

APL2 Programming: IBM

Using the Supplied Routines
Version 2 Release 2

 SH21-1056-01

APL2 Programming: IBM

Using the Supplied Routines
Version 2 Release 2

 SH21-1056-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”

on page vii.

Second Edition (March 1994)

This edition replaces and makes obsolete the previous edition, SH21-1056-0. The technical changes for this edition are summarized

under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Version 2 Release 2 of APL2, 5688-228, and to any subsequent releases until otherwise indicated in new

editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the

address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58

P.O. Box 49023

San Jose, CA, 95161-9023

United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes

appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1985, 1994. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii

| Programming Interface Information . vii

Trademarks . vii

About This Book . viii

| Who Should Use This Book . viii

| APL2 Publications . viii

| Conventions Used in This Library . ix

| Summary of Changes . x

| Product . x

Part 1. Workspaces . 1

Chapter 1. Introduction . 4

Workspace Libraries . 4

How To Use Library Workspaces . 4

The Message Facility . 5

Documentation within the Workspace . 6

Workspaces with Interrupted Functions . 7

Interrupting and Debugging . 7

The Auxiliary Processor Workspaces . 8

Chapter 2. Information Workspaces . 10

WSINFO: Information About the Library Workspaces 10

SUPPLIED: Information About External Functions 11

Chapter 3. General Purpose Workspaces . 12

The DISPLAY Workspace . 13

The EXAMPLES Workspace . 15

| Introduction . 15

Mathematic and Scientific Functions . 15

Miscellaneous Utility Functions . 20

Special Functions and Operators of APL2 . 22

The MATHFNS Workspace . 29

Eigenvalues . 29

| Fast Fourier Transform . 30

Formatting Complex Numbers . 31

Roots of Polynomials . 31

The UTILITY Workspace . 32

| Introduction . 32

The Function Groups . 32

GPDATACV: Converting between External and Internal Representations . . 33

GPMISC: Miscellaneous Utility Functions . 36

GPSTRIP: Removing Comments . 40

| GPSVP: Controlling Communication through SVP 42

GPTEXT: Manipulating Text . 45

GPTRACE: Setting and Removing Trace and Stop Vectors 48

GPXLATE: Translating from One Character Representation to Another . . . 50

 Copyright IBM Corp. 1985, 1994 iii

Chapter 4. The Display Terminal Workspaces 52

AP 126: The GDDM/PGF Auxiliary Processor . 52

GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM 52

An Introduction to Text and Vector Graphics . 53

Text Graphics . 53

Vector Graphics . 53

| Pages: Text and Vector Graphics . 54

Coordinate Systems: Text and Vector Graphics 54

Coping with Complexity: Form and Chart Design 54

CHARTX—an APL2/ICU Data Interface . 56

Tied and Free Data . 56

Using CHARTX for Tied Data . 56

Using CHARTX for Free Data . 57

GDMX . 59

Using GDMX . 59

Global Variables . 61

Usage Notes . 61

GRAPHPAK—a Vector Graphics Workspace . 63

VS APL Compatible Workspaces . 64

FSC126 Workspace . 64

FSM Workspace . 64

Chapter 5. Environment-Dependent Workspaces 65

Command, Alternate-Input, and Specialized File APs 65

The CMS Workspace . 67

Characteristics of the CMS Environment . 67

CMS Command, Alternate-Input, and File Processors 67

Using the Functions in CMS . 69

The TSO Workspace . 73

TSO Command, Alternate-Input, and File Processors 73

Using the Functions in TSO . 74

The FILESERV Workspace . 77

Exporting Files Interactively . 77

Importing Files Interactively . 78

Transporting Files in Batch Mode . 79

Format of Commands . 80

Using the EXPORT and IMPORT Commands 81

Error Handling . 82

FILESERV Groups . 83

Chapter 6. File Auxiliary Processor Workspaces 84

The APLDATA Workspace . 85

Reading and Writing Files of APL2 Arrays . 85

General Operation . 85

APL-Format File Functions . 86

Functions to Store and Retrieve Large Variables 88

Using the Project, Private, and Public Libraries 89

Error Handling . 89

Special Handling of Selected Errors . 89

APLDATA Groups . 89

The VSAMDATA Workspace . 90

| File Naming Conventions . 90

Functions to Access External VSAM Files . 91

VSAMDATA Groups . 94

iv APL2 Programming: Using the Supplied Routines

The VAPLFILE Workspace . 95

Main Functions . 95

Supplementary Functions . 96

File Names . 97

VAPLFILE Groups . 98

Chapter 7. The TRANSFER Workspace . 99

MASSMCOPY_ . 99

FLAG_ and FIX_ . 100

Atomic Vectors . 102

Differences . 102

INδ and OUTδ . 104

INPC_ and OUTPC_ . 106

Chapter 8. The PRINTWS Workspace . 108

Primary User Functions . 108

Printer Selection Functions . 110

Environment System Command Functions . 110

Environment Dependencies . 111

CMS . 111

TSO . 111

Chapter 9. The SQL Workspace . 113

Chapter 10. The MEDIT Workspace . 114

Editing APL Variables and Defined Functions . 114

The Basic Edit Procedure . 114

Creating New APL2 Functions or Character Arrays 114

Display Terminals without the APL feature . 114

Using the MEDIT Functions . 115

Converting APL Objects for Editing . 115

Pre- and Post-Editing Functions . 115

Editing . 116

Usage Notes . 123

LRECS and CCOL . 123

QCR and QFX . 124

APL, Non-APL Translate Table . 124

Part 2. External Routines . 127

Chapter 11. External Routines . 129

APL2PI—APL2 Program Interface . 132

APL2PIE—APL2 Program Interface Extended 133

ATP—Array to Pointer . 135

ATR—Array To Record . 136

ATTN—Handling Attentions . 137

BUILDRD—Build a Routine Description . 138

BUILDRL—Build a Routine List . 139

CAN—Compress and Nest . 140

CMSIVP—Installation Verification under CMS . 141

CSRIDAC—Request or Terminate Access to a Data Object 142

CSRREFR—Refresh an Object . 144

CSRSAVE—Save Changes Made to a Permanent Object 145

 Contents v

CSRSCOT—Save Object Changes in a Scroll Area 146

CSRVIEW—Start or Terminate a View of an Object 147

CTK—Character to DBCS Conversion . 149

CTN—Character to Number . 150

DAN—Delete And Nest . 151

DFMT—Format Arrays Containing DBCS Data 152

DISPLAY—Display Array Structure . 153

| DISPLAYC—Display Array Structure . 154

DISPLAYG—Display Array Structure . 155

DSQCIA—QMF Callable Interface . 156

| EDITORX—System Editor Access . 158

| EDITOR2—Full-Screen APL2 Editor . 159

EXP—Execute in the Previous Namescope . 160

FED—Diagnostic Information . 163

HELP—Retrieve Keyed Help Text for an Application 164

Using Help to Retrieve a List of Keys . 164

Using Help to Retrieve Text . 164

Using Help as an Online Help Facility . 165

HELP Return Codes: . 165

IDIOMS—APL2 Phrases . 166

| IN—Read a Transfer File into the Active Workspace 167

KTC—DBCS to Character Conversion . 168

MSG—Message Services Request . 169

OPTION—Query or Set APL2 Invocation Options 170

| OUT—Write Objects to a Transfer File . 172

PACKAGE—Creating a Namespace . 173

PBS—Handling Printable Backspaces . 174

PFA—Pattern from Array . 175

| PIN—Protected Read of a Transfer File into the Active Workspace 176

PTA—Pointers to Array . 177

QNS—Query the Current Namescope . 178

RAPL2—Remote-Session Manager . 179

RTA—Record to Array . 181

SAN—Slice and Nest . 182

SERVER—TCP/IP Port Server . 183

SVI—Shared Variable Processor Information . 184

TIME—Performance Monitoring . 185

TSOIVP—Installation Verification under TSO . 187

δEXEC—Execute an APL Array as a REXX Program 188

δF—Query File Status . 189

δFM—Read or Write a Fixed Record Length File 190

δFV—Read or Write a Variable Record Length File 191

Bibliography . 192

| APL2 Publications . 192

| Other Books You Might Need . 192

Index . 193

vi APL2 Programming: Using the Supplied Routines

 Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM’s product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any of IBM’s intellec-

tual property rights may be used instead of the IBM product, program, or service.

Evaluation and verification of operation in conjunction with other products, except

those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject material in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Corporation,

IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States

06904.

| Programming Interface Information

| This book is intended to help programmers code APL2 applications in APL2. This

| book documents General-Use Programming Interface and Associated Guidance

| Information provided by APL2.

| General-use programming interfaces allow the customer to write programs that

| obtain the services of APL2.

 Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of

the IBM Corporation in the United States or other countries or both:

| The following terms, denoted by a double asterisk (**) in this publication, are trade-

| marks of other companies:

| Sun Sun Microsystems, Inc.

| Solaris Sun Microsystems, Inc.

| AIX/6000

| APL2

| APL2/6000

| CICS

| DB2

| GDDM

| IBM

| MVS/ESA

| QMF

| SQL/DS

| System/370

| System/390

 Copyright IBM Corp. 1985, 1994 vii

About This Book

This book, APL2/370 Programming: Using the Supplied Routines, describes and

explains how to effectively use the workspaces and external routines distributed

with IBM* APL2*.

| Who Should Use This Book

| This book is for all APL2 users on CMS or TSO for System/370* or System/390*.

| APL2 Publications

| Figure 1 lists the books in the APL2 library. This table shows the books and how

| they can help you with specific tasks.

| Figure 1. APL2 Publications

| Information| Book| Publication Number

| General product| APL2 Fact Sheet| GH21-1090

| Warranty| APL2/370 Application Environment Licensed

| Program Specifications

| APL2/370 Licensed Program Specifications

| APL2 for AIX/6000 Licensed Program Specifica-

| tions

| APL2 for Sun Solaris Licensed Program Specifica-

| tions

|

| GH21-1063

| GH21-1070

|

| GC23-3058

|

| GC26-3359

| Introductory language

| material

| APL2 Programming: An Introduction to APL2| SH21-1073

| Common reference

| material

| APL2 Programming: Language Reference

| APL2 Reference Summary

| SH21-1061

| SX26-3999

| System interface| APL2/370 Programming: System Services Refer-

| ence

| APL2/370 Programming: Using the Supplied Rou-

| tines

| APL2/370 Programming: Processor Interface Ref-

| erence

| APL2 for OS/2: User's Guide

| APL2 for Sun Solaris: User's Guide

| APL2 for AIX/6000: User's Guide

| APL2 GRAPHPAK: User's Guide and Reference

| APL2 Programming: Using Structured Query Lan-

| guage

| APL2 Migration Guide

|

| SH21-1056

|

| SH21-1054

|

| SH21-1058

| SH21-1091

| SH21-1092

| SC23-3051

| SH21-1074

|

| SH21-1057

| SH21-1069

| Mainframe system pro-

| gramming

| APL2/370 Installation and Customization under

| CMS

| APL2/370 Installation and Customization under

| TSO

| APL2/370 Messages and Codes

| APL2/370 Diagnosis Guide

|

| SH21-1062

|

| SH21-1055

| SH21-1059

| LY27-9601

| For the titles and order numbers of other related publications, see the

| “Bibliography” on page 192.

viii  Copyright IBM Corp. 1985, 1994

| Conventions Used in This Library

| This section discusses the conventions used in this library.

| lower Lowercase italicized words in syntax represent values you must

| provide.

| UPPER In syntax blocks, uppercase words in an APL character set represent

| keywords that you must enter exactly as shown.

| [] Usually, brackets are used to delimit optional portions of syntax;

| however, where APL2 function editor commands or fragments of code

| are shown, brackets are part of the syntax.

| [A�B�C] A list of options separated by � and enclosed in brackets indicates that

| you can select one of the listed options. Here, for example, you could

| specify either A, B, C, or none of the options.

| {A�B�C} Braces enclose a list of options (separated by �), one of which you

| must select. Here, for example, you would specify either A, B, or C.

| ... An ellipsis indicates that the preceding syntactic item can be repeated.

| {}... An ellipsis following syntax that is enclosed in braces indicates that the

| enclosed syntactic item can be repeated.

| The term workstation refers to all platforms where APL2 is implemented except

| those based on System/370 and System/390 architecture.

| Throughout this book, the following product names apply:

| Product Name| Platform

| APL2/2| OS/2*

| APL2 for Sun Solaris| Sun** Solaris**

| APL2/6000*| AIX/6000*

| APL2/370| MVS or VM

| APL2/PC| DOS

 About This Book ix

| Summary of Changes

| Product
| APL2/370, Version 2 Release 2

| Date of Publication: March 1994

| Form of Publication: Revision, SH21-1056-01

| Document Changes
| � Updated the SUPPLIED workspace example

| � Added DISPLAYC information to the DISPLAY workspace

| � Updated the EXAMPLES workspace

| � Added fast fourier transfer to the MATHFNS workspace

| � Updated the introduction for the UTILITIES workspace

| � Added GPSVP to the UTILITIES workspace

| � Updated external routines table

| � Added DISPLAYC, EDITORX, EDITOR2, IN, OUT, and PIN

x  Copyright IBM Corp. 1985, 1994

Part 1. Workspaces

Chapter 1. Introduction . 4

Workspace Libraries . 4

How To Use Library Workspaces . 4

The Message Facility . 5

Documentation within the Workspace . 6

Workspaces with Interrupted Functions . 7

Interrupting and Debugging . 7

The Auxiliary Processor Workspaces . 8

Chapter 2. Information Workspaces . 10

WSINFO: Information About the Library Workspaces 10

SUPPLIED: Information About External Functions 11

Chapter 3. General Purpose Workspaces . 12

The DISPLAY Workspace . 13

The EXAMPLES Workspace . 15

| Introduction . 15

Mathematic and Scientific Functions . 15

Miscellaneous Utility Functions . 20

Special Functions and Operators of APL2 . 22

The MATHFNS Workspace . 29

Eigenvalues . 29

| Fast Fourier Transform . 30

Formatting Complex Numbers . 31

Roots of Polynomials . 31

The UTILITY Workspace . 32

| Introduction . 32

The Function Groups . 32

GPDATACV: Converting between External and Internal Representations . . 33

GPMISC: Miscellaneous Utility Functions . 36

GPSTRIP: Removing Comments . 40

| GPSVP: Controlling Communication through SVP 42

GPTEXT: Manipulating Text . 45

GPTRACE: Setting and Removing Trace and Stop Vectors 48

GPXLATE: Translating from One Character Representation to Another . . . 50

Chapter 4. The Display Terminal Workspaces 52

AP 126: The GDDM/PGF Auxiliary Processor . 52

GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM 52

An Introduction to Text and Vector Graphics . 53

Text Graphics . 53

Vector Graphics . 53

| Pages: Text and Vector Graphics . 54

Coordinate Systems: Text and Vector Graphics 54

Coping with Complexity: Form and Chart Design 54

CHARTX—an APL2/ICU Data Interface . 56

Tied and Free Data . 56

Using CHARTX for Tied Data . 56

Examples . 56

Using CHARTX for Free Data . 57

 Copyright IBM Corp. 1985, 1994 1

Examples . 57

Usage Notes . 58

GDMX . 59

Using GDMX . 59

Global Variables . 61

Usage Notes . 61

Example . 62

GRAPHPAK—a Vector Graphics Workspace . 63

VS APL Compatible Workspaces . 64

FSC126 Workspace . 64

FSM Workspace . 64

Chapter 5. Environment-Dependent Workspaces 65

Command, Alternate-Input, and Specialized File APs 65

The Alternate-Input Processor . 65

The CMS Workspace . 67

Characteristics of the CMS Environment . 67

CMS Command, Alternate-Input, and File Processors 67

Creating APL2/CMS/CP Procedures . 67

Reading and Writing CMS Disk Files . 68

Using the Functions in CMS . 69

Command Functions . 69

Alternate Input Function . 69

File Functions . 70

Input/Output from Peripheral Devices . 72

The TSO Workspace . 73

TSO Command, Alternate-Input, and File Processors 73

File AP Functions and Auxiliary TSO Functions 73

Using the Functions in TSO . 74

Command Function . 74

Alternate Input Function . 74

File Functions . 74

The FILESERV Workspace . 77

Exporting Files Interactively . 77

Importing Files Interactively . 78

Transporting Files in Batch Mode . 79

Format of Commands . 80

Comments to Commands . 81

Using the EXPORT and IMPORT Commands 81

Error Handling . 82

Special Handling of Selected Errors . 82

FILESERV Groups . 83

Chapter 6. File Auxiliary Processor Workspaces 84

The APLDATA Workspace . 85

Reading and Writing Files of APL2 Arrays . 85

General Operation . 85

APL-Format File Functions . 86

Functions to Store and Retrieve Large Variables 88

Using the Project, Private, and Public Libraries 89

Error Handling . 89

Special Handling of Selected Errors . 89

APLDATA Groups . 89

The VSAMDATA Workspace . 90

2 APL2 Programming: Using the Supplied Routines

| File Naming Conventions . 90

Functions to Access External VSAM Files . 91

VSAMDATA Groups . 94

The VAPLFILE Workspace . 95

Main Functions . 95

Supplementary Functions . 96

File Names . 97

VAPLFILE Groups . 98

Chapter 7. The TRANSFER Workspace . 99

MASSMCOPY_ . 99

FLAG_ and FIX_ . 100

Atomic Vectors . 102

Differences . 102

VS APL Differences: . 102

APL2 IUP Differences: . 103

INδ and OUTδ . 104

INPC_ and OUTPC_ . 106

APL/PC to Host . 106

Host to APL/PC . 107

Chapter 8. The PRINTWS Workspace . 108

Primary User Functions . 108

Printer Selection Functions . 110

Environment System Command Functions . 110

Environment Dependencies . 111

CMS . 111

TSO . 111

Chapter 9. The SQL Workspace . 113

Chapter 10. The MEDIT Workspace . 114

Editing APL Variables and Defined Functions . 114

The Basic Edit Procedure . 114

Creating New APL2 Functions or Character Arrays 114

Display Terminals without the APL feature . 114

Using the MEDIT Functions . 115

Converting APL Objects for Editing . 115

Pre- and Post-Editing Functions . 115

Terminals without the APL Feature . 115

Editing . 116

The Initialization Functions . 116

The Input Functions . 116

The Change Functions . 120

The Select Functions . 121

The Output Functions . 122

The Set Tabs Function . 123

Usage Notes . 123

LRECS and CCOL . 123

QCR and QFX . 124

APL, Non-APL Translate Table . 124

 Part 1. Workspaces 3

 Chapter 1. Introduction

The workspace is the common organizational unit in an APL system. It is a place

in which to store programs and data. Part 1 of this manual describes a set of

workspaces supplied with APL2. These workspaces provide ready-made utilities

and common building blocks for your use. Some workspaces also illustrate various

APL2 techniques.

The workspaces vary greatly in complexity, importance, objective, and age. Some

workspaces go back to the earliest APL systems and others use current licensed

programs, for example, the Graphical Data Display Manager (GDDM*). Some

workspaces have restricted objectives. For example, the TRANSFER workspace

is intended to assist in migrating VS APL and APL2 IUP workspaces to APL2. Still

others are merely starter sets, providing APL functions for possible use and as

examples to improve upon. Some workspaces have their own manuals that either

describe them (for example, APL2 GRAPHPAK: User's Guide and Reference) or

provide a great deal of information with which you must be familiar if you are to use

them effectively (for example, the workspaces that use GDDM). As a result, the

treatment of each workspace is individual.

 Workspace Libraries
The workspaces discussed in this manual are usually stored in libraries available

for general use, for example, public libraries. The recommended libraries are:

| Library 1 for general purpose workspaces

| Library 2 for workspaces that aid in the use of auxiliary processors

If the recommended library numbers are used, the workspaces discussed in this

manual can be found in the following libraries:

)LIB 1
DISPLAY EXAMPLES MATHFNS MEDIT SUPPLIED UTILITY WSINFO
)LIB 2
APLDATA CHARTX CMS FILESERV FSC126 FSM GDMX
GRAPHPAK PRINTWS SQL TRANSFER TSO VAPLFILE VSAMDATA

Note: Not all workspaces are provided for all environments.

If your organization uses other public library numbers, you must find out what they

are from your system administrator.

How To Use Library Workspaces
To use all of a workspace stored in your own library or a public library, load it with

the system command:

)LOAD [library number] wsname

To use part of a workspace, or to combine part of it with your active workspace,

copy the part of the workspace you want using one of the system commands:

)COPY [library number] wsname obj1 obj2...

or

)PCOPY [library number] wsname obj1 obj2...

4  Copyright IBM Corp. 1985, 1994

Use these commands to copy a single object (a function, a variable, an operator), a

set of objects, or an entire workspace. For example, the PRINTWS workspace

can be copied into the active workspace to be printed, or you can load PRINTWS
as the active workspace and copy the objects to be printed into it.

Note: Groups are not treated the same in APL2 as in VS APL. In APL2, the

group is not a special kind of object, requiring special system commands for its

manipulation; it is just a character matrix of names of objects.

To copy the objects named in the matrix, rather than the matrix itself, put the name

of the matrix in parentheses after the)COPY command.

For example, to copy the matrix GPSTRIP from the UTILITY workspace, type:

)COPY 1 UTILITY GPSTRIP

But to copy the objects named in the matrix GPSTRIP, type:

)COPY 1 UTILITY (GPSTRIP)

Note: If the workspace or group you copy has objects that have the same names

as objects in the active workspace, the copied objects replace the active objects.

When you don't want this to happen, use)PCOPY (Protected Copy) instead of

)COPY. Similarly named objects then are not copied. When objects are not

copied, a NOT COPIED message listing their names is transmitted to your ter-

minal.

Most of the workspaces described in this manual contain defined groups of func-

tions serving specialized needs. These functions are described in each workspace

section of the book. To conserve space (and to minimize processor usage), use

only the groups or functions you need instead of the entire workspace.

The Message Facility
All of the supplied workspaces except CHARTX, DISPLAY, EXAMPLES, GDMX,

MATHFNS, SUPPLIED, UTILITY, and WSINFO return their own error mes-

sages. These messages are stored in a table whose name begins with AP2W (for

example AP2WSQL).

The entries in this table contain the message number and the message. Messages

are printed using the AP2WSM function. For example:

�AP2WAPLDATA� AP2WSM 106 �ZENO�

prints message number 106, as shown in Figure 2 on page 6.

Figure 2 shows complete example of how the message facility works in

APLDATA, a supplied workspace.

'ZENO' is a token that is substituted for all occurrences of 'ω' in the message.

Any text in the message occurring after a 'α' is not displayed. However, the

message ID AP2WAPLDATA and the additional information is assigned to the var-

iable MORE.

Note: When using the message facility, you must be careful to avoid name con-

flicts, particularly with the variable MORE.

 Chapter 1. Introduction 5

)LOAD 2 APLDATA

 AP2WAPLDATA
101 THE VARIABLE NAMED ω DOES NOT EXIST
102 VARIABLE fn HAS NOT BEEN SETαω REQUIRES THE FILENAME IN fn
103 END OF FILE | FILE CLOSEDαNO ATTEMPT MADE TO READ PAST EMPTY RECORD
104 LEFT ARGUMENT MUST BE SPECIFIEDα MUST BE ω
106 THE VARIABLE NAME �ω� IS THE SAME AS A LOCAL NAMEαCHOOSE ANOTHER NAME

 MORE
NO MORE MESSAGES

� NO ERRORS GENERATED ���YET
� LET�S GENERATE ERROR NO� 106 WITH A TYPICAL TOKEN

�AP2WAPLDATA� AP2WSM 106 �ZENO�
 THE VARIABLE NAME � ZENO � IS THE SAME AS A LOCAL NAME

 MORE
AP2WAPLDATA106 CHOOSE ANOTHER NAME

Figure 2. An Example of the Message Facility

Note: Do not use the message facility to emulate IBM messages in your own

applications. This makes it difficult to tell who designed (and therefore responsible

for documenting) a given error message.

However, you can use AP2WSM for your own purposes. To do this, copy the

group GPMESSAGE (which exists in all workspaces that use the message facility)

into your active workspace. Then replace the error message tables with ones of

your own. When you call the function AP2WSM, use two strings in the left argu-

ment, a message ID prefix followed by a table name. For example:

�MYAPPLICATION� �MYTABLE� AP2WSM 42 �THE ANSWER�

If �MYTABLE� is provided only as a left argument, then it is both the message ID

prefix and the table name.

Documentation within the Workspace
All supplied workspaces contain three functions: ABSTRACT, DESCRIBE, and

HOW. Some workspaces also contain other functions whose names begin with

HOW.

� ABSTRACT gives a brief description of the purpose of the workspace.

� DESCRIBE gives a more detailed description of the workspace.

� HOW tells you how to use the main functions in the workspace.

These functions also point you to any additional documentation in the workspace.

They use the external function HELP to extract help text from the APL2 product

help files.

6 APL2 Programming: Using the Supplied Routines

Workspaces with Interrupted Functions
You should check the state indicator before storing a workspace in which you have

been testing programs or in which you have had difficulties with programs. For

example:

)SI

might cause something like the following to be displayed on your terminal:

FOO[6]
GOO[5]
ZOO[3]
*
FOO[4]
GOO[5]
ZOO[3]
*

Such a display suggests that you tried to use a program named FOO and that you

had problems. The first time you tried, processing stopped on statement 4. The

second time, you got as far as statement 6. In both cases, you were left with FOO
suspended.

Also, in both cases, the processing of FOO was requested by statement 5 in GOO;

and the processing of GOO, in turn, was requested by statement 3 in ZOO.

Thus, in both cases, ZOO and GOO are pendent or suspended on the successful

processing of the suspended function, FOO.

Remember that each of the entries discussed here represents a drain on the work

area available in your workspace, since each is a copy of a function and, possibly,

of associated local variables. This can lead to puzzling difficulties when you try to

query variable values or edit the suspended functions.

It is good practice to check the state indicator when your work has caused many

function suspensions. You can terminate a suspended function (and the functions

hanging on it) by using the right-pointing arrow (→). This also frees any resources

used by the suspended function. To terminate all the suspended functions, you

should type the system command)RESET or)SIC.

Interrupting and Debugging
Suspending a function can be intentional. Stopping one or more functions at one

or more points can be extremely helpful when they're not working and you want to

know why. Remember this key fact:

Once a function has stopped, all the resources of APL are available to you to

help determine why it stopped, correct it, and in some cases, resume proc-

essing.

You can examine the values of key variables, you can run specially written analysis

programs, you can alter values and restart; the possibilities open to you are many.

For more information about suspending and tracing functions, see Sδ, Tδ,

)SINL, and)SIS in APL2 Programming: Language Reference.

 Chapter 1. Introduction 7

The Auxiliary Processor Workspaces
The auxiliary processor workspaces include:

� Environment-dependent workspaces: CMS, TSO, FILESERV
� Screen manager workspaces: GDMX, GRAPHPAK, FSC126, FSM, CHARTX
� File auxiliary processor workspaces: APLDATA, VAPLFILE, VSAMDATA

 � PRINTWS workspace

 � SQL workspace

In these workspaces, the tasks of sharing variables, transmitting initializing informa-

tion, checking return codes, and performing the other housekeeping chores

required to use auxiliary processors are done by what are commonly called cover

functions. These functions are described in the chapters about individual work-

spaces. Figure 3 lists the APL2 auxiliary processors and their associated work-

spaces.

Figure 3 (Page 1 of 2). APL2 Auxiliary Processors and Associated Workspaces

AP No.

Description

Associated

Workspaces

AP 100 Subsystem command auxiliary processor. Processes

CP/CMS or TSO commands during an APL2 session.

CMS and TSO

AP 101 Alternate-input (stack) auxiliary processor. Stacks

input to the APL2 system, replacing manual entry of

input.

CMS and TSO

AP 102 Main storage access auxiliary processor. Returns

the contents of specified areas of virtual (CMS) or

main (TSO) storage.

CMS and TSO

AP 110 CMS file auxiliary processor. Reads or writes

sequentially or randomly to a disk under control of

the CMS file system.

CMS

AP 111 QSAM auxiliary processor. Reads or writes to a

device or file supported by QSAM (TSO) at QSAM

simulation (CMS).

CMS and TSO

AP 119 TCP/IP socket interface auxiliary processor. None

AP 120 Session manager command auxiliary processor.

Processes a session manager command.

FSM

AP 121 APL2 file auxiliary processor. Reads or writes APL2

arrays (in internal form) to and from a direct or

sequential file.

APLDATA and

VAPLFILE

AP 123 VSAM auxiliary processor. Performs file operations

on entry-sequenced, key-sequenced, or relative-

record VSAM files.

VSAMDATA

AP 124 Full-screen auxiliary processor. Provides full-screen

text capabilities.

None

AP 126 GDDM auxiliary processor. Transfers AP 126

service requests and GDDM call requests to GDDM

for control of an IBM 3270-family display station with

programmable symbol set (PSS) feature.

CHARTX, FSM,

FSC126, GDMX,

and GRAPHPAK

AP 127 SQL auxiliary processor. Passes SQL statements

from APL2 to SQL/DS* and DB2*.

SQL

8 APL2 Programming: Using the Supplied Routines

Figure 3 (Page 2 of 2). APL2 Auxiliary Processors and Associated Workspaces

AP No.

Description

Associated

Workspaces

AP 210 TSO BDAM auxiliary processor. Provides relative

record access to fixed-length, unkeyed disk data sets

through BDAM.

TSO

AP 211 APL2 object file auxiliary processor. Reads or writes

APL2 arrays (in internal form) to and from a file.

Allows access to the arrays by name.

None

 Chapter 1. Introduction 9

 WSINFO

 Chapter 2. Information Workspaces

This chapter describes the information workspaces WSINFO and SUPPLIED.

WSINFO: Information About the Library Workspaces

There is one principle function in this workspace:

LIST

This function provides a list of each workspace distributed with the APL2 system for

use in your particular environment (CMS or TSO). LIST prompts you to enter

the name of a workspace, then returns descriptive information about the work-

space.

This is an example for TSO. Results could differ slightly for CMS.

 LIST

 Tutorial information is available for the following workspaces:
 You can enter 	 at any time to redisplay the list�

Public Library Number 1

 DISPLAY EXAMPLES MATHFNS MEDIT SUPPLIED UTILITY WSINFO

Public Library Number 2

 APLDATA CHARTX FILESERV FSC126 FSM GRAPHPAK GDMX
 PRINTWS SQL TRANSFER TSO VAPLFILE VSAMDATA

 Enter a workspace name, or press ENTER to exit:

10  Copyright IBM Corp. 1985, 1994

 SUPPLIED

SUPPLIED: Information About External Functions

APL2 has a wide variety of external routines that can be accessed using
NA.

The SUPPLIED workspace contains associations to all the APL2 external rou-

tines. In addition, the SUPPLIED workspace contains a function that can help

you learn how to use the external routines. See Chapter 11, “External Routines”

on page 129 for detailed explanations of each routine.

LIST

The LIST function lists APL2's external routines and prompts the user to enter a

function name. When a function name is entered, LIST displays tutorial informa-

tion that describes the purpose, syntax, arguments, and results for the function.

Example:

 LIST

 Tutorial information is available for the following functions:
 You can enter 	 at any time to redisplay the list�

 δEXEC δF δFM δFV APL2PI APL2PIE ATP
 ATR ATTN BUILDRD BUILDRL CAN CSRIDAC CSRREFR

CSRSAVE CSRSCOT CSRVIEW CTK CTN DAN DFMT
| DISPLAY DISPLAYC DISPLAYG DSQCIA EDITORX EDITOR2 EXP
| FED HELP IDIOMS IN KTC MSG OPTION
| OUT PACKAGE PBS PFA PIN PTA QNS
| RAPL2 RTA SAN SERVER SVI TIME TSOIVP

 Enter a function name, or press ENTER to exit:

 Chapter 2. Information Workspaces 11

Chapter 3. General Purpose Workspaces

The general purpose workspaces are:

 DISPLAY
 EXAMPLES
 MATHFNS
 UTILITY

None of these workspaces use an auxiliary processor.

DISPLAY contains functions for showing the structure of arrays.

The EXAMPLES workspace contains many short functions that are suitable for

study and experimentation by APL2 beginners. They reflect programming practices

of varying quality. If you study them with a critical attitude, you might find the exer-

cise useful in developing good APL2 programming judgment.

The MATHFNS workspace contains two advanced mathematical functions and two

functions for formatting complex numbers in polar form.

The UTILITY workspace functions are for general use. These functions are

nonsuspendable. (For more information about setting the processing properties of

functions and operators, see APL2 Programming: Language Reference.)

By convention, each unlocked defined function and operator in the UTILITY and

EXAMPLES workspaces contains a description of itself in the first line.

12  Copyright IBM Corp. 1985, 1994

 The DISPLAY Workspace

The DISPLAY Workspace

| This workspace contains DISPLAY, DISPLAYC, and DISPLAYG; these func-

tions are useful in showing the structure of nested and mixed arrays.

Z←DISPLAY X
Z←DISPLAYC X
Z←DISPLAYG X

Z is a character matrix that represents the array X.

| DISPLAY and DISPLAYC use characters that display on all implementations.

| DISPLAYC is identical to DISPLAY and is included for compatibility with the

| DISPLAY workspace distributed with the workstation APL2 implementations.

| DISPLAYG uses box characters.

The following characters are used to convey shape information:

→ or ↓ Indicates a dimension of at least one

 or � Indicates an axis of length zero. If an array is empty, its

prototype is displayed

(None of the above) Indicates no dimension (a rank 0 array)

The following characters are used to convey type information:

� Indicates numeric

+ Indicates mixed

ε Indicates nested

� Indicates a scalar character that is at the same depth as

nonscalar arrays

(None of the above) Indicates a character array that is not a simple scalar

 Chapter 3. General Purpose Workspaces 13

 The DISPLAY Workspace

 X←ι5
 DISPLAY X
 �→||||||||�
 �1 2 3 4 5�
 ��||||||||�
 X←�ι5
 DISPLAY X
 �|||||||||||||�
 � �→||||||||� �
 � �1 2 3 4 5� �
 � ��||||||||� �
 �ε||||||||||||�

X←(��ι4)(2 2ρ�ABCD�)(2 2ρ�FORTY|TWO� �IS� �THE� �ANSWER�)
 DISPLAY X
 �→||�
 � �|||||||||||||||� �→|� �→|||||||||||||||||||||� �
 � � �|||||||||||� � ↓AB� ↓ �→||||||||� �→|� � �
 � � � �→||||||� � � �CD� � �FORTY|TWO� �IS� � �
 � � � �1 2 3 4� � � �||� � �|||||||||� �||� � �
 � � � ��||||||� � � � �→||� �→|||||� � �
 � � �ε||||||||||� � � �THE� �ANSWER� � �
 � �ε||||||||||||||� � �|||� �||||||� � �
 � �ε|||||||||||||||||||||� �
 �ε||�
 ρX
 3
 ρ¨X
 2 2 2 2
 DISPLAY ρ¨X
 �→||||||||||||||||�
 � �
� �→||� �→||� �
 � �0� �2 2� �2 2� �
 � ��� ��||� ��||� �
 �ε||||||||||||||||�

Figure 4. DISPLAY Examples

14 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

The EXAMPLES Workspace

| This section describes the EXAMPLES workspace.

| Introduction
| The functions in this workspace are examples of ways to use APL2 in solving prob-

| lems. The functions are brief, often no more than one or two statements, but they

| illustrate some of the ways in which APL2, with relatively few statements, can do

| calculations that require many more statements in other programming languages.

| These functions are not necessarily the best way, or the only way, to solve the

| problem. Rather, they illustrate ways to use APL2 that are not always obvious.

| We encourage you to examine the listings of all functions and operators in the

| workspace. Some of them are very simple.

| The examples fall into three categories: scientific, miscellaneous, and special exam-

| ples of the new capabilities of APL2. There are also a few of interest to program-

| mers, such as decimal-hexadecimal conversions and hexadecimal arithmetic.

Mathematic and Scientific Functions

ASSOC Tests associativity of putative arithmetic tables

BIN Binomial coefficients

COMB FC LFC Combinations

GCD Greatest common divisor

HILB Hilbert matrix

PALL PER PERM Permutations

PO POL POLY POLYB Polynomials

TRUTH Truth tables

ZERO Roots of a function

Figure 5. Simple Scientific and Mathematical Functions

Z←ASSOC M � ASSOCiativity

The function ASSOC tests any putative group multiplication table M (assuming

group elements in ιρρM) for associativity and yields a value 1 if it is associative,

0 otherwise.

 Chapter 3. General Purpose Workspaces 15

 The EXAMPLES Workspace

 MULTTABLE←5 5ρ(6ρ1),(4ρ2),(ι3),(2ρ3),(ι4),4,(ι5)

 MULTTABLE
1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

 ASSOC MULTTABLE
1

 MULTTABLE[3;3]←1

 MULTTABLE
1 1 1 1 1
1 2 2 2 2
1 2 1 3 3
1 2 3 4 4
1 2 3 4 5

 ASSOC MULTTABLE
0

Z←BIN N � BINomial

The function BIN produces all binomial coefficients up to order N.

 BIN 7
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 3 3 1 0 0 0 0
1 4 6 4 1 0 0 0
1 5 10 10 5 1 0 0
1 6 15 20 15 6 1 0
1 7 21 35 35 21 7 1

16 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

Z←COMB N
Z←FC N
Z←LFC N

The function COMB employs recursive definition to produce a 2�N by 2 matrix of

all possible pairs of elements from ιN.

 COMB 5
1 2
1 3
2 3
1 4
2 4
3 4
1 5
2 5
3 5
4 5

The function FC shows an alternate method that yields the same pairs but in a

different order.

 FC 5

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

The function LFC employs FC to generate letter pairs.

 LFC 5

AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

 Chapter 3. General Purpose Workspaces 17

 The EXAMPLES Workspace

Z←L GCD R � Greatest Common Divisor

The function GCD employs the Euclidean algorithm to produce the greatest

common divisor.

30 GCD 40
10

GCD/ 30 40
10

GCD/ 30 40 45
5

GCD/ 30 40 39 45
1

GCD/ 30 42 39 45
3

Z←HILB N � HILBert matrix

The function HILB produces a Hilbert matrix of order N.

Z← PALL N
Z← PER N
Z← B PERM N

The function PALL produces the matrix of all permutations of order N. Its subfunc-

tion PERM produces the B-th permutation of order N by a method due to L.J.

Woodrum.

The function PER employs recursive definition. It produces all permutations by a

method much faster than that used in the function PALL. The permutations are

not produced in the same order as those produced by PALL.

 PALL 3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

 PER 3
1 3 2
2 3 1
1 2 3
2 1 3
3 2 1
3 1 2

18 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

Z← C POLY X � Scalar right argument only
Z← C POL X � Scalar right argument only

� (uses inner product)
Z← C POLYB X � Scalar right argument only

� (uses base value)
Z← C PO X � Scalar or vector right argument

The functions POLY, POL, PO, and POLYB each evaluate a polynomial (or

polynomials), whose coefficients are determined by the left argument, and whose

point (or points) of evaluation is determined by the right argument. The coefficients

are in ascending order of associated powers.

�1 0 1 PO �2 �1 0 1 2
3 0 �1 0 3

�1 0 1 POL 2
3

�1 0 1 POLY 1
0

�1 0 1 POLYB �1
0

To find the zeros of polynomials, see the POLYZ function in the MATHFNS work-

space, shown in Figure 9 on page 31.

Z←TRUTH N

The function TRUTH produces the matrix of arguments of the truth table for N
logical variables.

 TRUTH 3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Z←TOL (F ZERO) R

The operator ZERO employs the bisection method to determine, within a tolerance

TOL, a root of the function F lying between the bounds R[1] and R[2].

F(R[1]) and F(R[2]) must be opposite signs. ZERO should only be

applied to continuous functions.

 Chapter 3. General Purpose Workspaces 19

 The EXAMPLES Workspace

FX�Z←SIN X� �Z←1○X�
SIN

�1 SIN ZERO �1 1
0

�1 SIN ZERO 1 4
3�0625

�001 SIN ZERO 1 4
3�141601563

Miscellaneous Utility Functions

PACK Illustrates the use of Base value (L ⊤ R)
UNPACK Illustrates the use of Representation (L � R)
DEC2HEX Converts from decimal to hexadecimal

HEX2DEC Converts from hexadecimal to decimal

HEX Performs hexadecimal arithmetic

SORTLIST Sorts according to a collating sequence

TIME Provides processor time used

Figure 6. EXAMPLES: Miscellaneous Utility Functions

Z←PACK X
Z←UNPACK X

The functions PACK and UNPACK illustrate the use of the � and ⊤ functions in

changing from a four-number encoding of serial number (1 to 9999), month, day,

and year to a single-number encoding of the same data.

PACK 117 1 1 84
4315283
 UNPACK 4315283
117 1 1 84

Z←DEC2HEX R
Z←HEX2DEC R
Z←L(F HEX) R

The functions DEC2HEX and HEX2DEC work with nonnegative hexadecimal

numbers represented as strings of characters selected from

�0123456789ABCDEF�. The HEX operator performs an arithmetic function

F on hexadecimal arguments, returning a (character) hexadecimal result. The

arguments presented to a function derived by the HEX operator must have a depth

no greater than two.

DEC2HEX Converts decimal to hexadecimal

HEX2DEC Converts hexadecimal to decimal

+ HEX Performs hexadecimal addition

20 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

| HEX Performs hexadecimal subtraction

... and so on

�FF� +HEX �1�
100

(ιHEX �5�)���HEX(ιHEX �C�)
1 2 3 4 5 6 7 8 9 A B C
2 4 6 8 A C E 10 12 14 16 18
3 6 9 C F 12 15 18 1B 1E 21 24
4 8 C 10 14 18 1C 20 24 28 2C 30
5 A F 14 19 1E 23 28 2D 32 37 3C

Z←SORTLIST R

R is a character matrix. Z is R with its rows sorted according to the collating

sequence defined in DCS, a global variable.

A←TIME

The function TIME yields the amount (in minutes, seconds, and milliseconds) of

processor time used since the last time the function was run. It is useful in meas-

uring the processing times of other functions. The global variable TIMER is

assigned the value of the cumulative processor time each instance the function

TIME is run.

 Chapter 3. General Purpose Workspaces 21

 The EXAMPLES Workspace

Special Functions and Operators of APL2
The group GPAPL2 contains various functions and operators designed to show

some of the capabilities of APL2 that are not available in VS APL.

Workspace Information Functions

EXAMPLE Demonstrates a specified program in GPAPL2
EXAMPLES Demonstrates the programs in GPAPL2

Miscellaneous Functions

EXPAND Function version of �
IOTAU Find index (iota underbar in the IUP)

REP Represents an array, function, or operator

REPLICATE Function version of /
TYPE Returns the type of an array

| UNIQUE Removes duplicates

Operators to Conform Arguments

CR Conforms ranks

PAD Conforms axes by overtake

TRUNC Conforms axes by undertake

Operators for Debugging

TRACE Traces function processing

TRAP Traps error, returns error message

Operators to Handle Depth

EL Each left

ER Each right

PL Pervasive on left

PR Pervasive on right

Operators for Program Control

ELSE Conditional processing

IF Conditional processing

Miscellaneous Operators

AND Applies two functions

COMMUTE Reverses function arguments

FAROUT All-level outer product

NOP No operation

POWER Applies a function monadically N times

Figure 7. GPAPL2 Main Functions and Operators

22 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

EXAMPLE R

This function processes the examples found in the leading comments of the

program named in R.

EXAMPLES

This function processes the examples found in the leading comments of all of the

programs in the workspace.

Z←L IOTAU R � IOTA Underbar

This is the Find Index function from the APL2 Installed User Program. R and L
can be any array. Z is an integer matrix that contains the starting positions (in

row major order) where pattern R begins in the array L.

ρ�A� IOTAU �A�
0 1

�ABABABA� IOTAU �AB�
1
3
5

1 (2 3) (4 5) 2 3 4 5 IOTAU 2 3
4
 L←4 5ρ�ABCABA�
 L
ABCAB
AABCA
BAABC
ABAAB

L IOTAU �BA�
3 1
4 2

L IOTAU 2 1ρ�BA�
1 2
1 5
2 3
3 1
3 4

Z←L REPLICATE R
Z←L EXPAND R

These functions are identical to the primitive functions Replicate and Expand,

respectively represented by '/' and '�', except that the primitive versions are

really operators, so you cannot apply operators to them.

The defined REPLICATE and EXPAND really are functions, so you can apply

operators to them.

 Chapter 3. General Purpose Workspaces 23

 The EXAMPLES Workspace

(1 0 1)(0 3)REPLICATE¨�ABC� �DE�
 AC EEE

 REPLICATE/5 �*�

(1 0 1)(0 1 0) EXPAND¨ (2 4) 6
 2 0 4 0 6 0

Z←REP R � REPresentation

Z is a representation of the array, function, or operator named in R. Specifically, Z
is �R or
CR R, whichever is appropriate. This is an example of the use of the

ELSE operator in this group.

Z←TYPE R

Z is a scalar zero if R is numeric, and a scalar blank if it is character. This function

is compatible with a VS APL library function of the same name. It is not meant to

be applied to mixed or nested arguments.

| Z←UNIQUE R

| R is a vector. Z is a vector containing the elements of R with duplicates elimi-

| nated.

| UNIQUE �THE ANTS WERE HERE�
| THE ANSWR
| UNIQUE �GUFFAW 17 (ι4) �GUFFAW�
| GUFFAW 17 1 2 3 4

Z←L (F CR) R � Conform Ranks
Z←L (F PAD) R
Z←L (F TRUNC) R � TRUNCate

The CR operator conforms the ranks of L and R and then applies the function F.

The PAD operator conforms the axes of L and R by overtake. The TRUNC oper-

ator conforms the axes of L and R by undertake.

24 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

(4 4ρ�WE THEYUS OURS�) ��(=PAD) �2 3ρ�WE OUR�
1 0
0 0
0 0
0 0

(4 4ρ�WE THEYUS OURS�) ��(=TRUNC) �2 3ρ�WE OUR�
1 0
0 0
0 0
0 1

(2 3 4ρι24) +PAD CR 5 6ρ100�ι30
101 202 303 404 500 600
705 806 907 1008 1100 1200
1309 1410 1511 1612 1700 1800
1900 2000 2100 2200 2300 2400
2500 2600 2700 2800 2900 3000

13 14 15 16 0 0
17 18 19 20 0 0
21 22 23 24 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Z←L (F TRACE) R Z←(F TRACE) R

TRACE traces the processing of F. It is most useful when the derived function is

passed to another operator. Every time F is called, the derived function displays its

argument(s) and the result.

+TRACE� 1 4 9 ◄──── Expression as entered
1 4 ◄────TRACE output
5 �
4 9 �
13 �
1 13 �
14 ◄────TRACE output
1 5 14 ◄──── Final result

2 +TRACE/ 1 2 3 4 ◄──── Expression as entered
1 2 ◄────TRACE output
3 �
2 3 �
5 �
3 4 �
7 ◄────TRACE output
3 5 7 ◄──── Final result

 Chapter 3. General Purpose Workspaces 25

 The EXAMPLES Workspace

Z←L (F TRAP) R Z←(F TRAP) R

The derived function (F TRAP) is just like F, except that if an error occurs

during the processing of F, the enclosed error message becomes the result.

2 ÷TRAP 0
 DOMAIN ERROR

L F R
 � �

ρ�2 ÷TRAP 0
3 12

Z←L (F EL) R � Each Left
Z←L (F ER) R Z←(F ER) R � Each Right

These operators are like the Each operator (¨), except that EL applies Each only

on the left argument and ER applies Each only on the right argument.

(2 2 3)(4 3)(2 6) ρEL ι12
 1 2 3 1 2 3 1 2 3 4 5 6
 4 5 6 4 5 6 7 8 9 10 11 12

7 8 9
 7 8 9 10 11 12
 10 11 12

2 3 ρER 4 5 6
 4 4 4 5 5 5 6 6 6
 4 4 4 5 5 5 6 6 6

Z←L (F PL) R � Pervasive Left
Z←L (F PR) R Z←(F PR) R � Pervasive Right

PL causes F to be treated as pervasive down to depth 1 (simple arrays) on its left

argument, and PR causes F to be treated as pervasive down to depth 1 on its

right argument.

1 (2 3) ρPL ι6
 1 1 2 3

4 5 6

3 ρPR 1,�2,�3 4
 1 1 1 2 2 2 3 4 3

(ρPR �A� �BC� (�DEF� �HIJK�)) ρPL �
�

Z←C (F ELSE G) R

If C is 1, then Z is F R. If C is 0, then Z is G R.

26 APL2 Programming: Using the Supplied Routines

 The EXAMPLES Workspace

Z← (F IF C) R

If C is 1, then Z is F R. Otherwise, Z is R.

Z←L (F AND G) R Z←(F and G) R

The AND operator applies two functions to the same argument(s).

3 +AND� 5
8 15
 +AND| 5
5 �5

(ι4) (���)AND(��+) (ι4)
 1 2 3 4 2 3 4 5
 2 4 6 8 3 4 5 6
 3 6 9 12 4 5 6 7
 4 8 12 16 5 6 7 8

Z←L (F COMMUTE) R

The COMMUTE operator switches the arguments of the function to which it is

applied.

0�5 *COMMUTE 9
3

Z←L (F FAROUT) R � FAr Reaching OUTer product

This operator applies outer product to all levels of the arrays L and R.

(10 20)(30 40 50) +FAROUT (1 2)(3 4 5)
 11 12 13 14 15
 21 22 23 24 25

 31 32 33 34 35
 41 42 43 44 45
 51 52 53 54 55

Z←L (F NOP) R Z←(F NOP) R � No OPeration

The derived function (F NOP) is just F. This operator is useful for separating

the array right operand of an operator from the right argument of the derived func-

tion. It sometimes eliminates one layer of parentheses.

� Compare with the next example�
ρPOWER 2 NOP 2 3 4ρι24

3

 Chapter 3. General Purpose Workspaces 27

 The EXAMPLES Workspace

Z←(F POWER N) R

POWER applies F monadically N times.

� Parentheses are redundant here�
(ρ POWER 2) 2 3 4ρι24

3

28 APL2 Programming: Using the Supplied Routines

 The MATHFNS Workspace

The MATHFNS Workspace

This workspace contains the following functions, as shown in Figure 8

EIGEN Computes eigenvalues and eigenvectors

| FFT Computes fast Fourier transform

FMTPD Formats in polar form with angular measure in degrees

FMTPR Formats in polar form with angular measure in radians

| IFFT Computes inverse fast Fourier transform

POLYZ Computes the zeros of polynomials

Figure 8. Functions in the MATHFNS Workspace

 Eigenvalues

Z← EIGEN R

The right argument R must be a simple square matrix of real numbers. Z is a

simple real or complex matrix of shape 1 0+ρR that contains the eigenvalues

and the eigenvectors of R. If R has shape N by N, then Z has N+1 rows and N
columns. The first row of Z contains the eigenvalues of R, and the remaining rows

of Z contain the corresponding right eigenvectors of R. That is, each column of Z
contains an eigenvalue, and its corresponding right eigenvector.

EIGEN 2 2ρ1 0 0 2
1 2
1 0
0 1

The eigenvalues X and the right eigenvectors V can be obtained by:

Z← EIGEN R
 X←Z[1;]

V← 1 0↓Z

They obey the identity:

X�[2]V ←→ R+��V

The eigenvalues X and the left eigenvectors V can be obtained by:

Z←� EIGEN � R
 X←Z[;1]
 V←0 1↓Z

They obey the identity:

 X�[1]V ←→V+��R

 Chapter 3. General Purpose Workspaces 29

 The MATHFNS Workspace

The eigenvalues and eigenvectors are computed using the implicit QL algorithm if

R is symmetric, or the QR algorithm if R is not symmetric. The numerical accuracy

of the result is dependent upon the condition of the matrix of eigenvectors. In par-

ticular, accuracy can be degraded if there are repeated eigenvalues.

| Fast Fourier Transform

| Z←FFT R � Fast Fourier Transform

| This function computes the discrete Fourier transform of a set of 2n numbers R.

| The right argument R is a simple vector of 2*N complex or real numbers, where N

| is a positive integer. The result Z is a simple vector of 2*N complex numbers with

| the discrete Fourier transform of R.

| The result of the FFT function corresponds to that of the discrete Fourier transform

| given by:1

yk = ∑
n − 1

j = 0

xj e
2π√−1 (k

n
)j

| Z←IFFT R � Inverse Fast Fourier Transform

| This function computes the inverse Fourier transform of a set of 2n numbers R.

| R ⇔ IFFT FFT R

| The right argument R is a simple vector of 2*N complex or real numbers, where N

| is a positive integer. The result Z is a simple vector of 2*N complex numbers with

| the inverse discrete Fourier transform of R.

| The IFFT function differs only in scale and phase.

yk = (1
n

)∑
n − 1

j = 0

xj e
− 2π√−1 (k

n
)j

| For example:

| IFFT 2 0J1 0 0J�1
| 0�5 1 0�5 0
| IFFT 2 1 0 1
| 1 0�5 0 0�5

| 1 SC23-0526, Engineering and Scientific Subroutine Library, Version 2, Guide and Reference, page 787.

30 APL2 Programming: Using the Supplied Routines

 The MATHFNS Workspace

Formatting Complex Numbers

Z←FMTPD R � ForMaT Polar Degrees

This function formats complex numbers in the right argument R in polar form with

angular measure in degrees. Z is a simple character array.

Z←FMTPR R � ForMaT Polar Radians

This function formats complex numbers in the right argument R in polar form with

angular measure in radians. Z is a simple character array.

Roots of Polynomials

Z← POLYZ R � POLYnomial Zeros

The right argument R must be a simple nonempty vector of real or complex

numbers, and must not contain leading zeros. R represents a polynomial with

coefficients in decreasing order of powers (constant on the right). Z is a simple

vector of shape �1+ρR, that contains the zeros of the polynomial R.

If F is the polynomial represented by R and F(x) = Ax3 + Bx2 +Cx +D,

then R is the vector (A B C D). If the result Z is the vector (P Q R), then

F(x) = (x-P)(x-Q)(x-R). If R is real, and the length of R is even, then Z contains at

least one real number.

POLYZ �2 1
 0�5

POLYZ 2 0J1
 0J�0�5

POLYZ 1 �2 1
 1 1

POLYZ 1 0 1
 0J1 0J�1

POLYZ 1 �6 11 �6
1 2 3

POLYZ 1 �20 154 �584 1153 �1124 420
1 2�000000033 1�999999967 3 5 7

Figure 9. POLYZ Example

The zeros are computed using the Jenkins and Traub algorithms. The accuracy of

the solution depends on the condition of the polynomial. In particular, accuracy can

be degraded if there are repeated zeros. Also, numerical roundoff can cause a pair

of equal real zeros to appear as a complex conjugate pair.

| POLYZ uses subroutines POLYZC and POLYZF.

 Chapter 3. General Purpose Workspaces 31

 The UTILITY Workspace

The UTILITY Workspace

| This section describes the UTILITY workspace.

| Introduction
| The UTILITY workspace is made up of defined functions organized into groups of

| functions. The groups are listed in the next section and described in the sections

| that follow.

| The two major ways in which you are likely to find the UTILITY workspace useful

| are:

| � Functional

| � Instructional

| The functional use is relatively straightforward:

| � Copy the objects you need from the UTILITY workspace into the active work-

| space

| � Use the UTILITY functions as “pseudo-primitives” in your own defined functions.

| The instructional use may not be as obvious, but may be even more important.

| Instructionally, you can use the UTILITY workspace to:

| � Acquire familiarity with APL2 by experimenting with the functions in the UTILITY

| workspace, listing and reading them, trying to deduce what each statement

| does and why you might choose that particular way to do it.

| � Develop your APL2 programming skills by modifying the functions to improve

| their efficiency or to add features you need.

| � Extend your programming skills by adding complementary utility functions that

| you find useful.

| This workspace is of most use to you if you try to use it for both functional and

| instructional purposes.

The Function Groups

GPDATACV Data conversion

GPMISC Miscellaneous utility functions

GPSTRIP Removing comments from functions

| GPSVP Controlling communication though the

| Shared Variable Processor

GPTEXT Text processing

GPTRACE Managing trace and stop vectors

GPXLATE Character translation

Figure 10. Groups in the UTILITY Workspace

A list of the main functions in each group is presented in a captioned figure at the

beginning of each section. Functions that belong to more than one group are

usually listed only once.

32 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

GPDATACV: Converting between External and Internal
Representations

Data Conversion Functions

Conversion Type In Out

Boolean (Logical) Z← LI R Z← LO R
System/370 Integer Z← II R Z←L IO R

| IBM PC Integer Z← PCII R Z←L PCIO R
System/370 Floating Point Z← FI R Z← FO R
Packed Decimal Z← PDI R Z←L PDO R
VS APL Z← ICI R Z← ICO R

Data Conversion Variables

zc Used in translating between APL2 EBCDIC

and VS APL Internal Characters

pds Used in determining sign of packed-decimal number

pdd Used in translating numerical portion of packed decimal

Figure 11. GPDATACV: Data Conversion Functions and Variables

Z←LI R � Logical In

R is a simple character array whose last axis contains logical data; that is, a string

of bits.

Z is a numeric array consisting of zeros and ones representing the logical data in

R. The rank of Z is the same as the rank of R, but the last axis of Z is 8 times as

long as the last axis of R. A scalar value for R produces an 8-element vector.

ρZ←→(�1↓ρR),8��1↑1,ρR

Z←LO R � Logical Out

R is a simple numeric array consisting of only zeros and ones. The length of its

last axis must be a multiple of 8.

Z is a character array whose last axis contains the representation of the logical

data in the last axis of R. The rank of Z is the same as the rank of R, but the

length of the last axis of Z is one-eighth of the length of the last axis of R.

ρZ←→(�1↓ρR),(�1↑ρR)÷8

 Chapter 3. General Purpose Workspaces 33

 The UTILITY Workspace

Z←II R � Integers In

R is a simple character array whose last axis must have a length of between 1 and

7 inclusive. The array must also contain the System/370 binary representations of

integers.

Z is an array of integers representing the binary numbers in R. The rank of Z is

one less than the rank of R.

ρZ←→�1↓ρR

Z←L IO R � Integers Out

R is a simple array of integers. L is an integer scalar not greater than 7, which

gives the number of bytes in which each integer is represented. L must be large

enough to represent the largest magnitude of the integers in R.

Z is a character array whose last axis contains the System/370 binary representa-

tions of the integers in R. The rank of Z is one greater than the rank of R.

ρZ←→(ρR),L

| Z←PCII R � PC Integers In

| R is a simple character array whose last axis must have a length of 1, 2 or 4, and

| which contains the IBM PC (reversed) binary representations of integers.

| Z is an array of integers representing the binary numbers in R. The rank of Z is

| one less than the rank of R.

| ρZ←→�1↓ρR

| Z←L PCIO R � PC Integers Out

| R is a simple array of integers. L is an integer scalar with a value of 1, 2 or 4,

| and gives the number of bytes in which each integer is to be represented. L
| must be large enough to represent the largest magnitude of the integers in R.

| Z is a character array whose last axis contains the IBM PC (reversed) binary repre-

| sentation of the integers in R. The rank of Z is one greater than the rank of R.

| ρZ←→(ρR),L

Z←FI R � Floating In

R is a simple character array; its last axis must have a length of 4 or 8. The last

axis thus represents either single or double precision System/370 floating-point

numbers.

34 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

Z is an array of numbers equivalent to the floating-point representations in R. The

rank of Z is one less than the rank of R.

ρZ←→�1↓ρR

Z←FO R � Floating Out

R is a simple numeric array.

Z is a character array whose last axis has length 8, and which contains the

System/370 double precision floating-point representations of the numbers in R.

The rank of Z is one greater than the rank of R. If single precision is required, then

drop the last four columns of the result.

ρZ←→(ρR),8

Z←PDI R � Packed Decimal In

R is a simple character array whose last axis must have a length of between 1 and

16 inclusive, and which contains valid System/370 packed decimal representations

of integers.

Z is an array of integers representing the packed decimal numbers in R. The rank

of Z is one less than the rank of R.

ρZ←→�1↓ρR

Note that if the length of the packed decimal number is greater than 9 bytes, a loss

of precision can result.

Z←L PDO R � Packed Decimal Out

R is a simple array of integers. L is an integer scalar not greater than 16; it gives

the number of bytes in which each integer of R is represented. L must be large

enough to represent the largest magnitude of the integers in R.

Z is a character array whose last axis contains the System/370 packed-decimal

representations of the integers in R. The rank of Z is one greater than the rank of

R.

ρZ←→(ρR),L

Z←ICI R � VS APL Internal Characters In

R is a simple character array. Z is a character array of the elements of R as they

would be displayed and interpreted in VS APL.

 Chapter 3. General Purpose Workspaces 35

 The UTILITY Workspace

Z←ICO R � VS APL Internal Characters Out

R is a simple character array. Z is a character array whose elements are dis-

played and interpreted the same in VS APL as the corresponding elements of R
are displayed and interpreted in APL2.

GPMISC: Miscellaneous Utility Functions

ANNOTATE Add comments to lines in character matrix

ASSIGN Specify values for a set of names

| CASE Gives case attribute of active workspace

CODECOUNT Count commented and uncommented lines in all the

defined operations in a workspace

CONCEAL Make a function nonsuspendable

DATETIME Give date and time in hh:mm:ss format

EXPAND Function version of �
FNHEADS List function headers for a set of functions

FRAME Put a border around a character matrix

HEXDUMP Produce character and hexadecimal representations

of a character string

LINECOUNT Count commented and uncommented lines in a set of

defined operations

LIST Convert an arbitrary array to vector

MASKCONV Convert fullword integers to their component subfields

MESH Mesh two or more vectors as prescribed by a mask

NAMEREFS Find all names in a defined function or operator

NAMES Find all names in a string

NHEAD Produce character representations of index vectors

REPLICATE Function version of /
REVEAL Make a function suspendable

TYPE Determine type (alphabetic or numeric) of a simple,

homogeneous APL array

UNIQUE Remove duplicates

Figure 12. GPMISC: Miscellaneous Utility Functions

Z←L ANNOTATE R

R is a simple character matrix and L is a numeric scalar. Z is R with rows

padded or truncated to length L and with comments interactively appended to

each row.

L ASSIGN R

L is a character matrix of names. R is a character matrix of valid APL2

expressions. Each row of L is evaluated and its value is given the name in the

corresponding row of R.

36 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

| Z←CASE

| Z is the case attribute of the active workspace.

Z←CODECOUNT

This function counts the function and operator lines in the workspace and returns a

2-element numeric vector. Z[1] is the total number of lines in the workspace

that contain something other than a comment; Z[2] is the total number of lines

that consist only of a comment. CODECOUNT does not count its own lines. See

also LINECOUNT on page 38.

CONCEAL R

Make the function named by R nonsuspendable.

Z←DATETIME

Z is the date and time in the form of mm/dd/yy hh:mm:ss.

 DATETIME
11/26/85 12:00:42

Z←L EXPAND R

R is any array. L is a Boolean vector. Z is L�R. See “Special Functions and

Operators of APL2” on page 22 for a discussion of this function.

Z←FNHEADS R � FunctioN HEADerS

R is a character matrix of function or operator names. Z is a character matrix of

corresponding function and operator headers, exclusive of explicit local variables.

Z←FRAME R

R is a simple character scalar, vector, or matrix. Z is R bordered by straight

lines.

 Chapter 3. General Purpose Workspaces 37

 The UTILITY Workspace

Z←HEXDUMP R

R is a simple character array. Z is a four row matrix, with one column for each

element of ,R. The first row of Z is R; the second row is
AF ,R; the third row

contains the hexadecimal representations of the numbers in the second row; and

the fourth row contains characters that mark off character positions by fives.

Z←LINECOUNT R

R is a character scalar, a simple vector or matrix, or a vector of vectors.

LINECOUNT counts the lines of the functions and operators named in R and

returns a two element numeric vector. Z[1] is the number of lines that contains

something other than a comment; Z[2] is the total number of lines that consist

only of a comment. This function does not count its own lines. See also

CODECOUNT on page 37.

Z←LIST R

This function creates a vector or scalar out of R. R can be any array. If R is a

simple scalar, then Z is ,R. If R is a simple vector, then Z is ,�R. If R is a

nested scalar or vector, then Z is R. Otherwise, Z is R enclosed along all axes

but the first, which forms a nested vector.

Z←L MASKCONV R � MASK CONVert

MASKCONV encodes the number (or numbers) R to the base 2*L. It is primarily

useful in analyzing sections of storage defined by fields of varying lengths from one

bit to a full word.

1 2 1 4 24 MASKCONV �1+2*32
1 3 1 15 16777215

38 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

Z←L MESH R

L is a mask and R is a concatenation of the vectors to be meshed. If the mask L
consists of zeros and ones, the elements of R are placed, in order of occurrence,

in the positions of Z corresponding to zeros; after these are filled, the remaining

elements are placed in the positions corresponding to ones. If R is a concatenation

of vectors of lengths equal to the number of zeros and the number of ones respec-

tively, the result is to mesh them. This can be generalized to any number of

vectors by providing masks with elements of 0, 1, 2,...

 00122233333333
 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓

0 2 2 1 3 3 3 3 3 2 3 0 3 3 MESH �HE IS WORDSMAN�
HIS WORDS MEAN

↑↑↑↑↑↑↑↑↑↑↑↑↑↑
02213333323033

In the example above, 0 selects the first two characters (�HE�) and puts them in

the first and twelfth positions of the result; 1 puts a blank in the fourth position; 2

puts �IS � in positions 2, 3, 10; and 3 puts the remainder.

Z←NAMEREFS R

R is the name of a function or operator. Z is a character matrix that contains a

list of all the names that occur in R.

Z←NAMES R

R is a character vector. Z is a matrix of all the names in R.

Z←L NHEAD R � Numeric HEADers

L and R are integers. Z is a character array giving ιR in column form if L is 0
and row form if it is not.

0 NHEAD 5
1
2
3
4
5

1 NHEAD 5
12345

1 NHEAD 40
 1111111111222222222233333333334
1234567890123456789012345678901234567890

This function is also in the group GPTEXT.

 Chapter 3. General Purpose Workspaces 39

 The UTILITY Workspace

Z←L REPLICATE R

R is any array. L is a vector of integers. Z is L/R. See “Special Functions

and Operators of APL2” on page 22 for a discussion of this function.

REVEAL R

If possible, make the function named by R suspendable.

Z←TYPE R

Z is a scalar zero if R is numeric, and a scalar blank if it is character. This function

is compatible with a VS APL library function of the same name. It is not meant to

be applied to mixed or nested arguments.

Z←UNIQUE R

R is a vector. Z is a vector that contains the elements of R with duplicates

eliminated.

UNIQUE �THE ANTS WERE HERE�
THE ANSWR

UNIQUE �GUFFAW� 17 (ι4) �GUFFAW�
 GUFFAW 17 1 2 3 4

GPSTRIP: Removing Comments

DECOMMENT Remove comments from all defined functions and operators

STRIP Remove comments from all defined functions and operators

named in a list

WORDS Split a character vector into nested pieces

Figure 13. GPSTRIP: Removing Comments

DECOMMENT

This function removes comment lines from all unlocked functions and operators in

the active workspace. Running decommented functions requires less storage.

When using this function, you should keep a backup copy of the workspace.

40 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

STRIP R

STRIP removes comments from all unlocked functions and operators named in R.

R is a simple character matrix, a nested vector of names, or a simple string of

names separated by blanks.

Z←L WORDS R

WORDS is a surrogate name for the supplied external function DAN (See

“DAN—Delete And Nest” on page 151.) R is a character vector. L is a scalar

or vector of delimiter characters. Z is a character vector, each of whose ele-

ments is a vector of the elements of R lying between occurrences of the delimiters

in R. Consecutive occurrences of delimiters in R are ignored.

See Figure 14 for an example using WORDS.

Z←�And what exactly ARE the commercial�
Z←Z,� possibilities of ovine aviation	�

 ρZ
68

Z←� � WORDS Z
 ρZ
10
 �Z
And
what
exactly
ARE
the
commercial
possibilities
of
ovine
aviation	
 ρ¨Z
 3 4 7 3 3 10 13 2 5 9

Figure 14. WORDS: Extracting Words from Character Vectors

 Chapter 3. General Purpose Workspaces 41

 The UTILITY Workspace

| GPSVP: Controlling Communication through SVP

| APSERVER Server for implementing APs using a client-server protocol over

| a single shared variable interface

| ID Convert enclosed character processor IDs to large integers

| SVOFFER Share one or more variables with an auxiliary processor

| SVOPAIR Share control and data variables with auxiliary processors that

| use a two-variable protocol.

| δSVO
SVO extension to support enclosed character vectors as

| processor IDs.

| δSVQ
SVQ extension to support enclosed character vectors as

| processor IDs.

| Figure 15. GPSVP: Controlling Communication through SVP

| APSERVER R

| APSERVER is the general AP server for implementing auxiliary processors using a

| client-server protocol over a single shared variable interface.

| The APSERVER function uses a registered callback interface, where you choose

| to supply a minimum of zero (for the default “echo” AP) to a maximum of four

| callback function names. The syntax of the APSERVER call is:

| APSERVER �Init�fn� �Wait�fn� �Process�fn� �Exit�fn�

| If a callback function is not provided, the corresponding item in the 4 element

| general array argument should contain an empty character vector.

| The first name in the argument list is the name of the initialization function that gets

| called by APSERVER when a new share offer arrives. The syntax of Init�fn
| is:

| RC←Init�fn PID SVNAME

| APSERVER passes to the initialization function the SVP processor number of the

| client and the name of the shared variable being offered. If the AP chooses to

| accept the share, it returns an explicit result of 1. To reject the share offer, a 0 is

| returned.

| The initialization function can be used to open files, establish shares with other

| APs, or to initialize global variables. Since the AP runs as a single task, care

| should be taken to avoid blocking on a shared variable access within the callback

| functions if the AP is designed to support multiple shares or multiple clients.

| The second name in the APSERVER argument list is the name of the wait

| callback function. If no wait routine is supplied the default action of the

| APSERVER is to enter a
SVE wait for any shared variable event, then scan for

| new offers, new client requests, or shared variable retractions. The Wait�fn
| function, if provided, must be a niladic function with no explicit result. You may

| wish to provide your own wait function to issue
SVE so that you can check the

| state of other shared variables used for your own purposes, or so that you can

42 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

| provide a time-out on the
SVE wait (for example, to do some administrative work

| such as journaling). When you supply wait routine exits, the APSERVER performs

| the usual checking for client events.

| The third item in the APSERVER argument list is the name of the process

| function—the meat of the AP. The syntax is:

| RESULT←(PID SVNAME) Process�fn REQUEST

| The right argument is the APL2 array representing the client request. The

| APSERVER provides the client processor ID and shared variable name in the left

| argument. Provide the necessary code in the process routine to service the client

| request, and then return, as the explicit result of the function, the APL2 array that is

| to be sent back to the client in response to the request. If the process callback is

| elided, the default action of the APSERVER is to echo the request back to the

| client.

| The fourth item in the APSERVER argument list is the name of the exit callback

| function. The syntax is:

| Exit�fn PID SVNAME

| The APSERVER again passes the client processor ID and shared variable name

| in the right argument. The exit function is called when the client retracts the shared

| variable. The exit function is often used as the inverse to the initialization function,

| to close files, retract other associated shares, and expunge global variables. When

| the APSERVER gets control back from the exit routine, it completes the retraction

| from the server side.

| Note: A current restriction of APs written in APL2 using the APSERVER client-

| server protocol is that the client must reference all return values sent by the server,

| prior to issuing another request. Failure to do so could result in a request being

| lost due to a race condition.

| Z←L ID R

| Convert enclosed character processor IDs to large integers and vice versa. Typi-

| cally used with the SVP profile in support of cross-system SVP shares for cooper-

| ative processing. Under CMS, the processor profile is file AP2TCPIP APL2PROF.

| Under TSO, the processor profile is member AP2TCPIP in the data set pointed to

| by DDNAME APL2PROF.

| Z←L SVOFFER R

| Offer shared variables, named in right argument, to SVP processors identified by

| numbers in the left argument. Returns the final degree of coupling for each shared

| variable. The function delays up to 15 seconds for shares to be accepted by the

| partner. It sets standard access control to inhibit a double set or use.

| R is a character scalar, vector, matrix, or vector of vectors containing the name or

| names of the shared variables to be offered to an auxiliary processor. Surrogate

| names for shared variables can also be used. L is a numeric scalar or vector

| containing the processor ID (the number) of the AP. Z is the degree of coupling

 Chapter 3. General Purpose Workspaces 43

 The UTILITY Workspace

| for the shared variable; a 2 indicates that the corresponding variable is fully shared

| with the AP.

| 211 SVOFFER �S1� �S2�
| 2 2

| Z←L SVOPAIR R

| Offer shared variables, named in right argument, to SVP processors identified by

| numbers in the left argument. This function is used for auxiliary processors that

| support a two-variable interface, where the control variable begins with “CTL,” and

| the data variable begins with “DAT” (such as AP 124).

| Note: The function is included in the mainframe APL2 product for compatibility

| with the workstation products, and is useful for writing portable code that uses AP

| 124.

| Z←L δSVO R

|
SVO extension to support enclosed character vectors as processor IDs. Typically

| used with the SVP profile in support of cross-system SVP shares for cooperative

| processing. Uses the ID function to map the character vector to a processor ID.

| Z←L δSVQ R

|
SVQ extension to support enclosed character vectors as processor IDs. Typically

| used with the SVP profile in support of cross-system SVP shares for cooperative

| processing. Uses the ID function to map the character vector to a processor ID.

44 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

GPTEXT: Manipulating Text
Note that many text functions also work on other kinds of data.

DOUBLE Replace selected characters in character vector two-for-one

| FIND Search for text in all functions and operations in the

| active workspace

GATHER Collect parsed fields surrounded by delimiters

GVCAT Concatenate rows to arrays of any rank

HCAT Concatenate matrices by columns

INBLANKS Separate characters by blanks

LADJ Left adjust

LINEFOLD Fold line to specified width and indent folded portions

a specified amount

MAT Make a matrix out of any array

MATFOLD Fold matrix to specified width and indent folded portions

a specified amount

NOQUOTES Remove quoted substrings

OBLANKS Remove outer blanks

QREPLACE Replace '?' occurrences by character strings

RADJ Right adjust

RCNUM Produce numerical headings for rows and columns

REPLACE Replace substrings in character strings

RTBLANKS Remove trailing blanks

VCAT Concatenate matrices by rows

XBLANKS Remove leading and trailing blanks and reduce all

intermediate blank substrings to single blanks

Figure 16. GPTEXT: Text Processing Functions

Z←L DOUBLE R

DOUBLE replaces each occurrence of the scalar L in the vector R by a pair of

scalars L.

 V←�ABC��DEFGH��IJK�
 V
ABC�DEFGH�IJK

���� DOUBLE V
ABC��DEFGH��IJK

| [namelist] FIND �text� [�newtext�]

| Gives a listing of all functions and operators in the active workspace that contain

| the indicated text.

| If �newtext� is specified, this function replaces �text� in the objects listed in

| namelist with the new text.

 Chapter 3. General Purpose Workspaces 45

 The UTILITY Workspace

Z←L GATHER R

L is a scalar or a one- or two-element vector, for example �()�. R is any array.

GATHER searches the rows of R for a sequence enclosed within the first and

second elements of R and unravels them into a vector. A blank is inserted at each

point where the resulting vector crosses a row boundary in R.

Z←L GVCAT R � Generalized Vertical conCATenation

L and R are arrays of any rank. Z is the result of concatenating L to R along the

first coordinate of the array of higher rank.

Z←L HCAT R � Horizontal conCATenation

HCAT concatenates columns; given two matrices, it places them side-by-side. L
and R should not be of rank greater than 2. Z is always of rank 2.

Z←L INBLANKS R

If characters in L are contained in R, separate them with blanks.

Z←LADJ R � Left ADJust

R can be any array. Z is that array with nonblank characters shifted to the left as

far as possible.

Z←L LINEFOLD R

This function folds the line R so that it is no greater than the length specified by the

first (or only) element in L. If L has a second element, then this specifies the

number of blanks to be used in offsetting the second and subsequent rows in the

output Z. Z is always of rank 2.

Z←MAT R � MATrix

Z is an array of rank 2 that contains all the elements of R.

46 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

Z←L MATFOLD R � MATrix FOLD

L has one or two integer components. R can be any array. Z is a matrix with

a number of columns equal to the first (or only) component of L. Any lines longer

than this width are folded as in LINEFOLD.

Z←NOQUOTES R

R is a vector. Z is the same vector with all quoted substrings removed. This

function is also in the group GPMISC on page 36.

Z←OBLANKS R � Outer BLANKS

Remove outer blanks. R is a vector. Z is R with all leading and trailing blanks

removed.

Z←L QREPLACE R � Question mark REPLACEment

R is a vector that contains one or more question marks. L is a character vector

that contains one or more subvectors to be substituted for the question marks. The

first character of L is a delimiter used to identify the substitution vectors. This

delimiter must also be the last character of L. Z is R with the substitutions made.

Z←RADJ R � Right ADJust

Z is R right-adjusted, so that the rightmost character of each row is not blank

unless all the characters of the row are blank. R can be an array; the rows are

right-adjusted individually.

Z←RCNUM R � Row and Column NUMbers

R is a matrix. Z is R with column numbers across the top and row numbers

along the left side.

Z←L REPLACE R

R can be any array. Z is R with every occurrence of a seek string replaced by a

replace string. L is a two-element vector, each of whose elements is a scalar or

vector. The first element is the seek string and the second element is the replace

string.

REPLACEV is a subfunction of REPLACE.

 Chapter 3. General Purpose Workspaces 47

 The UTILITY Workspace

 TEXT←4 4ρ�HEREIS SOMETEXT�
REPLACE/� �� (�HERE� �THERE�) TEXT

THERE
IS���
SOME�
TEXT�

Figure 17. REPLACE: A String Replacement Function

Z←RTBLANKS R � Remove Trailing BLANKS

R is a simple array. Z is R with trailing blanks or trailing blank columns removed.

Z←L VCAT R � Vertical CATenation

L and R are arrays of rank 2 or less. Z is a matrix. Its width is the that of the

wider of L or R. L is at the top of Z and R is at the bottom.

Z←XBLANKS R � eXtra BLANKS

Remove extra blanks. R must be a vector. Z is R with leading and trailing

blanks removed and intermediate blank sequences reduced to a single blank.

GPTRACE: Setting and Removing Trace and Stop Vectors
The functions in this group can be used in debugging your defined APL2 operations

by establishing trace and stop vectors when you are checking the operations out

and removing them when you are finished.

STOPALL Create stops on all statements in all functions of a

workspace

STOPOFF Set all stop vectors to the empty vector

STOPONE Create stops at first statements of all functions and

operators in the active workspace

TRACEALL Trace all statements in all functions and operators of

the active workspace

TRACEBR Trace branch lines of a given function or operator

TRACELIST Trace all statements in functions and operators named

in a list

TRACEOFF Set all trace vectors to the empty vector

TRACEONE Trace first statements of all functions and operators

in the active workspace

Figure 18. GPTRACE Functions

48 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

STOPALL

This function creates stops on all statements in all functions in the active work-

space.

STOPOFF

This function cancels all the stop vectors in the active workspace.

STOPONE

STOPONE creates stop vectors for the first statement of all the functions and oper-

ators in the active workspace.

TRACEALL

TRACEALL creates trace vectors for all the statements of all the functions and

operators in the active workspace.

TRACEBR R � TRACE BRanch

This function creates a trace vector for every branch statement of the function or

operator named in R. R is a single name.

TRACELIST R

This function creates trace vectors for all the statements in the functions and opera-

tors named in R. R is a simple scalar, vector, or matrix, or a vector of vectors.

TRACEOFF

This function cancels all the trace vectors in the active workspace.

TRACEONE

TRACEONE creates trace vectors for the first statements of all the functions and

operators in the active workspace.

 Chapter 3. General Purpose Workspaces 49

 The UTILITY Workspace

GPXLATE: Translating from One Character Representation to Another
GPXLATE contains three functions and two global variables. The variables are

used as translate tables by the functions LCTRANS (which converts from upper-

case to lowercase), and UCTRANS (which converts from lowercase to uppercase).

The third function, TRANSLATE, is a general-purpose translate function that

requires a translate table as its left argument. The functions and their syntax are

shown in Figure 19.

Translation Functions

Z← LCTRANS R Translate uppercase to lowercase

Z← UCTRANS R Translate lowercase to uppercase

Z←L TRANSLATE R Translate R into Z using

translate-table L (a numeric vector)

Translation Group Constants

LCTt Table used for translating to lowercase

UCTt Table used for translating to uppercase

Figure 19. Functions for Translating Character Arrays (GPXLATE)

The use of the uppercase and lowercase translate functions is demonstrated in

Figure 20.

 CV←�abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ�

 UCTRANS CV
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

 LCTRANS CV
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

Figure 20. Examples of Lowercase and Uppercase Translation

50 APL2 Programming: Using the Supplied Routines

 The UTILITY Workspace

(1)
IO←0

(2) LOWERINDICES←
AF �abcdefghijklmnopqrstuvwxyz�

(3) UPPERINDICES←
AF �ABCDEFGHIJKLMNOPQRSTUVWXYZ�

(4) LCTt←ι256

(5) LCTt[UPPERINDICES]←LOWERINDICES

(6) LOWERINDICES
129 130 131 132 133 134 135 136 137 145 146 147 148 149 150 151 152 153 162 163

164 165 166 167 168 169

(7) UPPERINDICES
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216 217 226 227

228 229 230 231 232 233

(8) LCTt[UPPERINDICES]
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216 217 226 227

228 229 230 231 232 233

(9)
CR �LCTRANS�
 A←LCTRANS B

� A IS B WITH UPPERCASE LETTERS TRANSLATED TO LOWERCASE LETTERS
 A←LCTt[
IO+
AF B]

Figure 21. Constructing and Using a Lowercase Translate Table

Figure 21 shows how the lowercase translate table was constructed:

(1) Since translation requires selecting values from tables, it is important to estab-

lish a known index origin. The first action is to set the origin to 0 because 0
is more useful than 1 for translating purposes.

(2) The indexes of the lowercase letters in
AV are determined by the use of

AF.

(3) The indexes of the uppercase letters in
AV are determined by the use of

AF.

(4) The lowercase translate table is initialized as 256 consecutive integers from 0

to 255.

(5) The indexes of the lowercase letters replace the indexes of the uppercase

letters in the translate table.

(6), (7), and (8)

Show how the index sets and the translate table are interconnected.

(9) A canonical representation of the LCTRANS function, showing how it does

lowercase translation.

 Chapter 3. General Purpose Workspaces 51

Chapter 4. The Display Terminal Workspaces

Using the screen to communicate between a program and a terminal user and con-

trolling all the terminal's signaling, sensing, formatting, and other features is called

full-screen management. The auxiliary processor AP 126 provides a full-screen

management capability for APL2 users.

AP 126: The GDDM/PGF Auxiliary Processor

AP 126 manages the screen by using the Graphical Data Display Manager

(GDDM), including its presentation graphics feature (PGF). Information about

GDDM and PGF is contained in two manuals:

GDDM Base Application Programming Reference

Presentation Graphics Feature: User's Guide

These manuals can help you use AP 126 effectively.

GDDM provides a comprehensive set of subroutines that perform a variety of

screen-management functions, among them:

� Defining field size and placement.

� Defining up to nine field attributes (for example, color and highlighting).

� Defining up to three attributes for individual characters within a field.

� Using alternative symbol sets, that is, replacing the standard characters with

others designed for special purposes either throughout an entire field or

character-by-character.

� Drawing lines, curves, and axes using a feature usually called vector graphics.

� Drawing plots, graphs, charts, and histograms using a collection of subroutines

collectively called the presentation graphics feature (PGF).

GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM
Five workspaces use AP 126 to perform GDDM functions:

CHARTX This workspace offers a call interface to the GDDM Interactive Chart

Utility (ICU). It also offers a facility for using predefined ICU chart

formats.

GDMX This workspace contains GDMX, a cover function for GDDM. It can

be used to call GDDM routines directly, taking advantage of APL2's

general array facilities to pass multiple GDDM calls in one GDMX call.

GRAPHPAK This workspace contains a comprehensive set of functions for plots,

graphs, charts, 3-dimensional geometry, and curve-fitting.

FSC126 This workspace is a replacement for the FSC124 and FULLSCRX
VS APL workspaces, which used AP 124 for full-screen text input and

output. FSC126 provides functions whose names and syntax

match those in the VS APL workspaces, but use AP 126 instead.

Because AP 126 uses GDDM for full-screen support, it can operate

on a wider variety of displays and devices than AP 124.

52  Copyright IBM Corp. 1985, 1994

FSC126's primary purpose is to help maintain older applications

using full-screen “panels”—defined screen formats, text, field names,

and associated information.

Note: FSC126 is now obsolete. New applications can more fully

use the potential of GDDM for combined full-screen text and graphics

support by using the GDMX workspace.

If you have a VS APL application that uses the FSC124 or

FULLSCRX versions of the functions in FSC126, and you wish to

continue to use the VS APL versions, you can migrate them along

with your application by using the)MCOPY system command.

FSM This workspace has functions corresponding to many of the GDDM

and PGF subroutines. It also includes a function that processes APL2

session manager commands.

Note: This workspace is obsolete and is not supported by facilities

introduced after Version 1 Release 3 of GDDM. It is included here

only for the benefit of older applications that use its facilities. New

applications should use GDMX (described above).

An Introduction to Text and Vector Graphics

A display screen, like a sheet of paper, is used either for typing or for drawing. The

following describes two uses of display screen: “text graphics” and “vector

graphics”.

 Text Graphics
In text graphics, the screen is divided into rectangular cells. These cells contain

either display characters (output or input text) or nondisplay characters (characters

that delimit field boundaries and determine field attributes). A display terminal with

32 rows and 80 columns, for example, contains 2560 cells.

The smallest individual object in text graphics is a character. Characters can be

combined into fields. A format defines a set of fields that make up a page. A page

can contain several text fields but, at most, one graphics field. The graphics field is

a rectangular area of the screen reserved (primarily) for drawing rather than typing.

 Vector Graphics
To simulate line-drawing vector graphics, GDDM divides the surface of the display

into display points: (sometimes called pels or pixels). These display points are a

collection of dots, covering the entire surface of the screen, which can be individ-

ually illuminated. Drawing a line between two points illuminates the individual

points that lie on the line connecting them. This is done by a beam that crosses

the face of the display from side-to-side in successive lines from top to bottom. It

illuminates the points on the line as it sweeps across them.

The expression vector graphics used below refers to this display point type of

vector graphics.

 Chapter 4. The Display Terminal Workspaces 53

| Pages: Text and Vector Graphics
Pages are an important GDDM feature. Once a page is created by an APL2

program, it continues to exist until it is explicitly deleted or the program discontinues

its use of GDDM. To replace a current page, you merely select one that you

created earlier. The replaced page is retained; if needed, it can be selected again

later. In selecting a page, you can accomplish in one step what might otherwise

require extensive reformatting, text output, graphics output, and perhaps other

activities, such as a request for input to be repeated.

Coordinate Systems: Text and Vector Graphics
The coordinate system for text graphics starts at the upper left corner of the screen

in the position occupied by row 1, column 1. The coordinate system for vector

graphics starts at the lower left corner of the graphics field in the position occupied

by the point 0,0.

The difference in coordinate systems reflects the different conventions of text and

vector graphics. GDDM uses both systems. In reserving space for a graphics

field, the text graphics row/column convention is used. When you are processing

graphics functions; however, the 0,0 position of the picture space is the lower left

corner.

Coping with Complexity: Form and Chart Design
Designing forms and charts is a detailed, painstaking business. It requires a con-

stant juggling to use limited space to best advantage. Multiple-copy snapout forms

can contain interleaved spot carbons, shadow printing, blackout sections and other

refinements known only to professional form designers.

Experienced cut-and-paste specialists design information to provide the relevant

parts of a common body of information to people with different, but complementary

objectives; for example, sales clerks, production planners, tally clerks, billing clerks,

sales analysts, and customers.

Similarly, draftsmen who present numerical information graphically must plan to use

a given space to best advantage; for example, they determine the size of the chart,

and its placement on the page.

The point is that both of these activities require detailed sets of steps that are

seldom explicitly listed—until you write a computer program that does them.

In writing a GDDM program for text graphics, you are specifying explicitly the activ-

ities that a form designer does implicitly, that is, without a set of specific

instructions.

In writing a GDDM program for vector graphics, you are specifying explicitly what

draftsmen do when preparing graphs or charts.

| Although there are a large number of subroutines that make up GDDM, they are

| necessary. A possible strategy for learning them is:

| � Learn those things that are specific to GDDM: how to start it, how to use it,

| and how to stop it.

| � Think of what you would like to do in terms with which you are familiar. Write

| down a set of actions in those terms.

54 APL2 Programming: Using the Supplied Routines

| � To translate them into a program that uses GDDM, look for the GDDM subrou-

| tines that do what you want. Rewrite your procedure using subroutine names

| instead of the terms you originally wrote down.

| You might find it harder to learn something as comprehensive as GDDM if you

| think of it as a collection of arbitrary facts all of which have to be mastered before

| any of them can be used. Start out thinking first not of GDDM; but, of what you

| have to do, and then looking for the functions that help you do it.

Finally, since you are using APL2, you have to learn how to translate the con-

ventions used in GDDM publications (which are written for languages that call sub-

routines rather than process functions) into the conventions used in APL2.

 Chapter 4. The Display Terminal Workspaces 55

CHARTX—an APL2/ICU Data Interface

The CHARTX function offers a call interface to the GDDM Interactive Chart Utility

(ICU). Data can be passed to the ICU in a variety of formats. CHARTX offers a

facility for using predefined ICU chart formats.

Tied and Free Data

The ICU allows the simultaneous graphical display of several groups of data. For

example, a graph with three line plots has the data for each line plot represented

as a data group. The ICU distinguishes between two types of data format modes

for representing data groups either as tied data or free data. In tied data mode, all

data groups have the same set of X values. In free data mode, each data group

has its own set of X values or coordinates, which are independent of other groups.

CHARTX handles both ICU data format modes; the mode is determined from the

structure of the arguments to CHARTX.

Using CHARTX for Tied Data
For tied data, CHARTX has the following call sequence:

XT CHARTX YT

Where:

� XT is the simple numeric array of X values.

� YT is the array of Y values.

If XT is not specified, CHARTX uses a default X-coordinate vector consisting of

consecutive integers that are appropriate for YT, starting with
IO.

YT is a simple numeric scalar, vector, or matrix. If YT is a scalar or vector, it

forms one data group. If YT is a matrix with M rows and N columns, it forms M
data groups.

If YT is a scalar or vector, then XT must be the same shape as YT. If YT is a

matrix, then XT must be a vector, the length of which is the same as the number of

columns of YT. That is:

ρXT ←→ �1↑ρYT.

 Examples
Each of the following lines in Figure 22 on page 57 is a separate example. When

you enter an example, the screen clears, then displays a chart.

56 APL2 Programming: Using the Supplied Routines

CHARTX 12 22 18 32 7

(ι5) CHARTX 12 22 18 32 7 � Same result as previous example

CHARTX 1 10 ��� ι12

(ι12) CHARTX 1 10 ��� ι12 � Same result as previous example

1 2 5 8 9 CHARTX 12 22 18 32 7

(2"ι12) CHARTX 1 10 ���ι12

CHARTX 1 2 ��○ 0�1�ι120

Figure 22. Examples of Using CHARTX for Tied Data

Using CHARTX for Free Data
For free data, CHARTX has the following call sequence:

XF CHARTX YF

Where:

� XF is the array of X values.

� YF is the array of Y values.

XF must have the same structure as YF. Items of XF form the X-coordinates for

corresponding items of YF.

If XF is not specified, CHARTX uses a default X-coordinate array, each item of

which consists of consecutive integers, starting with
IO, that is appropriate for the

corresponding item in YF.

YF is a numeric vector of depth 2, each item of which is a simple scalar or vector.

Each item of YF forms an independent data group.

 Examples
Each of the following lines in Figure 23 is a separate example. When you enter an

example, the screen clears, then displays a chart.

CHARTX (3 7 16) (10 14 8 3 0)

(ι3) (ι5) CHARTX (3 7 16) (10 14 8 3 0) � Same as above

(2 3 4) (ι5) CHARTX (3 7 16) (10 14 8 3 0)

 CHARTX 	¨ι¨5ρ10

Figure 23. Examples of Using CHARTX for Free Data

 Chapter 4. The Display Terminal Workspaces 57

 Usage Notes
� You can specify the global variable FORMNAME as the name of a predefined

chart format. If FORMNAME is undefined, or if FORMNAME has the value

'*', the default format is used. The default format is a line graph with

autoscaled axes, default line colors, default axis markers and labels, and so on.

If FORMNAME is assigned the name of an unknown chart format, then an error

message is issued.

� Some facilities available in the ICU chart call are not used by CHARTX.

These include specification of chart keys, labels, and headings. If you want to

use these facilities, you must modify the CHARTX function.

� The main purpose of CHARTX is to make it easy to generate ICU charts and

graphs. Once in the ICU environment, you can modify the chart type and

format to suit your needs by using the ICU interactive facilities. Data trans-

ferred to the ICU can be displayed in any of the following:

 – Charts

 - Bar

 - Pie

 - Polar

 - Surface

 - Tower

 – Venn diagrams

 – Line graphs

 – Histograms

 – Scatter plots

58 APL2 Programming: Using the Supplied Routines

 GDMX

GDMX is a cover function for AP 126, the Graphical Data Display Manager (GDDM)

auxiliary processor. GDMX offers an easy way to use GDDM, which takes advan-

tage of the general array facilities of APL2 to pass multiple GDDM calls in one

GDMX call.

The discussion here assumes some knowledge of AP 126 and GDDM. For more

information on AP 126, see APL2/370 Programming: System Services Reference.

For a detailed discussion of GDDM, see Graphical Data Display Manager: Base

Programming Reference.

 Using GDMX
GDMX has the following calling sequences:

 CODE GDMX ARG

CODE is a simple character vector that is the name of a GDDM call. ARG is the

argument list appropriate for the GDDM call.

�GSCOL� GDMX 2

Sets the GDDM color attribute to red.

�ASCPUT� GDMX 5 6 �CATFAT�

or

�ASCPUT� GDMX 5 (ρT) T←�CATFAT�

Fills alphanumeric field 5 with the string �CATFAT�.

FM←3 5ρ 1 2 6 1 10 2 13 8 2 14 3 18 9 5 5

 FM
1 2 6 1 10
2 13 8 2 14
3 18 9 5 5

�ASDFMT� GDMX (ρFM) FM

Formats three alphanumeric fields, using the format matrix FM.

CODE1 CODE2���CODEN GDMX ARG1 ARG2 ARG3���ARGN

CODE1 CODE2 ��� CODEN are simple character vectors that are the names

of GDDM calls; the left argument of GDMX is thus a vector, each item of which is a

simple character vector. ARG1 ARG2 ��� ARGN are argument lists appro-

priate for the corresponding GDDM calls.

 Chapter 4. The Display Terminal Workspaces 59

�GSCOL� �GSLT� GDMX 2 3

Sets the GDDM color attribute to red, and sets the line attribute

to dash-dot line.

�GSFLD� �GSWIN� GDMX (1 1 5 7) (0 10 0 20)

Defines a graphics field 5 rows deep and 7 columns wide, starting at row 1, column

1, and defines a graphics window within that field with horizontal coordinates 0 to

10 and vertical coordinates 0 to 20.

(�CODE) GDMX ARG1 ARG2 ARG3 ��� ARGN

CODE is a simple character vector that is the name of a GDDM call; the left argu-

ment of GDMX is thus a scalar, the only item of which is a simple character vector.

ARG1 ARG2 ��� ARGN are argument lists, all of which are appropriate for the

GDDM call.

(��FSPDEL�) GDMX 4 8 12

Deletes GDDM pages with page identifiers 4, 8, and 12.

GDMX �ERRTOL� N

N is a simple numeric scalar. This call tells GDMX to report GDDM errors only if

the severity code exceeds N.

GDMX �ERRTOL� 0 � SET ERROR TOL� TO 0

� SELECT PAGE 99, WHICH DOES NOT EXIST���

�FSPSEL� GDMX 99
GDDM ERROR� RC= 8

�FSPSEL� GDMX 99
 � �

GDMX �ERRTOL� 8 � SET ERROR TOL� TO 8

�FSPDEL� GDMX 99

GDMX �MORE�

Provides more information about the last GDDM error.

�FSPDEL� GDMX 99
GDDM ERROR� RC= 8

�FSPDEL� GDMX 99
 � �

 GDMX �MORE�
FSPDEL ADM0132 E PAGE 99 DOES NOT EXIST

60 APL2 Programming: Using the Supplied Routines

GDMX �TERM�

Terminates the current connection with GDDM by retracting and deleting variables

shared with AP 126. (See “Global Variables” below.)

GDMX A

A is a properly formed array for direct AP 126 processing. To be properly formed,

the Enlist of A (A) must be a series of APL numeric call codes and their corre-

sponding GDDM arguments. The first item of A must be numeric.

GDMX 514 2 424 5 (ρT) T←�CATFAT�

The call code for GSCOL is 514; the code for ASCPUT is 424. This example

sets the GDDM color attribute to red, and fills alphanumeric field 5 with the string

�CATFAT�.

 Global Variables
GDMX creates and uses the following global APL arrays:

DAT�G The AP 126 data variable. GDMX automatically creates and

shares DAT�G as required.

CTL�G The AP 126 control variable. GDMX automatically creates and

shares CTL�G as required.

RET�G The result of calls to AP 126. Each invocation of GDMX that calls

AP 126 results in the assignment RET�G←CTL�G DAT�G.

The calls GDMX �MORE� and GDMX �ERRTOL� N set

RET�G to an empty character matrix. The call GDMX�TERM�
deletes RET�G.

G�CODES A 2-item vector. The first item is a vector of character vectors

giving the names of GDDM calls made by GDMX; the second item

is a simple numeric vector giving the corresponding call codes.

Names and codes are added to this list the first time they are

encountered by GDMX. Thus the list contains only the names and

codes used in a particular workspace.

G�ERRTOL The current setting of the error tolerance. If GDMX encounters a

GDDM error and G�ERRTOL is not defined, G�ERRTOL will be

initialized to 0.

 Usage Notes
� In applications with a single top-level user function, it is generally appropriate to

make all global variables used by GDMX local to the top-level function, with

the exception of G�CODES. In applications with more than one top-level

function, it is generally appropriate to leave these variables global.

� When making multiple calls to GDDM with GDMX, the multiple calls are pack-

aged into a single call to AP 126. So while the expression:

CODE1 CODE2 GDMX ARG1 ARG2

 Chapter 4. The Display Terminal Workspaces 61

is equivalent to the expression:

CODE1 CODE2 GDMX¨ ARG1 ARG2

the former makes only one call to AP 126 while the latter makes two.

� Some GDDM calls require no argument. GDMX, however, still requires a

right argument for the GDDM argument list. In these cases, code an empty

vector for the right argument of GDMX. For example:

�FSALRM� GDMX ��

The terminal beeps when the screen is next updated.

� For some application workspaces, it might be appropriate to have GDMX return

an explicit result rather than return the result in the global variable RET�G. To

have GDMX return its result explicitly, modify the GDMX function header to

include RET�G. Thus, the first line of GDMX would read:

 [0] RET�G←CODES GDMX ARGS; ���

 Example
This example lets you draw lines on your screen by moving the cursor around and

pressing ENTER. The program draws a line from the current cursor point back to

the last location of the cursor. Pressing PF3 quits the program and returns you to

APL2.

 # DEMO
[1] � APL2 example using GDMX function
[2] �GSSEG� GDMX 1 � Open segment 1
[3] �GSMOVE� GDMX 50 50 � Initialize current position
[4] LOOP:�ASREAD� GDMX �� � Wait for operator action
[5] →(1 3��=2↑5↓1�RET�G)/END � Check for PF3
[6] �GSQCUR� GDMX �� � Find where cursor is
[7] �GSLINE� GDMX �2↑1�RET�G � Draw line from previous point
[8] →LOOP � Loop back
[9] END:�GSSDEL� GDMX 1 � Delete segment 1
[10] #

62 APL2 Programming: Using the Supplied Routines

GRAPHPAK—a Vector Graphics Workspace

GRAPHPAK is a comprehensive set of defined functions for drawing pictures on

display device screens. It duplicates many presentation graphics feature (PGF)

services, and includes many features that PGF does not have (3-dimensional plot-

ting of various kinds, fitting and plotting curves, and drawing organization charts).

One important point: GRAPHPAK uses AP 126 to get basic GDDM services, but it

does so in a manner different from the FSM and FSC126 public library work-

spaces. This means that the GRAPHPAK functions that work with the screen

cannot be combined with GDDM functions from those workspaces. The mathemat-

ical functions (those that do curve-fitting, for example) can, however, be used in

any other workspace that does not contain similarly-named objects.

The GRAPHPAK workspace is fully described in APL2 GRAPHPAK: User's Guide

and Reference. This manual contains examples and illustrations of how to use

GRAPHPAK functions. It also contains a list of each user function, a detailed dis-

cussion of the function, and the type of arguments each requires.

 Chapter 4. The Display Terminal Workspaces 63

VS APL Compatible Workspaces

Two obsolete display terminal workspaces, FSC126 and FSM (full-screen

manager), are provided only to maintain compatibility with older applications.

These workspaces are no longer supported.

FSC126 is used for designing and using full-screen panels. For information on

other ways to do this, see GDDM Interactive Map Definition, Application Prototype

| Environment Guide and Reference, or AP 124 in APL2/370 Programming: System

| Services Reference.

FSM is superseded by GDMX, which uses a much better approach to calling

GDDM routines. (For every supported GDDM routine, FSM contains a function of

the same name that calls it.) FSM is not supported for facilities introduced after

GDDM Version 1 Release 3. For information on GDMX see “Using GDMX” on

page 59.

 FSC126 Workspace
FSC126 is a functional extension of the VS APL workspaces, FSC124 and

FULLSCRX. FSC126 provides a core set of functions whose names and

syntax match those in the VS APL workspaces, but that use AP 126 instead of AP

124. In addition, FSC126 provides a small set of new functions that make limited

use of extended 3270 text handling capabilities of AP 126 and GDDM, not sup-

ported by the previous AP 124.

Documentation of the FSC126 workspace is provided online in the workspace

itself.)LOAD the workspace and type ABSTRACT, DESCRIBE, or HOW.

 FSM Workspace
The FSM workspace contains functions that facilitate the use of Graphical Data

Display Manager, including its presentation graphics feature.

In addition, the workspace contains a function (SM) that can be used to process

APL2 session manager commands directly or from within APL functions. Its syntax

is:

SM command

Where command is a character string representing one of the session manager

commands (COLUMN, COPY, DISPLAY, HELP, LINE, LOG, PAGE, PFK,

PROFILE, and SUPPRESS) followed by a space and the text, if any, required to

complete the command.

The SM function shares two variables with AP 120 (the session manager auxiliary

processor): CTLSM and DATSM. Data resulting from processing a command is

returned in DATSM.

The APL2 session manager is described in APL2/370 Programming: System Ser-

vices Reference.

IBM recommends using the GDMX workspace instead.

64 APL2 Programming: Using the Supplied Routines

 Chapter 5. Environment-Dependent Workspaces

The environment-dependent workspaces are:

 CMS
 TSO
 FILESERV

Their purpose is to make environment facilities readily available to the APL2 user.

They do this by providing defined APL2 cover functions for that purpose.

Communicating with the world outside the APL2 workspace requires a series of

detailed steps: offering to share one or more variables, checking share status,

establishing initial values, checking return codes, and so on. Many of the cover

functions in the CMS and TSO workspaces perform standard sequences of this

type. In addition, the CMS and TSO workspaces contain comprehensive functions

like OPEN, CLOSE, GET, PUT, GETFILE, and PUTFILE, for easy use of

external files and data sets.

Note: APL2 Version 2 provides several new techniques for file access that are

operating-system independent. Application developers should consider whether

one of these techniques serves their needs better than the workspaces described

here:

� Processor 12 provides direct access to files using APL2 primitives.

� AP 211 provides the ability to store APL2 objects in files by name. This

processor is compatible with the AP 211 provided on workstation APL2 plat-

forms.

� Processor 10 external functions δFV and δFM provide a simple way to read

and write a file as a whole. Compatible functions for these are also available

on the workstation APL2 platforms.

For information on these file access techniques, see APL2/370 Programming:

System Services Reference.

Command, Alternate-Input, and Specialized File APs
Environment dependencies are reflected in three types of auxiliary processors:

 � Command

� Alternate-input or stack

 � Specialized file

These are each discussed in the sections describing individual workspaces.

However, one of them, the alternate-input processor, has some unique character-

istics that make a preliminary discussion here advisable.

The Alternate-Input Processor
The objective of the alternate-input processor is to replace input from the terminal

by preplanned input from a stack.

An example suggests why this might be useful. Using the CMS command

processor, you can write an APL function that sorts a CMS file before either

bringing it into the workspace or performing some other operation on it. To do this,

 Copyright IBM Corp. 1985, 1994 65

execute the CMS SORT command, specifying the file to be sorted and the sorted

file to be created.

The CMS SORT program types a message at the terminal, requesting you to

specify the fields on which the file is to be sorted, and then unlocks the keyboard

so you can type in the numbers identifying the first and last positions of each field.

The SORT program then sorts the old file on these fields and creates a new one

with the requested name.

In general, it is inconvenient to have the APL function stop execution to request the

information needed by the SORT program. The user of the APL function does not,

in general, know what fields to specify; it is the writer of the program who has this

information. Without an alternate-input processor, no one could use an APL func-

tion of this kind without knowing what responses are required at various points.

The alternate-input processor eliminates both the interruptions and the need for

detailed instructions. When the APL programmer knows the required user

responses, they can be stacked. Then, when the executing function requests a line

of terminal input, instead of requesting it from the terminal it takes it from the stack,

starting with the first stacked line if the stack organization is FIFO (first in, first out)

and the last if it is LIFO (last in, first out). No input from the terminal is requested

until the stack is exhausted.

Obviously, there is little advantage to using the alternate-input processor except

within a defined function. In immediate execution, putting a line on a stack causes

it to be immediately executed and removed. This is a waste of time and effort.

The line could be entered directly from the keyboard with the same effect. This

practical restriction to use within a defined function is one of the ways the alternate-

input auxiliary processor differs from the others; most of them can be used effec-

tively by means of immediate-execution keyboard entries.

If you find yourself frequently entering the same sequence of operations from a

keyboard, you might find it useful to create a procedure by stacking a set of

alternate-input lines to be executed on demand. The CMS and TSO workspaces

each have a function called PROC that does this. PROC creates a function for

the purpose, giving it the name you specify. In particular, this offers a way to

execute system commands under program control. The function does the neces-

sary variable-sharing and initializing and stacks the alternate-input lines that make

up the procedure. These lines are then be stacked and executed every time you

type the name of the created function. The PROC function that creates procedures

is described in the following section.

66 APL2 Programming: Using the Supplied Routines

 The CMS Workspace

The CMS Workspace

The following sections discuss how to use the CMS workspace.

Characteristics of the CMS Environment
As a CMS user, you have your own virtual machine complete with a terminal and

one or more virtual readers, punches, printers, tapes, and disks. Virtual disks are

parts of real disks that are specially formatted for use by CMS. Because they are

usually not complete disks but rather selections of one or more cylinders from real

disks, they are sometimes called minidisks. Each minidisk has a virtual device

address and a mode, denoted by a single alphabetic character followed by a single

numeric character. You can use AP 110 to read or write CMS files on minidisks.

You can use AP 111 to read and write files formatted for use by other system

control programs and also for tapes or virtual readers, printers, and punches.

CMS operates under a control program called CP, which is concerned with the real

machine on which several concurrent virtual machines are usually in operation.

Both CMS and CP have sets of commands appropriate to the functions each per-

forms. Many of these commands can be executed from an APL2 workspace by the

use of AP 100 or the)HOST command.

CMS Command, Alternate-Input, and File Processors
The CMS workspace contains functions to help you use the command processor

(AP 100), alternate-input processor (AP 101), and disk-file processor (AP 110).

The defined functions CP and CMS can be used to issue host system commands

from the active workspace.

Creating APL2/CMS/CP Procedures
Using AP 101, the alternate-input auxiliary processor, is not a straightforward

matter. The function PROC in this workspace (and in the TSO workspace) was

written to help you create procedures made up of stacked lines of alternate input.

Figure 24 on page 68 gives an example of how to use PROC. In the example,

PROC accepts two lines of input from the terminal:

CMS �LISTFILE * APLWSV2 (E�
WSLIST←GETFILE �CMS EXEC�

and creates a function called GETWKSPA that shares a variable with the alternate-

input processor, then stacks the two lines of input accepted from the terminal.

The input required to do this and the output message produced by PROC are

shown in section 1 of the figure.

Section 2 of the figure lists the GETWKSPA function created by PROC.

Section 3 shows an execution of the GETWKSPA function and its result: a return

code of 0, indicating successful completion.

Section 4 displays the variable WSLIST created by the alternate-input commands

stacked by GETWKSPA. WSLIST is a listing of all the files of type APLWSV2

on the A disk. The file type APLWSV2 identifies CMS files that are stored, private-

library APL2 workspaces.

 Chapter 5. Environment-Dependent Workspaces 67

 The CMS Workspace

Note: The first alternate-input line executed the CMS command LISTFILE (using

the defined function CMS to do so). Since the option E was specified, this

command caused a file to be created with a filename CMS, filetype EXEC, and

filemode A.

The second alternate-input line used the defined function GETFILE to read in the

CMS EXEC file and give it the name WSLIST.

1. Use PROC to create function with stacked input commands

PROC �GETWKSPA� Create GETWKSPA procedure

CMS �LISTFILE * APLWSV2 (E� First line of procedure

WSLIST←GETFILE �CMS EXEC� Second line of procedure

Null line to terminate

GETWKSPA PROCEDURE HAS BEEN CREATED� Output message from PROC

2. List GETWKSPA function created by PROC

 #GETWKSPA[
]#
 #
[0] GETWKSPA;B;C
[1] B←�CMS(192�
[2] C←101
SVO �B�
[3] B←�CMS ��LISTFILE * APLWSV2 (E���
[4] B←�WSLIST←GETFILE ��CMS EXEC���

1992|03|27 12�18�01 (GMT|8)

3. Execute GETWKSPA function (which creates WSLIST)

 GETWKSPA
0

4. List workspaces on A disk by typing WSLIST

 WSLIST
 &1 &2 ENVWSHDS APLWSV2 A1
 &1 &2 IMFX0323 APLWSV2 A1
 &1 &2 READ121 APLWSV2 A1
 &1 &2 TEMP APLWSV2 A1
 &1 &2 TEMP2 APLWSV2 A1
 &1 &2 WKSPCNT APLWSV2 A1

Figure 24. Creating and Using AP 101 Functions in CMS

Reading and Writing CMS Disk Files
Disk File AP Functions:

The defined functions in the CMS workspace that can help in using AP 110 are

shown in Figure 25 on page 69.

68 APL2 Programming: Using the Supplied Routines

 The CMS Workspace

CLOSE Close a file

CLOSEALL Close all open files

GET Get a record from an open file

GETFILE Bring an entire file into the workspace

OPEN Open a file

PUT Put a record into an open file

PUTFILE Write a variable out as a file

RETRACT Retract shared variables

SHARES Determine the names of all shared variables

Figure 25. CMS: File Auxiliary Processor Functions

These functions use subfunctions, which are listed below. Most of the supplemen-

tary functions are copied from the UTILITY workspace.

BOX CHECKNAME DOUBLE INBLANKS MEMBER
OBLANKS PREPARSE2 TYPE VCAT XBLANKS

Using the Functions in CMS

 Command Functions

 A←CMS B

B is a character string that contains a CMS or CP command. A is a return code.

The command SUBSET puts the user in CMS subset mode. In this mode, the

CMS command RETURN returns the user to APL2.

The command CP puts the user in CP mode. The CMS command BEGIN (B for

short) returns to APL2.

 A←CP B

B is a character string that contains a CP command. A is a return code. If B is a

null vector, the user is put into CP mode. To return to APL2, type B.

Alternate Input Function

 PROC A

A is a character string that contains the name of the alternate-input procedure to be

created by PROC. PROC then accepts all nonnull inputs to be stacked by that

procedure. When a null input is entered, a function is created and given the name

in A. Typing this name results in execution of the given lines.

 Chapter 5. Environment-Dependent Workspaces 69

 The CMS Workspace

 File Functions

 A←CLOSE B

B is a character string that contains a file name. CLOSE retracts the shared

variables associated with this file, deletes them from the workspace, and removes

the file name and processing information from the variables OPENFILEs and

PROCACc.

 A←CLOSEALL

CLOSEALL retracts and deletes all shared variables and initializes the variables

OPENFILEs and PROCACc.

 A←GET B

B is a character string that contains the name of an open file. A is the next

sequential record from the file. The variable rcode contains the return code from

each GET. A read past the end of the file gives a null vector value for A and a

value of 12 for rcode.

 A←GETFILE B

B is a character string that must contain at least a file name and a file type (sepa-

rated by at least one blank). These can be followed by a file mode. If a conver-

sion other than 192 is required, this must follow the file name, type, mode

specification and be separated from it by the character '('.

Note: If your conversion option is the default (192 or EBCDIC), you should use

external function δFM. It is supplied with Processor 10 and is much faster. For

more information, see APL2/370 Programming: System Services Reference

 A←B MSG C

C is a message number, optionally followed by one or more character strings. B
is a single number or is empty. If B is not supplied, empty, or less than or equal to

the global variable msgw, then A is the message returned by the AP2WSM func-

tion, called with right argument C and left argument �AP2WCMS�. (For more

information, see “The Message Facility” on page 5.) Otherwise, A is a 0-by-0 char-

acter matrix.

70 APL2 Programming: Using the Supplied Routines

 The CMS Workspace

 A←B OPEN C

B is a character string that contains a file name. It can be the name of a new file.

C is a string that contains all the other information required to open the file: file

type, file mode, and, if necessary, the character '(' followed by fix, access, and

conversion options as needed. All C specifications are optional. If they are

missing, the following default values are used:

SCRIPT File type

A File mode

FIX Fixed length records

U File can be read or written

192 Full APL2 EBCDIC translation

OPEN opens the file, using shared variables that are named by adding suffixes to

the name in B. The data variable is identified by the suffix 'd'; the control variable

by the suffix 'c'. A is a return code.

The file name is appended to the global variable OPENFILEs. The information

contained in input C is appended to the global variable PROCACc.

 A←B PUT C

B is a character vector. C is a file name. PUT writes the data in B sequentially

to the file C. A is a return code. If an error occurs, then the global variable

rcodes is also assigned the return code, and the global variable errdata is

assigned R.

 A←B PUTFILE C

B is a character matrix. C is a file name. PUTFILE writes the character

matrix B into the file C. If the file C is not a new file the user is asked whether the

output is to be added to the end of the file. The output is performed only if the

answer is YES or some shortened form of it.

Note: If your conversion option is the default (192 or EBCDIC), you should use

external function δFM. It is supplied with Processor 10 and is much faster. For

more information, see APL2/370 Programming: System Services Reference

 A←RETRACT B

B is a matrix of names. RETRACT retracts shares for all the names in B and

returns the preexisting coupling values in A. In other words, RETRACT is a

synonym for the system function
SVR.

 Chapter 5. Environment-Dependent Workspaces 71

 The CMS Workspace

 A←SHARES

A is a matrix of the names of all variables in the workspace that have a nonzero

share coupling value.

Input/Output from Peripheral Devices
To communicate with tapes, readers, punches, and printers, you must use the CMS

FILEDEF command to specify a name by which the file is to be known, the type of

device you intend to use, and any other characteristics (record length, block size,

and so forth) that are relevant. You can use CMS FILEDEF before you start to use

APL2 or by using the defined function CMS.

72 APL2 Programming: Using the Supplied Routines

 The TSO Workspace

The TSO Workspace

As a TSO user, you can get at any part of your computing complex that you are

authorized to access. In particular, you can read or modify data sets that you may

or may not have created, as long as you have not been explicitly denied access to

them.

You do your work in TSO by executing TSO commands or collections of commands

called CLISTs. See TSO Terminal User's Guide for a general discussion of TSO

commands and CLISTs.

TSO Command, Alternate-Input, and File Processors
The auxiliary processors you can use to interact with the TSO environment are:

User functions in TSO are divided into three groups:

Command AP Function: TSO

This function is for executing TSO commands without leaving APL2.

Alternate-Input AP Function: PROC

This function stacks alternate-input lines for later execution when keyboard input is

requested. See the discussion of Figure 24 on page 68.

AP 100 The TSO command processor

AP 101 The alternate-input processor

AP 210 The BDAM auxiliary processor

AP 111 The QSAM auxiliary processor

File AP Functions and Auxiliary TSO Functions

ALLOCATE Allocate a data set

ATTRIBS Establish data set attributes

CLOSE Close a file

CLOSEALL Close all open files

GET Get a record from an open file

GETFILE Bring an entire file into the workspace

OPEN Open a file

PUT Put a record into an open file

PUTFILE Write a variable out as a file

RECID Specify a record number for direct-access use

RETRACT Retract shared variables

SHARES Determine the names of all shared variables

Figure 26. TSO: File Auxiliary Processor Functions

The file functions use subfunctions, which are listed below. Most of these are

copied from the UTILITY workspace.

DOUBLE INBLANKS INDEX LADJ MEMBER OBLANKS PREPARSE2
TYPE VCAT XBLANKS

 Chapter 5. Environment-Dependent Workspaces 73

 The TSO Workspace

The functions apAI, apCMD, apFILE, and apQSAM return the numerical

values that identify the alternate input, command, direct-access and QSAM auxiliary

processors. They should be modified to reflect local usage if different from the

default values used in the APL2 workspace.

Using the Functions in TSO

 Command Function

 A←TSO B

B is a character string that contains a TSO command. A is a return code. If it is

not 0 (successful completion), it is accompanied by a message.

Alternate Input Function

 PROC A

A is a character string that contains the name of the alternate-input procedure to be

created by PROC. PROC then accepts all nonnull inputs to be stacked by that

procedure. When a null input is entered, a function is created and given the name

in A. Typing this name results in execution of the given lines.

 File Functions

 A←B ALLOCATE C

B is a file name (ddname). C contains a data set name which can be followed by

one or more blanks and a list of allocation specifications. (See TSO Extension

Command Language Reference Manual.) ALLOCATE uses the TSO function to

do the requested allocation. A is the return code from TSO.

 A←B ATTRIBS C

B is a file name. C is a list of data-set attributes. ATTRIBS uses the TSO
function to associate the attributes of C with the attribute file B. The name B can

then be preceded by the characters �USING� as part of an allocation command.

 A←CLOSE B

B is a character string that contains a file name. CLOSE retracts the shared

variables associated with this file, deletes them from the workspace and removes

the file name and processing information from the variables OPENFILEs and

PROCACc. A is a return code.

74 APL2 Programming: Using the Supplied Routines

 The TSO Workspace

 A←CLOSEALL

CLOSEALL retracts and deletes all shared variables and initializes the variables

OPENFILEs and PROCACc. A is a return code.

 A←GET B

B is a character string that contains the name of an open file. A is the next

sequential record from the file. The variable rcode contains the return code from

each GET. A read past the end of the file gives a null vector value for A and a

value of 12 for rcode.

 A←GETFILE B

B is a character string that contains the name of an existing OS data set. The

entire data set is read in (using conversion option 192) and is returned as the value

A.

 A←B OPEN C

B is a character string that contains a name to be used as the internal name of the

file being opened. In TSO terms, it is used as a FILE or ddname. This is the

name that is meant when the term file name is used in describing the GET, PUT,

GETFILE, PUTFILE, CLOSE, and RECID functions.

C is a character string that can contain, as needed, a data set name and a variety

of options: disposition, keep, conversion, type of access, and auxiliary processor.

The default options are, respectively: OLD, KEEP, 192, R, and apQSAM. The

options must follow the data set name (if present). If the data set name is omitted,

then the options must be preceded by the character '('.

OPEN opens the file, using shared variables that are named by adding suffixes to

the name in B. The data variable is identified by the suffix 'd'; the control variable

by the suffix 'c'.

The file name is appended to the global variable OPENFILEs. The auxiliary

processor identification and access type are concatenated and appended to the

global variable PROCACc.

The data set name need not be specified if it is already allocated and associated

with file name B. This can be done:

� Before APL2 is activated

� By direct use of the TSO function

� By use of the ALLOCATE function

 Chapter 5. Environment-Dependent Workspaces 75

 The TSO Workspace

Specification of various data set attributes can require use of the ATTRIBS func-

tion (described above). The permissible options are named in global variables

whose names start with the letters opts. These are:

Global Variable Permissible Options

optsACC R, W, U, READ, WRITE, UPDATE

optsALCD OLD, SHR, MOD, NEW, SYSOUT

optsALCK KEEP, DELETE, CATALOG, UNCATALOG

optsAP apFILE, apQSAM, 111, 210

optsCONV BYTE, EBCD, TN, BCD, APL, BIT, VAR, 192,

 A←B PUT C

B is a character vector. C is a file name. PUT writes the data in B sequen-

tially to the file C.

 A←B PUTFILE C

B is a character matrix. C is a data set name. PUTFILE writes the character

matrix B into the data set C. If C is already the name of a data set, the old data

set is lost.

 A←B RECID C

B is a character string that contains a file name. C is an integer. RECID
returns the file name as the value A, and specifies C as the number of the record

to be read or written by a GET or PUT. RECID should be used for direct-

access input-output operations.

GET fn RECID no

Gets record number no from file fn. PUT works the same way.

 A←RETRACT B

B is a matrix of names. RETRACT retracts shares for all the names in B and

returns the preexisting coupling values in A. In other words, RETRACT is a

synonym for the system function
SVR.

 A←SHARES

A is a matrix of the names of all variables in the workspace that have a nonzero

share coupling value.

76 APL2 Programming: Using the Supplied Routines

 The FILESERV Workspace

The FILESERV Workspace

FILESERV Performs imports and exports

VCAT Aids in constructing the SYSIN variable

SYSIN Contains import and export commands

MORE Contains error messages

Figure 27. TSO: User Functions and Variables in the FILESERV Workspace

The FILESERV workspace allows you to transport APL data files into and out of

TSO APL data file libraries. It is distributed only with TSO. It can be used to

provide backups, to interchange data with other APL2 systems, or to migrate data

from VS APL systems.

APL data file libraries in a TSO system are implemented using keyed VSAM clus-

ters. There is one VSAM cluster for each library of files. (Files are identified to AP

121 by library number and file name.) This workspace can EXPORT files from the

VSAM cluster, creating sequential files; and can IMPORT sequential files into the

library. These services are analogous to the EXPORT and IMPORT commands

provided by MVS access method services.

The sequential files are in a form compatible with:

� AP 121 CMS files used by APL2 or VS APL

� The VS APL TSO FILESERV workspace

� The VS APL CICS* service program

� The VSPC service program.

The FILESERV function can perform a series of imports and exports in any com-

bination and using any APL data file libraries. It is driven by either a SYSIN file or

the contents of a SYSIN variable. The syntax of data in the SYSIN source is

described in “Transporting Files in Batch Mode” on page 79.

Exporting Files Interactively
Three steps are required to export files interactively; the first is frequently done

automatically during APL2 start up.

1. Allocate the file library or libraries that contains the APL data files to be

exported. If this is not done by the CLIST that invokes APL2, use a TSO

ALLOCATE statement:

ALLOC F(Flibno) DA(cluster)

where:

libno A library number, with no leading zeros.

Note: The FILESERV workspace does not recognize F0 as a private

library. You must allocate the library with some other number (such as

F1001) to be able to export from it.

cluster The data set name of a VSAM cluster, using TSO data set name con-

ventions.

2. Allocate the sequential files to which the APL data files are to be copied. The

format of this command varies depending on the device type and whether the

 Chapter 5. Environment-Dependent Workspaces 77

 The FILESERV Workspace

data set already exists. Consult TSO command language references for

details. The following model can be used to create a new DASD data set:

ALLOC F(fname) DA(dsname) RECFM(V,B) -

LRECL(4096) SPACE(prim,sec) TRACKS

where:

fname A ddname used in the TO parameter of the EXPORT statement.

For simplicity, use the APL data file name as an fname. The TO
parameter is not required in this case.

dsname The data set name to be used for the sequential file. You might

want to include the fname as a part of this.

prim,sec Primary and secondary (overflow) space allocation on the device.

3. Set up SYSIN and invoke the FILESERV function.

 a. Invoke APL2.

b.)LOAD 2 FILESERV

c. Assign one or more commands to the SYSIN variable. SYSIN can

contain a character vector or matrix. Each row of a matrix is a separate

command, unless it ends with a plus (+) or minus (-) sign (as described in

“Format of Commands” on page 80). The VCAT function can help you in

constructing this matrix. For example:

SYSIN←�EXPORT 2361 DEPT17�
SYSIN←SYSIN VCAT �EXPORT 2361 DEPT18�

d. Invoke the FILESERV function. It takes no arguments.

Importing Files Interactively
To import files interactively, as many as four steps may be needed, though the first

step is usually not necessary, and the second is frequently done automatically

during APL2 invocation.

1. Define any new file library or libraries you are using. See the discussion on

creating APL2 VSAM libraries in APL2/370 Programming: System Services Ref-

erence for details. You might be able to define a library having the same attri-

butes as an existing library:

DEFINE CL(NAME(new.lib) MODEL(old.lib))

where:

new.lib The data set name of the library you are creating.

old.lib The data set name of an existing APL2 file library.

2. Allocate the file library or libraries that you are importing APL data files into. If

this is not done by the CLIST that invokes APL2, use a TSO ALLOCATE state-

ment:

ALLOC F(Flibno) DA(cluster)

libno A library number, with no leading zeros.

Note: The FILESERV workspace does not recognize F0 as a

private library. You must allocate the library with some other

number (such as F1001) in order to import into it.

78 APL2 Programming: Using the Supplied Routines

 The FILESERV Workspace

cluster The data set name of a VSAM cluster, using TSO data set naming

conventions.

3. Allocate the sequential files from which the APL data files are to be copied:

ALLOC F(fname) DA(dsname) SHR

fname A ddname used in the FROM parameter of the IMPORT statement.

For simplicity, use the APL data file name as an fname. The FROM
parameter is not required in this case.

dsname The name of the data set that contains the file.

4. Set up SYSIN and invoke the FILESERV function.

 a. Invoke APL2.

b.)LOAD 2 FILESERV

c. Assign one or more commands to the SYSIN variable. SYSIN can

contain a character vector or matrix. Each row of a matrix is a separate

command, unless it ends with a plus (+) or minus (-) sign (as described in

“Format of Commands” on page 80). The VCAT function can help you in

constructing this matrix. For example:

SYSIN←�IMPORT DEPT17 TYPE(DIRECT)�
SYSIN←SYSIN VCAT �IMPORT 1018 DEPT18 TYPE(DIRECT)�

d. Invoke the FILESERV function. It takes no arguments.

Transporting Files in Batch Mode
Batch processing is essentially the same as interactive processing, except that:

� You provide MVS job control language used to start a TSO session.

� Data sets are allocated using either JCL or TSO ALLOC statements that are in

a SYSIN stream.

� APL2 is invoked by a command in the SYSIN stream.

� The workspace is loaded and the FILESERV function is invoked by using

either the INPUT parameter on the APL2 invocation or an APLIN stream.

� The FILESERV commands are normally provided in a SYSIN stream rather

than assigned to a SYSIN variable.

 Chapter 5. Environment-Dependent Workspaces 79

 The FILESERV Workspace

This is an example of a FILESERV jobstream. The JOB control statement,

PROFILE and ALLOC statements, and the EXPORT and IMPORT commands

have to be modified to meet the requirements of your installation and to provide the

particular services you need:

//APLBAT JOB (DEPT18),APLADMIN
//BATCH EXEC PGM=IKJEFT01,REGION=2000K,DYNAMNBR=50
//SYSPRINT DD SYSOUT=�,DCB=LRECL=133
//SYSTSPRT DD SYSOUT=�
//APLPRINT DD SYSOUT=�
//SYSTSIN DD �
 PROFILE PREFIX(APLADMIN)
 ALLOC F(F1001) DA(PRIVATE.APLLIB)
 ALLOC F(F2361) DA('PROJ2361.APLLIB')
 ALLOC F(F1018) DA('DEPT18.APLLIB')
ALLOC F(DEPT17) DA(SAVE.DEPT17) RECFM(V,B) -

LRECL(4096) SPACE(5,5) TRACKS
ALLOC F(DEPT18) DA(SAVE.DEPT18) RECFM(V,B) -

LRECL(4096) SPACE(5,5) TRACKS
APL2 SH(60K) WS(512K) INPUT(')LOAD 2 FILESERV' 'FILESERV')

//SYSIN DD �
EXPORT 2361 DEPT17
EXPORT 2361 DEPT18

 IMPORT DEPT17 TYPE(DIRECT)
IMPORT 1018 DEPT18 TYPE(DIRECT)

//

Format of Commands
The first field in the command is the command name; it identifies the action to be

performed. The command and its operands can be typed between columns 1 and

72; columns 73 through 80 are ignored. Commands and operands are separated

by blanks or commas. (An operand that ends with a right parenthesis does not

need to be separated from a following operand.)

To specify that a command is to be continued to the next line or record, use either

a plus (+) or minus (-) sign.

1. A minus sign, when used as the last nonblank character in a line or record,

indicates that the command is continued with the first character of the next line

or record:

 IM-

 PORT

is the same as:

 IM PORT

The minus sign indicates that separators (blanks in the preceding example)

should be included in the continuation of the line or record.

80 APL2 Programming: Using the Supplied Routines

 The FILESERV Workspace

2. A plus sign as the last nonblank character in a line or record indicates that the

command is to be continued with the first nonseparator character of the next

line or record:

 IM+

 PORT

is the same as

 IMPORT

The blanks are omitted.

Comments to Commands
You can replace any of the separators (blanks or commas) with a comment. A

comment must begin with the characters /* and end with the characters */. To

specify that a comment be continued on the next line or record, use a plus or

minus sign, or end the first line or record with */ and begin the next with /*. For

example:

 /�THIS COMMENT�/
 /�HAS�/
 /�THREE PARTS�/

Using the EXPORT and IMPORT Commands
You can use the FILESERV EXPORT and IMPORT commands to transport AP

121 data files to and from TSO.

The syntax of the EXPORT command is:

EXPORT [nnnnnnn] file name/[pass

 TO(ddname)

where:

nnnnnnn The file library number. The default file library number is 1001.

file name The name of the APL data file to be transported from TSO.

password The VSAM password of the file library data set, if necessary.

ddname The ddname of the sequential file to which the APL data file is to be

copied. If the TO keyword is omitted, file name is used.

To transport an APL data file with the file name WORK (in a password-protected

file library with the library number 1002) to a sequential file with a ddname of

WORK, issue the following command:

 SYSIN←�EXPORT 1002 WORK/PW�
 FILESERV

The syntax of the IMPORT command is:

IMPORT [nnnnnnn] file name/[pass

 FROM(ddname)

 [TYPE(SEQUENTIAL|DIRECT)]

 [NOREPLACE|REPLACE]

 Chapter 5. Environment-Dependent Workspaces 81

 The FILESERV Workspace

nnnnnnn The file library number. The default library number is

1001.

file name The name of the APL data file.

password The VSAM password of the file library, if necessary.

ddname The ddname of the sequential file to be transported to

TSO. If the FROM keyword is omitted, file name is

used.

SEQUENTIAL|DIRECT Specifies the type of file to be created. SEQUENTIAL is

the default.

NOREPLACE|REPLACE Specifies that the file can or cannot replace a file with

the same name. NOREPLACE is the default.

To transport a sequential file with a ddname of WORK to an APL direct data file

with the same name (in a file library with the library number of 1002), issue the

following command:

SYSIN←�IMPORT 1002 WORK/PW TYPE(DIRECT)�
 FILESERV

 Error Handling
If an error code (other than zero) is returned from an auxiliary processor, the appro-

priate error message is printed and the processing stack is cleared. It might be

necessary to delete shared variables before calling FILESERV again. The

RETRACTALL function does this.

As a debugging aid, the variable clearsw can be set to 0 instead of 1. Then,

after printing the auxiliary processor error message, processing is terminated with a

SYNTAX ERROR in the function vchk. It is recommended that vchk be

locked in actual use so a DOMAIN ERROR points to vchk.

Special Handling of Selected Errors
An option is provided that allows applications to handle selected error return codes

without the function printing any error messages, and without suspending proc-

essing.

To use this facility, insert a vector of AP return codes into the global variable

pcodes. Special programming in the application enables it to handle the return

codes. This workspace deals with 2-element return codes, but maps the two ele-

ments into one by using 100000⊤COD. The values in pcodes use that

mapping. The actual return code given by the auxiliary processor can always be

found in the global variable rcode, which can be referenced by the application.

If any function receives a return code from the auxiliary processor contained in

pcodes, that function terminates with the actual return code in rcode. For

functions that give an explicit result, the result is the empty vector.

The default value of pcodes is the empty vector. Do not store a zero in

pcodes under ordinary circumstances.

82 APL2 Programming: Using the Supplied Routines

 The FILESERV Workspace

 FILESERV Groups
The following groups exist in the workspace:

GPFILESERV Contains functions and variables specific to this workspace. It

must be augmented by other groups to be useable.

GPDESC Contains descriptive information about the workspace.

GPMESSAGE Contains functions for message handling.

GPUTILITY A set of utility functions, many of them from the UTILITY
workspace.

GPVSAM A set of functions and variables taken from the VSAMDATA
workspace.

 Chapter 5. Environment-Dependent Workspaces 83

Chapter 6. File Auxiliary Processor Workspaces

The file auxiliary processor workspaces are:

APLDATA APL files

VSAMDATA VSAM data sets

VAPLFILE Compatible with the APLFILE workspace from VS APL

They have many similarities. The most important is that they specify the file or

data set to which subsequent input/output functions are to apply by means of the

function USE.

Notes:

1. The CMS workspace and the TSO workspace also have functions for handling

native (CMS or TSO) files.

2. APL2 Version 2 provides several new techniques for file access that are

operating-system independent. Application developers should consider whether

one of these techniques serves their needs better than the workspaces

described here:

� Processor 12 provides direct access to files using APL2 primitives.

� AP 211 provides the ability to store APL2 objects in files by name. This

processor is compatible with AP 211 provided on workstation APL2 plat-

forms.

� Processor 10 external functions δFV and δFM provide a simple way to

read and write a file as a whole. Compatible functions for these are also

available on the workstation APL2 platforms.

For information on these file access techniques, see APL2/370 Programming:

System Services Reference.

84  Copyright IBM Corp. 1985, 1994

 The APLDATA Workspace

The APLDATA Workspace

This workspace assists in the use of the AP 121 format auxiliary processor.

ACREATE Creates an APL file

DROP Purges or deletes a file

USE Specifies currently-selected file

AREAD Reads from an APL file

AWRITE Writes to an APL file

AGET Reads from an APL file

ASET Writes to an APL direct file

CLOSE Closes currently-selected file

FILESIZE Changes file size

AT Makes referenced file the currently-selected file

SETRECLEN Sets record length

RETRACTALL Terminates sharing of global variables

SIZE Returns space required by variable

STORE Stores variable on a file of the same name

RETRIEVE Retrieves variable from the named file

Figure 28. Groups in the APLDATA Workspace

Reading and Writing Files of APL2 Arrays
The APL Format auxiliary processor is designed for storing APL2 arrays in their

internal form, including their type and structural characteristics. It is intended that

such files be read and written only by this auxiliary processor.

 General Operation
Because many applications use only a single file, the file name is not generally an

argument of these functions. Rather, it is stored as a character vector in the vari-

able fn by the ACREATE or USE function.

Also, the dyadic function AT puts a file name in fn as in the context:

R←AGET filename AT I

(filename AT I) ASET A

A filename is defined as:

[libno] name [:password]

Where:

libno A library number. Its significance in each system is:

CMS Filetype, in the form Fnnnnnnn where nnnnnnn is a 7-digit repre-

sentation of the library number.

TSO The library number associated with a VSAM data set that con-

tains files in a form accessible to the auxiliary processor. This

library number must be the ddname of an allocated data set. It

should have the form Lnnn where nnn is the library number

represented without leading zeros.

 Chapter 6. File Auxiliary Processor Workspaces 85

 The APLDATA Workspace

name A string of up to 8 characters starting with a letter and continuing with

letters or numerical digits.

: A separator that is required only when a password is used.

password In some systems, has less restrictive rules of formation than does name,

but all systems accept passwords formed in the way described above

for name. Its significance in each system is:

CMS The link password of the disk on which the data set is stored.

This can be a READ password if the processing is to be read-

only; it must be a WRITE password for writing or updating.

TSO The password of the VSAM data set that contains the auxiliary

processor files.

APL-Format File Functions

TS ACREATE filename

ACREATE creates an APL file. TS is a character vector beginning with 'S' for a

sequential file. If it begins with something else, such as 'D', a direct file is

assumed. If TS ends with a number, it indicates the file size in bytes (for example,

TS might be �S750000�). Otherwise, the default file size for that user is

assumed. fn is a character vector that contains the file name as defined above.

There is no explicit result. A file is created and the file name is stored in fn.

DROP filename

DROP purges or deletes the specified APL or EBCDIC file. filename is a character

vector that contains a file name. There is no explicit result.

USE filename

filename is a character vector that contains a file name. There is no explicit result.

The contents of filename are stored in the global variable fn and thus the refer-

enced file becomes the currently-selected file. Applications involving multiple files

can use this function between uses of file access functions.

R←AREAD

AREAD reads from an APL file. R is the retrieved record. The currently-selected

file (as defined in fn) is opened (if not already open) for sequential read, and the

next record is read. When the file is first opened the next record is the first record

in the file. If the result is an empty vector, then the end of file has been reached

and the file is closed. To close the file before reaching the end, use the function

CLOSE.

86 APL2 Programming: Using the Supplied Routines

 The APLDATA Workspace

AWRITE A

AWRITE writes to an APL file. A contains the value to be written. If the value of

A is an empty vector then it is not written, and the file is closed.

There is no explicit result. The currently-selected file (as defined in fn) is opened

(if not already opened) for sequential write, and the contents of A are written at the

present end of the file. If writing the first record in a newly-created DIRECT file

then the fixed record length is established by the contents of rl, which is taken as

4054 or as previously set (perhaps by the use of the function SETRECLEN).

R←AGET I

AGET reads from an APL direct file. I is the record number, assuming the first

record is number 1 (that is, origin 1). I must be an integer. If I is an empty

vector, then the file is closed. R is the retrieved record.

I ASET A

ASET writes to an APL direct file. I is the record number, assuming the first

record is numbered 1. I must be an integer that identifies a previously-written

record. If I is an empty vector, then the file is closed and the contents of A are

ignored. A contains the record to be updated.

There is no explicit result. Note that this function is used for updating existing

records, not for extending the file.

CLOSE

The currently-selected file is closed and its associated shared variables are deleted.

There is no explicit result.

FILESIZE NEWSIZE

NEWSIZE contains the numeric or character representation of the new file size in

bytes. The actual size is rounded up to the next highest multiple of 1000 bytes.

There is no explicit result. The size of the currently-selected APL file is changed.

If reduced below the current size of its contents, then an error message appears.

R←filename AT I

filename is a character vector that contains a file name. I is usually a file index

or key.

 Chapter 6. File Auxiliary Processor Workspaces 87

 The APLDATA Workspace

R is I. The implicit result is that the filename is stored in global variable fn, thus

making the referenced file the currently-selected file. Typical use is in a multifile

application in the context: AGET filename AT I.

SETRECLEN L

L is a numeric scalar or single element vector giving a record length in bytes.

There is no explicit result. The value of L is stored in the global variable rl. rl
is used when writing the FIRST record into a new APL direct file.

RETRACTALL

All sharing of nonshadowed variables in the workspace is terminated. There is no

explicit result.

R←SIZE VNAME

VNAME is a character vector that contains the name of a variable in the work-

space. R is the number of bytes of space required if the variable were stored in a

file. This includes an allowance for an internal header, which is stored with and

describes the variable. This function is especially useful in determining the required

record length when setting up an APL direct file. (This function is also used by the

STORE function in this workspace.)

Functions to Store and Retrieve Large Variables

STORE VAR

An APL sequential file is created with the same name (up to 8 characters) as the

variable in VAR. If such a file already exists, it is dropped and recreated with an

appropriate size. The file is opened and the contents of the variable in VAR are

written as the single record in the file. The variable named in VAR is then deleted

from the workspace. VAR is a character scalar or vector that contains the name

of a variable. The variable name must not contain underscored letters. There is no

explicit result.

RETRIEVE VAR

The APL sequential file with the same name (up to 8 characters) as the variable in

VAR is opened and a record is read. The contents of the record are stored in the

variable named in VAR. VAR is a character scalar or vector that contains the

name of a variable. The variable name must not contain underscored letters, and

should be the name of a variable which was previously stored with the STORE
function. There is no explicit result.

88 APL2 Programming: Using the Supplied Routines

 The APLDATA Workspace

Using the Project, Private, and Public Libraries
The names of variables being stored and retrieved can occasionally conflict with

workspace and file names in the user's library and hence cause a problem. To

avoid this conflict you can establish a library that can be used by the STORE and

RETRIEVE functions.

To use the project library, you should store the library number in the global variable

objlib. To use the private library, store a zero in objlib. (Note that

objlib is by default an empty vector.) If objlib has a public or project library

number, the library number is used to access the proper data set.

 Error Handling
If an error code (other than zero) is returned from an auxiliary processor, then the

appropriate error message is printed, all nonshadowed shared variables are

retracted, and the execution stack is cleared.

A debugging option is provided if the variable clearsw is set to zero instead of

one; after printing the auxiliary processor error message, execution is terminated

with a SYNTAX ERROR in the function chk. It is recommended that chk be

locked in actual use so a DOMAIN ERROR points to chk.

Special Handling of Selected Errors
Another option provides for applications to handle selected error return codes by

special programming without the functions printing any error messages and without

suspending execution.

To use this facility, the application should insert into the global variable pcodes a

vector of AP return codes, which the application handles by special programming.

The actual return code given by the auxiliary processor can always be found in the

global variable rcode, which can be referenced by the application.

If any function receives a return code from the auxiliary processor that is contained

in pcodes, then that function terminates with the actual return code in rcode.

For functions that give an explicit result, this result is the empty vector.

The default value of pcodes is the empty vector. Do not store a zero in

pcodes under ordinary circumstances.

 APLDATA Groups
GPAPL The name of the group that contains objects related to the support

of APL format files.

GPDESC Contains descriptive information about the workspace.

GPMESSAGE Contains functions for message handling; it is a subset of most

other groups.

GPREADAPL The name of the group, which is a subset of GPAPL and contains

objects needed for read-only access to APL files.

GPSTORET The name of the group that contains the objects related to the

STORE and RETRIEVE functions.

 Chapter 6. File Auxiliary Processor Workspaces 89

 The VSAMDATA Workspace

The VSAMDATA Workspace

This workspace helps you use the auxiliary processor (usually AP 123) that pro-

vides access to VSAM (virtual storage access method) data sets. This auxiliary

processor can be used to access key-sequenced, entry-sequenced, and relative-

record data sets. The data set must be preallocated (and defined to the APL2

system) at initialization time, or in TSO, the command auxiliary processor can be

used to do this. VSAM records are brought into the APL2 workspace as character

vectors. If data conversion is necessary, the group GPDATACV can be copied

from the UTILITY workspace. The variable HOWDATACV in the UTILITY
workspace contains a description of the data conversion functions and instructions

on how to use them.

For the types of VSAM data sets described above, this workspace provides defined

functions that use the shared-variable interface to do sequential reading and

writing, direct reading and writing, updating, erasing individual records or entire

files, positioning a pointer for subsequent sequential operations, and retrieving the

key of the last record processed.

The records read from or written to VSAM data sets are always character vectors.

For externally-generated VSAM data sets,this means that records read from the

data set might require translation to make them intelligible within the APL2 work-

space. Similarly, updates made to such records should be translated to the

external form before they are written to the data set. The functions in GPDATACV
can be used to do this translation. See “GPDATACV: Converting between External

and Internal Representations” on page 33 for a description of these functions.

Functions or variables in this workspace that have names that contains underlined

characters are executed by user functions. They are not ordinarily executed or

used directly by the workspace user.

Each input/output function uses
SVO to check the share status of the shared vari-

ables used by the currently-active file, issuing a shared-variable offer if they are not

currently shared.

| File Naming Conventions
The name of the data set or file in current use is stored in the global variable fn,

whose value can be changed explicitly by the USE function or implicitly by the AT
function. For more information, see pages 86 and 87.

A file name is defined as:

filename:password

filename The name of the VSAM data set

password The VSAM password needed if the data set is password-protected and

the ':' is required only when the password is required.

90 APL2 Programming: Using the Supplied Routines

 The VSAMDATA Workspace

Functions to Access External VSAM Files
| This section discusses the functions you can use to access external VSAM files.

Note: When translations are needed between external and internal representa-

tions, the functions in GPDATACV should be used. (These can be found in the

UTILITY workspace.)

option USE filename

filename is a character vector that contains a file name. option is a translation

option. (This argument is optional.) There is no explicit result. If option is not 0,

1, or 2, then a DOMAIN ERROR results. Otherwise, the filename is stored in the

global variable fn, and thus the referenced file becomes the currently-selected file.

Applications involving multiple files can use this function between uses of file

access functions. If the optional left argument is supplied, then it specifies the AP

123 translation option. These options are limited. In general, you need to use the

group GPDATACV in the UTILITY workspace for data conversion, as mentioned

above.

The conversion option is specified by option as follows:

0 Byte conversion (default)

1 VS APL conversion

2 APL2 conversion

Options 0 and 2 are identical in APL2. The global variable translate is

assigned the character vector 'T', 'T1', or 'T2', depending on the value of

option. If no translation option is selected, then translate is set to 'T'. If the

new translation option is different from the old, then all shared variables are

retracted.

R←VREAD

R is the retrieved record, which is always an APL character vector. The currently-

selected file (as defined in fn) is opened for reading, if not already open. The next

record in sequence is read. the file is first opened, the next record is the first

record. You can change the position of the next record in a key-sequenced file by

using the VPOSITION, VGET, VGETHOLD, VERASE, or VSET functions. If

the result is an empty vector, then the end of file has been reached and the file is

closed. To close the file prior to reaching the end, use the function CLOSE.

R←VREADHOLD

This function is similar to VREAD except that the file is opened for update, and a

HOLD is placed on the record (technically, on the VSAM control interval), thus pre-

venting other users from issuing a READ HOLD (or READ for UPDATE). The

HOLD is released by the next READ or WRITE operation or by closing the file.

VREADHOLD is used in conjunction with VSET for updating existing records in a

file.

 Chapter 6. File Auxiliary Processor Workspaces 91

 The VSAMDATA Workspace

R←VGET KEY

The nature of KEY depends upon the type of data set being accessed.

Key-sequenced data sets: The key required to access key-sequenced data sets

is a character vector that contains the VSAM key for the desired record. The key

must not be longer than the key length of the defined file. (In some implementa-

tions it must be the same length). If it is shorter, then only that many characters

are compared with the key in the record, starting at the left. It must match the bit

pattern of the key in the file.

Entry-sequenced data sets: For the purposes of keyed access, an entry-

sequenced data set is treated as one long string of characters. The KEY of a

given record is the address of its first character, starting with 0 as the address of

the first record and proceeding thereafter in increments of record lengths (fixed or

variable).

Relative-record data sets: A relative-record data set consists of a number of

fixed-length slots. The KEY in this case is the number of the slot.

The numerical values required for entry-sequenced and relative-record data sets

can be entered either as character strings or as single numbers.

R is the retrieved record. This is always an APL character vector. The currently-

selected file is opened for reading (if not already open).

R←VGETHOLD KEY

Similar to VGET except that the file is opened for update and a HOLD is placed on

the record (technically, on the VSAM control interval), thus preventing others from

issuing a READ HOLD (or READ for UPDATE). The HOLD is released by the next

READ or WRITE operation or by closing the file. VGETHOLD is used in con-

junction with VSET for updating existing records in a file.

VSET A

A is a character vector and represents the record to be written into the file. For

entry-sequenced and relative-record data sets, the record is written at the end of

the file or into the position determined by a prior VGETHOLD, VREADHOLD or

VPOSITION. For a key-sequenced file, the key must be appropriately imbedded

in the record. No translating is performed (except as specified by the USE func-

tion) and A must be constructed using data conversion functions as appropriate.

There is no explicit result. The currently-selected file is opened for writing (if not

already open for writing or updating). The contents of A are written into the

currently-selected file. If updating an existing record, then the previous operation

must have been a VREADHOLD or a VGETHOLD of the same record. In

updating an entry-sequenced file, the new record must not be longer than the

record being replaced.

92 APL2 Programming: Using the Supplied Routines

 The VSAMDATA Workspace

VERASE KEY

KEY is a character vector that contains the key of the record to be erased. There

is no explicit result. The currently-selected file is opened for updating (if not

already open for updating). The referenced record in the currently-selected VSAM

key-sequenced or relative-record data set is erased. Entry-sequenced records

cannot be erased.

VPOSITION KEY

KEY is a character vector that contains the key of the chosen record. If KEY is an

empty vector, then the first record in the file is selected.

There is no explicit result. The currently-selected file is opened for reading (if not

already open). A pointer is set at the beginning of the selected record and provides

a starting point for the next sequential operation.

If there is no match on the key, the pointer is positioned to the record with the next

higher key and a RECORD NOT FOUND error code is returned. In its default form,

VPOSITION ignores the return code and returns the key of the next higher

record. To change this so that failure to get an exact match is treated as an error,

change statement number 6 in the VPOSITION function so that it reads:

[6] GESW←0

This causes an error interrupt if no exact match is found for KEY. Changing the

statement to 'GESW←1' restores the original condition; the return code is ignored,

and the next higher key is returned if there is no exact match.

KEY←VKF (Key Feedback)

VKF is a niladic function that returns the key of the record just processed or to

which the file has just been positioned. This key is a character vector that contains

the type of information appropriate to the data set:

� A relative-byte address for an entry-sequenced data set

� The imbedded key for a key-sequenced data set

� The relative-record number of a relative-record data set

VCLEAR A

A must be a character string that contains a file name. This file is made the cur-

rently selected file; that is, its name is stored in the global variable fn. It is closed

for other operations and opened for CLEAR. This means that all existing records

are deleted and the file opened for writing. (The file must be specified as a reus-

able VSAM data set.) There is no explicit result.

 Chapter 6. File Auxiliary Processor Workspaces 93

 The VSAMDATA Workspace

KEY VWRITE A

This write-with-key command is valid only for relative-record files. KEY must be

the relative-record number of an empty slot in the file. A is the record (a char-

acter vector) to be written into that slot. There is no explicit result.

CLOSE

The currently-selected file is closed and its associated shared variables deleted.

There is no explicit result.

 VSAMDATA Groups
GPVSAM The name of the group that contains the functions and variables

used to access VSAM files.

GPREADVSAM The name of the group that is a subset of GPVSAM and that con-

tains objects needed for READ ONLY access to external VSAM

files.

GPDESC Contains documentation variables.

GPMESSAGE Contains functions for message handling; it is a subset of most

other groups.

94 APL2 Programming: Using the Supplied Routines

 The VAPLFILE Workspace

The VAPLFILE Workspace

| This workspace is retained only for compatibility with earlier APL systems.

The following sections describe a set of functions you can use to create and use a

file of simple, homogeneous APL arrays. The functions are most useful when a file

contain APL arrays of arbitrary rank and dimension, when variable-length records

need to be accessed randomly, or when records are longer than the maximum

length otherwise permitted.

VAPLFILE uses AP 121 as supplied with APL2. It is designed to be compatible

with the VAPLFILE workspace that was distributed with VS APL.

| Note: This workspace does not support nested arrays. AP 121, AP 211, and

| Processor 12 provide similar function with support for arrays of any type.

| VAPLFILE, Processor 12, and AP 121 require that arrays be accessed by

| an index number, while AP 211 allows them to be accessed by name.

 Main Functions

L CREATE filename

filename is a character vector that contains the name to be assigned to the file.

(See the discussion of file names on page 97.) L, which is optional, is a physical

description of the file. L is a vector of three elements or less. The first element

is the maximum number of arrays that can be written (the default is 100). The

second element is the block size of the data set used to store the file (the default is

560). Each array requires an integral number of blocks. The third element is the

number of blocks for data (the default is 1.1 x L[1]). If a negative symbol precedes

the file name, then other users cannot read the file using this workspace.

USE filename

This function shares appropriately-named variables with the file processor, opens

the file, and defines global variables associated with a file in use. filename is a

character vector that contains the name of a file. (See the discussion of file names

on page 97.)

Z←RELEASE filename

This function retracts and deletes the variables shared with the AP, and deletes the

global variables associated with a file in use. The file is closed. filename is a

character vector that contains the name of a file. (See the discussion of file names

on page 97.) Z is 1 if variables are actually retracted. A result of 0 means the

file was not in use or F is not the name of a file.

 Chapter 6. File Auxiliary Processor Workspaces 95

 The VAPLFILE Workspace

Z←filename AT I

Z is I. This function selects the file named as the current file. See below for

contexts in which this function is very useful. You can always substitute I for

filename AT I below if filename is already the selected file.

I SET A

This function sets A as the Ith array in the file whose name is in the character

vector F. I SET A can be used to set A as the Ith element of the file last

mentioned in use of the functions USE or AT. The meaning of I is dependent on

the workspace origin. Note that when replacing an existing array, space is found

for the new array before the old one is erased. In this way an interruption in proc-

essing cannot lose an existing array.

Z←GET filename AT I

Z is the array in the Ith position of the file whose name is in the character vector

filename. GET I can be used to get the Ith element of the file last mentioned

in use of the functions USE or AT. The meaning of I is dependent on the work-

space origin.

DELETE filename

This function deletes the file whose name is in the character vector filename.

 Supplementary Functions
The following optional functions are not necessary for proper use of this package

but can be useful.

Z←GETl filename AT I

Z is the account number of the person who last set the Ith element of the

filename and the time stamp of the set.

Z←SIZe A

Z is the size of array A in bytes.

96 APL2 Programming: Using the Supplied Routines

 The VAPLFILE Workspace

Z←RHo filename

Z is the number of arrays that can be written in the file specified, where filename is

a file that is in use.

ERASe filename AT I

This function undefines the Ith element of the file specified and releases the space

used by it in the file. I can be an array.

Z←FREEBLOCKs filename

Each array stored on the file (with the exception noted below) requires a contiguous

set of blocks. FREEBLOCKs returns a vector of the contiguous available

blocks. This can be useful on FILE FULL to determine if a file has outgrown its

space, or is merely fragmented. There is a function called COMBINE (which is

executed automatically before a FILE FULL message is given) which attempts to

minimize the fragmentation. The result of FREEBLOCKs can change after exe-

cuting COMBINE.

Note: Small scalar numbers take zero blocks.

Z←EXISt filename AT I

Z is 1 if Ith element of filename has been set, 0 if Ith element of filename does

not contain a value, or �1 if I is out of range. I can be any simple numeric

array.

Z←SHVARS

Z is a matrix of the names of currently-shared variables.

 File Names
In general, file names consist of a library number, followed by a space and an

alphanumeric name beginning with a letter A|Z� The name can also be

appended with a colon followed by a password. For the functions CREATE and

DELETE, if the name includes a library number it must be the number of a library

in which the user is authorized to save files. For the functions DELETE and USE,

the name must include the password, if any. The functions RELEASE, AT,

RHo, and FREEBLOCKs ignore any library number and any password included

in the file name. All functions except CREATE ignore any negative symbol that

precedes the file name.

 Chapter 6. File Auxiliary Processor Workspaces 97

 The VAPLFILE Workspace

 VAPLFILE Groups
The following groups exist in the workspace:

GPFILEREAD Functions needed for GET access only

GPFILEWRITE Additional functions needed for SET access

GPAPLFILE All the functions in the above groups and the optional ones

GPMESSAGE Functions for message handling

GPDESC Description of the workspace

Note: The following information isn't required for proper use of the VAPLFILE
functions, but you may find it helpful in some situations.

When an error is encountered an appropriate message is printed. Normally the

single �→� is executed which terminates the function and any associated pending

functions. However, if the variable $ contains a negative number, then after any

error message, execution is suspended with a normal APL2 error message. This

can be useful when debugging new applications.

It is recommended that the functions CHK and TRY normally be locked so that

suspension occurs in the calling function.

The following global variables are defined whenever a file is used. FILEID
contains the name of the file last referenced in the USE or AT functions. Names

beginning with ctl and dat are variables shared with AP 121 The name con-

sisting of fd appended to the fileid contains the file description as follows:

1 - User number of file creator

2 - Number of arrays permitted

3 - Block size

4 - Number of data blocks

5 - Row dimension of an index array

6 - Number of index arrays

7 - Number of salvage index arrays

8 - Total number of blocks

9-15 -
TS at creation

98 APL2 Programming: Using the Supplied Routines

 The TRANSFER Workspace

Chapter 7. The TRANSFER Workspace

This workspace provides functions to aid migration to APL2 from VS APL, the APL2

installed user program (IUP), and older versions of PC APL. For complete informa-

tion on migration, see APL2 Migration Guide.

To migrate from APL.SV to APL2, you must first migrate to VS APL. For informa-

tion on how to do this, see:

VS APL for CMS: Installation Reference Manual

VS APL for TSO: Installation Reference Manual

VS APL for CICS/VS: Installation Reference Manual

VS APL for VSPC: Installation Reference Manual

The main functions in the TRANSFER workspace are MASSMCOPY�, FIX�,

FLAG�, INδ and OUTδ, INPC�, and OUTPC�.

 MASSMCOPY_

MASSMCOPY�

This function migrates multiple workspaces from VS APL to APL2. Commands are

stacked to)MCOPY and)SAVE multiple workspaces. The list of workspaces to

be migrated is formed from a file similar to a copyfile created by the following steps:

1. Sign on to VS APL

2. Issue the session manager command COPY ON ID APLLIBS

3. Issue)LIB commands for the libraries you wish to migrate:

)LIB (lists workspaces in your private library)

)LIB 17 (lists workspaces in Library 17)

)LIB 42 (lists workspaces in Library 42)

Use in any order and as many as you like.

4. Issue either the)OFF or the)CONTINUE command with no other terminal

input.

The CMS file name that MASSMCOPY� asks for is (in this case) 'file apllibs a', as

created by the COPY session manager command.

You can create the file by any other means as long as you can account for the

following:

� All records before the first)LIB are ignored.

� All records after the first)LIB are interpreted to be either a)LIB command

(containing the library designation), the results of a)LIB command (a list of

workspaces), an)OFF, or)CONTINUE. Anything else is mistaken for one

of these, and causes an error.

Once the list is built from the file, it is presented and you are given a chance to

exclude individual workspaces. If you are saving into a public library, your LIBTAB

must allow it.

 Copyright IBM Corp. 1985, 1994 99

 The TRANSFER Workspace

Rather than stack all commands for the entire list of workspaces, you are prompted

for the number of workspaces to be done in a batch. This gives you a chance to

limit how much is stacked at one time, and time to bail out if things go awry. The

default is set at 10 (workspaces).

The command sequence for each workspace is:

)CLEAR
)MCOPY [libno] wsname

)SAVE [libno] wsname

Which means:

� The)MCOPY can fail due to WS NOT FOUND, WS FULL, and so on

� The)SAVE can fail if the workspace already exists, or the library is full

Thorough checking of the results is recommended to determine if there were any

problems.

You can escape at any prompt with → (right arrow).

You have the option of making any run a dry run, in which case the commands that

would have been stacked are displayed, but not stacked and processed. You can

then decide whether to make the run real.

The calling syntax is the function name without any arguments, that is,

MASSMCOPY�.

The function is conversational from that point.

FLAG_ and FIX_
The functions FLAG� and FIX� help you migrate VS APL and APL2 IUP applica-

tions to APL2. FLAG� allows you to search all functions and operators in a

workspace to identify possible problem areas in the code. FIX� allows you to

change all functions and operators in the workspace when you know the exact

code string replacements. The variable FLAGMVSAPL� is provided to find and

fix the known problems that are expected in all VS APL applications. The variables

FLAGMIUP� and FIXMIUP� help you find and fix known problems expected in

all APL2 IUP applications. Migration consists of making these related changes,

plus others that the application programmer identifies because of specific know-

ledge of the application.

SA FLAG� LIST

FLAG� identifies language differences between VS APL, the APL2 IUP, and APL2.

It searches through functions and operators named in LIST looking for specific

code strings that are known or suspected to be problem areas in migrating applica-

tions from VS APL or the APL2 IUP to APL2. A default list of problem areas is

provided as a starting point for items that should be flagged and inspected. An

application programmer can then use FLAG� to find other specific code strings to

inspect.

100 APL2 Programming: Using the Supplied Routines

 The TRANSFER Workspace

The function returns a matrix of rows where problems were found. If the left argu-

ment is elided, then FLAG�interactively prompts for search arguments (SAs), 1

line per argument, no quotes required.

R←FLAGMIUP� FLAG� ALL� No prompting

R←�/¨� �)¨� FLAG� �FUN1� �FUN2� No prompting, 2 SAs

R←(��ONE�) FLAG� �FUNNAME� No prompting, single SA

(note the enclose on a single

argument)

FLAG� �FUN1� �FUN2� �FUNN� Prompts for SAs

FLAG� ALL� Prompts for SAs

FLAGMIUP� is a prepared list of items whose flagging is recommended for all

IUP workspaces being migrated. Similarly, FLAGMVSAPL� is a prepared list of

items whose flagging is recommended for all VS APL workspaces being migrated.

Use the DISPLAY function (in the DISPLAY workspace) to see how they are

constructed. If you want to edit them, use Editor 2 or the named editor on a vari-

able formed by:

TEMP←2
TF �FLAGMIUP��

Reassign the changes by: 2
TF TEMP. Do the same for FIXMIUP�
(described below).

SA FIX� LIST

This function searches a named list of functions for a list of character strings. The

left argument is a set of old/new pairs (nested together). The function results in

modified functions in the workspace.

FIXMIUP� is a prepared list of old/new pairs in this workspace that are the

known required code string changes for migrating from the APL2 IUP to APL2.

NAMES←FIXMIUP� FIX� ALL� Apply a fix list to all FNS in WS;

returns names of modified functions.

(��¨/� �/�) FIX� �F1� �F2� Replace ¨/ with / where found in F1
and F2 (functions or operators).

(�¨/� �/�) (�¨)� �)�) FIX� ALL� Make two corrections to entire WS.

FIX� ALL� Change all functions in WS according

to old/new pairs, for which you are

prompted.

You can add the DOWN function in front to display the resulting name list in a

column format; that is, DOWN FIX� ALL�.

The name list provided by ALL� is
NL 3 4 without the functions involved in

the transfer workspace.

 Chapter 7. The TRANSFER Workspace 101

 The TRANSFER Workspace

The following caution prompts for a confirmation to proceed, and provides an

escape if you don't want to complete the modification.

*** CAUTION | THIS WILL MODIFY YOUR WORKSPACE ***

 Atomic Vectors
AV�VSAPL - the VS APL atomic vector

AV�APLSV - the APLSV atomic vector

You can use the above variables to replace references to
AV in migrated code.

 Differences
Some of the differences between VS APL, the APL2 IUP, and APL2 are potential

problem areas, but are not simple code string replacements. Where potential prob-

lems are identified, they should be flagged to determine their extent, examined indi-

vidually to verify the existence of a real problem, and then corrected with code

changes. There might be other instances where mass corrections throughout the

workspace are possible. Remember to keep a backup copy of the workspace.

Two functions are provided here to assist you to migrate character data whose

application requires the same
AV positions. They should only be used where that

need has been determined. Both functions take a list of variable names and modify

those variables in the workspace, so exercise caution. The first, CHARIND, oper-

ates in VS APL and translates each variable named in the list (in matrix form) to

the
AV indices. The second, INDCHAR, is run in APL2 to rebuild the variables

encoded with CHARIND.

Note: Running INDCHAR against a variable not encoded by CHARIND destroys

the variable.

These functions are coded so that they run in VS APL, although it is intended that

INDCHAR be used in APL2. Executing:

 CHARIND VAR

 INDCHAR VAR

Translates VAR to numeric
AV indexes, and back again to character data,

restoring its original shape and rank.

Do not run either function on VS APL numeric variables.

VS APL Differences:
� Residue (�) uses
CT as an implicit argument in APL2. Flagging and

inspection of its use is advisable.

� The ordering of
AV is different, so
AV is included in the FLAGMVSAPL�
list of items. Indexing
AV should be discontinued and replaced by
AF.

� Monadic format (%) of a simple numeric matrix does not contain a leading

column of blanks, and its columns are formatted independently. Depending on

how much the application uses %, the programmer can flag it, or merely inspect

the generated reports for possible alignment problems.

In cases where code processing depends upon the formatted results, flagging

and inspection is warranted.

102 APL2 Programming: Using the Supplied Routines

 The TRANSFER Workspace

� Function arguments should not be localized in function headers. APL2 pro-

vides a function called CHKHDRS� to identify these cases. Either corrective

action by the programmer is required to change them, or the workspace must

be migrated with)MCOPY. This deletes locals with the same name as argu-

ments or results.

 CORRECT←CHKHDRS� ALL�
CORRECT←CHKHDRS�
NL 3

CORRECT contains the names of functions that need corrective action, with

the duplicated names.

� Referencing ' always produces a vector. Flagging and inspection of ' is

recommended if the application depends upon its shape.

� The result of �4○R is the negative square root for negative R. Flagging �4○
is recommended, or just ○ if the left argument is generated by an expression.

� An odd root of a negative number (such as�8*÷3) is a complex number. If

this is found to have an adverse effect on the application, the only effective

protection is to replace all occurrences of power (*) with an ambivalent power

function that inspects arguments and results to detect this effect. Event simu-

lation (
ES) is a good way to post an exception.

� A one-item vector left argument to
SVO does not extend. If this is going to

cause a problem, then flag
SVO, inspect, and correct.

� Groups are replaced by indirect copy and indirect erase. If group, copy, or

erase commands are known to be coded (for use by the stack processor), then

the following items should be flagged for inspection and correction:

)GR search argument to find all group commands

)COPY
)PCOPY
)ERASE

�
NC (name class) returns a different value for an invalid name. An invalid

name was indicated by a
NC value of 4 in VS APL. APL2 indicates the same

with a value of �1. Any program logic that depends on finding invalid names

must be changed. Problems can be identified by flagging occurrences of
NC.

APL2 IUP Differences:
� Reverse (�) accepts a single axis only, that is, �[1 2 3] is not valid.

Flagging all occurrences of �[is recommended, followed by inspection of

each.

� Bracket Axis has been removed. This means that:

F[X1;X2]

and

F[X1;X2;X3]

are not allowed if F is a primitive symbol or a derived function (except for a

niladic derived function returning an explicit result).

This is particularly difficult to detect because of variations in F and the

expressions that are possible inside the brackets, and the other prevalent and

legal uses of brackets and semicolons. Specific knowledge of the application is

useful here.

 Chapter 7. The TRANSFER Workspace 103

 The TRANSFER Workspace

� Nested indexing is not allowed. This is also difficult to detect. It has the form:

[(����) ��� (��)]. Flagging and inspecting each occurrence of [(
and)] is recommended.

� Encode (�) does not use
CT as an implicit argument.

� First was monadic �, but First is now monadic ↑. Because not all occurrences

of monadic � are necessarily First, it might be necessary to flag and inspect all

uses of �. All cases of the symbols ;+|�÷([/-�. to the immediate left of

� are First, and are therefore included in FLAGMIUP� and FIXMIUP�.

As a result of moving First to monadic ↑, monadic � with no axis discloses all,

putting new axes at the right in the result.

� Unite (now called Enlist) has been changed from < to ε. This can be read “the

scalar elements of.” It is in the default FLAGMIUP�.

� The arguments to Find (>) have been reversed. It is in the default

FLAGMIUP�.

� You cannot apply monadic grade (? or @) to character arrays. Use dyadic

grade instead. Flagging and inspection might be necessary. For the IUP

default collating sequence, use the DCS array in the UTILITY and EXAM|
PLES workspaces.

� The following items have been deleted and are in the default FLAGMIUP�:

System names
MD and
IR
 Eigenvalue (\)

Zeros of polynomials (^)

Monadic squad (_)

Find Index (`)

 Unique ({)

� The following have been deleted, but the monadic forms are difficult to detect.

Flagging and inspection might be necessary.

monadic Type (ε) Use ↑0ρ�R instead of εR

monadic
TF Use (2
TF R) instead of
TF R

� The following have a different definition in the IUP:

Dyadic squad (_)

 Inner product

 Outer product

INδ and OUTδ
| INδ and OUTδ are functions for transferring APL objects between mainframe APL

systems (APLSV, VS APL, and APL2).

The GPMIGRATE matrix contains the names of the required functions and vari-

ables. These objects must be reconstructed in the system where they are used.

One way to do this is to display them in APL2, move to the other system (VS APL

or APLSV), and reenter them using the session manager.

The functions automatically determine which system they are running on, and make

the appropriate conversions. In VS APL and APL2 under VM/VMS, auxiliary

processors 100 and 110 are used. Under TSO, AP 111 is used. In APLSV, auxil-

iary processor 370 is used.

104 APL2 Programming: Using the Supplied Routines

 The TRANSFER Workspace

| Note: In APL2 Version 2 Release 2, new external functions (IN, PIN, and OUT)

| are available as programming interfaces to the)IN,)PIN, and)OUT system

| commands. These functions should be used instead of INδ and OUTδ when

| running on an APL2 system.

The main functions are:

LIST INδ FILE

This function reads a transfer file that contains the transfer forms of APL objects,

and defines those objects in the active workspace. The file was created by the

OUTδ function, or)OUT in APL2. The FILE parameter must be the DDNAME
specified in a previously-issued allocate command.

LIST OUTδ FILE

This function writes the transfer forms of APL objects in the active workspace to a

transfer file; the file is suitable for reading by the INδ function, or)IN in APL2.

FILE is a nonempty character vector that indicates the name of the transfer file. It

can consist of a single name or multiple names separated by dots. Multiple names

are interpreted as qualifiers appropriate to the operating system in use. If only one

name is provided, then a qualifier of APLTF is assumed. This is the file type in

CMS and a prefix in TSO.

In both functions, LIST is a (possibly empty) character vector or matrix containing

the names of objects to be transferred. It defaults to all objects in the file for INδ,

or all objects in the workspace for OUTδ. The most local meaning of each object

is used. The name list can contain certain system variables:
CT,
HT,
IO,

LX,
PP,
PW, and
RL.

On systems that have ambivalent functions, LIST can be included in the right

argument rather than as the left, in the following form:

�FILENAME OBJ1 OBJ2��� OBJN�

Names in this group end in δ to avoid name conflicts. The global variable NAMEδ
is a matrix containing the names of the global functions and variables in the

MIGRATE workspace. It can be used as the argument to
EX to delete them.

The transfer form and the format of the transfer file are described in APL2

Programming: Language Reference. The functions INδ and OUTδ are similar to

)IN and)OUT in APL2, but are more flexible with respect to the auxiliary

processors they use.

The following example assumes that the functions in this group are contained in a

VS APL workspace named 'MIGRATE'

 Chapter 7. The TRANSFER Workspace 105

 The TRANSFER Workspace

Transferring a workspace from VS APL to APL2:

 APL
)LOAD IT

NL←
NL 2 3
)COPY MIGRATE

NL OUTδ �IT�
)OFF HOLD
 APL2
)IN IT
)WSID IT
)SAVE

Transferring a workspace from APL2 to VS APL:

 APL2
)LOAD IT
)OUT IT
)OFF HOLD
 APL
)LOAD MIGRATE

�� INδ �IT�

EX NAMEδ
)WSID IT
)SAVE

In some unusual circumstances, you can get an error while running these functions.

If that happens, the recovery is to →0.

INPC_ and OUTPC_
The functions INPC� and OUTPC� let you translate APL/PC transfer files with

APL2. Uploading and downloading PC files can be performed by any PC/HOST file

transfer program that does not translate the file in any way. Often such communi-

cation programs provide a binary mode to prevent data from being modified during

the transfer operation.

Note: These utilities are necessary only for the older versions of PC APL. You

can transfer files between mainframe and PC versions of APL2 by using)IN and

)OUT directly.

APL/PC to Host
From within APL/PC, produce a transfer file of the objects to be uploaded using

)OUT. The PC DOS file produced has an extension of AIO. Upload the file to the

host system, making sure that no data is translated. Invoke APL2.

1.)LOAD the destination workspace or)CLEAR for a clear ws.

2.)COPY from the TRANSFER workspace the group GPPC�. If the

TRANSFER workspace is in library 2, type)COPY 2 TRANSFER
(GPPC�).

3. Set the translation table variable APLPC� to either APLPC1� for APL/PC 1.0

or APLPC2� (the default) for APL/PC 2.0. That is, do either

APLPC�←APLPC1� or APLPC�←APLPC2�. The APLPC� variable is

used by INPC� to determine how to translate the APL/PC transfer file from

ASCII to EBCDIC.

106 APL2 Programming: Using the Supplied Routines

 The TRANSFER Workspace

4. Invoke the function INPC� with a right argument of a character string repres-

enting the name of the transfer file to read on the host. For example, INPC�
�MYFILE AIOBIN�. The result of INPC� are the names of the objects

established.

5. Erase the TRANSFER utility with)ERASE (GPPC�) and)SAVE the

workspace.

APL/PC uses uppercase and lowercase letters in names. APL2 mainframe

allows either underscored letters or lowercase letters in names. As INPC�
establishes objects in the workspace, APL2 can convert lowercase letters found

in names to underscored letters. This is controlled by the CASE attribute asso-

ciated with the current active workspace. See APL2 Migration Guide for

details.

Host to APL/PC
The function OUTPC� writes a file suitable for downloading to APL/PC. Since

APL/PC is a subset of APL2, not all APL2 objects are appropriate for downloading

to APL/PC. For example, defined operators, nested arrays, and complex numbers

are not supported by APL/PC. Also, APL/PC has different implementation limits

than APL2. Typically, APL/PC is more restrictive than APL2. OUTPC� makes

no attempt to determine if the APL2 objects written are appropriate for APL/PC.

Refer to APL2 for the IBM PC: User's Guide for details on implementation limits.

1.)LOAD the workspace to be transferred.

2.)COPY from the transfer workspace the group GPPC�. If the TRANSFER
workspace is in library 2, you would type)COPY 2 TRANSFER
(GPPC�).

3. Set the translation table variable APLPC� to either APLPC1� for APL/PC 1.0

or APLPC2� (the default) for APL/PC 2.0. That is, do either

APLPC�←APLPC1� or APLPC�←APLPC2�. The APLPC� variable is

used by OUTPC� to determine how to translate the transfer file from EBCDIC

to ASCII.

4. Call the function OUTPC� with a right argument of a character string repres-

enting the name of the transfer file to create on the host. If the file already

exists, it is overwritten. The left argument is optional. If used, it must be a

character vector or matrix containing the names of the objects to be written with

at least one blank between names or with names on separate rows. For

example, �
IO MYFUN DATA� OUTPC� �MYFILE AIOBIN�. If no

left argument is given, all user variables, defined unlocked functions and the

system variables
CT,
IO,
LX,
PP, and
RL are written.

Since APL/PC does not support the underscored alphabet, all underscored charac-

ters in both names and character data are converted to lowercase.

You can download the file written by OUTPC� to the PC using a communication

program that allows the file to be transferred without modifying its contents.

Note: Ignore the various system messages produced by TSO during the execution

of INPC� or OUTPC�.

 Chapter 7. The TRANSFER Workspace 107

 The PRINTWS Workspace

Chapter 8. The PRINTWS Workspace

This workspace is used to print APL objects; that is, APL arrays, functions, and

operators. It can print:

� Selected APL objects

� The entire workspace

� A set of workspaces

You can:

� Control the format of the printed output

� Select the type of printer to be used

� Direct the formatted output to a terminal

� Store printer-formatted output (including carriage control characters) in a data

set for later printing

The functions in this workspace use the command, alternate input (stack), disk file,

and QSAM auxiliary processors.

Most of the functions and variables in the PRINTWS workspace have names with

a δ in the third position. This minimizes the likelihood of name conflicts with other

workspaces. To use the PRINTWS workspace, you usually have to combine it

with another workspace containing the functions and variables you want to print. If

any of the objects (functions or variables) you want to print have the same names

as PRINTWS workspace objects, you cannot print them without doing some rela-

tively complicated renaming or redefining.

The main user functions do not include δ in their names, so conflicts occur if the

workspace to be printed contains similarly-named objects.

The PRINTWS primary user functions are:

CLEANPRINTWS Erase all objects not in the PRINTWS workspace

LIST Display a set of APL2 objects at the terminal

MULTIPRINT Print a set of workspaces as specified interactively

PRINTWS Print the contents of an entire workspace

PRINTFV Print the objects named in one or two lists

Figure 29. PRINTWS: Primary User Functions

Primary User Functions

CLEANPRINTWS

This function erases all objects in the active workspace that are not in

GPPRINTWS� It is used by MULTIPRINT between the printing of each work-

space.

108  Copyright IBM Corp. 1985, 1994

 The PRINTWS Workspace

LIST R

R is a character vector or matrix, or a vector of vectors. LIST displays at the

terminal all the objects named in R. LIST cannot display nondisplayable func-

tions or operators. If you use the session manager, the LIST function (in conjunc-

tion with the session manager COPY command) is used to write APL objects to

disk files.

MULTIPRINT

This function asks you to identify the APL2 or VS APL workspaces or the transfer

form files you wish to print by asking you to complete a)PCOPY system

command. You can change the command to)MCOPY to identify VS APL work-

spaces, or)IN to identify transfer form files. A null response to the)PCOPY
prompt causes each of the previously-named workspaces or transfer form files to

be formatted and printed one after the other. The page headings are the com-

mands used to identify the workspaces or transfer form files.

The example in Figure 30 writes to a disk file the contents of whichever work-

spaces (or transfer form files) you specify during the execution of MULTIPRINT.

This sequence is the preferred method for printing APL objects or writing them to

disk files.

)LOAD 2 PRINTWS Substitute the correct library number for the

PRINTWS workspace if other than 2.

P1400 Select format and printer.

PFILE Indicate disk data set output.

MULTIPRINT Identify workspaces and print them in the selected

format.

Figure 30. PRINTWS Example: Printing Several Workspaces

PRINTWS

This function requires no arguments. Before it is processed, the active workspace

must contain the contents of both the PRINTWS workspace and the workspace to

be printed. This means that one must be loaded and the other must be copied.

To remove all functions and variables other than those of the PRINTWS work-

space, run the utility function CLEANPRINTWS. Another workspace can then be

copied into the active workspace and the PRINTWS function executed.

The example in Figure 31 on page 110 is one way to print the contents of work-

spaces WS1 and WS2.

 Chapter 8. The PRINTWS Workspace 109

 The PRINTWS Workspace

)LOAD 2 PRINTWS (substitute the correct library number for the

)PCOPY WS1 PRINTWS workspace if other than 2)

PRINTWS
CLEANPRINTWS
)PCOPY WS2
PRINTWS

Figure 31. PRINTWS Example: Printing Workspace Contents

PRINTWS and PRINTFV ask you to type in the information to be printed in the

header of each output page.

| L PRINTFV R PRINTFV R

L and R are character matrices containing the names of the functions and variables

to be printed. All the objects named in L are printed before the objects named in

R. The first object in R is printed at the top of a page. A numerical value (0, for

instance) entered as a list name is treated as a null list.

Note: If the name lists for workspaces other than the PRINTWS workspace itself

are constructed by use of the
NL system function, this should be done before the

two workspaces are combined in the active workspace.

Printer Selection Functions

Figure 32 lists the printer selection functions and describes them briefly.

PTERMINAL Format output for the user's terminal

P1400 Format output for an impact printer

P3800 Format output for a nonimpact printer

PFILE Store formatted output on a disk data set

Figure 32. PRINTWS: Printer Selection Functions

These functions, if required, should be processed before any of the primary user

functions. They require no arguments. If the active workspace is stored after one

of them is run, it does not need to be run again when the modified workspace is

reloaded. For example, an installation that uses nothing but impact printers can

load the PRINTWS library workspace, run the function P1400 and save the work-

space. All printing is formatted for impact printers on subsequent loadings of the

PRINTWS workspace.

Environment System Command Functions

The PRINTWS workspace has a defined function CMδD for processing environ-

ment system commands. When the PRINTWS workspace is active, you can use

this function to run system commands from your terminal.

110 APL2 Programming: Using the Supplied Routines

 The PRINTWS Workspace

 Environment Dependencies

This section discusses the environment dependencies for CMS and TSO.

 CMS
In CMS, the PRINTWS workspace uses the QSAM auxiliary processor to direct

output to a virtual printer file, using the CMδD function. The syntax of this function

is:

Z←CMδD R

R is a character string containing a CMS command. Z is a return code. 0 indi-

cates successful execution of the command.

The meaning of nonzero codes is found in VM/SP Diagnosis: System Messages

and Codes, SC19-6204.

Use the CMδD command to specify print class, forms, line spacing, character fonts,

and number of copies. You can store standard setups as character strings to be

used as inputs to CMδD.

 TSO
In TSO, the PRINTWS workspace gets its printing done either by using a

SYSOUT queue dedicated to the printing of APL objects, or by submitting a batch

print job. The first method is the preferred one; the second should only be used

when a dedicated SYSOUT queue is unavailable. For more information, see the

HOWTSO variable in the workspace.

The JCL required for a print job varies so much from one location to another that

no general-purpose function can be provided. The function that generates the JCL

is called PJδCL. Figure 33 on page 112 shows how it is used. The first part of

the figure shows PJδCL prompts and user responses. The second part shows the

character array, JCLDECK, that PJδCL produced. Notice how it incorporated

user responses.

(The lines containing the colon are prompt-response pairs, the prompt is to the left

of the colon, the response to the right.)

 Chapter 8. The PRINTWS Workspace 111

 The PRINTWS Workspace

1. Using PJδCL Function to Create JCLDECK Character Array

 PJδCL
NAME: BOGLE, C� J�
CHARGE NUMBER: XY10
DEPARTMENT NUMBER: 10XY
BUILDING: X10Y
OUTPUT BIN: 1XY0
ROOM NUMBER: 435211

2. Character Array JCLDECK Created by User Responses to PJδCL Prompts

 JCLDECK
//B7220001 JOB (B722166,�A=XY10,D=10XY�),
// �BOGLE, C� J��,NOTIFY=B722166,CLASS=V,MSGCLASS=Z,
// TIME=(0,15),USER=B722166
/*OUTPUT OUTP X=foδnt,C=fcδb,F=foδrm,N=coδpies
/*JOBPARM B=X10Y,D=10XY,O=1XY0,R=435211,K=0
//TSOAPL EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=(A,,OUTP)
//SYSUT1 DD DSN=B722166�wsn�LIST,
// DISP=(OLD,DELETE,KEEP)
//JCL DD DSN=B722166�wsn�CNTL,
// DISP=(OLD,DELETE,KEEP)
//

Figure 33. PRINTWS: Processing and Results of PJδCL Function

The first time you try to print a workspace under TSO, you are asked to provide the

information needed to prepare JCL for a print job in your name. If the workspace is

not modified, the questions you are asked are those illustrated in Figure 33. Due

to local variations, however, you probably need to modify the PJδCL function to

get the correct JCL.

Once you answer the questions needed to prepare the job control file required to

submit your print jobs, a PRINT2.JCL file with your responses is created. The next

time you sign on, this file is used to submit a print job.

112 APL2 Programming: Using the Supplied Routines

 The SQL Workspace

Chapter 9. The SQL Workspace

You can use the facilities of the SQL workspace to pass requests to AP 127, the

Structured Query Language Auxiliary Processor. SQL is a high-level language for

manipulating data in relational databases.

For more information about the APL2/SQL interface, the SQL language, and the

SQL workspace, see APL2 Programming: Using Structured Query Language.

 Copyright IBM Corp. 1985, 1994 113

 The MEDIT Workspace

Chapter 10. The MEDIT Workspace

| The MEDIT workspace is used primarily for display devices without the APL

feature.

If you have an APL display terminal, it is usually better to edit with the general-

purpose, full-screen editors (XEDIT, for example) that are available in your environ-

ment.

| Use MEDIT to edit APL2 programs (operators and functions) when you do not

| have access to the APL character set.

Editing APL Variables and Defined Functions

The MEDIT workspace provides a collection of defined functions that you can use

to:

� Edit simple character-array variables

� Edit functions and operators without using the standard line-by-line APL func-

tion editor

� Create new objects

� Edit APL objects using display terminals without the APL feature

The Basic Edit Procedure
To editing an existing object:

1. Convert the object into the form required by the edit functions

2. Add, insert, delete lines of text; modify individual lines or groups of lines;

display intermediate results before completing the editing process

3. Reconvert the edit text into an operator, function, or variable

Creating New APL2 Functions or Character Arrays
To create a new APL2 object:

1. Initialize the text for editing

2. Add, insert, delete lines of text; modify individual lines or groups of lines;

display intermediate results before completing the editing process

3. Reconvert the edit text into an operator, function, or variable

Display Terminals without the APL feature
To use a graphic display terminal without the APL feature, the basic edit procedure

must be:

� Preceded by translating each APL character to a unique set of non-APL char-

acters

� Followed by retranslating to APL characters

114  Copyright IBM Corp. 1985, 1994

 The MEDIT Workspace

Using the MEDIT Functions

This section discusses the functions provided with the MEDIT workspace.

Converting APL Objects for Editing
You must run either APLFIN or APLVIN before you can edit an existing APL2

object. APLVIN puts a character array variable into a form suitable for editing.

APLFIN does the same for a defined function or operator.

They are used as in the following examples:

 APLVIN JCLDECK

 APLFIN �REPLACE�

When using APLFIN, put the function name in quotation marks. When using

APLVIN, do not enclose the variable name in quotation marks.

After editing is complete:

JCLDECK←LIST ALL Redefines the variable JCLDECK to its edited value

FX LIST ALL Redefines the function REPLACE to its edited value

JCLDECK (shown in Figure 36 on page 120) and REPLACE (shown in

Figure 34 on page 117) are the names of a variable and function that are used in

the illustrative examples below.

Pre- and Post-Editing Functions
This section discusses the pre- and post-editing functions supplied with the MEDIT

workspace.

Terminals without the APL Feature
If you are editing an APL function FN on a display terminal that cannot enter or

display APL characters, you must first translate the function by using QCR. This

produces a character array for processing by APLVIN, as follows:

APLVIN QCR �FN�

Use APLVIN rather than APLFIN to edit a function that has been translated by

QCR. This is because the output of QCR is a character array, which is the type of

input processed by APLVIN, and not a function name, which is the type of input

required by APLFIN.

After editing is complete, you can turn the edit text into a function by retranslating

and fixing as follows:

QFX LIST ALL

LIST and ALL are edit functions that are described later.

You can make assignments on non-APL terminals with the ASSIGN function. Its

left argument is a character scalar or vector that contains a name. Its right argu-

ment is any array. There is no explicit result.

 Chapter 10. The MEDIT Workspace 115

 The MEDIT Workspace

For example:

�NAME� ASSIGN ι4
 NAME
1 2 3 4

 Editing
The edit functions can be grouped into the following categories:

CLEAR, START Initialization

AFTER, ADD, BEFORE Input

C, CHANGE, DELETE, REPLACE Change

ALL, AT, BOT, D, FIND, FROM, THRU, TOP, U Select

LIST, NUMBER Output

TABS Set tabs

The edit functions work on simple two-dimensional character arrays only. The rows

in these arrays are assigned line numbers; the first line is numbered 0. At any

point in the edit procedure the value of the current line number is stored in the

variable LN. This value is established and changed by the edit operations

described below.

The values of two variables CCOL and LRECS (“Cutoff Column” and “Record

Length”) give, respectively, the number of columns in the array and the number of

the last column that can be modified by the edit functions. For example, if CCOL is

71 and LRECS is 80, you can't make any modifications past column 71; with these

settings the continuation column and serial number field in a card deck are pro-

tected.

The Initialization Functions
The function START (with no arguments) initializes the edit text and opens the

| keyboard for adding lines of data to an 80-character wide matrix. It starts the func-

tion CLEAR, which establishes an array width of 80 and an input cutoff column of

71.

The Input Functions
The input functions (ADD, AFTER, and BEFORE) are similar in several ways:

� None take an argument

� They are entered as single words

� They open the keyboard for input

� Input is terminated by entering a null line (pressing the ENTER or carriage-

return key with no other input)

The various input functions (including the input requested by REPLACE, which is

discussed in the next section) are different only in where the input lines are placed.

� ADD appends the input lines to the bottom of the current array

� AFTER inserts the input lines after the current line

� BEFORE inserts the input lines before the current line

� REPLACE deletes N lines after the current line (where N is the argument) and

inserts replacement lines

116 APL2 Programming: Using the Supplied Routines

 The MEDIT Workspace

 U: identifies user entry

 E: identifies edit program response

 A: identifies APL system response

Figure 34 (Part 1 of 2). MEDIT: How to Use the Edit Functions

 APLFIN �REPLACE�
 LIST ALL
REPLACE n
BEFORE
LN←LN+1
DELETE n
LN←LN|1

U: Put function REPLACE in editing form

U: Request list of all lines in function

E:

E: Edit program listing of all lines

E: in object being edited.

E:

E:

NUMBER LIST ALL
0 REPLACE n
1 BEFORE
2 LN←LN+1
3 DELETE n
4 LN←LN|1

U: Request numbered list of all lines

E:

E: Edit program listing of line

E: numbers and lines in object

E: being edited.

E:

 FIND ALL
ENTER TEXT :
LN
LN←LN+1

U: Request search through all lines

E: Request entry of search text

U: Entry of search text

E: Copy of first line found

 CHANGE ALL
OLD
LN
NEW
LINENO

U: Request change to apply to all lines in function

E: Request entry of text to be changed

U: Entry of text to be changed

E: Request entry of substitute text

U: Entry of substitute text

LIST 2 THRU 4
LINENO←LINENO+1
DELETE n
LINENO←LINENO|1

U: Request listing of lines 2 3 4

E: Edit program listing of

E: requested lines

E:

 AT 2
1

U: Position current line at 2

E: Edit program output of value 1

 LN
2

U: Request current value of LN
A: APL display of value

 Chapter 10. The MEDIT Workspace 117

 The MEDIT Workspace

Figure 34 (Part 2 of 2). MEDIT: How to Use the Edit Functions

 C
OLD
LINENO
NEW
LN
LN←LN+1

U: Request single-line change

E: Request input of text to be changed

U: Entry of text to be changed

E: Request input of substitute text

U: Entry of substitute text

E: Copy of changed line

 D 2
LINENO←LINENO|1

U: Move current line down 2

E: Copy of current line

 C
OLD
LINENO
NEW
LN
LN←LN|1

U: Request single-line change

E: (See above)

FX LIST ALL
REPLACE

U: Convert edit object to function

A: APL output of name of function

fixed by
FX system function

118 APL2 Programming: Using the Supplied Routines

 The MEDIT Workspace

Figure 35. MEDIT: Editing Functions on Non-APL Display Terminals

 #DELETE [
]# U: Request listing of DELETE
on an APL terminal

 #
[0] DELETE n;
IO
[1]
IO←0
[2] n←((0}LN)ρ0),(0}~n)ρ1
[3] TDS←(�(1↑ρTDS)↑n)-TDS
 # 1984|08|31 4�00�00 (GMT|8)

A:

A: Function

A: Listing

A:

 QCR DELETE

DELETE &NUN ;&QUA IO
&QUA IO&LAR 0
&NUN &LAR ((0&UST LN)&RHO 0),(0&UST &DST &NUN)&RHO 1
TDS&LAR (&TIL (1&UAR &RHO TDS)&UAR &NUN)SHB TDS

U: Translate DELETE function to

 non-APL characters

 E: Output

 E: of

 E: QCR
 E:

APLVIN QCR �DELETE�

NUMBER LIST 1 THRU 3

U: Translate DELETE and put into

 editing form

U: Request numbered list of

statements in DELETE
1 &QUA IO&LAR 0
2 &NUN &LAR ((0&UST LN)&RHO 0),(0&UST &DST &NUN)&RHO 1
3 TDS&LAR (&TIL (1&UAR &RHO TDS)&UAR &NUN)SHB TDS

 AT 1
1

 C
OLD
0
NEW
1
&QUA IO&LAR 1

*** The remaining entries in this

*** figure show how to make a change

*** in the QCR version of the

*** DELETE function, how to

*** reconvert it to the APL

*** character version, and what

*** the function looks like on an APL

*** terminal after the change.

QFX LIST ALL
DELETE
 #DELETE[
]#
 #
[0] DELETE n;
IO
[1]
IO←1
[2] n←((0}LN)ρ0),(0}~n)ρ1
[3] TDS←(�(1↑ρTDS)↑n)-TDS

1984|08|31 13�50�12 (GMT|8)

 Chapter 10. The MEDIT Workspace 119

 The MEDIT Workspace

Figure 36. MEDIT: Editing a JCL Deck

 APLVIN JCLDECK U: Put variable JCLDECK in

 editing form

NUMBER LIST ALL

 0 //IMPT JOB (S667221,�A=SH44,B=090,D=M46,O=X256,R=D256�),
 1 // �STEINWAY A� J��,NOTIFY=S667221,USER=S667221,
 2 // MSGCLASS=F,
 3 // PASSWORD=
 4 //TIME=(1,0),MSGLEVEL=(1,1)
 5 //BLDDS EXEC PGM=IEBGENER
 6 //SYSPRINT DD SYSOUT=A
 7 //SYSUT2 DD DSN=M166722�@W�PRTGP,
 8 // UNIT=SYSDA,SPACE=(TRK,(20,5)),
 9 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
10 // DISP=(,CATLG)
11 //SYSIN DD DUMMY
12 //SYSUT1 DD DATA

U: Request output of numbered

list of lines

 E: MEDIT

 E: output

E: of numbered list

E: of all lines in

E: current edit

 E: variable

 FIND ALL
ENTERTEXT :
DATA
//SYSUT1 DD DATA

U: Search all lines

E: Request for search text

U: Entry of search text

E: Copy of first line found

 C
OLD
DATA
NEW
*
//SYSUT1 DD *

U: Request single-line change

E: Request for old text

U: Entry of old text

E: Request for new text

U: Entry of new text

E: Copy of changed line

 JCLDECK←LIST ALL E: Assign new value to JCLDECK

 JCLDECK
//IMPT JOB (S667221,�A=SH44,B=090,D=M46,O=X256,R=D256�),
// �STEINWAY A� J��,NOTIFY=S667221,USER=S667221,
// MSGCLASS=F,
// PASSWORD=
// TIME=(1,0),MSGLEVEL=(1,1)
//BLDDS EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//
SYSUT2 DD DSN=M166722�@W�PRTGP,
// UNIT=SYSDA,SPACE=(TRK,(20,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(,CATLG)
//SYSIN DD DUMMY
//SYSUT1 DD *

E: Check new value

A: APL system output

A: of value of

A: JCLDECK

The Change Functions
One change function (C) applies changes only to the current line. The others

(CHANGE, DELETE, and REPLACE) modify N lines starting with the current line,

where N is the argument to each function.

C and CHANGE request old and new character strings and replace the old with the

new. C does this wherever the old string occurs in the current line only.

CHANGE does it starting with the current line and its N|1 successors.

120 APL2 Programming: Using the Supplied Routines

 The MEDIT Workspace

REPLACE inserts new lines and deletes old ones in the manner described in the

preceding section. If there is no input, the effect is the same as DELETE, which

deletes N lines starting with the current one.

The syntax of each function is shown in Figure 37

R←C LN is unchanged. R is a copy of the modified line.

CHANGE N LN is the number of the last line changed.

DELETE N LN is unchanged.

REPLACE N LN is the number of the last line inserted.

Figure 37. MEDIT: The Change Functions

The Select Functions
The select functions all return a numerical output value except the functions D
(Down), U (Up), and FIND. These functions change the value of LN and return a

copy of the line numbered LN (except that FIND returns a null line if its search is

unsuccessful).

The purpose of returning numerical values is to provide input values to other edit

functions. The function ALL, for example, sets LN to 0 and returns the number of

lines in the edit array. You can use this value as input to a function like LIST,

and the combination produces a list of all the lines in the edit array. Experimenting

with combinations of select and nonselect functions helps you develop a set of

useful patterns. Some examples are presented in a later section.

The syntax of each function is given in Figure 38 on page 122.

 Chapter 10. The MEDIT Workspace 121

 The MEDIT Workspace

R←AT L Set LN to L and return the value 1.

R←ALL Set LN to 0 and return the number of lines in the text.

R←BOT Set LN to the number of the last line and return this

value.

R←D N Set LN to LN+N and return a copy of the new current

line.

R←FIND N Request input of search string and search N lines for this

string.

If the string is found, set LN to the number of the first line

where it is found and return this line as output.

If the string is not found, set LN to a number one greater

than that of the last line searched and return a null vector

as output.

R←A FROM B Set LN to B and return the value A.

R←A THRU B Set LN to A and return the value 1+B|A.

R←TOP Set LN to 0 and return the value 0.

R←U N Set LN to LN|N and return a copy of the new current

line.

Figure 38. MEDIT: The Select Functions

The Output Functions
The output functions produce character arrays consisting of all or part of the array

being edited.

LIST Produces a set of lines exactly as they occur in the array

being edited.

NUMBER Produces a set of lines prefixed by their respective line

numbers.

VAR←LIST ALL Stores the edited object as a variable called VAR.

FX LIST ALL Converts the edited object into a function.

The function name is output by the
FX system function.

This is the name found on the first line of the edit object (if

the lines as a whole form a valid function definition).

Figure 39 on page 123 shows the syntax of both functions.

122 APL2 Programming: Using the Supplied Routines

 The MEDIT Workspace

R←LIST N Output N lines starting with the current one.

Set LN to one plus the number of the last line listed.

R←NUMBER A Print the character matrix A with a line number to the

left of each of its lines.

The lines are numbered consecutively

and the number of the last line is LN|1.

As a result of this convention:

NUMBER LIST ALL

Produces a numbered listing of the entire edit array.

Figure 39. MEDIT: The Output Functions

The Set Tabs Function
The function TABS assists in setting tab stops on 2741-like terminals. It takes a

numeric argument that contains the desired tab positions. It types the letter T at

these positions and allows time for depression of a Tab Set key by the user. Thus:

TABS 10 20 30

helps you set tabs at the 10th, 20th, and 30th positions to the right of the current

left margin.

 Usage Notes

This section supplies notes on the use of:

� LRECS and CCOL

� QCR and QFX

� APL and non-APL translate table

LRECS and CCOL
When you use START (which starts the function CLEAR) to begin input of a new

function or variable, LRECS is set to 80 and CCOL to 71.

APLVIN sets both LRECS and CCOL equal to the number of columns in the

input array.

APLFIN uses
CR to make a character array of its input function and adds 10

blank columns on the right to allow for longer lines created by the editing process.

In all cases, lines that turn out to be longer than LRECS are rejected. If this is

likely to occur, you can use the APL ↑ primitive function to add blank columns on

the right of an input array. Thus:

 ARRAY←(0 20+ρARRAY)↑ARRAY

redefines ARRAY to have an additional 20 blank columns on its right. Each line

has twenty additional positions to expand into as the result of an edit operation.

 Chapter 10. The MEDIT Workspace 123

 The MEDIT Workspace

QCR and QFX
The mapping that translates APL characters into non-APL character strings

produces arrays that can be bewildering in appearance. Before editing these

arrays, you might want to spend some time memorizing the symbol names and

abbreviations in Figure 40.

QFX always attempts to convert its input to a function. When this isn't possible,

QFX produces the translated character array as output. Thus, if the original input

to QCR was a variable, it is redefined as a function by QFX if it happens to be a

valid canonical representation of a function. Should this happen, the unintended

function can be converted to a variable by using the system function
CR.

Conversely, if the original input was a function, and mistakes in editing make it

impossible to return the edited array to function form, QFX returns the translated

character array as output. If you apply QCR and QFX to variables, you should

name the output of QFX with an APL assignment.

VARNAME LAR QFX LIST ALL

This is also a good practice to follow when editing functions. If the function is suc-

cessfully fixed by QFX, VARNAME contains the name of the edited function. If it is

not, VARNAME contains a character array that is a defective canonical represen-

tation of a function.

APL, Non-APL Translate Table
Certain APL characters cannot be displayed on a terminal without the APL feature.

QCR replaces each of these with a five-character code. The first character is a

delimiter (the default delimiter is &). The last is a space. The intervening three are

alphabetic codes.

The QCR codes, their symbol, indication of overstrikes, and character names from

which they are derived are listed alphabetically in Figure 40 on page 124.

Becoming familiar with the names and codes helps you edit arrays in which trans-

lated characters appear. There are no mnemonics for characters that normally

appear on non-APL terminals.

Figure 40 (Page 1 of 3). MEDIT: Mnemonics for

Non-APL Terminals

Figure 40 (Page 1 of 3). MEDIT: Mnemonics for

Non-APL Terminals

Mne-

monic Symbol

Over-

strike

Symbol

Name

Mne-

monic Symbol

Over-

strike

Symbol

Name

ALP α Alpha CUN � C� C Underbar

AUN � A� A Underbar � Dot

 � Bar DAR ↓ Down Arrow

BUN � B� B Underbar DCA � Down Caret

CBA
 ○| Circle Bar DCT � �� Down Caret

Tilde
CIR ○ Circle

DDO � ¨� Dieresis Dot
CSL � ○� Circle Slope

DEL # DelCSR " ○* Circle Star

DIE ¨ DieresisCST � ○� Circle Stile

DIV ÷ Divide : Colon

DLS @ #� Del Stile , Comma

124 APL2 Programming: Using the Supplied Routines

 The MEDIT Workspace

Figure 40 (Page 2 of 3). MEDIT: Mnemonics for

Non-APL Terminals

Figure 40 (Page 2 of 3). MEDIT: Mnemonics for

Non-APL Terminals

Mne-

monic Symbol

Over-

strike

Symbol

Name

Mne-

monic Symbol

Over-

strike

Symbol

Name

DLT � #� Del Tilde LUN � L� L Underbar

DSH < Down Shoe

(Cup)

MUN � M� M Underbar

NE ≠ Not Equal

DST ~ Down Stile
NG Not Greater

DTA δ Delta
NL ≮ Not Less

DTJ � ⊤� Down Tack

Jot
NUN � N� N Underbar

OBA � Overbar
DTK ⊤ Down Tack

OME ω Omega
DTS ? δ� Delta Stile

OUN $ O� O Underbar
DTU � δ� Delta

Underbar + Plus

PUN � P� P UnderbarDUN � D� D Underbar

QDI �
÷ Quad DivideDUT � ⊤� Down Tack

Up Tack

(I-Beam)
QDO ! �� Quote Dot

QJO ^
� Quad Jot
EPU > ε� Epsilon

Underbar QQU '
� Quad Quote

QSL \
� Quad SlopeEPS ε Epsilon

QUA
 Quad = Equal

 	 QueryEQU � =� Equal

Underbar
 ' Quote

EUN � E� E Underbar
QUN � Q� Q Underbar

FUN � F� F Underbar
RAR → Right Arrow

 > Greater
RBR] Right Bracket

GUN � G� G Underbar
RHO ρ Rho

HUN � H� H Underbar
) Right Paren

IOT ι Iota
RSH � Right Shoe

IOU ` ι� Iota Underbar
RUN � R� R Underbar

IUN � I� I Underbar ; Semicolon

JOT � Jot SHB - /| Slash Bar

JUN � J� J Underbar SLB . �| Slope Bar

KUN � K� K Underbar SLO � Slope

LAR ← Left Arrow Space

LBR [Left Bracket * Star

 (Left Paren STI � Stile

LRB _ [] Left Right

Bracket
SUN � S� S Underbar

TIL � Tilde
LSH � Left Shoe

TIM � Times
 < Less

TUN � T� T Underbar

 Chapter 10. The MEDIT Workspace 125

 The MEDIT Workspace

Figure 40 (Page 3 of 3). MEDIT: Mnemonics for

Non-APL Terminals

Mne-

monic Symbol

Over-

strike

Symbol

Name

 � Underbar

UAR ↑ Up Arrow

UCA � Up Caret

UCT �� Up Caret

Tilde

USH { Up Shoe

(Cap)

USJ � {� Up Shoe Jot

UST } Up Stile

UTJ % �� Up Tack Jot

UTK � Up Tack

UUN ¡ U� U Underbar

VUN ¢ V� V Underbar

WUN £ W� W Underbar

XUN ¤ X� X Underbar

YUN ¥ Y� Y Underbar

ZUN ¦ Z� Z Underbar

126 APL2 Programming: Using the Supplied Routines

Part 2. External Routines

Chapter 11. External Routines . 129

APL2PI—APL2 Program Interface . 132

APL2PIE—APL2 Program Interface Extended 133

ATP—Array to Pointer . 135

ATR—Array To Record . 136

ATTN—Handling Attentions . 137

BUILDRD—Build a Routine Description . 138

BUILDRL—Build a Routine List . 139

CAN—Compress and Nest . 140

CMSIVP—Installation Verification under CMS . 141

CSRIDAC—Request or Terminate Access to a Data Object 142

CSRREFR—Refresh an Object . 144

CSRSAVE—Save Changes Made to a Permanent Object 145

CSRSCOT—Save Object Changes in a Scroll Area 146

CSRVIEW—Start or Terminate a View of an Object 147

CTK—Character to DBCS Conversion . 149

CTN—Character to Number . 150

DAN—Delete And Nest . 151

DFMT—Format Arrays Containing DBCS Data 152

DISPLAY—Display Array Structure . 153

| DISPLAYC—Display Array Structure . 154

DISPLAYG—Display Array Structure . 155

DSQCIA—QMF Callable Interface . 156

| EDITORX—System Editor Access . 158

| EDITOR2—Full-Screen APL2 Editor . 159

EXP—Execute in the Previous Namescope . 160

FED—Diagnostic Information . 163

HELP—Retrieve Keyed Help Text for an Application 164

Using Help to Retrieve a List of Keys . 164

Using Help to Retrieve Text . 164

Using Help as an Online Help Facility . 165

HELP Return Codes: . 165

IDIOMS—APL2 Phrases . 166

| IN—Read a Transfer File into the Active Workspace 167

KTC—DBCS to Character Conversion . 168

MSG—Message Services Request . 169

OPTION—Query or Set APL2 Invocation Options 170

| OUT—Write Objects to a Transfer File . 172

PACKAGE—Creating a Namespace . 173

PBS—Handling Printable Backspaces . 174

PFA—Pattern from Array . 175

| PIN—Protected Read of a Transfer File into the Active Workspace 176

PTA—Pointers to Array . 177

QNS—Query the Current Namescope . 178

RAPL2—Remote-Session Manager . 179

RTA—Record to Array . 181

SAN—Slice and Nest . 182

SERVER—TCP/IP Port Server . 183

SVI—Shared Variable Processor Information . 184

TIME—Performance Monitoring . 185

 Copyright IBM Corp. 1985, 1994 127

TSOIVP—Installation Verification under TSO . 187

δEXEC—Execute an APL Array as a REXX Program 188

δF—Query File Status . 189

δFM—Read or Write a Fixed Record Length File 190

δFV—Read or Write a Variable Record Length File 191

128 APL2 Programming: Using the Supplied Routines

 Chapter 11. External Routines

A number of external routines are distributed with APL2. These routines provide

useful functions, such as installation verification and serviceability aids.

The external routines discussed in this chapter are called through Processor 10 and

Processor 11. They are accessed through
NA and depend upon availability of a

NAMES file distributed with APL2 (AP2VN011 NAMES in VM/CMS and

APL2.SAP2NICK in MVS/TSO). The NAMES file must be made available to the

user, either on an accessible minidisk in VM/CMS or by allocating the NAMES file

as ddname AP2TN011 in MVS/TSO. To access a specific routine,
NA is used.

For example:

3 11
NA �TIME�

The external routines are also available in the SUPPLIED workspace. See

“SUPPLIED: Information About External Functions” on page 11 for further infor-

mation.

Once accessed, the routines perform like normal, locked APL functions.

This chapter describes each of the external routines distributed with APL2.

Detailed descriptions of the external routines follow Figure 41 in alphabetical order

by routine name.

| Figure 41 (Page 1 of 3). APL2/370 External Routines

| External

| Routine| Function

| Data Conversion

|

| ATR| Convert an APL array to a record with mixed data

| types

| 136

| CTK| Convert extended character data to mixed DBCS

| data

| 149

| CTN| Convert character data to numeric data| 150

| DFMT| Format an array of extended character data| 152

| KTC| Convert mixed DBCS data to extended character

| data

| 168

| PFA| Generate a pattern for ATR or RTA| 175

| RTA| Convert a record to an APL array| 181

| CAN1| Compress and Nest| 140

| DAN1.| Delete and Nest| 151

| SAN1| Slice and Nest| 182

|

 Copyright IBM Corp. 1985, 1994 129

| Figure 41 (Page 2 of 3). APL2/370 External Routines

| External

| Routine| Function

| External Routine Support

|

| APL2PI| A niladic form of APL2PIE| 132

| APL2PIE| Interface with non-APL programs that call APL2.| 133

| ATP| Update parameters passed by a non-APL program| 135

| BUILDRD| Build a routine description for an external routine| 138

| BUILDRL| Build a routine list for a module containing external

| routines

| 139

| EXP| Request APL evaluation in the previous namescope| 160

| PACKAGE| Convert a workspace to a namespace| 173

| PTA| Extract parameters passed by a non-APL program| 177

| QNS| Query the current namescope| 178

|

| APL Object Access

|

| EDITOR22| A program interface to Editor 2| 159

| EDITORX2| A program interface to a named system editor| 158

| IN2| Program access to system command)IN| 167

| OUT2| Program access to system command)OUT| 172

| PIN2| Program access to system command)PIN| 176

|

| REXX Access (Processor 10)

|

| δEXEC| Execute a REXX program| 188

| δF| Obtain information about a CMS or MVS file| 189

| δFM| Read or write a file as a matrix| 190

| δFV| Read or write a file as a vector of vectors| 191

|

| System Data Access

|

| CSRIDAC| Access an MVS/ESA* virtual data object| 142

| CSRREFR| Refresh an MVS/ESA virtual data object| 144

| CSRSAVE| Save changes to a permanent MVS/ESA virtual

| data object

| 145

| CSRSCOT| Save MVS/ESA virtual data object changes in a

| scroll area

| 146

| CSRVIEW| Define a view on an MVS/ESA virtual data object| 147

| DSQCIA| Interact with the database Query facility| 156

|

130 APL2 Programming: Using the Supplied Routines

| Figure 41 (Page 3 of 3). APL2/370 External Routines

| External

| Routine| Function

| Environment Control

|

| ATTN| Query or reset the attention flag| 137

| MSG| Use APL2 message facilities from an application| 169

| OPTION| Query or set APL2 invocation options| 170

| PBS| Query or set the)PBS state| 174

| RAPL22| Run the remote-session manager| 179

| SERVER| Start a TCP/IP port server| 183

| SVI| Determine shared variable processor numbers or

| user IDs.

| 184

|

| Usage and Debugging Aids

|

| CMSIVP| Installation verification under CMS| 141

| DISPLAY| Display an array in a form that shows nesting and

| data types

| 153

| DISPLAYC| The same as DISPLAY.| 154

| DISPLAYG| The same as DISPLAY, but using box characters| 155

| FED| Diagnostic tool for IBM service usage| 163

| HELP| Obtain information from APL2HELP files| 164

| IDIOMS2| Search the APL2 phrase collection| 166

| TIME| Performance monitoring within a workspace| 185

| TSOIVP| Installation verification under TSO| 187

| | |

| Notes:

| 1. The Partition primitive (�) should be used instead of these three functions.

| 2. Not available in Application Environment.

|

 Chapter 11. External Routines 131

 APL2PI

APL2PI—APL2 Program Interface

This function facilitates communication from APL2 to non-APL applications.

result←APL2PI

result Is a two- or three-element vector. The first two elements are an

integer code that indicate the success or failure of the request.

The third element, if present, is a return code issued by the

non-APL application when it terminates, or a message if the

non-APL application used the APLX service.

APL2PI is a niladic form of APL2PIE used to return control to the non-APL

application after APL2 initialization or after an APLX call from the non-APL applica-

tion. It is particularly useful because you can specified it as RUN(APL2PI) when

starting APL2.

Using APL2PI is the same as using APL2PIE 0 ��.

For more information about using APL2PI, see the discussion of calling APL2 in

APL2/370 Programming: System Services Reference.

Note: When establishing an association to APL2PI using
NA, you must code a

zero as the name class of the object. For example:

0 11
NA �APL2PI�

This is required for proper operation of the APL2PI interface.

132 APL2 Programming: Using the Supplied Routines

 APL2PIE

APL2PIE—APL2 Program Interface Extended

An APL2 external function to make it easier to communicate between APL2 and

non-APL applications. APL2PIE is an ambi-valent function that provides several

functions:

� Return control from the APL2 environment to the currently-active non-APL

application

� Start a non-APL application from the APL2 environment

� Request termination of the currently-active non-APL application

� Issue a service request to a non-APL application

result←APL2PIE 0 ��
or
result←value APL2PIE 0 ��

These functions return control to the non-APL application:

value An array to be returned to the non-APL application.

result A two- or three-element vector. The first two elements are an

integer code that indicates whether the request was successful.

The third element, if present, is a return code issued by the

non-APL application when it terminates, or a message if the

non-APL application used the APLX service.

result←command APL2PIE 1 name

Start a non-APL application where:

name The name assigned to the application

command The command to start the application

result A two- or three-element vector. The first two elements make up

an integer code that indicates whether the request was successful.

The third element, if present, is a return code issued by the

non-APL application when it terminates, or a message if the

non-APL application used the APLX service.

result←APL2PIE 2 ��

Request termination of the currently-active non-APL application.

result A three-element vector. The first two elements are an integer

code that indicates whether the request was successful. The third

element is a return code issued by the non-APL application when it

terminated.

 Chapter 11. External Routines 133

 APL2PIE

result←value APL2PIE 3 name

Make a service request to the named non-APL application:

name The name of the application to direct the request to

value A value to pass to the application

result Either a two- or three-element array built by APL2PIE, or an

arbitrary array built by the non-APL application.

If the array was built by APL2PIE, the first two elements are an

integer code that indicates whether the request was successful.

The third element, if present, is a return code issued by the

non-APL application when it terminates, or a message if the

non-APL application used the APLX service.

 For more information about using APL2PIE, see APL2/370 Programming:

Processor Interface Reference.

Note: When establishing an association to APL2PIE using
NA, you must

code a zero as the name class of the object. For example:

0 11
NA �APL2PIE�

This is required for proper operation of the APL2PI interface.

134 APL2 Programming: Using the Supplied Routines

 ATP

ATP—Array to Pointer

The external function ATP allows pointer arguments passed from non-APL routines

to be replaced (i.e. updated) with an APL2 array. You can use ATP with PTA to

retrieve, then update arguments passed from non-APL programs.

pattern ATP array pointers

pattern A pattern (similar to the pattern used with ATR) that describes the

data in the desired format.

array The source array.

pointers An address or list of addresses of the data to be updated.

Note: This function does not produce an explicit result. Further, it doesn't check

to make sure the result fields are large enough to hold the source values.

The ATP function assumes a one-to-one correspondence among the data

descriptors in the left argument, the data items in the array specified in the

right argument, and the set of pointers in the right argument.

 Chapter 11. External Routines 135

 ATR

ATR—Array To Record

Use this routine to convert an APL array right argument to a character vector based

on a pattern left argument. It is useful for converting APL objects to records that

are written to a file.

record←pattern ATR array

pattern A character vector that describes the format of the right argument.

For more information about pattern, see APL2/370

Programming: System Services Reference.

array Any APL array of depth 181 or less.

record A character vector created from the ARRAY according to the

PATTERN.

Note: The RTA external routine (see “RTA—Record to Array” on page 181) is the

inverse of ATR. The PFA external routine (see “PFA—Pattern from Array” on

page 175) can also be used to generate patterns.

136 APL2 Programming: Using the Supplied Routines

 ATTN

 ATTN—Handling Attentions

This routine allows applications to signal an attention or detect whether the user

has signaled an attention.

Frequently, you need to protect applications from interruption during critical proc-

essing. You can do this by setting the ignore attention execution attribute during

function fixing. When you need to signal an application, the ATTN function tells

the application that a signal has been received, but doesn't interrupt processing.

The ATTN function can signal an attention, query whether an attention has been

signaled, or remove an attention that has been signaled. An application can use

ATTN to detect whether an attention has been signaled during
DL,
SVE, or a

long-running process. Note that signaling attention does not halt a shared variable

interlock, or cause a shared variable event.

rc←ATTN arg

arg One of the following:

ι0 Query the current attention state

0 Set the current attention state to off

1 Set the current attention state to on

rc The attention state before the call to ATTN.

 Chapter 11. External Routines 137

 BUILDRD

BUILDRD—Build a Routine Description

Use BUILDRD to create an object file containing a routine description that

Processor 11 can use to determine how to use the routine. The object file

produced by BUILDRD is link-edited with the user's routine to make it self-

describing.

For additional information on this function and Processor 11, see APL2/370

Programming: System Services Reference.

rc←file BUILDRD rdname rname rd

file The name of the file to be written, for example, 'XXXX TEXT'

rdname The name to be assigned to the routine description in the generated

object file. Specify this name as the routine's entry point name

when the routine and its description are link-edited.

rname The name of the non-APL routine.

rd A character vector containing Processor 11 tags that describe the

routine.

Any Processor 11 tags can be used. The :LINK tag is required. If

the :NICK is used, Processor 11 requires that its name match the

name specified in the right argument of
NA. The :LOAD, :MEMB,

:ENTRY, and :DESC tags are ignored.

rc The normal result of BUILRD is zero, which indicates success.

BUILRD uses δFM to write the file. Nonzero return codes are

generated by δFM. Refer to the δFM documentation for informa-

tion about these codes.

138 APL2 Programming: Using the Supplied Routines

 BUILDRL

BUILDRL—Build a Routine List

Use this routine to build an object file containing a routine list used by Processor 11

to locate routines within a module. The object file produced by BUILDRL is link-

edited with the user's routines.

For additional information on this function and Processor 11, see APL2/370

Programming: System Services Reference.

rc←file BUILDRL rlname rtndef [rtndef] ���

file The name of the file to be written, for example, 'XXXX TEXT'

rlname The name to be assigned to the routine list in the generated object

file. Specified this name as the module's entry point name when

the routine list and the non-APL routines are link-edited.

rtndef A character vector that defines a routine's entry in the routine list. It

can take any of the following forms:

 qnaname
 qnaname rname

qnaname rname intname

qnaname The name in the right argument of
NA when an

association is established.

rname The name of a non-APL routine or routine

description

intname The name of an interface management routine,

non-APL routine, or routine description.

rc The normal result of BUILRD is zero, which indicates success.

BUILRD uses δFM to write the file. Nonzero return codes are

generated by δFM. Refer to the δFM documentation for informa-

tion regarding these codes.

 Chapter 11. External Routines 139

 CAN

CAN—Compress and Nest

Use this routine to compress and partition a character vector based on a Boolean

mask.

result←mask CAN characters

mask Is a Boolean mask. Zeros in the mask correspond to characters

to be deleted from the right argument and to the beginning of the

second and subsequent elements of the RESULT.

characters Is a simple character vector

result Is a vector of character vectors.

| Note that ρresult←→,1++/�mask and that if mask
| begins with a zero, result begins with a null vector.

| ρmask←→ρcharacters. If the arguments are empty,

| result←→,���.

Note: This function has been superseded by the partition primitive.

140 APL2 Programming: Using the Supplied Routines

 CMSIVP

CMSIVP—Installation Verification under CMS

Use this routine to verify the installation of APL2 in the VM/CMS environment.

CMSIVP

There are no arguments and no result is returned.

Start the procedure by invoking the function CMSIVP, which verifies and tests

various parts of the installed APL2 system. As this happens, it displays information

on your terminal. You should check this information against the APL2 system you

believe you have installed, and investigate or correct any discrepancies.

For information on the installation procedure, see APL2/370 Installation and

Customization under CMS.

 Chapter 11. External Routines 141

 CSRIDAC

CSRIDAC—Request or Terminate Access to a Data Object

This routine provides the first (and last) step in using the data window callable ser-

vices supported by MVS/ESA. The interface provides access to temporary

hiperspaces as well as page formatted permanent files that can be viewed through

a window. See also CSRVIEW, CSRSAVE, CSRSCOT, and CSRREFR. For

additional information see MVS/ESA Callable Services for High Level Languages.

(rc rs)←CSRIDAC beginstr size idname [offsetname]

This form of CSRIDAC requests access to a data object.

beginstr A character vector containing one of the following forms:

BEGIN TEMP SCROLL
BEGIN DD ddname [SCROLL] [access]
BEGIN DS dsname [SCROLL] [access]

Note: The bracketed fields are optional. The brackets them-

selves are never part of the character vector.

TEMP Access a temporary object, which is deleted when

CSRIDAC END is done.

DD ddname Use an existing ddname to locate a linear VSAM

cluster.

DS dsname Allocate the specified linear VSAM cluster. The

dsname must be fully qualified, and is given

without quotation marks.

SCROLL A scroll area to be maintained while the data

object is accessed. This is optional except for

TEMP.

access Can be either of the following or defaulted:

READ An existing object is to be accessed as

read only.

UPDATE Exclusive control with read/write

authority is requested.

UPDATE is ignored for a new object (size
nonzero), and is the default for an existing object.

size For a new object, the limit size of the object to be created, speci-

fied in pages (blocks of 4096 bytes). For an existing object, 0
must be specified. Note that a nonzero size must be given if a

new permanent object is created or if a TEMP object is being

accessed.

idname The name of the variable where the object identifier token is

returned as an eight-element character vector. The data returned

is not displayable and should not be manipulated.

offsetname An optional name of a variable where the current size of the object

is returned as a scalar integer representing the number of 4K

blocks.

142 APL2 Programming: Using the Supplied Routines

 CSRIDAC

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in MVS/ESA Callable Ser-

vices for High Level Languages. A brief list of (rc rs) values

is included here for convenience, but it is not necessarily complete.

 0 0 Operation successful.

 8 280 No hiperspace available for temporary object or scroll

area.

 8 282 Unable to create a linear VSAM data set.

12 28 The object is currently unavailable.

12 55 Warning: accessed with irregular SHAREOPTIONS.

12 62 Object in use. (n readers or 1 updater permitted)

16 nnnn Unable to allocate as requested. Many possible

reasons, including attempt to create an existing data

set.

44 4 Window services not available.

(rc rs)←CSRIDAC �END� id

This form of CSRIDAC terminates a data object.

id The eight-element character token returned when access was

requested.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in the manual referenced

above. A brief list of (rc rs) values is included here for con-

venience, but it is not necessarily complete.

 0 0 Operation successful.

12 10 Another service is currently using the access ID.

44 4 Window Services not available.

 Chapter 11. External Routines 143

 CSRREFR

CSRREFR—Refresh an Object

This routine is part of the data window callable services supported by MVS/ESA. It

applies to a data object and optional scroll area previously defined by CSRIDAC,

and to windows on that data created by CSRVIEW. The service discards any

changes made to data within specified parts of the windows or scroll area, and

replaces the data with either:

� binary zeros if it is a TEMP object, or

� a current copy of data from the object if it is permanent.

For more information see MVS/ESA Callable Services for High Level Languages.

(rc rs)←CSRREFR id offset span

id The eight-element character token returned when access was

requested.

offset An integer that is an origin-0 4K block number within the object,

which identifies the location where replacement should begin. For

example, if 2 is specified, the replacement begins with the data at

offset 8192 in bytes from the beginning of the permanent object.

Replacement is always made into the corresponding part of the

scroll area and (as appropriate) into any part of the window associ-

ated with that data.

span The integral number of 4096 byte blocks to be refreshed.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in MVS/ESA Callable Ser-

vices for High Level Languages. A brief list of (rc rs) values

is included here for convenience, but it is not necessarily complete.

 0 0 Operation successful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

44 4 Window services not available.

144 APL2 Programming: Using the Supplied Routines

 CSRSAVE

CSRSAVE—Save Changes Made to a Permanent Object

This routine is part of the data window callable services supported by MVS/ESA. It

applies to a permanent data object and optional scroll area previously defined by

CSRIDAC, and to windows on that data created by CSRVIEW. Any changes

made to data within specified parts of the windows or scroll area are copied to the

permanent object. It is not supported for TEMP objects. For more information see

MVS/ESA Callable Services for High Level Languages.

(rc rs)←CSRSAVE id offset span [highname]

id The eight-element character token returned when access was

requested.

offset An integer that is an origin-0 4K block number within the object

identifying the location where the data should be stored. Data is

taken from corresponding parts of the window, or from the scroll

area.

span The integral number of 4096 byte blocks to be saved.

high An optional name of a variable where the new size of the object is

returned as a scalar integer representing the number of 4K blocks.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in MVS/ESA Callable Ser-

vices for High Level Languages. A brief list of (rc rs) values

is included here for convenience, but it is not necessarily complete.

 0 0 Operation successful.

 4 2055 Part of data set is damaged, but this operation is suc-

cessful.

 8 323 Cannot issue CSRSAVE for temporary object.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

44 4 Window services not available.

 Chapter 11. External Routines 145

 CSRSCOT

CSRSCOT—Save Object Changes in a Scroll Area

This routine is part of the data window callable services supported by MVS/ESA. It

applies to a data object and scroll area previously defined by CSRIDAC, and to

windows on that data created by CSRVIEW. The operation copies data from

specified parts of the windows into the corresponding portion of the scroll area. It

does not make any change to a permanent object. For additional information see

MVS/ESA Callable Services for High Level Languages.

(rc rs)←CSRSCOT id offset span

id The eight-element character token returned when access was

requested.

offset An integer that is an origin-0 4K block number within the scroll

area, which identifies the location where the data should be stored.

Data is taken from corresponding parts of the window.

span The integral number of 4096 byte blocks to be copied.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in MVS/ESA Callable Ser-

vices for High Level Languages. A brief list of (rc rs) values

is included here for convenience, but it is not necessarily complete.

 0 0 Operation successful.

 4 2055 Part of data set is damaged, but this operation is suc-

cessful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

44 4 Window services not available.

146 APL2 Programming: Using the Supplied Routines

 CSRVIEW

CSRVIEW—Start or Terminate a View of an Object

This routine is part of the data window callable services supported by MVS/ESA. It

controls a window that can be used to view a data object and/or scroll area previ-

ously defined by CSRIDAC. See also CSRREFR, CSRSAVE, and CSRSCOT,

which you can use to transfer data between the window, scroll area, and perma-

nent data object. For additional information see MVS/ESA Callable Services for

High Level Languages.

(rc rs)←CSRVIEW �BEGIN� id offset span wname [usage] [dispos]

id The eight-element character token returned when access was

requested.

offset An integer that is an origin-0 4K block number within the scroll

area or object, associated with the beginning of the window.

Note: Multiple concurrent views of an object are permitted, but

they cannot overlap within one id. For permanent objects you

can define overlapping views by using CSRIDAC to create mul-

tiple object definitions of a single stored object.

span The number of 4K blocks to reserve for the window.

wname The name of a variable that is established as a window. Subse-

quent APL statements accessing this variable reference or modify

the window. The variable is established as a character vector.

usage An optional character vector that contains either SEQ or RANDOM.

This is used as an optimizing hint to the operating system. The

default is RANDOM.

dispos An optional character vector that contains either REPLACE or

RETAIN. The default is REPLACE. If RETAIN is specified,

the existing content of the wname variable is retained, but

� the variable must exist at the current function level,

� it must be a simple character vector, and

� the expression (ρwname)=4096�span must be true.

VALUE ERROR, DOMAIN ERROR, or LENGTH ERROR
respectively are signaled if these conditions are not met.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in the manual referenced

above. A brief list of (rc rs) values is included here for con-

venience, but it is not necessarily complete.

 0 0 Operation successful.

12 10 Another service is currently using the access ID.

12 23 An I/O error occurred.

12 26 Specified range does not include any mapped blocks.

12 28 The object cannot be accessed at this time.

12 64 The request exceeds your data space limit.

44 4 Window services not available.

 Chapter 11. External Routines 147

 CSRVIEW

(rc rs)←CSRVIEW �END� id wname [dispos]

id The eight-element character token returned when access was

requested.

wname The same variable name specified by CSRVIEW �BEGIN�.

This defines which view of the object is terminated.

dispos An optional character vector containing either REPLACE or

RETAIN.

� If RETAIN is specified, the wname variable is retained with

its existing content after disassociating it from the object.

� If REPLACE is specified, the variable is retained, but with its

existing content replaced by the data to which the window is

mapped. (This is different if the variable was modified and

the window is terminated without invoking CSRSAVE or

CSRSCOT.)

� If neither is specified, the variable is deleted.

(rc rs) Return code from the operation. This includes the return_code

and reason_code parameters defined in MVS/ESA Callable Ser-

vices for High Level Languages. A brief list of (rc rs) values

is included here for convenience, but it is not necessarily com-

plete.

 0 0 Operation successful.

12 10 Another service is currently using the access ID.

44 4 Window services not available.

148 APL2 Programming: Using the Supplied Routines

 CTK

CTK—Character to DBCS Conversion

Use this routine to convert an APL character vector to a vector of mixed

EBCDIC/DBCS data. It is the inverse of KTC, and can be used in both monadic

and dyadic form.

result←CTK data

data A simple character vector

result A vector of mixed EBCDIC/DBCS data. Characters in DATA for

which 256>
AF DATA are placed unchanged in the result.

Character strings in DATA for which 256
AF DATA are pre-

fixed with SO (X'0E') and suffixed with SI (X'0F') are stored as

2-byte elements in result.

If the DBCS(nnn) invocation option is used, then the leftmost

halfword in each extended character in DATA is checked for nnn.

If any check fails, then DOMAIN ERROR results.

result←cid CTK data

cid The character set ID for the data. It is in the range 0 - 32767. If

the leftmost halfword in any extended character in DATA is not

equal to CID, then a DOMAIN ERROR results.

data An APL character vector.

result A vector of mixed EBCDIC/DBCS data. Characters in DATA for

which 256>
AF DATA are placed unchanged in the result.

Character strings in DATA for which 256
AF DATA are pre-

fixed with SO (X'0E') and suffixed with SI (X'0F') are stored as

2-byte elements in result.

 Chapter 11. External Routines 149

 CTN

CTN—Character to Number

Use this routine to convert a character vector or matrix to a numeric vector or

matrix. It yields a null vector or matrix if the argument does not contain valid

numeric representations.

numbers←CTN characters

characters A character vector or matrix that contains the formatted repre-

sentation of one or more numbers. Only numeric formats

produced by monadic % are acceptable.

numbers A numeric vector or matrix that is formed by executing the

characters argument.

150 APL2 Programming: Using the Supplied Routines

 DAN

DAN—Delete And Nest

Use this routine to partition a character vector based on a list of separator charac-

ters. Separator characters are not included in the result. See WORDS on page 40.

result←separators DAN characters

separators A list of separator characters.

characters A simple character vector.

result A vector of character vectors.

Note: This function is a subset of the partition primitive.

Strings of one or more separator characters are deleted from the right argument

and mark the separation between elements of the result. The result does not

contain empty items unless the entire right argument consists of separator charac-

ters.

If 0=ρseparators, result←→,�characters.

If 0=ρcharacters, result←→,���.

 ρεresult←→ρcharacters�separators

 Chapter 11. External Routines 151

 DFMT

DFMT—Format Arrays Containing DBCS Data

Use this routine to format APL arrays for display on a device, such as the IBM

5550 Multistation*, that supports double-byte character set (DBCS) data.

If the array to be formatted contains DBCS data, the columns of the formatted

result are expanded so that DBCS and single-byte character set (SBCS) data is

aligned correctly within the columns.

result←mask DFMT array

array The array to be formatted.

mask An optional argument that specifies how columns of the array are

grouped into logical columns and whether the logical columns are left

or right aligned.

If the mask is scalar, it is replicated to match the number of columns

in the array.

If the mask argument is elided, a mask of 1s and �1s is used.

�1s correspond to columns of the array that contain numeric scalars,

1s correspond to other columns.

ρMASK ←→ �1↑ρARRAY after scalar extension.

1 A logical column begins at the corresponding column

in the array and the logical column should be left

aligned.

�1 A logical column begins at the corresponding column

in the array and the logical column should be right

aligned.

0 The corresponding column in the array is part of the

same logical column as the one to its immediate left.

1s and �1s The beginning of logical columns in the array. Indi-

cates whether the column is padded on the right or

left with blanks if the column must be expanded to

accommodate DBCS data. Actual alignment of data

within the columns is the same as that produced by

the % primitive; that is, if the column contains simple

numeric scalars, it is right aligned, otherwise it is left

aligned.

result A one-column matrix of formatted rows of the array.

↑ρRESULT ←→ �/�1↓ρ%ARRAY

If the result is not modified, it is displayed with a leading blank column

because it is nested. �,RESULT causes the result to be displayed

without the leading blank column, but trailing blanks may be appended

because of the �.

152 APL2 Programming: Using the Supplied Routines

 DISPLAY

DISPLAY—Display Array Structure

DISPLAY produces a character array that pictorially represents the structure of its

argument. Use DISPLAY on terminals that do not have box drawing characters

available.

z←DISPLAY array

The following characters are used to convey shape information:

→ and ↓ Indicate a dimension of at least one

 and � Indicate a dimension of zero

(None of the above) Indicates no dimension

The following characters are used to convey type information:

� Indicates numeric

+ Indicates mixed

ε Indicates nested

� Indicates a scalar character that is at the same depth as nonscalar

arrays

(None of the above) Indicates a character array that is not a simple scalar

 Chapter 11. External Routines 153

 DISPLAYC

| DISPLAYC—Display Array Structure

| DISPLAYC produces a character array that pictorially represents the structure of

| its argument. Use DISPLAYC on terminals that do not have box drawing charac-

| ters available.

| z←DISPLAYC array

| The following characters are used to convey shape information:

| → or ↓ Indicates a dimension of at least one

|
 or � Indicates a dimension of zero

| (None of the above) Indicates no dimension

| The following characters are used to convey type information:

| � Indicates numeric

| + Indicates mixed

| ε Indicates nested

| � Indicates a scalar character that is at the same depth as

| nonscalar arrays

| (none of the above) Indicates a character array that is not a simple scalar

| Note: DISPLAYC is equivalent to DISPLAY, and is supplied for compatibility

| with other APL2 platforms.

154 APL2 Programming: Using the Supplied Routines

 DISPLAYG

DISPLAYG—Display Array Structure

DISPLAYG produces a character array that pictorially represents the structure of

its argument. Use DISPLAYG on terminals that have box drawing characters

available.

z←DISPLAYG array

The following characters are used to convey shape information:

→ and ↓ Indicate a dimension of at least one

 and � Indicate a dimension of zero

(None of the above) Indicates no dimension

The following characters are used to convey type information:

� Indicates numeric

+ Indicates mixed

ε Indicates nested

� Indicates a scalar character that is at the same depth as nonscalar

arrays.

(None of the above) Indicates a character array that is not a simple scalar

 Chapter 11. External Routines 155

 DSQCIA

DSQCIA—QMF Callable Interface

Use this function to access the QMF* callable interface. This new interface to QMF

allows a program to start QMF and issue QMF commands without the QMF envi-

ronment and ISPF present. In addition to regular QMF commands, three additional

commands in this interface start QMF (START) and allow the program to set and

retrieve global QMF variables (SET GLOBAL and GET GLOBAL.)

(rc handle data)←DSQCIA handle cmdstr [names vals]

handle An integer that identifies which instance of QMF a call refers to.

This parameter is used in the DSQ_INSTANCE_ID field of the QMF

communications area block, DSQCOMM. It must be 0 if the QMF

command is START, and must contain a valid handle for all other

commands.

On return from DSQCIA, handle contains the handle of the

instance of QMF for which the command was issued. At com-

pletion of a START command you must retain this value so that it

can be passed on subsequent commands.

cmdstr A character vector that contains the QMF command to be proc-

essed.

names A vector of character vectors or scalars that are QMF keywords or

variable names. The shape of the array passed must be equal to

the number of names. (If only one name is passed, it must be

enclosed.)

This parameter is required only for the SET GLOBAL and GET GLOBAL

commands. It is optional for the START command.

vals A vector of variable values. This can be a vector of character

vectors or scalars, or it can be a vector of numbers. It cannot

contain a mixture of numeric and character data.

For character values, the shape of the array passed must be equal

to the number of values. (If only one value is to be passed it must

be enclosed.)

Since integers are the only numeric type supported by the QMF

interface, you must be able to represent numbers as fullword inte-

gers. The APL2 external function issues a DOMAIN ERROR if

the array passed does not meet those requirements.

This parameter is required only if the names parameter has also

been specified. If the command is GET GLOBAL, the array is used to

determine the type of the variable and the amount of storage to

allocate for the result. The values are not modified or replaced on

the workspace.

| rc A numeric return code. The value is 0, 4, 8, 12, or 16 as

defined by the QMF callable interface.

156 APL2 Programming: Using the Supplied Routines

 DSQCIA

data A value whose meaning is dependent on the value of rc and

cmdstr.

� If rc is 0 and cmdstr contains the string GET GLOBAL,

data contains the values of the QMF variables requested.

� In all other cases, data is a character vector that contains

the QMF communications area DSQCOMM, as documented in

the QMF manuals.

Note: QMF Version 3 Release 1 or later is required for use of the DSQCIA
function. See QMF Application Development Guide, SC26-4722, for more informa-

tion on the QMF callable interface.

 Chapter 11. External Routines 157

 EDITORX

| EDITORX—System Editor Access

| This function is a program interface to a named system editor.

| [editorname] EDITORX objectname

| The character string right argument is the same expression that would be typed to

| enter the editor from APL2. The # or � can be included or omitted. If omitted # is

| assumed.

| The optional character string left argument is the name of the system editor, CLIST,

| or EXEC to call. If omitted the editor name is taken from the most recent setting of

|)EDITOR xxxx. If)EDITOR xxxx was never issued, DOMAIN ERROR is

| reported.

| Examples:

| �MYEDITOR� EDITORX �MYFUNCTION�

|)EDITOR MYEDITOR
| EDITORX ��MYFUNCTION�

| Note: This function is not available when running under APL2 Application Environ-

| ment.

158 APL2 Programming: Using the Supplied Routines

 EDITOR2

| EDITOR2—Full-Screen APL2 Editor

| This function is a program interface to Editor 2, the APL2 full-screen editor.

| EDITOR2 objectname

| The character string right argument is the same expression that would be typed to

| enter the editor from APL2. The # or � can be included or omitted. If omitted # is

| assumed.

| Examples:

| EDITOR2 �MYFUNCTION�
| EDITOR2 ��MYFUNCTION�
| EDITOR2 �#MYFUNCTION[
17]�

| Note: This function is not available when running under APL2 Application Environ-

| ment.

 Chapter 11. External Routines 159

 EXP

EXP—Execute in the Previous Namescope

Use this routine to process named functions, refer to variables, and specify vari-

ables in the previous namescope.

The EXP routine is designed to be used in namespaces and provides access to

names in the namescope of the function or operator that caused entry into the

current namescope.

If the EXP routine is run in a namescope where there is no previous namescope

(for instance, in your active workspace rather than in a name space), it operates in

the current workspace.

Note: Processing a function or operator declared with
NA causes an explicit

change to the namescope of the function or operator. Processing the EXP function

or an operand to an external operator causes an implicit namescope switch. If the

EXP function is run in a namescope that was entered implicitly, the namescope

switches to the one that originally caused explicit entry into the current namescope.

Functions processed under control of EXP operate the same as those processed

under control of
EC, and exhibit the following behavior:

� Requests for quad input are handled the same as quad input under
EC.

� Errors generated during processing do not cause suspension of the function

being processed and are reported against EXP.

� Stop control vectors (Sδ) are ignored.

� An attention signal does not cause suspension; an interrupt signal causes the

EXP function to be interrupted.

� Branch escape (→) causes the EXP function to run, but its callers are not aban-

doned.

EXP can perform four different actions, depending on how the right argument is

constructed:

� Process an expression in the previous namescope.

� Specify a variable in the previous namescope using a value from the current

namescope.

� Process a named monadic function in the previous namescope with an argu-

ment from the current namescope.

� Process a named dyadic function in the previous namescope with arguments

from the current namescope.

The right argument of EXP can contain up to three items. The number of items

and their content determine what happens.

A single item on the right (must be enclosed if there is more than one item) is an

expression to be processed in the previous namescope. If the expression is

nothing more than the name of a variable or niladic function in the previous

namescope, then you are referencing the named item.

A two-item right argument indicates a monadic function. The first item is the name

(see note) of the function and the second item is the right argument (supplied from

the current namescope).

160 APL2 Programming: Using the Supplied Routines

 EXP

A three-item right argument indicates either a specification or a dyadic function.

� If the second item of the right argument is the left arrow, then it's a specifica-

tion. The first item is the name of the variable to be set and the third item is

the value (from the current namescope) that it receives.

� If the second item is not a right arrow, then it must contain the name of a

dyadic function in the previous namescope. In this case, the first and third

items are the left and right arguments respectively (from the current

namescope).

Note: System functions (such as
FX) and system variables (such as
IO) are

included as named objects.

You can use EXP to process an expression in the previous namescope:

result←EXP �expr

result The result of processing expr

expr A character scalar or vector that contains the expression to be

processed in the previous namescope.

Example:

PRE�IO←EXP ��
IO� � GET VALUE OF
IO FROM
� PREVIOUS NAMESCOPE

Example:

IOTA2←EXP ��ι2� � 0 1 OR 1 2 DEPENDING
� ON
IO IN PREV

The following example processes a monadic function in the previous namescope

using an argument from the current namescope.

result←EXP fn�name value

result The result of processing the named monadic function in the pre-

vious namescope.

fn�name A character scalar or vector that contains the name of a monadic

function in the previous namescope.

value The right argument (from the current namescope) to be supplied to

the monadic function

To create function in previous namescope:

Z←EXP �
FX� (�R←NEWFN RA� �R←RA�)

 Chapter 11. External Routines 161

 EXP

To process a dyadic function in the previous namescope using arguments from the

current namescope:

result←EXP lvalue fn�name rvalue

result The result of executing the named dyadic function in the previous

namescope.

fn�name A character scalar or vector containing the name of a dyadic func-

tion in the previous namescope.

lvalue The left argument (from the current namescope) to be supplied to

the dyadic function.

rvalue The right argument (from the current namescope) to be supplied to

the dyadic function.

This assigns a value from the current namescope to a variable in the previous

namescope:

result←EXP vname �←� value

result The same as value.

vname A character scalar or vector that contains the name of the variable

in the previous namescope.

value The value from the current namescope that is assigned to vname.

Example:

T←EXP �
IO� �←� PREV�IO � RESTORE
IO IN
� PREVIOUS NAMESCOPE

162 APL2 Programming: Using the Supplied Routines

 FED

 FED—Diagnostic Information

Use this routine to obtain a list of recently queued or displayed messages.

messages←FED 1

messages A vector of 10 character vectors that contains the ten most

recently queued or displayed messages. Each message includes

the ID field whether or not DEBUG(1) is in effect for the session.

The oldest message is shown first.

 Chapter 11. External Routines 163

 HELP

HELP—Retrieve Keyed Help Text for an Application

This routine allows applications to retrieve keyed text or a list of keys.

Frequently, applications need to present text to their users. This text can be too

large to store in the application workspace, and can be difficult to maintain if the

application also resides in the workspace. The HELP function allows applications

to retrieve keyed text from an application-dependent help file. Help files can be

national language specific.

An APL2 help file is a normal CMS file or a TSO partitioned data set member that

contains GML-like tags. These tags define keys that delimit sections of free-form

text. A help file can also refer to other files containing more text. You can use the

HELP function to retrieve the list of keys available in a help file or the text associ-

ated with a particular key.

For more information on the format of help files, see the default APL2HELP file that

came with the APL2 product.

Using Help to Retrieve a List of Keys

keys←applid HELP ��

applid Character vector of length 1 to 8. HELP uses this as a DDname

on TSO or filetype on CMS.

If not supplied, a default value of APL2HELP is used. The current

value of
NLT is used as the member name on TSO or the

filename on CMS. If a file or member in the current national lan-

guage is not available, the ENP file is used.

keys Character matrix containing available keys in the help file.

Using Help to Retrieve Text

text←applid HELP key

key A character string of length 1 to 65. A key can contain imbedded

blanks; trailing blanks are ignored. The application help file is

searched for a record that contains a help tag, :HELP, followed by

the contents of key. All records from the tag up to the next help

tag are returned.

text A character matrix containing the text found after the key.

164 APL2 Programming: Using the Supplied Routines

 HELP

Using Help as an Online Help Facility

text←HELP key

key A character string that contains the name of an APL2 public work-

space or external function. HELP uses the IBM-supplied help

file to retrieve the tutorial text for the specified workspace or func-

tion.

text A character matrix that contains the text found after the key.

HELP Return Codes:
1 File not found. Either the indicated DDname was not allocated on TSO or

neither a
NLT nor a ENP version of the requested file could be found.

2 The specified key was not found in the file.

3 Invalid tag record was found.

4 Invalid file.

5 Space unavailable to read file or build result.

6 File IO error

7 Data conversion error

If an error occurs while trying to process a file referred to in a help tag, then the

result is negative.

 Chapter 11. External Routines 165

 IDIOMS

 IDIOMS—APL2 Phrases

This routine provides a full screen interface to commonly- used APL code segments

that provide solutions to common application problems. There are more than 700

different phrases, divided into 24 categories.

IDIOMS lets you select phrases from different APL environments, with a user-

selected index origin. You can write the selected phrases into a function in your

workspace or into the explicit result as a character matrix.

The functions provided by this utility are all function-key driven:

F1 Displays the help information for the current screen.

F2 Pops up a window of all previous searches, which lets you reselect any

previous search.

F3 Returns to APL2.

F4 Saves the APL2 idiom identified by the cursor as a function called

IDIOM�LIST. If IDIOM�LIST already exists, the selected idiom is

appended to the end of the function. This can be a prototype for a new

program using the selected expressions to accomplish the desired tasks.

F5 Limits the search to the displayed idioms. This helps you narrow the

searches without losing intermediate results.

F6 Displays a screen of the 24 categories. Place the cursor on a category

and press F6 again to display the idioms within that category, or press F3

to exit without selecting anything.

F7 Scrolls one screen toward the top.

F8 Scrolls one screen toward the bottom.

F9 Appends the APL2 expressions identified by the cursor to the output of

IDIOMS. This places them on the session-manager screen, making it

easy to experiment with the phrases. IDIOMS places the output into a

variable if invoked through RESULT←IDIOMS.

F10 Pops up a window to select environment(s) for idioms that should be dis-

played.

result←IDIOMS

result A character matrix that contains phrases selected with PF9 while in

the application

| Note: This function is not available when running under APL2 Application Environ-

| ment.

166 APL2 Programming: Using the Supplied Routines

 IN

| IN—Read a Transfer File into the Active Workspace

| This function is a program interface to the)IN system command.

| IN �file [names]�

| file Is the name of a transfer file, following the naming conventions and

| defaults of the host system. Default filetype and filemode (CMS) or

| qualifiers (TSO) are added if a simple name is used.

| On CMS: NAME becomes NAME.APLTF.A

| On TSO: NAME becomes PREFIX.APLTF.NAME

| names Are names of objects to be read and defined in the active workspace.

| Names can include system variables if they are present in the transfer

| file. If the name list is omitted, all objects in the transfer file are copied.

| If a name conflict occurs, the object from the transfer file replaces the one currently

| in the active workspace.

| Examples:

| IN �FILE�
| IN �FILE FUN1 FUN1 VAR3�
| IN �ABC�APLTF�A�

| Note: This function is not available when running under APL2 Application Environ-

| ment.

 Chapter 11. External Routines 167

 KTC

KTC—DBCS to Character Conversion

Use this routine to convert a character vector of mixed EBCDIC/DBCS data to an

APL character vector. KTC is the inverse of CTK and can be used in both

monadic and dyadic form.

result←KTC data

data A simple vector of mixed EBCDIC/DBCS data where DBCS strings

are delimited by SO/SI (X'0E', X'0F') characters.

result An APL character vector. EBCDIC characters from DATA are

placed in the result unchanged. DBCS characters are taken 2

bytes at a time to produce scalar elements of the RESULT. SO/SI

characters in DATA are not placed in the RESULT.

If the DBCS(nnn) invocation option is used, then nnn is placed in

the leftmost halfword of each extended character in RESULT
unless the character in DATA is EBCDIC. (nnn is in the range

0 - 32767).

result←cid KTC data

cid The character set ID in the range 0 - 32767, which is put in the

leftmost halfword in each extended character of the RESULT
unless the character from DATA is EBCDIC.

data A vector of mixed EBCDIC/DBCS data where DBCS strings are

delimited by SO/SI (X'0E', X'0F') characters.

result An APL character vector. EBCDIC characters from DATA are

placed in the result unchanged. DBCS characters are taken 2

bytes at a time to produce scalar elements of the RESULT. SO/SI

characters in DATA are not placed in the RESULT. DBCS charac-

ters have CID placed in the high order halfword of each extended

character in the RESULT as discussed above.

168 APL2 Programming: Using the Supplied Routines

 MSG

MSG—Message Services Request

This routine allows APL2 messages to be displayed, queued, retrieved, or checked.

See APL2/370 Messages and Codes for definitions of APL2 messages.

result←req MSG msg�data

req = 0 Requests display of an APL message

req = 1 Requests queuing of an APL message

req = 2 Requests an APL message be returned

req = 3 Requests a check for an APL message

msg�data A nested array that contains the message number followed by the

fill-in fields. The message number must be a positive integer

scalar. The fill-in fields must be character scalars or vectors.

The number of fill-in fields required depends on the message

number you specify, but it must never exceed 10. (See APL2/370

Messages and Codes for descriptions of specific messages.) If

too many fill-in fields are specified for a specific message, the

extra fields are ignored. If too few are specified, the remaining

fields are filled with asterisks.

The total length of the message (fixed text plus fill-in fields) should

not exceed 240 bytes. If the total length exceeds 240 bytes, fill-in

fields are truncated or a return code 2 (message too large) results.

result The numeric return code for the request or the message text when

REQ is 2. When REQ is 2, if the message returned contains

DBCS data, it is returned in mixed SBCS/DBCS format and can be

converted to extended characters using the KTC function.

0 = success

1 = message does not exist

2 = message too long

3 = insufficient free space

 Chapter 11. External Routines 169

 OPTION

OPTION—Query or Set APL2 Invocation Options

You can use this function monadically to query the current state of certain proc-

essing options, or dyadically to change those options and return their prior values.

result←[value] OPTION key

key The name (as a character vector) of an invocation option. It can have

leading and/or trailing blanks, but must not be abbreviated. The fol-

lowing options are supported:

 � CASE

 � DBCS

 � DEBUG

 � QUIET

 � SYSDEBUG

 � TRACE

value An optional value to be assigned to the invocation option. The value

must be specified as character scalar or vector, even when its value is

numeric. Negative numbers can be indicated either with a leading

minus (hyphen) or with a leading APL negative (overbar).

The option value must be a single integer or keyword, though it can

have leading and/or trailing blanks. Keywords cannot be abbreviated.

You can use any value that APL2/370 Programming: System Services

Reference indicates is valid for the KEY you specified.

When the DEBUG, SYSDEBUG, or TRACE options are specified at

startup, or through the)CHECK SYSTEM command, you can express

the option values as multiple integers or as a sum. For the OPTION
function, though, you must specify the values as a sum or use separate

calls. Separate calls are required to turn some switches on and others

off.

result A character vector that contains the value of the invocation option. In

the dyadic form, the value returned is the one in effect before the

VALUE argument was applied.

Note: As an invocation option, QUIET is a keyword with no value, or with the

value ON or OFF. With the OPTION function, the keyword is always specified

and returned as ON or OFF. Allowing programs to set and reset QUIET gives

applications significantly more control over what information is displayed on the ter-

minal. As in the past, an implicit QUIET(OFF) action occurs any time a terminal

input request is issued.

Examples

To copy objects from a library workspace, suppressing all messages:

COPY PARMS;OPTION;STK
[1] →(2≠101
SVO �STK�)/0 � SHARE WITH STACK PROCESSOR
[2] →(1≠3 11
NA �OPTION�)/0 � ACCESS OPTION FUNCTION
[3] STK←�)COPY �,PARMS � STACK THE)COPY COMMAND
[4] STK←����,(�ON� OPTION �QUIET�),���� � SET QUIET, STACK OLD VALUE
[5] →0↑
 OPTION �QUIET� � PROCESS STACK, RESTORE QUIET
[6] #

170 APL2 Programming: Using the Supplied Routines

 OPTION

Note: This is a completely quiet function. It ignores all errors in the library system,

the shared variable system, and the name association system. Its callers have to

verify that the objects they needed were actually copied.

To turn DEBUG flags 1 and 32 on, and turn flag 4 off, you can use either of these

forms:

�1� �|4� �32� OPTION¨��DEBUG�
�33� ��4� OPTION ¨��DEBUG�

Notice that the Each operator (¨) is used to provide the effect of multiple calls to

OPTION in a single line. The right argument must be enclosed (�) so that Each

does not try to associate its individual characters with the items of the left argu-

ment.

Note: Installations can force certain option values through an OVERIDE list in the

installation options module. If this has been done, the OPTION function com-

pletes successfully, but no change to the value occurs. You can detect this condi-

tion by a subsequent monadic use of the OPTION function.

 Chapter 11. External Routines 171

 OUT

| OUT—Write Objects to a Transfer File

| This function is a program interface to the)OUT system command.

| OUT �file [names]�

| file Is the name of a transfer file, following the naming conventions and

| defaults of the host system. Default filetype and filemode (CMS) or

| qualifiers (TSO) are added if a simple name is used.

| On CMS: NAME becomes NAME.APLTF.A

| On TSO: NAME becomes PREFIX.APLTF.NAME

| names Are names of objects whose transfer forms are to be written to the file.

| If the name list is omitted all unshared variables, defined functions,

| defined operators, and the system variables
CT,
FC,
IO,
LC,

|
PP,
PR, and
RL are written to the file.

| Examples:

| OUT �FILE�
| OUT �FILE FUN1 FUN1 VAR3
PW�
| OUT �ABC�APLTF�A�

| Note: This function is not available when running under APL2 Application Environ-

| ment.

172 APL2 Programming: Using the Supplied Routines

 PACKAGE

PACKAGE—Creating a Namespace

You can use the PACKAGE routine to create a namespace from a saved work-

space. More information on using this routine and on using namespaces can be

found in APL2/370 Programming: System Services Reference.

Workspaces to be converted to namespaces must be saved using APL2 Version 1

Release 3 or later. If you've saved a workspace under an earlier release of APL2,

you must reload and resave the workspace using APL2 Version 1 Release 3 or

later before you can successfully process it using the PACKAGE routine.

Under MVS/TSO, saved workspaces to be converted must exist in a SAM library; if

you've saved a workspace in VSAM library you must resave it in a SAM library

before it can be processed. Under MVS/TSO, before the PACKAGE routine is

processed the ddname SYSPUNCH must be allocated to the sequential data set

where the resulting namespace is placed.

result←[name�list] PACKAGE ws�name

ws�name The data set name of the saved workspace to be converted.

Under VM/CMS this takes the form 'fn ft fm' and must exist on

an accessible minidisk. Under MVS/TSO, it has the form

'userid.Vnnnnnnn.WSNAME' and must be a cataloged sequen-

tial data set.

name�list A list of names of APL objects in the resulting namespace that

are accessible by using
NA. If the NAME�LIST argument is

not specified, all APL objects in the resulting namespace are

accessible by using
NA.

NAME�LIST
 can be a simple character scalar or vector representing one

name,

 or a matrix or vector of vectors representing a list of names.

result The name of the data set that contains the resulting namespace.

In VM/CMS, this is a file with the name 'fn TEXT A' where 'fn'

is the file name of the workspace data set name provided in the

WS�NAME argument. In MVS/TSO, it is the name of the data

set allocated to ddname SYSPUNCH.

If the PACKAGE routine is not successful in converting the saved

workspace, RESULT is an empty vector.

 Chapter 11. External Routines 173

 PBS

PBS—Handling Printable Backspaces

The PBS routine allows applications to query and modify your current)PBS
setting.

Users need to tell APL2 whether their terminals support the new APL2 characters

or whether printable backspaces are required in order to enter them. You can indi-

cate whether you can enter the new characters by using the)PBS system

command. Applications also need to determine whether a user can enter the APL2

characters. Using the PBS function, applications can query and modify the user's

setting. It is provided as an external function available through Processor 11 and

NA.

rc←PBS arg

arg One of the following:

ι0 Queries the current PBS setting.

0 Sets the current PBS setting off.

1 Sets the current PBS setting on.

rc The PBS setting before the call to PBS.

174 APL2 Programming: Using the Supplied Routines

 PFA

PFA—Pattern from Array

This routine creates a CDR pattern from an APL array.

pattern←PFA array

array Any APL array.

pattern A pattern that describes the argument ARRAY. You can use

PATTERN as the left argument of RTA or ATR or as the left or

right argument pattern in a Processor 11 NAMES file. The

PATTERN is described in detail in APL2/370 Programming:

System Services Reference.

 Chapter 11. External Routines 175

 PIN

| PIN—Protected Read of a Transfer File into the Active Workspace

| This function is a program interface to the)PIN system command.

| PIN �file [names]�

| file Is the name of a transfer file, following the naming conventions and

| defaults of the host system. Default filetype and filemode (CMS) or

| qualifiers (TSO) are added if a simple name is used.

| On CMS: NAME becomes NAME.APLTF.A

| On TSO: NAME becomes PREFIX.APLTF.NAME

| names Are names of objects to be read and defined in the active workspace.

| Names can include system variables if they are present in the transfer

| file. If the name list is omitted, all objects in the transfer file are copied.

| If a name conflict occurs, the object from the transfer file is not copied. Objects not

| copied are listed in a 'NOT COPIED:' message.

| Examples:

| PIN �FILE�
| PIN �FILE FUN1 FUN1 VAR3�
| PIN �ABC�APLTF�A�

| Note: This function is not available when running under APL2 Application Environ-

| ment.

176 APL2 Programming: Using the Supplied Routines

 PTA

PTA—Pointers to Array

The external function PTA allows you to access arguments passed to functions as

pointers by APL2PI. PTA is usually used with ATP to retrieve and then update

arguments passed from non-APL programs.

array←pattern PTA pointers

pointers An address or list of addresses passed from APL2PI.

pattern A pattern that describes the result arrays. Its format is similar to

the patterns used with RTA.

array The data at the pointers arranged according to the pattern(s) in

the left argument.

The PTA function assumes a one-to-one correspondence among the data descrip-

tors in the left argument; among the set of pointers in the right argument.

 Chapter 11. External Routines 177

 QNS

QNS—Query the Current Namescope

Use this routine to query the current namescope.

result←QNS 0

result The left argument to
NA for the function or operator that caused

entry into the current namescope.

If the QNS function is processed in the user's active workspace, it

returns �� 11.

178 APL2 Programming: Using the Supplied Routines

 RAPL2

 RAPL2—Remote-Session Manager

The remote-session manager is an APL2 function that allows you to carry on an

interactive session with a remote APL2 interpreter running under another user ID,

perhaps on another system. It uses the shared variable interpreter interface to

control the remote interpreter.

RAPL2 establishes and manages a shared variable communication link with a

remote APL2 interpreter. Once the link is established, you can enter APL2

expressions and system commands and signal attention, but all input is passed to

the remote interpreter.

rc←[time] RAPL2 proc�id

proc�id The processor ID of the remote interpreter. This value is used as

the left argument to
SVO in RAPL2's offer to share a variable

with the remote interpreter.

time The number of seconds RAPL2 should wait for the remote inter-

preter to match RAPL2's share offer. If the remote interpreter

does not match the offer within time seconds, RAPL2 issues

an appropriate message and terminates. time is optional; the

default is 30 seconds.

rc An explicit result indicating whether connection was established

(1), or was not established (0).

All
, ',)EDITOR 1, immediate execution input prompts, and array and

message output are passed back to be displayed locally by RAPL2. All other

input and output generated by system commands, auxiliary processors, or external

routines occur at the remote interpreter's location.

When the user signals an interrupt, RAPL2 prompts the user for one of the

following:

� The interrupt should be sent to the remote interpreter.

� RAPL2 should switch to the local interpreter to process the user's input.

� A shutdown signal should be sent to the remote interpreter, causing a CON|
TINUE workspace to be saved.

When RAPL2 uses the local interpreter to process the your input, RAPL2 issues

 input requests. Expressions and commands entered by you are processed by

the local interpreter in the namescope from which RAPL2 was called. To resume

use of the remote interpreter for executing input, signal interrupt again.

RAPL2 relinquishes control of the terminal when the remote interpreter retracts its

shared variable. This typically occurs when the remote interpreter receives an

)OFF or)CONTINUE system command.

Note: RAPL2 tries to share the local variable APL2 with the remote interpreter.

If the variable APL2 is already shared with the remote interpreter, RAPL2
cannot establish the communication link.

For information about starting a remote interpreter, see the Description of Invoca-

tion Options section of APL2/370 Programming: System Services Reference. For

 Chapter 11. External Routines 179

 RAPL2

more about the shared variable interpreter interface, see APL2/370 Programming:

System Services Reference.

| Note: This function is not available when running under APL2 Application Environ-

| ment.

180 APL2 Programming: Using the Supplied Routines

 RTA

RTA—Record to Array

Use this routine to convert a character vector right argument to an APL array based

on a pattern-left argument. It is useful for converting records read from a file into

APL objects.

array←pattern RTA record

pattern A character vector that describes the format of the right argu-

ment. PATTERN is described in detail in APL2/370

Programming: System Services Reference.

For this routine, * cannot be specified for �/ρ, ρρ or ρ pattern.

In addition to the representations described in the manual,

RT/RL = X0 can also be specified to request that the corre-

sponding bytes of data be skipped. For example:

 (G0 1 2) (I4 1 4) (X0 1 10) (E8 1 5)

specifies that the record contains a vector of 4 fullword integers,

10 bytes to be skipped, and a vector of 5 double precision

floating point numbers.

record A character vector to be converted. No check is made for a

record of incorrect length. If the record is longer than the struc-

ture described by PATTERN, the result is unpredictable.

array An APL array constructed from the RECORD according to the

PATTERN.

Note: The ATR external routine (see “ATR—Array To Record” on page 136) is

the inverse of RTA. You can also use the PFA external routine (see

“PFA—Pattern from Array” on page 175) to generate patterns.

 Chapter 11. External Routines 181

 SAN

SAN—Slice and Nest

Use this routine to partition a character vector based upon a Boolean mask.

result←mask SAN characters

mask A Boolean mask. Zeros in the mask correspond to the

beginning of the second and subsequent elements of the

RESULT.

characters A simple character vector.

result A vector of character vectors.

| Note that ρresult←→,1++/0�mask,

| ρεresult←→ρcharacters. If mask begins with a

| zero, result begins with a null vector.

| ρmask←→ρcharacters. If the arguments are null,

| result←→,���.

Note: This function is a subset of the partition primitive.

182 APL2 Programming: Using the Supplied Routines

 SERVER

SERVER—TCP/IP Port Server

The external function SERVER manages the communication of TCP/IP port

numbers between users. It is typically run in a disconnected VM machine or a

TSO-started task.

SERVER

Warning: SERVER does not return control. It should not be used from an inter-

active APL session.

The function takes no arguments; it prompts for a TCP/IP port number and the

authorization password to use when users make administration requests.

Further information about the TCP/IP port server can be found in the discussion of

AP 119 in APL2/370 Programming: System Services Reference.

 Chapter 11. External Routines 183

 SVI

SVI—Shared Variable Processor Information

This routine returns information on active users of the shared variable processor.

accounts←SVI userid

SVI userid returns a list of the APL account numbers or auxiliary processor

numbers for the specified USERID.

userid←SVI account

SVI account returns the USERID for the specified APL account number or

auxiliary processor number.

account A single APL account number (↑
AI) or auxiliary processor

number.

accounts A vector of 1 or more APL account numbers or auxiliary

processor numbers.

userid A character vector that contains a VM/CMS or MVS/TSO user id.

In the batch under MVS/TSO, this is the MVS job name.

Only users or accounts currently signed onto the SVP are included in the result.

For an APL user, this means that some SVP operation was requested after the

user's current workspace was made active.

Use this routine to determine if an auxiliary processor is active, or to determine the

user id of an APL user who offered a variable:

SVQ ι0
9625
 SVI 9625
WHEATLEY

SVI 0 returns the USERID of the global shared-variable processor, or a null

vector if the global shared variable processor is not available.

The SVP does not retain user information for cross-system shared variables. When

SVA account is issued for a cross-system account number, the issuers own

user id is returned. SVI userid does not return any processor numbers used

for cross-system shared variables.

184 APL2 Programming: Using the Supplied Routines

 TIME

 TIME—Performance Monitoring

The performance monitoring facility measures a running application and determines

the processor time used.

The facility works by associating with each line of each defined program a pair of

counters to record the number of times the line is processed and the total

processor time used.

Typically, timing information is obtained for an application as follows:

)LOAD workspace
3 11
NA �TIME� � To gain access to the facility�

TIME 0 � To enable and zero counters�
� (run application here)
TIME 1 � To see times for program run�
� (analyze timing information here)
TIME 2 � To see times for each line�
� (analyze timing information here)
)CLEAR � When time analysis is complete�

Using the timing facility requires space in the workspace for the counters and also

increases running time by some small amount. Thus, in general you should not

)SAVE after doing a time analysis.

result←[nl] TIME n

result Varies depending on the value of n. Normally, this is a 5 column

matrix. Column 1 is the number of times the given line or

program was actually processed. Column 2 is the accumulated

processing time (in seconds) of the given line or program.

Column 3 is the percentage of the total time used by the given

line or program. Column 4 is the name of the program. Column

5 is the line itself, preceded by the line number.

TIME 1 returns only the first four columns. TIME 2 and 3
return all five columns. TIME 0, �1, �2, and �3 all return

an empty (0 0ρ0) matrix.

nl An optional list of program names. It limits the scope of the

current operation to the names listed; otherwise, the operation

applies to all programs currently defined in the name space. The

list can be a character vector containing a single name (no

imbedded blanks) or a vector of character vectors each con-

taining one name. All names listed must currently exist in the

name space. TIME �1 and �2 do not accept the optional

left argument.

[nl] TIME 0 Enable timing and create counters for all lines in the specified

programs. The counters are set to zero. See TIME �3 and

the notes to learn how to disable timing for a program and

destroy its counters.

 Chapter 11. External Routines 185

 TIME

[nl] TIME 1
Fetch times for all specified programs that have accumulated

timing information. Note that the result does not have the fifth

column and is in descending order on the second column (proc-

essing time). If you want column headings, use the following:

HD1←�COUNT� �TIME� �%� �PROGRAM�
HD1,[
IO] TIME 1

[nl] TIME 2
Fetch times for the lines of specified programs that have accumu-

lated timing information. The result is in descending order on the

second column. If you want column headings, use the following:

HD2←�COUNT� �TIME� �%� �PROGRAM� �STMT�
HD2,[
IO] TIME 2

[nl] TIME 3
Fetch times for all lines of specified programs where timing infor-

mation has been enabled (even if none has been accumulated).

The result is sequenced by line within function or operator. If you

want column headings, use the following:

HD3←�COUNT� �TIME� �%� �PROGRAM� �STMT�
HD3,[
IO] TIME 3

TIME �1 Enable timing. If timing was disabled, timing is resumed.

TIME �2 Disable timing. Stops the accumulation of timing data.

[nl] TIME �3
Delete space used by the counters for specified programs. A

name list left argument is allowed and can be used to delete the

timing data for selected functions and operators.

Notes:

1. Using the timing facility increases space utilization and processing time.

Reported timings are approximate and should be used for relative comparisons,

not absolute times.

2. Programs that do not have timing information do not appear in the results of

subsequent uses of TIME 1, 2 or 3. A program might not have timing

information for any of the following reasons:

� It was not enabled by nl TIME 0.

� It was modified (or created) after being enabled.

� Its timing information was deleted by nl TIME �3.

3. Programs without timing information have their time accumulated by the first

program (working back through the calling tree) with timing information.

186 APL2 Programming: Using the Supplied Routines

 TSOIVP

TSOIVP—Installation Verification under TSO

Use this routine to verify the installation of APL2 in the MVS/TSO environment.

TSOIVP

There are no arguments and no result is returned.

Start the procedure by calling the function TSOIVP, which verifies and tests

various parts of the APL2 system you have installed. As this happens, it displays

information on your terminal. You should check this information against the APL2

system you believe you have installed, and investigate and correct any discrep-

ancy.

For information on the installation procedure, see APL2/370 Installation and

Customization under TSO.

 Chapter 11. External Routines 187

 δEXEC

δEXEC—Execute an APL Array as a REXX Program

α δEXEC ω

The function δEXEC processes the REXX program contained in �α� with the

items of �ω� as the argument strings.

α A character vector, matrix, or vector of vectors that contain the REXX

program.

ω A vector of one to ten character vectors that are the strings passed as argu-

ments to the REXX program.

The right argument of δEXEC does not include the name of the REXX program.

The temporary program contained in the left argument array is called in the same

way as described in APL2/370 Programming: System Services Reference.

The δF and δEXEC built-in functions provide the basis for building maintenance

and test tools for REXX EXECs.

188 APL2 Programming: Using the Supplied Routines

 δF

δF—Query File Status

The function δF returns file status information.

result←δF �file�

�file� A character string that contains the file to be queried.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an

accessible minidisk. 'ft' and 'fm' default to '*'.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn.WSNAME'. If

the data set name is not enclosed in quotation marks, it is prefixed

with the current TSO PROFILE PREFIX setting. An optional

member name enclosed in parentheses can follow the data set

name.

result A nested vector that contains the results of the query. It contains

nine elements:

1 File identification or data set name

2 Record Format

3 Record Length

4 Number of Records

5 Number of Data Blocks ('?' on TSO)

6 When Last Written ('?' on TSO)

7 Disk Label ('?' on TSO)

8 Disk Mode (and parent) ('?' on TSO)

9 Block Size

If a file system error occurs while processing δF, a numeric return code is returned

instead of the character result. These return codes are operating system

dependent. See APL2/370 Programming: System Services Reference for more

information.

 Chapter 11. External Routines 189

 δFM

δFM—Read or Write a Fixed Record Length File

result←δFM �file�

�file� A character string that contains the name of the file to be read.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an

accessible minidisk. 'ft' and 'fm' default to '*' for reading. 'fm'

defaults to 'A' for writing.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn.WSNAME'. If

the data set name is not enclosed in quotation marks, it is prefixed

with the current TSO PROFILE PREFIX setting. An optional

member name enclosed in parentheses can follow the data set

name.

result A character matrix. For files with variable length records, records

are padded on the right with blanks to the length of the longest

record.

result←array δFM �file�

�file� Has the same form as the monadic call.

array Is a character matrix or vectors of vectors. If necessary, a file with

fixed length records is created by padding the records with blanks.

result A numeric return code. 0 indicates success.

If a file system error occurs during processing of δFM, a numeric return code is

returned. These return codes are operating system dependent. See APL2/370

Programming: System Services Reference for more information.

190 APL2 Programming: Using the Supplied Routines

 δFV

δFV—Read or Write a Variable Record Length File

result←δFV �file�

�file� A character string that contains the name of the file to be read.

Under VM/CMS this takes the form 'fn ft fm' and must exist on an

accessible minidisk. 'ft' and 'fm' default to '*' for reading. 'fm'

defaults to 'A' for writing.

Under MVS/TSO, it has the form 'userid.Vnnnnnnn.WSNAME'. If

the data set name is not enclosed in quotation marks, it is prefixed

with the current TSO PROFILE PREFIX setting. An optional

member name enclosed in parentheses may follow the data set

name.

result Is a vector of character vectors. Trailing blanks in any record are

deleted.

result←array δFV �file�

�file� Has the same form as the monadic call.

array A character matrix or vector of vectors. A file with variable length

records is created if necessary. Trailing blanks in each record are

deleted.

result A numeric return code. Zero indicates success.

If a file system error occurs while δFV is processing, a numeric return code is

returned. These return codes are operating system dependent. See APL2/370

Programming: System Services Reference for further information.

 Chapter 11. External Routines 191

 Bibliography

| APL2 Publications

| � APL2 Fact Sheet, GH21-1090

| � APL2/370 Application Environment Licensed

| Program Specifications, GH21-1063

| � APL2/370 Licensed Program Specifications,

| GH21-1070

| � APL2 for AIX/6000 Licensed Program Specifica-

| tions, GC23-3058

| � APL2 for Sun Solaris Licensed Program Specifica-

| tions, GC26-3359

| � APL2/370 Installation and Customization under

| CMS, SH21-1062

| � APL2/370 Installation and Customization under

| TSO, SH21-1055

| � APL2 Migration Guide, SH21-1069

| � APL2 Programming: Language Reference,

| SH21-1061

| � APL2/370 Programming: Processor Interface Refer-

| ence, SH21-1058

| � APL2 Reference Summary, SX26-3999

| � APL2 Programming: An Introduction to APL2,

| SH21-1073

| � APL2 for AIX/6000: User's Guide, SC23-3051

| � APL2 for OS/2: User's Guide, SH21-1091

| � APL2 for Sun Solaris: User's Guide, SH21-1092

| � APL2 for the IBM PC: User's Guide, SC33-0600

| � APL2 GRAPHPAK: User's Guide and Reference,

| SH21-1074

| � APL2 Programming: Using Structured Query Lan-

| guage, SH21-1057

| � APL2/370 Programming: Using the Supplied Rou-

| tines, SH21-1056

| � APL2/370 Programming: System Services Refer-

| ence, SH21-1054

| � APL2/370 Diagnosis Guide, LY27-9601

| � APL2/370 Messages and Codes, SH21-1059

| Other Books You Might Need

| The following books might also be of use, and can be

| ordered from IBM.

| Application Prototype Environment

| � Application Prototype Environment Guide and Ref-

| erence, SH19-6388

| GDDM

| � GDDM Application Programming Guide SC33-0867

| � GDDM Base Application Programming Reference,

| SC33-0868

| � GDDM General Information, GC33-0866

| � GDDM Messages, SC33-0869

| � GDDM System Customization and Administration,

| SC33-0871

| � GDDM User's Guide, SC33-0875

| � GDDM Interactive Map Definition, SC33-0338

| � GDDM-PGF Interactive Chart Utility, SC33-0328

| � GDDM-PGF Programming Reference, SC33-0333

| MVS/ESA

| � MVS/ESA Callable Services for High Level Lan-

| guages, Version 4, GC28-1639

| � MVS/ESA Callable Services for High Level Lan-

| guages, Version 3, GC28-1834

| PGF

| � Presentation Graphics Feature: User's Guide,

| SC33-0102

| QMF

| � QMF Application Development Guide for MVS,

| SC26-4237

| � QMF Application Development Guide for VM/SP,

| SC26-4238

| � QMF Version 2 Release 4 Callable Interface Usage,

| GG24-3505

| TSO

| � TSO Extensions Command Language Reference

| Manual, SC28-1881

| VS APL

| � VS APL for CMS: Installation Reference Manual,

| SH20-9182

| � VS APL for TSO: Installation Reference Manual,

| SH20-9183

| � VS APL for CICS/VS: Installation Reference

| Manual, SH20-9181

| � VS APL for VSPC: Installation Reference Manual,

| SH20-9184

192  Copyright IBM Corp. 1985, 1994

 Index

Special Characters
)CONTINUE 99

)COPY 4, 5, 103

)ERASE 103

)GR 103

)HOST 67

)LIB 99

)LIB 1 4

)LIB 2 4

)LOAD 4

)MCOPY 99

)OFF 99

)PCOPY 4, 103

)RESET 7

)SAVE 99

)SI 7

)SIC 7

)SINL 7

)SIS 7, 8

δEXEC function 188

δF function 189

δFM function 190

δFV function 191

AF 51

AV 51

NC 103

A
ABSTRACT 6

alternate-input auxiliary processors 67

alternate-input processor 65

AP 101 67, 73

AP 110 67, 68

AP 111 67

AP 120 64

AP 121 77, 85, 95

AP 123 90, 91

AP 124 52

AP 126

control variable 61

data variable 61

full-screen management 52

full-screen processing using 64

GDDM/PGF auxiliary processor 52

used to perform GDDM functions 52

AP 127 113

AP 210 73

AP2WSM 5, 6

APL data files 77

exporting 77, 79

importing 78, 79

APL, non-APL translate table 124

APL/PC transfer 99

APL2

example functions and operators 15

programming interface 42

APL2 commands 4

COPY 4

LOAD 4

PCOPY 4

RESET 7

SI 7

SIC 7

SINL 7

SIS 7

APL2 differences 102

APL2 IUP differences 102, 103

APL2/ICU data interface 56

APL2PI function 132

APL2PIE function 133

APLDATA workspace 5, 8, 84, 85—89

APLDATA groups

GPAPL 89

GPDESC 89

GPMESSAGE 89

GPREADAPL 89

GPSTORET 89

error handling 89

format file functions

ACREATE 86

AGET 87

AREAD 86

ASET 87

AT 87

AWRITE 87

CLOSE 87

DROP 86

NEWSIZE 87

RETRACTALL 88

SETRECLEN 88

SIZE 88

USE 86

functions to store and retrieve large variables

RETRIEVE 88

STORE 88

 Copyright IBM Corp. 1985, 1994 193

APLDATA workspace (continued)

special handling of selected errors 82, 89

using the project library 89

APLFILE workspace 84, 95

APSERVER
APL2 programming interface 42

arrays

reading files of 85

writing files of 85

atomic vectors 102

ATP function 135

ATR function 136

ATTN function 137

auxiliary processor workspaces 8

auxiliary processors 9

alternate-input 65, 67, 73

command 65, 73

file processors 73

offering a shared variable 43

specialized file 65

stack 65

auxiliary processors, list 9

B
backups 77

Basic Direct Access Method

See BDAM, auxiliary processor for access to

batch

export 79

import 79

BDAM, auxiliary processor for access to 9

BUILDRD function 138

BUILDRL function 139

C
CAN function 140

CCOL 123

changes

summary of x

character 50, 53

arrays, creating new 114

translation 32, 50

chart design 54

CHARTX 52

APL2/ICU data interface 56

used for free data 57

used for tied data 56

CHARTX workspace 5, 8

CLISTs 73

CMS environment, characteristics 67

CMS FILEDEF 72

CMS SORT 66

CMS workspace 8, 65, 66, 67—72

alternate input function

PROC 69

command functions

CMS 69

CP 69

file auxiliary processor functions

CLOSE 69

CLOSEALL 69

GET 69

GETFILE 69

OPEN 69

PUT 69

PUTFILE 69

RETRACT 69

SHARES 69

file functions

CLOSE 70

CLOSEALL 70

GET 70

GETFILE 70

MSG 70

OPEN 71

PUT 71

PUTFILE 71

RETRACT 71

SHARES 72

CMSIVP function 141

comments, removing from functions 32, 40

communication through SVP 42

complex numbers

fast Fourier transform 30

complex numbers, formatting 31

complexity 54

coordinate systems 54

coordinates 52

coping 54

cover function for AP 126 59

cover functions 8, 65

CP SPOOL 72

CSRIDAC function 142

CSRREFR function 144

CSRSAVE function 145

CSRSCOT function 146

CSRVIEW function 147

CTK function 149

CTN function 150

D
DAN function 151

194 APL2 Programming: Using the Supplied Routines

DAN, external name 41

data

conversion 32, 33

files, APL 77

interchange 77

interface, APL2/ICU 56

migration 77

tied and free 56

debugging 7, 48

defined functions

ACREATE 86

ADD 116

AFTER 116

AGET 87

ALL 122

ALLOCATE 73, 74

ANNOTATE 36, 40

APLFIN 115

APLVIN 115

AREAD 86

ASET 87

ASSIGN 36, 40

ASSOC 15

AT 87, 90, 96, 97, 122

ATTRIBS 73, 74

AWRITE 87

BEFORE 116

BIN 15, 16

BOT 122

C 120

CASE 37

CHANGE 120

CHARIND 102

CHK 98

CLEANPRINTWS 108

CLEAR 116

CLOSE 65, 69, 70, 73, 74, 87, 94

CLOSEALL 69, 70, 73, 75

CMδD 111

CMS 67, 69

CODECOUNT 36, 37, 40

COMB 15, 17

CONCEAL 37

CP 67, 69

CREATE 95, 97

D 122

DATETIME 36, 37, 40

DEC2HEX 20

DECOMMENT 40

DELETE 96, 97, 120

DISPLAY 13

defined functions (continued)

DISPLAYC 13

DISPLAYG 13

DOUBLE 45

DOWN 101

DROP 86

EIGEN 29

ERASe 97

EXAMPLE 22, 23

EXAMPLES 22, 23

EXISt 97

EXPAND 22, 23, 36, 37

F ZERO 15

FC 15, 17

FFT 30

FI 33, 34

FIND 45, 122

FIX� 100, 101

FLAG� 100

FMTPD 31

FMTPR 31

FN 115

FNHEADS 36, 37, 40

FO 33, 35

FRAME 36, 37, 40

FREEBLOCKs 97

FROM 122

GATHER 45, 46

GCD 15, 18

GET 65, 69, 70, 73, 75, 96

GETFILE 65, 68, 69, 70, 73, 75

GETl 96

GETWKSPA 67

GVCAT 45, 46

HCAT 45, 46

HEX 20

HEX2DEC 20

HEXDUMP 36, 38, 40

HILB 15, 18

ICI 33, 35

ICO 33, 36

IFFT 30

II 33, 34

INBLANKS 45, 46

INDCHAR 102

IO 33, 34

IOTAU 22, 23

LADJ 45, 46

LCTRANS 50

LFC 15, 17

 Index 195

defined functions (continued)

LI 33

LINECOUNT 36, 38, 40

LINEFOLD 45, 46

LIST 36, 38, 108, 109, 122

LO 33

MASKCONV 36, 38, 40

MASSMCOPY� 99

MAT 45, 46

MATFOLD 45, 47

MESH 36, 39, 40

MSG 70

MULTIPRINT 108, 109

NAMEREFS 36, 39, 40

NAMES 36, 39, 40

NEWSIZE 87

NHEAD 36, 39, 40

NOQUOTES 40, 45, 47

NUMBER 122

OBLANKS 45, 47

OPEN 65, 69, 71, 73, 75

P1400 110

P3800 110

PACK 20

PALL 15, 18

PCII 34

PCIO 34

PDI 33, 35

PDO 33, 35

PER 15, 18

PERM 15, 18

PFILE 110

PJδCL 111

PO 15, 19

POL 15, 19

POLY 15, 19

POLYB 15, 19

POLYZ 31

PRINTFV 108, 110

PRINTWS 108, 109

PROC 66, 67, 69, 73, 74

PTERMINAL 110

PUT 65, 69, 71, 73, 76

PUTFILE 65, 69, 71, 73, 76

QCR 115

QREPLACE 45, 47

RADJ 45, 47

RCNUM 45, 47

RECID 73, 76

RELEASE 95, 97

defined functions (continued)

REP 22, 24

REPLACE 45, 47, 120

REPLACEV 47

REPLICATE 22, 23, 36, 40

RETRACT 69, 71, 73, 76

RETRACTALL 88

RETRIEVE 88

REVEAL 40

RHl 97

RTBLANKS 45, 48

SET 96

SETRECLEN 88

SHARES 69, 72, 73, 76

SHVARS 97

SIZE 88, 96

SM 64

SORTLIST 20, 21

START 116

STOPALL 48

STOPOFF 48, 49

STOPONE 48, 49

STORE 88

STRIP 40, 41

TABS 123

THRU 122

TIME 20, 21

TOL 19

TRACEALL 48, 49

TRACEBR 48, 49

TRACELIST 48, 49

TRACEOFF 48, 49

TRACEONE 48, 49

TRANSLATE 50

TRUTH 15, 19

TRY 98

TSO 73, 74

TYPE 22, 24, 36, 40

U 122

UCTRANS 50

UNIQUE 24, 36, 40

UNPACK 20

USE 86, 90, 91, 95, 97

VCAT 45, 48

VCLEAR 93

VERASE 93

VGET 92

VGETHOLD 92

VKF 93

VPOSITION 93

196 APL2 Programming: Using the Supplied Routines

defined functions (continued)

VREAD 91

VREADHOL 91

VSET 92

VWRITE 94

WORDS 40, 41

XBLANKS 45, 48

ZERO 19

defined operators

AND 22, 27

COMMUTE 22, 27

CR 22, 24

EL 22, 26

ELSE 22, 26

ER 22, 26

FAROUT 22, 27

IF 22, 27

NOP 22, 27

PAD 22, 24

PL 22, 26

POWER 22, 28

PR 22, 26

TRACE 22, 25

TRAP 22, 26

TRUNC 22, 24

ZERO 19

DESCRIBE 6

design

chart 54

form 54

DFMT function 152

DISPLAY function 153

display points 53

display terminals 52, 53, 114

DISPLAY workspace 5, 12, 13—14

DISPLAY 13

DISPLAYC 13

DISPLAYG 13

DISPLAYC function 154

DISPLAYG function 155

documentation within the workspace

DSQCIA function 156

E
edit procedure 114

editing 116

defined functions 114

variables 114

EDITOR2 function 159

EDITORX function 158

eigenvalues 29, 30

eigenvectors 30

entry-sequenced data sets 92

error

handling 82, 89

messages 5

Euclidean algorithm 18

EXAMPLES workspace 5, 12, 15—28

miscellaneous utility functions

DEC2HEX 20

HEX 20

HEX2DEC 20

PACK 20

SORTLIST 20, 21

TIME 20, 21

UNPACK 20

scientific and mathematical functions

ASSOC 15

BIN 15, 16

COMB 15, 17

FC 15, 17

GCD 15, 18

HILB 15, 18

LFC 15, 17

PALL 15, 18

PER 15, 18

PERM 15, 18

PO 15, 19

POL 15, 19

POLY 15, 19

POLYB 15, 19

TRUTH 15, 19

ZERO 15, 19

EXP function 160

exporting files 77, 79

external routines 129

distributed with APL2 129

F
fast Fourier transform 30

FED function 163

fields 53

FIFO 66

files

auxiliary processors for reading and writing 8

FILESERV workspace 8, 65, 77

error handling 82

FILESERV groups 83

form design 54

format 53

formatting complex numbers 31

 Index 197

Fourier transform 30

free data 56

FSC124 workspace 64

FSC126 workspace 8, 52, 63, 64

FSM workspace 8, 53, 63, 64

full-screen

panels 64

full-screen management 52

function groups, loading and copying 5

functions

creating new APL2 114

interrupted 7

pendent 7

suspended 7

G
GDDM 52, 59, 63, 64

and text graphics 54

and vector graphics 53, 54

auxiliary processor for access to 8

full-screen processing 52

full-screen processing using 64

learning 54

pages 54

workspaces

CHARTX 52

FSC126 52

FSM 53

GDMX 52

GRAPHPAK 52

GDMX 52, 59—62, 64

GDMX workspace 5, 8

GPAPL2, the group 22—28

miscellaneous functions

EXPAND 22, 23

IOTAU 22, 23

REP 22, 24

REPLICATE 22, 23

TYPE 22

miscellaneous operators

AND 22, 27

COMMUTE 22, 27

FAROUT 22, 27

NOP 22, 27

POWER 22, 28

operators for debugging

TRACE 22, 25

TRAP 22, 26

operators for program control

ELSE 22, 26

IF 22, 27

operators to conform arguments

CR 22, 24

GPAPL2, the group (continued)

operators to conform arguments (continued)

PAD 22, 24

TRUNC 22, 24

operators to handle depth

EL 22, 26

ER 22, 26

PL 22, 26

PR 22, 26

workspace information functions

EXAMPLE 22, 23

EXAMPLES 22, 23

GPDATACV 32, 33

GPDESC 32

GPMESSAGE 6

GPMISC 32

GPSTRIP 32

GPSVP 42

GPTEXT 32

GPTRACE 32

GPXLATE 32

Graphical Data Display Manager

See GDDM

graphics

fields 53

text 53, 54

vector 53, 54, 63

GRAPHPAK 63

auxiliary processor workspace 8

description 52

vector graphics 63

groups 5

H
hanging functions 7

HELP function 164

Hilbert matrix 18

host systems

auxiliary processor for access to 8

HOW 6

how to use 4

I
IDIOMS function 166

importing files 78, 79

IN function 167

input/output form peripheral devices 72

interrupted functions 7

interrupting functions 7

198 APL2 Programming: Using the Supplied Routines

K
key-sequenced data sets 92

KTC function 168

L
LCTRANS, example of use 50

learning GDDM 54

library

numbers 4

workspace 4

1 4

2 4

LIFO 66

list 4

LRECS 123

M
mathematic

calculations 15

functions 15

MATHFNS workspace 5, 12, 19, 29—31

eigenvalues

EIGEN 29

fast fourier transform

FFT 30

IFFT 30

formatting complex numbers

FMTPD 31

FMTPR 31

groups of polynomials

POLYZ 31

MEDIT workspace 114—126

APL, non-APL translate table 124

basic edit procedure 114

change functions

C 120

CHANGE 120

DELETE 120

REPLACE 120

creating

new APL2 functions 114

new character arrays 114

editing 116

variables and defined functions 114

initialization functions

CLEAR 116

START 116

input functions

ADD 116

AFTER 116

BEFORE 116

MEDIT workspace (continued)

MEDIT functions

APLFIN 115

APLVIN 115

output functions

LIST 122

NUMBER 122

TABS 123

pre- and post-editing functions

FN 115

QCR 115

select functions

ALL 122

AT 122

BOT 122

D 122

FIND 122

FROM 122

THRU 122

U 122

usage notes

CCOL 123

LRECS 123

QCR 124

QFX 124

message facility 5, 6

Messages

AP2WSM function 5

printing 5

minidisks 67

miscellaneous functions

EXPAND 22, 23

IOTAU 22, 23

REP 22, 24

REPLICATE 22, 23

TYPE 22

miscellaneous operators

AND 22, 27

COMMUTE 22, 27

FAROUT 22, 27

NOP 22, 27

POWER 22, 28

miscellaneous utility functions 20, 32, 36

MORE 5

MSG function 169

MSG namespace 169

N
name class, see
NC
namespaces

MSG 169

 Index 199

NOT COPIED 5

O
offering a shared variable 43

operators for debugging

TRACE 22, 25

TRAP 22, 26

operators for program control

ELSE 22, 26

IF 22, 27

operators to conform arguments

CR 22, 24

PAD 22, 24

TRUNC 22, 24

operators to handle depth

EL 22, 26

ER 22, 26

PL 22, 26

PR 22, 26

OPTION function 170

OUT function 172

P
PACKAGE function 173

page 53, 54

pages 54

panels, full-screen 64

PBS function 174

PC APL 99

pels 53

pendent functions 7

PFA function 175

PGF 52, 63, 64

PIN function 176

pixels 53

polynomials, roots of 31

presentation graphics feature 52

printer selection functions 110

PRINTWS workspace 108—112

auxiliary processor 8

CLEANPRINTWS 108

CMδD 111

LIST 108, 109

MULTIPRINT 108, 109

P1400 110

P3800 110

PFILE 110

PJδCL 111

PRINTFV 108, 110

PRINTWS 108, 109

PTERMINAL 110

program number 52

programming interfaces

APL2 42

project library 89

protected copy, see)PCOPY
prototype 13

PTA function 177

public library 4, 5

numbers 4

Q
QCR 124

QFX 124

QNS function 178

QSAM (Queued Sequential Access Method) 8

auxiliary processor for TCP/IP socket interface 8

R
RAPL2 function 179

reading files of APL2 arrays 85

RTA function 181

S
SAN function 182

scientific functions 15

screen 52

screen coordinate systems 53, 54

screen display points 53

searching

functions and operators 45

SERVER function 183

session manager 64

auxiliary processor for use of commands 8

session manager AP (120)

shared variable

offering to an auxiliary processor 43

shared variables 9

SQL

auxiliary processor for access to 8

SQL workspace 8, 113

stack 65

state indicator 7

stop vectors 32, 48

summary of changes x

SUPPLIED workspace 5, 12

suspended functions 7

terminating 7

SVI function 184

SVP

communication through 42

200 APL2 Programming: Using the Supplied Routines

T
terminal

display, see display terminals

input-output symbols 52

text

graphics 53, 54

processing 32, 45

tied data 56

TIME function 185

tolerance 19

trace vectors 32, 48

TRANSFER workspace 4, 99—104

APL2 differences 102

APL2 IUP differences 102, 103

atomic vectors 102

main functions

FIX� 100, 101

FLAG� 100

MASSMCOPY� 99

VS APL differences 102

Transfer, APL/PC 99

translation, character 32, 50

TSO environment characteristics 73

TSO workspace 8, 65, 66, 76

alternate-input function

ALLOCATE 73, 74

ATTRIBS 73, 74

CLOSE 73, 74

CLOSEALL 73, 75

GET 73, 75

GETFILE 73, 75

OPEN 73, 75

PROC 73, 74

PUT 73, 76

PUTFILE 73, 76

RECID 73, 76

RETRACT 73, 76

SHARES 73, 76

command function

TSO 73, 74

TSO workspaces 73

TSOIVP function 187

U
UCTRANS, example of use 50

user's guides 52

utility functions, miscellaneous 20

UTILITY workspace 5, 12, 32

GPDATACV 32, 36

FI 33, 34

FO 33, 35

ICI 33, 35

UTILITY workspace (continued)

GPDATACV (continued)

ICO 33, 36

II 33, 34

IO 33, 34

LI 33

LO 33

PCII 34

PCIO 34

PDI 33, 35

PDO 33, 35

GPMISC 32, 36—40

ANNOTATE 36, 40

ASSIGN 36, 40

CASE 37

CODECOUNT 36, 37, 40

CONCEAL 36, 37

DATETIME 36, 37, 40

EXPAND 36, 37

FNHEADS 36, 37, 40

FRAME 36, 37, 40

HEXDUMP 36, 38, 40

LINECOUNT 36, 38, 40

LIST 36, 38

MASKCONV 36, 38, 40

MESH 36, 39, 40

NAMEREFS 36, 39, 40

NAMES 36, 39, 40

NHEAD 36, 39, 40

NOQUOTES 40

REPLICATE 36, 40

REVEAL 36, 40

TYPE 24, 36, 40

UNIQUE 24, 36, 40

GPSTRIP 32, 40—41

DECOMMENT 40

STRIP 40, 41

WORDS 40, 41

GPSVP 32, 42

GPTEXT 32, 45—48

DOUBLE 45

FIND 45

GATHER 45, 46

GVCAT 45, 46

HCAT 45, 46

INBLANKS 45, 46

LADJ 45, 46

LINEFOLD 45, 46

MAT 45, 46

MATFOLD 45, 47

NOQUOTES 45, 47

 Index 201

UTILITY workspace (continued)

GPTEXT (continued)

OBLANKS 45, 47

QREPLACE 45, 47

RADJ 45, 47

RCNUM 45, 47

REPLACE 45, 47

RTBLANKS 45, 48

VCAT 45, 48

XBLANKS 45, 48

GPTRACE 32, 48—49

STOPALL 48, 49

STOPOFF 48, 49

STOPONE 48, 49

TRACEALL 48, 49

TRACEBR 48, 49

TRACELIST 48, 49

TRACEOFF 48, 49

TRACEONE 48, 49

GPXLATE 32, 50—51

LCTRANS 50

TRANSLATE 50

UCTRANS 50

V
VAPLFILE workspace 8, 84, 95—98

file names 97

SHVARS 97

main functions

AT 96

CREATE 95

DELETE 96

GET 96

RELEASE 95

SET 96

USE 95

supplementary functions

ERASe 97

EXISt 97

FREEBLOCKs 97

GETl 96

RHl 97

SHVARS 97

SIZe 96

VAPLFILE groups

GPAPLFILE 98

GPDESC 98

GPFILEREAD 98

GPFILEWRITE 98

GPMESSAGE 98

vector graphics 52, 53, 54, 63

Virtual Storage Access Method

See VSAM

VS APL compatible workspaces 64

VS APL differences 102

VSAM

auxiliary processor for use of 8

VSAMDATA workspace 8, 84, 90—94

functions to access external files 91, 92, 93, 94

CLOSE 94

USE 91

VCLEAR 93

VERASE 93

VGET 92

VGETHOLD 92

VKF 93

VPOSITION 93

VREAD 91

VREADHOL 91

VSET 92

VWRITE 94

VSAMDATA groups 94

GPDESC 94

GPMESSAGE 94

GPREADVSAM 94

GPVSAM 94

W
workspace

description 32

documentation 6

information functions

EXAMPLE 22, 23

EXAMPLES 22, 23

library 1 4

library 2 4

workspaces 7

APLDATA 5, 8, 84, 85

APLFILE 84, 95

auxiliary processor 8

CHARTX 5, 8, 52

CMS 8, 65, 66, 67

definition 4

DISPLAY 5, 12, 13

environment dependent 8

environment-dependent 65

EXAMPLES 5, 12, 15

file 84

file auxiliary processor 8

FILESERV 8, 65, 77

FSC124 64

FSC126 8, 52, 63, 64

202 APL2 Programming: Using the Supplied Routines

workspaces (continued)

FSM 8, 53, 63, 64

full-screen 8

GDMX 5, 8, 52, 59

general 12

GRAPHPAK 8, 52, 63

MATHFNS 5, 12, 19, 29

MEDIT 114

PRINTWS 8, 108

SQL 8, 113

SUPPLIED 5

TRANSFER 4, 99

TSO 8, 65, 66, 73

UTILITY 5, 12

VAPLFILE 8, 84, 95

VS APL compatible 64

VSAMDATA 84, 90

with interrupted functions 7

WSINFO 5, 10

writing files of APL2 arrays 85

WSINFO workspace 5, 10

 Index 203

We'd Like to Hear from You

APL2 Programming:
Using the Supplied Routines
Version 2 Release 2

Publication No. SH21-1056-01

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

� Electronic mail—Use one of the following network IDs:

 – IBMMail: USIB6JN8
 – Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

APL2 Programming:
Using the Supplied Routines
Version 2 Release 2

Publication No. SH21-1056-01

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SH21-1056-01

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12
PO Box 49023
San Jose, CA 95161-9023

Fold and Tape Please do not staple Fold and Tape

SH21-1056-01

IBM

File Number: S370-40

Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090 APL2 Family of Products (fact sheet)

SH21-1073 APL2 Programming: An Introduction to APL2

SH21-1061 APL2 Programming: Language Reference

SX26-3999 APL2 Reference Summary

SH21-1074 APL2 GRAPHPAK: User's Guide and Reference

SH21-1057 APL2 Programming: Using Structured Query Language

SH21-1069 APL2 Migration Guide

SC33-0600 APL2 for the IBM PC: User's Guide

SC33-0601 APL2 for the IBM PC: Reference Summary

SC33-0851 APL2 for the IBM PC: Reference Card

SH21-1091 APL2 for OS/2: User's Guide

GC23-3058 APL2 for AIX/6000 Licensed Program Specifications

SC23-3051 APL2 for AIX/6000: User's Guide

GC26-3359 APL2 for Sun Solaris Licensed Program Specifications

SH21-1092 APL2 for Sun Solaris: User's Guide

GH21-1063 APL2/370 Application Environment Licensed Program Specifications

GH21-1070 APL2/370 Licensed Program Specifications

SH21-1062 APL2/370 Installation and Customization under CMS

SH21-1055 APL2/370 Installation and Customization under TSO

SH21-1054 APL2/370 Programming: System Services Reference

SH21-1056 APL2/370 Programming: Using the Supplied Routines

SH21-1058 APL2/370 Programming: Processor Interface Reference

LY27-9601 APL2/370 Diagnosis Guide

SH21-1059 APL2/370 Messages and Codes

SH21-1056-01

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	APL2 Publications
	Conventions Used in This Library

	Summary of Changes
	Product
	Document Changes

	Part 1. Workspaces
	Chapter 1. Introduction
	Workspace Libraries
	How To Use Library Workspaces
	The Message Facility
	Documentation within the Workspace
	Workspaces with Interrupted Functions
	Interrupting and Debugging
	The Auxiliary Processor Workspaces

	Chapter 2. Information Workspaces
	WSINFO: Information About the Library Workspaces
	SUPPLIED: Information About External Functions

	Chapter 3. General Purpose Workspaces
	The DISPLAY Workspace
	The EXAMPLES Workspace
	Introduction
	Mathematic and Scientific Functions
	Miscellaneous Utility Functions
	Special Functions and Operators of APL2

	The MATHFNS Workspace
	Eigenvalues
	Fast Fourier Transform
	Formatting Complex Numbers
	Roots of Polynomials

	The UTILITY Workspace
	Introduction
	The Function Groups
	GPDATACV: Converting between External and Internal Representations
	GPMISC: Miscellaneous Utility Functions
	GPSTRIP: Removing Comments
	GPSVP: Controlling Communication through SVP
	GPTEXT: Manipulating Text
	GPTRACE: Setting and Removing Trace and Stop Vectors
	GPXLATE: Translating from One Character Representation to Another

	Chapter 4. The Display Terminal Workspaces
	AP 126: The GDDM/PGF Auxiliary Processor
	GDDM Workspaces: CHARTX, GDMX, GRAPHPAK, FSC126, FSM

	An Introduction to Text and Vector Graphics
	Text Graphics
	Vector Graphics
	Pages: Text and Vector Graphics
	Coordinate Systems: Text and Vector Graphics
	Coping with Complexity: Form and Chart Design

	CHARTX—an APL2/ICU Data Interface
	Tied and Free Data
	Using CHARTX for Tied Data
	Examples

	Using CHARTX for Free Data
	Examples
	Usage Notes

	GDMX
	Using GDMX
	Global Variables
	Usage Notes
	Example

	GRAPHPAK—a Vector Graphics Workspace
	VS APL Compatible Workspaces
	FSC126 Workspace
	FSM Workspace

	Chapter 5. Environment-Dependent Workspaces
	Command, Alternate-Input, and Specialized File APs
	The Alternate-Input Processor
	The CMS Workspace
	Characteristics of the CMS Environment
	CMS Command, Alternate-Input, and File Processors
	Creating APL2/CMS/CP Procedures
	Reading and Writing CMS Disk Files

	Using the Functions in CMS
	Command Functions
	Alternate Input Function
	File Functions
	Input/Output from Peripheral Devices

	The TSO Workspace
	TSO Command, Alternate-Input, and File Processors
	File AP Functions and Auxiliary TSO Functions

	Using the Functions in TSO
	Command Function
	Alternate Input Function
	File Functions

	The FILESERV Workspace
	Exporting Files Interactively
	Importing Files Interactively
	Transporting Files in Batch Mode
	Format of Commands
	Comments to Commands

	Using the EXPORT and IMPORT Commands
	Error Handling
	Special Handling of Selected Errors

	FILESERV Groups

	Chapter 6. File Auxiliary Processor Workspaces
	The APLDATA Workspace
	Reading and Writing Files of APL2 Arrays
	General Operation
	APL-Format File Functions
	Functions to Store and Retrieve Large Variables
	Using the Project, Private, and Public Libraries
	Error Handling
	Special Handling of Selected Errors
	APLDATA Groups

	The VSAMDATA Workspace
	File Naming Conventions
	Functions to Access External VSAM Files
	VSAMDATA Groups

	The VAPLFILE Workspace
	Main Functions
	Supplementary Functions
	File Names
	VAPLFILE Groups

	Chapter 7. The TRANSFER Workspace
	MASSMCOPY_
	FLAG_ and FIX_
	Atomic Vectors
	Differences
	VS APL Differences:
	APL2 IUP Differences:
	IN' and OUT'
	INPC_ and OUTPC_
	APL/PC to Host
	Host to APL/PC

	Chapter 8. The PRINTWS Workspace
	Primary User Functions
	Printer Selection Functions
	Environment System Command Functions
	Environment Dependencies
	CMS
	TSO

	Chapter 9. The SQL Workspace
	Chapter 10. The MEDIT Workspace
	Editing APL Variables and Defined Functions
	The Basic Edit Procedure
	Creating New APL2 Functions or Character Arrays
	Display Terminals without the APL feature

	Using the MEDIT Functions
	Converting APL Objects for Editing
	Pre- and Post-Editing Functions
	Terminals without the APL Feature

	Editing
	The Initialization Functions
	The Input Functions
	The Change Functions
	The Select Functions
	The Output Functions
	The Set Tabs Function

	Usage Notes
	LRECS and CCOL
	QCR and QFX
	APL, Non-APL Translate Table

	Part 2. External Routines
	Chapter 11. External Routines
	APL2PI—APL2 Program Interface
	APL2PIE—APL2 Program Interface Extended
	ATP—Array to Pointer
	ATR—Array To Record
	ATTN—Handling Attentions
	BUILDRD—Build a Routine Description
	BUILDRL—Build a Routine List
	CAN—Compress and Nest
	CMSIVP—Installation Verification under CMS
	CSRIDAC—Request or Terminate Access to a Data Object
	CSRREFR—Refresh an Object
	CSRSAVE—Save Changes Made to a Permanent Object
	CSRSCOT—Save Object Changes in a Scroll Area
	CSRVIEW—Start or Terminate a View of an Object
	CTK—Character to DBCS Conversion
	CTN—Character to Number
	DAN—Delete And Nest
	DFMT—Format Arrays Containing DBCS Data
	DISPLAY—Display Array Structure
	DISPLAYC—Display Array Structure
	DISPLAYG—Display Array Structure
	DSQCIA—QMF Callable Interface
	EDITORX—System Editor Access
	EDITOR2—Full-Screen APL2 Editor
	EXP—Execute in the Previous Namescope
	FED—Diagnostic Information
	HELP—Retrieve Keyed Help Text for an Application
	Using Help to Retrieve a List of Keys
	Using Help to Retrieve Text
	Using Help as an Online Help Facility
	HELP Return Codes:

	IDIOMS—APL2 Phrases
	IN—Read a Transfer File into the Active Workspace
	KTC—DBCS to Character Conversion
	MSG—Message Services Request
	OPTION—Query or Set APL2 Invocation Options
	OUT—Write Objects to a Transfer File
	PACKAGE—Creating a Namespace
	PBS—Handling Printable Backspaces
	PFA—Pattern from Array
	PIN—Protected Read of a Transfer File into the Active Workspace
	PTA—Pointers to Array
	QNS—Query the Current Namescope
	RAPL2—Remote-Session Manager
	RTA—Record to Array
	SAN—Slice and Nest
	SERVER—TCP/IP Port Server
	SVI—Shared Variable Processor Information
	TIME—Performance Monitoring
	TSOIVP—Installation Verification under TSO
	'EXEC—Execute an APL Array as a REXX Program
	'F—Query File Status
	'FM—Read or Write a Fixed Record Length File
	'FV—Read or Write a Variable Record Length File

	Bibliography
	APL2 Publications
	Other Books You Might Need

	Index

