APL2 Programming:

Processor Interface Reference

Version 2 Release 1

SH21-1058-00

APL2 Programming:

Processor Interface Reference

Version 2 Release 1

SH21-1058-00

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’|

First Edition (March 1992)

This edition applies to Release 1 of APL2 Version 2, Program Number 5688-228, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

Changes are made periodically to this publication; before using this publication in connection with the operation of IBM systems,
consult the latest edition of the applicable IBM system bibliography for current information on this product.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. If you
request publications from the address given below, your order will be delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, comments may be addressed
to IBM Corporation, P.O. Box 49023, Programming Publishing, San Jose, California, U.S.A. 95161-9023. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1992. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Programming Interface Information vii
Trademarks and Service Marks vii
About This Book viii
Audience viii
Organization viii
APL2 Publications iX
Related Publications iX
Part One: Introduction to Processors and External Routines 1
Chapter 1. Auxiliary Processor Concepts 2
Introduction 2
Scheduling Processors 3
Global and Local Shared Variable Processors 4
Processor Identification 5
Shared Variable Identification 6
Quotas, 7
Access Control 7
Event Signalling and Event Control Blocks 9
Chapter 2. Associated Processor External Routine Concepts 11
Chapter 3. APL2 Data Representation 13
Representation Types and Lengths 15
CDR Format e 16
AP2CDR Mapping Macro 18
Part Two: Interfaces and Services from APL2 21
Chapter 4. Entry and Exit Conditions 22
Local Auxiliary Processor Entry and Exit 22
Global Auxiliary Processor Entry and Exit 24
LINK.OBJECT Routine Entry 25
.LINK.FORTRAN Routine Entry 26
.LINK.FUNCTION Routine Entry and Exit 27
The External Control Vector (ECV) 27
:LINK.FUNCTION Routine Entry: External Call 29
:LINK.FUNCTION Routine Exit: External Call 32
The Delete Linkage Calland Exit 32
Environment Programs 33
Self-Describing External Routine Identification Signature 33
Routine List Identification Signature 34
Chapter 5. General Protocol for Service Calls 35
Chapter 6. Code D__: Data Conversion Services 37
DE: Translate from VS APL Zcode to EBCDIC 37

© Copyright IBM Corp. 1987, 1992 iii

DN: Change Data Format of One or More Numbers 38

DU: Translate with Caller Supplied Table 40
DX: Convert Extended Character Data 41
DZ: Translate from EBCDIC to VS APL Zcode 43
Chapter 7. Code E__: Error Handling Services 44
ED: Produce aDump 44
ET: Request Abnormal Termination 45
EX: Setor Clearan ABEND Exit 46
EZ: Designate a Permanent Routine 49
Chapter 8. Code F__: File System Services 50
File Services Return Codes 51
FA: Openan APL File 52
FC: Createan APL File 53
FD: Delete an APL File 54
FG: Access a Fileina File Group 55
FL: List APL Files 57
FR: Read an APL File Record 58
FS: Change the Size of an APL File 59
FW: Write an APL File Record 60
FZ: Closean APL File 61
Chapter 9. Code M__: Message Services 62
MC: Check for Message Existence 62
MF: Formata Message 63
Chapter 10. Code P__: Process Services 65
PP: Postan ECB 66
PT: Starta Timer 67
PW: Wait foran Event 68
Chapter 11. Code SC: Shared Variable Services 69
SVP Processor Control 71
CSVON: Signon 71
CSVOFF: Signoff 73
SVP Share Control 74
CSVCOPY: Copy . . . o o e 75
CSVQUERY: Query 76
CSVREF: Reference 78
CSVREL: Release 79
CSVRET: Retract 80
CSVSCAN: Scan foran Offer 81
CSVSEEAC: See (inspect) Access Information 82
CSVSETAC: Set ACV e 83
CSVSHARE: Offer a Variable 84
CSVSHARE: Match an Offer 86
CSVSHARE: Querya Share 88
CSVSPEC: Specify 89
CSVSTATE: State 90
CSVDFORM: SVP Data Format Control 91
Chapter 12. Code T__: Terminal Services 92
TA: Allocate the Terminal 93

iv APL2 Programming: Processor Interface Reference

TZ: Release the Terminal 94

Chapter 13. Code V__: Virtual Storage Services 95
VF: Free Global Storage 95
VG: Get Global Storage 96
VP: Get Process Storage 97
VQ: Free Process Storage 98
VV: Get Variable Length Process Storage 99
VX: Get Extended Storage 100
Chapter 14. Code X__: External Call Services 101
XB: Builda CDR Usinga Pattern 102
XC: Convert Data Tokens to Addresses 104
XD: Convert Data Tokens to Address/Length Pairs 105
XE: Evaluate an APL Expression 106
XF: Form or Find an APL Object 109
XG: Allocate or Free Space in the Workspace 111
Part Three: Using VS APL Processors under APL2 113
Chapter 15. Extensions to Support New Data Types 114
Share Data Format (SDF) 115
Part Four: Calls to APL2 from Non-APL Programs 117
Chapter 16. Introduction to Callsto APL2 118
Overview of Calls to APL2 119
Chapter 17. APL2Pl Interface Calls 122
INIT—Initialization Call 124
TERM—Termination Call 126
APLS—Execute an APL2 Function, 127
APLE—Execute an APL2 Expression 130
APLX—Return Control to APL2 131
APLF—Execute an APL2 Function 133
APLV—Reference or Specify an APL2 Variable 135
APLP—Enter or Exit a Namespace Namescope 137
Return Codes 138
Chapter 18. Using the Calls to APL2 Facility 139
Using CDR Results 139
Pattern CDRs 139
External Functions ATP and PTA 139
Using PTAand ATP 140
External Functions APL2PIl and APL2PIE 141
APL2P| and APL2 Calls to Other Languages 145
Chapter 19. System Related Considerations 146
Using APL2PI in a VM/CMS Environment 146
Modifying the APL2 Invocation Command and Options 146
Accessing APL2PI from a Non-APL Application 147
Invoking a Non-APL Application through APL2PIE 148

Contents V

Extended Addressing Considerations 148

Using APL2PI in an MVS/TSO Environment 150
Modifying the APL2 Invocation Command and Options 150
Accessing APL2PI from a Non-APL Application 151
Invoking a Non-APL Application through APL2PIE 152
Extended Addressing Considerations 152

Chapter 20. Language Related Considerations 153

Using the APL2PI Interface from FORTRAN 154

Using the APL2PI Interface from C 160

Using the APL2PI Interface from COBOL 165
APL2 and COBOL Data Representations 167

Using the APL2PI Interface from PL/l 170

Chapter 21. Implementation Details 172

Invoking APL2 from a Non-APL Application 173

Invoking a Non-APL Application from APL2 174

Environment Isolation 175

Appendixes 177

Appendix A. Service Parameter Summary 178

Appendix B. Testing and Using Processors, .. 180

Accessing a Local Auxiliary Processor under CMS 180

Accessing an External Routine underCMS 180

Accessing a Local Auxiliary Processor under TSO 181

Accessing an External Routine under TSO 181

Appendix C. Macros Intended for CustomerUse 182

Index 184

Vi APL2 Programming: Processor Interface Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights or other legally protectible rights may be used instead of the
IBM product, program, or service. Evaluation and verification of operation in con-
junction with other products, programs, or services, except those expressly desig-
nated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

Programming Interface Information

This book is intended to help you use the auxiliary processors, associated
processor function routines, and the services available to those processors and rou-
tines provided by APL2 Version 2. This book documents General-Use Program-
ming Interface and Associated Guidance Information provided by APL2 Version 2.

General-Use programming interfaces allow the customer to write programs that
obtain the services of APL2 Version 2.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

APL2

ESA

GDDM

IBM
MVS/XA
S/390
System/370
System/390

© Copyright IBM Corp. 1987, 1992 vii

About This Book

Audience

Organization

viii

This manual describes the interfaces to auxiliary processors and associated
processor external routines, the services available to those processors and rou-
tines, the interfaces for calling APL2* from non-APL programs, and the services
available to those programs.

IBM provides a set of auxiliary processors described in APL2 Programming: System
Services Reference, and a set of associated processor external routines described
in APL2 Programming: Using the Supplied Routines. Those manuals should be
consulted for use of the IBM facilities. The present manual provides reference
material for programmers who intend to write their own processors or external rou-
tines.

This manual also provides material for programmers who intend to call APL2 rou-
tines from programs written in other languages. You can find other material about
this topic in the discussion of the APL 2 PIE function in APL2 Programming: Using
the Supplied Routines.

Most of the interfaces described in this book are available under both CMS and
TSO. Differences in availability and in use do exist, however, and are noted
throughout the manual.

Auxiliary processors written for VS APL can, in most cases, continue to be used
with APL2. This manual describes the limitations in that compatibility, as well as
additional facilities available to such processors, but does not define interfaces to
VS APL. See VS APL for CMS and TSO: Writing Auxiliary Processors for that
information.

The portions of this manual that discuss auxiliary processors and associated
processor external routines assume that you are an experienced programmer in
System/370* or System/390* assembler language. Although the interfaces defined
here can be used from several compilable languages, they are described using
assembler language terminology.

The portions of this manual that discuss calling APL2 from non-APL programs
assume that you are familiar with other programming languages. The interfaces
are described using assembler language terminology and examples are provided in
several different languages.

The manual also makes no attempt to describe the facilities of the APL language,
its system environment, or the operating systems under which it executes. The
manuals listed at the end of this preface are sources for this information.

This manual is organized in four parts:

* [Part One: Introduction to Processors and External Routines” on page 1|
explains a number of concepts used throughout the manual.

 [‘Part Two: Interfaces and Services from APL2” on page 21|describes the set of
interfaces and services that are available under APL2.

© Copyright IBM Corp. 1987, 1992

» [Part Three: Using VS APL Processors under APL2” on page 113|discusses

changes you may need or want to make to VS APL auxiliary processors when
migrating them to an APL2 environment.

 [Part Four: Calls to APL2 from Non-APL Programs” on page 117 discusses a

facility in which a non-APL program can start APL2, call APL2 routines, and
terminate APL2.

APL2 Publications

The books in the APL2 library are shown in Figure 1. This figure shows which
books can help you with specific tasks such as finding reference information.

Figure 1. APL2 Licensed Program Library
Publica-
tion
Task APL2 Publication Number
Evaluating APL2 APL2 General Information GH21-1051
APL2 Application Environment Licensed Program
Specifications GH21-1063
APL2 Licensed Program Specifications GH21-1070
Installing APL2 APLZ2 Installation and Customization under CMS SH21-1062
APL2 Installation and Customization under TSO SH21-1055
Migrating to Version 2 APL2 Migration Guide SH21-1069
Release 1
Finding Reference APL2 Programming: Language Reference SH21-1061
Information APL2 Programming: Processor Interface Reference SH21-1058
APL2 Programming: System Services Reference SH21-1054
APL2 Reference Card SH21-1071
APL2 Reference Summary SX26-3999
Programming An Introduction to APL2 SH21-1073
APL2 GRAPHPAK: User's Guide and Reference SH21-1074
APL2 Programming: Guide SH21-1072
APL2 Programming: Using Structured Query Language (SQL) SH21-1057
APL2 Programming: Using the Supplied Routines SH21-1056
Diagnosing Problems APL2 Diagnosis LY27-9601
APL2 Messages and Codes SH21-1059

Related Publications
VS APL Publications

VS APL for CMS and TSO: Writing Auxiliary Processors, SH-20-9068

VM/CMS Publications

Virtual Machine/System Product: CMS Command Reference, SC19-6209
Virtual Machine/System Product: CMS User's Guide, SC19-6210

Virtual Machine/System Product: CP Command Reference for General Users,
SC19-6211

Virtual Machine/System Product: System Programmer's Guide, SC19-6203

About This Book X

MVS Publications

OS/VS Virtual Storage Access Method (VSAM) Options for Advanced Applica-
tions, GC26-3819

OS/VS Virtual Storage Access Method (VSAM) Programming Guide,
GC26-3838

OS/VS2 System Programming Library: Data Management, GC26-3830
OS/VS2 MVS Data Management Macro Instructions, GC26-3873
OS/VS2 MVS Data Management Services Guide, GC26-3875
OS/VS2 MVS Supervisor Services and Macro Instructions GC28-0683

OS/VS2 TSO Guide to Writing a Terminal Monitor Program or Command
Processor, GC28-0648

OS/VS2 TSO Terminal User's Guide, GC28-0645

MVS/XA Publications

MVS/Extended Architecture Data Management Macro Instructions, GC26-4014

MVS/Extended Architecture Supervisor Services and Macro Instructions,
GC28-1154

MVS/Extended Architecture System Programming Library: Data Management,
GC26-4010

MVS/Extended Architecture System Programming Library: 31-Bit Addressing,
GC28-1158

MVS/Extended Architecture TSO/E Guide to Writing a Terminal Monitor
Program or Command Processor, SC28-1136

MVS/Extended Architecture VSAM Reference, GC26-4016

X APL2 Programming: Processor Interface Reference

Part One: Introduction to Processors and External Routines

© Copyright IBM Corp. 1987, 1992 1

Chapter 1. Auxiliary Processor Concepts

Introduction

In theory, an auxiliary processor is an asynchronous program that is communicating
with an APL2 session. In practice, it is usually providing a service to that session.
Obvious services are to read data from a file or write data to a file. However, the
services that can be provided are limited only by the imagination of the designer
and the facilities available in the system under which the auxiliary processor is exe-
cuting.

Auxiliary processors use the Shared Variable Processor (SVP) to communicate with
an APL2 session. The SVP is a component of APL2 that provides a communi-
cation path between two independent processors. The two processors may be
separate tasks within a single MVS address space, separate pseudo-tasks within a
CMS virtual machine, or tasks running in two different MVS address spaces or
CMS virtual machines or processes running on two different systems connected
with TCP/IP.

It is also possible for two auxiliary processors to communicate with each other
using the SVP. In reality this is what always happens, since the APL2 interpreter is
acting as an auxiliary processor on behalf of the APL user session.

Auxiliary processors exchange information with each other through shared
variables. A variable may not be shared by more than two auxiliary processors. If
a processor needs to communicate with more than one other processor, it must
share a different variable with each of them. A variable becomes fully shared when
each processor has offered to share it with the other. The two processors are then
called share partners. A number of variables may be shared between two share
partners.

Note that either processor may make the initial offer. Until a counter offer has been
made, the offer is outstanding, and only the one processor views the variable as
shared. Each processor is notified when the other offers a variable.

APL sessions share variables and obtain information about share offers by using
the 0SV0 and O05V§ system functions. These functions are described in APL2
Programming: Language Reference. In its discussion of shared variables and aux-
iliary processors, APL2 Programming: System Services Reference explains the use
of 0SV0 and 0SV§ in communicating with auxiliary processors.

A shared variable normally has a value, though it may initially be shared without
any value. Each partner may set a value for the shared variable, and may use
(that is, look at) its current value. The SVP provides synchronization to ensure that
the share partners have a consistent view of the variable's value.

¢ |f both share partners have been informed of the current value, the SVP does
not retain it, since each partner is assumed to have a copy of it.

e When one partner sets the variable, that partner is assumed to retain a copy of
it, but the SVP also maintains a copy in shared memory.

A processor's copy may become out of date almost immediately after a set or use.
The processor may always ask for an updated copy of the value. The SVP will

© Copyright IBM Corp. 1987, 1992

either return the current value, or will indicate that the processor already has the
correct value.

Share partners normally establish protocols governing the order in which variables
are set and used. The SVP assists in this process by returning information on the
access state of a variable, and by maintaining an access control vector for each
variable. Both share partners may inspect and modify the access control vector.

Either share partner may retract a variable at any time. When this occurs, the vari-
able becomes an outstanding offer. When the other partner retracts the variable, it
ceases to be shared. A processor is notified when its share partner retracts a fully
shared variable.

Scheduling Processors

The rules for starting and dispatching auxiliary processors depend on whether they
are global or local, and under which operating system they execute. These rules,
in turn, determine some of the information you need to know to write an auxiliary
processor.

Local auxiliary processors: These processors share their execution environment
with an APL2 session, so are started when a user invokes APL2. They are identi-
fied by the APNAMES invocation option, or the ATASKS or RESAPS installation
options. (The installation options are used only if the processor is to be physically
combined with the APL2 product. In this case, the ATASKS option is used for
processors written to the interface defined in [Chapter 4, “Entry and Exit Conditions’|
while the RESAPS option is used for processors written to the VS
APL interface.)

Local processors have read/write access to the same storage used by APL2. This
has the disadvantage that an error in your processor could destroy a user's APL2
session. It has the advantage that you can program the processor to make use of
a wide range of services that are available to APL2 itself. These include data con-
versions, an APL file system, message formatting, and terminal sharing.

Global auxiliary processors: These auxiliary processors have their own exe-
cution environment. This means they can freely use any facilities provided by the
operating system without any chance of interfering with APL2 or other auxiliary
processors. (In VM there is one restriction: The processor should not use VMCF.)

Chapter 1. Auxiliary Processor Concepts 3

One important distinction is that global processors are normally shared by many
APL2 sessions. Consider, for example, two users sharing a variable with processor
333. If 333 is a local auxiliary processor, each APL2 session will have a separate
“‘instance” of it, and the logic within the processor will be aware of only one partner.
If 333 is a global auxiliary processor, there is only one “instance” of the processor
in the system, and it must normally be prepared to share variables concurrently
with multiple APL2 sessions. The good part of this is that global processors are
well suited for global resource managers. For example, an installation could write a
global processor that provided updates to system files. The processor could
include authorization checks, and also resolve concurrent update problems.

Because global processors are not associated with a particular APL2 session, they
have no access to an individual user's terminal. They should be thought of as
being started by (or on behalf of) the system operator, and should provide for com-
munication with the system console.

With a VM operating system: Local auxiliary processors share a CMS virtual
machine with other similar auxiliary processors and with the APL2 session that
started them. This is possible because the APL2 session provides multitasking,
including services to signal (or post) and to wait for signals. Those services are
described in[Chapter 10, “Code P__: Process Services” on page 65 APL2 also
provides compatible support for the ASVPWAIT service provided in VS APL.

Global auxiliary processors execute in their own CMS virtual machine. This is
normally a disconnected machine that is started by a CP AUTOLOG command.

With an MVS or MVS/XA operating system: Local auxiliary processors share an
MVS address space with other similar auxiliary processors and with the APL2
session that started them. (This is normally a TSO session, but may be a batch job
that is executing APL2 under PGM=IKJEFTO01.) Each auxiliary processor executes
as a separate MVS task and can use MVS tasking facilities, such as WAIT and
POST. Local processors may also choose to use the services described in
Chapter 10, “Code P : Process Services” on page 65| These make it easier to
produce auxiliary processors that can be used in both CMS and TSO environments.

Global auxiliary processors execute in their own MVS address space. They may
execute either as an MVS batch job or a started job.

Global and Local Shared Variable Processors

APL2 implements the SVP as a two-level hierarchy. The two levels are the local
SVP and the global SVP. Each level of the SVP uses a data area referred to as
shared memory, so there is also local shared memory and global shared memory.

The local SVP is established in each user's address space (MVS) or virtual

machine (VM) when APL2 is invoked, and allocates local shared memory within the
address space or machine.

4 APL2 Programming: Processor Interface Reference

The global SVP is established, typically by a system operator, as a separate
address space or virtual machine. Global shared memory is allocated in CSA for
MVS or in a writable saved segment for VM. The global SVP is an optional compo-
nent of the APL2 system and need not be installed or invoked by an installation.

The APL2 interpreter interfaces with both the local and global SVP, so it can share
variables with local auxiliary processors, global auxiliary processors, and other
APL2 users. If the global SVP is not active, or does not authorize the APL2 user
when APL2 is invoked, the APL2 user will only be able to share variables via local
auxiliary processors.

APL2 cooperative processing through TCP/IP depends only on a local auxiliary
processor, not the global SVP, so in some cases it is possible to share variables
between sessions without global SVP authorization.

If the global SVP is available and the APL2 user is authorized to use it, the fol-
lowing rules apply:

e Shared variable offers from an APL2 user are processed first by the local SVP.
If an active local auxiliary processor is found with the specified processor id, the
offer will be made to that processor. If the processor id specified does not
match that of any of the active local auxiliary processors, the offer will be
extended in global shared memory.

e General offers (processor id 0) are extended only in global shared memory.

¢ Shared variable queries (057 g) obtain information from both the local SVP
and the global SVP if it is available.

e If a local auxiliary processor and a global auxiliary processor are using the
same processor number, the APL2 user is able to share variables only with the
local auxiliary processor.

Processor Identification

An auxiliary processor is conceptually identified by an 8-byte token. In practice a
fullword integer is normally used, since the APL language supports only such inte-
gers when sharing with auxiliary processors. The processor number is expressed
as a binary integer and placed in the first four bytes of the field, with binary zeros in
the last four bytes.

Auxiliary processor numbers must be distinct from APL user numbers. By conven-
tion, auxiliary processors are usually assigned numbers less than 1000, and users
are given numbers greater than 1000. IBM has reserved the numbers 500 through
999 for customer use. You may use any number in this range without risking inter-
ference with a processor distributed by IBM in the future.

The processor number is used to make initial contact with the SVP. It is also used
when one processor wants to identify another processor as a share partner. Within
the APL language, processor numbers are used as the left argument of SV O,
and may be either the right argument or the result of STV Q.

Global processor numbers must be unique within the processor complex. Local

processor numbers (including those used to access TCP/IP) need only be unique
within the APL session that started the processors.

Chapter 1. Auxiliary Processor Concepts 9

Local auxiliary processors are also identified by a name that is used to start the
processor. This nhame may appear:

e In the ATASKS or RESAPS parameters of an installation options module, if the
processor is to be combined with the APL2 product

e In the APNAMES operand of the APL2 invocation command, or of its defaults
or overrides as defined by the installation options module

¢ As the member name of the module in a LOADLIB.

For ease of association, processors included with APL2 include the processor
number as a part of the processor name. You may find it helpful to adopt the same
convention.

Shared Variable Identification
A shared variable has associated with it:

¢ A name, which identifies it between share partners.
¢ An index number, which identifies it in communication with the SVP.
* A sequence number, which can be used to limit matching offers.

The index number or pershare index (PSX) is used by the SVP to look up informa-
tion about the shared variable. When a processor extends an initial offer, or
matches an existing offer, the SVP assigns a specific PSX to that variable and that
processor. Each partner must use its own PSX in subsequent communications with
the SVP about that variable.

The offer sequence number (OSN) is a unique number assigned by the SVP which
indicates the order in which share offers were extended. Because of limited
resources, a processor may not be able to handle concurrently all offers being
made to it. By limiting OSN, the processor can ask the SVP to consider only
recent offers, even if earlier ones are currently unmatched. This makes it possible
for the processor to acknowledge offers quickly, then switch its resources among
requestors.

The variable name is used when an offer is made. For variables shared with APL
sessions, the name must be alphanumeric and begin with a letter. The shared
variable processor and the APL2 language processor support names up to 255
characters long. Individual auxiliary processors may impose additional restrictions.
For a variable to become shared, both processors must offer it by the same name.
This does not mean that the names of variables to be shared with a processor
must be predefined. If your processor waits for its partner to extend an initial offer,
it can issue a query to obtain the proposed name, and use that name when it
extends a counter offer.

The APL user or program provides the name as the second (or only) part of the
right argument to dyadic .SV 0, and is given the name as the result of 0S¢ with
a numeric right argument. If the right argument to dyadic 05V 0 contains two parts
separated by blanks, then the first part is the name of the variable as known in the
APL workspace. That name has nothing to do with the one seen by the auxiliary
processor, unless the two names are identical or the second one is omitted. The
two names are often referred to as the APL name and the surrogate name, respec-
tively.

6 APL2 Programming: Processor Interface Reference

Quotas
The Shared Variable Processor has limits on:

¢ The number of shared variables, and
e The size of shared memory.

These limits are established separately for the global SVP (when it is started), and
for the local SVP (when an APL2 session is started).

A processor may establish its own limits on number of shared variables, and SVP
space for storage of their values. The processor informs the SVP of these limits as
a part of the processor identification (“sign on”) call. The SVP will then enforce
both its own limits and any processor limits it has been given. The processor limits
apply only to actions by that processor.

Note that the SVP does not guarantee either the space or the number of shares
specified by the processor. Even if the values are within SVP's own limits, other
processors or other variables may be using resources at the moment.

Access Control

It is often necessary for share partners to control the sequence in which they
access a shared variable. If the access is not controlled, one partner can set a
variable twice before the other can use the first value; or one partner can use a
variable twice before the other can set a second value.

Each shared variable has associated with it a 4-bit access control vector (ACV)
which provides a means of regulating access to the variable. Each partner pre-
sents its own version of the access control vector to the SVP. The effective, or
combined, access control vector is the logical OR of the two. Thus each processor
can impose more discipline than its partner desires, but neither can relax con-
straints imposed by its partner.

The meaning of each of the four bits is:

Bit 0 If 1, disallow my successive set until my partner has accessed the variable
(either used or set it).

Bit 1 If 1, disallow my partner's successive set until | have accessed the variable.
Bit 2 If 1, disallow my successive use until my partner has set the variable.
Bit 3 If 1, disallow my partner's successive use until | have set the variable.
The SVP allows or disallows each access according to the variable's access state.

The access state is defined by a 4-bit vector called the ASV, but only three states
are valid:

1010 Lastaccess was a set by me.

0101 Lastaccess was a set by my partner.

0011 Last access was a use by me or my partner. This is also the initial state
before any access by either partner.

Formally, if you AND together the ACV and the ASV, the result will contain 1 for
any operation that is currently disallowed.

Chapter 1. Auxiliary Processor Concepts 7

Example: In reading the following, you should think of the situation as seen by
one of the processors, which we will call processor. The other share partner we
will call partner, realizing that each is really both a processor and a partner. The
note below will explain why it is important to restrict your viewpoint to one side of
the partnership.

1. Processor wants its own use and set controlled.
Access Control Vector contribution: 1 0 1 0

2. Partner wants its use and its partner's use controlled.
Access Control Vector contribution: 0 0 1 1
Combined Access Control Vector: 1 0 1 1

3. Partner sets the variable
Access State Vector: 0 1 0 1
(This is still as seen by processor.)

4. The AND of the two vectors is now 0 0 0 1, which provides the following infor-
mation:

Bit 0 Off, so processor is allowed to set the variable. One partner can always
choose to ignore a value set by the other, and replace it with a new
value. There is, separate from access control, a switch used to indicate
whether the processor wishes to do this.

Bit 1 Off, so partneris allowed to set the variable again. Note that neither
program asked that partner sets be controlled.

Bit 2 Off, so processor may currently use the variable.
Bit 3 On, so partner may not use the variable until processor has set it.

Note: The SVP transposes bits in both the access control vector and the access
state vector when presenting them to each partner. This is done to make the defi-
nitions consistent as seen from both sides. You may want to think of the 4-bit
objects as 2 by 2 matrices, like this:

My set Partner set

My use Partner use

Now imagine the matrix as Boolean numbers printed on a piece of glass. If the
glass is held up between the two share partners, each will see it with the proper
transpositions. (The creators of the Arabic numerals showed remarkable foresight
in designing 0 and 1 so that they would be readable from both sides of the glass.)

8 APL2 Programming: Processor Interface Reference

Event Signalling and Event Control Blocks

The SVP uses event control blocks (ECBs) to signal between share partners. For
example, one processor may try to set a variable, but be denied because of the
current access state and access control vectors. The SVP will attempt to signal
that processor when its share partner uses the variable, since that action makes it
possible for the first processor to set the variable.

SVP signals are sent by posting an ECB. This is an operating system (rather than
an APL) concept, and is accomplished using system services appropriate to the
environment. The auxiliary processor may wait for an ECB (or one of a set of
ECBs) to be posted. Global auxiliary processors must use operating system WAIT
services for this. Local auxiliary processors will normally use the service described
in [‘PW: Wait for an Event” on page 68|, except that local processors under TSO
may choose the MVS WAIT service if they prefer.

A Processor must always provide an ECB when it first identifies itself to the SVP.
The address of this ECB is retained by the SVP, which may post the ECB at any
time. A processor will normally also provide a unique ECB for each shared variable
which it offers or matches. The processor may choose not to provide a separate
ECB for each share offer. In this case all subsequent signals which would normally
post the ECB for that variable will instead post the processor ECB.

The SVP may signal a processor for a number of reasons. Most of these reasons
can be associated with an existing share offer previously made by the processor,
and the signalling is accomplished by posting the share ECB (if available). Signals
which cannot be associated with an available share ECB are sent by posting the
processor ECB.

ECB Post Codes: The SVP uses a set of flags to indicate the type of a signal
that is being sent. In some cases, two or more separate signals may occur that
would be posted to the same ECB without intervening action required by the
partner being posted. Depending on the system, the signal flags may be ORed, or
only one of the flags may be set and other signals will appear to be lost. The
processor should never depend on a particular flag being set, but should instead
attempt the next desired operation or ask for state information as described in
FCSVSTATE: State” on page 90

The signal flags are placed in the last byte of the ECB and have the following
meanings:

X'01' Coupling Change: Match or Retract has occurred for a previously offered
variable, or an Offer has been made to the processor. The match or Retract
signals will be posted in the share ECB if one is available.

X'02' Set Access Control Vector performed. This may or may not have affected
the combined Access Control Matrix.

X'04' Variable Set or Use Action. These are discussed further in
Signals” on page 10, Not all of the cases result in signals.

Chapter 1. Auxiliary Processor Concepts 9

X'10"' Resource Available. A previous request was rejected for some reason such
as:

e Too many concurrent processors or variables
e A storage shortage in the SVP
e The partner held control of the variable.

The resource may now be available, so the processor should re-try the
request if desired.

X'20"' The processor is being asked to sign off. This signal is sent when the SVP
is terminating. For local processors, it means that the user is exiting from
APL2. For global processors, it means the system operator is shutting the
global shared variable processor down.

Set or Use Signals: These are best considered from the viewpoint of the
processor taking the action, rather than the processor being signalled. The deci-
sion as to whether to signal a partner is directly inferable by the SVP from the:

e Merged Access Control Vector (ACV), and
e Access State Vector (AS5V) at the start of the request, and
* Processor request.

The ACV and ASV have been described in [‘Access Control” on page 7} The only
processor requests discussed in this section are set and use, though other
requests can cause signalling, as ['ECB Post Codes” on page 9 indicates. For
conformability with the ACTV and ASV, we define a request vector (RQV) having
the following possible values:

0 1 1 0 variable use

1 0 0 1 variable set

A signal will be generated if the following APL expression evaluates as 1:
1eRQVAACVAAST

In words, this means that if you line the three vectors up and scan down the four
columns of 1's and 0's, then a signal will be generated if any column has all 1's. (It
doesn't matter which column has the 1's.)

In the same way that the combined access control can be viewed as a 2 by 2
matrix specifying what is controlled:

My set Partner set

My reference Partner reference

it can also be viewed as a matrix specifying that my partner is to be signalled on
my:

Failed set Successful reference

Failed reference Successful set

Note that the failed actions on the left need to cause signals so that my partner can
take action to relieve the corresponding control. The successful actions on the right
cause signals because they may have relieved a corresponding control encount-
ered by my partner.

10 APL2 Programming: Processor Interface Reference

Chapter 2. Associated Processor External Routine Concepts

Associated processors are synchronous subroutines of the APL2 interpreter. They
provide support for external objects; that is arrays, functions, or operators which are
known within a workspace but are not actually part of the workspace.

External objects are made known to a workspace by using a name association
system function, ONVA. [ONA is described in APL2 Programming: Language Ref-
erence. It provides an association between a name in a workspace and a (perhaps
different) name as recognized by a particular associated processor.

Note that name association does not involve the use of shared variables. Although
some of the concepts are similar, the differences are striking:

* Name association routines are synchronous subroutines; shared variables are
processed by independent, asynchronous programs.

* Name association provides variable, function, and operator support; shared var-
iables are just that: variables.

* Once a name association has been made in a workspace, it persists across
)SAVE or)OUT of that workspace, and subsequent)LOAD,)COPY, and
) I of the whole workspace or the names that were associated. Shared vari-
ables apply only to the active workspace, and must be reestablished by user
program action each time the workspace is loaded.

As just indicated, name association persists as viewed by the APL programmer or
user. What really happens, though, is that it is automatically reestablished when-
ever required. APL2 retains the VA arguments as descriptive information associ-
ated with the object. These arguments include:

* An associated processor number,

* A name to pass to the associated processor, and

» Additional descriptive material that the processor may need to resolve the asso-
ciation.

The associated processor may then resolve the name as a program written in
APL2, FORTRAN, REXX, C/370, PL/I, assembler language, or perhaps other lan-
guages.

In many cases the programs provide utility services, and need not be aware that
they were called from APL2. The details of calling this class of programs is pro-
vided in APL2 Programming: System Services Reference.

In other cases the programs may be written specifically as extensions of the APL2
language or as high performance replacements for APL2 algorithms. This class of
programs works much more closely with arrays, functions, and operators that exist
in the active workspace. These are the programs that will use the interfaces
defined here.

All of these (APL-specific) programs are defined to processor 11 as functions or
operators by means of :LINK tag in a routine description. See APL2 Programming:
System Services Reference for these descriptions. The programs are called asso-
ciated processor external routines, or simply external routines. We use the shorter
term in the remainder of this manual.

© Copyright IBM Corp. 1987, 1992 11

External routines can mimic APL functions and operators. They can have any
valence a normal APL2 routine can have and normally produce an explicit result.

:LINK.FUNCTION routines are designed to be written in assembler language and are
given access to processor 11 and APL2 services, the argument data descriptors,
and the data itself. All of their arguments and results are in common data repre-
sentation (CDR) format or are represented by tokens. A service is provided to
convert data represented by a token to a CDR. Arguments are passed as pointer
format CDRs. Results can be returned in any of the supported CDR formats. See
[Chapter 3, “APL2 Data Representation” on page 13|for a complete description of
CDRs.

:LINK.OBJECT and :LINK.FORTRAN routines can be written in FORTRAN, assembler,
C/370, PL/I, or other languages. They are given access only to processor 11 ser-
vices. Arguments are passed to them using standard OS or FORTRAN con-
ventions. Results are returned using the same conventions.

12 APL2 Programming: Processor Interface Reference

Chapter 3. APL2 Data Representation

Common data representation (CDR) is a convention for the construction and inter-
pretation of self-describing data objects that can be communicated between APL
processors.

In the CDR, a data object is assumed to be an APL array and is classified as either
a simple or a general object:

* A simple object is an array of simple homogeneous scalar values.

* A general object is an object that is not a simple object. These are arrays
containing mixed character and numeric data or an array containing arrays as
items.

Common data representation recognizes three forms, but one of them is retained
only for compatibility with earlier releases. The two forms you will be dealing with
are:

* The dense form in which the CDR object contains all of the data in addition to
all descriptive information about it.

e The pointer form in which the CDR object contains all of the descriptive infor-
mation about the data but has pointers to part or all of the data itself.

CDR objects passed from the SVP to an auxiliary processor are passed in dense
form. CDR objects passed from processor 11 to external routines using FUNC-
TION linkage are passed in pointer form. Auxiliary processors and external rou-
tines may pass CDR objects to the Shared Variable Processor or to processor 11
in dense or pointer form.

A CDR object is divided into four sections:
e A header section containing information about the CDR itself.

» A descriptor section, which describes the size and shape of the object and how
it is represented.

* An optional pointer section, which contains the information about the actual
location and length of the data.

* An optional data section, which contains all (dense form) or part (pointer form)
of the data.

The CDR for a simple object contains the header, one descriptor, and either a
pointer or the data, in that order. The data is stored in ravelled order. (This is row
by row, not column by column, in case you are used to FORTRAN conventions.)

CDRs for general objects contain the same sections in the same order (though they
may contain both pointer and data sections), but the sections are somewhat more
complex.

e There are always multiple descriptors.

* There are frequently a number of pointers.

e Data aggregates are usually laid out one after the other with no regard for data
types or normal boundary alignment.

© Copyright IBM Corp. 1987, 1992 13

The descriptor section always begins with information about the general object
itself. This is followed by descriptors for each item of the general object. For a
general object that contains other general objects, a recursive descriptor structure
is used. Figure 2 is an example of such an object.

»
>

»
>

Hit the| [ball

Figure 2. Example of a General Object

The arrows in this example are used by the DT SPLAY function to provide shape
information. A full description of this representation is available in Using the Sup-
plied Routines and in the DI SPLAY workspace. The object shown here is a
three-element vector, containing:

1. A simple character vector “Hit.”
2. A two-element vector, which in turn contains:

a. A simple character vector “the.”
b. A simple character vector “ball.”

3. Another two-element vector, which in turn contains:

a. A simple character vector “to.”
b. A simple character vector “me.”

The CDR descriptors appear in what would formally be called a ravelled, left-list
order. This is really the order used in the numbered and lettered lists just given.
The PFA external function, described in Using the Supplied Routines, builds a
pattern comparable to CDR descriptors. You may find it quite useful in under-
standing CDR structures.

For this example there would be eight descriptors, one for each box in the picture.
They would appear in the following order:

(general) hit (general) the ball (general) to me

where the term “(general)” is used to indicate a nonsimple array. Notice that each
(general) descriptor is followed by descriptors of the items within that array. If one
of those items is in turn a (general), then the current list is interrupted to describe
its items.

Even an empty general object will contain a descriptor for the general object fol-
lowed by at least one more descriptor. The additional descriptor or descriptors
define a prototype structure for the general object.

The pointer and data sections follow the order established in the descriptor section,

but never contain any entries associated with general objects, empty items, or pro-
totypes.

14 APL2 Programming: Processor Interface Reference

Representation Types and Lengths
There are several ways in which data can be represented in the CDR. Each repre-
sentation has associated with it a representation type (RT), a representation length
(RL), and rank and shape information.

The representations currently defined are intended to support the requirements of
APL but would be useful in many other environments. Figure 3 shows the combi-
nations of RT and RL that are defined.

Figure 3 (Page 1 of 2). CDR RT/RL Combinations

RT RL Scale Description

'B' 1 bit Boolean integers (0 and 1).

'B' 4 bits Hexadecimal integers (0 thru 15).

'B' 8 bits Byte integers (0 thru 255).

T 2 bytes Signed fixed-point integers. S/370 or S/390* halfword inte-
gers (32768 through 32767).

T 4 bytes Signed fixed-point integers. S/370 or S/390 fullword integers
(72147483648 through 2147483647).

'E! 4 bytes Real floating-point numbers. S/370 or S/390 single precision
floating numbers (6 hex digit precision).

'E! 8 bytes Real floating-point numbers. S/370 or S/390 double precision
floating numbers (14 hex digit precision).

'E! 16 bytes Real floating-point numbers. S/370 or S/390 extended preci-
sion floating numbers (30 hex digit precision).

'J! 8 bytes Complex floating-point numbers. Two single precision
floating values representing real and imaginary parts of the
complex value.

'J! 16 bytes Complex floating-point numbers. Two double precision
floating values representing real and imaginary parts of the
complex value.

'J! 32 bytes Complex floating-point numbers. Two extended precision
floating values representing real and imaginary parts of the
complex value.

'c' 1 byte Character. S/370 or S/390 EBCDIC encoding with APL
graphics assumed.

'c 4 bytes Character extended, for double-byte character sets. The first
two bytes are a character set identifier; the last two bytes are
a code point within that character set. APL/EBCDIC charac-
ters have X'00' in the first 3 bytes.

A 8 bytes Integer progression. Two fullword integers representing the
first value and the increment between values in a string of
values. (The number of values in the string is stored in the
descriptor for the object.)

'p! n bytes Packed decimal format, where 1 < n < 16. n is the width in
bytes of the packed decimal field.

‘7' n bytes Zoned decimal format, where 1 < n < 16. n is the width in
bytes of the zoned decimal field.

Chapter 3. APL2 Data Representation 15

Figure 3 (Page 2 of 2). CDR RT/RL Combinations

RT RL Scale Description

X! 0 byte Filler. This type is provided for use within a general object.

It indicates that bytes in the data section are simply fillers and
are to be otherwise ignored. The number of bytes to be
ignored is the number of items defined by the descriptor.

'G' 0 General object. The data associated with this is described in
subsequent descriptors.

CDR Format

The format of an object in the CDR is divided into four parts:

1. The header section

2. The descriptor section

3. The pointer section

4. The data section
The parts of a CDR object will be contiguous and in the above order, although not
all types will have all sections. Dense form CDRs will have a header, one or more

descriptors, and a data section. Pointer form CDRs will have a header, one or
more descriptors, one or more pointers, and optionally a data section.

The CDR must start on a word boundary. Since all parts except the data section

are multiples of four bytes in length, all sections will also start on fullword bounda-
ries.

Header Section

CDRFLAGS CDRHDLEN

00 01 04
CDRFLAGS The bits in the flag byte have the following definitions:

X'80' CDRID: Always on, used to distinguish a CDR object from
earlier forms of shared variables used in APLSV and VS APL.

X'20' CDRPTRF: On if the data is in pointer form. See [Pointer]
[Section” on page 17|for more information.

All other bits in the flag byte are reserved for future use, and must be
set to zero.

CDRHDLEN The length of the header and descriptor sections together. Thus this
may be used as an offset to the pointer section if CDRPTRF is on, or
to the data section if it is off.

Descriptor Section

The descriptor section of a CDR contains a descriptor for the object as a whole
and, for mixed or nested objects, a descriptor section for each item of the object.
Thus a simple array in the CDR format will contain a single descriptor, while a
general array will contain a recursive structure of descriptors. In a general array
with nested subarrays, the descriptors (and the data) will be stored in ravelled left-
list order.

16 APL2 Programming: Processor Interface Reference

Each descriptor in the CDR has the following format:

00

CDRXRHO number of items in this array
04

CDRRT type|CDRRL Ten |CDRRANK dimensions
08

CDRRHO number of items along each dimension

This area contains as many words as the
value in CDRRANK. (Omitted for scalars.)

CDRXRHO is the total number of items defined by the descriptor. In APL termi-
nology, XRHO means x/RHO.

CDRRT and CDRRL are the representation type and the representation length,
respectively. CDRRT is a character code. CDRRL is the binary length of one
element. For example, C'I',FL1'4" represents a fullword integer. (l4 is often
used as a shorthand notation for this, but you are cautioned to remember that | is
character, while 4 is not.) See[Representation Types and Lengths” on page 15 for
a complete definition of RT/RL combinations.

The dimension vector, CDRRHO, uses one word for each dimension, where
CDRRANK is the number of dimensions. For scalars, CDRRANK is 0. Thus there
is no dimension vector and the descriptor consists of 2 words only.

For nested arrays (arrays whose items are themselves arrays), CDRRT is always G
and CDRRL is 0. Each item of such an array will have its own descriptor following
the G-type descriptor. Since those descriptors may in turn be G-type (with their
own subordinate descriptors), the item descriptors of a G-type array may not be
contiguous.

Unnested, but mixed (nonhomogeneous), arrays also use a G-type descriptor with
subordinate descriptors for each item. In this case the subordinates will all
describe scalars.

Finally, empty nested or mixed arrays also have a subordinate descriptor which
defines the prototype of the array.

Note: The descriptor for the nth item in a nonsimple array may be located by
beginning beyond the array descriptor with a count of n-1, and stepping across
descriptors. For each descriptor,

e If RT=X, just skip it.
e Else if RT=G then add CDRXRHO to the count (but add 1 if CDRXRHO=0).
» Else subtract one from the count.

Pointer Section

The pointer section exists if, and only if, CDRPTREF is set in the CDR header. This
section contains one pointer description segment followed by one or more data
pointer segments. The pointer description segment has this format:

00

CDRPSLEN Tength of the pointer section
04

CDRDSLEN Tength of optional data section

08

Chapter 3. APL2 Data Representation 17

Each data pointer segment takes the following form:

00

CDRPTR pointer to data (see below)
04

CDRPLEN 1length of data block
08

Pointers may be positive, negative, or zero.

* Positive pointers are data tokens, not addresses. They may be passed from
an owning routine to some other routine, and later returned to the owner, but
only the owner knows how to interpret them to actually locate the data. Data
tokens are used by the APL2 interpreter in passing arguments to external rou-
tines.

* Negative pointers are 31-bit absolute addresses of data, but with the high bit
set. (They are not complemented addresses.) Note that the APL2 interpreter
often moves data from one place to another within the workspace to coalesce
free storage areas. Because of this, absolute addresses of data within the
workspace are only valid for very limited periods of time.

e A zero pointer indicates that the corresponding piece of data is found in the
data section of the CDR. Only data corresponding to zero pointers is stored as
a part of the CDR. It is stored in byte-aligned areas in the order defined by
those data pointer segments.

Each block of data described by a data pointer segment must contain one or more
complete simple arrays. CDRs passed to External Routines use a separate pointer
for each simple array.

Data Section

This area contains all data defined by dense form CDRs (CDRPTRF off) or any
zero-pointer data defined by pointer form CDRs. In either case the data is densely
packed, with each simple array beginning on a byte boundary.

In particular, dense packing for B-type arrays means that multiple elements are
stored per byte unless RL=8.

Note that X-type descriptors can be used to skip bytes in this area. This makes it

possible to maintain halfword, fullword, or doubleword alignment where this would
be useful.

AP2CDR Mapping Macro

Invoking the Macro

AP2CDR [TYPE=CSECT][,PRE=prefix][, DOC=NO][,EQU=NO]

TYPE=CSECT:
An optional parameter which indicates that the parameter block is to be
mapped inline without generating a DSECT. The default is
TYPE=DSECT.

18 APL2 Programming: Processor Interface Reference

PRE=prefix:

A three character prefix used for all generated labels and the DSECT
name. The default is PRE=CDR.

DOC=NO:

EQU=NO:

Typical

CDR

*

*

*
CDRDLEN
*
CDRFLAGS
CDRID
CDRSCAT
CDRPTRF

*

*

CDRHDLEN

*

*

CDRDES
CDRXRHO
*
CDRRTRL
CDRRT

*

CDRRL

*
CDRRANK
CDRRHO

*
*

CDRDATA
CDRPSLEN
CDRDSLEN
CDRPTR
CDRPTRB
CDRPLEN

An optional parameter which reduces the size of the listing by not gener-
ating full explanations of the CDR format and usage. The default is
DOC=YES.

An optional parameter which omits definitions for the CDRRT and
CDRRL codes. These definitions are generated using names that begin
with RT and RL, and are not controlled by the PRE= parameter. If you
expand AP2CDR more than once in one assembly, you must specify
EQU=NO on all but one of the expansions. The default is EQU=YES.

Expansion
AP2CDR
DSECT

CDR HEADER SECTION

DS OF LENGTH OF HEADER + DESCRIPTOR
NOTE: HIGH BYTE MUST BE CLEARED IF ABOVE FIELD IS USED.
DS X FLAG BITS

EQU X'80' CDR IDENTIFICATION FLAG

EQU X'40' SCATTERED FORMAT

EQU X'20' POINTER FORMAT

NOTE: SCAT IS RETAINED FOR RELEASE 1 COMPATIBILITY

DS FL3 LENGTH OF HEADER + DESCRIPTOR
CDR DESCRIPTOR SECTION

DS OF ITEM DESCRIPTOR

DS F NUMBER OF ELEMENTS

DS 0XL2 TYPE AND LENGTH

DS C REPRESENTATION TYPE
NOTE: SEE RT.. CODES DEFINED BELOW

DS X REPRESENTATION LENGTH
NOTE: SEE RL.. CODES DEFINED BELOW

DS H RANK

DS OF DIMENSION VECTOR

POINTER SECTION

DSECT

DS F LENGTH OF POINTER SECTION
DS F LENGTH OF DATA SECTION

DS A DATA POINTER

EQU X'80' SET IF ABSOLUTE ADDRESS
DS F DATA LENGTH

Chapter 3. APL2 Data Representation 19

RTMIN
RTB
RTI
RTE
RTJ
RTC
RTA
RTP
RTZ
RTX
RTG
RTF
RTMAX

RL1
RL2
RL4
RL8
RL16
RL32
RLN

*

*

RTLB1
RTLB4
RTLB8
RTLI2
RTLI4
RTLE4
RTLE8
RTLE16
RTLJ8
RTLJ16
RTLJ32
RTLA8
RTLC1
RTLC4
RTLPN
RTLZN
RTLXN
RTLGN
RTLFN
RTLF1

Note: If you need to use the AP2CDR mapping macro, see |Appendix C, “Macros|

CDR REPRESENTATION TYPES

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CDR REPRESENTATION LENGTHS

EQU
EQU
EQU
EQU
EQU
EQU
EQU

VALID

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

TMOXNTUOUITIOGMHm >

OO0

o
N

LOWEST HEX VALUE FOR RT TYPE EQUS
UNSIGNED INTEGER (BOOLEAN)

SIGNED INTEGER

REAL NUMBER

COMPLEX NUMBER

CHARACTER DATA

ARITHMETIC PROGRESSION

PACKED DECIMAL

ZONED DECIMAL

FILLER

GENERAL OBJECT

FUNCTION/OPERATOR

HIGHEXT HEX VALUE FOR RT TYPE EQUS

1 BIT (BOOLEAN) ELSE 1 BYTE

2 BYTES

4 BITS (BOOLEAN) ELSE 4 BYTES
8 BITS (BOOLEAN) ELSE 8 BYTES
16 BYTES

32 BYTES

UNDEFINED OR VARIABLE LENGTH

COMBINATIONS OF REPRESENTATION TYPE AND LENGTH

RL1+RTB*256
RL4+RTB*256
RL8+RTB*256
RL2+RTI*256
RL4+RTI*256
RL4A+RTE*256
RL8+RTE*256
RL16+RTE*256
RL8+RTJI*256
RL16+RTJ*256
RL32+RTJ*256
RL8+RTA*256
RL1+RTC*256
RL4+RTC*256
RLN+RTP*256
RLN+RTZ*256
RLN+RTX*256
RLN+RTG*256
RLN+RTF*256
RL1+RTF*256

1 BIT BOOLEAN

4 BIT BOOLEAN

8 BIT BOOLEAN

INTEGER HALFWORD

INTEGER FULLWORD

SINGLE PRECISION FLOATING POINT
DOUBLE PRECISION FLOATING POINT
EXTENDED PRECISION FLOATING POINT
DOUBLE PRECISION COMPLEX

DOUBLE PRECISION COMPLEX

DOUBLE PRECISION COMPLEX
FULLWORD INTEGER PROGRESSION
CHARACTER BYTE

CHARACTER FULLWORD

VARIABLE LENGTH PACKED DECIMAL
VARIABLE LENGTH ZONED DECIMAL
VARIABLE LENGTH FILLER

GENERAL OBJECT
FUNCTION/OPERATOR

EXTERNAL NAME

[Intended for Customer Use” on page 182|for the information you need to get from

your system programmer.

20 APL2 Programming: Processor Interface Reference

Part Two: Interfaces and Services from APL2

© Copyright IBM Corp. 1987, 1992 21

Chapter 4. Entry and Exit Conditions

Auxiliary processors and processor 11 external routines have somewhat different
entry and exit conditions. This is necessary since Auxiliary Processors are sepa-
rate asynchronous tasks, but external routines are subroutines called (indirectly) by
the APL2 interpreter.

Local Auxiliary Processor Entry and Exit

Local auxiliary processors are started by the APL2 executor, normally during user
invocation of APL2. When an auxiliary processor is started, it is given control using
a standard CALL linkage, as follows:

22

Register 13 points to a save area.

Register 14 contains a return address.

Register 15 contains the processor entry point.
Register 1 points to a parameter list, described below.

In an MVS/XA* environment, the RMODE and initial AMODE of the auxiliary processor
(AP) are controlled by the way it was link-edited. For APs linked with the executor,
AMODE=24 and RMODE=24.

In a VM environment supporting 31-bit addressing, the RMODE and initial AMODE of an
auxiliary processor are controlled by the way it is defined in the APL2 options
module and/or is link-edited:

AP entry points defined in the RESAPS option are entered AMODE=24. The APs
must be link-edited in an APL2 LOADLIB which has RMODE=24.

AP entry points defined in the ATASKS option are entered AMODE=31. The APs
must be link-edited in an APL2 LOADLIB, but a LOADLIB with any AMODE or RMODE
may be used.

AP entry points defined in the RESEPS option are declared as nucleus exten-
sions with AMODE=31. The entry point names must also be included in the
APNAMES invocation option, and are entered AMODE=31. The APs must be link-
edited in an APL2 LOADLIB, but a LOADLIB with any AMODE or RMODE may be
used.

AP entry points named in the APNAMES invocation option which have been
declared as nucleus extensions are started in the AMODE declared for the
nucleus extension.

AP entry points named in the APNAMES invocation option which are loaded from
the LOADLIB FILEDEF'ed to the name AP2LOAD are loaded and started based on
the AMODE and RMODE assigned when they were link-edited.

Any AP may change its own AMODE as desired. Except where stated otherwise,
services can be requested in either AMODE with any data appropriate to the mode
used.

The parameter list is a series of fullword addresses with the high-order bit set on

the last word in the list. See [Figure 4 on page 23|

© Copyright IBM Corp. 1987, 1992

Rl1—

parm 1 —(IBM use only)

parm 2 —»| address —Service Routine

parm 3 »'\P!
parm 4 —» <«(put length here)
parm 5 >

parm 6 —(reserved)

parm 7 —>APNAMES string Tength

parm 8 —>»APNAMES string

Figure 4. Local Auxiliary Processor Input Parameters

parm 1

parm 2

parm 3

parm 4

parm 5

parm 6

parm 7

parm 8

Used only by VS APL auxiliary processor compatibility support.

A pointer to a service routine which may be called by the auxiliary
processor. This service routine supports the services described in subse-
quent chapters of this part.

This is the beginning of a model parameter list for the virtual storage
service (see [VP: Get Process Storage” on page 97). This helps solve the
bootstrapping problem of needing storage for the request that obtains
storage.

Fill in here the number of bytes of dynamic storage you need. Then point
register 1 at the third word in the parameter list (the one that points at VP)
and call the service routine.

After calling the service routine with the VP request as described imme-
diately above, this parameter will be returned as a pointer to the requested
storage area.

Reserved.

When the APNAMES invocation option is used to specify auxiliary
processors, an optional processor parameter string may be supplied:

APNAMES (name (string))

The length of that string (if any) will be provided here. A length of zero
indicates that no string was provided.

The parameter string provided in the APNAMES invocation option. This
parameter is present only if the previous one is non-zero.

If possible, your processor should be written so that it does not depend on the con-
tents of any other registers at entry. Many processors provided by IBM do assume
that register 10 points to an APL control block called the PTH. But be warned that
neither this register nor the format of the control block are guaranteed; they may be
changed for any future releases or versions of the APL2 product.

Chapter 4. Entry and Exit Conditons 23

Auxiliary Processor Exit

Auxiliary processors should terminate when they receive an CSVENA return code
from an SVP service, or observe the “sign off” signal described in FECB Post|
[Codes” on page 9| This signal will always be posted in the processor ECB.
Processors should break their connection with the SVP before terminating. See
[‘CSVOFF: Signoff’ on page 73| On normal termination, registers 2 thru 14 must
be as at entry, and the processor must return to the address in register 14.

An abnormal termination will occur if an unrecovered program check or ABEND
occurs in the auxiliary processor task. Processors may recover from all program
checks and most abends by using the services described in FEX: Set or Clear an
[ABEND Exit” on page 46}

Global Auxiliary Processor Entry and Exit

Global auxiliary processors are started as separate jobs or virtual machines,
normally during operating system initialization or by operator command. They are
given control directly by the operating system, and must in turn contact the APL2
shared variable processor. They do this by calling the appropriate APL2 interface
initialization routine:

AP2TAPV?2 for APL2 interface under TSO
AP2VAPV?2 for APL2 interface under CMS

The interface initialization routine is called using a standard BALR 14,15 linkage.
When that routine is called, register 13 must point to an 18-word OS save area,
and register 1 must point to a parameter list as shown in Figure 5.

Rl1—| parm 1 —» proce?sor ID

v

parm 2

Figure 5. Global Auxiliary Processor Initialization Interface

parm 1 An 8-byte area which must contain the proposed Processor ID to be used
by the auxiliary processor. This field may be modified on return. If so, the
modified value must be used for all subsequent requests. Note that an
APL2 session can share variables with the processor only if the last four
bytes of the ID are binary zeros. APL2 treats the first four bytes as a
fullword binary number.

parm 2 A fullword in which a pointer to the service routine will be returned. This
service routine supports the services described in subsequent chapters of
this part.

On return from the interface initialization routine, register 15 is zero if access to the

SVP is permitted or one if it is denied. When the return code is zero, the parame-
ters will have been modified as indicated above.

24 APL2 Programming: Processor Interface Reference

:LINK.OBJECT Routine Entry

Whenever a :LINK.OBJECT routine is called, it is given control using a standard CALL
linkage, as follows:

* Register 13 points to a save area

» Register 14 contains its return address

» Register 15 contains its entry point

* Reqgister 1 points to a parameter list, described below.

The save area pointed to by register 13 is 36 fullwords long. This length is pro-
vided for interface management routines that need to call external routines and
regain control before returning to processor 11.

Note: No ECV is provided to :LINK.OBJECT routines.

parm -2——»APL service routine

parm -1 > 'P11 '

Rl1—>| parm 1 ——— | First argument

parm n —— | Last argument

Figure 6. :LINK.OBJECT Routine Invocation Parameter List

Chapter 4. Entry and Exit Conditons 25

:LINK.FORTRAN Routine Entry

Whenever a :LINK.FORTRAN routine is called, it is given control using a standard
CALL linkage, as follows:

* Register 13 points to a save area

» Register 14 contains its return address

» Register 15 contains its entry point

* Reqgister 1 points to a parameter list, described below.

The save area pointed to by register 13 is 36 fullwords long. This length is pro-
vided for interface management routines that need to call external routines and
regain control before returning to processor 11.

Note: No ECV is provided to :LINK.FORTRAN routines.

parm -4———APL service routine

parm -3 »| 'PI11

parm -2|——— | 'BZ00'

parm -1 »| arg list len

RlI—| parm 1 —— | First argument

l|parm n —— | Last argument

parm n+l »| first arg len
1|parm 2n »| last arg len

Figure 7. :LINK.FORTRAN Routine Invocation Parameter List

The :LINK.FORTRAN routines' parameter lists include length information that is not
found in :LINK.OBJECT routine parameter lists. This information is provided
because FORTRAN expects this information to be available for subroutine argu-
ments.

26 APL2 Programming: Processor Interface Reference

:LINK.FUNCTION Routine Entry and Exit

The primary component of the interface to :LINK.FUNCTION routines is a control
block called the external control vector (ECV). The first subsection below describes
that control block. The next subsection discusses the primary call to an external
routine, the external call interface used to respond to a function call. Then the
conventions for returning from an external call are described. Finally, the delete
linkage call is described.

The External Control Vector (ECV)

Each time a :LINK.FUNCTION routine is entered, it is given the address of an ECV
which defines the arguments to the routine and provides a way to obtain additional
information and services from the interpreter. At the completion of the routine exe-
cution the ECV is also used to return a result to the interpreter. The ECV is com-
posed of a basic section (Figure 8), which is always used, and an extension
(Figure 9 on page 28), which is used for the external call interface. When making
use of APL service routines, you must use the ECV provided by processor 11.
Processor 11 rejects any ECV that it did not provide.

00

ECVEYE Eyecatcher: "ECV'
04

(reserved)

08

ECVRQ Request code |ECVIS Status code
0C

ECVIT Interface object token
10

ECVID APL session ID
18

ECVPART Associated processor ID
20

ECVTOKEN Associated processor object token
28

Figure 8. ECV Basic Section

Chapter 4. Entry and Exit Conditions 27

28

2 ECVXCET Result event pre (2 halfwords)
ECVXCDRZ Result CDR object token

% ECVXCDRL Left argument CDR address

34 ECVXCDRR Right argument CDR address

% ECVXPRQT Service request object token

* ECVXPRQP Service request parameter

0 ECVXPRQX Service request extra parameter

44 ECVXTLA Left argument object token

* ECVXTLF Left function object token

* ECVXTOP Operator object token

> ECVXTRF Right function object token

o ECVXTRA Right argument object token

> ECVXRLOC Relocation count

:Z ECVXERMS Quad—ES message object token

Figure 9. ECV External Call Extension

Note: On entry to the :LINK.FUNCTION routine, fields in the ECV noted as “object
token” will contain values used internally by APL2. These object tokens are always
positive, and may be returned unchanged or may be redeemed for absolute
addresses by issuing an XB service request to the APL2 service routine. On exit
from the :LINK.FUNCTION routine, these same ECV fields may contain absolute
addresses with the high-order bit (X'80') on or APL object tokens with the high-
order bit off. Object tokens are either

e CDR absolute addresses with the high order bit on,
* Tokens received from the XG service identifying storage containing a CDR or

» Tokens for APL2 objects received during the function call or through the XB,
XE, XF or XG services.

Any form of object token may be passed on service calls or returned to APL2 in the
ECV.

Individual fields in this block are described as needed in the following subsections.
Other fields in the ECV are used in conjunction with the services defined in
[Chapter 14, “Code X__: External Call Services” on page 101} Additional details
and a mapping for the ECV may be found in the AP2ECV macro, which is distrib-
uted with APL2.

Note: If you need to use the AP2ECV mapping macro, see [Appendix C, “Macros|
[Intended for Customer Use” on page 182 for the information you need to get from
your system programmer.

28 APL2 Programming: Processor Interface Reference

:LINK.FUNCTION Routine Entry: External Call

Whenever a :LINK.FUNCTION routine is called, it is given control using a standard
CALL linkage, as follows:

* Register 13 points to a save area.

» Register 14 contains its return address.

* Register 15 contains its entry point.

* Register 1 points to a parameter list, described below.

The save area pointed to by register 13 is 36 fullwords long. This length is pro-
vided for interface management routines that need to call external routines and
regain control before returning to processor 11.

In an XA or ESA* environment, the RMODE and initial AMODE of the module are
controlled by the way it was link-edited. The module may change its own AMODE
as desired. Except where stated otherwise, the services can be requested in either
AMODE, with any data appropriate to the mode used. Normally, however,
AMODE=31 will be required to access either workspace data or argument data
passed in pointer form CDRs.

Figure 10 shows the format of the parameter list.

P.29, Fig 10
R1—| parm 1 > ECV
parm 2 —»APL service routine
parm 3 >
parm 4 —»'VP' (anchor words)
parm 5 —» <«—(put Tength here)
parm 6 >

Figure 10. :LINK.FUNCTION Routine Invocation Parameter List

The data pointed to by the addresses in the parameter list is defined as follows:

1. The ECV defined in [The External Control Vector (ECV)” on page 27 ECV
fields used on the call to the external routine are described on page [30]

2. A fullword containing the address of the APL service routine. The service
routine can be called to use all the services defined in the following chapters.

3. A doubleword that contains binary zeros on the initial call to the external
routine. Data placed in the doubleword by the routine is preserved across all
calls to the routine for a particular name association. It is zero again on the
first call for a new name association.

A name association occurs:
» Explicitly when dyadic N4 is invoked

e Implicitly on first use of an external routine after it is brought into the active
workspace by)LOAD or)COPY

Chapter 4. Entry and Exit Conditons 29

7.
8.

 Implicitly during) IV of an external routine.

Multiple name associations can exist concurrently for one external routine due
to shadowing or use of surrogate names. In these cases, the system maintains
separate instances of the doubleword values for each association.

. The first parameter of a VP service parameter list. This is provided so that the

external routine can pull itself up by its bootstraps. This is needed because all
service requests have parameters lists. Parameter lists need storage, and
getting storage for routine execution is a service request.

. A fullword in which you can place the number of bytes required for routine exe-

cution. Then point register 1 at the fourth word of the parameter list (not the
fourth parameter value) and call the service routine.

. A fullword that points to the requested storage area on return from the VP

service routine call discussed above. (See[VP: Get Process Storage” on|

for more details.)
APL2 PerTerm Header

Processor 11's local work area for the routine's invocation.

ECV Fields

ECVRAQ indicates the type of entry to the external routine. For an external call
request it contains 0 (ECVRQCAL). The following fields are also defined in this
case:

ECVXCDRL Address of the left argument CDR, or 0 if no left argument CDR.

This is provided as directed by the :LARG field in the NAMES file.

ECVXCDRR Address of the right argument CDR, or 0 if no right argument CDR.

This is provided as directed by the :RARG field in the NAMES file.

ECVXTLA! Left argument object token, or 0 if no left argument.
ECVXTLF' Left operand object token, or 0 if no left operand.

ECVXTOP' Normally 0, or the object token of the external routine when used as

an operator.

ECVXTRF' Function or right operand object token or 0. Normally this is the

object token of the external routine when it is invoked as a function.

ECVXTRA' Right argument object token, or O if no right argument.

1 This object token can be passed to the XB, XE, or XF services (see [Chapter 14, “Code X __: External Call Services” on|
[page 101) but not to the XC or XD services.

30 APL2 Programming: Processor Interface Reference

ECVXRLOC Relocation count. This indicates the number of times that the inter-
preter has reorganized storage in the workspace. When storage is
reorganized, object tokens are still valid, but addresses that point into
the workspace are not. External routines that retain workspace area
addresses across calls from the interpreter, or calls to the interpreter,
must also retain the relocation count as it was when the addresses
were gotten. If the count changes, they must discard all workspace
addresses, and obtain them again from the corresponding object
tokens using the XC or XD services described in [Chapter 14, “Code|
[X__: External Call Services” on page 101}

Chapter 4. Entry and Exit Conditions 31

:LINK.FUNCTION Routine Exit: External Call
On completion of an external call request, the following fields may be set:

ECVXCET Result event type. The value provided here will be placed in OET.
This should be set to 0 0 for successful execution. Any other value
will cause the APL language processor to signal an error. Note that
service requests invoked by the external routine also set this field.
Thus the :LINK.FUNCTION routine must normally set this field imme-
diately before returning.

If the value provided for ECVXCET is not a standard OE T code, then
a non-zero value must be provided in this field.

ECVXCDRZ Any form object token or 0O if there is no result. Note that this field is
ignored if the result event type is set to anything other than 0 0.

ECVXERMS Address of, or token for, a CDR representing a ES message; or 0 to
use the system default. Note that this field is ignored if the result
event type is setto 0 0.

The Delete Linkage Call and Exit

This call is made to the :LINK.FUNCTION routine whenever the association is broken
by the workspace. This can occur because the workspace is terminated by
JCLEAR, YLOAD, YOFF,or YCONTINUF; because the name has been
replaced by)COPY or YMCOPY; or because the name has been deleted by
OEX,)ERASE, or exit from a function that had localized the name and created
the association.

The parameters passed to the external routine on this call are similar to those
defined in [SLINK.FUNCTION Routine Entry: External Call’ on page 29, except that:

e The third parameter will never have been zeroed by APL2, since this is never
the first call to the external routine.

e Only the basic section of the ECV is provided, except for one additional field,
ECVDET, in which a OET code may be returned.

ECVRAQ indicates the type of entry to the external routine. For a delete linkage
request it contains ECVRQDEL (2).

The only result that can be returned is a OE T signal. Only APL2 language defined
OFET codes may be used. This will be honored by the interpreter during 0OFX,
JERASE, exit from the function that localized the name, and) I N or) COPY that
replaces the name. It will be ignored during)RESET,)CLEAR and)LOAD. In
these cases the external routine will be called with ECVISBAD to indicate that the
linkage is being dropped unconditionally.

Note: None of the services described in [Chapter 14, “Code X__: External Call
[Services” on page 101| are permitted from within a delete linkage call.

No delete link call is made to environment programs.

32 APL2 Programming: Processor Interface Reference

Environment Programs

Environment programs share the same entry and exit conditions as non-
environment routines. However, there are two important points to notice.

Although environment programs can be either :LINK.OBJECT or :LINK.FUNCTION,
no delete linkage call is made to :LINK.FUNCTION environment routines.

When an environment routine passes control to APL2 through AP2TNL or AP2VNL,

the state of the registers is stored. The state of registers is restored to this state

before each entry to any subroutines that use the environment and before return to
the environment program.

Self-Describing External Routine Identification Signature

Processor 11 detects that a routine is self-describing by determining that the routine

begins with a routine description signature. Figure 11 shows the contents of a

routine description csect.

RDSIG DS
L
BR
DC
DC
RDSIGL EQU
DC
RDN DC
RDRN DC
RDRA DC
RDDESA DC
RDDESEA DC
DC
RDDES DS
DC
RDDESE DS

* Routine Description Signature

OF

R15,RDRA-RDSIG(,R15) Address of code

R15

H'-1'

CL4'SIM '
*-RDSIG

A(0)
CL8'rdname '
CL8'routine '
V(routine)
A(RDDES)
A(RDDESE)
A(0)

OF

CLx'tags'

OF

* Routine's code follows

Enter code

Eyecatcher

Length of invariant signature

- Reserved

Name of Routine Description

Name of routine

Address of routine

Address of description

Address of end of description

- Reserved

Start of descriptive information
Routine Description

Start of descriptive information

Figure 11. Routine Description Signature Contents

Where:

rdname

routine

tags

is the name of the routine to which the description applies.

is the actual description composed of processor 11 tags and values.

is the name of the routine description that is used either in a routine list
or the right argument of ONVA.

Note: The APL2 function, BUILDRD builds this routine description. For more infor-
mation, see APL2 Programming: Using the Supplied Routines, SH21-1056.

Chapter 4. Entry and Exit Conditions

33

Routine List Identification Signature

Processor 11 detects that a module contains multiple entry points by determining
that the module begins with a routine list signature. Figure 12 shows the contents
of a routine list csect.

RL CSECT

*

* The next 2 instructions identify this as a routine Tist
*

XR 15,15

BCTR 15,14 RETURN WITH -1

DC A(RLTOP) Top of routine list

DC A(16) Width of routine list
DC A(RLLAST) Last entry in the Tist

*

* Fi11l in this Tist with the names of your routines
*
RLTOP DC CL8'objnamel',V(routinel),A(0)
DC CL8'objname2',V(routine2),A(0)
DC CL8'objname3',V(intfacel),A(routine3)
DC CL8'objname4',V(routined),A(0)
DC CL8'objname5',V(intface2),A(routine5)

*

* additional entries here

*

RLLAST DC CL8'objnameN',V(routineN),A(0)
END RL

Figure 12. Routine List Signature contents

Where:

objnamel-objnameN are the names by which the routines are referenced in the
right argument of ONA.

routinel-routineN are the names of the non-APL routines (or the routine
descriptions that describe them.)

intfacel-intface2 are the names of interface management routines. When
processor 11 calls an interface management routine, the
address of the subsequent routine to be called is placed in
register 0. In the example, the subsequent routines are
routine3 and routineb.

Note: The APL2 function, BUILDRL, builds the routine list. For more information,
see APL2 Programming: Using the Supplied Routines, SH21-1056.

34 APL2 Programming: Processor Interface Reference

Chapter 5. General Protocol for Service Calls

APL2 provides services for global auxiliary processors, for local auxiliary
processors, and for processor 11 external routines.

For global auxiliary processors,

» Only SVP services are provided (Chapter 11, “Code SC: Shared Variable|
[Services” on page 69).

* The service routine address is provided by an initialization routine, as described
in ['Global Auxiliary Processor Entry and Exit” on page 24|

For local auxiliary processors and external routines,

» All of the services in the following chapters are provided, except for a few that
are noted as limited to only auxiliary processors or only external routines.

* The service routine address is provided when the processor is first entered, as
described in [Chapter 4, “Entry and Exit Conditions” on page 22|

The service routine entry point address provided at processor entry or initialization
is used for all service calls. The register conventions for service calls are:

* Registers 2-13 may have any values, and are restored on completion of the
service. (Note that a register 13 save area is not required.)

¢ Register 14 must contain the return address in the processor. It will also be
restored on service completion.

* Register 15 must contain the service routine entry point. On completion, this
will be replaced by a return code set by the service. (The R15 code will also
be placed in a return code parameter for most requests.)

* Register 0 will be destroyed by the service routine.

e Register 1 must point to a standard parameter list, pointing to two or more
parameters as shown in Figure 13. The high-order bit must be set in the last
word of the parameter list. If you are using the operating system CALL macro,
this is done by including the VL parameter. Register 1 will be restored on
service completion.

R1—| address —>| service request code

address »| Service parameter

(etc.) (etc.)

Figure 13. Service Call Parameter List

For the rest of the manual, this interface will be indicated as follows:

CALL (15),(=C'id',parm...),
VL,MF=(E,listarea)

© Copyright IBM Corp. 1987, 1992 35

This assumes that you are coding in assembler language using the standard CALL
macro, have loaded register 15 with the service routine address, and have provided
a parameter list area (listarea) containing one word for each parameter. The sepa-
rate listarea is required since we assume you are writing reentrant routines.

You may, of course, use other macros or hand-coded calls, or code your routines in
other languages, so long as you meet the interfaces defined here.

In C/370 a call to an APL service would have the following format:

(*ServRtn) ("XC",&Token,&AddrArea)

Where:

ServRtn is the address of the APL service routine which is passed as a param-
eter.

Token is a token to be converted to an address

AddrArea is an area into which the address will be placed.

In PL/I the same call would have the following format:

Call ServRtn('XC',Token,AddrArea)

Most of the services provide for return codes to indicate any errors they detect. If,
however, a service request code is invalid, or if no service parameter is provided in
the parameter list, the task will be ABENDed. Other errors in the service requests
or the environment may also cause unexpected ABENDs.

The following chapters are organized by the service request code passed as the
first parameter. This is a two-character EBCDIC string whose first character identi-
fies a service class, and second character specifies a service or set of services
within that class. The service request codes supported are described in the fol-
lowing chapters:

e |Chapter 6, “Code D : Data Conversion Services” on page 3
e |Chapter 7, “Code E__: Error Handling Services” on page 44

* [Chapter 8, “Code F__: File System Services” on page 50|

e |Chapter 10, “Code P__: Process Services” on page 65

e |Chapter 11, “Code SC: Shared Variable Services” on page 69

e |Chapter 12, “Code T__: Terminal Services” on page 92
e |Chapter 13, “Code V__: Virtual Storage Services” on page 9

e [Chapter 14, “Code X__: External Call Services” on page 101

For a complete list of service request codes, see the Contents on page iii.

36 APL2 Programming: Processor Interface Reference

Chapter 6. Code D__: Data Conversion Services

The service request codes described in this chapter are:

DE Translate VS APL Zcode to EBCDIC
DN Numeric data type conversion

DU Translate with caller translate table
DX Convert extended character sets

DZ Translate EBCDIC to VS APL Zcode

DE: Translate from VS APL Zcode to EBCDIC

This service operates on character data of arbitrary length which is in the character
set used by VS APL, converting it to the standard EBCDIC character set used by
APL2. This would most likely come into use if an auxiliary processor is accessing a
file that contains VS APL data.

CALL (15),(=C'DE",retcode,datalen,outbuff,data),
VL,MF=(E,listarea)

Set by processor
datalen A fullword containing the length of the data to be translated.
Note: The system will assume that outbuff is at least that long.

data The data (of length datalen) to be converted.

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 normal completion
101 invalid parameters

outbuff ~ The translated string, of length datalen.

© Copyright IBM Corp. 1987, 1992 37

DN: Change Data Format of One or More Numbers

Produces a list of numbers in the output area, in the format specified by the output
type. The input area is analyzed according to the input type. Processing then
begins with the nth number (specified by element index) of the (ravelled) input
array, and continues for the specified number of elements.

CALL (15),(=C'DN',retcode,bufflen,outbuff,data,types,index,count[,descrip)),
VL,MF=(E,listarea)

Set by processor

bufflen A fullword containing the length of the output buffer.

data The data to be converted. Its format depends on the first element of
types.
types Two two-byte fields, each containing a two-character data type code.

The first field determines the format of data, while the second deter-
mines the format of outbuff. The possible character values in each field
are:

A0 APL object

B1 Boolean (1 bit, packed 8 per byte)
B8 8-bit binary (unsigned)

12 halfword binary

14 fullword binary

E4 1-word floating point

E8 2-word floating point

EX 4-word floating point

CO0 An item from a CDR

Note: Input type A0 may be in either VS APL or CDR format. Data is
the VS APL descriptor word or CDR header respectively. Output type
A0 is always produced in CDR format. outbuf will contain a complete
CDR in dense form.

Note: Type CO, which may only be used for input, deals with an item
from a CDR. data is the data array itself, not its CDR header or
descriptor. descrip is the simple descriptor for that data array.

index A fullword containing an origin-0 index into the input data. This indi-
cates the first element to be converted.

count A fullword containing the count of elements to be converted.

descrip This parameter is used only with input type CO0. It is the simple (never
G-type) CDR descriptor of the data array. (See|Chapter 3, “APL2 Datal
[Representation” on page 13| for details on the format of a CDR.)

38 APL2 Programming: Processor Interface Reference

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 Normal completion

13 Data element could not be converted
16 APL input has too few elements

17 Output area is too small

99 Invalid or unsupported request

outbuff ~ The numeric results. The format of the results depends on the second
element of types.

Chapter 6. Code D__: Data Conversion Services 39

DU: Translate with Caller Supplied Table

This service operates on 1-byte character data of arbitrary length, translating it
under control of a translate table provided by the processor.

CALL (15),(=C'DU',retcode,datalen,outbuff,data,trantab),
VL,MF=(E,listarea)

Set by processor

datalen A fullword containing the length of the data to be translated.
Note: The system will assume that outbuff is at least that long.

data The data (of length datalen) to be converted.

trantab A 256-byte translate table which will control the translation as defined by
the hardware TR (translate) instruction, except that the length of the
data to be translated is not limited to 256, and the condition code may
have been changed.

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 normal completion
101 invalid parameters

outbuff ~ The translated string, of length datalen.

40 APL2 Programming: Processor Interface Reference

DX: Convert Extended Character Data

This service is provided as an aid in manipulating extended character sets such as
Japanese Kanji, which contain more than 256 characters.

Outside of APL, such character sets are normally represented using a double byte
character set (DBCS). “Shift-out” and “Shift-in” characters (X'OE' and X'OF') are
often used to switch between the EBCDIC single byte character set (SBCS) and
the DBCS.

APL supports a 4-byte character representation which permits a large number of
character sets to be represented concurrently. The first two byes of each 4-byte
character are a character set code. Character set X'0000' is defined to be
EBCDIC/APL.

CALL (15),(=C'DX",retcode,outlen,outbuff,data,datalen,options[,charcodej),
VL,MF=(E,listarea)

Set by processor
outlen A fullword containing the length of outbuff.

data The data to be converted. lts format depends on options, while its
length is specified by datalen.

datalen A fullword containing the length (in bytes) of data.
options A two-character field containing one of the following, left aligned:

U Pack 4-byte data into simple 1-byte data if possible, else into
simple 2-byte data without SO/SI characters.

M Pack 4-byte data into mixed SBCS/DBCS, starting and ending in
1-byte mode.

W1 Unpack data that starts in 1-byte mode into APL characters,
leaving it unchanged if no Shift-out is found, else creating
extended (4-byte) characters.

W2 Unpack double-byte data into 4-byte data. All characters are valid
for this conversion.

Note: For options U and M, outbuff may identify the same
storage as data, but for the other two options, they must be distinct
areas. Overlaps will usually result in program exceptions.

charcode An optional halfword specifying a character set code to use (on the
“unpack” operations), or to check against (on the “pack” operations). If
this parameter is not provided, the current session character set is used,
as defined by the DBCS invocation option. There is a special
DBCS(OFF) mode with limited validation. This mode may be requested
here by supplying H'-1".

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 Normal completion, no DBCS characters found

Chapter 6. Code D__: Data Conversion Services 41

1 Normal completion, DBCS characters found
2 Invalid characters encountered
3 Output area too small

outlen The length (in bytes) required by the result data.

outbuff ~ The buffer containing the converted data. The format of the data
depends on options.

Special Notes on Character Data Conversion
This service has four basic variants controlled by the two character options defined
above. There are a number of other features that are not immediately apparent:

1. If the output area length is specified as zero, the service will scan the input
data to determine how much space it would need if it were converted according
to the specified option. That size will be returned in the outlen parameter.

2. If character set code -1 is specified for the U or M options, any character set
code is valid in extended input data.

3. If the character set code is non-negative for the U or M options, a character set
code mismatch produces return code 2. Invalid data is mapped as X'0000'.

4. Return code 1 is especially useful when options U or W1 are requested, since
it indicates which conversion was performed.

5. Using option W1, return code 2 may occur for either of the following reasons:

* A shift-out or shift-in byte was found at a point where it could not logically
cause a shift.
e A DBCS character had a X'00' in its high byte.

6. Using options U or M, return code 2 may occur for any of the following reasons:

* A shift-out or shift-in byte was found in the input data.

¢ An APL character had a nonzero character set code.

¢ A DBCS character had a character set code which did not match the
nonzero code which was specified or defaulted.

7. When return code 2 is issued for option U, the data is always returned in 2-byte
form.

8. In all cases, when an invalid character is encountered, it is converted to
X'0000' and processing continues.
IBM standards for DBCS character sets impose the following limitations:

1. Neither byte of the two-byte DBCS character may occupy the first EBCDIC
quadrant (X'00' through X'3F").

2. Neither byte of the two-byte DBCS character may be X'FF'.
3. Neither byte of the two-byte DBCS character may be X'40' unless the other
byte is also X'40"'.

This service compares all DBCS characters to those standards, and returns code 2
(converting the offending characters to X'0000') for all requests except W2.

42 APL2 Programming: Processor Interface Reference

DZ: Translate from EBCDIC to VS APL Zcode

This service operates on standard (1-byte) character data of arbitrary length, con-
verting it to the character set used by VS APL. This would most likely come into

use if an auxiliary processor is writing data into an existing file which already con-
tains VS APL data.

CALL (15),(=C'DZ',retcode,datalen,outbuff,data),
VL,MF=(E,listarea)

Set by processor
datalen A fullword containing the length of the data to be translated.
Note: The system will assume that outbuff is at least that long.

data The data (of length datalen) to be converted.

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 normal completion
101 invalid parameters

outbuff ~ The translated string, of length datalen.

Chapter 6. Code D__: Data Conversion Services 43

Chapter 7. Code E__: Error Handling Services

The service request codes described in this chapter are:

ED Take a dump and continue

ET Terminate abnormally

EX Set or clear an ABEND exit
EZ Designate a permanent routine

ED: Produce a Dump

44

CALL (15),(=C'ED',dumpid][,pswi,regs])),
VL,MF=(E,listarea)

Set by processor

dumpid Four character dump identifier. Any alphanumeric string may be used,
but the form nnnc is recommended for APs, where nnn is the AP
number and ¢ may be any alphabetic character.

psw An optional eight-byte Program Status Word associated with the
problem.

regs An optional 16 word area containing register values associated with the
problem.

Returned to processor: None.

Note: If a dump is requested from within an EX abend exit entered because of a
program check, the psw and regs parameters are ignored, and the PSW and regis-
ters associated with the program check are automatically included in the dump.

Description: A number of areas are dumped automatically:

The perterm and global table
The first 4K of the workspace
(PSW address)-256 for 1024 bytes
(each register)-256 for 1024 bytes

The following areas are also dumped if DEBUG(4) is set:

The full workspace

Shared memory

The executor module

The interpreter module

All global storage

All task storage for the current task

© Copyright IBM Corp. 1987, 1992

ET: Request Abnormal Termination

CALL (15),(=C'ET',abendcode),
VL,MF=(E,listarea)

Set by processor

abendcode A fullword containing a number between 1 and 999. (Numbers larger
than 999 are reserved for IBM use.)

Returned to processor: None.

Note: If an EX exit currently exists for the process requesting the ABEND, that
exit routine will gain control. You may want to clear the exit using the EX service
before issuing ET.

Chapter 7. Code E__: Error Handling Services 45

EX: Set or Clear an ABEND Exit

Note: EX cannot be used by routines whose routine description contains an :INIT
tag.

This service specifies the address of an exit routine which will be given control if an
ABEND or program check occurs while the process is in control. The exit routine is
not given control on attention signals unless the process is terminated because of
repeated unacknowledged signals.

Any previous exit for the same process is cleared when an exit is set. The service
itself provides no direct support for stacking exits, but the previous exit address will
be returned if requested. This allows applications to restore a previous exit at a
later time.

The abend exit will be given control even on nonretryable abends for which APL2
gains control. On an MVS system these include operator cancel, timeout, etc. In
general, VM does not give APL2 control in nonretryable situations.

CALL (15),(=C'EX',exitroutinel0 [,oldexit]),
VL,MF=(E,listarea)

Set by processor

exitroutine A fullword containing the address of the routine to be given control. See
[‘Entry/exit conditions for abend exits.”] Call this service with binary zeros
in the field to remove the abend exit for this process.

Returned to processor

oldexit An optional fullword in which the address of any previously defined exit
routine will be returned. Zero will be returned if no exit was previously
in effect.

Entry/exit conditions for abend exits
When the abend exit is entered:

* Register 13 points to a standard save area.

* Reqgister 14 contains a return address which must be used to return from the
abend exit.

* Register 15 contains the address of the exit routine.

» Register 1 points to a parameter list (see [Figure 14 on page 47).

» Registers 2 through 12 contain service routine information which must be
restored before returning from the abend exit.

e Extended addressing mode (31 bit mode) will be in effect where available,
regardless of the mode the processor may have been using.

46 APL2 Programming: Processor Interface Reference

INPUT PARAMETERS OUTPUT PARAMETERS

Rl—>| parm 1 —>F'abend code'

parm 2 —>A(0) retry address
parm 3 —»CL4' ' dump code
parm 4 —»16F'AP RO-15' retry regs

parm 5 —CL1'F/P/S/U"

parm 6 —»XL8'psw'

parm 7 —»16F'error RO-15'

parm 8 —H'program check code or abend reason'

Figure 14. Abend Exit Routine Parameter List

parm 1 The abend code is in the form 00sssuuu, where sss is a system abend
code or uuu is a user abend code.

parm 2 A retry address may optionally be supplied before returning. If it is not, the
process will be terminated on return from the abend exit. If a retry address
is supplied, execution will be resumed there after completing error recovery.

Note: On systems that support extended addressing, the retry routine will
be entered in the addressing mode that the program was using immediately
before the error. Your program may have used a system-assisted linkage
to call another program, and the error may have occurred in that program.
But neither the addressing mode of that program, nor the high-order bit of
the retry address you provide, affects the mode in which your retry routine
is entered. APL2 does, however, attempt to clean up your retry address by
zeroing bits 1-7 if bit 0 is not on. Bits 1-7 must be zero if the program will
be entered in 24-bit mode; otherwise an immediate specification exception
will occur. On the other hand, if you intend to retry to an address above 16
megabytes, you must set bit zero on to keep APL2 from destroying your
address.

parm 3 A dump code may optionally be supplied. Ifitis, and if dumps are sup-
ported by the APL2 session (via APLDUMP), a dump will be taken on
return from the abend exit. The dump code is a 4-character alphanumeric
string. The form nnnc is recommended for APs, where nnn is the AP
number and ¢ may be any alphabetic character.

parm 4 On entry to the exit routine, this parameter is a set of registers as of the
last service call issued by the processor. This will typically be useful in
reestablishing addressability. The registers may be modified as desired by
the exit routine. The updated register set will be used (except R14) when

retrying.

Chapter 7. Code E__: Error Handling Services 47

parm 5 The type of abend is one of:

F Force off (nonretryable) system or subsystem initiated abend.
P Program check. PSW and regs are available.

S System or subsystem initiated abend.

U User (processor or APL2) initiated abend.

The following two parameters are provided only for program checks.

parm 6 This is the hardware Program Status Word (PSW) at the time of the error;
except that for CMS, if the program check occurred within a supervisor
service (SVC routine), the PSW will indicate the point at which the SVC
was issued.

parm 7 These are the registers that correspond to the PSW in parm 6.

Note: The program cannot assume that the PSW and registers are directly
related to the work it was doing. The error may have occurred in some
program it has called. Do not attempt to use this set of registers to restore
addressability.

Before entering the abend exit routine, the exit itself is disabled. If the exit routine
should abend or program check, the entire process will be terminated. A dump will
be taken which reflects the most recent abend.

After the abend exit routine returns, it is automatically enabled. For this reason, it
is usually best to do most cleanup or recovery after retrying. However, for program
checks, the PSW and error register information is available only during the abend
exit.

The program should be carefully written to avoid abend loops during cleanup. One
recommended technique is to supply a retry address in a process control block,
and zero it in the abend exit. The cleanup routine can then, for each step:

1. Store the address of step n+1 for retry
2. Execute step n

48 APL2 Programming: Processor Interface Reference

EZ: Designate a Permanent Routine
Note: EZ applies only to processor 11 external routines.

CALL (15),(=C'EZ',[C'S'IC'C'],refcode,entryadd,token),
VL,MF=(E,listarea)

Set by processor

C'S' or C'C' For Set or Clear

entryadd A fullword address of the code to be entered at APL2 termination

token A fullword token provided to the routine when it is entered during
APL2 termination.

Returned to processor

retcode A fullword service completion code. See Figure 15.

Figure 15. EZ Service Return Codes

Code Definition

0 Success

4 Routine entry point not found (clear request)
8 Insufficient space

12 Invalid subcode (must be 'S' or 'C')

The 'EZ' service specifies a routine that is to stay active across replacement of the
workspace. The 'EZ' service allows an external routine to nominate an entry point
that will be entered when APL2 is shut down. Since processor 11 deletes all active
external routines when the workspace is replaced () CLEAR, YLOAD, YCON-
TINUE, or)OFF) such routines must take special action to ensure that the speci-
fied entry point is still available at APL termination. This can be done by loading
the necessary code as a CMS nucleus extension or by issuing a LOAD (SVC 8)
request for it. If the routine was loaded as a CMS nucleus extension, it must be
explicitly deleted with a NUCXDROP command.

When APL2 terminates, each entry point nominated via an 'EZ' request is entered
with the following (standard OS) linkage:

R1 => A(token+X'8000000")
R13=> 18 word 0S save area
R14= return address

R15= entry point address

Chapter 7. Code E__: Error Handling Services 49

Chapter 8. Code F__: File System Services

50

The file system provided through these services corresponds to that used by AP
121 and processor 12. In particular, sequential and direct files are supported. See
the description of AP 121 in APL2 Programming: System Services Reference for
limitations on these file types.

Consult the material on APL2 Libraries, Workspaces, and Data Files in that same
manual for information about the library structure under CMS and TSO. Note in
particular that the services described here apply only to individual logical files within
a library, not to the library as a whole.

The service request codes described in this chapter are:

FA Open an APL file

FC Create an APL file

FD Delete an APL file

FG Access a file in a file group

FL List APL files

FR Read a record from an open APL file
FS Change the size of an APL file

FW Write a record to an open APL file
FZ Close an APL file

© Copyright IBM Corp. 1987, 1992

File Services Return Codes

NOoO Ooah~hwWND-—=-O

35
36
37
38

Normal completion

No record found

Maximum records or extents
Non-EBCDIC/APL characters

Invalid APL object in file

End of file

File type and access conflict

Record length error

APL library is full

User quota exceeded or attention hit
Total data does not fit within the file size limit
VSAM file not open

APL data file not open

File must be opened for direct

Improper library reference

File already exists

File does not exist

File in use by others

lllegal change to file not owned

File protected from operation

File open limit exceeded

Getmain for I/O buffer failed

Incorrect or missing password, or you are
not authorized to write to this file.

I/O error, unknown error, or invalid library
This is not an APL file

OK, but file size has been reduced
Invalid record length

Figure 16. Return Codes for APL File Services

Note: These return codes do not apply to FG.

Chapter 8. Code F__: File System Services

51

FA: Open an APL File

CALL (15),(=C'FA’',retfcode,libno,fname,pass,token,usef,maxien|,records])),
VL,MF=(E,listarea)

Set by processor

libno A fullword containing the number of the library within which the file
exists. The library number may be set to zero to indicate that the file is
in the user's private library.

fname An 8-character field containing the name of the file to be opened,
padded with blanks.

pass An 8-character field containing an optional password for the library. If a
password is required, but none is supplied here, the user will be
prompted. The field must be set to blanks if no password is desired.

use A 2-character field in which the first character is R for read access or W
for write access, and the second one contains an S for sequential proc-
essing or D for direct access. When the second character is D, read is
also allowed during write access.

Note: A file created with the D attribute can be opened for either D or
S processing, but a file created with the S attribute can be opened only
for S processing.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51|

token A fullword file token. This value must be provided on subsequent FR
and FW requests for the file, and must be “turned in” on the FZ request
that closes the file.

maxlen An optional fullword in which the service returns the maximum length (in
bytes) that any record in the file can ever use. This value is 0 for
sequential files and for direct files with arbitrary data length.

records An optional fullword in which the service returns the number of records
that currently exist in the file.

52 APL2 Programming: Processor Interface Reference

FC: Create an APL File

CALL (15),(=C'FC',retcode,libno,fname,pass,maxsize,usetype,[maxien)),
VL,MF=(E,listarea)

Set by processor

libno

fname

pass

maxsize

usetype

maxlen

A fullword containing the number of the library within which the file
should be created. The library number can be set to zero to indicate
that the file is to be allocated in the user's private library.

An 8-character field containing the name of the file to be created,
padded with blanks.

An 8-character field containing an optional password for the library. If a
password is required, but none is supplied here, the user will be
prompted. The field must be set to blanks if no password is desired.

A fullword containing the maximum size of the file in bytes. If this field
is set to zero, the size of the file will be limited only by available space
in the library.

A 2-character field in which the first byte is ignored, but the second must
contain an S or D to indicate whether a Sequential or Direct file is being
created. See [‘FA: Open an APL File” on page 52| for further discussion
of this.

A fullword containing the maximum length (in bytes) that any record in
the file will ever require. This value is ignored for sequential files. For
direct files it includes the four-byte record length field, and must be
between 0 and 4074. A length of 0 indicates that the file should allow
arbitrarily sized objects.

Returned to processor

retcode

A fullword service completion code. See [Figure 16 on page 51|

Chapter 8. Code F__: File System Services 53

FD: Delete an APL File

CALL (15),(=C'FD',retcode,libno,fname,pass),
VL,MF=(E,listarea)

Set by processor

libno A fullword containing the number of the library that contains the file to
be deleted. The library number may be set to zero to indicate that the
file is in the user's private library.

fname An 8-character field containing the name of the file being deleted,
padded with blanks.

pass An 8-character field containing an optional password for the library. If a
password is required, but none is supplied here, the user will be
prompted. The field must be set to blanks if no password is desired.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51

Note: The file cannot be deleted if currently open. See[‘FZ: Close an APL File”|

54 APL2 Programming: Processor Interface Reference

FG: Access a File in a File Group

This service provides sequential read access to existing system files that can be
located using two levels of name qualification, called a group name and a file
name.

Under CMS the “group name” is a CMS file type, and the “file name” is a CMS file
name. The CMS file mode is *, that is, all accessed disks are searched in the
standard order, and the first file found of the correct name is used.

Under TSO the “group name” is a ddname, which must have been allocated to
point to a partitioned data set. The “file name” is a member name within the PDS.
Standard PDS concatenation is supported, and the first file found with the proper
member name will be used.

The following call is used to open a file in the group:

CALL (15),(=C'FG',retcode,C'0OS',token,gname,fname),
VL,MF=(E,listarea)

Set by processor

token Normally zero for this call. If a token is still available from a previous
open for the same group (that is, the file has not been closed), that
token can be provided here to request a “jump” from one file to another
within the group. This can provide performance advantages under TSO.

gname An 8-character field containing the name of the file group, padded with
blanks.

fname An 8-character field containing the name of the individual file within a
group, padded with blanks. This is an MVS member name or a CMS
file name.

Returned to processor
retcode A fullword service completion code.

0 File opened successfully.

7 TSO: Fixed record format file without LRECL.

24 TSO: ddname not allocated, or not a PDS.

26 TSO: fname not found as a member in the PDS.
CMS: File gname fname * does not exist.

30 TSO: User not authorized to access the file.

32 Not enough free storage available.

35 TSO: I/O error locating the file.

36 TSO: Not a PDS concatenation.?

token A fullword integer token is returned here. This token must be provided
on subsequent read and close calls.

Note: Files can be left open for as long as needed, but they must eventually be
closed by the process that opened them.

2 This error also occurs if a member name was specified as a part of the data set name when the ddname was defined.

Chapter 8. Code F__: File System Services 55

The following call is used to read a record from an open file:

CALL (15),(=C'FG',retcode,C'SR",token,bufflen,buffer,reclen),
VL,MF=(E,listarea)

Set by processor
token A fullword containing the token returned when the file was opened.

bufflen A fullword containing the length of the area pointed to by buffer.

Returned to processor
retcode A fullword service completion code.

0 Record read successfully.
5 End of File.
7 Record too long for buffer provided.
26 CMS: File gname fname * does not exist.
35 I/O error reading the record.
36 Not a qualified name file
TSO: May also mean size of a block read is not multiple of LRECL
50 Invalid request for this system
60 TSO: Invalid record format

buffer A record is returned in this area.

recin A fullword integer field into which the length of the returned record will
be placed by the service.

Warning: Abends might occur under TSO if a request is made using a token that
was obtained from opening a file by another task.

The following call is used to close a previously opened file:

CALL (15),(=C'FG",retcode,C'CL",token),
VL,MF=(E,listarea)

Set by processor

token A fullword containing the token returned when the file was opened.

Returned to processor
retcode A fullword service completion code.

0 File was successfully closed.
35 TSO: I/O error closing the file.

token This field is reset to zero. The token must not be used again regardless
of the return code.

56 APL2 Programming: Processor Interface Reference

FL: List APL Files

CALL (15),(=C'FL',retcode,libno,,pass,bufflen,bufferl ,startl ,end 11),
VL,MF=(E,listarea)

Set by processor

libno

pass

bufflen

start

end

A fullword field containing the APL library number.

An 8-character field containing an optional password for the library. If a
password is required but none is supplied here, you are prompted. The
field must be set to blanks if no password is desired.

A fullword containing the length of the area pointed to by the buffer
parameter.

An 8-character field containing an optional starting delimiter for the
search. If not provided, the defaultis '4 '

An 8-character field containing an optional ending delimiter for the list. If
not provided, the default is to search to the end of the list.

Returned to processor

retcode
bufflen
buffer

start

A fullword service completion code. See [Figure 16 on page 51|

The number of bytes actually used in buffer.

The list of names. Each name is padded to 8 characters with blanks,
and each is followed by one blank.

If retcode is 7 (buffer too small), and this parameter was provided, it
contains the next name that would have been added to the list. If the
application wants to avoid rebuilding the entire list, it can issue a second
call with this start parameter to obtain the next segment of the list.

Chapter 8. Code F__: File System Services 57

FR: Read an APL File Record

CALL (15),(=C'FR',retcode,bufflen,buffer,recno,token),
VL,MF=(E,listarea)

Set by processor

bufflen A fullword containing the length of the area pointed to by the buffer
parameter. For optimum performance, the following buffer sizes are
recommended:

Sequential files: At least one page (4096 bytes)
Direct files with fixed size: At least “maxlen” bytes
Direct files with arbitrary size: At least 1 page (4096 bytes).

recno A fullword containing the relative record number in the file if the file was
opened for direct processing (see the FA service). lts contents are
ignored if the file was opened for sequential processing.

token A fullword containing the file token provided when the file was opened.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51|

buffer The length of the record, returned as the first four bytes of the buffer,
followed by the data. The length field is returned even if the data does
not fit (return code 7). (The length is in bytes, and does not include
itself.) If retcode is 7 (buffer too small), the first four bytes contain the
buffer size required to read the record.

recno A fullword containing the relative record number in the file. This is the
number associated with the record in buffer.

token If an error occurs, the file may be closed. If that happens, this field will
be zeroed to indicate that the file is closed and the token is no longer
available.

58 APL2 Programming: Processor Interface Reference

FS: Change the Size of an APL File

CALL (15),(=C'FS',retcode,libno,fname,pass,maxsize),
VL,MF=(E,listarea)

Set by processor

libno A fullword containing the number of the library within which the file
exists. The library number may be set to zero to indicate that the file is
in the user's private library.

fname An 8-character field containing the name of the file, padded with blanks.

pass An 8-character field containing an optional password for the library. If a
password is required, but none is supplied here, the user will be
prompted. The field must be set to blanks if no password is desired.

maxsize A fullword containing the new maximum size of the file in bytes. If this
field is set to zero, the size of the file will be limited only by available
space in the library.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51|

Note: The file size cannot be changed if the file is currently open. See ['EZ: Close
lan APL File” on page 61|

Chapter 8. Code F__: File System Services 59

FW: Write an APL File Record

CALL (15),(=C'FW',retcode,,buffer,recno,token),
VL,MF=(E,listarea)

Set by processor

buffer A buffer that contains the record to be written. The length of the record
must be provided as the first four bytes of the buffer, followed by the
data. (The length is in bytes, and does not include itself.)

recno A fullword containing the relative record number in the file if the file was
opened for direct processing (see the FA service). In this case the
record must replace one that already exists in the file. The contents of
this field are ignored if the file was opened for sequential processing.

token A fullword containing the file token provided when the file was opened.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51

recno A fullword containing the relative record number in the file of the record
that was just written.

token If an error occurs, the file may be closed. If that happens, this field will
be zeroed to indicate that the file is closed and the token is no longer
available.

Note: A write request may be issued only if the file was opened for write proc-
essing.

For files created as type D (regardless of how they are opened), the record

length cannot exceed that which was specified as a maximum when the file
was created.

60 APL2 Programming: Processor Interface Reference

FZ: Close an APL File

CALL (15),(=C'FZ',retcode,,,,token),
VL,MF=(E,listarea)

Set by processor

token A fullword containing the file token provided when the file was opened.
This service “turns in” that token, that is, it must not be used later for
any other file requests.

Returned to processor

retcode A fullword service completion code. See [Figure 16 on page 51|

token This field will be zeroed to indicate that the token is no longer available.

Note: This request has three unused parameters so that the file token will be the
sixth parameter in all requests.

Chapter 8. Code F__: File System Services 61

Chapter 9. Code M__: Message Services

The service request codes described in this chapter are:

MC Check for message existence
MF Format a message (with optional display)

MC: Check for Message Existence

62

CALL (15),(=C'MC',retcode,msgnum),
VL,MF=(E,listarea)

Set by processor

msgnum A fullword containing the message number to check for.

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 the message does exist
1 the message does not exist

The message number “exists” if it can be found in either the standard English table
provided as a part of the product or a national language (APL2LANG) file which
has been made active using ONLT.

Note: The information returned is valid only until the next time ONLT is set (or
unshadowed) within the workspace. Changing the national language may either
make new messages available or make previously valid messages inaccessible.

© Copyright IBM Corp. 1987, 1992

MF: Format a Message

This service gives processors access to the message services used by the APL2
product. Messages may be displayed, queued, or returned to the caller. The
current national language table is used, substitution fields are supported, and a
message ID is optionally supplied.

The message numbers are defined in either the standard English table provided as
a part of the product or a national language (APL2LANG) file which has been
made active using ONLT.

After formatting, the total message length including the message ID must not
exceed 255 characters.

CALL (15),(=C'MF',retcode,msgnum,optf,outarea,outlen][fill-val,fill-len]...),
VL,MF=(E,listarea)

Set by processor

msgnum A fullword message number which identifies the message to use.
Message numbers are defined in the DEFAULT APL2LANG file.

Note: It is possible for installations or users to define additional
message numbers in APL2LANG files, and then to use those numbers
from this service while the APL2LANG file is in effect for the session. If
you intend to use this capability, you should issue the MC service first,
since an ABEND will occur if the message cannot be found.

opt A one-character code indicating what should be done with the message:

D Display the message along with data displayed by the interpreter as
a part of the APL session. If the session manager is being used, it
will be included in the session log.

Q Queue the message for display on a subsequent)MORF request.

Note: If DEBUG(1) is in effect this option will be overridden, and D
will be used instead.

R Return the formatted message in outarea. The returned message
will begin with a message ID if DEBUG(32) is in effect.

outlen A fullword containing the length of outarea.

Note: This parameter (and outarea) must be supplied if, and only if, opt
R is specified.

Chapter 9. Code M__: Message Services 63

fill-val An optional value to be substituted into the message. Message substi-
tution fields are numbered, beginning with 1 for each message (see the
DEFAULT APL2LANG file). The first fill-val provided here corresponds
to substitution field number 1, and so forth. The field must contain char-
acter data. (For double-byte languages, mixed DBCS data is permitted.)

If the current message definition contains more substitution fields than
are provided for by fill-val parameters, the additional fields will be filled
with '**'. If extra fill-val parameters are provided, they will be ignored.

fill-len A fullword containing the length of the preceding fill-val. This length
must never exceed 255. If the length is specified as zero, an empty
field is substituted into the message. If the length is negative, the field
will be treated as unsubstituted, and will display as '**.".

Note that although fill-val parameters are optional, there must be a
fill-len parameter for each one that is provided. In other words, it is
really fill-val/fill-len pairs that are optional.

Returned to processor

retcode A fullword service completion code. The following return codes are
defined:

0 normal completion
1 required virtual storage is not available
2 the message is too long (or outarea is too short)

outarea The formatted message is placed in this area. This parameter (and
outlen) must be supplied if, and only if, opt R is specified.

Note: For double-byte languages, the formatted message will be in
mixed DBCS format if either the message definition or the substitutions
contain any DBCS characters.

outlen A fullword contain the length of the message placed in outarea. If
retcode is 2, a minimum known requirement will be returned.

Note that the message length may increase and decrease several times
during processing. If, after a length error, the MF service is reissued
using the length returned here, it may take several iterations to deter-
mine the actual size required. Also, the final message will typically be
smaller than the maximum requirement during processing.

Note: This parameter (and outarea) must be supplied if, and only if, opt
R is specified.

64 APL2 Programming: Processor Interface Reference

Chapter 10. Code P__: Process Services

The following services are available only to Auxiliary Processors.

Process services use one-word blocks called event control blocks (ECBs) to syn-
chronize the operations of two processes. The internal format and content of an
ECB is system dependent, but may be partially controlled by the POSTing process.
See [‘CSVSCAN: Scan for an Offer” on page 81| for additional usage of ECBs.

There is no return code from any of the processor services. Information about the
success of the operation is often available in an ECB. Invalid parameters cause an
ABEND of the processor.

The service request codes described in this chapter are:

PP Post an ECB
PT Start a timer
PW Wait for an event

© Copyright IBM Corp. 1987, 1992 65

PP: Post an ECB

Send a signal to another task in the same address space or virtual machine. This
signal will terminate an operating system WAIT or a PW service that has sus-
pended any task on that ECB. It will also set a post bit in the ECB so that a later
WAIT or PW will complete immediately.

CALL (15),(=C'PP’',ecb,postcode),
VL,MF=(E,listarea)

Set by processor

postcode A fullword containing a nonnegative binary number which cannot exceed
32767. The number will be placed in the low order halfword of the ECB.

Returned to processor

ecb A fullword ECB in the same virtual machine or address space which will
have been posted.

66 APL2 Programming: Processor Interface Reference

PT: Start a Timer

This request sets an “alarm clock” which will send a signal after a specified amount
of “wall clock” time has elapsed.

A timer that has not expired is cancelled by a subsequent timer request from the
same process, or by the process's termination. (Note that a time interval of zero
effectively cancels any outstanding timer.)

CALL (15),(=C'PT"',ecb,time),
VL,MF=(E,listarea)

Set by processor

time A fullword containing the length of time, in milliseconds.

Returned to processor

ecb A fullword ECB which will be posted when (or soon after) the time
interval has elapsed.

Note: Control returns immediately, although normally the ECB will not yet have
been posted. Use the PW service to wait for the timer signal.

Chapter 10. Code P__: Process Services 67

PW: Wait for an Event

CALL (15),(=C'PW',/posted,ecb[,ecb]...]),
VL,MF=(E,listarea)

Set by processor: None.

Returned to processor
posted A fullword pointer to a posted ECB.

ecb A fullword ECB which has been posted asynchronously by another task.

Description: |If no ECBs are listed, this is a “dispatch” request, which gives all
other APL2 processes an opportunity to execute (if not in an unposted WAIT)
before returning control to the issuing process.

If one or more ECBs are specified, each call returns information about one posted
ECB. The second parameter word (not the parameter list entry) will point to the
ECB about which information is being returned. The post code (if any) will be right
justified in the ECB. The first two bytes of the ECB may contain system dependent
information which should be ignored by the processor. If multiple ECBs are speci-
fied, control may be returned when any one of them has been posted.

To avoid spurious “posted” indications, all ECBs must be initialized to binary zero
before their use. Note that when multiple ECBs are waited on, more than one may
have been posted on return. The normal procedure would be for the processor to
handle the event pointed to by the second parameter word, clear that ECB, then
reissue the wait. At that time a second posted ECB would be noticed, and the
processor would be redispatched immediately.

68 APL2 Programming: Processor Interface Reference

Chapter 11. Code SC: Shared Variable Services

The service request codes described in this chapter are:

SC Shared variable services

This service provides communication and data transfer between auxiliary
processors and the SVP. The parameter list itself is very simple, but the second
parameter is an often complex parameter block:

CALL (15),(=C'SC',svpblock),
VL,MF=(E,listarea)

svpblock One of three different parameter blocks must be provided here,
depending on the type of request being made. In all cases the first
halfword of the parameter block identifies the request, and hence the
format of the remainder of the block.

The three parameter blocks are associated with three classes of requests:

1. Processor control requests use a processor control vector (PCV). These are
the first and last requests a processor will use; they establish or break a con-
nection with the shared variable processor.

2. Share control requests use a share control vector (SCV). These are the
“workhorse” requests; they handle all shared variable connection, status, and
data transfer.

3. The data format request uses an SVP data format block (SDF). This request
permits data compatibility with other APL systems.

Each of these parameter blocks is described by an assembler language mapping
macro (AP2PCV, AP2SCV, or AP2SDF) which is distributed with the APL2 product.
If you are writing an auxiliary processor in some other language, you will have to
provide your own mapping of these parameter blocks.

Another macro, AP2CSVPE, provides declarations of the request code values and
return code values. The names defined by that macro will be used throughout this
chapter to refer to the individual requests and return codes.

Note: If you need to use the AP2PCV, AP2SCV, AP2SDF or AP2CSVPE mapping
macros, see|Appendix C, “Macros Intended for Customer Use” on page 182|for the
information you need to get from your system programmer.

© Copyright IBM Corp. 1987, 1992 69

The requests are:

Processor Control Requests

CSVON signon
CSVOFF signoff

Share Control Requests

CSVCOPY copy
CSVQUERY query

CSVREF reference
CSVREL release
CSVRET retract

CSVSCAN scan

CSVSEEAC see access information
CSVSETAC set acv

CSVSHARE share

CSVSPEC specify

CSVSTATE state

Data Format Request
CSVDFORM set data format

70 APL2 Programming: Processor Interface Reference

SVP Processor Control

Processor services are related to the state of the auxiliary processor itself, without
reference to particular shared variables. The two processor services are CSVON
(signon) and CSVOFF (signoff). An assembler language mapping of the PCV is
distributed with the product as macro AP2PCV. Figure 17 shows its overall layout.

PCV
00

PCVREQ request code PCVRC return code
04

PCVID processor identification
0cC

PCVECB Event Control Block pointer
10

(reserved)

14

PCVSPQ space quota
18

PCVSHVQ variable quota|PCVFLGS (reserved)
1C

Figure 17. PCV: SVP Processor Request Block

See FCSVON: Signon” and FCSVOFF: Signoff’ on page 73]|for usage of the fields in

this block.

CSVON: Signon

Request signon to the shared variable processor. No other shared variable
requests are accepted until CSVON has completed successfully.

The fields that must be set are:
PCVREQ CSVON (1)

PCVID Processor identification. This is theoretically any 8-byte token, but in
practice a fullword integer is normally used, since the APL language
supports only such integers when sharing with auxiliary processors.
The processor number is expressed as a binary integer (normally less
than 1000 for an auxiliary processor) followed by a fullword zero.

PCVECB Pointer to an event control block. The ECB identified will subsequently
be posted by the shared variable processor in the following situations:

1. A shared variable offer is being made to this processor.

2. Resources are now available for a CSVSHARE which was rejected
earlier.

3. The subsystem is asking the processor to sign off.

4. The SVP attempted to post an ECB associated with a share offer
made by this processor, but no ECB was specified for the variable.

PCVSPQ Space quota. This is a maximum number of bytes of Shared Memory
which the processor might need at any point in time. Shared memory
is used for values of variables which have been specified by one
partner but not yet referenced by the other. This may be set to a very
large positive value; the SVP will respond with the amount of space
available.

Chapter 11. Code SC: Shared Variable Services 71

PCVSHVQ Shared variable quota. This is a maximum number of shared variables
which the processor is prepared to handle concurrently. By specifying
the maximum possible for this field (32767), the processor can insure
that new offers are limited only by SVP resources.

PCVGLB (in PCVFLGS) For IBM use only. This flag must be off for both global
and local auxiliary processors. The SVP services will not behave prop-
erly otherwise.

The fields set on return are:
PCVRC The return codes are:

-3=CSVEPPF Processor Table full

00=CSVOK Normal return

01=CSVENA SVP not available

04=CSVEASO Already signed on as PCVID
05=CSVEUSED Another processor is signed on as PCVID
15=CSVEARG Argument error

PCVSPQ The maximum amount of space in shared memory available to the
processor. This is an upper limit on the size of shared variables. If the
processor attempts to set a shared variable to a larger value than this,
it will receive a permanent rejection (return code 10) indicating that the
value is too large for shared memory. Note that this space is not guar-
anteed. Even a shorter value may result in a temporary rejection
(return code -2) indicating that shared memory is currently full.

PCVSHVQ The maximum concurrent number of shared variables the processor
will be permitted to have. If the processor attempts to share more vari-
ables than this, it will receive a permanent rejection (return code 6)
indicating that the variable quota was exceeded. Note that this quota
is not guaranteed. A temporary rejection (return code -2) may occur
before reaching the limit. This indicates that shared memory is cur-
rently full.

PCVOFFER (in PCVFLGS) Set if one or more incoming offers exist at the time of
signon.

72 APL2 Programming: Processor Interface Reference

CSVOFF: Signoff

Request signoff from the shared variable processor. Subsequent SVP requests
associated with that processor number (except CSVON) will be rejected. Any
current offers (matched or unmatched) from the processor will be retracted implic-

itly.
The fields that must be set are:
PCVREQ CSVOFF (2)

PCVID Processor identification. This must match the value used during
CSVON.

The only field set on return is:
PCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

Chapter 11. Code SC: Shared Variable Services 73

SVP Share Control

Share requests are related to shared variables or share offers. The share requests
were listed at the beginning of this chapter and are described in detail in the fol-
lowing subsections.

In all of the share requests, the SVP uses a value called the “pershare index” to
associate the request with a specific shared variable. When a new variable is
being offered (using CSVSHARE), the SVP returns an internally generated
pershare index to the caller. It also returns a pershare index for each variable
reported in response to CSVSCAN or CSVQUERY. For all other share requests
(including CSVSHARE when used to match or inquire) the caller must provide a
pershare index previously returned by the SVP.

Each of the share services requires an SCV as a parameter block. An assembler
language mapping of the SCV is distributed with the product as macro AP2SCV.
Figure 18 shows the structure of that block.

SCV
00

SCVREQ request code SCVRC return code
04

SCVPART partner identification
0C

SCVID processor identification
14

(reserved)

18

SCVOSN offer sequence number
1C

SCVPSX pershare index
20

SCVECB Event Control Block pointer
24

SCVVLEN 1length of variable value
28

SCVVALUE value assigned to the variable
2C

SCVACV SCVFLGS1 SCVFLGS2 SCVNLEN
30

SCVNAME Pointer to name of the variable
34

Figure 18. SCV: SVP Share Request Block

The following subsections describe the usage of fields within this parameter block.

74 APL2 Programming: Processor Interface Reference

CSVCOPY: Copy

Copy the value of a shared variable. Unlike CSVREF, this action does not affect
the access state of the variable, nor is it limited by access state.

The fields that must be set are:

SCVREQ
SCVID
SCVPSX
SCVVLEN

CSVCOPY (10)

Processor ID.

Pershare index. Must contain the token returned by CSVSHARE.
Buffer length.

SCVVALUE Pointer to a buffer. The current value of the variable will be returned

in this area.

SCVHOLD (in SCVFLGS1) Do not release. If set on, the variable is not released

on successful completion or on no value found. The variable will
remain under the control of the requestor until one of the following
requests associated with the same variable completes successfully:

Copy without SCVHOLD
Reference - Obtain the value
Release - Release control
Specify - Replace the value
Retract - Retract the variable
Sign off

During the time that a processor retains control of a variable, its share
partner will receive return code -1 from any Copy, Reference, or
Specify request.

The fields set on return are:

SCVRC

SCVVLEN

SCVACV

The return codes are:

-1=CSVELOCK Variable interlocked
00=CSVOK Normal return

01=CSVENA SVP not available
03=CSVENSO Processor not signed on
09=CSVESOF Buffer size too small
11=CSVENOV No new value
15=CSVEARG Argument error
16=CSVENOT Value cannot be represented

Set on successful return or CSVESOF error. This field is set to the
actual size of the object.

The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01'") Offered by this processor.
SCVFSHR (X'02') Fully shared.

Chapter 11. Code SC: Shared Variable Services 75

CSVQUERY: Query

Obtain a list of processors or variables whose degree of coupling with the caller
matches that specified in the SCV.

If the result is a list of processors, each entry will occupy four fullwords, in the fol-
lowing format:

processor ID pershare index|offer seq nr

00 08 0cC 10

If the result is a list of variable names, each entry will be byte aligned and variable
length in the following format:

pershare index|offer seq nr|nameln name

+0 +4 +8 +9 (length varies)
where “nameln” is the length of the name which follows it.
The fields that must be set are:

SCVREQ CSVQUERY (14)

SCVPART Partner identification. If this field is zero, a list of processors is to be
returned. Otherwise, it identifies the processor for which the list of vari-
ables is desired.

SCVID Processor identification. Must match the value in PCVID during
CSVON.

SCVOSN Offer Sequence Number. This value limits the list to offers with a
sequence number greater than the one specified. Note that on return,
the sequence number of the last offer listed will be placed here. Thus
if the request is reissued, the list will continue. Specify 0 to begin with
the oldest offer.

SCVVLEN Buffer length. The size of the buffer into which the result will be
placed.

SCVVALUE Buffer address. Points to the area where names or processor IDs will
be returned.

SCVFOFR1 (in SCVFLGS1) Offers made by requestor. On to include unmatched
outgoing offers.

SCVFOFR2 (in SCVFLGS1) Offers made to requestor. On to include unmatched
incoming offers.

SCVFSHR (in SCVFLGS1) Fully Shared variables. On to include matched shares.
Note: All other flags in SCVFLGS1 must be off.

76 APL2 Programming: Processor Interface Reference

The fields set on return are:

SCVRC

SCVOSN

SCVVLEN

The return codes are:

-2=CSVESMF Shared memory full
00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
09=CSVESBS Buffer size too small
15=CSVEARG Argument error

The highest offer sequence number of offers reflected in the returned
list. Unaltered if no acceptable offers are found.

The length of the output buffer actually used. This will be zero if no
acceptable offers were found. If more acceptable offers are found than
will fit in the buffer, a partial result will be returned, and the return code
will be CSVESBS.

Chapter 11. Code SC: Shared Variable Services 77

CSVREF: Reference

Reference a shared variable. If no error or interlock occurs, the access state of the
variable will be changedto 0 0 1 1. The current value of the variable will
(normally) be moved to the location specified in the SCV.

The fields that must be set are:

SCVREQ CSVREF (7)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.

SCVVLEN Buffer length. If the length is negative, the access state will be
changed and the data will be discarded.

SCVVALUE Pointer to a buffer. The current value of the variable will be returned
in this area.

The fields set on return are:
SCVRC The return codes are:

-1=CSVELOCK Variable interlocked
00=CSVOK Normal return

01=CSVENA SVP not available
03=CSVENSO Processor not signed on
09=CSVESBS Buffer size too small
11=CSVENOV No new value
15=CSVEARG Argument error
16=CSVENOT Value cannot be represented

SCVVLEN Set on successful return or CSVESBS error. This field is set to the
actual size of the object.

SCVACV The current access state in the high-order four bits, and the combined
ACV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

78 APL2 Programming: Processor Interface Reference

CSVREL: Release

Release control of a shared variable. This request may be used following a
CSVCOPY with the SCVHOLD option.

The fields that must be set are:

SCVREQ CSVREL (11)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.
The fields set on return are:

SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

SCVACV The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

Chapter 11. Code SC: Shared Variable Services 79

CSVRET: Retract

Retract a shared variable.

The fields that must be set are:

SCVREQ CSVRET (12)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.
The fields set on return are:

SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

SCVFLGS1 SCVFOFR2 (X'04') is set if the variable is still offered to this
processor.

80 APL2 Programming: Processor Interface Reference

CSVSCAN: Scan for an Offer

Search for an outstanding offer to the caller. The first acceptable offer found is
used to complete the SCV. Note that the minimum offer sequence number is one
of the parameters to this request, so that the request may be repeated to get sub-
sequent offers.

The fields that must be set are:
SCVREQ CSVSCAN (3)

SCVPART Partner identification. If zero, all incoming offers will be checked. If
nonzero, the scan will be limited to offers from the specified partner.

SCVID Processor identification. Must match the value in PCVID during
CSVON.

SCVOSN Offer sequence number. This value limits the scan to offers with a
sequence number greater than the one specified. Note that on return,
the sequence number of the offer being described will be placed here.
Thus if the request is reissued, the scan will continue. Specify 0 to
begin with the oldest offer.

SCVNLEN Name length. The SVP supports names up to 255 characters long.
The usage of this field depends on the setting of the SCVNAMES flag:

e If SCVNAMES is on, this is the length of the field pointed to by
SCVNAME. Note in this case that the value is modified on return,
and must be reset before repeating the scan.

e If SCVNAMES is off, this is the length of the name pointed to by
SCVNAME, and only offers with that specific name are scanned.

SCVNAME Pointer to Shared Variable Name field. See SCVNAMES for its usage.

SCVNAMES (in SCVFLGS1) On if any name is acceptable. Off if the name is
specified in the field pointed to by SCVNAME.

The fields set on return are:
SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
12=CSVENOF No Offer found
15=CSVEARG Argument error

SCVPART The ID of the processor making the offer.
SCVOSN The sequence number of the offer.

SCVPSX The pershare index. This is a token which uniquely identifies the offer,
and is used for subsequent requests.

SCVNLEN The length of the name returned.

SCVNAME The pointer is not modified, but if SCVNAMES was on in the request,
the field it points to will contain the name of the shared variable.

SCVFLGS2 The partner protocol (1=VSAPL, 2=APL2). The APL2 interpreter uses
protocol 2, as do as all processors written to the interfaces defined in
this manual. Protocol 1 is used by processors originally written to run
under the VS APL product, but later moved to the APL2 environment.

Chapter 11. Code SC: Shared Variable Services 81

CSVSEEAC: See (inspect) Access Information

This service provides quick access to the key attributes of a shared variable,
including its access state, access control vector, and degree of coupling.

The fields that must be set are:

SCVREQ CSVSEEAC (5)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.
The fields set on return are:

SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

SCVACV The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

82 APL2 Programming: Processor Interface Reference

CSVSETAC: Set ACV

Set the access control vector for a shared variable.

The fields that must be set are:

SCVREQ CSVSETAC (6)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.

SCVACV Desired access control vector in the low-order four bits. See [FAccess|
[Control” on page 71

The fields set on return are:
SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

SCVACV The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits. See [‘Access Control” on

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

Chapter 11. Code SC: Shared Variable Services 83

CSVSHARE: Offer a Variable
Note: See also CSVSHARE: Match an Offer and CSVSHARE: Query a Share

This form of the CSVSHARE request is distinguished by having SCVPSX=0.
The fields that must be set are:
SCVREQ CSVSHARE (4)

SCVPART Partner identification. Identification of the processor with which the var-
iable is to be shared. This is normally a fullword integer followed by a
fullword zero. If both words are zero, then this offer may be matched
by any partner which uses the same name and identifies your
processor.

SCVID Processor identification. This must match the PCVID field as used
during CSVON.

SCVOSN Offer sequence number. Only offers with OSN greater than SCVOSN
can be used to match this offer. If SCVOSN=0 the effect is to ignore
OSN in this call.

SCVPSX Pershare index. Zero for this form of the request.

SCVECB Pointer to an event control block. Points to the ECB which will subse-
quently be posted on certain actions by the share partner. If SCVECB
is zero, the PCVECB will be used instead for signalling.

SCVVLEN Initial value length. Set this field to zero unless the processor is pro-
viding an initial value for the shared variable.

SCVVALUE Pointer to an initial value. (Ignored if SCVVLEN=0.)

Note: The value will also be ignored if the share partner has already
assigned a value to the shared variable.

SCVACV Access control vector component. This 4-bit value (provided in the
low-order 4 bits of the field) will be ORed with the partner's component
to produce the combined ACV.

SCVNLEN Name length. The length of the name pointed to by SCVNAME. The
SVP supports names up to 255 characters long.

SCVNAME Pointer to the field containing the name of the shared variable. A
name is required for this form of the request.

SCVNAMES (in SCVFLGS1) Off for this form of the request.

84 APL2 Programming: Processor Interface Reference

The fields set on return are:

SCVRC

SCVPART

SCVOSN

SCVPSX

SCVACV

The return codes are:

-2=CSVESMF Shared memory full

00=CSVOK Normal return

01=CSVENA SVP not available

03=CSVENSO Processor not signed on
06=CSVEVQO Variable quota exceeded
07=CSVESQO Space quota exceeded
08=CSVESOF Offer to self

10=CSVEVTL Value too large for shared memory
15=CSVEARG Argument error

The partner's ID. Normally zero, but will be nonzero if the SVP was
able to find an earlier corresponding offer by the proposed partner.
See CPVID under CSVON for the format of this field.

The offer sequence number of the variable. This number provides an
ordering of all variables processed by the SVP. It is defined for a vari-
able when the first partner offers it, and is retained until one partner
has retracted. At that point the variable reverts to an outstanding offer,
and is assigned a new OSN.

The pershare index assigned to the share offer. This is an arbitrary
token created by the SVP, which must be used for all subsequent com-
munication regarding the shared variable.

The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01'") Offered by this processor.
SCVFSHR (X'02') Fully shared.

SCVFLGS2 The partner protocol (1=VSAPL, 2=APL2) if SCVFSHR is set. The

APL2 interpreter uses protocol 2, as do as all processors written to the
interfaces defined in this manual. Protocol 1 is used by processors
originally written to run under the VS APL product, but later moved to
the APL2 environment.

Chapter 11. Code SC: Shared Variable Services 85

CSVSHARE: Match an Offer
Note: See also CSVSHARE: Offer a Variable and CSVSHARE: Query a Share

This form of the CSVSHARE request is distinguished by having SCVPSX nonzero,
but referring to a variable which is offered to the caller, and not yet matched.

The fields that must be set are:
SCVREQ CSVSHARE (4)

SCVPART Partner identification. Identification of the processor with which the var-
iable is to be shared. This is normally a fullword integer followed by a
fullword zero. If both words are zero, then this offer will match the offer
having the correct PSX and OSN, regardless of partner identification.

SCVID Processor identification. This must match the PCVID field as used
during CSVON.

SCVOSN Offer sequence number. The OSN must be supplied, and must match
the OSN of the variable offered. If not, a CSVENOF error results.
Since the PSX for this call is generally obtained from a SCAN request
which also returns the OSN, the caller needs only to avoid modifying
the SCVOSN field between the SCAN and SHARE requests.

SCVPSX Pershare index. Must be supplied for this form of the request. This
field identifies the offer which is being matched.

SCVECB Pointer to an event control block. Points to the ECB which will subse-
qguently be posted on certain actions by the share partner. If SCVECB
is zero, the PCVECB will be used instead for signalling.

SCVVLEN Initial value length. Set this field to zero unless the processor is pro-
viding an initial value for the shared variable.

SCVVALUE Pointer to an initial Value. (Ignored if SCVVLEN=0.)

Note: The value will also be ignored if the share partner has already
assigned a value to the shared variable.

SCVACV Access control vector component. This 4-bit value (provided in the
low-order 4 bits of the field) will be ORed with the partner's component
to produce the combined ACV.

The fields set on return are:
SCVRC The return codes are:

-2=CSVESMF Shared memory full

00=CSVOK Normal return

01=CSVENA SVP not available

03=CSVENSO Processor not signed on
06=CSVEVQO Variable quota exceeded
07=CSVESQO Space quota exceeded
08=CSVESOF Offer to self

10=CSVEVTL Value too large for shared memory
12=CSVENOF No offer found

15=CSVEARG Argument error

SCVPART The partner's ID.

SCVACV The current access state in the high-order four bits, and the combined
ACYV setting in the low-order four bits.

86 APL2 Programming: Processor Interface Reference

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

SCVFLGS2 The partner protocol (1=VSAPL, 2=APL2). The APL2 interpreter uses
protocol 2, as do as all processors written to the interfaces defined in
this manual. Protocol 1 is used by processors originally written to run
under the VS APL product, but later moved to the APL2 environment.

Chapter 11. Code SC: Shared Variable Services 87

CSVSHARE: Query a Share
Note: See also CSVSHARE: Offer a Variable and CSVSHARE: Match an Offer

This form of the CSVSHARE request is distinguished by having SCVPSX nonzero,
and referring to a variable which the caller has already offered or matched.

The fields that must be set are:
SCVREQ CSVSHARE (4)

SCVPART Partner identification. Identification of the processor with which the var-
iable is shared, or to which it is offered. This is normally a fullword
integer followed by a fullword zero. If both words are zero, the SVP
will return that information.

SCVID Processor identification. This must match the PCVID field as used
during CSVON.

SCVPSX Pershare index. Must be supplied for this form of the request. This
field identifies the offer about which information is desired.

SCVVLEN Initial value length. This field must be set to zero.
The fields set on return are:
SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
12=CSVENOF No offer found
15=CSVEARG Argument error

SCVPART The partner's ID.

SCVACV The current access state in the high-order four bits, and the combined
ACV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

88 APL2 Programming: Processor Interface Reference

CSVSPEC: Specify

Specify a shared variable. If no error or interlock occurs, the current value of the
variable will be replaced by the value that the SCV points to.

The fields that must be set are:

SCVREQ CSVSPEC (8)

SCVID Processor ID.

SCVPSX Pershare index. Must contain the token returned by CSVSHARE.
SCVVLEN Length of the value in bytes.

SCVVALUE Pointer to the Value.

SCVFISPC (in SCVFLGS1) Ignore Specification Pending. If on, any unreferenced
value set by the partner will be ignored and replaced. If off, and a
value set by the partner is waiting, the request will fail with a
CSVEVOS return code.

The fields set on return are:
SCVRC The return codes are:

-2=CSVESMF Shared memory full
-1=CSVELOCK Variable interlocked

00=CSVOK Normal return

01=CSVENA SVP not available

03=CSVENSO Processor not signed on
07=CSVESQU Space quota exceeded
10=CSVEVTL Value too large for shared memory
14=CSVEVOS Partner's value not read
15=CSVEARG Argument error

SCVACV The current access state in the high-order four bits, and the combined
ACV setting in the low-order four bits.

SCVFLGS1 The degree of coupling, indicated by:

SCVFOFR1 (X'01') Offered by this processor.
SCVFSHR (X'02') Fully shared.

Chapter 11. Code SC: Shared Variable Services 89

CSVSTATE: State

Request the states of shared variables. A list of pershare indexes is provided in
the buffer pointed to by SCVVALUE. Each entry is two words long, with the
pershare index in the first word. Byte 0 of the second fullword of each entry is filled
in with the access state and signal state of the corresponding variable. The access
state is in the high-order four bits of this byte, and the signal state is in the low-
order four bits.

The fields that must be set are:
SCVREQ CSVSTATE (13)

SCVID Processor identification. This must match the PCVID field as used
during CSVON.

SCVVLEN Length of pershare index list.

SCVVALUE Pointer to pershare index list. This is a list of fullwords. If it contains
entries with a value of zero, those entries will be skipped without an
error indication.

The only field set on return is:
SCVRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

90 APL2 Programming: Processor Interface Reference

CSVDFORM: SVP Data Format Control

This request permits processors to receive data in a format different from that
normally used for the processor version. Processors written to the interfaces
defined in this manual are APL2-version processors. This request would be used
to request data in a VS APL format, or to return to the default APL2 format.

An assembler language mapping of the SDF is distributed with the product as
macro AP2SDF. Figure 19 shows its overall structure.

SDF
00
SCVREQ request code SCVRC return code
04
SCVID processor identification
0cC
SCVPSX pershare index
10
SCVVERS proc version |SCVDFORM data format
14

Figure 19. SDF: SVP Data Format Request Block

The request identifies the data format to be used for values subsequently returned
by reference or copy requests against the specified shared variable. It does not
limit the data formats accepted during shared variable specification.

The fields that must be set are:

SCVREQ CSVDFORM (15)

SDFID Processor ID, which must match the PCVID field used during signon.
SDFPSX The value returned in SCVPSX.

SDFVERS Indicates the protocol being used to interface with the SVP, and hence
specifies the nature or the content of SDFPSX. This must be 2 (APL2)
for processors written to the interface defined in this manual.

SDFDFORM Sets the data format to be used for the specified variable. The valid
values are 1 (VS APL) or 2 (APL2).

The only field set on return is:
SDFRC The return codes are:

00=CSVOK Normal return
01=CSVENA SVP not available
03=CSVENSO Processor not signed on
15=CSVEARG Argument error

Chapter 11. Code SC: Shared Variable Services 91

Chapter 12. Code T__: Terminal Services

92

The services in this chapter apply only to Auxiliary Processors. Two terminal ser-
vices are defined, TA which allocates the session terminal, and TZ which releases
it. Actual terminal I/0O must be accomplished with non-APL services such as
GDDM* or specific operating system interfaces. APL has no way of verifying that
Auxiliary Processors bracket their terminal I/O with proper TA and TZ calls, but if
they do not the results may be visually unpredictable, and asynchronous interrupts
may not be handled properly.

The service request codes described in this chapter are:

TA Allocate terminal
TZ Release terminal

© Copyright IBM Corp. 1987, 1992

TA: Allocate the Terminal

This is a request for exclusive use of the terminal. The request returns imme-
diately, whether or not the terminal can be given to the requestor at the moment.

On return, the requesting program should wait for a resource signal indicating that
the request has been granted. The PW service can be used for this purpose.

The requesting process will retain control of the terminal until it explicitly relin-
quishes that control with a TZ request. It may receive a signal indicating that some
other process is requesting control of the terminal.

CALL (15),(=C'TA',action,resource,signal),
VL,MF=(E,listarea)

Set by processor: None.

Returned to processor

action A one-character field, whose value will be supplied by the service when
resource is posted. One of the following values will be set:

D Data displayed on the screen has been changed since the
processor last controlled it, but field definitions are still valid.

F Field definitions have been changed since the processor last con-
trolled the screen.

N No screen changes have occurred since the processor last con-
trolled the screen, or this is not a full screen terminal, or the
processor has never previously controlled the terminal.

resource A fullword ECB which will be posted when the requestor is given control
of the terminal. APL will have removed any terminal attention exits.

signal A fullword ECB which will be posted if some other process requests
control of the terminal while this process is holding it. The process
should release control as soon as possible after being signalled.

Chapter 12. Code T__: Terminal Services 93

TZ: Release the Terminal

CALL (15),(=C'TZ',action),
VL,MF=(E,listarea)

Set by processor

action A one character field indicating what changes have been made to the
terminal while it was held:

D Data displayed on the screen has been changed, but field defi-
nitions have not.

F Field definitions have been changed.

N No screen changes have occurred.

Returned to processor: None.

Note: If the processor has set any terminal attention exits, it must remove them
before issuing this call.

94 APL2 Programming: Processor Interface Reference

Chapter 13. Code V__: Virtual Storage Services

There are no return codes from these services, except that a returned storage
address of zero means the requested storage was not available. If invalid parame-
ters are provided, an ABEND will be issued.

The service request codes described in this chapter are:

VF Free global virtual storage

VG Get global virtual storage

VP Get process virtual storage

VQ Free process virtual storage

VV Get variable length process virtual storage
VX Get extended storage

VF: Free Global Storage

CALL (15),(=C'VF',length,address),
VL,MF=(E,listarea)

Set by processor
length A fullword containing the number of bytes of storage to be freed.

address A fullword containing the address of the storage to be freed.

Returned to processor: None.

Note: Normally only VG storage is freed through this service, but it may also be
used to free storage obtained using operating system services (subpool 1 for MVS).

© Copyright IBM Corp. 1987, 1992 95

VG: Get Global Storage

Storage obtained through this service will not be implicitly freed by APL2. It will not
be automatically dumped by ED service requests.

The storage is always initialized to binary zero. The storage is always obtained
within the 24-bit address range, even when extended addressing is available.

CALL (15),(=C'VG',length,address),
VL,MF=(E,listarea)

Set by processor

length A fullword containing the number of bytes of storage needed.

Returned to processor

address A fullword containing the address of the requested storage. If storage is
not available, the address will be set to zero.

Note: This storage may be freed using the VF service or operating system main
storage services (subpool 1 for MVS).

96 APL2 Programming: Processor Interface Reference

VP: Get Process Storage

Storage obtained through this service will be implicitly freed when the process ter-
minates. It will also be automatically dumped by ED service requests.

The storage is always initialized to binary zero. The storage is always obtained
within the 24-bit address range, even when extended addressing is available.

CALL (15),(=C'VP',length,address),
VL,MF=(E,listarea)

Set by processor

length A fullword containing the number of bytes of storage needed.

Returned to processor

address A fullword containing the address of the requested storage. If storage is
not available, the address will be set to zero.

Note: This storage may be freed using the VQ service. It must not be freed using
VF or non-APL services.

Chapter 13. Code V__: Virtual Storage Services 97

VQ: Free Process Storage

CALL (15),(=C'VQ’',length,address),
VL,MF=(E,listarea)

Set by processor
length A fullword containing the number of bytes of storage to be freed.

address A fullword containing the address of the storage to be freed.

Returned to processor: None.

Note: Only VP, VV or VX storage may be freed through this service . Storage
blocks cannot be segmented, i.e. an entire VP, VV or VX area must be freed at
once.

98 APL2 Programming: Processor Interface Reference

VV: Get Variable Length Process Storage

This request is identical to VP except that a smaller amount of storage will be
accepted if the amount requested is not available.

CALL (15),(=C'VV',length,address),
VL,MF=(E,listarea)

Set by processor

length A fullword containing the maximum number of bytes of storage wanted.

Returned to processor
length A fullword containing the number of bytes actually obtained.

address A fullword containing the address of the requested storage. If storage is
not available, the address will be set to zero.

Note: This storage may be freed using the VQ service. It must not be freed using
VF or non-APL services.

Chapter 13. Code V__: Virtual Storage Services 99

VX: Get Extended Storage

Storage obtained through this service will be implicitly freed when the process ter-
minates. It will also be automatically dumped by ED service requests.

The storage is not initialized to binary zero. The storage will be obtained above the
16 megabyte line if possible.

CALL (15),(=C'VX',length,address),
VL,MF=(E,listarea)

Set by processor

length A fullword containing the number of bytes of storage needed.

Returned to processor

address A fullword containing the address of the requested storage. If storage is
not available, the address will be set to zero.

Note: This storage may be freed using the VQ service. It must not be freed using
VF or non-APL services.

100 APL2 Programming: Processor Interface Reference

Chapter 14. Code X__: External Call Services

The services in this chapter apply only to processor 11 :LINK.FUNCTION Routines.
They provide ways to:

Build a CDR using a pattern (the XB service)

Convert APL data tokens to addresses (XC and XD services)
Evaluate an APL expression (the XE service)

Find or form an APL object (the XF service)

Allocate or free storage in the workspace (the XG service)

A number of services in this chapter are called with only two parameters, the
service code and an ECV. The ECV is a control block described in[‘The External

[Control Vector (ECV)” on page 27 Services called with these parameters do not

define the term ECV, but do describe usage of fields within it.

Note: In all cases, an external routine must use the same ECV passed to it when
it calls these services.

The service request codes described in this chapter are:

XB
XC
XD
XE
XF
XG

build a CDR with a pattern

convert data tokens to addresses

convert data tokens to address/length pairs
evaluate an APL expression

form or find an APL object

allocate or free space in the workspace

© Copyright IBM Corp. 1987, 1992 101

XB: Build a CDR Using a Pattern

In certain situations, it is not possible to predict the format of one or more argu-
ments in advance, and therefore not possible to code a specific :LARG. or :RARG.
tag in the routine description. In these cases, it is possible to specify the argument
tag as null (for example, :LARG.) or to omit it entirely. If it is specified as null, APL
will build a CDR representing the argument without any conversion. If it is omitted,
APL will not build a CDR representation of the argument at all. In either case, APL
tokens for the left and right arguments are passed to the external function in the
ECV “left argument token” and “right argument token” fields (ECVXTLA and
ECVXTRA). Using the XB service, CDRs representing the arguments can be built
using these tokens and argument patterns.

The format of a pattern CDR matches that of the CDR header and descriptor
sections. It is just like a CDR without the pointer or data sections. It consists of
the CDRFLAGS, CDRDLEN, CDRXRHO, CDRRT, CDRRL, CDRRANK, and
CDRRHO fields only. The contents of the CDRFLAGS field must be valid, but they
do not influence the type of CDR produced. A pointer from CDR result or value is
always produced.

Unlike a CDR, a pattern CDR may have CDRXRHO or one or more elements of
CDRRHO specified as X'80000000' or CDRRANK specified as X'8000'. These
values indicate that the corresponding fields are unspecified and are not to be used
in rank or shape checking. If CDRRANK is so specified for a particular item of the
array, CDRRHO fields may not follow it.

Pattern CDRs are similar to the patterns used in :RARG., :LARG., and :RSLT. tags
to describe the arguments and results of external routines called through processor
11. See APL2 Programming: System Service Reference for more information.
Pattern CDRs, however, conform to the true CDR header format (as defined by the
AP2CDR macro), while argument patterns are an EBCDIC representation of it.

CALL (15),(=C'XB"',ecv),
VL,MF=(E,listarea)

Prior to issuing the XB call, the following fields must be set in the ECV:
ECVXPRQT Service request token: the argument token to be converted

ECVXPRQP Service request parameter: the address of the argument pattern CDR.

On completion of the XB call, the following fields are set in the ECV:

ECVXCET Result event type: actually two halfwords. This is setto 0 0 if the
request was successful or to the event type (OET) if unsuccessful.

ECVXPRQT Service request token: the APL token representing the argument CDR
which was built. This token should be retained if other service
requests are subsequently issued since the address of the argument
CDR may change across certain service calls.

ECVXPRQP Service request parameter: the address of the argument CDR built as
a result of this call.

102 APL2 Programming: Processor Interface Reference

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD calls.

Chapter 14. Code X__: External Call Services 103

XC: Convert Data Tokens to Addresses

This service is used to request conversion of a single data token or all the data
tokens in a CDR pointer section to addresses.

* All APL tokens have a high-order zero bit and remain valid across calls to the
interpreter, but cannot be used directly to access data.

e Data tokens are found in CDR pointer sections and have a high-order zero bit
like object tokens. Hence they are tokens

e Data tokens, unlike object tokens, are not associated with APL objects. They
are associated with the data described in the CDR.

* Addresses have a high-order one bit and can be used directly to access data,
but may need to be refreshed after interpreter calls.

CALL (15),(=C'XC',token,areal,token,area] ...),
VL,MF=(E,listarea)

Set by processor
token This is either:

¢ A fullword containing a data token that was given to the routine in
the pointer section of a CDR. The address of the data associated
with the token will be returned.

Or it is:

e A variable length field containing a CDR. (The high-order bit of the
first CDR word is CDRID, which is always on.) In this case the CDR
must contain a pointer section (see [‘Pointer Section” on page 17).
Each of the data tokens in the pointer section will be converted to
addresses, and will be returned in the order they appear in the CDR.

Returned to processor

area An output area in which absolute addresses and lengths will be
returned. The output area must contain one fullword if a single data
token is converted, or one fullword for each pointer entry (of any type) in
the CDR. Each of the returned addresses will have the high-order bit
set to indicate that they are addresses, not data tokens.

104 APL2 Programming: Processor Interface Reference

XD: Convert Data Tokens to Address/Length Pairs

This service is similar to XC except that both an address and a length is returned
for each pointer converted.

CALL (15),(=C'XD',token,areal,token,ared]j ...),
VL,MF=(E,listarea)

Set by processor

token Either a CDR or a data token within the pointer section that was given
to the routine earlier. (See|[XC: Convert Data Tokens to Addresses” on|

for details.)

Returned to processor

area An output area in which absolute addresses and lengths will be
returned. The output area must contain two fullwords if a data token is
converted, or two fullwords for each pointer entry (of any type) in the
CDR. The address will be returned in the first fullword of each pair, and
the length in the second fullword. Each of the returned addresses will
have the high-order bit set to indicate that they are addresses, not data
tokens.

Chapter 14. Code X__: External Call Services 105

XE: Evaluate an APL Expression

106 APL2 Programming:

This service is used to request evaluation of an APL expression. Evaluation of the
expression takes place in an environment similar to that of OEC.

Expressions to be executed take the form of tokens in the ECV:

ECVXTLA ECVXTLF ECVXTOP ECVXTRF ECVXTRA
LA LF OP RF RA

left left operator right right
argument operand operand argument

You should provide only the items that are pertinent to the kind of operation you
are requesting. Here are the possibilities:

Niladic function RF

Monadic function RF RA
Dyadic function LA RF RA
Monadic operator deriving dyadic LA LF OP RA
Monadic operator deriving monadic LF OP RA
Dyadic operator deriving dyadic LA LF OP RF RA
Dyadic operator deriving monadic LF OP RF RA

This may sound quite restrictive, but it really is not at all. The functions and opera-
tors we are referring to include all APL2 primitive, system, and defined functions
and operators. So, for example, if you have a character string that you want exe-
cuted as an APL statement, you can pass the entire string (replete with arbitrary
APL2 primitives) as the RA and use ¢ as the RF.

Note: [ELINK.FUNCTION Routine Entry and Exit’ on page 27]contains important
information on the differences between tokens and addresses. Keep in mind that

» tokens have a high-order zero bit and remain valid across calls to the inter-
preter, but cannot be used directly to access data.

* addresses have a high-order one bit and can be used directly to access data,
but may need to be refreshed after interpreter calls.

CALL (15),(=C'XE',ecv),
VL,MF=(E,listarea)

Processor Interface Reference

Before executing the request the following fields must be set in the ECV:
ECVXPRQT Service request token: must be set to 0

ECVXPRQP Service request parameter: what to do with the explicit APL result.
This may be:

e The address of a pattern CDR to be used to convert the result.
(This works like the XB service request parameter.)

e X'80000000', to request that a default CDR be built.

* 0, to do no result conversion at this time.

ECVXPRQX Must be zero.

ECVXTLA LA: Left argument token of the expression to be executed, 0 if no left
argument

ECVXTLF LF: Left operand token of the expression to be executed, 0 if no left
function

ECVXTOP OP: Operator token of the expression to be executed, 0 if no operator

ECVXTRF RF: Right operand token of the expression to be executed, 0 if no
right function

ECVXTRA RA: Right argument token of the expression to be executed, 0 if no
right argument.

The LA, LF, OP, RF and RA fields in the ECV may be any of the following:

e Tokens that were arguments to the external routine itself (does not apply to
OP).

e Tokens obtained through other service requests such as XG or XF.
¢ The address of a CDR (except for OP).

e The “name” of a primitive function or operator (for LF, OP, or RF), represented
as X'300000' in the first 3 bytes of the relevant field with the EBCDIC symbol
for the primitive function or operator in the fourth byte. (The EBCDIC symbol
code points are defined in Appendix A of APL2 Programming: Language Refer-
ence.)

To execute APL expressions containing ordinary names (of variables, defined func-
tions or operators) or distinguished names (of system variables or functions), you
may use the Execute primitive (&) with the name in its character right argument; or
you can obtain the APL tokens for the names using the XF service request. For
example, an external routine which needed the function provided by OTF might
first issue an XF request to acquire the token representing 07 F, and then use that
token in the RF field of a subsequent XE request.

Note that it is possible using the XE request to cause a recursive call to the
external routine. For example, the token representing an external function will be
found in the RF field when the routine is first entered. If that token becomes
involved in an expression requested by an XE request, recursion occurs.
Recursion may also occur from use of Execute, JEA, or OEC, or by using an XE
request to invoke a defined function. The external routine must be designed to
handle recursive calls if such a situation is possible.

Chapter 14. Code X__: External Call Services 107

On completion of the service the following fields are set in the ECV:

ECVXCET Result event type: set to a nonzero event type (OET) if the expression
was not successfully executed or if the expression was executed suc-
cessfully but its explicit result was not converted successfully to a
CDR specified in the service request parameter (ECVXPRQP). Pos-
sible errors include:

1 2 If the service request token is nonzero.

1 12 If bad CDR or pattern CDR supplied.

2 nn If an invalid expression is supplied. (One of the five expression
fields is missing or inappropriate.)

any As encountered while executing the expression or converting
the result.

ECVXPRQT Service request token:

<0 If the execution of the expression was not attempted.
=0 If the expression was attempted and either no explicit result
was produced (OET=0 0) or an error occurred (OET=0 0).
>0 If the expression was executed successfully and an explicit
result was produced.
e |f conversion of the result was requested, this field provides
the APL token for the CDR;
* If the explicit result was not successfully converted to a
CDR, or if CDR conversion was not requested, this field
provides the APL token for the unconverted result.

You will frequently want to use the XB, XC, or XD services to
convert the result token to an address.

ECVXPRQP Service request parameter:

<0 Address of CDR for a successfully converted result.

=0 If no result was produced or converted.

>0 When execution was terminated. This field contains the APL
token for a E C-style result which may subsequently be con-
verted to a CDR using the XB service.

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD calls.

108 APL2 Programming: Processor Interface Reference

XF: Form or Find an APL Object
This service is used for the following tasks:
¢ To obtain the APL token for a derived function

e To find the APL token for an APL named object (defined variable, function, or
operator; or system variable or function)

e To assign a value to a named user variable or system variable

CALL (15),(=C'XF',ecv),
VL,MF=(E,listarea)

To obtain the APL token for a derived function the following fields must be set
in the ECV:

ECVXPRQT Service request token: must be set to 0

ECVXPRQP Service request parameter: must be set to 0

ECVXPRQX Must be zero.

ECVXTLF LF: token of the left operand

ECVXTOP OP: token of the operator

ECVXTRF RF: token of the right operand or 0 if no right operand

The LF, OP, and RF token fields may specify an APL token, a CDR address, or a
primitive symbol as described for the XE service. It is not possible, however, to
specify constructs involving brackets (for example, + /[3] or <[2]) although
these are available using Execute (¢) with the XE service.

On completion of this request, the following fields are set in the ECV:

ECVXCET Result event type: set to 0 0 if successful, or to the event type
(OET) if not successful. Possible values include:

2 x If aninvalid expression is supplied.
1 12 If abad CDR is supplied.

ECVXPRQT Service request token: contains the APL token for the derived function
if successful. If the request was not successful, the contents of this
field are unpredictable.

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD calls.

To find the APL token given the name of an APL object the following fields
must be set in the ECV:

ECVXPRQT Service request token: the APL token for or address of a type “C1” or
“C4” CDR which gives the name of the APL object.

ECVXPRQP Service request parameter: must be set to 0
ECVXPRQX Must be zero.

Chapter 14. Code X__: External Call Services 109

On completion of this request, the following fields are set in the ECV:

ECVXCET Result event type: set to 0 0 if successful, or to the event type
(OET) if not successful. Possible errors include:

1 1 INTERRUPT while accessing a shared variable.
2 2 If the name is malformed or inaccessible.
3 1 If the name was not found.

ECVXPRQT Service request token: set to the APL token for the value or definition
of the named APL object if successful, otherwise unpredictable.

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD calls.

To assign a value to a variable or system variable the following fields must be
set in the ECV:

ECVXPRQT Service request token: set to the APL token for or address of a type
“C1” or “C4” CDR which gives the name of the variable.

ECVXPRQP Service request parameter: set to the APL token for the value; or the
APL token for or address of a CDR representing the value; or if set to
X'80000000', then this is start of an Indexed Specification and the
value returned is the current value which is to be respecified by a sub-
sequent request. For shared variables, the variable is now locked and
failure to respecify will cause unpredictable results.

ECVXPRQX Must be zero.

On completion of this request, the following fields are set in the ECV:

ECVXCET Result event type: setto 0 0 or to the event type (OET) if unsuc-
cessful. Common Errors:

2 3 If name is not a variable or undefined.
1 12 If the name is malformed or inaccessible or the replacement
value is invalid.

ECVXPRQT Service request token: set to the APL token for the value of the object
if successful, otherwise unpredictable.

Note: This token is intended only for later use by the XB or XE ser-
vices. You should not attempt to pass it to the XC or XD services.

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD calls.

110 APL2 Programming: Processor Interface Reference

XG: Allocate or Free Space in the Workspace

This service is used to request space from within the workspace or to free space
previously obtained with an XG service. Space allocated may be used for:

e temporary storage, not needed across calls to the external routine, or

* a CDR (which must be built at the very beginning of the area) that will be
passed to some service request or used to return a result to APL.

* a CDR data area (which must also be built at the very beginning of the area).

The space is deleted when the external routine returns.

CALL (15),(=C'XG',ecv),
VL,MF=(E,listarea)

To Allocate Space
Set by processor

ECVXPRQT Service request token: must be set to 0

ECVXPRQP Service request parameter: must be set to the number of bytes to be
allocated.

Returned to processor

ECVXCET Result event type: actually two halfwords. This is setto 0 0 if suc-
cessful or to the event type (OET) if unsuccessful. Errors which are
likely to appear here are:

1 2 If service request token or parameter is not valid.
1 3 If the workspace is full.

ECVXPRQT Service request token: set to the APL token for the allocated space if
the request was successful. This token should be retained if other
service requests are subsequently issued, since the address of the
allocated space may change across service calls. This token is used
in the free space request to identify the allocated storage to be freed.

ECVXPRQP Service request parameter: set to the address of the allocated space if
successful.

ECVXRLOC Relocation count: this value is changed if objects in the workspace
have been relocated. After relocation occurs, addresses previously
obtained may be invalid. They should be refreshed by reissuing the
XC or XD services.

To Free Space
Set by processor

ECVXPRQT Service request token: the APL token provided (in this same field)
when the storage was obtained by an earlier XG request.

ECVXPRQP Service request parameter: must be set to 0

Returned to processor

Chapter 14. Code X__: External Call Services 111

ECVXCET Result event type: actually two halfwords. This is setto 0 0 if suc-
cessful or to the event type (OET) if unsuccessful. The most likely
error is 1 2, if the service request token is not valid.

Note: The token is logically freed, in that its use count is decremented. But since
a token may be referenced in other places the physical space may not become
available immediately.

112 APL2 Programming: Processor Interface Reference

Part Three: Using VS APL Processors under APL2

© Copyright IBM Corp. 1987, 1992 113

Chapter 15. Extensions to Support New Data Types

114

VS APL user-written auxiliary processors cannot handle the new APL2 data types
(for example, nested or mixed arrays, or complex numbers) unless they are modi-
fied. If an unmodified auxiliary processor attempts to reference or copy a shared
variable containing a data type not supported by VS APL, it will receive return code
12, reason code 68.

Note: This is a new reason code, which was not documented for VS APL.

To allow VS APL auxiliary processors to handle all APL2 data types, the VS APL
SVP interface has been extended in APL2 to support new APL2 data types through
the ASVDFORM executable macro and the AP2SDF mapping macro which defines
the parameter block used by ASVDFORM.

Note: If you need to use the AP2SDF mapping macro, see [Appendix_C, “Macros|
[Intended for Customer Use” on page 182|for the information you need to get from
your system programmer.

ASVDFORM indicates data format, and the macro permits auxiliary processors to
receive data from the shared variable processor in either VS APL or APL2 format.
APL2 data format is defined in [Chapter 3, “APL2 Data Representation” on|

label ASVDFORM SDF={address | (reg)}

label Optional label for the first executable instruction.

address An RX-type pointer to an SDF control block.

reg Name or number of a register containing the address of an SDF control
block.

SDF stands for share data format, and the AP2SDF macro maps the parameter

block used by ASVDFORM. lIts format is shown in the next section.

Before issuing ASVDFORM the caller must have filled in:

SDFID the processor id (as used in PCVID)

SDFPSX the PerShare Index (as returned in SCVPSX)

SDFVERS set to SDFV1, to indicate a VS APL protocol caller

SDFDFORM set to SDFV1 (VS APL) or SDFV2 (APL2), to control the format in
which shared variable data is given to the processor

Note that the ASVDFORM macro modifies the data format used for an individual
variable, and may be reissued at any time for that variable. If, for example, the
processor issues ASVPREF and receives return code 12 68 (the data cannot be
represented in VS APL format), it could respond by setting SDFDFORM to SDFV2,
issuing ASVDFORM, and then repeating the ASVPREF.

© Copyright IBM Corp. 1987, 1992

At service completion the return code will be available both in register 15 and in
SDFRC. The following return codes can occur:

0

Normal return, no error

24 SVPINACT SVP not available
32 SVPERROR Argument error

Share Data Format

(SDF)

This is a parameter block used with the ASVDFORM call.

AP2SDF [TYPE=DSECTICSECT],[PRE=prefix]

TYPE

PRE

Optional parameter which can be used to indicate that the parameter

block is to be mapped inline without generating a DSECT. The default

is TYPE=DSECT.

A 3-character prefix used for all generated labels and the DSECT name.
The default is PRE=SDF.

Here is a typical expansion of the SDF:

SDF

SDFRE
SDFRC
SDFID
SDFPS
SDFVE
SDFDF
SDFLE

*
*
SDFV1
SDFV2

DSECT
Q DS H REQUEST CODE

DS H RETURN CODE

DS 2F PROCESSOR ID
X DS F OFFER SEQUENCE NO.
RS DS H CALLERS VERSION
ORM DS H DATA FORMAT REQUIRED
N EQU =-DSF

VALUES FOR CALLERS VERSION AND DATA FORMAT REQUIRED.
EQU 0001 VSAPL CALLER/DATA FORMAT
EQU 0002 APL2 CALLER/DATA FORMAT

00

04

SDFREQ Request code

SDFRC Return code

SDFID Processor ID

oC

10

SDFPSX PerShare Index

SDFVERS Protocol

SDFDFORM Data format

14

Chapter 15. Extensions to Support New Data Types

115

116 APL2 Programming: Processor Interface Reference

Part Four: Calls to APL2 from Non-APL Programs

© Copyright IBM Corp. 1987, 1992 117

Chapter 16. Introduction to Calls to APL2

118

APL2 includes facilities which allow applications written in languages other than
APL2 to issue calls to APL2. Such applications can be invoked independently of
APL2, or they can be invoked, using facilities provided, from an active APL2 envi-
ronment.

An interface routine, called APL2PI (APL2 Program Interface), provides capabili-
ties through which:

APL2 can be initialized

APL2 can be terminated

APL functions can be executed

APL variables can be referenced or specified
APL expressions can be executed

Control can be passed to an interactive APL2 session.

A companion APL2 external function, called APL2PIE, is provided through which:

Non-APL applications can be invoked from an active APL2 environment. Appli-
cations so invoked can subsequently make calls to APL2 using the APL2PI
interface.

A request to terminate can be passed to non-APL applications from the active
APL2 environment.

Control can be returned to a non-APL application that previously invoked APL2
or that returned control to the active APL2 environment.

Service requests can be passed from executing APL2 functions to any of the
currently active non-APL applications.

The APL2PI interface allows applications written in compiled languages to be
extended and enhanced with routines written in APL. A wide variety of uses and
benefits can be envisaged for such hybrid applications:

Applications written in languages which do not provide sophisticated numerical
computational facilities (for example: COBOL, C) can be enhanced by
exploiting APL's power in the area of numerical computation and vector proc-
essing;

Those portions of application which involve complex or changing algorithms
might be better or more productively implemented in APL;

Applications can be prototyped by initially implementing large portions of them
in APL, capitalizing on the inherent productivity of APL2 during the application
design and implementation phases;

APL's powerful interactive capabilities can be exploited by applications in which
human interaction is an important component. More than just an interactive
interface, APL2 offers an interactive computational facility which can be used to
substantially enhance compiled applications;

APL offers distinct benefits for applications which require substantial and fre-
quent changes. Typically, APL2 applications, or those sections of applications
written in APL2 can be modified or enhanced much more quickly and at lower

© Copyright IBM Corp. 1987, 1992

cost than applications or routines written in other languages. By implementing
those sections of an application that are most subject to change in APL, the
developer can benefit from these characteristics of APL, while retaining the
advantages of high level languages for other sections of the application.

The APL2PI routine provides a relatively high level of interface designed to be
imbedded as a callable service in programs written in high level languages such as
FORTRAN, PL/I, C, or COBOL. APL2PI is a reentrant routine that can be link
edited with application programs or packaged as a separate load module which is
dynamically loaded before being called. In the VM/CMS environment, APL2PI may
also be loaded as a CMS nucleus extension.

Overview of Calls to APL2

The APL2PI interface routine is designed so that it can easily be called from lan-
guages such as FORTRAN, COBOL, C, Pascal, PL/I and assembler. The form of
such calls (using assembler or FORTRAN syntax) begins with three consistent
arguments:

CALL APL2PI(request,token,rc,....)

where:
request is a 4-character request identifier. The following requests are sup-
ported:

INIT initialize APL2.

TERM terminate APL2.

APLE request execution of an APL2 expression.

APLS request execution of an APL2 function.

APLF request execution of an APL2 function. This request is more
fully functioned than the APLS request, but is not as simple
to use.

APLV reference or specify an APL2 variable.

APLX return control to the APL2 environment.

APLP enter or exit the namescope of an APL2 namespace. Sub-
sequent requests will be made in that namescope unless
specifically directed elsewhere.

token is a token used by the APL2PI interface for correct and efficient oper-
ation. It is returned by an INIT call and should be provided on all
subsequent calls.

rc is a 2-element return code returned by the APL2PI interface as the

result of any call. A return code of 0 0 indicates success.

Note: The return code is provided as a fullword but often used as a
pair of halfwords. See [‘Return Codes” on page 138|

Most calls to APL2PI require additional arguments specific to the request. These
will be described in subsequent sections.

The INIT, TERM, APLE, APLS, APLX, and APLP requests take relatively straight-
forward arguments that can be easily provided in most high level languages. The
APLF and APLYV requests, however, are designed to pass arguments to APL2 and

Chapter 16. Introduction to Calls to APL2 119

receive results from APL2 in CDR format. CDR format is a data representation
which allows efficient representation of APL2 arrays including general arrays.
While CDR objects can be constructed in many languages that support data struc-
tures (for example: assembler, C, PL/I, Pascal), it is a more difficult format to use
than that used in the simpler service requests. The CDR format is described in
[Chapter 3, “APL2 Data Representation” on page 13

In the remainder of this section, a simple example will be presented to illustrate the
use of this interface. The example will be presented using FORTRAN because of
its simple syntax and understandability. The program:

1. defines the necessary data items,

2. causes APL2 to be initialized by means of an INIT service request to APL2PI,

3. prompts the user to enter a set of 3 numbers,

4. computes their average by calling the APL2 function AV G in namespace
STATS,

. displays the result returned by the APL2 function,

6. causes APL2 to be shutdown by means of a TERM service request to APL2PI.

[

This example provides overly simplistic error handling facilities (at statement 99),
that may not be desirable in an operational environment. More complete examples
are shown later.

INTEGER*4 TOKEN,RC,LENGTH
REAL*8 NUMBERS(3),RESULT
TOKEN=0
LENGTH=0
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,0,0)
IF (RC .NE. 0) GOTO 99
WRITE (6,*) 'Enter 3 numbers'
READ (5,%) (NUMBERS(I),I=1,3)
CALL APL2PI('APLS',TOKEN,RC,'STATS ','AVG ',LENGTH,"' ',NUMBERS,RESULT)
IF (RC .NE. 0) GOTO 99
WRITE (6,*) 'The average is: ',RESULT
CALL APL2PI('TERM',TOKEN,RC)
IF (RC .NE. 0) GOTO 99
RETURN
99 WRITE (6,*) 'Unexpected error ',RC,' was returned from APL2PI'
END

Figure 20. Sample FORTRAN Program

The AVG function invoked by this sample program differs from what a APL2 user
might expect:

120 APL2 Programming: Processor Interface Reference

VAVG ARGS;NUMBERS;RESULT
[1] ~»(Ov.=3 11 ONA 2 3p'PTAATP')/ERROR
[2] NUMBERS<'ES8 1 3' PTA +ARGS
[3] RESULT<«(+/NUMBERS)+pNUMBERS
[4] 'E8 1 1' ATP RESULT (1+ARGS)
[5] =0
[6] ERROR:'UNEXPECTED ERROR' [OES 9 9

v

Figure 21. Sample APL2 Function

Lines 2 and 4 of this function use the APL2 external functions PTA and ATP to
retrieve the argument NUMBERS passed by the FORTRAN program and to return
RESULT to that program. These functions will be described in the section entitled
[‘External Functions ATP and PTA” on page 139 Their use is required to accom-
modate the argument passing mechanisms and data types used in non-APL pro-
grams.

Chapter 16. Introduction to Calls to APL2 121

Chapter 17. APL2PI Interface Calls

122

All calls to the APL2PI interface assume that the caller provides the necessary
arguments “by reference” using standard OS linkage conventions. That is to say, it
is assumed that the calling program passes control to APL2PI with the following
general purpose registers set:

R1 contains the address of a standard OS parameter list, that is, a list of the
addresses of the arguments passed on the call. The list is terminated by
setting the high order bit in the last address in the list. Unless otherwise
indicated, all parameters are required. Parameters may only be omitted from
the end of the parameter list.

R13 contains the address of a standard 18-word OS save area which will be used
by the APL2PI interface.

R14 contains the return address in the calling program.
R15 contains the address of APL2PI.

Assembler (using the CALL macro), FORTRAN, COBOL, and PL/I use these con-
ventions as the default on most calls. C and Pascal, however, often use an exten-
sion to these conventions in which a mixture of addresses and values may appear
in the parameter list. From C programs, users must ensure that pointers to the
arguments, rather than the values of the arguments, are passed. From Pascal pro-
grams, users should declare the arguments so that they will be passed by refer-
ence rather than by value. Additional information on this subject can normally be
found in the programmer's guide manual for the language being used. Some addi-
tional information will be provided in later language specific sections of this docu-
ment.

Many of the arguments required by APL2PI must be specified as character strings,
sometimes terminated with a blank. Users should note that many languages, such
as PL/I and Pascal, allow definition of variable length character strings which are
prefixed with a length field. Such arguments are unacceptable to APL2PI because
of the length prefix. Such languages typically provide alternate representations,
such as fixed length strings, without the length prefix, that are acceptable to
APL2PI. C null terminated character strings are acceptable to APL2PI. If an
APL2PI argument must be terminated with a blank, a C null terminated string is
acceptable if the character preceding the null is a blank. Again, additional informa-
tion on this subject can typically be found in the language's programmer's guide
manual.

Certain APL2PI arguments (such as service on the 'INIT' call and pattern on the
"APLV' call) are fullword fields containing addresses. Note that in these situations,
the caller's parameter list must contain an address that points to the fullword con-
taining the necessary address. All such arguments and result fields will be identi-
fied in the following descriptions with a phrase like “...a fullword field containing the
address of....”

Each APL2PI call provides as its third argument a fullword field into which APL2PI
will place a return code on completion of the call. All such return codes should be
interpreted as a pair of halfwords. 0 O indicates success; 0 x indicates an error
originating in APL2PI, or an alternate successful result; x x indicates an error
detected by APL2 (rather than in the APL2PI interface) and can be interpreted as

© Copyright IBM Corp. 1987, 1992

an APL2 OFT value. A return code of 1 2 indicates an unexpected SYSTEM
ERROR that may have been detected by either APL2PI or APL2.

Chapter 17. APL2PI Interface Calls 123

INIT—Initialization Call

CALL APL2PI ('INIT',token,rc,name,type,anchor,service,length,parms)

This call provides an explicit mechanism by which APL2 can be invoked. If this call
is not issued explicitly by the calling program and if APL2 is not active, it will be
issued implicitly by other calls to APL2PI (except 'TERM'). Since invocation of
APL2 is often a lengthy process, the calling program might want to issue this call
explicitly some time before making use of other APL2PI services.

This call also provides the mechanism by which a non-APL application identifies
itself to the APL2PI interface and optionally specifies service routine and anchor
addresses. Thus it is recommended that this call be issued by all non-APL applica-
tions whether or not APL2 was previously activated.

The arguments to this call are:
"INIT! a required argument identifying this request.

token a fullword integer field into which the interface routine will place a
token on successful completion of this call. This token should be
retained and used on subsequent calls to provide optimal perform-
ance. This field should be zero when the 'INIT' call is issued, or
the call will end with an error.

rc a fullword integer field into which the interface routine will place the
return code on completion of the call. Return code of 0 0 indicates
success. Other return codes are described in [‘Return Codes” on|

name a name used to identify the calling application program to APL2PI.
This name may be subsequently used by the APL2PIE external
function to direct requests to this application program. name must
be 1 to 8 characters in length, and must be terminated with a
blank. If this argument is specified as a null or blank, the name
' ' will be assigned to the calling application program. This poses
no problem if only one non-APL application uses the APL2PI inter-
face, but may result in errors or unexpected results if more than
one non-APL application is activated. A non-blank name is recom-
mended.

type a fullword integer identifying the type of service routine indicated
by the service argument. A value of 0 means that no service
routine is provided; the anchor and service parameters will be
ignored. A value of 1 indicates that the service routine expects its
argument and produces its result in non-CDR form. A value of 2
indicates that the service routine expects its argument and
produces its result in CDR form. Additional details on service
routine arguments and results are presented in section
[Functions APL2PI and APL2PIE” on page 141}

anchor a fullword token passed from the non-APL application. This token
will be returned to the non-APL application on every service
routine call. Note that updates to this token made during a call to

124 APL2 Programming: Processor Interface Reference

the service routine will not be retained—the original value of this
token will be passed on all service routine calls.

service a fullword containing the address of a routine in the calling applica-
tion to which service requests can be directed with an APL2PIE
3 call from the APL2 environment. If this argument is omitted or
specified as 0, or if type is specified as 0, APL2PIE 3 requests
will be denied for this application. See [‘External Functions APL2PI|
[and APL2PIE” on page 141|for a description of APL2PIE 3.

length a fullword integer field specifying the length in bytes of the parms
argument. If this arguments is omitted or specified with a value of
0, the parms argument is ignored.

parms a character string specifying APL2 invocation parameters. This
argument is optional, but must be provided if the length argument
is specified as nonzero.

When an '"INIT' call is issued, if APL2 is not already active, APL2PI will append
any invocation parameters provided on the call to the APL2 invocation command
provided in AP2XAPIC CSECT (if AP2XAPIC is link edited with APL2PI) or to the
default APL2 invocation command:

APL2 QUIET RUN(APL2PI)

If the resulting invocation options cause an APL2 function other than APL2P1T to
be invoked, that function is expected to invoke the APL 2 PI external function to
cause control to be returned to the APL2PI interface routine on completion of APL2
initialization.

If the "INIT' call is issued when APL2 is already active (i.e.: from a non-APL appli-

cation invoked via the APL 2 PTE external function), you receive the return code
0 1 (APL already initialized).

Chapter 17. APL2PI Interface Calls 125

TERM—Termination Call

CALL APL2PI ('TERM',token,rc)

This call requests termination of APL2. It is effective only when issued by the
non-APL application from which APL2 was invoked. If issued from a non-APL
application which did not cause APL2 invocation (i.e.: one which was invoked by
APL2 using the APL 2 PIE external function), it is nilpotent and returns a return
code of 0 10 (invalid request).

If APL2 was invoked by a non-APL application, that application must issue the
TERM call before its own termination. Failure to do so may cause abnormal termi-
nation of APL2, the APL2PI interface and possibly the non-APL application (and
possibly even CMS in a VM/CMS environment).

The arguments to this call are:
'"TERM' a required argument indicating that APL2 is to be terminated.

token a fullword integer containing the token returned on the 'INIT' call.
If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute. On completion of the 'TERM'
call, this field will be set to zero.

rc a fullword integer field into which the interface routine will place the
return code on completion of the call. Return code of 0 0 indicates
success. Other return codes are described in [Return Codes” on|

126 APL2 Programming: Processor Interface Reference

APLS—EXxecute an APL2 Function

CALL APL2PI ('APLS',token,rc,nmspace,fn,rlength,result,argl,arg2,...)

This is one of two calls provided to request execution of an APL function. This call
is designed to be easily used in high level language programs (such as FORTRAN
or COBOL).

The function specified may reside in a namespace and is called monadically if
arguments (arg1,arg2,...) are specified, or niladically if they are not. Arguments, if
any, are passed to the function as a vector of fullword integers which represent the
addresses of the argument data. The APL2 function is expected to use PT4 to
access the argument data, and AT P to update it. PTA and ATP are APL2
external functions provided with APL2. They are described in detail in the section
entitled [‘External Functions ATP and PTA” on page 139|

The arguments to this call are:

"APLS' a required argument indicating that an APL2 function is to be
called.
token a fullword integer containing the token returned on the 'INIT' call.

If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute.

rc a fullword integer field into which APL2PI will place the return code
on completion of the call. Return code of 0 0 indicates success.
Other return codes are described in[‘Return Codes” on page 138|

nmspace the name of the namespace in which the specified function is to be
found and optionally a surrogate name for the function. If this
argument is non-blank,

'nmspace' 11 0ONA 'fn'
or:
'nmspace' 11 ONA 'fn SURROGATE'

will be executed before the specified function is called. If this
argument is coded with an initial blank, no O~ A will be issued
before calling the function. Thus, if the function exists in a
namespace, the first call to it must provide the nmspace argument,
but subsequent calls do not. The nmspace argument is a char-
acter string which is expected to be terminated with a blank, e.g.:
"MYLIB.MYWS . If the surrogate name is specified, it must
be prefixed with a colon: 'MYLIB.MYWS:SURROGATE '.

fn the name of the function to be called. This argument is a char-
acter string which is expected to be terminated with a blank. It is
used as the right argument to [0V 4 if the nmspace argument is
non-blank and is then used as the name of the function to be
called.

rlength a fullword integer field specifying the length of the result field. On
completion of this call, this field will be updated to contain the
actual length of the result or error message produced (which may

Chapter 17. APL2PI Interface Calls 127

be shorter, the same size, or longer than the result field). If no
explicit result or error message is produced, this field will be set to
-1.

Note that this field is normally updated as a result of this call. It
therefore should not be coded as a constant on calls from high
level languages. This could result in the constant being modified,
which in turn could result in subsequent errors in the calling
program.

result a field into which the explicit result of the function (if any) will be
placed. If the result produced is larger than the length of this field
(as specified by rlength), only the first rlength bytes of the result
will be placed into the result field and rlength will be updated to
reflect the actual total result length. The result is placed in this
field as an unmodified byte string in left list order, i.e., as if it had
been produced by the expression:

RESULT«(PFA RESULT) ATR RESULT

If an error results from the execution of the specified expression,
the error message (e OEM) will be placed in the result field and its
length in the rlength field. An error message is not produced in all
situations. In general, a message will not be produced if the error
is detected before execution of the specified function has begun.
In such situations, the result field will not be updated.

arglt,arg2,... the arguments to the function. The specified function will be
passed a vector of integers representing the addresses of these
arguments and is expected to use PT4 to access them and ATP
to update them. If no arguments are coded in the call, the speci-
fied function will be called niladically. A maximum of 64 arguments
are supported.

This call allows an explicit result produced by the APL function to be passed back
to the calling routine. The calling routine, however, must anticipate the size of this
field in advance, allocate storage for it and pass it to APL2PI as the result argu-
ment. The calling routine cannot control the type, structure, or shape of the data
returned, nor can it control whether an explicit result or error is returned. In many
situations it may be simpler to pass output or input/output arguments to the APL2
function and structure that function to return its results by updating one or more of
the arguments using the APL2 external function ATP. This approach allows the
result field to be used for the return of error information only.

128 APL2 Programming: Processor Interface Reference

If it is deemed desirable to produce an explicit result in the APL function called, that
function can control the data type of the explicit result returned through the use of
the external function ATR:

LENGTH=8
RESULT=0.0
CALL APL2PI('APLS',TOKEN,RC,'STATS ','AVG ',LENGTH,RESULT,NUMBERS)

VRESULT<«AVG ARG;NUMBERS
(1] ~»(Ov.=3 11 ONA 2 B3p'ATRPTA')/ERROR
[2] NUMBERS<«'E8 1 3' PTA ARG
(3] RESULT<(+/NUMBERS)+pNUMBERS
(4] RESULT<'E8 1 1' ATR RESULT
[5]1 =0
(6] ERROR:'UNEXPECTED ERROR' UOES 9 9
%

Figure 22. Sample APLS Call

Chapter 17. APL2PI Interface Calls 129

APLE—EXxecute an APL2 Expression

CALL APL2PI ('APLE',token,rc,slength,string,rlength,result)

This call requests execution of an APL2 expression. The expression to be executed
is specified as a character string—effectively the right argument of an ¢ primitive.
The result is returned as a byte string derived from the enlist () of the result of the
executed expression. If an error occurred during the execution of the expression,
the error message (e OEM) will be returned in the result field.

The arguments to this call are:

"APLE'

token

rc

slength

string

rlength

result

a required argument indicating that an APL2 expression is to be
executed.

a fullword integer containing the token returned on the 'INIT' call.
If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code
on completion of the call. Return code of 0 0 indicates success.
Other return codes are described in|[‘Return Codes” on page 138}

a fullword integer specifying the length of the string to be exe-
cuted.

the character string to be executed.

a fullword integer field specifying the length of the result field. On
completion of this call, this field will be updated to contain the
actual length of the result or error message produced (which may
be shorter, the same size, or longer than the result field). If no
result or error message is produced, this field will be set to -1.

Note that this field is normally updated as a result of this call. It
therefore should not be coded as a constant on calls from high
level languages. This could result in the constant being modified,
which in turn could result in subsequent errors in the calling
program.

a field into which the result of the executed expression (if any) will
be placed. If the result produced is larger than the length of this
field (as specified by rlength), only the first rlength bytes of the
result will be placed into the result field. rlength will be updated to
reflect the actual total result length. The result is placed in this
field as an unmodified byte string in left list order, i.e., as if it had
been produced by the expression:

RESULT«(PFA RESULT) ATR RESULT

If an error results from the execution of the specified expression,
the error message (e OEM) will be placed in the result field and its
length in the rlength field. An error message is not produced in all
situations. In general, a message will not be produced if the error
is detected before execution of the specified expression has
begun. In such situations, the result field will not be updated.

130 APL2 Programming: Processor Interface Reference

APLX—Return Control to APL2

CALL AP12PI ('APLX',token,rc,value,result)

This call is used to return control to APL2, either to an interactive APL2 session, or
to the APL2 application that invoked or transferred control to the non-APL applica-

tion.

Control may be subsequently returned to the non-APL application by calling either
of the APL2 external functions, APL2PI or APL2PIFE.

The arguments to this call are:

"APLX'

token

rc

value

result

a required argument indicating that control is to be returned to APL2.

a fullword integer containing the token returned on the 'INIT' call. If this
token is not provided (i.e.: specified as zero), the call will require more
CPU time to execute.

a fullword integer field into which APL2PI will place the return code on
completion of the call. Return code of 0 0 indicates success. Other
return codes are described in [‘Return Codes” on page 138|

this optional parameter, if provided, must be a fullword field containing
the value 0 or the address of a CDR. The CDR value must contain three
or more items, and the first two must be numeric zeros.

If a CDR is coded, its value will be returned as the explicit result of the
APL2PIF or APL2PT function used to invoke the non-APL application.
If the APL2 session was started by the non-APL application, or if
APL2PIF or APL?2PI was invoked manually from the APL2 session or
when bringing it up, then the CDR value will be displayed, and the user
will be left in an interactive APL session.

If no CDR is provided, a three-item result is provided, which will typically
display like this:

0 0
i e +
+ Enter 'APL2PI' to return control +
e +

The default information framed in the result is the text of APL2 message
82, which is translatable. The default may be replaced as follows:

"AP2PAPIW' 11 0ONA 'MSG' A TS0 only
"AP2VNRP5.AP2PAPIW' 11 ONA 'MSG' =an CMS only
MSG+<text_vector

this optional parameter, if provided, must be a fullword field which will be
updated to contain the address of a result CDR when and if control is
returned to the non-APL application. If control is returned with a call to
the APL2P1T external function, no result CDR is returned, and this field
will be set to 0. If control is returned with a call to the APL2PIF
external function, the left argument to APL 2 PTFE will be returned as the
result. If no left argument is provided, the field will be set to 0.

Chapter 17. APL2PI Interface Calls 131

If the result parameter is not provided, no result will be returned, even if
one is provided in the left argument to APL2PIE. If resultis provided
value must also be provided.

When the 'APLX' call is issued by the non-APL application, the result field
may contain a fullword zero, in which case any result CDR will be
returned without conversion, or it may contain the address of a pattern
CDR (see [‘Pattern CDRs” on page 139), in which case the pattern CDR
will be used to convert any result CDR returned.

Execution of an 'APLX' call is not permitted while a namescope entered with the
"APLP' call is the active namescope, and will be rejected with a 0 10 ('invalid
request’) return code.

132 APL2 Programming: Processor Interface Reference

APLF—Execute an APL2 Function

CALL APL2PI ('APLF',token,rc,nmspace,fn,rslt,larg,rarg)

This is the second of two calls provided to request execution of an APL2 function.
This call is designed for use from languages such as C and assembler, and it pro-
vides greater access to and control over the arguments and result of the specified
function. Unlike the 'APLS' call, this call passes arguments and expects results in
APL2 CDR format.

The specified function may be in a namespace and may have any valid valence.
The arguments to this call are:

"APLF'

token

rc

nmspace

fn

rsit

a required argument indicating that an APL2 function is to be
called.

a fullword integer containing the token returned on the 'INIT' call.
If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code
on completion of the call. Return code of 0 0 indicates success.
Other return codes are described in[‘Return Codes” on page 138

the name of the namespace in which the specified function is to be
found and optionally a surrogate name for the function. If this
argument is non-blank,

'nmspace' 11 0ONA 'fn'
or
'nmspace' 11 ONA 'fn SURROGATE'

will be executed before the specified function is called. If this
argument is coded with an initial blank, no O~ A will be issued
before calling the function. Thus, if the function exists in a
namespace, the first call to it must provide the nmspace argument,
but subsequent calls do not. The nmspace argument is a char-
acter string which is expected to be terminated with a blank, e.g.:
"MYLIB.MYWS . If the surrogate name is specified it must be
prefixed with a colon: 'MYLIB.MYWS:SURROGATE .

the name of the function to be called. This argument is a char-
acter string which is expected to be terminated with a blank. It is
used as the right argument to [0V 4 if the nmspace argument is
non-blank, and it is then used as the name of the function to be
called.

when APL2PI is called, this fullword field may be set to 0 or to the
address of a pattern CDR (see [‘Pattern CDRs” on page 139) to be
used to convert the result of the APL function. If O is specified on
the call, the result will be produced as a CDR without conversion.
On completion of the APL2PI call, this field will contain 0, if no
explicit result or error message was produced, or the address of a
CDR representing the result or error message (e OEM) produced
by the function. If the function completed with an APL2 error, the
error message will be returned as a default CDR, without any ref-

Chapter 17. APL2PI Interface Calls 133

erence to the pattern CDR provided on input. An error message is
not produced in all situations. In general, a message will not be
produced if the error is detected before execution of the specified
function has begun. In such situations, the rsit field will be set to

0.

larg a fullword field containing the address of the CDR representing the
left argument to the function or containing 0O if no left argument is
provided.

rarg a fullword field containing the address of the CDR representing the
right argument to the function or containing O if no right argument
is provided.

134 APL2 Programming: Processor Interface Reference

APLV—Reference or Specify an APL2 Variable

CALL APL2PI ('APLV',token,rc,nmspace,variable,value,pattern)

This call may be used to obtain or specify the value of an APL variable. If a
namespace is specified, the specified variable must already exist in the
namespace—it cannot be created with this call. To create a new variable in a
namespace, use the 'APLP' call to enter the namespace namescope, then this call
(with no nmspace argument) to create the variable and an 'APLP"' call to exit the
namespace namescope.

The arguments to this call are:

"APLV'

token

rc

nmspace

variable

value

pattern

a required argument indicating that an APL2 variable is to be
accessed.

a fullword integer containing the token returned on the 'INIT' call.
If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code
on completion of the call. Return code of 0 0 indicates success.

Other return codes are described in|“Return Codes” on page 138|

the name of the namespace in which the specified variable is to be
found and optionally a surrogate name for the variable. If this
argument is non-blank,

'nmspace' 11 ONA 'variable'
or
'nmspace' 11 ONA 'variable SURROGATE'

will be executed before the specified variable is accessed. If this
argument is coded with an initial blank, no O~ A will be issued
before accessing the variable. Thus, if the variable exists in a
namespace, the first access to it must provide the nmspace argu-
ment, but subsequent accesses do not. The nmspace argument is
a character string which is expected to be terminated with a blank,
for example, 'MYLIB.MYWS '. If the surrogate name is speci-
fied it must be prefixed with a colon:
"MYLIB.MYWS:SURROGATE '.

the name of the variable to be accessed. This argument is a char-
acter string which is expected to be terminated with a blank. It is
used as the right argument to [N A if the nmspace argument is
non-blank, and it is then used as the name of the variable to be
accessed.

a fullword field containing the address of the CDR representing the
value to be assigned to the variable, or containing O if the variable
is to be referenced. On completion of the call the address of the
CDR representing the value of the variable is placed in this field.

This is an optional argument and may be specified when a variable
is referenced (value=0 on input). If provided, it is a fullword field
which may contain the address of a pattern CDR (see

Chapter 17. APL2PI Interface Calls 135

[CDRs” on page 139) used to convert the value of the variable. If
not provided, or if the field contains zero, default conversion will be
used to produce the value CDR.

136 APL2 Programming: Processor Interface Reference

APLP—Enter or Exit a Namespace Namescope

CALL APL2PI ('APLP',token,rc,nmspace)

This call may be executed to enter or exit a specified hamespace namescope.

Until a namespace namescope is entered, calls to APL2PI will be executed from
the namescope established when APL2 was invoked (typically the active workspace
namescope). When a namespace namescope is entered via an 'APLP' call, subse-
quent calls to APL2PI will be executed in that namescope until another 'APLP' call
is issued to exit the namescope or enter another.

The arguments to this call are:

"APLP' a required argument indicating that an APL2 namespace
namescope is to be entered or exited.

token a fullword integer containing the token returned on the 'INIT' call.
If this token is not provided (i.e.: specified as zero), the call will
require more CPU time to execute.

rc a fullword integer field into which APL2PI will place the return code
on completion of the call. Return code of 0 0 indicates success.

Other return codes are described in|“Return Codes” on page 138|

nmspace if non-blank, this argument identifies the namespace whose
namescope is to be entered. If blank, the request is to exit the
current namescope.

If non-blank, this argument must be terminated with a blank, and
must take one of the following forms:

LIBRARY .MEMBER or MEMBER

where LIBRARY is the ddname (TSO) or file name (CMS) of the
load library in which the namespace resides, and ¥EMBER is the
member name of the namespace. The same rules apply to
locating the namespace as when such information is provided in
the left argument to ONA.

Note that execution of the 'APLX' call is not permitted while a namescope entered
with an "APLP' call is the active namescope.

Note also that the uses of 'APLP' are designed to be paired: an 'APLP' call to
enter a namespace, followed sometime later by an 'APLP' call (without the
namespace specified) to return to the previous environment. Paired 'APLP' calls
can be nested—in other words, one namespace can be entered from another, but
care must be taken in unwinding the nesting. An attempt to issue an 'APLP' call to
exit a namespace that was not paired with a previous 'APLP' call to enter a
namespace will result in a 0 10 error return code (invalid request).

The 'APLP' call operates by accessing OF 4 in the specified namespace. If, when

the namespace was created, a list of accessible objects was specified, and if OFA
was not included in that list, requests to enter that namespace namescope will fail.

Chapter 17. APL2PI Interface Calls 137

Return Codes

Each of the calls described above returns a return code in the rc argument field.
These return codes are returned as integer fullwords, but are best interpreted as
pairs of halfwords. If the first halfword is nonzero, the return code is a OET value
that resulted from APL2 execution. In addition to the OE T values, the following
return codes are defined:

00
01

02

03

04

05

010

011

Success

APL is already initialized. This return code may result from an '"INIT' call
and is the expected return code when the 'INIT' call is issued from a
non-APL application which was invoked from APL2 using APL2PIE.

Unexpected shutdown. APL2 has terminated unexpectedly (perhaps as a
result of an) OFF command or as a result of an unsuccessful 'INIT'

call). This return code may result from any call other than 'TERM', in situ-
ations where a non-APL application is running independently of APL2. If
this return code is received by a non-APL application invoked from APL, or
during processing in a routine nominated as a service routine on an

"INIT' call, processing should be terminated in an orderly fashion and
control returned to the routine's caller.

Expected shutdown. This return code can result from any call to APL2PI
and indicates a request from APL2 for the non-APL application to termi-
nate. In response to the request, the non-APL application should termi-
nate and return control to its caller.

Insufficient space. There is insufficient free memory for the correct opera-
tion of the APL2PI routine. A larger region or virtual machine should be
used to run the application.

(TSO only) Not executing under the TSO TMP. The program which issues
calls to APL2PI must be invoked under TSO or a TSO TMP, (typically
IKJEFTO1).

Invalid request, or invalid parameter list. Among other things, this return
code may result from an 'APLX' call while a namescope, entered with an
"APLP' call was active, or from an 'APLP' request to exit a namespace
when no namespace namescope was active.

Unexpected internal error in the APL2PI routine.

Normally, return codes in which the first halfword is nonzero originate from APL2
and should be interpreted as JF T values. The following, however, can originate
from the APL2PI routine:

12
15

31

System error. This is an unexpected error in the APL2PI routine.

No shares. The specified namespace cannot be accessed on a 'APLP'
call. This error may occur because the specified namespace could not be
located or loaded, or because it was already the active namescope.

Value error. The variable named on an 'APLV' call could not be accessed
in the specified namespace.

138 APL2 Programming: Processor Interface Reference

Chapter 18. Using the Calls to APL2 Facility

Using CDR Results

The "APLX', '"APLF' and 'APLV' calls which return results, return those results in
CDR format. These results are always pointer form CDRs and are built as tempo-
rary objects in the APL2 workspace. On the next call to APL2PI, these temporary
objects are erased before the call is executed. Thus, CDR results returned by
APL2PI may not be used as arguments on subsequent calls, and all processing of
such results must be performed before any subsequent call to APL2PI.

Pointer form CDRs returned by APL2PI have addresses in the CDR pointer section.
That is to say, the CDRPTR fields in that section contain addresses with the high
order bit on, and never zeros or tokens.

Pattern CDRs

Pattern CDRs can be specified on 'APLX', 'APLF' or 'APLV' calls to control the
creation of the CDR representing the result of an APL2 function or expression or
the value of an APL2 variable. If specified, APL2 will attempt to convert the result
or value to the data types specified in the pattern CDR. Further, during this conver-
sion, APL2 will check that the ranks and shapes of the result or value and its items
correspond to those specified in the pattern CDR. If the result or value cannot be
converted as specified, or if a rank or shape mismatch is detected, an appropriate
APL2 error will be generated.

‘The format of CDRs is discussed in|Chapter 3, “APL2 Data Representation” on|
[page _13] The format and use of pattern CDRs is discussed in [XB: Build a CDR]
[Using a Pattern” on page 102]

External Functions ATP and PTA

When an 'APLS' call is issued to execute an APL2 function, the arguments pro-
vided in the call are passed to the APL2 function as a vector of addresses - one
address for each argument. To the APL2 function this appears as a vector of
integer values. The external function PTA (Pointers to Array) is provided to allow
access to these arguments. PTA expects a vector of addresses as its right argu-
ment and a pattern (similar to the pattern used with the external function RTA) as
its left argument, and it will produce an APL2 array as a result. For example:

ARRAY<'(GO 1 3)(I4 0)(E8 1 2)(C1 1 10)' PTA POINTERS

will convert a set of three arguments—a scalar fullword integer, a pair of double
precision real numbers, and a 10 byte character string, respectively—to an APL2
vector of three items.

The external function ATP (Array to Pointer) is provided to allow pointer arguments
to be replaced (i.e.: updated) with an APL2 array. The syntax for use of this func-
tion is:

PATTERN ATP ARRAY POINTERS

© Copyright IBM Corp. 1987, 1992 139

where PATTERN is a pattern (similar to the pattern used with ATR) which
describes the data in the desired format, POINTERS is the address of the data to
be updated and ARRAY is the source array.

Note: This function does not produce an explicit result. Further, it makes no
check to ensure that the result fields are large enough to hold the source values.

The PTA function assumes a one-to-one correspondence between the data
descriptors in the left argument, the data items in the array specified in the right
argument, and the set of data areas specified by the pointers in the right argument.
Thus, to update a set of three data areas, three pointers must be provided, an
array containing three items must be provided, and the pattern must specify either
a three element simple array or a general array containing three simple arrays,
namely,

'c1 1 3' ATP 'ABC' (P1,P2,P3)
or:

ARRAY<'ABCD' (4 2p18) 1.23%4
PATTERN<'(GO 1 3)(C1 1 u4)(I4 2 4 2)(E8 0)"
PATTERN ATP ARRAY (P1,P2,P3)

If it is necessary to update a data area with a non-simple APL2 array (i.e.: put a
data structure into a single data area), the non-simple array must be converted to a
record using ATR, and then ATP can be used to move it to the data area, namely,

ARRAY<'"ABCD' (4 2p18) 1.234

PATTERN<'(GO 1 3)(C1 1 u4)(I4 2 4 2)(E8 0)'
RECORD<«PATTERN ATR ARRAY

'c1 1 ' ATP RECORD POINTER

Using PTA and ATP

Assume that the function AVERAGE in namespace COMPUTE is called with the
following three arguments:

1. a vector of double precision numbers,
2. a fullword integer indicating the number of items in the first argument,
3. a double precision real field in which the function is to place its result.

The APL2 function might be coded as shown in Figure 23.

(1]
[2]
(3]
[u]
[5]

VAVERAGE ARGS;V;i;N;R

+~0p3 11 ONA 2 3p'PTAATP! p Access PTA and ATP
N«<'Th 0' PTA 2>5ARGS A Get N from 2nd argument
V<('E8 1 ',sN) PTA +ARGS A Get V from 1st argument
R«(+/V)+N A Compute the average

A

'E8 0' ATP R (32A4ARGS)

v

Update 3rd argument (result)

Figure 23. Using PTA and ATP

For additional information on the patterns used in the left arguments of P74 and
ATP, see the description of RTA and ATR in APL2 Programming: Using the Sup-
plied Routines, and the description of argument patterns for processor 11 in APL2
Programming: System Services Reference.

140 APL2 Programming: Processor Interface Reference

External Functions APL2PI and APL2PIE

Two APL2 external functions, APL2PT and APL2PIE, are provided to facilitate
communication from APL2 to non-APL applications. APL2PI and APL2PIF
can be accessed by means of N4, namely,

0 11 0ONA '"APL2PI'
0 11 ONA 'APL2PIE'

Note: The first item of the left argument of ONVA must be 0 (and not 3) for proper
operation of the rest of the APL2PI interface.

APL?2PIT is a niladic function used to return control to the non-APL application
after APL2 initialization or after an "APLX' call from the non-APL application. It is
equivalentto APL2PIFE 0 '' as described below.

APL?2PIF is an ambivalent function which serves a number of different purposes:

 return control from the APL2 environment to the currently active non-APL appli-
cation,

¢ invoke a non-APL application from the APL2 environment,

* request termination of the currently active non-APL application,

* issue a service request to a non-APL application.

Calls to APL2PIE can be imbedded in APL2 applications which run independently
or are invoked through APL2PI from non-APL applications. Use of APL2PIFE
takes the following forms:

RESULT APL2PIE 0 "!
Return control to the currently active non-APL application. This request
can be issued immediately after APL2 is invoked from a non-APL applica-
tion or after a non-APL application has returned control to APL2 with an
"APLX' call. Attempting to return control in any other situation will result in
a 1 0 return code. If issued monadically, no result will be returned to the
non-APL application. If issued dyadically, the left argument will be
returned to the non-APL application in CDR format if the result parameter
was provided on the 'APLX' call.

Note that this APL2PIFE request (or an APL?2PI request which is equiv-
alentto APL2PIE 0 '') causes control to be transferred from the
APL2 environment at the point at which the request is made. Thus, if a
request of this type is imbedded in an APL2 function, the function is sus-
pended at that point and control is transferred to the non-APL application.
Subsequent requests from the non-APL application are executed in the
context of this suspended function. In particular, a subsequent 'APLX"
request will return control to the suspended function. Users should avoid
imbedding APL2PIFE 0 ' callsin APL2 applications unless their use
is clearly understood and planned for.

COMMAND APL2PIE 1 NAME
Invoke a non-APL application using the specified COMMAND. COMMAND
is a character string containing the name of the module to be invoked,
optionally followed by one or more arguments to be passed to the module
when it is invoked. In the MVS/TSO environment, the specified module
must reside in a load library in the user's normal search order. In the
VM/CMS environment, the specified module may be the name of an

Chapter 18. Using the Calls to APL2 Facility 141

existing CMS nucleus extension, or the name of a relocatable load module
residing on an accessible minidisk.

The non-APL application is assigned the specified NAME. That name
must match the NAME in any "INIT' call issued by the non-APL applica-
tion and in subsequent APL2PIE 3 calls to the non-APL application.

When the specified module terminates, control will be returned to APL2
and APL2PIE will return a result of 0 1 RC where RC is the return code
resulting from the module. Control may also be returned to APL2 if the
non-APL application issues an 'APLX' call. In this case, the result
returned by APL2PIE will have the form 0 0 MSG, and is provided by
the VALUE parameter of the 'APLX' call or a default message provided in
the APL2PAPIW namespace.

Note that for successful use of this service, APL2PI must be link edited as
a separate module and loaded as a nucleus extension in CMS or placed in
the APL2 load library in MVS. Additional information on this subject can
be found in Finvoking a Non-APL Application through APL2PIE” onl

APL2PIE 2 '
Request termination of the currently active non-APL application. This
request simply sends return code 0 3 back to the non-APL application in
response to its last call to APL2PI. The non-APL application is expected
to honor this request and terminate. Note that NVAME may not be speci-
fied in the right argument; only the currently active non-APL application
can be terminated.

If the non-APL application terminates as expected, a result of 0 1 RC will
be returned from APL2PIE, where RC is the termination return code
resulting from the non-APL application.

VALUE APL2PIE 3 NAME
Make a service request to the NAME'd non-APL application. This request
is possible only if the non-APL application specified a SERVICE routine
address and a TYPE other than 0 on its 'INIT' call. If these requirements
are met, this request will cause a subroutine call to that service routine.

If APL2PIE is called dyadically, the left argument is passed to the
service routine in CDR or non-CDR format depending upon the specifica-
tion of the TYPE parameter on the 'INIT' call from the non-APL applica-
tion. In non-CDR format, the VAL UE will be passed as a byte string
result of the expression:

(PFA VALUE) ATR VALUE

On entry to the service routine of the named non-APL application,

142 APL2 Programming: Processor Interface Reference

R1—| parm 1 »| Left argument value

parm 2 —>» <«—(put return code here)

parm 3 > <«—(put result here)

parm 4 —>APL2PI routine

parm 5 —| Anchor from INIT

Figure 24. SERVICE Routine Invocation Parameter List

Normal OS calling conventions are used, i.e. register 13 points at an
18-word save area in which the first two words are in use, register 14 con-
tains the return address, and register 15 contains the service routine entry
point address.

The return code field is a fullword which can be updated by the service
routine. It is initialized to zero. If set to a nonzero value, a three element
vector (0,1,return code) will be returned as the result of the APL2PIE
function call when control is returned from the service routine. The result
pointer field is a fullword, initialized to zero, into which the service routine
can place the address of a value which will be used as the explicit result
of the APL2PIE function call when control is returned from the service
routine. If the return code is zero, the result pointer field will be examined.
If the result pointer is zero, a result of 0 1 0 will be returned. Ifitis
nonzero, the specified result, pointed to by the address in the result
pointer field, will be returned.

The result pointer field must contain zero or the address of a result value
in CDR or non-CDR form, depending on the specification of the TYPE
parameter on the non-APL application's 'INIT' call. If TYPE was speci-
fied as 1 (non-CDR), the result will be interpreted as a byte string prefixed
with a fullword length field. If desired, it can be converted to a different
form using the APL2 external function RTA.

If TYPE was specified as 2 (CDR), the result will be interpreted as an
APL2 array in CDR form. The array may have any value, however, if its
first item is zero, it must have the form:

N M VALUE

where N M may be 0 0, 0 1, or any defined OET value and VALUE may
be any valid APL2 array, or may be omitted.

A service request can also result in the following unsuccessful return
codes:

0 0 MSG the service routine issued an 'APLX' request to APL2PI resulting
in control being returned to APL2. Such a request may result in
unexpected behavior and is not recommended.

0 1 RC the non-APL application terminated with return code RC

10 an attempt was made to call the APL2PI or APL2PIE external
function when the APL2PI routine was not active or when no
non-APL application was active on the APL2PI interface.

Chapter 18. Using the Calls to APL2 Facility 143

04 insufficient free space for correct execution

010 invalid arguments (typically NAME too long)

12 unexpected error

15 invalid NAME or no service routine for the named non-APL
application

16 this return code results from an attempt to invoke a non-APL

application (COMMAND APL2PIF 1 'NAME') when the
named application is already active on the APL2PI interface.

Note that the service routine entered as a result of this call to APL2PIE, can
issue requests to APL2 using the APL2PI interface. Since such requests can the-
oretically result in a recursive call to the same service routine, provisions for such
an event should be incorporated into the design of the non-APL application.

All of the different calls to APL2PI are supported from executing service routines. It
is recommended, however, that the 'TERM' and 'APLX' calls be avoided as they
may lead to unexpected and undesired results. The 'TERM' may result in termi-
nation of APL2 when the call is made or later at some unexpected time. The
"APLX" call will return control to the APL application that invoked the service routine
and it will appear to that application as if the service routine had terminated. If
control is subsequently returned to the non-APL application (with an APL2P1I or
APL2PIE 0 ' call), control will be returned to the executing service routine
which will presumably eventually terminate and return control to APL2.

Note that in many circumstances where the non-APL application and/or the service
routine is written in a high level language (such as C or PL/I), APL2PIE 3 calls
to service routines will not operate correctly. Typically, two problems prevent
correct operation:

1. While high level languages provide mechanisms by which a subroutine address
can be passed as an argument on a call, the form in which that subroutine
address is passed may not be acceptable to APL2PI. The APL2PI INIT call
expects the SERVICE parameter to be provided as a fullword which contains
the address of the SERVICE subroutine.

2. The linkage conventions expected by a high level language subroutine may not
match those provided by APL2PI (as described above) when the service
routine is called. Subroutines written in C and PL/I, for example, may require
register 12 to be set on entry, and register 13 to point to a save area within a
save area stack maintained by the C or PL/I run time environment. These
requirements are not fulfilled in the linkage conventions used by APL2PI.

Service routines designed to be used with APL2PI will most typically be written in
assembler language. With some limitations, they can be written in FORTRAN
(using the IBM* VS FORTRAN program product) if the service routine is structured
as a FORTRAN subroutine and the non-APL application is a FORTRAN mainline
routine. An example of such a service routine is contained in [‘Using the APL2P||
[Interface from FORTRAN” on page 154}

144 APL2 Programming: Processor Interface Reference

APL2PI and APL2 Calis to Other Languages

Through the use of N4, APL2 users can invoke applications written in languages
other than APL2. Supported languages include C, FORTRAN, PL/I and assembler
language, but users have reported success with COBOL and Pascal as well. The
APL2PI interface also provides facilities through which APL2 can be invoked by or
can invoke a non-APL application.

When using the APL2PI interface, some care must be taken not to interfere with
the operation of the non-APL application by calling other non-APL routines through
ONA which are written in the same high level language as the non-APL application
interacting with APL2PI.

This situation is of concern because certain high level languages, such as
FORTRAN, require access to a “programming environment” for any non-trivial
program. Typically, only one instance of the necessary programming environment
is supported in a user's address space or virtual machine at any given time.
Non-APL applications written in such high level languages that invoke or are
invoked by APL2 via the APL2PI interface will typically establish their necessary
programming environment as part of their own invocation.

When a non-APL routine is accessed through the use of OV4, the :INIT tag in the
routine description for that non-APL routine specifies whether a programming envi-
ronment is required for correct execution of that routine. If required, Processor 11
will attempt to initialize the environment when the non-APL routine is first called, or
as a result of a specific request from the APL2 caller. This instance of the environ-
ment is not the same as the instance of the environment established in conjunction
with the APL2PI interface, and may not operate correctly or worse, may cause
unexpected or erroneous results.

It is therefore recommended that when an application written in a high level lan-
guage like FORTRAN invokes or is invoked by APL2 via the APL2PI interface, no
other routines written in the same language be invoked via APL2PI or ONA.

Note that ESSL and OSL routines also have a dependency on the FORTRAN pro-
gramming environment, and should therefore not be invoked when a non-APL
application written in FORTRAN is active on the APL2PI interface.

Additional information on routines accessed through ONA and their requirements in
terms of programming environments can be found in APL2 Programming: System
Services Reference in the chapter about processor 11 and calling compiled rou-
tines.

Chapter 18. Using the Calls to APL2 Facility 145

Chapter 19. System Related Considerations

Using APL2PI in a VM/CMS Environment

In the VM/CMS environment, the APL2PI interface is provided with the following
components:

AP2VAPI TXT210

The object module which contains the APL2PI entry point that is called
from non-APL applications. This object module can be combined with
the non-APL application or generated as a separate module that can be
dynamically loaded by the non-APL application, or accessed as a CMS
nucleus extension. Each of these alternatives are described below.

Note: AP2VAPI TXT210 is the name of the file as it is originally
shipped with APL2 Version 2. If maintenance is applied to this file, the
filetype will be changed to TEXT. When searching for this file, ensure
you have located the most recent copy.

AP2XAPIC AP2MSAMP

An assembler language source file which can be modified by users to
alter the command and parameters used to invoke APL2 from a
non-APL application. If an invocation command other than the default:

APL2 QUIET RUN(APL2PI)

is desired, this source file can be modified, reassembled and combined
with the AP2VAPI object module. If AP2XAPIC is combined with
AP2VAPI, the invocation command assembled into AP2XAPIC will be
used; otherwise, the default invocation command will be used. Note
that in either of these cases, the invocation parameters can be supple-
mented or overridden by means of the PARMS parameter in the 'INIT'
call from the non-APL application.

Modifying the APL2 Invocation Command and Options

146

To change the command or options used to invoke APL2 from a non-APL applica-

1. Copy the AP2XAPIC AP2MSAMP file to AP2XAPIC ASSEMBLE
2. Edit AP2XAPIC ASSEMBLE

Modify the statement labeled APL2CMDN to change the name of the APL2
module invoked. For example, to cause APL2/AE to be invoked, change the
statement to:

APL2CMDN DC CL9'APL2AE' COMMAND

Modify the statement labeled APL2CMDO to change the invocation options. It
is recommended that the QUIET and RUN(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC ASSEMBLE, reassemble it
using the following CMS commands:

GLOBAL MACLIB AP2MAC
ASSEMBLE AP2XAPIC

© Copyright IBM Corp. 1987, 1992

4. Combine the TEXT file resulting from this assembly with the AP2VAPI object
module. This can be done without destroying the original object module with
the following CMS commands:

COPY AP2VAPI TXT210 A AP2VAPI TEXT A
COPY AP2XAPIC TEXT A AP2VAPI TEXT A (APPEND

The resulting AP2VAPI TEXT file should then be used in place of AP2VAPI
TXT210 in the procedures described below.

Accessing APL2PI from a Non-APL Application
AP2VAPI contains the APL2PI entry point that is called from a non-APL application
to request services from APL2. It can be made accessible to the non-APL applica-
tion in a number of ways:

« If the non-APL application is invoked with CMS LOAD and START commands,
the AP2VAPI object module can be made available as a TEXT file on an
accessible CMS minidisk, and it will be loaded by CMS when the non-APL
application is loaded. To make AP2VAPI accessible as a TEXT file, use the
following CMS command:

COPY AP2VAPI TXT210 A APL2PI TEXT A

Note that it is necessary to change its name to APL2PI TEXT since it is
referred to by that name in the non-APL application.

« If the non-APL application is generated as a CMS MODULE using the
GENMOD command, APL2PI can be simply incorporated in that module when
it is built, namely,

COPY AP2VAPI TXT210 A APL2PI TEXT A
LOAD ... non-APL application ...
GENMOD ... non-APL application ..

APL2PI TEXT will be combined with the non-APL application as a result of the
LOAD command.

e In a number of situations, it is may be desirable to structure APL2PI as a CMS
nucleus extension and cause it to be loaded and accessed dynamically from
the non-APL application. This approach has the advantage that APL2PI is
placed in CMS protected storage as an entity separate from the non-APL appli-
cation. To prepare APL2PI to be loaded as a CMS nucleus extension, it can
be converted to a module using the commands:

COPY AP2VAPI TXT210 A APL2PI TEXT A
LOAD APL2PI (CLEAR RLDSAVE

GENMOD APL2PI

ERASE APL2PI TEXT A

The APL2PI module can be subsequently accessed by the non-APL application
using the CMS NUCXLOAD and NUCXDROP commands and NUCEXT func-
tions. For additional information, see CMS Macros and Functions Reference
and CMS Command Reference.

Chapter 19. System Related Considerations 147

Invoking a Non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non-APL application
which can subsequently make use of the APL2PI interface:

0 11 ONA 'APL2PIE'
'COMMAND' APL2PIE 1 'NAME'

The user must ensure that when such a request is made, that APL2PI is estab-
lished as a CMS nucleus extension; otherwise, an error message will be issued by
the APL2PIE function and the request will be denied. If APL2 was invoked via
APL2PI from a non-APL application, APL2PI will already be established as a CMS
nucleus extension, and no other action is necessary. If APL2 was not invoked via
APL2PI, then the user must take explicit action to cause it to be established as a
nucleus extension.

To explicitly cause APL2PI to be established as a CMS nucleus extension, it must
be first created as a CMS module. This can be accomplished with the following
CMS commands:

COPY AP2VAPI TXT210 A APL2PI TEXT A
LOAD APL2PI (CLEAR RLDSAVE

GENMOD APL2PI

ERASE APL2PI TEXT A

The resulting APL2PI MODULE can be established as a CMS nucleus extension
with the CMS command:

NUCXLOAD APL2PI

Parameters may be passed to the non-APL application by specifying them in the
'COMMAND" left argument of APL2PIE, namely,

0 11 0ONA 'APL2PIE'
'COMMAND PARMS' APL2PIE 1 'NAME'

The specified non-APL application (COMMAND) is entered with register 0 pointing
to a CMS extended parameter list and register 1 pointing to a CMS tokenized
parameter list, namely,

RO => A(command verb) => C'COMMAND '
A(parameters) => C'PARMS'
A(end of command)
A(0)

R1 => CL8'COMMAND '
CL8'PARMS
X' FFFFFFFF'

Extended Addressing Considerations

In virtual machines configured to support 31-bit addressing, APL2 normally runs in

31-bit mode. In that mode, the APL2 workspace is placed above the 16 megabyte
line. In order to obtain results from APL2, the APL2PI routine must therefore run in
31-bit mode. This should pose no problem if the non-APL application runs in 31-bit
mode when it calls APL2PI, when its service routine is called by APL2PI, and when
it is accessing data in CDR form returned by APL2PI.

148 APL2 Programming: Processor Interface Reference

If the non-APL application must run in 24-bit mode when calling or being called by
APL2PI, the APL2 workspace must be forced below the line. This can be done by
invoking APL2 with the invocation option XA(24).

If APL2PI is generated as a separate module (so that it can be NUCXLOADed as
described above), the correct addressing and residency modes must be specified.
If the non-APL application operates in 31-bit mode,

GENMOD APL2PI (AMODE 31 RMODE 24
is suggested. If the non-APL application operates in 24-bit mode,
GENMOD APL2PI (AMODE 24 RMODE 24

is required.

Chapter 19. System Related Considerations 149

Using APL2PI in an MVS/TSO Environment

In the MVS/TSO environment, the APL2PI interface is provided with the following
components:

AP2TAPI The object module which contains the APL2PI entry point that is called
from non-APL applications. This object module can be link edited with
the non-APL application or as a separate load module accessed by the
non-APL application.

AP2XAPIC An assembler language source file which can be modified by users to
alter the command and parameters used to invoke APL2 from a
non-APL application. If any invocation command other than the
default:

APL2 QUIET RUN(APL2PI)

is desired, this source file can be modified, reassembled and link edited
with the AP2TAPI object module. If AP2XAPIC is link edited with
AP2TAPIC, the invocation command assembled into AP2XAPIC will be
used; otherwise, the default invocation command will be used. Note
that in either of these cases, the invocation parameters can be supple-
mented or overridden by means of the PARMS parameter in the 'INIT'
call from the non-APL application.

Modifying the APL2 Invocation Command and Options
To change the command or options used to invoke APL2 from a non-APL applica-
tion:

1. Make a copy of the AP2XAPIC source file from the APL2 distribution data set.
2. Edit your copy of the AP2XAPIC source file.

Modify the statement labeled AP2CMDN to change the name of the APL2
module invoked. For example, to cause APL2/AE to be invoked, change the
statement to:

APL2CMDN DC CL9 'APL2AE' COMMAND

Modify the statement labeled APL2CMDO to change the invocation options. It
is recommended that the QUIET and RUN(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC, reassemble it, specifying
APL2.AP2MACS as the macro library.

4. When link editing AP2TAPI in the procedures described below, specify an
INCLUDE statement for the object module produced by this assembly.

Steps 1-3 in this procedure can typically be performed in a straightforward fashion
using ISPF (options 3, 2, and 4). If you are unfamiliar with the use of ISPF, consult
your system administrator for assistance. Step 4 is typically accomplished by exe-
cuting a batch job such as the one shown in the next section.

150 APL2 Programming: Processor Interface Reference

Accessing APL2PI from a Non-APL Application

AP2TAPI contains the APL2PI entry point that is called from a non-APL application
to request services from APL2. It can be made accessible to the non-APL applica-
tion by link editing it with that application, or by link editing it as a separate module
and dynamically loading it from the non-APL application.

To link edit it with the non-APL application, simply INCLUDE AP2TAPI (and
optionally AP2XAPIC) in the link edit of the non-APL application.

The following job can be used to link edit AP2TAPI (and optionally AP2XAPIC) as a
separate load module:

//LINK JOB (ACCOUNT),PROGAMER,CLASS=A,TIME=(1),

// NOTIFY=USERID,MSGCLASS=A,MSGLEVEL=(1,1)
//LINK EXEC PGM=IEWL,REGION=512K,
// PARM="NCAL,RENT,REUS ,MAP,LIST,LET,SIZE=(512K,64K) '

//SYSPRINT DD SYSOUT=+
//SYSLMOD DD DISP=SHR,DSN=output data set
//0BJ DD DISP=SHR,DSN=input data set
//SYSUT1 DD UNIT=SYSDA,SPACE=(13030, (40,20))
//SYSLIN DD =

MODE AMODE (31) , RMODE (ANY)

INCLUDE OBJ(AP2TAPI)

INCLUDE OBJ(AP2XAPIC)

ENTRY APL2PI

NAME APL2PI(R)
/*
//

The input data set should identify the dataset in which AP2TAPI and AP2XAPIC
reside. The output dataset must be available to the non-APL application when it
needs to load APL2PI. The APL2 load library provides a convenient location since
that dataset must also be available during execution of the APL2PI interface.

Under MVS, APL2 and the APL2PI routine must be invoked under the TSO ter-
minal monitor program, IKJEFTO1. This is the normal mode of operation if the
application is running in a TSO environment, and no special action is needed. If,
however, the application was designed to operate in a batch environment, it must
be invoked through the TSO terminal monitor program. For example, a batch
program, normally invoked with:

//STEP EXEC PGM=MYPROG
//SYSPRINT DD SYSOUT=+
//SYSIN DD *

must instead be invoked with:

//STEP EXEC PGM=IKJEFTO1
//SYSTSPRT DD SYSQUT=+
//SYSTSIN DD =

MYPROG

/*

//SYSPRINT DD SYSOUT=+
//SYSIN DD =*

Finally, in either a TSO or batch environment, the files necessary to run APL2 must
be allocated before issuing the APL2PI 'INIT' call from the non-APL application.

Chapter 19. System Related Considerations 151

Invoking a Non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non-APL application
which can subsequently make use of the APL2PI interface, namely,

0 11 ONA 'APL2PIE'
'COMMAND' APL2PIE 1 'NAME'

The user must ensure that when such a request is made, that APL2PI is available
as a separate load module in the same load library (or in the same concatenated
list of libraries) from which APL2 was loaded. Instructions on creating APL2PI as a
separate load module are described above.

Parameters may be passed to the non-APL application by specifying them in the
'COMMAND" left argument of APL2PIE, namely,

0 11 0ONA 'APL2PIE'
'COMMAND PARMS' APL2PIE 1 'NAME'

The specified non-APL application (COMMAND) is entered with register 1 pointing
to a TSO CPPL control block. The first word in this control block points to the TSO
command buffer representing this command, namely,

Rl => A(command buffer) => command buffer

The command buffer begins with a halfword length field indicating the total length in
bytes of the command buffer, followed by a halfword offset field indicating the offset
from the command name to the beginning of the command parameters, followed by
the command. Thus for ' COMMAND PARMS' APL2PIE 1 'NAME',

R1 => A(command buffer) => X'00170008',C'COMMAND PARMS'

Extended Addressing Considerations

In the XA or ESA environments, APL2 normally runs in 31-bit mode. In that mode,
the APL2 workspace is placed above the 16 megabyte line. In order to obtain
results from APL2, the APL2 routine must therefore run in 31-bit mode. This
should pose no problem if the non-APL application runs in 31-bit mode when it calls
APL2PI, when its service routine is called by APL2PI, and when it is accessing data
in CDR form returned by APL2PI.

If the non-APL application must run in 24-bit mode when calling or being called by

APL2PI, the APL2 workspace must be forced below the line. This can be done by
invoking APL2 with the invocation option XA(24).

152 APL2 Programming: Processor Interface Reference

Chapter 20. Language Related Considerations

This chapter provides specific information and examples about using the calls to
APL2 facility from a variety of languages. The section for each language refers to
the APL2 function shown in Figure 25.

VAVG ARGS3;SIZE;NUMBERS ;RESULT
(1] e ARGS: Vector of 3 addresses from non-APL application

[2] a ARGS[1]+ Number of numbers (fullword integer)
(3] a ARGS[2]» Vector of numbers (floating point)
(4] a ARGS[3]1» Result field (fullword integer)

[5]

[6] +(0v.=3 11 0ONA 2 3p'PTAATP')/ERROR

[7]1 >(32pARGS)/ERROR

[8]

[9] a Retrieve size of input vector from ARGS[1]
[101] SIZE<'ITu 0' PTA ARGS[1]

[111]

[12] A Retrieve vector of numbers from ARGL[2]
[13] NUMBERS<('EF8 1 '",sSIZF)PTA ARGS[2]

[14]

[15] A Compute the average

[16] RESULT<(+/NUMBERS)+SIZE

[17]

(18] a Return result to ARGS[3]

[19] 'E8 0' ATP RESULT ARGS[3]

[20] -0

[21]

[22] ERROR:'Unexpected error' OES 9 9
Y

Figure 25. APL2 AVG Program Used in Language-Related Examples

© Copyright IBM Corp. 1987, 1992 153

Using the APL2PI Interface from FORTRAN

Most functions available on the APL2PI interface can be used in a simple and
straightforward fashion in FORTRAN programs. Since the FORTRAN language
does not provide support for data structures or pointers however, the 'APLF' and
"APLV' calls cannot be used effectively, and only limited function is available
between APL2 and a FORTRAN service routine.

This section presents three simple examples of the use of the APL2PI interface
from FORTRAN programs. Each of the examples shown has the ability to invoke
APL2, or be invoked by APL2. The IBM VS FORTRAN Program Product
(5668-805) Version 2, Release 4 was used to construct these examples. Other
FORTRAN compilers may or may not have similar capabilities.

The first example shows a FORTRAN program which makes use of the APL2PI
"APLS' call to invoke the APL2 function AV G in namespace PKGLIB.STATS to
obtain the average of a vector of numbers passed to it. Lines of the FORTRAN
routines shown below are numbered on the left for reference in the notes after the
figure.

154 APL2 Programming: Processor Interface Reference

OB WN =

~

10
11
12

13

14

15

16
17

18
20
21

22
23
24

25
26
27

28

10

98

99

A,12,A)
2 FORMAT(' ',A,F8.3)
A,212)

REAL*8 NUMBERS(1000) ,RESULT
INTEGER*4 TOKEN,RC,SIZE,LENGTH
INTEGER*2 RETCODE(2)
EQUIVALENCE (RC,RETCODE(1))
TOKEN=0

LENGTH=0

---- CALL APL2PI TO INITIALIZE APLZ
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,0,0,16,'SM(OFF) WS(200K)")
IF (RC .GT. 1) GOTO 98

WRITE (6,*)'Enter number of numbers to average'
READ (5,%) SIZE

WRITE (6,1)'Enter ',SIZE,' numbers'

READ (5,*) (NUMBERS(I),I=1,SIZE)

---- CALL APL2PI TO COMPUTE AVERAGE

CALL APL2PI ('APLS',TOKEN,RC,'PKGLIB.STATS ','AVG ',LENGTH,' ',
1 SIZE,NUMBERS,RESULT)

IF (RC .NE. 0) GOTO 99

WRITE (6,2) 'The average is: ',RESULT

---- CALL APL2PI TO TERMINATE APLZ2
CALL APL2PI ('TERM',TOKEN,RC)
RETURN

---- UNEXPECTED ERROR FROM APL2 INITIALIZATION

WRITE (6,*) 'Unexpected error during APL2 initialization'
WRITE (6,3) 'Return code: ', (RETCODE(I),I=1,2)

RETURN

---- UNEXPECTED ERROR DURING APL2 FUNCTION EXECUTION

WRITE (6,*) 'Unexpected error during APL2 function execution'
WRITE (6,3) 'Return code: ', (RETCODE(I),I=1,2)

GOTO 10

FORMAT(' ',
FORMAT(' ',A,2I2

END

Figure 26. FORTRAN Program Demonstrating Use of the APLS Request

Notes
» Lines 1-2: define the various data items that will be passed as arguments in
subsequent APL2PI calls. It is important to ensure that the data types defined
match those expected by APL2PI (e.g.: TOKEN, RC, L) and by the APL2 function
being called (SIZE, NUMBERS, RESULT).

e Lines 3-4: the return code returned by APL2PI is returned in the fullword
(INTEGER=*4) field RC. This code is, however, best interpreted as a pair of
halfwords (INTEGER*2). The definition of RETCODE as INTEGER*2 and equivalent
to RC provides simple and meaningful subsequent access to the return code.

Chapter 20. Language Related Considerations 155

e Lines 7-8: APL2 is initialized with an 'INIT' call to APL2PI. The FORTRAN
program is identified to APL2PI as 'SAMPLE'. Since no service routine is
required, the type, anchor, and service parameters are coded as 0 on the call.

If APL2 is not active when these statements are executed, it will be initialized
as a result of this call and a return code of 0 will be returned. If APL2 was
already active, this call is used to identify the FORTRAN program to APL2PI
and a return code of 1 will be returned. Thus the error routine is only invoked if
an unexpected error is encountered.

e Line 13: The function AV G in namespace PXKGLIB.STATS is invoked with
arguments SIZE, NUMBERS and RESULT. Since this APL2 function is expected not
to return any explicit result, a value of 0 is passed as the rlength parameter on
the call. Because this field is updated to reflect the actual length of the result,
the parameter cannot be coded as 0 in the call itself. Instead, the variable L is
defined and initialized to 0 prior to the call. If this call was made repetitively, L
would have to be reinitialized prior to each call. Failure to do so could cause
unexpected results in the FORTRAN program.

e Line 16: Note that the return code from the 'TERM' call is not checked. Two
possible return codes might be expected: 0 0 if the non-APL application ori-
ginally caused APL2 to be invoked, or 0 10 if the non-APL application was
invoked from an active APL2 environment.

e Lines 6, 10, 13 and 19 in the APL2 function AVG: FORTRAN passes argu-
ments to subroutines “by reference.” That is to say, FORTRAN passes the
addresses of argument data rather that the values of the argument data. The
external function P74 allows an APL2 application to retrieve data passed by
reference, and the external function AT P allows an APL2 application to update
arguments which were passed by reference.

The second example demonstrates the use of the 'APLX' and 'APLE' calls. When
this program is executed, it causes APL2 to be initialized and then returns control
to the APL2 environment. When this occurs, the following message will appear on
the user's screen:

0 0
e i +
+ ENTER 'APL2PI' TO RETURN CONTROL +
e +

At this point the APL2 user can interact with APL2 freely and, when finished returns
control to APL2PI by calling the APL2PI external function:

A<B<(C<«10
APL2PT

156 APL2 Programming: Processor Interface Reference

OB WN =

11
12

13

14
15

16
17
18

19
20
21

22
23
24
25

26

CHARACTER RESULT(1000)
INTEGER*4 TOKEN,RC,LENGTH
INTEGER*2 RETCODE(2)
EQUIVALENCE (RC,RETCODE(1))
TOKEN=0

LENGTH=1000

---- CALL APL2PI TO INITIALIZE APLZ
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,0,0,16,'SM(OFF) WS(200K)")
IF (RC .GT. 1) GOTO 99

--—- RETURN CONTROL TO APL2

CALL APL2PI('APLX',TOKEN,RC)

IF (RC .NE. 0) GOTO 98

---- EXECUTE AN APL2 EXPRESSION

CALL APL2PI('APLE',TOKEN,RC,13,"''" ' ,ONL 2 3 u4',LENGTH,RESULT)
IF (RC .NE. 0) GOTO 97

WRITE (6,%) 'Names in APL2 workspace: ', (RESULT(I),I=1,L)

---- CALL APLZ2PI TO TERMINATE APL2

10 CALL APL2PI ('TERM',TOKEN,RC)

RETURN

---- UNEXPECTED ERROR FROM APL2 INITIALIZATION

99 WRITE (6,*) 'Unexpected error during APL2 initialization'

WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
RETURN

---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APL2

98 WRITE (6,*) 'Unexpected error returning control to APL2'

WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
GOTO 10

---- UNEXPECTED ERROR ON DURING APL2 EXECUTION

97 WRITE (6,*) 'Unexpected error during APL2 execution'

WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
GOTO 10

1 FORMAT(' ',A,212)

END

Figure 27. FORTRAN Program Demonstrating Use of APLX and APLE Requests

Notes

e Line 9: causes control to be returned to the active APL2 session. The value

and result optional parameters on this call cannot be used in a FORTRAN
program. This is because these parameters involve the use of data in CDR
format, and FORTRAN is not capable of dealing with CDR format.

Chapter 20. Language Related Considerations

157

e Line 11: causes the APL2 expression
v ' ONL 2 3 4

to be executed. Catenating a blank on to the output of ONL causes the names
to be separated by at least one blank in the result returned to the FORTRAN
program. Note that APL2 characters may be imbedded in FORTRAN source
programs but may not be printed correctly in the compiled listings.

The third example demonstrates the use of a FORTRAN service routine which can
be accessed from APL. In this example, the FORTRAN mainline routine initializes
APL2, specifying the SERVICE subroutine as a type 1 service routine to be used
by the APL2PI interface. After APL2 initialization is complete, the FORTRAN main-
line then passes control to the APL2 environment with an 'APLX' call. When that
happens, the following message appears on the APL2 user's screen:

0 0
Fom e e oo +
+ ENTER 'APL2PI' TO RETURN CONTROL +
o m e — oo +

and the user can interact with APL2 freely. For the purposes of this example, the
user should enter the following to cause the SERVICE subroutine to be invoked:

0 11 ONA 'APL2PIE'
1234 APL2PIF 3 'SAMPLE'

This causes control to be passed to the service routine (the SERVICE subroutine) of
the APL2PI application identified as SAMPLE (the mainline FORTRAN program). The
value 1234 is the first of 5 arguments passed to the service routine. All of the
arguments can be retrieved by the FORTRAN SERVICE routine, but only the return
code argument can be updated to return data from the FORTRAN SERVICE routine
to the APL2 environment.

Once execution of the SERVICE routine is complete, and control is passed back to
the APL2 user, the user completes his work and returns control to the FORTRAN
mainline by calling the APL2PI external function.

Notes
e Line 8: the fourth argument of the 'INIT' call causes the FORTRAN applica-
tion to be identified to APL2PI with the name SAMPLE. This name will be subse-
quently used as the second item of the right argument of APL2PIFE when
control is passed to the SERVICE routine, whose address is provided in the
seventh argument of the 'INIT' call.

158 APL2 Programming: Processor Interface Reference

NOY OB W N

10
11

12
13

14

15
16

17
18
19

20
21
22

23
24
25

26

27

28
29
30
31
32
33
34

10

99

98

97

EXTERNAL SERVICE

CHARACTER RESULT(1000)
INTEGER*4 TOKEN,RC,LENGTH
INTEGER*2 RETCODE(2)
EQUIVALENCE (RC,RETCODE(1))
TOKEN=0

LENGTH=1000

---- CALL APL2PI TO INITIALIZE APL2
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',1,0,SERVICE,16,'SM(OFF) WS(200K)")
IF (RC .GT. 1) GOTO 99

---- RETURN CONTROL TO APL2
CALL APL2PI('APLX',TOKEN,RC)
IF (RC .NE. 0) GOTO 98

---- EXECUTE AN APLZ2 EXPRESSION
CALL APL2PI('APLE',TOKEN,RC,13,''' '',0ONL 2 3 4',LENGTH,RESULT
IF (RC .NE. 0) GOTO 97

WRITE (6,*) 'Names in APL2 workspace: ', (RESULT(I),I=1,L)

---- CALL APL2PI TO TERMINATE APL2
CALL APL2PI ('TERM',TOKEN,RC)
RETURN

---- UNEXPECTED ERROR FROM APLZ2 INITIALIZATION

WRITE (6,*) 'Unexpected error during APL2 initialization'
WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)

RETURN

---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APLZ2
WRITE (6,*) 'Unexpected error returning control to APL2'
WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)

GOTO 10

---- UNEXPECTED ERROR ON DURING APL2 EXECUTION
WRITE (6,*) 'Unexpected error during APL2 execution'
WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)

GOTO 10

FORMAT (' ',A,212)
END

SUBROUTINE SERVICE(VALUE,RC,RESULT,ADDRESS,ANCHOR)
INTEGER*4 VALUE,RC,RESULT,ADDRESS,ANCHOR

WRITE (6,*) 'FORTRAN SERVICE routine called by APL2'

WRITE (6,*) 'Input values: ',VALUE,RC,RESULT,ADDRESS,ANCHOR
RC=9999

RETURN

END

Figure 28. FORTRAN Program Demonstrating Use of a Service Routine

Chapter 20. Language Related Considerations

159

Using the APL2PI Interface from C

Most functions available on the APL2PI interface can be used in C programs. The
"APLF' and 'APLV' calls and some variants of the 'APLX' call involve the use of
data in CDR format and are more difficult, but not impossible, to handle in the C
environment. C service routines are not supported.

This section presents a number of examples of the use of the APL2PI interface
from C programs. Each of these examples has the ability to invoke APL2, or be
invoked by APL2. The IBM C/370 Program Product (5688-039, 5688-040) Version
1 Release 2 was used to construct these examples. Other C compilers may or
may not have the same capabilities.

To understand any of the calls to APL2PI from the C environment, the reader must
understand the linkage conventions used by the APL2PI interface. All calls to or
from the APL2PI interface assume the /370 OS linkage convention. That is to say,
when the call occurs, it is expected that the caller will have set the following regis-
ters:

¢ R1 contains the address of the caller's parameter list. The parameter list is
expected to contain a list of addresses—one for each argument in the call.

e R13 contains the address of a save area, 18 fullwords in length, which may be
used by the called routine to save the caller's registers.

e R14 contains the return address in the calling routine.

e R15 contains the entry point address in the called routine.

To cause the C program to utilize these conventions, #pragma 1linkage(...,0S)
must be used in the C program to define the APL2PI routine.

Further, any arguments which are to be updated by the called routine must be
passed as pointers rather than values. In the C language, arrays and strings are
always passed as pointers, so they require no special handling. Scalars argu-
ments, however, are not normally passed as pointers and must be prefixed with & if
they are to be updated, namely,

#pragma 1inkage (ROUTINE,QS)
int input,output,array[5]
input=3

ROUTINE (input,&output,array)

causes the procedure ROUTINE to be called with arguments input, output and
array. The arguments output and array can be updated by the called ROUTINE, but
any attempt to update input will not be reflected in the calling program.

Finally, APL2PI expects to be called as a subroutine rather than as a function and
thus produces no explicit result.

The first example shown below illustrates a C program which makes use of the
APL2PI 'APLS' call to invoke the APL2 function AV G (see [Figure 25 on page 153)
in namespace PKGLIB.STATS to obtain the average of a vector of numbers
passed to it. Lines of the C program are numbered on the left for reference in the
notes after the figure.

160 APL2 Programming: Processor Interface Reference

1 #pragma Tinkage(APL2PI,O0S)

2 #include <stdio.h>

3 main()

4 |

5 int token=0,size;

6 union {

7 int code; /* Return code as 1 fullword =/

8 short rc[2]; /* Return code as 2 halfwords =/

9 }rc;

10 double numbers[1000],result,value;

11 char parms[]="SM(OFF) WS(200K)"; /x APL initialization parms =*/

12 int Ten=sizeof(parms)-1; /* Length of parms */
/* ---- Call APL2PI to initialize APL2 ---- =/

13 APL2PI("INIT",&token,&rc.code,"SAMPLE ",0,0,0,1en,parms);

14 if(rc.code > 1) goto errorl;

15 printf("Enter numbers to be averaged\n");

16 printf("Terminate input with non-numeric\n");

17 for (size=0 ; O<scanf("%1f",&value) ;sizet++)

18 numbers[size]=value;
/* ---- Call APL2PI to compute average ---- */

19 APL2PI("APLS",&token,&rc.code,"PKGLIB.STATS ","AVG ",0,"' ',

20 size,numbers,&result);

21 if(rc.code != 0) goto error2;

22 printf("\nThe average is: %1f\n",result);
/* ---- Call APL2PI to terminate APL2 ---- =%/

23 shutdown:

24 APL2PI("TERM",&token,&rc.code);

25 return 0;

26 errorl:

27 printf("Unexpected error during APL2 initialization\n");

28 printf("Return code: %hd shd\n",rc.rc[0],rc.rc[1]);

29 return;

30 error2:

31 printf("Unexpected error during APL2 function execution\n");

32 printf("Return code: %hd shd\n",rc.rc[0],rc.rc[1]);

33 goto shutdown;

34}

Figure 29. C Program Demonstrating Use of the APLS Request

Notes
e Line 1: causes APL2PI to be called with OS linkage conventions.

e Line 6-8: the return code produced by APL2PI is returned as a vector of 2
halfwords. Redefinition of the return code field allows simpler comparison to
expected values such as 0 0 or 0 1.

Chapter 20. Language Related Considerations 161

e Lines 13, 19, 24: the scalar arguments token rc and result are updated by
APL2PI and so must be prefixed with &.

The following example demonstrates the use of the 'APLP' and 'APLF' callsina C
program and the use of data in CDR format. This example also shows that the
"APLF' call can be used to request execution of APL2 primitives or system func-
tions.

34

35
36
37
38
39
40
41

#pragma linkage(APL2PI,0S)
#include <stdio.h>
#define CDRID 0x80000000
main() {

struct cdrdesc { /* CDR Descriptor section */
union {
unsigned int cdrdlen;
unsigned char cdrflags;
} cdrhdr;
int cdrxrho;
char cdrrt;
char cdrrl;
short cdrrank;

}s

struct cdrptr { /* CDR Pointer section */
int cdrpslen;
int cdrdslen;
char *cdrptr;
int cdrplen;

}s

struct { /* CDR for vector 2 3 4 =/
struct cdrdesc desc;
int rho;
int data[3];
} v234 = {CDRID+16,3,'1',4,1,3,2,3,4},
ptr_v234; / Pointer to v234 */

struct { /* CDR for matrix result =/
struct cdrdesc desc;
int rows;
int cols;
struct cdrptr pointers;
} *result;

char *result_data; /* used to point to result data */

int token=0,i,j;
union {
int code; /* Return code as 1 fullword =/
short rc[2]; /* Return code as 2 halfwords =/
}ore;
char parms[]="SM(OFF) WS(200K)"; /x APL initialization parms =*/
int Ten=sizeof(parms)-1; /* Length of parms */

Figure 30 (Part 1 of 2). C Program Demonstrating Use of the APLP and APLF Requests

162

APL2 Programming: Processor Interface Reference

42
43

44
45

46
47
48
49

50
51
52
53
54
55
56
57
58
59

60

61
62
63
64
65

66

67

68
69
70

71
72
73
74

75
76
77
78

79

/*

/*

/*

}

---- Call APL2PI to initialize APL2 ---- =/
APL2PI("INIT",&token,&rc.code,"SAMPLE ",0,0,0,1en,parms);
if(rc.code > 1) goto errorl;

---- Call APL2PI to enter STATS namescope ---- */
APL2PI ("APLP",&token,&rc.code,"PKGLIB.STATS ");
if(rc.code != 0) goto error2;

---- Call APL2PI to execute ONL 2 3 U ---- %/

result = 0;

ptr_v234 = &v234;

APL2PI("APLF",&token,&rc.code," ","ONL ",&result,0,&ptr v234);
if(rc.code != 0) goto error2;

---- Display result returned by APL2 ---- %/
printf("\nResult returned from execution of ONL 2 3 u4\n\n");
printf("ssux\ngssd\ngssc\ngsyx\ngsshd\ngssyi %i\ngs\ngs\n",
"CDRDLEN = ",result->desc.cdrhdr.cdrdlen,
"CDRXRHO = ",result->desc.cdrxrho,

"CDRRT = ",result->desc.cdrrt,

"CDRRL = ",result->desc.cdrrl,
"CDRRANK = ",result->desc.cdrrank,
"CDRRHO = ",result->rows,result->cols,
"CDRDATA:",

n II);
result _data=result->pointers.cdrptr;

for (i=0ji<result->rows;i++){
for (j=0;j<result->cols;j++)
putchar(*result_data++);
putchar('\n');
}

printf("-------- \n\n");

---- Call APL2PI to exit STATS namescope ---- */
APL2PI("APLP",&token,&rc.code);

---- Call APL2PI to terminate APL2 ---- %/
shutdown:

APL2PI("TERM",&token,&rc.code);

return 0;

errorl:

printf("Unexpected error during APL2 initialization\n");
printf("Return code: %hd shd\n",rc.rc[0],rc.rc[1]);
return;

error2:

printf("Unexpected error during APL2 function execution\n");
printf("Return code: %hd %hd\n",rc.rc[0],rc.rc[1]);

goto shutdown;

Figure 30 (Part 2 of 2). C Program Demonstrating Use of the APLP and APLF Requests

Chapter 20. Language Related Considerations

163

Notes

Lines 3, 6-33: this routine makes use of the 'APLF' call which requires that
arguments and results passed to and from APL2 be provided in CDR format.
CDR format is described in detail in|Chapter 3, “APL2 Data Representation” on|

CDRs passed from C programs to APL2PI may be dense or pointer form
CDRs; CDRs returned from APL2PI are always pointer form CDRs.

Lines 6-15: the descriptor section of a CDR is defined as a C structure. Note
that cdrrho is not included since this CDR field may be a null vector.

Lines 16-21: the CDR pointer section is defined as a C structure.

Lines 22-27: a dense form CDR representing the integer vector 2 3 L is
defined and initialized. The address of this CDR is assigned to ptr_v234 on
line 47 and that address is passed as an argument on the 'APLF' call on line
48.

Lines 28-33: the 'APLF' call on line 48 should produce a character matrix
result. This result will be returned as the address of a pointer form CDR which
is mapped by this structure.

Line 44: an 'APLP' call is issued to cause the PKGLIB.STATS namescope
to be entered; subsequent APL2PI calls will be executed in that namescope.
This technique is necessary if subsequent 'APLF' calls request execution of
primitive functions since the namespace argument cannot be provided on such
calls.

Line 48: an 'APLF' call is issued to request execution of the system function
ONL with right argument 2 3 4. Note that a system function name or a
primitive function symbol can be specified as the function to be executed on an
"APLF' call. If APL2 symbols are imbedded in character literals in a C program
they may not be displayed correctly in the listing.

The result, 1larg and rarg arguments of the 'APLF' call are expected to be
fullword fields which contain the addresses of CDRs. Therefore pointers must
be specified, using the C “&” operator, when these arguments are passed on
the call. Since a left argument is not provided for this call, the 1arg field is
coded as 0 in the argument list.

164 APL2 Programming: Processor Interface Reference

Using the APL2PI Interface from COBOL

Many of the functions available on the APL2PI interface can be used in a simple
and straight forward fashion in COBOL programs. Since COBOL only provides
very rudimentary support for pointers, however, the 'APLF' and 'APLV' calls cannot
be used effectively. COBOL service routines are not supported.

The following example shows a COBOL program which makes use of the APL2PI
interface to generate a set of random numbers and to compute their average. The
program illustrates simple use of the 'INIT', 'TERM', 'APLE' and 'APLS' calls.
Lines of the program are numbered on the left for reference in the notes after the
figure. The IBM VS COBOL Il Program Product (5668-958) Version 1, Release 3
was used to construct this example. Other COBOL compilers may or may not have
similar capabilities.

NOYOL B W N

0]

10
11
12
13
14
15
16

17

18
19

20
21
22
23
24
25
26
27
28

Identification division.
Program-id. callapl2.
Environment division.
Configuration section.
Source-computer. IBM-370.
Object-computer. IBM-370.
Input-output section.

Data division.
Working-storage section.

1 TOKEN picture s9(9) binary value zero.
1.
2 RCODE.

3 RCODE1 picture s9999 binary.

3 RCODE2 picture s9999 binary.
2 RETCODE redefines RCODE picture s9(9) binary.
1 ZEROV picture s9(9) binary value zero.

1 OPTIONS picture x(16) value "SM(OFF) WS(200K)".

1 QNA-ATR picture x(14) value "O 11 ONA 'ATR'".
1 GET-RANDOM picture x(20) value "'E8 1 *=' ATR 5 2 100",

1 RESULT-LENGTH picture s9(9) binary.
1 RESULT-BUFFER.
2 RESULTS computational-2 occurs 5 times.
1 NUMBERS-ARRAY.
2 NUMBERS picture -ZZ9 display occurs 5 times.
ITEM picture s9(9) binary.
ITEMS picture s9(9) binary value 5.
AVERAGE computational-2.
DISPLAY-AVERAGE picture -779.999 display.

[S T Y

Figure 31 (Part 1 of 2). COBOL Program Demonstrating Use of APL2PI

Chapter 20. Language Related Considerations 165

29 Procedure division.

30 Call "APL2PI" using

31 by content "INIT" by reference TOKEN RCODE
32 by content "SAMPLE " ZEROV ZEROV ZEROQV

33 length of OPTIONS OPTIONS

34 If RETCODE is > 1 go to ERROR1

35 End-if

36 Call "APL2PI" using

37 by content "APLE" by reference TOKEN RCODE
38 by content length of QNA-ATR QNA-ATR

39 by content ZEROV " "

40 If RETCODE is not = @ go to ERROR2

41 End-if

42 Move Tength of RESULT-BUFFER to RESULT-LENGTH
43 Call "APL2PI" using

44 by content "APLE" by reference TOKEN RCODE
45 by content length of GET-RANDOM GET-RANDOM
46 by reference RESULT-LENGTH RESULT-BUFFER
47 If RETCODE is not = 0 go to ERROR2

48 End-if

49 Perform with test after

50 varying ITEM from 1 by 1

51 until ITEM = ITEMS

52 move RESULTS(ITEM) to NUMBERS(ITEM)

53 End-perform

54 Display "Random numbers returned by APLZ2: "

55 NUMBERS-ARRAY upon console

56 Call "APL2PI" using

57 by content "APLS" by reference TOKEN RCODE
58 by content "PKGLIB.STATS " "AVG " ZEROV " "
59 by reference ITEMS RESULT-BUFFER AVERAGE
60 If RETCODE is not = 0 go to ERROR2

61 End-if

62 Move AVERAGE to DISPLAY-AVERAGE

63 Display "The average is: " DISPLAY-AVERAGE upon console.
64 Shutdown.

65 Call "APL2PI" using

66 by content "TERM" by reference TOKEN RCODE
67 Stop run.

68 Errorl.

69 Display "Error during APL2 initialization: "
70 RCODE1 " " RCODEZ2 upon console

71 Stop run.

72 Error2.

73 Display "Error during APL2 execution: "

74 RCODE1 " " RCODE2 upon console

75 Go to shutdown.

Figure 31 (Part 2 of 2). COBOL Program Demonstrating Use of APL2PI

166 APL2 Programming: Processor Interface Reference

Notes
e Lines 12-15: the return code returned by APL2PI is formally a pair of halfwords
in a fullword field. In some situations it is useful to treat it as a single fullword;
in others, as a pair of halfwords.

e Line 16: numeric literals cannot be specified as arguments in a COBOL CALL
statement, and therefore must be given names in the data division.

e Lines 18-19: specify APL2 expressions that will later be executed by means of
"APLE' calls to APL2PI. Note that APL2 characters can be specified in such
expressions but may not print correctly in the COBOL program listing.

e Lines 30-33: APL2 is initialized by means of an '"INIT' call to APL2PI. Note
that arguments that are to be updated on the call must be passed by reference,
while constants and arguments which are not expected to be updated are
passed by content. If a “by content” argument is updated as a result of the call
to APL2PI, the updated value will not be available in the COBOL program.

e Line 34: this program is set up to allow it to invoke APL2 or to be invoked by
APL2. This is done by accepting a return code of either O or 1 from the 'INIT'
call.

e Line 39: in this particular example, the calling COBOL program will not bother
to check the results of the N4 executed in this call, since the subsequent call
will fail with a predictable error if the ONA fails. Therefore, the RLENGTH and
RESULT fields are specified as ZERO and " " respectively. APL2PI will update
the RLENGTH field with the length of the actual result, but that updated value will
not be returned to the COBOL program because the ZERO argument was
passed by content.

APL2 and COBOL Data Representations

APL2 typically represents numeric data in a number of different formats in the work-
space. Real numbers are represented as double precision floating point values,
integers are typically represented using fullword integer representation and Boolean
values are often represented as bits. The representation of the value of a variable
or the result of an expression is dependent upon the operations performed upon it,
and cannot be simply predicted. Most of this is transparent to the APL2 user who
sees numbers as numbers an lets the computer manage their representation in its
internal memory.

COBOL, on the other hand, is a language in which data representation is visible to
and carefully managed by the programmer. When data is passed between a
COBOL application and APL2 using the APL2PI interface that data must be trans-
formed to a representation acceptable to APL2 and/or the COBOL application. This
same situation exists when other high level languages are used with the APL2PI
interface. The APL2 external functions PTA, ATP, ATR and RTA are available to
assist with such transformation. PTA and ATP are described in this document;
ATR and RTA are described in the APL2 Programming: Using the Supplied Rou-
tines manual.

The following table shows the correspondence between types specified in the
COBOL USAGE clause and those specified in the patterns used with the PTA, ATP,
ATR, and RTA external functions:

Chapter 20. Language Related Considerations 167

COBOL Picture and USAGE RT/RL in

Numeric type pattern
Binary PIC S9999 BINARY 12
PIC S9(9) BINARY I4
Internal Floating COMPUTATIONAL-1 E4
COMPUTATIONAL-2 E8
External Floating PIC +9(3).99E+99 DISPLAY none
External Decimal PIC S9999 DISPLAY Z5
Internal Decimal PIC S9999 PACKED-DECIMAL P3

In addition to allowing numeric data to be represented in these forms, COBOL also
separately maintains a scale factor or decimal point position for binary and decimal
representations (the scale factor is an inherent part of the floating point represen-
tation, and consequently does not have to be separately maintained). When
COBOL computations are performed on binary and decimal data, COBOL aligns
the data around the decimal point to achieve the desired results. When such data
is passed to APL, the position of the decimal point is not passed. For example, if
the variable

01 CASH PICTURE $9999.99 BINARY VALUE -1234.56.

was passed to APL, it would be received as the value ~123456. If the COBOL
program treated the value as dollars and cents, and the APL2 program treated it as
cents, no problem would exist. If the position of the decimal point was variable or
significant, it would be lost unless passed as a separate explicit argument to APL.

Similarly, if the value ~ 1234567 was placed by an APL application in the COBOL
CASH field as defined above, it would be interpreted by COBOL as the value
-1234.56. This is because only the data, and not the decimal position is passed
between APL2 and COBOL.

This behavior becomes a little more complex when decimal (packed or external)
data is passed from or to a COBOL program. On the System/370, packed and
zoned decimal representations allow a very wide range of numbers to be repres-
ented (31 digits for packed and 15 for zoned). When a packed or zoned decimal
number, passed from COBOL, is accessed with the PTA function, using the 'P'
or 'Z' representation types, that number is converted into double precision
floating point representation so that it can be subsequently processed by APL. This
conversion may loose precision and may change an integral value to a non-integral
one (i.e.: a real number). Worse, the ATP and ATR external functions will not
accept floating point right arguments when a representation type of 'P' or 'Z"' is
specified in the pattern specified in the left argument. This problem can be circum-
vented by converting the data to fullword integers using the APL2 floor (L) primi-
tive, namely,

168 APL2 Programming: Processor Interface Reference

DATA<1.23%x100

DATA
123

'P2 0' RTA 'P2 0' ATR DATA
DOMAIN ERROR

'P2 0' RTA 'P2 0' ATR DATA

A

'P2 0' RTA 'P2 0' ATR LDATA

123

An alternate and often preferable way to avoid such problems is to use the BINARY,

rather than DISPLAY or PACKED-DECIMAL, usage clause in COBOL programs for
integer data that is passed to or from APL.

Chapter 20. Language Related Considerations 169

Using the APL2PI Interface from PL/I

Most functions available on the APL2PI interface can be used in PL/I programs.
The "APLF' and 'APLV' calls and some variants of the 'APLX' call involve the use of
data in CDR format, and are more difficult, but not impossible to handle in the PL/I
environment. PL/I service routines are not supported.

The following example shows a simple PL/I program which makes use of the
APL2PI interface to call the function AV G in namespace PKGLIB.STATS to
obtain the average of a vector of numbers passed to it. Lines of the PL/I program
are numbered on the left for reference in the following notes. The IBM PL/I Opti-
mizing Compiler Version 2, Release 2 (5668-909) was used to construct this
example. Other PL/I compilers may or may not have similar capabilities.

Notes
e Line 3: the APL2PI entry point must be declared in PL/I programs as shown on
line 3. This declaration ensures that APL2PI will be called with the correct
linkage conventions.

e Line 6: the return code returned by APL2PI is formally a pair of halfwords in a
fullword field. In some situations it is useful to treat it as a single fullword; in
others, as a pair of halfwords.

e Line 9: numeric literals cannot be specified as arguments in a PL/I CALL state-
ment, and therefore must be given names by means of declarative statements.

e Line 14: this program is set up to allow it to invoke APL2 or to be invoked by
APL2. This is done by accepting a return code of either 0 or 1 from the 'INIT'
call.

e Line 20: note that APL2PI always updates the LEN field as the result of an
"APLS' call, thereby destroying the initial value of this field. If a subsequent
"APLF' call was made by this program, the LEN field would have to be reset
before the call.

170 APL2 Programming: Processor Interface Reference

N =

13
14

15
16
17
18
19

20

21

22

23
24
25

26
27
28
29
30
31

32
33
34
35
36
37

38

*PROCESS OPT(2);
PLI2APL: proc options(main reentrant) reorder;

dc1 APL2PI entry options(asm inter);

dcl (NUMBERS(100), RESULT) float bin(53);

dc1 (TOKEN init(®), RC, SIZE, LEN init(0)) fixed bin(31);
dcl RETCODE(2) fixed bin(15) based(addr(rc));

dc1 PICSIZE pic 'Z9';

dc1 (PICRC1, PICRC2) pic 'Z779';

dcl ZERO init(0) fixed bin(31) static;

dc1 OPTIONS char(16) init('SM(OFF) WS(200K)') static;

dcl OPTLEN init(16) fixed bin(31) static;

dc1 BUFFER char(72);

/* ---- call APL2PI to initialize APL2 ---- %/
call APL2PI('INIT',TOKEN,RC,'SAMPLE ',ZERO,ZERO,ZERO,OPTLEN,OPTIONS);
if RC > 1 then goto ERROR1;

display('Enter number of numbers to average ') reply(BUFFER);
SIZE = BUFFER;

PICSIZE = SIZE;

display('Enter ' || PICSIZE || ' numbers ') reply(BUFFER);
get string(BUFFER) 1ist((NUMBERS(I) do I=1 to SIZE));

/* ---- call APL2PI to compute average ---- */

call APL2PI('APLS',TOKEN,RC,'PKGLIB.STATS ','AVG ',LEN,' ',
SIZE,NUMBERS,RESULT)

if RC == 0 then goto ERRORZ;

display('The average is: '||RESULT);

/* ---- call APL2PI to terminate APL2 ---- %/

SHUTDOWN:

call APL2PI('TERM',TOKEN,RC);

return;

/* ---- unexpected error during APL2 initialization ---- */
ERROR1:

display('Unexpected error during APL2 initialization');
PICRC1 = RETCODE(1);
PICRC2 = RETCODE(2);

display('Return Code:' || PICRC1 || PICRC2);

return;

/* ---- unexpected error during APL2 function execution ---- */
ERROR2:

display('Unexpected error during APL2 function execution');
PICRC1 = RETCODE(1);

PICRC2 = RETCODE(2);

display('Return Code:' || PICRCL || PICRC2);

goto SHUTDOWN;

end; /* PLI2APL */

Figure 32. PL/I Program Demonstrating Use of the APLF Request

Chapter 20. Language Related Considerations

171

Chapter 21. Implementation Details

172

The APL2PI interface consists of a complex set of routines which can be used in a
variety of ways to allow APL2 and non-APL applications to interact. For many
applications the documentation provided in[Chapter 16| thru [Chapter 20 will be
entirely sufficient. In more sophisticated applications, however, it may be useful to
understand the interplay of the routines.

The APL2PI interface routines can be divided into two major groups:

1. The routines which provide interfaces used by the non-APL application. The
main routine in this group is APL2PI. APL2PI is the entry point to which control
is passed from the non-APL application when any request is made to the inter-
face.

2. A group of APL2 external functions providing the interfaces used by APL2
routines or the APL user when communicating with the non-APL application.
The two important functions in this set are APL2PI1 and APL2PIE. Note
that this APL 2 PT external function is not the same as the APL2PI routine
used by non-APL application programs. The APL2PI external function is
simply a niladic cover function for the APL 2 PTFE external function. Its use will
be described in more detail below.

The non-APL application which uses the APL2PI interface can be invoked inde-
pendently or from an active APL2 session. If invoked independently, the non-APL
application causes APL2 invocation to occur on the first call to the APL2PI interface
(typically an "INIT' call). To invoke a non-APL application from an active APL
session, the APL2 user makes use of the APL 2 PIFE external function. This
external function activates the APL2PI interface and through it causes the non-APL
application to be invoked. Once the non-APL application is so initialized, it can call
the already active APL2PI interface to make requests to the pendant APL2 session.

It is possible for both modes of operation to be used together. For example, a
non-APL application could be invoked using appropriate CMS or TSO commands,
and that application could use APL2PI to cause APL2 to be invoked and to submit
requests to it. One or more of those requests could cause one or more non-APL
applications to be activated from the APL2 environment. All of these non-APL
applications could interact using the facilities provided with the APL2PI module and
the APL 2 PTE external function. Note however, that at any given time only one
application (APL or non-APL) is running—all of the other applications are in a
pendent state.

Non-APL applications invoked independently or from an active APL environment
are often mainline programs written in a compiled high level language. Invocation
of such compiled language mainline programs typically cause a programming envi-
ronment to be established. Care must be taken when more than one non-APL
application program is activated. Certain languages or versions of languages do
not support more than one instance of the programming environment at any given
time. For example, if one non-APL application written in COBOL is activated, it
may not be possible to activate a second one written in the same language,
because the second instance of its programming environment might interact
destructively with the first instance.

© Copyright IBM Corp. 1987, 1992

Invoking APL2 from a Non-APL Application

When a non-APL application, invoked and running independently of APL, wishes to
access APL2 facilities it does so by calling the APL2PI entry point. This entry point
is in the AP2VAPI object module for VM/CMS or the AP2TAPI object module for
MVS/TSO. That module can be link edited with the non-APL application, or it can
be dynamically loaded or located by the non-APL application (by using the LOAD
macro, for example, or the CMS NUCXLOAD macro). Once the APL2PI routine is
available, the non-APL application passes requests to it by using the standard OS
CALL protocol described in

The first call typically issued by the non-APL application is an 'INIT' call to
request initialization of APL2. If 'INIT' is not the first call made, the APL2PI inter-
face recognizes that APL2 has not yet been invoked and automatically issues the
equivalent of an 'INIT' call with default APL2 initialization parameters. Whether
this "INIT' call is issued implicitly or explicitly, APL2PI then causes APL2 to be
started much as if it had been invoked from a CMS or TSO command line.

Note: The CMS and TSO command services are not actually used. Among other
things, this means that a real APL2 command name must be used, and not
the name of an EXEC or CLIST that would invoke APL2.

The normal default command used to invoke APL2 will contain the invocation
options QUIET and RUN(APL2PI).

e The QUIET option suppresses display of the APL2 greeting messages and the
interaction associated with establishing a connection to the APL 2PI function.
Its use is not essential to the proper operation of the APL2PI interface, but it is
recommended since this output tends to be confusing when running an applica-
tion. QUIET will be turned off once the interface is initialized, so that APL2
output during execution will be displayed normally.

* The RUN(APL2PI) option is required for proper operation of the interface. It
causes the APL2PIF external function to be invoked (indirectly, with argu-
ment 0).

The APL?2PIE external function then becomes a “co-routine” with the APL2PI
routine used by the non-APL program; that is, each call from one to the other is
treated as a return by the other one. APL2PIF begins by calling APL2PI, which
treats this as a return from its request to start APL2.

At this point, APL2PI recognizes that the invocation of APL2 is complete and passes
control back to the non-APL application if an explicit ' INIT' call was issued, or pro-
ceeds with the non-APL application's request if the 'INIT' call was implicitly issued.

When and if the non-APL application issues a request other than 'INIT' or 'TERM'
to the APL2PI interface, APL2 will be in a state where it is awaiting the completion
of its call to the APL2PIE external routine. 'APLE', 'APLS', 'APLF' and 'APLV'
requests are completed by APL2PI using “callback” requests to APL2, i.e. a combi-
nation of 'XE' and 'XF' service calls as documented in FXE: Evaluate an APL]
Expression” on page 106 and f‘XF: Form or Find an APL Object” on page 109 bf
[Chapter 14]

The 'APLP' request is executed by passing control from APL2PI to APL2PIE
which executes the request using local logic and then passes control back to
APL2PI.

Chapter 21. Implementation Details 173

The 'APLX' request causes APL2PI to pass control to APL 2 PIE which returns
control to the APL2 session or application that called it. (See -- Heading 'APLXIC'
unknown -- for information about the message which is displayed or returned in this
situation.) When the user or APL application subsequently issues an APL2P1T or
APL2PIFE 0 ' request, control is passed back to the APL2PI routine. APL2PI
sets return codes and return values appropriately and returns control to the
non-APL application which called it.

When the non-APL application issues a 'TERM' request, APL2PI calls APL2PIF
which terminates the APL2 session by triggering) 0 FF command processing.
APL2PI then itself terminates, returning control to the non-APL application.

Invoking a Non-APL Application from APL2

A non-APL application can be invoked from the APL2 environment using the fol-
lowing call to APL2PIE:

arguments APL2PIE 1 'name'

When APL2PIE receives this request, it calls the external routine APL2PI with a
request to activate the specified non-APL application routine. APL2PI initializes the
interface and then loads and calls the non-APL application routine.

In the CMS environment, APL2PI first looks for an existing CMS nucleus extension
whose name matches that of the specified routine. If one is found, its address is
used as the entry point address for the application. If no matching CMS nucleus
extension is found, APL2PI issues a CMS NUCXLOAD for a relocatable CMS module
with the specified name. In either case, APL2PI then calls the application using
CMS SVC 202 conventions.

In the TSO environment, APL2PI issues an MVS LOAD for the specified routine, and
calls it as a TSO command processor.

When the non-APL application receives control, it can issue calls to APL2PI to make
service requests. The first request issued should be an "INIT' request. Although
APL2 and APL2PI have already been initialized, this 'INIT' request allows the
non-APL application to identify itself by name to the APL2PI interface, and allows a
service routine to be specified if desired.

Other APL2PI requests can be subsequently issued by the non-APL application.
APL2PI processes these requests by invoking APL2 services or resuming APL pro-
grams, and eventually returning control to the non-APL application. See [Invokind
|[APL2 from a Non-APL Application” on page 173|for further details.

Before terminating, the non-APL application should issue a 'TERM' request to
APL2PI. On return from this service call, the application is then free to terminate.
When it does so, control is returned to APL2PI, since it originally invoked the
non-APL application. APL2PI in turn returns control to the APL2PIF external
function which returns control to the APL2 session or to the APL function that last
called it.

174 APL2 Programming: Processor Interface Reference

Environment Isolation

When APL2 is invoked, it establishes exits so that asynchronous or unexpected
events (attention signals, program checks, ABENDs, etc.) are captured and prop-
erly handled. Many non-APL applications, particularly those written in high level
languages, need to do much the same thing. When mediating between APL2 and
non-APL applications, APL2PI must take care to keep the APL2 and non-APL envi-
ronments separate so that exits do not interfere with each other, and so that each
application is properly notified of events appropriate to it.

In the TSO environment, this is done by using MVS task isolation. APL2 and each
non-APL application is established as a separate MVS task. APL2PI activates and
deactivates the appropriate tasks (using WAIT and POST) as control flows between
APL2 and a non-APL application. Since each MVS task may have its own set of
exits, no conflicts exist between APL2 and any of the non-APL applications and
events are directed to the task that is currently active.

In the CMS environment, no equivalent level of task isolation is available. Each
time control crosses between the non-APL and APL2 applications, APL2PI saves
the SPIE, STAE, and STAX information for the application giving up control and rees-
tablishes the corresponding information for the application to which control is being
passed.

Note: APL2PI makes no attempt to control or detect CMS ABNEXIT or CMS simu-
lation of DOS/VSE STXIT. This should not cause any problem unless

e a non-APL application requests an ABEND using DMSABN, or
e a non-APL application activates the CMS DOS environment.

Neither of these actions is supported for programs interacting with APL2.

There is another aspect of the CMS environment that can cause problems. When
a command is issued by an application program using SVC 202, a level is added to
the CMS SVC save area chain. APL2 is dependent on running all of its operations
at the same CMS SVC level, and would ABEND if it passed control to an external
routine which changed the SVC level and returned to APL2. For this reason APL2PI
simulates an SVC 202 linkage rather than simply issuing an SVC 202 to invoke a
non-APL application. In this way the non-APL application and APL2 both operate
at the same CMS SVC level as they pass control back and forth.

There are many cases in CMS where applications can issue commands and
thereby cause additional levels to be added to the SVC chain. For example, a
REXX application could call an XEDIT session which in turn could call an XEDIT
macro which could execute CMS commands. Each of these calls would introduce
another level to the SVC chain. If such an application were to make calls to APL2PI,
all calls would have to occur at the same SVC level. If that application was invoked
from APL2 via APL2PIFE, then all calls to APL2PI would have to be made from the
SVC level at which the application was invoked by APL2.

Chapter 21. Implementation Details 175

176 APL2 Programming: Processor Interface Reference

Appendixes

© Copyright IBM Corp. 1987, 1992 177

Appendix A. Service Parameter Summary

In the following table:
» boldface parameters are values you must supply.
e UPPERCASE parameters are keywords you must specify.
* jtalic parameters have values returned by the system.

e underlined italic parameters have values you must supply, but which will be
replaced by the system.

Figure 33 (Page 1 of 2). Service Parameter Summary
Parm2 Parm3 Parm4 Parm5 Parm6 Parm7 Parm8 Parm9

|[Chapter 6, Code D__: Data Conversion Services |
DE retcode datalen outbuff data

DN retcode bufflen outbuff data types index count [descrip]
DU retcode datalen outbuff data trantab
DX retcode outlen outbuff data datalen options [charset]

Dz retcode datalen outbuff data

|[Chapter 7, Code E__: Error Handling Services |

ED dumpid [psw [regs]]
ET abcode
EX exitl0

EZ refcode entryadd token

[Chapter 8, Code F__: File System Services |

FA retcode libno fname pass token usetype [maxlen [records]]
FC retcode libno fname pass maxsize usetype [maxlen]
FD retcode libno fname pass

FG retcode OS token ghame fname

FG retcode SR token bufflen buffer reclen

FG retcode CL token

FL retcode libno pass bufflen buffer [start [end]]
FR retcode bufflen buffer recno token

FS retcode libno fname pass maxsize

FW retcode buffer recno token

FZ retcode token

[Chapter 9, Code M__: Message Services |
MC retcode msgnum

MF retcode msgnum opt [fill-val fill-len] ..

MF retcode msgnum opt outarea outlen [fill-val fill-len]
[Chapter 10, Code P__: Process Services |

PP ecb postcode

PT ech time

PW [posted ecb [ech] -

IChapter 11, Code SC: Shared Variable Services |
SC svpblock

|Chapter 12, Code T__: Terminal Services |
TA action resource signal
TZ action

178 © Copyright IBM Corp. 1987, 1992

Figure 33 (Page 2 of 2). Service Parameter Summary
Parmé Parm7 Parm8 Parm9

Parm2

Parm3

[Chapter 13, Code V

: Virtual Storage Services |

VF
VG
VP
\'/e]
Vv
VX

length
length
length
length
length
length

address
address
address
address
address
address

|[Chapter 14, Code X_: External Call Services |

XB
XC
XD
XE
XF
XG

ecv
token
token
ecv
ecv
ecv

area
area

Appendix A. Service Parameter Summary

179

Appendix B. Testing and Using Processors

Complete information on making user-written processors part of the APL2 system is
provided in APLZ2 Installation and Customization under CMS and APLZ2 Installation
and Customization under TSO. This appendix outlines only one approach for each
case. A number of variations are possible.

Accessing a Local Auxiliary Processor under CMS

1.
2.

Compile the processor, creating a CMS TEXT file.

Use the AP2MV2AP EXEC supplied with APL2 to put the processor into a
LOADLIB. If you want to use more than one local AP in this way they must all
be put into the same LOADLIB. For example, if your AP is named OUR517:

EXEC AP2MV2AP OUR517 OUR517 TEXT * MYAPS LOADLIB A

. Use the CMS FILEDEF to associate the LOADLIB with name AP2LOAD.

(This is often done in an AP2EXIT EXEC.) For example:
FILEDEF AP2LOAD DISK MYAPS LOADLIB *

. Include the APNAMES parameter in your APL2 invocation. For example:

APL2 APN(OUR517)

. Use 0STVO to share variables with the AP. For example:

517 0OSVO 'VAR'

Accessing an External Routine under CMS

1.

Compile the routine, creating a CMS TEXT file.

2. Use the CMS LKED command to place the module into a LOADLIB. You can

180

access as many loadlibs as you wish, so you may find it simpler to use a sepa-
rate one for each external routine. For example, if your external routine is
named PARSE:

FILEDEF SYSLMOD CLEAR
FILEDEF SYSLMOD DISK PARSE LOADLIB A (RECFM U
LKED PARSE(RENT

. Create a NAMES file defining the syntax of your routine. Names files are

described in APL2 Programming: System Services Reference. As an example,
you might place this in a file named PARSE NAMES:

:NICK.PARSE :LOAD.PARSE :MEMB.PARSE :LINK.FUNCTION :LARG. :RARG.

. Within APL2, use ONV4 to associate a name in your workspace with the

external routine. For example:

'"(PARSE)' 11 0ONA 'PARSE'

© Copyright IBM Corp. 1987, 1992

Accessing a Local Auxiliary Processor under TSO

1.
2.

Compile the processor, creating a TSO OBJ file.

Use the TSO LINK command to convert the object file to a load module and
place it in a load library. You may want to keep all of your private load
modules in one library. For example, if your AP is named OUR517:

LINK OUR517 LOAD(PRIVATE(OUR517)) AMODE(31) RENT

. Allocate filename LOADLIB to your load module library before invoking APL2.

For example:
ALLOC F(LOADLIB) DA(PRIVATE.LOAD)

. Include the APNAMES parameter in your APL2 invocation. For example:

APL2 APN(OUR517)

. Use 0STVO to share variables with the AP. For example:

517 0OSVO 'VAR'

Accessing an External Routine under TSO

1

. Compile the processor, creating a TSO OBJ file.
2.

Use the TSO LINK command to convert the object file to a load module and
place it in a load library. You may want to keep all of your private load
modules in one library. For example, if your external routine is named PARSE:

LINK PARSE LOAD(PRIVATE(PARSE)) AMODE(31) RENT

. Create a NAMES file member defining the syntax of your routine. Names files

are described in APL2 Programming: System Services Reference. You may
want to keep all of your private names files in one library. As an example, you
might place this in a member named PARSE: of a partitioned data set named
MY.NAMES.

:NICK.PARSE :LOAD.MYFUNS :MEMB.PARSE :LINK.FUNCTION :LARG. :RARG.

. Allocate your load module library using the name specified in the NAMES file.

For example:
ALLOC F(MYFUNS) DA(PRIVATE.LOAD)

. Allocate your names file library. For example:

ALLOC F(MYNAMES) DA(MY.NAMES)

. Within APL2, use ONV4 to associate a name in your workspace with the

external routine. For example:

'"(MYNAMES)' 11 0ONA 'PARSE'

Appendix B. Testing and Using Processors 181

Appendix C. Macros Intended for Customer Use

182

The macros identified in this appendix are provided as programming interfaces for
customers by APL2 Version 2. These macros are written in assembler language.
They can be used as models for writing macros for other languages if desired.

Warning: Do not use as programming interfaces any APL2 Version 2 macros other
than those identified in this appendix.

The following set of macros is for Auxiliary Processors written to the APL2 inter-
faces, and for Associated Processor 11 routines:

Mapping Macro

MVS Distribution Library

CMS Macro Library

AP2CDR APL2.AAP2MACS AP2MAC MACLIB
AP2CMDC APL2.AAP2MACS AP2MAC MACLIB
AP2CSVPE APL2.AAP2MACS AP2MAC MACLIB
AP2ECV APL2.AAP2MACS AP2MAC MACLIB
AP2PCV APL2.AAP2MACS AP2MAC MACLIB
AP2PTH APL2.AAP2MACS AP2MAC MACLIB
AP2RC APL2.AAP2MACS AP2MAC MACLIB
AP2SCV APL2.AAP2MACS AP2MAC MACLIB
AP2SDF APL2.AAP2MACS AP2MAC MACLIB
AP2TCMS APL2.AAP2MACS AP2MAC MACLIB
AP2XPTX APL2.AAP2MACS AP2MAC MACLIB

If you need to use the mapping macros, ask your system programmer:

e Under CMS, you need to know what disk APL2 is installed on.
¢ Under MVS, you need to know the dataset name of the distribution library for

the APL2 macros.

© Copyright IBM Corp. 1987, 1992

The following set of macros is for Auxiliary Processors written to VS APL interfaces.

Mapping Macro MVS Distribution Library CMS Macro Library
APLDESC APL2.AAP2MACS AP2VSAPL MACLIB
APLKSTOZ APL2.AAP2MACS AP2VSAPL MACLIB
APLKZTOS APL2.AAP2MACS AP2VSAPL MACLIB
APLPCV APL2.AAP2MACS AP2VSAPL MACLIB
APLREGS APL2.AAP2MACS AP2VSAPL MACLIB
APLSCVS APL2.AAP2MACS AP2VSAPL MACLIB
APLSHSVP APL2.AAP2MACS AP2VSAPL MACLIB
APLZCODE APL2.AAP2MACS AP2VSAPL MACLIB
AP2CDR APL2.AAP2MACS AP2VSAPL MACLIB
AP2SDF APL2.AAP2MACS AP2VSAPL MACLIB
ASVDFORM APL2.AAP2MACS AP2VSAPL MACLIB
ASVPACC APL2.AAP2MACS AP2VSAPL MACLIB
ASVPCPY APL2.AAP2MACS AP2VSAPL MACLIB
ASVPOFR APL2.AAP2MACS AP2VSAPL MACLIB
ASVPQRY APL2.AAP2MACS AP2VSAPL MACLIB
ASVPREF APL2.AAP2MACS AP2VSAPL MACLIB
ASVPRET APL2.AAP2MACS AP2VSAPL MACLIB
ASVPSOF APL2.AAP2MACS AP2VSAPL MACLIB
ASVPSON APL2.AAP2MACS AP2VSAPL MACLIB
ASVPSPC APL2.AAP2MACS AP2VSAPL MACLIB
ASVPWAIT APL2.AAP2MACS AP2VSAPL MACLIB

If you need to use the mapping macros, ask your system programmer:

e Under CMS, you need to know what disk APL2 is installed on.
e Under MVS, you need to know the dataset name of the distribution library for

the APL2 macros.

Appendix C. Macros Intended for Customer Use

183

Index

Special Characters
:LINK.FORTRAN routine entry 26
:LINK.OBJECT routine entry 25
Ovd 11
asvo
See APL2 Programming: System Services Reference
asve

See APL2 Programming: System Services Reference

A

ABEND exit 46
ABEND recovery
APL2PI 175
abnormal termination 46
access a file group 55
access control 7
Access Control matrix 8
Access Control Vector 7, 82, 83
access information inspection 82
access state 7
Access State Vector 7
accessing the terminal 93
ACV (Access Control Vector) 7, 82, 83
ACV change 9
addressing mode 22, 29
allocate
space in the workspace 111
the terminal 93
AMODE 22, 29
APL
expression evaluation 106
file system services 50
object 109
token conversion 104
APL token conversion 105
APL2PI
accessing
CMS 147
TSO 151
APL2 Program Interface 118
APLP—enter or exit a namespace namescope 137
APLV—reference or specify an APL2 variable 135
APLX processing 174
error recovery 175
execute an APL2 function
APLE 130
APLF 133
APLS 127
external functions 141
implementation details 172

184

APL2PI (continued)
in a VM/CMS environment 146
in an MVS/TSO environment 150
INIT processing 173
INIT—initialization call 124
interface calls 122
invocation command
CMS 146
TSO 150
invoking APL2 173
return codes 138
return control to APL2
APLX 131
routines 172
SVC level restriction, CMS 175
TERM—termination call 126
using APL2PI from C programs 160
using APL2PI from COBOL programs 165
using APL2PI from FORTRAN programs 154
using APL2PI from PL/l programs 170
APL2PIE
external functions 118
implementation details 172
invoke a non-APL application 141
CMS 148
TSO 152
return control to non-APL application 141
routines 172
service request to non-APL application 142
starting a non-APL application 174
terminate non-APL application 142
APLE—execute an APL2 function 130
APLF—execute an APL2 function 133
APLP—enter or exit a namespace namescope 137
APLS—execute an APL2 function 127
APLV—reference or specify an APL2 variable 135
APLX—return control to APL2 131
associated processor 11
ASV (Access State Vector) 7
ATP (Array to Pointer) 139
auxiliary processor 2
entry and exit, global 24
entry and exit, local 22
global 3
local 3
names 6
numbers 5
under MVS 4
under VM 4

© Copyright IBM Corp. 1987, 1992

B

build a CDR using a pattern 102

C

C programs
using APL2PI from 160
calls to APL2 118, 139
converting pointers
ATP (Array to Pointer) 139
PTA (Pointers to Array) 139
interface 122
invoke a non-APL application 141
overview 119
pattern CDRs 139
return control to non-APL application 141
service request to non-APL application 142
terminate non-APL application 142
using CDR results 139
calls to other languages 145
CDR (common data representation) 13
pattern use 102
change data format of numbers 38
change the size of an APL file 59
character translation 37, 40, 43
check message existence 62
clear an ABEND exit 46
close an APL file 61
COBOL programs
using APL2PI from 165
common data representation 13
data section 13, 18
dense form 13
descriptor section 13, 16
format 16
header section 13, 16
mapping macro 18
mixed arrays 17
nested arrays 17
pointer form 13
pointer section 13, 17
convert 41
APL tokens to addresses 104
extended character data 41
copy shared variable 75
coupling change 9
create an APL file 53
CSVCOPY: copy 75
CSVDFORM: data format control 91
CSVOFF: SVP signoff 73
CSVON: SVP signon 71
CSVQUERY: query 76
query
processors 76
variables 76

CSVREF: reference 78
CSVREL: release 79
CSVRET: retract 80
CSVSCAN: scan for an offer 81
CSVSEEAC: see access information 82
CSVSETAC: set ACV 83
CSVSHARE: match an offer 86
CSVSHARE: offer a variable 84
CSVSHARE: query a share 88

query

a share 88

CSVSPEC: specify 89
CSVSTATE: state 90

D

data conversion services 37
change data format of numbers (DN) 38
convert extended character data (DX) 41

translate from EBCDIC to VS APL Zcode (DZ) 43
translate from VS APL Zcode to EBCDIC (DE) 37

translate with caller supplied table (DU) 40
data format

control 91

of numbers 38
DBCS 41
delete an APL file 54
delete linkage

:LINK.FUNCTION routine entry 32
designate a permanent routine 49
display a message 63
double byte character sets 41

E

EBCDIC 37, 43
ECB (Event Control Block) 9, 66, 68
ECB post codes 9
ECV (External Control Vector) 27
entry and exit
:LINK.FUNCTION routine 27
global 24
global auxiliary processor 24
local 22
local auxiliary processor 22
environments
compiled language 172
language isolation 175
error
dump, how to create 44
handling services 44
designate a permanent routine (EZ) 49
produce a dump (ED) 44
request abnormal termination (ET) 45
set or clear an ABEND exit (EX) 46
recovery, APL2PI 175

Index

185

error (continued) get (continued)

signalling 45 global storage 96
trapping 46 process
evaluate an APL expression 106 storage 97
Event Control Block 9, 66, 68 variable length process storage 99
expression evaluation 106 global storage 95, 96
extended
character data 41 |
storage 100
external incoming shared variable offer scan 81
APL tokens to addresses INIT—initialization call 124
length pairs 105 inspect access information 82
call services 101 interfaces and services
allocate or free space in the workspace data conversion 37
(XG) 111 error handling 44
build a CDR using a pattern (XB) 102 external call 101
convert APL tokens to address/length pairs file system 50
(XD) 105 message 62
evaluate an APL expression (XE) 106 process control 65
form or find an APL object (XF) 109 shared variable 69
routines 101 terminal 92
services virtual storage 95
convert APL tokens to addresses (XC) 104 invocation command
external call APL2PI
:LINK.FUNCTION routine entry 29 CMS 146
External Control Vector ECV 27 TSO 150

invoking APL2
from a non-APL application 173

F

file services return codes 51 L
file system services 50
access a file group (FG) 55 language environments 172
close an APL file (FZ) 61 isolation of 175
create an APL file (FC) 53 length 15
delete an APL file (FD) 54 :LINK.FUNCTION routine entry
list APL files (FL) 57 delete linkage 32
open an APL file (FA) 52 entry and exit 27
read an APL file (FR) 58 external call 29
return codes 51 list
size of an APL file (FS) 59 APL files 57
write an APL file (FW) 60 share partners 76
find an APL object 109 shared variables 76
forced termination 45
form an APL object 109 M

format a message 63
FORTRAN programs

using APL2PI from 154
free

global storage 95

process storage 98
function routine 11

match a shared variable offer 86
MC: check for message existence 62
message services 62

MF: format a Message 63

mixed arrays 17

N

G name association 11
nested arrays 17
non-APL applications
APL2PI layering restriction 175

get
extended storage 100

186 APL2 Programming: Processor Interface Reference

non-APL applications (continued)
multiple, with APL2PI 172
numeric conversion 38

(o)
object, APL 109
offer
a variable 84
matching, shared variable 86
sequence number 6
shared variable scan 81
open an APL file 52
OSN 6

P
patterns for CDRs 102
pershare index 6
PL/I programs
using APL2PI from 170
pointers 18
posting an ECB 9, 66
process
services 65
post an ECB (PP) 66
start a timer (PT) 67
wait for an event (PW) 68
storage 97, 98, 99
processor
ECB 9
identification 5
number 5
produce a dump 44
program checks 46
protocol for service calls 35
PSX 6
PTA (Pointers to Array) 139

Q

query
a share 88
share partner list 76
shared variable list 76
queue a message 63
quotas 7

R
read an APL file 58
recovery from errors 46
reference shared variable 78
release
shared variable control 79
space in the workspace 111
terminal 94

representation
type 15
request
abnormal termination 45
state information, shared variable 90
vector 10
resource available 10
retract shared variable 80
retry after an error 46
return a message 63
return codes, file services 51
RL (representation length) 15
RQV (request vector) 10
RT (representation type) 15

S

SC: shared variable services 69
scan for a shared variable offer 81
search for a shared variable offer 81
see access information 82
service

call protocol 35

request code 36
service routine

APL2PIE 142
set

ACV 83

an ABEND exit 46

or use signals 10

shared variable 89

shared variable data format 91
share

ECB 9

partners 2
Shared Variable Processor 2

global 5

local 4
shared variable services 69

copy 75

data format control 91

match an offer 86

offer a variable 84

processor control 71

query 76

reference 78

release 79

retract 80

scan for an offer 81

see access information 82

set ACV 83

share control 74

specify 89

state 90

SVP signoff 73

SVP signon 71

Index

187

shared variable services (continued)
the PCV 71
the SCV 74
shared variables 2
identifiers 6
sign off 10
signal 24
signal an event 66
signalling 9
ACV change 9
coupling change 9
resource available 10
sign off 10, 24
variable Set or Use 9, 10
signoff from SVP 73
signon to SVP 71
size of an APL file 59
space in the workspace 111
specify shared variable 89
start a timer 67
state information request, shared variable 90
storage
dump, how to create 44
storage, in virtual memory 95
SVO
See APL2 Programming: System Services Reference
SVP
See also Shared Variable Processor
signoff 73
signon 71
svaQ
See APL2 Programming: System Services Reference

T

TERM—termination call 126

terminal
access 93
release 94

services 92
allocate the terminal (TA) 93
release the terminal (TZ) 94
use 93
terminating abnormally 45
timer 67
token
conversion 104, 105
to CDR conversion 102
translate
from EBCDIC to VS APL Zcode 43
from VS APL Zcode to EBCDIC 37
with caller supplied table 40
trapping errors 46

188 APL2 Programming: Processor Interface Reference

U

Use shared variable 78

\'}

variable
length process storage 99
offer 84
setoruse 9
virtual storage services 95
free
global storage (VF) 95

process storage (VQ) 98

get
extended storage (VX)
global storage (VG) 96

100

process storage (VP) 97

variable length process storage (VV)

VS APL Zcode 37, 43

w

wait for an event 68
workspace storage 111
write an APL file 60

99

We'd Like to Hear from You

APL2 Programming:
Processor Interface Reference
Version 2 Release 1

Publication No. SH21-1058-00

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

¢ Electronic mail—Use one of the following network IDs:

— IBMMail: USIB6JN8
— Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

APL2 Programming:
Processor Interface Reference
Version 2 Release 1

Publication No. SH21-1058-00

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O O O O O
Complete O | O] |
Easy to find]] O] |
Easy to understand O] O | |
Well organized m]] O | |
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O] O]]
Overall satisfaction O | O o |

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
SH21-1058-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12

PO Box 49023

San Jose, CA 95161-9023

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SH21-1058-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370-34
Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Spine information:

7= APL2 Programming: Processor Interface Reference Version 2 Release I

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	Audience
	Organization
	APL2 Publications
	Related Publications

	Part One: Introduction to Processors and External Routines
	Chapter 1. Auxiliary Processor Concepts
	Introduction
	Scheduling Processors
	Global and Local Shared Variable Processors
	Processor Identification
	Shared Variable Identification
	Quotas
	Access Control
	Event Signalling and Event Control Blocks

	Chapter 2. Associated Processor External Routine Concepts
	Chapter 3. APL2 Data Representation
	Representation Types and Lengths
	CDR Format
	Header Section
	Descriptor Section
	Pointer Section
	Data Section
	AP2CDR Mapping Macro
	Invoking the Macro
	Typical Expansion

	Part Two: Interfaces and Services from APL2
	Chapter 4. Entry and Exit Conditions
	Local Auxiliary Processor Entry and Exit
	Auxiliary Processor Exit

	Global Auxiliary Processor Entry and Exit
	:LINK.OBJECT Routine Entry
	:LINK.FORTRAN Routine Entry
	:LINK.FUNCTION Routine Entry and Exit
	The External Control Vector (ECV)

	:LINK.FUNCTION Routine Entry: External Call
	:LINK.FUNCTION Routine Exit: External Call
	The Delete Linkage Call and Exit

	Environment Programs
	Self-Describing External Routine Identification Signature
	Routine List Identification Signature

	Chapter 5. General Protocol for Service Calls
	Chapter 6. Code D__: Data Conversion Services
	DE: Translate from VS APL Zcode to EBCDIC
	DN: Change Data Format of One or More Numbers
	DU: Translate with Caller Supplied Table
	DX: Convert Extended Character Data
	Special Notes on Character Data Conversion

	DZ: Translate from EBCDIC to VS APL Zcode

	Chapter 7. Code E__: Error Handling Services
	ED: Produce a Dump
	ET: Request Abnormal Termination
	EX: Set or Clear an ABEND Exit
	Entry/exit conditions for abend exits

	EZ: Designate a Permanent Routine

	Chapter 8. Code F__: File System Services
	File Services Return Codes
	FA: Open an APL File
	FC: Create an APL File
	FD: Delete an APL File
	FG: Access a File in a File Group
	FL: List APL Files
	Set by processor
	Returned to processor

	FR: Read an APL File Record
	FS: Change the Size of an APL File
	FW: Write an APL File Record
	FZ: Close an APL File

	Chapter 9. Code M__: Message Services
	MC: Check for Message Existence
	MF: Format a Message

	Chapter 10. Code P__: Process Services
	PP: Post an ECB
	PT: Start a Timer
	PW: Wait for an Event

	Chapter 11. Code SC: Shared Variable Services
	SVP Processor Control
	CSVON: Signon
	CSVOFF: Signoff

	SVP Share Control
	CSVCOPY: Copy
	CSVQUERY: Query
	CSVREF: Reference
	CSVREL: Release
	CSVRET: Retract
	CSVSCAN: Scan for an Offer
	CSVSEEAC: See (inspect) Access Information
	CSVSETAC: Set ACV
	CSVSHARE: Offer a Variable
	CSVSHARE: Match an Offer
	CSVSHARE: Query a Share
	CSVSPEC: Specify
	CSVSTATE: State

	CSVDFORM: SVP Data Format Control

	Chapter 12. Code T__: Terminal Services
	TA: Allocate the Terminal
	TZ: Release the Terminal

	Chapter 13. Code V__: Virtual Storage Services
	VF: Free Global Storage
	VG: Get Global Storage
	VP: Get Process Storage
	VQ: Free Process Storage
	VV: Get Variable Length Process Storage
	VX: Get Extended Storage

	Chapter 14. Code X__: External Call Services
	XB: Build a CDR Using a Pattern
	XC: Convert Data Tokens to Addresses
	XD: Convert Data Tokens to Address/Length Pairs
	XE: Evaluate an APL Expression
	XF: Form or Find an APL Object
	XG: Allocate or Free Space in the Workspace
	To Allocate Space
	To Free Space

	Part Three: Using VS APL Processors under APL2
	Chapter 15. Extensions to Support New Data Types
	Share Data Format (SDF)

	Part Four: Calls to APL2 from Non-APL Programs
	Chapter 16. Introduction to Calls to APL2
	Overview of Calls to APL2

	Chapter 17. APL2PI Interface Calls
	INIT—Initialization Call
	TERM—Termination Call
	APLS—Execute an APL2 Function
	APLE—Execute an APL2 Expression
	APLX—Return Control to APL2
	APLF—Execute an APL2 Function
	APLV—Reference or Specify an APL2 Variable
	APLP—Enter or Exit a Namespace Namescope
	Return Codes

	Chapter 18. Using the Calls to APL2 Facility
	Using CDR Results
	Pattern CDRs
	External Functions ATP and PTA
	Using PTA and ATP

	External Functions APL2PI and APL2PIE
	APL2PI and APL2 Calls to Other Languages

	Chapter 19. System Related Considerations
	Using APL2PI in a VM/CMS Environment
	Modifying the APL2 Invocation Command and Options
	Accessing APL2PI from a Non-APL Application
	Invoking a Non-APL Application through APL2PIE
	Extended Addressing Considerations

	Using APL2PI in an MVS/TSO Environment
	Modifying the APL2 Invocation Command and Options
	Accessing APL2PI from a Non-APL Application
	Invoking a Non-APL Application through APL2PIE
	Extended Addressing Considerations

	Chapter 20. Language Related Considerations
	Using the APL2PI Interface from FORTRAN
	Notes
	Notes
	Notes

	Using the APL2PI Interface from C
	Notes
	Notes

	Using the APL2PI Interface from COBOL
	Notes
	APL2 and COBOL Data Representations

	Using the APL2PI Interface from PL/I
	Notes

	Chapter 21. Implementation Details
	Invoking APL2 from a Non-APL Application
	Invoking a Non-APL Application from APL2
	Environment Isolation

	Appendixes
	Appendix A. Service Parameter Summary
	Appendix B. Testing and Using Processors
	Accessing a Local Auxiliary Processor under CMS
	Accessing an External Routine under CMS
	Accessing a Local Auxiliary Processor under TSO
	Accessing an External Routine under TSO

	Appendix C. Macros Intended for Customer Use
	Index

