APL2 Programming:

Using the Supplied Routines

Version 2 Release 2

SH21-1056-01

APL2 Programming:

Using the Supplied Routines

Version 2 Release 2

SH21-1056-01

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’|

Second Edition (March 1994)

This edition replaces and makes obsolete the previous edition, SH21-1056-0. The technical changes for this edition are summarized
under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Version 2 Release 2 of APL2, 5688-228, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1994. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Programming Interface Information vii
Trademarks L vii
About This Book viii
Who Should Use This Book viii
APL2 Publications viii
Conventions Used in This Library iX
Summary of Changes X
Product X
Part 1. Workspaces 1
Chapter 1. Introduction 4
Workspace Libraries 4
How To Use Library Workspaces 4
The Message Facility 5
Documentation within the Workspace 6
Workspaces with Interrupted Functions 7
Interrupting and Debugging 7
The Auxiliary Processor Workspaces 8
Chapter 2. Information Workspaces 10
WSINFO: Information About the Library Workspaces 10
SUPPLIED: Information About External Functions 11
Chapter 3. General Purpose Workspaces 12
The DISPLAY Workspace i 13
The EXAMPLES Workspace 15
Introduction 15
Mathematic and Scientific Functions, ... 15
Miscellaneous Utility Functions 20
Special Functions and Operators of APL2 22
The MATHFENS Workspace 29
Eigenvalues 29
Fast Fourier Transform 30
Formatting Complex Numbers 31
Roots of Polynomials 31
The UTILITY Workspace i 32
Introduction 32
The Function Groups 32
GPDATACV: Converting between External and Internal Representations . . 33
GPMISC: Miscellaneous Utility Functions 36
GPSTRIP: Removing Comments 40
GPSVP: Controlling Communication through SVP 42
GPTEXT: Manipulating Text 45
GPTRACE: Setting and Removing Trace and Stop Vectors 48
GPXLATE: Translating from One Character Representation to Another 50

© Copyright IBM Corp. 1985, 1994 iii

Chapter 4. The Display Terminal Workspaces
AP 126: The GDDM/PGF Auxiliary Processor
GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM
An Introduction to Text and Vector Graphics
Text Graphics
Vector Graphics
Pages: Text and Vector Graphics
Coordinate Systems: Text and Vector Graphics
Coping with Complexity: Form and Chart Design
CHARTX—an APL2/ICU Data Interfface
Tiedand Free Data
Using CHARTX for Tied Data
Using CHARTX for Free Data
GDMX . .
Using GDMX e
Global Variables
Usage Notes
GRAPHPAK—a Vector Graphics Workspace
VS APL Compatible Workspaces,
FSC126 Workspace
FSM Workspace

Chapter 5. Environment-Dependent Workspaces
Command, Alternate-Input, and Specialized File APs
The CMS Workspace
Characteristics of the CMS Environment
CMS Command, Alternate-Input, and File Processors
Using the Functions in CMS
The TSO Workspace i
TSO Command, Alternate-Input, and File Processors
Using the Functions in TSO
The FILESERV Workspace
Exporting Files Interactively
Importing Files Interactively
Transporting Files in Batch Mode
Format of Commands
Using the EXPORT and IMPORT Commands
Error Handling
FILESERV Groups

Chapter 6. File Auxiliary Processor Workspaces
The APLDATA Workspace
Reading and Writing Files of APL2 Arrays
General Operation
APL-Format File Functions
Functions to Store and Retrieve Large Variables
Using the Project, Private, and Public Libraries
Error Handling
Special Handling of Selected Errors
APLDATA Groups o oo e
The VSAMDATA Workspace
File Naming Conventions
Functions to Access External VSAM Files
VSAMDATA Groups o o oo

iV APL2 Programming: Using the Supplied Routines

The VAPLFILE Workspace 95

Main Functions 95
Supplementary Functions 96
File Names 97
VAPLFILE Groups 98
Chapter 7. The TRANSFER Workspace 99
MASSMCOPY_ 99
FLAG_and FIX_ 100
Atomic Vectors 102
Differences 102
INA and OUTA 104
INPC_and OUTPC_ 106
Chapter 8. The PRINTWS Workspace 108
Primary User Functions 108
Printer Selection Functions 110
Environment System Command Functions 110
Environment Dependencies 111
CMS . . 111
TSO e 111
Chapter 9. The SQL Workspace 113
Chapter 10. The MEDIT Workspace 114
Editing APL Variables and Defined Functions 114
The Basic Edit Procedure 114
Creating New APL2 Functions or Character Arrays 114
Display Terminals without the APL feature 114
Using the MEDIT Functions 115
Converting APL Objects for Editing 115
Pre- and Post-Editing Functions 115
Editing 116
Usage Notes 123
LRECS and CCOL e 123
QCRand QFX 124
APL, Non-APL Translate Table 124
Part 2. External Routines 127
Chapter 11. External Routines 129
APL2PI—APL2 Program Interface 132
APL2PIE—APL2 Program Interface Extended 133
ATP—Array to Pointer 135
ATR—Array To Record 136
ATTN—Handling Attentions 137
BUILDRD—BUuild a Routine Description 138
BUILDRL—Build a Routine List 139
CAN—Compressand Nest 140
CMSIVP—Installation Verification under CMS 141
CSRIDAC—Request or Terminate Access to a Data Object 142
CSRREFR—Refresh an Object 144
CSRSAVE—Save Changes Made to a Permanent Object 145

Contents V

CSRSCOT—Save Object Changes ina Scroll Area 146

CSRVIEW—Start or Terminate a View of an Object 147
CTK—Character to DBCS Conversion 149
CTN—Character to Number 150
DAN—Delete And Nest 151
DFMT—Format Arrays Containing DBCS Data 152
DISPLAY—Display Array Structure 153
DISPLAYC—Display Array Structure 154
DISPLAYG—Display Array Structure 155
DSQCIA—QMF Callable Interface 156
EDITORX—System Editor Access 158
EDITOR2—Full-Screen APL2 Editor 159
EXP—Execute in the Previous Namescope 160
FED—Diagnostic Information o 163
HELP—Retrieve Keyed Help Text for an Application 164

Using Help to Retrieve a Listof Keys 164

Using Help to Retrieve Text, 164

Using Help as an Online Help Facility 165

HELP Return Codes: 165
IDIOMS—APL2 Phrases i 166
IN—Read a Transfer File into the Active Workspace 167
KTC—DBCS to Character Conversion 168
MSG—Message Services Request L 169
OPTION—AQuery or Set APL2 Invocation Options 170
OUT—Write Objects to a TransferFile 172
PACKAGE—Creating a Namespace 173
PBS—Handling Printable Backspaces 174
PFA—Pattern from Array 175
PIN—Protected Read of a Transfer File into the Active Workspace 176
PTA—Pointers to Array 177
QNS—Query the Current Namescope 178
RAPL2—Remote-Session Manager 179
RTA—Record to Array 181
SAN—Sliceand Nest 182
SERVER—TCP/IP Port Server 183
SVI—Shared Variable Processor Information 184
TIME—Performance Monitoring 185
TSOIVP—Installation Verification under TSO 187
AEXEC—Execute an APL Array as a REXX Program 188
AF—Query File Status 189
AFM—Read or Write a Fixed Record Length File 190
AFV—Read or Write a Variable Record Length File 191
Bibliography 192
APL2 Publications 192
Other Books You Might Need 192
Index 193

Vi APL2 Programming: Using the Supplied Routines

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject material in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Corporation,

IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States
06904.

Programming Interface Information

This book is intended to help programmers code APL2 applications in APL2. This
book documents General-Use Programming Interface and Associated Guidance
Information provided by APL2.

General-use programming interfaces allow the customer to write programs that
obtain the services of APL2.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

AIX/6000 IBM

APL2 MVS/ESA
APL2/6000 QMF

CICS SQL/DS
DB2 System/370
GDDM System/390

The following terms, denoted by a double asterisk (**) in this publication, are trade-
marks of other companies:

Sun Sun Microsystems, Inc.
Solaris Sun Microsystems, Inc.

© Copyright IBM Corp. 1985, 1994 vii

About This Book

This book, APL2/370 Programming: Using the Supplied Routines, describes and
explains how to effectively use the workspaces and external routines distributed
with IBM* APL2*.

| Who Should Use This Book
This book is for all APL2 users on CMS or TSO for System/370* or System/390*.

APL2 Publications

Figure 1 lists the books in the APL2 library. This table shows the books and how
they can help you with specific tasks.

viii

Figure 1. APL2 Publications

Information Book Publication Number
General product APL2 Fact Sheet GH21-1090
Warranty APL2/370 Application Environment Licensed
Program Specifications GH21-1063
APL2/370 Licensed Program Specifications GH21-1070
APL2 for AIX/6000 Licensed Program Specifica-
tions GC23-3058
APL2 for Sun Solaris Licensed Program Specifica-
tions GC26-3359
Introductory language APL2 Programming: An Introduction to APL2 SH21-1073
material
Common reference APL2 Programming: Language Reference SH21-1061
material APL2 Reference Summary SX26-3999
System interface APL2/370 Programming: System Services Refer-
ence SH21-1056
APL2/370 Programming: Using the Supplied Rou-
tines SH21-1054
APL2/370 Programming: Processor Interface Ref-
erence SH21-1058
APL2 for OS/2: User's Guide SH21-1091
APL2 for Sun Solaris: User's Guide SH21-1092
APL2 for AIX/6000: User's Guide SC23-3051
APL2 GRAPHPAK: User's Guide and Reference SH21-1074
APL2 Programming: Using Structured Query Lan-
guage SH21-1057
APL2 Migration Guide SH21-1069
Mainframe system pro- APL2/370 Installation and Customization under
gramming CMS SH21-1062
APL2/370 Installation and Customization under
TSO SH21-1055
APL2/370 Messages and Codes SH21-1059
APL2/370 Diagnosis Guide LY27-9601

For the titles and order numbers of other related publications, see the

[Bibliography” on page 192

© Copyright IBM Corp. 1985, 1994

| Conventions Used in This Library

This section discusses the conventions used in this library.

lower

UPPER

L]

[AlB]C]

{AlBlCY

0...

Lowercase italicized words in syntax represent values you must
provide.

In syntax blocks, uppercase words in an APL character set represent
keywords that you must enter exactly as shown.

Usually, brackets are used to delimit optional portions of syntax;
however, where APL2 function editor commands or fragments of code
are shown, brackets are part of the syntax.

A list of options separated by | and enclosed in brackets indicates that
you can select one of the listed options. Here, for example, you could
specify either 4, B, C, or none of the options.

Braces enclose a list of options (separated by |), one of which you
must select. Here, for example, you would specify either 4, B, or C.

An ellipsis indicates that the preceding syntactic item can be repeated.

An ellipsis following syntax that is enclosed in braces indicates that the
enclosed syntactic item can be repeated.

The term workstation refers to all platforms where APL2 is implemented except
those based on System/370 and System/390 architecture.

Throughout this book, the following product names apply:

Product Name Platform
APL2/2 os/2*

APL2 for Sun Solaris Sun** Solaris**
APL2/6000* AlIX/6000*
APL2/370 MVS or VM
APL2/PC DOS

About This Book iX

. Summary of Changes

Product

APL2/370, Version 2 Release 2
Date of Publication: March 1994

Form of Publication: Revision, SH21-1056-01

Document Changes
¢ Updated the SUPPLIED workspace example
e Added DISPLAYC information to the DISPLAY workspace
e Updated the EXAMPLES workspace
* Added fast fourier transfer to the MATHFNS workspace
¢ Updated the introduction for the UTILITIES workspace
e Added GPSVP to the UTILITIES workspace
» Updated external routines table
e Added DISPLAYC, EDITORX, EDITOR2, IN, OUT, and PIN

© Copyright IBM Corp. 1985, 1994

Part 1. Workspaces

Chapter 1. Introduction, 4
Workspace Libraries 4
How To Use Library Workspaces 4
The Message Facility 5
Documentation within the Workspace 6
Workspaces with Interrupted Functions 7
Interrupting and Debugging 7
The Auxiliary Processor Workspaces 8

Chapter 2. Information Workspaces 10

WSINFO: Information About the Library Workspaces 10

SUPPLIED: Information About External Functions 11

Chapter 3. General Purpose Workspaces 12

The DISPLAY Workspace i 13

The EXAMPLES Workspace 15
Introduction 15
Mathematic and Scientific Functions 15
Miscellaneous Utility Functions 20
Special Functions and Operators of APL2 22

The MATHFNS Workspace 29
Eigenvalues 29
Fast Fourier Transform 30
Formatting Complex Numbers 31
Roots of Polynomials 31

The UTILITY Workspace 32
Introduction 32
The Function Groups 32
GPDATACV: Converting between External and Internal Representations . . 33
GPMISC: Miscellaneous Utility Functions 36
GPSTRIP: Removing Comments 40
GPSVP: Controlling Communication through SVP 42
GPTEXT: Manipulating Text 45
GPTRACE: Setting and Removing Trace and Stop Vectors 48
GPXLATE: Translating from One Character Representation to Another . . . 50

Chapter 4. The Display Terminal Workspaces 52

AP 126: The GDDM/PGF Auxiliary Processor 52
GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM 52

An Introduction to Text and Vector Graphics 53
Text Graphics 53
Vector Graphics 53
Pages: Text and Vector Graphics 54
Coordinate Systems: Text and Vector Graphics 54
Coping with Complexity: Form and Chart Design 54

CHARTX—an APL2/ICU Data Interface 56

Tiedand Free Data 56
Using CHARTX for Tied Data 56

Examples 56
Using CHARTX for Free Data 57

© Copyright IBM Corp. 1985, 1994 1

Examples 57

Usage Notes 58
GDMX . . 59
Using GDMX 59
Global Variables 61
Usage Notes 61
Example 62
GRAPHPAK—a Vector Graphics Workspace 63
VS APL Compatible Workspaces 64
FSC126 Workspace 64
FSM Workspace 64
Chapter 5. Environment-Dependent Workspaces 65
Command, Alternate-Input, and Specialized File APs 65
The Alternate-Input Processor 65

The CMS Workspace 67
Characteristics of the CMS Environment 67
CMS Command, Alternate-Input, and File Processors 67
Creating APL2/CMS/CP Procedures 67
Reading and Writing CMS Disk Files 68
Using the Functions in CMS 69
Command Functions 69
Alternate Input Function 69

File Functions 70
Input/Output from Peripheral Devices 72

The TSO Workspace i 73
TSO Command, Alternate-Input, and File Processors 73
File AP Functions and Auxiliary TS0 Functions 73
Using the Functions in TSO 74
Command Function 74
Alternate Input Function 74

File Functions 74

The FILESERV Workspace 77
Exporting Files Interactively 77
Importing Files Interactively 78
Transporting Files in Batch Mode 79
Format of Commands 80
Comments to Commands 81
Using the EXPORT and IMPORT Commands 81
Error Handling 82
Special Handling of Selected Errors 82
FILESERV Groups 83
Chapter 6. File Auxiliary Processor Workspaces 84
The APLDATA Workspace i, 85
Reading and Writing Files of APL2 Arrays 85
General Operation 85
APL-Format File Functions 86
Functions to Store and Retrieve Large Variables 88
Using the Project, Private, and Public Libraries 89
Error Handling 89
Special Handling of Selected Errors 89
APLDATA Groups oo 89
The VSAMDATA Workspace i 90

2 APL2 Programming: Using the Supplied Routines

File Naming Conventions, 90

Functions to Access External VSAM Files 91
VSAMDATA Groups o 94
The VAPLFILE Workspace, 95
Main Functions 95
Supplementary Functions 96
File Names 97
VAPLFILE Groups 98
Chapter 7. The TRANSFER Workspace 99
MASSMCOPY_ 99
FLAG_and FIX_ 100
Atomic Vectors 102
Differences 102
VS APL Differences: 102
APL2 IUP Differences: 103

INA and OUTA 104
INPC_and OUTPC_ 106
APL/PCtoHost 106
Hostto APL/PC 107
Chapter 8. The PRINTWS Workspace 108
Primary User Functions 108
Printer Selection Functions 110
Environment System Command Functions 110
Environment Dependencies 111
CMS . . 111
TSO e 111
Chapter 9. The SQL Workspace 113
Chapter 10. The MEDIT Workspace 114
Editing APL Variables and Defined Functions 114
The Basic Edit Procedure 114
Creating New APL2 Functions or Character Arrays 114
Display Terminals without the APL feature 114
Using the MEDIT Functions 115
Converting APL Objects for Editing 115
Pre- and Post-Editing Functions 115
Terminals without the APL Feature 115
Editing 116
The Initialization Functions 116

The Input Functions 116

The Change Functions 120

The Select Functions 121

The Output Functions 122

The Set Tabs Function, 123
Usage Notes e 123
LRECS and CCOL i 123
QCRand QFX 124
APL, Non-APL Translate Table 124

Part 1. Workspaces 3

Chapter 1. Introduction

The workspace is the common organizational unit in an APL system. It is a place
in which to store programs and data. Part 1 of this manual describes a set of
workspaces supplied with APL2. These workspaces provide ready-made utilities
and common building blocks for your use. Some workspaces also illustrate various
APL2 techniques.

The workspaces vary greatly in complexity, importance, objective, and age. Some
workspaces go back to the earliest APL systems and others use current licensed
programs, for example, the Graphical Data Display Manager (GDDM*). Some
workspaces have restricted objectives. For example, the TRANSFER workspace
is intended to assist in migrating VS APL and APL2 IUP workspaces to APL2. Still
others are merely starter sets, providing APL functions for possible use and as
examples to improve upon. Some workspaces have their own manuals that either
describe them (for example, APL2 GRAPHPAK: User's Guide and Reference) or
provide a great deal of information with which you must be familiar if you are to use
them effectively (for example, the workspaces that use GDDM). As a result, the
treatment of each workspace is individual.

Workspace Libraries

The workspaces discussed in this manual are usually stored in libraries available
for general use, for example, public libraries. The recommended libraries are:

Library 1 for general purpose workspaces
Library 2 for workspaces that aid in the use of auxiliary processors

If the recommended library numbers are used, the workspaces discussed in this
manual can be found in the following libraries:

)LIB 1
DISPLAY EXAMPLES MATHFNS MEDIT SUPPLIED UTILITY WSINFO
JLIB 2
APLDATA CHARTX CMS FILESERV FS(C126 FSM GDMX
GRAPHPAK PRINTWS SQL TRANSFER TSO VAPLFILE VSAMDATA

Note: Not all workspaces are provided for all environments.

If your organization uses other public library numbers, you must find out what they
are from your system administrator.

How To Use Library Workspaces

To use all of a workspace stored in your own library or a public library, load it with
the system command:

YLOAD [library number] wsname

To use part of a workspace, or to combine part of it with your active workspace,
copy the part of the workspace you want using one of the system commands:

)COPY [library number] wsname obj1 obj2...

or
YPCOPY [library number] wsname obj1 obj2...

4 © Copyright IBM Corp. 1985, 1994

Use these commands to copy a single object (a function, a variable, an operator), a
set of objects, or an entire workspace. For example, the PRINTWS workspace
can be copied into the active workspace to be printed, or you can load PRINTWS
as the active workspace and copy the objects to be printed into it.

Note: Groups are not treated the same in APL2 as in VS APL. In APL2, the
group is not a special kind of object, requiring special system commands for its
manipulation; it is just a character matrix of names of objects.

To copy the objects named in the matrix, rather than the matrix itself, put the name
of the matrix in parentheses after the) COPY command.

For example, to copy the matrix GPSTRIP from the UTILITY workspace, type:
YJCOPY 1 UTILITY GPSTRIP

But to copy the objects named in the matrix GPSTRIP, type:
YJCOPY 1 UTILITY (GPSTRIP)

Note: If the workspace or group you copy has objects that have the same names
as objects in the active workspace, the copied objects replace the active objects.
When you don't want this to happen, use)PCOPY (Protected Copy) instead of
)COPY. Similarly named objects then are not copied. When objects are not
copied, a NOT COPIED message listing their names is transmitted to your ter-
minal.

Most of the workspaces described in this manual contain defined groups of func-
tions serving specialized needs. These functions are described in each workspace
section of the book. To conserve space (and to minimize processor usage), use
only the groups or functions you need instead of the entire workspace.

The Message Facility

All of the supplied workspaces except CHARTX, DISPLAY, EXAMPLES, GDMX,
MATHFNS, SUPPLIED, UTILITY, and WSINFO return their own error mes-
sages. These messages are stored in a table whose name begins with AP2W (for
example AP2WSQL).

The entries in this table contain the message number and the message. Messages
are printed using the AP2WSM function. For example:

'AP2WAPLDATA' AP2WSM 106 'ZENO'

prints message number 106, as shown in|Figure 2 on page 6|

Figure 2 shows complete example of how the message facility works in
APLDATA, a supplied workspace.

'"ZENO' is a token that is substituted for all occurrences of 'w' in the message.
Any text in the message occurring after a 'o ' is not displayed. However, the
message ID AP2WAPLDATA and the additional information is assigned to the var-
iable MORE.

Note: When using the message facility, you must be careful to avoid name con-
flicts, particularly with the variable MORE.

Chapter 1. Introduction 5

JLOAD 2 APLDATA

AP2WAPLDATA
101 THE VARIABLE NAMED w DOES NOT EXIST
102 VARIABLE fn HAS NOT BEEN SETow REQUIRES THE FILENAME IN fn
103 END OF FILE - FILE CLOSEDaNO ATTEMPT MADE TO READ PAST EMPTY RECORD
104 LEFT ARGUMENT MUST BE SPECIFIEDa MUST BE w
106 THE VARIABLE NAME 'w' IS THE SAME AS A LOCAL NAMEaCHOOSE ANOTHER NAME

MORE
NO MORE MESSAGES

A NO ERRORS GENERATED ...YET
A LET'S GENERATE ERROR NO. 106 WITH A TYPICAL TOKEN

'AP2WAPLDATA' AP2WSM 106 'ZENO'
THE VARIABLE NAME ' ZENO ' IS THE SAME AS A LOCAL NAME

MORE
AP2WAPLDATA106 CHOOSE ANOTHER NAME

Figure 2. An Example of the Message Facility

Note: Do not use the message facility to emulate IBM messages in your own
applications. This makes it difficult to tell who designed (and therefore responsible
for documenting) a given error message.

However, you can use AP2W SM for your own purposes. To do this, copy the
group GPMESSAGE (which exists in all workspaces that use the message facility)
into your active workspace. Then replace the error message tables with ones of
your own. When you call the function AP2¥ SM, use two strings in the left argu-
ment, a message ID prefix followed by a table name. For example:

'"MYAPPLICATION' 'MYTABLE' AP2WSM 42 'THE ANSWER'

If "MYTABLE" is provided only as a left argument, then it is both the message ID
prefix and the table name.

Documentation within the Workspace
All supplied workspaces contain three functions: ABSTRACT, DESCRIBE, and

HOW. Some workspaces also contain other functions whose names begin with
HOW.

e ABSTRACT gives a brief description of the purpose of the workspace.
e DESCRIBE gives a more detailed description of the workspace.
e HOW tells you how to use the main functions in the workspace.

These functions also point you to any additional documentation in the workspace.
They use the external function HEL P to extract help text from the APL2 product
help files.

6 APL2 Programming: Using the Supplied Routines

Workspaces with Interrupted Functions

You should check the state indicator before storing a workspace in which you have
been testing programs or in which you have had difficulties with programs. For
example:

)ST

might cause something like the following to be displayed on your terminal:

FooLe]1
GOOL5]
Z00[31

*

FOOLH]
GOOL5]
Z00L[3]

*

Such a display suggests that you tried to use a program named F00 and that you
had problems. The first time you tried, processing stopped on statement 4. The
second time, you got as far as statement 6. In both cases, you were left with 700
suspended.

Also, in both cases, the processing of F00 was requested by statement 5 in G0OO;
and the processing of GO0, in turn, was requested by statement 3 in Z0O0.

Thus, in both cases, Z00 and GO0 are pendent or suspended on the successful
processing of the suspended function, F00.

Remember that each of the entries discussed here represents a drain on the work
area available in your workspace, since each is a copy of a function and, possibly,
of associated local variables. This can lead to puzzling difficulties when you try to
query variable values or edit the suspended functions.

It is good practice to check the state indicator when your work has caused many
function suspensions. You can terminate a suspended function (and the functions
hanging on it) by using the right-pointing arrow (=-). This also frees any resources
used by the suspended function. To terminate all the suspended functions, you
should type the system command)RESET or)SIC.

Interrupting and Debugging
Suspending a function can be intentional. Stopping one or more functions at one
or more points can be extremely helpful when they're not working and you want to
know why. Remember this key fact:

Once a function has stopped, all the resources of APL are available to you to
help determine why it stopped, correct it, and in some cases, resume proc-
essing.

You can examine the values of key variables, you can run specially written analysis
programs, you can alter values and restart; the possibilities open to you are many.
For more information about suspending and tracing functions, see SA, TA,
)SINL,and)SIS in APL2 Programming: Language Reference.

Chapter 1. Introduction 7

The Auxiliary Processor Workspaces
The auxiliary processor workspaces include:

e Environment-dependent workspaces: CMS, TSO, FILESERV
e Screen manager workspaces: GDMX, GRAPHPAK, FSC126, FSM, CHARTX
» File auxiliary processor workspaces: APLDATA, VAPLFILE, VSAMDATA
e PRINTWS workspace
e SQL workspace

In these workspaces, the tasks of sharing variables, transmitting initializing informa-

tion, checking return codes, and performing the other housekeeping chores
required to use auxiliary processors are done by what are commonly called cover
functions. These functions are described in the chapters about individual work-
spaces. Figure 3 lists the APL2 auxiliary processors and their associated work-

spaces.

Figure 3 (Page 1 of 2). APL2 Auxiliary Processors and Associated Workspaces

Associated

AP No. Description Workspaces

AP 100 Subsystem command auxiliary processor. Processes CMS and TSO
CP/CMS or TSO commands during an APL2 session.

AP 101 Alternate-input (stack) auxiliary processor. Stacks CMS and TS0
input to the APL2 system, replacing manual entry of
input.

AP 102 Main storage access auxiliary processor. Returns CMS and TS0
the contents of specified areas of virtual (CMS) or
main (TSO) storage.

AP 110 CMS file auxiliary processor. Reads or writes CcMS
sequentially or randomly to a disk under control of
the CMS file system.

AP 111 QSAM auxiliary processor. Reads or writes to a CMS and TS0
device or file supported by QSAM (TSO) at QSAM
simulation (CMS).

AP 119 TCP/IP socket interface auxiliary processor. None

AP 120 Session manager command auxiliary processor. FSM
Processes a session manager command.

AP 121 APL2 file auxiliary processor. Reads or writes APL2 APLDATA and
arrays (in internal form) to and from a direct or VAPLFILE
sequential file.

AP 123 VSAM auxiliary processor. Performs file operations VSAMDATA
on entry-sequenced, key-sequenced, or relative-
record VSAM files.

AP 124 Full-screen auxiliary processor. Provides full-screen None
text capabilities.

AP 126 GDDM auxiliary processor. Transfers AP 126 CHARTX, FSM,
service requests and GDDM call requests to GDDM FSC126, GDMX,
for control of an IBM 3270-family display station with and GRAPHPAK
programmable symbol set (PSS) feature.

AP 127 SQL auxiliary processor. Passes SQL statements SQL

from APL2 to SQL/DS* and DB2*.

8 APL2 Programming: Using the Supplied Routines

Figure 3 (Page 2 of 2). APL2 Auxiliary Processors and Associated Workspaces

Associated
AP No. Description Workspaces
AP 210 TSO BDAM auxiliary processor. Provides relative TS0

record access to fixed-length, unkeyed disk data sets
through BDAM.

AP 211 APL2 object file auxiliary processor. Reads or writes None
APL2 arrays (in internal form) to and from a file.
Allows access to the arrays by name.

Chapter 1. Introducton 9

WSINFO

Chapter 2. Information Workspaces

This chapter describes the information workspaces WSINFO and SUPPLIED.

WSINFO: Information About the Library Workspaces

There is one principle function in this workspace:

LIST

This function provides a list of each workspace distributed with the APL2 system for
use in your particular environment (CMS or TSO). LIST prompts you to enter
the name of a workspace, then returns descriptive information about the work-
space.

This is an example for TSO. Results could differ slightly for CMS.

LIST

Tutorial information is available for the following workspaces:
You can enter ? at any time to redisplay the list.

Public Library Number 1
DISPLAY EXAMPLES MATHFNS MEDIT SUPPLIED UTILITY WSINFO
Public Library Number 2

APLDATA CHARTX FILESERV FSC126 FSM GRAPHPAK GDMX
PRINTWS SQL TRANSFER TSO VAPLFILE VSAMDATA

Enter a workspace name, or press ENTER to exit:

10 © Copyright IBM Corp. 1985, 1994

SUPPLIED

SUPPLIED: Information About External Functions

APL2 has a wide variety of external routines that can be accessed using ONA.

The SUPPLIED workspace contains associations to all the APL2 external rou-
tines. In addition, the SUPPL I ED workspace contains a function that can help

you learn how to use the external routines. See|Chapter 11, “External Routines’|

or detailed explanations of each routine.

LIST

The LIST function lists APL2's external routines and prompts the user to enter a

function name. When a function name is entered, LI ST displays tutorial informa-

tion that describes the purpose, syntax, arguments, and results for the function.

Example:

LIST

You can enter ? at any time to redisplay the 1list.

AEXEC AF AFM AFV APL2PI APL2PIE
ATR ATTN BUILDRD BUILDRL CAN CSRIDAC
CSRSAVE CSRSCOT CSRVIEW CTK CTN DAN
DISPLAY DISPLAYC DISPLAYG DSQCIA EDITORX EDITOR?2
FED HELP IDIOMS IN KTC MSG

our PACKAGE PBS PFA PIN PTA
RAPL?2 RTA SAN SERVER SvVI TIME

Enter a function name, or press ENTER to exit:

Tutorial information is available for the following functions:

ATP
CSRREFR
DFMT
EXP
OPTION
QNs
TSOIVP

Chapter 2. Information Workspaces

11

Chapter 3. General Purpose Workspaces

The general purpose workspaces are:

DISPLAY
EXAMPLES
MATHFNS
UTILITY

None of these workspaces use an auxiliary processor.
DISPLAY contains functions for showing the structure of arrays.

The EXAMPLES workspace contains many short functions that are suitable for
study and experimentation by APL2 beginners. They reflect programming practices
of varying quality. If you study them with a critical attitude, you might find the exer-
cise useful in developing good APL2 programming judgment.

The MATHFNS workspace contains two advanced mathematical functions and two
functions for formatting complex numbers in polar form.

The UTILITY workspace functions are for general use. These functions are
nonsuspendable. (For more information about setting the processing properties of
functions and operators, see APL2 Programming: Language Reference.)

By convention, each unlocked defined function and operator in the UTILITY and
EXAMPLES workspaces contains a description of itself in the first line.

12 © Copyright IBM Corp. 1985, 1994

The DISPLAY Workspace

The DISPLAY Workspace

This workspace contains DISPLAY, DISPLAYC, and DISPLAYG; these func-
tions are useful in showing the structure of nested and mixed arrays.

Z<DISPLAY X
Z<«DISPLAYC X
Z<DISPLAYG X

Z is a character matrix that represents the array X.

DISPLAY and DISPLAYC use characters that display on all implementations.
DISPLAYC is identical to DISPLAY and is included for compatibility with the
DISPLAY workspace distributed with the workstation APL2 implementations.
DISPLAYG uses box characters.

The following characters are used to convey shape information:

> or ¥+ Indicates a dimension of at least one

eord Indicates an axis of length zero. If an array is empty, its
prototype is displayed

(None of the above) Indicates no dimension (a rank 0 array)

The following characters are used to convey type information:

~ Indicates numeric
Indicates mixed
€ Indicates nested

Indicates a scalar character that is at the same depth as
nonscalar arrays
(None of the above) Indicates a character array that is not a simple scalar

Chapter 3. General Purpose Workspaces 13

The DISPLAY Workspace

X<15
DISPLAY X

.+ ________ L]

|1 2 3 4 5

I~ o - - - - = 1
X<«c15
DISPLAY X

| oo .
| 11 2 3 4 5] |
| |
1

'~ oo '

€-———=—=—=—=-=-=-=-- 1
X<(cc14)(2 2p'"ABCD')(2 2p'FORTY-TWO' 'IS' 'THE' 'ANSWER')
DISPLAY X
T o e .
R A -
|] e R I oo ||
I S e . |1 Icol | |FORTY-TWO| |IS]| |
IR I I B B B R B e ||
I BELEEE T vl |- oo .
| | temmmmmmmoe- v | I THE| |ANSWER| | |
| (= ' | " ___ | B, ' | |
| R U
'E __ 1
pX
3
p"X
2 2 2 2
DISPLAY p X
o+ ________________ .
| 6. ==, >--. |
| 1ol 12 2] |2 2] |
| [P] T~ =t T~ =t |
'E ________________ 1]

Figure 4. DISPLAY Examples

14 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

The EXAMPLES Workspace

Introduction

This section describes the EXAMPLES workspace.

The functions in this workspace are examples of ways to use APL2 in solving prob-
lems. The functions are brief, often no more than one or two statements, but they
illustrate some of the ways in which APL2, with relatively few statements, can do
calculations that require many more statements in other programming languages.
These functions are not necessarily the best way, or the only way, to solve the
problem. Rather, they illustrate ways to use APL2 that are not always obvious.

We encourage you to examine the listings of all functions and operators in the
workspace. Some of them are very simple.

The examples fall into three categories: scientific, miscellaneous, and special exam-
ples of the new capabilities of APL2. There are also a few of interest to program-
mers, such as decimal-hexadecimal conversions and hexadecimal arithmetic.

Mathematic and Scientific Functions

ASSsoC Tests associativity of putative arithmetic tables
BIN Binomial coefficients

COMB FC LFC Combinations

GCD Greatest common divisor

HILB Hilbert matrix

PALL PER PERM Permutations

PO POL POLY POLYB Polynomials

TRUTH Truth tables

ZERO Roots of a function

Figure 5. Simple Scientific and Mathematical Functions

Z<ASS0C M A ASSOCiativity

The function ASS0OC tests any putative group multiplication table # (assuming
group elements in 1 p p M) for associativity and yields a value 1 if it is associative,
0 otherwise.

Chapter 3. General Purpose Workspaces 15

The EXAMPLES Workspace

MULTTABLE<5 5p(6p1),(4p2),(13),(2p3),(14),4,(15)

MULTTABLE
11111
12 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5
ASSOC MULTTABLE
1
MULTTABLE[3:;31]+1
MULTTABLE
11111
12 2 2 2
121 3 3
1 2 3 4 4
1 2 3 4 5
ASSOC MULTTABLE
0
Z<BIN N A BINomial

The function BI N produces all binomial coefficients up to order V.

BIN 7
0
0
0
1
n
10
20 15
35 35 2

N N N e N = J=N
NOoO U EFEWN RO
PO WR OO

ORr oo oo
PoORrOOOOO
NRrOoOOoOOoOOOO
RPoOOoOOOOOO

N R

16 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

Z<COMB N
Z<FC N
Z<LFC N

The function COMB employs recursive definition to produce a 2xN by 2 matrix of
all possible pairs of elements from 1 V.

COMB 5

FLONMNRPRPONNRPRPNDREBRE
g oo FEFEFEFOON

The function FC shows an alternate method that yields the same pairs but in a
different order.

FC 5

FWOWNNNRRR R
O EFEOFWOOEON

The function LFC employs FC to generate letter pairs.
LFC 5

AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

Chapter 3. General Purpose Workspaces 17

The EXAMPLES Workspace

Z<L GCD R A Greatest Common Divisor

The function GCD employs the Euclidean algorithm to produce the greatest
common divisor.

30 GCD 4o
10
GCD/ 30 40
10
GCD/ 30 40 45
5
GCD/ 30 40 39 45
1
GCD/ 30 42 39 45
3
Z<HILB N A HILBert matrix

The function HI LB produces a Hilbert matrix of order V.

Z< PALL N
Z« PER N
Z< B PERM N

The function PALL produces the matrix of all permutations of order V. Its subfunc-
tion PERM produces the B-th permutation of order N by a method due to L.J.
Woodrum.

The function PER employs recursive definition. It produces all permutations by a
method much faster than that used in the function PAL L. The permutations are
not produced in the same order as those produced by PALL.

PALL 3

WwWwNONP- -
NP, WEFE WN
P NP WN W

PER 3

WWwNPEPEN PP
P NNEPEPNWW
NP WWEN

18 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

Z« C POLY X
Z<« C POL X

Scalar right argument only
Scalar right argument only
(uses inner product)

Scalar right argument only
(uses base value)

Scalar or vector right argument

Z< C POLYB X

D ®» ® ® ® D

Z< C PO X

The functions POLY, POL, PO, and POLY B each evaluate a polynomial (or
polynomials), whose coefficients are determined by the left argument, and whose
point (or points) of evaluation is determined by the right argument. The coefficients
are in ascending order of associated powers.

101 PO 2 1012

30 10 3

1 0 1 POL 2
3

"1 0 1 POLY 1
0

"1 0 1 POLYB "1
0

To find the zeros of polynomials, see the POLY Z function in the MATHFNS work-
space, shown in [Figure 9 on page 31}

Z<«TRUTH N

The function TRUTH produces the matrix of arguments of the truth table for &
logical variables.

TRUTH 3

PR, PRPR,OOOO
PP, OORFR,RFP, OO
POPORFr,ORKrO

Z<TOL (F ZERO) R

The operator ZERO employs the bisection method to determine, within a tolerance
TOL, a root of the function F lying between the bounds [1] and F[21].
F(R[1]) and F(EL21) must be opposite signs. ZERO should only be
applied to continuous functions.

Chapter 3. General Purpose Workspaces 19

The EXAMPLES Workspace

OFX'Z«SIN X' 'Z<1o0X'

SIN

.1 SIN ZERO "1 1
0

.1 SIN ZERO 1 4
3.0625

.001 SIN ZERO 1 4
3.141601563

Miscellaneous Utility Functions

PACK lllustrates the use of Base value (L 1 R)
UNPACK lllustrates the use of Representation (L T R)
DEC2HEX Converts from decimal to hexadecimal
HEX2DEC Converts from hexadecimal to decimal

HEX Performs hexadecimal arithmetic

SORTLIST Sorts according to a collating sequence

TIME Provides processor time used

Figure 6. EXAMPLES: Miscellaneous Utility Functions

Z<PACK X
Z<UNPACK X

The functions PACK and UNPACK illustrate the use of the T and L functions in
changing from a four-number encoding of serial number (1 to 9999), month, day,
and year to a single-number encoding of the same data.

PACK 117 1 1 84
4315283

UNPACK 43152883
117 1 1 84

Z<DEC2HEX R
Z<HEX2DEC R
Z«L(F HEX) R

The functions DEC2HEX and HEX 2 DEC work with nonnegative hexadecimal
numbers represented as strings of characters selected from
'0123456789ABCDEF'. The HEX operator performs an arithmetic function

F on hexadecimal arguments, returning a (character) hexadecimal result. The
arguments presented to a function derived by the HEX operator must have a depth
no greater than two.

DEC2HEX Converts decimal to hexadecimal
HEX2DEC Converts hexadecimal to decimal
+ HEX Performs hexadecimal addition

20 APL2 Programming: Using the Supplied Routines

- HEX Performs hexadecimal subtraction

and so on

'FF' +HEX '1!
100

(1HEX '5')o .xHEX(1HEX

4 5 6 7 8

8 4 C E 10
¢c F 12 15 18
10 14 18 1C 20
14 19 1F 23 28

g F W N -
N oo FEN
QY O o w

9

12
1B
24
2D

A

14
1F
28
32

|C|)

B

16
21
2C
37

C

18
24
30
3C

The EXAMPLES Workspace

Z<«SORTLIST R

R is a character matrix. Z is R with its rows sorted according to the collating
sequence defined in DCS, a global variable.

A<«TIME

The function TITME yields the amount (in minutes, seconds, and milliseconds) of
processor time used since the last time the function was run. It is useful in meas-
uring the processing times of other functions. The global variable TTMER is
assigned the value of the cumulative processor time each instance the function

TIME is run.

Chapter 3. General Purpose Workspaces 21

The EXAMPLES Workspace

Special Functions and Operators of APL2

The group GPAPL?2 contains various functions and operators designed to show
some of the capabilities of APL2 that are not available in VS APL.

Workspace Information Functions

EXAMPLE Demonstrates a specified program in GPAPL?2
EXAMPLES Demonstrates the programs in GPAPL 2

Miscellaneous Functions

EXPAND Function version of \

I0OTAU Find index (iota underbar in the IUP)
REP Represents an array, function, or operator
REPLICATE Function version of /

TYPE Returns the type of an array

UNIQUE Removes duplicates

Operators to Conform Arguments

CR Conforms ranks
PAD Conforms axes by overtake
TRUNC Conforms axes by undertake

Operators for Debugging

TRACE Traces function processing
TRAP Traps error, returns error message

Operators to Handle Depth

EL Each left

ER Each right

PL Pervasive on left
PR Pervasive on right

Operators for Program Control

ELSE Conditional processing
IF Conditional processing

Miscellaneous Operators

AND Applies two functions

COMMUTE Reverses function arguments
FAROUT All-level outer product

NOP No operation

POWER Applies a function monadically N times

Figure 7. GPAPL2 Main Functions and Operators

22 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

EXAMPLE R

This function processes the examples found in the leading comments of the
program named in 7.

EXAMPLES

This function processes the examples found in the leading comments of all of the
programs in the workspace.

Z<L I0TAU R A I0TA Underbar

This is the Find Index function from the APL2 Installed User Program. R and L
can be any array. Z is an integer matrix that contains the starting positions (in
row major order) where pattern R begins in the array L.

p'A' IOTAU 'A'

"ABABABA' IOTAU 'AB'

1 (2 3) (4 5) 2 3 4 5 IOTAU 2 3

L<«4 5p'ABCABA'
L
ABCAB
AABCA
BAABC
ABAAB
L I0OTAU 'BA!
1
2

Fow

L IOTAU 2 1p'BA'

WwWN -
FRrwoN

Z<«L REPLICATFE R
Z<L EXPAND R

These functions are identical to the primitive functions Replicate and Expand,
respectively represented by '/' and '\', except that the primitive versions are
really operators, so you cannot apply operators to them.

The defined REPLICATE and EXPAND really are functions, so you can apply
operators to them.

Chapter 3. General Purpose Workspaces 23

The EXAMPLES Workspace

(1 0 1)(0 3)REPLICATE"'ABC' 'DE'
AC EEE

REPLICATE/5 'x!

Xk kKX %k

(1 0 1)(0 1 0) EXPAND™ (2 4) 6
2 04 06 0

Z<REP R n REPresentation

Z is a representation of the array, function, or operator named in R. Specifically, Z
is ¢k or UCR R, whichever is appropriate. This is an example of the use of the
E L SE operator in this group.

Z<TYPE R

Z is a scalar zero if B is numeric, and a scalar blank if it is character. This function
is compatible with a VS APL library function of the same name. It is not meant to
be applied to mixed or nested arguments.

Z<UNIQUE R

R is a vector. Z is a vector containing the elements of £ with duplicates elimi-
nated.

UNIQUE 'THE ANTS WERE HERE'
THE ANSWR

UNIQUE 'GUFFAW 17 (14) 'GUFFAW'
GUFFAW 17 1 2 3 4

Z«<L (F CR) R A Conform Ranks
Z<«L (F PAD) R
7<«L (F TRUNC) R an TRUNCate

The CR operator conforms the ranks of L and R and then applies the function .
The PAD operator conforms the axes of I, and R by overtake. The TRUNC oper-
ator conforms the axes of L and R by undertake.

24 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

(4 4p'WE THEYUS OURS') A.(=PAD) ®2 3p'WE OUR'

[N oo -
[oNeoNeNe)

(4 4p'WE THEYUS OURS') A.(=TRUNC) R®2 3p'WE OUR'

(e oo -
= O OO

(2 3 Lp124) +PAD CR 5 6p100x130
101 202 303 LOu4 500 600
705 806 907 1008 1100 1200
1309 1410 1511 1612 1700 1800
1900 2000 2100 2200 2300 2400
2500 2600 2700 2800 2900 3000

13 14 15 16 0 0
17 18 19 20 0 0
21 22 23 24 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Z<L (F TRACE) R 7Z<(F TRACE) R

TRACE traces the processing of F. It is most useful when the derived function is
passed to another operator. Every time F is called, the derived function displays its
argument(s) and the result.

+TRACE\ 1 4 9 <+—— Expression as entered
1 4 <«—TRACE output
5 .
b 9 .
13 .
1 13 .
14 <«—TRACE output
1 5 14 <«—— Final result
2 +TRACE/ 1 2 3 4 <«—— Expression as entered
1 2 <«—TRACF output
3 .
2 3 .
5 .
3 U .
7 <«—TRACF output
3 57 <«—— Final result

Chapter 3. General Purpose Workspaces 25

The EXAMPLES Workspace

Z«L (F TRAP) R Z«(F TRAP) R

The derived function (F TRAP) is just like F, except that if an error occurs
during the processing of F, the enclosed error message becomes the result.
2 +TRAP O
DOMAIN FERROR

L F R
A A

022 +TRAP 0

3 12
Z«L (F EL) R A Each Left
Z«L (F ER) R Z«(F ER) R A Each Right

These operators are like the Each operator (), except that EL applies Each only
on the left argument and ER applies Each only on the right argument.

(2 2 3)(4 3)(2 6) pEL 112

1 2 3 1 2 3 123 4 5 6

4L 5 6 4L 5 6 7 8 9 10 11 12
7 8 9

7 8 9 10 11 12

10 11 12

2 3 pER 4 5 6

L 4 4 5 5 5 6 6 6
4 4 Ln 5 5 5 6 6 6
Z<L (F PL) R A Pervasive Left
Z<L (F PR) R Z<(F PR) R A Pervasive Right

PL causes F' to be treated as pervasive down to depth 1 (simple arrays) on its left
argument, and PR causes F to be treated as pervasive down to depth 1 on its
right argument.

1 (2 3) pPL 16
1 2 3
4 5 6

3 pPR 1,€2,c3 4
11 1 2 2 2 3 4 3

(pPR 'A' '"BC' ('DEF' 'HIJK')) pPL 'O
0 oo 0od oooo

Z«C (F ELSE G) R

If Cis1,then ZisF R. If CisO,then Zis G R.

26 APL2 Programming: Using the Supplied Routines

The EXAMPLES Workspace

Z« (F IF C) R

If Cis 1, then Zis F R. Otherwise, Z is R.

Z<L (F AND G) R Z<(F and G) R

The AND operator applies two functions to the same argument(s).
3 +ANDx 5

+AND- 5

(i) (e
2 3 4
L 6 8
6 9 12
8 12 16

AND(eo.+) (14)

- x)AND(
2 345
3 4 56
L 56 7
56 7 8

F wN e

Z«L (F COMMUTE) R

The COMMUTE operator switches the arguments of the function to which it is
applied.

0.5 *COMMUTE 9

Z<L (F FAROUT) R f FAr Reaching OUTer product

This operator applies outer product to all levels of the arrays L and R.

(10 20)(30 40 50) +FAROUT (1 2)(3 4 5)
11 12 13 14 15
21 22 23 24 25

31 32 33 34 35
b1 42 43 44 45
51 52 53 54 55

7Z«L (F NOP) R Z«(F NOP) R A No OPeration

The derived function (F NOP) is just F. This operator is useful for separating
the array right operand of an operator from the right argument of the derived func-
tion. It sometimes eliminates one layer of parentheses.

A Compare with the next example.
pPOWER 2 NOP 2 3 U4p124

Chapter 3. General Purpose Workspaces 27

The EXAMPLES Workspace

Z«(F POWER N) R

POWER applies F monadically N times.

A Parentheses are redundant here.
(p POWER 2) 2 3 Uup12u

28 APL2 Programming: Using the Supplied Routines

The MATHFNS Workspace

The MATHFNS Workspace

This workspace contains the following functions, as shown in Figure 8

EIGEN Computes eigenvalues and eigenvectors

FFT Computes fast Fourier transform

FMTPD Formats in polar form with angular measure in degrees
FMTPR Formats in polar form with angular measure in radians
IFFT Computes inverse fast Fourier transform

POLYZ Computes the zeros of polynomials

Figure 8. Functions in the MATHFNS Workspace

Eigenvalues

Z< EIGEN R

The right argument R must be a simple square matrix of real numbers. Z is a
simple real or complex matrix of shape 1 0+pR that contains the eigenvalues
and the eigenvectors of R. If R has shape N by N, then Z has NV+1 rows and N
columns. The first row of Z contains the eigenvalues of R, and the remaining rows
of Z contain the corresponding right eigenvectors of F. That is, each column of Z
contains an eigenvalue, and its corresponding right eigenvector.

EIGEN 2 2p1 0 0 2

o R R,
R oN

The eigenvalues X and the right eigenvectors ¥V can be obtained by:
Z« EIGEN R
X<Z[1;]1]
V< 1 0+Z
They obey the identity:
Xx[2]V <> R+.xV
The eigenvalues X and the left eigenvectors 7 can be obtained by:
Z<® EIGEN & R
X<Z[:1]
V<0 1+2Z
They obey the identity:

Xx[1]1V <«>V+.xR

Chapter 3. General Purpose Workspaces 29

The MATHFNS Workspace

The eigenvalues and eigenvectors are computed using the implicit QL algorithm if
R is symmetric, or the QR algorithm if R is not symmetric. The numerical accuracy
of the result is dependent upon the condition of the matrix of eigenvectors. In par-
ticular, accuracy can be degraded if there are repeated eigenvalues.

| Fast Fourier Transform

Z<FFT R A Fast Fourier Transform

I This function computes the discrete Fourier transform of a set of 2n numbers R.

I The right argument R is a simple vector of 2« complex or real numbers, where N
I is a positive integer. The result Z is a simple vector of 2 * N complex numbers with
I the discrete Fourier transform of R.

I The result of the FFT function corresponds to that of the discrete Fourier transform

I given by:!
n-1 K
Y= EXjQZMI_I ()
j=0
Z<IFFT R A Inverse Fast Fourier Transform

I This function computes the inverse Fourier transform of a set of 2n numbers 7.
I R < IFFT FFT R

I The right argument R is a simple vector of 2 * N complex or real numbers, where N
I is a positive integer. The result Z is a simple vector of 2* N complex numbers with
I the inverse discrete Fourier transform of R.

I The I FFT function differs only in scale and phase.

n-1
L .
yk=(%)zxje_2m/j(n)

j=0

I For example:

IFFT 2 0J1 0 0J 1
0.51 0.5 0

IFFT 2 1 0 1
1 0.5 0 0.5

| 1 SC23-0526, Engineering and Scientific Subroutine Library, Version 2, Guide and Reference, page 787.

30 APL2 Programming: Using the Supplied Routines

The MATHFNS Workspace

Formatting Complex Numbers

Z<FMTPD R Am ForMaT Polar Degrees

This function formats complex numbers in the right argument £ in polar form with
angular measure in degrees. Z is a simple character array.

Z<FMTPR R A ForMaT Polar Radians

This function formats complex numbers in the right argument £ in polar form with
angular measure in radians. 7 is a simple character array.

Roots of Polynomials

Z< POLYZ R n POLYnomial Zeros

The right argument R must be a simple nonempty vector of real or complex
numbers, and must not contain leading zeros. R represents a polynomial with
coefficients in decreasing order of powers (constant on the right). Z is a simple
vector of shape ~ 1 +p R, that contains the zeros of the polynomial 7.

If 7 is the polynomial represented by R and F(x) = Ax3 + Bx2 +Cx +D,

then R is the vector (4 B C D). If the result Z is the vector (P @ R), then
F(x) = (x-P)(x-Q)(x-R). If R is real, and the length of R is even, then Z contains at
least one real number.

POLYZ 2 1
0.5
POLYZ 2 0J1
0J 0.5
POLYZ 1 2 1
11
POLYZ 1 0 1
0J1 0J 1
POLYZ 1 6 11 6
1 2 3
POLYZ 1 ~20 154 ~584 1153 ~ 1124 420
1 2.000000033 1.999999967 3 5 7

Figure 9. POLYZ Example

The zeros are computed using the Jenkins and Traub algorithms. The accuracy of
the solution depends on the condition of the polynomial. In particular, accuracy can
be degraded if there are repeated zeros. Also, numerical roundoff can cause a pair
of equal real zeros to appear as a complex conjugate pair.

POLYZ uses subroutines POLYZC and POLYZF.

Chapter 3. General Purpose Workspaces 31

The UTILITY Workspace

The UTILITY Workspace

Introduction

This section describes the UTILITY workspace.

The UTILITY workspace is made up of defined functions organized into groups of
functions. The groups are listed in the next section and described in the sections
that follow.

The two major ways in which you are likely to find the UTILITY workspace useful
are:

¢ Functional
¢ |nstructional

The functional use is relatively straightforward:

e Copy the objects you need from the UTILITY workspace into the active work-
space
e Use the UTILITY functions as “pseudo-primitives” in your own defined functions.

The instructional use may not be as obvious, but may be even more important.
Instructionally, you can use the UTILITY workspace to:

e Acquire familiarity with APL2 by experimenting with the functions in the UTILITY
workspace, listing and reading them, trying to deduce what each statement
does and why you might choose that particular way to do it.

e Develop your APL2 programming skills by modifying the functions to improve
their efficiency or to add features you need.

e Extend your programming skills by adding complementary utility functions that
you find useful.

This workspace is of most use to you if you try to use it for both functional and
instructional purposes.

The Function Groups

GPDATACV Data conversion

GPMISC Miscellaneous utility functions

GPSTRIP Removing comments from functions

GPSVP Controlling communication though the
Shared Variable Processor

GPTEXT Text processing

GPTRACFE Managing trace and stop vectors

GPXLATFE Character translation

Figure 10. Groups in the UTILITY Workspace

A list of the main functions in each group is presented in a captioned figure at the
beginning of each section. Functions that belong to more than one group are
usually listed only once.

32 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

GPDATACYV: Converting between External and Internal
Representations

Data Conversion Functions

Conversion Type In Out

Boolean (Logical) Z<« LI R Z<« LO R
System/370 Integer Z< II R Z<L I0 R
IBM PC Integer Z< PCII R Z<L PCIO R
System/370 Floating Point Z<« FI R Z<« FO R
Packed Decimal Z<« PDI R Z<L PDO R
VS APL Z< ICI R Z< ICO R

Data Conversion Variables

zc Used in translating between APL2 EBCDIC

and VS APL Internal Characters
pds Used in determining sign of packed-decimal number
pdd Used in translating numerical portion of packed decimal

Figure 11. GPDATACYV: Data Conversion Functions and Variables

Z<LI R A Logical In

R is a simple character array whose last axis contains logical data; that is, a string
of bits.

Z is a numeric array consisting of zeros and ones representing the logical data in
R. The rank of Z is the same as the rank of R, but the last axis of Z is 8 times as
long as the last axis of R. A scalar value for R produces an 8-element vector.

pZ<«>(1¥pR),8%x 141,pR

Z<«L0O R A Logical Out

R is a simple numeric array consisting of only zeros and ones. The length of its
last axis must be a multiple of 8.

Z is a character array whose last axis contains the representation of the logical
data in the last axis of E. The rank of Z is the same as the rank of R, but the
length of the last axis of Z is one-eighth of the length of the last axis of R.

pZ<>(1+¥pR),(14pR)=8

Chapter 3. General Purpose Workspaces 33

The UTILITY Workspace

Z<II R A Integers In

R is a simple character array whose last axis must have a length of between 1 and
7 inclusive. The array must also contain the System/370 binary representations of
integers.

Z is an array of integers representing the binary numbers in R. The rank of Z is
one less than the rank of &.

pZ<«> 1+¥pR

Z«L I0 R A Integers Out

R is a simple array of integers. L is an integer scalar not greater than 7, which
gives the number of bytes in which each integer is represented. L must be large
enough to represent the largest magnitude of the integers in R.

Z is a character array whose last axis contains the System/370 binary representa-
tions of the integers in R. The rank of Z is one greater than the rank of B.

pZ<+(pR),L

Z<«PCII R a PC Integers In

R is a simple character array whose last axis must have a length of 1, 2 or 4, and
which contains the IBM PC (reversed) binary representations of integers.

Z is an array of integers representing the binary numbers in . The rank of Z is
one less than the rank of 7.

pZ<+> 1vpR

Z«L PCIO R Am PC Integers Out

R is a simple array of integers. L is an integer scalar with a value of 1, 2 or 4,
and gives the number of bytes in which each integer is to be represented. L
must be large enough to represent the largest magnitude of the integers in R.

Z is a character array whose last axis contains the IBM PC (reversed) binary repre-
sentation of the integers in R. The rank of Z is one greater than the rank of .

pZ<«>(pR),L

Z<FI R A Floating In

R is a simple character array; its last axis must have a length of 4 or 8. The last
axis thus represents either single or double precision System/370 floating-point
numbers.

34 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

Z is an array of numbers equivalent to the floating-point representations in . The
rank of Z is one less than the rank of R.

pZ<+> 1vpR

Z<FO R A Floating Out

R is a simple numeric array.

Z is a character array whose last axis has length 8, and which contains the
System/370 double precision floating-point representations of the numbers in .
The rank of Z is one greater than the rank of R. If single precision is required, then
drop the last four columns of the result.

pZ<>(pR),8

Z<PDI R A Packed Decimal In

R is a simple character array whose last axis must have a length of between 1 and
16 inclusive, and which contains valid System/370 packed decimal representations
of integers.

Z is an array of integers representing the packed decimal numbers in E. The rank
of Z is one less than the rank of .

pZ<> 1vpR

Note that if the length of the packed decimal number is greater than 9 bytes, a loss
of precision can result.

Zz<L PDO R an Packed Decimal Out

R is a simple array of integers. L is an integer scalar not greater than 16; it gives
the number of bytes in which each integer of R is represented. L must be large
enough to represent the largest magnitude of the integers in R.

Z is a character array whose last axis contains the System/370 packed-decimal
representations of the integers in R. The rank of Z is one greater than the rank of
R.

pZ<+(pR),L

Z<ICI R an VS APL Internal Characters In

R is a simple character array. Z is a character array of the elements of R as they
would be displayed and interpreted in VS APL.

Chapter 3. General Purpose Workspaces 35

The UTILITY Workspace

Z<IC0 R n VS APL Internal Characters Out

R is a simple character array. Z is a character array whose elements are dis-
played and interpreted the same in VS APL as the corresponding elements of R
are displayed and interpreted in APL2.

GPMISC: Miscellaneous Utility Functions

ANNOTATE Add comments to lines in character matrix

ASSIGN Specify values for a set of names

CASFE Gives case attribute of active workspace

CODECOUNT Count commented and uncommented lines in all the
defined operations in a workspace

CONCEAL Make a function nonsuspendable

DATETIME Give date and time in hh:mm:ss format

EXPAND Function version of \

FNHEADS List function headers for a set of functions

FRAME Put a border around a character matrix

HEXDUMP Produce character and hexadecimal representations
of a character string

LINECOUNT Count commented and uncommented lines in a set of
defined operations

LIST Convert an arbitrary array to vector

MASKCONV Convert fullword integers to their component subfields

MESH Mesh two or more vectors as prescribed by a mask

NAMEREFS Find all names in a defined function or operator

NAMES Find all names in a string

NHEAD Produce character representations of index vectors

REPLICATE Function version of /

REVEAL Make a function suspendable

TYPE Determine type (alphabetic or numeric) of a simple,
homogeneous APL array

UNIQUFE Remove duplicates

Figure 12. GPMISC: Miscellaneous Utility Functions

Z<«L ANNOTATE R

R is a simple character matrix and L is a numeric scalar. Z is R with rows
padded or truncated to length L and with comments interactively appended to
each row.

L ASSIGN R

L is a character matrix of names. R is a character matrix of valid APL2
expressions. Each row of L is evaluated and its value is given the name in the
corresponding row of R.

36 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

Z<«CASE

Z is the case attribute of the active workspace.

Z<CODECOUNT

This function counts the function and operator lines in the workspace and returns a
2-element numeric vector. Z[11 is the total number of lines in the workspace
that contain something other than a comment; Z [2] is the total number of lines
that consist only of a comment. CODECOUNT does not count its own lines. See
also LINECOUNT on page [38

CONCEAL R

Make the function named by R nonsuspendable.

Z<DATETIMFE

Z is the date and time in the form of mm/dd/yy hh:mm:ss.

DATETIME
11/26/85 12:00:42

Z<L EXPAND R

Ris any array. L is a Boolean vector. 7 is L\R. See|[*Special Functions and|
[Operators of APL2” on page 22| for a discussion of this function.

Z<FNHEADS R an FunctiolN HEADerS

R is a character matrix of function or operator names. Z is a character matrix of
corresponding function and operator headers, exclusive of explicit local variables.

Z<FRAME R

R is a simple character scalar, vector, or matrix. ~ Z is K bordered by straight
lines.

Chapter 3. General Purpose Workspaces 37

The UTILITY Workspace

Z<«HEXDUMP R

R is a simple character array. Z is a four row matrix, with one column for each
element of , R. The first row of Z is R; the second row is OAF , R; the third row
contains the hexadecimal representations of the numbers in the second row; and
the fourth row contains characters that mark off character positions by fives.

Z<LINECOUNT R

R is a character scalar, a simple vector or matrix, or a vector of vectors.
LINECOUNT counts the lines of the functions and operators named in £ and
returns a two element numeric vector. Z[1] is the number of lines that contains
something other than a comment; Z[2] is the total number of lines that consist
only of a comment. This function does not count its own lines. See also
CODECOUNT on page [371

Z<LIST R

This function creates a vector or scalar out of R. R can be any array. If R is a
simple scalar, then Z is ,R. If R is a simple vector, then Z is ,cR. If Risa
nested scalar or vector, then Z is B. Otherwise, Z is R enclosed along all axes
but the first, which forms a nested vector.

Z<«L MASKCONV R A MASK CONVert

MASKCONV encodes the number (or numbers) R to the base 2 L. Itis primarily
useful in analyzing sections of storage defined by fields of varying lengths from one
bit to a full word.

1 2 1 4 24 MASKCONV ~1+4+2%32
1 3 1 15 16777215

38 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

<L MESH R

L is a mask and R is a concatenation of the vectors to be meshed. If the mask L
consists of zeros and ones, the elements of R are placed, in order of occurrence,
in the positions of Z corresponding to zeros; after these are filled, the remaining
elements are placed in the positions corresponding to ones. If R is a concatenation
of vectors of lengths equal to the number of zeros and the number of ones respec-
tively, the result is to mesh them. This can be generalized to any number of
vectors by providing masks with elements of 0, 1, 2,...

00122233333333
YYydyd vy d vy vy

0 2213333323033 MESH 'HE IS WORDSMAN'
HIS WORDS MEAN

R R e e e O o S
02213333323033

In the example above, 0 selects the first two characters (' HE ') and puts them in
the first and twelfth positions of the result; 1 puts a blank in the fourth position; 2
puts 'ZS ' in positions 2, 3, 10; and 3 puts the remainder.

Z<NAMEREFS R

R is the name of a function or operator. Z is a character matrix that contains a
list of all the names that occur in R.

Z<«NAMES R

R is a character vector. 7 is a matrix of all the names in B.

Z<L NHEAD R an Numeric HEADers

L and R are integers. Z is a character array giving 1 £ in column form if L is 0
and row form if it is not.

0 NHEAD 5
1
2
3
n
5

1 NHFEAD 5
12345

1 NHEAD 440

1111111111222222222233333333334
1234567890123456789012345678901234567890

This function is also in the group GPTEXT.

Chapter 3. General Purpose Workspaces 39

The UTILITY Workspace

Z<«L REPLICATF R

Ris any array. L is a vector of integers. Z is L/R. See [Special Functions]|
[and Operators of APL2” on page 22| for a discussion of this function.

REVEAL R

If possible, make the function named by R suspendable.

Z<«TYPE R

Z is a scalar zero if B is numeric, and a scalar blank if it is character. This function
is compatible with a VS APL library function of the same name. It is not meant to
be applied to mixed or nested arguments.

Z<«UNIQUE R

R is avector. Z is a vector that contains the elements of £ with duplicates
eliminated.

UNIQUE 'THE ANTS WERE HERE'
THE ANSWR

UNIQUE 'GUFFAW' 17 (14) 'GUFFAW'
GUFFAW 17 1 2 3 4

GPSTRIP: Removing Comments

DECOMMENT Remove comments from all defined functions and operators

STRIP Remove comments from all defined functions and operators
named in a list
WORDS Split a character vector into nested pieces

Figure 13. GPSTRIP: Removing Comments

DECOMMENT

This function removes comment lines from all unlocked functions and operators in
the active workspace. Running decommented functions requires less storage.
When using this function, you should keep a backup copy of the workspace.

40 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

STRIP R

STRIP removes comments from all unlocked functions and operators named in A.
R is a simple character matrix, a nested vector of names, or a simple string of
names separated by blanks.

Z<L WORDS R

WORDS is a surrogate name for the supplied external function DAN (See
FDAN—Delete And Nest” on page 151}) R is a character vector. L is a scalar
or vector of delimiter characters. Z is a character vector, each of whose ele-
ments is a vector of the elements of R lying between occurrences of the delimiters
in R. Consecutive occurrences of delimiters in R are ignored.

See Figure 14 for an example using WORDS.

Z<'And what exactly ARE the commercial'
72<7,' possibilities of ovine aviation?'
pZ

68
Z<' ' WORDS Z
pZ

10
57

And

what

exactly

ARE

the

commercial

possibilities

of

ovine

aviation?
=y

3 4 7 3 3 10 13 2 5 9

Figure 14. WORDS: Extracting Words from Character Vectors

Chapter 3. General Purpose Workspaces 41

The UTILITY Workspace

| GPSVP: Controlling Communication through SVP

APSERVER Server for implementing APs using a client-server protocol over
a single shared variable interface

ID Convert enclosed character processor IDs to large integers

SVOFFER Share one or more variables with an auxiliary processor

SVOPAIR Share control and data variables with auxiliary processors that
use a two-variable protocol.

ASTVO 0OS VO extension to support enclosed character vectors as
processor IDs.
ASTQ 057 ¢q extension to support enclosed character vectors as

processor IDs.

| Figure 15. GPSVP: Controlling Communication through SVP

APSERVER R

I APSERVER is the general AP server for implementing auxiliary processors using a
I client-server protocol over a single shared variable interface.

The APSERVER function uses a registered callback interface, where you choose
to supply a minimum of zero (for the default “echo” AP) to a maximum of four
callback function names. The syntax of the APSERVER call is:

APSERVER 'Init_fn' 'Wait_fn' 'Process_fn' '"Exit_fn'

I If a callback function is not provided, the corresponding item in the 4 element
I general array argument should contain an empty character vector.

I The first name in the argument list is the name of the initialization function that gets
I called by APSERVER when a new share offer arrives. The syntax of Init_fn
I is:

| RC<«Init_fn PID SVNAME

I APSERVER passes to the initialization function the SVP processor number of the
I client and the name of the shared variable being offered. If the AP chooses to

[accept the share, it returns an explicit result of 1. To reject the share offer, a 0 is
I returned.

I The initialization function can be used to open files, establish shares with other

I APs, or to initialize global variables. Since the AP runs as a single task, care

I should be taken to avoid blocking on a shared variable access within the callback
I functions if the AP is designed to support multiple shares or multiple clients.

I The second name in the APSERVER argument list is the name of the wait

I callback function. If no wait routine is supplied the default action of the

| APSERVER is to enter a OSVE wait for any shared variable event, then scan for
I new offers, new client requests, or shared variable retractions. The Wait_fn

I function, if provided, must be a niladic function with no explicit result. You may

I wish to provide your own wait function to issue (0SVE so that you can check the

I state of other shared variables used for your own purposes, or so that you can

42 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

provide a time-out on the S VE wait (for example, to do some administrative work
such as journaling). When you supply wait routine exits, the APSERVER performs
the usual checking for client events.

The third item in the APSERVER argument list is the name of the process
function—the meat of the AP. The syntax is:

RESULT<(PID SVNAME) Process_fn REQUEST

The right argument is the APL2 array representing the client request. The
APSERVER provides the client processor ID and shared variable name in the left
argument. Provide the necessary code in the process routine to service the client
request, and then return, as the explicit result of the function, the APL2 array that is
to be sent back to the client in response to the request. If the process callback is
elided, the default action of the APSERVER is to echo the request back to the
client.

The fourth item in the APSERVER argument list is the name of the exit callback
function. The syntax is:

Exit_fn PID SVNAME

The APSERVER again passes the client processor ID and shared variable name
in the right argument. The exit function is called when the client retracts the shared
variable. The exit function is often used as the inverse to the initialization function,
to close files, retract other associated shares, and expunge global variables. When
the APSERVER gets control back from the exit routine, it completes the retraction
from the server side.

Note: A current restriction of APs written in APL2 using the APSERVER client-
server protocol is that the client must reference all return values sent by the server,
prior to issuing another request. Failure to do so could result in a request being
lost due to a race condition.

Z<«<L ID R

Convert enclosed character processor IDs to large integers and vice versa. Typi-
cally used with the SVP profile in support of cross-system SVP shares for cooper-
ative processing. Under CMS, the processor profile is file AP2TCPIP APL2PROF.
Under TSO, the processor profile is member AP2TCPIP in the data set pointed to
by DDNAME APL2PROF.

<L SVOFFER R

Offer shared variables, named in right argument, to SVP processors identified by
numbers in the left argument. Returns the final degree of coupling for each shared
variable. The function delays up to 15 seconds for shares to be accepted by the
partner. It sets standard access control to inhibit a double set or use.

R is a character scalar, vector, matrix, or vector of vectors containing the name or
names of the shared variables to be offered to an auxiliary processor. Surrogate
names for shared variables can also be used. L is a numeric scalar or vector
containing the processor ID (the number) of the AP. Z is the degree of coupling

Chapter 3. General Purpose Workspaces 43

The UTILITY Workspace

for the shared variable; a 2 indicates that the corresponding variable is fully shared
with the AP.

211 SVOFFER 'S1' 'S2!

Z<L SVOPAIR R

Offer shared variables, named in right argument, to SVP processors identified by
numbers in the left argument. This function is used for auxiliary processors that
support a two-variable interface, where the control variable begins with “CTL,” and
the data variable begins with “DAT” (such as AP 124).

Note: The function is included in the mainframe APL2 product for compatibility
with the workstation products, and is useful for writing portable code that uses AP
124.

Z<L ASVO R

0S8V 0 extension to support enclosed character vectors as processor IDs. Typically
used with the SVP profile in support of cross-system SVP shares for cooperative
processing. Uses the ID function to map the character vector to a processor ID.

Z<L ASVQ R

0S57V@Q extension to support enclosed character vectors as processor IDs. Typically
used with the SVP profile in support of cross-system SVP shares for cooperative
processing. Uses the ID function to map the character vector to a processor ID.

44 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

GPTEXT: Manipulating Text

Note that many text functions also work on other kinds of data.

DOUBLE Replace selected characters in character vector two-for-one

FIND Search for text in all functions and operations in the
active workspace

GATHER Collect parsed fields surrounded by delimiters

GVCAT Concatenate rows to arrays of any rank

HCAT Concatenate matrices by columns

INBLANKS Separate characters by blanks

LADJ Left adjust

LINEFOLD Fold line to specified width and indent folded portions
a specified amount

MAT Make a matrix out of any array

MATFOLD Fold matrix to specified width and indent folded portions
a specified amount

NOQUOTES Remove quoted substrings

OBLANKS Remove outer blanks

QREPLACE Replace '?' occurrences by character strings

RADJ Right adjust

RCNUM Produce numerical headings for rows and columns

REPLACE Replace substrings in character strings

RTBLANKS Remove trailing blanks

VCAT Concatenate matrices by rows

XBLANKS Remove leading and trailing blanks and reduce all
intermediate blank substrings to single blanks

Figure 16. GPTEXT: Text Processing Functions

Z<L DOUBLE R

DOUBLFE replaces each occurrence of the scalar L in the vector R by a pair of
scalars L.

V<'"ABC''DEFGH''IJK'
14
ABC'DEFGH'IJK
‘"' DOUBLE V
ABC''DEFGH''IJK

[namelist] FIND 'text' ['newtext']

Gives a listing of all functions and operators in the active workspace that contain
the indicated text.

If 'newtext' is specified, this function replaces 'text ' in the objects listed in
name 11ist with the new text.

Chapter 3. General Purpose Workspaces 45

The UTILITY Workspace

Z<«L GATHER R

L is a scalar or a one- or two-element vector, for example '()'. R is any array.
GATHER searches the rows of R for a sequence enclosed within the first and
second elements of F and unravels them into a vector. A blank is inserted at each
point where the resulting vector crosses a row boundary in B.

Z<L GVCAT R A Generalized Vertical conCATenation

L and R are arrays of any rank. Z is the result of concatenating I to R along the
first coordinate of the array of higher rank.

<L HCAT R A Horizontal conCATenation

HCAT concatenates columns; given two matrices, it places them side-by-side. L
and R should not be of rank greater than 2. Z is always of rank 2.

Z<«L INBLANKS R

If characters in L are contained in R, separate them with blanks.

Z<«LADJ R A Left ADJust

R can be any array. Z is that array with nonblank characters shifted to the left as
far as possible.

Z<L LINEFOLD R

This function folds the line R so that it is no greater than the length specified by the
first (or only) element in L. If L has a second element, then this specifies the
number of blanks to be used in offsetting the second and subsequent rows in the
output Z. 7 is always of rank 2.

Z<MAT R A MATrix

Z is an array of rank 2 that contains all the elements of R.

46 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

Z<L MATFOLD R A MATrix FOLD

L has one or two integer components. F can be any array. 7 is a matrix with
a number of columns equal to the first (or only) component of L. Any lines longer
than this width are folded as in LINEFOLD.

Z<NOQUOTES R

R is a vector. Z is the same vector with all quoted substrings removed. This
function is also in the group GPMISC on page[36.

Z<0OBLANKS R A Outer BLANKS

Remove outer blanks. R is a vector. Z is R with all leading and trailing blanks
removed.

Z«L QRFEPLACFE R A Question mark REPLACFEment

R is a vector that contains one or more question marks. L is a character vector
that contains one or more subvectors to be substituted for the question marks. The
first character of L is a delimiter used to identify the substitution vectors. This
delimiter must also be the last character of L. Z is R with the substitutions made.

Z<RADJ R A Right ADJust

Z is R right-adjusted, so that the rightmost character of each row is not blank
unless all the characters of the row are blank. R can be an array; the rows are
right-adjusted individually.

Z<RCNUM R a Row and Column NUMbers

R is a matrix. Z is R with column numbers across the top and row numbers
along the left side.

Z<L REPLACE R

R can be any array. Z is R with every occurrence of a seek string replaced by a
replace string. L is a two-element vector, each of whose elements is a scalar or
vector. The first element is the seek string and the second element is the replace
string.

REPLACEYV is a subfunction of REPLACE.

Chapter 3. General Purpose Workspaces 47

The UTILITY Workspace

TEXT<4 Up'HEREIS SOMETEXT'
REPLACE/' _' ('HERE' 'THERE') TEXT
THERFE
Is___

SOME_
TEXT_

Figure 17. REPLACE: A String Replacement Function

Z<«RTBLANKS R A Remove Trailing BLANKS

R is a simple array. Z is R with trailing blanks or trailing blank columns removed.

7<L VCAT R n Vertical CATenation

L and R are arrays of rank 2 or less. Z is a matrix. Its width is the that of the
wider of L or R. L is at the top of Z and R is at the bottom.

Z<XBLANKS R A eXtra BLANKS

Remove extra blanks. R must be a vector. Z is R with leading and trailing
blanks removed and intermediate blank sequences reduced to a single blank.

GPTRACE: Setting and Removing Trace and Stop Vectors
The functions in this group can be used in debugging your defined APL2 operations
by establishing trace and stop vectors when you are checking the operations out
and removing them when you are finished.

STOPALL Create stops on all statements in all functions of a
workspace

STOPOFF Set all stop vectors to the empty vector

STOPONE Create stops at first statements of all functions and
operators in the active workspace

TRACFALL Trace all statements in all functions and operators of
the active workspace

TRACEBR Trace branch lines of a given function or operator

TRACFELIST Trace all statements in functions and operators named
in a list

TRACEOFF Set all trace vectors to the empty vector

TRACFEONE Trace first statements of all functions and operators
in the active workspace

Figure 18. GPTRACE Functions

48 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

STOPALL

This function creates stops on all statements in all functions in the active work-
space.

STOPOFF

This function cancels all the stop vectors in the active workspace.

STOPONE

STOPONE creates stop vectors for the first statement of all the functions and oper-
ators in the active workspace.

TRACEALL

TRACEALL creates trace vectors for all the statements of all the functions and
operators in the active workspace.

TRACEBR R a TRACE BRanch

This function creates a trace vector for every branch statement of the function or
operator named in E. R is a single name.

TRACFEFLIST R

This function creates trace vectors for all the statements in the functions and opera-
tors named in . R is a simple scalar, vector, or matrix, or a vector of vectors.

TRACEOFF

This function cancels all the trace vectors in the active workspace.

TRACEONE

TRACEONE creates trace vectors for the first statements of all the functions and
operators in the active workspace.

Chapter 3. General Purpose Workspaces 49

The UTILITY Workspace

GPXLATE: Translating from One Character Representation to Another

GPXLATE contains three functions and two global variables. The variables are
used as translate tables by the functions LCTRANS (which converts from upper-
case to lowercase), and UCTRANS (which converts from lowercase to uppercase).

The third function, TRANSLATE, is a general-purpose translate function that
requires a translate table as its left argument. The functions and their syntax are
shown in Figure 19.

Translation Functions

Z< LCTRANS R Translate uppercase to lowercase
Z<« UCTRANS R Translate lowercase to uppercase
Z<L TRANSLATE R Translate R into Z using

translate-table L (a numeric vector)
Translation Group Constants

LCTt Table used for translating to lowercase
UCTt Table used for translating to uppercase

Figure 19. Functions for Translating Character Arrays (GPXLATE)

The use of the uppercase and lowercase translate functions is demonstrated in
Figure 20.

CV<«'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

UCTRANS CV
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

LCTRANS CV
abcdefghijklImnopgrstuvwxyzabcdefghijklmnopgrstuvwxyz

Figure 20. Examples of Lowercase and Uppercase Translation

50 APL2 Programming: Using the Supplied Routines

The UTILITY Workspace

(1)
(2
(3)
@
(5)
(6)

(]

(8)

9

0ro<o

LOWERINDICES<«OAF 'abcdefghijklmnopgrstuvwxyz'

UPPERINDICES<UAF 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

LCTt<«1256

LCTt[UPPERINDICES1«LOWERINDICES

LOWERINDICES
129 130 131 132 133 134 135 136 137 145 146 147 148 149 150 151 152 153 162 163
164 165 166 167 168 169

UPPERINDICES
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216 217 226 227

228 229 230

LCTtLUPPERINDICES]
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216 217 226 227

228 229 230

OCrR 'LCTRANS'

A<LCTRANS B

A A IS B WITH UPPERCASE LETTERS TRANSLATED TO LOWERCASE LETTERS

A<LCTt[0I0+0AF B]

231 232 2383

231 232 233

Figure 21. Constructing and Using a Lowercase Translate Table

Figure 21 shows how the lowercase translate table was constructed:

(1)

Since translation requires selecting values from tables, it is important to estab-
lish a known index origin. The first action is to set the origin to 0 because 0
is more useful than 1 for translating purposes.

The indexes of the lowercase letters in JAV are determined by the use of
OAF.

The indexes of the uppercase letters in AV are determined by the use of
OAF.

The lowercase translate table is initialized as 256 consecutive integers from 0
to 255.

The indexes of the lowercase letters replace the indexes of the uppercase
letters in the translate table.

(6), (7), and (8)

9)

Show how the index sets and the translate table are interconnected.

A canonical representation of the LCTRANS function, showing how it does
lowercase translation.

Chapter 3. General Purpose Workspaces 51

Chapter 4. The Display Terminal Workspaces

Using the screen to communicate between a program and a terminal user and con-
trolling all the terminal's signaling, sensing, formatting, and other features is called
full-screen management. The auxiliary processor AP 126 provides a full-screen
management capability for APL2 users.

AP 126: The GDDM/PGF Auxiliary Processor

AP 126 manages the screen by using the Graphical Data Display Manager
(GDDM), including its presentation graphics feature (PGF). Information about
GDDM and PGF is contained in two manuals:

GDDM Base Application Programming Reference
Presentation Graphics Feature: User's Guide

These manuals can help you use AP 126 effectively.
GDDM provides a comprehensive set of subroutines that perform a variety of
screen-management functions, among them:

e Defining field size and placement.

» Defining up to nine field attributes (for example, color and highlighting).

e Defining up to three attributes for individual characters within a field.

* Using alternative symbol sets, that is, replacing the standard characters with
others designed for special purposes either throughout an entire field or
character-by-character.

e Drawing lines, curves, and axes using a feature usually called vector graphics.

e Drawing plots, graphs, charts, and histograms using a collection of subroutines
collectively called the presentation graphics feature (PGF).

GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM

52

Five workspaces use AP 126 to perform GDDM functions:

CHARTX This workspace offers a call interface to the GDDM Interactive Chart
Utility (ICU). It also offers a facility for using predefined ICU chart
formats.

GDMX This workspace contains GDMX, a cover function for GDDM. It can
be used to call GDDM routines directly, taking advantage of APL2's
general array facilities to pass multiple GDDM calls in one GDMX call.

GRAPHPAK This workspace contains a comprehensive set of functions for plots,
graphs, charts, 3-dimensional geometry, and curve-fitting.

FS5C126 This workspace is a replacement for the #SC124 and FULLSCRX
VS APL workspaces, which used AP 124 for full-screen text input and
output. F.SC126 provides functions whose names and syntax
match those in the VS APL workspaces, but use AP 126 instead.
Because AP 126 uses GDDM for full-screen support, it can operate
on a wider variety of displays and devices than AP 124.

© Copyright IBM Corp. 1985, 1994

FSC126's primary purpose is to help maintain older applications
using full-screen “panels”—defined screen formats, text, field names,
and associated information.

Note: FS(C126 is now obsolete. New applications can more fully
use the potential of GDDM for combined full-screen text and graphics
support by using the GDMX workspace.

If you have a VS APL application that uses the FSC124 or
FULLSCRX versions of the functions in F5C126, and you wish to
continue to use the VS APL versions, you can migrate them along
with your application by using the)MCOPY system command.

FSM This workspace has functions corresponding to many of the GDDM
and PGF subroutines. It also includes a function that processes APL2
session manager commands.

Note: This workspace is obsolete and is not supported by facilities
introduced after Version 1 Release 3 of GDDM. It is included here

only for the benefit of older applications that use its facilities. New

applications should use GDMX (described above).

An Introduction to Text and Vector Graphics

Text Graphics

A display screen, like a sheet of paper, is used either for typing or for drawing. The
following describes two uses of display screen: “text graphics” and “vector
graphics”.

In text graphics, the screen is divided into rectangular cells. These cells contain
either display characters (output or input text) or nondisplay characters (characters
that delimit field boundaries and determine field attributes). A display terminal with
32 rows and 80 columns, for example, contains 2560 cells.

The smallest individual object in text graphics is a character. Characters can be

combined into fields. A format defines a set of fields that make up a page. A page
can contain several text fields but, at most, one graphics field. The graphics field is
a rectangular area of the screen reserved (primarily) for drawing rather than typing.

Vector Graphics

To simulate line-drawing vector graphics, GDDM divides the surface of the display
into display points: (sometimes called pels or pixels). These display points are a
collection of dots, covering the entire surface of the screen, which can be individ-
ually illuminated. Drawing a line between two points illuminates the individual
points that lie on the line connecting them. This is done by a beam that crosses
the face of the display from side-to-side in successive lines from top to bottom. It
illuminates the points on the line as it sweeps across them.

The expression vector graphics used below refers to this display point type of
vector graphics.

Chapter 4. The Display Terminal Workspaces 53

| Pages: Text and Vector Graphics
Pages are an important GDDM feature. Once a page is created by an APL2
program, it continues to exist until it is explicitly deleted or the program discontinues
its use of GDDM. To replace a current page, you merely select one that you
created earlier. The replaced page is retained; if needed, it can be selected again
later. In selecting a page, you can accomplish in one step what might otherwise
require extensive reformatting, text output, graphics output, and perhaps other
activities, such as a request for input to be repeated.

Coordinate Systems: Text and Vector Graphics
The coordinate system for text graphics starts at the upper left corner of the screen
in the position occupied by row 1, column 1. The coordinate system for vector
graphics starts at the lower left corner of the graphics field in the position occupied
by the point 0,0.

The difference in coordinate systems reflects the different conventions of text and
vector graphics. GDDM uses both systems. In reserving space for a graphics
field, the text graphics row/column convention is used. When you are processing
graphics functions; however, the 0,0 position of the picture space is the lower left
corner.

Coping with Complexity: Form and Chart Design
Designing forms and charts is a detailed, painstaking business. It requires a con-
stant juggling to use limited space to best advantage. Multiple-copy snapout forms
can contain interleaved spot carbons, shadow printing, blackout sections and other
refinements known only to professional form designers.

Experienced cut-and-paste specialists design information to provide the relevant
parts of a common body of information to people with different, but complementary
objectives; for example, sales clerks, production planners, tally clerks, billing clerks,
sales analysts, and customers.

Similarly, draftsmen who present numerical information graphically must plan to use
a given space to best advantage; for example, they determine the size of the chart,
and its placement on the page.

The point is that both of these activities require detailed sets of steps that are
seldom explicitly listed—until you write a computer program that does them.

In writing a GDDM program for text graphics, you are specifying explicitly the activ-
ities that a form designer does implicitly, that is, without a set of specific
instructions.

In writing a GDDM program for vector graphics, you are specifying explicitly what
draftsmen do when preparing graphs or charts.

I Although there are a large number of subroutines that make up GDDM, they are
I necessary. A possible strategy for learning them is:

I e Learn those things that are specific to GDDM: how to start it, how to use i,
I and how to stop it.

I e Think of what you would like to do in terms with which you are familiar. Write
I down a set of actions in those terms.

54 APL2 Programming: Using the Supplied Routines

e To translate them into a program that uses GDDM, look for the GDDM subrou-
tines that do what you want. Rewrite your procedure using subroutine names
instead of the terms you originally wrote down.

You might find it harder to learn something as comprehensive as GDDM if you
think of it as a collection of arbitrary facts all of which have to be mastered before
any of them can be used. Start out thinking first not of GDDM; but, of what you
have to do, and then looking for the functions that help you do it.

Finally, since you are using APL2, you have to learn how to translate the con-

ventions used in GDDM publications (which are written for languages that call sub-
routines rather than process functions) into the conventions used in APL2.

Chapter 4. The Display Terminal Workspaces 55

CHARTX—an APL2/ICU Data Interface

The CHARTX function offers a call interface to the GDDM Interactive Chart Utility
(ICU). Data can be passed to the ICU in a variety of formats. CHARTX offers a
facility for using predefined ICU chart formats.

Tied and Free Data

The ICU allows the simultaneous graphical display of several groups of data. For
example, a graph with three line plots has the data for each line plot represented
as a data group. The ICU distinguishes between two types of data format modes
for representing data groups either as tied data or free data. In tied data mode, all
data groups have the same set of X values. In free data mode, each data group
has its own set of X values or coordinates, which are independent of other groups.

CHARTX handles both ICU data format modes; the mode is determined from the
structure of the arguments to CHARTX.

Using CHARTX for Tied Data
For tied data, CHARTX has the following call sequence:

XT CHARTX YT

Where:
e XT is the simple numeric array of X values.

e YT is the array of Y values.

If XT is not specified, CHARTX uses a default X-coordinate vector consisting of
consecutive integers that are appropriate for YT, starting with 0 0.

YT is a simple numeric scalar, vector, or matrix. If YT is a scalar or vector, it
forms one data group. If YT is a matrix with ¥ rows and N columns, it forms M
data groups.

If YT is a scalar or vector, then XT must be the same shape as YT. If YT is a
matrix, then XT must be a vector, the length of which is the same as the number of
columns of YT. That is:

pXT <> “14pYT.

Examples
Each of the following lines in|Figure 22 on page 57 |s a separate example. When
you enter an example, the screen clears, then displays a chart.

56 APL2 Programming: Using the Supplied Routines

CHARTX 12 22 18 32 7

(15) CHARTX 12 22 18 32 7 a Same result as previous example
CHARTX 1 10 o.x 112

(112) CHARTX 1 10 o.x 112 A Same result as previous example
1 2 5 8 9 CHARTX 12 22 18 32 7

(20112) CHARTX 1 10 o.x112

CHARTX 1 2 0,0 0,1x1120

Figure 22. Examples of Using CHARTX for Tied Data

Using CHARTX for Free Data

For free data, CHARTX has the following call sequence:

XF CHARTX YF

Where:

e XF is the array of X values.
e YF is the array of Y values.

XF must have the same structure as YF. Items of XF form the X-coordinates for
corresponding items of Y 7.

If XF is not specified, CHARTX uses a default X-coordinate array, each item of
which consists of consecutive integers, starting with I 0, that is appropriate for the
corresponding item in YF.

YF is a numeric vector of depth 2, each item of which is a simple scalar or vector.
Each item of YF forms an independent data group.

Examples
Each of the following lines in Figure 23 is a separate example. When you enter an
example, the screen clears, then displays a chart.

CHARTX (3 7 16) (10 14 8 3 0)
(13) (15) CHARTX (3 7 16) (10 14 8 3 0) A Same as above
(2 3 4) (15) CHARTX (3 7 16) (10 14 8 3 0)

CHARTX ?7175p10

Figure 23. Examples of Using CHARTX for Free Data

Chapter 4. The Display Terminal Workspaces 57

Usage Notes
* You can specify the global variable FORMNAME as the name of a predefined
chart format. If FORMNAME is undefined, or if FORMNAME has the value
"% ' the default format is used. The default format is a line graph with
autoscaled axes, default line colors, default axis markers and labels, and so on.
If FORMNAME is assigned the name of an unknown chart format, then an error
message is issued.

* Some facilities available in the ICU chart call are not used by CHARTX.
These include specification of chart keys, labels, and headings. If you want to
use these facilities, you must modify the CHARTX function.

e The main purpose of CHARTX is to make it easy to generate ICU charts and
graphs. Once in the ICU environment, you can modify the chart type and
format to suit your needs by using the ICU interactive facilities. Data trans-
ferred to the ICU can be displayed in any of the following:

— Charts

- Bar

- Pie

- Polar

- Surface

- Tower
Venn diagrams
Line graphs
Histograms
Scatter plots

58 APL2 Programming: Using the Supplied Routines

GDMX

Using GDMX

GDMX is a cover function for AP 126, the Graphical Data Display Manager (GDDM)
auxiliary processor. GDMX offers an easy way to use GDDM, which takes advan-
tage of the general array facilities of APL2 to pass multiple GDDM calls in one
GDMX call.

The discussion here assumes some knowledge of AP 126 and GDDM. For more
information on AP 126, see APL2/370 Programming: System Services Reference.

For a detailed discussion of GDDM, see Graphical Data Display Manager: Base
Programming Reference.

GDMX has the following calling sequences:

CODE GDMX ARG

CODFE is a simple character vector that is the name of a GDDM call. ARG is the
argument list appropriate for the GDDM call.

'GSCOL' GDMX 2
Sets the GDDM color attribute to red.
'ASCPUT' GDMX 5 6 'CATFAT!
or
"ASCPUT' GDMX 5 (pT) T<'CATFAT'
Fills alphanumeric field 5 with the string ' CATFAT'.
FM<«3 5p 1 2 6 1 10 2 13 8 2 14 3 18 9 5 5
FM
1 2 6 1 10
2 13 8 2 14
3 18 9 5 5

"ASDFMT' GDMX (pFM) FM

Formats three alphanumeric fields, using the format matrix FM.

CODE1 CODE2...CODEN GDMX ARG1 ARG2 ARG3...ARGN

CODE1 CODE2 ... CODEN are simple character vectors that are the names
of GDDM calls; the left argument of GDMX is thus a vector, each item of which is a
simple character vector. ARG1 ARG2 ... ARGN are argument lists appro-
priate for the corresponding GDDM calls.

Chapter 4. The Display Terminal Workspaces 59

'GSCOL' 'GSLT' GDMX 2 3

Sets the GDDM color attribute to red, and sets the line attribute
to dash-dot line.

'"GSFLD' 'GSWIN' GDMX (1 1 5 7) (0 10 0 20)
Defines a graphics field 5 rows deep and 7 columns wide, starting at row 1, column

1, and defines a graphics window within that field with horizontal coordinates 0 to
10 and vertical coordinates 0 to 20.

(cCODE) GDMX ARGl ARG2 ARG3 ... ARGN

CODE is a simple character vector that is the name of a GDDM call; the left argu-
ment of GDMX is thus a scalar, the only item of which is a simple character vector.
ARG1 ARG2 ... ARG are argument lists, all of which are appropriate for the
GDDM call.

(c'FSPDEL') GDMX 4 8 12

Deletes GDDM pages with page identifiers 4, 8, and 1 2.

GDMX 'ERRTOL' N

IV is a simple numeric scalar. This call tells GDMX to report GDDM errors only if
the severity code exceeds NN.

GDMX 'ERRTOL' O a SET ERROR TOL. TO O
a SELECT PAGE 99, WHICH DOES NOT EXIST...
'"FSPSEL' GDMX 99
GDDM ERROR. RC= 8
'"FSPSEL' GDMX 99
A A

GDMX 'ERRTOL' 8 A SET ERROR TOL. TO 8

'"FSPDEL' GDMX 99

GDMX 'MORE'

Provides more information about the last GDDM error.

'"FSPDEL' GDMX 99

GDDM ERROR. RC= 8
'"FSPDEL' GDMX 99
A A

GDMX 'MORE'
FSPDEL ADMO0132 E PAGE 99 DOES NOT EXIST

60 APL2 Programming: Using the Supplied Routines

GDMX 'TERM'

Terminates the current connection with GDDM by retracting and deleting variables
shared with AP 126. (See[‘Global Variables” below.)

GDMX A

A is a properly formed array for direct AP 126 processing. To be properly formed,
the Enlist of A (A) must be a series of APL numeric call codes and their corre-
sponding GDDM arguments. The first item of A must be numeric.

GDMX 514 2 24 5 (pT) T<«'CATFAT'
The call code for GSCOL is 514; the code for ASCPUT is 424. This example

sets the GDDM color attribute to red, and fills alphanumeric field 5 with the string
"CATFAT'.

Global Variables

GDMX creates and uses the following global APL arrays:

DAT G The AP 126 data variable. = GDMX automatically creates and
shares DAT _G as required.

CTL_G The AP 126 control variable. GDMX automatically creates and
shares CTL _G as required.
RET_G The result of calls to AP 126. Each invocation of GDMX that calls

AP 126 results in the assignment RET_G<«CTL_G DAT_G.

The calls GDMX 'MORE' and GDMX 'ERRTOL' N set
RET_G to an empty character matrix. The call GDMX'TERM"'
deletes RET_G.

G_CODES A 2-item vector. The first item is a vector of character vectors
giving the names of GDDM calls made by GDMX; the second item
is a simple numeric vector giving the corresponding call codes.
Names and codes are added to this list the first time they are
encountered by GDMX. Thus the list contains only the names and
codes used in a particular workspace.

G_ERRTOL The current setting of the error tolerance. If GDMX encounters a
GDDM error and G_ERRTOL is not defined, G_FRRTOL will be
initialized to 0.

Usage Notes

 In applications with a single top-level user function, it is generally appropriate to
make all global variables used by GDMX local to the top-level function, with
the exception of G_CODES. In applications with more than one top-level
function, it is generally appropriate to leave these variables global.

e When making multiple calls to GDDM with GDMX, the multiple calls are pack-
aged into a single call to AP 126. So while the expression:

CODE1 CODE2 GDMX ARG1 ARG2

Chapter 4. The Display Terminal Workspaces 61

is equivalent to the expression:
CODE1 CODE2 GDMX~ ARG1 ARG2

the former makes only one call to AP 126 while the latter makes two.

e Some GDDM calls require no argument. GDMX, however, still requires a
right argument for the GDDM argument list. In these cases, code an empty
vector for the right argument of GDMX. For example:

'FSALRM' GDMX !
The terminal beeps when the screen is next updated.

e For some application workspaces, it might be appropriate to have GDMX return
an explicit result rather than return the result in the global variable RET_G. To
have GDMX return its result explicitly, modify the GDMX function header to
include RET _G. Thus, the first line of GDMX would read:

[0] RET_G<«CODES GDMX ARGS;: ...

Example

This example lets you draw lines on your screen by moving the cursor around and
pressing ENTER. The program draws a line from the current cursor point back to
the last location of the cursor. Pressing PF3 quits the program and returns you to
APL2.

V DEMO
[11 w APL2 example using GDMX function
[21 'GSSEG' GDMX 1 A Open segment 1
[3] 'GSMOVE' GDMX 50 50 Initialize current position
[41 LOOP:'ASREAD' GDMX '' Wait for operator action
[5] >(1 3A.=245+1>RET_G)/END Check for PF3
[6] 'GSQCUR' GDMX '! Find where cursor 1is
L 71 '"GSLINE' GDMX ~241>RET_G Draw line from previous point
[8] +LOOP Loop back
[91 END:'GSSDEL' GDMX 1 Delete segment 1
[10] V

®» D ®D®D®DO®D

62 APL2 Programming: Using the Supplied Routines

GRAPHPAK—a Vector Graphics Workspace

GRAPHPAK is a comprehensive set of defined functions for drawing pictures on
display device screens. It duplicates many presentation graphics feature (PGF)
services, and includes many features that PGF does not have (3-dimensional plot-
ting of various kinds, fitting and plotting curves, and drawing organization charts).

One important point: GRAPHPAK uses AP 126 to get basic GDDM services, but it
does so in a manner different from the FSM¥ and FSC126 public library work-
spaces. This means that the GRAPHPAK functions that work with the screen
cannot be combined with GDDM functions from those workspaces. The mathemat-
ical functions (those that do curve-fitting, for example) can, however, be used in
any other workspace that does not contain similarly-named objects.

The GRAPHPAK workspace is fully described in APL2 GRAPHPAK: User's Guide
and Reference. This manual contains examples and illustrations of how to use
GRAPHPAK functions. It also contains a list of each user function, a detailed dis-
cussion of the function, and the type of arguments each requires.

Chapter 4. The Display Terminal Workspaces 63

VS APL Compatible Workspaces

Two obsolete display terminal workspaces, F.SC126 and FSM (full-screen
manager), are provided only to maintain compatibility with older applications.
These workspaces are no longer supported.

FS(C126 is used for designing and using full-screen panels. For information on
other ways to do this, see GDDM Interactive Map Definition, Application Prototype
Environment Guide and Reference, or AP 124 in APL2/370 Programming: System
Services Reference.

FSM is superseded by GDMX, which uses a much better approach to calling
GDDM routines. (For every supported GDDM routine, FSM contains a function of
the same name that calls it.) F.SM is not supported for facilities introduced after
GDDM Version 1 Release 3. For information on GDMX see [‘Using GDMX” on|
page 59

FSC126 Workspace

FS(C126 is a functional extension of the VS APL workspaces, FSC124 and
FULLSCRX. FS(C126 provides a core set of functions whose names and
syntax match those in the VS APL workspaces, but that use AP 126 instead of AP
124. In addition, F'SC126 provides a small set of new functions that make limited
use of extended 3270 text handling capabilities of AP 126 and GDDM, not sup-
ported by the previous AP 124.

Documentation of the F'SC'126 workspace is provided online in the workspace
itself.)L OAD the workspace and type ABSTRACT, DESCRIBE, or HOW.

FSM Workspace

The FSM workspace contains functions that facilitate the use of Graphical Data
Display Manager, including its presentation graphics feature.

In addition, the workspace contains a function (SM) that can be used to process
APL2 session manager commands directly or from within APL functions. Its syntax
is:

SM command

Where command is a character string representing one of the session manager
commands (COLUMN, COPY, DISPLAY, HELP, LINE, LOG, PAGE, PFK,
PROFILE, and SUPPRESS) followed by a space and the text, if any, required to
complete the command.

The SM function shares two variables with AP 120 (the session manager auxiliary
processor): CTLSM and DATSM. Data resulting from processing a command is
returned in DATSM.

The APL2 session manager is described in APL2/370 Programming: System Ser-
vices Reference.

IBM recommends using the GDMX workspace instead.

64 APL2 Programming: Using the Supplied Routines

Chapter 5. Environment-Dependent Workspaces

The environment-dependent workspaces are:

CMS
TS0
FILESERV

Their purpose is to make environment facilities readily available to the APL2 user.
They do this by providing defined APL2 cover functions for that purpose.

Communicating with the world outside the APL2 workspace requires a series of
detailed steps: offering to share one or more variables, checking share status,
establishing initial values, checking return codes, and so on. Many of the cover
functions in the CMS and TS0 workspaces perform standard sequences of this
type. In addition, the CM.S and T'S0O workspaces contain comprehensive functions
like OPEN, CLOSE, GET, PUT, GETFILE, and PUTFILE, for easy use of
external files and data sets.

Note: APL2 Version 2 provides several new techniques for file access that are
operating-system independent. Application developers should consider whether
one of these techniques serves their needs better than the workspaces described
here:

* Processor 12 provides direct access to files using APL2 primitives.

e AP 211 provides the ability to store APL2 objects in files by name. This
processor is compatible with the AP 211 provided on workstation APL2 plat-
forms.

* Processor 10 external functions AFV and AFM provide a simple way to read
and write a file as a whole. Compatible functions for these are also available
on the workstation APL2 platforms.

For information on these file access techniques, see APL2/370 Programming:
System Services Reference.

Command, Alternate-Input, and Specialized File APs
Environment dependencies are reflected in three types of auxiliary processors:

e Command
» Alternate-input or stack
e Specialized file

These are each discussed in the sections describing individual workspaces.
However, one of them, the alternate-input processor, has some unique character-
istics that make a preliminary discussion here advisable.

The Alternate-Input Processor
The objective of the alternate-input processor is to replace input from the terminal
by preplanned input from a stack.

An example suggests why this might be useful. Using the CMS command

processor, you can write an APL function that sorts a CMS file before either
bringing it into the workspace or performing some other operation on it. To do this,

© Copyright IBM Corp. 1985, 1994 65

execute the CMS SORT command, specifying the file to be sorted and the sorted
file to be created.

The CMS SORT program types a message at the terminal, requesting you to
specify the fields on which the file is to be sorted, and then unlocks the keyboard
S0 you can type in the numbers identifying the first and last positions of each field.
The SORT program then sorts the old file on these fields and creates a new one
with the requested name.

In general, it is inconvenient to have the APL function stop execution to request the
information needed by the SORT program. The user of the APL function does not,
in general, know what fields to specify; it is the writer of the program who has this
information. Without an alternate-input processor, no one could use an APL func-
tion of this kind without knowing what responses are required at various points.

The alternate-input processor eliminates both the interruptions and the need for
detailed instructions. When the APL programmer knows the required user
responses, they can be stacked. Then, when the executing function requests a line
of terminal input, instead of requesting it from the terminal it takes it from the stack,
starting with the first stacked line if the stack organization is FIFO (first in, first out)
and the last if it is LIFO (last in, first out). No input from the terminal is requested
until the stack is exhausted.

Obviously, there is little advantage to using the alternate-input processor except
within a defined function. In immediate execution, putting a line on a stack causes
it to be immediately executed and removed. This is a waste of time and effort.

The line could be entered directly from the keyboard with the same effect. This
practical restriction to use within a defined function is one of the ways the alternate-
input auxiliary processor differs from the others; most of them can be used effec-
tively by means of immediate-execution keyboard entries.

If you find yourself frequently entering the same sequence of operations from a
keyboard, you might find it useful to create a procedure by stacking a set of
alternate-input lines to be executed on demand. The CMS and T'SO workspaces
each have a function called PROC that does this. PROC creates a function for
the purpose, giving it the name you specify. In particular, this offers a way to
execute system commands under program control. The function does the neces-
sary variable-sharing and initializing and stacks the alternate-input lines that make
up the procedure. These lines are then be stacked and executed every time you
type the name of the created function. The PROC function that creates procedures
is described in the following section.

66 APL2 Programming: Using the Supplied Routines

The CMS Workspace

The CMS Workspace

The following sections discuss how to use the CMS workspace.

Characteristics of the CMS Environment

As a CMS user, you have your own virtual machine complete with a terminal and
one or more virtual readers, punches, printers, tapes, and disks. Virtual disks are
parts of real disks that are specially formatted for use by CMS. Because they are
usually not complete disks but rather selections of one or more cylinders from real
disks, they are sometimes called minidisks. Each minidisk has a virtual device
address and a mode, denoted by a single alphabetic character followed by a single
numeric character. You can use AP 110 to read or write CMS files on minidisks.
You can use AP 111 to read and write files formatted for use by other system
control programs and also for tapes or virtual readers, printers, and punches.

CMS operates under a control program called CP, which is concerned with the real
machine on which several concurrent virtual machines are usually in operation.
Both CMS and CP have sets of commands appropriate to the functions each per-
forms. Many of these commands can be executed from an APL2 workspace by the
use of AP 100 or the)H0ST command.

CMS Command, Alternate-Input, and File Processors

The CMS workspace contains functions to help you use the command processor
(AP 100), alternate-input processor (AP 101), and disk-file processor (AP 110).

The defined functions CP and CM.S can be used to issue host system commands
from the active workspace.

Creating APL2/CMS/CP Procedures

Using AP 101, the alternate-input auxiliary processor, is not a straightforward
matter. The function PROC in this workspace (and in the 'S0 workspace) was
written to help you create procedures made up of stacked lines of alternate input.
[Figure 24 on page 68|gives an example of how to use PROC. In the example,
PROC accepts two lines of input from the terminal:

CMS 'LISTFILE * APLWSV2 (E'
WSLIST<GETFILE 'CMS EXEC'

and creates a function called GETWXSPA that shares a variable with the alternate-
input processor, then stacks the two lines of input accepted from the terminal.

The input required to do this and the output message produced by PROC are
shown in section 1 of the figure.

Section 2 of the figure lists the GETWXSPA function created by PROC.

Section 3 shows an execution of the GETWKSPA function and its result: a return
code of 0, indicating successful completion.

Section 4 displays the variable ¥ SLIST created by the alternate-input commands
stacked by GETWKSPA. WSLIST is a listing of all the files of type APLWSV2
on the A disk. The file type APLWSV2 identifies CMS files that are stored, private-
library APL2 workspaces.

Chapter 5. Environment-Dependent Workspaces 67

The CMS Workspace

Note: The first alternate-input line executed the CMS command LISTFILE (using
the defined function CMS to do so). Since the option E was specified, this
command caused a file to be created with a filename CMS, filetype EXEC, and
filemode A.

The second alternate-input line used the defined function GETFILE to read in the
CMS EXEC file and give it the name WSLIST.

(0]
(1]
(2]
[3]
Cu]

0

&1
&1
&1
&1
&1
&1

v

&2
&2
&2
&2
&2
&2

1. Use PROC to create function with stacked input commands

PROC 'GETWKSPA' Create GETWKSPA procedure
CMS 'LISTFILE % APLWSV2 (E' First line of procedure
WSLIST<GETFILE 'CMS EXEC' Second line of procedure
Null line to terminate
GETWKSPA PROCEDURE HAS BEEN CREATED. Output message from PROC

2. List GETWKSPA function created by PROC

VGETWKSPALO]V

GETWKSPA:;B;C

B<«'CMS(192"

C«101 0OSVO 'B!

B<«'CMS ''LISTFILE % APLWSV2 (E'''
B<'WSLIST<«GETFILE ''CMS EXEC'''
1992-03-27 12.18.01 (GMT-8)

3. Execute GETWKSPA function (which creates WSLIST)

GETWKSPA

4. List workspaces on A disk by typing WSLIST

WSLIST

ENVWSHDS APLWSV?2 A1l
IMFX0323 APLWSV?2 A1l
READ121 APLWSV?2 A1
TEMP APLWSV?2 A1l
TEMP?2 APLWSV?2 A1l

WKSPCNT APLWSV2 A1l

Figure 24. Creating and Using AP 101 Functions in CMS

Reading and Writing CMS Disk Files
Disk File AP Functions:

The defined functions in the CMS workspace that can help in using AP 110 are
shown in|Figure 25 on page 69|

68 APL2 Programming: Using the Supplied Routines

The CMS Workspace

CLOSE Close a file

CLOSFALL Close all open files

GET Get a record from an open file

GETFILFE Bring an entire file into the workspace
OPEN Open a file

PUT Put a record into an open file

PUTFILE Write a variable out as a file

RETRACT Retract shared variables

SHARES Determine the names of all shared variables

Figure 25. CMS: File Auxiliary Processor Functions

These functions use subfunctions, which are listed below. Most of the supplemen-
tary functions are copied from the UTILITY workspace.

BOX CHECKNAME DOUBLE INBLANKS MEMBER
OBLANKS PREPARSE2 TYPE VCAT XBLANKS

Using the Functions in CMS

Command Functions

A<CMS B

B is a character string that contains a CMS or CP command. 4 is a return code.

The command SUBSET puts the user in CMS subset mode. In this mode, the
CMS command RETURN returns the user to APL2.

The command CP puts the user in CP mode. The CMS command BEGIN (B for
short) returns to APL2.

A<CP B

B is a character string that contains a CP command. 4 is a return code. If B is a
null vector, the user is put into CP mode. To return to APL2, type B.

Alternate Input Function

PROC A

A is a character string that contains the name of the alternate-input procedure to be
created by PROC. PROC then accepts all nonnull inputs to be stacked by that
procedure. When a null input is entered, a function is created and given the name
in A. Typing this name results in execution of the given lines.

Chapter 5. Environment-Dependent Workspaces 69

The CMS Workspace

File Functions

A<CLOSE B

B is a character string that contains a file name. CLOSFE retracts the shared
variables associated with this file, deletes them from the workspace, and removes
the file name and processing information from the variables OPENFILEs and
PROCACc.

A<«CLOSFALL

CLOSEALL retracts and deletes all shared variables and initializes the variables
OPENFILEs and PROCACc.

A<GET B

B is a character string that contains the name of an open file. 4 is the next
sequential record from the file. The variable rcode contains the return code from
each GET. A read past the end of the file gives a null vector value for 4 and a
value of 12 for rcode.

A<«GETFILE B

B is a character string that must contain at least a file name and a file type (sepa-
rated by at least one blank). These can be followed by a file mode. If a conver-
sion other than 192 is required, this must follow the file name, type, mode
specification and be separated from it by the character '('.

Note: If your conversion option is the default (192 or EBCDIC), you should use
external function AFM. It is supplied with Processor 10 and is much faster. For
more information, see APL2/370 Programming: System Services Reference

A<B MSG C

C is a message number, optionally followed by one or more character strings. B
is a single number or is empty. If B is not supplied, empty, or less than or equal to
the global variable msgw, then 4 is the message returned by the AP2WSM func-
tion, called with right argument C and left argument 'AP2WCMS'. (For more
information, see [The Message Facility” on page 5|) Otherwise, 4 is a 0-by-0 char-
acter matrix.

70 APL2 Programming: Using the Supplied Routines

The CMS Workspace

A<B OPEN C

B is a character string that contains a file name. It can be the name of a new file.
C is a string that contains all the other information required to open the file: file
type, file mode, and, if necessary, the character '(' followed by fix, access, and
conversion options as needed. All C specifications are optional. If they are
missing, the following default values are used:

SCRIPT File type

A File mode

FIX Fixed length records

U File can be read or written
192 Full APL2 EBCDIC translation

OPEVN opens the file, using shared variables that are named by adding suffixes to
the name in B. The data variable is identified by the suffix 'd"'; the control variable
by the suffix 'c'. A is a return code.

The file name is appended to the global variable OPENFILEs. The information
contained in input C is appended to the global variable PROCACc.

A<«B PUT C

B is a character vector. C is a file name. PUT writes the data in B sequentially
to the file C. A is a return code. If an error occurs, then the global variable
rcodes is also assigned the return code, and the global variable errdata is
assigned R.

A<B PUTFILE C

B is a character matrix. C is a file name. PUTFILE writes the character
matrix B into the file C. If the file C is not a new file the user is asked whether the
output is to be added to the end of the file. The output is performed only if the
answer is YES or some shortened form of it.

Note: If your conversion option is the default (192 or EBCDIC), you should use
external function AFM. It is supplied with Processor 10 and is much faster. For
more information, see APL2/370 Programming: System Services Reference

A<«RETRACT B

B is a matrix of names. RETRACT retracts shares for all the names in B and
returns the preexisting coupling values in 4. In other words, RETRACT is a
synonym for the system function OSVE.

Chapter 5. Environment-Dependent Workspaces 71

The CMS Workspace

A<SHARES

A is a matrix of the names of all variables in the workspace that have a nonzero
share coupling value.

Input/Output from Peripheral Devices

To communicate with tapes, readers, punches, and printers, you must use the CMS
FILEDEF command to specify a name by which the file is to be known, the type of
device you intend to use, and any other characteristics (record length, block size,
and so forth) that are relevant. You can use CMS FILEDEF before you start to use
APL2 or by using the defined function CMS.

72 APL2 Programming: Using the Supplied Routines

The TSO Workspace

The TSO Workspace

As a TSO user, you can get at any part of your computing complex that you are
authorized to access. In particular, you can read or modify data sets that you may
or may not have created, as long as you have not been explicitly denied access to
them.

You do your work in TSO by executing TSO commands or collections of commands
called CLISTs. See TSO Terminal User's Guide for a general discussion of TSO
commands and CLISTs.

TSO Command, Alternate-Input, and File Processors
The auxiliary processors you can use to interact with the TSO environment are:

AP 100 The TSO command processor
AP 101 The alternate-input processor

AP 210 The BDAM auxiliary processor
AP 111 The QSAM auxiliary processor

User functions in 7.S0 are divided into three groups:

Command AP Function: 750

This function is for executing TSO commands without leaving APL2.
Alternate-Input AP Function: PROC

This function stacks alternate-input lines for later execution when keyboard input is
requested. See the discussion of [Figure 24 on page 68}

File AP Functions and Auxiliary 7so Functions

ALLOCATE Allocate a data set

ATTRIBS Establish data set attributes

CLOSE Close a file

CLOSEALL Close all open files

GET Get a record from an open file

GETFILFE Bring an entire file into the workspace
OPEN Open a file

PUT Put a record into an open file

PUTFILE Write a variable out as a file

RECID Specify a record number for direct-access use
RETRACT Retract shared variables

SHARES Determine the names of all shared variables

Figure 26. TSO: File Auxiliary Processor Functions

The file functions use subfunctions, which are listed below. Most of these are
copied from the UTILITY workspace.

DOUBLE INBLANKS INDEX LADJ MEMBER OBLANKS PREPARSE?
TYPE VCAT XBLANKS

Chapter 5. Environment-Dependent Workspaces 73

The TSO Workspace

The functions apAI, apCMD, apFILF, and ap@SAM return the numerical
values that identify the alternate input, command, direct-access and QSAM auxiliary
processors. They should be modified to reflect local usage if different from the
default values used in the APL2 workspace.

Using the Functions in TSO

Command Function

A<TS0 B

B is a character string that contains a TSO command. A4 is a return code. If it is
not 0 (successful completion), it is accompanied by a message.

Alternate Input Function

PROC A

A is a character string that contains the name of the alternate-input procedure to be
created by PROC. PROC then accepts all nonnull inputs to be stacked by that
procedure. When a null input is entered, a function is created and given the name
in A. Typing this name results in execution of the given lines.

File Functions

A<B ALLOCATE C

B is a file name (ddname). C contains a data set name which can be followed by
one or more blanks and a list of allocation specifications. (See TSO Extension
Command Language Reference Manual.) ALLOCATE uses the TS0 function to
do the requested allocation. 4 is the return code from TS0.

A<«B ATTRIBS C

B is a file name. C is a list of data-set attributes. ATTRIBS uses the TS0
function to associate the attributes of C' with the attribute file B. The name B can
then be preceded by the characters ' USING' as part of an allocation command.

A<«CLOSE B

B is a character string that contains a file name. CLOSE retracts the shared
variables associated with this file, deletes them from the workspace and removes
the file name and processing information from the variables OPENFILEs and
PROCACc. A is a return code.

74 APL2 Programming: Using the Supplied Routines

The TSO Workspace

A<CLOSEALL

CLOSFEALL retracts and deletes all shared variables and initializes the variables
OPENFILEs and PROCACc. A is a return code.

A<GET B

B is a character string that contains the name of an open file. 4 is the next
sequential record from the file. The variable rcode contains the return code from
each GET. A read past the end of the file gives a null vector value for 4 and a
value of 12 for rcode.

A<GETFILE B

B is a character string that contains the name of an existing OS data set. The
entire data set is read in (using conversion option 192) and is returned as the value
A.

A<B OPEN C

B is a character string that contains a name to be used as the internal name of the
file being opened. In TSO terms, it is used as a FILE or ddname. This is the
name that is meant when the term file name is used in describing the GET, PUT,
GETFILE, PUTFILE, CLOSE, and RECID functions.

C is a character string that can contain, as needed, a data set name and a variety
of options: disposition, keep, conversion, type of access, and auxiliary processor.
The default options are, respectively: OLD, KEEP, 192, R, and ap@SAM. The
options must follow the data set name (if present). If the data set name is omitted,
then the options must be preceded by the character ' ('.

OPEVN opens the file, using shared variables that are named by adding suffixes to
the name in B. The data variable is identified by the suffix 'd'; the control variable
by the suffix 'c'.

The file name is appended to the global variable OPENFILEs. The auxiliary
processor identification and access type are concatenated and appended to the
global variable PROCACc.

The data set name need not be specified if it is already allocated and associated
with file name B. This can be done:

» Before APL2 is activated

e By direct use of the T'S0 function

e By use of the ALLOCATF function

Chapter 5. Environment-Dependent Workspaces 75

The TSO Workspace

Specification of various data set attributes can require use of the ATTRIBS func-
tion (described above). The permissible options are named in global variables
whose names start with the letters opt.s. These are:

Global Variable Permissible Options

optsACC R, W, U, READ, WRITE, UPDATE

optsALCD OLD, SHR, MOD, NEW, SYSOUT

optsALCK KEEP, DELETE, CATALOG, UNCATALOG

OoptsAP apFILE, apQSAM, 111, 210

optsCONV BYTE, EBCD, TN, BCD, APL, BIT, VAR, 192,
A<B PUT C

B is a character vector. C is a file name. PUT writes the data in B sequen-
tially to the file C.

A<B PUTFILE C

B is a character matrix. C is a data set name. PUTFILE writes the character
matrix B into the data set C. If C is already the name of a data set, the old data
set is lost.

A<B RECID C

B is a character string that contains a file name. C is an integer. RECID
returns the file name as the value 4, and specifies C as the number of the record
to be read or written by a GET or PUT. RECID should be used for direct-
access input-output operations.

GET fn RECID no

Gets record number no from file fn. PUT works the same way.

A<«RETRACT B

B is a matrix of names. RETRACT retracts shares for all the names in B and
returns the preexisting coupling values in 4. In other words, RETRACT is a
synonym for the system function 0SVR.

A<«SHARES

A is a matrix of the names of all variables in the workspace that have a nonzero
share coupling value.

76 APL2 Programming: Using the Supplied Routines

The FILESERV Workspace

The FILESERV Workspace

FILESERV Performs imports and exports

VCAT Aids in constructing the SYSIN variable
SYSIN Contains import and export commands
MORE Contains error messages

Figure 27. TSO: User Functions and Variables in the FILESERV Workspace

The FILESERV workspace allows you to transport APL data files into and out of
TSO APL data file libraries. It is distributed only with TSO. It can be used to
provide backups, to interchange data with other APL2 systems, or to migrate data
from VS APL systems.

APL data file libraries in a TSO system are implemented using keyed VSAM clus-
ters. There is one VSAM cluster for each library of files. (Files are identified to AP
121 by library number and file name.) This workspace can EXPORT files from the
VSAM cluster, creating sequential files; and can IMPORT sequential files into the
library. These services are analogous to the EXPORT and IMPORT commands
provided by MVS access method services.

The sequential files are in a form compatible with:

e AP 121 CMS files used by APL2 or VS APL
e The VS APL TSO FILESERV workspace
e The VS APL CICS* service program

e The VSPC service program.

The FILESERV function can perform a series of imports and exports in any com-
bination and using any APL data file libraries. It is driven by either a SYSIN file or
the contents of a SYSIN variable. The syntax of data in the SYSIN source is
described in [Transporting Files in Batch Mode” on page 79|

Exporting Files Interactively

Three steps are required to export files interactively; the first is frequently done
automatically during APL2 start up.

1. Allocate the file library or libraries that contains the APL data files to be
exported. If this is not done by the CLIST that invokes APL2, use a TSO
ALLOCATE statement:

ALLOC F(Flibno) DA(cluster)
where:
libno A library number, with no leading zeros.

Note: The FILESERV workspace does not recognize FO as a private
library. You must allocate the library with some other number (such as
F1001) to be able to export from it.

cluster The data set name of a VSAM cluster, using TSO data set name con-
ventions.

2. Allocate the sequential files to which the APL data files are to be copied. The
format of this command varies depending on the device type and whether the

Chapter 5. Environment-Dependent Workspaces 77

The FILESERV Workspace

data set already exists. Consult TSO command language references for
details. The following model can be used to create a new DASD data set:

ALLOC F(fname) DA(dsname) RECFM(V,B) -
LRECL(4096) SPACE(prim,sec) TRACKS

where:

fname A ddname used in the T0O parameter of the EXPORT statement.
For simplicity, use the APL data file name as an fname. The T0
parameter is not required in this case.

dsname The data set name to be used for the sequential file. You might
want to include the fname as a part of this.

prim,sec Primary and secondary (overflow) space allocation on the device.
3. Set up SYSIN and invoke the FILESERYV function.
a. Invoke APL2.
b.)LOAD 2 FILESERV

c. Assign one or more commands to the SYSIN variable. SYSIN can
contain a character vector or matrix. Each row of a matrix is a separate
command, unless it ends with a plus (+) or minus (-) sign (as described in
[‘Format of Commands” on page 80). The VCAT function can help you in
constructing this matrix. For example:

SYSIN<«'EXPORT 2361 DEPT17'
SYSIN<«SYSIN VCAT 'EXPORT 2361 DEPT18'

d. Invoke the FILESERYV function. It takes no arguments.

Importing Files Interactively

To import files interactively, as many as four steps may be needed, though the first
step is usually not necessary, and the second is frequently done automatically
during APL2 invocation.

1. Define any new file library or libraries you are using. See the discussion on
creating APL2 VSAM libraries in APL2/370 Programming: System Services Ref-
erence for details. You might be able to define a library having the same attri-
butes as an existing library:

DEFINE CL(NAME(new.lib) MODEL(old.lib))
where:
new.lib The data set name of the library you are creating.
old.lib The data set name of an existing APL2 file library.

2. Allocate the file library or libraries that you are importing APL data files into. If
this is not done by the CLIST that invokes APL2, use a TSO ALLOCATE state-

ment:
ALLOC F(Flibno) DA(cluster)
libno A library number, with no leading zeros.

Note: The FILESERV workspace does not recognize FO as a
private library. You must allocate the library with some other
number (such as F1001) in order to import into it.

78 APL2 Programming: Using the Supplied Routines

The FILESERV Workspace

cluster ~ The data set name of a VSAM cluster, using TSO data set naming
conventions.

3. Allocate the sequential files from which the APL data files are to be copied:
ALLOC F(fname) DA(dsname) SHR

fname A ddname used in the FROM parameter of the TMPORT statement.
For simplicity, use the APL data file name as an fname. The FROM
parameter is not required in this case.

dsname The name of the data set that contains the file.
4. Set up SYSIN and invoke the FILESERYV function.
a. Invoke APL2.
b.)LOAD 2 FILESERV

c. Assign one or more commands to the SYSIN variable. SYSIN can
contain a character vector or matrix. Each row of a matrix is a separate
command, unless it ends with a plus (+) or minus (-) sign (as described in
[‘Format of Commands” on page 80). The VCAT function can help you in
constructing this matrix. For example:

SYSIN<«'IMPORT DEPT17 TYPE(DIRECT)'
SYSIN<«SYSIN VCAT 'IMPORT 1018 DEPT18 TYPE(DIRECT)'

d. Invoke the FILESERYV function. It takes no arguments.

Transporting Files in Batch Mode
Batch processing is essentially the same as interactive processing, except that:

* You provide MVS job control language used to start a TSO session.

e Data sets are allocated using either JCL or TSO ALLOC statements that are in
a SYSIN stream.

e APL2 is invoked by a command in the SYSIN stream.

e The workspace is loaded and the FILESERV function is invoked by using
either the INPUT parameter on the APL2 invocation or an APLIN stream.

e The FILESERV commands are normally provided in a SYSIN stream rather
than assigned to a SYSIN variable.

Chapter 5. Environment-Dependent Workspaces 79

The FILESERV Workspace

This is an example of a FILESERV jobstream. The JOB control statement,
PROFILE and ALLOC statements, and the EXPORT and IMPORT commands
have to be modified to meet the requirements of your installation and to provide the
particular services you need:

//APLBAT JOB (DEPT18),APLADMIN
//BATCH EXEC PGM=IKJEFTO1,REGION=2000K,DYNAMNBR=50
//SYSPRINT DD SYSOUT=+,DCB=LRECL=133
//SYSTSPRT DD SYSOUT=x
//APLPRINT DD SYSOUT=*
//SYSTSIN DD =
PROFILE PREFIX(APLADMIN)
ALLOC F(F1001) DA(PRIVATE.APLLIB)
ALLOC F(F2361) DA('PR0J2361.APLLIB')
ALLOC F(F1018) DA('DEPT18.APLLIB")
ALLOC F(DEPT17) DA(SAVE.DEPT17) RECFM(V,B) -
LRECL (4096) SPACE(5,5) TRACKS
ALLOC F(DEPT18) DA(SAVE.DEPT18) RECFM(V,B) -
LRECL (4096) SPACE(5,5) TRACKS
APL2 SH(60K) WS(512K) INPUT(')LOAD 2 FILESERV' 'FILESERV')
//SYSIN DD *
EXPORT 2361 DEPT17
EXPORT 2361 DEPT18
IMPORT DEPT17 TYPE(DIRECT)
IMPORT 1018 DEPT18 TYPE(DIRECT)
//

Format of Commands
The first field in the command is the command name; it identifies the action to be
performed. The command and its operands can be typed between columns 1 and
72; columns 73 through 80 are ignored. Commands and operands are separated
by blanks or commas. (An operand that ends with a right parenthesis does not
need to be separated from a following operand.)

To specify that a command is to be continued to the next line or record, use either
a plus (+) or minus (-) sign.

1. A minus sign, when used as the last nonblank character in a line or record,
indicates that the command is continued with the first character of the next line
or record:

IM-
PORT

is the same as:
IM PORT

The minus sign indicates that separators (blanks in the preceding example)
should be included in the continuation of the line or record.

80 APL2 Programming: Using the Supplied Routines

The FILESERV Workspace

2. A plus sign as the last nonblank character in a line or record indicates that the
command is to be continued with the first nonseparator character of the next
line or record:

IM+
PORT

is the same as
IMPORT

The blanks are omitted.

Comments to Commands

You can replace any of the separators (blanks or commas) with a comment. A
comment must begin with the characters /* and end with the characters */. To
specify that a comment be continued on the next line or record, use a plus or
minus sign, or end the first line or record with */ and begin the next with /*. For
example:

/*THIS COMMENT=*/
/*HAS*/
/*THREE PARTS*/

Using the EXPORT and IMPORT Commands

You can use the FILESERV EXPORT and IMPORT commands to transport AP
121 data files to and from TSO.

The syntax of the EXPORT command is:

EXPORT [nnnnnnn] file namel[pass
TO(ddname)

where:

nnnnnnn The file library number. The default file library number is 1001.

file name The name of the APL data file to be transported from TSO.

password The VSAM password of the file library data set, if necessary.

ddname The ddname of the sequential file to which the APL data file is to be
copied. If the TO keyword is omitted, file name is used.

To transport an APL data file with the file name WORK (in a password-protected
file library with the library number 1002) to a sequential file with a ddname of
WORIK, issue the following command:

SYSIN<'EXPORT 1002 WORK/PW'
FILESERV

The syntax of the IMPORT command is:
IMPORT [nnnnnnn] file name/[pass
FROM(ddname)

[TYPE(SEQUENTIALIDIRECT)]
[NOREPLACEIREPLACE]

Chapter 5. Environment-Dependent Workspaces 81

The FILESERV Workspace

nnnnnnn The file library number. The default library number is
1001.

file name The name of the APL data file.

password The VSAM password of the file library, if necessary.

ddname The ddname of the sequential file to be transported to
TSO. If the FROM keyword is omitted, file name is
used.

SEQUENTIALIDIRECT Specifies the type of file to be created. SEQUENTIAL is
the default.

NOREPLACEIREPLACE Specifies that the file can or cannot replace a file with
the same name. NOREPLACE is the default.

To transport a sequential file with a ddname of WORK to an APL direct data file
with the same name (in a file library with the library number of 1002), issue the
following command:

SYSIN<«'IMPORT 1002 WORK/PW TYPE(DIRECT)'
FILESERV

Error Handling
If an error code (other than zero) is returned from an auxiliary processor, the appro-
priate error message is printed and the processing stack is cleared. It might be
necessary to delete shared variables before calling FILESERV again. The
RETRACTALL function does this.

As a debugging aid, the variable c 1earsw can be set to 0 instead of 1. Then,
after printing the auxiliary processor error message, processing is terminated with a
SYNTAX ERROR in the function vchk. Itis recommended that vchk be
locked in actual use so a DOMAIN ERROR points to vchk.

Special Handling of Selected Errors

An option is provided that allows applications to handle selected error return codes
without the function printing any error messages, and without suspending proc-
essing.

To use this facility, insert a vector of AP return codes into the global variable
pcodes. Special programming in the application enables it to handle the return
codes. This workspace deals with 2-element return codes, but maps the two ele-
ments into one by using 100000.LC0OD. The values in pcodes use that
mapping. The actual return code given by the auxiliary processor can always be
found in the global variable rcode, which can be referenced by the application.

If any function receives a return code from the auxiliary processor contained in
pcodes, that function terminates with the actual return code in rcode. For
functions that give an explicit result, the result is the empty vector.

The default value of pcodes is the empty vector. Do not store a zero in
pcodes under ordinary circumstances.

82 APL2 Programming: Using the Supplied Routines

The FILESERV Workspace

FILESERV Groups

The following groups exist in the workspace:

GPFILESERV Contains functions and variables specific to this workspace. It
must be augmented by other groups to be useable.

GPDESC Contains descriptive information about the workspace.
GPMESSAGE Contains functions for message handling.

GPUTILITY A set of utility functions, many of them from the UTILITY
workspace.

GPVSAM A set of functions and variables taken from the VSAMDATA
workspace.

Chapter 5. Environment-Dependent Workspaces 83

Chapter 6. File Auxiliary Processor Workspaces

84

The file auxiliary processor workspaces are:

APLDATA APL files
VSAMDATA VSAM data sets
VAPLFILE Compatible with the APLFILE workspace from VS APL

They have many similarities. The most important is that they specify the file or
data set to which subsequent input/output functions are to apply by means of the
function USE.

Notes:

1. The CMS workspace and the TSO workspace also have functions for handling
native (CMS or TSO) files.

2. APL2 Version 2 provides several new techniques for file access that are
operating-system independent. Application developers should consider whether
one of these techniques serves their needs better than the workspaces
described here:

* Processor 12 provides direct access to files using APL2 primitives.

e AP 211 provides the ability to store APL2 objects in files by name. This
processor is compatible with AP 211 provided on workstation APL2 plat-
forms.

* Processor 10 external functions AFV and AFM provide a simple way to
read and write a file as a whole. Compatible functions for these are also
available on the workstation APL2 platforms.

For information on these file access techniques, see APL2/370 Programming:
System Services Reference.

© Copyright IBM Corp. 1985, 1994

The APLDATA Workspace

The APLDATA Workspace

This workspace assists in the use of the AP 121 format auxiliary processor.

ACREATFE Creates an APL file

DROP Purges or deletes a file

USE Specifies currently-selected file

AREAD Reads from an APL file

AWRITE Writes to an APL file

AGET Reads from an APL file

ASET Writes to an APL direct file

CLOSE Closes currently-selected file

FILESIZE Changes file size

AT Makes referenced file the currently-selected file
SETRECLEN Sets record length

RETRACTALL Terminates sharing of global variables
SIZE Returns space required by variable
STORE Stores variable on a file of the same name
RETRIEVE Retrieves variable from the named file

Figure 28. Groups in the APLDATA Workspace

Reading and Writing Files of APL2 Arrays

The APL Format auxiliary processor is designed for storing APL2 arrays in their
internal form, including their type and structural characteristics. It is intended that
such files be read and written only by this auxiliary processor.

General Operation
Because many applications use only a single file, the file name is not generally an

argument of these functions. Rather, it is stored as a character vector in the vari-
able £ n by the ACREATE or USE function.
Also, the dyadic function AT puts a file name in fn as in the context:

R<AGET filename AT I

(filename AT I) ASET A

A filename is defined as:
[libno] name [:password)]

Where:
libno A library number. Its significance in each system is:

CMS Filetype, in the form Fnnnnnnn where nnnnnnn is a 7-digit repre-
sentation of the library number.

TSO The library number associated with a VSAM data set that con-
tains files in a form accessible to the auxiliary processor. This
library number must be the ddname of an allocated data set. It
should have the form Lnnn where nnn is the library number
represented without leading zeros.

Chapter 6. File Auxiliary Processor Workspaces 85

The APLDATA Workspace

name A string of up to 8 characters starting with a letter and continuing with
letters or numerical digits.

A separator that is required only when a password is used.

password In some systems, has less restrictive rules of formation than does name,
but all systems accept passwords formed in the way described above
for name. lts significance in each system is:

CMS The link password of the disk on which the data set is stored.
This can be a READ password if the processing is to be read-
only; it must be a WRITE password for writing or updating.

TSO The password of the VSAM data set that contains the auxiliary
processor files.

APL-Format File Functions

TS ACREATE filename

ACREATE creates an APL file. TS is a character vector beginning with 'S for a
sequential file. If it begins with something else, such as 'D"', a direct file is
assumed. If 'S ends with a number, it indicates the file size in bytes (for example,
TS mightbe 'S750000"'). Otherwise, the default file size for that user is
assumed. fn is a character vector that contains the file name as defined above.

There is no explicit result. A file is created and the file name is stored in f n.

DROP filename

DROP purges or deletes the specified APL or EBCDIC file. filename is a character
vector that contains a file name. There is no explicit result.

USE filename

filename is a character vector that contains a file name. There is no explicit result.
The contents of filename are stored in the global variable £ n and thus the refer-
enced file becomes the currently-selected file. Applications involving multiple files
can use this function between uses of file access functions.

R<AREAD

ARFEAD reads from an APL file. R is the retrieved record. The currently-selected
file (as defined in £ n) is opened (if not already open) for sequential read, and the
next record is read. When the file is first opened the next record is the first record
in the file. If the result is an empty vector, then the end of file has been reached
and the file is closed. To close the file before reaching the end, use the function
CLOSE.

86 APL2 Programming: Using the Supplied Routines

The APLDATA Workspace

AWRITE A

AWRITE writes to an APL file. A contains the value to be written. If the value of
A is an empty vector then it is not written, and the file is closed.

There is no explicit result. The currently-selected file (as defined in £ n) is opened
(if not already opened) for sequential write, and the contents of A are written at the
present end of the file. If writing the first record in a newly-created DIRECT file
then the fixed record length is established by the contents of r 1, which is taken as
4054 or as previously set (perhaps by the use of the function SETRECLEN).

R<AGET T

AGET reads from an APL direct file. I is the record number, assuming the first
record is number 1 (that is, origin 1). I must be an integer. If I is an empty
vector, then the file is closed. R is the retrieved record.

I ASET A

ASET writes to an APL direct file. I is the record number, assuming the first
record is numbered 1. I must be an integer that identifies a previously-written
record. If I is an empty vector, then the file is closed and the contents of 4 are
ignored. A contains the record to be updated.

There is no explicit result. Note that this function is used for updating existing
records, not for extending the file.

CLOSE

The currently-selected file is closed and its associated shared variables are deleted.
There is no explicit result.

FILESIZE NEWSIZE

NEWSIZE contains the numeric or character representation of the new file size in
bytes. The actual size is rounded up to the next highest multiple of 1000 bytes.
There is no explicit result. The size of the currently-selected APL file is changed.
If reduced below the current size of its contents, then an error message appears.

R<filename AT I

filename is a character vector that contains a file name. I is usually a file index
or key.

Chapter 6. File Auxiliary Processor Workspaces 87

The APLDATA Workspace

R is I. The implicit result is that the filename is stored in global variable f n, thus
making the referenced file the currently-selected file. Typical use is in a multifile
application in the context: AGET filename AT 1I.

SETRECLEN L

L is a numeric scalar or single element vector giving a record length in bytes.
There is no explicit result. The value of L is stored in the global variable r1. r1
is used when writing the FIRST record into a new APL direct file.

RETRACTALL

All sharing of nonshadowed variables in the workspace is terminated. There is no
explicit result.

R<«SIZE VNAME

VNAME is a character vector that contains the name of a variable in the work-
space. R is the number of bytes of space required if the variable were stored in a
file. This includes an allowance for an internal header, which is stored with and
describes the variable. This function is especially useful in determining the required
record length when setting up an APL direct file. (This function is also used by the
STORE function in this workspace.)

Functions to Store and Retrieve Large Variables

STORE VAR

An APL sequential file is created with the same name (up to 8 characters) as the
variable in VAR. If such a file already exists, it is dropped and recreated with an
appropriate size. The file is opened and the contents of the variable in VAR are
written as the single record in the file. The variable named in VAR is then deleted
from the workspace. VAR is a character scalar or vector that contains the name
of a variable. The variable name must not contain underscored letters. There is no
explicit result.

RETRIEVE VAR

The APL sequential file with the same name (up to 8 characters) as the variable in
VAR is opened and a record is read. The contents of the record are stored in the
variable named in VAR. VAR is a character scalar or vector that contains the
name of a variable. The variable name must not contain underscored letters, and
should be the name of a variable which was previously stored with the STORE
function. There is no explicit result.

88 APL2 Programming: Using the Supplied Routines

The APLDATA Workspace

Using the Project, Private, and Public Libraries

The names of variables being stored and retrieved can occasionally conflict with
workspace and file names in the user's library and hence cause a problem. To
avoid this conflict you can establish a library that can be used by the STORE and
RETRIEVE functions.

To use the project library, you should store the library number in the global variable
objlib. To use the private library, store a zero in obj1ib. (Note that
objlib is by default an empty vector.) If obj1ib has a public or project library
number, the library number is used to access the proper data set.

Error Handling

If an error code (other than zero) is returned from an auxiliary processor, then the
appropriate error message is printed, all nonshadowed shared variables are
retracted, and the execution stack is cleared.

A debugging option is provided if the variable c Iearsw is set to zero instead of
one; after printing the auxiliary processor error message, execution is terminated
with a SYNTAX ERROR in the function chk. It is recommended that chk be
locked in actual use so a DOMAIN ERROR points to chk.

Special Handling of Selected Errors

Another option provides for applications to handle selected error return codes by
special programming without the functions printing any error messages and without
suspending execution.

To use this facility, the application should insert into the global variable pcodes a
vector of AP return codes, which the application handles by special programming.
The actual return code given by the auxiliary processor can always be found in the
global variable rcode, which can be referenced by the application.

If any function receives a return code from the auxiliary processor that is contained
in pcodes, then that function terminates with the actual return code in rcode.
For functions that give an explicit result, this result is the empty vector.

The default value of pcodes is the empty vector. Do not store a zero in
pcodes under ordinary circumstances.

APLDATA Groups

GPAPL The name of the group that contains objects related to the support
of APL format files.

GPDESC Contains descriptive information about the workspace.

GPMESSAGE Contains functions for message handling; it is a subset of most
other groups.

GPREADAPL The name of the group, which is a subset of GPAPL and contains
objects needed for read-only access to APL files.

GPSTORET The name of the group that contains the objects related to the
STORE and RETRIFEVE functions.

Chapter 6. File Auxiliary Processor Workspaces 89

The VSAMDATA Workspace

The VSAMDATA Workspace

This workspace helps you use the auxiliary processor (usually AP 123) that pro-
vides access to VSAM (virtual storage access method) data sets. This auxiliary
processor can be used to access key-sequenced, entry-sequenced, and relative-
record data sets. The data set must be preallocated (and defined to the APL2
system) at initialization time, or in TSO, the command auxiliary processor can be
used to do this. VSAM records are brought into the APL2 workspace as character
vectors. If data conversion is necessary, the group GPDATACV can be copied
from the UTILITY workspace. The variable HOWDATACV inthe UTILITY
workspace contains a description of the data conversion functions and instructions
on how to use them.

For the types of VSAM data sets described above, this workspace provides defined
functions that use the shared-variable interface to do sequential reading and
writing, direct reading and writing, updating, erasing individual records or entire
files, positioning a pointer for subsequent sequential operations, and retrieving the
key of the last record processed.

The records read from or written to VSAM data sets are always character vectors.
For externally-generated VSAM data sets,this means that records read from the
data set might require translation to make them intelligible within the APL2 work-
space. Similarly, updates made to such records should be translated to the
external form before they are written to the data set. The functions in GPDATACV
can be used to do this translation. See FGPDATACV: Converting between Externall
[and Internal Representations” on page 33| for a description of these functions.

Functions or variables in this workspace that have names that contains underlined
characters are executed by user functions. They are not ordinarily executed or
used directly by the workspace user.

Each input/output function uses .SV 0 to check the share status of the shared vari-
ables used by the currently-active file, issuing a shared-variable offer if they are not
currently shared.

| File Naming Conventions

The name of the data set or file in current use is stored in the global variable £ n,
whose value can be changed explicitly by the USE function or implicitly by the AT
function. For more information, see pages[86 hnd

A file name is defined as:

filename:password
filename The name of the VSAM data set

password The VSAM password needed if the data set is password-protected and
the ':' is required only when the password is required.

90 APL2 Programming: Using the Supplied Routines

The VSAMDATA Workspace

Functions to Access External VSAM Files
This section discusses the functions you can use to access external VSAM files.
Note: When translations are needed between external and internal representa-

tions, the functions in GPDATACV should be used. (These can be found in the
UTILITY workspace.)

option USE filename

filename is a character vector that contains a file name. option is a translation
option. (This argument is optional.) There is no explicit result. If option is not 0,
1, or 2,thena DOMAIN ERROR results. Otherwise, the filename is stored in the
global variable £ n, and thus the referenced file becomes the currently-selected file.
Applications involving multiple files can use this function between uses of file
access functions. If the optional left argument is supplied, then it specifies the AP
123 translation option. These options are limited. In general, you need to use the
group GPDATACV inthe UTILITY workspace for data conversion, as mentioned
above.

The conversion option is specified by option as follows:

0 Byte conversion (default)
1 VS APL conversion
2 APL2 conversion

Options 0 and 2 are identical in APL2. The global variable translIateis
assigned the character vector 'T"', 'T1', or 'T2"', depending on the value of
option. If no translation option is selected, then translateissetto 'T"'. If the
new translation option is different from the old, then all shared variables are
retracted.

R<VREAD

R is the retrieved record, which is always an APL character vector. The currently-
selected file (as defined in £ n) is opened for reading, if not already open. The next
record in sequence is read. the file is first opened, the next record is the first
record. You can change the position of the next record in a key-sequenced file by
using the VPOSITION, VGET, VGETHOLD, VERASE, or VSET functions. If
the result is an empty vector, then the end of file has been reached and the file is
closed. To close the file prior to reaching the end, use the function CLOSE.

R<«VREADHOLD

This function is similar to VREAD except that the file is opened for update, and a
HOLD is placed on the record (technically, on the VSAM control interval), thus pre-
venting other users from issuing a READ HOLD (or READ for UPDATE). The
HOLD is released by the next READ or WRITE operation or by closing the file.
VREADHOLD is used in conjunction with V'SET for updating existing records in a
file.

Chapter 6. File Auxiliary Processor Workspaces 91

The VSAMDATA Workspace

R<VGET KEY

The nature of KE'Y depends upon the type of data set being accessed.

Key-sequenced data sets: The key required to access key-sequenced data sets
is a character vector that contains the VSAM key for the desired record. The key
must not be longer than the key length of the defined file. (In some implementa-
tions it must be the same length). If it is shorter, then only that many characters
are compared with the key in the record, starting at the left. It must match the bit
pattern of the key in the file.

Entry-sequenced data sets: For the purposes of keyed access, an entry-
sequenced data set is treated as one long string of characters. The KEY of a
given record is the address of its first character, starting with 0 as the address of
the first record and proceeding thereafter in increments of record lengths (fixed or
variable).

Relative-record data sets: A relative-record data set consists of a number of
fixed-length slots. The KEY in this case is the number of the slot.

The numerical values required for entry-sequenced and relative-record data sets
can be entered either as character strings or as single numbers.

R is the retrieved record. This is always an APL character vector. The currently-
selected file is opened for reading (if not already open).

R<VGETHOLD KEY

Similar to VGE T except that the file is opened for update and a HOLD is placed on
the record (technically, on the VSAM control interval), thus preventing others from
issuing a READ HOLD (or READ for UPDATE). The HOLD is released by the next
READ or WRITE operation or by closing the file. VGETHOLD is used in con-
junction with V.SET for updating existing records in a file.

VSET A

A is a character vector and represents the record to be written into the file. For
entry-sequenced and relative-record data sets, the record is written at the end of
the file or into the position determined by a prior VGETHOLD, VREADHOLD or
VPOSITION. For a key-sequenced file, the key must be appropriately imbedded
in the record. No translating is performed (except as specified by the USE func-
tion) and 4 must be constructed using data conversion functions as appropriate.

There is no explicit result. The currently-selected file is opened for writing (if not
already open for writing or updating). The contents of 4 are written into the
currently-selected file. If updating an existing record, then the previous operation
must have been a VREADHOLD ora VGETHOLD of the same record. In
updating an entry-sequenced file, the new record must not be longer than the
record being replaced.

92 APL2 Programming: Using the Supplied Routines

The VSAMDATA Workspace

VERASE KEY

KEY is a character vector that contains the key of the record to be erased. There
is no explicit result. The currently-selected file is opened for updating (if not
already open for updating). The referenced record in the currently-selected VSAM
key-sequenced or relative-record data set is erased. Entry-sequenced records
cannot be erased.

VPOSITION KEY

KEY is a character vector that contains the key of the chosen record. If KEY is an
empty vector, then the first record in the file is selected.

There is no explicit result. The currently-selected file is opened for reading (if not
already open). A pointer is set at the beginning of the selected record and provides
a starting point for the next sequential operation.

If there is no match on the key, the pointer is positioned to the record with the next
higher key and a RECORD NOT FOUND error code is returned. In its default form,
VPOSITION ignores the return code and returns the key of the next higher
record. To change this so that failure to get an exact match is treated as an error,
change statement number 6 in the VPOSITION function so that it reads:

[6] GESW<O0

This causes an error interrupt if no exact match is found for KEY. Changing the
statement to 'GESW<1"' restores the original condition; the return code is ignored,
and the next higher key is returned if there is no exact match.

KEY<VKF (Key Feedback)

VKF is a niladic function that returns the key of the record just processed or to
which the file has just been positioned. This key is a character vector that contains
the type of information appropriate to the data set:

* A relative-byte address for an entry-sequenced data set
e The imbedded key for a key-sequenced data set
e The relative-record number of a relative-record data set

VCLEAR A

A must be a character string that contains a file name. This file is made the cur-
rently selected file; that is, its name is stored in the global variable £ n. It is closed
for other operations and opened for CLEAR. This means that all existing records
are deleted and the file opened for writing. (The file must be specified as a reus-
able VSAM data set.) There is no explicit result.

Chapter 6. File Auxiliary Processor Workspaces 93

The VSAMDATA Workspace

KEY VWRITE A

This write-with-key command is valid only for relative-record files. KEY must be
the relative-record number of an empty slot in the file. 4 is the record (a char-
acter vector) to be written into that slot. There is no explicit result.

CLOSE

The currently-selected file is closed and its associated shared variables deleted.
There is no explicit result.

VSAMDATA Groups

GPVSAM The name of the group that contains the functions and variables
used to access VSAM files.

GPREADVSAM The name of the group that is a subset of GPV.SAM and that con-
tains objects needed for READ ONLY access to external VSAM
files.

GPDESC Contains documentation variables.

GPMESSAGE Contains functions for message handling; it is a subset of most
other groups.

94 APL2 Programming: Using the Supplied Routines

The VAPLFILE Workspace

The VAPLFILE Workspace

This workspace is retained only for compatibility with earlier APL systems.

The following sections describe a set of functions you can use to create and use a
file of simple, homogeneous APL arrays. The functions are most useful when a file
contain APL arrays of arbitrary rank and dimension, when variable-length records
need to be accessed randomly, or when records are longer than the maximum
length otherwise permitted.

VAPLFILE uses AP 121 as supplied with APL2. It is designed to be compatible
with the VAPLFILE workspace that was distributed with VS APL.

Note: This workspace does not support nested arrays. AP 121, AP 211, and
Processor 12 provide similar function with support for arrays of any type.

VAPLFILE, Processor 12, and AP 121 require that arrays be accessed by
an index number, while AP 211 allows them to be accessed by name.

Main Functions

L CREATE filename

filename is a character vector that contains the name to be assigned to the file.
(See the discussion of file names on page [97}) L, which is optional, is a physical
description of the file. L is a vector of three elements or less. The first element
is the maximum number of arrays that can be written (the default is 100). The
second element is the block size of the data set used to store the file (the default is
560). Each array requires an integral number of blocks. The third element is the
number of blocks for data (the default is 1.1 x L[1]). If a negative symbol precedes
the file name, then other users cannot read the file using this workspace.

USE filename

This function shares appropriately-named variables with the file processor, opens
the file, and defines global variables associated with a file in use. filename is a
character vector that contains the name of a file. (See the discussion of file names
on page [97])

Z<RELFEASE filename

This function retracts and deletes the variables shared with the AP, and deletes the
global variables associated with a file in use. The file is closed. filename is a
character vector that contains the name of a file. (See the discussion of file names
on page97]) Z is 1 if variables are actually retracted. A result of 0 means the
file was not in use or F is not the name of a file.

Chapter 6. File Auxiliary Processor Workspaces 95

The VAPLFILE Workspace

Z<filename AT I

Z is I. This function selects the file named as the current file. See below for
contexts in which this function is very useful. You can always substitute I for
filename AT I below if filename is already the selected file.

I SET A

This function sets 4 as the Ith array in the file whose name is in the character
vector ¥. I SET A can be usedto set A as the I'th element of the file last
mentioned in use of the functions USE or AT. The meaning of T is dependent on
the workspace origin. Note that when replacing an existing array, space is found
for the new array before the old one is erased. In this way an interruption in proc-
essing cannot lose an existing array.

Z<GET filename AT I

Z is the array in the Ith position of the file whose name is in the character vector
filename. GET I can be used to getthe Ith element of the file last mentioned
in use of the functions USE or AT. The meaning of I is dependent on the work-
space origin.

DELETE filename

This function deletes the file whose name is in the character vector filename.

Supplementary Functions

The following optional functions are not necessary for proper use of this package
but can be useful.

Z<GET1 filename AT I

Z is the account number of the person who last set the Ith element of the
filename and the time stamp of the set.

7<S1Ze A

Z is the size of array 4 in bytes.

96 APL2 Programming: Using the Supplied Routines

File Names

The VAPLFILE Workspace

Z<RHo filename

Z is the number of arrays that can be written in the file specified, where filename is
a file that is in use.

ERASe filename AT I

This function undefines the Ith element of the file specified and releases the space
used by it in the file. I can be an array.

Z<FREEBLOCKs filename

Each array stored on the file (with the exception noted below) requires a contiguous
set of blocks. FREFEBLOCKs returns a vector of the contiguous available
blocks. This can be useful on FILE FULL to determine if a file has outgrown its
space, or is merely fragmented. There is a function called COMBINE (which is
executed automatically before a FILE FULL message is given) which attempts to
minimize the fragmentation. The result of FREEBLOCKs can change after exe-
cuting COMBINE.

Note: Small scalar numbers take zero blocks.

Z<EXISt filename AT I

Z is 1 if Ith element of filename has been set, 0 if Tth element of filename does
not contain a value, or ~ 1 if T is out of range. I can be any simple numeric
array.

Z<SHVARS

Z is a matrix of the names of currently-shared variables.

In general, file names consist of a library number, followed by a space and an
alphanumeric name beginning with a letter A-Z . The name can also be
appended with a colon followed by a password. For the functions CREATE and
DELETE, if the name includes a library number it must be the number of a library
in which the user is authorized to save files. For the functions DELETE and USE,
the name must include the password, if any. The functions RELEASE, AT,
RHo,and FREEBLOCKs ignore any library number and any password included
in the file name. All functions except CREATE ignore any negative symbol that
precedes the file name.

Chapter 6. File Auxiliary Processor Workspaces 97

The VAPLFILE Workspace

VAPLFILE Groups

The following groups exist in the workspace:

GPFILEREAD Functions needed for GET access only

GPFILEWRITE Additional functions needed for SET access
GPAPLFILE All the functions in the above groups and the optional ones
GPMESSAGE Functions for message handling

GPDESC Description of the workspace

Note: The following information isn't required for proper use of the VAPLFILE
functions, but you may find it helpful in some situations.

When an error is encountered an appropriate message is printed. Normally the
single '~"' is executed which terminates the function and any associated pending
functions. However, if the variable 0 contains a negative number, then after any
error message, execution is suspended with a normal APL2 error message. This
can be useful when debugging new applications.

It is recommended that the functions CHK and TRY normally be locked so that
suspension occurs in the calling function.

The following global variables are defined whenever a file is used. FILEID
contains the name of the file last referenced in the USE or AT functions. Names
beginning with ¢t 1 and dat are variables shared with AP 121 The name con-
sisting of £d appended to the fileid contains the file description as follows:

1 - User number of file creator

2 - Number of arrays permitted

3 - Block size

4 - Number of data blocks

5 - Row dimension of an index array
6 - Number of index arrays

7 - Number of salvage index arrays
8 - Total number of blocks

9-15 - 0TS at creation

98 APL2 Programming: Using the Supplied Routines

The TRANSFER Workspace

Chapter 7. The TRANSFER Workspace

This workspace provides functions to aid migration to APL2 from VS APL, the APL2
installed user program (IUP), and older versions of PC APL. For complete informa-
tion on migration, see APL2 Migration Guide.

To migrate from APL.SV to APL2, you must first migrate to VS APL. For informa-
tion on how to do this, see:

VS APL for CMS: Installation Reference Manual

VS APL for TSO: Installation Reference Manual

VS APL for CICS/VS: Installation Reference Manual
VS APL for VSPC: Installation Reference Manual

The main functions in the TRANSFER workspace are MASSMCOPY _, FIX_,
FLAG_, INA and OUTA, INPC_,and OUTPC_.

MASSMCOPY_

MASSMCOPY _

This function migrates multiple workspaces from VS APL to APL2. Commands are
stacked to)MCOPY and)SAVE multiple workspaces. The list of workspaces to
be migrated is formed from a file similar to a copyfile created by the following steps:

1. Sign on to VS APL
2. Issue the session manager command COPY ON ID APLLIBS
3. Issue)L IB commands for the libraries you wish to migrate:

)JLIB (lists workspaces in your private library)
JLIB 17 (lists workspaces in Library 17)
JLIB 42 (lists workspaces in Library 42)

Use in any order and as many as you like.
4. Issue either the)OFF orthe)CONTINUE command with no other terminal
input.

The CMS file name that MASSMCOPY _ asks for is (in this case) 'file apllibs a', as
created by the COPY session manager command.

You can create the file by any other means as long as you can account for the
following:

 All records before the first) LI B are ignored.

e All records after the first) , T B are interpreted to be either a) L 7B command
(containing the library designation), the results of a) 7B command (a list of
workspaces), an)OFF, or)CONTINUE. Anything else is mistaken for one
of these, and causes an error.

Once the list is built from the file, it is presented and you are given a chance to

exclude individual workspaces. If you are saving into a public library, your LIBTAB
must allow it.

© Copyright IBM Corp. 1985, 1994 99

The TRANSFER Workspace

Rather than stack all commands for the entire list of workspaces, you are prompted
for the number of workspaces to be done in a batch. This gives you a chance to
limit how much is stacked at one time, and time to bail out if things go awry. The
default is set at 10 (workspaces).

The command sequence for each workspace is:

JCLEAR
YMCOPY [libno]l wsname
)SAVE [libno]l wsname

Which means:

e The)MCOPY can faildueto WS NOT FOUND, WS FULL, and so on
e The)SAVE can fail if the workspace already exists, or the library is full

Thorough checking of the results is recommended to determine if there were any
problems.

You can escape at any prompt with > (right arrow).

You have the option of making any run a dry run, in which case the commands that
would have been stacked are displayed, but not stacked and processed. You can
then decide whether to make the run real.

The calling syntax is the function name without any arguments, that is,
MASSMCOPY _.

The function is conversational from that point.

FLAG_ and FIX_

The functions FLAG_ and FIX_ help you migrate VS APL and APL2 IUP applica-
tions to APL2. FLAG _ allows you to search all functions and operators in a
workspace to identify possible problem areas in the code. FIX_ allows you to
change all functions and operators in the workspace when you know the exact
code string replacements. The variable FLAGMVSAPL _ is provided to find and
fix the known problems that are expected in all VS APL applications. The variables
FLAGMIUP_and FIXMIUP_ help you find and fix known problems expected in
all APL2 IUP applications. Migration consists of making these related changes,
plus others that the application programmer identifies because of specific know-
ledge of the application.

SA FLAG_ LIST

FLAG_ identifies language differences between VS APL, the APL2 IUP, and APL2.
It searches through functions and operators named in LI ST looking for specific
code strings that are known or suspected to be problem areas in migrating applica-
tions from VS APL or the APL2 IUP to APL2. A default list of problem areas is
provided as a starting point for items that should be flagged and inspected. An
application programmer can then use FLAG_ to find other specific code strings to
inspect.

100 APL2 Programming: Using the Supplied Routines

The TRANSFER Workspace

The function returns a matrix of rows where problems were found. If the left argu-
ment is elided, then FLAG_interactively prompts for search arguments (SAs), 1
line per argument, no quotes required.

R«FLAGMIUP_ FLAG_ ALL_ No prompting

R<«'/"v)" FLAG_ '"FUN1' 'FUN2' No prompting, 2 SAs

R«(<c'ONE') FLAG_ 'FUNNAME' No prompting, single SA
(note the enclose on a single
argument)

FLAG_ 'FUN1' 'FUN2' 'FUNN' Prompts for SAs

FLAG_ ALL _ Prompts for SAs

FLAGMIUP_ is a prepared list of items whose flagging is recommended for all
IUP workspaces being migrated. Similarly, FLAGMVSAPL _ is a prepared list of
items whose flagging is recommended for all VS APL workspaces being migrated.
Use the DISPLAY function (in the DI SPLAY workspace) to see how they are
constructed. If you want to edit them, use Editor 2 or the named editor on a vari-
able formed by:

TEMP<2 [OTF 'FLAGMIUP_'

Reassign the changes by: 2 0OTF TEMP. Do the same for FIXMIUP_
(described below).

SA FIX_ LIST

This function searches a named list of functions for a list of character strings. The
left argument is a set of old/new pairs (nested together). The function results in
modified functions in the workspace.

FIXMIUP_ is a prepared list of old/new pairs in this workspace that are the
known required code string changes for migrating from the APL2 IUP to APL2.

NAMES<FIXMIUP_ FIX_ ALL_ Apply a fix list to all FNS in WS;
returns names of modified functions.
(c'™/v v/v) FIX_ 'F1' 'F2!' Replace ~/ with / where found in F1

and F2 (functions or operators).
(*7/r v/0) (7)Y v)') FIX_ ALL_ Make two corrections to entire WS.

FIX_ ALL_ Change all functions in WS according
to old/new pairs, for which you are
prompted.

You can add the DOWN function in front to display the resulting name list in a
column format; that is, DOWN FIX_ ALL .

The name list provided by ALL _is ONL 3 4 without the functions involved in
the transfer workspace.

Chapter 7. The TRANSFER Workspace 101

The TRANSFER Workspace

The following caution prompts for a confirmation to proceed, and provides an
escape if you don't want to complete the modification.

*x% CAUTION - THIS WILL MODIFY YOUR WORKSPACE *x%*

Atomic Vectors

Differences

AV_VSAPL - the VS APL atomic vector
AV_APLSV - the APLSV atomic vector

You can use the above variables to replace references to AV in migrated code.

Some of the differences between VS APL, the APL2 IUP, and APL2 are potential
problem areas, but are not simple code string replacements. Where potential prob-
lems are identified, they should be flagged to determine their extent, examined indi-
vidually to verify the existence of a real problem, and then corrected with code
changes. There might be other instances where mass corrections throughout the
workspace are possible. Remember to keep a backup copy of the workspace.

Two functions are provided here to assist you to migrate character data whose
application requires the same AV positions. They should only be used where that
need has been determined. Both functions take a list of variable names and modify
those variables in the workspace, so exercise caution. The first, CHARIND, oper-
ates in VS APL and translates each variable named in the list (in matrix form) to
the JAV indices. The second, INDCHAR, is run in APL2 to rebuild the variables
encoded with CHARIND.

Note: Running INDCHAR against a variable not encoded by CHARIND destroys
the variable.

These functions are coded so that they run in VS APL, although it is intended that
INDCHAR be used in APL2. Executing:

CHARIND VAR
INDCHAR VAR

Translates VAR to numeric AV indexes, and back again to character data,
restoring its original shape and rank.

Do not run either function on VS APL numeric variables.

VS APL Differences:
» Residue (|) uses OCT as an implicit argument in APL2. Flagging and
inspection of its use is advisable.

e The ordering of AV is different, so AV is included in the FLAGMVSAPL _
list of items. Indexing AV should be discontinued and replaced by OAF.

e Monadic format (%) of a simple numeric matrix does not contain a leading
column of blanks, and its columns are formatted independently. Depending on
how much the application uses %, the programmer can flag it, or merely inspect
the generated reports for possible alignment problems.

In cases where code processing depends upon the formatted results, flagging
and inspection is warranted.

102 APL2 Programming: Using the Supplied Routines

The TRANSFER Workspace

e Function arguments should not be localized in function headers. APL2 pro-
vides a function called CHKHDRS _ to identify these cases. Either corrective
action by the programmer is required to change them, or the workspace must
be migrated with)¥COPY. This deletes locals with the same name as argu-
ments or results.

CORRECT<CHKHDRS _ ALL_
CORRECT<CHKHDRS_ ONL 3

CORRECT contains the names of functions that need corrective action, with
the duplicated names.

» Referencing [N always produces a vector. Flagging and inspection of [1 is
recommended if the application depends upon its shape.

e The result of ~40R is the negative square root for negative R. Flagging ~ 40
is recommended, or just © if the left argument is generated by an expression.

* An odd root of a negative number (such as™ 8 * + 3) is a complex number. If
this is found to have an adverse effect on the application, the only effective
protection is to replace all occurrences of power (*) with an ambivalent power
function that inspects arguments and results to detect this effect. Event simu-
lation (OES) is a good way to post an exception.

» A one-item vector left argument to 0SV 0 does not extend. If this is going to
cause a problem, then flag 0SSV 0, inspect, and correct.

e Groups are replaced by indirect copy and indirect erase. If group, copy, or
erase commands are known to be coded (for use by the stack processor), then
the following items should be flagged for inspection and correction:

)GR search argument to find all group commands
)COPY

)JPCOPY

JERASE

e [ONC (name class) returns a different value for an invalid name. An invalid
name was indicated by a 0N C value of 4 in VS APL. APL2 indicates the same
with a value of ~ 1. Any program logic that depends on finding invalid names
must be changed. Problems can be identified by flagging occurrences of ONC.

APL2 IUP Differences:
» Reverse (¢) accepts a single axis only, thatis, ¢[1 2 3] is not valid.
Flagging all occurrences of ¢ [is recommended, followed by inspection of
each.

* Bracket Axis has been removed. This means that:
F[X1:X2]
and
F[X1:;X2:;X3]

are not allowed if 7 is a primitive symbol or a derived function (except for a
niladic derived function returning an explicit result).

This is particularly difficult to detect because of variations in ¥ and the
expressions that are possible inside the brackets, and the other prevalent and
legal uses of brackets and semicolons. Specific knowledge of the application is
useful here.

Chapter 7. The TRANSFER Workspace 103

The TRANSFER Workspace

IN2r and OUTa

Nested indexing is not allowed. This is also difficult to detect. It has the form:
L() ... (__)1. Flagging and inspecting each occurrence of [(

and)] is recommended.
Encode (T) does not use OCT as an implicit argument.

First was monadic >, but First is now monadic +. Because not all occurrences
of monadic > are necessarily First, it might be necessary to flag and inspect all
uses of . All cases of the symbols ; +-x+([/#\X\ to the immediate left of
> are First, and are therefore included in FLAGMIUP_ and FIXMIUP .

As a result of moving First to monadic 4+, monadic > with no axis discloses all,
putting new axes at the right in the result.

Unite (now called Enlist) has been changed from u to €. This can be read “the
scalar elements of.” It is in the default FLAGMIUP_.

The arguments to Find () have been reversed. It is in the default
FLAGMIUP_.

You cannot apply monadic grade (A or ¥) to character arrays. Use dyadic
grade instead. Flagging and inspection might be necessary. For the I[UP
default collating sequence, use the DCS array in the UTILITY and EXAM-
PLES workspaces.

The following items have been deleted and are in the default FLAGMIUP _:

System names OMXD and OIR

Eigenvalue (N)

Zeros of polynomials ([)

Monadic squad (0)

Find Index (1)

Unique (n)
The following have been deleted, but the monadic forms are difficult to detect.
Flagging and inspection might be necessary.

monadic Type (e) Use +0pcR instead of eR
monadic OTF Use (2 OTF R)instead of OTF R
The following have a different definition in the IUP:

Dyadic squad (0)
Inner product
Outer product

INA and OUTA are functions for transferring APL objects between mainframe APL
systems (APLSV, VS APL, and APL2).

The GPMIGRATE matrix contains the names of the required functions and vari-
ables. These objects must be reconstructed in the system where they are used.
One way to do this is to display them in APL2, move to the other system (VS APL
or APLSV), and reenter them using the session manager.

The functions automatically determine which system they are running on, and make
the appropriate conversions. In VS APL and APL2 under VM/VMS, auxiliary
processors 100 and 110 are used. Under TSO, AP 111 is used. In APLSV, auxil-
iary processor 370 is used.

104 APL2 Programming: Using the Supplied Routines

The TRANSFER Workspace

Note: In APL2 Version 2 Release 2, new external functions (IN, PIN, and OUT)
are available as programming interfaces to the)IN,)PIN, and)OUT system
commands. These functions should be used instead of TNVA and OUTA when
running on an APL2 system.

The main functions are:

LIST INA FILE

This function reads a transfer file that contains the transfer forms of APL objects,
and defines those objects in the active workspace. The file was created by the
OUTA function, or)OUT in APL2. The FILE parameter must be the DDNAME
specified in a previously-issued allocate command.

LIST OUTA FILE

This function writes the transfer forms of APL objects in the active workspace to a
transfer file; the file is suitable for reading by the INA function, or) IN in APL2.

FILF is a nonempty character vector that indicates the name of the transfer file. It
can consist of a single name or multiple names separated by dots. Multiple names
are interpreted as qualifiers appropriate to the operating system in use. If only one
name is provided, then a qualifier of APLTF is assumed. This is the file type in
CMS and a prefix in TSO.

In both functions, LI ST is a (possibly empty) character vector or matrix containing
the names of objects to be transferred. It defaults to all objects in the file for IV A,
or all objects in the workspace for OUT A. The most local meaning of each object
is used. The name list can contain certain system variables: 0OCT, OET, 010,
OrLx, 0PP, OPW, and ORL.

On systems that have ambivalent functions, LI.ST can be included in the right
argument rather than as the left, in the following form:

'"FILENAME OBJ1 0OBJ2... OBJN'

Names in this group end in A to avoid name conflicts. The global variable NAME A
is a matrix containing the names of the global functions and variables in the
MIGRATE workspace. It can be used as the argument to JEX to delete them.

The transfer form and the format of the transfer file are described in APL2
Programming: Language Reference. The functions INA and OUTA are similar to
)IN and)OUT in APL2, but are more flexible with respect to the auxiliary
processors they use.

The following example assumes that the functions in this group are contained in a
VS APL workspace named 'MIGRATE'

Chapter 7. The TRANSFER Workspace 105

The TRANSFER Workspace

Transferring a workspace from VS APL to APL2:

APL
JLOAD IT
NL<ONL 2 3
JCOPY MIGRATE
NL OoUTA 'IT!
JOFF HOLD
APL?2
JIN IT
JWSID IT
)SAVE

Transferring a workspace from APL2 to VS APL:

APL2
JLOAD IT
)oUT IT
JOFF HOLD

APL
JLOAD MIGRATE
‘' INA 'IT?
OEX NAMEA
YJWSID IT
)SAVE

In some unusual circumstances, you can get an error while running these functions.
If that happens, the recovery is to >0.

INPC_ and OUTPC _

The functions INPC_ and OUTPC _ let you translate APL/PC transfer files with
APL2. Uploading and downloading PC files can be performed by any PC/HOST file
transfer program that does not translate the file in any way. Often such communi-
cation programs provide a binary mode to prevent data from being modified during
the transfer operation.

Note: These utilities are necessary only for the older versions of PC APL. You
can transfer files between mainframe and PC versions of APL2 by using)IN and
)OUT directly.

APL/PC to Host

From within APL/PC, produce a transfer file of the objects to be uploaded using
)OUT. The PC DOS file produced has an extension of AlO. Upload the file to the
host system, making sure that no data is translated. Invoke APL2.

1.)LOAD the destination workspace or)CLEAR for a clear ws.

2.)COPY from the TRANSFER workspace the group GPPC_. If the
TRANSFER workspace is in Iibrary 2,type)JCOPY 2 TRANSFER
(GPPC_).

3. Set the translation table variable APLPC _ to either APLPC1 _ for APL/PC 1.0
or APLPC?2 _ (the default) for APL/PC 2.0. That is, do either
APLPC _<«APLPC1_or APLPC _<APLPC?2_. The APLP(C _ variable is
used by TNPC_ to determine how to translate the APL/PC transfer file from
ASCII to EBCDIC.

106 APL2 Programming: Using the Supplied Routines

The TRANSFER Workspace

4. Invoke the function ITNPC _ with a right argument of a character string repres-
enting the name of the transfer file to read on the host. For example, INPC _
"MYFILE AIOBIN'. The resultof INPC _ are the names of the objects
established.

5. Erase the TRANSFER utility with)ERASE (GPPC_) and)SAVE the
workspace.

APL/PC uses uppercase and lowercase letters in names. APL2 mainframe
allows either underscored letters or lowercase letters in names. As INPC _
establishes objects in the workspace, APL2 can convert lowercase letters found
in names to underscored letters. This is controlled by the CASE attribute asso-
ciated with the current active workspace. See APL2 Migration Guide for
details.

Host to APL/PC

The function OUTPC _ writes a file suitable for downloading to APL/PC. Since
APL/PC is a subset of APL2, not all APL2 objects are appropriate for downloading
to APL/PC. For example, defined operators, nested arrays, and complex numbers
are not supported by APL/PC. Also, APL/PC has different implementation limits
than APL2. Typically, APL/PC is more restrictive than APL2. OQUTPC_ makes
no attempt to determine if the APL2 objects written are appropriate for APL/PC.
Refer to APL2 for the IBM PC: User's Guide for details on implementation limits.

1.)LOAD the workspace to be transferred.

2.)COPY from the transfer workspace the group GPPC_. If the TRANSFER
workspace is in 1ibrary 2,you would type)COPY 2 TRANSFER
(GPPC_).

3. Set the translation table variable APLPC _ to either APLPC1 _ for APL/PC 1.0
or APLPC?2 _ (the default) for APL/PC 2.0. That is, do either
APLPC_<«APLPC1_or APLPC_<«APLPC2_. The APLP(C_ variable is
used by OUTPC _ to determine how to translate the transfer file from EBCDIC
to ASCII.

4. Call the function OUTPC _ with a right argument of a character string repres-
enting the name of the transfer file to create on the host. If the file already
exists, it is overwritten. The left argument is optional. If used, it must be a
character vector or matrix containing the names of the objects to be written with
at least one blank between names or with names on separate rows. For
example, '0I0 MYFUN DATA' OUTPC_ 'MYFILE AIOBIN'. Ifno
left argument is given, all user variables, defined unlocked functions and the
system variables 0CT, 070, 0LX, OPP, and ORL are written.

Since APL/PC does not support the underscored alphabet, all underscored charac-
ters in both names and character data are converted to lowercase.

You can download the file written by OUTPC _ to the PC using a communication
program that allows the file to be transferred without modifying its contents.

Note: Ignore the various system messages produced by TSO during the execution
of INPC_ or OUTPC_.

Chapter 7. The TRANSFER Workspace 107

The PRINTWS Workspace

Chapter 8. The PRINTWS Workspace

This workspace is used to print APL objects; that is, APL arrays, functions, and
operators. It can print:

» Selected APL objects
e The entire workspace
* A set of workspaces

You can:

e Control the format of the printed output

e Select the type of printer to be used

¢ Direct the formatted output to a terminal

e Store printer-formatted output (including carriage control characters) in a data
set for later printing

The functions in this workspace use the command, alternate input (stack), disk file,
and QSAM auxiliary processors.

Most of the functions and variables in the PRINTWS workspace have names with
a A in the third position. This minimizes the likelihood of name conflicts with other
workspaces. To use the PRINTWS workspace, you usually have to combine it
with another workspace containing the functions and variables you want to print. If
any of the objects (functions or variables) you want to print have the same names
as PRINTWS workspace objects, you cannot print them without doing some rela-
tively complicated renaming or redefining.

The main user functions do not include A in their names, so conflicts occur if the
workspace to be printed contains similarly-named objects.

The PRINTWS primary user functions are:

CLEANPRINTWS Erase all objects not in the PRI NTWS workspace
LIST Display a set of APL2 objects at the terminal
MULTIPRINT Print a set of workspaces as specified interactively
PRINTWS Print the contents of an entire workspace
PRINTFV Print the objects named in one or two lists

Figure 29. PRINTWS: Primary User Functions

Primary User Functions

108

CLEANPRINTWS

This function erases all objects in the active workspace that are not in
GPPRINTWS . Itisused by MULTIPRINT between the printing of each work-
space.

© Copyright IBM Corp. 1985, 1994

The PRINTWS Workspace

LIST R

R is a character vector or matrix, or a vector of vectors. LIST displays at the
terminal all the objects named in R. LIST cannot display nondisplayable func-
tions or operators. If you use the session manager, the L 7.ST function (in conjunc-
tion with the session manager COPY command) is used to write APL objects to
disk files.

MULTIPRINT

This function asks you to identify the APL2 or VS APL workspaces or the transfer
form files you wish to print by asking you to complete a) PCOPY system
command. You can change the command to)MCOPY to identify VS APL work-
spaces, or) IN to identify transfer form files. A null response to the)PCOPY
prompt causes each of the previously-named workspaces or transfer form files to
be formatted and printed one after the other. The page headings are the com-
mands used to identify the workspaces or transfer form files.

The example in Figure 30 writes to a disk file the contents of whichever work-
spaces (or transfer form files) you specify during the execution of MULTIPRINT.
This sequence is the preferred method for printing APL objects or writing them to
disk files.

JLOAD 2 PRINTWS Substitute the correct library number for the
PRINTWS workspace if other than 2.

P1400 Select format and printer.

PFILE Indicate disk data set output.

MULTIPRINT Identify workspaces and print them in the selected
format.

Figure 30. PRINTWS Example: Printing Several Workspaces

PRINTWS

This function requires no arguments. Before it is processed, the active workspace
must contain the contents of both the PRI NTW.S workspace and the workspace to
be printed. This means that one must be loaded and the other must be copied.

To remove all functions and variables other than those of the PRI NTW.S work-
space, run the utility function CLEANPRINTWS. Another workspace can then be
copied into the active workspace and the PRI NTWS function executed.

The example in [Figure 31 on page 110 |s one way to print the contents of work-
spaces WS1 and WS 2.

Chapter 8. The PRINTWS Workspace 109

The PRINTWS Workspace

YJLOAD 2 PRINTWS (substitute the correct library number for the
YPCOPY WS1 PRINTWS workspace if other than 2)
PRINTWS

CLEANPRINTWS

YPCOPY WS?2

PRINTWS

Figure 31. PRINTWS Example: Printing Workspace Contents

PRINTWS and PRINTFYV ask you to type in the information to be printed in the
header of each output page.

L PRINTFV R PRINTFV R

L and R are character matrices containing the names of the functions and variables
to be printed. All the objects named in L are printed before the objects named in
R. The first object in R is printed at the top of a page. A numerical value (0, for
instance) entered as a list name is treated as a null list.

Note: If the name lists for workspaces other than the PRI NTW.S workspace itself
are constructed by use of the ONL system function, this should be done before the
two workspaces are combined in the active workspace.

Printer Selection Functions
Figure 32 lists the printer selection functions and describes them briefly.

PTERMINAL Format output for the user's terminal

P1400 Format output for an impact printer
P3800 Format output for a nonimpact printer
PFILE Store formatted output on a disk data set

Figure 32. PRINTWS: Printer Selection Functions

These functions, if required, should be processed before any of the primary user
functions. They require no arguments. If the active workspace is stored after one
of them is run, it does not need to be run again when the modified workspace is
reloaded. For example, an installation that uses nothing but impact printers can
load the PRINTWS library workspace, run the function P14 00 and save the work-
space. All printing is formatted for impact printers on subsequent loadings of the
PRINTWS workspace.

Environment System Command Functions

The PRINTWS workspace has a defined function CMAD for processing environ-
ment system commands. When the PRI NTWS workspace is active, you can use
this function to run system commands from your terminal.

110 APL2 Programming: Using the Supplied Routines

The PRINTWS Workspace

Environment Dependencies

CMS

TSO

This section discusses the environment dependencies for CMS and TSO.

In CMS, the PRINTWS workspace uses the QSAM auxiliary processor to direct
output to a virtual printer file, using the CMAD function. The syntax of this function
is:

Z<CMAD R

R is a character string containing a CMS command. 7 is a return code. 0 indi-
cates successful execution of the command.

The meaning of nonzero codes is found in VM/SP Diagnosis: System Messages
and Codes, SC19-6204.

Use the CMAD command to specify print class, forms, line spacing, character fonts,
and number of copies. You can store standard setups as character strings to be
used as inputs to CMAD.

In TSO, the PRINTWS workspace gets its printing done either by using a
SYSOUT queue dedicated to the printing of APL objects, or by submitting a batch
print job. The first method is the preferred one; the second should only be used
when a dedicated SYSOUT queue is unavailable. For more information, see the
HOWTS O variable in the workspace.

The JCL required for a print job varies so much from one location to another that
no general-purpose function can be provided. The function that generates the JCL
is called PJACLJ| Figure 33 on page 112|shows how it is used. The first part of
the figure shows PJ ACL prompts and user responses. The second part shows the
character array, JCLDECK, that PJ ACL produced. Notice how it incorporated
user responses.

(The lines containing the colon are prompt-response pairs, the prompt is to the left
of the colon, the response to the right.)

Chapter 8. The PRINTWS Workspace 111

The PRINTWS Workspace

1. Using PJ ACL Function to Create JCLDECK Character Array

PJACL
NAME: BOGLE, C. J.
CHARGE NUMBER: XY10
DEPARTMENT NUMBER: 10XY
BUILDING: X10Y
OUTPUT BIN: 1XYO
ROOM NUMBER: 435211

2. Character Array JCLDFECK Created by User Responses to PJACL Prompts

JCLDECK
//B7220001 JOB (B722166,'4=XY10,D=10XY"),
// 'BOGLE, C. J.',NOTIFY=B722166 ,CLASS=V,MSGCLASS=27,

// TIME=(0,15) ,USER=B722166

/*QUTPUT OUTP X=folAnt,C=fcAb,F=foArm,N=colpies
/*JOBPARM B=X10Y,D=10XY,0=1XY0,R=435211,K=0
//TSOAPL EXEC PGM=IFEBGENER,COND=EVEN
//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//SYSUT2 DD SYSOUT=(A,,0UTP)

//SYSUT1 DD DSN=B722166.wsn.LIST,

// DISP=(0OLD,DELETE,KEEP)

//JCL DD DSN=B722166 .wsn.CNTL,

// DISP=(OLD,DELETE ,KEEP)

//

Figure 33. PRINTWS: Processing and Results of PJ AC L Function

The first time you try to print a workspace under TSO, you are asked to provide the
information needed to prepare JCL for a print job in your name. If the workspace is
not modified, the questions you are asked are those illustrated in Figure 33. Due
to local variations, however, you probably need to modify the PJ AC L function to
get the correct JCL.

Once you answer the questions needed to prepare the job control file required to

submit your print jobs, a PRINT2.JCL file with your responses is created. The next
time you sign on, this file is used to submit a print job.

112 APL2 Programming: Using the Supplied Routines

The SQL Workspace

Chapter 9. The SQL Workspace

You can use the facilities of the SQL workspace to pass requests to AP 127, the
Structured Query Language Auxiliary Processor. SQL is a high-level language for
manipulating data in relational databases.

For more information about the APL2/SQL interface, the SQL language, and the
SQL workspace, see APL2 Programming: Using Structured Query Language.

© Copyright IBM Corp. 1985, 1994 113

The MEDIT Workspace

Chapter 10. The MEDIT Workspace

The MEDIT workspace is used primarily for display devices without the APL
feature.

If you have an APL display terminal, it is usually better to edit with the general-
purpose, full-screen editors (XEDIT, for example) that are available in your environ-
ment.

Use MEDIT to edit APL2 programs (operators and functions) when you do not
have access to the APL character set.

Editing APL Variables and Defined Functions

The MEDIT workspace provides a collection of defined functions that you can use
to:

e Edit simple character-array variables

e Edit functions and operators without using the standard line-by-line APL func-
tion editor

¢ Create new objects

e Edit APL objects using display terminals without the APL feature

The Basic Edit Procedure
To editing an existing object:

1. Convert the object into the form required by the edit functions

2. Add, insert, delete lines of text; modify individual lines or groups of lines;
display intermediate results before completing the editing process

3. Reconvert the edit text into an operator, function, or variable

Creating New APL2 Functions or Character Arrays
To create a new APL2 obiject:

1. Initialize the text for editing

2. Add, insert, delete lines of text; modify individual lines or groups of lines;
display intermediate results before completing the editing process

3. Reconvert the edit text into an operator, function, or variable

Display Terminals without the APL feature

To use a graphic display terminal without the APL feature, the basic edit procedure
must be:

e Preceded by translating each APL character to a unique set of non-APL char-
acters

» Followed by retranslating to APL characters

114 © Copyright IBM Corp. 1985, 1994

The MEDIT Workspace

Using the MEDIT Functions

This section discusses the functions provided with the MEDIT workspace.

Converting APL Objects for Editing
You must run either APLFIN or APLVIN before you can edit an existing APL2

object. APLVIN puts a character array variable into a form suitable for editing.
APLFIN does the same for a defined function or operator.
They are used as in the following examples:

APLVIN JCLDECK

APLFIN 'REPLACE'
When using APLFIN, put the function name in quotation marks. When using
APLVIN, do not enclose the variable name in quotation marks.
After editing is complete:
JCLDECK<~LIST ALL Redefines the variable JCLDECK to its edited value
OFX LIST ALL Redefines the function REPLACE to its edited value

JCLDECK (shown in|Figure 36 on page 120) and REPLACE (shown in
[Figure 34 on page 117) are the names of a variable and function that are used in
the illustrative examples below.

Pre- and Post-Editing Functions

This section discusses the pre- and post-editing functions supplied with the MEDIT
workspace.

Terminals without the APL Feature

If you are editing an APL function F'N on a display terminal that cannot enter or
display APL characters, you must first translate the function by using §CE. This
produces a character array for processing by APLVIN, as follows:

APLVIN QCR 'FN'

Use APLVIN rather than APLFIN to edit a function that has been translated by
QCR. This is because the output of §CR is a character array, which is the type of
input processed by APLVIN, and not a function name, which is the type of input

required by APLFIN.

After editing is complete, you can turn the edit text into a function by retranslating
and fixing as follows:

QFX LIST ALL
LIST and ALL are edit functions that are described later.
You can make assignments on non-APL terminals with the ASSIGN function. Its

left argument is a character scalar or vector that contains a name. lts right argu-
ment is any array. There is no explicit result.

Chapter 10. The MEDIT Workspace 115

The MEDIT Workspace

Editing

For example:
"NAME' ASSIGN 114
NAME

1 2 3 4

The edit functions can be grouped into the following categories:
CLEAR, START Initialization

AFTER, ADD, BEFORE Input

C, CHANGE, DELETE, REPLACE Change

ALL,AT, BOT, D, FIND, FROM, THRU, TOP, U Select
LIST, NUMBER Output

TABS Set tabs

The edit functions work on simple two-dimensional character arrays only. The rows
in these arrays are assigned line numbers; the first line is numbered 0. At any
point in the edit procedure the value of the current line number is stored in the
variable LN. This value is established and changed by the edit operations
described below.

The values of two variables CCOL and LRECS (“Cutoff Column” and “Record
Length”) give, respectively, the number of columns in the array and the number of
the last column that can be modified by the edit functions. For example, if CCOL is
71 and LRECS is 80, you can't make any modifications past column 71; with these
settings the continuation column and serial number field in a card deck are pro-
tected.

The Initialization Functions

The function START (with no arguments) initializes the edit text and opens the
keyboard for adding lines of data to an 80-character wide matrix. It starts the func-
tion CLEAR, which establishes an array width of 80 and an input cutoff column of
71.

The Input Functions
The input functions (ADD, AFTER, and BEFORE) are similar in several ways:

* None take an argument

e They are entered as single words

e They open the keyboard for input

 Input is terminated by entering a null line (pressing the ENTER or carriage-
return key with no other input)

The various input functions (including the input requested by REPLACE, which is
discussed in the next section) are different only in where the input lines are placed.

e ADD appends the input lines to the bottom of the current array

e AFTER inserts the input lines after the current line

e BEFORF inserts the input lines before the current line

e REPLACE deletes N lines after the current line (where I is the argument) and
inserts replacement lines

116 APL2 Programming: Using the Supplied Routines

The MEDIT Workspace

U: identifies user entry
E: identifies edit program response
A: identifies APL system response

APLFIN 'REPLACE'
LIST ALL
REPLACE n
BEFORE
LN<LN+1
DELETE n
LN<«LN-1

NUMBER LIST ALL
REPLACE n
BEFORE
LN<LN+1
DELETE n
LN<«LN-1

FwNNERL O

FIND ALL
ENTER TEXT
LN
LN<LN+1

CHANGE ALL
OLD
LN
NEW
LINENO

LIST 2 THRU 4
LINENO<LINENO+1
DELETE n
LINENO<«LINENO-1

AT 2

LN

mmmmMmmcc

cmcmc mcmcC

mmmc

mcC

mmmmmc

: Put function REPLACE in editing form
: Request list of all lines in function

: Edit program listing of all lines
: in object being edited.

: Request numbered list of all lines

: Edit program listing of line
: numbers and lines in object
: being edited.

: Request search through all lines
: Request entry of search text

: Entry of search text

: Copy of first line found

: Request change to apply to all lines in function
: Request entry of text to be changed

: Entry of text to be changed

: Request entry of substitute text

: Entry of substitute text

: Request listing of lines 2 3 4
: Edit program listing of
: requested lines

: Position current line at 2
: Edit program output of value 1

: Request current value of LN
: APL display of value

Figure 34 (Part 1 of 2). MEDIT: How to Use the Edit Functions

Chapter 10. The MEDIT Workspace

117

The MEDIT Workspace

c U: Request single-line change
OLD E: Request input of text to be changed
LINENO U: Entry of text to be changed
NEW E: Request input of substitute text
LN U: Entry of substitute text
LN<LN+1 E: Copy of changed line

D 2 U: Move current line down 2
LINENO<LINENO-1 E: Copy of current line

c U: Request single-line change
OLD E: (See above)
LINENO
NEW
LN
LN<LN-1

OFX LIST ALL U: Convert edit object to function
REPLACE A: APL output of name of function

fixed by OFX system function

Figure 34 (Part 2 of 2). MEDIT: How to Use the Edit Functions

118 APL2 Programming: Using the Supplied Routines

The MEDIT Workspace

VDELETE [0O1V U: Request listing of DELETE
on an APL terminal
v
[0] DELETE n;0I0 A:
[1] gdro<o A: Function
[21] n<«((0TLN)p0),(0lLn)p1 A: Listing
[31] TDS«(~(14pTDS)+n)#TDS A:
V 1984-08-31 4,00.00 (GMT-8)
QCR DELETE U: Translate DELETE function to
non-APL characters
DELETE &NUN ;&QUA IO E: Output
&QUA IO&LAR O E: of
&NVUN &LAR ((0&UST LN)&RHO 0),(0&UST &DST &NUN)&RHO 1E:QCR
TDS&LAR (&TIL (1&UAR &RHO TDS)&UAR &NUN)SHB TDS E:
APLVIN QCR 'DELETE' U: Translate DELETE and put into
editing form
NUMBER LIST 1 THRU 3 U: Request numbered list of

statements in DELETE
1 &QUA IO&LAR O
2 &NUN &LAR ((0&UST LN)&RHO 0),(0&UST &DST &NUN)&RHO 1
3 TDS&LAR (&TIL (1&UAR &RHO TDS)&UAR &NUN)SHB TDS

AT 1 *** The remaining entries in this
1 *** figure show how to make a change
*** in the QCR version of the
c *** DELETE function, how to
OLD *** reconvert it to the APL
0 *** character version, and what
NEW *** the function looks like on an APL
1 *** terminal after the change.

&QUA IO&LAR 1

QFX LIST ALL
DELETE
VDELETE[LO]V
\Y
[o01] DELETE n;0I0
(11 0ro<«1
[2] n«((0lLN)p0),(0lLn)p1l
[31] TDS<«(~(14pTDS)+n)/TDS
V 1984-08-31 13.50.12 (GMT-8)

Figure 35. MEDIT: Editing Functions on Non-APL Display Terminals

Chapter 10. The MEDIT Workspace 119

The MEDIT Workspace

APLVIN JCLDECK U: Put variable JCLDECK in
editing form

NUMBER LIST ALL U: Request output of numbered
list of lines

0 //IMPT JOB (S667221,'A=SH4u4,B=090,D=M46,0=X256,K=D256"),
1 // 'STEINWAY A. J.' ,NOTIFY=5S667221,USER=5667221,

2 // MSGCLASS=F,

3 // PASSWORD=

y //TIME=(1,0) ,MSGLEVEL=(1,1) E: MEDIT

5 //BLDDS EXEC PGM=IEBGENER E: output

6 //SYSPRINT DD SYS0UT=A E: of numbered list

7 //8YSUT2 DD DSN=M166722.aW.PRTGP, E: of all lines in

8 // UNIT=SYSDA ,SPACE=(TRK,(20,5)), E: current edit

9 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800), E:variable

10 // DISP=(,CATLG)
11 //SYSIN DD DUMMY
12 //8YSUT1 DD DATA

FIND ALL U: Search all lines
ENTERTEXT E: Request for search text
DATA U: Entry of search text
//SYSUT1 DD DATA E: Copy of first line found

c U: Request single-line change
OLD E: Request for old text
DATA U: Entry of old text
NEW E: Request for new text
* U: Entry of new text
//8YSUT1 DD ~* E: Copy of changed line

JCLDECK<«LIST ALL E: Assign new value to JCLDECK
JCLDECK E: Check new value

//IMPT JOB (S667221,'A=SH44,B=090,D=Mu46,0=X256,R=D256"'),
// 'STEINWAY A. J.',NOTIFY=S667221,USER=8667221,
// MSGCLASS=F,

// PASSWORD= A: APL system output
// TIME=(1,0),MSGLEVEL=(1,1) A: of value of
//BLDDS EXEC PGM=IEBGENER A: JCLDECK
//SYSPRINT DD SYSOUT=A

//

SYSuT2 DD DSN=M166722.dW.PRTGP,

// UNIT=SYSDA,SPACE=(TRK,(20,5)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(,CATLG)

//SYSIN DD DUMMY

//8YSUT1 DD =

Figure 36. MEDIT: Editing a JCL Deck

The Change Functions

One change function (C) applies changes only to the current line. The others
(CHANGE, DELETE, and REPLACE) modify IV lines starting with the current line,
where N is the argument to each function.

C and CHANGE request old and new character strings and replace the old with the

new. C does this wherever the old string occurs in the current line only.
CHANGE does it starting with the current line and its ¥ -1 successors.

120 APL2 Programming: Using the Supplied Routines

The MEDIT Workspace

REPLACFE inserts new lines and deletes old ones in the manner described in the
preceding section. If there is no input, the effect is the same as DELETEF, which
deletes IV lines starting with the current one.

The syntax of each function is shown in Figure 37

R<C LN is unchanged. R is a copy of the modified line.
CHANGE N LN is the number of the last line changed.
DELETE N LN is unchanged.

REPLACE N LN is the number of the last line inserted.

Figure 37. MEDIT: The Change Functions

The Select Functions

The select functions all return a numerical output value except the functions D
(Down), U (Up), and FIND. These functions change the value of LN and return a
copy of the line numbered LN (except that FTND returns a null line if its search is
unsuccessful).

The purpose of returning numerical values is to provide input values to other edit
functions. The function AL L, for example, sets LN to 0 and returns the number of
lines in the edit array. You can use this value as input to a function like L7 ST,
and the combination produces a list of all the lines in the edit array. Experimenting
with combinations of select and nonselect functions helps you develop a set of
useful patterns. Some examples are presented in a later section.

The syntax of each function is given in |Figure 38 on page 122|

Chapter 10. The MEDIT Workspace 121

The MEDIT Workspace

R<AT L
R<ALL
R<BOT

RB<«<D N

R<«FIND N

R<A FROM B
k<A THRU B
R<TOP
R<«U N

Set LN to L and return the value 1.
Set LNV to 0 and return the number of lines in the text.

Set LIV to the number of the last line and return this
value.

Set LN to LN+N and return a copy of the new current
line.

Request input of search string and search N lines for this
string.

If the string is found, set LNV to the number of the first line
where it is found and return this line as output.

If the string is not found, set LV to a number one greater
than that of the last line searched and return a null vector
as output.

Set LNV to B and return the value A.
Set LN to 4 and return the value 1+B-4.
Set LN to 0 and return the value 0.

Set LN to LN - N and return a copy of the new current
line.

Figure 38. MEDIT: The Select Functions

The Output Functions
The output functions produce character arrays consisting of all or part of the array

being edited.
LIST

NUMBER

VAR<LIST ALL
O0FX LIST ALL

Produces a set of lines exactly as they occur in the array
being edited.

Produces a set of lines prefixed by their respective line
numbers.

Stores the edited object as a variable called VAR.
Converts the edited object into a function.

The function name is output by the OFX system function.
This is the name found on the first line of the edit object (if
the lines as a whole form a valid function definition).

[Figure 39 on page 123|shows the syntax of both functions.

122 APL2 Programming: Using the Supplied Routines

The MEDIT Workspace

R<«LIST N Output ¥V lines starting with the current one.
Set LIV to one plus the number of the last line listed.

R<NUMBER A Print the character matrix 4 with a line number to the
left of each of its lines.
The lines are numbered consecutively
and the number of the last line is LV -1.
As a result of this convention:

NUMBER LIST ALL

Produces a numbered listing of the entire edit array.

Figure 39. MEDIT: The Output Functions

The Set Tabs Function

The function TABS assists in setting tab stops on 2741-like terminals. It takes a
numeric argument that contains the desired tab positions. It types the letter T at
these positions and allows time for depression of a Tab Set key by the user. Thus:

TABS 10 20 30

helps you set tabs at the 10th, 20th, and 30th positions to the right of the current
left margin.

Usage Notes

This section supplies notes on the use of:

e LRECS and CCOL
¢ QCR and QFX
e APL and non-APL translate table

LRECS and CCOL

When you use START (which starts the function CLEAR) to begin input of a new
function or variable, LRECS is set to 80 and CCOL to 71.

APLVIN sets both LRECS and CCOL equal to the number of columns in the
input array.

APLFIN uses JCR to make a character array of its input function and adds 10
blank columns on the right to allow for longer lines created by the editing process.

In all cases, lines that turn out to be longer than LRECS are rejected. If this is
likely to occur, you can use the APL 4 primitive function to add blank columns on
the right of an input array. Thus:

ARRAY«(0 20+pARRAY)+ARRAY

redefines ARRAY to have an additional 20 blank columns on its right. Each line
has twenty additional positions to expand into as the result of an edit operation.

Chapter 10. The MEDIT Workspace 123

The MEDIT Workspace

QCR and QFX

The mapping that translates APL characters into non-APL character strings
produces arrays that can be bewildering in appearance. Before editing these
arrays, you might want to spend some time memorizing the symbol names and
abbreviations in Figure 40.

QFX always attempts to convert its input to a function. When this isn't possible,
@ FX produces the translated character array as output. Thus, if the original input
to QCR was a variable, it is redefined as a function by @FX if it happens to be a
valid canonical representation of a function. Should this happen, the unintended
function can be converted to a variable by using the system function OCR.

Conversely, if the original input was a function, and mistakes in editing make it
impossible to return the edited array to function form, @ F'X returns the translated
character array as output. If you apply @CR and @FX to variables, you should
name the output of @FX with an APL assignment.

VARNAME LAR QFX LIST ALL

This is also a good practice to follow when editing functions. If the function is suc-
cessfully fixed by Q FX, VARNAME contains the name of the edited function. If it is
not, VARNAME contains a character array that is a defective canonical represen-
tation of a function.

APL, Non-APL Translate Table

Certain APL characters cannot be displayed on a terminal without the APL feature.
QCR replaces each of these with a five-character code. The first character is a
delimiter (the default delimiter is &). The last is a space. The intervening three are
alphabetic codes.

The @ CR codes, their symbol, indication of overstrikes, and character names from
which they are derived are listed alphabetically in [Figure 40 on page 124|
Becoming familiar with the names and codes helps you edit arrays in which trans-
lated characters appear. There are no mnemonics for characters that normally
appear on non-APL terminals.

Figure 40 (Page 1 of 3). MEDIT: Mnemonics for Figure 40 (Page 1 of 3). MEDIT: Mnemonics for
Non-APL Terminals Non-APL Terminals
Mne- Over- Symbol Mne- Over- Symbol
monic Symbol strike Name monic Symbol strike Name
ALP Alpha CUN c C_ C Underbar
AUN A A_ A Underbar . Dot

_ Bar DAR ¥ Down Arrow
BUN B B_ B Underbar DCA v Down Caret
CBA e o- Circle Bar DCT » v~ Down Caret
CIR o Circle Tilde
CSL ® o\ Circle Slope DDO K Dieresis Dot
CSR ® o* Circle Star DEL v Del
CST ¢ o| Circle Stile DIE) Dieresis

Colon DIV + Divide
, Comma DLS v v Del Stile

124 APL2 Programming: Using the Supplied Routines

The MEDIT Workspace

Figure 40 (Page 2 of 3). MEDIT: Mnemonics for
Non-APL Terminals

Figure 40 (Page 2 of 3). MEDIT: Mnemonics for
Non-APL Terminals

Mne- Over- Symbol Mne- Over- Symbol
monic Symbol strike Name monic Symbol strike Name
DLT N vV~ Del Tilde LUN L L_ L Underbar
DSH U Down Shoe MUN M M_ M Underbar
(Cup) NE = Not Equal
DST L Down Stile NG Not Greater
DTA a Delta NL > Not Less
DT ¢ Le i‘)’t""” Tack NUN v v_ N Underbar
DTK L Down Tack OBA Overbar
DTS A Al Delta Stile OME Omega
DTU A A Delta OUN 0 0_ O Underbar
Underbar + Plus
DUN D D_ D Underbar PUN P P_ P Underbar
DUT I 1T Down Tack QDI & O« Quad Divide
Up Tack QDO ! ! Quote Dot
(I-Beam)
QJO O Quad Jot
EPU < e Epsilon B °
Underbar QQu M o Quad Quote
EPS € Epsilon QSL N [HAN Quad Slope
= Equal QUA a Quad
EQU = =_ Equal ? Query
Underbar . Quote
EUN E E_ E Underbar QUN 9 9 Q Underbar
FUN F F_ F Underbar RAR Right Arrow
> Greater RBR] Right Bracket
GUN G G_ G Underbar RHO 0 Rho
HUN H _ H Underbar) Right Paren
IoT L lota RSH 5 Right Shoe
[0]V] 1 1_ lota Underbar RUN R R R Underbar
IUN I I_ | Underbar : Semicolon
JOT Jot SHB / /- Slash Bar
JUN Jd J_ J Underbar SLB \ \ - Slope Bar
KUN K K_ K Underbar SLO \ Slope
LAR < Left Arrow Space
LBR [Left Bracket - Star
(Left Paren STI | Stile
Bracket —
TIL ~ Tilde
LSH c Left Shoe
TIM X Times
< Less
TUN T T_ T Underbar

Chapter 10.

The MEDIT Workspace

125

The MEDIT Workspace

Figure 40 (Page 3 of 3). MEDIT: Mnemonics for
Non-APL Terminals
Mne- Over- Symbol
monic Symbol strike Name

_ Underbar
UAR 4 Up Arrow
UCA A Up Caret
UCT w A~ Up Caret

Tilde
USH n Up Shoe
(Cap)

usJ] no Up Shoe Jot
UST r Up Stile
UTJ 3 To Up Tack Jot
UTK Up Tack
UUN U U_ U Underbar
VUN 4 V_ V Underbar
WUN W W_ W Underbar
XUN X X_ X Underbar
YUN Y Y_ Y Underbar
ZUN Z Z_ Z Underbar

126 APL2 Programming: Using the Supplied Routines

Part 2. External Routines

Chapter 11. External Routines 129
APL2PI—APL2 Program Interface, 132
APL2PIE—APL2 Program Interface Extended 133
ATP—Array to Pointer 135
ATR—Array To Record 136
ATTN—Handling Attentions 137
BUILDRD—BUuild a Routine Description 138
BUILDRL—Build a Routine List 139
CAN—Compressand Nest 140
CMSIVP—Installation Verification under CMS 141
CSRIDAC—Request or Terminate Access to a Data Object 142
CSRREFR—Refresh an Object 144
CSRSAVE—Save Changes Made to a Permanent Object 145
CSRSCOT—Save Object Changes in a Scroll Area 146
CSRVIEW—Start or Terminate a View of an Object 147
CTK—Character to DBCS Conversion 149
CTN—Character to Number 150
DAN—Delete And Nest 151
DFMT—Format Arrays Containing DBCS Data 152
DISPLAY—Display Array Structure 153
DISPLAYC—Display Array Structure 154
DISPLAYG—Display Array Structure 155
DSQCIA—QMF Callable Interface 156
EDITORX—System Editor Access 158
EDITOR2—Full-Screen APL2 Editor 159
EXP—Execute in the Previous Namescope 160
FED—Diagnostic Information 163
HELP—Retrieve Keyed Help Text for an Application 164

Using Help to Retrieve a Listof Keys 164

Using Help to Retrieve Text, 164

Using Help as an Online Help Facility 165

HELP Return Codes: 165
IDIOMS—APL2 Phrases 166
IN—Read a Transfer File into the Active Workspace 167
KTC—DBCS to Character Conversion 168
MSG—Message Services Request L. 169
OPTION—AQuery or Set APL2 Invocation Options 170
OUT—Write Objects to a TransferFile 172
PACKAGE—Creating a Namespace 173
PBS—Handling Printable Backspaces 174
PFA—Pattern from Array 175
PIN—Protected Read of a Transfer File into the Active Workspace 176
PTA—Pointers to Array 177
QNS—Query the Current Namescope 178
RAPL2—Remote-Session Manager 179
RTA—Record to Array 181
SAN—Sliceand Nest 182
SERVER—TCP/IP Port Server 183
SVI—Shared Variable Processor Information 184
TIME—Performance Monitoring 185

© Copyright IBM Corp. 1985, 1994 127

TSOIVP—Installation Verification under TSO 187
AEXEC—Execute an APL Array as a REXX Program 188

AF—Query File Status 189
AFM—Read or Write a Fixed Record Length File 190
AFV—Read or Write a Variable Record Length File 191

128 APL2 Programming: Using the Supplied Routines

Chapter 11. External Routines

A number of external routines are distributed with APL2. These routines provide
useful functions, such as installation verification and serviceability aids.

The external routines discussed in this chapter are called through Processor 10 and
Processor 11. They are accessed through ONA and depend upon availability of a
NAMES file distributed with APL2 (AP2VNO11 NAMES in VM/CMS and
APL2.SAP2NICK in MVS/TSO). The NAMES file must be made available to the
user, either on an accessible minidisk in VM/CMS or by allocating the NAMES file
as ddname AP2TNO011 in MVS/TSO. To access a specific routine, ONA4 is used.
For example:

3 11 ONA 'TIME"

The external routines are also available in the SUPPL TED workspace. See
['SUPPLIED: Information About External Functions” on page 11 for further infor-
mation.

Once accessed, the routines perform like normal, locked APL functions.

This chapter describes each of the external routines distributed with APL2.
Detailed descriptions of the external routines follow Figure 41 in alphabetical order
by routine name.

Figure 41 (Page 1 of 3). APL2/370 External Routines

External
Routine Function

Data Conversion

ATR Convert an APL array to a record with mixed data
types

CTK Convert extended character data to mixed DBCS
data

CTN Convert character data to numeric data 150 |

DFMT Format an array of extended character data [152]

KTC Convert mixed DBCS data to extended character [168]
data

PFA Generate a pattern for ATR or RTA 175

RTA Convert a record to an APL array 181 |

CAN1 Compress and Nest [140]

DAN1. Delete and Nest 151 |

SAN1 Slice and Nest [182]

© Copyright IBM Corp. 1985, 1994 129

Figure 41 (Page 2 of 3). APL2/370 External Routines

External
Routine

Function

External Routine Support

APL2PIT
APL2PIE
ATP
BUILDRD
BUILDRL

EXP
PACKAGE
PTA
QNS

APL Object Access

EDITOR?22
EDITORX2
IN2

ouT?
PIN2

A niladic form of APL2PIE

Interface with non-APL programs that call APL2.
Update parameters passed by a non-APL program
Build a routine description for an external routine
Build a routine list for a module containing external
routines

Request APL evaluation in the previous namescope
Convert a workspace to a namespace

Extract parameters passed by a non-APL program
Query the current namescope

A program interface to Editor 2

A program interface to a named system editor
Program access to system command) I N
Program access to system command)0UT
Program access to system command)PIN

REXX Access (Processor 10)

AEXEC
AF
AFM
AFV

Execute a REXX program

Obtain information about a CMS or MVS file
Read or write a file as a matrix

Read or write a file as a vector of vectors

System Data Access

CSRIDAC
CSRREFR
CSRSAVE

CSRSCOT

CSRVIEW
DSQCIA

Access an MVS/ESA* virtual data object

Refresh an MVS/ESA virtual data object

Save changes to a permanent MVS/ESA virtual
data object

Save MVS/ESA virtual data object changes in a
scroll area

Define a view on an MVS/ESA virtual data object
Interact with the database Query facility

=y
(98
N

ry | ey | ey
W
aw

(o8]
(o]

—

39

=

160 |

g
[68)

—=1[=]

177]
178

[6)]
©

===
o
00

—
R [22]
N~

—
~
o)

i

42
144

147
156

130 APL2 Programming: Using the Supplied Routines

Figure 41 (Page 3 of 3). APL2/370 External Routines

External
Routine Function

Environment Control

ATTN Query or reset the attention flag 137 |
MSG Use APL2 message facilities from an application 169
OPTION Query or set APL2 invocation options 170
PBS Query or set the) PBS state 174
RAPL?22 Run the remote-session manager 179
SERVER Start a TCP/IP port server 183
SVI Determine shared variable processor numbers or 184
user IDs.
Usage and Debugging Aids
CMSIVP Installation verification under CMS
DISPLAY Display an array in a form that shows nesting and
data types
DISPLAYC The same as DISPLAY. 154
DISPLAYG The same as DISPLAY, but using box characters 155
FED Diagnostic tool for IBM service usage 163 |
HELP Obtain information from APL2HELP files [164]
IDIOMS2 Search the APL2 phrase collection 166 |
TIME Performance monitoring within a workspace 185
TSOIVP Installation verification under TSO 187
Notes:
1. The Partition primitive (<) should be used instead of these three functions.
2. Not available in Application Environment.
Chapter 11. External Routines 131

APL2PI

APL2PI—APL2 Program Interface

This function facilitates communication from APL2 to non-APL applications.

result<APL2PI

result Is a two- or three-element vector. The first two elements are an
integer code that indicate the success or failure of the request.
The third element, if present, is a return code issued by the
non-APL application when it terminates, or a message if the
non-APL application used the APLX service.

APL2PT is a niladic form of APL 2PIF used to return control to the non-APL
application after APL2 initialization or after an APLX call from the non-APL applica-
tion. It is particularly useful because you can specified it as RUN(APL2PI) when
starting APL2.

Using APL2P1T is the same as using APL2PIE 0 ''.

For more information about using APL2P1I, see the discussion of calling APL2 in
APL2/370 Programming: System Services Reference.

Note: When establishing an association to APL2PT using ONA, you must code a
zero as the name class of the object. For example:

0 11 ONA 'APL2PI'

This is required for proper operation of the APL2P1I interface.

132 APL2 Programming: Using the Supplied Routines

APL2PIE

APL2PIE—APL2 Program Interface Extended

An APL2 external function to make it easier to communicate between APL2 and
non-APL applications. APL2PIE is an ambi-valent function that provides several

functions:

e Return control from the APL2 environment to the currently-active non-APL

application

e Start a non-APL application from the APL2 environment

* Request termination of the currently-active non-APL application

e [ssue a service request to a non-APL application

or

result<APL2PIE 0 "'

result<«value APL2PIE 0 '!

These functions return control to the non-APL application:

value

result

An array to be returned to the non-APL application.

A two- or three-element vector. The first two elements are an
integer code that indicates whether the request was successful.
The third element, if present, is a return code issued by the
non-APL application when it terminates, or a message if the
non-APL application used the APLX service.

result<«command APL2PIE 1 name

Start a non-APL application where:

name
command

result

The name assigned to the application
The command to start the application

A two- or three-element vector. The first two elements make up
an integer code that indicates whether the request was successful.
The third element, if present, is a return code issued by the
non-APL application when it terminates, or a message if the
non-APL application used the APLX service.

result<«APL2PIE 2 "'

Request termination of the currently-active non-APL application.

result

A three-element vector. The first two elements are an integer
code that indicates whether the request was successful. The third
element is a return code issued by the non-APL application when it
terminated.

Chapter 11. External Routines 133

APL2PIE

result<«value APL2PIE 3 name

Make a service request to the named non-APL application:

name The name of the application to direct the request to
value A value to pass to the application
result Either a two- or three-element array built by APL2PTE, or an

arbitrary array built by the non-APL application.

If the array was built by APL2PIE, the first two elements are an
integer code that indicates whether the request was successful.
The third element, if present, is a return code issued by the
non-APL application when it terminates, or a message if the
non-APL application used the APLX service.

For more information about using APL2PIE, see APL2/370 Programming:
Processor Interface Reference.

Note: When establishing an association to APL2PIE using ONA, you must
code a zero as the name class of the object. For example:

0 11 0ONA 'APL2PIE'

This is required for proper operation of the APL2P1I interface.

134 APL2 Programming: Using the Supplied Routines

ATP

ATP—Array to Pointer

The external function AT P allows pointer arguments passed from non-APL routines
to be replaced (i.e. updated) with an APL2 array. You can use ATP with PTA to
retrieve, then update arguments passed from non-APL programs.

pattern ATP array pointers

pattern A pattern (similar to the pattern used with ATR) that describes the
data in the desired format.

array The source array.

pointers An address or list of addresses of the data to be updated.

Note: This function does not produce an explicit result. Further, it doesn't check
to make sure the result fields are large enough to hold the source values.

The ATP function assumes a one-to-one correspondence among the data
descriptors in the left argument, the data items in the array specified in the
right argument, and the set of pointers in the right argument.

Chapter 11. External Routines 135

ATR

ATR—Array To Record

Use this routine to convert an APL array right argument to a character vector based
on a pattern left argument. It is useful for converting APL objects to records that
are written to a file.

record<pattern ATR array

pattern A character vector that describes the format of the right argument.
For more information about pattern, see APL2/370
Programming: System Services Reference.

array Any APL array of depth 181 or less.
record A character vector created from the ARRAY according to the
PATTERN.

Note: The RTA external routine (see ['RTA—Record to Array” on page 181 is the
inverse of ATR. The PFA external routine (see [‘PFA—Pattern from Array” on|
page 175) can also be used to generate patterns.

136 APL2 Programming: Using the Supplied Routines

ATTN

ATTN—Handling Attentions

This routine allows applications to signal an attention or detect whether the user
has signaled an attention.

Frequently, you need to protect applications from interruption during critical proc-
essing. You can do this by setting the ignore attention execution attribute during
function fixing. When you need to signal an application, the ATTN function tells
the application that a signal has been received, but doesn't interrupt processing.

The ATTN function can signal an attention, query whether an attention has been
signaled, or remove an attention that has been signaled. An application can use
ATTN to detect whether an attention has been signaled during ODL, OSVE, or a
long-running process. Note that signaling attention does not halt a shared variable
interlock, or cause a shared variable event.

rc<«ATTN arg

arg One of the following:
10 Query the current attention state
0 Set the current attention state to off
1 Set the current attention state to on

rc The attention state before the call to ATTN.

Chapter 11. External Routines 137

BUILDRD

BUILDRD—BUuild a Routine Description

Use BUILDRD to create an object file containing a routine description that
Processor 11 can use to determine how to use the routine. The object file
produced by BUILDRD is link-edited with the user's routine to make it self-

describing.

For additional information on this function and Processor 11, see APL2/370
Programming: System Services Reference.

rc<file BUILDRD rdname rname rd

file

rdname

rname

rd

rc

The name of the file to be written, for example, ' XXXX TEXT'

The name to be assigned to the routine description in the generated
object file. Specify this name as the routine's entry point name
when the routine and its description are link-edited.

The name of the non-APL routine.

A character vector containing Processor 11 tags that describe the
routine.

Any Processor 11 tags can be used. The :LINK tag is required. If
the :NICK is used, Processor 11 requires that its name match the
name specified in the right argument of ONVA. The :LOAD, :MEMB,
:ENTRY, and :DESC tags are ignored.

The normal result of BUTLRD is zero, which indicates success.
BUILRD uses AFM to write the file. Nonzero return codes are
generated by AFM. Refer to the AFM documentation for informa-
tion about these codes.

138 APL2 Programming: Using the Supplied Routines

BUILDRL

BUILDRL—BUuild a Routine List

Use this routine to build an object file containing a routine list used by Processor 11
to locate routines within a module. The object file produced by BUILDRL is link-
edited with the user's routines.

For additional information on this function and Processor 11, see APL2/370
Programming: System Services Reference.

rc<«file BUILDRL rlname rtndef [rtndef] ...

file The name of the file to be written, for example, ' XXXX TEXT'

rlname The name to be assigned to the routine list in the generated object
file. Specified this name as the module's entry point name when
the routine list and the non-APL routines are link-edited.

rtndef A character vector that defines a routine's entry in the routine list. It
can take any of the following forms:

gnaname
gnaname rname
gnaname rname Iintname

gnaname The name in the right argument of N4 when an
association is established.

rname The name of a non-APL routine or routine
description

intname The name of an interface management routine,
non-APL routine, or routine description.

rc The normal result of BUTLRD is zero, which indicates success.
BUILRD uses AFM to write the file. Nonzero return codes are
generated by AFM. Refer to the AFM documentation for informa-
tion regarding these codes.

Chapter 11. External Routines 139

CAN

CAN—Compress and Nest

Use this routine to compress and partition a character vector based on a Boolean
mask.

result<mask CAN characters

mask Is a Boolean mask. Zeros in the mask correspond to characters
to be deleted from the right argument and to the beginning of the
second and subsequent elements of the RESULT.

characters Is a simple character vector
result Is a vector of character vectors.

Note that presult<+,1++/~mask and that if mask
begins with a zero, resu It begins with a null vector.
pmask<+pcharacters. If the arguments are empty,
result<«»,c!'!',

Note: This function has been superseded by the partition primitive.

140 APL2 Programming: Using the Supplied Routines

CMSIVP

CMSIVP—Installation Verification under CMS

Use this routine to verify the installation of APL2 in the VM/CMS environment.

CMSIVP

There are no arguments and no result is returned.

Start the procedure by invoking the function CMSIVP, which verifies and tests
various parts of the installed APL2 system. As this happens, it displays information
on your terminal. You should check this information against the APL2 system you
believe you have installed, and investigate or correct any discrepancies.

For information on the installation procedure, see APL2/370 Installation and
Customization under CMS.

Chapter 11. External Routines 141

CSRIDAC

CSRIDAC—Request or Terminate Access to a Data Object

This routine provides the first (and last) step in using the data window callable ser-

vices supported

by MVS/ESA. The interface provides access to temporary

hiperspaces as well as page formatted permanent files that can be viewed through
a window. See also CSRVIEW, CSRSAVE, CSRSCOT, and CSEREFR. For
additional information see MVS/ESA Callable Services for High Level Languages.

(rc rs)«CSRIDAC beginstr size idname [offsetname]

This form of CSRIDAC requests access to a data object.

beginstr

size

idname

offsetname

A character vector containing one of the following forms:

BEGIN TEMP SCROLL
BEGIN DD ddname [SCROLL] [access]
BEGIN DS dsname [SCROLL] [access]

Note: The bracketed fields are optional. The brackets them-
selves are never part of the character vector.

TEMP Access a temporary object, which is deleted when
CSRIDAC END is done.

DD ddname Use an existing ddname to locate a linear VSAM
cluster.

DS dsname Allocate the specified linear VSAM cluster. The
dsname must be fully qualified, and is given
without quotation marks.

SCROLL A scroll area to be maintained while the data
object is accessed. This is optional except for
TEMP.

access Can be either of the following or defaulted:

READ An existing object is to be accessed as
read only.

UPDATE Exclusive control with read/write
authority is requested.

UPDATE is ignored for a new object (size
nonzero), and is the default for an existing object.

For a new object, the limit size of the object to be created, speci-
fied in pages (blocks of 4096 bytes). For an existing object, 0
must be specified. Note that a nonzero size must be given if a
new permanent object is created or if a TEMP object is being
accessed.

The name of the variable where the object identifier token is
returned as an eight-element character vector. The data returned
is not displayable and should not be manipulated.

An optional name of a variable where the current size of the object
is returned as a scalar integer representing the number of 4K
blocks.

142 APL2 Programming: Using the Supplied Routines

(rc rs)

CSRIDAC

Return code from the operation. This includes the return_code
and reason_code parameters defined in MVS/ESA Callable Ser-
vices for High Level Languages. A brief list of (rc rs) values
is included here for convenience, but it is not necessarily complete.

0 O Operation successful.
8 280 No hiperspace available for temporary object or scroll
area.

8 282 Unable to create a linear VSAM data set.

12 28 The object is currently unavailable.

12 55 Warning: accessed with irregular SHAREOPTIONS.
12 62 Object in use. (n readers or 1 updater permitted)
16 nnnn Unable to allocate as requested. Many possible

reasons, including attempt to create an existing data
set.

44 4 Window services not available.

(rc rs)«CSRIDAC 'END' 1id

This form of CSRIDAC terminates a data object.

id

(rc rs)

The eight-element character token returned when access was
requested.

Return code from the operation. This includes the return_code
and reason_code parameters defined in the manual referenced
above. A brief list of (rc rs) values is included here for con-
venience, but it is not necessarily complete.

00 Operation successful.
12 10 Another service is currently using the access ID.
44 4 Window Services not available.

Chapter 11. External Routines 143

CSRREFR

CSRREFR—Refresh an Object

This routine is part of the data window callable services supported by MVS/ESA. It
applies to a data object and optional scroll area previously defined by CSRIDAC,
and to windows on that data created by CSRVIEW. The service discards any
changes made to data within specified parts of the windows or scroll area, and
replaces the data with either:

e binary zeros if it is a TEMP object, or
e a current copy of data from the object if it is permanent.

For more information see MVS/ESA Callable Services for High Level Languages.

(rc rs)<«CSRREFR id offset span

id The eight-element character token returned when access was
requested.
offset An integer that is an origin-0 4K block number within the object,

which identifies the location where replacement should begin. For
example, if 2 is specified, the replacement begins with the data at
offset 8192 in bytes from the beginning of the permanent object.
Replacement is always made into the corresponding part of the
scroll area and (as appropriate) into any part of the window associ-
ated with that data.

span The integral number of 4096 byte blocks to be refreshed.

(rc rs) Return code from the operation. This includes the return_code
and reason_code parameters defined in MVS/ESA Callable Ser-
vices for High Level Languages. A brief list of (rc rs) values
is included here for convenience, but it is not necessarily complete.

00 Operation successful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.
44 4 Window services not available.

144 APL2 Programming: Using the Supplied Routines

CSRSAVE

CSRSAVE—Save Changes Made to a Permanent Object

This routine is part of the data window callable services supported by MVS/ESA. It
applies to a permanent data object and optional scroll area previously defined by
CSRIDAC, and to windows on that data created by CSRVIEW. Any changes
made to data within specified parts of the windows or scroll area are copied to the
permanent object. It is not supported for TEMP objects. For more information see
MVS/ESA Callable Services for High Level Languages.

(rc rs)<«CSRSAVE id offset span [highname]

id

offset

span

high

(rc rs)

The eight-element character token returned when access was
requested.

An integer that is an origin-0 4K block number within the object
identifying the location where the data should be stored. Data is
taken from corresponding parts of the window, or from the scroll
area.

The integral number of 4096 byte blocks to be saved.

An optional name of a variable where the new size of the object is
returned as a scalar integer representing the number of 4K blocks.

Return code from the operation. This includes the return_code
and reason_code parameters defined in MVS/ESA Callable Ser-
vices for High Level Languages. A brief list of (rc¢ rs) values
is included here for convenience, but it is not necessarily complete.

0O O Operation successful.

4 2055 Part of data set is damaged, but this operation is suc-
cessful.

8 323 Cannot issue CSRESAVE for temporary object.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

44 4 Window services not available.

Chapter 11. External Routines 145

CSRSCOT

CSRSCOT—Save Object Changes in a Scroll Area

This routine is part of the data window callable services supported by MVS/ESA. It
applies to a data object and scroll area previously defined by CSEIDAC, and to
windows on that data created by CSREVIEW. The operation copies data from
specified parts of the windows into the corresponding portion of the scroll area. It
does not make any change to a permanent object. For additional information see
MVS/ESA Callable Services for High Level Languages.

(rc rs)<«CSRSCOT id offset span

id The eight-element character token returned when access was
requested.
offset An integer that is an origin-0 4K block number within the scroll

area, which identifies the location where the data should be stored.
Data is taken from corresponding parts of the window.

span The integral number of 4096 byte blocks to be copied.

(rc rs) Return code from the operation. This includes the return_code
and reason_code parameters defined in MVS/ESA Callable Ser-
vices for High Level Languages. A brief list of (rc rs) values
is included here for convenience, but it is not necessarily complete.

0 0 Operation successful.

4 2055 Part of data set is damaged, but this operation is suc-
cessful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

44 4 Window services not available.

146 APL2 Programming: Using the Supplied Routines

CSRVIEW

CSRVIEW—Start or Terminate a View of an Object

This routine is part of the data window callable services supported by MVS/ESA. It
controls a window that can be used to view a data object and/or scroll area previ-
ously defined by CSRIDAC. See also CSRREFR, CSRSAVE, and CSRSCOT,
which you can use to transfer data between the window, scroll area, and perma-
nent data object. For additional information see MVS/ESA Callable Services for
High Level Languages.

(rc rs)«CSRVIEW 'BEGIN' id offset span wname [usage] [dispos]

id The eight-element character token returned when access was
requested.
offset An integer that is an origin-0 4K block number within the scroll

area or object, associated with the beginning of the window.

Note: Multiple concurrent views of an object are permitted, but

they cannot overlap within one id. For permanent objects you

can define overlapping views by using CSRIDAC to create mul-
tiple object definitions of a single stored object.

span The number of 4K blocks to reserve for the window.

wname The name of a variable that is established as a window. Subse-
quent APL statements accessing this variable reference or modify
the window. The variable is established as a character vector.

usage An optional character vector that contains either SEQ or RANDOM.
This is used as an optimizing hint to the operating system. The
default is RANDOM.

dispos An optional character vector that contains either REPLACE or
RETAIN. The defaultis REPLACE. If RETAIN is specified,
the existing content of the wname variable is retained, but

¢ the variable must exist at the current function level,
¢ it must be a simple character vector, and
e the expression (pwname)=4096xspan must be true.

VALUE ERROR, DOMAIN ERROR,or LENGTH ERROR
respectively are signaled if these conditions are not met.

(rc rs) Return code from the operation. This includes the return_code
and reason_code parameters defined in the manual referenced
above. A brief list of (rc rs) values is included here for con-
venience, but it is not necessarily complete.

00 Operation successful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.
12 28 The object cannot be accessed at this time.

12 64 The request exceeds your data space limit.

44 4 Window services not available.

Chapter 11. External Routines 147

CSRVIEW

(rc rs)<«CSRVIEW 'END' id wname [dispos]

id The eight-element character token returned when access was
requested.

wname The same variable name specified by CSRVIEW 'BEGIN'.
This defines which view of the object is terminated.

dispos An optional character vector containing either REPLACE or
RETAIN.

e If RETAIN is specified, the wname variable is retained with
its existing content after disassociating it from the object.

e If REPLACE is specified, the variable is retained, but with its
existing content replaced by the data to which the window is
mapped. (This is different if the variable was modified and
the window is terminated without invoking CSRSAVE or
CSRSCOT.)

 If neither is specified, the variable is deleted.

(rc rs) Return code from the operation. This includes the return_code
and reason_code parameters defined in MVS/ESA Callable Ser-
vices for High Level Languages. A brief list of (rc rs) values
is included here for convenience, but it is not necessarily com-

plete.

00 Operation successful.

12 10 Another service is currently using the access ID.
44 4 Window services not available.

148 APL2 Programming: Using the Supplied Routines

CTK

CTK—Character to DBCS Conversion

Use this routine to convert an APL character vector to a vector of mixed
EBCDIC/DBCS data. It is the inverse of XTC, and can be used in both monadic
and dyadic form.

result<CTK data

data A simple character vector

result A vector of mixed EBCDIC/DBCS data. Characters in DATA for
which 256>0AF DATA are placed unchanged in the result.
Character strings in DATA for which 256 OAF DATA are pre-
fixed with SO (X'OE"') and suffixed with SI (X'OF') are stored as
2-byte elements in resu lt.

If the DBC.S(nnn) invocation option is used, then the leftmost
halfword in each extended character in DATA is checked for nnn.
If any check fails, then DOMAIN ERROR results.

result<cid CTK data

cid The character set ID for the data. It is in the range 0 - 32767. If
the leftmost halfword in any extended character in DATA is not
equalto CID,thena DOMAIN ERROR results.

data An APL character vector.

result A vector of mixed EBCDIC/DBCS data. Characters in DATA for
which 256>0AF DATA are placed unchanged in the result.
Character strings in DATA for which 256 OAF DATA are pre-
fixed with SO (X'OE') and suffixed with SI (X'OF') are stored as
2-byte elements in resu lt.

Chapter 11. External Routines 149

CTN

CTN—Character to Number

Use this routine to convert a character vector or matrix to a numeric vector or
matrix. It yields a null vector or matrix if the argument does not contain valid
numeric representations.

numbers<CTN characters

characters A character vector or matrix that contains the formatted repre-
sentation of one or more numbers. Only numeric formats
produced by monadic s are acceptable.

numbers A numeric vector or matrix that is formed by executing the
characters argument.

150 APL2 Programming: Using the Supplied Routines

DAN

DAN—Delete And Nest

Use this routine to partition a character vector based on a list of separator charac-
ters. Separator characters are not included in the result. See WORDS on page 0]

result<«separators DAN characters

separators A list of separator characters.

characters A simple character vector.

result A vector of character vectors.

Note: This function is a subset of the partition primitive.

Strings of one or more separator characters are deleted from the right argument
and mark the separation between elements of the result. The result does not

contain empty items unless the entire right argument consists of separator charac-
ters.

If 0=pseparators, result<+>,ccharacters.

If 0=pcharacters, result<—>,c'"',
peresult<«+>pcharacters~separators

Chapter 11. External Routines 151

DFMT

DFMT—Format Arrays Containing DBCS Data

Use this routine to format APL arrays for display on a device, such as the IBM
5550 Multistation*, that supports double-byte character set (DBCS) data.

If the array to be formatted contains DBCS data, the columns of the formatted
result are expanded so that DBCS and single-byte character set (SBCS) data is
aligned correctly within the columns.

result<«mask DFMT array

array The array to be formatted.

mask An optional argument that specifies how columns of the array are
grouped into logical columns and whether the logical columns are left
or right aligned.

If the mask is scalar, it is replicated to match the number of columns
in the array.

If the mask argument is elided, a mask of 1s and ~ 1s is used.
" 1s correspond to columns of the array that contain numeric scalars,
1s correspond to other columns.

pMASK <> ~14pARRAY after scalar extension.

1 A logical column begins at the corresponding column
in the array and the logical column should be left
aligned.

1 A logical column begins at the corresponding column
in the array and the logical column should be right
aligned.

0 The corresponding column in the array is part of the
same logical column as the one to its immediate left.

1sand " 1s The beginning of logical columns in the array. Indi-
cates whether the column is padded on the right or
left with blanks if the column must be expanded to
accommodate DBCS data. Actual alignment of data
within the columns is the same as that produced by
the & primitive; that is, if the column contains simple
numeric scalars, it is right aligned, otherwise it is left
aligned.

result A one-column matrix of formatted rows of the array.
+oRESULT <~ x/ 14psARRAY

If the result is not modified, it is displayed with a leading blank column
because it is nested. > ,RESULT causes the result to be displayed
without the leading blank column, but trailing blanks may be appended
because of the o.

152 APL2 Programming: Using the Supplied Routines

DISPLAY

DISPLAY—Display Array Structure

DISPLAY produces a character array that pictorially represents the structure of its
argument. Use DISPLAY on terminals that do not have box drawing characters
available.

z<«DISPLAY array

The following characters are used to convey shape information:
»and + Indicate a dimension of at least one

e and ¢ Indicate a dimension of zero

(None of the above) Indicates no dimension

The following characters are used to convey type information:

~ Indicates numeric
+ Indicates mixed
€ Indicates nested

Indicates a scalar character that is at the same depth as nonscalar
arrays

(None of the above) Indicates a character array that is not a simple scalar

Chapter 11. External Routines 153

DISPLAYC

| DISPLAYC—Display Array Structure

I DISPLAYC produces a character array that pictorially represents the structure of
I its argument. Use DISPLAYC on terminals that do not have box drawing charac-
I ters available.

z<«DISPLAYC array

I The following characters are used to convey shape information:
| > or ¥ Indicates a dimension of at least one
[e or ¢ Indicates a dimension of zero

I (None of the above) Indicates no dimension

I The following characters are used to convey type information:

| ~ Indicates numeric
| + Indicates mixed
| € Indicates nested

I Indicates a scalar character that is at the same depth as
I nonscalar arrays

I (none of the above) Indicates a character array that is not a simple scalar

I Note: DISPLAYC is equivalentto DISPLAY, and is supplied for compatibility
I with other APL2 platforms.

154 APL2 Programming: Using the Supplied Routines

DISPLAYG

DISPLAYG—Display Array Structure

DISPLAYG produces a character array that pictorially represents the structure of
its argument. Use DISPLAYG on terminals that have box drawing characters
available.

z<«DISPLAYG array

The following characters are used to convey shape information:
»and + Indicate a dimension of at least one

e and ¢ Indicate a dimension of zero

(None of the above) Indicates no dimension

The following characters are used to convey type information:

~ Indicates numeric
+ Indicates mixed
€ Indicates nested

Indicates a scalar character that is at the same depth as nonscalar
arrays.

(None of the above) Indicates a character array that is not a simple scalar

Chapter 11. External Routines 155

DSQCIA

DSQCIA—QMF Callable Interface

Use this function to access the QMF* callable interface. This new interface to QMF
allows a program to start QMF and issue QMF commands without the QMF envi-
ronment and ISPF present. In addition to regular QMF commands, three additional
commands in this interface start QMF (START) and allow the program to set and
retrieve global QMF variables (SET GLOBAL and GET GLOBAL.)

(rc handle data)<DSQCIA handle cmdstr [names vals]

handle

cmdstr

names

vals

rc

An integer that identifies which instance of QMF a call refers to.
This parameter is used in the DSQ_INSTANCE_ID field of the QMF
communications area block, DSQCOMM. It must be 0 if the QMF
command is START, and must contain a valid handle for all other
commands.

On return from DSQCIA, hand le contains the handle of the
instance of QMF for which the command was issued. At com-
pletion of a START command you must retain this value so that it
can be passed on subsequent commands.

A character vector that contains the QMF command to be proc-
essed.

A vector of character vectors or scalars that are QMF keywords or
variable names. The shape of the array passed must be equal to
the number of names. (If only one name is passed, it must be
enclosed.)

This parameter is required only for the SET GLOBAL and GET GLOBAL
commands. It is optional for the START command.

A vector of variable values. This can be a vector of character
vectors or scalars, or it can be a vector of numbers. It cannot
contain a mixture of numeric and character data.

For character values, the shape of the array passed must be equal
to the number of values. (If only one value is to be passed it must
be enclosed.)

Since integers are the only numeric type supported by the QMF
interface, you must be able to represent numbers as fullword inte-
gers. The APL2 external function issues a DOMAIN ERROR if
the array passed does not meet those requirements.

This parameter is required only if the namess parameter has also
been specified. If the command is GET GLOBAL, the array is used to
determine the type of the variable and the amount of storage to
allocate for the result. The values are not modified or replaced on
the workspace.

A numeric return code. The value is 0, 4, 8, 12, 0or 16 as
defined by the QMF callable interface.

156 APL2 Programming: Using the Supplied Routines

DSQCIA

data A value whose meaning is dependent on the value of rc and
cmdstr.

e If rcis 0 and cmdstr contains the string GET GLOBAL,
dat a contains the values of the QMF variables requested.

¢ |n all other cases, dat a is a character vector that contains
the QMF communications area DSQCOMM, as documented in
the QMF manuals.

Note: QMF Version 3 Release 1 or later is required for use of the DSQCTA
function. See QMF Application Development Guide, SC26-4722, for more informa-
tion on the QMF callable interface.

Chapter 11. External Routines 157

EDITORX

| EDITORX—System Editor Access

This function is a program interface to a named system editor.

Leditornamel] EDITORX objectname

The character string right argument is the same expression that would be typed to
enter the editor from APL2. The V or # can be included or omitted. If omitted V is
assumed.

The optional character string left argument is the name of the system editor, CLIST,
or EXEC to call. If omitted the editor name is taken from the most recent setting of
JEDITOR xxxx. If YEDITOR xxxx was never issued, DOMAIN ERROR is
reported.

Examples:
'"MYEDITOR' EDITORX 'MYFUNCTION'
JEDITOR MYEDITOR
EDITORX 'NMYFUNCTION'

Note: This function is not available when running under APL2 Application Environ-
ment.

158 APL2 Programming: Using the Supplied Routines

EDITOR2

EDITOR2—Full-Screen APL2 Editor

This function is a program interface to Editor 2, the APL2 full-screen editor.

EDITOR2 objectname

The character string right argument is the same expression that would be typed to
enter the editor from APL2. The V or # can be included or omitted. If omitted V is
assumed.

Examples:

EDITOR2 'MYFUNCTION'
EDITOR2 'WMYFUNCTION'
EDITOR2 'VMYFUNCTION[O171

Note: This function is not available when running under APL2 Application Environ-
ment.

Chapter 11. External Routines 159

EXP

EXP—Execute in the Previous Namescope

Use this routine to process named functions, refer to variables, and specify vari-
ables in the previous namescope.

The EXP routine is designed to be used in namespaces and provides access to
names in the namescope of the function or operator that caused entry into the
current namescope.

If the EXP routine is run in a namescope where there is no previous namescope
(for instance, in your active workspace rather than in a name space), it operates in
the current workspace.

Note: Processing a function or operator declared with VA causes an explicit
change to the namescope of the function or operator. Processing the £XP function
or an operand to an external operator causes an implicit namescope switch. If the
E X P function is run in a namescope that was entered implicitly, the namescope
switches to the one that originally caused explicit entry into the current namescope.

Functions processed under control of EXP operate the same as those processed
under control of EC, and exhibit the following behavior:
¢ Requests for quad input are handled the same as quad input under 0JEC.

e Errors generated during processing do not cause suspension of the function
being processed and are reported against EXP.

e Stop control vectors (SA) are ignored.

e An attention signal does not cause suspension; an interrupt signal causes the
E X P function to be interrupted.

e Branch escape (=) causes the EXP function to run, but its callers are not aban-
doned.

EXP can perform four different actions, depending on how the right argument is
constructed:

* Process an expression in the previous namescope.

e Specify a variable in the previous namescope using a value from the current
namescope.

e Process a named monadic function in the previous namescope with an argu-
ment from the current namescope.

e Process a named dyadic function in the previous namescope with arguments
from the current namescope.

The right argument of EXP can contain up to three items. The number of items
and their content determine what happens.

A single item on the right (must be enclosed if there is more than one item) is an
expression to be processed in the previous namescope. If the expression is
nothing more than the name of a variable or niladic function in the previous
namescope, then you are referencing the named item.

A two-item right argument indicates a monadic function. The first item is the name
(see note) of the function and the second item is the right argument (supplied from
the current namescope).

160 APL2 Programming: Using the Supplied Routines

EXP

A three-item right argument indicates either a specification or a dyadic function.

e |f the second item of the right argument is the left arrow, then it's a specifica-
tion. The first item is the name of the variable to be set and the third item is
the value (from the current namescope) that it receives.

e |f the second item is not a right arrow, then it must contain the name of a
dyadic function in the previous namescope. In this case, the first and third
items are the left and right arguments respectively (from the current
namescope).

Note: System functions (such as 0FX) and system variables (such as [0I0) are
included as named objects.

You can use EXP to process an expression in the previous namescope:

result<«EXP cexpr

result The result of processing expr

expr A character scalar or vector that contains the expression to be
processed in the previous namescope.

Example:
PRE_TIO<EXP <'0I0' @ GET VALUE OF OIO FROM
A PREVIOUS NAMESCOPE
Example:
TOTA2«EXP <c'12! A 01 OR 1 2 DEPENDING

A ON 0OI0 IN PREV

The following example processes a monadic function in the previous namescope
using an argument from the current namescope.

result<«EXP fn_name value

result The result of processing the named monadic function in the pre-
vious namescope.

fn_name A character scalar or vector that contains the name of a monadic
function in the previous namescope.

value The right argument (from the current namescope) to be supplied to
the monadic function

To create function in previous namescope:

Z<EXP 'OFX' ('R<NEWFN RA' 'R<RA')

Chapter 11. External Routines 161

EXP

To process a dyadic function in the previous namescope using arguments from the
current namescope:

result<«EXP 1lvalue fn_name rvalue

result The result of executing the named dyadic function in the previous
namescope.
fn_name A character scalar or vector containing the name of a dyadic func-

tion in the previous namescope.

Ivalue The left argument (from the current namescope) to be supplied to
the dyadic function.

rvalue The right argument (from the current namescope) to be supplied to
the dyadic function.

This assigns a value from the current namescope to a variable in the previous
namescope:

result<«FEXP vname '<' value

result The same as value.

vname A character scalar or vector that contains the name of the variable
in the previous namescope.

value The value from the current namescope that is assigned to vname.
Example:

T<EXP '00I0'" '<«' PREV_IO A RESTORE 0OIO IN
a PREVIOUS NAMESCOPE

162 APL2 Programming: Using the Supplied Routines

FED

FED—Diagnostic Information
Use this routine to obtain a list of recently queued or displayed messages.

messages<FED 1

messages A vector of 10 character vectors that contains the ten most
recently queued or displayed messages. Each message includes
the ID field whether or not DEBUG(1) is in effect for the session.
The oldest message is shown first.

Chapter 11. External Routines 163

HELP

HELP—Retrieve Keyed Help Text for an Application

This routine allows applications to retrieve keyed text or a list of keys.

Frequently, applications need to present text to their users. This text can be too
large to store in the application workspace, and can be difficult to maintain if the
application also resides in the workspace. The HE L P function allows applications
to retrieve keyed text from an application-dependent help file. Help files can be
national language specific.

An APL2 help file is a normal CMS file or a TSO partitioned data set member that
contains GML-like tags. These tags define keys that delimit sections of free-form
text. A help file can also refer to other files containing more text. You can use the
HEL P function to retrieve the list of keys available in a help file or the text associ-
ated with a particular key.

For more information on the format of help files, see the default APL2HELP file that
came with the APL2 product.

Using Help to Retrieve a List of Keys

keys<applid HELP ''

applid Character vector of length 1 to 8. HELP uses this as a DDname
on TSO or filetype on CMS.

If not supplied, a default value of APL2HELP is used. The current
value of ONLT is used as the member name on TSO or the
filename on CMS. If a file or member in the current national lan-
guage is not available, the ENP file is used.

keys Character matrix containing available keys in the help file.

Using Help to Retrieve Text

text<«applid HELP key

key A character string of length 1 to 65. A key can contain imbedded
blanks; trailing blanks are ignored. The application help file is
searched for a record that contains a help tag, :HELP, followed by
the contents of key. All records from the tag up to the next help
tag are returned.

text A character matrix containing the text found after the key.

164 APL2 Programming: Using the Supplied Routines

HELP

Using Help as an Online Help Facility

text<«HELP key

key A character string that contains the name of an APL2 public work-
space or external function. HELP uses the IBM-supplied help
file to retrieve the tutorial text for the specified workspace or func-
tion.

text A character matrix that contains the text found after the key.

HELP Return Codes:

1 File not found. Either the indicated DDname was not allocated on TSO or
neither a ONL T nor a ENP version of the requested file could be found.

The specified key was not found in the file.
Invalid tag record was found.
Invalid file.

Space unavailable to read file or build result.

O g A~ WO DN

File 1O error
7 Data conversion error

If an error occurs while trying to process a file referred to in a help tag, then the
result is negative.

Chapter 11. External Routines 165

IDIOMS

IDIOMS—APL2 Phrases

This routine provides a full screen interface to commonly- used APL code segments
that provide solutions to common application problems. There are more than 700
different phrases, divided into 24 categories.

IDIOMS lets you select phrases from different APL environments, with a user-
selected index origin. You can write the selected phrases into a function in your
workspace or into the explicit result as a character matrix.

The functions provided by this utility are all function-key driven:

F1 Displays the help information for the current screen.

F2 Pops up a window of all previous searches, which lets you reselect any
previous search.

F3 Returns to APL2.

F4 Saves the APL2 idiom identified by the cursor as a function called

IDIOM_LIST. f IDIOM_LIST already exists, the selected idiom is
appended to the end of the function. This can be a prototype for a new
program using the selected expressions to accomplish the desired tasks.

F5 Limits the search to the displayed idioms. This helps you narrow the
searches without losing intermediate results.

F6 Displays a screen of the 24 categories. Place the cursor on a category
and press F6 again to display the idioms within that category, or press F3
to exit without selecting anything.

F7 Scrolls one screen toward the top.
F8 Scrolls one screen toward the bottom.
F9 Appends the APL2 expressions identified by the cursor to the output of

IDIOMS. This places them on the session-manager screen, making it
easy to experiment with the phrases. IDIOMS places the output into a
variable if invoked through RESULT<IDIOMS.

F10 Pops up a window to select environment(s) for idioms that should be dis-
played.

result<IDIOMS

result A character matrix that contains phrases selected with PF9 while in
the application

Note: This function is not available when running under APL2 Application Environ-
ment.

166 APL2 Programming: Using the Supplied Routines

| IN—Read a Transfer File into the Active Workspace

This function is a program interface to the) IV system command.

IN 'file [names]'

file Is the name of a transfer file, following the naming conventions and
defaults of the host system. Default filetype and filemode (CMS) or
qualifiers (TSO) are added if a simple name is used.

On CMS: NAME becomes NAME.APLTF.A
On TSO: NAME becomes PREFIX.APLTF.NAME

names Are names of objects to be read and defined in the active workspace.
Names can include system variables if they are present in the transfer
file. If the name list is omitted, all objects in the transfer file are copied.

If a name conflict occurs, the object from the transfer file replaces the one currently
in the active workspace.

Examples:

IN '"FILE"
IN '"FILE FUN1 FUN1 VARS3'
IN '"ABC.APLTF.A"

Note: This function is not available when running under APL2 Application Environ-
ment.

Chapter 11. External Routines 167

KTC

KTC—DBCS to Character Conversion

Use this routine to convert a character vector of mixed EBCDIC/DBCS data to an
APL character vector. KTC is the inverse of CTK and can be used in both
monadic and dyadic form.

result<KT(C data

data A simple vector of mixed EBCDIC/DBCS data where DBCS strings
are delimited by SO/SI (X'0E', X'OF') characters.
result An APL character vector. EBCDIC characters from DATA are

placed in the result unchanged. DBCS characters are taken 2
bytes at a time to produce scalar elements of the RESULT. SO/SI
characters in DATA are not placed in the RESULT.

If the DBCS(nnn) invocation option is used, then nnn is placed in
the leftmost halfword of each extended character in RESULT
unless the character in DATA is EBCDIC. (nnnis in the range
0 - 32767).

result<cid KTC data

cid The character set ID in the range 0 - 32767, which is put in the
leftmost halfword in each extended character of the RESULT
unless the character from DATA is EBCDIC.

data A vector of mixed EBCDIC/DBCS data where DBCS strings are
delimited by SO/SI (X'OE', X'0OF') characters.
result An APL character vector. EBCDIC characters from DATA are

placed in the result unchanged. DBCS characters are taken 2
bytes at a time to produce scalar elements of the RESULT. SO/SI
characters in DATA are not placed in the RESULT. DBCS charac-
ters have CID placed in the high order halfword of each extended
character in the RESULT as discussed above.

168 APL2 Programming: Using the Supplied Routines

MSG

MSG—Message Services Request

This routine allows APL2 messages to be displayed, queued, retrieved, or checked.
See APL2/370 Messages and Codes for definitions of APL2 messages.

result<«reg MSG msg_data

reqg = 0 Requests display of an APL message
reg = 1 Requests queuing of an APL message
reqg = 2 Requests an APL message be returned

reqg = 3 Requests a check for an APL message

msg_data

result

A nested array that contains the message number followed by the
fill-in fields. The message number must be a positive integer
scalar. The fill-in fields must be character scalars or vectors.

The number of fill-in fields required depends on the message
number you specify, but it must never exceed 10. (See APL2/370
Messages and Codes for descriptions of specific messages.) If
too many fill-in fields are specified for a specific message, the
extra fields are ignored. If too few are specified, the remaining
fields are filled with asterisks.

The total length of the message (fixed text plus fill-in fields) should
not exceed 240 bytes. If the total length exceeds 240 bytes, fill-in
fields are truncated or a return code 2 (message too large) results.

The numeric return code for the request or the message text when
REQ is 2. When REQ is 2, if the message returned contains
DBCS data, it is returned in mixed SBCS/DBCS format and can be
converted to extended characters using the KT C function.

0 = success

1 = message does not exist
2 = message too long

3 = insufficient free space

Chapter 11. External Routines 169

OPTION

OPTION—Query or Set APL2 Invocation Options

You can use this function monadically to query the current state of certain proc-
essing options, or dyadically to change those options and return their prior values.

result<«[valuel] OPTION key

key The name (as a character vector) of an invocation option. It can have
leading and/or trailing blanks, but must not be abbreviated. The fol-
lowing options are supported:

* CASE
 DBCS
 DEBUG

* QUIET

* SYSDEBUG
« TRACE

value An optional value to be assigned to the invocation option. The value
must be specified as character scalar or vector, even when its value is
numeric. Negative numbers can be indicated either with a leading
minus (hyphen) or with a leading APL negative (overbar).

The option value must be a single integer or keyword, though it can
have leading and/or trailing blanks. Keywords cannot be abbreviated.
You can use any value that APL2/370 Programming: System Services
Reference indicates is valid for the KF'Y you specified.

When the DEBUG, SYSDEBUG, or TRACE options are specified at
startup, or through the)CHECK SYSTFEM command, you can express
the option values as multiple integers or as a sum. Forthe OPTION
function, though, you must specify the values as a sum or use separate
calls. Separate calls are required to turn some switches on and others
off.

result A character vector that contains the value of the invocation option. In
the dyadic form, the value returned is the one in effect before the
VALUE argument was applied.

Note: As an invocation option, QUIET is a keyword with no value, or with the
value ON or OFF. With the OPTION function, the keyword is always specified
and returned as ON or OFF. Allowing programs to set and reset QUIET gives
applications significantly more control over what information is displayed on the ter-
minal. As in the past, an implicit QUIET(OFF) action occurs any time a terminal
input request is issued.

Examples

To copy objects from a library workspace, suppressing all messages:

V COPY PARMS;0OPTION;STK
[1]1 »~(2#101 OSVO 'STK')/0
[2] ~(1#3 11 ONA 'OPTION')/O0
[3]1 STK<«')COPY ',PARMS

SHARE WITH STACK PROCESSOR
ACCESS OPTION FUNCTION
STACK THE)COPY COMMAND

D ®DD® DD

[4] STK<'''',('ON' OPTION 'QUIET'),''"! SET QUIET, STACK OLD VALUE
[5]1 ~0+40 OPTION 'QUIET' PROCESS STACK, RESTORE QUIET
[61 VvV

170 APL2 Programming: Using the Supplied Routines

OPTION

Note: This is a completely quiet function. It ignores all errors in the library system,
the shared variable system, and the name association system. Its callers have to
verify that the objects they needed were actually copied.

To turn DEBUG flags 1 and 32 on, and turn flag 4 off, you can use either of these
forms:

"1' '-u4' 132" QPTION c'DEBUG'

'33' '"4' QPTION “c'DEBUG'

Notice that the Each operator () is used to provide the effect of multiple calls to
OPTION in a single line. The right argument must be enclosed (<) so that Each
does not try to associate its individual characters with the items of the left argu-
ment.

Note: Installations can force certain option values through an OVERIDE list in the
installation options module. If this has been done, the OPT I ON function com-
pletes successfully, but no change to the value occurs. You can detect this condi-
tion by a subsequent monadic use of the OPTION function.

Chapter 11. External Routines 171

ouT

OUT—Write Objects to a Transfer File

This function is a program interface to the) 0UT system command.

OUT 'file [names]'

file Is the name of a transfer file, following the naming conventions and
defaults of the host system. Default filetype and filemode (CMS) or
qualifiers (TSO) are added if a simple name is used.

On CMS: NAME becomes NAME.APLTF.A
On TSO: NAME becomes PREFIX.APLTF.NAME

names Are names of objects whose transfer forms are to be written to the file.
If the name list is omitted all unshared variables, defined functions,
defined operators, and the system variables OCT, OFC, 010, OLC,
OPP, OPR, and ORL are written to the file.

Examples:

ouT 'FILE'
OUT 'FILE FUN1 FUN1 VAR3 0OPW'
OUT '"ABC.APLTF.A"

Note: This function is not available when running under APL2 Application Environ-
ment.

172 APL2 Programming: Using the Supplied Routines

PACKAGE

PACKAGE—Creating a Namespace

You can use the PACKAGE routine to create a namespace from a saved work-
space. More information on using this routine and on using hamespaces can be
found in APL2/370 Programming: System Services Reference.

Workspaces to be converted to namespaces must be saved using APL2 Version 1
Release 3 or later. If you've saved a workspace under an earlier release of APL2,
you must reload and resave the workspace using APL2 Version 1 Release 3 or
later before you can successfully process it using the PACKAGE routine.

Under MVS/TSO, saved workspaces to be converted must exist in a SAM library; if
you've saved a workspace in VSAM library you must resave it in a SAM library
before it can be processed. Under MVS/TSO, before the PACKAGE routine is
processed the ddname SYSPUNCH must be allocated to the sequential data set
where the resulting namespace is placed.

result<«[name_1list] PACKAGE ws_name

wS_name The data set name of the saved workspace to be converted.
Under VM/CMS this takes the form 'fn ft fm' and must exist on
an accessible minidisk. Under MVS/TSO, it has the form
'userid.Vnnnnnnn.WSNAME' and must be a cataloged sequen-
tial data set.

name_1list A list of names of APL objects in the resulting namespace that
are accessible by using ONA. If the NAME _LIST argument is
not specified, all APL objects in the resulting namespace are
accessible by using ONA.

NAME _LIST

can be a simple character scalar or vector representing one
name,

or a matrix or vector of vectors representing a list of names.

result The name of the data set that contains the resulting namespace.
In VM/CMS, this is a file with the name 'fn TEXT A' where 'fn'
is the file name of the workspace data set name provided in the
WS_NAME argument. In MVS/TSO, it is the name of the data
set allocated to ddname SYSPUNCH.

If the PACKAGE routine is not successful in converting the saved
workspace, RESULT is an empty vector.

Chapter 11. External Routines 173

PBS

PBS—Handling Printable Backspaces

The PBS routine allows applications to query and modify your current) PBS
setting.

Users need to tell APL2 whether their terminals support the new APL2 characters
or whether printable backspaces are required in order to enter them. You can indi-
cate whether you can enter the new characters by using the) PB.S system
command. Applications also need to determine whether a user can enter the APL2
characters. Using the PBS function, applications can query and modify the user's
setting. It is provided as an external function available through Processor 11 and
OnA.

rc<«PBS arg

arg One of the following:

10 Queries the current PBS setting.
0 Sets the current PBS setting off.
1 Sets the current PBS setting on.

rc The PBS setting before the call to PBS.

174 APL2 Programming: Using the Supplied Routines

PFA

PFA—Pattern from Array

This routine creates a CDR pattern from an APL array.

pattern«PFA array

array Any APL array.

pattern A pattern that describes the argument ARRAY. You can use
PATTERN as the left argument of RTA or ATR or as the left or
right argument pattern in a Processor 11 NAMES file. The
PATTERN is described in detail in APL2/370 Programming:
System Services Reference.

Chapter 11. External Routines 175

PIN

| PIN—Protected Read of a Transfer File into the Active Workspace
I This function is a program interface to the) PI N system command.

PIN 'file [names]'

I file Is the name of a transfer file, following the naming conventions and
I defaults of the host system. Default filetype and filemode (CMS) or
I qualifiers (TSO) are added if a simple name is used.

| On CMS: NAME becomes NAME.APLTF.A
I On TSO: NAME becomes PREFIX.APLTF.NAME

I names Are names of objects to be read and defined in the active workspace.
I Names can include system variables if they are present in the transfer
I file. If the name list is omitted, all objects in the transfer file are copied.

I If a name conflict occurs, the object from the transfer file is not copied. Objects not
I copied are listed in a 'NOT COPIED:' message.

I Examples:

| PIN '"FILE'
| PIN '"FILE FUN1 FUN1 VAR3'
| PIN '"ABC.APLTF.A'

I Note: This function is not available when running under APL2 Application Environ-
I ment.

176 APL2 Programming: Using the Supplied Routines

PTA

PTA—Pointers to Array

The external function PTA allows you to access arguments passed to functions as
pointers by APL2PI. PTA is usually used with ATP to retrieve and then update
arguments passed from non-APL programs.

array<pattern PTA pointers

pointers An address or list of addresses passed from APL2P1I.

pattern A pattern that describes the result arrays. lts format is similar to
the patterns used with RTA.

array The data at the pointers arranged according to the pattern(s) in
the left argument.

The PTA function assumes a one-to-one correspondence among the data descrip-
tors in the left argument; among the set of pointers in the right argument.

Chapter 11. External Routines 177

QNS

QNS—Query the Current Namescope

Use this routine to query the current namescope.

result<gNS O

result The left argument to 0N A for the function or operator that caused
entry into the current namescope.

If the QNS function is processed in the user's active workspace, it
returns '' 11.

178 APL2 Programming: Using the Supplied Routines

RAPL2

RAPL2—Remote-Session Manager

The remote-session manager is an APL2 function that allows you to carry on an
interactive session with a remote APL2 interpreter running under another user ID,
perhaps on another system. It uses the shared variable interpreter interface to
control the remote interpreter.

RAPL?2 establishes and manages a shared variable communication link with a
remote APL2 interpreter. Once the link is established, you can enter APL2
expressions and system commands and signal attention, but all input is passed to
the remote interpreter.

rec<[time] RAPL2 proc_id

proc_id The processor ID of the remote interpreter. This value is used as
the left argument to OSVO in RAPL?2's offer to share a variable
with the remote interpreter.

t ime The number of seconds RAPL 2 should wait for the remote inter-
preter to match RAPL 2's share offer. If the remote interpreter
does not match the offer within £ ime seconds, RAPL 2 issues
an appropriate message and terminates. t ime is optional; the
default is 30 seconds.

rc An explicit result indicating whether connection was established
(1), or was not established (0).

All0, M,)EDITOR 1, immediate execution input prompts, and array and
message output are passed back to be displayed locally by RAPL?2. All other
input and output generated by system commands, auxiliary processors, or external
routines occur at the remote interpreter's location.

When the user signals an interrupt, RAPL 2 prompts the user for one of the
following:

e The interrupt should be sent to the remote interpreter.

e RAPL?2 should switch to the local interpreter to process the user's input.

¢ A shutdown signal should be sent to the remote interpreter, causing a CON -
TINUE workspace to be saved.

When RAPL?2 uses the local interpreter to process the your input, FAPL?2 issues
O input requests. Expressions and commands entered by you are processed by
the local interpreter in the namescope from which RAPL 2 was called. To resume
use of the remote interpreter for executing input, signal interrupt again.

RAPL? relinquishes control of the terminal when the remote interpreter retracts its
shared variable. This typically occurs when the remote interpreter receives an
JOFF or)CONTINUE system command.

Note: RAPL?2 tries to share the local variable APL 2 with the remote interpreter.
If the variable APL 2 is already shared with the remote interpreter, RAPL?2
cannot establish the communication link.

For information about starting a remote interpreter, see the Description of Invoca-
tion Options section of APL2/370 Programming: System Services Reference. For

Chapter 11. External Routines 179

RAPL2

more about the shared variable interpreter interface, see APL2/370 Programming:
System Services Reference.

Note: This function is not available when running under APL2 Application Environ-
ment.

180 APL2 Programming: Using the Supplied Routines

RTA

RTA—Record to Array

Use this routine to convert a character vector right argument to an APL array based
on a pattern-left argument. It is useful for converting records read from a file into
APL objects.

array<pattern RTA record

pattern A character vector that describes the format of the right argu-
ment. PATTERN is described in detail in APL2/370
Programming: System Services Reference.

For this routine, * cannot be specified for x/p, pp or p pattern.
In addition to the representations described in the manual,
RT/RL = XO0 can also be specified to request that the corre-
sponding bytes of data be skipped. For example:

(Go 1 2) (I4 1 4) (X0 1 10) (E8 1 5)

specifies that the record contains a vector of 4 fullword integers,
10 bytes to be skipped, and a vector of 5 double precision
floating point numbers.

record A character vector to be converted. No check is made for a
record of incorrect length. If the record is longer than the struc-
ture described by PATTERN, the result is unpredictable.

array An APL array constructed from the RECORD according to the
PATTERN.

Note: The ATR external routine (see [‘ATR—Array To Record” on page 136) is
the inverse of RTA. You can also use the PFA external routine (see
[‘PFA—Pattern from Array” on page 175) to generate patterns.

Chapter 11. External Routines 181

SAN

SAN—SIlice and Nest

Use this routine to partition a character vector based upon a Boolean mask.

result<mask SAN characters

mask A Boolean mask. Zeros in the mask correspond to the
beginning of the second and subsequent elements of the
RESULT.

characters A simple character vector.

result A vector of character vectors.

Note that presult<->,1++/0~mask,
peresult<«+pcharacters. If mask begins with a
zero, resu 1t begins with a null vector.
pmask<+»pcharacters. If the arguments are null,
result<«»>,c'"',

Note: This function is a subset of the partition primitive.

182 APL2 Programming: Using the Supplied Routines

SERVER

SERVER—TCP/IP Port Server

The external function SERVER manages the communication of TCP/IP port
numbers between users. It is typically run in a disconnected VM machine or a
TSO-started task.

SERVER

Warning: SERVER does not return control. It should not be used from an inter-
active APL session.

The function takes no arguments; it prompts for a TCP/IP port number and the
authorization password to use when users make administration requests.

Further information about the TCP/IP port server can be found in the discussion of
AP 119 in APL2/370 Programming: System Services Reference.

Chapter 11. External Routines 183

SVi

SVI—Shared Variable Processor Information

This routine returns information on active users of the shared variable processor.

accounts<SVI userid

SVI userid returns a list of the APL account numbers or auxiliary processor
numbers for the specified USERID.

userid<SVI account

SVI account returns the USERID for the specified APL account number or
auxiliary processor number.

account A single APL account number (+0A I) or auxiliary processor
number.

accounts A vector of 1 or more APL account numbers or auxiliary
processor numbers.

userid A character vector that contains a VM/CMS or MVS/TSO user id.

In the batch under MVS/TSO, this is the MVS job name.

Only users or accounts currently signed onto the SVP are included in the result.
For an APL user, this means that some SVP operation was requested after the
user's current workspace was made active.

Use this routine to determine if an auxiliary processor is active, or to determine the
user id of an APL user who offered a variable:

asve 10
9625

SVI 9625
WHEATLEY

SVI O returns the USERID of the global shared-variable processor, or a null
vector if the global shared variable processor is not available.

The SVP does not retain user information for cross-system shared variables. When
SVA account is issued for a cross-system account number, the issuers own
user id is returned. SVI user id does not return any processor numbers used
for cross-system shared variables.

184 APL2 Programming: Using the Supplied Routines

TIME

TIME—Performance Monitoring

The performance monitoring facility measures a running application and determines
the processor time used.

The facility works by associating with each line of each defined program a pair of
counters to record the number of times the line is processed and the total
processor time used.

Typically, timing information is obtained for an application as follows:

YJLOAD workspace
3 11 0ONA 'TIME' a To gain access to the facility.

TIME O A To enable and zero counters.

a (run application here)

TIME 1 A To see times for program run.

a (analyze timing information here)

TIME 2 n To see times for each line.

A (analyze timing information here)

JCLEAR A When time analysis 1s complete.

Using the timing facility requires space in the workspace for the counters and also
increases running time by some small amount. Thus, in general you should not
)SAVE after doing a time analysis.

result<«[nl] TIME n

result Varies depending on the value of n. Normally, this is a 5 column

nl

matrix. Column 1 is the number of times the given line or
program was actually processed. Column 2 is the accumulated
processing time (in seconds) of the given line or program.
Column 3 is the percentage of the total time used by the given
line or program. Column 4 is the name of the program. Column
5 is the line itself, preceded by the line number.

TIME 1 returns only the first four columns. TIME 2 and 3
return all five columns. TIME 0, 1, 2,and 3 all return
an empty (0 0Op 0) matrix.

An optional list of program names. It limits the scope of the
current operation to the names listed; otherwise, the operation
applies to all programs currently defined in the name space. The
list can be a character vector containing a single name (no
imbedded blanks) or a vector of character vectors each con-
taining one name. All names listed must currently exist in the
name space. TIME ~—1 and ~ 2 do not accept the optional
left argument.

[Lni] TIME O Enable timing and create counters for all lines in the specified

programs. The counters are set to zero. See TTME ~ 3 and
the notes to learn how to disable timing for a program and
destroy its counters.

Chapter 11. External Routines 185

TIME

[ni]l TIME 1
Fetch times for all specified programs that have accumulated
timing information. Note that the result does not have the fifth
column and is in descending order on the second column (proc-
essing time). If you want column headings, use the following:

HD1<'COUNT' 'TIME' '%' 'PROGRAM'
HD1,[0101 TIME 1

[nl]l TIME 2
Fetch times for the lines of specified programs that have accumu-
lated timing information. The result is in descending order on the
second column. If you want column headings, use the following:

HD2<'COUNT' 'TIME' '%' 'PROGRAM' 'STMT'
HD2,[010]1 TIME 2

[nl1]l TIME 3
Fetch times for all lines of specified programs where timing infor-
mation has been enabled (even if none has been accumulated).
The result is sequenced by line within function or operator. If you
want column headings, use the following:

HD3<'COUNT' 'TIME' '%' 'PROGRAM' 'STMT'
HD3,[010]1 TIME 3

TIME ~1 Enable timing. If timing was disabled, timing is resumed.
TIME ~2 Disable timing. Stops the accumulation of timing data.

Lnl1] TIME ~3
Delete space used by the counters for specified programs. A
name list left argument is allowed and can be used to delete the
timing data for selected functions and operators.

Notes:

1. Using the timing facility increases space utilization and processing time.
Reported timings are approximate and should be used for relative comparisons,
not absolute times.

2. Programs that do not have timing information do not appear in the results of
subsequent uses of TTME 1, 2 or 3. A program might not have timing
information for any of the following reasons:

e |t was not enabled by n1 TIME O.
* |t was modified (or created) after being enabled.
* lts timing information was deleted by n1 TIME 3.

3. Programs without timing information have their time accumulated by the first
program (working back through the calling tree) with timing information.

186 APL2 Programming: Using the Supplied Routines

TSOIVP

TSOIVP—Installation Verification under TSO

Use this routine to verify the installation of APL2 in the MVS/TSO environment.

TSOIVP

There are no arguments and no result is returned.

Start the procedure by calling the function 7’501 VP, which verifies and tests
various parts of the APL2 system you have installed. As this happens, it displays
information on your terminal. You should check this information against the APL2

system you believe you have installed, and investigate and correct any discrep-
ancy.

For information on the installation procedure, see APL2/370 Installation and
Customization under TSO.

Chapter 11. External Routines 187

AEXEC

AEXEC—Execute an APL Array as a REXX Program

o AEXEC w

The function AEXEC processes the REXX program contained in 'a ' with the
items of 'w ' as the argument strings.

o A character vector, matrix, or vector of vectors that contain the REXX
program.

w A vector of one to ten character vectors that are the strings passed as argu-
ments to the REXX program.

The right argument of AEXE C does not include the name of the REXX program.
The temporary program contained in the left argument array is called in the same
way as described in APL2/370 Programming: System Services Reference.

The AF and AEXEC built-in functions provide the basis for building maintenance
and test tools for REXX EXECs.

188 APL2 Programming: Using the Supplied Routines

AF

AF—Query File Status

The function AF returns file status information.

result<AF 'file'

'file'

result

A character string that contains the file to be queried.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an
accessible minidisk. 'ft' and 'fm' default to '*"'.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn. WSNAME'. If
the data set name is not enclosed in quotation marks, it is prefixed
with the current TSO PROFILE PREFIX setting. An optional
member name enclosed in parentheses can follow the data set
name.

A nested vector that contains the results of the query. It contains
nine elements:

1 File identification or data set name
Record Format

Record Length

Number of Records

Number of Data Blocks ('?' on TSO)
When Last Written ('?' on TSO)
Disk Label ('?' on TSO)

Disk Mode (and parent) ('?' on TSO)
Block Size

© 0O N oo o b~ WO DN

If a file system error occurs while processing AF, a numeric return code is returned
instead of the character result. These return codes are operating system
dependent. See APL2/370 Programming: System Services Reference for more

information.

Chapter 11. External Routines 189

AFM

AFM—Read or Write a Fixed Record Length File

result<AFM 'file'

'file!

result

A character string that contains the name of the file to be read.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an

accessible minidisk. 'ft' and 'fm' default to '*' for reading. 'fm’
defaults to 'A"' for writing.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn. WSNAME"'. If
the data set name is not enclosed in quotation marks, it is prefixed
with the current TSO PROFILE PREFIX setting. An optional
member name enclosed in parentheses can follow the data set
name.

A character matrix. For files with variable length records, records
are padded on the right with blanks to the length of the longest
record.

result<«array AFM 'file'

'‘file!

array

result

Has the same form as the monadic call.

Is a character matrix or vectors of vectors. If necessary, a file with
fixed length records is created by padding the records with blanks.

A numeric return code. 0 indicates success.

If a file system error occurs during processing of AFM, a numeric return code is
returned. These return codes are operating system dependent. See APL2/370
Programming: System Services Reference for more information.

190 APL2 Programming: Using the Supplied Routines

AFV

AFV—Read or Write a Variable Record Length File

result<AFV 'file'

'file!

result

A character string that contains the name of the file to be read.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an

accessible minidisk. 'ft' and 'fm' default to '*' for reading. 'fm’
defaults to 'A"' for writing.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn. WSNAME'. I[f
the data set name is not enclosed in quotation marks, it is prefixed
with the current TSO PROFILE PREFIX setting. An optional
member name enclosed in parentheses may follow the data set
name.

Is a vector of character vectors. Trailing blanks in any record are
deleted.

result<«array AFV 'file'

'‘file'

array

result

Has the same form as the monadic call.

A character matrix or vector of vectors. A file with variable length
records is created if necessary. Trailing blanks in each record are
deleted.

A numeric return code. Zero indicates success.

If a file system error occurs while AFTV is processing, a humeric return code is
returned. These return codes are operating system dependent. See APL2/370
Programming: System Services Reference for further information.

Chapter 11. External Routines 191

Bibliography

APL2 Publications
« APL2 Fact Sheet, GH21-1090

e APL2/370 Application Environment Licensed
Program Specifications, GH21-1063

e APL2/370 Licensed Program Specifications,
GH21-1070

e APL2 for AIX/6000 Licensed Program Specifica-
tions, GC23-3058

e APL2 for Sun Solaris Licensed Program Specifica-
tions, GC26-3359

o APL2/370 Installation and Customization under
CMS, SH21-1062

o APL2/370 Installation and Customization under
TSO, SH21-1055

« APL2 Migration Guide, SH21-1069

e APL2 Programming: Language Reference,
SH21-1061

e APL2/370 Programming: Processor Interface Refer-
ence, SH21-1058

o APL2 Reference Summary, SX26-3999

e APL2 Programming: An Introduction to APL2,
SH21-1073

o APL2 for AIX/6000: User's Guide, SC23-3051

e APL2 for OS/2: User's Guide, SH21-1091

e APL2 for Sun Solaris: User's Guide, SH21-1092
e APL2 for the IBM PC: User's Guide, SC33-0600

o APL2 GRAPHPAK: User's Guide and Reference,
SH21-1074

e APL2 Programming: Using Structured Query Lan-
guage, SH21-1057

e APL2/370 Programming: Using the Supplied Rou-
tines, SH21-1056

e APL2/370 Programming: System Services Refer-
ence, SH21-1054

e APL2/370 Diagnosis Guide, LY27-9601
e APL2/370 Messages and Codes, SH21-1059

192

Other Books You Might Need

The following books might also be of use, and can be
ordered from IBM.

Application Prototype Environment

e Application Prototype Environment Guide and Ref-
erence, SH19-6388

GDDM

e GDDM Application Programming Guide SC33-0867

e GDDM Base Application Programming Reference,
SC33-0868

e GDDM General Information, GC33-0866

e GDDM Messages, SC33-0869

e GDDM System Customization and Administration,
SC33-0871

e GDDM User's Guide, SC33-0875

e GDDM Interactive Map Definition, SC33-0338

¢ GDDM-PGF Interactive Chart Utility, SC33-0328

¢ GDDM-PGF Programming Reference, SC33-0333

MVS/ESA

e MVS/ESA Callable Services for High Level Lan-
guages, Version 4, GC28-1639

e MVS/ESA Callable Services for High Level Lan-
guages, Version 3, GC28-1834

PGF

e Presentation Graphics Feature: User's Guide,
SC33-0102

QMF

¢ QMF Application Development Guide for MVS,
SC26-4237

* QMF Application Development Guide for VM/SP,
SC26-4238

e QMF Version 2 Release 4 Callable Interface Usage,
GG24-3505

TSO

e TSO Extensions Command Language Reference
Manual, SC28-1881

VS APL

o VS APL for CMS: Installation Reference Manual,
SH20-9182

e VS APL for TSO: Installation Reference Manual,
SH20-9183

e VS APL for CICS/VS: Installation Reference
Manual, SH20-9181

e VS APL for VSPC: Installation Reference Manual,
SH20-9184

© Copyright IBM Corp. 1985, 1994

Index

Special Characters
YCONTINUE 99
)JCOPY 4,5,103
YERASE 103
YGR 103
YHOST 67
YLIB 99

)JLIB 1 4
YJLIB 2 4
YLOAD 4
YMCOPY 99
YOFF 99
YPCOPY 4,103
YRESET 7
)SAVE 99

)SI 7

)SIC 7

)SINL 7

)SIS 7,8
AEXEC function 188
AF function 189
AFM function 190
AFV function 191
OA4F 51

OAV 51

anc 103

A

ABSTRACT 6

alternate-input auxiliary processors 67

alternate-input processor 65

AP 101 67,73

AP 110 67, 68

AP 111 67

AP 120 64

AP 121 77, 85,95

AP 123 90, 91

AP 124 52

AP 126
control variable 61
data variable 61
full-screen management 52
full-screen processing using 64
GDDM/PGF auxiliary processor 52
used to perform GDDM functions 52

AP 127 113

© Copyright IBM Corp. 1985, 1994

AP 210 73
AP2WSM 5,6
APL data files 77
exporting 77,79
importing 78, 79
APL, non-APL translate table 124
APL/PC transfer 99
APL2
example functions and operators 15
programming interface 42
APL2 commands 4
COPY 4
LOAD 4
PCOPY 4
RESET 7
SI 7
SIC 7
SINL 7
SIS 7
APL2 differences 102
APL2 IUP differences 102, 103
APL2/ICU data interface 56
APL?2PT function 132
APL2PITF function 133
APLDATA workspace 5, 8, 84, 85—89
APLDATA groups
GPAPL 89
GPDESC 89
GPMESSAGE 89
GPREADAPL 89
GPSTORET 89
error handling 89
format file functions
ACREATE 86
AGET 87
AREAD 86
ASET 87
AT 87
AWRITE 87
CLOSE 87
DROP 86
NEWSIZE 87
RETRACTALL 88
SETRECLEN 88
SIZFE 88
USE 86

functions to store and retrieve large variables

RETRIEVE 88
STORE 88

193

APLDATA workspace (continued)
special handling of selected errors 82, 89
using the project library 89

APLFILEF workspace 84,95

APSERVER
APL2 programming interface 42

arrays
reading files of 85
writing files of 85

atomic vectors 102

ATP function 135

ATR function 136

ATTN function 137

auxiliary processor workspaces 8

auxiliary processors 9
alternate-input 65, 67, 73
command 65, 73
file processors 73
offering a shared variable 43
specialized file 65
stack 65

auxiliary processors, list 9

B

backups 77
Basic Direct Access Method

See BDAM, auxiliary processor for access to
batch

export 79

import 79
BDAM, auxiliary processor for access to 9
BUILDRD function 138
BUILDRL function 139

C

CAN function 140
CCOL 123
changes
summary of x
character 50, 53
arrays, creating new 114
translation 32, 50
chart design 54
CHARTX 52
APL2/ICU data interface 56
used for free data 57
used for tied data 56
CHARTX workspace 5, 8
CLISTs 73
CMS environment, characteristics 67
CMS FILEDEF 72
CMS SORT 66

194 APL2 Programming: Using the Supplied Routines

CMS workspace 8, 65, 66, 67—72
alternate input function
PROC 69
command functions
CMS 69
CP 69
file auxiliary processor functions
CLOSE 69
CLOSEALL 69
GET 69
GETFILE 69
OPEN 69
PUT 69
PUTFILFE 69
RETRACT 69
SHARFES 69
file functions
CLOSE 70
CLOSEALL 70
GET 70
GETFILE 70
MSG 70
OPEN 71
PUT 71
PUTFILE 71
RETRACT 71
SHARES 72
CMSIVP function 141
comments, removing from functions 32, 40
communication through SVP 42
complex numbers
fast Fourier transform 30
complex numbers, formatting 31
complexity 54
coordinate systems 54
coordinates 52
coping 54
cover function for AP 126 59
cover functions 8, 65
CP SPOOL 72
CSRIDAC function 142
CSRREFR function 144
CSRSAVE function 145
CSRSCOT function 146
CSRVIEW function 147
CTK function 149
CTN function 150

D

DAN function 151

DAN, external name 41

data
conversion 32, 33
files, APL 77

interchange 77
interface, APL2/ICU 56
migration 77
tied and free 56
debugging 7, 48
defined functions
ACREATE 86
ADD 116
AFTER 116
AGET 87
ALL 122
ALLOCATE 73,74
ANNOTATE 36, 40
APLFIN 115
APLVIN 115
AREAD 86
ASET 87
ASSIGN 36,40
ASS0C 15
AT 87,90, 96, 97, 122
ATTRIBS 73,74
AWRITE 87
BEFORE 116
BIN 15,16
BOT 122
C 120
CASE 37
CHANGE 120
CHARIND 102
CHK 98
CLEANPRINTWS 108
CLEAR 116
CLOSE 65,69, 70,73, 74, 87,94
CLOSEALL 69,70,73,75
CMAD 111
CMS 67,69
CODECOUNT 3e, 37,40
COMB 15,17
CONCEAL 37
CP 67,69
CREATE 95,97
D 122
DATETIME 36, 37,40
DEC2HEX 20
DECOMMENT 40
DELETE 96,97,120
DISPLAY 13

defined functions (continued)

DISPLAYC 13
DISPLAYG 13
DOUBLE 45

DOWN 101

DROP 86

EIGEN 29
FRASe 97
EXAMPLE 22,23
EXAMPLES 22,23
EXISt 97
EXPAND 22,23, 36, 37
F ZERO 15

FC 15,17

FFT 30

FI 33,34

FIND 45,122
FIX_ 100, 101
FLAG_ 100
FMTPD 3

FMTPR 31

FN 115

FNHEADS 36, 37,40
FO 33,35

FRAME 36, 37, 40
FREEBLOCKs 97
FROM 122
GATHER 45, 46
GCD 15,18

GET 65,69, 70, 73, 75, 96
GETFILFE 65,68, 69,70, 73,75
GET1 96
GETWKSPA 67
GVCAT 45,46
HCAT 45,46

HEX 20
HEX2DEC 20
HEXDUMP 36, 38, 40
HILB 15,18

ICI 33,35

ICO 33,36

IFFT 30

II 33,34
INBLANKS 45, 46
INDCHAR 102

10 833,34

I0TAU 22,23
LADJ 45, 46
LCTRANS 50
LFC 15,17

Index

195

defined functions (continued) defined functions (continued)

LI 33 REP 22,24
LINECOUNT 36, 38,40 REPLACE 45,47,120
LINEFOLD 45,46 REPLACEV 47
LIST 36,38,108, 109, 122 REPLICATE 22,23, 36,40
LO 33 RETRACT 69,71,73,76
MASKCONV 36, 38, 40 RETRACTALL 88
MASSMCOPY_ 99 RETRIEVE 88
MAT 45,46 REVEAL 40
MATFOLD 45,47 RH1 97

MESH 36, 39, 40 RTBLANKS 45,48
MSG 70 SET 96
MULTIPRINT 108, 109 SETRECLEN 88
NAMEREFS 36, 39, 40 SHARES 69,72,73,76
NAMES 36, 39, 40 SHVARS 97
NEWSIZE 87 SIZE 88,96

NHEAD 36, 39, 40 SM 64

NOQUOTES 40, 45, 47 SORTLIST 20,21
NUMBER 122 START 116
OBLANKS 45, 47 STOPALL 48
OPEN 65,69, 71,73, 75 STOPOFF 48,49
P1400 110 STOPONE 48, 49
P3800 110 STORE 88

PACK 20 STRIP 40,41

PALL 15,18 TABS 123

PCII 34 THRU 122

PCIO 34 TIME 20, 21

PDI 33,35 TOoL 19

PDO 33,35 TRACEFALL 48,49
PER 15,18 TRACEBR 48,49
PERM 15,18 TRACELIST 48,49
PFILE 110 TRACEOFF 48,49
PJACL 111 TRACEONE 48,49
PO 15,19 TRANSLATE 50
POL 15,19 TRUTH 15,19
POLY 15,19 TRY 98

POLYB 15,19 TS0 73,74

POLYZ 31 TYPE 22,24, 36, 40
PRINTFV 108, 110 U 122

PRINTWS 108, 109 UCTRANS 50

PROC 66, 67,69, 73,74 UNIQUE 24,36, 40
PTERMINAL 110 UNPACK 20

PUT 65,69,71,73,76 USE 86,90, 91, 95, 97
PUTFILE 65,69,71,73,76 VCAT 45,48

QCR 115 VCLEAR 93
QREPLACE 45, 47 VERASE 93

RADJ 45,47 VGET 92

RCNUM 45, 47 VGETHOLD 92
RECID 73,76 VKF 93

RELEASE 95,97 VPOSITION 93

196 APL2 Programming: Using the Supplied Routines

defined functions (continued)
VREAD 91
VREADHOL 91
VSET 92
VWRITE 94
WORDS 40, 41
XBLANKS 45,48
ZERO 19
defined operators
AND 22,27
COMMUTE 22,27
CR 22,24
FL 22,26
FLSE 22,26
EFR 22,26
FAROUT 22,27
IF 22,27
NOP 22,27
PAD 22,24
PL 22,26
POWER 22,28
PR 22,26
TRACE 22,25
TRAP 22,26
TRUNC 22,24
ZERO 19
DESCRIBE 6
design
chart 54
form 54
DFMT function 152
DISPLAY function 153
display points 53
display terminals 52, 53, 114
DISPLAY workspace 5,12, 13—14
DISPLAY 13
DISPLAYC 13
DISPLAYG 13
DISPLAYC function 154
DISPLAYG function 155
documentation within the workspace
DSQCIA function 156

E

edit procedure 114
editing 116
defined functions 114
variables 114
EDITOR?2 function 159
EDITORX function 158

eigenvalues 29, 30
eigenvectors 30
entry-sequenced data sets 92
error

handling 82, 89

messages 5
Euclidean algorithm 18

EXAMPLES workspace 5, 12, 15—28
miscellaneous utility functions
DEC2HEX 20
HEX 20
HEX2DEC 20
PACK 20
SORTLIST 20,21
TIME 20,21
UNPACK 20
scientific and mathematical functions
ASS0C 15
BIN 15,16
COMB 15,17
FC 15,17
GCD 15,18
HILB 15,18
LFC 15,17
PALL 15,18
PER 15,18
PERM 15,18
PO 15,19
POL 15,19
POLY 15,19
POLYB 15,19
TRUTH 15,19
ZERO 15,19
F XP function 160
exporting files 77, 79
external routines 129
distributed with APL2 129

F

fast Fourier transform 30
FED function 163
fields 53
FIFO 66
files
auxiliary processors for reading and writing 8
FILFESFERYV workspace 8, 65, 77
error handling 82
FILESERV groups 83
form design 54
format 53
formatting complex numbers 31

Index

197

Fourier transform 30 GPAPL 2, the group (continued)

free data 56 operators to conform arguments (continued)
FSC12U4 workspace 64 PAD 22,24
FS(C126 workspace 8, 52, 63, 64 TRUNC 22,24
FSM workspace 8, 53, 63, 64 operators to handle depth
full-screen FL 22,26
panels 64 ER 22,26
full-screen management 52 PL 22, 26
function groups, loading and copying 5 PR 22 26
functions ’

workspace information functions

creating new APL2 114 EXAMPLE 22,23

interrupted 7

pendent 7 EXAMPLES 22,23
suspended 7 GPDATACV 32,33
GPDESC 32
G GPMESSAGE 6
GPMISC 32
GDDM 52, 59, 63, 64 GPSTRIP 32
and text graphics 54 GPSVP 42

and vector graphics 53, 54

auxiliary processor for access to 8 GPTEXT 32
full-screen processing 52 GPTRACE 32
full-screen processing using 64 GPXLATE 32
learning 54 Graphical Data Display Manager
pages 54 See GDDM
workspaces graphics
CHARTX 52 fields 53
text 53, 54
ggﬂil f_)s 52 vector 53, 54, 63
GRAPHPAK 63
GDMX 52 auxiliary processor workspace 8
GRAPHPAK 52 description 52
GDMX 52, 59—62, 64 vector graphics 63
GDMX workspace 5, 8 groups 5
GPAPL 2, the group 22—28
miscellaneous functions H

EXPAND 22,23

TOTAU 22,23 hanging functions 7

HELP function 164

REP 22,24
; Hilbert matrix 18
REPLICATE 22,23 host systems
) TYPE 22 auxiliary processor for access to 8
miscellaneous operators HOW 6
AND 22,27 how to use 4
COMMUTE 22,27
FAROUT 22,27 I
NOP 22,27
POWER 22,28 IDIOMS function 166
operators for debugging importing files 78, 79
TRACE 22,25 IN function 167
TRAP 22 26 input/output form peripheral devices 72

interrupted functions 7

operators for program control ! . .
interrupting functions 7

ELSE 22,26

IF 22,27
operators to conform arguments

CR 22,24

198 APL2 Programming: Using the Supplied Routines

K

key-sequenced data sets 92
KTC function 168

L

LCTRANS, example of use 50
learning GDDM 54
library
numbers 4
workspace 4
1 4
2 4
LIFO 66
list 4

LRECS 123

M

mathematic
calculations 15
functions 15
MATHFNS workspace 5, 12, 19, 29—31
eigenvalues
FIGEN 29
fast fourier transform
FFT 30
IFFT 30
formatting complex numbers
FMTPD 3
FMTPR 31
groups of polynomials
POLYZ 3t
MEDIT workspace 114—126
APL, non-APL translate table 124
basic edit procedure 114
change functions
C 120
CHANGE 120
DELETE 120
REPLACE 120
creating
new APL2 functions 114
new character arrays 114
editing 116
variables and defined functions 114
initialization functions
CLEAR 116
START 116
input functions
ADD 116
AFTER 116
BEFORE 116

MEDIT workspace (continued)
MEDIT functions
APLFIN 115
APLVIN 115
output functions
LIST 122
NUMBER 122
TABS 123
pre- and post-editing functions
FN 115
QCR 115
select functions
ALL 122
AT 122
BOT 122
D 122
FIND 122
FROM 122
THRU 122
U 122
usage notes
CCOL 123
LRECS 123
QCR 124
QFX 124
message facility 5, 6
Messages
AP2WSM function 5
printing 5
minidisks 67
miscellaneous functions
EXPAND 22,23
I0TAU 22,23
REP 22,24
REPLICATE 22,23
TYPE 22
miscellaneous operators
AND 22,27
COMMUTE 22,27
FAROUT 22,27
NOP 22,27
POWER 22,28
miscellaneous utility functions 20, 32, 36
MORE 5
MS G function 169
MS G namespace 169

N

name class, see ONC
namespaces
MSG 169

Index

199

NOT COPIED 5

o)

offering a shared variable 43
operators for debugging
TRACFE 22,25
TRAP 22,26
operators for program control
ELSE 22,26
IF 22,27
operators to conform arguments
CR 22,24
PAD 22,24
TRUNC 22,24
operators to handle depth
FL 22,26
ER 22,26
PL 22,26
PR 22,26
OPTION function 170
OUT function 172

P

PACKAGE function 173

page 583, 54

pages 54

panels, full-screen 64

PBS function 174

PC APL 99

pels 53

pendent functions 7

PFA function 175

PGF 52, 63, 64

PIN function 176

pixels 53

polynomials, roots of 31

presentation graphics feature 52

printer selection functions 110

PRINTWS workspace 108—112
auxiliary processor 8
CLEANPRINTWS 108
CMAD 111
LIST 108,109
MULTIPRINT 108, 109
P1400 110
P3800 110
PFILE 110
PJACL 111
PRINTFV 108, 110
PRINTWS 108, 109
PTERMINAL 110

200 APL2 Programming: Using the Supplied Routines

program number 52
programming interfaces
APL2 42
project library 89
protected copy, see)PCOPY
prototype 13
PTA function 177
public library 4, 5
numbers 4

Q

QCR 124
QFX 124
@N S function 178

QSAM (Queued Sequential Access Method)
auxiliary processor for TCP/IP socket interface 8

R

RAPL?2 function 179
reading files of APL2 arrays 85
RTA function 181

S

SAN function 182
scientific functions 15
screen 52
screen coordinate systems 53, 54
screen display points 53
searching

functions and operators 45
SERVER function 183
session manager 64

8

auxiliary processor for use of commands 8

session manager AP (120)
shared variable
offering to an auxiliary processor
shared variables 9
SQL

43

auxiliary processor for access to 8

SL workspace 8, 113
stack 65
state indicator 7
stop vectors 32, 48
summary of changes x
SUPPLIED workspace 5, 12
suspended functions 7
terminating 7
SV1I function 184
SVP
communication through 42

T

terminal
display, see display terminals
input-output symbols 52
text
graphics 53, 54
processing 32, 45
tied data 56
TIME function 185
tolerance 19
trace vectors 32, 48
TRANSFER workspace 4,99—104
APL2 differences 102
APL2 IUP differences 102, 103
atomic vectors 102
main functions
FIX_ 100, 101
FLAG_ 100
MASSMCOPY _ 99
VS APL differences 102
Transfer, APL/PC 99
translation, character 32, 50
TSO environment characteristics 73
TS0 workspace 8, 65, 66, 76
alternate-input function
ALLOCATE 73,74
ATTRIBS 73,74
CLOSE 73,74
CLOSEALL 73,75
GET 783,75
GETFILE 73,75
OPEN 73,75
PROC 73,74
PUT 73,76
PUTFILFE 73,76
RECID 73,76
RETRACT 73,76
SHARFES 73,76
command function
TS0 73,74
TS50 workspaces 73
TSOIVP function 187

U

UCTRANS, example of use 50
user's guides 52
utility functions, miscellaneous 20
UTILITY workspace 5, 12, 32
GPDATACV 32,36

FI 33,34

FO 33,35

ICI 33,35

UTILITY workspace (continued)
GPDATACYV (continued)

IC0O 33,36
II 33,34
I0 833,34
LI 33

LO 33
PCII 34
PCIO 34
PDI 33,35
PDO 33,35

GPMISC 32,36—40

ANNOTATE 36, 40
ASSIGN 36,40
CASE 37
CODECOUNT 36, 37,40
CONCEAL 36,37
DATETIME 36, 37,40
EXPAND 36,37
FNHEADS 36, 37, 40
FRAME 36, 37, 40
HEXDUMP 36, 38, 40
LINECOUNT 36, 38, 40
LIST 36,38
MASKCONV 36, 38, 40
MESH 36, 39, 40
NAMEREFS 36, 39, 40
NAMES 36, 39, 40
NHEAD 36, 39, 40
NOQUOTES 40
REPLICATE 36,40
REVEAL 36, 40
TYPE 24,36, 40
UNIQUE 24, 36,40

GPSTRIP 32,40—41

DECOMMENT 40
STRIP 40,41
WORDS 40, 41

GPSVP 32,42
GPTEXT 32,45—48

DOUBLE 45
FIND 45
GATHER 45, 46
GVCAT 45, 46
HCAT 45,46
INBLANKS 45, 46
LADJ 45, 46
LINEFOLD 45, 46
MAT 45,46
MATFOLD 45, 47
NOQUOTES 45,47

Index

201

UTILITY workspace (continued) vector graphics 52, 53, 54, 63
GPTEXT (continued) Virtual Storage Access Method
OBLANKS 45,47 See VSAM
QREPLACE 45, 47 VS APL cpmpatlble workspaces 64
RADJ 45. 47 VS APL differences 102
' VSAM
RCNUM 45,47 auxiliary processor for use of 8
REPLACE 45,47 VSAMDATA workspace 8, 84, 90—94
RTBLANKS 45,48 functions to access external files 91, 92, 93, 94

VCAT 45,48 CLOSE 94
XBLANKS 45,48 USE 91
GPTRACFE 32,48—49 VCLEAR 93
STOPALL 48,49 VERASE 93
STOPOFF 48,49 VGET 92
STOPONE 48, 49 VGETHOLD 92
TRACFEALL 48,49 VKF 93
TRACEBR 48,49 VPOSITION 93
TRACELIST 48,49 VREAD 91
TRACEQOFF 48,49 VREADHOL 91
TRACEONE 48,49 VSET 92
GPXLATE 32,50—51 VWRITE 94
LCTRANS 50 VSAMDATA groups 94
TRANSLATE 50 GPDESC 94
UCTRANS 50 GPMESSAGE 94
GPREADVSAM 94
V GPVSAM 94
VAPLFILF workspace 8, 84, 95—98
file names 97 W
SHVARS 97 workspace
main functions description 32
AT 96 documentation 6
CREATE 95 information functions
DELETE 96 EXAMPLE 22,23
GET 96 EXAMPLES 22,23
RELEASE 95 library 1 4
SET 96 library 2 4
USE 95 workspaces 7
supplementary functions APLDATA 5,8, 84,85
ERASe 97 APLFILE 84,95
EXISt 97 auxiliary processor 8
FREEBLOCKs 97 CHARTX 5,852
CET1 96 CMS 8,65, 66, 67
RE1 97 definition 4
SHVARS 97 DISPLAY 5,12,13
SI7e 96 environment dependent

202 APL2 Programming: Using the Supplied Routines

VAPLFILE groups

GPAPLFILE 98
GPDESC 98
GPFILEREAD 98
GPFILEWRITE 98
GPMESSAGE 98

environment-dependent
EXAMPLES 5,12,15
file 84

file auxiliary processor 8
FILESFERV 8,65,77
FSC124 64
FSC126 8,52,63, 64

workspaces (continued)
FSM 8,53,63, 64
full-screen 8
GDMX 5,8, 52,59
general 12
GRAPHPAK 8,52,63
MATHFNS 5,12,19, 29
MEDIT 114
PRINTWS 8,108
SQL 8,113
SUPPLIFED 5
TRANSFER 4,99
TS0 8,65,66,73
UTILITY 5,12
VAPLFILE 8, 84,95
VS APL compatible 64
VSAMDATA 84,90
with interrupted functions 7
WSINFO 5,10

writing files of APL2 arrays 85

WSINFO workspace 5,10

Index 203

We'd Like to Hear from You

APL2 Programming:
Using the Supplied Routines
Version 2 Release 2

Publication No. SH21-1056-01

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

¢ Electronic mail—Use one of the following network IDs:

— IBMMail: USIB6JN8
— Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

APL2 Programming:
Using the Supplied Routines
Version 2 Release 2

Publication No. SH21-1056-01

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O O O O O
Complete O | O] |
Easy to find]] O] |
Easy to understand O] O | |
Well organized m]] O | |
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O] O]]
Overall satisfaction O | O o |

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
SH21-1056-01

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12

PO Box 49023

San Jose, CA 95161-9023

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SH21-1056-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370-40
Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090
SH21-1073
SH21-1061

SX26-3999
SH21-1074
SH21-1057
SH21-1069
SC33-0600
SC33-0601

SC33-0851

SH21-1091

GC23-3058
SC23-3051

GC26-3359
SH21-1092
GH21-1063
GH21-1070
SH21-1062
SH21-1055
SH21-1054
SH21-1056
SH21-1058
LY27-9601

SH21-1059

APL2 Family of Products (fact sheet)

APL2 Programming: An Introduction to APL2

APL2 Programming: Language Reference

APL2 Reference Summary

APL2 GRAPHPAK: User's Guide and Reference

APL2 Programming: Using Structured Query Language
APL2 Migration Guide

APL2 for the IBM PC: User's Guide

APL2 for the IBM PC: Reference Summary

APL2 for the IBM PC: Reference Card

APL2 for OS/2: User's Guide

APL2 for AIX/6000 Licensed Program Specifications
APL2 for AIX/6000: User's Guide

APL2 for Sun Solaris Licensed Program Specifications
APL2 for Sun Solaris: User's Guide

APL2/370 Application Environment Licensed Program Specifications
APL2/370 Licensed Program Specifications

APL2/370 Installation and Customization under CMS
APL2/370 Installation and Customization under TSO
APL2/370 Programming: System Services Reference
APL2/370 Programming: Using the Supplied Routines
APL2/370 Programming: Processor Interface Reference
APL2/370 Diagnosis Guide

APL2/370 Messages and Codes

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	APL2 Publications
	Conventions Used in This Library

	Summary of Changes
	Product
	Document Changes

	Part 1. Workspaces
	Chapter 1. Introduction
	Workspace Libraries
	How To Use Library Workspaces
	The Message Facility
	Documentation within the Workspace
	Workspaces with Interrupted Functions
	Interrupting and Debugging
	The Auxiliary Processor Workspaces

	Chapter 2. Information Workspaces
	WSINFO: Information About the Library Workspaces
	SUPPLIED: Information About External Functions

	Chapter 3. General Purpose Workspaces
	The DISPLAY Workspace
	The EXAMPLES Workspace
	Introduction
	Mathematic and Scientific Functions
	Miscellaneous Utility Functions
	Special Functions and Operators of APL2

	The MATHFNS Workspace
	Eigenvalues
	Fast Fourier Transform
	Formatting Complex Numbers
	Roots of Polynomials

	The UTILITY Workspace
	Introduction
	The Function Groups
	GPDATACV: Converting between External and Internal Representations
	GPMISC: Miscellaneous Utility Functions
	GPSTRIP: Removing Comments
	GPSVP: Controlling Communication through SVP
	GPTEXT: Manipulating Text
	GPTRACE: Setting and Removing Trace and Stop Vectors
	GPXLATE: Translating from One Character Representation to Another

	Chapter 4. The Display Terminal Workspaces
	AP 126: The GDDM/PGF Auxiliary Processor
	GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM

	An Introduction to Text and Vector Graphics
	Text Graphics
	Vector Graphics
	Pages: Text and Vector Graphics
	Coordinate Systems: Text and Vector Graphics
	Coping with Complexity: Form and Chart Design

	CHARTX—an APL2/ICU Data Interface
	Tied and Free Data
	Using CHARTX for Tied Data
	Examples

	Using CHARTX for Free Data
	Examples
	Usage Notes

	GDMX
	Using GDMX
	Global Variables
	Usage Notes
	Example

	GRAPHPAK—a Vector Graphics Workspace
	VS APL Compatible Workspaces
	FSC126 Workspace
	FSM Workspace

	Chapter 5. Environment-Dependent Workspaces
	Command, Alternate-Input, and Specialized File APs
	The Alternate-Input Processor
	The CMS Workspace
	Characteristics of the CMS Environment
	CMS Command, Alternate-Input, and File Processors
	Creating APL2/CMS/CP Procedures
	Reading and Writing CMS Disk Files

	Using the Functions in CMS
	Command Functions
	Alternate Input Function
	File Functions
	Input/Output from Peripheral Devices

	The TSO Workspace
	TSO Command, Alternate-Input, and File Processors
	File AP Functions and Auxiliary TSO Functions

	Using the Functions in TSO
	Command Function
	Alternate Input Function
	File Functions

	The FILESERV Workspace
	Exporting Files Interactively
	Importing Files Interactively
	Transporting Files in Batch Mode
	Format of Commands
	Comments to Commands

	Using the EXPORT and IMPORT Commands
	Error Handling
	Special Handling of Selected Errors

	FILESERV Groups

	Chapter 6. File Auxiliary Processor Workspaces
	The APLDATA Workspace
	Reading and Writing Files of APL2 Arrays
	General Operation
	APL-Format File Functions
	Functions to Store and Retrieve Large Variables
	Using the Project, Private, and Public Libraries
	Error Handling
	Special Handling of Selected Errors
	APLDATA Groups

	The VSAMDATA Workspace
	File Naming Conventions
	Functions to Access External VSAM Files
	VSAMDATA Groups

	The VAPLFILE Workspace
	Main Functions
	Supplementary Functions
	File Names
	VAPLFILE Groups

	Chapter 7. The TRANSFER Workspace
	MASSMCOPY_
	FLAG_ and FIX_
	Atomic Vectors
	Differences
	VS APL Differences:
	APL2 IUP Differences:
	IN' and OUT'
	INPC_ and OUTPC_
	APL/PC to Host
	Host to APL/PC

	Chapter 8. The PRINTWS Workspace
	Primary User Functions
	Printer Selection Functions
	Environment System Command Functions
	Environment Dependencies
	CMS
	TSO

	Chapter 9. The SQL Workspace
	Chapter 10. The MEDIT Workspace
	Editing APL Variables and Defined Functions
	The Basic Edit Procedure
	Creating New APL2 Functions or Character Arrays
	Display Terminals without the APL feature

	Using the MEDIT Functions
	Converting APL Objects for Editing
	Pre- and Post-Editing Functions
	Terminals without the APL Feature

	Editing
	The Initialization Functions
	The Input Functions
	The Change Functions
	The Select Functions
	The Output Functions
	The Set Tabs Function

	Usage Notes
	LRECS and CCOL
	QCR and QFX
	APL, Non-APL Translate Table

	Part 2. External Routines
	Chapter 11. External Routines
	APL2PI—APL2 Program Interface
	APL2PIE—APL2 Program Interface Extended
	ATP—Array to Pointer
	ATR—Array To Record
	ATTN—Handling Attentions
	BUILDRD—Build a Routine Description
	BUILDRL—Build a Routine List
	CAN—Compress and Nest
	CMSIVP—Installation Verification under CMS
	CSRIDAC—Request or Terminate Access to a Data Object
	CSRREFR—Refresh an Object
	CSRSAVE—Save Changes Made to a Permanent Object
	CSRSCOT—Save Object Changes in a Scroll Area
	CSRVIEW—Start or Terminate a View of an Object
	CTK—Character to DBCS Conversion
	CTN—Character to Number
	DAN—Delete And Nest
	DFMT—Format Arrays Containing DBCS Data
	DISPLAY—Display Array Structure
	DISPLAYC—Display Array Structure
	DISPLAYG—Display Array Structure
	DSQCIA—QMF Callable Interface
	EDITORX—System Editor Access
	EDITOR2—Full-Screen APL2 Editor
	EXP—Execute in the Previous Namescope
	FED—Diagnostic Information
	HELP—Retrieve Keyed Help Text for an Application
	Using Help to Retrieve a List of Keys
	Using Help to Retrieve Text
	Using Help as an Online Help Facility
	HELP Return Codes:

	IDIOMS—APL2 Phrases
	IN—Read a Transfer File into the Active Workspace
	KTC—DBCS to Character Conversion
	MSG—Message Services Request
	OPTION—Query or Set APL2 Invocation Options
	OUT—Write Objects to a Transfer File
	PACKAGE—Creating a Namespace
	PBS—Handling Printable Backspaces
	PFA—Pattern from Array
	PIN—Protected Read of a Transfer File into the Active Workspace
	PTA—Pointers to Array
	QNS—Query the Current Namescope
	RAPL2—Remote-Session Manager
	RTA—Record to Array
	SAN—Slice and Nest
	SERVER—TCP/IP Port Server
	SVI—Shared Variable Processor Information
	TIME—Performance Monitoring
	TSOIVP—Installation Verification under TSO
	'EXEC—Execute an APL Array as a REXX Program
	'F—Query File Status
	'FM—Read or Write a Fixed Record Length File
	'FV—Read or Write a Variable Record Length File

	Bibliography
	APL2 Publications
	Other Books You Might Need

	Index

