APL2

Migration Guide

Version 2 Release 2

SH21-1069-01

APL2

Migration Guide

Version 2 Release 2

SH21-1069-01

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’|
on page V.

Second Edition (March 1994)

This edition replaces and makes obsolete the previous edition, SH21-1069-0. The technical changes for this edition are summarized
under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Version 2 Release 2 of APL2, 5688-228, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1994. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices v
Programming Interface Information, v
Trademarks v
About This Book Vi
Who Should Use This Book Vi
APL2 Publications Vi
Conventions Used in This Library vii
Summary of Changes iX
Product iX
Chapter 1. Overview of Migration 1
Planning for Migration from VS APL, 1
Preparing for Migration from VS APL 2
Chapter 2. Transferring Workspaces from VS APL 3
Preparation for Transferring Workspaces 3
Choosing an Alphabet 3
Adjusting for DAV Dependencies 4
Transfer Procedure 5
The YMCOPY Command 6
Transferring Selected Objects, 9
Error Messages When Using YMCOPY 9
Chapter 3. APL2 Compared with VS APL 11
New APL2 Features 11
New Language Features, 11
New System Features 13
Extended-Compatible Features 15
Extended-Compatible Language Features 15
Extended-Compatible System Features 19
Extended-Incompatible Features 21
Extended-Incompatible Language Features 21
Extended-Incompatible System Features 24
VS APL Features No Longer Supported 26
Language Features No Longer Supported, 26
System Features No Longer Supported, 26
Workspaces 27
External Functions Distributed with APL2 28
Chapter 4. Testing and Debugging 30
Inspecting, Correcting, and Testing Functions 30
Using the TRANSFER Workspace 30
Whatto Look For 32
Testing Functions under APL2 32
Checking Data Files Used by a Function 35
Changes in APL2 Auxiliary Processor Translation Options 35
Possible Translation Problems 37
Checking Alternate Input 39

© Copyright IBM Corp. 1984, 1994 iii

iV APL2 Migration Guide

Checking User-Written Auxiliary Processors Used by a Function 39

Testing the Application AsaWhole 40
Performance Analysis of the Application 40
Chapter 5. Migration within APL2 41
Migrating between Mainframe APL2 Systems 41
Functional Changes—Version 1 to Version2 41
Migrating Workspaces 43
Coexistence with Version 1 43
Migrating between Mainframe and Workstations 44
Transferring Workspaces 44
Transferring AP 211 Files 45
Bibliography 46
APL2 Publications 46
Other Books You Might Need 46
Index 47

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject material in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Corporation,

IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States
06904.

Programming Interface Information

This migration guide is intended to help programmers code APL2 applications in
APL2. This book documents General-Use Programming Interface and Associated
Guidance Information provided by APL2.

General-use programming interfaces allow the customer to write programs that
obtain the services of APL2.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

AlX IBM
AIX/6000 MVS/ESA
APL2 0S/2
APL2/6000 SQL/DS
DB2 System/370
GDDM System/390

The following terms, denoted by a double asterisk (**) in this publication, are trade-
marks of other companies:

Sun Sun Microsystems, Inc.
Solaris Sun Microsystems, Inc.
UNIX AT&T Corporation

© Copyright IBM Corp. 1984, 1994 \"

About This Book

This migration guide is intended to assist you in migrating your IBM* APL2* applica-

tions.

Who Should Use This Book

Use this book if you are a current user of VS APL and want to convert applications
and defined functions to APL2/370. Also use this book if you are a current user of
APL2 Version 1 and want to consider how the changes made to APL2 Version 2

influence workspace migration.

This book describes two migration aids provided with APL2/370: the system
command)MCOPY, for transferring workspaces, and the TRANSFER workspace,
for locating and fixing differences between VS APL and APL2. It also describes the
changes to APL2 for Version 2, as well as the workspace migration considerations
for those changes.

This book can also be useful when migrating from VS APL to APL2 on work-
stations. Workstation APL2's supplied workspace MIGRATE contains tools for
migration of VS APL workspaces directly to APL2 on workstations. Once migrated,
the information in [Chapter 3, “APL2 Compared with VS APL” on page 11 [can be
used to understand the language differences between VS APL and APL2.

APL2 Publications

Figure 1 lists the books in the APL2 library. This table shows the books and how
they can help you with specific tasks.

Figure 1 (Page 1 of 2). APL2 Publications

Information Book Publication Number
General product APL2 Fact Sheet GH21-1090
Warranty APL2/370 Application Environment Licensed
Program Specifications GH21-1063
APL2/370 Licensed Program Specifications GH21-1070
APL2 for AIX/6000 Licensed Program Specifica-
tions GC23-3058
APL2 for Sun Solaris Licensed Program Specifica-
tions GC26-3359
Introductory language APL2 Programming: An Introduction to APL2 SH21-1073
material
Common reference APL2 Programming: Language Reference SH21-1061
material APL2 Reference Summary SX26-3999

Vi

© Copyright IBM Corp. 1984, 1994

Figure 1 (Page 2 of 2). APL2 Publications

Information Book Publication Number
System interface APL2/370 Programming: System Services Refer-
ence SH21-1056
APL2/370 Programming: Using the Supplied Rou-
tines SH21-1054
APL2/370 Programming: Processor Interface Ref-
erence SH21-1058
APL2 for OS/2: User's Guide SH21-1091
APL2 for Sun Solaris: User's Guide SH21-1092
APL2 for AIX/6000: User's Guide SC23-3051
APL2 GRAPHPAK: User's Guide and Reference SH21-1074
APL2 Programming: Using Structured Query Lan-
guage SH21-1057
APL2 Migration Guide SH21-1069
Mainframe system pro- APL2/370 Installation and Customization under
gramming CMS SH21-1062
APL2/370 Installation and Customization under
7SO SH21-1055
APL2/370 Messages and Codes SH21-1059
APL2/370 Diagnosis Guide LY27-9601

For the titles and order numbers of other related publications, see the

[‘Bibliography” on page 46|

Conventions Used in This Library

This section discusses the conventions used in this library.

lower

UPPER

L]

[A1B]C]

fAlBlCY

0...

Lowercase italicized words in syntax represent values you must
provide.

In syntax blocks, uppercase words in an APL character set represent
keywords that you must enter exactly as shown.

Usually, brackets are used to delimit optional portions of syntax;
however, where APL2 function editor commands or fragments of code
are shown, brackets are part of the syntax.

A list of options separated by | and enclosed in brackets indicates that
you can select one of the listed options. Here, for example, you could
specify either 4, B, C, or none of the options.

Braces enclose a list of options (separated by |), one of which you
must select. Here, for example, you would specify either 4, B, or C.

An ellipsis indicates that the preceding syntactic item can be repeated.

An ellipsis following syntax that is enclosed in braces indicates that the
enclosed syntactic item can be repeated.

The term workstation refers to all platforms where APL2 is implemented except
those based on System/370* and System/390* architecture.

About This Book Vil

viii

Throughout this book, the following product names apply:

Product Name Platform
APL2/2 os/2*

APL2 for Sun Solaris Sun** Solaris**
APL2/6000* AIX/6000*
APL2/370 MVS or VM
APL2/PC DOS

APL2 Migration Guide

Summary of Changes

Product
APL2/370, Version 2 Release 2

Date of Publication: March 1994

Form of Publication: Revision, SH21-1069-01

Document Changes
e Added information for migration from Version 2 Release 1 to Version 2 Release
2
e Added diamond information
e Added information on workstation APL2

© Copyright IBM Corp. 1984, 1994 ix

X APL2 Migration Guide

Chapter 1. Overview of Migration

Migration is the process of transferring workspaces from one version of APL to
another while ensuring that applications in the workspaces are processed correctly
under the new version. You can transfer workspaces directly from VS APL to
APL2, or from one APL2 version to another.

To migrate workspaces from VS APL, you need to:
e Transfer workspaces from VS APL to APL2.
* Make changes to defined functions, and test and debug them.

e Check data files, alternate input (stacked data), and user-written auxiliary
processors.

e Test applications as a whole and put them into production.

APL2 provides a workspace, system functions, and system commands to aid in the
migration procedure. APL2's extended debugging capabilities can also help you
convert applications to APL2.

To migrate workspaces from the previous version of APL2, you need to load using
the) LOAD command, or copy using the) COPY command, the workspace into
APL2 Version 2 and then save it using the)SAVE command. For information on
the changes to APL2 in Version 2 and their effect on existing workspaces, see
[Chapter 5, “Migration within APL2” on page 41|

Planning for Migration from VS APL

APL2 and VS APL can run concurrently at your installation, or APL2 can completely
replace VS APL. In either case, you must make decisions concerning:

e Workspaces
e Files
* Auxiliary processors

Answering the following questions may help you make those decisions.

If you continue VS APL service, which workspaces remain VS APL workspaces,
and which are migrated to APL2?

e How long will you use the present applications? If a current VS APL applica-
tion is to be replaced in the future, you may decide to continue running it under
VS APL.

» Will the migration involve a workspace that is dependent on other workspaces?
Assess the impact of migrating all interdependent workspaces.

* Must functions that use files be changed? Determine the translation changes
needed for functions in the workspace that read from or write to a file. Also,
decide whether to convert the file to a different encoding. (Files created under
VS APL are usually compatible with APL2. However, files created under APL2
may be incompatible with VS APL.)

e Which user-written auxiliary processors must be adapted? Determine which
workspaces are dependent on user-written auxiliary processors.

© Copyright IBM Corp. 1984, 1994 1

e What are the space requirements for maintaining both VS APL and APL2? Cal-
culate the amount of space required by the code, workspaces, files, and user-
written auxiliary processors for both the VS APL and the APL2 systems.

If you do not continue VS APL service, what will you do with current VS APL
workspaces and any files used by those workspaces?

e Which workspaces are migrated and enhanced?

» Which workspaces are migrated and not enhanced?
* Which workspaces, if any, are dropped?

e Which files are converted to a new encoding?

e Which files are already compatible?

» Which files are dropped or replaced?

Regardless of whether you continue VS APL service, you should plan for:

* Adequate APL2 training.

e Procedures and temporary space for maintaining a backup copy of all code,
workspaces, files, and user-written auxiliary processors being converted from
VS APL to APL2.

Maintain backup copies until you are sure that your applications are working
properly under APL2.

Preparing for Migration from VS APL

Read this guide to learn about the overall process of migrating to APL2.

When you are ready to migrate, follow the procedure in [Chapter 2, “Transferring|
[Workspaces from VS APL” fo transfer workspaces from VS APL to APL2.

To familiarize yourself with the differences between VS APL and APL2, see
[Chapter 3, “APL2 Compared with VS APL” on page 11|

After you transfer your workspaces, refer to [Chapter 4, “Testing and Debugging” on|
to modify functions in the transferred workspaces. It includes what to look
for while you are debugging functions, and while you are checking data files, data
on the alternate input stack, and user-written auxiliary processors.

2 APL2 Migration Guide

Chapter 2. Transferring Workspaces from VS APL

This chapter discusses the transfer of workspaces from VS APL to APL2/370. For
information about transferring workspaces from VS APL to workstation APL2, see
the appropriate user's guide.

Preparation for Transferring Workspaces

Before transferring any workspaces do the following:

1.
2.

4.

Make sure that APL2 has been installed and verified.

If you are migrating to APL2 under CMS, check for a LIBTAB APL2 file. If it
does not exist, you can copy and modify the APLIBTAB file that you are using
for VS APL. Do the following:

a. Copy the VS APL APLIBTAB:
COPY APLIBTAB APLIBTAB xxx LIBTAB APL2 yyy
where:
xxx is the disk where the APLIBTAB file currently resides.
yyy is the same disk as that containing the module used to call APL2.

b. For each public library, insert an @ before the filemode. If no filemode is
shown, enter @ Y.

c. Change each project library designation to public.

Note: For more information, see APL2/370 Programming: System Ser-
vices Reference.

. Determine which workspaces to transfer. To find the names of the workspaces,

start VS APL and issue the)LIB or)LIB ncommand, where nis the
number of the library where the workspace resides.

Modify functions to adjust for JA V dependencies, as described in [‘Adjusting fo
[04 7V Dependencies” on page 4}

. If VS APL resides on a system other than the host system for APL2, transfer

your VS APL workspaces and files from that system to the host system—CMS
or TSO. VS APL does not need to exist on the host system if your workspaces
follow the VS APL naming conventions and format for the host system.

Choosing an Alphabet
VS APL used uppercase and underbarred uppercase letters in names. It allowed
lowercase letters in comments, constants, and variables. APL2 uses uppercase
and lowercase letters in names. The System/370 and System/390 implementation
of APL2 allows underbarred letters in comments, constants, and variables.
ASCIll-based implementations of APL2 (such as APL2/PC, APL2/2, APL2 for Sun
Solaris, and APL2/6000) do not define underbarred letters at all.

© Copyright IBM Corp. 1984, 1994

As a migration aid, the APL2/370 product provides some toleration of underbarred
letters in names. The degree of toleration is controlled by a CASE option:

CASE(2) Underbarred letters in names result in SYNTAX ERROR whenever the
names are encountered while processing an APL statement. No con-
version is performed when the statement is accepted into an APL2
workspace.

CASE(1) Statements containing underbarred letters in names are accepted, but
the letters are converted to lowercase before they are stored in the
APL2 workspace. This includes labels, arguments, variable names, and
names of defined functions. The conversion is applied to statements
from sources such as typed input, APL editors,)TN,)COPY, and of
immediate importance to this discussion,)XCOPY. It does not include
constants (quoted character data in functions), comments, or the values
within character arrays. If constants or arrays are later used as APL
statements, for example by applying ¢, OEA4, or FX to them, under-
barred letters in names within the data being evaluated are converted at
that time.

CASE(0) In addition to the processing done for CASE(1), lowercase letters in
names are converted to underbarred letters whenever the names are
displayed or returned by a function. This option gives the appearance
that the system is behaving like VS APL, although in fact lowercase
letters are being used internally.

CASE(2) is not recommended when converting workspaces from VS APL, because
manual modification of all underbarred letters would be required. Either CASE(1)
or CASE(0) provide semi-automatic translation of underbarred letters to lowercase.
IBM recommends CASE(1) because it simplifies later migration to ASCII-based
platforms, or use of certain ASCll-based terminal emulators. However some instal-
lations may choose CASE(0) so that the VS APL to APL2 migration appears as
transparent as possible to their APL users.

Whatever CASE is chosen, it is important to note that the case of a workspace can
never be changed except by copying it into another workspace having a different
CASE. CASE is an APL2 invocation option, which can be changed dynamically by
using the OPTION external function or the command:

JCHECK SYSTEM CASE(n)

However that option does not affect the active workspace. It should be thought of
instead as only an implicit parameter to the) CLEAR command. Migration is
normally accomplished by using the sequence of APL commands)CLEAR,
JMCOPY,)SAVE. The CASE in effect for the session at the time the)CLEAR is
done in that sequence determines the case of the saved workspace.

Adjusting for JA 7 Dependencies

You can translate character data from VS APL internal encoding (Z-codes) to
APL2/370 internal encoding (EBCDIC).

4 APL2 Migration Guide

The system cannot determine whether such translation is appropriate for all char-
acter data. If you want to preserve the AV position of data, use the following
procedure to transfer data from VS APL to APL2 without translation:
Under VS APL:

1. Load the workspace that contains the character data.

2. Convert each array of character data to an array of indexes into JAV. You can
use an expression such as the following, where CX represents the array of
character data and I X represents the array of indexes:

IX<0AVCX

3. Save the workspace.

Under APL2:

1. Use the YMCOPY command (as described in [‘Transfer Procedure’) to transfer
the VS APL workspace into the APL2 active workspace.

2. To convert the data back to character format, use the same index origin that
you used under VS APL. For example:

CX <« 0AV [IX]

Note: If no object names are specified)MCOPY copies the index origin from
the VS APL workspace.

3. Erase X and then save the workspace.

You can also use the TRANSFER workspace distributed with APL2. This contains
two functions to help you migrate character data whose application requires the
same AV positions:

e CHARIND, typed or transferred into the VS APL workspace, modifies each
variable named in its argument to be a vector of AV indexes. The variables
named in the argument should not be numeric variables. (DESCRIBE in the
TRANSFER workspace explains how to use the session manager to put this
function in your VS APL workspace without typing it.)

e ITNDCHAR, used in the transferred workspace under APL2, rebuilds the vari-
ables encoded with CHARIND.

Warning: Running INDCHAR against a variable not encoded by CHARIND
converts the variable improperly.

Transfer Procedure

To transfer workspaces from VS APL to APL2, start APL2. Next, follow the steps
described in Figure 2. During the entire migration process, maintain your original
VS APL workspaces so that, if necessary, you can return to any previous stage of
the migration process.

Figure 2 (Page 1 of 2). Steps for Transferring a Workspace from VS APL to APL2

Step Your Entry under APL2 Explanation and Comments

1 JCLEAR Clear the active workspace (sets CASE attribute).

Chapter 2. Transferring Workspaces from VS APL 5

Figure 2 (Page 2 of 2).

Steps for Transferring a Workspace from VS APL to APL2

Step Your Entry under APL2 Explanation and Comments

2 YMCOPY [libno] wsname Specify the name (and library, if necessary) of the VS APL workspace

that you want to migrate. The)MCOPY command copies the con-
tents of that workspace into the active workspace. If you want to
copy only selected objects from the VS APL workspace, refer to
|“Transferring Selected Objects” on page 9}

3)SAVE [libno] wsname Specify the name of the APL2 workspace into which you want to save

the contents of the active workspace. This name can be the same as
the VS APL workspace name. (The VS APL workspace remains
intact.)

When a workspace is saved, its time stamp changes. The time
stamps of functions in the workspace do not change.

Repeat these steps for each VS APL workspace that you want to migrate.

The TRANSFER workspace distributed with APL2 contains the MASSMCOPY _
function to simplify the procedure when you want to transfer many workspaces.
MASSMCOPY _ transfers multiple workspaces from VS APL to APL2.

The)MCOPY Command

6 APL2 Migration Guide

To transfer a workspace from VS APL to APL2/370, copy a workspace from your
VS APL library into the APL2 active workspace. Then, save the workspace in your
APL2 library, as shown in Figure 3.

JMCOPY APL2)SAVE
VS APL WSNAME Active WSNAME APL2
Workspace | *» Workspace —¥» Workspace

Figure 3. Transferring a Workspace from VS APL to APL2

The)MCOPY command copies the contents of a workspace from your VS APL
library into the APL2 active workspace.

System Requirements for Using)¥COPY: To use the)MCOPY command, your
workspaces must reside as VS APL workspaces on the same CMS or MVS system
in which you use the)XCOPY command.

If your workspaces reside on another system, you must first transfer your work-
spaces to the host system. Information about how to transfer workspaces is avail-
able in VS APL for CMS: Installation Reference Manual, VS APL for TSO:
Installation Reference Manual, VS APL for CICS/VS: Installation Reference Manual,
and VS APL for VSPC: Installation Reference Manual.

Syntax of the)¥C0OPY Command: Figure 4 shows the sytax of the YMCOPY
command.

YMCOPY [libno] wsname [:[password]] [names]

Figure 4. Syntax of the YMCOPY Command

To copy a VS APL workspace not in your private library, you must specify the
library number before the workspace name when you issue the YYCOPY
command:

)JMCOPY 6 MESSAGES

To copy a VS APL workspace that is password protected, you must specify the

workspace name, colon, and password when you issue the)MCOPY command:

)MCOPY PASSAGES:HUSH

Effects of the)¥COPY Command: When you issue the)MCOPY command, it

has the following effects:

¢ The specified objects are copied from the VS APL workspace into the APL2
active workspace. If no objects are specified by name, all objects in the VS
APL workspace are copied.

* Any objects copied from the VS APL workspace replace objects of the same

name in the active workspace.

 If no object names are specified, the system variables 0L X, 010, ORL, OCT,

and OPP are also copied from the VS APL workspace into the active work-

space. Otherwise, you must specify the names of the desired system variables

with other object names when you issue the)¥COPY command.

Note: Only the five system variables 0L X, 070, ORL, OCT, and OPP can

be copied. An attempt to copy other system variables (for example, OPW)
results ina NOT FOUND message.

e Locked functions in a VS APL workspace are copied and remain locked.

Under APL2, their execution propertiesare 1 1 1 1, as shown below for the

locked function named SEARCH:

3 OAT 'SEARCH'
1111

For information on function locking and attributes under APL2, see APL2
Programming: Language Reference.

e The time stamps of functions in the migrated workspace do not change. Older

functions that do not have time stamps take the time stamp of the VS APL
workspace.

* Indexed numeric vector constants are enclosed in parentheses when they are

copied. For example, the expression 4 5 6[3] under VS APL becomes (4

5 6)[3] under APL2.

Note:)MCOPY does not convert these expressions if they are contained in
character data or constants, because such data might later cause an error if it

is executed (using ¢), transferred into a function (using OFX), or stacked using

AP 101.

Chapter 2. Transferring Workspaces from VS APL

7

e Any names in the local list in a VS APL defined function that match the names

of the result or either argument of the function are deleted. See
for more information on the evaluation of expressions under VS APL.

e Each group in the VS APL workspace is represented in the active workspace
as a simple character matrix, as shown in Figure 5. The matrix has the same
name as the group name. Each row in the matrix is composed of the name of
an object in the group. The matrix also contains its own name.

Group Created under VS APL:
JGROUP MYGROUP SEARCH DATA1 DATA?2

Matrix Created By)¥COPY under APL2:
MYGROUP

MYGROUP

SEARCH

DATA1

DATA?2

o MYGROUP
T

Figure 5. Migrating a Group of Objects from VS APL to APL2

Workspace Location for the)¥C0OPY Command: When locating a workspace,
the)MCOPY command uses the VS APL library definition rather than the APL2

one.

Under CMS The)MCOPY command uses the file APLIBTAB
APLIBTAB—not the file LIBTAB APL2.
If no APLIBTAB APLIBTAB file is found, a dummy one is
created. This dummy file allows you to access only the library
with the number 0A7[11].

Under TSO The)MCOPY command can access the same workspaces

available under VS APL, as long as the TSO user ID and
PROFILE PREFIX are unchanged.

Installation Options and the)¥C0OPY Command: If your VS APL installation has

changed parameters in the options module that you want carried forward by
YMCOPY to APL2, then:

Under CMS If the PRIVWS parameter of the APLSCOPT module was
changed, the modified APLSCOPT module should have been
link-edited with APL2. See APL2/370 Installation and
Customization under CMS.

Under TSO APLYUOPT should be available as a separate load module if
any of the following parameters were changed: APLID (from
@W), PUBQLFR (from @PL), or LIBQLFR (from @). See
APL2/370 Installation and Customization under TSO.

8 APL2 Migration Guide

Transferring Selected Objects

Using the)MCOPY command, you can copy selected objects from a VS APL
workspace into the APL2 active workspace. You can copy:

 Individual objects. Specify the object names when you issue the)MCOPY
command:

)JMCOPY MISSIONS SEARCH DATA1 DATA 0OLX 0OI0

e Groups of Objects. Specify the group name in parentheses when you issue
the)MCOPY command:

YMCOPY MISSIONS (MYGROUP)

If parentheses are not used, the group of objects is not copied; only the object
MYGROUP is copied.

e Both individual objects and groups of objects. Specify the names of
groups, in parentheses, with the names of individual objects:

YJMCOPY MISSIONS (MYGROUP) DATA (STGP) 0OLX 0OI0

Error Messages When Using)MCOPY

Figure 6 lists and describes possible)MCOPY error messages.

Figure 6. Error Messages

Message Meaning
IMPROPER LIBRARY The specified library is inaccessible or does not exist.
REFERENCE

LIBRARY I/0 ERROR An internal error is preventing the successful copying of the workspace.

LIBRARY NOT Another user temporarily has control of a shared library. This prevents making a suc-

AVAILABLE cessful copy of the workspace at this time.

NOT COPIED: The listed objects cannot be copied because insufficient space is available for copying
the objects. The names of objects not copied are listed.

NOT FOUND: The named objects do not exist or cannot be copied from the specified workspace.

SYSTEM LIMIT This message can indicate any of the following:

e Your virtual machine size or region size is not large enough. Increase the size.

e Your workspace size is not large enough to load the specified workspace. Change
that size by using the WSSIZE option when APL2 is started.

e The freespace size is not large enough. Change that size by using the FREESIZE
option when APL2 is started.

¢ In CMS, insufficient space exists on the disk where your private library is located.
Free up space on that disk or change the LIBTAB APL2 file to point to another disk.

In TSO, the library file definition or files defined by ddnames CPYSWAP or
CPYSPILL are either not allocated or not large enough. Ensure that they have suffi-

cient space.
WS FULL Sufficient space is not available for copying all or some of the objects specified with the
)MCOPY command. When possible,)MCOPY lists the names of objects not copied.
WS LOCKED The password specified with the)¥COPY command is incorrect, or a necessary pass-
word is missing from the command.
WS NOT FOUND The specified VS APL workspace does not exist in the specified VS APL library.

Chapter 2. Transferring Workspaces from VS APL 9

For more information on correcting these errors, see APL2/370 Messages and
Codes.

10 APL2 Migration Guide

Chapter 3. APL2 Compared with VS APL

This chapter lists features that are new, extended, or no longer supported under
APL2.

The extended features are organized into those that are compatible and those that
are incompatible. A feature is compatible if it allows an application that ran under
VS APL to produce the expected results under APL2. Many changes in the editors
and other facilities are compatible because they do not affect applications being
migrated into APL2. However, they can cause errors if used improperly under
APL2.

The material in each section is separated into features pertaining to the APL2 lan-
guage and features pertaining to system services.

New APL2 Features

This section lists new language and system features.

New Language Features

For information on features listed in Figure 7, see APL2 Programming: Language
Reference.

Figure 7 (Page 1 of 3). New Language Features under APL2

Category New Feature

Data Types and Structures Allowed Complex numbers: Numbers can have real and imaginary parts.
Mixed data: Both characters and numbers can be in the same
array.
Nested arrays: An array can contain another array.

Primitive Functions (Boolean and Match (L=R)

Relational)

Primitive Functions (Structural) Depth (=R)

Enclose (cR)

Enclose with Axis (c[LX1R)
Disclose (2R)

Disclose with Axis (> [X 1R)
Ravel with Axis (, [X 1R)
Enlist (e R)

Primitive Functions (Selection) First (+R)
Pick (L>R)
Take with Axis (L+[X 1R)
Drop with Axis (L+ [X]R)
Without (Z~R)
Index (L [R)
Index with Axis (LOLX 1R)

Primitive Functions (Position) Find (L eR)
Dyadic Grade Up (LAR)
Dyadic Grade Down (LVR)
Partition (L cR)
Partition with Axis (L<[X 1R)

Primitive Operators Each (L0O™)

© Copyright IBM Corp. 1984, 1994 11

Figure 7 (Page 2 of 3). New Language Features under APL2

Category

New Feature

Defined Operators

In addition to functions, you can define operators. The operand(s) of
defined operators can be arrays or they can be primitive, defined, or derived
functions.

Derived Functions

Derived functions are new functions resulting from operators. Operands of
operators can be primitive functions, defined functions, well-formed derived
functions, or arrays. Thus, many derived functions are possible. Two new
derived functions are:

* Replicate (LO/R)
e N-wise Reduce (L LO/ R)

Separators

Diamond ({)

System Functions and Variables
(Event Handling and Debugging)

Event Message OENM

Event Simulation OE S

Event Type OET

Execute (Process) Alternate OE 4
Execute (Process) Controlled OEC
Left Argument 0L

Right Argument OF

System Functions and Variables
(Sharing)

Shared Variable Event OSVE
Shared Variable State OJSV.S

National Language Translation for
System Commands and Messages
(ONLT)

System commands can be entered and system messages can be displayed
in English or in several other national languages. See APL2 Programming:
Language Reference for a list of the messages and commands in the sup-
ported national languages.

Other System Functions and Vari-
ables

Atomic Function JAF

Attributes AT

Format Control Characters OFC
Name Association ON A4

Prompt Replacement OPR
Time Zone OT7Z

Transfer Form OTF

System Commands (For Storing and
Retrieving)

YIN Read objects from a transfer file.
YMCOPY Copy a VS APL workspace.

)oUuT Write objects to a transfer file.
)PIN Read objects from a transfer file, protecting like-named objects
System Commands (For the Active)CS Sets APL2 to insert parentheses around indexed numeric
Workspace) constants and to generate errors, when vector notation is
used for expressions other than simple numeric vector con-
stants.
JEDITOR Identify or specify the function editor.
YNMS List objects in the active workspace.
)OPS List defined operators in the active workspace.
)PBS Turn the printable backspace character on or off, or report its
setting.
JRESET Reset the state indicator.
)SIC Reset the state indicator.
)SIS Query the state indicator, showing statements.

System Commands (For System Ser-
vices and Information)

JHOST Submit command to the host system.
JMORE Display additional system messages (new under CMS).

12 APL2 Migration Guide

Figure 7 (Page 3 of 3). New Language Features under APL2

Category

New Feature

System Messages

AXIS ERROR
SYSTEM LIMIT
VALENCE ERROR

New System Features

For more information on features listed in Figure 8, see APL2/370 Programming:
System Services Reference. For more information on installation, see APL2/370
Installation and Customization under CMS or APL2/370 Installation and
Customization under TSO.

Figure 8 (Page 1 of 2). New System Features under APL2

Category

New Feature

Invocation options

CASE Specify alphabet convention.
DATEFORM Change the time and date stamp format.
DSOPEN Override GDDM* default terminal characteristics.

EXCLUDE Exclude the listed auxiliary processors from those normally
available upon invocation.

ID Specify your numeric user ID—the default library number.
This replaces the positional ID parameter previously available
in VS APL under CMS.

INPUT Specify lines of APL2 input to be processed upon invocation
(new under CMS).
SVMAX Specify the maximum number of shared variables that can be

concurrently handled by the system.

SYSDEBUG Specify system programming debug settings.

TRACE Specify system programming trace settings.

XA Specify location of working storage.

RUN Specify name of an external function to be processed upon
invocation.

DBCS Use double-byte character set.

Session manager commands

FIND allows searching for a character string in the session log.

Auxiliary processors distributed with
APL2

AP 102 Main Storage Access Processor (new under CMS)
AP 119 TCP/IP Socket Interface Auxiliary Processor

AP 127 DB2* or SQL/DS* Auxiliary Processor

AP 211 APL2 Object File Auxiliary Processor

Facilities for user-written auxiliary
processors

A return code from the shared variable processor allows auxiliary processors
written according to VS APL conventions to detect when they are given data
that cannot be represented in VS APL format. If you wish to modify them to
handle APL2 data format, one new executable macro and two new mapping
macros are provided for this purpose.

A set of services is also provided for writing auxiliary processors according
to APL2 conventions.

Chapter 3. APL2 Compared with VS APL 13

Figure 8 (Page 2 of 2). New System Features under APL2

Category

New Feature

Associated processors

A new type of processor is supported in APL2. Associated processors allow
names in a workspace to be associated with objects outside the workspace
using the new system function ONA. Once associated, these names can be
used with normal APL2 syntax. Three associated processors are provided:

e Processor 10 supports association of APL2 names with REXX execs
and variables.

* Processor 11 supports association of names with routines written in lan-
guages other than APL2. Processor 11 also supports association of
names with APL2 objects residing in other workspaces.

e Processor 12 supports associating names with either sequential oper-
ating system files or auxiliary processor 121 APL object files.

Editors

The line editor,)EDITOR 1, allows selective display and selective
deletion of lines through new edit commands.

The full-screen editor,)EDITOR 2, has the features of the line editor,
additional editing commands, and function key settings to make editing
easier. It also allows editing of character matrixes and split-screen editing
(segmenting the screen to edit more than one function at a time). Functions
and APL2 expressions can also be processed during a full-screen editing
session. The full-screen editor requires the Graphical Data Display Manager
(GDDM) Licensed Program.

The JEDITOR 2 name command can be used to specify the name of an
editor written either in APL2 or another language. The editor must be
accessible through associated processor 11. When the user invokes the
editor, through the use of V, APL2 will create an association to the editor
and pass it the V expression. The editor can then extract the object to be
edited from the workspace, display it for edit, and reestablish the new defi-
nition.

System editors such as XEDIT and ISPF can also be accessed from APL2.
The command)EDITOR xxxx specifies the name of the CMS command or
TSO CLIST that is used for editing. APL2 writes the function or character
matrix to be edited into a CMS file or TSO data set and invokes the
command or CLIST with the name of the file or data set as its argument.
When editing ends, the object is brought back into the APL2 workspace.

Performance Analysis

An external function, TTME, is accessible through processor 11 and allows
users to gather performance statistics on their applications. TIME can
return line-by-line statistics on an application indicating number of times the
line was processed and the relative and absolute amount of CPU time con-
sumed in the line.

This facility can be used to isolate bottlenecks in applications so that they
can be recoded using more efficient techniques either in APL2 or other lan-
guages.

14 APL2 Migration Guide

Extended-Compatible Features

Figure 9 through|Figure 21 on page 20| compare features of VS APL with similar

features of APL2. The extended features listed in this section are compatible—they
allow an application that runs under VS APL to produce the expected results under

APL2.

Extended-Compatible Language Features

For more information on features listed in Figure 9 through|Figure 18 on page 18}
see APL2 Programming: Language Reference.

Figure 9. VS APL Compared with APL2—Data Representation (Compatible)

Data Representation under VS APL

Data Representation under APL2

An array can contain only character or only numeric data.

Each item in an array must be a single number or a single

character.

An array can contain a mixture of character and
numeric data. It can contain an item that is not a single
number or character (for example, vector or matrix).

A vector constant can be entered as adjacent numbers
separated by blanks or as a string of characters enclosed
in single quotation marks. A vector constant cannot be a
mixture of these representations.

R<«9 13 48 27
L<«'SHOE"

A vector can be entered as a list of arrays. These
arrays can be represented by numbers, one or more
characters in single quotation marks, an object name
representing the value of an array, or an APL2
expression producing the value of an array. Array
representations can be separated by either blanks or
parentheses. A vector can be a mixture of these
representations.

OBJNAME<Y4 6p124
R<9 13 'S' 'SHOE' OBJNAME

Assignment can be to only a single name.

A<2
B<2
C<"ANC'
D<«2 3 4
E<2 3 4
F<2 3 4

Assignment can take a simple list of names enclosed in
parentheses on the left. If the right argument is a
vector of the same length, then each value from the
right is assigned to the corresponding name on the left.
If the right argument is a scalar, then each name is
assigned to be the scalar item.

(A B C)<«2 3 '"ANnC!

A
2
pC
3
(D E F)«c2 3 4
D
2 3 4
pE
3

Chapter 3. APL2 Compared with VS APL 15

Figure 10. VS APL Compared with APL2—Evaluation of Expressions (Compatible)

Evaluation of Expressions under VS APL

Evaluation of Expressions under APL2

Parentheses are used for grouping an expression to
control the order of evaluation.

2x3+5
16

(2%x3)+5
11

Parentheses are used for grouping. They are correct if
properly paired and if the contents within the paren-
theses evaluates to an array, function, or operator.

Correct
(2 4 5) 3
2 4 5 3
Correct, but parentheses around ° . +
are redundant:
(2 3p16) (o.+).x 3 2p-16
28
“BY

22
Tu9

Figure 11. VS APL Compared with APL2—Display of Output (Compatible)

Display of Output under VS APL

Display of Output under APL2

In numeric output, multiple spaces on a line are com-

pressed to a single space because they are redundant.

y 6 9 2
4L 6 9 2

In numeric output, multiple spaces can display on a line
to indicate the structure of items in a nested array.

1 2 (3 Uu4)

1 2 3 4

Figure 12. VS APL Compared with APL2—Object Names (Compatible)

Object Names under VS APL

Object Names under APL2

The characters ~ and _ are not valid in object
names.

The characters ~ and _ are valid in object names, provided
they are not the first character.

Figure 13 (Page 1 of 2). VS APL Compared with APL2—Primitive Functions (Compatible)

Primitive Functions under VS APL

Primitive Functions under APL2

Compression (L /R) is a primitive function that
requires a Boolean left argument.

110 1/'SHOE!
SHE

Replicate (L / R) is a derived function. lIts left operand is a
vector of Boolean, negative, or positive integers.

10 3 2/'SHOE'
SOO0OEE

With a Boolean left argument, the derived function is called
compress and is similar to VS APL compression:

110 1/'SHOE!
SHE

Expansion (L \R) is a primitive function that requires
a Boolean left argument.

1 1 0 1\'SHE"
SH E

1 0 1\2 2p'SWIM'
S W
I M

Expand (L \R) is a derived function. It is similar to the VS
APL expansion. lts left operand is a simple Boolean vector.

1 0 1\2 2p'SWIM'
S W
I M
1 0 1\(2 3)(4 5)
23 00 U4 5

16 APL2 Migration Guide

Figure 13 (Page 2 of 2). VS APL Compared with APL2—Primitive Functions (Compatible)

Primitive Functions under VS APL Primitive Functions under APL2

Format (L 3 R) requires a numeric left argument. Format (Z 3 R) by specification behaves similarly to format
under VS APL. Format (L3 R), by example, takes a char-
acter left argument that serves as a model for the format of
the corresponding column.

' 552 $53.50 EA' % 32 9.17
320 $9.17 EA

Figure 14. VS APL Compared with APL2—Selective Specification (Compatible)

Selective Specification under VS APL Selective Specification under APL2
Bracket Indexing (A [I 1) is the only primitive func- Bracket Indexing (A [I 1), and other functions that select
tion that allows you to assign a value to selected positions from a named array, allow you to assign a value to
items in an array. selected items in arrays.

A<23 44 97 A<1 2 "1 5

A[2]+«80 ((4="1)/4)<0

A A
23 80 97 1 2 05

Figure 15. VS APL Compared with APL2—Primitive Operators (Compatible)

Primitive Operators under VS APL Primitive Operators under APL2
Derived functions can be created by applying a primitive Derived functions can be created by applying a primi-
operator to a primitive function. tive or defined operator to one or two of the following

operands: primitive functions, defined functions,
derived functions, or arrays.

Figure 16. VS APL Compared with APL2—System Functions and Variables (Compatible)

System Functions and Variables under VS APL System Functions and Variables under APL2
Name List (ONL) accepts as its argument any integer 1 Name List (ONL) accepts as its argument any integer 1
through 3. through 4 (with 4 meaning a defined operator).
Printing Precision (OPP) can be as great as 16. Printing Precision (OPP) can be as great as 18.

Chapter 3. APL2 Compared with VS APL 17

Figure 17. VS APL Compared with APL2—Debugging and Processing (Compatible)

Debugging and Processing under VS APL

Debugging and Processing under APL2

Trace TA and Stop SA controls cannot be referenced.

Trace T A and Stop SA controls can be referenced.

Interrupted processing of statements entered in immediate

execution mode cannot be resumed.

Interrupted processing of a statement can be resumed
at the point where the processing has halted by using
+10.

The state indicator, listed by the) ST command, contains
a list of the calling sequence of defined functions (with
their pertinent line numbers) that led to the current state.

To indicate suspended immediate processing statements,
the state indicator includes an asterisk '*' on the line
containing the name and function line number of the first
function called.

As with VS APL, the state indicator, listed by the)ST
command, contains a list of the calling sequence of
defined functions and defined operators that led to the
current state.

To indicate each suspended immediate execution state-
ment, the state indicator includes an asterisk '*' on a
line by itself. Asterisks can indicate suspended imme-
diate execution statements that do not call a function.

The)SIS command lists the state indicator with the
function name, pertinent line number, and corre-
sponding statement in the definition. Suspended imme-
diate execution statements are listed, and each is
preceded by an asterisk. Two carets below each state-
ment indicate where the processing has halted and
where any error has occurred.

)SI,)SINL,and)SIS commands also allow an
optional numeric argument to indicate the number of
levels of the state indicator to be displayed, for instance
)ST 4.

The right arrow '=>' clears the most recent line(s) placed
in the state indicator.

As with VS APL, the right arrow '=>' clears the most
recent line(s) placed in the state indicator.

The system command)RESET nor)SIC nclears n
lines from the state indicator. YRESET or)SIC
clears all lines.

Figure 18. VS APL Compared with APL2—System Commands (Compatible)

System Commands under VS APL

System Commands under APL2

JFNS and) VARS allow you to specify the beginning
letter or set of letters for listing functions and variables in
the active workspace.

JFNS and) VARS allow you to specify the beginning
and ending letter or set of letters for listing functions
and variables in the active workspace.

)SYMBOLS allows you to increase the maximum size of
the symbol table, but can only be used in an empty work-
space.

)SYMBOLS is usually unnecessary because the
symbol table dynamically expands as the number of
symbols increase. For efficiency, you can specify a
symbol table size, and can do so at any time.
)SYMBOLS also causes the unused symbols in a
workspace to be removed.

) LI B allows you to specify alphabetic letter(s) for begin-
ning the listing of workspace names.

) LI B allows you to specify alphabetic letters for begin-
ning and ending the listing of workspace names.

JOFFLHOLD] and)CONTINUELHOLD] provide an
optional HOLD parameter that allows you to return to the
host system. If you do not specify the HOLD parameter,
you are logged off the host system.

JOFFLHOLD] and)CONTINUELHOLD] always
return control to the host system. The optional HOLD
parameter has no effect.

18 APL2 Migration Guide

Extended-Compatible System Features

For more information on most features listed in Figure 19 through
page 20|, see APL2/370 Programming: System Services Reference. For more
information on installation features, see APL2/370 Installation and Customization
under CMS or APL2/370 Installation and Customization under TSO.

Figure 19. VS APL Compared with APL2—Invocation Options (Compatible)

Invocation Options under VS APL

Invocation Options under APL2

The DEBUG option provides the following debug settings:

msg (1)
echo (2)
abend (64)
micro (128)

APL2 retains the following DEBUG settings from VS
APL:

msg (1)
echo (2)

Abend (64) has been dropped, but a similar facility is
available under TSO through SYSDEBUG, a new invo-
cation option described in APL2/370 Diagnosis Guide.

Micro (128) has been dropped.

The following DEBUG settings have been added, or
replace VS APL settings:

xdump (4) Supply additional information in

dumps

Give estimates of times for selected
long-running tasks

estimate (8)

msgid (32) Prefix messages with a message
identifier
nolx (64) Do not process OLX during)LOAD

noquemsg (128)
Discards secondary messages rather
than queuing them.

Note: While 1-MSG is turned on,
secondary messages are immediately
displayed rather than queued, so the
setting of this flag is irrelevant.

The HILIGHT option default results in no highlighting in
CMS and highlighted output in TSO.

The HILIGHT option default results in highlighted input
in CMS and highlighted output in TSO.

The SMAPL option indicates whether the local session
manager should be used:

SMAPL(ON | OFF | TRY)

where TRY is treated as ON if possible, else as OFF.

The SMAPL option adds support for a remote session
manager:

SMAPL(ON | OFF | TRY | nnnn)

where nnnn is a processor number. The APL2 inter-
preter shares a variable with that processor and
handles all session input and output (0, M, Editor 1,
and immediate execution) through that variable rather
than directly at the user's terminal.

That processor number could be resolved as another
APL session or as a session manager, and the process
could reside on the same system or on another system.
The communication protocol is defined in APL2/370
Programming: System Services Reference.

The TERMCODE option identifies the type of terminal you

are using in TSO.

TERMCODE (-1) can also be used in either CMS or
TSO to tell APL2 to redirect APL2 input and output to
files instead of to the terminal.

Chapter 3. APL2 Compared with VS APL 19

Figure 20. VS APL Compared with APL2—Editors (Compatible)

Editing under VS APL

Editing under APL2

The licensed program provides a line editor for function
editing. A full-screen editor that edits functions and char-
acter variables is available as an IUP to VS APL.

The licensed program provides a line editor, a full-
screen editor, and access to user-written and system
editors. Both the full-screen and system editors edit
functions, operators, and simple character variables.
See [[New System Features” on page 13| for more
details.

The editor command [n1] displays line n of the function
definition.

The editor command [[On] displays line n of the func-
tion or operator definition. [n01] results in a DEFN
ERROR.

The editor command [[n] displays line n through the
last line of the definition.

The editor command [On-] displays line n through the
last line of the definition.

Editing the function name in a definition replaces the
current name of the function.

Editing the function or operator name in a definition
creates a new function or operator with the edited
name. The existing function or operator remains as it
was.

In VS APL local functions cannot be edited.

With the APL2 editors, local functions or operators can
be edited. When local and global functions with the
same name exist, only the local function can be
accessed by the APL2 editors.

Figure 21. VS APL Compared with APL2—Auxiliary Processors (Compatible)

Auxiliary Processors
Distributed with VS APL

Auxiliary Processors
Distributed with APL2

Auxiliary processors distributed with VS APL support only
VS APL data types.

AP 110, AP 111, AP 119, AP 121, AP 127, AP 210,
and AP 211 support the new APL2 data types.

AP 110, AP 111, AP 123, and AP 210 have new
options that provide mapping between the VS APL
internal character encoding and APL2 internal character
encoding.

Changes in default translation and initialization options
for auxiliary processors are discussed on page

Several of the VS APL APs have been enhanced to
support additional function. For example, AP 100 can
be used to determine the name of the host system, and
AP 124 supports color.

20 APL2 Migration Guide

Extended-Incompatible Features

Figure 22 through [Figure 27 on page 24|compare features of VS APL to similar

features of APL2. These extended features of APL2 are incompatible—they can
prevent an application that runs under VS APL from producing the expected results

under APL2.

Extended-Incompatible Language Features

For more information on features listed in the following figures, see APL2
Programming: Language Reference.

Figure 22. VS APL Compared with APL2—Evaluation of Expressions (Incompatible)

Evaluation of Expressions under VS APL

Evaluation of Expressions under APL2

VS APL's evaluation of brackets allows you to select an
item from a vector constant.

4 5 6[3]

APL2's evaluation of brackets results in a RANK
ERROR, if you attempt to select an item from a numeric
vector constant. An expression suchas 4 5 6[31] is
interpreted as:

4 5 (6[31)
RANK ERROR
4 5(6[31)
AA

When processing VS APL defined functions that contain
such expressions, the)YCOPY and) IN system com-
mands insert parentheses around numeric vector con-
stants, so that the expressions are evaluated correctly
under APL2. Parentheses are not inserted into char-
acter vectors. See also [If the Function Is Interrupted’]

A suspended function can be restarted at the suspended
line with any of the following expressions:

~0Lc
>0

>10

A suspended function or operator can be restarted at
the suspended line with the following expression:

~0LC

It can be restarted at the point of suspension with either
of the following expressions:

>

+10

Dyadic defined functions cause a syntax error if invoked
monadically.

All functions are ambi-valent. Dyadic functions can be
invoked monadically.

Stop vectors in an unlocked function invoked by a locked
function are honored.

Stop vectors in an unlocked function invoked by a
locked function are ignored. Stop vectors in functions
are also ignored if the function is run under OFC.
However, they are honored in a function invoked from
OEA.

Functions containing duplicate labels use the first defi-
nition of the label.

Functions or operators containing duplicate labels use
the last definition of the label.

VS APL ignores local names in a defined function that
duplicates the names of the arguments or the result.

APL2 permits duplication of names in the header of a
defined function or operator. The rightmost occurrence
of a duplicate name in the header is taken as its defi-
nition.

VS APL provides blanks where it expects them to be, for
example, ¢ '1F 2'isprocessedas ¢ 'l F 2°'.

APL2 does not always insert blanks. It returns a
SYNTAX ERRORfore '1F 2°'.

Chapter 3. APL2 Compared with VS APL 21

Figure 23. VS APL Compared with APL2—Default Output

VS APL Default Output

APL2 Default Output

Default output of arrays with rank =2 folds the output on
a line-by-line basis where the width of OPW is exceeded.

Default output of arrays with rank =2 folds the output
on a plane-by-plane basis where the width of a plane
exceeds OPW.

Default output of empty arrays always produces one line.

Default output of empty arrays produces as many lines
as there are rows in the array.

Figure 24. VS APL Compared with APL2—Primitive Functions (Incompatible)

Primitive Functions under VS APL

Primitive Functions under APL2

Power (L * R) returns the odd root of a negative number in
the form of a real number. The even root of a negative
number results ina DOMAIN ERROR.

T8%%3
"2

T8%%2
DOMAIN ERROR

T8%32

A

Power (L * R) returns the odd root of a negative number
(a complex number) as its principal value. Power also
returns the even root of a negative number.

T8%%3
1J1.732050808

T8%%2
0J2.828427125

Monadic Format (¥ R) formats columns of a numeric array
so that each column has the same width. It includes a
column of leading blanks for arrays with rank 2 or greater.

Format (Default) (s R) formats each column according
to the item with the greatest width in the column. It
does not include a column of leading blanks. In APL2,
a column of leading blanks indicates nesting.

Dyadic Format (L 3 R) includes a blank for the unit's place
if any number in the right argument R is less than 1, and
the digits part of the left argument L is a nonzero integer.

Format by specification (L s R) does not include a blank
column for the units digit if all numbers in a column of
the right argument are less than 1.

Circle (LOR) accepts the integers ~ 7 through 7 as valid
left arguments. The result of ~4OR is a positive square
root.

4 o 2
1.732050808

4 o "2
1.732050808

Circle (LOR) accepts the integers ~ 12 through 12 as
valid left arguments. The result of ~ 4 OR is a negative
square root if R is negative.

4 o 2
1.732050808

4 o "2
~1.732050808

Residue (L | R) has no implicit arguments.

OPP<«16

OcT<1E 13

1].99999999999999
0.99999999999999

Residue (L | R) uses OCT as an implicit argument.

OPP<«16

OCcT<1E 13

1]1.99999999999999
0

One-element arrays are extended in primitive dyadic
scalar functions.

Only scalars and one-element vectors are extended in
primitive dyadic scalar functions.

22 APL2 Migration Guide

Figure 25. VS APL Compared with APL2—Inner Product (Incompatible)

Inner Product under VS APL

Inner Product under APL2

The shape of the arguments for the general case of

P f.g g are conformable if the last axis of P is equal
to the first axis of Q. The following example produces a
length error:

A « 15 1p 'A"
An.= VA4

The shape of the arguments for the general case of
P f.g @ are conformable if the shape of the argu-
ments P and @ are conformable for the function g.

Figure 26 (Page 1 of 2). VS APL Compared with APL2—System Functions and Variables (Incompatible)

System Functions and Variables under VS APL

System Functions and Variables under APL2

A character output ([1) assignment immediately followed
by a character input prompt ([1) returns a vector con-
taining the prompt and response, except that the prompt
can be partially or entirely replaced by blanks depending
upon the device type, VS APL release, and whether
GDDM is used.

A character output ([1) assignment immediately followed
by a character input prompt ([1) returns a vector com-
posed of the response preceded by one of the
following:

e The characters composing the prompt, if the
Prompt Replacement system variable is specified
as OPR<"'".

» A repeated character, specified in PR, which
replaces the prompt portion of the resulting vector.
A blank is the default setting of OPR.

If the character input prompt ([1) is on a different line from
the character output, entering a single-character response
results in a scalar.

If the character input prompt ([) is on a different line
from the character output, entering a single-character
response results in a one-item vector.

The Atomic Vector (A V) uses an ordering unique to VS
APL. The alphabet is contiguous.

The Atomic Vector (A V) uses an ordering that con-
forms with EBCDIC and is different from the ordering
under VS APL. The alphabet is not contiguous.

When Canonical Representation ([CR) returns the char-
acter representation of a defined function, it limits the pre-
cision of any numeric constants to 17 significant
digits—the same precision allowed by the line editor.

Canonical Representation (OCR) returns the character
representation of a defined function or operator, not lim-
iting the precision of any numeric constants.

Expunge (0EX) does not erase defined functions that are
suspended or waiting to complete processing.

Expunge (0EX) erases defined functions that are sus-
pended or waiting to complete processing. However,

erasing such functions does not affect their definitions
in the state indicator.

Fix (OFX) can be applied to any character matrix. It can
be used to fix the definition of a function, including a func-
tion that replaces another function that is neither sus-
pended nor waiting to complete processing.

Fix (OFX) can be applied to a character matrix or a
vector of character scalars or vectors. It can be used
to fix the definition of a function or operator. The func-
tion or operator being defined can replace any existing
operation, including one that is suspended or waiting to
complete processing.

OdFX has also been extended to accept a left argument,
which enables you to set execution properties for a
defined function or defined operator.

Name Class (ONC) returns a class of 0 through 4, with 4
indicating an invalid name for an object.

Name Class (ONC) returns a class of ~ 1 through &4,
with ~ 1 indicating an invalid name or unused distin-
guished name for an object. 4 indicates a defined
operator name. [INC can also be applied to system
functions and system variables.

Chapter 3. APL2 Compared with VS APL 23

Figure 26 (Page 2 of 2). VS APL Compared with APL2—System Functions and Variables (Incompatible)

System Functions and Variables under VS APL

System Functions and Variables under APL2

Shared Variable Offer (0.SV0) extends any left argument
that is a one-item vector or scalar, so that it is used as
the processor number for each name represented in the
right argument.

Shared Variable Offer (0SV0) extends any left argu-
ment that is a scalar, so that it is used as the processor
number for each name represented in the right argu-
ment. A left argument that is a one-item vector corre-
sponds with a right argument of only one name.

The result of OFX, ONC, OSVO, or OSVE applied to a
scalar or vector is a one-item vector.

The result of OEX, ONC, OSVO, or OSVR applied to a
scalar or vector is a scalar.

The value of OWA depends on the internal format of VS
APL objects.

The value of OW¥WA depends on the internal format of
APL2 objects and often differs substantially from the
value obtained in a VS APL environment.

The)COPY command, when used to copy an entire
workspace, copies all user objects in the workspace, but
not system variables.

The)COPY command, when used to copy an entire
workspace, includes the system variables OCT, OFC,
0ro, 0LX, OPP, OPR, and ORL as well as all user
objects in the workspace.

Extended-Incompatible System Features

For more information on most features listed in the following figures, see APL2/370
Programming: System Services Reference.

Figure 27 (Page 1 of 2). VS APL Compared with APL2—Auxiliary Processor Options (Incompatible)

Auxiliary Processor Translation
Options under VS APL

Auxiliary Processor Translation
Options under APL2

Auxiliary processors distributed with VS APL provide
default translation options.

Certain auxiliary processors distributed with APL2
provide default translation options that differ from those
provided under VS APL. For a description of these
changes, see[‘Changes in APL2 Auxiliary Processot]|

[Translation Options” on page 35}

AP 110, AP 111, and AP 210 provide a BYTE option that
allows for no translation regardless of the encoding of the
file.

The BYTE option works only for some applications that

use it under VS APL. See [‘Changes in APL2 Auxiliary|

[Processor Translation Options” on page 35 for a dis-
cussion on files and auxiliary processors.

AP 101 provides the options 370 and APL.

AP 101 no longer provides the options 370 and APL. If
they are specified in the initial value of the shared vari-
able, that value is considered invalid. Valid translation

options in APL2 are 192 or EBCD.

AP 101 stacked input cancels the session manager
SUPPRESS command.

AP 101 stacked input no longer cancels the session
manager SUPPRESS command. Entering the fol-
lowing lines cancels the SUPPRESS command:

3 11 ONA 'OPTION'
'OFF' OPTION 'QUIET'

24 APL2 Migration Guide

Figure 27 (Page 2 of 2). VS APL Compared with APL2—Auxiliary Processor Options (Incompatible)

Auxiliary Processor Translation
Options under VS APL

Auxiliary Processor Translation
Options under APL2

User-written auxiliary processors do not handle the new
APL2 data types.

A new return code 12 -68 from ASVPREF or
ASVPCPY enables user-written auxiliary processors to
detect data that cannot be represented in VS APL data
format.

To allow VS APL auxiliary processors to handle all
APL2 data types, the VS APL SVP interface has been
extended in APL2 to support new APL2 data types
through the ASVDFORM executable macro and the
AP2SDF mapping macro that defines the parameter
block used by ASVDFORM.

ASVPQRY can return information about multiple variables
or multiple partners in a single request.

ASVPQRY only supports queries of a single variable or
processor for each call.

Under TSO, CLISTs invoked through AP 100 are proc-
essed by APL itself. APL provides support for the special
statements $EXIT, $REPEAT, and $RETURN, and CLIST
processing is deferred under certain circumstances.
When not deferred, the CLIST used to invoke APL is
resumed as a part of the AP 100 processing if one of the
special statements is not used.

CLISTs invoked through AP 100 are now handled by
the TSOLNK facility rather than by APL. There is no
support for $EXIT, $REPEAT, and $RETURN.
&LASTCC is always returned to the AP 100 user. All
CLISTs are processed immediately, and the CLIST
used to invoke APL is never resumed until APL2 termi-
nation.

Chapter 3. APL2 Compared with VS APL 25

VS APL Features No Longer Supported

Figure 28 and |Figure 29 on page 26 Jist VS APL features not supported under
APL2 and any replacements.

Language Features No Longer Supported
For more information on features listed in Figure 28, see APL2 Programming: Lan-
guage Reference.

Figure 28. Language Features No Longer Supported under APL2

Dropped from VS APL Replacement in APL2
Dyadic Shared Variable Query 0S7¢q No replacement.
)GROUP,)GRP,)GRPS)COPY, YMCOPY, YPCOPY, and)ERASE can copy

or erase indirectly. When issuing one of these com-
mands, you specify in parentheses the name of a
matrix containing the names of objects to be processed.

)STACK No replacement. Handled automatically.

YWSSIZE No replacement.

WAS lib wsname, which is displayed with loading of the No replacement.

CONTINUE workspace under TSO

Horizontal Tabs OHT No replacement. APL2 accepts the name OHT.
However, referencing 0T yields 1 0 no matter how it
is specified.

System Features No Longer Supported

For more information on features listed in Figure 29, see APL2/370 Programming:
System Services Reference.

Figure 29. Facilities No Longer Supported under APL2
Dropped from VS APL Replacement in APL2

A numeric ID could be specified as a first positional The ID keyword provides equivalent function.
parameter when invoking VS APL under CMS.

26 APL2 Migration Guide

Workspaces

The workspaces distributed with VS APL and APL2 under CMS and TSO are sum-
marized in Figure 30.

Figure 30. Workspaces Distributed with VS APL and APL2

Description of Workspace VS APL CMS VS APL TSO APL2 CMS APL2 TSO
APL file access APLDATA APLDATA APLDATA APLDATA
Interactive Chart Utility interface CHARTX CHARTX
Environment-dependent auxiliary CMS TS0 CMS TS0
processors

Conversion-migration CONVERT CONVERT TRANSFER TRANSFER
Data structure display DISPLAY DISPLAY
Usage examples EXAMPLES EXAMPLES EXAMPLES EXAMPLES
File transferring (TSO) FILESERV FILESERV
Data formatting FORMAT FORMAT

AP 124 full-screen facilities FSC124 FSC124

AP 126 facilities (FSC124 compatible) FSC126 FSC126 FSC126 FSC126
Panel design FSDESIGN FSDESIGN

AP 126 (GDDM full-screen facilities) FSM FSM FSM FSM

AP 126 (GDDM cover function) GDMX GDMX
Graphics GRAPHPAK GRAPHPAK GRAPHPAK GRAPHPAK
Edit descriptions HOWEDITS HOWEDITS

Mathematical functions MATHFNS MATHFNS
Text editing MEDIT MEDIT MEDIT MEDIT
News bulletins NEWS NEWS

Nondisplay graphics PLOT PLOT

Printing PRINTCMS PRINTTSO PRINTWS PRINTWS
Example SBIC SBIC

Text editing SEDIT SEDIT

Access to SQL database SQL SQL
External function directory SUPPLIED SUPPLIED
Miscellaneous functions UTILITY UTILITY UTILITY UTILITY
Simple database VAPLFILE VAPLFILE VAPLFILE VAPLFILE
VSAM data access VSAMDATA VSAMDATA VSAMDATA VSAMDATA
Workspace descriptions WSINFO WSINFO WSINFO WSINFO

Chapter 3. APL2 Compared with VS APL 27

External Functions Distributed with APL2

Figure 31 lists the external functions distributed with APL2 under CMS and TSO.
See APL2/370 Programming: Using the Supplied Routines for more information
about the external functions.

Figure 31 (Page 1 of 2). APL2/370 External Routines

External Routine Function

Data Conversion

ATR Convert an APL array to a record with mixed data types
CTK Convert extended character data to mixed DBCS data
cTnN Convert character data to numeric data

DFMT Format an array of extended character data

KTC Convert mixed DBCS data to extended character data
PFA Generate a pattern for ATR or RTA

RTA Convert a record to an APL array

CAN? Compress and Nest

DAN1 Delete and Nest

SANT Slice and Nest

External Routine Support

APL2PT A niladic form of APL2PIE

APL2PIE Interface with non-APL programs that call APL2.

ATP Update parameters passed by a non-APL program
BUILDRD Build a routine description for an external routine
BUILDRL Build a routine list for a module containing external routines
EXP Request APL evaluation in the previous name scope
PACKAGE Convert a workspace to a namespace

PTA Extract parameters passed by a non-APL program

QNS Query the current name scope

APL Object Access

EDITOR?22 A program interface to Editor 2

EDITORX?2 A program interface to a named system editor
In2 Program access to system command) I N
ouT2 Program access to system command)0UT
PIN2 Program access to system command)PIN

REXX Access (Processor 10)

AEXEC Execute a REXX program

AF Obtain information about a CMS or MVS file
AFM Read or write a file as a matrix

AFV Read or write a file as a vector of vectors

System Data Access

CSRIDAC Access an MVS/ESA* virtual data object

CSRREFR Refresh an MVS/ESA virtual data object

CSRSAVE Save changes to a permanent MVS/ESA virtual data object
CSRSCOT Save MVS/ESA virtual data object changes in a scroll area
CSRVIEW Define a view on an MVS/ESA virtual data object

DSQCIA Interact with the database Query facility

28 APL2 Migration Guide

Figure 31 (Page 2 of 2). APL2/370 External Routines

External Routine

Function

Environment Control

ATTN
MSG
OPTION
PBS
RAPL 22
SERVER
SVI

Query or reset the attention flag

Use APL2 message facilities from an application

Query or set APL2 invocation options

Query or set the)PBS state

Run the remote-session manager

Start a TCP/IP port server

Determine shared variable processor numbers or user IDs.

Usage and Debugging Aids

CMSIVP
DISPLAY
DISPLAYC
DISPLAYG
FED

HELP
IDIOMS?
TIME
TSOIVP

Notes:

Installation verification under CMS

Display an array in a form that shows nesting and data types
The same as DISPLAY.

The same as DI SPLAY, but using box characters
Diagnostic tool for IBM service usage

Obtain information from APL2HELP files

Search the APL2 phrase collection

Performance monitoring within a workspace

Installation verification under TSO

1. The Partition primitive (<) should be used instead of these three functions.
2. Not supplied with Application Environment.

Chapter 3. APL2 Compared with VS APL

29

Chapter 4. Testing and Debugging

After transferring workspaces to APL2, you can verify that their functions continue
to run properly by doing the following:

* Inspect and correct statements for the effects of changes, and test the altered
functions under APL2

¢ Check data files used by functions in the transferred workspaces
e Check alternate input on the AP 101 stack

e Check user-written auxiliary processors used by functions in the transferred
workspaces

e Test the application as a whole

Inspecting, Correcting, and Testing Functions

|“Extended-ComQatibIe Features” on page 15 ists features of APL2 that can

prevent an application that runs under VS APL from producing the expected results
under APL2. Inspect and correct statements in functions that use those features.
Pay particular attention to the following:

¢ Primitive functions:

— Format (default) (3 R) and format by specification (L3 R)
— Residue (Z | R)

e System functions and variables:

— Name class (ONC)
— Data received from a character input/output ([1) request for user response
— Fix (OFX)

e High numerical precision
e Arguments as local names
The problems that can occur with each of these are discussed later in this section.

Additionally, the TRANSFER workspace distributed with APL2 contains functions
to help you locate these incompatible features in your functions and to fix them.

Using the TRANSFER Workspace

DESCRIBE inthe TRANSFER workspace explains the functions and variables in
the workspace. To use the TRANSFER workspace:

1. Use)LOAD transws, where transws is the name of the transferred workspace.

2. Use)PCOPY 2 TRANSFER (GPTRANSFER) to add the TRANSFER
workspace contents.

When you use) PCOPY you are alerted to name conflicts you must resolve. If
an object in transws and an object in the TRANSFER workspace have the
same name, consider renaming one of them.

3. Use)PCOPY 2 TRANSFER AV_VSAPL or)COPY 2 TRANSFER
AV _APLSV if necessary for this workspace.

4. Use)SAVE testws, where testws is a new name for the workspace.

30 © Copyright IBM Corp. 1984, 1994

Some of the functions in the TRANSFER workspace modify workspace con-
tents. Setting up a new workspace in which to make corrections keeps the
original transferred workspace intact as a backup.

5. Make your corrections after using functions in the TRANSFER workspace.

6. Use)ERASE (GPTRANSFER) to eliminate TRANSFER workspace func-
tions and variables.

Warning: If you had name conflicts when copying in Step 2, you may not want
to use the indirect erase unless you have changed the names of your functions.

7.)SAVE.

When you are satisfied that the corrected functions run properly, you can rename
your test workspace.

Some of the TRANSFER workspace functions and variables are described below.
Others are described with the specific problem they are designed to remedy.

ALL _ creates a list of names of all defined functions in the workspace you are
debugging. It excludes all TRANSFER workspace functions from the list. The
result of ALL _ can then be an argument for any function that requires a list of
function names as an argument.

FLAG_ searches for given character strings and returns a list of all the statements
that contain those strings. Each statement is preceded by the function name and
line number. FLAG_ takes two arguments: the right argument is a list of func-
tions to examine; and the left argument is a list of character strings to be searched
for. For example, the following expression searches for all occurrences of residue
and OFX:

‘|v 'OFX' FLAG_ ALL_

If you specify no search argument, FLAG_ prompts for character strings, which
you enter one at a time.

The TRANSFER workspace includes the variable FLAGMVSAPL _; this is a pre-
pared list of character strings, which includes all known migration problem areas.
FLAGMVSAPL _ is a convenient argument for FLAG_. For example, the fol-
lowing expression searches for all known migration problem areas in all functions in
the workspace:

FLAGMVSAPL _ FLAG_ ALL_

FIX_ is used to make changes that require simple string replacements. FIX_
takes two arguments: the right argument is a list of functions requiring change, and
the left argument is a set of old and new pairs, nested together.

The TRANSFER workspace includes the variable FIXMIUP _; this a prepared
list of old and new pairs.

Warning: FIX_ modifies the workspace. Be sure that you want to make the
changes you have indicated in all examples in all functions listed. FLAG_ can
be used to identify all examples of the old character strings for inspection before
you use FIX_. Also, although FLAGMVSAPL , FIXMIUP_,and ALL_ are
available arguments to F7X _, you may want to enter the arguments more selec-
tively.

Chapter 4. Testing and Debugging 31

What to Look For

In many examples, the APL2 extensions do not affect the processing of your func-
tions. Each should be flagged, however, and examined in the context of the appli-
cation to determine whether a problem exists. Appropriate corrections should then
be made. The extensions listed earlier in this section and discussed below are
known to cause problems.

Residue (Z | F): Results of primitive function residue (L | R) can be affected by
OCT (comparison tolerance) under APL2 but not under VS APL. Use FLAG_ to
locate uses of residue. Carefully check functions that use residue under conditions
of high-level precision. The least significant digits in the results under APL2 can
differ from those in the results under VS APL.

Use of (N C: A defined function can depend on ONC (name class) to test for an
invalid object name. Under VS APL, ONC returns 4 for an invalid object name.
Under APL2, ONC returns ~ 1. (4 indicates a defined operator name.)

Use FLAG _ to identify functions that use ONC to test for invalid object names.

Local Variables: VS APL ignores localization of the name of an argument in the
function header statement:

VZ<FN A;A

APL2 permits localization. If the argument is referenced before it is specified as a
local variable, a VALUE ERROR is generated. If the VS APL workspace was
transferred with)MCOPY, these duplicate local names have been deleted; other-
wise, use CHKHDRS _ to identify localized arguments. Then, delete them from the
list of local names in the function headers.

Testing Functions under APL2
After you have checked and modified functions for the effects of changes and are
ready to test them, migrate any test workspaces and data that you may have used
previously under VS APL.

During testing, problems can surface in two different ways: they can interrupt proc-
essing of a function, or they can allow a function to complete but produce unex-
pected results.

If the Function Is Interrupted

Processing of a function can be interrupted for many reasons. Two common
causes of interruptions are unexpected APL2 data types and indexed numeric con-
stants.

APL2 Data Types: A function can receive data that could not have existed in VS
APL, either entered by a user or read from a file. For example, O input prompts
until valid data is received, but no longer rejects 'AB' 2.

To guard against accidental entry of the new APL2 data types, such as nested or
mixed arrays, you can run the application under the control of OEA (execute alter-
nate). With OFA, you can either branch to an error handling routine if an error
results from new data types, or you can continue normal processing if no error
occurs.

32 APL2 Migration Guide

Indexed Numeric Constants: A function under VS APL can index an item in a
numeric vector constant:

4 5 6[3]
6

Under APL2, the expression is equivalent to the following one, which results in a
RANK ERROR because the brackets are tightly bound to the name on their left.

4 5 (6[31)
RANK ERROR
4 5(6[31)
AA

In functions transferred from VS APL to APL2 with the)XCOPY command, such
vector constants must be parenthesized:

(4 5 6)L3]
6 A

You must add parentheses yourself or use the command)CS 1 (compatibility
setting) to have indexed numeric constants enclosed in parentheses in the following
situations:

* |f the function was not transferred using YMCOPY or)IN

* If the function comes from a file other than a transfer file (using an auxiliary
processor)

¢ |f the function uses execute (¢) on a character vector that contains an indexed
numeric constant vector, for example ¢'4 5 6[3]"
Use of)(CS: The system command) CS (compatibility setting) provides a tempo-
rary solution to the source of two common migration problems:
* Indexed numeric constants in functions not transferred by YYCOPY or)IN
» Inadvertent use of vector notation for other than numeric vector constants
The syntax of)CS is)CS n, where n can have one of the following values:
0 APL2 (the default).
1 Indexed numeric constant vectors produce results as they do in VS APL.

When this setting is used, APL2 inserts the parentheses as it does when
JMCOPY or)IN is used to transfer workspaces. Thus, functions are dis-
played with parentheses enclosing numeric constant vectors.

2 Vector notation is restricted to numeric vector constants, so that
expressions like (1 2)(3 u4), '4A4* 'B' 'C',and 4 3 FDS
(where FDS is a variable) generate a SYNTAX ERROR as they do
under VS APL.

3 Produces the combined effects of settings 1 and 2.
Use) (S without a parameter to query the current setting.

The compatibility setting is saved and loaded with the workspace; however, it is not
copied if the workspace is copied.

Chapter 4. Testing and Debugging 33

Warning:) (S should be regarded as a temporary measure, particularly in disa-
bling vector notation. Functions should be changed as described in[*APL2 Data
[Types” on page 32|

Also, you should never copy an APL2 workspace into a workspace whose compat-
ibility setting is not 0, because of the chances of failure or inappropriate results.

If the Function Is Not Interrupted

Problems that do not stop a function from processing can be detected from exam-
ining the output and comparing it to the VS APL output of the function run against
the same data. In the case of a report that does not align properly, the problem is
evident immediately. Sometimes problems, especially those involving numerical dif-
ferences between APL2 and VS APL, are detected only after considerable testing
or actual use of a function under APL2. If your function is giving erroneous results,
check the following:

e Use of format (v) functions
e Useof AV

» [PR setting

e Numerical precision

Formatting: Reports or results that you produce with format (default) (s R) or
format by specification (L s R) can differ under APL2 because:

e Format (default) does not add a column of leading blanks in front of numeric
arrays of rank 2 or greater.

» Format (default) and, in some cases, format by specification determine the
width of each column according to the item of the greatest width. Because of
this independent column formatting, the widths of columns in the result can
vary from VS APL to APL2.

0AV Dependencies: |If you did not adjust your functions for JA 7V dependencies
before transferring them to APL2, you should now either modify them, or rewrite the
functions to avoid 0AV dependencies. For more information, see [Adjusting for|
[D4V Dependencies” on page 4}

Using Character Input/Output: The new system variable PR (prompt replace-
ment) affects the behavior of 1. VS APL functions that use character input/output
1 to request and receive input on the same line are usually compatible under APL2
as long as PR is set to the default (a blank). Consider editing your functions to
include OPR as a local variable and specify it to be a blank (OPR<"').

Numerical Precision: APL2 provides different numerical precision than does VS
APL. If your defined functions carry results to a high level of precision, check the
least significant digits in those results for possible variations between the results
produced by VS APL and those produced by APL2. To display full precision in
APL2, set PP to 18.

34 APL2 Migration Guide

Checking Data Files Used by a Function

The most common problems with data files result from using the encoding for
reading and writing. For example, a function that writes a file without conversion
produces Z-code under VS APL and EBCDIC under APL2.

Two alternatives for making defined functions and data files compatible are:

e Using the character translation options provided by auxiliary processors distrib-
uted with APL2

» Rewriting applications to take advantage of APL2 and, possibly, to improve the
efficiency of the applications

The first alternative provides the simplest means of correcting any translation prob-
lems. The second alternative can be considered as a long range solution. This
section focuses on the first alternative—using translation options provided by auxil-
iary processors. See APL2 Programming: Language Reference for information on
how to rewrite functions, and see APL2/370 Programming: System Services Refer-
ence for a description of APL2's capabilities.

Changes in APL2 Auxiliary Processor Translation Options

Character translation options offered by auxiliary processors distributed with APL2
can prevent many problems in reading from or writing to files in internal or other
encoding. Problems can arise because the auxiliary processor and translation
option used are no longer compatible with the encoding in a file.

Figure 32 summarizes the changes in default translation options for each auxiliary
processor distributed with APL2.

Figure 32 (Page 1 of 2). Changes in Translation Options for APL2 Auxiliary Processors

AP Environment VS APL Option VS APL Conversion APL2 Option and Notes
100 CMS none Atoa...Ato& ... 37 0(default) — equivalent
EBCD — no conversion
100 TSO none Full 256 EBCDIC EBCD(default) — equivalent
370 — like CMS 370
101 CMS APL Ato A(bsp)_... Not supported
37 0(default) Atoa...Art0& ... Not supported
192 Full 256 EBCDIC 19 2 (default)—equivalent
101 TSO none Full 256 EBCDIC none — equivalent

Chapter 4. Testing and Debugging 35

Figure 32 (Page 2 of 2). Changes in Translation Options for APL2 Auxiliary Processors

AP Environment

VS APL Option

VS APL Conversion

APL2 Option and Notes

110 CMS APL Ato A(bsp)_. .. APL — equivalent
192 Full 256 EBCDIC EBCD (or 192) — equivalent
370 Atoa...Art0& ... 370 (or BCD) — equivalent
BIT 11000001 to4d... BIT — equivalent
BYTE Unchanged for copying or BYTE — no converted
OAV indexing
BYTE Unchanged for storing APL C0D1 — EBCDIC to VS APL
character data
BYTE With translate table BYTE — equivalent with conversion
table
111 ALL APL
210 TSO 192(or EBCD) See 110 CMS See 110 CMS
370(or BCD)
BIT
BYTE
111 TSO TN Superscripts, plotting charac- TN — equivalent
210 TSO ters
123 ALL none Unchanged for copying or T'(default) — equivalent
AV indexing T1 - equivalent or
none Unchanged for storing char- T2 store in EBCDIC
acter data
T — equivalent with converted table
none With translate table
126 ALL "4 1(default). 256 EBCDIC on data, “u4 0(default), if tables/symbol sets

tables/symbol sets
unchanged.

Nothing changed

unconverted

“u 1 if tables/symbol sets converted

Note: For AP 126, the meanings of
the conversion options have changed.
In VS APL, "4 1 converted data
between ZCODES and EBCDIC. In
APL2, "4 1 converts tables between
scrambled EBCDIC and EBCDIC.
Either of the old options may need to
be converted to either of the new
options, depending on what conver-
sion has been applied to the tables.

36 APL2 Migration Guide

Possible Translation Problems
The following summarizes the possible problem areas for each auxiliary processor:

AP 100 (CMS Command Processor): Functions that used AP 100 under VS APL
should operate under APL2.

AP 101 (Alternate Input Processor): Problems involving AP 101 are discussed in
[‘Checking Alternate Input” on page 39

AP 110 (CMS File Processor): This processor is compatible, except for the
BYTE option. Data can be read or written compatibly, using the BYTF option, if:

e The file does not contain character data. On either system, the BY TF option
does no translation. (For example, packed decimal numbers remain as packed
decimal numbers.)

e Character data is not being displayed, converted, tested or modified within APL.
(For example, it can successfully be rearranged and written to another file.)

e Character data is being generated or decoded using A V. (This is functionally
equivalent to the BI T option.)

e An application is using the BYTFE option and a translation table. The trans-
lation may have been between a particular encoding, such as EBCDIC or
ASCII, and VS APL internal encoding. Normally, the translate table is con-
verted properly by)XCOPY. If not, use the ZC tablein 1 UTILITY and
apply the following conversion:

NEWTAB<«UAV[zc10OLDTAB]

Functions using the BYTE option, which do not meet any of the above criteria must
be modified.

e As a short-term solution, the BYTE option can be changed to COD1.
* An efficient long-term solution is to convert the files and option to EBCD.

AP 111 (QSAM Processor): This processor can produce the same problems
described for AP 110. Most options provided for AP 110 are also provided for AP
111. In the CMS environment, AP 111 was changed to enforce the rule that the
block size for variable length records must be at least 8 bytes larger than the
largest record. This change was made because of a change in CMS/SP2.

AP 120 (Session Manager Command Processor): Functions that used AP 120
under VS APL continue to work under APL2.

AP 121 (APL File Processor): This processor allows files to be completely com-
patible between VS APL and APL2, provided that files continue to be processed in
the same way under APL2.

To write nested or mixed arrays, complex numbers, or extended character data to
an AP 121 file, use service requests SWC or DUC. These new service requests
allow any valid APL2 data to be written to an AP 121 file.

AP 123 (VSAM Processor): This processor transfers VSAM keys and data
without translation. Two problem situations can occur:

e Under VS APL, a function can use AP 123 and no other functions to write a file
in Z-codes. Under APL2, the function can access that file through AP 123.

Chapter 4. Testing and Debugging 37

However, the keys no longer identify the correct records and data is incompre-
hensible. Change the APL 2 function to use the T1 option, which can access
data in Z-code format.

An alternative and more permanent resolution of this problem is to do a one-
time conversion of the file to EBCDIC. After the data is converted, the function
can run under APL2 without change. See APL2/370 Programming: System
Services Reference for more information on the translation options for AP 123.

e Under VS APL, a function can use AP 123 with the ECO and ECI functions in
the workspaces distributed with VS APL. These functions allow AP 123 to
write or read data in EBCDIC format.

Under APL2, these functions are no longer needed to translate from Z-codes to
EBCDIC. Copy the new ECO and ECI functions into your workspace; they are
provided with the APL2 Licensed Program in the workspace UTILITY. ECO
and ECI do no translation. To increase the efficiency of a program, consider
eventually removing calls to ECO and ECI from your applications.

Note: Files not containing character data can be read from and written to
without change.

AP 126 (GDDM Processor): When a VS APL workspace is transferred to APL2,
)MCOPY translates all character data in the workspace from Z-codes to EBCDIC.
This data is compatible with default conditions under APL2. (The default 4 service
request is off.) APL2 character data is already written internally in EBCDIC.

However, some character data in a workspace transferred from VS APL by
)MCOPY cannot be properly converted to EBCDIC. Under VS APL, AP 126, the
symbol set values, and translate table values are usually in EBCDIC encoding.
Such data is scrambled by)¥COPY when the workspace is transferred.

You can correct or circumvent this problem by one of the following methods:

e Save the symbol sets on auxiliary storage while you are under VS APL.
Transfer the workspace. Then, read in the symbol sets to replace the scram-
bled data.

e Back-translate the scrambled tables, using the zc table in 1 UTILITY:
GOODTAB<zc[UAV1BADTAB]

» Change your application to use the AP 126 ~ 4 service request, which has the
following trans values:

0 Special EBCDIC translation off (APL2 default)
1 Special EBCDIC translation on (VS APL default)

A trans value of 1 (instead of the APL2 default) enables you to compensate for
the scrambled symbol sets.

AP 210 (BDAM Processor): This processor can have translation problems similar
to those of AP 110. Refer to the explanation for AP 110.

38 APL2 Migration Guide

Checking Alternate Input

If you use AP 101, the alternate input (stack) auxiliary processor, two problems can
occur during migration:

» Useof)COPY,)PCOPY, or)ERASE to copy or erase groups
* Use of an inappropriate translation option

Groups: APL2 does not support groups. Instead, the)COPY,)PCOPY, and
)ERASE commands are extended to process objects indirectly. APL2 replaces
groups with character matrixes that contain the names of objects in the group. If
you use the YMCOPY command to transfer workspaces, any groups that exist
under VS APL are defined by character matrixes in your workspaces under APL2.
(See|Figure 5 on page 8|for more information on migrating a group of objects from
VS APL to APL2.) Check stack commands for group dependencies and change
them for indirect copying or erasing. For example, the following VS APL
expression copies objects in the group ¥YGROUP:

)COPY MISSIONS MYGROUP

Under APL2, groups of objects are copied by enclosing the name of the character
matrix in parentheses:

JCOPY MISSIONS (MYGROUP)

For more information on indirect copying, see APL2 Programming: Language Refer-
ence.

Translation Option: In APL2, AP 101 defaults to EBCD-no translation. The 192
option from VS APL is equivalent and is permitted. The APL and 370 options are
not supported, and are rejected with return code 1. In most cases, the APL option
can simply be removed. If the function was using the 370 option under CMS,
check especially for dependencies on the following character mappings:

APL characters A N + A z x
Passed to CMS & " % # $ @

Checking User-Written Auxiliary Processors Used by a Function

The APL2 shared variable processor (SVP) allows user-written auxiliary processors
to be compatible with APL2. They do not need to be reassembled unless:

* You want the user-written auxiliary processors to handle the new APL2 data
types.

* You want the user-written auxiliary processors to handle the new return code.
(ASVPREF and ASVPCPY return code is 12-68 if data cannot be represented
in VS APL format.)

Chapter 4. Testing and Debugging 39

e The user-written auxiliary processors access VS APL internal tables, work-
spaces, or executor control blocks. The user-written auxiliary processors need
to be modified because the internal structure and workspace formats are dif-
ferent under APL2.

Under TSO, module AP2TASVP replaces module APLYURVC. In CMS, module
AP2VASVP replaces ASVPSRVC. In both environments, user-written auxiliary
processors must be link-edited again for use with APL2. For more information, see
APL2/370 Installation and Customization under TSO or APL2/370 Installation and
Customization under CMS.

APL2/370 Programming: Processor Interface Reference discusses modifying user-
written auxiliary processors to handle APL2 data.

Note: The Shared Variable Processor (SVP) does not support certain forms of the
query request (ASVPQRY) macro instruction. It only supports queries of a single
variable or a single processor. Queries of multiple variables or multiple partners
must be accomplished through multiple query requests.

Testing the Application As a Whole

After you have checked the functions in the workspace, and the files and auxiliary
processors they use, you are ready to test the application as a whole. You may
find that some runtime instructions need to be modified. For example, if groups of
functions or variables are copied from other workspaces, the directions for copying
groups must be changed to specify indirect copying.

When you are satisfied that the application is running properly in production, you
can drop the unmodified backup workspaces.

Performance Analysis of the Application

40 APL2 Migration Guide

Once you have verified that the entire application is operating properly, you may
find that the application can be significantly improved by conducting performance
analysis.

The APL2 external function TIME can be used to gather performance statistics
and identify “hotspots” in the application that are using most of the CPU time. By
focusing your effort on these hotspots, you can have the greatest effect in reducing
overall application CPU time.

Recoding hotspots either using more efficient APL2 algorithms, exploiting APL2's
nested array processing capabilities to avoid sequential code with a high degree of
interpretive overhead, or even rewriting sections in compiled languages are also
techniques that can be used to improve performance sensitive code.

The TIME function is discussed in greater detail in APL2/370 Programming: Using
the Supplied Routines.

Chapter 5. Migration within APL2

This chapter provides a summary of changes in migrating to APL2 Version 2 from
other APL2 environments.

| Migrating between Mainframe APL2 Systems

I This section discusses migration between mainframe systems.

| Functional Changes—Version 1 to Version 2

I This section discusses the functional changes in Version 2 that can affect migration
I from Version 1.

I There are no major incompatibilities, but minor changes in the behavior of mes-
I sages, ONLT,)COPY, CASE, and error signalling may need to be considered.

Mixed-Case and National Language Support

The product is now shipped with a default of mixed-case messages. This is imple-
mented as a “national language” called DEFAULT. APL2 language-defined mes-
sages that can appear in EM have been left in uppercase, so in most cases APL
applications should be unaffected by the change. However applications that
inspect or set UNLT may behave differently.

e In Version 1, if ONLT was set to an unsupported value the system reset it to
be empty, which indicates that uppercase American English is to be used. If it
is set to an unsupported value in Version 2, the system resets it to its last valid
value. In particular, programs or users may have previously set
ONLT<'ENGLISH' to request English messages. The name 'ENGLISH'
never has been defined as a part of the APL2 product, and this assignment no
longer has any effect. You are left with the previous value of ONL T rather than
having it reset to empty.

It was previously possible for a user or program to modify a national language
table (an APL2LANG file), then respecify ONL T to have it take effect. In order
to improve performance, the system no longer physically reads an APL2LANG
file unless ONLT is changed to point to a different file from the one currently
active. The recommended procedure for using a newly-changed language file
is to first set ONLT<"' ' and then set it to the desired name.

e APL2 now supports IBM's standardized set of three-character language codes
as synonyms for the spelled out names it previously recognized. If an installa-
tion or user had defined a private language file with a three-character name,
the system no longer honors that name if it conflicts with any standard IBM
code. This is true whether or not a language file is available for that code. If
you want to provide a file for some additional language, and want to access it
by its three-character code, define it using the fully-spelled out form of the lan-
guage name. (See ONLT in APL2 Programming: Language Reference for
details.)

» Since APL2 recognizes the three-character codes as synonyms for the full
names, it replaces the code with the full name in ONLT. This could confuse an
application that set ONL T to the code value and then checked it to see if the
value was accepted.

© Copyright IBM Corp. 1984, 1994 41

Copying System Variables

The)COPY command, when used to copy an entire workspace, has been
changed to include the system variables OCT, OFC, 070, OLX, OPP, OPR, and
ORL along with all user objects in the workspace. This makes its behavior compat-
ible with APL2 workstation products, but different from that of previous mainframe
APL systems. The change is a clear improvement for users who are trying to clean
up and compress workspaces, or who want to change the workspace CASE. But it
can create surprises when merging two workspaces into one. The recommended
approaches to combining applications include use of namespaces or of indirect
copy lists.

Workspace CASE Attribute

The lowercase alphabet has replaced the underbarred alphabet for use in APL
names. As in APL2 Version 1 each workspace has an associated case attribute
that controls the format used to enter and display APL names. The Version 1
default was CASE(0), but that now has been changed. Workspaces distributed
with the Version 2 product are in CASE(1), and that is also the product default as
distributed for newly-created user workspaces. (This default may be overridden by
the installation or as an invocation option.) The definitions of supported cases
remain as before:

CASE(0) Lowercase and underbarred characters can be used interchangeably
when entering names into the system, though underbarred characters
are converted to lowercase internally. Primitives that return names as
results (that is, ONL, OCR, OFX, 0SVQ, and OTF), and system com-
mands and messages that display names, convert lowercase letters to
underbarred letters for their output.

CASE(1) Lowercase and underbarred characters can be used interchangeably
when entering names into the system, though underbarred characters
are converted to lowercase internally. Primitives that return names as
results, and system commands and messages that display names, do
no conversion of lowercase letters for their output.

CASE(2) Underbarred characters are treated as invalid in names and are not
accepted or produced in system functions, commands, or messages.

The invocation option CASE(n) determines the convention to be used for new work-
spaces created during the APL2 session. This option does not, however, apply to
all work done by the user during that session. It is instead interpreted as an implicit
parameter to all subsequent) CLEAR commands. Note that)CLEAR is the only
way in APL to create a new workspace.

The CASE attribute assigned to a workspace during) CLEAR cannot be changed
later. The only way to change the CASE attribute of a workspace is to transfer its
contents to a different workspace. Using) COPY,)PCOPY, or)IN does not
affect the CASE attribute of the workspace into which the objects are copied. A
CASE function has been provided in the UTILITY workspace that returns the
case of the active workspace.

When in a CASE(0) or CASE(1) workspace,) IN can be used to access objects
with underbarred names or containing references to other objects with underbarred
names. The names of the copied objects, as well as names referred to by copied
functions or defined operators, are converted to lowercase as appropriate. Note,

42 APL2 Migration Guide

however, that literal strings and comments within functions, and the content of vari-
ables, are not converted.

Caution:)TN should not be used in a CASE(2) workspace to access a transfer

file written from a CASE(0) workspace. Attempts to do so can fail because names
in transfer files created from CASE(0) workspaces frequently contain underbarred

letters, and CASE(2) does not convert underbarred letters to lowercase. CASE(1)
provides a bridge between CASE(0) and CASE(2) in this context.

)COPY and)PCOPY can be used with no problem between CASE(0) and
CASE(2) workspaces, because names in APL2 workspaces never actually contain
underbarred letters internally.

Migrating Workspaces

This section discusses how you can migrate your workspaces.

Version 1 to Version 2

Migration of workspaces from APL2 Version 1 to Version 2 is automatic on any
JLOAD or)COPY of the workspace. A message is issued indicating that the
internal conversion has been done, and if the workspace is then saved, it is a
Version 2 workspace. If the workspace was loaded, it has the CASE it had when it
was saved under the previous release. If it was copied, it has the case of the
active workspace at the time of the) COPY.

Version 2 to Version 1

Because of internal changes to the structure of the workspace, Version 2 work-
spaces cannot be loaded or copied into Version 1. Ifa)LOAD or)COPY is
attempted, the message WS INVALID is issued.

To migrate a workspace backward from Version 2 to Version 1, use)OUT in
Version 2 to create a transfer form file, and use) I N in Version 1 to receive it.

Workspaces that take advantage of new Version 2 features, of course, do not
migrate directly to Version 1. For example, existing external associations with new
Processor 11 external functions or with Processor 12 files cause errors during the
) IN, and uses of auxiliary processors 119 or 211 cause execution-time errors.

Version 2 Release 1 to Version 2 Release 2

The workspace formats of the two releases of Version 2 are compatible, so work-
spaces can be transferred between the releases in either direction with) LOAD
and)SAVE.

If the new diamond statement separator has been used in a Version 2 Release 2

workspace, errors occur when functions containing the diamond are executed in
Version 2 Release 1.

Coexistence with Version 1
This section discusses how to coexist with the previous version of APL2.

Chapter 5. Migration within APL2 43

Shared Variable Processor Considerations

APL2 provides an optional Global Shared Variable Processor (GSVP) for con-
nections between APL2 sessions on the same system, and between an APL2
session and a server written as a global auxiliary processor. The GSVP provided
with APL2 Version 2 can be used by the previous version of APL2, but APL2
Version 2 cannot use earlier versions of the GSVP.

| Migrating between Mainframe and Workstations

This section discusses migration between the mainframe and workstation environ-
ments, and between the different workstation environments.

Transferring Workspaces

44 APL2 Migration Guide

Workspaces are easily transferred between APL2 systems. Transfer file formats
have been defined to permit exchange of workspace objects among all IBM APL2
implementations.

Workspace Transfer between APL2 Systems
In general, APL2 workspaces must be sent to other APL2 systems as transfer form
files. Transfer forms have the following default file naming conventions:

CMS filename APLTF =
TSO prefix. APLTF.filename
0S/2 or DOS path\filename.ATF
AIX* or UNIX** path/filename.atf

The APL2 commands used to create and read transfer form files are)OUT,)IN,
and)PIN. To transfer a workspace, start APL2 on the system where the work-
space resides, and issue the following commands:

YLOAD wsid
)SIC (or)RESET)
YOUT filename

A transfer file is created by the)OUT command.

Once the transfer file is created, it then must be moved to the target APL2 system,
and can be saved with a name following the conventions of the target system. The
techniques for physically moving files from one system to another can vary
depending on the types of systems and what connections exist between them.

¢ One key issue is that some systems (for example MVS/TSO and VM/CMS) use
an EBCDIC character encoding, while others (for example OS/2 and AlX/6000)
use an ASCII encoding. Both ASCII and EBCDIC transfer file formats are
defined, and all IBM APL2 systems accept both formats. No data conversion
should be attempted within the file itself when transferring it from one system to
another. The receiving APL2 system performs any necessary conversion. |If
the transfer is done electronically through a network connection, the programs
controlling that transfer must be told that this is a “binary” rather than
“character” file. (The exact terminology used may vary depending on the
system and network control programs being used.)

e Some systems use “record-oriented” files while others use stream files. If
stream files are being transferred to a system that expects record-oriented files,

an arbitrary record length may be used, but the existing record separators (“LF”
or “CR/LF”) must be retained. Conversely, separators should not be inserted
when record-oriented files are being transferred to a system that expects
stream files. Again, the receiving APL2 system adjusts to these differences.

¢ Within these constraints, standard data transmission commands appropriate to
the system such as “fip put,” “SEND,” “SENDFILE,” or “TRANSMIT” can be
used for network transmission, with corresponding commands such as “ftp get”
or “RECEIVE” as appropriate to the receiving system.

e Because the receiving APL2 system performs all necessary conversions, it is
also possible to use shared DASD, remote file systems, removable media, or
other such facilities to transport the data.

When the file has been transferred to the target system, it can then be read into
APL2 and saved as a workspace:

JCLEAR
YIN filename
YSAVE wsid

Migration of TryAPL2 Workspaces

Workspaces saved under TryAPL2 can be read by APL2/2, APL2/6000, and APL2
for Sun Solaris. The function TRYLOAD in the FILE workspace can be used to
read these files. Once migrated to one of the workstations, the)OUT and)IN
processes can be used to migrate to the mainframe.

Transferring AP 211 Files

Files created by AP 211 are portable between APL2/370, APL2/2, APL2/6000, and
APL2 for Sun Solaris. The files must be transferred in binary mode. The receiving
APL2 system performs all necessary conversions of data. Files to be uploaded to

the mainframe must be uploaded as fixed format files, with a record length equal to
the AP 211 blocksize for the file. The blocksize can be obtained by issuing an AP

211 'USE' command against the file.

In addition, files created by AP 211 on APL2/PC can be read by APL2/2,
APL2/6000, and APL2 for Sun Solaris. Writing back to these files is not allowed.
The function REBUILD211 in the public workspace 2 FILE can be used to per-
manently convert the APL2/PC file to the new format if desired. Once migrated to
one of the workstations, the file can then be uploaded to the mainframe.

Chapter 5. Migration within APL2 45

Bibliography

APL2 Publications

46

APL2 Fact Sheet, GH21-1090

APL2/370 Application Environment Licensed
Program Specifications, GH21-1063

APL2/370 Licensed Program Specifications,
GH21-1070

APL2 for AIX/6000 Licensed Program Specifica-
tions, GC23-3058

APL2 for Sun Solaris Licensed Program Specifica-
tions, GC26-3359

APL2/370 Installation and Customization under
CMS, SH21-1062

APL2/370 Installation and Customization under
TSO, SH21-1055

APL2 Migration Guide, SH21-1069

APL2 Programming: Language Reference,
SH21-1061

APL2/370 Programming: Processor Interface Refer-
ence, SH21-1058

APL2 Reference Summary, SX26-3999

APL2 Programming: An Introduction to APL2,
SH21-1073

APL2 for AIX/6000: User's Guide, SC23-3051
APL2 for OS/2: User's Guide, SH21-1091

APL2 for Sun Solaris: User's Guide, SH21-1092
APL2 for the IBM PC: User's Guide, SC33-0600

APL2 GRAPHPAK: User's Guide and Reference,
SH21-1074

e APL2 Programming: Using Structured Query Lan-
guage, SH21-1057

e APL2/370 Programming: Using the Supplied Rou-
tines, SH21-1056

e APL2/370 Programming: System Services Refer-
ence, SH21-1054

e APL2/370 Diagnosis Guide, LY27-9601
e APL2/370 Messages and Codes, SH21-1059

Other Books You Might Need

The following book is recommended:

e APL2 at a Glance, by James Brown, Sandra Pakin,

and Raymond Polivka, published by Prentice-Hall,
ISBN 0-13-038670-7 (1988). (Copies can be
ordered from IBM as SC26-4676.)

Plastic replacement keyboard keycaps are included with

this product. Additional sets of keyboard keycaps are
available from IBM as:

e APL2 Keycaps (US and UK base set), SX80-0270

e APL2 Keycaps, German upgrade to SX80-0270,
SX23-0452

e APL2 Keycaps, French upgrade to SX80-0270,
SX23-0453

e APL2 Keycaps, ltalian upgrade to SX80-0270,
SX23-0454.

Two sets of APL2 Keyboard Decals, SC33-0604, are
included with this product. Additional sets of these
decal sheets can be ordered from IBM.

© Copyright IBM Corp. 1984, 1994

Index

Special Characters

JCONTINUE 18

JCOPY 18, 26, 42

extended for indirect copy 26

)CS 12,33
caution when using 33
syntax 33
use of 33

JERASE 26, 39

JENS 18

JHOST 12

YIN 12, 21

JLIB 18

JLOAD 19

YMCOPY 12
AP 126 problems 38
as migration tool 3
choosing an alphabet 3
comparison tolerance 7
copying groups of objects 9
copying individual objects 9
during use of)MCOPY 9
effects of 7
effects on character data 4
error messages 9
for transferring workspaces 5
handling of indexed vector constants 21
index origin 7
indirect copy 26
installation options 7
latent expression 7
locked functions 7
password 7
random link 7
specifying objects to be copied 9
syntax 7
system requirements for using 6
system variables 7

JMORE 12

YNMS 12

JOFF 18

JOPS 12

)ouT 12

)PBS 12

)PCOPY 18,26

JPIN 12

JRESET 18

)SIC 18

)SIS 18

)STACK 26

© Copyright IBM Corp. 1984, 1994

)STACK VS APL 26
)SYMBOLS 18
JVARS 18
YWSSIZE VS APL 26
O4F 12
OAT 12
O0Av 34
dcr 23
acr 7,32
Or4A 12
Ogc 12, 21
OrgmM 12
Ogs 12
Orr 12
Orx 23
arc 12
OFx 18,23, 32
0ro 7
or 12
orx 7,19
Ova 12
Onvc 28, 32
avcr M1

use by applications 41
app 7,17
OpPr 12
Opw 22
Or 12
OrRL 7
Osve 12
aOsvo 24
0sve 26
OSVR 24
asvs 12
arr 12
arz 12
OwA 24

A

adjusting for AV dependencies 4
ALL_, TRANSFER workspace function 31
alphabet
underbarred letters 42
alternate input, checking 39
alternate input, possible problems with AP 101
alternative input, checking 22
AP 100 (CMS Command Processor)
file translation 37
translation options 35
AP 100 (TSO Command Processor)
translation options 35

37

47

AP 101 (Alternate Input Processor)
possible translation problems 37, 39
translation options 24, 35

AP 102 (main storage access processor) 13

AP 110 (CMS File Processor)

BYTE option 37
possible translation problems 37
translation options 24, 36

AP 111 (QSAM Processor)
possible translation problems 37
translation options 24, 36

AP 120 (Session Manager Command Processor)
possible translation problems 37

AP 121 (APL File Processor)
file translation 37

AP 123 (VSAM Processor)
possible translation problems 37
translation options 36

AP 126 (GDDM Processor)
correcting problems 38
full-screen facilities 26
possible translation problems 38
replaces AP 124 26
translation options 36

AP 127
SQL access 13

AP 127 (SQL Processor) 13

AP 210 (BDAM Processor)
possible translation problems 38
translation options 24, 36

AP 211
transferring files 45

APL2
auxiliary processor translation options 24, 35
data types 32
transfer of workspaces from TryAPL2 45
transferring workspaces 3

APL2PI 28

APL2PIFE 28

APLIBTAB file 7

APLYUOPT (TSO) module 8

arrays
as operands 17
characters and numbers mixed 15
display of nested data 16
nested 11
selective specification 17

assignment
under APL2 15
under VS APL 15

ASVPREP, return code from 24, 39

atomic vector (JA V)
dependencies 4, 34
differences between VS APL and APL2 23

ATR 28

48 APL2 Migration Guide

ATTN 28
auxiliary processor 1
AP 124 replaced by AP 126 26
APL2 compared to VS APL 20
distributed with APL2 13
solutions to file translation problems 35
translation options 24, 35
user-written
compatibility with APL2 39
facilities for 13
handling of new APL data types 25

B

backslash operator 12, 16
backup during migration 5
BUILDRD 28
BUILDRL 28

C
CAN 28
canonical representation 23
caret, to indicate error 18
CASE attribute 42
choosing an alphabet 3
setting 5
changes
summary of ix
changes in APL2 auxiliary processor translation
options 35
character data
erroneous stacking of 39
input/output 23, 34
mixed with numeric data in arrays 15
translation from VS APL to APL2 4
character representation (OCR) 23
checking
alternate input 39
alternative input 22
data files used by a function 35
user-written auxiliary processors 39
choosing an alphabet
JMCOPY 3
CASE attribute 3
for workspace names 3
circle (LoR) function 22
CMS
LIBTAB APL2 file 3
workspace location for)YCOPY 8
CMSIVP 28
compared to VS APL 11
comparison tolerance
copied by YMCOPY 7
compatibility
VS APL with APL2 11

complex numbers 22
compression, primitive function 16
copy command

VS APL compared to APL2 18
copying system variables 42
CSRIDAC 28
CSRREFR 28
CSRSAVE 28
CSRSCOT 28
CSRVIEW 28
CTK 28
CTN 28

D

DAN 28

data files used by a function, checking 35

data type
cause of interrupted function processing 32
for user-written auxiliary processors 39
preventing accidental entry 32
supported by auxiliary processors 20

data, translation of 20

DEBUG invocation option 19

debugging 18, 30

derived functions 12, 16

DESCRIBE function 5

DISPLAY 28

display of output 16

DISPLAYG 28

DMFT 28

dropping backup workspaces 40

DSQCIA 28

dyadic shared variable query 26

E

edit commands, changes in 20
editing, VS APL compared to APL2 20
editor command 20
editors
editor 1, line editor 14
editor 2, full-screen editor 14
editor 2 name command 14
full-screen 20
system 14
error messages
new system messages 12
evaluation of expressions 16, 21
event handling 12
EXP 28
expand
derived function 16
expansion
primitive function 16

expunge (OEX) 23
extended-compatible features
language 15
system 19
extended-incompatible features
language 21
system 24

F

facilities no longer supported under APL2 26
features
extended-compatible 15, 21
extended-incompatible 21
new under APL2
language 11
system 13
VS APL, not supported by APL2
language 26
system 26
FED 28
files 1
checking translation of 35
list of workspaces for access to 27
FIX_, TRANSFER workspace function 31
FLAG_, TRANSFER workspace function 31
format
primitive function 16
format (default) (*) function 22, 34
format by specification (L*R) function 22, 34
formatting 34
full-screen editor 20
full-screen editor, editor 2 14
full-screen management 26
function interrupted during testing 32
function not interrupted during testing 34
functions
defined
as operands 17
character representation 23
editing the name of 20
likely problems after transfer 30
testing and debugging 30
derived
formed with backslash operator 12
formed with slash operator 12, 16
locked 7
primitive 11
system 17,23

G

Graphical Data Display Manager (GDDM)
AP 126 problems 38
required by full-screen editor 13

Index

49

groups lowercase 41

definition 7 lowercase alphabet 42
migration 8, 39
named in stacked system commands 39 M
not found by)¥COPY 9
replacement under APL2 26, 39 messages
GSVP 44 lowercase 41
migrating
under CMS
H APLIBTAB VS APL file 3
HELP 28 migrating workspaces 43
highlighting of input, output 20 migration
horizontal tabs (OHT) command 26 backup 5
host system definition 1
list of workspaces for access to 27 from another host system 3
requirements for migration 3 objects from VS APL to APL2 8
overview 1
I planning for 1
preparing for 2
ID parameter 25 tasks 1
IDIOMS 28 time stamp 7
index origin under CMS 8
copied by YMCOPY 7 APLIBTAB APL2 file 3
indexed numeric constants 33 workspace location for YXCOPY 3
indexed vector constants 21 under TSO 8
Inner Product 22 workspace location for YCOPY 8
inspecting, correcting, and testing functions 30 workspace location for Y¥COPY 8
installation options mixed case 41
JMCOPY 7 mixed data 11
interrupted processing 32 MSG 28

invocation options
compatible system features 19

ID parameter 25 N
new facilities under APL2 13 name class function (ONC) 23, 32
national language
K names in ONLT 41
three-character codes 41
KTC 28 national language support 12
national language translation 12
L nested arrays 11, 16
language features no longer supported by APL2 26 ne\iva:;it:;ees |r111APL
language names in avcr 41 new features in APL2
latent expression system 13

copied by JMCOPY 7 numerical precision 34

libraries

creating directory for 3

improperly referenced (error messages) 9 O

specifying for)YMCOPY 7 object names 16
LIBTAB APL2 file 3 objects
line editor 20 not copied by)XCOPY 9
line editor, editor 1 14 not found by)MCOPY 9
local names 20, 32 specifying with YYCOPY 8
local variables 32 operators
locked functions defined

copied by)MCOPY 7 character representation 23

editing the name of 20

50 APL2 Migration Guide

operators (continued)
defined (continued)
new language features under APL2 12
primitive 11
OPTION 28
output, display of 16

P
PACKAGE 28
packaged workspaces 28
parentheses
high precedence during evaluation 21
use in APL2 expressions 16
password
missing or incorrect (error message) 9
used with)MCOPY 7
PBS 28
PFA 28
power (L*R) function 22
preparation for transferring workspaces 3
primitive functions
changes incompatible with VS APL 22
compatible language features 16
new language features under APL2 11
primitive operators 11
printing precision (OPP)
system functions and variables 18
problems, testing transferred functions 32
prompt replacement (OPR) 23, 34

Q

QNS 28
quote-quad 23

R

random link
copied by YMCOPY 7
RAPL2 28
replacement for VS APL features in APL2 26
replication, derived function
reports, alignment problems with 34
RESIDUE function 32
right arrow 18
RTA 28
run-time instructions 40

S

SAN 28

session manager
FIND command 13

shared variable offer 24

shared variable processor (OSVP) 39, 44
considerations 44

shared variable query (0SVQ), dyadic 26
shared variable retraction (OSVR) 24
shared variables 12
space, insufficient for copying objects 9
SQL, access through AP 127 13, 27
stacked data
possible problems with AP 101 39
system commands with group names 39
state indicator, (*) 18
stop control (0SI) 18
summary of changes ix
SVI 28
symbol set, problems with)XCOPY 38
syntax
)CS 33
YJMCOPY 6
system commands
JERASE 39
indirect)COPY 26
indirect)ERASE 26
indirect)MCOPY 26
indirect)PCOPY 26
national language support for 12
new in APL2 12
used in debugging 18
system editors 14, 20
system features
compatible-extended 19
incompatible—extended 23
new for APL2 13
no longer supported 26
system functions
changes compatible with VS APL 19
changes incompatible with VS APL 23
system limits 9
system messages
AXIS ERROR 13
SYSTEM ERROR 13
VALENCE ERROR 13
system messages, new 12
system requirements
JMCOPY 6
system variables 42
changes incompatible to VS APL 23
copied by YMCOPY 7
new under APL2 12

T

testing and debugging 30

testing functions under APL2 32
function interrupted during testing 32
function not interrupted during test 34

testing the application as a whole 40

testing transferred functions 32

Index

51

things to look for when debugging 32
TIME 28
time stamp
during migration 7
transfer file 12
transfer files
moving between systems 44
transfer procedure 5
TRANSFER workspace
functions and variables

ALL_ 31
FIX_ 31
FLAG_ 31

procedure for using 30

use of DESCRIBE function 5
transferring files 45
transferring selected objects

groups of objects 8

individual objects 8
transferring workspaces 2, 44

from VS APL to APL2 3

preparing for 3
translate tables, problems with)¥COPY 38
translation option

for auxiliary processors 35

inappropriate use 39
translation problems 37
TryAPL2

transfer of workspaces to workstations 45
TSO

APLYUOPT module 8

workspace location for YMCOPY 8
TSOIVP 28

U

underbarred alphabet 42
user-written auxiliary processor
APL2 facilities for 25
new return code for 39
used by function 39
user-written auxiliary processors, checking 39

\'

vector
constants 7

VS APL
continuing use of 1
discontinuing use of 2
features compatible with APL2 15
features incompatible with APL2 21
features not supported by APL2 26
running concurrently with APL2 1
service continued 1
service discontinued 2

52 APL2 Migration Guide

VS APL (continued)

transferring workspaces 3
workspace 4

VS APL compared to APL2

auxiliary processor options (incompatible) 24
auxiliary processors (compatible) 20

data representation (compatible) 15

display of output 16

editors (compatible) 20

evaluation of expressions (compatible) 15
evaluation of expressions (incompatible) 21
invocation options (compatible) 19

object names (compatible) 16

primitive functions (compatible) 16

primitive functions (incompatible) 22
selective specification (compatible) 17
system commands (compatible) 18

system functions and variables (incompatible)

w

workspace

backup during migration 5

backup for migration 2

location for)MCOPY 8

locked (error message) 9

not found (error message) 9

size error 9

use of)MCOPY command for copying 3
VS APL 4

workspace case 42
workspace migration 43
workspaces 1

migration from TryAPL2 45
transferring between APL2 systems 44

23

workspaces distributed with VS APL and APL2 27
workspaces, packaged 28

We'd Like to Hear from You

APL2
Migration Guide
Version 2 Release 2

Publication No. SH21-1069-01

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

¢ Electronic mail—Use one of the following network IDs:

— IBMMail: USIB6JN8
— Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

APL2
Migration Guide
Version 2 Release 2

Publication No. SH21-1069-01

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O O O O O
Complete O | O] |
Easy to find]] O] |
Easy to understand O] O | |
Well organized m]] O | |
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O] O]]
Overall satisfaction O | O o |

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
SH21-1069-01

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12

PO Box 49023

San Jose, CA 95161-9023

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SH21-1069-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370-34
Program Number: 5688-228

5688-229

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090
SH21-1073
SH21-1061

SX26-3999
SH21-1074
SH21-1057
SH21-1069
SC33-0600
SC33-0601

SC33-0851

SH21-1091

GC23-3058
SC23-3051

GC26-3359
SH21-1092
GH21-1063
GH21-1070
SH21-1062
SH21-1055
SH21-1054
SH21-1056
SH21-1058
LY27-9601

SH21-1059

APL2 Family of Products (fact sheet)

APL2 Programming: An Introduction to APL2

APL2 Programming: Language Reference

APL2 Reference Summary

APL2 GRAPHPAK: User's Guide and Reference

APL2 Programming: Using Structured Query Language
APL2 Migration Guide

APL2 for the IBM PC: User's Guide

APL2 for the IBM PC: Reference Summary

APL2 for the IBM PC: Reference Card

APL2 for OS/2: User's Guide

APL2 for AIX/6000 Licensed Program Specifications
APL2 for AIX/6000: User's Guide

APL2 for Sun Solaris Licensed Program Specifications
APL2 for Sun Solaris: User's Guide

APL2/370 Application Environment Licensed Program Specifications
APL2/370 Licensed Program Specifications

APL2/370 Installation and Customization under CMS
APL2/370 Installation and Customization under TSO
APL2/370 Programming: System Services Reference
APL2/370 Programming: Using the Supplied Routines
APL2/370 Programming: Processor Interface Reference
APL2/370 Diagnosis Guide

APL2/370 Messages and Codes

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	APL2 Publications
	Conventions Used in This Library

	Summary of Changes
	Product
	Document Changes

	Chapter 1. Overview of Migration
	Planning for Migration from VS APL
	Preparing for Migration from VS APL

	Chapter 2. Transferring Workspaces from VS APL
	Preparation for Transferring Workspaces
	Choosing an Alphabet
	Adjusting for °AV Dependencies

	Transfer Procedure
	The)MCOPY Command
	Transferring Selected Objects
	Error Messages When Using)MCOPY

	Chapter 3. APL2 Compared with VS APL
	New APL2 Features
	New Language Features
	New System Features

	Extended-Compatible Features
	Extended-Compatible Language Features
	Extended-Compatible System Features

	Extended-Incompatible Features
	Extended-Incompatible Language Features
	Extended-Incompatible System Features

	VS APL Features No Longer Supported
	Language Features No Longer Supported
	System Features No Longer Supported

	Workspaces
	External Functions Distributed with APL2

	Chapter 4. Testing and Debugging
	Inspecting, Correcting, and Testing Functions
	Using the TRANSFER Workspace
	What to Look For
	Testing Functions under APL2
	If the Function Is Interrupted
	If the Function Is Not Interrupted

	Checking Data Files Used by a Function
	Changes in APL2 Auxiliary Processor Translation Options
	Possible Translation Problems

	Checking Alternate Input
	Checking User-Written Auxiliary Processors Used by a Function
	Testing the Application As a Whole
	Performance Analysis of the Application

	Chapter 5. Migration within APL2
	Migrating between Mainframe APL2 Systems
	Functional Changes—Version 1 to Version 2
	Mixed-Case and National Language Support
	Copying System Variables
	Workspace CASE Attribute

	Migrating Workspaces
	Version 1 to Version 2
	Version 2 to Version 1
	Version 2 Release 1 to Version 2 Release 2

	Coexistence with Version 1
	Shared Variable Processor Considerations

	Migrating between Mainframe and Workstations
	Transferring Workspaces
	Workspace Transfer between APL2 Systems
	Migration of TryAPL2 Workspaces

	Transferring AP 211 Files

	Bibliography
	APL2 Publications
	Other Books You Might Need

	Index

