

APL2 IBM

Migration Guide
Version 2 Release 2

 SH21-1069-01

APL2 IBM

Migration Guide
Version 2 Release 2

 SH21-1069-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”

on page v.

Second Edition (March 1994)

This edition replaces and makes obsolete the previous edition, SH21-1069-0. The technical changes for this edition are summarized

under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Version 2 Release 2 of APL2, 5688-228, and to any subsequent releases until otherwise indicated in new

editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the

address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58

P.O. Box 49023

San Jose, CA, 95161-9023

United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes

appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1984, 1994. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

| Notices . v

| Programming Interface Information . v

| Trademarks . v

About This Book . vi

Who Should Use This Book . vi

| APL2 Publications . vi

| Conventions Used in This Library . vii

| Summary of Changes . ix

| Product . ix

Chapter 1. Overview of Migration . 1

Planning for Migration from VS APL . 1

Preparing for Migration from VS APL . 2

Chapter 2. Transferring Workspaces from VS APL 3

Preparation for Transferring Workspaces . 3

Choosing an Alphabet . 3

Adjusting for �AV Dependencies . 4

Transfer Procedure . 5

The)MCOPY Command . 6

Transferring Selected Objects . 9

Error Messages When Using)MCOPY . 9

Chapter 3. APL2 Compared with VS APL . 11

New APL2 Features . 11

New Language Features . 11

New System Features . 13

Extended-Compatible Features . 15

Extended-Compatible Language Features . 15

Extended-Compatible System Features . 19

Extended-Incompatible Features . 21

Extended-Incompatible Language Features 21

Extended-Incompatible System Features . 24

VS APL Features No Longer Supported . 26

Language Features No Longer Supported . 26

System Features No Longer Supported . 26

Workspaces . 27

External Functions Distributed with APL2 . 28

Chapter 4. Testing and Debugging . 30

Inspecting, Correcting, and Testing Functions . 30

Using the TRANSFER Workspace . 30

What to Look For . 32

Testing Functions under APL2 . 32

Checking Data Files Used by a Function . 35

Changes in APL2 Auxiliary Processor Translation Options 35

Possible Translation Problems . 37

Checking Alternate Input . 39

 Copyright IBM Corp. 1984, 1994 iii

Checking User-Written Auxiliary Processors Used by a Function 39

Testing the Application As a Whole . 40

Performance Analysis of the Application . 40

Chapter 5. Migration within APL2 . 41

| Migrating between Mainframe APL2 Systems . 41

| Functional Changes—Version 1 to Version 2 41

Migrating Workspaces . 43

Coexistence with Version 1 . 43

| Migrating between Mainframe and Workstations 44

| Transferring Workspaces . 44

| Transferring AP 211 Files . 45

Bibliography . 46

| APL2 Publications . 46

| Other Books You Might Need . 46

Index . 47

iv APL2 Migration Guide

| Notices

| References in this publication to IBM products, programs, or services do not imply

| that IBM intends to make these available in all countries in which IBM operates.

| Any reference to an IBM product, program, or service is not intended to state or

| imply that only IBM’s product, program, or service may be used. Any functionally

| equivalent product, program, or service that does not infringe any of IBM’s intellec-

| tual property rights may be used instead of the IBM product, program, or service.

| Evaluation and verification of operation in conjunction with other products, except

| those expressly designated by IBM, are the user’s responsibility.

| IBM may have patents or pending patent applications covering subject material in

| this document. The furnishing of this document does not give you any license to

| these patents. You can send license inquiries, in writing, to the IBM Corporation,

| IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States

| 06904.

| Programming Interface Information

| This migration guide is intended to help programmers code APL2 applications in

| APL2. This book documents General-Use Programming Interface and Associated

| Guidance Information provided by APL2.

| General-use programming interfaces allow the customer to write programs that

| obtain the services of APL2.

| Trademarks

| The following terms, denoted by an asterisk (*) in this publication, are trademarks of

| the IBM Corporation in the United States or other countries or both:

| The following terms, denoted by a double asterisk (**) in this publication, are trade-

| marks of other companies:

| Sun Sun Microsystems, Inc.

| Solaris Sun Microsystems, Inc.

| UNIX AT&T Corporation

| AIX

| AIX/6000

| APL2

| APL2/6000

| DB2

| GDDM

| IBM

| MVS/ESA

| OS/2

| SQL/DS

| System/370

| System/390

 Copyright IBM Corp. 1984, 1994 v

About This Book

| This migration guide is intended to assist you in migrating your IBM* APL2* applica-

| tions.

Who Should Use This Book

Use this book if you are a current user of VS APL and want to convert applications

and defined functions to APL2/370. Also use this book if you are a current user of

APL2 Version 1 and want to consider how the changes made to APL2 Version 2

influence workspace migration.

This book describes two migration aids provided with APL2/370: the system

command)MCOPY, for transferring workspaces, and the TRANSFER workspace,

for locating and fixing differences between VS APL and APL2. It also describes the

changes to APL2 for Version 2, as well as the workspace migration considerations

for those changes.

| This book can also be useful when migrating from VS APL to APL2 on work-

| stations. Workstation APL2's supplied workspace MIGRATE contains tools for

| migration of VS APL workspaces directly to APL2 on workstations. Once migrated,

| the information in Chapter 3, “APL2 Compared with VS APL” on page 11 can be

| used to understand the language differences between VS APL and APL2.

| APL2 Publications

| Figure 1 lists the books in the APL2 library. This table shows the books and how

| they can help you with specific tasks.

| Figure 1 (Page 1 of 2). APL2 Publications

| Information| Book| Publication Number

| General product| APL2 Fact Sheet| GH21-1090

| Warranty| APL2/370 Application Environment Licensed

| Program Specifications

| APL2/370 Licensed Program Specifications

| APL2 for AIX/6000 Licensed Program Specifica-

| tions

| APL2 for Sun Solaris Licensed Program Specifica-

| tions

|

| GH21-1063

| GH21-1070

|

| GC23-3058

|

| GC26-3359

| Introductory language

| material

| APL2 Programming: An Introduction to APL2| SH21-1073

| Common reference

| material

| APL2 Programming: Language Reference

| APL2 Reference Summary

| SH21-1061

| SX26-3999

vi  Copyright IBM Corp. 1984, 1994

| Figure 1 (Page 2 of 2). APL2 Publications

| Information| Book| Publication Number

| System interface| APL2/370 Programming: System Services Refer-

| ence

| APL2/370 Programming: Using the Supplied Rou-

| tines

| APL2/370 Programming: Processor Interface Ref-

| erence

| APL2 for OS/2: User's Guide

| APL2 for Sun Solaris: User's Guide

| APL2 for AIX/6000: User's Guide

| APL2 GRAPHPAK: User's Guide and Reference

| APL2 Programming: Using Structured Query Lan-

| guage

| APL2 Migration Guide

|

| SH21-1056

|

| SH21-1054

|

| SH21-1058

| SH21-1091

| SH21-1092

| SC23-3051

| SH21-1074

|

| SH21-1057

| SH21-1069

| Mainframe system pro-

| gramming

| APL2/370 Installation and Customization under

| CMS

| APL2/370 Installation and Customization under

| TSO

| APL2/370 Messages and Codes

| APL2/370 Diagnosis Guide

|

| SH21-1062

|

| SH21-1055

| SH21-1059

| LY27-9601

| For the titles and order numbers of other related publications, see the

| “Bibliography” on page 46.

| Conventions Used in This Library

| This section discusses the conventions used in this library.

| lower Lowercase italicized words in syntax represent values you must

| provide.

| UPPER In syntax blocks, uppercase words in an APL character set represent

| keywords that you must enter exactly as shown.

| [] Usually, brackets are used to delimit optional portions of syntax;

| however, where APL2 function editor commands or fragments of code

| are shown, brackets are part of the syntax.

| [A�B�C] A list of options separated by � and enclosed in brackets indicates that

| you can select one of the listed options. Here, for example, you could

| specify either A, B, C, or none of the options.

| {A�B�C} Braces enclose a list of options (separated by �), one of which you

| must select. Here, for example, you would specify either A, B, or C.

| ... An ellipsis indicates that the preceding syntactic item can be repeated.

| {}... An ellipsis following syntax that is enclosed in braces indicates that the

| enclosed syntactic item can be repeated.

| The term workstation refers to all platforms where APL2 is implemented except

| those based on System/370* and System/390* architecture.

 About This Book vii

| Throughout this book, the following product names apply:

| Product Name| Platform

| APL2/2| OS/2*

| APL2 for Sun Solaris| Sun** Solaris**

| APL2/6000*| AIX/6000*

| APL2/370| MVS or VM

| APL2/PC| DOS

viii APL2 Migration Guide

| Summary of Changes

| Product
| APL2/370, Version 2 Release 2

| Date of Publication: March 1994

| Form of Publication: Revision, SH21-1069-01

| Document Changes
| � Added information for migration from Version 2 Release 1 to Version 2 Release

| 2

| � Added diamond information

| � Added information on workstation APL2

 Copyright IBM Corp. 1984, 1994 ix

x APL2 Migration Guide

Chapter 1. Overview of Migration

Migration is the process of transferring workspaces from one version of APL to

another while ensuring that applications in the workspaces are processed correctly

| under the new version. You can transfer workspaces directly from VS APL to

| APL2, or from one APL2 version to another.

To migrate workspaces from VS APL, you need to:

� Transfer workspaces from VS APL to APL2.

� Make changes to defined functions, and test and debug them.

� Check data files, alternate input (stacked data), and user-written auxiliary

processors.

� Test applications as a whole and put them into production.

APL2 provides a workspace, system functions, and system commands to aid in the

migration procedure. APL2's extended debugging capabilities can also help you

convert applications to APL2.

To migrate workspaces from the previous version of APL2, you need to load using

the)LOAD command, or copy using the)COPY command, the workspace into

APL2 Version 2 and then save it using the)SAVE command. For information on

the changes to APL2 in Version 2 and their effect on existing workspaces, see

Chapter 5, “Migration within APL2” on page 41.

Planning for Migration from VS APL

APL2 and VS APL can run concurrently at your installation, or APL2 can completely

replace VS APL. In either case, you must make decisions concerning:

 � Workspaces

 � Files

 � Auxiliary processors

Answering the following questions may help you make those decisions.

If you continue VS APL service, which workspaces remain VS APL workspaces,

and which are migrated to APL2?

� How long will you use the present applications? If a current VS APL applica-

tion is to be replaced in the future, you may decide to continue running it under

VS APL.

� Will the migration involve a workspace that is dependent on other workspaces?

Assess the impact of migrating all interdependent workspaces.

� Must functions that use files be changed? Determine the translation changes

needed for functions in the workspace that read from or write to a file. Also,

decide whether to convert the file to a different encoding. (Files created under

VS APL are usually compatible with APL2. However, files created under APL2

may be incompatible with VS APL.)

� Which user-written auxiliary processors must be adapted? Determine which

workspaces are dependent on user-written auxiliary processors.

 Copyright IBM Corp. 1984, 1994 1

� What are the space requirements for maintaining both VS APL and APL2? Cal-

culate the amount of space required by the code, workspaces, files, and user-

written auxiliary processors for both the VS APL and the APL2 systems.

If you do not continue VS APL service, what will you do with current VS APL

workspaces and any files used by those workspaces?

� Which workspaces are migrated and enhanced?

� Which workspaces are migrated and not enhanced?

� Which workspaces, if any, are dropped?

� Which files are converted to a new encoding?

� Which files are already compatible?

� Which files are dropped or replaced?

Regardless of whether you continue VS APL service, you should plan for:

� Adequate APL2 training.

� Procedures and temporary space for maintaining a backup copy of all code,

workspaces, files, and user-written auxiliary processors being converted from

VS APL to APL2.

Maintain backup copies until you are sure that your applications are working

properly under APL2.

Preparing for Migration from VS APL

Read this guide to learn about the overall process of migrating to APL2.

When you are ready to migrate, follow the procedure in Chapter 2, “Transferring

Workspaces from VS APL” to transfer workspaces from VS APL to APL2.

To familiarize yourself with the differences between VS APL and APL2, see

Chapter 3, “APL2 Compared with VS APL” on page 11.

After you transfer your workspaces, refer to Chapter 4, “Testing and Debugging” on

page 30 to modify functions in the transferred workspaces. It includes what to look

for while you are debugging functions, and while you are checking data files, data

on the alternate input stack, and user-written auxiliary processors.

2 APL2 Migration Guide

Chapter 2. Transferring Workspaces from VS APL

| This chapter discusses the transfer of workspaces from VS APL to APL2/370. For

| information about transferring workspaces from VS APL to workstation APL2, see

| the appropriate user's guide.

Preparation for Transferring Workspaces

Before transferring any workspaces do the following:

1. Make sure that APL2 has been installed and verified.

2. If you are migrating to APL2 under CMS, check for a LIBTAB APL2 file. If it

does not exist, you can copy and modify the APLIBTAB file that you are using

for VS APL. Do the following:

a. Copy the VS APL APLIBTAB:

COPY APLIBTAB APLIBTAB xxx LIBTAB APL2 yyy

where:

xxx is the disk where the APLIBTAB file currently resides.

yyy is the same disk as that containing the module used to call APL2.

b. For each public library, insert an @ before the filemode. If no filemode is

shown, enter @ Y.

c. Change each project library designation to public.

Note: For more information, see APL2/370 Programming: System Ser-

vices Reference.

3. Determine which workspaces to transfer. To find the names of the workspaces,

start VS APL and issue the)LIB or)LIB n command, where n is the

number of the library where the workspace resides.

4. Modify functions to adjust for �AV dependencies, as described in “Adjusting for

�AV Dependencies” on page 4.

5. If VS APL resides on a system other than the host system for APL2, transfer

your VS APL workspaces and files from that system to the host system—CMS

or TSO. VS APL does not need to exist on the host system if your workspaces

follow the VS APL naming conventions and format for the host system.

Choosing an Alphabet
VS APL used uppercase and underbarred uppercase letters in names. It allowed

lowercase letters in comments, constants, and variables. APL2 uses uppercase

and lowercase letters in names. The System/370 and System/390 implementation

of APL2 allows underbarred letters in comments, constants, and variables.

| ASCII-based implementations of APL2 (such as APL2/PC, APL2/2, APL2 for Sun

| Solaris, and APL2/6000) do not define underbarred letters at all.

 Copyright IBM Corp. 1984, 1994 3

As a migration aid, the APL2/370 product provides some toleration of underbarred

letters in names. The degree of toleration is controlled by a CASE option:

CASE(2) Underbarred letters in names result in SYNTAX ERROR whenever the

names are encountered while processing an APL statement. No con-

version is performed when the statement is accepted into an APL2

workspace.

CASE(1) Statements containing underbarred letters in names are accepted, but

the letters are converted to lowercase before they are stored in the

APL2 workspace. This includes labels, arguments, variable names, and

names of defined functions. The conversion is applied to statements

from sources such as typed input, APL editors,)IN,)COPY, and of

immediate importance to this discussion,)MCOPY. It does not include

constants (quoted character data in functions), comments, or the values

within character arrays. If constants or arrays are later used as APL

statements, for example by applying �, �EA, or �FX to them, under-

barred letters in names within the data being evaluated are converted at

that time.

CASE(0) In addition to the processing done for CASE(1), lowercase letters in

names are converted to underbarred letters whenever the names are

displayed or returned by a function. This option gives the appearance

that the system is behaving like VS APL, although in fact lowercase

letters are being used internally.

CASE(2) is not recommended when converting workspaces from VS APL, because

manual modification of all underbarred letters would be required. Either CASE(1)

or CASE(0) provide semi-automatic translation of underbarred letters to lowercase.

IBM recommends CASE(1) because it simplifies later migration to ASCII-based

platforms, or use of certain ASCII-based terminal emulators. However some instal-

lations may choose CASE(0) so that the VS APL to APL2 migration appears as

transparent as possible to their APL users.

Whatever CASE is chosen, it is important to note that the case of a workspace can

never be changed except by copying it into another workspace having a different

CASE. CASE is an APL2 invocation option, which can be changed dynamically by

using the OPTION external function or the command:

)CHECK SYSTEM CASE(n)

However that option does not affect the active workspace. It should be thought of

instead as only an implicit parameter to the)CLEAR command. Migration is

normally accomplished by using the sequence of APL commands)CLEAR,

)MCOPY,)SAVE. The CASE in effect for the session at the time the)CLEAR is

done in that sequence determines the case of the saved workspace.

Adjusting for �AV Dependencies
You can translate character data from VS APL internal encoding (Z-codes) to

APL2/370 internal encoding (EBCDIC).

4 APL2 Migration Guide

The system cannot determine whether such translation is appropriate for all char-

acter data. If you want to preserve the �AV position of data, use the following

procedure to transfer data from VS APL to APL2 without translation:

Under VS APL:

1. Load the workspace that contains the character data.

2. Convert each array of character data to an array of indexes into �AV. You can

use an expression such as the following, where CX represents the array of

character data and IX represents the array of indexes:

 IX←�AVιCX

3. Save the workspace.

Under APL2:

1. Use the)MCOPY command (as described in “Transfer Procedure”) to transfer

the VS APL workspace into the APL2 active workspace.

2. To convert the data back to character format, use the same index origin that

you used under VS APL. For example:

CX ← �AV [IX]

Note: If no object names are specified)MCOPY copies the index origin from

the VS APL workspace.

3. Erase IX and then save the workspace.

You can also use the TRANSFER workspace distributed with APL2. This contains

two functions to help you migrate character data whose application requires the

same �AV positions:

� CHARIND, typed or transferred into the VS APL workspace, modifies each

variable named in its argument to be a vector of �AV indexes. The variables

named in the argument should not be numeric variables. (DESCRIBE in the

TRANSFER workspace explains how to use the session manager to put this

function in your VS APL workspace without typing it.)

� INDCHAR, used in the transferred workspace under APL2, rebuilds the vari-

ables encoded with CHARIND.

Warning: Running INDCHAR against a variable not encoded by CHARIND
converts the variable improperly.

 Transfer Procedure

To transfer workspaces from VS APL to APL2, start APL2. Next, follow the steps

described in Figure 2. During the entire migration process, maintain your original

VS APL workspaces so that, if necessary, you can return to any previous stage of

the migration process.

Figure 2 (Page 1 of 2). Steps for Transferring a Workspace from VS APL to APL2

Step Your Entry under APL2 Explanation and Comments

1)CLEAR Clear the active workspace (sets CASE attribute).

 Chapter 2. Transferring Workspaces from VS APL 5

Figure 2 (Page 2 of 2). Steps for Transferring a Workspace from VS APL to APL2

Step Your Entry under APL2 Explanation and Comments

2)MCOPY [libno] wsname Specify the name (and library, if necessary) of the VS APL workspace

that you want to migrate. The)MCOPY command copies the con-

tents of that workspace into the active workspace. If you want to

copy only selected objects from the VS APL workspace, refer to

“Transferring Selected Objects” on page 9.

3)SAVE [libno] wsname Specify the name of the APL2 workspace into which you want to save

the contents of the active workspace. This name can be the same as

the VS APL workspace name. (The VS APL workspace remains

intact.)

When a workspace is saved, its time stamp changes. The time

stamps of functions in the workspace do not change.

Repeat these steps for each VS APL workspace that you want to migrate.

The TRANSFER workspace distributed with APL2 contains the MASSMCOPY�
function to simplify the procedure when you want to transfer many workspaces.

MASSMCOPY� transfers multiple workspaces from VS APL to APL2.

The)MCOPY Command

To transfer a workspace from VS APL to APL2/370, copy a workspace from your

VS APL library into the APL2 active workspace. Then, save the workspace in your

| APL2 library, as shown in Figure 3.

Workspace
Active

Workspace

)MCOPY
WSNAME

)SAVE
WSNAMEVS APL

APL2

Workspace
APL2

Figure 3. Transferring a Workspace from VS APL to APL2

The)MCOPY command copies the contents of a workspace from your VS APL

library into the APL2 active workspace.

System Requirements for Using)MCOPY: To use the)MCOPY command, your

workspaces must reside as VS APL workspaces on the same CMS or MVS system

in which you use the)MCOPY command.

If your workspaces reside on another system, you must first transfer your work-

spaces to the host system. Information about how to transfer workspaces is avail-

able in VS APL for CMS: Installation Reference Manual, VS APL for TSO:

Installation Reference Manual, VS APL for CICS/VS: Installation Reference Manual,

and VS APL for VSPC: Installation Reference Manual.

6 APL2 Migration Guide

Syntax of the)MCOPY Command: Figure 4 shows the sytax of the)MCOPY
command.

)MCOPY [libno] wsname [:[password]] [names]

Figure 4. Syntax of the)MCOPY Command

To copy a VS APL workspace not in your private library, you must specify the

library number before the workspace name when you issue the)MCOPY
command:

)MCOPY 6 MESSAGES

To copy a VS APL workspace that is password protected, you must specify the

workspace name, colon, and password when you issue the)MCOPY command:

)MCOPY PASSAGES:HUSH

Effects of the)MCOPY Command: When you issue the)MCOPY command, it

has the following effects:

� The specified objects are copied from the VS APL workspace into the APL2

active workspace. If no objects are specified by name, all objects in the VS

APL workspace are copied.

� Any objects copied from the VS APL workspace replace objects of the same

name in the active workspace.

� If no object names are specified, the system variables �LX, �IO, �RL, �CT,

and �PP are also copied from the VS APL workspace into the active work-

space. Otherwise, you must specify the names of the desired system variables

with other object names when you issue the)MCOPY command.

Note: Only the five system variables �LX, �IO, �RL, �CT, and �PP can

be copied. An attempt to copy other system variables (for example, �PW)

results in a NOT FOUND message.

� Locked functions in a VS APL workspace are copied and remain locked.

Under APL2, their execution properties are 1 1 1 1, as shown below for the

locked function named SEARCH:

3 �AT �SEARCH�
1 1 1 1

For information on function locking and attributes under APL2, see APL2

Programming: Language Reference.

� The time stamps of functions in the migrated workspace do not change. Older

functions that do not have time stamps take the time stamp of the VS APL

workspace.

� Indexed numeric vector constants are enclosed in parentheses when they are

copied. For example, the expression 4 5 6[3] under VS APL becomes (4
5 6)[3] under APL2.

Note:)MCOPY does not convert these expressions if they are contained in

character data or constants, because such data might later cause an error if it

is executed (using �), transferred into a function (using �FX), or stacked using

AP 101.

 Chapter 2. Transferring Workspaces from VS APL 7

� Any names in the local list in a VS APL defined function that match the names

of the result or either argument of the function are deleted. See Figure 22 on

page 21 for more information on the evaluation of expressions under VS APL.

� Each group in the VS APL workspace is represented in the active workspace

as a simple character matrix, as shown in Figure 5. The matrix has the same

name as the group name. Each row in the matrix is composed of the name of

an object in the group. The matrix also contains its own name.

Group Created under VS APL:

)GROUP MYGROUP SEARCH DATA1 DATA2

Matrix Created By)MCOPY under APL2:

 MYGROUP
MYGROUP
SEARCH
DATA1
DATA2

 ρ MYGROUP
4 7

Figure 5. Migrating a Group of Objects from VS APL to APL2

Workspace Location for the)MCOPY Command: When locating a workspace,

the)MCOPY command uses the VS APL library definition rather than the APL2

one.

Under CMS The)MCOPY command uses the file APLIBTAB

APLIBTAB—not the file LIBTAB APL2.

If no APLIBTAB APLIBTAB file is found, a dummy one is

created. This dummy file allows you to access only the library

with the number �AI[1].

Under TSO The)MCOPY command can access the same workspaces

available under VS APL, as long as the TSO user ID and

PROFILE PREFIX are unchanged.

Installation Options and the)MCOPY Command: If your VS APL installation has

changed parameters in the options module that you want carried forward by

)MCOPY to APL2, then:

Under CMS If the PRIVWS parameter of the APLSCOPT module was

changed, the modified APLSCOPT module should have been

link-edited with APL2. See APL2/370 Installation and

Customization under CMS.

Under TSO APLYUOPT should be available as a separate load module if

any of the following parameters were changed: APLID (from

@W), PUBQLFR (from @PL), or LIBQLFR (from @). See

APL2/370 Installation and Customization under TSO.

8 APL2 Migration Guide

Transferring Selected Objects
Using the)MCOPY command, you can copy selected objects from a VS APL

workspace into the APL2 active workspace. You can copy:

� Individual objects. Specify the object names when you issue the)MCOPY
command:

)MCOPY MISSIONS SEARCH DATA1 DATA �LX �IO

� Groups of Objects. Specify the group name in parentheses when you issue

the)MCOPY command:

)MCOPY MISSIONS (MYGROUP)

If parentheses are not used, the group of objects is not copied; only the object

MYGROUP is copied.

� Both individual objects and groups of objects. Specify the names of

groups, in parentheses, with the names of individual objects:

)MCOPY MISSIONS (MYGROUP) DATA (STGP) �LX �IO

Error Messages When Using)MCOPY
Figure 6 lists and describes possible)MCOPY error messages.

Figure 6. Error Messages

Message Meaning

IMPROPER LIBRARY
REFERENCE

The specified library is inaccessible or does not exist.

LIBRARY I/O ERROR An internal error is preventing the successful copying of the workspace.

LIBRARY NOT
AVAILABLE

Another user temporarily has control of a shared library. This prevents making a suc-

cessful copy of the workspace at this time.

NOT COPIED: The listed objects cannot be copied because insufficient space is available for copying

the objects. The names of objects not copied are listed.

NOT FOUND: The named objects do not exist or cannot be copied from the specified workspace.

SYSTEM LIMIT This message can indicate any of the following:

� Your virtual machine size or region size is not large enough. Increase the size.

� Your workspace size is not large enough to load the specified workspace. Change

that size by using the WSSIZE option when APL2 is started.

� The freespace size is not large enough. Change that size by using the FREESIZE

option when APL2 is started.

� In CMS, insufficient space exists on the disk where your private library is located.

Free up space on that disk or change the LIBTAB APL2 file to point to another disk.

In TSO, the library file definition or files defined by ddnames CPYSWAP or

CPYSPILL are either not allocated or not large enough. Ensure that they have suffi-

cient space.

WS FULL Sufficient space is not available for copying all or some of the objects specified with the

)MCOPY command. When possible,)MCOPY lists the names of objects not copied.

WS LOCKED The password specified with the)MCOPY command is incorrect, or a necessary pass-

word is missing from the command.

WS NOT FOUND The specified VS APL workspace does not exist in the specified VS APL library.

 Chapter 2. Transferring Workspaces from VS APL 9

For more information on correcting these errors, see APL2/370 Messages and

Codes.

10 APL2 Migration Guide

Chapter 3. APL2 Compared with VS APL

This chapter lists features that are new, extended, or no longer supported under

APL2.

The extended features are organized into those that are compatible and those that

are incompatible. A feature is compatible if it allows an application that ran under

VS APL to produce the expected results under APL2. Many changes in the editors

and other facilities are compatible because they do not affect applications being

migrated into APL2. However, they can cause errors if used improperly under

APL2.

The material in each section is separated into features pertaining to the APL2 lan-

guage and features pertaining to system services.

New APL2 Features

This section lists new language and system features.

New Language Features
For information on features listed in Figure 7, see APL2 Programming: Language

Reference.

Figure 7 (Page 1 of 3). New Language Features under APL2

Category New Feature

Data Types and Structures Allowed Complex numbers: Numbers can have real and imaginary parts.

Mixed data: Both characters and numbers can be in the same

array.

Nested arrays: An array can contain another array.

Primitive Functions (Boolean and

Relational)

Match (L	R)

Primitive Functions (Structural) Depth (R)

Enclose (
R)

Enclose with Axis (
[X]R)

Disclose (�R)

Disclose with Axis (�[X]R)

Ravel with Axis (,[X]R)

Enlist (εR)

Primitive Functions (Selection) First (↑R)

Pick (L�R)

Take with Axis (L↑[X]R)

Drop with Axis (L↓[X]R)

Without (L�R)

Index (L�R)

Index with Axis (L�[X]R)

Primitive Functions (Position) Find (L�R)

Dyadic Grade Up (L�R)

Dyadic Grade Down (L�R)

Partition (L
R)

Partition with Axis (L
[X]R)

Primitive Operators Each (LO¨)

 Copyright IBM Corp. 1984, 1994 11

Figure 7 (Page 2 of 3). New Language Features under APL2

Category New Feature

Defined Operators In addition to functions, you can define operators. The operand(s) of

defined operators can be arrays or they can be primitive, defined, or derived

functions.

Derived Functions Derived functions are new functions resulting from operators. Operands of

operators can be primitive functions, defined functions, well-formed derived

functions, or arrays. Thus, many derived functions are possible. Two new

derived functions are:

 � Replicate (LO/R)

� N-wise Reduce (L LO/ R)

| Separators| Diamond (�)

System Functions and Variables

(Event Handling and Debugging)

Event Message �EM
Event Simulation �ES
Event Type �ET
Execute (Process) Alternate �EA
Execute (Process) Controlled �EC
Left Argument �L
Right Argument �R

System Functions and Variables

(Sharing)

Shared Variable Event �SVE
Shared Variable State �SVS

National Language Translation for

System Commands and Messages

(�NLT)

System commands can be entered and system messages can be displayed

in English or in several other national languages. See APL2 Programming:

Language Reference for a list of the messages and commands in the sup-

ported national languages.

Other System Functions and Vari-

ables

Atomic Function �AF
Attributes �AT
Format Control Characters �FC
Name Association �NA
Prompt Replacement �PR
Time Zone �TZ
Transfer Form �TF

System Commands (For Storing and

Retrieving)

)IN Read objects from a transfer file.

)MCOPY Copy a VS APL workspace.

)OUT Write objects to a transfer file.

)PIN Read objects from a transfer file, protecting like-named objects

System Commands (For the Active

Workspace)

)CS Sets APL2 to insert parentheses around indexed numeric

constants and to generate errors, when vector notation is

used for expressions other than simple numeric vector con-

stants.

)EDITOR Identify or specify the function editor.

)NMS List objects in the active workspace.

)OPS List defined operators in the active workspace.

)PBS Turn the printable backspace character on or off, or report its

setting.

)RESET Reset the state indicator.

)SIC Reset the state indicator.

)SIS Query the state indicator, showing statements.

System Commands (For System Ser-

vices and Information)

)HOST Submit command to the host system.

)MORE Display additional system messages (new under CMS).

12 APL2 Migration Guide

Figure 7 (Page 3 of 3). New Language Features under APL2

Category New Feature

System Messages AXIS ERROR
SYSTEM LIMIT
VALENCE ERROR

New System Features
For more information on features listed in Figure 8, see APL2/370 Programming:

System Services Reference. For more information on installation, see APL2/370

Installation and Customization under CMS or APL2/370 Installation and

Customization under TSO.

Figure 8 (Page 1 of 2). New System Features under APL2

Category New Feature

Invocation options CASE Specify alphabet convention.

DATEFORM Change the time and date stamp format.

DSOPEN Override GDDM* default terminal characteristics.

EXCLUDE Exclude the listed auxiliary processors from those normally

available upon invocation.

ID Specify your numeric user ID—the default library number.

This replaces the positional ID parameter previously available

in VS APL under CMS.

INPUT Specify lines of APL2 input to be processed upon invocation

(new under CMS).

SVMAX Specify the maximum number of shared variables that can be

concurrently handled by the system.

SYSDEBUG Specify system programming debug settings.

TRACE Specify system programming trace settings.

XA Specify location of working storage.

RUN Specify name of an external function to be processed upon

invocation.

DBCS Use double-byte character set.

Session manager commands FIND allows searching for a character string in the session log.

Auxiliary processors distributed with

APL2

AP 102 Main Storage Access Processor (new under CMS)

AP 119 TCP/IP Socket Interface Auxiliary Processor

AP 127 DB2* or SQL/DS* Auxiliary Processor

AP 211 APL2 Object File Auxiliary Processor

Facilities for user-written auxiliary

processors

A return code from the shared variable processor allows auxiliary processors

written according to VS APL conventions to detect when they are given data

that cannot be represented in VS APL format. If you wish to modify them to

handle APL2 data format, one new executable macro and two new mapping

macros are provided for this purpose.

A set of services is also provided for writing auxiliary processors according

to APL2 conventions.

 Chapter 3. APL2 Compared with VS APL 13

Figure 8 (Page 2 of 2). New System Features under APL2

Category New Feature

Associated processors A new type of processor is supported in APL2. Associated processors allow

names in a workspace to be associated with objects outside the workspace

using the new system function �NA. Once associated, these names can be

used with normal APL2 syntax. Three associated processors are provided:

� Processor 10 supports association of APL2 names with REXX execs

and variables.

� Processor 11 supports association of names with routines written in lan-

guages other than APL2. Processor 11 also supports association of

names with APL2 objects residing in other workspaces.

� Processor 12 supports associating names with either sequential oper-

ating system files or auxiliary processor 121 APL object files.

Editors The line editor,)EDITOR 1, allows selective display and selective

deletion of lines through new edit commands.

The full-screen editor,)EDITOR 2, has the features of the line editor,

additional editing commands, and function key settings to make editing

easier. It also allows editing of character matrixes and split-screen editing

(segmenting the screen to edit more than one function at a time). Functions

and APL2 expressions can also be processed during a full-screen editing

session. The full-screen editor requires the Graphical Data Display Manager

(GDDM) Licensed Program.

The)EDITOR 2 name command can be used to specify the name of an

editor written either in APL2 or another language. The editor must be

accessible through associated processor 11. When the user invokes the

editor, through the use of �, APL2 will create an association to the editor

and pass it the � expression. The editor can then extract the object to be

edited from the workspace, display it for edit, and reestablish the new defi-

nition.

System editors such as XEDIT and ISPF can also be accessed from APL2.

The command)EDITOR xxxx specifies the name of the CMS command or

TSO CLIST that is used for editing. APL2 writes the function or character

matrix to be edited into a CMS file or TSO data set and invokes the

command or CLIST with the name of the file or data set as its argument.

When editing ends, the object is brought back into the APL2 workspace.

Performance Analysis An external function, TIME, is accessible through processor 11 and allows

users to gather performance statistics on their applications. TIME can

return line-by-line statistics on an application indicating number of times the

line was processed and the relative and absolute amount of CPU time con-

sumed in the line.

This facility can be used to isolate bottlenecks in applications so that they

can be recoded using more efficient techniques either in APL2 or other lan-

guages.

14 APL2 Migration Guide

 Extended-Compatible Features

Figure 9 through Figure 21 on page 20 compare features of VS APL with similar

features of APL2. The extended features listed in this section are compatible—they

allow an application that runs under VS APL to produce the expected results under

APL2.

Extended-Compatible Language Features
For more information on features listed in Figure 9 through Figure 18 on page 18,

see APL2 Programming: Language Reference.

Figure 9. VS APL Compared with APL2—Data Representation (Compatible)

Data Representation under VS APL Data Representation under APL2

An array can contain only character or only numeric data.

Each item in an array must be a single number or a single

character.

An array can contain a mixture of character and

numeric data. It can contain an item that is not a single

number or character (for example, vector or matrix).

A vector constant can be entered as adjacent numbers

separated by blanks or as a string of characters enclosed

in single quotation marks. A vector constant cannot be a

mixture of these representations.

R←9 13 48 27
L←�SHOE�

A vector can be entered as a list of arrays. These

arrays can be represented by numbers, one or more

characters in single quotation marks, an object name

representing the value of an array, or an APL2

expression producing the value of an array. Array

representations can be separated by either blanks or

parentheses. A vector can be a mixture of these

representations.

OBJNAME←4 6ρι24
R←9 13 �S� �SHOE� OBJNAME

Assignment can be to only a single name.

A←2
B←2
C←�ANC�
D←2 3 4
E←2 3 4
F←2 3 4

Assignment can take a simple list of names enclosed in

parentheses on the left. If the right argument is a

vector of the same length, then each value from the

right is assigned to the corresponding name on the left.

If the right argument is a scalar, then each name is

assigned to be the scalar item.

(A B C)←2 3 �ANC�
 A
2
 ρC
3

(D E F)←
2 3 4
 D
2 3 4
 ρE
3

 Chapter 3. APL2 Compared with VS APL 15

Figure 10. VS APL Compared with APL2—Evaluation of Expressions (Compatible)

Evaluation of Expressions under VS APL Evaluation of Expressions under APL2

Parentheses are used for grouping an expression to

control the order of evaluation.

 2�3+5
16
 (2�3)+5
11

Parentheses are used for grouping. They are correct if

properly paired and if the contents within the paren-

theses evaluates to an array, function, or operator.

 Correct

(2 4 5) 3
 2 4 5 3

Correct, but parentheses around ��+
 are redundant:

(2 3ρι6) (��+)�� 3 2ρ|ι6
�22 �28
�49 �64

Figure 11. VS APL Compared with APL2—Display of Output (Compatible)

Display of Output under VS APL Display of Output under APL2

In numeric output, multiple spaces on a line are com-

pressed to a single space because they are redundant.

4 6 9 2
4 6 9 2

In numeric output, multiple spaces can display on a line

to indicate the structure of items in a nested array.

1 2 (3 4)
 1 2 3 4

Figure 12. VS APL Compared with APL2—Object Names (Compatible)

Object Names under VS APL Object Names under APL2

The characters � and � are not valid in object

names.

The characters � and � are valid in object names, provided

they are not the first character.

Figure 13 (Page 1 of 2). VS APL Compared with APL2—Primitive Functions (Compatible)

Primitive Functions under VS APL Primitive Functions under APL2

Compression (L/R) is a primitive function that

requires a Boolean left argument.

1 1 0 1/�SHOE�
SHE

Replicate (L/R) is a derived function. Its left operand is a

vector of Boolean, negative, or positive integers.

1 0 3 2/�SHOE�
SOOOEE

With a Boolean left argument, the derived function is called

compress and is similar to VS APL compression:

1 1 0 1/�SHOE�
SHE

Expansion (L�R) is a primitive function that requires

a Boolean left argument.

1 1 0 1��SHE�
SH E

1 0 1�2 2ρ�SWIM�
S W
I M

Expand (L�R) is a derived function. It is similar to the VS

APL expansion. Its left operand is a simple Boolean vector.

1 0 1�2 2ρ�SWIM�
S W
I M

1 0 1�(2 3)(4 5)
 2 3 0 0 4 5

16 APL2 Migration Guide

Figure 13 (Page 2 of 2). VS APL Compared with APL2—Primitive Functions (Compatible)

Primitive Functions under VS APL Primitive Functions under APL2

Format (L�R) requires a numeric left argument. Format (L�R) by specification behaves similarly to format

under VS APL. Format (L�R), by example, takes a char-

acter left argument that serves as a model for the format of

the corresponding column.

� 55@ $53�50 EA� � 32 9�17
 32@ $9�17 EA

Figure 14. VS APL Compared with APL2—Selective Specification (Compatible)

Selective Specification under VS APL Selective Specification under APL2

Bracket Indexing (A[I]) is the only primitive func-

tion that allows you to assign a value to selected

items in an array.

A←23 44 97
 A[2]←80
 A
23 80 97

Bracket Indexing (A[I]), and other functions that select

positions from a named array, allow you to assign a value to

selected items in arrays.

A←1 2 �1 5
 ((A=�1)/A)←0
 A
1 2 0 5

Figure 15. VS APL Compared with APL2—Primitive Operators (Compatible)

Primitive Operators under VS APL Primitive Operators under APL2

Derived functions can be created by applying a primitive

operator to a primitive function.

Derived functions can be created by applying a primi-

tive or defined operator to one or two of the following

operands: primitive functions, defined functions,

derived functions, or arrays.

Figure 16. VS APL Compared with APL2—System Functions and Variables (Compatible)

System Functions and Variables under VS APL System Functions and Variables under APL2

Name List (�NL) accepts as its argument any integer 1
through 3.

Name List (�NL) accepts as its argument any integer 1
through 4 (with 4 meaning a defined operator).

Printing Precision (�PP) can be as great as 16. Printing Precision (�PP) can be as great as 18.

 Chapter 3. APL2 Compared with VS APL 17

Figure 17. VS APL Compared with APL2—Debugging and Processing (Compatible)

Debugging and Processing under VS APL Debugging and Processing under APL2

Trace Tδ and Stop Sδ controls cannot be referenced. Trace Tδ and Stop Sδ controls can be referenced.

Interrupted processing of statements entered in immediate

execution mode cannot be resumed.

Interrupted processing of a statement can be resumed

at the point where the processing has halted by using

→ι0.

The state indicator, listed by the)SI command, contains

a list of the calling sequence of defined functions (with

their pertinent line numbers) that led to the current state.

To indicate suspended immediate processing statements,

the state indicator includes an asterisk '*' on the line

containing the name and function line number of the first

function called.

As with VS APL, the state indicator, listed by the)SI
command, contains a list of the calling sequence of

defined functions and defined operators that led to the

current state.

To indicate each suspended immediate execution state-

ment, the state indicator includes an asterisk '*' on a

line by itself. Asterisks can indicate suspended imme-

diate execution statements that do not call a function.

The)SIS command lists the state indicator with the

function name, pertinent line number, and corre-

sponding statement in the definition. Suspended imme-

diate execution statements are listed, and each is

preceded by an asterisk. Two carets below each state-

ment indicate where the processing has halted and

where any error has occurred.

)SI,)SINL, and)SIS commands also allow an

optional numeric argument to indicate the number of

levels of the state indicator to be displayed, for instance

)SI 4.

The right arrow '→' clears the most recent line(s) placed

in the state indicator.

As with VS APL, the right arrow '→' clears the most

recent line(s) placed in the state indicator.

The system command)RESET n or)SIC n clears n

lines from the state indicator.)RESET or)SIC
clears all lines.

Figure 18. VS APL Compared with APL2—System Commands (Compatible)

System Commands under VS APL System Commands under APL2

)FNS and)VARS allow you to specify the beginning

letter or set of letters for listing functions and variables in

the active workspace.

)FNS and)VARS allow you to specify the beginning

and ending letter or set of letters for listing functions

and variables in the active workspace.

)SYMBOLS allows you to increase the maximum size of

the symbol table, but can only be used in an empty work-

space.

)SYMBOLS is usually unnecessary because the

symbol table dynamically expands as the number of

symbols increase. For efficiency, you can specify a

symbol table size, and can do so at any time.

)SYMBOLS also causes the unused symbols in a

workspace to be removed.

)LIB allows you to specify alphabetic letter(s) for begin-

ning the listing of workspace names.

)LIB allows you to specify alphabetic letters for begin-

ning and ending the listing of workspace names.

)OFF[HOLD] and)CONTINUE[HOLD] provide an

optional HOLD parameter that allows you to return to the

host system. If you do not specify the HOLD parameter,

you are logged off the host system.

)OFF[HOLD] and)CONTINUE[HOLD] always

return control to the host system. The optional HOLD
parameter has no effect.

18 APL2 Migration Guide

Extended-Compatible System Features
For more information on most features listed in Figure 19 through Figure 21 on

page 20, see APL2/370 Programming: System Services Reference. For more

information on installation features, see APL2/370 Installation and Customization

under CMS or APL2/370 Installation and Customization under TSO.

Figure 19. VS APL Compared with APL2—Invocation Options (Compatible)

Invocation Options under VS APL Invocation Options under APL2

The DEBUG option provides the following debug settings:

 msg (1)

 echo (2)

 abend (64)

 micro (128)

APL2 retains the following DEBUG settings from VS

APL:

 msg (1)

 echo (2)

Abend (64) has been dropped, but a similar facility is

available under TSO through SYSDEBUG, a new invo-

cation option described in APL2/370 Diagnosis Guide.

Micro (128) has been dropped.

The following DEBUG settings have been added, or

replace VS APL settings:

xdump (4) Supply additional information in

dumps

estimate (8) Give estimates of times for selected

long-running tasks

msgid (32) Prefix messages with a message

identifier

nolx (64) Do not process �LX during)LOAD

noquemsg (128)

Discards secondary messages rather

than queuing them.

Note: While 1-MSG is turned on,

secondary messages are immediately

displayed rather than queued, so the

setting of this flag is irrelevant.

The HILIGHT option default results in no highlighting in

CMS and highlighted output in TSO.

The HILIGHT option default results in highlighted input

in CMS and highlighted output in TSO.

| The SMAPL option indicates whether the local session

| manager should be used:

| SMAPL(ON | OFF | TRY)

| where TRY is treated as ON if possible, else as OFF.

| The SMAPL option adds support for a remote session

| manager:

| SMAPL(ON | OFF | TRY | nnnn)

| where nnnn is a processor number. The APL2 inter-

| preter shares a variable with that processor and

| handles all session input and output (�, �, Editor 1,

| and immediate execution) through that variable rather

| than directly at the user's terminal.

| That processor number could be resolved as another

| APL session or as a session manager, and the process

| could reside on the same system or on another system.

| The communication protocol is defined in APL2/370

| Programming: System Services Reference.

The TERMCODE option identifies the type of terminal you

are using in TSO.

TERMCODE (-1) can also be used in either CMS or

TSO to tell APL2 to redirect APL2 input and output to

files instead of to the terminal.

 Chapter 3. APL2 Compared with VS APL 19

Figure 20. VS APL Compared with APL2—Editors (Compatible)

Editing under VS APL Editing under APL2

The licensed program provides a line editor for function

editing. A full-screen editor that edits functions and char-

acter variables is available as an IUP to VS APL.

The licensed program provides a line editor, a full-

screen editor, and access to user-written and system

editors. Both the full-screen and system editors edit

functions, operators, and simple character variables.

See “New System Features” on page 13 for more

details.

The editor command [n�] displays line n of the function

definition.

The editor command [�n] displays line n of the func-

tion or operator definition. [n�] results in a DEFN
ERROR.

The editor command [�n] displays line n through the

last line of the definition.

The editor command [�n|] displays line n through the

last line of the definition.

Editing the function name in a definition replaces the

current name of the function.

Editing the function or operator name in a definition

creates a new function or operator with the edited

name. The existing function or operator remains as it

was.

In VS APL local functions cannot be edited. With the APL2 editors, local functions or operators can

be edited. When local and global functions with the

same name exist, only the local function can be

accessed by the APL2 editors.

Figure 21. VS APL Compared with APL2—Auxiliary Processors (Compatible)

Auxiliary Processors

Distributed with VS APL

Auxiliary Processors

Distributed with APL2

Auxiliary processors distributed with VS APL support only

VS APL data types.

AP 110, AP 111, AP 119, AP 121, AP 127, AP 210,

and AP 211 support the new APL2 data types.

AP 110, AP 111, AP 123, and AP 210 have new

options that provide mapping between the VS APL

internal character encoding and APL2 internal character

encoding.

Changes in default translation and initialization options

for auxiliary processors are discussed on page 35.

Several of the VS APL APs have been enhanced to

support additional function. For example, AP 100 can

be used to determine the name of the host system, and

AP 124 supports color.

20 APL2 Migration Guide

 Extended-Incompatible Features

Figure 22 through Figure 27 on page 24 compare features of VS APL to similar

features of APL2. These extended features of APL2 are incompatible—they can

prevent an application that runs under VS APL from producing the expected results

under APL2.

Extended-Incompatible Language Features
For more information on features listed in the following figures, see APL2

Programming: Language Reference.

Figure 22. VS APL Compared with APL2—Evaluation of Expressions (Incompatible)

Evaluation of Expressions under VS APL Evaluation of Expressions under APL2

VS APL's evaluation of brackets allows you to select an

item from a vector constant.

4 5 6[3]
6

APL2's evaluation of brackets results in a RANK
ERROR, if you attempt to select an item from a numeric

vector constant. An expression such as 4 5 6[3] is

interpreted as:

4 5 (6[3])
RANK ERROR
 4 5(6[3])
 ��

When processing VS APL defined functions that contain

such expressions, the)MCOPY and)IN system com-

mands insert parentheses around numeric vector con-

stants, so that the expressions are evaluated correctly

under APL2. Parentheses are not inserted into char-

acter vectors. See also “If the Function Is Interrupted”

on page 32.

A suspended function can be restarted at the suspended

line with any of the following expressions:

 →�LC
 →��
 →ι0

A suspended function or operator can be restarted at

the suspended line with the following expression:

 →�LC

It can be restarted at the point of suspension with either

of the following expressions:

 →��
 →ι0

Dyadic defined functions cause a syntax error if invoked

monadically.

All functions are ambi-valent. Dyadic functions can be

invoked monadically.

Stop vectors in an unlocked function invoked by a locked

function are honored.

Stop vectors in an unlocked function invoked by a

locked function are ignored. Stop vectors in functions

are also ignored if the function is run under �EC.

However, they are honored in a function invoked from

�EA.

Functions containing duplicate labels use the first defi-

nition of the label.

Functions or operators containing duplicate labels use

the last definition of the label.

VS APL ignores local names in a defined function that

duplicates the names of the arguments or the result.

APL2 permits duplication of names in the header of a

defined function or operator. The rightmost occurrence

of a duplicate name in the header is taken as its defi-

nition.

VS APL provides blanks where it expects them to be, for

example, � �1F 2� is processed as � �1 F 2�.

APL2 does not always insert blanks. It returns a

SYNTAX ERROR for � �1F 2�.

 Chapter 3. APL2 Compared with VS APL 21

Figure 23. VS APL Compared with APL2—Default Output

VS APL Default Output APL2 Default Output

Default output of arrays with rank ≮2 folds the output on

a line-by-line basis where the width of �PW is exceeded.

Default output of arrays with rank ≮2 folds the output

on a plane-by-plane basis where the width of a plane

exceeds �PW.

Default output of empty arrays always produces one line. Default output of empty arrays produces as many lines

as there are rows in the array.

Figure 24. VS APL Compared with APL2—Primitive Functions (Incompatible)

Primitive Functions under VS APL Primitive Functions under APL2

Power (L*R) returns the odd root of a negative number in

the form of a real number. The even root of a negative

number results in a DOMAIN ERROR.

 �8*÷3
�2
 �8*÷2
DOMAIN ERROR
 �8*÷2
 �

Power (L*R) returns the odd root of a negative number

(a complex number) as its principal value. Power also

returns the even root of a negative number.

 �8*÷3
1J1�732050808
 �8*÷2
0J2�828427125

Monadic Format (�R) formats columns of a numeric array

so that each column has the same width. It includes a

column of leading blanks for arrays with rank 2 or greater.

Format (Default) (�R) formats each column according

to the item with the greatest width in the column. It

does not include a column of leading blanks. In APL2,

a column of leading blanks indicates nesting.

Dyadic Format (L�R) includes a blank for the unit's place

if any number in the right argument R is less than 1, and

the digits part of the left argument L is a nonzero integer.

Format by specification (L�R) does not include a blank

column for the units digit if all numbers in a column of

the right argument are less than 1.

Circle (L○R) accepts the integers �7 through 7 as valid

left arguments. The result of �4○R is a positive square

root.

�4 ○ 2
1�732050808

�4 ○ �2
1�732050808

Circle (L○R) accepts the integers �12 through 12 as

valid left arguments. The result of �4○R is a negative

square root if R is negative.

�4 ○ 2
1�732050808

�4 ○ �2
�1�732050808

Residue (L�R) has no implicit arguments.

 �PP←16
 �CT←1E�13
 1��99999999999999
0�99999999999999

Residue (L�R) uses �CT as an implicit argument.

 �PP←16
 �CT←1E�13
 1��99999999999999
0

One-element arrays are extended in primitive dyadic

scalar functions.

Only scalars and one-element vectors are extended in

primitive dyadic scalar functions.

22 APL2 Migration Guide

Figure 25. VS APL Compared with APL2—Inner Product (Incompatible)

Inner Product under VS APL Inner Product under APL2

The shape of the arguments for the general case of

P f�g Q are conformable if the last axis of P is equal

to the first axis of Q. The following example produces a

length error:

A ← 15 1ρ �A�
A��= �AA�

The shape of the arguments for the general case of

P f�g Q are conformable if the shape of the argu-

ments P and Q are conformable for the function g.

Figure 26 (Page 1 of 2). VS APL Compared with APL2—System Functions and Variables (Incompatible)

System Functions and Variables under VS APL System Functions and Variables under APL2

A character output (�) assignment immediately followed

by a character input prompt (�) returns a vector con-

taining the prompt and response, except that the prompt

can be partially or entirely replaced by blanks depending

upon the device type, VS APL release, and whether

GDDM is used.

A character output (�) assignment immediately followed

by a character input prompt (�) returns a vector com-

posed of the response preceded by one of the

following:

� The characters composing the prompt, if the

Prompt Replacement system variable is specified

as �PR←��.

� A repeated character, specified in �PR, which

replaces the prompt portion of the resulting vector.

A blank is the default setting of �PR.

If the character input prompt (�) is on a different line from

the character output, entering a single-character response

results in a scalar.

If the character input prompt (�) is on a different line

from the character output, entering a single-character

response results in a one-item vector.

The Atomic Vector (�AV) uses an ordering unique to VS

APL. The alphabet is contiguous.

The Atomic Vector (�AV) uses an ordering that con-

forms with EBCDIC and is different from the ordering

under VS APL. The alphabet is not contiguous.

When Canonical Representation (�CR) returns the char-

acter representation of a defined function, it limits the pre-

cision of any numeric constants to 17 significant

digits—the same precision allowed by the line editor.

Canonical Representation (�CR) returns the character

representation of a defined function or operator, not lim-

iting the precision of any numeric constants.

Expunge (�EX) does not erase defined functions that are

suspended or waiting to complete processing.

Expunge (�EX) erases defined functions that are sus-

pended or waiting to complete processing. However,

erasing such functions does not affect their definitions

in the state indicator.

Fix (�FX) can be applied to any character matrix. It can

be used to fix the definition of a function, including a func-

tion that replaces another function that is neither sus-

pended nor waiting to complete processing.

Fix (�FX) can be applied to a character matrix or a

vector of character scalars or vectors. It can be used

to fix the definition of a function or operator. The func-

tion or operator being defined can replace any existing

operation, including one that is suspended or waiting to

complete processing.

�FX has also been extended to accept a left argument,

which enables you to set execution properties for a

defined function or defined operator.

Name Class (�NC) returns a class of 0 through 4, with 4
indicating an invalid name for an object.

Name Class (�NC) returns a class of �1 through 4,

with �1 indicating an invalid name or unused distin-

guished name for an object. 4 indicates a defined

operator name. �NC can also be applied to system

functions and system variables.

 Chapter 3. APL2 Compared with VS APL 23

Figure 26 (Page 2 of 2). VS APL Compared with APL2—System Functions and Variables (Incompatible)

System Functions and Variables under VS APL System Functions and Variables under APL2

Shared Variable Offer (�SVO) extends any left argument

that is a one-item vector or scalar, so that it is used as

the processor number for each name represented in the

right argument.

Shared Variable Offer (�SVO) extends any left argu-

ment that is a scalar, so that it is used as the processor

number for each name represented in the right argu-

ment. A left argument that is a one-item vector corre-

sponds with a right argument of only one name.

The result of �EX, �NC, �SVO, or �SVR applied to a

scalar or vector is a one-item vector.

The result of �EX, �NC, �SVO, or �SVR applied to a

scalar or vector is a scalar.

The value of �WA depends on the internal format of VS

APL objects.

The value of �WA depends on the internal format of

APL2 objects and often differs substantially from the

value obtained in a VS APL environment.

The)COPY command, when used to copy an entire

workspace, copies all user objects in the workspace, but

not system variables.

The)COPY command, when used to copy an entire

workspace, includes the system variables �CT, �FC,

�IO, �LX, �PP, �PR, and �RL as well as all user

objects in the workspace.

Extended-Incompatible System Features
For more information on most features listed in the following figures, see APL2/370

Programming: System Services Reference.

Figure 27 (Page 1 of 2). VS APL Compared with APL2—Auxiliary Processor Options (Incompatible)

Auxiliary Processor Translation

Options under VS APL

Auxiliary Processor Translation

Options under APL2

Auxiliary processors distributed with VS APL provide

default translation options.

Certain auxiliary processors distributed with APL2

provide default translation options that differ from those

provided under VS APL. For a description of these

changes, see “Changes in APL2 Auxiliary Processor

Translation Options” on page 35.

AP 110, AP 111, and AP 210 provide a BYTE option that

allows for no translation regardless of the encoding of the

file.

The BYTE option works only for some applications that

use it under VS APL. See “Changes in APL2 Auxiliary

Processor Translation Options” on page 35 for a dis-

cussion on files and auxiliary processors.

AP 101 provides the options 370 and APL. AP 101 no longer provides the options 370 and APL. If

they are specified in the initial value of the shared vari-

able, that value is considered invalid. Valid translation

options in APL2 are 192 or EBCD.

AP 101 stacked input cancels the session manager

SUPPRESS command.

AP 101 stacked input no longer cancels the session

manager SUPPRESS command. Entering the fol-

lowing lines cancels the SUPPRESS command:

3 11 �NA �OPTION�
�OFF� OPTION �QUIET�

24 APL2 Migration Guide

Figure 27 (Page 2 of 2). VS APL Compared with APL2—Auxiliary Processor Options (Incompatible)

Auxiliary Processor Translation

Options under VS APL

Auxiliary Processor Translation

Options under APL2

User-written auxiliary processors do not handle the new

APL2 data types.

A new return code 12|68 from ASVPREF or

ASVPCPY enables user-written auxiliary processors to

detect data that cannot be represented in VS APL data

format.

To allow VS APL auxiliary processors to handle all

APL2 data types, the VS APL SVP interface has been

extended in APL2 to support new APL2 data types

through the ASVDFORM executable macro and the

AP2SDF mapping macro that defines the parameter

block used by ASVDFORM.

ASVPQRY can return information about multiple variables

or multiple partners in a single request.

ASVPQRY only supports queries of a single variable or

processor for each call.

Under TSO, CLISTs invoked through AP 100 are proc-

essed by APL itself. APL provides support for the special

statements $EXIT, $REPEAT, and $RETURN, and CLIST

processing is deferred under certain circumstances.

When not deferred, the CLIST used to invoke APL is

resumed as a part of the AP 100 processing if one of the

special statements is not used.

CLISTs invoked through AP 100 are now handled by

the TSOLNK facility rather than by APL. There is no

support for $EXIT, $REPEAT, and $RETURN.

&LASTCC is always returned to the AP 100 user. All

CLISTs are processed immediately, and the CLIST

used to invoke APL is never resumed until APL2 termi-

nation.

 Chapter 3. APL2 Compared with VS APL 25

VS APL Features No Longer Supported

Figure 28 and Figure 29 on page 26 list VS APL features not supported under

APL2 and any replacements.

Language Features No Longer Supported
For more information on features listed in Figure 28, see APL2 Programming: Lan-

guage Reference.

Figure 28. Language Features No Longer Supported under APL2

Dropped from VS APL Replacement in APL2

Dyadic Shared Variable Query �SVQ No replacement.

)GROUP,)GRP,)GRPS)COPY,)MCOPY,)PCOPY, and)ERASE can copy

or erase indirectly. When issuing one of these com-

mands, you specify in parentheses the name of a

matrix containing the names of objects to be processed.

)STACK No replacement. Handled automatically.

)WSSIZE No replacement.

WAS lib wsname, which is displayed with loading of the

CONTINUE workspace under TSO

No replacement.

Horizontal Tabs �HT No replacement. APL2 accepts the name �HT.

However, referencing �HT yields ι0 no matter how it

is specified.

System Features No Longer Supported
For more information on features listed in Figure 29, see APL2/370 Programming:

System Services Reference.

Figure 29. Facilities No Longer Supported under APL2

Dropped from VS APL Replacement in APL2

A numeric ID could be specified as a first positional

parameter when invoking VS APL under CMS.

The ID keyword provides equivalent function.

26 APL2 Migration Guide

 Workspaces

The workspaces distributed with VS APL and APL2 under CMS and TSO are sum-

marized in Figure 30.

Figure 30. Workspaces Distributed with VS APL and APL2

Description of Workspace VS APL CMS VS APL TSO APL2 CMS APL2 TSO

APL file access APLDATA APLDATA APLDATA APLDATA

Interactive Chart Utility interface CHARTX CHARTX

Environment-dependent auxiliary

processors

CMS TSO CMS TSO

Conversion-migration CONVERT CONVERT TRANSFER TRANSFER

Data structure display DISPLAY DISPLAY

Usage examples EXAMPLES EXAMPLES EXAMPLES EXAMPLES

File transferring (TSO) . FILESERV . FILESERV

Data formatting FORMAT FORMAT

AP 124 full-screen facilities FSC124 FSC124

AP 126 facilities (FSC124 compatible) FSC126 FSC126 FSC126 FSC126

Panel design FSDESIGN FSDESIGN

AP 126 (GDDM full-screen facilities) FSM FSM FSM FSM

AP 126 (GDDM cover function) GDMX GDMX

Graphics GRAPHPAK GRAPHPAK GRAPHPAK GRAPHPAK

Edit descriptions HOWEDITS HOWEDITS

Mathematical functions MATHFNS MATHFNS

Text editing MEDIT MEDIT MEDIT MEDIT

News bulletins NEWS NEWS

Nondisplay graphics PLOT PLOT . .

Printing PRINTCMS PRINTTSO PRINTWS PRINTWS

Example SBIC SBIC

Text editing SEDIT SEDIT

Access to SQL database SQL SQL

External function directory SUPPLIED SUPPLIED

Miscellaneous functions UTILITY UTILITY UTILITY UTILITY

Simple database VAPLFILE VAPLFILE VAPLFILE VAPLFILE

VSAM data access VSAMDATA VSAMDATA VSAMDATA VSAMDATA

Workspace descriptions WSINFO WSINFO WSINFO WSINFO

 Chapter 3. APL2 Compared with VS APL 27

External Functions Distributed with APL2

Figure 31 lists the external functions distributed with APL2 under CMS and TSO.

See APL2/370 Programming: Using the Supplied Routines for more information

about the external functions.

| Figure 31 (Page 1 of 2). APL2/370 External Routines

| External Routine| Function

| Data Conversion

|

| ATR| Convert an APL array to a record with mixed data types

| CTK| Convert extended character data to mixed DBCS data

| CTN| Convert character data to numeric data

| DFMT| Format an array of extended character data

| KTC| Convert mixed DBCS data to extended character data

| PFA| Generate a pattern for ATR or RTA
| RTA| Convert a record to an APL array

| CAN1| Compress and Nest

| DAN1| Delete and Nest

| SAN1| Slice and Nest

|

| External Routine Support

|

| APL2PI| A niladic form of APL2PIE
| APL2PIE| Interface with non-APL programs that call APL2.

| ATP| Update parameters passed by a non-APL program

| BUILDRD| Build a routine description for an external routine

| BUILDRL| Build a routine list for a module containing external routines

| EXP| Request APL evaluation in the previous name scope

| PACKAGE| Convert a workspace to a namespace

| PTA| Extract parameters passed by a non-APL program

| QNS| Query the current name scope

|

| APL Object Access

|

| EDITOR22| A program interface to Editor 2

| EDITORX2| A program interface to a named system editor

| IN2| Program access to system command)IN
| OUT2| Program access to system command)OUT
| PIN2| Program access to system command)PIN
|

| REXX Access (Processor 10)

|

| δEXEC| Execute a REXX program

| δF| Obtain information about a CMS or MVS file

| δFM| Read or write a file as a matrix

| δFV| Read or write a file as a vector of vectors

|

| System Data Access

|

| CSRIDAC| Access an MVS/ESA* virtual data object

| CSRREFR| Refresh an MVS/ESA virtual data object

| CSRSAVE| Save changes to a permanent MVS/ESA virtual data object

| CSRSCOT| Save MVS/ESA virtual data object changes in a scroll area

| CSRVIEW| Define a view on an MVS/ESA virtual data object

| DSQCIA| Interact with the database Query facility

|

28 APL2 Migration Guide

| Figure 31 (Page 2 of 2). APL2/370 External Routines

| External Routine| Function

| Environment Control

|

| ATTN| Query or reset the attention flag

| MSG| Use APL2 message facilities from an application

| OPTION| Query or set APL2 invocation options

| PBS| Query or set the)PBS state

| RAPL22| Run the remote-session manager

| SERVER| Start a TCP/IP port server

| SVI| Determine shared variable processor numbers or user IDs.

|

| Usage and Debugging Aids

|

| CMSIVP| Installation verification under CMS

| DISPLAY| Display an array in a form that shows nesting and data types

| DISPLAYC| The same as DISPLAY.

| DISPLAYG| The same as DISPLAY, but using box characters

| FED| Diagnostic tool for IBM service usage

| HELP| Obtain information from APL2HELP files

| IDIOMS2| Search the APL2 phrase collection

| TIME| Performance monitoring within a workspace

| TSOIVP| Installation verification under TSO

| |

|

| Notes:

| 1. The Partition primitive (
) should be used instead of these three functions.

| 2. Not supplied with Application Environment.

|

 Chapter 3. APL2 Compared with VS APL 29

Chapter 4. Testing and Debugging

After transferring workspaces to APL2, you can verify that their functions continue

to run properly by doing the following:

� Inspect and correct statements for the effects of changes, and test the altered

functions under APL2

� Check data files used by functions in the transferred workspaces

� Check alternate input on the AP 101 stack

� Check user-written auxiliary processors used by functions in the transferred

workspaces

� Test the application as a whole

Inspecting, Correcting, and Testing Functions

“Extended-Compatible Features” on page 15 lists features of APL2 that can

prevent an application that runs under VS APL from producing the expected results

under APL2. Inspect and correct statements in functions that use those features.

Pay particular attention to the following:

 � Primitive functions:

– Format (default) (�R) and format by specification (L�R)

 – Residue (L�R)

� System functions and variables:

– Name class (�NC)

– Data received from a character input/output (�) request for user response

 – Fix (�FX)

� High numerical precision

� Arguments as local names

The problems that can occur with each of these are discussed later in this section.

Additionally, the TRANSFER workspace distributed with APL2 contains functions

to help you locate these incompatible features in your functions and to fix them.

Using the TRANSFER Workspace
DESCRIBE in the TRANSFER workspace explains the functions and variables in

the workspace. To use the TRANSFER workspace:

1. Use)LOAD transws, where transws is the name of the transferred workspace.

2. Use)PCOPY 2 TRANSFER (GPTRANSFER) to add the TRANSFER
workspace contents.

When you use)PCOPY you are alerted to name conflicts you must resolve. If

an object in transws and an object in the TRANSFER workspace have the

same name, consider renaming one of them.

3. Use)PCOPY 2 TRANSFER AV�VSAPL or)COPY 2 TRANSFER
AV�APLSV if necessary for this workspace.

4. Use)SAVE testws, where testws is a new name for the workspace.

30  Copyright IBM Corp. 1984, 1994

Some of the functions in the TRANSFER workspace modify workspace con-

tents. Setting up a new workspace in which to make corrections keeps the

original transferred workspace intact as a backup.

5. Make your corrections after using functions in the TRANSFER workspace.

6. Use)ERASE (GPTRANSFER) to eliminate TRANSFER workspace func-

tions and variables.

Warning: If you had name conflicts when copying in Step 2, you may not want

to use the indirect erase unless you have changed the names of your functions.

 7.)SAVE.

When you are satisfied that the corrected functions run properly, you can rename

your test workspace.

Some of the TRANSFER workspace functions and variables are described below.

Others are described with the specific problem they are designed to remedy.

ALL� creates a list of names of all defined functions in the workspace you are

debugging. It excludes all TRANSFER workspace functions from the list. The

result of ALL� can then be an argument for any function that requires a list of

function names as an argument.

FLAG� searches for given character strings and returns a list of all the statements

that contain those strings. Each statement is preceded by the function name and

line number. FLAG� takes two arguments: the right argument is a list of func-

tions to examine; and the left argument is a list of character strings to be searched

for. For example, the following expression searches for all occurrences of residue

and �FX:

��� ��FX� FLAG� ALL�

If you specify no search argument, FLAG� prompts for character strings, which

you enter one at a time.

The TRANSFER workspace includes the variable FLAGMVSAPL�; this is a pre-

pared list of character strings, which includes all known migration problem areas.

FLAGMVSAPL� is a convenient argument for FLAG�. For example, the fol-

lowing expression searches for all known migration problem areas in all functions in

the workspace:

FLAGMVSAPL� FLAG� ALL�

FIX� is used to make changes that require simple string replacements. FIX�
takes two arguments: the right argument is a list of functions requiring change, and

the left argument is a set of old and new pairs, nested together.

The TRANSFER workspace includes the variable FIXMIUP�; this a prepared

list of old and new pairs.

Warning: FIX� modifies the workspace. Be sure that you want to make the

changes you have indicated in all examples in all functions listed. FLAG� can

be used to identify all examples of the old character strings for inspection before

you use FIX�. Also, although FLAGMVSAPL�, FIXMIUP�, and ALL� are

available arguments to FIX�, you may want to enter the arguments more selec-

tively.

 Chapter 4. Testing and Debugging 31

What to Look For
In many examples, the APL2 extensions do not affect the processing of your func-

tions. Each should be flagged, however, and examined in the context of the appli-

cation to determine whether a problem exists. Appropriate corrections should then

be made. The extensions listed earlier in this section and discussed below are

known to cause problems.

Residue (L�R): Results of primitive function residue (L�R) can be affected by

�CT (comparison tolerance) under APL2 but not under VS APL. Use FLAG� to

locate uses of residue. Carefully check functions that use residue under conditions

of high-level precision. The least significant digits in the results under APL2 can

differ from those in the results under VS APL.

Use of �NC: A defined function can depend on �NC (name class) to test for an

invalid object name. Under VS APL, �NC returns 4 for an invalid object name.

Under APL2, �NC returns �1. (4 indicates a defined operator name.)

Use FLAG� to identify functions that use �NC to test for invalid object names.

Local Variables: VS APL ignores localization of the name of an argument in the

function header statement:

 �Z←FN A;A

APL2 permits localization. If the argument is referenced before it is specified as a

local variable, a VALUE ERROR is generated. If the VS APL workspace was

transferred with)MCOPY, these duplicate local names have been deleted; other-

wise, use CHKHDRS� to identify localized arguments. Then, delete them from the

list of local names in the function headers.

Testing Functions under APL2
After you have checked and modified functions for the effects of changes and are

ready to test them, migrate any test workspaces and data that you may have used

previously under VS APL.

During testing, problems can surface in two different ways: they can interrupt proc-

essing of a function, or they can allow a function to complete but produce unex-

pected results.

If the Function Is Interrupted
| Processing of a function can be interrupted for many reasons. Two common

| causes of interruptions are unexpected APL2 data types and indexed numeric con-

stants.

APL2 Data Types: A function can receive data that could not have existed in VS

APL, either entered by a user or read from a file. For example, � input prompts

until valid data is received, but no longer rejects �AB� 2.

To guard against accidental entry of the new APL2 data types, such as nested or

mixed arrays, you can run the application under the control of �EA (execute alter-

nate). With �EA, you can either branch to an error handling routine if an error

results from new data types, or you can continue normal processing if no error

occurs.

32 APL2 Migration Guide

Indexed Numeric Constants: A function under VS APL can index an item in a

numeric vector constant:

4 5 6[3]
6

Under APL2, the expression is equivalent to the following one, which results in a

RANK ERROR because the brackets are tightly bound to the name on their left.

4 5 (6[3])
RANK ERROR
 4 5(6[3])
 ��

In functions transferred from VS APL to APL2 with the)MCOPY command, such

vector constants must be parenthesized:

(4 5 6)[3]
6 �

You must add parentheses yourself or use the command)CS 1 (compatibility

setting) to have indexed numeric constants enclosed in parentheses in the following

situations:

� If the function was not transferred using)MCOPY or)IN

� If the function comes from a file other than a transfer file (using an auxiliary

processor)

� If the function uses execute (�) on a character vector that contains an indexed

numeric constant vector, for example ��4 5 6[3]�

Use of)CS: The system command)CS (compatibility setting) provides a tempo-

rary solution to the source of two common migration problems:

� Indexed numeric constants in functions not transferred by)MCOPY or)IN
� Inadvertent use of vector notation for other than numeric vector constants

The syntax of)CS is)CS n, where n can have one of the following values:

0 APL2 (the default).

1 Indexed numeric constant vectors produce results as they do in VS APL.

When this setting is used, APL2 inserts the parentheses as it does when

)MCOPY or)IN is used to transfer workspaces. Thus, functions are dis-

played with parentheses enclosing numeric constant vectors.

2 Vector notation is restricted to numeric vector constants, so that

expressions like (1 2)(3 4), �A� �B� �C�, and 4 3 FDS
(where FDS is a variable) generate a SYNTAX ERROR as they do

under VS APL.

3 Produces the combined effects of settings 1 and 2.

Use)CS without a parameter to query the current setting.

The compatibility setting is saved and loaded with the workspace; however, it is not

copied if the workspace is copied.

 Chapter 4. Testing and Debugging 33

Warning:)CS should be regarded as a temporary measure, particularly in disa-

bling vector notation. Functions should be changed as described in “APL2 Data

Types” on page 32.

Also, you should never copy an APL2 workspace into a workspace whose compat-

ibility setting is not 0, because of the chances of failure or inappropriate results.

If the Function Is Not Interrupted
Problems that do not stop a function from processing can be detected from exam-

ining the output and comparing it to the VS APL output of the function run against

the same data. In the case of a report that does not align properly, the problem is

evident immediately. Sometimes problems, especially those involving numerical dif-

ferences between APL2 and VS APL, are detected only after considerable testing

or actual use of a function under APL2. If your function is giving erroneous results,

check the following:

� Use of format (�) functions

� Use of �AV
 � �PR setting

 � Numerical precision

Formatting: Reports or results that you produce with format (default) (�R) or

format by specification (L�R) can differ under APL2 because:

� Format (default) does not add a column of leading blanks in front of numeric

arrays of rank 2 or greater.

� Format (default) and, in some cases, format by specification determine the

width of each column according to the item of the greatest width. Because of

this independent column formatting, the widths of columns in the result can

vary from VS APL to APL2.

�AV Dependencies: If you did not adjust your functions for �AV dependencies

before transferring them to APL2, you should now either modify them, or rewrite the

functions to avoid �AV dependencies. For more information, see “Adjusting for

�AV Dependencies” on page 4.

Using Character Input/Output: The new system variable �PR (prompt replace-

ment) affects the behavior of �. VS APL functions that use character input/output

� to request and receive input on the same line are usually compatible under APL2

as long as �PR is set to the default (a blank). Consider editing your functions to

include �PR as a local variable and specify it to be a blank (�PR←� �).

Numerical Precision: APL2 provides different numerical precision than does VS

APL. If your defined functions carry results to a high level of precision, check the

least significant digits in those results for possible variations between the results

produced by VS APL and those produced by APL2. To display full precision in

APL2, set �PP to 18.

34 APL2 Migration Guide

Checking Data Files Used by a Function

The most common problems with data files result from using the encoding for

reading and writing. For example, a function that writes a file without conversion

produces Z-code under VS APL and EBCDIC under APL2.

Two alternatives for making defined functions and data files compatible are:

� Using the character translation options provided by auxiliary processors distrib-

uted with APL2

� Rewriting applications to take advantage of APL2 and, possibly, to improve the

efficiency of the applications

The first alternative provides the simplest means of correcting any translation prob-

lems. The second alternative can be considered as a long range solution. This

section focuses on the first alternative–using translation options provided by auxil-

iary processors. See APL2 Programming: Language Reference for information on

how to rewrite functions, and see APL2/370 Programming: System Services Refer-

ence for a description of APL2's capabilities.

Changes in APL2 Auxiliary Processor Translation Options
Character translation options offered by auxiliary processors distributed with APL2

can prevent many problems in reading from or writing to files in internal or other

encoding. Problems can arise because the auxiliary processor and translation

option used are no longer compatible with the encoding in a file.

Figure 32 summarizes the changes in default translation options for each auxiliary

processor distributed with APL2.

Figure 32 (Page 1 of 2). Changes in Translation Options for APL2 Auxiliary Processors

AP Environment VS APL Option VS APL Conversion APL2 Option and Notes

100 CMS none # to a ���� to & ��� 370(default) – equivalent

EBCD – no conversion

100 TSO none Full 256 EBCDIC EBCD(default) – equivalent

370 – like CMS 370

101 CMS APL

370(default)

192

to A(bsp)����

to a ���� to & ���

Full 256 EBCDIC

Not supported

Not supported

192(default)–equivalent

101 TSO none Full 256 EBCDIC none – equivalent

 Chapter 4. Testing and Debugging 35

Figure 32 (Page 2 of 2). Changes in Translation Options for APL2 Auxiliary Processors

AP Environment VS APL Option VS APL Conversion APL2 Option and Notes

110 CMS

APL

192

370

BIT

BYTE

BYTE

BYTE

to A(bsp)����

Full 256 EBCDIC

to a ���� to & ���

11000001 to A���

Unchanged for copying or

�AV indexing

Unchanged for storing APL

character data

With translate table

APL – equivalent

EBCD (or 192) – equivalent

370 (or BCD) – equivalent

BIT – equivalent

BYTE – no converted

COD1 – EBCDIC to VS APL

BYTE – equivalent with conversion

table

111 ALL

210 TSO

APL

192(or EBCD)

370(or BCD)

BIT

BYTE

See 110 CMS

See 110 CMS

111 TSO

210 TSO

TN Superscripts, plotting charac-

ters

TN – equivalent

123 ALL none

none

none

Unchanged for copying or

�AV indexing

Unchanged for storing char-

acter data

With translate table

T(default) – equivalent

T1 – equivalent or

T2 – store in EBCDIC

T – equivalent with converted table

126 ALL �4 1(default).

�4 0

256 EBCDIC on data,

tables/symbol sets

unchanged.

Nothing changed

�4 0(default), if tables/symbol sets

unconverted

�4 1 if tables/symbol sets converted

Note: For AP 126, the meanings of

the conversion options have changed.

In VS APL, �4 1 converted data

between ZCODES and EBCDIC. In

APL2, �4 1 converts tables between

scrambled EBCDIC and EBCDIC.

Either of the old options may need to

be converted to either of the new

options, depending on what conver-

sion has been applied to the tables.

36 APL2 Migration Guide

Possible Translation Problems
The following summarizes the possible problem areas for each auxiliary processor:

AP 100 (CMS Command Processor): Functions that used AP 100 under VS APL

should operate under APL2.

AP 101 (Alternate Input Processor): Problems involving AP 101 are discussed in

“Checking Alternate Input” on page 39.

AP 110 (CMS File Processor): This processor is compatible, except for the

BYTE option. Data can be read or written compatibly, using the BYTE option, if:

� The file does not contain character data. On either system, the BYTE option

does no translation. (For example, packed decimal numbers remain as packed

decimal numbers.)

� Character data is not being displayed, converted, tested or modified within APL.

(For example, it can successfully be rearranged and written to another file.)

� Character data is being generated or decoded using �AV. (This is functionally

equivalent to the BIT option.)

� An application is using the BYTE option and a translation table. The trans-

lation may have been between a particular encoding, such as EBCDIC or

ASCII, and VS APL internal encoding. Normally, the translate table is con-

verted properly by)MCOPY. If not, use the %& table in 1 UTILITY and

apply the following conversion:

 NEWTAB←�AV[zcιOLDTAB]

Functions using the BYTE option, which do not meet any of the above criteria must

be modified.

� As a short-term solution, the BYTE option can be changed to COD1.

� An efficient long-term solution is to convert the files and option to EBCD.

AP 111 (QSAM Processor): This processor can produce the same problems

described for AP 110. Most options provided for AP 110 are also provided for AP

111. In the CMS environment, AP 111 was changed to enforce the rule that the

block size for variable length records must be at least 8 bytes larger than the

largest record. This change was made because of a change in CMS/SP2.

AP 120 (Session Manager Command Processor): Functions that used AP 120

under VS APL continue to work under APL2.

AP 121 (APL File Processor): This processor allows files to be completely com-

patible between VS APL and APL2, provided that files continue to be processed in

the same way under APL2.

To write nested or mixed arrays, complex numbers, or extended character data to

an AP 121 file, use service requests SWC or DUC. These new service requests

allow any valid APL2 data to be written to an AP 121 file.

AP 123 (VSAM Processor): This processor transfers VSAM keys and data

without translation. Two problem situations can occur:

� Under VS APL, a function can use AP 123 and no other functions to write a file

in Z-codes. Under APL2, the function can access that file through AP 123.

 Chapter 4. Testing and Debugging 37

However, the keys no longer identify the correct records and data is incompre-

hensible. Change the APL 2 function to use the T1 option, which can access

data in Z-code format.

An alternative and more permanent resolution of this problem is to do a one-

time conversion of the file to EBCDIC. After the data is converted, the function

can run under APL2 without change. See APL2/370 Programming: System

Services Reference for more information on the translation options for AP 123.

� Under VS APL, a function can use AP 123 with the ECO and ECI functions in

the workspaces distributed with VS APL. These functions allow AP 123 to

write or read data in EBCDIC format.

Under APL2, these functions are no longer needed to translate from Z-codes to

EBCDIC. Copy the new ECO and ECI functions into your workspace; they are

provided with the APL2 Licensed Program in the workspace UTILITY. ECO

and ECI do no translation. To increase the efficiency of a program, consider

eventually removing calls to ECO and ECI from your applications.

Note: Files not containing character data can be read from and written to

without change.

AP 126 (GDDM Processor): When a VS APL workspace is transferred to APL2,

)MCOPY translates all character data in the workspace from Z-codes to EBCDIC.

This data is compatible with default conditions under APL2. (The default 4 service

request is off.) APL2 character data is already written internally in EBCDIC.

However, some character data in a workspace transferred from VS APL by

)MCOPY cannot be properly converted to EBCDIC. Under VS APL, AP 126, the

symbol set values, and translate table values are usually in EBCDIC encoding.

Such data is scrambled by)MCOPY when the workspace is transferred.

You can correct or circumvent this problem by one of the following methods:

� Save the symbol sets on auxiliary storage while you are under VS APL.

Transfer the workspace. Then, read in the symbol sets to replace the scram-

bled data.

� Back-translate the scrambled tables, using the zc table in 1 UTILITY:

GOODTAB←zc[�AVιBADTAB]

� Change your application to use the AP 126 �4 service request, which has the

following trans values:

0 Special EBCDIC translation off (APL2 default)

1 Special EBCDIC translation on (VS APL default)

A trans value of 1 (instead of the APL2 default) enables you to compensate for

the scrambled symbol sets.

AP 210 (BDAM Processor): This processor can have translation problems similar

to those of AP 110. Refer to the explanation for AP 110.

38 APL2 Migration Guide

Checking Alternate Input

If you use AP 101, the alternate input (stack) auxiliary processor, two problems can

occur during migration:

� Use of)COPY,)PCOPY, or)ERASE to copy or erase groups

� Use of an inappropriate translation option

Groups: APL2 does not support groups. Instead, the)COPY,)PCOPY, and

)ERASE commands are extended to process objects indirectly. APL2 replaces

groups with character matrixes that contain the names of objects in the group. If

you use the)MCOPY command to transfer workspaces, any groups that exist

under VS APL are defined by character matrixes in your workspaces under APL2.

(See Figure 5 on page 8 for more information on migrating a group of objects from

VS APL to APL2.) Check stack commands for group dependencies and change

them for indirect copying or erasing. For example, the following VS APL

expression copies objects in the group MYGROUP:

)COPY MISSIONS MYGROUP

Under APL2, groups of objects are copied by enclosing the name of the character

matrix in parentheses:

)COPY MISSIONS (MYGROUP)

For more information on indirect copying, see APL2 Programming: Language Refer-

ence.

Translation Option: In APL2, AP 101 defaults to EBCD–no translation. The 192

option from VS APL is equivalent and is permitted. The APL and 370 options are

not supported, and are rejected with return code 1. In most cases, the APL option

can simply be removed. If the function was using the 370 option under CMS,

check especially for dependencies on the following character mappings:

APL characters � ¨ ÷ δ ≠ �

Passed to CMS & " % # $ @

Checking User-Written Auxiliary Processors Used by a Function

The APL2 shared variable processor (SVP) allows user-written auxiliary processors

to be compatible with APL2. They do not need to be reassembled unless:

� You want the user-written auxiliary processors to handle the new APL2 data

types.

� You want the user-written auxiliary processors to handle the new return code.

(ASVPREF and ASVPCPY return code is 12-68 if data cannot be represented

in VS APL format.)

 Chapter 4. Testing and Debugging 39

� The user-written auxiliary processors access VS APL internal tables, work-

spaces, or executor control blocks. The user-written auxiliary processors need

to be modified because the internal structure and workspace formats are dif-

ferent under APL2.

Under TSO, module AP2TASVP replaces module APLYURVC. In CMS, module

AP2VASVP replaces ASVPSRVC. In both environments, user-written auxiliary

processors must be link-edited again for use with APL2. For more information, see

APL2/370 Installation and Customization under TSO or APL2/370 Installation and

Customization under CMS.

APL2/370 Programming: Processor Interface Reference discusses modifying user-

written auxiliary processors to handle APL2 data.

Note: The Shared Variable Processor (SVP) does not support certain forms of the

query request (ASVPQRY) macro instruction. It only supports queries of a single

variable or a single processor. Queries of multiple variables or multiple partners

must be accomplished through multiple query requests.

Testing the Application As a Whole

After you have checked the functions in the workspace, and the files and auxiliary

processors they use, you are ready to test the application as a whole. You may

find that some runtime instructions need to be modified. For example, if groups of

functions or variables are copied from other workspaces, the directions for copying

groups must be changed to specify indirect copying.

When you are satisfied that the application is running properly in production, you

can drop the unmodified backup workspaces.

Performance Analysis of the Application

Once you have verified that the entire application is operating properly, you may

find that the application can be significantly improved by conducting performance

analysis.

The APL2 external function TIME can be used to gather performance statistics

and identify “hotspots” in the application that are using most of the CPU time. By

focusing your effort on these hotspots, you can have the greatest effect in reducing

overall application CPU time.

Recoding hotspots either using more efficient APL2 algorithms, exploiting APL2's

nested array processing capabilities to avoid sequential code with a high degree of

interpretive overhead, or even rewriting sections in compiled languages are also

techniques that can be used to improve performance sensitive code.

The TIME function is discussed in greater detail in APL2/370 Programming: Using

the Supplied Routines.

40 APL2 Migration Guide

Chapter 5. Migration within APL2

This chapter provides a summary of changes in migrating to APL2 Version 2 from

| other APL2 environments.

| Migrating between Mainframe APL2 Systems

| This section discusses migration between mainframe systems.

| Functional Changes—Version 1 to Version 2
| This section discusses the functional changes in Version 2 that can affect migration

| from Version 1.

| There are no major incompatibilities, but minor changes in the behavior of mes-

| sages, �NLT,)COPY, CASE, and error signalling may need to be considered.

Mixed-Case and National Language Support
The product is now shipped with a default of mixed-case messages. This is imple-

mented as a “national language” called DEFAULT. APL2 language-defined mes-

sages that can appear in �EM have been left in uppercase, so in most cases APL

applications should be unaffected by the change. However applications that

inspect or set �NLT may behave differently.

� In Version 1, if �NLT was set to an unsupported value the system reset it to

be empty, which indicates that uppercase American English is to be used. If it

is set to an unsupported value in Version 2, the system resets it to its last valid

value. In particular, programs or users may have previously set

�NLT←�ENGLISH� to request English messages. The name �ENGLISH�
never has been defined as a part of the APL2 product, and this assignment no

longer has any effect. You are left with the previous value of �NLT rather than

having it reset to empty.

� It was previously possible for a user or program to modify a national language

table (an APL2LANG file), then respecify �NLT to have it take effect. In order

to improve performance, the system no longer physically reads an APL2LANG

file unless �NLT is changed to point to a different file from the one currently

active. The recommended procedure for using a newly-changed language file

is to first set �NLT←�� and then set it to the desired name.

� APL2 now supports IBM's standardized set of three-character language codes

as synonyms for the spelled out names it previously recognized. If an installa-

tion or user had defined a private language file with a three-character name,

the system no longer honors that name if it conflicts with any standard IBM

code. This is true whether or not a language file is available for that code. If

you want to provide a file for some additional language, and want to access it

by its three-character code, define it using the fully-spelled out form of the lan-

guage name. (See �NLT in APL2 Programming: Language Reference for

details.)

� Since APL2 recognizes the three-character codes as synonyms for the full

names, it replaces the code with the full name in �NLT. This could confuse an

application that set �NLT to the code value and then checked it to see if the

value was accepted.

 Copyright IBM Corp. 1984, 1994 41

Copying System Variables
The)COPY command, when used to copy an entire workspace, has been

changed to include the system variables �CT, �FC, �IO, �LX, �PP, �PR, and

�RL along with all user objects in the workspace. This makes its behavior compat-

ible with APL2 workstation products, but different from that of previous mainframe

APL systems. The change is a clear improvement for users who are trying to clean

up and compress workspaces, or who want to change the workspace CASE. But it

can create surprises when merging two workspaces into one. The recommended

approaches to combining applications include use of namespaces or of indirect

copy lists.

Workspace CASE Attribute
The lowercase alphabet has replaced the underbarred alphabet for use in APL

names. As in APL2 Version 1 each workspace has an associated case attribute

that controls the format used to enter and display APL names. The Version 1

default was CASE(0), but that now has been changed. Workspaces distributed

with the Version 2 product are in CASE(1), and that is also the product default as

distributed for newly-created user workspaces. (This default may be overridden by

the installation or as an invocation option.) The definitions of supported cases

remain as before:

CASE(0) Lowercase and underbarred characters can be used interchangeably

when entering names into the system, though underbarred characters

are converted to lowercase internally. Primitives that return names as

results (that is, �NL, �CR, �FX, �SVQ, and �TF), and system com-

mands and messages that display names, convert lowercase letters to

underbarred letters for their output.

CASE(1) Lowercase and underbarred characters can be used interchangeably

when entering names into the system, though underbarred characters

are converted to lowercase internally. Primitives that return names as

results, and system commands and messages that display names, do

no conversion of lowercase letters for their output.

CASE(2) Underbarred characters are treated as invalid in names and are not

accepted or produced in system functions, commands, or messages.

The invocation option CASE(n) determines the convention to be used for new work-

spaces created during the APL2 session. This option does not, however, apply to

all work done by the user during that session. It is instead interpreted as an implicit

parameter to all subsequent)CLEAR commands. Note that)CLEAR is the only

way in APL to create a new workspace.

The CASE attribute assigned to a workspace during)CLEAR cannot be changed

later. The only way to change the CASE attribute of a workspace is to transfer its

contents to a different workspace. Using)COPY,)PCOPY, or)IN does not

affect the CASE attribute of the workspace into which the objects are copied. A

CASE function has been provided in the UTILITY workspace that returns the

case of the active workspace.

When in a CASE(0) or CASE(1) workspace,)IN can be used to access objects

with underbarred names or containing references to other objects with underbarred

names. The names of the copied objects, as well as names referred to by copied

functions or defined operators, are converted to lowercase as appropriate. Note,

42 APL2 Migration Guide

however, that literal strings and comments within functions, and the content of vari-

ables, are not converted.

Caution:)IN should not be used in a CASE(2) workspace to access a transfer

file written from a CASE(0) workspace. Attempts to do so can fail because names

in transfer files created from CASE(0) workspaces frequently contain underbarred

letters, and CASE(2) does not convert underbarred letters to lowercase. CASE(1)

provides a bridge between CASE(0) and CASE(2) in this context.

)COPY and)PCOPY can be used with no problem between CASE(0) and

CASE(2) workspaces, because names in APL2 workspaces never actually contain

underbarred letters internally.

 Migrating Workspaces
| This section discusses how you can migrate your workspaces.

| Version 1 to Version 2
Migration of workspaces from APL2 Version 1 to Version 2 is automatic on any

)LOAD or)COPY of the workspace. A message is issued indicating that the

internal conversion has been done, and if the workspace is then saved, it is a

Version 2 workspace. If the workspace was loaded, it has the CASE it had when it

was saved under the previous release. If it was copied, it has the case of the

active workspace at the time of the)COPY.

| Version 2 to Version 1
Because of internal changes to the structure of the workspace, Version 2 work-

| spaces cannot be loaded or copied into Version 1. If a)LOAD or)COPY is

attempted, the message WS INVALID is issued.

To migrate a workspace backward from Version 2 to Version 1, use)OUT in

Version 2 to create a transfer form file, and use)IN in Version 1 to receive it.

Workspaces that take advantage of new Version 2 features, of course, do not

migrate directly to Version 1. For example, existing external associations with new

Processor 11 external functions or with Processor 12 files cause errors during the

)IN, and uses of auxiliary processors 119 or 211 cause execution-time errors.

| Version 2 Release 1 to Version 2 Release 2
| The workspace formats of the two releases of Version 2 are compatible, so work-

| spaces can be transferred between the releases in either direction with)LOAD
| and)SAVE.

| If the new diamond statement separator has been used in a Version 2 Release 2

| workspace, errors occur when functions containing the diamond are executed in

| Version 2 Release 1.

Coexistence with Version 1
| This section discusses how to coexist with the previous version of APL2.

 Chapter 5. Migration within APL2 43

Shared Variable Processor Considerations
APL2 provides an optional Global Shared Variable Processor (GSVP) for con-

nections between APL2 sessions on the same system, and between an APL2

session and a server written as a global auxiliary processor. The GSVP provided

with APL2 Version 2 can be used by the previous version of APL2, but APL2

Version 2 cannot use earlier versions of the GSVP.

| Migrating between Mainframe and Workstations

| This section discusses migration between the mainframe and workstation environ-

| ments, and between the different workstation environments.

| Transferring Workspaces
| Workspaces are easily transferred between APL2 systems. Transfer file formats

| have been defined to permit exchange of workspace objects among all IBM APL2

| implementations.

| Workspace Transfer between APL2 Systems
| In general, APL2 workspaces must be sent to other APL2 systems as transfer form

| files. Transfer forms have the following default file naming conventions:

| CMS filename APLTF *
| TSO prefix.APLTF.filename

| OS/2 or DOS path\filename.ATF

| AIX* or UNIX** path/filename.atf

| The APL2 commands used to create and read transfer form files are)OUT,)IN,

| and)PIN. To transfer a workspace, start APL2 on the system where the work-

| space resides, and issue the following commands:

|)LOAD wsid

|)SIC (or)RESET)

|)OUT filename

| A transfer file is created by the)OUT command.

| Once the transfer file is created, it then must be moved to the target APL2 system,

| and can be saved with a name following the conventions of the target system. The

| techniques for physically moving files from one system to another can vary

| depending on the types of systems and what connections exist between them.

| � One key issue is that some systems (for example MVS/TSO and VM/CMS) use

| an EBCDIC character encoding, while others (for example OS/2 and AIX/6000)

| use an ASCII encoding. Both ASCII and EBCDIC transfer file formats are

| defined, and all IBM APL2 systems accept both formats. No data conversion

| should be attempted within the file itself when transferring it from one system to

| another. The receiving APL2 system performs any necessary conversion. If

| the transfer is done electronically through a network connection, the programs

| controlling that transfer must be told that this is a “binary” rather than

| “character” file. (The exact terminology used may vary depending on the

| system and network control programs being used.)

| � Some systems use “record-oriented” files while others use stream files. If

| stream files are being transferred to a system that expects record-oriented files,

44 APL2 Migration Guide

| an arbitrary record length may be used, but the existing record separators (“LF”

| or “CR/LF”) must be retained. Conversely, separators should not be inserted

| when record-oriented files are being transferred to a system that expects

| stream files. Again, the receiving APL2 system adjusts to these differences.

| � Within these constraints, standard data transmission commands appropriate to

| the system such as “ftp put,” “SEND,” “SENDFILE,” or “TRANSMIT” can be

| used for network transmission, with corresponding commands such as “ftp get”

| or “RECEIVE” as appropriate to the receiving system.

| � Because the receiving APL2 system performs all necessary conversions, it is

| also possible to use shared DASD, remote file systems, removable media, or

| other such facilities to transport the data.

| When the file has been transferred to the target system, it can then be read into

| APL2 and saved as a workspace:

|)CLEAR
|)IN filename

|)SAVE wsid

| Migration of TryAPL2 Workspaces
| Workspaces saved under TryAPL2 can be read by APL2/2, APL2/6000, and APL2

| for Sun Solaris. The function TRYLOAD in the FILE workspace can be used to

| read these files. Once migrated to one of the workstations, the)OUT and)IN
| processes can be used to migrate to the mainframe.

| Transferring AP 211 Files
| Files created by AP 211 are portable between APL2/370, APL2/2, APL2/6000, and

| APL2 for Sun Solaris. The files must be transferred in binary mode. The receiving

| APL2 system performs all necessary conversions of data. Files to be uploaded to

| the mainframe must be uploaded as fixed format files, with a record length equal to

| the AP 211 blocksize for the file. The blocksize can be obtained by issuing an AP

| 211 'USE' command against the file.

| In addition, files created by AP 211 on APL2/PC can be read by APL2/2,

| APL2/6000, and APL2 for Sun Solaris. Writing back to these files is not allowed.

| The function REBUILD211 in the public workspace 2 FILE can be used to per-

| manently convert the APL2/PC file to the new format if desired. Once migrated to

| one of the workstations, the file can then be uploaded to the mainframe.

 Chapter 5. Migration within APL2 45

 Bibliography

| APL2 Publications

| � APL2 Fact Sheet, GH21-1090

| � APL2/370 Application Environment Licensed

| Program Specifications, GH21-1063

| � APL2/370 Licensed Program Specifications,

| GH21-1070

| � APL2 for AIX/6000 Licensed Program Specifica-

| tions, GC23-3058

| � APL2 for Sun Solaris Licensed Program Specifica-

| tions, GC26-3359

| � APL2/370 Installation and Customization under

| CMS, SH21-1062

| � APL2/370 Installation and Customization under

| TSO, SH21-1055

| � APL2 Migration Guide, SH21-1069

| � APL2 Programming: Language Reference,

| SH21-1061

| � APL2/370 Programming: Processor Interface Refer-

| ence, SH21-1058

| � APL2 Reference Summary, SX26-3999

| � APL2 Programming: An Introduction to APL2,

| SH21-1073

| � APL2 for AIX/6000: User's Guide, SC23-3051

| � APL2 for OS/2: User's Guide, SH21-1091

| � APL2 for Sun Solaris: User's Guide, SH21-1092

| � APL2 for the IBM PC: User's Guide, SC33-0600

| � APL2 GRAPHPAK: User's Guide and Reference,

| SH21-1074

| � APL2 Programming: Using Structured Query Lan-

| guage, SH21-1057

| � APL2/370 Programming: Using the Supplied Rou-

| tines, SH21-1056

| � APL2/370 Programming: System Services Refer-

| ence, SH21-1054

| � APL2/370 Diagnosis Guide, LY27-9601

| � APL2/370 Messages and Codes, SH21-1059

| Other Books You Might Need

| The following book is recommended:

| � APL2 at a Glance, by James Brown, Sandra Pakin,

| and Raymond Polivka, published by Prentice-Hall,

| ISBN 0-13-038670-7 (1988). (Copies can be

| ordered from IBM as SC26-4676.)

| Plastic replacement keyboard keycaps are included with

| this product. Additional sets of keyboard keycaps are

| available from IBM as:

| � APL2 Keycaps (US and UK base set), SX80-0270

| � APL2 Keycaps, German upgrade to SX80-0270,

| SX23-0452

| � APL2 Keycaps, French upgrade to SX80-0270,

| SX23-0453

| � APL2 Keycaps, Italian upgrade to SX80-0270,

| SX23-0454.

| Two sets of APL2 Keyboard Decals, SC33-0604, are

| included with this product. Additional sets of these

| decal sheets can be ordered from IBM.

46  Copyright IBM Corp. 1984, 1994

 Index

Special Characters
)CONTINUE 18

)COPY 18, 26, 42

extended for indirect copy 26

)CS 12, 33

caution when using 33

syntax 33

use of 33

)ERASE 26, 39

)FNS 18

)HOST 12

)IN 12, 21

)LIB 18

)LOAD 19

)MCOPY 12

AP 126 problems 38

as migration tool 3

choosing an alphabet 3

comparison tolerance 7

copying groups of objects 9

copying individual objects 9

during use of)MCOPY 9

effects of 7

effects on character data 4

error messages 9

for transferring workspaces 5

handling of indexed vector constants 21

index origin 7

indirect copy 26

installation options 7

latent expression 7

locked functions 7

password 7

random link 7

specifying objects to be copied 9

syntax 7

system requirements for using 6

system variables 7

)MORE 12

)NMS 12

)OFF 18

)OPS 12

)OUT 12

)PBS 12

)PCOPY 18, 26

)PIN 12

)RESET 18

)SIC 18

)SIS 18

)STACK 26

)STACK VS APL 26

)SYMBOLS 18

)VARS 18

)WSSIZE VS APL 26

�AF 12

�AT 12

�AV 34

�CR 23

�CT 7, 32

�EA 12

�EC 12, 21

�EM 12

�ES 12

�ET 12

�EX 23

�FC 12

�FX 18, 23, 32

�IO 7

�L 12

�LX 7, 19

�NA 12

�NC 23, 32

�NLT 41

use by applications 41

�PP 7, 17

�PR 12

�PW 22

�R 12

�RL 7

�SVE 12

�SVO 24

�SVQ 26

�SVR 24

�SVS 12

�TF 12

�TZ 12

�WA 24

A
adjusting for �AV dependencies 4

ALL�, TRANSFER workspace function 31

alphabet

underbarred letters 42

alternate input, checking 39

alternate input, possible problems with AP 101 37

alternative input, checking 22

AP 100 (CMS Command Processor)

file translation 37

translation options 35

AP 100 (TSO Command Processor)

translation options 35

 Copyright IBM Corp. 1984, 1994 47

AP 101 (Alternate Input Processor)

possible translation problems 37, 39

translation options 24, 35

AP 102 (main storage access processor) 13

AP 110 (CMS File Processor)

BYTE option 37

possible translation problems 37

translation options 24, 36

AP 111 (QSAM Processor)

possible translation problems 37

translation options 24, 36

AP 120 (Session Manager Command Processor)

possible translation problems 37

AP 121 (APL File Processor)

file translation 37

AP 123 (VSAM Processor)

possible translation problems 37

translation options 36

AP 126 (GDDM Processor)

correcting problems 38

full-screen facilities 26

possible translation problems 38

replaces AP 124 26

translation options 36

AP 127

SQL access 13

AP 127 (SQL Processor) 13

AP 210 (BDAM Processor)

possible translation problems 38

translation options 24, 36

AP 211

transferring files 45

APL2

auxiliary processor translation options 24, 35

data types 32

transfer of workspaces from TryAPL2 45

transferring workspaces 3

APL2PI 28

APL2PIE 28

APLIBTAB file 7

APLYUOPT (TSO) module 8

arrays

as operands 17

characters and numbers mixed 15

display of nested data 16

nested 11

selective specification 17

assignment

under APL2 15

under VS APL 15

ASVPREP, return code from 24, 39

atomic vector (�AV)

dependencies 4, 34

differences between VS APL and APL2 23

ATR 28

ATTN 28

auxiliary processor 1

AP 124 replaced by AP 126 26

APL2 compared to VS APL 20

distributed with APL2 13

solutions to file translation problems 35

translation options 24, 35

user-written

compatibility with APL2 39

facilities for 13

handling of new APL data types 25

B
backslash operator 12, 16

backup during migration 5

BUILDRD 28

BUILDRL 28

C
CAN 28

canonical representation 23

caret, to indicate error 18

CASE attribute 42

choosing an alphabet 3

setting 5

changes

summary of ix

changes in APL2 auxiliary processor translation

options 35

character data

erroneous stacking of 39

input/output 23, 34

mixed with numeric data in arrays 15

translation from VS APL to APL2 4

character representation (�CR) 23

checking

alternate input 39

alternative input 22

data files used by a function 35

user-written auxiliary processors 39

choosing an alphabet

)MCOPY 3

CASE attribute 3

for workspace names 3

circle (L○R) function 22

CMS

LIBTAB APL2 file 3

workspace location for)MCOPY 8

CMSIVP 28

compared to VS APL 11

comparison tolerance

copied by)MCOPY 7

compatibility

VS APL with APL2 11

48 APL2 Migration Guide

complex numbers 22

compression, primitive function 16

copy command

VS APL compared to APL2 18

copying system variables 42

CSRIDAC 28

CSRREFR 28

CSRSAVE 28

CSRSCOT 28

CSRVIEW 28

CTK 28

CTN 28

D
DAN 28

data files used by a function, checking 35

data type

cause of interrupted function processing 32

for user-written auxiliary processors 39

preventing accidental entry 32

supported by auxiliary processors 20

data, translation of 20

DEBUG invocation option 19

debugging 18, 30

derived functions 12, 16

DESCRIBE function 5

DISPLAY 28

display of output 16

DISPLAYG 28

DMFT 28

dropping backup workspaces 40

DSQCIA 28

dyadic shared variable query 26

E
edit commands, changes in 20

editing, VS APL compared to APL2 20

editor command 20

editors

editor 1, line editor 14

editor 2, full-screen editor 14

editor 2 name command 14

full-screen 20

system 14

error messages

new system messages 12

evaluation of expressions 16, 21

event handling 12

EXP 28

expand

derived function 16

expansion

primitive function 16

expunge (�EX) 23

extended-compatible features

language 15

system 19

extended-incompatible features

language 21

system 24

F
facilities no longer supported under APL2 26

features

extended-compatible 15, 21

extended-incompatible 21

new under APL2

language 11

system 13

VS APL, not supported by APL2

language 26

system 26

FED 28

files 1

checking translation of 35

list of workspaces for access to 27

FIX�, TRANSFER workspace function 31

FLAG�, TRANSFER workspace function 31

format

primitive function 16

format (default) (*) function 22, 34

format by specification (L*R) function 22, 34

formatting 34

full-screen editor 20

full-screen editor, editor 2 14

full-screen management 26

function interrupted during testing 32

function not interrupted during testing 34

functions

defined

as operands 17

character representation 23

editing the name of 20

likely problems after transfer 30

testing and debugging 30

derived

formed with backslash operator 12

formed with slash operator 12, 16

locked 7

primitive 11

system 17, 23

G
Graphical Data Display Manager (GDDM)

AP 126 problems 38

required by full-screen editor 13

 Index 49

groups

definition 7

migration 8, 39

named in stacked system commands 39

not found by)MCOPY 9

replacement under APL2 26, 39

GSVP 44

H
HELP 28

highlighting of input, output 20

horizontal tabs (�HT) command 26

host system

list of workspaces for access to 27

requirements for migration 3

I
ID parameter 25

IDIOMS 28

index origin

copied by)MCOPY 7

indexed numeric constants 33

indexed vector constants 21

Inner Product 22

inspecting, correcting, and testing functions 30

installation options

)MCOPY 7

interrupted processing 32

invocation options

compatible system features 19

ID parameter 25

new facilities under APL2 13

K
KTC 28

L
language features no longer supported by APL2 26

language names in �NLT 41

latent expression

copied by)MCOPY 7

libraries

creating directory for 3

improperly referenced (error messages) 9

specifying for)MCOPY 7

LIBTAB APL2 file 3

line editor 20

line editor, editor 1 14

local names 20, 32

local variables 32

locked functions

copied by)MCOPY 7

lowercase 41

lowercase alphabet 42

M
messages

lowercase 41

migrating

under CMS

APLIBTAB VS APL file 3

migrating workspaces 43

migration

backup 5

definition 1

from another host system 3

objects from VS APL to APL2 8

overview 1

planning for 1

preparing for 2

tasks 1

time stamp 7

under CMS 8

APLIBTAB APL2 file 3

workspace location for)MCOPY 3

under TSO 8

workspace location for)MCOPY 8

workspace location for)MCOPY 8

mixed case 41

mixed data 11

MSG 28

N
name class function (�NC) 23, 32

national language

names in �NLT 41

three-character codes 41

national language support 12

national language translation 12

nested arrays 11, 16

new features in APL

language 11

new features in APL2

system 13

numerical precision 34

O
object names 16

objects

not copied by)MCOPY 9

not found by)MCOPY 9

specifying with)MCOPY 8

operators

defined

character representation 23

editing the name of 20

50 APL2 Migration Guide

operators (continued)

defined (continued)

new language features under APL2 12

primitive 11

OPTION 28

output, display of 16

P
PACKAGE 28

packaged workspaces 28

parentheses

high precedence during evaluation 21

use in APL2 expressions 16

password

missing or incorrect (error message) 9

used with)MCOPY 7

PBS 28

PFA 28

power (L*R) function 22

preparation for transferring workspaces 3

primitive functions

changes incompatible with VS APL 22

compatible language features 16

new language features under APL2 11

primitive operators 11

printing precision (�PP)

system functions and variables 18

problems, testing transferred functions 32

prompt replacement (�PR) 23, 34

Q
QNS 28

quote-quad 23

R
random link

copied by)MCOPY 7

RAPL2 28

replacement for VS APL features in APL2 26

replication, derived function

reports, alignment problems with 34

RESIDUE function 32

right arrow 18

RTA 28

run-time instructions 40

S
SAN 28

session manager

FIND command 13

shared variable offer 24

shared variable processor (�SVP) 39, 44

considerations 44

shared variable query (�SVQ), dyadic 26

shared variable retraction (�SVR) 24

shared variables 12

space, insufficient for copying objects 9

SQL, access through AP 127 13, 27

stacked data

possible problems with AP 101 39

system commands with group names 39

state indicator, (*) 18

stop control (�SI) 18

summary of changes ix

SVI 28

symbol set, problems with)MCOPY 38

syntax

)CS 33

)MCOPY 6

system commands

)ERASE 39

indirect)COPY 26

indirect)ERASE 26

indirect)MCOPY 26

indirect)PCOPY 26

national language support for 12

new in APL2 12

used in debugging 18

system editors 14, 20

system features

compatible-extended 19

incompatible—extended 23

new for APL2 13

no longer supported 26

system functions

changes compatible with VS APL 19

changes incompatible with VS APL 23

system limits 9

system messages

AXIS ERROR 13

SYSTEM ERROR 13

VALENCE ERROR 13

system messages, new 12

system requirements

)MCOPY 6

system variables 42

changes incompatible to VS APL 23

copied by)MCOPY 7

new under APL2 12

T
testing and debugging 30

testing functions under APL2 32

function interrupted during testing 32

function not interrupted during test 34

testing the application as a whole 40

testing transferred functions 32

 Index 51

things to look for when debugging 32

TIME 28

time stamp

during migration 7

transfer file 12

transfer files

moving between systems 44

transfer procedure 5

TRANSFER workspace

functions and variables

ALL� 31

FIX� 31

FLAG� 31

procedure for using 30

use of DESCRIBE function 5

transferring files 45

transferring selected objects

groups of objects 8

individual objects 8

transferring workspaces 2, 44

from VS APL to APL2 3

preparing for 3

translate tables, problems with)MCOPY 38

translation option

for auxiliary processors 35

inappropriate use 39

translation problems 37

TryAPL2

transfer of workspaces to workstations 45

TSO

APLYUOPT module 8

workspace location for)MCOPY 8

TSOIVP 28

U
underbarred alphabet 42

user-written auxiliary processor

APL2 facilities for 25

new return code for 39

used by function 39

user-written auxiliary processors, checking 39

V
vector

constants 7

VS APL

continuing use of 1

discontinuing use of 2

features compatible with APL2 15

features incompatible with APL2 21

features not supported by APL2 26

running concurrently with APL2 1

service continued 1

service discontinued 2

VS APL (continued)

transferring workspaces 3

workspace 4

VS APL compared to APL2

auxiliary processor options (incompatible) 24

auxiliary processors (compatible) 20

data representation (compatible) 15

display of output 16

editors (compatible) 20

evaluation of expressions (compatible) 15

evaluation of expressions (incompatible) 21

invocation options (compatible) 19

object names (compatible) 16

primitive functions (compatible) 16

primitive functions (incompatible) 22

selective specification (compatible) 17

system commands (compatible) 18

system functions and variables (incompatible) 23

W
workspace

backup during migration 5

backup for migration 2

location for)MCOPY 8

locked (error message) 9

not found (error message) 9

size error 9

use of)MCOPY command for copying 3

VS APL 4

workspace case 42

workspace migration 43

workspaces 1

migration from TryAPL2 45

transferring between APL2 systems 44

workspaces distributed with VS APL and APL2 27

workspaces, packaged 28

52 APL2 Migration Guide

We'd Like to Hear from You

APL2
Migration Guide
Version 2 Release 2

Publication No. SH21-1069-01

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
(408) 463-4488.

� Electronic mail—Use one of the following network IDs:

 – IBMMail: USIB6JN8
 – Internet: apl2@vnet.ibm.com

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

APL2
Migration Guide
Version 2 Release 2

Publication No. SH21-1069-01

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �

Complete � � � � �

Easy to find � � � � �

Easy to understand � � � � �

Well organized � � � � �

Applicable to your tasks � � � � �

Grammatically correct and consistent � � � � �

Graphically well designed � � � � �

Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SH21-1069-01

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department M46/D12
PO Box 49023
San Jose, CA 95161-9023

Fold and Tape Please do not staple Fold and Tape

SH21-1069-01

IBM

File Number: S370-34

Program Number: 5688-228

 5688-229

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090 APL2 Family of Products (fact sheet)

SH21-1073 APL2 Programming: An Introduction to APL2

SH21-1061 APL2 Programming: Language Reference

SX26-3999 APL2 Reference Summary

SH21-1074 APL2 GRAPHPAK: User's Guide and Reference

SH21-1057 APL2 Programming: Using Structured Query Language

SH21-1069 APL2 Migration Guide

SC33-0600 APL2 for the IBM PC: User's Guide

SC33-0601 APL2 for the IBM PC: Reference Summary

SC33-0851 APL2 for the IBM PC: Reference Card

SH21-1091 APL2 for OS/2: User's Guide

GC23-3058 APL2 for AIX/6000 Licensed Program Specifications

SC23-3051 APL2 for AIX/6000: User's Guide

GC26-3359 APL2 for Sun Solaris Licensed Program Specifications

SH21-1092 APL2 for Sun Solaris: User's Guide

GH21-1063 APL2/370 Application Environment Licensed Program Specifications

GH21-1070 APL2/370 Licensed Program Specifications

SH21-1062 APL2/370 Installation and Customization under CMS

SH21-1055 APL2/370 Installation and Customization under TSO

SH21-1054 APL2/370 Programming: System Services Reference

SH21-1056 APL2/370 Programming: Using the Supplied Routines

SH21-1058 APL2/370 Programming: Processor Interface Reference

LY27-9601 APL2/370 Diagnosis Guide

SH21-1059 APL2/370 Messages and Codes

SH21-1069-01

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	APL2 Publications
	Conventions Used in This Library

	Summary of Changes
	Product
	Document Changes

	Chapter 1. Overview of Migration
	Planning for Migration from VS APL
	Preparing for Migration from VS APL

	Chapter 2. Transferring Workspaces from VS APL
	Preparation for Transferring Workspaces
	Choosing an Alphabet
	Adjusting for °AV Dependencies

	Transfer Procedure
	The)MCOPY Command
	Transferring Selected Objects
	Error Messages When Using)MCOPY

	Chapter 3. APL2 Compared with VS APL
	New APL2 Features
	New Language Features
	New System Features

	Extended-Compatible Features
	Extended-Compatible Language Features
	Extended-Compatible System Features

	Extended-Incompatible Features
	Extended-Incompatible Language Features
	Extended-Incompatible System Features

	VS APL Features No Longer Supported
	Language Features No Longer Supported
	System Features No Longer Supported

	Workspaces
	External Functions Distributed with APL2

	Chapter 4. Testing and Debugging
	Inspecting, Correcting, and Testing Functions
	Using the TRANSFER Workspace
	What to Look For
	Testing Functions under APL2
	If the Function Is Interrupted
	If the Function Is Not Interrupted

	Checking Data Files Used by a Function
	Changes in APL2 Auxiliary Processor Translation Options
	Possible Translation Problems

	Checking Alternate Input
	Checking User-Written Auxiliary Processors Used by a Function
	Testing the Application As a Whole
	Performance Analysis of the Application

	Chapter 5. Migration within APL2
	Migrating between Mainframe APL2 Systems
	Functional Changes—Version 1 to Version 2
	Mixed-Case and National Language Support
	Copying System Variables
	Workspace CASE Attribute

	Migrating Workspaces
	Version 1 to Version 2
	Version 2 to Version 1
	Version 2 Release 1 to Version 2 Release 2

	Coexistence with Version 1
	Shared Variable Processor Considerations

	Migrating between Mainframe and Workstations
	Transferring Workspaces
	Workspace Transfer between APL2 Systems
	Migration of TryAPL2 Workspaces

	Transferring AP 211 Files

	Bibliography
	APL2 Publications
	Other Books You Might Need

	Index

