environment is associated with the routine, and
how to locate the routine. This information is provided to Processor 11 through the
arguments to ONVA and tags.

The format of routine description tags is as follows:
:TAG.value

where :TAG. is chosen from the following set of keywords and identifies the
meaning of value. Tags and their values can be coded in either upper-, lower-, or
mixed-case letters.

:NICK.name — specifies the name of the external routine. The same name must
be specified in the right argument of ONA. This tag is used to associate the
routine description following the tag with the specified name. It is normally
only used in NAMES files. If the :NICK. tag is specified in a routine
description built by BUTLDRD, it must match the name specified in the right
argument of ONA. In TSO NAMES files, this tag is optional since the parti-
tioned data set member name provides the same function. In CMS NAMES
files, this tag is required and must immediately precede the rest of the
routine description tags. In both CMS and TSO, the name is restricted to
uppercase letters and numerics. The maximum length of a name is 249
characters in CMS and 8 characters in TSO.

:LOAD.library — the name (CMS) or ddname (TSO) of the load library into which
the routine has been link-edited. In TSO, the data set must have been previ-
ously allocated using the specified ddname. In CMS, the library name is of
the form FN FT FM. FT and FM default to LOADLIB * if not specified.
Consult section [‘Processor 11 Routine Search Order Guidelines” on|
[page 325 for information about processor 11's search order if the :LOAD.
tag is not specified.

:MEMB.name — the member name of the routine in the specified load library. If
:LOAD. is not specified, it is the name of a previously loaded module in
MVS/TSO or the name of a CMS nucleus extension, module, or TEXT file in
CMS/VM. The :MEMB. tag is optional in a routine description built using
BUILDRD.

:ENTRY.name — the routine name for the external routine. name is converted to
uppercase for non-APL routines. Load modules with multiple routines must
have the entry points of the routines listed in a Routine List located at the
beginning of the load module. The BUILDRL function can be used to build
an appropriate Routine List. The :ENTRY. tag should not be used unless a
routine list in the format required by Processor 11 has been created and
specifically included in the module. See [‘Routine Lists” on page 298|for
details.

:LINK.OBJECTIFORTRANIFUNCTION — specifies the type of program linkage to
be used when calling the routine.

Chapter 28. Processor 11—Calling Compiled Programs 307

Processor 11

OBJECT — specifies the routine uses standard operating system entry and
exit linkage conventions.

FORTRAN — specifies the routine uses FORTRAN's entry and exit linkage con-
ventions.

FUNCTION — specifies the routine uses APL2's entry and exit linkage con-
ventions. This linkage convention supports routines that have been specif-
ically designed to operate with APL2 and Processor 11 and to resemble
APL functions and operators. Additional information and facilities are pro-
vided to routines using this linkage convention. Consult [Linkage]
[Conventions” on page 321|for further details. See 'Linkage Conventions'
in APL2/370 Programming: Processor Interface Reference for detailed
information.

:INIT. This tag may be specified with any of the following formats:

The following forms of the :INIT. tag identify routines that are environment
programs.

JANIT.#INITIAL or:INIT.+INITIAL -identifies an environment program that
Processor 11 automatically calls before invoking routines that utilize the
environment. Unless the :PARM. tag is coded, no argument is passed to
automatically invoked environment programs. In addition, they are
assumed to have no explicit result. Any explicit result they produce is dis-
carded. +INITIAL is provided because the symbol # is not available on all
terminals.

(INIT.@INITIAL or:INIT.-INITIAL - identifies an environment program that
must be explicitly called by the user before invoking routines that utilize
the environment. -INITIAL is provided because the symbol @ is not
available on all terminals.

The following forms of the :INIT. tag are alternative ways to inform Processor
11 of the name of a required environment program. They are used when the
program is self-describing or is described in a NAMES file other than the
current NAMES file. See FEnvironments” on page 303 for details.

:INIT.name - specifies the name of the environment program. If this form of
the tag is specified by a self-describing routine in a module containing a
routine list, the specified name is searched for in the same module's
routine list. Otherwise, the specified name is searched for in the current
NAMES file.

:INIT. (private).name - specifies the nick name of the environment program.
The specified name is searched for in the specified private NAMES file.

:INIT.member.name - specifies the member in which the environment
program name should be found. A search equivalent to 'member' 11
ONA 'name' is used to find the environment program. With this form
of the tag, the environment program must be a self-describing routine.

:INIT.library.member.name - specifies the library and member in which the
environment program name should be found. A search equivalent to
'library.member' 11 ONA 'name' is used to find the envi-
ronment routine. With this form of the tag, the environment program must
be a self-describing routine. Further details can be found in FONA Syntax]
[for Non-APL Programs” on page 292

308 APL2 Programming: System Services Reference

Processor 11

:TASKLIB.ddname — The ddname of a tasklib to be used in conjunction with this
routine. This tag should only be used for environment programs. Use of the
:TASKLIB. tag causes Processor 11 to set up a tasklib with the specified
ddname. This tasklib is activated for any calls to the environment program
and any subroutines that have specified that they depend on the environ-
ment. It is optional. The :TASKLIB. tag is ignored on CMS and for all rou-
tines other than environment programs on TSO.

:TIME.yyyy mm dd hh mm ss — specifies the GMT fix time for the external routine.
It becomes 2 [AT. This tag is optional. If it is not specified, fix time is
defaulted to the time at which the name was associated with Processor 11.

:DESC.description — allows inclusion of descriptive text in a routine description.
Where the descriptive text exceeds the record length of a NAMES file, mul-
tiple records of text may be included, but each must be prefixed by a :DESC.
tag. Comments may also be included in the NAMES file by placing an
asterisk in column 1 of comment records.

:LARG.pattern — specifies a pattern for the left argument of the external routine.
The tag is optional. It may be omitted, specified as null (for example,
:LARG.) or specified with a pattern. This tag may not be used with
:LINK.OBJECT or :LINK.FORTRAN routines. See [‘Argument Patterns” on|
for details.

:RARG.pattern — specifies a pattern for the right argument of the external routine.
The tag is optional. It may be omitted, or specified with or without a patter.
See [‘Argument Patterns” on page 310 for details.

:RSLT.pattern — specifies a pattern for the result of the external routine. This tag
is optional. It may only be specified for routines with :LINK.OBJECT or
:LINK.FORTRAN to specify the explicit result of the routine. See [Resulf]
[Patterns” on page 314 for details.

Note: This tag cannot be specified for environment and :LINK.FUNCTION pro-
grams.

:PARM.parameter — provides a parameter string for automatically called environ-
ment programs. The data for the :PARM. tag is a quoted character string
(double apostrophes are supported in the string.) If the environment
program is automatically started the character string, prefixed with a 2 byte
length field, is provided to the program using OS linkage conventions:

R1 => A(argument+X'80000000') => H'length',C'string'

For programs that are started with an explicit call from APL2, an argument
can be passed if :RARG. is specified in the program's routine description.

For example:

0 11 0ONA 'ENVPGM'
ARGS<'string'
ENVPGM ('I2 1 1' RTA pARGS),ARGS

:VALENCE.er fv ov — specifies the valences of the routine. It becomes 1 [0AT
for the routine.

er specifies whether the routine has an explicit result. If eris 0, the routine
does not have an explicit result. Neither the :RSLT. tag may be used nor
may either < or > be used in the :RARG. tag for a routine for which the
:VALENCE. tag specifies that no explicit result is produced. Any result
returned through the ECV is discarded. If eris 1, the routine has an explicit
result.

Chapter 28. Processor 11—Calling Compiled Programs 309

Processor 11

fv is the number of arguments the routine expects. If fvis 0, the routine is
niladic. If fvis 1, the routine is monadic. If fvis 2, the routine is ambivalent.
A fv value of 2 may not be coded for :LINK.OBJECT or :LINK.FORTRAN routines.

ov is the number of operands the routine expects. If ovis 0, the routine is a
function. If ovis 1, the routine is an operator with one operand. If ovis 2,
the routine is an operator with two operands. Only a fv value of 0 may be
coded for :LINK.OBJECT or :LINK.FORTRAN routines.

This tag is optional. If it is not specified, the valences default as follows:
¢ The routine is assumed to have an explicit result (er=1).

¢ The routine is assumed to be monadic if :LINK.OBJECT or
:LINK.FORTRAN (fv=1) and ambivalent if :LINK.FUNCTION (fv=2).

¢ The routine is assumed to be a function.
:LINK.OBJECT and :LINK.FORTRAN routines cannot be ambivalent.
Like operators written in APL2, non-APL operators may not be niladic.

The :VALENCE. tag is not allowed with :LINK.APL objects. The valences of
objects in namespaces are determined from the objects' definitions.

Argument Patterns

The :LARG., :RARG., and :RSLT. tags are used to specify the expected arguments
and results for an external routine. They can be specified with argument patterns
that provide descriptions of the expected arguments and results for the routine.

When an external name is encountered during the execution of an APL expression,
APL compares the actual arguments against the patterns provided in the routine's
description. If possible, APL converts the actual arguments to match the patterns
so the external routine receives its argument data in an expected and predictable
form. If it is not possible to accomplish the conversion, or if an inconsistency is
found between the actual arguments and the patterns, APL issues an appropriate
error message.

When the external routine completes, if the :RSLT. tag has been used, APL uses
the pattern specified in the :RSLT. tag to convert the data returned by the routine to
an APL2 array.

Simple Arrays

[count] [>I<] type rank [shape]

Where:

count is the number of elements in the array. This number may be omitted if
fully specified by shape or may be specified as * if a variable number of
elements is permitted.

310 APL2 Programming: System Services Reference

>0r<

type

Processor 11

are optional output or update indicators. If neither > or < is specified, the
item is an input argument only and may not be updated. If < is specified,
the item may be updated by the routine and is made an item of the explicit
result. If > is specified, the argument must be specified by name and may
be updated directly by the routine. For additional information, see
[‘Updated Arguments and Results” on page 313] Unpredictable results
may occur if an external routine updates an argument that is not marked >
or <.

provides information on the representation type and representation length
of the data. The following type combinations are supported:

Figure 101. Representation Types and Lengths

Represen- Type and Length

tation

B1 unsigned integer, 1 bit/element (Boolean).

B4 unsigned integer, 4 bits/element (hex).

B8 unsigned integer, 8 bits/element.

12 integer halfword.

14 integer fullword.

E4 single precision floating point.

E8 double precision floating point.

E16 extended precision floating point.

J8 single precision complex.

J16 double precision complex.

J32 extended precision complex.

C1 character byte.

(o) character fullword.

Pn variable length packed decimal. The value for n may be 1 to
16 bytes.

n variable length zoned decimal. The value for n may be 1 to 16
bytes.

A8 fullword integer progression (first value, increment).

GO general object, (Note: See nested array below.)

rank is the rank of the array. If varying ranks are accepted, it may be specified

as *, and shape should not be specified.
shape is the shape of the array. One integer must be specified for each dimen-

sion of the array in row major order. If varying shapes are accepted, one
or more elements of shape may be specified as *.

Numeric elements of the pattern must be separated from one another by one or
more blanks. Parentheses are treated as blanks and may be used freely.

Simple Array Pattern Examples
:RARG.I4 2 2 3 A matrix, 2 3p676

:RARG.I14 2 * = Fullword integer matrix of any shape

Chapter 28. Processor 11—Calling Compiled Programs 311

Processor 11

:RARG.1 I4 = A single fullword integer of any rank
:RARG.100 E8 2 * * Floating point matrix of any shape containing 100 numbers

Nested or mixed arrays: The pattern for a nested array or for a mixed array is a
recursive structure where the first subpattern has type = G0 (general object) and
describes the overall array. Subsequent subpatterns describe each item of the
array. For example, the 2-element vector of vectors (100 200 300)
('"ABCD') may be described:

(2G012) (31413) (4cC114)

A general object pattern is needed when calling a :LINK.OBJECT or :LINK.FORTRAN
routine that requires more than one argument because the routine is called
monadically from APL with a nested argument. For example, to call the following
FORTRAN subroutine:

SUBROUTINE AUTO(A,N,R)

C ARGUMENTS A AND R ARE VECTORS OF LENGTH N
REAL*8 A(1),R(1)
INTEGER*4 N

Produces a result in R, the following argument pattern would be required:
(GO 13) (E81 %) (114 %) (<E8 1 =)
and the routine could be called with the following APL statements:
"(FORTNMS)' 11 0ONA 'AUTO'

ARGUMENT<10021000
RESULT<AUTO (ARGUMENT 100 (100p0))

The record length and the total length of any individual tag in the NAMES file is
limited to 255 characters. Certain arguments, however, require patterns of more
than 255 characters. To accommodate this requirement, the argument may be
described in successive records in a NAMES file, each of which is prefixed with an
appropriate argument tag. For example:

:RARG. (GO 1 4) (1 E8 =)
:RARG. (I4 2 = 10)
:RARG. (<I4 2 10 =*)

If a :RARG. tag is coded without a pattern for a :LINK.OBJECT or :LINK.FORTRAN
routine, Processor 11 builds a parameter list that contains pointers to the data in
each simple element of the argument array. No length information is provided.

Nested and Mixed Array Pattern Examples

:RARG.GO 1 2 (14 2 2 3)(C1 1 4)
A nested array, (2 3p6 6) 'ABCD'

:RARG.GO 1 3 (C1 1 *)(C1 1 *)(CL 1 =)
Vector of 3 words of any length

:RARG.
Any array, no data conversion

:RARG.GO 1 3 (1 I4 *)(C1 1 *)(1 P5 %)
General array

¢ 1st element integer scalar

312 APL2 Programming: System Services Reference

Processor 11

¢ 2nd element character vector any length

* 3rd element 5 byte packed decimal number

Updated Arguments and Results

Routines in languages like FORTRAN or Assembler typically do not distinguish
between input arguments and results. They are passed a list of pointers to the
values that may represent input arguments, values to be updated, or preallocated
space for results. APL functions, on the other hand, take arguments that are never
updated and produce explicit results that were not previously passed as arguments
to the function. For example:

VRESULT<«COMPUTE ARG
(11 RESULT<«2%xARG
[2] v

COMPUTE 10
20

APL requires that functions that update argument data in place be called with the
names of the arguments rather than their values. For example:

VUPDATE ARG

[11] ARG, '«2x"' ARG

[2] v
NUMBER<«10
UPDATE 'NUMBER'
NUMBER

20

Both approaches are supported by Processor 11. Argument items that are to be
updated in place are indicated with the symbol > preceding the representation type
in the argument pattern. For example, a FORTRAN routine that expects two
integer vectors as arguments, the second of which is to be updated in place, would
be described:

:RARG. (GO 1 2) (I4 1 3) (>I14 1 3)

As with APL functions, such routines must be called with the names of the argu-
ments to be updated rather than their values:

RESULT<13p0
COMPUTE (1 2 3) 'RESULT'

APL checks to ensure that arguments updated with the > symbol are names and
not values. If names are not found when the function call occurs, an error results.

Arguments that are updated and made items of the external function's explicit result
are indicated with the symbol < preceding representation type in the argument
pattern. For example, a monadic routine that takes a vector of integers as input
and produces a vector of real numbers as a result might be described as follows:

:RARG. (GO 1 2) (I4 1 3) (<E8 1 3)
and later called in an APL expression such as:
OUTPUT<«COMPUTE (13) (3p0)

A second item must be passed as an argument to the function because subroutines
in languages like FORTRAN require that space for results be preallocated by the

Chapter 28. Processor 11—Calling Compiled Programs 313

Processor 11

caller. It is also possible to pass input values to a routine using an argument that is
marked as a result item:

OUTPUT<COMPUTE (13) (1.23 100.2 .456)

Routines that describe more than one argument item as a result item (with the
symbol <) produces a nested vector as their result with successive elements corre-
sponding to the indicated argument items. A < may only be coded on a section of
the pattern that describes a simple array; it may not be coded preceding a GO rep-
resentation type.

Including updated arguments in the explicit result of an external function (with the
symbol <) leads to a coding style that is less cumbersome and more familiar to the
APL user. Users should be aware, however, that this technique may require tem-
porary allocation of two copies of the value— one for the argument and one for the
result. Marking argument items able to be updated in place (with the symbol >) is
more cumbersome since the function must be called with the name of the data, but
requires only a single copy of the value in most situations.

:LINK.FUNCTION routines may use < and > in their :LARG. and :RARG. tags. If
they then return no result through their ECV, Processor 11 returns all the specified
items from the tags as a nested vector of arrays.

If an external routine updates an argument item that is not marked as able to be
updated with either < or >, unpredictable results may occur. While the external
function may appear to operate correctly and produce the desired result, other
values in the workspace may have been destroyed and workspace damage may
have occurred. Furthermore, if an external routine misbehaves, for example by
writing beyond the end of an argument that is able to be updated, workspace
damage and possibly SYSTEM ERROR may occur. It is essential that valid argu-
ment patterns be constructed before calling an external function. For additional
information on this topic, see the section [‘Unexpected Errors” on page 322

Result Patterns

The :RSLT. tag can be specified for routines with :LINK.OBJECT or :LINK.FORTRAN to
specify the explicit result of the routine. The :RSLT. tag cannot be coded if <
output indicators are coded in the argument tags.

:RSLT. can be specified with or without a pattern. If specified with a pattern, the
pattern takes the same form as argument patterns described above, with the fol-
lowing exceptions:

e * cannot be used in the pattern

» the update indicator, >, cannot be used in the pattern

» the output indicator, <, can be used only immediately before the representation
type in the pattern.

If :RSLT. is specified without a pattern, the external routine is expected to return in
register 0 the address of a self-describing data structure called a CDR. For a defi-
nition of the CDR, see APL2/370 Programming: Processor Interface Reference.

If :RSLT. is specified with a pattern in which the first representation type is pre-
ceded by an output indicator, for example:

(<60 1 3) (14 1 3) (1 E8 =*)

314 APL2 Programming: System Services Reference

Processor 11

the external routine is expected to return in register O the address of a fullword
containing the length of the result data immediately followed by the result data.

If :RSLT. is specified with a pattern in which the first representation type is not pre-
ceded by an output indicator, for example:

(1 Ty %)
the pattern must describe a simple scalar with binary, integer, real or complex rep-

resentation type. The following table lists the acceptable simple scalar patterns and
where the external routine is expected to provide the result:

Figure 102. Acceptable Simple Scalar Patterns

Pattern Result Provided In:

BO O the low-order bit of register 0

B4 0 the 4 low-order bits of register 0

B8 0 the 8 low-order bits of register 0

I2 0 the low-order half word of register 0

I4+ 0 register 0

E4 O floating point register 0

E8 O floating point register 0

E16 O floating point registers 0 and 2

J8 0 floating point registers 0 and 2. The real portion in
floating point register 0, imaginary portion in
floating point register 2.

J16 0 floating point registers 0 and 2. The real portion in
floating point register 0, imaginary portion in
floating point register 2.

J32 0 floating point registers 0, 2, 4, and 6. The real
portion in floating point register 0 and 2, imaginary
portion in floating point register 4 and 6.

Note: Simple scalar patterns (without the preceding output indicator) of types C1,
C4, Pn, Zn, A8 and GO are not supported.

In summary:

:RSLT. the external function is expected to return the address of a
CDR in register 0.

:RSLT.<pattern the external function is expected to return the address of a
fullword containing the length of the result data followed by
the data.

:RSLT.pattern the pattern must represent a simple scalar of type B1, B4,

B8, 12, 14, E4, E8, E16 J8, J16, or J32. The external function
is expected to return the result in register 0 or floating-point
register 0 or floating-point registers 0, 2, 4, and 6 as
described in Figure 102.

Chapter 28. Processor 11—Calling Compiled Programs 315

Processor 11

C/370 Results

Processor 11 expects that non-APL routines return scalar integer results in register
0. C/370 returns scalar integer results in register 15. An interface management
program called AP2XCMAP is supplied with APL2 that can be used to map C/370
scalar integer results to register 0. A discussion of using AP2XCMAP can be found
in[‘C/370 Scalar Integer Results” on page 303|

Processor 11 expects that results other than scalar integers are in a register. Reg-
ister 0 contains the address of a CDR, or register 0 contains the address of the
length of the result followed by the result. C/370 does not use any of these tech-
niques for returning results.

C/370 subroutines that return results (as opposed to updating arguments) expect
that the first element of the parameter list passed to them is the address of storage
into which they should place their results. This element of the parameter list is not
explicitly mentioned either in the C/370 subroutine nor its caller. It is simply a
C/370 convention. It is the responsibility of the calling program to provide a large
enough storage area to hold the subroutine's result.

Although Processor 11 does not provide support for this C/370 convention, it is
possible to call these routines and receive their results. An extra parameter should
be coded on the :RARG. tag to receive the result. If the APL2 caller of the C/370
subroutine passes an array for the parameter, Processor 11 allocates the appro-
priate amount of storage and adds the address to the parameter list. For example,
if this were our C/370 routine:

#pragma linkage(pitimes,O0S)
double pitimes(int i) {
return 3.14159 * i;
}

we could use this routine description:

:LINK.OBJECT
:RARG. (GO 1 2)(<E8 0)(I4 0)

and call the subroutine like this:

PItimes 0 3
9.42477

Finally, note that this entire discussion concerns C/370 routines that are coded
without a #pragma statement that causes them to accept arguments and return
results using standard operating system conventions.

316 APL2 Programming: System Services Reference

Processor 11

:LINK.FUNCTION Arguments

When used with :LINK.FUNCTION routines, the :LARG. and :RARG. tags instruct
Processor 11 what technique should be used to pass arguments to the external
routine.

Processor 11 has two techniques for passing arguments to a :LINK.FUNCTION
routine. The first is to pass a token representing the argument. The routine uses
APL2 services to retrieve the data represented by the token. The second is to
pass the actual data in a form called a CDR. CDRs are APL2's method of passing
actual data to programs outside the workspace. Processor 11 retrieves the data
from the workspace and converts it to the CDR format.

The existence of the :LARG. and :RARG. tags controls whether or not Processor
11 builds and passes CDRs for the arguments or whether only tokens are passed.

If an argument tag is not coded, then Processor 11 does not build a CDR for the
argument, it only passes the token.

If an argument tag is coded with a pattern then Processor 11 builds a CDR. During
the process, Processor 11 may need to convert the representation of the argument
to fulfill the requirements specified in the pattern. If Processor 11 is unable to
convert the argument to the form specified by the pattern, a DOMAIN ERROR is
issued.

If an argument tag is coded without a pattern (for example, :RARG.), then
processor 11 builds a CDR, but performs no conversion and therefore imposes no
conformability restrictions on the argument.

Notice that the mere existence of the :LARG. and :RARG. tags does not affect the
valence of the routine. The default valence of a routine is implied by the :LINK.
tag. The valence of a routine can be modified by the :VALENCE. tag. The
:VALENCE. tag is also used to specify the number of operands required by
non-APL operators.

For further information about CDRs, tokens, and :LINK.FUNCTION interface protocols,
consult APL2/370 Programming: Processor Interface Reference.

Explicit Results, Function Valence, and Operator Valence
This section discusses:

e Explicit results
e Function valence
¢ QOperator valence

Explicit Results

The first value of the :VALENCE. tag is used to specify whether the routine returns
an explicit result. This value does not imply that the routine is required to return a
result. Rather, this value is used to specify what 1 [0AT should return when it is
used to query the valence of the routine. :LINK.OBJECT and :LINK.FORTRAN routines
whose :VALENCE. tags specify that they have no explicit result must not use
:RSLT. tags or have < characters in the :RARG. tag. :LINK.OBJECT, :LINK.FORTRAN,
and :LINK.FUNCTION routines whose :VALENCE. tags specify that no explicit result
is produced, have any result returned through their ECV discarded. :LINK.FUNCTION

Chapter 28. Processor 11—Calling Compiled Programs 317

Processor 11

routines whose :VALENCE. tags specify that an explicit result is produced can
choose not to return a result.

Function Valence
Function valence is controlled by the second value coded in the :VALENCE. tag
and is implied by the value of the :LINK. tag.

:LINK.OBJECT and :LINK.FORTRAN routines are monadic by default. The :VALENCE.
tag can specify that such routines are niladic. A :LARG. tag should not be coded
for these routines.

Note: Unless the :VALENCE. tag indicates that a :LINK.OBJECT or :LINK.FORTRAN
routine is niladic, then a :RARG. tag must be coded.

:LINK.FUNCTION routines are ambivalent by default. The :VALENCE. tag can
specify that such routines are monadic or niladic. The omission or inclusion of the
:LARG. and :RARG. tags determines whether Processor 11 builds a CDR when
calling the routines.

Operator Valence

:LINK.FUNCTION routines can be operators. The third value of the :VALENCE. tag
is used to specify whether the routine expects one or two operands. Processor 11
passes tokens for the operands whether they are functions or arrays. It is the
external operator's responsibility to determine the name class of the operands and
respond accordingly.

NAMES Files

Every non-self-describing external routine to be accessed through Processor 11
must be described in a NAMES file available to the processor.

In the CMS/VM environment, a NAMES file is a sequential file with file type NAMES
on an accessible CMS minidisk that contains descriptive information for one or
more external routines. Each description must begin with a :NICK. tag and con-
tinues until the next :NICK. tag or the end of the file. In the MVS/TSO environment,
a NAMES file library is a partitioned data set in which each member describes an
individual external routine. It may contain fixed or variable length records with a
maximum record length of 255 bytes. Any line that starts with an * is a comment.
Tag data may not be continued onto new records. Argument pattern tags can be
repeated if the pattern does not fit on one record. For example:

:DESC.Right argument is 10 vectors of 6 integers each.
:RARG. (GO 1 10)(I4 1 6)(I4 1 6)(I4 16)(I4 1 6)(I4 1 6)
:RARG. (I4 1 6)(I4 1 6)(I4 1 6)(I4 1 6)(I4 1 6)

In MVS/TSO, APL2's default NAMES file library is allocated to ddname AP2TNO11.
Concatenated allocation is supported and can be used to support multiple libraries
and specify search order. Entries provided with APL2 are distributed in a library
with the name 'APL2.AP2TNO11.NAMES'. Installation and user NAMES file entries
can be provided in libraries concatenated with it.

In VM/CMS, APL2's default NAMES files are PO11 NAMES * and AP2VNO11
NAMES * and are searched in that order. Entries provided with APL2 are distrib-

318 APL2 Programming: System Services Reference

Processor 11

uted in AP2VNO11 NAMES. P011 NAMES may be defined to include descriptions
of external functions not distributed with APL2.

Note: For performance reasons, when a partitioned data set containing NAMES
file entries (private or the default) is used by Processor 11 on TSO, it is left
open until another NAMES file is used or the APL2 session ends. Once the
data set is opened, changes made to the data set are not detected until
Processor 11 closes and reopens the data set. When making changes to a
NAMES file, either exit APL2 or instruct Processor 11 to open a different
NAMES file by specifying a different NAMES file in a ONVA expression
before trying to use your changes.

Note: When a tag occurs multiple times in a NAMES file, the first occurrence of
the tag is used on CMS, the last occurrence is used on TSO.

Processor 11 Non-APL Routine Description Tag Rules

For each external routine, Processor 11 must be informed how to locate the
routine. The location information (search order, member name, and entry) can
reside either in the left argument of N A or in a NAMES file.

For each external routine accessed through Processor 11, a routine description
must also be provided. The routine may either be self-describing or the routine
description may reside in the NAMES file. If the routine is self-describing, it may
also have a NAMES file entry. However, if the routine is self-describing, the
NAMES file entry may only contain tags that instruct Processor 11 how to locate
the routine.

If you use NAMES files, we recommend that you use a private NAMES file and
specify its name in the left argument of 0N A rather than using the default NAMES
files. This helps to avoid possible conflict with routine names in the APL2 default
NAMES files.

If you use self-describing routines, IBM recommends that you do not use NAMES
files and rather specify the load library and member names in the left argument of
ONA. This also helps to avoid possible conflict with routine names in the APL2

default NAMES files and additionally avoid the overhead of NAMES file searches.

[Figure 103 on page 320 jllustrates how Processor 11 routine description tags can
be used in NAMES files and self-describing routines. Notice that whether or not a
NAMES file exists, the tags allowed in the routine's self-description do not change.

Chapter 28. Processor 11—Calling Compiled Programs 319

Processor 11

Figure 103. Processor 11 Non-APL Routine Description Tag Rules

Tag In NAMES file if In NAMES file if In routine's self-
routine is not routine is self- description
self-describing describing

Routine location tags

:NICK. Required 1 Required 1 Tolerated 2

:LOAD. Optional 3 Optional 3 4 Ignored 4

:MEMB. Required Required 4 Ignored 4

:ENTRY. 5 Optional Optional Ignored 4

Routine calling procedure tags

:LINK. Required Not allowed ¢ Required

:AINIT. Optional Not allowed Optional

:TASKLIB. Optional Not allowed Optional

Routine parameter tags

:LARG. Optional Not allowed Optional

:RARG. Optional Not allowed Optional

:RSLT. Optional Not allowed Optional

:PARM. Optional Not allowed Optional

:VALENCE. Optional Not allowed Optional

Miscellaneous tags

‘TIME. Optional Not allowed Optional

:DESC. 7 Ignored Ignored Ignored

Notes:

1. :NICK. tags are required in NAMES files on CMS. However, since NAMES files entries
on TSO are located by member name, the :NICK. tag is optional on TSO. For porta-
bility, we suggest you always include :NICK. tags in NAMES files.

2. The :NICK. tag is allowed within a self-describing routine, but its value must match name
specified in the right argument of ONA.

3. If the :LOAD. tag is omitted from a NAMES file, then a standard operating system search
order is used to find the member.

4. Although the :LOAD., :MEMB., and :ENTRY. tags are all allowed in self-describing rou-
tines, they are not needed and their values are ignored. If there is no NAMES file, the
member name, and optionally the load library name, must be provided in the left argu-
ment of ONA.

5. The :ENTRY. tag defaults to the name specified in the right argument of (JNVA.

6. APL2 namespaces are actually self-describing also and the :LINK. tag can be used in
the NAMES file entries. The restriction applies only to non-APL routines.

7. The :DESC. tag is provided merely for documentation purposes. Processor 11 never
uses the tag's description.

320 APL2 Programming: System Services Reference

Processor 11

System Usage Guidelines
This section discusses the system usage guidelines.

Linkage Conventions

The :LINK. tag is used to inform Processor 11 what convention to use when calling
a routine.

The OBJECT and FORTRAN linkage conventions provide the ability to call
non-APL programs using operating system and FORTRAN conventions. The pro-
grams are passed arguments and expected to return results using standard param-
eter lists and structures. These programs are passed information that can be used
to exploit APL2 service routines.

The FUNCTION linkage convention is intended for programs that are specifically
designed to be called by APL2. These programs are passed arguments and
expected to return results using APL2's conventions. These programs are also
passed information that can be used to exploit APL2 service routines. In addition,
their interface provides for complete mimicry of APL programs; their valence,
results, and errors can all be controlled like APL programs.

OBJECT and FORTRAN Linkage

Standard OS linkage is used for calling external routines. Routines with
:LINK.OBJECT are entered with register 1 pointing to a list of argument addresses,
terminated with a 1 in the high-order bit of the last address. For routines that take
a single argument, this is the address of the data described by the simple array
pattern. For routines that take more than one argument, each address corresponds
to an item of the general object described.

Chapter 28. Processor 11—Calling Compiled Programs 321

Processor 11

Routines with :LINK.FORTRAN are entered using the VS FORTRAN (Version 1
Release 4 or Version 2 Release 1 or later) linkage convention as described in the
VS FORTRAN Version 2 Programming Guide. With this linkage convention, reg-
ister 1 points to a parameter list with the following format:

parm -4———APL service routine

parm -3 » 'P11

parm -2 —— | 'BZ00'

v

arg Tist Ten

parm -1

RlI—>| parm 1 ——| First argument

1|parm n —— | Last argument

parm n+l »| first arg len

1|parm 2n »| Tast arg len

Figure 104. :LINK.FORTRAN Routine Invocation Parameter List

The entry protocols for :link. OBJECT and :link. FORTRAN are well suited to calling
FORTRAN or Assembiler routines. On entry, the routine is given a set of pointers
to the data arguments it expects. These arguments have been checked and con-
verted by APL to conform to the argument patterns provided in the routine's
description and, because of this, no additional special processing is required.

FUNCTION linkage

Routines with :LINK.FUNCTION can mimic APL functions; their valence can be
niladic, monadic, or ambivalent, and they can produce an explicit result or not.
They can also queue messages and signal errors. These routines are designed to
be written specifically for the APL2 environment, and are given access to data and
storage within the workspace. Detailed information on the interfaces to these rou-
tines is provided in APL2/370 Programming: Processor Interface Reference.

Unexpected Errors

While testing and debugging external routines, it is recommended that the user
invoke APL2 with the DEBUG(1) invocation option. This causes all)YORE mes-
sages to be displayed automatically as they occur.

Name Association Failures: There are a number of reasons why dyadic ON A
fails to activate a name and return O:

¢ Incorrect arguments. Malformed APL names in the right argument of dyadic
ONA cause the ONA to fail and return 0. If monadic VA on the same right
argument returns ~ 1, the object name is malformed.

322 APL2 Programming: System Services Reference

Processor 11

An invalid left argument of dyadic O/NVA also causes the request to fail and
return 0. Specification of the incorrect or a non-existent processor number
causes a failure. More likely, however, the first item in a row of the left argu-
ment is malformed or incorrect. In these cases a)MORE message indicating a
PARAMETER ERROR is queued. See FNAMES Files” on page 318 for addi-
tional information on valid left arguments for dyadic ONA.

Finally, if dyadic ONA is issued for a name that already exists in the APL work-
space, its left argument must match the left argument of the dyadic ONA4 ori-
ginally used to establish the name. Monadic ONA returns the original left
argument of dyadic /N4 used to establish an existing name.

e Error in the Routine Description. An invalid parameter in the routine description
causes dyadic VA to return a 0 and a)MORE message to be queued indi-
cating the problem.

e Routine cannot be located. If the external routine name cannot be located
either in the default search order or in the NAMES file, or if the routine speci-
fied in the NAMES file cannot be found or loaded, dyadic ONA returns a 0 and
a)MORF message is queued indicating that the external routine is unavailable.

e Environment damaged. A VALENCE ERROR resulting from an attempt to
execute an external routine with an environment can indicate that the environ-
ment has terminated. If this is the case,) MORFE messages are queued indi-
cating that both the external routine and its external environment are
unavailable, and a subsequent dyadic N4 for the external routine returns a 0.
If this situation occurs, the external routine name must be explicitly erased from
the workspace and its execution stack before a successful dyadic ONA can
occur. Other names associated with external routines requiring the same envi-
ronment may also have to be erased.

 Insufficient freespace for proper operation of Processor 11 can cause dyadic
ONA toreturn a 0. A)MORE message is queued in this situation. The user
should invoke APL2 with more freespace.

e Processor 11 or NAMES file unavailable causes dyadic O0/NA to return O.
Proper operation of Processor 11 and availability of the NAMES file supplied
with APL2 can be verified by running the APL2 installation verification proce-
dure. Details can be found in the APL2/370 Programming: Using the Supplied
Routines.

APL Errors during External Routine Execution: Various errors can occur during
the execution of an external routine. For routines with :LINK.OBJECT or
:LINK.FORTRAN, error reports are generated either by Processor 11 or by APL2. For
routines with :LINK.FUNCTION, errors can also be generated by the routine itself.

e Errors such as RANK ERROR, LENGTH ERROR,or DOMAIN ERROR,
often indicate a mismatch between the external routine arguments and the
argument patterns in the routine description. Argument patterns should be
checked carefully against the actual arguments provided when this situation
occurs. Common errors include using a scalar when a vector is expected (or
vice versa) and providing a value rather than the name of an object when an
object is to be updated. The external function PF4, distributed with APL2, may
be of assistance in building argument patterns or in understanding the structure
of an argument.

e VALENCE FRROR indicates that the external routine is called with an incor-
rect number of arguments or that the external routine is unavailable. An

Chapter 28. Processor 11—Calling Compiled Programs 323

Processor 11

external routine is marked unavailable if Processor 11 encounters an error in
locating or loading the routine, an error in the NAMES file, an invalid or incon-
sistent argument descriptor, or if the environment routine associated with it ter-
minates. When an external routine is marked unavailable, a) ¥ORE message
is queued and a subsequent dyadic ONA for the external routine name returns
ao.

The environment associated with an external routine can terminate as the result
of an unexpected error in any of the routines that share the environment. A
)MORE message is queued along with the VALENCE ERROR when this
situation occurs to indicate that the external routine is no longer available.

e ASYSTEM ERROR that does not lead to a CLEAR workspace during the
execution of an external routine generally indicates that the external routine ter-
minated abnormally. For most external routines, a) ¥ORE message is queued
when this situation occurs to indicate that an internal error occurred during exe-
cution of the routine. See [‘ABENDS and Internal Errors in External Routines’]
for additional information.

e ASYSTEM LIMIT errorwith JET=1 6 is issued when the user attempts
to invoke an environment that is already active. A)MORE message explaining
this error is also queued. An environment that was automatically started
(:INIT.#INITIAL) can be deleted only by expunging all the names that require
the environment.

e ASYSTEM LIMIT errorwith JET=1 12 isissued when an external
routine returns a result in an invalid format. No)XYORE message is queued.
This error rarely occurs for routines with :LINK.FORTRAN or :LINK.OBJECT, unless
the routine malfunctions and destroys data in the workspace. (A SYSTEM
ERROR is more likely in this situation.) This problem can be fairly common,
however, for routines with :LINK.FUNCTION that have not been thoroughly
debugged. The error generally indicates an invalid result CDR format or
descriptor.

e Some routines expect that CMS cleans up the environment when they com-
plete as control returns to CMS ready. These routines can fail unexpectedly
when used from APL2 because APL2 does not perform all the same clean up
operations after each call to a routine that CMS performs. In particular, you
should issue a FILEDEF ddname CLEAR for any ddnames established during the
session for external routines when the routines have finished processing.
Failure to do so can cause problems after leaving APL2; storage acquired for
each filedef is not automatically freed upon leaving APL2.

Suspended External Routines: Like any APL routine, an external routine whose
execution is incomplete, either because it is suspended, is recorded on the exe-
cution stack. An external routine cannot be deleted by Processor 11 until all
stacked references have been cleared and the external routine erased.

ABENDS and Internal Errors in External Routines: External routines that
expect or wish to handle program checks or ABENDS should establish an environ-
ment that handles them. Processor 11 does not support subroutines that set their
own ABEND recovery, except for subroutines with :LINK.FUNCTION that use the
ABEND recovery service provided by APL.

FORTRAN and similar languages typically provide program check and ABEND

recovery in their environment and not in individual subroutines. To provide access
to those facilities, it is therefore necessary to establish an environment (see

324 APL2 Programming: System Services Reference

Processor 11

FEnvironments” on page 303) for these external routines. Note that this may be
necessary even for external routines that operate normally, since certain languages
depend on capturing program checks to detect and correct conditions such as
numeric overflow and underflow.

Program checks and ABENDS in external routines that are not handled by its envi-
ronment (or by the APL ABEND service in the case of routines with
:LINK.FUNCTION) are handled by Processor 11. This situation causes a SYSTEM
ERROR to be reported and a)MORE message to be queued, indicating an internal
error in the external routine.

Program checks, ABENDS, or other conditions that cause an environment to termi-
nate during the execution of an external routine causes the environment to be shut
down and all external routines that depend upon it to be marked unavailable. A
SYSTEM ERROR is reported and)MORE messages are queued indicating that
the environment and all external routines that depend on it are unavailable. Any
subsequent attempt to execute one of these external routines results in a
VALENCE ERROR. To clear this situation, each of these external routines must
be erased from the workspace and cleared from the execution stack.

Caveat: External routines accessed through Processor 11 are expected to be
tested, well behaved programs. In certain circumstances, if these routines access
or destroy data beyond what is presented to them through their arguments, damage
to the APL workspace or to APL's internal operation may occur. Care must also be
taken to ensure that the information in the routine description is valid and accurate.

Processor 11 Routine Search Order Guidelines

This section discusses guidelines for the processor 11 routine search order.

External Function Names
In both CMS and TSO, external routine names must be valid APL names and are
restricted to uppercase letters and numbers. The maximum length of an external
name is 249 characters in CMS and 8 characters in TSO.

By using a surrogate name, the user can satisfy these restrictions and at the same
time use any valid APL name for the external routine in his applications. Use of
surrogate names also helps to avoid name conflicts in the APL workspace.

CMS Search Order Guidelines

Under CMS, Processor 11 supports routines that:

¢ Reside in members of load libraries

e Have been link-edited with APL2

¢ Reside in MODULE files created with GENMOD
¢ Reside in TEXT decks

¢ Reside in TXTLIBs

Routines that reside in a member of a load library may be loaded by specifying the
library and member names in the left argument of ONA or in :LOAD. and :MEMB.
tags in a NAMES file.

All other routines may be loaded by simply specifying a member name in the left
argument of ONA or in a :MEMB. tag in a NAMES file. For routines in saved seg-

Chapter 28. Processor 11—Calling Compiled Programs 325

Processor 11

ments and nucleus extensions, the name of the nucleus extension should be speci-
fied as the member name. For routines link-edited with APL2, the name of the
original object file should be specified as the member name. In all these cases,
Processor 11 uses the following search order:

1. Nucleus Extensions
2. MODULE files

3. TEXT files

4, TXTLIBs

While the convenience of object files or TXTLIB's may seem attractive, it is sug-
gested that the user avoid the use of these facilities since they may be damaged by
the use of other CMS facilities normally available to the APL2 user. The CMS
loader that processes object files or TXTLIB members places the code and associ-
ated control blocks in vulnerable storage. This storage may be destroyed inadvert-
ently by a variety of CMS commands and services.

A discussion of the advantages of placing routines in saved segments can be found

in [“‘Preloading and Sharing External Routines” on page 331| Instructions on how to

install routines in saved segments can be found in APL2/370 Installation and
Customization under CMS.

Using Routines Defined as Nucleus Extensions

To use a routine that is defined as a nucleus extension simply supply the nucleus
extension name either as a member name in the left argument of ON 4 if the
routine is self-describing or use the :MEMB. tag in a NAMES file. To prevent
Processor 11 from trying to load the routine from a LOADLIB, do not code a load
library name. Further information about defining routines as nucleus extensions
can be found in[‘Preloading and Sharing External Routines” on page 331}

Using Routines in TEXT Decks or TXTLIBs

To use an external routine that is defined as a text deck simply supply the TEXT
deck name in the :MEMB. tag in a NAMES file. To prevent Processor 11 from
trying to load the routine from a LOADLIB, do not code a load library name.
External routines in TEXT decks must be described using a NAMES file since they
cannot be self-describing. Before using a routine in a TXTLIB, a GLOBAL TXTLIB
name command must be issued, where name is the file name of the TXTLIB file.

TSO Search Order Guidelines

Under MVS/TSO, Processor 11 supports routines that have been link-edited and:

e Placed in a load library, or
e Placed in the MVS Link Pack Area (LPA)

Using Routines in TSO Load Libraries

A routine can be accessed from a load library either by placing the load library in
the standard operating system search order or by allocating the library to a ddname
and specifying the ddname in the left argument of ONA or the :LOAD. tag. The
member name is coded in the left argument of ONA or the :MEMB. tag of a
NAMES file entry.

326 APL2 Programming: System Services Reference

Processor 11

Using Routines in the Standard TSO Search Order

If a routine is to be loaded using the standard TSO search order, only the member
name should be coded in the left argument of ONA or the :MEMB. tag of a NAMES
file entry. No ddname should be provided. The TSO search order includes any
data sets allocated to ddname LOADLIB either prior to APL2 invocation or during
APL2 invocation by use of the LOADLIB invocation option. The search then pro-
ceeds to the normal TSO search order, including the current tasklib (if one has
been established), STEPLIB, JOBLIB, and the LPA.

Link-Editing External Routines

Language compilers, and the APL2 BUILDRD, BUILDRL, and PACKAGE func-
tions, produce obiject files that are link-edited before execution. Applications may
be composed of a single routine in a single object file or may be composed of mul-
tiple object files and language routines. The linkage editor resolves references to
external routines and combines the application's files with any necessary language
routines.

Many languages provide libraries of routines that are combined with user programs
during link-editing. These routines provide common services or are stub routines
that dynamically load common service routines from language execution routine
libraries. These libraries need to be made available to the linkage editor so that the
referenced routines can be loaded during link-edit. Languages routines to be
accessed during link-editing are usually provided in object files (TXTLIBs) on CMS
or load libraries (partitioned data sets) on TSO.

APL2 provides three routines used with Processor 11 that may be loaded during
link-editing. They are AP2VNL (for CMS), AP2TNL (for TSO), and AP2XCMAP.
They are shipped to CMS in TEXT files (not a TXTLIB) and to TSO in a load
library.

The linkage editors acquire input from three sources:
1. The main input object file

2. Object files specifically included by linkage editor INCLUDE control cards
(statements.) An INCLUDE card can specify that a routine should be loaded
from a library defined with a specific ddname.

3. Automatic inclusion of routines indicated by external references in routines
included by the first two methods. The linkage editor searches the library(s)
defined to the ddname SYSLIB.

The linkage editors assume that routines are only going to use 24 bit addresses. If
a routine is going to use 31 bit addresses, or be called in 31 bit addressing mode
by other programs, the routine should be link-edited with the AMODE(31) linkage
editor parameter.

The linkage editors also assume that routines are designed to be loaded within the
24 bit address range (below the 16MB line.) If a routine can be loaded and run
above the 16MB line, the routine should be link-edited with the linkage editor
parameter RMODE(ANY) option. If a routine must be loaded and run above the
16MB line, the routine should be link-edited with the linkage editor parameter
RMODE(31) option. Further information about addressing and residency modes
can be found in [‘Extended Addressing Considerations” on page 331

Chapter 28. Processor 11—Calling Compiled Programs 327

Processor 11

When link-editing a routine list with a set of object files, the routine list should be
designated as the main entry point of the output file. When link-editing a routine
description with a routine (and no routine list is included), the routine description
should be designated as the main entry point of the output file.

Link-Edit Tools

Two execs, AP2MP11L and AP2MP11M, are provided to programmers for link-
editing their routines.

AP2MP11L Link-edits object files and produces a member of a load library. It
can be used on either CMS or TSO.

AP2MP11M Generates a MODULE file from object files. It can be used only
on CMS.

Both execs' arguments have the same general form:

AP2MP11L target sources libraries

Where:
target is the file into which the generated output should be placed.
sources are the object files to be link-edited together.

libraries are language object file libraries.

Target Files: On TSO, targetis a fully-qualified unquoted data set name including
a parenthesized member name. On CMS, farget is the filename of the LOADLIB or
MODULE file to be generated. The member name to be built within the LOADLIB
can be specified in parentheses or defaults to the first name listed in sources.

Source Files: On TSO, sources is a fully-qualified unquoted data set name
including a parenthesized list of one or more members to be included in the output
file. On CMS, sources is a parenthesized list of filenames of TEXT files to be
included in the output file. If only one filename is listed, the parentheses may be
omitted.

Library Files: On TSO, libraries is a parenthesized list of the fully-qualified
unquoted names of language routine library data sets that should be allocated to
SYSLIB. On CMS, libraries is a parenthesized list of filenames of language routine
library TXTLIB files to be made available to the link-editor's or loader's search
order. If only one name is listed, the parentheses may be omitted.

If no language routine libraries are needed, libraries may be omitted.

Using AP2MP11L and AP2MP11M
These execs can be used to link-edit:

¢ One object file produced by PACKAGE or a compiler. For example on CMS:

AP2MP11L MYLIB ADD (EDCBASE IBMBASE)

328 APL2 Programming: System Services Reference

Processor 11

* One routine description and one non-APL routine object file. The name of the
routine description should be listed first in sources. For example on TSO:

AP2MP11L USERID.LIB(PGM) USERID.OBJ(RD PGM) SYS1.LINKLIB

¢ One routine list and one or more routine descriptions and object files produced
PACKAGE or compilers. The name of the routine list should be listed first in
sources. For example on CMS:

AP2MP1IM CMODULE (RL ENV RTN AP2VNL) (EDCBASE IBMBASE)

Note: On CMS AP2VNL and AP2XCMAP may also need to be listed in
sources.

Examples demonstrating link-editing routines written in several languages using
AP2MP11L and AP2MP11M can be found in[Appendix G, “Sample Non-APL Pro-|
[arams to be Called through Processor 11” on page 385} For those readers who
prefer not to use these execs or are interested in the mechanics of the process, the
following sections provide further information about link-editing.

Link-Editing External Routines on CMS

The basic command for link-editing routines on CMS is:
LKED routine (LIBE Tibrary LIST MAP [AMODE(31) RMODE(ANY)]
The basic commands for creating a MODULE file on CMS are:

LOAD Module (RLDSAVE LIBE CLEAR NODUP AUTO RESET Rlname
GENMOD Module (FROM R1name [AMODE(31) RMODE(ANY)]

The AP2MP11L and AP2MP11M execs issue the necessary GLOBAL and
FILEDEF commands prior to performing the link-edit or module generation.

When multiple TEXT deck files are to be link-edited or loaded in preparation for
generating a module, two basic techniques are available for causing the linkage
editor or loader to find all the files.

1. They can all be copied into the same file that is then used as the main input to
the linkage editor.

2. They can be copied into members of a TXTLIB file that is then added to the
linkage editor's search order with the FILEDEF command.

When language routines to be automatically included reside in multiple object file
libraries (TXTLIB files), two techniques are available for causing the linkage editor
to be able to access all the libraries.

1. Copy all the members of all the libraries into a single library.

Chapter 28. Processor 11—Calling Compiled Programs 329

Processor 11

2. FILEDEF all the libraries to the ddname SYSLIB. Unfortunately, the CMS
linkage editor has a restriction that it only supports one library associated with
SYSLIB unless the following extra step is also performed:

MACLIB files with the same filenames as each of the TXTLIB files must be
available on an accessed disk and a GLOBAL MACLIB command must be
issued listing all the names of the TXTLIB files.

When a MODULE file is to be generated and the language routines reside in mul-
tiple object file libraries (TXTLIB files), a GLOBAL MACLIB command must be
issued listing all the names of the TXTLIB files.

Unlike the language routines provided with most compilers, APL2's routines are not
shipped in TXTLIB files. AP2VNL and AP2XCMAP are shipped in separate object
files. Therefore, since the linkage editor and loader only automatically loads from
TXTLIB files filedefed to SYSLIB, they must be explicitly included

The second argument of the AP2MP11L and AP2MP11M execs lists the TEXT files
to be explicitly included. The execs include TEXT files. The filetype of the
AP2VNL and AP2XCMAP files is TXT210 in the initial shipment of APL2 Version 2.
If maintenance is applied to these files, the filetype changes to TEXT. Before
attempting to include either of these files, you should locate the most recent copy.
If the filetype is TEXT, simply have the disk accessed, If the filetype is TXT210,
make a copy of it with a filetype of TEXT so that the execs can find it.

Some languages require that libraries of dynamically loaded execution environment
routines are available. For further information about this topic, consult[fExecution]
[Time Libraries” on page 332]

Link-Editing External Routines on TSO

The basic command for link-editing routines on TSO is:
LINK input LOAD(outlib(member)) LIB(langlib) LIST MAP [AMODE(31) RMODE(ANY)]

When multiple object files are to be link-edited, two basic techniques are available
for causing the linkage editor to find all the files.

1. They can all be copied into the same file that is then used as the main input to
the linkage editor.

2. They can be specifically INCLUDEd from object file libraries either allocated to
a specific ddname or from SYSLIB (the default DDNAME.)

Libraries containing language routines that are automatically included should be
allocated to ddname SYSLIB. Multiple libraries can be concatenated to SYSLIB.

Because AP2TNL and AP2XCMAP are shipped in a load library, the library can be
concatenated to SYSLIB along with other language routine libraries. The linkage
editor automatically includes them (if there are external references to them) and
they do not need to be explicitly included.

Some languages require that libraries of dynamically loaded execution environment
routines are available. For further information about this topic, consult ['Execution]|
[Time Libraries” on page 332}

330 APL2 Programming: System Services Reference

Processor 11

Installation of External Routines

This section discusses the installation of external routines.

Extended Addressing Considerations

On systems supporting extended addressing, unless APL2 is invoked with XA(24),
arguments passed to external routines are located above the 16-megabyte line.
External routines are entered in the addressing mode specified when they were
link-edited.

To execute routines with 24-bit addressing dependencies, the routines must be link-
edited with the linkage editor parameters AMODE(24) RMODE(24) and APL2 must
be invoked with the invocation option XA(24). This causes the external routine and
the APL workspace to be located below the 16-megabyte line, the external routine
to be entered in 24-bit mode, and arguments passed to it located below the
16-megabyte line.

Invoking APL2 with option XA(24) restricts the size of the workspace and local
shared memory.

Preloading and Sharing External Routines

It may be desirable to preload frequently used routines or make them available on
a shared basis so every user does not incur the overhead of loading an individual

copy.

This can be done in the MVS/TSO environment by placing the routines, with the
help of your system administrator, in MVS Link Pack Area (LPA). The manual
APL2/370 Installation and Customization under TSO includes more information on
this topic.

In the VM/CMS environment, external routines can be placed in a saved segment
or be link-edited and installed with APL2 itself. When routines are placed in a
saved segment, they are shared between users. If they are link-edited with APL2,
they are loaded with APL2 and shared between users if APL2 is installed on a
shared basis. The manual icms includes more information on this topic.

Routines that are shared between users, either by placing them in the MVS Link
Pack Area or by link-editing them as part of APL2 itself, must be reentrant and
refreshable. Routines written in languages other than APL2 may or may not be
reentrant and refreshable depending upon how they were written. APL2
namespaces are reentrant and refreshable.

In the VM/CMS environment, it is possible to preload an external routine on a non-
shared basis by loading it as a nucleus extension. This can be done by issuing a
CMS NUCXLOAD command for the routine or package of routines before
attempting to associate the name. More information on the NUCXLOAD command
can be found in the VM/SP CMS Command and Macro Reference.

Chapter 28. Processor 11—Calling Compiled Programs 331

Processor 11

Execution Time Libraries

FORTRAN and similar languages often require access to execution time libraries to
access processing, service, and error handling routines that are not compiled or
link-edited with the program. Typically, access to these routines is provided
through the environment and not directly from an individual subroutine. If you are
not sure if your external routine requires access to execution time library routines, it
is safer to establish an environment and make the execution time library available
to it.

VS FORTRAN Execution Time Libraries

The VS FORTRAN execution time library in the CMS/VM environment must be on
an accessible minidisk and made available to the APL session with a GLOBAL
LOADLIB CMS command.

In the MVS/TSO environment, the libraries should be allocated to a ddname and
the ddname must specified in the :TASKLIB. tag in the environment program's
routine description.

If the execution time library is not available when it is required during the execution
of an external function, a SYSTEM FERROR message typically occurs along with
termination of the environment.

Other Processor 11 Considerations

This section discusses processor 11 considerations.

Using Self-Describing Routines from Non-APL Programs

The addition of a routine description to a non-APL program does not affect the
ability to use the program from outside APL2. As long as the program is called
using standard operating system entry and exit linkage conventions, the self-
description does not interfere.

Using Modules with Routine Lists from Non-APL Programs.

The addition of a routine list to a module makes the main entry point of the module
unusable from non-APL programs. It is possible to set up aliases for routines
within the module using the linkage editor. This would enable those routines to be
called by non-APL programs.

FORTRAN Considerations

This section discusses the considerations for FORTRAN.

APL2 versus FORTRAN Array Ordering

In APL, arrays are stored and referred to in row major order. In FORTRAN they
are in column major order. Processor 11 does not modify data ordering. Among
other things, this means that the APL statement:

ARRAY[I;J]

selects the item at the row | and column J of ARRAY. In FORTRAN, the state-
ment:

ARRAY(I,J)

332 APL2 Programming: System Services Reference

Processor 11

selects the item at the column | and row J of ARRAY. Applications that share data
between APL and FORTRAN routines must be aware of this difference.

FORTRAN External Names
VS FORTRAN supports external names up to 7 characters long.

FORTRAN Linkage Convention

:LINK.FORTRAN should be coded for VS FORTRAN subroutines. Some VS
FORTRAN subroutines may work even if a :LINK.OBJECT tag is coded. However,
results are unpredictable. A general guideline is that :LINK.FORTRAN must be
used if any of the arguments of the subroutine is a character vector.

FORTRAN Common

FORTRAN routines that share data using static named or blank common must be
link-edited together if they are to be used with Processor 11. Under MVS, link-
edited load modules containing routines that share common storage should be
reusable. See [‘Routine Lists” on page 298|for additional information. FORTRAN
routines that share data using dynamic common require the FORTRAN environ-
ment (see [[Environments” on page 303), but may be link-edited to separate
modules.

FORTRAN Functions

FORTRAN functions can be called through processor 11 and their explicit results
returned. For FORTRAN functions of type other than CHARACTER, the :RSLT. tag
must be coded to describe the explicit result (see “Result Patterns” for details).
FORTRAN functions of type other than CHARACTER return only scalar results and
pass those results back to the caller in register O or in floating point registers.

Thus, the :RSLT. pattern should not include the output indicator (<).

FORTRAN functions of type character return their results in a dummy extra argu-
ment in the caller's parameter list. Thus to call the following FORTRAN function:

CHARACTER*10 FUNCTION SUFFIX(STR)

CHARACTER*7 STR

SUFFIX = STR // 'SUF'

END

The following :RARG. pattern should be coded in the routine's description:
:RARG. (GO 1 2) (C1 1 7) (<C1 1 10)

and the function called from APL with an extra dummy argument:

'"(MYNAMES)' 11 0ONA 'SUFFIX'

SUFFIX (74WORD) (10p' ')

Note: For FORTRAN functions of type CHARACTER the :RSLT. tag should not be
coded in Routine Descriptions.

Chapter 28. Processor 11—Calling Compiled Programs 333

Processor 11

Chapter 29. Processor 11—Access to Namespaces

Processor 11 provides facilities that allow access to APL objects in namespaces
and to routines written in languages other than APL. This chapter describes
access to APL objects in namespaces. Access to FORTRAN and Assembler Lan-
guage routines is described in|Chapter 28, “Processor 11—Calling Compiled|
[Programs” on page 291|

Overview

Facilities are provided with APL2 that allow a saved workspace to be encapsulated
or “packaged” and converted to an object file. Such object files can be processed
by a system provided linkage editor and subsequently accessed through Processor
11. Access to the APL objects (arrays, functions and operators) in a namespace is
provided through the use of ONA.

To convert a saved workspace to a namespace, the saved workspace must be
processed by the external function PACKAGE. In most cases, it must then be
link-edited into a load library.

The objects (arrays, functions or operators) in the namespace that are to be
accessed from the active workspace or from other namespaces may be described
in a NAMES file available to Processor 11. Alternatively, information used to locate
the namespace can be provided in the left argument of dyadic ONA.

APL applications access objects in the namespace through the use of the system
function ONA. Once external objects are declared and activated through the use of
dyadic IV A4, they can be treated as normal arrays, functions or operators in the
user's workspace.

The following example illustrates this process:

1. The user develops an APL application and saves it in his private library as
workspace REPORT with the command:

)SAVE REPORT

Assume that the workspace contains two functions functions SETUP and RUN
that are designed to be called directly and a number of subsidiary functions,
operators and arrays that are used by the SETUP and RUN functions.

334 © Copyright IBM Corp. 1984, 1994

Processor 11

For purposes of illustration, assume the following simplistic definitions for
SETUP and RUN:

(11
[21]
(3]

(11
[21]
(3]

VZ<«SETUP A

INITIALIZE A @ CALL INITIALIZATION FUNCTION
Z<«'SETUP COMPLETE"

v

VZ<«RUN A

PROCESS A a CALL PROCESS FUNCTION
Z<'RUN COMPLETE'

v

2. In the MVS/TSO environment, a data set must be allocated to ddname

SYSPUNCH before the next step is performed. The output of the PACKAGE
function in the next step is placed into this data set. Assuming that the PDS
REPLIB.OBJ exists and has been cataloged, and that a new member REPORT
is created in step 3, this allocation can be performed with the TSO command:

ALLOCATE FILE(SYSPUNCH) DA(TEMP.OBJ) SP(10,20) BL(8000) LR(80) REC(F,B)

. The saved workspace is converted to a namespace using the external function
PACKAGE that is provided with APL2:

3 11 0ONA 'PACKAGE!

'SETUP' 'RUN' PACKAGE 'REPORT'

The external function PACKAGE converts the workspace REPORT to an object
file. Under CMS/VM, the object file is placed in a CMS file named 'REPORT
TEXT'. Under MVS/TSO, the object file is saved in the data set allocated with
ddname SYSPUNCH (in our example, as member REPORT in data set
REPLIB.OBJ).

Note: Under MVS/TSO, SYSPUNCH must be allocated prior to running the
external function PACKAGE.

. The object deck produced in step 3 is then link-edited into a load library.
Under VM/CMS, this can be accomplished with the CMS commands:

FILEDEF SYSLMOD DISK REPLIB LOADLIB A (RECFM U
LKED REPORT (NAME REPORT

Under MVS/TSO, assuming that the PDS REPLIB.LOAD has been previously
created and catalogued, the link-edit can be accomplished with the TSO
command:

LINK (TEMP.OBJ) LOAD(REPLIB(REPORT)) RMODE(ANY)

In non-MVS/XA environments, the RMODE(ANY) parameter shown on the LINK
command above may not be supported and should not be specified.

Chapter 29. Processor 11—Access to Namespaces 335

Processor 11

5. Under the MVS/TSO, the load library in which the link-edited module resides
must be allocated using the ddname specified in the :load. tag in the NAMES
file in the left argument of ONA. This can be accomplished with the TSO
command.

ALLOCATE FILE(REPLIB) DSN(REPLIB.LOAD) SHR

6. The SETUP and RUN functions may then be accessed through as normal APL
functions through the use of ONA:

'"REPLIB.REPORT' 11 0ONA 'SETUP'
1

SETUP '"INITIAL TEST!
SETUP COMPLETE

'"REPLIB.REPORT' 11 0ONA 'RUN'
1

RUN '"INITIAL TEST'
RUN COMPLETE

Detailed Description

Namespaces can be created from APL saved workspaces. Objects within them
can be accessed dynamically from the user's active workspace or from other
namespaces.

Namespaces are created from saved workspaces using the external function
PACKAGE that is described below. The output of the PACKAGE function is an
object file that is then usually processed by a linkage editor to create a load module
containing the namespace. That load module can be placed in a load library.
Under MVS, a system administrator can arrange to have the load module placed in
the MVS link pack area (LPA), thus making it able to be shared by more than one
APL user. Under VM, a system administrator can arrange to have the load module
link-edited with APL2 or placed in a saved segment, thus making it able to be
shared by more than one APL user.

Entries in a NAMES file associated with Processor 11 define the names in the
namespace that can be accessed through the use of ONA and provide information
on where the namespace can be found by Processor 11. Alternatively, the informa-
tion necessary to locate the namespace can be provided in the left argument of
avA.

A namespace that is not in the LPA or a saved segment is loaded by Processor 11
into the free space in the APL user's address space or virtual machine when
names within the namespace are activated through the use of ONA.

Once a name has been declared, through the use of O/NA4, to be in a namespace,
that name remains associated with the namespace until it is explicitly deleted (with
JERASE, OFEX, etc.). The association is retained in the workspace where the
ONA was issued even after that workspace is) SAVEd, and later) LOADed, or
)COPYed. The information required to form an association is produced by)0UT
for use by) IN.

If a saved workspace that contains names associated with one or more
namespaces is loaded, the namespaces are not loaded into the user's address
space or virtual machine until the associated names are first encountered during

336 APL2 Programming: System Services Reference

Processor 11

the execution of APL expressions, or until they are specifically reactivated through
the use of ONA.

If the namespace is no longer available when the workspace is reloaded, attempts
to access objects that were previously declared through the use of ONA4 fail.

Each namespace contains its own namescope. That is to say, it contains a set of
APL arrays, functions and operators that are known within that package. The func-
tions and operators in a namespace can call other functions and operators or
access arrays within the same namescope.

Each namespace contains its own copy of the system variables, except ONL T,
OPW, and [OTZ that are session variables and have only a single value in the
user's session. System variables such as 010, OPP, ORL, etc. can have a dif-
ferent values in a namespace than they have in the user's active workspace.

To access a name in another namescope, that name must be declared and linked
to the alternate namescope through the use of ONVA. ONA allows an APL object
(array, function or operator) that exists in a namespace to be known and used from
the user's active workspace or from another namespace. Once a name in a
namespace has been activated in the user's active workspace or in another
namespace through the use of (JNV4, it appears and can be used as a normal APL
function, operator or array.

Functions or defined operators in the namespace do not consume space in the
user's workspace unless their definitions are modified during execution in the pack-
age's namescope. If a function or defined operator's definition is so modified or if
new functions or operators are dynamically created in the package's namescope,
those new definitions consume space in the user's workspace. Any variables in a
namespace that are referenced or specified during execution in the package's
namescope consume space in the user's workspace.

In addition, on the first VA to a package, a copy of the name table in the package
is made in the active workspace. Any changes to objects in the package are
recorded in this copy of the name table and such changes are local to the user who
issued the ONA.

Variables in a namespace that have been referenced or specified during execution
in the package's namescope, or defined functions and operators whose definition
has been modified or created during execution in the package's namescope, are
saved along with the user's workspace when a)SAVE command is issued.
When a) SAVE command is issued, sufficient information to re-access
namespaces referenced by the workspace is also saved along with the user's
active workspace. The namespace itself is not saved.

If, after a) LOAD command, it is found that the namespace has been modified
(that is, recreated from a workspace with a different SAVED date) since its last use,
a warning message is produced and the user is given access to the objects in the
new namespace. Data or objects in the package that were created or modified
through previous use of the package, and saved when the user's workspace was
saved, are lost.

Chapter 29. Processor 11—Access to Namespaces 337

Processor 11

Creating Namespaces

Namespaces are created from saved workspaces using the external function
PACKAGE that is provided with APL2. Saved workspaces to be converted to
namespaces must have been saved using the current release of APL2. Work-
spaces saved under prior releases of APL2 must be reloaded and saved again
under the current release of APL2 before they can be successfully converted.
Under MVS/TSO, saved workspaces to be converted must exist in a SAM library
(see [‘Sequential Access Method (SAM) Library System” on page 70); workspaces
saved in VSAM libraries must be saved again in a SAM library before they can be
successfully processed.

It is recommended that workspaces be) COPYed and re-) SAVEd before con-
verting them to namespaces. This technique causes the workspace to be com-
pacted and the state indicator to be cleared before the workspace is packaged.

The function, PACKAGE, can be accessed through the use of ONA:

3 11 0ONA 'PACKAGE"
1

This function is ambivalent and expects the following syntax:
RESULT«NAME _LIST PACKAGE WS_NAME

where

WS_NAME is the data set name of the saved workspace to be converted.
See “Workspace Names” below for additional information. Under
VM/CMS, the data set must exist on an accessible minidisk.
Under MVS/TSO, it must be a cataloged sequential data set.

NAME _LIST is a list of names of APL objects in the resulting namespace that is
accessible (through the use of 0N 4) from the user's active work-
space or from other namespaces. APL objects in the namespace
that are not specified in this name list cannot be accessed from
outside the namespace. If the NAME _LIST argument to
PACKAGE is not specified, all APL objects in the resulting
namespace are accessible through the use of ONA.

NAME _LIST can be a simple character scalar or vector repres-
enting one name, or can be a matrix or vector or vectors repres-
enting a list of names.

RESULT is the name of the data set containing the resulting namespace. In
CMS/VM, this is a file with name 'fn TEXT A' where 'fn' is the
file name of the workspace data set name provided in the right
argument to PACKAGE. In MVS/TSO, it is the name of the data
set allocated to ddname SYSPUNCH. If SYSPUNCH is not allo-
cated when PACKAGE is executed, an error message is produced
and the function terminated.

If the PACKAGE function is not successful in converting the saved
workspace, RESULT is returned as an empty vector.

338 APL2 Programming: System Services Reference

Processor 11

Once a saved workspace has been converted to a namespace, the resulting data
set should be link-edited into a load library. Under VM/CMS, this can be accom-
plished with the CMS commands:

FILEDEF SYSLMOD CLEAR
FILEDEF SYSLMOD DISK fn2 LOADLIB A (RECFM U
LKED fnl (NAME fnl

where 'fn1' is the file name of the namespace returned by the PACKAGFE function
and 'fn2' is the file name of the load library into which the link-edited namespace
is to be placed.

Under MVS/TSO, the link-edit can be accomplished with the TSO command:
LINK dsnl LOAD(dsn2(memb)) RMODE(any)

where 'dsn1' is the name of the data set returned by the PACKAGE function.
'dsn2(memb)"' is the data set name and member name of the load library into
which the link-edited namespace is to be placed. In non-MVS/XA environments,
the RMODE(ANY) parameter on the LINK command shown above may not be sup-
ported and should not be specified.

The following publications provide additional information and reference material on
the linkage editors:

e OS/VS Linkage Editor and Loader, GC26-3813

» MVS/Extended Architecture Linkage Editor and User's Guide, GC26-4011

e Virtual Machine/System Product: CMS Command and Macro Reference,
SC19-6209

A link-edited namespace can be accessed by Processor 11 from the load library in
which it exists. Alternatively, in the MVS environment, it can be placed in the link
pack area and thus shared between all users. Contact your system administrator
for assistance in placing the namespace load module in the MVS link pack area or
extended link pack area.

In the CMS/VM environment, a namespace can be made able to be shared by
installing it in a saved segment. Contact your system administrator for assistance
in this area. The procedure is described in APL2/370 Installation and
Customization under CMS.

Alternatively, in the VM/CMS environment, a namespace can be explicitly loaded as
a CMS nucleus extension with the CMS commands:

FILEDEF SYSLIB CLEAR
FILEDEF SYSLIB DISK fn LOADLIB =*
NUCXLOAD memb memb SYSLIB

where 'fn' is the file name of the CMS load library in which the link-edited
namespace resides and 'memb’' is its member name in that load library.

Loading a namespace as a CMS nucleus extension in the VM/CMS environment
allows it to be preloaded and remain loaded across)LOADs and)CLEARs. The
namespace must be explicitly deleted by the user in this situation. This can be
accomplished with the CMS NUCXDROP command.

Chapter 29. Processor 11—Access to Namespaces 339

Processor 11

Workspace Names

The external function PACKAGF requires as a right argument the data set name of
the saved workspace that is to be converted. Under VM/CMS, the data set names
of saved workspaces take the form 'FN FT FM' where:

FN is the name of the saved workspace, used ina)LOAD or)SAVE command

FT is APLWSV2 for private workspaces and Vnnnnnnn for public workspaces
where nnnnnnn is the library number of the public workspace.

FM is the CMS filemode of the minidisk on which the saved workspace resides.

If FT or FM are not specified, they are defaulted to 'APLWSV2' and '*' respec-
tively.

Under MVS/TSO, workspaces can be saved in SAM or VSAM libraries. (See
[‘APL2 Libraries, Workspaces, and Data Files Under TSO” on page 67/) The
PACKAGE function supports only workspaces saved in SAM libraries. Work-
spaces saved in VSAM libraries must be saved again in a SAM library before they
can be processed by PACKAGE.

Under MVS/TSO, the data set name for a saved workspace can be obtained using
AP 100 by issuing the command:

JHOST APL WSNAME wsid

(See the APL WSNAME command on page [125] for additional details.) Note that
the PACKAGE function requires the workspace data set name as its right argu-
ment. On TSO, if an unqualified workspace data set name is used in the right
argument of the PACKAGE function, the PACKAGE function issues the equivalent
ofa)HOST APL WSNAME command to determine its qualified name.

Accessing Objects in Namespaces

APL objects (arrays, defined functions and operators) in a namespace are
accessed from the user's active workspace or from other namespaces through the
use of dyadic ONA. The right argument of ONA specifies the name of the object or
the name and surrogate name of the object.

The left argument of VA can be a 2 element vector or a two column array (with
each row corresponding to a row in the right argument). The first item of the left
argument (or of each row of the left argument) is used to specify the name and
location of the namespace or to direct Processor 11 to a NAMES file in which the
name and location of the namespace may be found. The following options are
valid:

'"LIB.MEMBER' 11 ONA 'ROUTINE'
Specifies that the object ROUTINE is located in the namespace that is
stored as member MEMBER in load library LIB. In MVS/TSO, LIB is the
ddname allocated to the data set in which MEMBER resides. In
CMS/VM, the load library is named LIB LOADLIB *.

'"MEMBER' 11 0ONA 'ROUTINE'
Specifies that the object ROUTINE is located in the namespace named
MEMBER. In MVS/TSO, MEMBER is found using standard OS search

340 APL2 Programming: System Services Reference

Processor 11

order (that is, LPA, JPA, STEPLIB, etc.). In CMS/VM, a CMS nucleus
extension name MEMBER is used if it exists, otherwise, Processor 11
attempts to load a TEXT deck named MEMBER TEXT * or a module
named MEMBER MODULE =*.

"(NAMEFILE)' 11 0ONA 'ROUTINE'
Specifies that the object ROUTINE is to be located by searching the
NAMES file allocated to ddname NAMEFILE in MVS/TSO or with name
NAMEFILE NAMES * in VM/CMS. See[‘NAMES Files” on page 342|
for additional information.

NAME _CLASS 11 ONA 'ROUTINE'
Where NAME _CLASS is an integer scalar from the set 1, 2, 3, or 4. In
this case, Processor 11 searches its default names files for information
to locate the namespace in which the object ROUTINE resides and
ensures that the name class of ROUTINE matches that specified.

0 11 ONA 'ROUTINE'
Specifies that the object ROUTINE is to be located by searching the
default Processor 11 NAMES files. See[‘NAMES Files” on page 342|for
additional information.

'* 11 0ONA 'ROUTINE'
Specifies that the object ROUTINE is to be located in the user's active
workspace and not in a namespace. This variant of ONA can only be
successfully issued from a namespace. Attempts to issue it from the
user's active workspace fail and return 0.

If the first element of the left argument of ONA is invalid, the request to associate
the name is rejected and 0 is returned as the result of ONVA. A)MORE message
is also queued indicating PARAMETER ERROR.

If the first element of the left argument of (JVA specifies a name class that does not
match the name class of the specified object in the namespace, the request is
rejected and 0 is returned as the result of ONA. A)MORE message is queued
indicating that the requested name is NOT AVAILABLE.

If an object with the same name as that specified in the right argument of ONA
already exists in the workspace when 0N A4 is issued, (perhaps due to an earlier
OnA4), the left argument of ONVA must match the result of monadic ONA for the
same name or [JNA fails.

Once an object in a namespace has been successfully activated through the use of
ONA, it can be used in APL expressions, just like any other names in the APL
workspace.

3 11 ONA 'FUNCTION'
2 11 ONA 'VARIABLE'

RESULT<«VARIABLE+FUNCTION 14

Chapter 29. Processor 11—Access to Namespaces 341

Processor 11

NAMES Files

The location of the namespace in which an object resides can be specified in the
left argument of N A as described above. Alternatively, that information can be
placed in a NAMES file available to Processor 11. If the file name (VM/CMS) or
ddname (MVS/TSO) of the NAMES file is not specified in the left argument of ONA4,
default NAMES files are used. To avoid conflicts with names defined in the default
NAMES files, it is recommended that private NAMES files or alternate forms of
ONA should be used in applications that include namespaces.

In the CMS/VM environment, one NAMES file called AP2VNO11 NAMES is pro-
vided with APL2 and contains descriptive information on namespaces and external
functions provided with APL2. A second NAMES file called 'P0O11 NAMES' may
be defined to contain descriptions of objects in namespaces and external functions.
When searching for a specific name in this file, if the name is not found there,
AP2VNO11 NAMES is searched.

In the MVS/TSO environment, the NAMES file may contain fixed or variable length
records with a maximum record length of 255 bytes. To be available to Processor
11, the data set must be allocated with the ddname specified in the left argument of
ONA or with ddname AP2TNO11 if the default NAMES file library is to be used.
Concatenated allocation can be used to specify search order if more than one
NAMES file is desired. One NAMES file, distributed with the name
APL2.NAMES.AP2TNO11, is provided with APL2 and contains descriptions of
external functions provided with APL2.

The format of data lines in the NAMES file is as follows:
:TAG.value

where ':TAG.' is chosen from a set of keywords and identifies the meaning of
'value'. Tags and their values can be coded in either upper, lower, or mixed case
letters. The following tags are valid in the description of an APL object in a
namespace:

:NICK.name Specifies the name of the APL object as specified in the right
argument of ONA. If a surrogate name is specified in the right
argument of (N4, it is that surrogate name that must match
the :nick.name.

This tag is used to create a link between the name (or surro-
gate name) specified with N4 and the descriptive information
that follows. In MVS/TSO, this tag is optional since the parti-
tioned data set member name provides the same function. In
VM/CMS, this tag is required and must immediately precede
the other tags that describe the object. In both MVS/TSO and
VM/CMS, the name is restricted to uppercase letters and
numerics. The maximum length of the name is 249 characters
in VM/CMS and 8 characters in MVS/TSO.

:LOAD.library The name (VM/CMS) or ddname (MVS/TSO) of the load library
into which the namespace has been link-edited. In CMS/VM,
the library name is of the form FN FT FM. FT and FM default
to LOADLIB *. On TSO, the load library data set must have
been previously allocated using the specified ddname. If the
:LOAD. tag is not specified in MVS/TSO, standard OS search
conventions are used to attempt to locate the namespace. If

342 APL2 Programming: System Services Reference

Processor 11

the :LOAD. tag is not specified in VM/CMS, Processor 11
attempts to first locate a CMS nucleus extension, and failing
that, a TEXT deck or module file whose name matches the
:MEMB. tag.

:MEMB.name The member name of the namespace. If the :LOAD. tag is not
specified, it is the name of a previously loaded module in
MVS/TSO or the name of a CMS nucleus extension, TEXT
deck, or module file in CMS/VM.

:ENTRY.name The name of the object to be accessed in the namespace or, if
the member contains a routine list, the name Processor 11
should search for in the routine list.

Load modules containing more than one namespace and
non-APL routine must have the accessible object, namespace,
and non-APL routine names listed in a routine list. The
BUILDRL function can be used to build an appropriate routine
list. See FCombining Several Namespaces in a Member” on]

for details.

:LINK.APL Specifies to Processor 11 that this set of descriptive information
describes an APL object in a namespace.

:DESC.description Allows inclusion of descriptive text in the NAMES file. Where
the descriptive text exceeds the NAMES file record length, mul-
tiple records of text may be included, but each must be prefixed
by a :DESC. tag. Comments may also be included in the
NAMES file by placing an asterisk in column 1 of the records.

No other tags may be coded in a NAMES file entry for an object in a namespace.

Using Namespaces

APL applications often consist of one or a small number of functions that are
accessed or called by the user and a large number of sub-functions, sub-operators,
and variables used by them. If such an application is converted to a namespace
the following benefits may be achieved:

e The complexity of the overall structure of the application can be hidden. Only
those functions that are designed to be used directly by the user need be made
visible (through the use of ONA).

» Applications can be more easily combined together. Since only the name of
APL objects declared with 0N A are known in the user's active workspace, the
probability of encountering name conflicts when more than one application is
combined is significantly reduced. Further, since a surrogate name can be
assigned with ONA, or through the use of the :ENTRY. tag, name conflicts are
usually simply resolved.

» APL application code can be shared between users. Under MVS/TSO,
namespaces can be placed in the MVS link pack area. Under CMS/VM, they
can be placed in a saved segment. In either case, the APL application code in
the namespace is shared between multiple simultaneous APL users who
access it.

Chapter 29. Processor 11—Access to Namespaces 343

Processor 11

Objects in namespaces can be accessed from the user's active workspace and/or
from other namespaces. Objects are accessed through the use of dyadic ONA.
Dyadic ONA cannot be used from within a package to access objects in the same
package. If objects in a namespace are accessed simultaneously from the user's
active workspace and another namespace, or from two or more namespaces, only
one copy of the namespace is loaded.

Namescopes

The active APL workspace and every namespace contains its own namescope;
they may each contain a set of APL arrays, functions and operators that are known
and may be referenced within that namescope.

While executing APL expressions, functions or operators, one namescope is active
and is used in locating the definitions or values for APL names. Ina)CLEAR
workspace or a)L, 0A Ded workspace without suspended functions or operators,
the primary namescope (that of the active workspace, rather than any namespace)
is activated. In that state, references to local and global names are resolved in the
primary namescope.

You can declare a name in a namespace, and thus in another namescope, with
ONA. When a name, declared with N4, is encountered during the execution of
an APL expression, the system switches to the namescope in which the name's
definition exists so that its value or definition and names (local or global) that it
references are taken from the correct namescope. This change of namescope is
said to be an explicit change, because the name was explicitly declared to be in
another namescope through the use of ONA.

If a defined function or operator is declared, through the use of N4, to exist in
another namescope, the system switches to that namescope when the function or
operator is executed and remains in that namescope until the function or operator
completes or until it causes another namescope switch. While executing in its
namescope, local and global names referenced by the function or operator are
resolved from the same namescope. If the function or operator suspends during its
execution, the user is left in that namescope and commands such as)FN.S,
)VARS, etc. report names in that namescope. The user can return to the primary
namescope by abandoning execution with the command)RESET.

The external function QN .S, provided with APL2, can be used to query the current
namescope. It returns the left argument to ONA of the function or operator used to
enter the current namescope. For the primary namescope (the user's active work-
space), it returns ' ' 11.

An implicit change of namescopes occurs when an operand to an external operator
is referenced. For example, if an external operator MOP is declared through the
use of N4, and then called with a defined function operand, F N, when and if the
operator references its operand, an implicit switch of namescopes occurs. This
change occurs to allow the function, F N, to operate correctly and refer to names in
the namescope in which it is defined.

344 APL2 Programming: System Services Reference

Processor 11

Certain applications, when implemented as namespaces, need to reach back into
the namescope from which they were entered to retrieve or set values, or to
execute system functions or defined functions or operators. An application in a
namespace, for example, might wish to obtain the value for PP from the caller's
namescope, or might want to use OCR to obtain the canonical representation of a
function in the caller's namescope. Such a “reach back” facility can be imple-
mented in 3 ways:

1. The application in the namespace can be designed to be entered through a
defined operator. This approach allows the caller to provide a functional
operand that, when used, operates in the caller's namescope. For example,
the following defined operator in a namespace returns the canonical represen-
tation of the FUNCTION from the caller's namescope.

VRESULT<(FN OPERATOR) ARGUMENT
[1] RESULT<«FN ARGUMENT

[2] v
4 11 [(ONA 'OPERATOR'
1
OCR OPERATOR 'FUNCTION'
If called with:

¢OPERATOR 'VARIABLE'
it returns the value of VARTABLE from the caller's namescope.

2. The application in the namespace can be designed to be entered through a
defined function or operator with an argument that identifies the caller's
namescope. That argument can subsequently be used with ONA to access
names in the caller's namescope. For example, before calling the packaged
application, the caller could issue:

3 11 0ONA 'QNS!

CURRENT<QNS O

to determine the left argument for ONA that allows re-entry to the current
namescope. Then that value can be passed to the packaged application:

'"PKGLOAD.PKGMEMB' 11 0ONA 'FUNCTION'

FUNCTION CURRENT

The packaged application then could use the value passed to it as a left argu-
ment to 0NV A to access names in the previous namescope:

CURRENT ONA 'NL ONL'

NL 2 3 4

Chapter 29. Processor 11—Access to Namespaces 345

Processor 11

3. An external function, EXP, is provided with APL2 to allow packaged applica-
tions to access names in the previous namescope. The syntax for its use is as
follows:

3 11 0ONA '"EXP'

RESULT<EXP c<c'NAME'

references a variable 'NAME"' or executes a niladic function ' NAME'' in the
previous namescope.

RESULT<«EXP 'NAME' VALUFE

executes the monadic function 'NAME" in the previous namescope with argu-
ment VALUE from the current namescope.

RESULT<«EXP VALUFE1 'NAME' VALUE2

executes the dyadic function 'NAME" in the previous namescope with argu-
ments VALUE1 and VALUE 2 from the current namescope.

RESULT<EXP 'NAME' '<«' VALUE

specifies the variable 'NAME" in the previous namescope with the value
VALUE from the current namescope.

'"NAME"' can be the name of a defined function or operator, the name of a
variable, or the name of a system function or variable. It cannot be the symbol
for a primitive function or operator.

The external function EXP causes an implicit switch of namescopes to the
namescope that caused explicit entry into the current namescope. If the
current namescope was entered implicitly (as a result of executing the operand
to an external operator, or as the result of another £X P function), this
namescope switch accesses the namescope that last issued an explicit call to
the current namescope.

346 APL2 Programming: System Services Reference

Processor 11

Combining Several Namespaces in a Member

It is possible to place more than one namespace in a single member of a load
library (or a MODULE file on CMS.) To do this, you must create a routine list con-
taining the names of the each of the objects to be accessed in each of the
namespaces in the member. The routine list can be created using the BUILDRL
function.

file BUILDRL rlname 'OBJa NSPx' 'OBJb NSPx' ...

Figure 105. Building a routine list for several namespaces

Where:
file is the name of the file into which the routine list should be written.
rlname is the name of the routine list to be generated.

OBJ a, OBJ b, ...
are the names of the objects to be accessed in the namespaces VSPx,
NSPy, ...

NSPx, NSPy, ..
are the names of the namespace object files to be included in the
member.

Link-edit the routine list object file with the object files produced by the PACKAGE

function. A discussion of the link-edit process can be found in section
[Namespaces” on page 349, Once the object files have been link-edited, they can

be discarded.

Chapter 29. Processor 11—Access to Namespaces 347

Processor 11

CMS Namespace Routine List Example

Figure 106 demonstrates placing several namespaces into a CMS MODULE file

and using them from APL2.

3 11 [ONA 'PACKAGE'
1
PACKAGE 'MATHFNS V0000001'
MATHFNS TEXT A
PACKAGE 'UTILITY V0000001"
UTILITY TEXT A
RL<«c'APL2RL"'
RL<RL,'EIGEN MATHFNS' 'POLYZ MATHFNS'
RL<RL,'LINEFOLD UTILITY' 'NAMES UTILITY'
'APL2RL TEXT A' BUILDRL RL
0
YJHOST AP2MP11M APL2WS (APL2RL MATHFNS UTILITY)
CMS(0)
YAPL2WS' 11 0ONA ='EIGEN' 'POLYZ' 'LINEFOLD' 'NAMES'
1111
EIGEN 2 2p1 0 0 2
1 2
10
01
POLYZ 1 "6 11 "6
1 2 3
15 LINEFOLD 'THIS IS SOME SAMPLE TEXT'
THIS IS SOME
SAMPLE TEXT
NAMES 'FREDo .xJANE<19'
FRED
JANE

Figure 106. Build a module containing several namespaces.

348 APL2 Programming: System Services Reference

Processor 11

TSO Namespace Routine List Example

Figure 107 demonstrates placing several namespaces into a partitioned data set

member and using them from APL2.

100 0OSvo 'CTL100"

DA<'DA(''USERID.PWS.0OBJ(MATHFNS)'')"'
CTL100<'ALLOC FI(SYSPUNCH) SHR REUSE ',DA
PACKAGE '''APL2.V0000001.MATHFNS'""
USERID.PWS.O0BJ
DA<'DA(''USERID.PWS.OBJ(UTILITY)'')"
CTL100<'ALLOC FI(SYSPUNCH) SHR REUSE ',DA
PACKAGE '''APL2.V0000001.UTILITY"'"'
USERID.PWS.O0BJ
RL<«c'APL2RL"'
RL<«RL,'EIGEN MATHFNS' 'POLYZ MATHFNS'
RL<RL,'LINEFOLD UTILITY' 'NAMES UTILITY'
""" '"USERID.PWS.0BJ(APL2RL)''' BUILDRL RL

TARGET<«'L460581.PWS.LOAD(APL2WS)"
SOURCE<'L460581 .PWS.0BJ(APL2RL MATHFNS UTILITY)'
CTL100<3'AP2MP11L"' TARGET SOURCE
YHOST ALLOC FI(PWS) SHR REU DA('USERID.PWS.LOAD')
TS0(0)
"PWS .APL2WS' 11 ONA>'EIGEN' 'POLYZ' 'LINEFOLD' 'NAMES'
11 11
EIGEN 2 2p1 0 0 2
1 2
10
01
POLYZ 1 6 11 76
1 2 3
15 LINEFOLD 'THIS IS SOME SAMPLE TEXT'
THIS IS SOME
SAMPLE TEXT
NAMES 'FREDo .xJANE<19"'
FRED
JANE

Figure 107. Build a member containing several namespaces.

Link-Editing Namespaces

The APL2 PACKAGE function produces object files that are usually link-edited
before use from APL2. In addition, multiple namespace object files may be link-
edited together into a single file with a routine list built by BUILDRL. The object
files produced by PACKAGE and BUILDRL can be link-edited with the same pro-
cedures as non-APL external routines discussed in [Link-Editing External Routines’|

fon page 327

Unexpected Errors and Other Considerations

e Name Association Failures: There are a number of reasons why dyadic JVA
fails to activate a name and return 0:

— Incorrect arguments. Malformed APL names in the right argument or incor-
rect name class or processor number in the left argument cause a failure of

Chapter 29. Processor 11—Access to Namespaces 349

Processor 11

dyadic ONA. If monadic ONA on the same right argument returns a = 1
the object name is malformed.

If the first item in the left argument (or a row of the left argument) is invalid,
dyadic (VA fails and returns 0. In this situation, a)MORE message is
queued specifying PARAMETER ERROR.

If dyadic 0N A is issued for a name that already exists in the workspace,
the left argument of O~ A must match the left argument used when the ori-
ginal VA was issued. That original left argument can be determined by
issuing monadic ONA.

The object cannot be located. If the specified name cannot be located in
the namespace, or if the namespace itself cannot be located, dyadic 0N A4
returns a 0 and)¥ORE messages are queued to indicate that the object is
not available. In this situation a message of the form:

name PARAMETER ERROR :LOAD
name PARAMETER ERROR :MEMB
name PARAMETER ERROR :ENTRY

may be queued to indicate, respectively, that the specified load library
cannot be accessed, the specified member cannot be found or loaded, or
that the namespace cannot be found in the member, or the desired object
does not exist, or does not exist with the correct name class in the
namespace.

Name not specified as an entry point. When the namespace is created
from a saved workspace using the external function PACKAGE, the creator
can specify as a left argument to PACKAGE, a list of names of objects in
the namespace that can be accessed through the use of ONA. If the user
attempts to access any other object, not specified in that list, dyadic OV A4
returns a 0 and)MORE messages are queued:

name PARAMETER ERROR :ENTRY
name NOT AVAILABLE

Error in the NAMES file. An invalid parameter in the NAMES file causes
dyadic ONA to return a 0 and a)MORE message to be queued indicating
the problem.

Insufficient freespace for proper execution of Processor 11 or for loading of
the namespace may cause dyadic ONA to return a 0 and a)¥ORE
message to be queued. The user should invoke APL2 with more
freespace.

Processor 11 or the NAMES file unavailable causes [NA to return a 0.
Proper operation of Processor 11 and availability of the names file supplied
with APL2 can be verified by running the APL2 installation verification pro-
cedure.

VALENCE ERROR or VALUE ERROR:Ifa VALENCE ERROR occurs
when execution of an external function or operator is attempted, ora VALUE
ERROR occurs when an external variable is referenced, it may indicate that the
linkage to the namespace cannot be established for any of the reasons men-
tioned above. In this situation a)MORE message is queued along with the
VALENCE ERROR or VALUE ERROR and a subsequent dyadic ONA for
the object returns a 0.

VALENCE ERROR,VALUE ERROR,or SYNTAX FERROR occurs if after a
name is successfully activated with ON4, the named object is deleted or its

350 APL2 Programming: System Services Reference

Processor 11

class or valence changed as a result of execution in the namespace's
namescope.

Suspension in a Namespace: If the user's session becomes suspended during
execution in a namespace, the user is left in the namescope of the namespace.
That is to say, names in the namespace are visible and accessible, but names
in the user's active workspace are not.)FNS,)VARS,)OPS,)NMS, and
ONL report names from the namespace. To return to the namescope of the
active workspace, the packaged application should be resumed or abandoned.
)RESET always returns the user to the namescope of his active workspace.
The external function Q.S can be used to determine which namescope is cur-
rently active.

Operand to operators. Operands to defined operators declared through the use
of ONA are defined and execute in the namescope in which the defined oper-
ator is called. For example, if the following operator was defined as part of a
namespace:

VZ«(FN OPER) NAME
(11 Z<FN NAME

[2] v

and called from the user's active workspace as follows,
0ro<u97
u 11 0ONA 'OPER'

1
¢ OPER '00I10!

u97

the (invalid) value of 497 for 010 would be obtained from the user's active
workspace.

Loss of data in a namespace. Some applications in namespaces, create or
modify objects (typically variables) in the namescope of the namespace when
the application is executed. The state of the application (including these modifi-
cations) is saved along with the user's workspace when a) SAVE command is
issued. If the namespace is found to have been modified (that is, recreated
from a workspace with a different saved date) when the user's workspace is
reloaded, an error message is produced when objects in the package are
accessed, and access to the new version of the namespace is provided.
Objects in the package that were created or modified by the application before
the user's workspace was saved are lost.

Developers of packaged applications and personnel who maintain them should
be aware of this behavior. When providing maintenance or enhancements to a
namespace, it may be wise to keep the old version around, so that users who
have a dependence on it do not lose data.

Chapter 29. Processor 11—Access to Namespaces 351

Processor 12

Chapter 30. Processor 12—Files as Arrays

Associated Processor 12 provides access to a variety of types of files by main-
taining an image of the file as an array that appears to reside in the active work-
space. This is analogous to the behavior of Processor 11 for functions. That
processor can create an image of a program (written in any of a variety of lan-
guages) as a function that appears to reside in the active workspace. Neither the
program (for Processor 11) nor the file (for Processor 12) is actually within the
workspace. This has the following implications for Processor 12 files:

» Very large files can be accessed, files that can be many times larger than the
active workspace. And yet the access can be done using normal APL con-
structs such as (to show only a few examples):

Compression bool/file

Each process file
selective assignment (recno>file)<«value
catenation file<file,crecord

e Associations can be retained across) SAVE and) LOAD but the data is pre-
served in the file, and may be updated by other programs between uses.

Note: In particular this should be contrasted with the Processor 11 definition
for association with variables in namespaces. The general rule used by
Processor 11 is that any time a variable is modified the new version is a private
one known only to the workspace that was active at the time of modification.

It should also be noted that files, even files newly created by Processor 12,
have an existence independent of the workspace. Assigning a value to a
Processor 12 variable causes (at least conceptually) an immediate and perma-
nent change to the file. This is not affected by later expunging the variable,
and is independent of whether the workspace containing it is later saved.

Processor 12 variables are also quite different from variables shared with file auxil-
iary processors.

» Processor 12 variables contain only the data, and (at least conceptually) all of
the data at once. Shared variables contain both data and control information,
and only relatively small pieces of the file data at a time.

e Processor 12 variables are really a path between the workspace and the actual
file. Shared variables are a path between two programs, one of which in turn is
capable of accessing files.

e Processor 12 associations can be retained across)SAVE and)LOAD.
Shared variable associations must be reestablished explicitly.

ONA Syntax for Processor 12

The general syntax for name association through Processor 12 is:

('type' 'locator' 'format') 12 0ONA 'name'

352 © Copyright IBM Corp. 1984, 1994

name

type

Processor 12

A name to be used within the APL workspace to refer to the file.
The particular name used has no significance to Processor 12, and
bears no required relationship to the name of the file with which it is
associated. Surrogate names are permitted, but have no functional
significance.

A vector of two or more characters, the first specifying what class of
file support is desired, and the others indicating how the file is to be
accessed.

The classes supported are “A” for APL files and “F” for operating
system sequential files.

The types of access are:

W The file may be read and/or written. Depending on the type of
system and class of file, this may also imply that exclusive
control of the file is to be gotten and held for so long as the
association is active. If write access (and exclusive control
where appropriate) cannot be obtained, the ONA returns 0
even if the file is otherwise available.

R The file can be read, but not written. Any attempt to modify
the associated variable causes an interruption of the respon-
sible APL statement. The OET error code is 2 U4, for which
the message and)MORE message are SYNTAX ERROR+
and Tnvalid operation in context.

c The file is to be created and then written. If both ¢ and W are
specified, the file is created if it does not exist. If either C or
W are specified alone, the file must exist (W) or not exist (C)
before the operation.

This access code can be followed by one or two numbers in
parentheses. (The square brackets indicate an optional field.
They are not to be coded as part of the access information.):

C(record_length [file_sizel)

D The file is to be deleted on completion of processing. This
deletion occurs when the file connection is erased, whether by
OEX, exit from a function where it is localized,)FRASE,
)COPY,)CLEAR,)LOAD,)OFF,or)CONTINUE. D
can be used only along with other access codes. That is, you
can only delete a file if you have first opened it successfully
for Read, Write, or Create. In some environments, the combi-
nation of F and D (without C or W) requires the same access
authority initially as if file output had been requested.

Note: The above access codes may be given in any order, and
may be separated by blanks as desired. If the parenthetic
expression associated with C is used it must follow the C' access
code. No access code may be given more than once.

Examples of type items:
VFW! Gain read/write access to an existing system file.

YACW! Create an APL file, or gain read/write acess to it if
it already exists.

Chapter 30. Processor 12—Files as Arrays 353

Processor 12

'"FRD'

Read a system file and then delete it.

'4 ¢ (0 500000)"

Create an APL file, rejecting the association if one
by the same name already exists, and set a file
size limit of 500,000 bytes. (Usage of the
numbers is described later for each class of file
support.)

'"FC(80)DRW'

locator

Create a file with a record length of 80 bytes, or
accept an existing one. Allow read/write access
to the file (the R is redundant, but allowed) and
delete it when the connection is erased.

A character vector indicating where the file is located. The format

and content of this field vary depending on the type of file being
accessed and the operating system in control.

format

A character vector that defines the format in which the data is to be

viewed by the application. This vector must be empty if the file
support class is A (APL files), and it must be nonempty for class F
(flat files). See [‘Format Descriptors for External Variables” on|

for details.

The explicit result of ONA is 1 if the association was successful, or 0 if it failed.
When 0 is returned, explanatory messages are usually queued. These may be
seen by entering)MORE at the first terminal input opportunity or by running with

DEBUG(1).

Supported Primitive Operations

Regardless of the file system in use, the following primitive operations are defined
for external variables supported by Processor 12:

Each

Outer product

Pick
Indexing

Indexed assignment
Selective Spec

Catenate

Shape
Compress/Replicate
First

Take

Drop

function file

var function file
file function var
filel function file?
vareo .function file
fileo.function var
filelo.function file?2
i>file

filel[1i]

illfile
filelil<«carray
(iofile)<array
(+ivfile)<«carray

etc.
file<«filel,carray
pfile

i/file

+file

itfile

ivfile

354 APL2 Programming: System Services Reference

Processor 12

Notes:

1. Operations other than those defined here either attempt to bring the entire file
into the workspace or give DOMAIN ERROR.

2. The functions referred to in Each and Outer product can be arbitrary primitive,
defined, or derived functions. Since they are invoked repeatedly with one item
of the array at a time, there is no immediate requirement that the entire array
truly reside in the workspace. But if the invoked function produces a result, the
full accumulated result returned by the derived function is a normal variable
stored in the workspace.

3. When applied to an empty file, First returns a prototype, which for the vector of
vectors form is a blank vector whose length is the record length of the file. For
the vector of matrixes form, a zero-row matrix is returned with the second
dimension being the record length.

APL Files as External Variables

This facility supports certain APL format files created and written by the APL2 file
system services. This includes files created using either AP 121 or the FC service
defined in APL2/370 Programming: Processor Interface Reference. Only
APL2-format records in direct files are supported; that is, files created using

'C fileid D!

'SWC fileid length'

where length is often, but need not be, zero. Note that if records are later written
with ' SW' or 'DU"' (rather than 'SWC"' or 'DUC"'), those records cannot be
handled by Processor 12.

Conversely, files created by this facility can be processed by AP 121 or the file
services defined in APL2/370 Programming: Processor Interface Reference.

APL files are always viewed by the APL application as a vector of arbitrary arrays,
with each item of the vector representing one object in the file. Each item may be
of any depth or shape.

The left argument syntax for name association with APL files is:

('4 {Cl(len size)]l|R|W|D}..." '"[1libno 1filename' '') 12

where { | | }...and[1 indicate choices, repetition, and options, but these
symbols are not coded in the argument

Note: The last sub-item of the first item in the left argument must be empty for
APL files. In general this is the format descriptor, but an APL file is always self-
describing.

If YAC"' or 'AW" is specified (perhaps in combination with other access codes)
this is treated as a writable file. The library containing the file (for TSO), or the disk
containing the file (for CMS), is accessed in write mode for so long as the associ-
ation is active. This normally guarantees exclusive write access.

Chapter 30. Processor 12—Files as Arrays 355

Processor 12

len

size

libno

This value can be provided, but is currently ignored. It can be used
in the future to support direct files with a limited length on individual
objects.

If provided, this value limits the maximum size of the file in bytes.
This is equivalent to using the AP 121 ' F'S ' service request.

APL file system library number. This field can be omitted for a
private library, and defaults to +0AI.

filename The simple APL data file name. This must be one to eight charac-

ters, with the first alphabetic (uppercase 4 to Z only), and subse-
quent characters uppercase letters or numbers.

Record-oriented Files as External Variables

This facility provides read, write, and update access to data portions of operating
system sequential files stored on direct access devices. These files are viewed by
the APL application as a vector of arrays in which the subarrays are always char-
acter vectors or character matrixes. Each character vector, or each row of a char-
acter matrix, represents one record in the file.

for CMS All CMS files are supported except for those in the Shared File System.

for TSO

Files on OS-formatted disks are not supported.

Most types of sequential DASD files with unkeyed records are sup-
ported. Specifically:

DSORG Must be PS or PSU. Partitioned data sets are not supported,
even if the member name is included as a part of the data
set name.

KEYLEN Only unkeyed records, KEYLEN(0), are supported.

OPTCD(J) The Table Reference Character (used for 3800 font
selection) is not supported.

RECFM(A or M) Printer carriage control characters are not supported.

RECFM(V) Blocksize and record length are not passed as part of the
data. Spanned records are not supported.

RECFM(U) Not supported.
Note: Concatenated data sets are not supported.

Note: When allocation is by ddname, the application can override
record format or options. This can result in control characters and
length fields being handled as data.

The left argument syntax for record-oriented file association is:

('F{Cl[(len size)]l|R|W|D}...'" 'filename|=ddname' 'format') 12

where §

| t...and[1 indicate choices, repetition, and options, but these

symbols are not coded in the argument.

If YFC' or 'FW' is specified (perhaps in combination with other access codes)
this is treated as a writable file. On MVS, exclusive control of the data set is held

356 APL2 Programming: System Services Reference

Processor 12

for so long as the association is active. On CMS the file must exist on a disk to
which you already have write access, and this normally prevents other CMS users
from writing to it. On both systems it may be possible to concurrently access the
file through other paths within the same APL session. It is an application responsi-
bility to prevent this, or to deal with possibly confusing consequences. These can
include erroneous indications of current file size, and file appends that actually
replace (or attempt to replace) existing records.

len This value may be used as the logical record length of a new file. If
omitted, the rightmost dimension item in the format descriptor is used.
At least one of these values must be given explicitly or the create
request fails. Note that for variable-length record files on CMS, the
length given during create does not become a permanent attribute of the
file. It does limit the length of records added to the file during the asso-
ciation when the file is created, but has no effect on subsequent associ-
ations (either explicit or automatic).

The new file has variable record format (VB for MVS) if the last shape in
the format descriptor is given as *, or fixed format (FB for MVS) if it is
given explicitly. For MVS the block size is selected by APL2, and is not
affected by the format descriptor. MVS users can override the record
format and block size by preallocating the data set.

size This value is currently ignored, but may be used in the future to control
the size of a newly-allocated MVS data set.

=ddname
A one to eight character name previously defined by a TSO ALLOCATE
command, or by an MVS JCL DD statement. The “=" is required to dis-
tinguish this case.

This form is not supported for CMS.

Note: Use of a separate ALLOCATE command for a new data set allows
more control over allocation quantities and location, but the RELEASE
parameter should be avoided. APL2 may close and reopen the data set
during processing, which could reduce the size allocated before all data
is written if RELEASE is used. This caution applies equally to the DD state-
ment RELSE option.

filename
Under TSO:

tso.dataset .name
'fully.qualified.dataset.name'
The name of an existing cataloged MVS data set. Note that
the TSO convention is followed, so that if the name is not
enclosed in single quotation marks, then the current TS0
PROFILE PREFIX is added to it.

Note: Do not confuse the quotation marks that delimit the
locator item with the quotation marks used for a fully-qualified
data set name. If a fully-qualified name is a literal, it must be
entered as:

'""'fully.qualified.dataset.name'"''

Chapter 30. Processor 12—Files as Arrays 357

Processor 12

Under CMS:

filename filetype [filemode]
The name of a new or existing CMS file. The filemode
defaults to the first matching file found in standard CMS
search order, or to Al if no matching file is found.

format See the following section for a discussion of this topic.

Format Descriptors for External Variables

The syntax of the format descriptor for an external variable is similar to that used
by Processor 11. Its focus here is on the view of the data as seen by the applica-
tion, rather than the format of the data as it exists externally.

The fields of a format descriptor must be separated by blanks except where paren-
theses are used. A separator is required only when one field ends with a numeric
digit and the next one begins with a numeric digit. Parentheses may be used as
separators wherever desired. Blanks may also be used as leading and trailing
characters or adjacent to parentheses, and multiple blanks may be used wherever
one is allowed. The total length of the descriptor is limited to 80 characters,
excluding leading and trailing blanks.

The supported descriptors are:

Vector of character records
'Go0 1 x C1 1 length'

length The length of each item in the array. This is typically defaulted to the
length of each record by specifying *.

If specified as *, the length of each array item matches the actual
length of the corresponding record. When replacing existing records in
the file, the application must provide items of the correct length. Added
items are inserted into the file as given, without any padding or trun-
cation. A length error results if the record is longer than the system-
imposed limit on records in the file (64K-1 for CMS; LRECL-4 for TSO).

A specific value can be given for I1engt h only for fixed-length record
files, and if used with existing files must match the existing record
length.

358 APL2 Programming: System Services Reference

Processor 12

Vector of character matrixes of records
'G0 1 * C1 2 pack length'

pack The number of records to include in each matrix of the array. The larger
this number is, the more efficiently APL can process the records in the
file, but larger numbers also require more workspace storage. The
value must be provided explicitly.

This value is used for the first dimension of each matrix within the array,
except the last item, which may contain a short matrix. Note that appli-
cations are not permitted to change the number of rows in any matrix,
except that they can append to the file by increasing the rows in the last
matrix up to pack. Indeed, the application is not permitted to add a
new item to the array unless the current last item has the full number of
rows.

length The number of columns in the matrix. This is typically the length of
each record.

If specified as *, the width of each submatrix is padded with blanks to
the length of the longest record represented in it.

¢ When replacing existing records in a variable length record file,
APL2 processes each row of a modified array item by deleting
trailing blanks as necessary to make it the correct length for the file.

* When adding new records to a variable length record file, all trailing
blanks are first stripped from the records.

* For fixed length files, the matrix width must match the existing
record length.

Processor 12 Errors
Processor 12 uses the following rules for handling errors.

e If ONVA cannot be completed successfully its explicit result is 0. An error
message can be queued to explain the failure, but no message is displayed,
and no error is signaled.

e If a problem occurs while referencing or setting an associated variable, a OET
error is signaled. This is treated as any other error that occurs while proc-
essing an APL statement. The specific errors that may be signaled are listed
below.

e Actual output to a file is usually performed asynchronously, and errors in this
process may not be known for some time after the variable assignment that
caused the records to be written. These may include things like out-of-space
conditions as well as actual I/O errors on the disk media. If detected during a
subsequent access, errors of this sort are normally signaled as follows:

I/O errors
OFET=1 5 (SYSTEM LIMIT+, Interface unavail-
able)

Chapter 30. Processor 12—Files as Arrays 359

Processor 12

Out of space
OET=1 7 (SYSTEM LIMIT+, Interface
capacity)

Note: If a Processor 12 variable is passed as an argument to a function, it is
not actually referenced until used by that function. Thus, the above errors may
be signaled on some line of the function that looks at its argument.

e In some cases errors may not be signaled until the association is deactivated.
Processor 12 waits for all pending writes to complete at this time, and may also
have already detected errors that it could not signal because no recent refer-
ence or assignment to the variable has occurred. There are several ways in
which file associations may be deactivated:

1. OEX terminates with an explicit result of 0 and leaves the file open.
2. JERASE responds with NOT ERASED and leaves the file open.

3.)COPY or)IN of an object that would replace the Processor 12 variable
responds with NOT COPIED and leaves the file open.

4. 0JTF inverse operation, creating an object that would replace the Processor
12 variable, terminates with an empty result, and leaves the file open.

5. Exit from a defined function or operator where the Processor 12 variable
was localized suspends the program on line 0 and signals a OET error
(normally 1 5 or 1 7 as described above). The file remains open.

6. > with no arguments closes the file and continues processing with no error
indication except a queued message.

7. Any of the following system commands close the file and continue proc-
essing with no error indication except a queued message that is usually
indicated by a + at the end of the normal system response:)CLEAR,
JLOAD,)RESET,or)SIC

8. JCONTINUE and)OFF close the file and terminate the APL2 session.

Note: For the cases above in which the file was left open, repeating the
request usually causes the file to be closed, and the request to be processed
normally.

The following errors may be signaled by Processor 12:

1 3 WS FULL
Required portion of the array does not fit in the workspace.

1 5 SYSTEM LIMIT+ Interface unavailable
File I/O error or file in use.

17 SYSTEM LIMIT+ Interface capacity
File full, or unable to get required working storage outside of the work-
space.

1 12 SYSTEM LIMIT+ Interface representation
The named file is not a valid APL data file.

2 U SYNTAX ERROR+ Invalid operation in context
A Selective Specification operation was used that is not supported for
external variables. This error is also signaled if an attempt is made to
modify a variable associated with a read-only file.

360 APL2 Programming: System Services Reference

5 5

Processor 12

INDEX ERROR
The format descriptor has defined a variable larger than the file, and an
item has been referenced that is beyond the end of the file.

The following errors are reported only for flat (operating system) files.

5 2

RANK ERROR
An item assigned to the variable is of the wrong rank.

LENGTH ERROR

A new item is added to the variable when the last matrix is not full, or an
item assigned to the variable is longer than permitted by the format
descriptor, or a record being replaced is a different length from its replace-
ment and no padding or truncation is permitted.

DOMAIN ERROR

An item assigned to the variable does not contain character data, or con-
tains extended characters whose A F value is greater than 255, or is
itself a nested array.

Chapter 30. Processor 12—Files as Arrays 361

362 APL2 Programming: System Services Reference

Appendixes

Appendix A. Implementation Limits 365

Appendix B. Deviations from APL2 Programming: Language Reference . 366

System Functions and Variables 366
Full-Screen Editor—Editor2 366
System Commands 367
Appendix C. National Languages Supported by APL2 368
Appendix D. Auxiliary Processor Conversion Options 370
APL . e 370
3700r BCD 371
BIT . 371
BYTE . . 371
CDR . . 372
COD1 . . 372
DBCS[(NNN)] 372

Reading DBCS Data 373

Writing DBCS Data 374
EBCD or 192 e 374
TN 374
VAR . 374
Appendix E. Conversion of Atomic Vector Characters 376
Appendix F. APL2 FilesandDataSets 381
CMS Files 381
CMS Filedef (DD) Names 382
TSODD Names 382
TSO Data Set Names 383

Appendix G. Sample Non-APL Programs to be Called through Processor

11 e 385
C/370 Examples 386
Updating Arguments with C/370 386
Source Code 386
Routine Descriptions, Routine List, and Link-Editing 386
NAMES Files Entries 387
Routine List and Link-Editing Non-Self-Describing Routines 387

PL/l Examples 388
Updating Arguments with PL/L. 388
Source Code 388
Routine Descriptions, Routine List, and Link-Editing 388
NAMES Files Entries 389
Routine List and Link-Editing Non-Self-Describing Routines 389

VS FORTRAN Examples 390
Updating Arguments with VS FORTRAN 390
Source Code 390
Routine Descriptions, Routine List, and Link-Editing 390
NAMES Files Entries 391

© Copyright IBM Corp. 1984, 1994 363

Routine List and Link-Editing Non-Self-Describing Routines 391

Link-Editing Examples 392
Link-Editing on TSO usinga CLIST 392
Link-Editing on TSO using JCL 392
Link-Editingon CMS 393
Generatinga MODULEon CMS 393

Appendix H. Summary of Terminal Information for APL2 Tasks 394

IBM 2741 Communication Terminal 394

IBM 3270 Information Display System 396

Appendix I. Printer Fonts Supplied with APL2 399

364 APL2 Programming: System Services Reference

Appendix A. Implementation Limits

The APL2 interpreter has the following implementation limits.

Figure 108. Limitations by System

Limitation

Workstations (excluding APL2/PC)

APL2/370

Largest and smallest representable numbers in
an array

1.7976931348623158E +308 and
71.7976931348623158E +308

7.2370055773322621E75 and
~7.2370055773322621E75

Most infinitesimal (near 0) representable
numbers in an array

2.2250738585072014E ~ 308 and
T2.2250738585072014E 308

5.397605346934027891E ~ 79 and
75.397605346934027891E 79

Maximum rank of an array

63

64

Maximum length of any axis in an array

T1+2%31 (2147483647)

T1+2%31 (2147483647)

Maximum product of all dimensions in an array

T1+2%31 (2147483647)

T1+2%31 (2147483647)

Maximum depth of an array applied with the 181 181
primitive functions depth (=R) and match (L=R)

Maximum depth of a shared variable 181 181
Maximum depth of a copied variable 181 181
Maximum number of characters in the name of 255 255

a shared variable

Maximum number of characters in a comment 4090 32764
(minus leading blanks)

Maximum length of line 8190 N/A

Maximum number of lines in a defined function
or operator

T1+2%15 (32767)

T1+2+%31 (2147483647)

Maximum number of labels in a defined function Limited by number of lines 32767
or operator

Maximum number of local names (excluding Limited by lengths of lines and names 32767
labels) in a defined function or operator

Maximum number of slots in the internal symbol N/A 32767
table. A slot is required for each unique name,

each unique constant, and each ill-formed con-

stant in the workspace.

Maximum value of OPW 254 390
Maximum value of OPP 16 18
Maximum number of users with whom a user N/A 59

can share cross systems variables

© Copyright IBM Corp. 1984, 1994

365

Appendix B. Deviations from APL2 Programming: Language

Reference

This appendix describes the areas in which the implementation of APL2/370 differs
from the APL2 language as defined in APL2 Programming: Language Reference.
The deviations are classified as follows:

(D) Deviation from APL2 Programming: Language Reference: The feature is imple-
mented in APL2/370, but the implementation is different from that defined in
APL2 Programming: Language Reference.

(R) Implementation restriction: The feature is not fully implemented in APL2/370.

(S) System dependency: The feature is not required in APL2/370 or is implemented
differently due to system requirements.

System Functions and Variables

(D) When running under a CMS batch machine, a reference of DSVE is satisfied
immediately, even when no shared variable event has occurred. For example:

OSVE<«180
OSVE
179.991822

Use ODL between references to JSVE to avoid excessive processor time.

(D) OUCS is correctly defined only for characters included within JAV. For all
other values, it behaves like JAF. It does not map Kaniji characters between
the ISO 10646 and Codepage 300 encodings.

Full-Screen Editor—Editor 2

366

(D) Using Editor 2 in Nondisplay Mode.

If GDDM is not available, GDDM does not support your terminal, or if a GDDM
error occurs during your use of Editor 2, Editor 2 enters nondisplay mode. The
following message is displayed after a GDDM error:

AP2P2ED558 PROCESSOR 126 ERROR nnn (HIGHEST) xxxyyy (FIRST)
AP2P2ED559 NON-DISPLAY EDIT MODE...Vname.type.

Thereafter, the message is displayed, showing the name and type of the object
being edited. The cursor indents two spaces to indicate that you are in edit
mode.

If nondisplay mode occurs while you are editing, it is recommended that you
enter V or [~] once for each open segment to terminate editing.

© Copyright IBM Corp. 1984, 1994

System Commands

I

I (D) The)LOAD command produces a SAVED message that indicates the size of
I the active workspace after the) ,OAD and when it was last saved. The two

I sizes may differ because of differences in the previous and current settings of:

I — Size of the active workspace
I — Invocation WSSIZE parameter
I — size parameter of the) LOAD command

I The size information can be useful in diagnosing space problems.

I Unless otherwise specified with the size parameter, the size of the active work-
I space is the maximum size available.

I (S) The following library commands support the entering of a read or write pass-
I word established for the library or workspace through the facilities of the host
I system:

)COPY
)DROP
)LIB
JLOAD
YMCOPY
)PCOPY
)SAVE
YWSID

I A colon (:) separates the password from the workspace name. The colon must
I be the first parameter after the workspace name, followed by the password or a
I blank.

I If a blank follows the colon or if you do not specify a password, the system may
I prompt you to enter a password when one is required.

I For example:

| JCOPY 1010 TOOLBOX:SECRET LOCKOUT SUMCOL MODIFY
| SAVED 1993-10-20 14.02.54 (GMT-7)

I (S) If RESET,)SIC,or)SAVE is issued, special workspace cleanup is per-
I formed. The cleanup includes:

I — Removing namespace associations used within the system itself. Parts of
I the system, such as default display of a nested array and the)0UT
I command, are written as APL namespace code.

I — Discarding any namespaces that are no longer in use.

I — Making each symbol table (active workspace and namespaces) smaller, if
I possible.

I — Returning all free storage from specialized storage pools to the general
I freespace pool.

I JRESET 0 or)SIC 0 can be issued to cause this cleanup without saving
I the workspace or resetting the execution stack.

I (S) The)MSG,)OPR, and)TIME system commands are provided for
I compatiblity with older mainframe APL implementations.

Appendix B. Deviations from APL2 Programming: Language Reference 367

. Appendix C. National Languages Supported by APL2

368

The languages shown in Figure 109 are provided with the APL2 product. Installa-
tions can choose to make a subset of these available on their systems, or may
define additional languages.

Figure 109. Values Provided for the National Language Translation

Value of ONLT Abbreviated Language

Value
'DANSK' '"DAN' Danish
'DEUTSCH' 'DEU" German
U 'ENP! American English, uppercase
'"DEFAULT! 'ENU! American English, lowercase
'"ESPANOL' 'ESP! Spanish
'FRANCAIS' 'FRA" French
'"FRC' '"FRC' Canadian French
'HEBREW' 'HEB' Hebrew
'ITALTANO' 'ITA! Italian
'JAPANESE" 'JPN!' Japanese, double byte
'"KATAKANA" Japanese, single byte
'NORSK' 'NOR' Norwegian
'PORTUGUES" 'PTG! Portuguese
'SUOMI! 'FIN' Finnish
'"SVENSKA' 'SVE! Swedish

Note: Appropriately equipped terminals are required for Kanji, Katakana, and
Hebrew, as well as some other languages; additional languages may be supported
in certain countries.

APL2 recognizes 25 other three-character language codes which are not distributed
with the product] Figure 110 on page 368l|lists these codes along with the lan-
guage name into which APL2 attempts to convert each.

© Copyright IBM Corp. 1984, 1994

Figure 110. Other Language Codes Recognized by APL2

Abbreviated Value Language
"AFR' AFRIKAANS
'"ARA! ARABI
'"BGR" BULGARSKI
'CAT! CATALA
'"CHT! ZHONGWEN
'CSY! CESKY
'DES" SCHWEIZER
'"ELL" ELLINIKA
'"ENP' (empty)
'"FRS' SUISSE
'ISL! ISLENSKA
'ITS! SVIZZERO
'KOR' CHOSON
'"NLD' NEDERLANDS
'"NonN! NYNORSK
'"PLK' POLSKI
'RMS! ROMONTSCH
'ROM! ROMANA
'RUS! RUSSKIJ
'"SHC! SRPSKO
'SKY! SLOVENSKY
'SQI! SHQIP
'"THA! THAI

'TRK" TURKCE
'"URD' URDU

Note:

1. “(empty)” listed above for ENP means that ONLT is set to an empty vector. This pro-
vides uppercase American English using text that is linked with the APL2 product.

2. “DEFAULT” listed above for ENU is a nonstandard name that APL2 uses to refer to
mixed-case American English. This is distributed with the product for the first time in this
release, and is the installation default unless locally modified.

3. IBM has defined short names for several other languages for which it has no approved
spelled out name. The short names for those languages are retained unchanged in
ONLT if defined by a corresponding APL2LANG file. Canadian French is a language in
this category that is distributed with the product, and is represented as FRC.

Appendix C. National Languages Supported by APL2 369

Appendix D. Auxiliary Processor Conversion Options

The conversion options described in this appendix are used with auxiliary
processors. When a system facility is encoded in a coding format different from
that of APL2, you may specify a conversion option in the initial value of the shared
variable. The format of the specification depends on the requirements of each aux-
iliary processor.

Figure 111 is a cross-reference table indicating the conversion options that are
available with the auxiliary processors. Each option is described following the
figure. The following codes are used in the figure:

C = Available under CMS

T = Available under TSO

X = Valid option under either CMS or TSO
D = Default value

ONLY = Cannot be overridden

Figure 111. Conversion Options Available with Auxiliary Processors

AP AP AP AP AP AP AP AP AP AP AP
Option 100 101 102 110 111 120 121 123 126 127 210
APL C X
370 (BCD) X C X T
C-D
BIT C X T
BYTE C X X-D T
1
COD1 C X X1 X2 T
DBCS C
EBCD (192) X ONLY C X ONLY X1 X-D ONLY | T
T-D 2
TN T T
The CDR and VAR conversion options are for use when reading and writing APL2 and VS APL variables, respec-
tively.
CDR C X X T
VAR C-D X-D X T-D
Notes:

1. Equivalent function is provided but not through the listed options. See T, T1, T2 request.

2. Equivalent function is provided but not through the listed options. See —4 request.

APL

The APL conversion option is provided as a migration aid for users who have
existing data in this format. This option has special support for the compound char-
acters of VS APL, but the support has not been extended to the additional APL2
characters.

370 © Copyright IBM Corp. 1984, 1994

IBM recommends that you plan to convert to the EBCD option, because the APL
option may not be supported in future possible releases of APL2.

This option provides a one- to three-character translation of APL2 compound char-
acters. Compound characters of VS APL are expanded to their constituent parts.

For example, 'A backspace _' (or'_ backspace A') entered as an input character
is converted to 4. On output, 4 is converted to ‘A backspace _'. Compound char-
acters of APL2 that were not supported in VS APL are not expanded. Invalid or

unsupported characters on input are converted to the first item of 04V, X'00'.

The characters that are generated by this option for each item of AV are shown in
|[Appendix E, “Conversion of Atomic Vector Characters” on page 376

370 or BCD

The 370 option provides limited graphic character translation from APL to EBCDIC.
It is provided as a migration aid for users of previous versions of APL. IBM recom-
mends you plan to convert to the EBCD option, because the 370 option may not be
supported in future possible releases of APL2.

The character that is generated for each item of JAV is shown in
[FConversion of Atomic Vector Characters” on page 376}

BIT

The BIT option translates character or numeric 0's and 1's to binary 0's and 1's (or
from binary 0's and 1's to numeric 0's and 1's).

When sharing a variable with an AP, the value must be a character or numeric
vector or scalar. Every eight items of the value are combined into one byte in the
result. If the value does not contain a multiple of eight items, the last result byte is
padded with 0's.

When an AP returns a value, it is returned as a numeric vector of 0's and 1's, one
item per bit of the value being passed. The vector always has a multiple of eight
items.

BYTE

The BYTE option transfers data byte-for-byte without translation, regardless of the
character encoding being used by APL. Two examples of its use are:

e Packed decimal fields, which would be decoded by mapping against OA T
e Data being transferred from one file to another without inspection

Migration Consideration: If you have used this option to store internal VS APL
character data in a file under the control of the operating system, no conversion is
done when the file is read by APL2, and the encoding does not match the EBCDIC
used by APL2. Change the option to COD1.

If you have used this option in conjunction with a translate table to convert data into

VS APL encoding, the translate table or the conversion option must be changed to
convert the data to APL2 encoding.

Appendix D. Auxiliary Processor Conversion Options 371

CDR

CDR is an acronym for "common data representation.”" With this option, any APL2
variable, including nested arrays, may be read or written.

When a variable is shared with an auxiliary processor using this option, the entire
variable is written in CDR format. Its size, shape, and type are included.

The internal VS APL format is VAR. Files may contain a mixture of VAR and CDR
formats, but:

e VS APL cannot process records in CDR format.
e Several APL2 data types cannot be represented in VAR format.

The CDR option can read records that are in either format. While somewhat faster
than the VAR option, the CDR option does use slightly more space (approximately
eight bytes per variable).

When referencing a shared variable, the entire APL data object is read. The file
being read must contain valid APL2 or VS APL objects. Otherwise, a VALUE
ERROR results when attempting to reference the value.

When the CDR option is specified, each specification of the record variable causes
the array specified to be written as a single logical record to the file; each reference
of the record variable causes a single logical record to be read from the file and
returned as an APL array.

For AP 111 and AP 210, the logical record length (LRECL) of the file limits the size
of an array that can be written to a file. The size (in bytes) of a specific APL array
can be determined through the use of 4 [0AT. Attempts to write arrays whose
size is greater than the logical record length of the file are rejected. For files with
fixed length records (RECFM = F or FB), arrays that are shorter in size than the
logical record length are padded transparently to match the required logical record
length.

COD1

The COD1 option allows you to access existing files that were written using the
BYTE option to store internal VS APL character data in files under the control of
the operating system. If such data is read under APL2 using the BYTE option, it is
returned without conversion, and its encoding does not match the EBCDIC used by
APL2. COD1 should be used in place of BYTE to provide compatibility in such
cases.

DBCS[(nnn)]

DBCS is an acronym for double-byte character set. This option allows access to
files containing double-byte character data, such as Kaniji.

In an APL workspace, DBCS characters are represented as extended characters
and occupy 4 bytes of storage each. Each extended character contains a char-
acter set identifier (2 bytes) and the character itself (2 bytes). When DBCS charac-
ters are stored in extended character format in an APL workspace, the first 2 bytes
of each character represents the character set identifier and the last 2 bytes repre-

372 APL2 Programming: System Services Reference

sent the DBCS character. When non-DBCS characters are stored in extended
character format in an APL workspace, the first 2 bytes of each character represent
the character set identifier, the third byte is zero, and the last byte represents the
character. APL characters (those mapped by A V), have the character set identi-
fier zero, and thus the first 3 bytes of each such character is zero.

DBCS data may be stored in files in two ways:

* Homogeneous files, in which only each consecutive 2 bytes of data represents
a character. If the first byte of a character in the file is nonzero, it is a DBCS
character; if the first byte of a character in the file is zero, it is an APL char-
acter.

e Heterogeneous files, which can contain a mixture of DBCS data and single-byte
character set (SBCS) data. In such a file, SBCS characters occupy 1 byte
each and DBCS characters occupy 2 bytes each. DBCS characters are distin-
guished from SBCS characters by enclosing strings of 1 or more consecutive
DBCS characters between shift-out (SO, X'0E"') and shift-in (Sl, X'OF') char-
acters.

The DBCS option allows access to homogeneous files of DBCS data. Heteroge-
neous files of SBCS/DBCS data can be read or written using option 192, and con-
verted to and from APL extended characters using the external functions CTX and
KTC that are described in the APL2/370 Programming: Using the Supplied Rou-
tines.

The DBCS conversion option used for a particular file access interacts with the
DBCS invocation option that is in effect for the APL2 session. See page [15 for the
behavior of the invocation option. Note that invocation options DBCS(ON) or
DBCS(TRY) were resolved during invocation, so that the only possibilities during
execution are DBCS(OFF) or DBCS(nnn), where nnn is a session character set
identifier. The DBCS invocation option may be modified during the session (see
the OPTION external function in APL2/370 Programming: Using the Supplied Rou-
tines), but that is also resolved immediately in the same way.

The DBCS conversion option allows specification of a character set identifier (nnn)
that is used to override the session character set identifier. nnn, if specified, must
be an integer between 0 and 32767.

Reading DBCS Data

When data is read from a file with conversion option DBCS, the two-byte characters
on the file are converted to extended characters before being assigned to the
shared variable. A character set identifier is supplied as follows:

1. If the first of the two file bytes is zero, then the character set identifier is set to
zero.

2. Else if the optional character set identifier has been specified on the DBCS
conversion option, that value is used.

3. Else if a session character set identifier is in effect, as specified by the DBCS
invocation option, that value is used.

4. Else the character set identifier on each extended character is set to zero.

Appendix D. Auxiliary Processor Conversion Options 373

Writing DBCS Data

When extended character data is written to a file with conversion option DBCS, the
two low-order bytes of each extended character are written to the file. SBCS data
is padded with a high-order file byte of zero for each character.

Before writing the data, some validation may occur:

1. If DBCS(OFF) is in effect for the session, no validation is done. Character set
identifiers on extended data are simply discarded. The optional identifier on the
DBCS conversion option has no effect.

2. Else if the optional character set identifier has been specified on the DBCS
conversion option, that value is checked against the character set identifier of
each extended character in the output data. If any mismatch is found, error
444 is returned, and no data is written to the file.

3. Else the session character set identifier is checked in the same way against
extended characters in the output. If any mismatch is found, error 444 is
returned, and no data is written to the file.

EBCD or 192

The EBCD option provides a one-for-one mapping of the elements of AV to
unique EBCDIC codes. It is a preferred synonym for the VS APL option, 192.
Data is translated as necessary between EBCDIC and the internal encoding.

Because APL2 uses EBCDIC, no translation is performed with this option under
Release 1 of APL2.

TN

The TN option is used only under TSO. This option transfers character vectors
with translation of extended APL symbols to their equivalents found on the technical
notation (TN) printer train. Its use is primarily for output data routed to high-speed
system printers.

VAR

The VAR option is intended only for data that is read or written by VS APL applica-
tions.

When writing a variable, data is written in VS APL format, including size, shape,
and type. Such data can be read by a VS APL processor.

When reading a variable, the VAR option is equivalent to the CDR option. The
entire variable is read, including size, shape, and type. The file being read must
contain valid APL2 or VS APL objects. If not, a VALUE ERROR results when
attempting to use the value.

The VAR option does not support writing the following data types:

e Mixed arrays

* Nested arrays

e Complex numbers

e Extended (4-byte) characters

374 APL2 Programming: System Services Reference

When the VAR option is specified, each specification of the record variable causes
the array specified to be written as a single logical record to the file; each reference
of the record variable causes a single logical record to be read from the file and
returned as an APL array.

The logical record length (LRECL) of the file limits the size of an array that can be
written to a file. Attempts to write arrays whose size (when converted to VSAPL
format) is greater than the logical record length of the file are rejected. For files
with fixed length records (RECFM = F or FB), arrays that are shorter in size than
the logical record length are padded transparently to match the required logical
record length.

Appendix D. Auxiliary Processor Conversion Options 375

Appendix E. Conversion of Atomic Vector Characters

Figure 112 shows how each item of the atomic vector AV is transformed by
various character conversion options used with auxiliary processors. For APL2
encoding, both the hexadecimal code and the corresponding APL2 character are
shown. For other encodings, hexadecimal and EBCDIC are shown.

The numbers in the first column of the table are indexes into AV with 0T 0 equal

to 0.
Figure 112 (Page 1 of 5). AP Conversion of Characters
04v APL2 After After After After After
code & APL BYTE CcoD1 EBCD BCD
gr‘aphic conv. conv. conv. conv. conv.
0 00 40 00 FF 00 40
1 01 40 01 00 01 40
2 02 40 02 01 02 40
3 03 40 03 02 03 40
4 04 17 04 03 04 17
5 05 05 05 04 05 05
6 06 40 06 05 06 40
7 07 40 07 06 07 40
8 08 40 08 07 08 40
9 09 40 09 CB 09 40
10 0A 40 0A cC 0A 40
11 0B 40 0B Cb 0B 40
12 0cC 40 0cC CE 0C 40
13 0D 40 0D CF 0D 40
14 OE 40 OE Do } OE 40
15 OF 40 OF D1 J OF 40
16 10 40 10 D2 K 10 40
17 11 40 11 D3 L 11 40
18 12 40 12 D4 M 12 40
19 13 40 13 D5 N 13 40
20 14 40 14 D6 0 14 40
21 15 15 15 CA 15 15
22 16 16 16 C8 H 16 16
23 17 40 17 D7 P 17 40
24 18 40 18 D8 Q 18 40
25 19 40 19 D9 R 19 40
26 1A 40 1A DA 1A 40
27 1B 40 1B DB 1B 40
28 1C 40 1C DC 1C 40
29 1D 40 1D DD 1D 40
30 1E 40 1E DE 1E 40
31 1F 40 1F DF 1F 40
32 20 40 20 EO 20 40
33 21 40 21 El 21 40
34 22 40 22 E2 S 22 40
35 23 40 23 E3 T 23 40
36 24 40 24 E4 U 24 40
37 25 25 25 €9 I 25 25
38 26 40 26 E5 V 26 40
39 27 40 27 E6 W 27 40
40 28 40 28 E7 X 28 40
41 29 40 29 E8 Y 29 40
42 2A 40 2A E9 Z 2A 40
43 2B 40 2B EA 2B 40

376 © Copyright IBM Corp. 1984, 1994

Figure 112 (Page 2 of 5). AP Conversion of Characters

04v

44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98

APL2
code &
graphic

2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
ap
48
ac
4D
4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62

—+ A SNRQNINIDIN I

— AT IR IYRORIRINIRIN &

e

d

R~ 1

After
APL
conv.

40
40
40
40

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

40
C1166D
C2166D
C3166D
C4166D
C5166D
C6166D
C7166D
C8166D
C9166D
40

4B.

4C <
4p (
4E +
40

40
D1166D
D2166D
D3166D
D4166D
D5166D
D6166D
D7166D
D8166D
D9166D
40

40

5C =
5D)
5E
40

60 -
61 /
E2166D

After
BYTE
conv.

2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
4A ¢
4B,
4C <
4D (
4E +
4F|

50 &
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

1 we ~— % A o—

60 -
61 /
62

After
COD1
conv.

EB
EC
ED
EE

EF
Fo
F1
F2
F3
F4
F5
Fb
F7
F8
F9
FA
FB
FC
FD
FE

40
5C
5D
5E
5F
60
61
62
63
64
16
82
9E
C2
90
1E

09
65
66
67
68
69
6A
6B
6C
6D
17
25
94
C3
C4
1F

91
AE
6E

OoO~NOOTPE WNRF O

1 we ~— %

~

. L

N

After
EBCD
conv.

2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
ap ¢
4B.
4c <
ap (
4F +
4F |

50 &
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

1 we ~— % A om

60 -
61 /
62

After
BCD
conv.

40
40
40
40

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

40
81
82
83
84
85
86
87
88
89
40
4B

- SQ —-hO® 2O T QD

4C <

4D

—

4E +

40

40
91
92
93
94
95
96
97
98
99
40
40
5C
5D
5E
40

60
61
A2

-0 T O S5 3 — X <.

Appendix E. Conversion of Atomic Vector Characters

377

Figure 112 (Page 3 of 5). AP Conversion of Characters
After

04v

99

100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154

378 APL2 Programming: System Services Reference

APL2
code &
graphic

63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A

Ve —-INKRRRIKSHNS

AL TINM R, @ > o VI

- ©) o e

2

YA« > D>QHDQAUQ0T D

URQUT OB 8 ~w& O

After
APL
conv.

E3166D
E4166D
E5166D
E6166D
E7166D
E8166D
E9166D
40

6B ,
40
6D
6E
6F ?

Vi

40
47
41
40
40
40
40
40
46
40
7A
40
40
7D !
7E =
40

54
40
40
40
40
40
40
40
40
40
55
56
43
64
65
62

69
40
40
40
40
40
40
40
40
40
72

BYTE
conv.

63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A

o

VI

— ST Q +Hhmo 0O T w

SO0 T O - 3 — x @

After
COD1
conv.

6F ?
70
71
72
73
74
75
1D
B5
0A
85 e
A2 s
B6

OE
9A
86 f
OF
10
11
12
13
9B
22
C5 E
24
23
C6 F
)
0B

A4 u
26
27
28
29
2A
2B
2C
2D
2E
B7
B8
9F
97 p
98 q
B9

BB
2F
30
31
32
33
34
35
36
37
8E

After

EBCD
conv.

63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A

N v o

V|

- SKQ -~ 0O T

- 0O T O - 3 — x .

After
BCD
conv.

A3
A4
A5
A6
A7
A8
A9
40
6B ,
40

6D _
6E >
6F ?

N< X = < < ct

40
50 &
7F n
40
40
40
40
40
40
40
7A
40
40
7D !
7E =
40

5F =
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

40
40
40
40
40
40
40
40
40
40
40

Figure 112 (Page 4 of 5). AP Conversion of Characters

04v

155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209

APL2
code &
graphic

9B
9C
9D
9E
9F

A0
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

co
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
cC
CD
CE
CF

DO
D1

c

o

s ~nmgQ oW cCcONNXTI<SCS 0 2

X

i S R B > |

VYV LT NHNTQANEOOW ™

——

After
APL
conv.

71
40
58
40
59

42
40
40
40
40
40
40
40
40
40
73
74
75
6A]
44
68

63
52
57
53
51
40
49
77
48
40
66
67
76
70
45
4F |

40
C1
C2
C3
C4
C5
C6
c7
c8
91
471654
461654
40
58164F
40
581677

T o mMMmooO W

40
D1 J

After
BYTE
conv.

9B
9C
9D
9E
9F

A0

Al~

A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

co
C1
c2
C3
C4
C5
C6
C7
C8
c9
CA
CB
cC
CD
CE
CF

DO
D1

N< X =< c &+uwv

H IO MmMMmOO WIS~

}
J

After
COD1
conv.

8D
83 ¢
95 n
0C
BA

8l a
21
38
39
3A
3B
3C
3D
3E
3F
8B
8C
A9 z
co {
Al ~
BF

89
A8
A7
A6
8A
14
92 k
BO

93 1
0D
87
5B
AA
Cl A
A3
99 r

= X< =

“rQ

-

18
41
42
43
44
45
46
a7
48
49
9C
9D
1C
AB
1B
AC

19
4A ¢

After

EBCD

conv.

9B
9C
9D
9E
9F

AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

co
C1
c2
C3
c4
C5
C6
C7
c8
c9
CA
CB
cC
CD
CE
CF

DO
D1

14

N< X = < +wn

H IO mMMmOO WIS~

}
J

After
BCD

conv.

40
40
40
40
JE =

60 -
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

7C @
40
40
40
40
40
40
EO
6C
40
40
7B #
40

40

58 $
4F |

-

o

40
C1
C2
C3
C4
C5
C6
C7
C8
C9
40
40
40
co {
40

40

—H IO mMmMMmOoOO >

40
D1 J

Appendix E. Conversion of Atomic Vector Characters

379

Figure 112 (Page 5 of 5). AP Conversion of Characters

04v

210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

380 APL2 Programming: System Services Reference

APL2
code &
graphic

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

Fo
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

P EBGe-H YTOYOZIRI X

el A ANNNK XIS O I

o o N

O© O30 0 FwWwNEFO

e ®I> <A

After
APL
conv.

D2 K
D3 L
D4 M
D5 N
D6 0
D7 P
D8 Q
D9 R
751676
7D1648B
66164F
67164F
69167D
731668

40
40
E2
E3
E4
E5
E6
E7
E8
E9 Z
611660
771660
40
581660
691648
761668

<X =Z<<CcC HWw

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
40
661654
67166D
51658
751668
40

OCOoONOTOT B WN—O

After
BYTE
conv.

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

O vo==2r XN

—

N<X<=Z<c 4w

OCOoONOTOOT P WMN—=O

After
COD1
conv.

4B
4c
4D
4E
4F
50
51
52
8F
A5
B4
B3
BC
7

20
15
53
54
55
56
57
58
59
5A
AF
Bl
1A
AD
B2
BE

77
78
79

@o— + —~ A -

7A

7B
7C
7D
7E
7F
80
84
88
76
96
BD
08

After
EBCD
conv.

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

Fo
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

DO vo=Z=2=Xr XN

—

N<X<=Z<cCc 4w

OCOoONOTOT P WN B~ O

After
BCD
conv.

D2
D3
D4
D5
D6
D7
D8
D9
40
5A
40
40
40
40

O vo=Z2=rXRN

40
40
E2
E3
E4
E5
E6
E7
E8
E9
40
40
40
DO }
40

40

N<X<X<=—=sc 4w

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
40
40
40
40
40
40

O OoONOOT P WNEE=O

Appendix F. APL2 Files and Data Sets

This appendix lists and defines the default files and data sets that are used with the
APL2 Licensed Program. In most cases, the default definitions can be modified by
the installation or the individual user. Also included in this list are the files and data
sets that are defined by the installation or the individual user for using or modifying

APL2.

Pointers are provided to the more detailed descriptions of each of the files and data

sets.

CMS Files

File name File type Description

file name ADMPRINT The default file type for print files from the the GDDM Environments Defaults Module for
VM/SP. See discussion under[FCOPY” on page 46|in [Chapter 3, “The APL2 Session
[Manager” on page 36l

file name ADMSYMBL Source of the APL2 program symbol set used by GDDM.

APLIBTAB APLIBTAB The library table used by the)MCOPY system command.

file name APLTF The default file type for transfer files written using the) IN¥ and)OUT system commands.
See discussion of transfer files in|Chapter 4. “APL2 Libraries: Workspaces and Data Files”

DUMPnnn APLWSV2 The name of a workspace dump. For a description, see APL2/370 Diagnosis Guide.

wkspcname APLWSV2 The default file type for APL2 private library workspaces. See discussion in [Chapter 4]
[FAPLZ Libraries: Workspaces and Data Files’ on page 63

LIBTAB APL2 Used to associate a library number to a virtual disk. See discussion in[Chapter 4, “APL2|
|Libraries: Workspaces and Data Files” on page 63

language APL2HELP National language translation for help texts selected by ONLT and HEL P function.

language APL2LANG National language translation for messages and command keywords selected by ONLT. The
file name is the spelled out language name (not a three letter abbreviation), truncated to 8
characters if necessary.

AP2TCPIP APL2PROF The TCPIP profile file.

file name APL2UT1 The temporary file type assigned to workspace files during) SAVE system command proc-
essing.

n AP2EDCHR File used when editing a simple character variable.

n AP2EDEVL File used when editing any other variable (for example, a vector of numbers, or a combination
of numbers and characters).

n AP2EDPGM File used when editing a function or operator.

SINKWS AP2UT2 Used by the)COPY,)PCOPY, and)MCOPY system commands.

AP2EXIT EXEC Used during APL2 invocation and termination. See discussion in [Chapter 2. “APL2 Invoca-|
ltion and Termination” on page 8

@LOGH1 file type Used to store the session manager log. The file name switches from @LOG1 to @LOG2

@LOG2 when you change the session log size. The file type and file mode depend on LIBTAB APL2.
See discussion in[Chapter 3, “The APL2 Session Manager” on page 36|

file names NAMES NAMES files are used by Processor 11 to provide descriptive information for external func-

tions. The file AP2VNO11 NAMES is provided with APL2 and contains descriptive information
for external functions distributed with APL2. A second NAMES file, PO11 NAMES, may be
used as a default NAMES file by Processor 11. See “NAMES Files” in
[FProcessor 11—Calling Compiled Programs’ on page_ 291 nd[Chapter 29, “Processor]
|11—Access to Namespaces” on page 334 for further information.

© Copyright IBM Corp. 1984, 1994

381

File name File type Description

file name VMAPL*F The default file type for AP 110 files. See the discussion in[Chapter 14, “AP 110—CMS File|
|[Processor” on page 138|

file name VSAPLFL The default file type for private-library AP 121 files; also used for session manager log files

VSAPL@L and copy work files. See the discussion in|Chapter 18, “AP 121—APL2 Data File Processor’|

DEFAULT VSAPLPR The default APL2 session manager profile. See discussion of PROFILE in|Chapter 3, “The
|APL2 Session Manager” on page 36}

file name VSAPLPR The default file type for the APL2 session manager profile. See discussion of PROFILE in

hapter 3. “The APL2 ion Manager” on
wkspcname VSAPLWS The default file type for VS APL private library workspaces that are used as input to the
YMCOPY system command.

wkspcname Vnnnnnnn The default file type for APL2 public library workspaces. See the discussion in
[FAPL2 Libraries:_Workspaces and Data Files’ on page 63

wkspcname Wnnnnnnn The default file type for VS APL project and public library workspaces that are used as input

to the)MCOPY system command.

CMS Filedef (DD) Names

Name Description

$APL2 Used to load nonshared copy of APL2. See the discussion in APL2/370 Installation and
Customization under CMS.

APLDUMP Used to request formatted dumps.

APLIN Contains input statements acceptable to APL2.

APLPRINT Contains a log of the APL session.

AP2LOAD The ddname used to define auxiliary processor load modules. See the discussion of APNAMES

in|Chapter 2, “APL2 Invocation and Termination” on page 8|

TSO DD Names

Name Description

ADMSYMBL Used by GDDM.

APLDUMP Used as a destination for any formatted dumps.

APLIN Used in place of terminal input when TERMCODE(-1) or batch processing is in effect.

APLPRINT Used in place of terminal output when TERMCODE(-1) or batch processing is in effect.

APLTF Allocated automatically during) IV and) OUT processing.

APLTRACE Destination for formatted trace output.

APL2EDIT File used when a named editor has been specified with the)EDITOR system command.

APL2HELP A partitioned data set or concatenation of partitioned data sets containing national language
translations for help texts, selected by ONLT. The member name is the spelled out language
name (not a three letter abbreviation), truncated to 8 characters if necessary.

APL2LANG A partitioned data set or concatenation of partitioned data sets containing national language
translations for messages and command keywords, selected by ONLT. The member name is
the spelled out language name (not a three letter abbreviation), truncated to 8 characters if nec-
essary.

APL2PROF A partitioned data set or concatenation of partitioned data sets containing the TCP/IP profile file.

382 APL2 Programming: System Services Reference

Name Description

AP2TNO11 Used to allocate default NAMES files used by Processor 11. See|Chapter 28, “Processor|
[{1=Calling Compiled Programs’ on page 291]and [Chapter 29, “Processor 11—Access to|
INamespaces” on page 334 for further information.

ATF Allocated automatically during) IV and)OUT processing.

CPYSPILL Used to store work files created by the)COPY, YMCOPY,and)PCOPY system commands.
The file size should be as large as the workspace from which you are copying. For greater
efficiency, the space allocation should be in units of cylinders or with the round option.

If you have not allocated this file an attempt is made to use the FO VSAM cluster, but perform-
ance suffers.

CPYSWAP Used to store work files created by the)COPY,)MCOPY, and)PCOPY system commands.
The file size is equal to the size of the active workspace. For greater efficiency, the space allo-
cation should be in units of cylinders or with the round option.

If you have not allocated this file an attempt is made to use the FO VSAM cluster, but perform-
ance suffers.

Fnnnn A VSAM cluster that contains a library of AP 121 files. FO is the private library, also used for

FO)COPY files and session manager log files.

LOADLIB One or more MVS private load libraries. See the discussion of LOADLIB in [Chapter 2, “APL2
|Invocation and Termination” on page 8|

Wnnnn A VSAM cluster that contains a library of workspaces. WO is the private library, used when no

WO library number is specified on system commands.

TSO Data Set Names

Note: Most of these names can be modified as an installation option.

Name Description
APL2.SAP2HELP National Language Help Files
APL2.SAP2LANG National Language Message and Command Files

APL2.LIBO001.PUBWKSPS
APL2.LIB0O002.PUBWKSPS

Public library workspaces distributed with APL2, if stored in VSAM libraries.

APL2.SAP2NICK

NAMES files are used by Processor 11 to provide descriptive information for external func-
tions. The file APL2.SAP2NICK is provided with APL2 and contains descriptive information

for external functions distributed with APL2. See “NAMES Files” in Ehaeter 28i “Processor|
11—Calling Compiled Programs” on page 291|and[Chapter 29, “Processor 11—Access t
Namespaces” on page 334 }or further information.

APL2.SAP2PROF

Sample profile files (such as TCP/IP).

APL2.Vnnn.prefix

SAM project library pointer. This must be cataloged as a data set, but no such data set
physically exists.

APL2V2R02.DEFAULT.VSAPLPR

Default session manager profile supplied by IBM.

APL2V2R02.Vnnn.wsname

SAM public workspace. See the discussion in [Chapter 4, “APL2 Libraries: Workspaces and|

|Data Files” on page 63|

prefix APLTF.xxXxxxxxxx

The sequential file created when a transfer file is written using the) IN¥ and)OUT system

commands. See the discussion of transfer files in[Chapter 4, “APL2 Libraries: Workspaces|
land Data Files” on page 63|

prefix. APL2.EDIT

Data set used when a named system editor has been specified with the)EDITOR system
command and nothing was preallocated to FILE(APL2EDIT).

prefix.xxx.VSAPLPR

The APL2 session manager profile, where VSAPLPR is the default third-level qualifier. See
the discussion of PROFILE in [Chapter 3, “The APL2 Session Manager” on page 36}

prefix..DUMPnnnn

The name of a workspace dump. For a description, see APL2/370 Diagnosis Guide.

prefix.V.wsname

SAM private workspace. See the discussion in|[Chapter 4, “APL2 Libraries: Workspaces and|
[Data Files” on page 63|

Appendix F. APL2 Files and Data Sets 383

Name Description

prefix.V nnnn.wsname SAM project workspace. See the discussion in [Chapter 4, “APL2 Libraries: Workspaces|
[and Data Files” on page 63]

384 APL2 Programming: System Services Reference

Appendix G. Sample Non-APL Programs to be Called
through Processor 11

This appendix contains sample programs written in several languages that can be
called from APL2 using Processor 11. The samples illustrate the major items that
must be be considered when using the languages. Techniques are demonstrated
for building routine descriptions, routine lists, and link-editing them with the pro-
grams.

Several examples are provided for each language:

e Sample routines that update their arguments

e An APL2 session log showing how to build routine descriptions, a routine list,
and link-edit the routines' object files.

* A set of NAMES file entries for use if the routines are not to be self-describing.

* An APL2 session log showing how to build a routine list and link-edit the non-
self-describing versions of the routines.

In the set of samples for each language, the following notes are of particular
interest.

(Note 1) Each environment program calls AP2TNL or AP2VNL to pass control
back to APL2 before it returns to its caller.

(Note 2) The routines update their arguments by simply respecifying their values.

(Note 3) The argument patterns for the routines indicate which argument is
updated with the < character.

Notice that although all the languages support having the source code for the rou-
tines in separate files, only VS FORTRAN supports link-editing them into separate
modules. C/370 and PL/I both require that all the subroutines that are going to run
in the environment must be link-edited with the main program.

The appendix concludes with samples that demonstrate the native operating
system commands for link-editing object files. Remember that although the TSO
linkage editor can automatically include AP2TNL, the CMS APL2 object files,
AP2VNL and AP2XCMAP, need to be explicitly included during link-edit. This is
because AP2VNL (and AP2XCMAP) are not shipped in TXTLIB files.

© Copyright IBM Corp. 1984, 1994 385

C/370 Examples

Updating Arguments with C/370

Source Code

#pragma linkage(add,os)
#pragma linkage(sub,os)
#pragma linkage(ap2vnl,os)

int main() { /* Main environment program */
ap2vnl(): (Note 1) /* Return control to APL2 */
return 0;} /* Integer result */
void add(int argl,int arg2) { /* Integer argument */
argl=argl+arg?2;} (Note 2) /* Update argument with result =/
void sub(int argl,int arg2) { /* Integer argument */
argl=argl-arg2;} (Note 2) /x Update argument with result x/

Routine Descriptions, Routine List, and Link-Editing

3 11 0ONA>'BUILDRD' 'BUILDRL'

RD<"'":LINK.OBJECT :INIT.+INITIAL :VALENCE.O0O 0 0O
'"ENVRD TEXT' BUILDRD 'ENVRD' 'CEESTART' RD

0 (Note 3)
RD<'":LINK.OBJECT :INIT.CENV :RARG.GO 1 2(<I4 0)(Iu4 0)°
'"ADDRD TEXT' BUILDRD '"ADDRD' '"ADD' RD

0
'"'SUBRD TEXT' BUILDRD 'SUBRD' 'ADD' RD
0
RL<«'CENV ENVRD' 'ADD ADDRD' 'SUB SUBRD'
'"CRL TEXT' BUILDRL (<'CRL'),RL
0
100 OSvo 'CTrLi100!
2
SOURCES<'(CRL CUPD ENVRD ADDRD SUBRD AP2VNL)'
LIBS<«'(EDCBASE IBMLIB)'
CTL100<«3'AP2MP11L CLOAD(CRL)' SOURCES LIBS
'CLOAD.CRL' 11 ONA-'ADD' 'SUB'
11
ADD 3 17
20
SUB 15 6
9

386 APL2 Programming: System Services Reference

NAMES Files Entries

:NICK.CENV

:LOAD.CLOAD
:MEMB. CRL
:LINK.OBJECT
:INIT.+INITIAL
:VALENCE.O 0 ©

:NICK.ADD

:LOAD.CLOAD

:MEMB.CRL

:LINK.OBJECT

:INIT.CENV

:RARG. (GO 1 2)(<I4 0)(I4 0) (Note 3)

:NICK.SUB

:LOAD.CLOAD

:MEMB. CRL

:LINK.OBJECT

:INIT.CENV

:RARG. (GO 1 2)(<I4 0)(I4 0) (Note 3)

Routine List and Link-Editing Non-Self-Describing Routines

20

3 11 0ONA 'BUILDRL'

RL<«'CENV CEESTART' 'ADD' 'SUB'
'"CRL TEXT' BUILDRL (<'CRL'),RL

100 0OSVO 'CTL100"

SOURCES<«'(CRL CUPD AP2VNL)'

LIBS<«'(EDCBASE IBMLIB)'

CTL100<«3s'AP2MP11L CLOAD(CRL)' SOURCES LIBS
'"(CNAMES)' 11 0ONA>'ADD' 'SUB'

ADD 3 17

SUB 15 6

Appendix G. Sample Non-APL Programs to be Called through Processor 11

387

PL/l Examples

Updating Arguments with PL/I

Source Code

Updates: procedure options (Main) ;

dcl argl bin fixed(31) ;

dcl arg2 bin fixed(31) ;

dcl ap2vnl external entry ;

call ap2vnl ; (Note 1) /* Pass control to APL2 =*/
return;

Add: entry (argl,arg2) ; /* Add two integers */
argl = argl + arg2 ; (Note 2)
return;

Sub: entry (argl,arg2) ; /* Subtract two integers x/
argl = argl - arg2 ; (Note 2)
return;

end Updates ;

Routine Descriptions, Routine List, and Link-Editing

3 11 0ONA>'BUILDRD' 'BUILDRL'

1 1
RD<"':LINK.OBJECT :INIT.+INITIAL :VALENCE.O O O
'"ENVRD TEXT' BUILDRD 'ENVRD' '"PLISTART' RD

0 (Note 3)
RD<':LINK.OBJECT :INIT.PLIENV :RARG.GO0 1 2(<I4 0)(I4 0)'
"ADDRD TEXT' BUILDRD 'ADDRD' 'ADD' RD

0
'SUBRD TEXT' BUILDRD 'SUBRD' 'SUB' RD

0
RL<'PLIENV ENVRD' '"ADD ADDRD' 'SUB SUBRD'
'PLIRL TEXT' BUILDRL (c'PLIRL'),RL

0
100 OSvo 'CcTL100!

2
SOURCES<'(PLIRL PLIUPD ENVRED ADDRD SUBRD AP2VNL)'
LIBS<'(PLILIB IBMLIB)'
CTL100<«%'AP2MP11L PLILOAD(PLIRL)' SOURCES LIBS
"PLILOAD .PLIRL' 11 [ONA-'ADD' 'SUB'

1 1
ADD 3 17

20
SUB 15 6

9

388 APL2 Programming: System Services Reference

NAMES Files Entries

:NICK.PLIENV

:LOAD.PLILOAD
:MEMB.PLIRL
:LINK.OBJECT
:INIT.+INITIAL
:VALENCE.O 0 ©

:NICK.ADD

:LOAD.PLILOAD

:MEMB.PLIRL

:LINK.OBJECT

<INIT.PLIENV

:RARG. (GO 1 2)(<I4 0)(I4 0) (Note 3)

:NICK.SUB

:LOAD.PLILOAD

:MEMB.PLIRL

:LINK.OBJECT

<INIT.PLIENV

:RARG. (GO 1 2)(<I4 0)(I4 0) (Note 3)

Routine List and Link-Editing Non-Self-Describing Routines

20

3 11 0ONA 'BUILDRL'

1
RL<«'PLIENV PLISTART' 'ADD' 'SUB'
'"PLIRL TEXT' BUILDRL (<'PLIRL'),RL
100 0OSVO 'CTL100"
SOURCES<'(PLIRL PLIUPD AP2VNL)'
LIBS<«'(PLILIB IBMLIB)'
CTL100<«3s'AP2MP11L PLILOAD(PLIRL)' SOURCES LIBS
'"(PLINAMES)' 11 ONA>'ADD' 'SUB'

1
ADD 3 17
SUB 15 6

Appendix G. Sample Non-APL Programs to be Called through Processor 11

389

VS FORTRAN Examples

Updating Arguments with VS FORTRAN

Source Code

PROGRAM FORTENV
CALL AP2VNL (Note 1)
END

SUBROUTINE ADD(numl,num2)
INTEGER*4 numl,num?2

numl = numl + num? (Note 2)
Return

END

SUBROUTINE SUB(numl,num2)
INTEGER*4 numl,num2

numl = numl - num2 (Note 2)
Return

END

Routine Descriptions, Routine List, and Link-Editing

3 11 0ONA>'BUILDRD' 'BUILDRL'

11
RD<':LINK.OBJECT :INIT.+INITIAL :VALENCE.O 0 O
'"ENVRD TEXT' BUILDRD 'ENVRD' 'FORTENV' RD

0
RD<':LINK.OBJECT :INIT.FORTENV :RARG.GO 1 2(<I4 0)(I4 0)°
"ADDRD TEXT' BUILDRD 'ADDRD' 'ADD' RD

0
'"'SUBRD TEXT' BUILDRD 'SUBRD' 'ADD' RD

0
RL<'"FORTENV ENVRD' 'ADD ADDRD' 'SUB SUBRD'
'"FORTRL TEXT' BUILDRL (<'FORTRL'),RL

0
100 OSvVO 'CTL100!

2
SOURCES<'(FORTRL FORTUPD ENVRD ADDRD SUBRD AP2VNL)'
LIBS<«'(VSF2FORT)'
CTL100<«3'AP2MP11L FORTLOAD(FORTRL)' SOURCES LIBS
'"FORTLOAD .FORTRL' 11 [ONA>'ADD' 'SUB'

11
ADD 3 17

20
SUB 15 6

9

390 APL2 Programming: System Services Reference

NAMES Files Entries

:NICK.FOR
:LOAD.
:MEMB.
:LINK.
<INIT.
:VALEN

TENV
FORTLOAD
FORTRL
OBJECT
+INITIAL
CE.0 00

:NICK.ADD

:LOAD.
:MEMB.
:LINK.
<INIT.
:RARG.

FORTLOAD

FORTRL

0BJECT

FORTENV

(GO 1 2)(<I4 0)(I4 0) (Note 3)

:NICK.SUB

:LOAD.
:MEMB.
:LINK.
<INIT.
:RARG.

FORTLOAD

FORTRL

OBJECT

FORTENV

(GO 1 2)(<I4 0)(I4 0) (Note 3)

Routine List and Link-Editing Non-Self-Describing Routines

20

3 11 0ONA 'BUILDRL'

RL<«'FORTENV' 'ADD' 'SUB'
'"FORTRL TEXT' BUILDRL (<'FORTRL'),RL

100 OSVO 'CTL100!
SOURCES<'(FORTRL FORTUPD AP2VNL)'
LIBS<'(VSF2FORT)"

CTL100<3'AP2MP11L FORTLOAD(FORTRL)' SOURCES LIBS
'"(FORTNAMES)' 11 0ONA>'ADD' 'SUB'

ADD 3 17

SUB 15 6

Appendix G. Sample Non-APL Programs to be Called through Processor 11

391

Link-Editing Examples

Link-Editing on TSO using a CLIST

PROC 0

LINK *

PRINT (*)

)
AMODE (31)
RMODE (ANY)
DATA PROMPT

LOAD('USERID.LIB.LOAD")

LIB('lang.link.lib'
"APL2.SAP2LMDS"

CONTROL MAIN PROMPT ASIS NOFLUSH
ALLOC FI(OBJDECKS) SHR REUSE DA('USERID.LIB.OBJ')

+ 4+ + + + + +

INCLUDE OBJDECKS(rlname) Routine 1ist
INCLUDE OBJDECKS (name) Compile object file name
INCLUDE OBJDECKS(rdname) Routine description

ENTRY riname Main entry point of member (frequently a routine Tlist)
NAME member (R) Name of member
ENDDATA

FREE FI(OBJDECKS)
EXIT CODE(&MAXCC)

Link-Editing on TSO using JCL

//0BJ DD
//SYSLIB DD
/1 DD

//SYSLIN DD

//SYSLMOD DD
//SYSUT1 DD
//SYSPRINT DD
//0BJDECKS DD

//LKED EXEC PGM=IEWL,PARM='XREF,LIST,LET'

DUMMY
DISP=SHR,DSN=Ilang.link.lib
DISP=SHR,DSN=APL2.SAP2LMDS

*

MODE AMODE(31),RMODE(ANY) APL2 expects this Amode and Rmode

INCLUDE OBJDECKS(rlname) Routine T1ist

INCLUDE OBJDECKS (name) Compile object file name

INCLUDE OBJDECKS(rdname) Routine description

ENTRY riname Main entry point of member (frequently a routine Tlist)
NAME member (R) Name of member

DISP=0LD,DSN=USERID.LIB.LOAD
UNIT=SYSDA,SPACE=(CYL,(2,1))
SYSOUT=*
DISP=SHR,DSN=USERID.LIB.0BJ

392 APL2 Programming: System Services Reference

Link-Editing on CMS

FILEDEF SYSLIB CLEAR

FILEDEF SYSLIB DISK libl TXTLIB * (PERM CONCAT
FILEDEF SYSLIB DISK Iib2 TXTLIB * (PERM CONCAT

FILEDEF SYSLIB DISK libn TXTLIB * (PERM CONCAT
GLOBAL MACLIB libl lib2 ...
FILEDEF SYSLMOD DISK library LOADLIB A (RECFM U

LKED textname (NAME rlname LIBE library LIST MAP RENT XREF AMODE(31) RMODE (ANY)

libn

Where:
lib1-libn
library

textname

riname

are filenames of language TXTLIB files

is the filename of the LOADLIB file where the output member should be
placed.

is the filename of a TEXT file into which all the object files to be link-
edited have been copied.

is the name of the main entry point of the member (frequently the name
of a routine list.)

Generating a MODULE on CMS

GLOBAL TXTLIB libl lib2 ...

libn

LOAD textname (RLDSAVE RESET rlname
GENMOD module (AMODE 31 RMODE ANY FROM rlname

Where:
lib1-libn

textname

rlname

module

are filenames of language TXTLIB files

is the filename of a TEXT file into which all the object files from which
the module is generated have been copied.

is the name of the main entry point of the member (frequently the name
of a routine list.)

is the filename of the MODULE file to be generated.

Appendix G. Sample Non-APL Programs to be Called through Processor 11 393

Appendix H.

Tasks

Summary of Terminal Information for APL2

This appendix explains how to accomplish key APL2 tasks on the following IBM
terminals:

IBM 2741 Communication Terminal
IBM 3270 Information Display System

For additional information, refer to the operator's guide for your terminal.

IBM 2741 Communication Terminal

For TSO, the IBM 2741 Communication Terminal (Figure 113 and Figure 114)
requires a connection through the Virtual Telecommunications Access Method
(VTAM/NTO).

e - < < = > > Z v A — -
e N R AT
1 2 3 4 5 6 7 8 9 0 + x X
P
CLR w € e ~ + ¥ 1 o * - ON
TAB
W E R T Y U I 0 P <«
RETURN
o r L B v A o " O ()
oo | | |
A S D F G H o K L L 1
C o n U € T ‘ s
SHIFT ‘ SHIFT
SET z X C 14 B i M . / OFF

Figure 113. The IBM 2741 Communication Terminal Keyboard

Figure 114 (Page 1 of 2). Use of APL2 with the IBM 2741 Communication Terminal

To

Action

Switch to APL Mode
and Produce APL
Characters

On the IBM 2741 Communication Terminal, you can print the APL characters by placing on your terminal
APL Selectric* typing element 987 (for correspondence IBM 2741s) or 988 (for EBCD or BCD IBM
2741s).

On the IBM 2741, you can produce overstrike characters by typing one character, backspacing, and then
typing the second character.

Produce the new APL2
Characters

Produce the new APL2 characters as you would any of the overstrike characters.

Enter data

Enter a line of input and press the RETURN key.

394

© Copyright IBM Corp. 1984, 1994

Figure 114 (Page 2 of 2). Use of APL2 with the IBM 2741 Communication Terminal

To

Action

Correct an Error

You can use the ATTN key to correct errors that you discover before pressing the RETURN key. Posi-
tion the type element to the point on the line at which you want to begin retyping, and press the ATTN
key. APL2 types a caret v to mark the indicated position and places the typing element below the caret:

A<12 34 56 68
v

Type the remaining portion of the line, beginning with the character directly below the caret.

A<12 34 56 68
v

3 55 68
Any character that you type to the left of the caret may create an overstrike character.

You can use the ATTN key as often as necessary to correct a line. After you press the RETURN key,
APL2 accepts the line of input.

Correct an error (con-
tinued)

Instead of using the ATTN key to correct characters to the right of the type element, you can intentionally
create an ENTRY ERROR, which enables you to simply correct each erroneous character.

To create an ENTRY ERROR, backspace then type over each character that you want to correct so that
you form invalid characters. APL2 displays the message ENTRY ERROR and prompts you to replace
the characters.

For example, if you enter the _ symbol over the + symbol in the expression 365x24+60x60, APL2
repeats the line that you typed but replaces the invalid character with a blank.

365x24+60x60
ENTRY ERROR
365x24 60x60
+
Type element waits here
for a new entry

The type element is positioned at the leftmost invalid character. Retype a valid character into each blank
position. Then, press the RETURN key.

Interrupt O and [1 input

When APL2 gives you a [0 or [1 prompt for input, type O, backspace, U, backspace, T, and press the
RETURN key. APL2 treats this action as a strong interrupt.

Interrupt execution

Attention: Press the ATTN key once. APL2 interrupts execution after the current statement or function
line has been executed.

Interrupt: Press the ATTN key twice. (Wait for the type ball to stop wiggling before pressing ATTN the
second time.) APL2 interrupts execution as soon as the current APL2 primitive operation has finished
executing.

System Error under TSO: If APL2 does not respond to Interrupt, pressing ATTN a third time may
cause a message to be displayed that indicates the part of APL2 that is executing. Pressing ATTN again
may cause that process to terminate. This action may resultina SYSTEM ERROR or a loss of an
auxiliary processor.

Abrupt Termination of APL2 under TSO: If you continue to press the ATTN key to interrupt execution,
APL2 may temporarily abandon execution and place you in the TSO READY state. Depending on your
method of terminal connection, you may see either the message READY or the characters peol +.

If you do not want to abandon APL2 after you see the message, press only the RETURN key to give
control to APL2. If you type any characters, you abruptly exit APL2 after the message is displayed. A
CONTINUE workspace is saved if possible.

Abrupt Termination of APL2 under CMS: If you continue to press the ATTN key, you may cause exe-
cution to be abandoned. If execution is abandoned, you are placed in CP mode (the letters CP READ
appear in the bottom right-hand portion of the screen).

To return to APL2, enter BEGIN or B.

Appendix H. Summary of Terminal Information for APL2 Tasks 395

IBM 3270 Information Display System

Figure 115, Figure 116, and Figure 117 illustrate typical 3270 family keyboards.
Figure 118 describes common tasks and how to perform them using the IBM 3270
Information Display System.

I @ - ||# |8 =|l% “|le =||& 7 ey + :|| APL DUP FM
CLEAR ON PA1 PA2
1 2 3 4 5 6 7 8 9 0 = x|| OFF
T 5 ¥ A J ® e ® v A Bl
- -
ERASE : @ € P g v l °] e are INs || DEL
INPUT ALT MODE
Q W E R T Y Y I 0 P e
[
ERASE o r L - v 4 ’ ol : ¢) Al
LOCK . * *
EOF 4 s D F G B J X L oo || =
k3 T
TEST c > n U 1 T | < > 7\ ’ " .
SHIFT SHIFT - -
REQ z X c v B N M s /
a X #
4 N
RESET ENTER

E TYPAMATIC WHEN APL OFF
D TYPAMATIC WHEN APL ON

Figure 115. IBM 3277 APL Keyboard

CURSR ~ #o<) s <|[w =\[7 =& >\[- Z)[c V|[> A|[- T)[+ = . FIELD . .
T S | O [O | O | O | G 1 S |
e ey s e e == T

L AR)

= R s O
'... ..E.E.E@.E.ﬂ.ﬂ.ﬂ.ﬁ.ﬂ.ﬂ.ﬂ .ﬂl“ "l.l.

RESET ' .
DEV CNCL

Figure 116. IBM 3278/3279 APL Keyboard

396 APL2 Programming: System Services Reference

25 ARERRRRRREARRE BEE

B A<l T
SERREERRERRE

A
[

o e 2

SRS

1] IR,

Figure 117. IBM 3290 APL Keyboard

Figure 118 (Page 1 of 2). Using APL2 with the IBM 3270 Information Display System

To

Action

Switch to APL Mode
and Produce APL
Characters

The keyboard contains APL keys if your terminal has the DATA-ANALYSIS feature (IBM 3277) or
APL/TEXT feature (for example, IBM 3278, 3279, or 3290).

To switch to APL mode on the 3277, press the APL ON/OFF key. To test if you are in APL mode, hold
down the shift key while pressing the 6 key. If a > appears, you are in APL mode.

To switch to APL mode on a terminal with the APL/TEXT feature, hold down the ALT key and press the
APL ON/OFF key. The letters APL appear at the bottom of the screen to let you know that you are in
APL mode.

Note: On some terminals (such as the 3277GA), display of the first 64 elements of JAV (X'00' through
X'3F') gives unpredictable results.

Produce the new APL2
Characters

Some 3270s have keys to enter them directly. On others, you must use the APL2) PBS system
command to enter them. For further information, see APL2 Programming: Language Reference.

Enter data

Type in your input and press the ENTER key.

Correct an error
before it has been
input

Move the cursor to the error by using the cursor-movement keys (+ + <). Replace the error with
new characters. To insert or delete characters on a line, you may need to use the insert or the delete
key. If a line is full, you cannot insert characters. If blanks follow the line, use the ERASE EOF key to
delete those blanks before you insert characters.

Correct an error after
it has been input

With APL Session Manager: Move the cursor to any input or output line. Replace the error with new
characters and press the ENTER key. The old line remains unchanged and the resulting new line dis-
plays as the next line of input.

CMS Without APL Session Manager:
function key.

TSO APL Without Session Manager: Move the cursor to the line to be changed. Correct the charac-
ters and press the ENTER key. The line remains as you changed it. The changes you made do not
cause a second line to be displayed.

Use VM RETRIEVE facility, which can be assigned to a PA or

Interrupt O and [1 input

CMS:If you are using the session manager, press the PA2 key. If you are not using the session
manager, press the PA2 key and then the ENTER key.

TSO: If you are using the session manager, press the PA1 key. If you are not using the session
manager, press the PA2 key.

397

Appendix H. Summary of Terminal Information for APL2 Tasks

Figure 118 (Page 2 of 2). Using APL2 with the IBM 3270 Information Display System

To

Action

Interrupt execution

Attention: An attention signals an interrupt after execution of the current statement or function line.
Under CMS with the session manager, press the RESET key and then the PA2 key.

Without the session manager under CMS, press the ENTER key. You can also press the PA1 key twice;
the first PA1 displays the CP READ message; the second PA1 returns you to APL2.

Under TSO, press the ATTN key or PA1 key once.
Interrupt: An interrupt signals an interrupt as soon as possible.

Under CMS with the session manager, press the RESET key and then the PA2 key. Repeat the proce-
dure. Without the session manager, press the ENTER key, the RESET key, and then the ENTER key.

Under TSO, press the ATTN key twice or the PA1 key twice.

Note: The keys for interrupting execution work under most terminal configurations. However, certain
configurations may reserve particular keys mentioned here for another use. In such cases, see your
system administrator or experiment with the ATTN, PA1, and PA2 keys to discover which ones work for
your particular configuration.

System Error under TSO: If APL2 does not respond to Interrupt, pressing ATTN or PA1 a third time
may cause a message to be displayed that indicates the part of APL2 that is executing. Pressing ATTN
or PA1 again may cause that process to terminate. This action may result ina SYSTEM ERROR or a
loss of an auxiliary processor.

Abrupt Termination of APL2 under TSO: If you continue to press the ATTN key or PA1 key to interrupt
execution, APL2 may temporarily abandon execution and place you in the TSO READY state.

Depending on your method of terminal connection, you may see either the message READY or the char-
acters peal 4.

Interrupt execution
(continued)

If you do not want to abandon APL2 after you see the message, press only the RETURN key to give
control to APL2. If you type any characters, you abruptly exit APL2 after the message is displayed. A
CONTINUE workspace is saved if possible.

Abrupt Termination of APL2 under CMS: If you continue to press the ATTN key or PA1 key, you may
cause execution to be abandoned. If execution is abandoned, you are placed in CP mode (the letters
CP READ appear in the bottom right-hand portion of the screen).

To return to APL2, enter BEGIN or B.

To receive CP
message

Under CMS with session manager on, or when using AP 126, CP messages may not be displayed
immediately, but are displayed at the end of the session, or when you press the PA1 key.

398 APL2 Programming: System Services Reference

Appendix I. Printer Fonts Supplied with APL2

APL2 includes an All-Points-Addressable (APA) font suitable for use on all 38xx
APA printers (this excludes 3800 model 1). This is an italic font including all char-
acters defined on the APL2 EBCDIC code page. It is available in point sizes 6
through 12, 14, 16, 18, 20, and 24. The typeface name is 'APL2 DOCUMENT FONT',
and the codepage name is T1200293. The font is formally described as medium
italic, normal width, although the alphabetic characters are actually quite light, to aid
in distinguishing them from function symbols. This font can be used with Document
Composition Facility (DCF), the GDDM family-4 printer support, or BookMaster*.

A number of older fonts are also supplied with the product, but may or may not
have been made available at your installation. These fonts are for use on 3800
model 1 and model 3 printers only (not 3812, 3820, etc.) and are for high volume
line oriented output. The font names given are to be used in the CHARS parameter
of the CP SPOOL command, the TSO ALLOCATE command, OUTPUT JCL statements,
or Script command options.

Font Uppercase Lowercase Underbar Box Blot Super-
name Alphabet Alphabet Alphabet chars chars script

APL Italic Italic Italic yes yes yes
AD10 Serif Serif Italic yes

AD12 Serif Serif Italic yes

AG10 Sanserif Sanserif Sanserif yes yes yes
AG12 Sanserif Sanserif Sanserif yes yes yes
AG15 Sanserif Sanserif Sanserif yes yes yes
A0 Italic none none

Al12 Italic none none

AT10 Serif Serif Italic * yes yes yes
AT12 Serif Serif Italic * yes yes yes
Notes:

1. The “Serif” and “Sanserif’ alphabetic characters are vertical (nonitalic) letters
that respectively include or do not include small bars at the ends of the char-
acter strokes.

2. None of these fonts contain the three new characters), +, or .

3. The character size for the font named APL is 10-pitch. The last two characters
of the other font names indicate their pitch.

4. The code points that would normally display as underbarred produce instead
uppercase italic letters.

5. The last three columns refer to code points below X'40'. These include:

box chars Laid out as in this diagram, with hex code points on the left:
1C 2D 2D 3B 2D 2D 1B

1A 1A 1A
3D 2D 2D 2C 2D 2D 3F
1A 1A 1A

1E 2D 2D 3E 2D 2D 1F

Blot chars X'18' is a full cell blot; X'08' and X'28' are top half-cell and
bottom half-cell respectively; X'17' and X'19' are left half-cell and
right half-cell respectively.

© Copyright IBM Corp. 1984, 1994 399

Superscript X'20' through X'23"' are () + - while X'30' through X'39"' are °
through °. Fonts containing superscript characters also contain §
and § at X'2B' and X'3A' respectively.

400 APL2 Programming: System Services Reference

Bibliography

APL2 Publications

APL2 Fact Sheet, GH21-1090

APL2/370 Application Environment Licensed
Program Specifications, GH21-1063

APL2/370 Licensed Program Specifications,
GH21-1070

APL2 for AIX/6000 Licensed Program Specifica-
tions, GC23-3058

APL2 for Sun Solaris Licensed Program Specifica-
tions, GC26-3359

APL2/370 Installation and Customization under
CMS, SH21-1062

APL2/370 Installation and Customization under
TSO, SH21-1055

APL2 Migration Guide, SH21-1069

APL2 Programming: Language Reference,
SH21-1061

APL2/370 Programming: Processor Interface Refer-
ence, SH21-1058

APL2 Reference Summary, SX26-3999

APL2 Programming: An Introduction to APL2,
SH21-1073

APL2 for AIX/6000: User's Guide, SC23-3051
APL2 for OS/2: User's Guide, SH21-1091

APL2 for Sun Solaris: User's Guide, SH21-1092
APL2 for the IBM PC: User's Guide, SC33-0600

APL2 GRAPHPAK: User's Guide and Reference,
SH21-1074

APL2 Programming: Using Structured Query Lan-
guage, SH21-1057

APL2/370 Programming: Using the Supplied Rou-
tines, SH21-1056

APL2/370 Programming: System Services Refer-
ence, SH21-1054

APL2/370 Diagnosis Guide, LY27-9601
APL2/370 Messages and Codes, SH21-1059

© Copyright IBM Corp. 1984, 1994

Other Books You Might Need

The following books might also be of use, and can be
ordered from IBM.

DB2

IBM DATABASE 2 Application Programming and
SQL Guide, SC26-4377

IBM DATABASE 2 Command and Ultility Reference,
SC26-4378

IBM DATABASE 2 Diagnosis Guide and Reference,
LY27-9536

IBM DATABASE 2 General Information, GC26-4373
IBM DATABASE 2 Messages and Codes,
SC26-4379

IBM DATABASE 2 Reference Summary, SX26-3771

GDDM

GDDM Application Programming Guide SC33-0867
GDDM Base Application Programming Reference,
SC33-0868

GDDM General Information, GC33-0866

GDDM Messages, SC33-0869

GDDM System Customization and Administration,
SC33-0871

GDDM User's Guide, SC33-0875

GDDM Diagnosis, SC33-0870

GDDM Using the Image Symbol Editor, SC33-0920
GDDM-PGF Programming Reference, SC33-0333
GDDM-PGF Diagnosis Guide and Reference,
LC33-0104

GDDM-PGF Interactive Chart Utility, SC33-0328
GDDM-PGF Vector Symbol Editor, SC33-0330

MVS

Operator's Library: OS/VS2 MVS System Com-
mands, GC38-0229

OS/VS Message Library: VS2 System Codes,
GC38-1008

OS/VS Message Library: VS2 System Messages,
GC38-1002

OS/VS Virtual Storage Access Method (VSAM)
Options for Advanced Applications, GC26-3819
OS/VS Virtual Storage Access Method (VSAM) Pro-
gramming Guide, GC26-3838

0OS/VS2 Access Method Services, GC26-3841
OS/VS2 MVS Data Management Macro
Instructions, GC26-3873

OS/VS2 MVS Supervisor Services and Macro
Instructions, GC28-0683

OS/VS2 MVS System Programming Library: Initial-
ization and Tuning Guide, GC28-1029

OS/VS2 System Management Facilities (SMF),
GC28-0706

401

OS/VS2 System Programming Library: Data Man-
agement, GC26-3830

OS/VS2 System Programming Library: Debugging
Handbook, Vol. 1-3, GC28-1047

OS/VS2 System Programming Library: MVS Diag-
nostic Techniques, GC28-0725

OS/VS2 System Programming Library: Service Aids,
GC28-0674

MVS/DFP*

Integrated Catalog Administration: Access Method
Services for MVS/DFP, SC26-4500

VSAM Catalog Administration: Access Method Ser-
vices for MVS/DFP, SC26-4501

Data Administration: Macro Instruction Reference
for MVS/DFP, SC26-4506

Linkage Editor and Loader for MVS/DFP,
SC26-4510

MVS/ESA VSAM Administration: Macro Instruction
Reference for MVS/DFP, SC26-4517

MVS/DFP: Access Method Services for the Inte-
grated Catalog Facility, SC26-4562

MVS/DFP: Linkage Editor and Loader, SC26-4564
MVS/DFP: Macro Instructions for VSAM Data Sets,
SC26-4569

MVS/DFP: Access Method Services for VSAM Cat-
alogs, SC26-4570

MVS/ESA

MVS/ESA Initialization and Tuning Reference,
GC28-1635

MVS/ESA Appl Dev: Callable Services for High-
Level Languages, GC28-1639

MVS/ESA System Messages Volume 1, GC28-1656
MVS/ESA System Messages Volume 2, GC28-1657
MVS/ESA System Messages Volume 3, GC28-1658
MVS/ESA System Codes, GC28-1664

MVS/ESA Routing and Descriptor Codes,
GC28-1666

MVS/ESA Problem Determination Guide,
GC28-1667

MVS/ESA Service Aids, GC28-1669

MVS/ESA JCL Reference, GC28-1829

MVS/XA

MVS/Extended Architecture Access Method Ser-
vices Reference for the Integrated Catalog Facility,
GC26-4019

MVS/Extended Architecture Access Method Ser-
vices Reference for VSAM Catalogs, GC26-4075
MVS/Extended Architecture Data Management
Macro Instructions, GC26-4014

MVS/Extended Architecture Debugging Handbook,
Vols. 1-5, LC28-1164

MVS/Extended Architecture Diagnostic Techniques,
LY28-1199

MVS/Extended Architecture Message Library:
System Codes, GC28-1157

402 APL2 Programming: System Services Reference

MVS/Extended Architecture Message Library:
System Messages, GC28-1156

MVS/Extended Architecture Operations: System
Commands, GC28-1206

MVS/Extended Architecture Supervisor Services
and Macro Instructions, GC28-1154
MVS/Extended Architecture System Programming
Library: Data Management, GC26-4010
MVS/Extended Architecture System Programming
Library: Initialization and Tuning, GC28-1149
MVS/Extended Architecture System Programming
Library: Service Aids, GC28-1159

MVS/Extended Architecture System Programming
Library: System Management Facilities, GC28-1153
MVS/Extended Architecture System Programming
Library: 31-Bit Addressing, GC28-1158
MVS/Extended Architecture VSAM Reference,
GC26-4016

SMP/E

System Modification Program Extended (SMP/E):
Messages and Codes , GC28-1108

System Modification Program Extended (SMP/E):
Reference, SC28-1107

SQL/DS

SQL/Data System Application Programming,
SH09-8086

SQL/Data System Messages and Codes,
SH09-8079

SQL/Data System Diagnosis Guide and Reference,
SH09-8081

SQL/Data System Database Service Ulility,
SH09-8088

TCP/IP

TCP/IP Version 2.0 for VM: Programmer's Refer-
ence, SC31-6084

TCP/IP for VM: User's Guide, SC31-6081

TCP/IP Version 2.0 for MVS: Programmer's Refer-
ence, SC09-1261

TCP/IP for MVS: User's Guide, SC09-1255

TCP/IP for MVS: Programmer's Reference Manual,
SC31-6087

TCP/IP for MVS Messages and Codes, SC31-6142
TCP/IP for VM Messages and Codes, SC31-6151

TSO

MVS/XA TSO/E Command Language Reference,
SC28-1134

MVS/XA TSO/E Guide to Writing a Terminal Monitor
Program or a Command Processor, SC28-1136
TSO/E Command Language Reference, SC28-1307
TSO/E Programming Services, SC28-1364

TSO/E Version 2 Programming Services,
SC28-1875

TSO/E Version 2 Command Reference, SC28-1881

VM/ESA*

VM/ESA CMS User's Guide, SC24-5460

VM/ESA Procedures Language VM/REXX Refer-
ence, SC24-5466

VM/ESA CMS User's Guide, SC24-5460

VM/ESA CMS Command Reference, SC24-5461
VM/ESA CP General User Command Reference for
370, SC24-5433

VM/ESA System Messages and Codes for 370,
SC24-5437

VM/ESA CP Command and Utility Reference,
SC24-5519

VM/ESA System Messages and Codes Reference,
SC24-5529

VM/SP
e VM/SP Data Areas and Control Block Logic,

LY20-0891

e VM/SP System Logic and Problem Determination

Guide Volume 1 (CP), LY20-0892

VM/SP System Logic and Problem Determination
Guide Volume 2 (CMS), LY20-0893

VM/SP Service Routines Program Logic, LY20-0890
VM/SP System Programmer's Guide, SC19-6203
VM/SP Messages and Codes, SC19-6204

VM/SP CMS Command and Macro Reference,
SC19-6209

VM/SP CMS User's Guide, SC19-6210

VM/XA*

VM/XA System Product CMS User's Guide,
SC23-0356

VM/XA System Product CP Command Reference,
SC23-0358

VM/XA System Product CMS Command Reference,
SC23-0354

VM/XA System Product System Product Interpreter
Reference, SC23-0374

VM/XA System Product System Messages and
Codes Reference, SC23-0376

Bibliography 403

Index

Special Characters
:DESC. 309
:ENTRY. 307
ANIT. 308
:LARG. 309
:LINK. 307, 321
:LOAD. 307
:MEMB. 307
:NICK. 307
:PARM. 309
:RARG. 309
:RSLT. 309
:TAG.value 307
‘TASKLIB. 309
:TIME. 309
:VALENCE. 309
), use in specification of TSO AP 100 built-in com-
mands 116
JEDITOR 74
YHOST system command
CMS 107
TSO 112
) IN system command 66, 73
JMORE system command 18
)OUT system command 66, 73
) PBS system command 37
YQUOTA system command
maximum number of shared variables 28
size of active workspace 32
size of shared storage 26
AEXEC function 285
AF w function 284
AFM function 281, 282
AFV function 281, 282
0A T account information, first item of 21, 70
OAT attributes, variables
written in CDR 191, 252
0AV atomic vector
transformation of items after conversion 376
OnA
syntax for non-APL programs 292
ONA name association 268
OPW printing width
printing with initial value for batch APL2 jobs
(CMS) 79
session manager log 38
0SVO0 shared variable offer 105

404

Numerics

2741 communication terminal, APL2 operations
on 394

3270 display terminal 207

3270 series display terminal, APL2 operations on 396

3277 model 2 18
3278 model 2 18
3290 display terminal, APL2 operations on 397
370 conversion option
with AP 100 108

A

ABEND code 152, 153, 243, 254
ABENDs in external routines 324
accessing namespaces
accessing objects 340
creating namespaces 338
NAMES files 342
unexpected errors 349
using namespaces 343
workspace names 340
accounting information, TSO 116
active associations 272
active workspace 3
default size 31, 32
querying the address of 135
querying the identification of (TSO) 125
querying the size of 136
WSSIZE invocation option 14, 31
XA invocation option 32
ADMK?772A device-token 18
ADMKY782A device-token 18
ADMPRINT filetype, GDDM print
files (CMS) 48
0A T account information, first item of 21, 70
Al built-in command, AP 100 (TSO) 116
AISIZE invocation option 11
ALLOCATE command, TSO sample issue using AP
100 113

altering normal APL2 debugging actions (DEBUG invo-

cation option) 17
AP 100, Host System Command Processor
CMS 107
associated workspaces 107
cancelling output 109
communication procedure 108
conversion options 108
initial value 108
return codes 110
shared variable requirements 107

© Copyright IBM Corp. 1984, 1994

AP 100, Host System Command Processor (continued)

TSO 112
associated workspaces 112
built-in commands 116
built-in commands summary table 116
cancelling output 113
communication procedure 113
return codes 114
shared variable requirements 113
using to invoke a CLIST 125
AP 101
commands 129
AP 101, Alternate Input (Stack) Processor
input stack
size of (TSO) 11
when exiting APL2 33, 34
invoking APL2 from, INPUT invocation option 22
AP 102, Main Storage Access Processor 134
cautions 136
communication procedure 135
converting integer result to character 136
converting integer result to hexadecimal 136
return codes 137
service requests 135
shared variable requirements 134
AP 110, CMS File Processor 138
associated workspaces 138
blocking factor 142
cautions 143
communication procedure 140
example 143
conversion options 140
initial values 139
return codes 144
shared variable requirements 138
AP 111, QSAM File Processor 146
associated workspaces 146
cautions 150
communication procedure 148
example 150
conversion options 147
converting QSAM decimal return codes 152
initial values 147
return codes 151
shared variable requirements 146
AP 119, Socket Interface Processor 154
AP commands 168
starting 171
TCP/IP commands 158
AP 120, APL2 Session Manager Processor 179
communication procedure 180
example 181
return codes 181
shared variable requirements 179
AP 120, Session Manager Command Processor 179

AP 121, APL2 Data File Processor 182
associated workspaces 182
cautions 191
changing the file size 190
CMS 63, 139
commands 185
communication procedure 185

example 189
deleting a file 190
direct access processing 187
files 183
CMS 63
explicit close caution 192
file identification 183
TSO 68
mismatched variables 105
return codes 192
sequential processing 187
shared variable requirements 182

space requirements for storing APL2 variables

AP 123, VSAM File Processor 195
associated workspaces 195
cautions 203
commands 197
communication procedure 198

example 198

open requests and possible processing options

return codes 204
shared variable requirements 195
translate options 203
VSAM files 195
closing 199, 203
entry-sequenced 196
identification of 196
key-sequenced 197
relative-record 196
AP 124, Text Display Auxiliary Processor 207
commands 210
return codes 221
shared variable overview 207
AP 126, GDDM Processor 222
associated workspaces 222
commands 228
communication procedure 226
example 226
data paths 237
error diagnosis 241
GDDM calls
calls you cannot issue 228
CHART call 234
retrieving list of (sample function) 230
handling attentions 239
obtain hard copy of screen image 237
program product requirements 223
return code vector
examples 225, 226, 241
format 224

Index

191

199

405

AP 126, GDDM Processor (continued)
return codes 242
shared variable requirements 223
sharing pages with APL2
session manager 238
translation considerations
migrating from VS APL 231
AP 127, SQL Processor 244
commands 246
communication procedure 245
return codes 247
shared variable requirements 245
AP 210, BDAM File Processor 248
associated workspaces 248
cautions 253
communication procedure 249
conversion options 250
converting MVS error codes 254
file processing procedure 251
example 252
file requirements 249
formatting a BDAM file 249
formatting procedure 250
initial values 249
return codes 253
shared variable requirements 248
AP 211
transferring files 95
AP 211, Object File Processor 255
commands 255, 256, 257, 258, 259
return codes 259

AP2EXIT EXEC (CMS), ending your APL2 session 32

AP2MP11L 328
AP2MP11M 328
AP2TNL 306
AP2VNL 306
AP2XCMAP 303
APL arrays as REXX programs 285
APL files 355
APL, used in specification of AP 100 (TSO) built-in
commands 116
APL2
port server 169
transfer of workspaces from TryAPL2 95
using across systems 86
APL2 character set 37
APL2 command
name of 5,8
overriding default invocation options 10
APL2 Data File Processor 182
See also AP 121
APL2 data files 6, 63
APL2 editors 74
APL2 executor 3
APL2 files and data sets 381

406 APL2 Programming: System Services Reference

APL2 interpreter 3
APL2 invocation options
See invocation options
APL2 libraries
See libraries, APL2
APL2 Licensed Program
components of 3
debugging (DEBUG invocation option) 17
diagnosing problems
(SYSDEBUG invocation option) 28
(TRACE invocation option) 31
discussion of 3
national language in use, display of 40
release level, display of 40
support features 5
system structure 3
APL2 port server 88
APL2 session manager
See session manager
APL2/370
deviations from APL2 366
APLDATA workspace
with AP 121 182
APLIN file 382
APLPRINT file 382
APLWSV2, CMS default filetype for workspaces 65
APLXnnnn CMS file and TSO load module 47
APNAMES invocation option 12, 23
argument patterns for Processor 11 310
arguments, updating
in place 313
results 313
arguments, valence
explicit results 317
function valence 318
operator valence 318
valence 318
associated processors
active associations 272
description of 268
environmental considerations 273
external names 268
JAT attributes, variables
written in CDR 191, 252
ATTACH built-in command, AP 100 118
attention
See terminal descriptions
ATTRIB command, TSO, sample issue using AP
100 113
authorization entries 90
auxiliary processors 4, 6
accessing processors not automatically
provided 12, 23
availability of at your installation 6
conversion options for 370
diagnosing problems
(SYSDEBUG invocation option) 28

auxiliary processors (continued)
diagnosing problems (continued)
(TRACE invocation option) 31
distributed with APL2 102
offering a shared variable 104
0AV atomic vector
transformation of items after conversion 376

batch processing of APL2 6, 78
CMS 78
input 78
output 79
passwords 79
TSO 80
input 80
output 80
without APL2 session manager 78
BDAM File Processor for TSO 248
See also AP 210, BDAM File Processor
BUILDRD 296
built-in commands, AP 100 (TSO only) 116
Al 116
ATTACH 118
CODE 118
DDI 118
DEGUG 120
DSI 119
EXEC 125
format of specifying 116
LIB 120
LIBS 121
NOMSG 121
QUIET 122
QUOTA 122
summary table of 116
TSO 126
USER 122
WSID 125
WSNAME 125
built-in functions 280

C

C/370 examples 386
C/370 results 316
C/370 scalar integer results 303
calculating length of APL2 variables 191, 252
calls, GDDM
See AP126, GDDM calls
cancelling output, AP 100
CP or CMS command 109
TSO command or CLIST 113
CASE 9, 14

CDR conversion option
calculating length of APL2 variables 191, 252
changes
summary of xvii
CLIST, TSO
ending APL2 33
executing from AP 100 125
invoking APL2 8
CMS EXEC, sample using AP 100 109
CMS File Processor 138
See also AP 110
CMS file status 284

CMS files
reading 281
writing 281

CMS system editors 75
CMS workspace
with AP 100 107
with AP 110 138
with AP 111 146
CMSBATCH facility 78
CODE built-in command, AP 100 (TSO) 118
CODE invocation option 15
COLUMN field, session manager control line 38
column major order 332
COLUMN session manager command 38, 44
command line, session manager screen 38
commands to host system
from AP 100
CMS 107
TSO 112
compiled programs 291
CONTINUE workspace
after forced termination 34
loading of 34
losing the contents or preventing loading 22
preventing loading, batch 78
continuing your terminal session after exiting APL2
CMS 32
TSO 34
control line, session manager screen 38
controlling invocation 82
conversion of atomic vector characters 376
conversion options
for auxiliary processors 370
transformation of JAV 376
cooperative processing
discussion of 86
processor network identification 86
processor profile examples 91
processor profile structure 87
processor profile syntax 89
receiving a share offer 88
sending a share offer 88
using the port server 88

Index

407

copy destination, with AP 126 237
COPY session manager command 46

in session manager profile 49
copying lines from session log 46
cover functions, purpose of 6
CREATE 255

commands

CREATE 255

CTN external routine 278

D

data files 63
data paths, AP 126 237
data sets, TSO 383
date and time stamp display 15
DATEFORM invocation option 15
DB2 publications 401
DBCS conversion option 15, 84
DBCS invocation option 15
DDI built-in command, AP 100 (TSO) 118
ddname 307, 309
DEBUG built-in command, AP 100 (TSO) 120
DEBUG invocation option 17
debug options, querying and setting (TSO) 120
debugging APL2
DEBUG invocation option 17
SYSDEBUG invocation option 28
TRACE invocation option 31
default library number (first item of OAI) 21
default session manager profile 60
DEFINE command (Access Method Services), example
to create VSAM library 69
defining libraries for CMS access of APL2-related
files 63
:DESC. 309, 343
destination, COPY session manager command 47
CMS 48
TSO 49
with AP 126 237
deviations
in implementation 366
device-token, DSOPEN invocation option 18
DFP publications 402
diagnosing problems 28
disconnection of APL2
CMS 33
TSO 34
display of lines longer than screen width 38
display of output, preventing
QUIET invocation option 24
SUPPRESS session manager command 61
DISPLAY OFF session manager command, difference
from SUPPRESS 62
display screen, session manager 37

408 APL2 Programming: System Services Reference

DISPLAY session manager command 50
display, control of the screen, using AP 126 25
display, of APL2 character set 37
DOMAIN ERROR 287
DROP 256

commands

DROP 256

DSI built-in command, AP 100 (TSO) 119
DSOPEN invocation option 18

E

EBCD conversion option
with AP 100 108
JEDITOR 74
EDITORs
CMS 75
TSO 75
ending your APL2 session
CMS 32
TSO 33
entering multiple lines of APL2 input 41
:ENTRY. 307, 343
entry-sequenced VSAM files 196
environment program 303
environment, obtaining information about (TSO) 122
environments 303, 323
ERASE 258
commands
ERASE 258
EXCLUDE invocation option 19
AEXEC function 285
EXEC built-in command, AP 100 (TSO) 125
EXEC file 274
EXEC, CMS, sample execution using AP 100 109
EXECCOMM 279
executing a CLIST from within APL2, AP 100
(TSO) 125
executing APL arrays as REXX programs 285
execution time libraries 332
executor, APL2 3
external function
explicit result 313
names 325
external names 7, 268
external routines
ABENDs 324
internal errors 324

F

AF w function 284

FILE filename, COPY session manager command
(CMS) 48

FILEDEF CMS command, example issue using AP
100 109, 150

files
APL2 data 6, 63, 183
BDAM 249
CMS 63, 138
MVS sequential 70
QSAM 146
VSAM 195
files as arrays, Processor 12 352
FIND session manager command 39, 53
example in user field 39
AFM function 281, 282
fonts
supplied with APL2 399
forced termination of APL2
CMS 33
TSO 34
formatting a BDAM file, AP 210 249, 250
FORTRAN
array ordering 332
linkage 321
FREESIZE invocation option 20, 191
FSC126 workspace
with AP 126 222
FSM workspace
with AP 126 222

full-screen interface, APL2 session manager

function keys

See program function keys
FUNCTION linkage 322
AFV function 281, 282

G

GDDM
ADMOPUT print utility (TSO) 49
ADMOPUV print utility (CMS) 48
ADMPRINT filetype (CMS) 48
alphanumerics defaults module 51
ASTYPE call 51
calls

See AP126, GDDM calls

controlling display of data 51
DSOPEN function 18
FREESIZE function 20
FSOPEN function 47
FSPCRT call, TYPE parameter 52

output from COPY session manager command 47

publications 401

requirements, use of session manager
GDDM Processor 222

See also AP 126, GDDM Processor
GDMX workspace 222
GET 258

commands

GET 258

GETLPORT 171

Graphical Data Display Manager
See GDDM

GRAPHPAK workspace
with AP 126 222

H

HELP session manager command 54

HEXDUMP function in UTILITY workspace 136

highlighting input/output 21
HILIGHT invocation option 21
HOLDING mode, session manager screen
YHOST system command
CMS 107
TSO 112
Host System Command Processor
See also AP 100
CMS 107
TSO 112

ID invocation option 21
identification entries 89
IMPCP setting (CMS) 109
IMPEX setting (CMS) 109
implementation limits 365
) IN system command 66, 73
in-storage log, session manager 55
:AINIT. 308
input
to batch APL2
CMS 78
TSO 80
INPUT invocation option 22
INPUT 22

40

passing quoted strings from a CLIST 22
preventing loading of CONTINUE workspace 78

relationship to QUIET invocation option
INPUT mode, session manager screen 39
input/output area, session manager screen
interface management routines 301
interlock, shared variable

avoiding 105

returning to INPUT mode 40
internal errors in external routines 324
interpreter, APL2 3
interrupt

entering during RUNNING mode 40

using SUPPRESS command 61
interruption of APL2

CMS 33

TSO 34
invocation options 5

abbreviation of keywords 10

24

40

Index

409

invocation options (continued)
AISIZE 11
APNAMES 12
CODE 15
DATEFORM 15
DBCS 15
DEBUG 17
DSOPEN 18
EXCLUDE 19
forced defaults 11
FREESIZE 20
HILIGHT 21
ID 21
LOADLIBS (TSO only) 23
NLT 24
online inquiry of 8
overriding default values 10
PROFILE 24
QUIET 24
SHRSIZE 26
SMAPL 27
summary table of 9
SVMAX 28
SYSDEBUG 28
TERMCODE 28
TRACE invocation option 31
WSSIZE 14, 31
XA 32
invoking a CLIST from within APL2, AP 100
(TSO) 125
invoking APL2 5, 8
APL2 command 8
controlling 82
requirements 5
various ways to 8
IRXEXCOM 279
ISPF 76, 122
IUCV paths and sockets 155

J

JCL, sample for batch APL2 80

K

key-sequenced VSAM files (AP 123) 197

L

:LARG. 309
LENGTH ERROR 287
LIB built-in command, AP 100 (TSO) 120
libraries

See workspaces
libraries, APL2

CMS 63

access 63, 65

410 APL2 Programming: System Services Reference

libraries, APL2 (continued)
CMS (continued)
AP121 files 63
passwords 67
private 63, 65
public 65
session manager log 42, 63
transfer files 66
workspace names 65
contents of 6
creating 64, 274
number of 63
purpose of 3
TSO 67
access 69
AP 121 files 183

execute a TSO command as if from a CLIST with

CONTROL NOMSG 121
private 68, 69, 70
project 68, 71
public 67, 68, 71

public and private, obtaining list of using AP

100 121
SAM library system 70
transfer files 73
VSAM library system 68
workspace names 71
library query 190
LIBS built-in command, AP 100 (TSO) 121
LIBTAB APL2 file, CMS
access 63, 65
contents of each record 63
creating your own 63
file identification 184
format of records 63
sample listing of 64
updating 64
limits, implementation 365
LINE field, session manager screen 38
LINE session manager command 38, 54
:LINK. 307, 321, 343
link-editing examples 392
link-editing external routines 327
link-editing namespaces 349
LIST 259
commands
LIST 259
LISTEN 172
listening port 170
getting 171
setting 171
:LOAD. 307, 342
loading session manager profile
at APL2 invocation 60
PROFILE LOAD command 59

LOADLIBS invocation option 23
and ATTACH built-in command 118
localizing shared variables 105
locating specified character strings in session log 53
LOG session manager command 55
log, session manager 41
logical terminal identifier, COPY session manager
command (TSO) 49
losing the contents of CONTINUE workspace 22

M

Main Storage Access Processor 134
See also AP 102
main storage, querying contents 134
maximum limits 365
:MEMB. 307, 343
message number
See MORE
messages, session manager 62
mismatched variables 105
mode field, session manager screen 39
monitoring the APL2 systems environment 134
JMORE system command 18
MORE mode, session manager screen 40
MVS publications 401
MVS Sequential Data Sets
reading 282
writing 282
MVS/ESA publications 402
MVS/XA
main storage access processor 134
obtaining larger extended region size 31
publications 402

N

ONA name association 268
syntax for non-APL programs 292
name association failure 322
NAMES file 312, 318
NAMES files 342
namescope 337
namespaces 334
:NICK. 307, 342
NLT invocation option 24
NOMSG built-in command, AP 100 (TSO) 121

)

Object File Processor, AP 211 255
OBJECT linkage 321

OFF mode, session manager screen 40
offering a shared variable 104

)OUT system command 66

output
from batch APL2
CMS 79
TSO 80
preventing
QUIET invocation option 24
SUPPRESS session manager command 61
suppressed by AEXEC function 285
overriding normal APL2 debugging actions 17

P

PAGE session manager command 56
:PARM. 309
PARTITION function 278
password protection
CMS 67
TSO 69, 73
passwords, specifying
AP 121 files 184
AP 123 VSAM files 196
batch APL2 jobs 79
) PBS system command 37
PDSI 116, 121
permanent log, session manager 55
PFK session manager command 57
PL/I examples 388
port
APL2 port server 169
listening 170
port server
using for cross-system sharing 88
preventing display of output
QUIET invocation option 24
SUPPRESS session manager command 61
primary storage, querying contents of 135
printer fonts
supplied with APL2 399
private library 63, 65, 68, 69, 70
Processor 10
accessing REXX variables and constants 279
built-in functions 280
constructing argument to REXX function 277
EXECCOMM 279
executing APL arrays as REXX programs 285
IRXEXCOM 279
overview 274
PARTITION function 278
querying a CMS file status 284
querying an MVS data set status 285
reading and writing CMS files 281
reading and writing MVS sequential data sets 282
REXX return code 20040 287
unexpected errors 286
using REXX functions 275

Index 411

Processor 11
ONA syntax for non-APL programs 292
argument patterns 310
calling compiled programs 291
environments 303
external routines distributed with APL2 137
interface management routines 301
linkage conventions 321
NAMES files 318
non-APL routine description tag rules 320
result patterns 314
routine description tags 307
routine descriptions 295
routine lists 298
search order 325
unexpected errors 322
updating arguments 313
Processor 12
ONA syntax for 352
APL files 355
errors 359
files as arrays 352
primitive operations 354
record-oriented files as external variables 356
processor network identification 86
processor profile
authorization entries 90
examples of 91
identification entries 89
structure 87
syntax for 89
PROFILE invocation option 24, 36
PROFILE PREFIX 70, 73
PROFILE session manager command 58
profile-prefix 24
profile, session manager 36, 60
program function keys, PFK session manager
command 57
Programmed Symbol Set (PSS) feature, and APL2
session manger 37
project library (TSO) 68, 71
protection, APL2 data
CMS 67
TSO 73
PSS feature
See Programmed Symbol Set feature
PSSHUTD 170
public library 65, 67, 68, 71
OPW printing width
printing with initial value for batch APL2 jobs
(CMS) 79
session manager log 38

412 APL2 Programming: System Services Reference

Q
QSAM files
accessing using AP 111 146
querying a CMS file status 284
querying an MVS data set status 285
QUIET built-in command, AP 100 (TSO) 122
QUIET invocation option 24
QUOTA built-in command, AP 100 (TSO) 122
)QUOTA system command
maximum number of shared variables 28
size of active workspace 32
size of shared storage 26

R

RACF 71,73

RANK ERROR 287

:RARG. 309

read pointer, AP 110 142

reading and writing CMS files 281

reading and writing MVS sequential data sets 282
reason codes, AP 126 225, 241

reconnecting APL2 after disconnection 33
record-oriented files as external variables 356
recovery, altering normal APL2 recovery actions 17
relative-record VSAM files (AP 123) 196
RELEASE 257

commands
RELEASE 257

RENAME 258

commands
RENAME 258

renumbering session log lines 56
repeat entry of session manager commands 39
representation length 311
representation type 311
result pattern 314
resuming an APL2 session

CMS 33

TSO 34
retracting a shared variable 105
return codes

issued by AP 119 175

issued by AP 120 181

issued by AP 123 204

issued by AP 124 221

issued by AP 126 241

issued by AP 127 247

issued by AP 210 253

issued by AP 211 259
reusing lines in the session log 41
REXX

APL arrays as REXX programs 285

CMS file status 284

description of 274

REXX (continued)
return code 287
unexpected errors 286
REXX return code 20040 287
routine description tags 307
routine descriptions 295
routine lists 298
row major order 332
:RSLT.
See result pattern
RTA external routine 278
RUNNING mode, session manager screen 39
with AP 126 40
RX 276

S
SAM library system, TSO 70
querying the full-qualified name of a workspace 125
saving session manager profile 59
screen display control 25
scrolling session manager log 40, 54
searching for character strings in session manager
log 53
security of APL2 data
CMS 67
TSO 73
sense bytes 152
server
APL2 port server 169
SERVPORT 171
session log 41
CMS 42, 63
in-storage log 55
permanent log 55
renumbering lines 56
saving 42
scrolling 42, 56
searching for strings 53
size of 42
TSO 43,68
session manager 5, 36
commands
abbreviations 43
capabilities of 43
COLUMN 44
COPY 46
DISPLAY 50
entering 38
FIND 53
HELP 54
issuing using AP 120 179
LINE 54
LOG 55
PAGE 56
PFK 57
PROFILE 58

session manager (continued)
commands (continued)
repeat entry of 39
summary table of 44
SUPPRESS 61
copy destination and AP 126 237
excluding from batch APL2 78
features of 37
log 41
reusing lines 41
scrolling 42
messages 62
profile 36
CMS 24,59
default 60
TSO 24,59
requirements for using 27
screen 25
COLUMN field 38
command line 38
defining the upper left corner 52
illustration of 38
input/output area 40
LINE field 38
MODE field in control line 39
position of 37
size of 37, 52
suppressing display of 25
USER field 39
scrolling, LINE command 54
sharing pages with AP 126 238
specifying the use of (SMAPL invocation option) 36
with the line editor 37
Session Manager Command Processor, AP 120 179
SET 258
commands
SET 258
SETLPORT 171
share offer
receiving 88
sending 88
shared storage, querying size using AP 102,
example 136
See also SHRSIZE invocation option
shared variable
offering to an auxiliary processor 104
shared variable interlock
See interlock, shared variable
shared variable interpreter interface 261
control signal codes 263
output 263
shared variable processor (SVP), purpose of 4
shared variables
concepts 279
localizing 105
maximum number of 28

Index 413

shared variables (continued)
offer
purpose of 6
retraction 105
size of 26
system functions used with 280
SHRSIZE invocation option 26
shutting down the port server 170
size
of active workspace 14, 31, 32, 191
of shared variable storage 26
SMAPL invocation option 27, 78
SMP/E publications 402
socket application program interface (API) 154
sample session 172
Socket Interface Processor, AP 119 154
SQL Processor, AP 127 244
SQL workspace, description
with AP 127 244
SQL/DS publications 402
stack size (TSO), AP 101 11
starting AP 119
LISTEN 172
SERVPORT 171
TCPID 172
starting APL2
See invoking APL2
status bytes 152, 254
structure, of APL2 3
substasks, attaching to APL2 session (TSO) 118
summary of changes xvii
suppress messages from APL2 (TSO) 122
SUPPRESS session manager command 61
suppression of APL2 termination messages 24
surrogate names 325
SVMAX invocation option 28
SVP
See shared variable processor
syntax
processor profile 89
SYSDEBUG invocation option 28
SYSEXEC 276
SYSPROC 276
system editors
restrictions 74, 277
under CMS 75
under TSO 75
system error 289
system limits 365
system structure, APL2 3
illustration of 4

T

T translate option, AP 123 203

414 APL2 Programming: System Services Reference

T1 translate option, AP 123 203
T2 translate option, AP 123 203
:TAG.value 307
:TASKLIB. 309

TASKLIB, specifying for modules named in ATTACH

built-in command 23
TCP/IP commands 158
TCP/IP publications 402
TCPID 172
TERMCODE
invocation option 28
TSO 33
terminal device codes (TSO), table of 30
terminal type, identifying to APL2
DSOPEN invocation option 18, 28
TERMCODE or CODE invocation option 30
table of available codes 30
terminating an APL2 session
CMS 32
TSO 33
testing an APL2 APAR fix 23
3270 series display terminal 396
370 conversion option
with AP 100 108
:TIME. 309
time and date stamp (DATEFORM invocation
option) 15
TRACE invocation option 31
transfer files
CMS 66
moving between systems 94
TSO 73
transferring files 95
transferring workspaces 94
translate options, AP 123 203
translation of output with COPY session manager
command 47
TryAPL2
transfer of workspaces to workstations 95
TSO built-in command, AP 100 (TSO) 126
TSO system editors 75
TS50 workspace
with AP 100 112
with AP 111 146
with AP 210 248
TSO/E publications 402
2741 communication terminal, APL2 operations
on 394

U
USE 257
commands
USE 257
USER built-in command, AP 100 (TSO) 122

user field, session manager screen 39
user-to-user shared variable communication, ID invoca-
tion option 21
UTILITY workspace
with AP 102 136
with AP 123 195

\'
:VALENCE. 309
valence error 287
valence of non-APL routines 317
VAPLFILE workspace
with AP 121 182
variables, APL2, stored
outside active workspace 182
variables, shared
See shared variables
VM error messages 287
VM/ESA publications 403
VM/SP publications 403
VM/XA publications 403
VMAPLCF, default filetype for AP 110 files (CMS)
140
VS FORTRAN examples 390
VSAM File Processor 195
VSAM files, AP 123 195
entry-sequenced 196
key-sequenced 197
relative-record 196
VSAM libraries, TSO
creating 68
for APL2 data files 182, 183
VSAM library system, TSO 68, 125
querying the full-qualified name of a library 125
VSAMDATA workspace
with AP 123 195
VSAPLFL, filetype for AP 121
files (CMS) 184
VSAPLPR
CMS 59
TSO 59

w

workspace names, TSO

listing using AP 100 120

querying full-qualified name 125
workspace, active

See active workspace
workspaces

See also libraries

CMS 683, 65

migration from TryAPL2 95

transferring between APL2 systems 94

TSO

SAM library system 70

139,

workspaces (continued)

TSO (continued)

VSAM library system 68

workspaces distributed with APL2

contents of 7

purpose of 6
WRAP specification, in session manager COLUMN

field 38

WSID built-in command, AP 100 (TSO) 125
WSNAME built-in command, AP 100 (TSO) 125
WSSIZE invocation option 14, 31, 191

XA 9
XA invocation option 32
XEDIT 75

Index

415

We'd Like to Hear from You

APL2 Programming:
System Services Reference
Version 2 Release 2

Publication No. SH21-1054-01

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

¢ Electronic mail—Use one of the following network IDs:

— IBMMail: USIB6JN8
— Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

APL2 Programming:
System Services Reference
Version 2 Release 2

Publication No. SH21-1054-01

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O O O O O
Complete O | O] |
Easy to find]] O] |
Easy to understand O] O | |
Well organized m]] O | |
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O] O]]
Overall satisfaction O | O o |

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
SH21-1054-01

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12

PO Box 49023

San Jose, CA 95161-9023

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SH21-1054-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370-40
Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090
SH21-1073
SH21-1061

SX26-3999
SH21-1074
SH21-1057
SH21-1069
SC33-0600
SC33-0601

SC33-0851

SH21-1091

GC23-3058
SC23-3051

GC26-3359
SH21-1092
GH21-1063
GH21-1070
SH21-1062
SH21-1055
SH21-1054
SH21-1056
SH21-1058
LY27-9601

SH21-1059

APL2 Family of Products (fact sheet)

APL2 Programming: An Introduction to APL2

APL2 Programming: Language Reference

APL2 Reference Summary

APL2 GRAPHPAK: User's Guide and Reference

APL2 Programming: Using Structured Query Language
APL2 Migration Guide

APL2 for the IBM PC: User's Guide

APL2 for the IBM PC: Reference Summary

APL2 for the IBM PC: Reference Card

APL2 for OS/2: User's Guide

APL2 for AIX/6000 Licensed Program Specifications
APL2 for AIX/6000: User's Guide

APL2 for Sun Solaris Licensed Program Specifications
APL2 for Sun Solaris: User's Guide

APL2/370 Application Environment Licensed Program Specifications
APL2/370 Licensed Program Specifications

APL2/370 Installation and Customization under CMS
APL2/370 Installation and Customization under TSO
APL2/370 Programming: System Services Reference
APL2/370 Programming: Using the Supplied Routines
APL2/370 Programming: Processor Interface Reference
APL2/370 Diagnosis Guide

APL2/370 Messages and Codes

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	APL2 Publications
	Conventions Used in This Library

	Summary of Changes
	Product
	Document Changes

	Part 1. Interactive and Batch Processing
	Chapter 1. Introduction to APL2 System Services
	APL2 System Structure
	APL2 Support Features
	Invocation Options
	APL2 Session Manager
	APL2 Libraries, Workspaces, and Data Files
	Batch Processing of APL2
	Shared Variables and Auxiliary Processors
	Workspaces Distributed with APL2
	External Names

	Chapter 2. APL2 Invocation and Termination
	Starting APL2—The APL2 Command under CMS and TSO
	Continuing with the Invocation Options
	Description of Invocation Options

	Session Termination under CMS
	Session Interruption under CMS

	Session Termination under TSO
	Session Interruption under TSO

	Chapter 3. The APL2 Session Manager
	Features of the APL2 Session Manager
	The Session Manager Screen
	Entering Multiple Lines of Input

	The Session Manager Log
	Reusing Previous Lines in the Session Log
	Scrolling through the Session Log

	Controlling the Size of and Saving the Session Log

	APL2 Session Manager Commands
	Session Manager Command Summary
	COLUMN
	COPY
	DISPLAY
	FIND
	HELP
	LINE
	LOG
	PAGE
	PFK
	PROFILE
	SUPPRESS

	Session Manager Messages

	Chapter 4. APL2 Libraries: Workspaces and Data Files
	APL2 Libraries, Workspaces, and Data Files under CMS
	Updating LIBTAB APL2 to Create New APL2 Libraries
	Accessing Libraries, Workspaces, and Data Files
	Workspace Names
	Data File Names
	Transfer Files under CMS
	Library Passwords

	APL2 Libraries, Workspaces, and Data Files Under TSO
	Virtual Storage Access Method (VSAM) Library System
	Creating APL2 VSAM Libraries
	Accessing VSAM Libraries

	Sequential Access Method (SAM) Library System
	Workspace Names
	CONTINUE workspace

	Transfer Files under TSO
	Security and Integrity of APL2 Data

	Chapter 5. Named Editors
	Restrictions Using Named System Editors
	Using Named System Editors under CMS
	Using Named System Editors under TSO

	Chapter 6. Batch Processing
	Batch Jobs under CMS
	CMS Batch Facility Input
	CMS Batch Facility Output
	Other APL2 Considerations

	Batch Jobs under TSO
	TSO Batch Input
	TSO Batch Output

	Chapter 7. Controlling APL2 Invocation
	Providing Input to APL2
	Directing APL2's Output
	Controlling APL2's Use of the Screen
	DBCS and APLIN/APLPRINT Files
	DBCS in Other IBM Products
	DBCS in APL2
	Reading DBCS from APLIN
	Writing DBCS to APLPRINT

	Chapter 8. Using APL2 across Systems
	Cooperative Processing
	Processor Network Identification
	Processor Profile Structure
	Using the Port Server
	Sending a Share Offer
	Receiving a Share Offer
	Processor Profile Syntax
	Identification Entries
	Authorization Entries
	Communicating with Version 2 Release 1

	Processor Profile Examples

	Transferring Workspaces
	Workspace Transfer between APL2 Systems
	Migration of TryAPL2 Workspaces
	Migration of VS APL Workspaces

	Transferring AP 211 Files

	Part 2. Auxiliary Processors
	Chapter 9. Summary of Auxiliary Processors Distributed with APL2
	Using Auxiliary Processors
	Using the Share-Offer Utilities
	Suggestions for Use of Auxiliary Processors

	Chapter 10. AP 100—Host System Command Processor Under CMS
	Associated Workspace
	Shared Variable Overview
	Initial Value

	Communication Procedure
	Querying the Operating System
	CMS Communication and IMPCP and IMPEX Settings

	Cautions
	Return Codes

	Chapter 11. AP 100—Host System Command Processor Under TSO
	Associated Workspace
	Shared Variable Overview
	Communication Procedure
	Querying the Operating System

	Return Codes
	AP 100 Built-In Commands

	Chapter 12. AP 101—Alternate Input (Stack) Processor
	Associated Workspaces
	Shared Variable Overview
	Data Formats
	Initial Values

	Communication Procedure
	AP 101 Commands
	Using AP 101 within a Defined Function
	Disposition of Data on the Stack
	Exiting and Returning to APL2 within a Defined Function
	Using the INPUT Invocation Option in a Stacked APL2 Command

	Using AP 101 with the TSO Fence Option
	Fence Commands

	Cautions
	Return Codes

	Chapter 13. AP 102—Main Storage Access Processor
	Shared Variable Overview
	Commands

	Communication Procedure
	Formatting the Result from AP 102

	Cautions
	Return Codes

	Chapter 14. AP 110—CMS File Processor
	Associated Workspace
	Shared Variable Overview
	Initial Values

	Communication Procedure
	Record Variable
	Control Variable
	Specifying the Control Variable

	Cautions
	Return Codes

	Chapter 15. AP 111—QSAM File Processor
	Associated Workspaces
	Shared Variable Overview
	Initial Values

	Communication Procedure
	Cautions
	Return Codes
	Undiagnosed Errors

	Chapter 16. AP 119—Socket Interface Processor
	Shared Variable Overview
	The APL2 Socket Application Program Interface
	IUCV Paths and Sockets

	AP 119 and TCP/IP Commands Summary
	Definition of TCP/IP Terms
	Blocking
	Using AP 119—The TCPIP Commands
	ACCEPT
	BIND
	CLOSE
	CONNECT
	FCNTL
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	LISTEN
	READ
	RECV
	RECVFROM
	SELECT
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	WRITE

	Using AP 119—The AP Commands
	The APL2 Port Server
	PSLIST—Send LIST Command to the Port Server
	PSCLEAR—Send CLEAR Command to the Port Server
	PSSHUTD—Send SHUTDOWN Command to the Port Server
	UNREGSTR—Send an UNREGISTER Command to the Port Server
	Listening Ports
	GETLPORT—Get Listening Port
	SETLPORT—Set Listening Port

	Starting AP 119
	Sample AP 119 Session Using the APL2 Socket API
	Return codes

	Chapter 17. AP 120—APL2 Session Manager Command Processor
	Shared Variable Overview
	Data Formats
	Specification
	Reference

	Communication Procedure
	Return Codes

	Chapter 18. AP 121—APL2 Data File Processor
	Associated Workspaces
	Shared Variable Overview
	Access Control Considerations

	APL2 Data Files
	File Identification
	APL2 Data File Organization

	Communication Procedure
	Commands
	Opening a File
	Open for Sequential Write (SWC or SW)
	Open for Sequential Read (SR)
	Open for Direct Read (DR)
	Open for Direct Update (DUC or DU)

	Checking for End of File
	APL2 Data File Maintenance
	Library Query

	Space Requirements for Storing APL2 Variables
	Size Limitations

	Cautions
	Return Codes

	Chapter 19. AP 123—VSAM File Processor
	Associated Workspaces
	Shared Variable Overview
	VSAM Files—General Information
	File Identification
	File Formats and Keys

	Commands
	Communication Procedure
	Opening a VSAM File
	Processing a VSAM File
	Reading a File
	Writing a File
	Replacing a Record
	Erasing (Deleting) a Record

	Obtaining the Key of the Last I/O Operation
	Positioning the Record Pointer
	Specifying Character Conversion
	Closing a VSAM File

	Cautions
	Return Codes

	Chapter 20. AP 124—Text Display Auxiliary Processor
	Shared Variable Overview
	Understanding Screen Management
	Logical Screens
	Screen Fields
	Field Attributes

	Communications Procedure
	Screen Management Commands
	Delayed Clear of the Screen
	Formatting the Screen
	Immediate Write of Data to Screen
	Read and Wait
	Writing to the Screen
	Getting Data
	Modifying Field Attributes
	Returning Screen Information
	Reading the Screen Format
	Sounding the Alarm
	Setting the Cursor
	Modifying Input Field Attributes
	Erasing the Screen

	Return Codes

	Chapter 21. AP 126—GDDM Processor
	Associated Workspaces
	Licensed Program Requirements
	Shared Variable Overview
	Data Formats
	Returned Values

	Communication Procedure
	GDDM Calls
	Restrictions

	AP 126 Commands
	Query GDDM Calls
	Set Error Threshold
	Set Protection Key
	Set EBCDIC Translation
	Set Default Buffer Size
	Set AP 126 Options
	Query AP 126 Options
	Query Subset of Fields for Modifications
	Query Current Hard-Copy Destination
	Issue CHART Call

	Obtaining Copies through AP 126
	GDDM FSOPEN Request or DSOPEN, DSUSE Sequence

	Alternating Paths
	Implications of Multiple Data Paths
	Page Sharing with the APL2 Session Manager
	Guidelines for Sharing with the Session Manager

	Handling Attentions
	APL2/370 and GDDM EBCDIC Code Page Differences
	GDDM Error Diagnosis
	Return and Reason Codes

	Chapter 22. AP 127—SQL Processor
	Shared Variable Overview
	Communication Procedure
	AP 127 Commands
	Return Codes

	Chapter 23. AP 210—BDAM File Processor (TSO Only)
	Associated Workspace
	Shared Variable Overview
	BDAM File Requirements
	DCB Attributes Provided by AP 210

	Communication Procedure
	Initial Values
	Formatting a Direct File Using AP 210
	BDAM File Processing Procedure

	Cautions
	Return Codes
	Data Management Error Codes

	Chapter 24. AP 211—The APL2 Object File Processor
	Shared Variable Overview
	Commands Accepted by AP 211
	CREATE
	DROP
	USE
	RELEASE
	SET
	GET
	RENAME
	ERASE
	LIST

	Return Codes

	Chapter 25. APL2 Shared Variable Interpreter Interface
	Shared Variable Interpreter Interface Protocols
	Shared Variable Overview
	Interpreter Input Data
	Interpreter Output Data

	Part 3. Associated Processors
	Chapter 26. External Names and Associated Processors
	Applications of External Names
	Managing External Names from APL
	Creating and Destroying an Association
	Invoking an External Name
	Querying an Associated Name
	Checking the Association Information
	Checking for Active Associations

	Avoiding Name Conflicts

	Environmental Considerations

	Chapter 27. Processor 10—Communication with REXX
	Overview
	Detailed Description
	Using REXX Functions
	Constructing the Argument
	Handling Results and Errors

	Accessing REXX Variables and Constants
	Associating Names
	Values

	Built-in Functions
	Reading and Writing CMS Files
	Reading and Writing MVS Sequential Data Sets
	Querying a CMS File Status
	Querying an MVS Data Set Status
	Executing APL Arrays as REXX Programs

	Unexpected Errors and Other Considerations
	Failure when Associating a Name
	APL Errors
	Non-APL Error Messages
	REXX Return Code 20040
	"Missing" Argument Strings
	Truncated Data Returned under TSO/E
	Other Considerations
	Environment

	Chapter 28. Processor 11—Calling Compiled Programs
	°NA Syntax for Non-APL Programs
	Processor 11 Overview
	Introduction
	Processor 11 Glossary

	Usage Overview
	Routine Descriptions
	Building Routine Descriptions
	Building NAMES Files
	Self-Describing Routines and NAMES File: Pros and Cons

	Routine Lists
	BUILDRL and Interface Management Routines
	BUILDRL Interface Management and Self-Describing Routines
	C/370 Scalar Integer Results

	Environments

	Interface Details
	Routine Description Tags
	Argument Patterns
	Updated Arguments and Results

	Result Patterns
	C/370 Results
	:LINK.FUNCTION Arguments

	Explicit Results, Function Valence, and Operator Valence
	Explicit Results
	Function Valence
	Operator Valence

	NAMES Files
	Processor 11 Non-APL Routine Description Tag Rules

	System Usage Guidelines
	Linkage Conventions
	OBJECT and FORTRAN Linkage
	FUNCTION linkage

	Unexpected Errors

	Processor 11 Routine Search Order Guidelines
	External Function Names
	CMS Search Order Guidelines
	Using Routines Defined as Nucleus Extensions
	Using Routines in TEXT Decks or TXTLIBs

	TSO Search Order Guidelines
	Using Routines in TSO Load Libraries
	Using Routines in the Standard TSO Search Order

	Link-Editing External Routines
	Link-Edit Tools
	Using AP2MP11L and AP2MP11M

	Link-Editing External Routines on CMS
	Link-Editing External Routines on TSO

	Installation of External Routines
	Extended Addressing Considerations
	Preloading and Sharing External Routines
	Execution Time Libraries
	VS FORTRAN Execution Time Libraries

	Other Processor 11 Considerations
	Using Self-Describing Routines from Non-APL Programs
	Using Modules with Routine Lists from Non-APL Programs.
	FORTRAN Considerations
	APL2 versus FORTRAN Array Ordering
	FORTRAN External Names
	FORTRAN Linkage Convention
	FORTRAN Common
	FORTRAN Functions

	Chapter 29. Processor 11—Access to Namespaces
	Overview
	Detailed Description
	Creating Namespaces
	Workspace Names
	Accessing Objects in Namespaces
	NAMES Files
	Using Namespaces
	Namescopes
	Combining Several Namespaces in a Member
	CMS Namespace Routine List Example
	TSO Namespace Routine List Example

	Link-Editing Namespaces
	Unexpected Errors and Other Considerations

	Chapter 30. Processor 12—Files as Arrays
	°NA Syntax for Processor 12
	Supported Primitive Operations
	APL Files as External Variables
	Record-oriented Files as External Variables
	Format Descriptors for External Variables
	Processor 12 Errors

	Appendixes
	Appendix A. Implementation Limits
	Appendix B. Deviations from APL2 Programming: Language Reference
	System Functions and Variables
	Full-Screen Editor—Editor 2
	System Commands

	Appendix C. National Languages Supported by APL2
	Appendix D. Auxiliary Processor Conversion Options
	APL
	370 or BCD
	BIT
	BYTE
	CDR
	COD1
	DBCS[(nnn)]
	Reading DBCS Data
	Writing DBCS Data

	EBCD or 192
	TN
	VAR

	Appendix E. Conversion of Atomic Vector Characters
	Appendix F. APL2 Files and Data Sets
	CMS Files
	CMS Filedef (DD) Names
	TSO DD Names
	TSO Data Set Names

	Appendix G. Sample Non-APL Programs to be Called through Processor 11
	C/370 Examples
	Updating Arguments with C/370
	Source Code
	Routine Descriptions, Routine List, and Link-Editing
	NAMES Files Entries
	Routine List and Link-Editing Non-Self-Describing Routines

	PL/I Examples
	Updating Arguments with PL/I
	Source Code
	Routine Descriptions, Routine List, and Link-Editing
	NAMES Files Entries
	Routine List and Link-Editing Non-Self-Describing Routines

	VS FORTRAN Examples
	Updating Arguments with VS FORTRAN
	Source Code
	Routine Descriptions, Routine List, and Link-Editing
	NAMES Files Entries
	Routine List and Link-Editing Non-Self-Describing Routines

	Link-Editing Examples
	Link-Editing on TSO using a CLIST
	Link-Editing on TSO using JCL
	Link-Editing on CMS
	Generating a MODULE on CMS

	Appendix H. Summary of Terminal Information for APL2 Tasks
	IBM 2741 Communication Terminal
	IBM 3270 Information Display System

	Appendix I. Printer Fonts Supplied with APL2
	Bibliography
	APL2 Publications
	Other Books You Might Need

	Index

