
Hednesday, March 3 

1620 Users Group 
Joint Canadian/l-1idwestern Meeting 

Pick-Congress Hotel, Chicago, Illinois 
March 3, 4, & 5, 1965 

PROGRAM 

9:30 AM Opening Remarks 

Introductions 

itA Survey of Recent Books on Numerical Analysis and Programming. It 
Charles Davidson, University of Wisconsin. 

10 : 15 AM Coffee 

10:45 M~ IBM Announcements - New Equipment and Systems. 

12: 15 PM Lunch 

1:30 PM Programming Systems 

General American SPS - A high speed assembler for paper tape 
systems. Mention will also be made of two associated utility 
routines, a Label Reference Indexer (for tape or cards) and 
an Editing and Tape Titling System. 

Peter Boekhoff, General American Transportation Corp. 

CHITRAN - A PDQ based FORTRAN with shorter arithmetic routines, 
several extensions of the language, and comparable timing. 

Peter Boekhoff and John Trantum, 
General American Transportation Corp. 

1:30 PM IBM Seminar-System/360 

A more detailed and technical treatment of the System/360 than 
was made during the It announcements If session , with opportunity 
for questions and discussion. 

1:30 Pi>l Monitor Workshop-Elementary/Intermediate 

A session for the beginner or user who is interested in using 
the Monitor systems as IBM wrote them. 

2:45 PM Coffee 

3:15 PM Monitor Workshop-Elementary/Intermediate (continued) 



\-Jedne s day , March 3 (cont. ) 

3:15 PM Engineering 

A FORTRAN procedure for wind analysis of a building of 
unlimited size and variable moment of inertia. 

James W. Madden, Electronic Data Processing, Inc. 

A numerical control program language for the 1620. 
Anthony Amort, Beloit Corporation. 

3:15 PM Education 

The use of mark sensing equipment in the preparation, 
processing, and execution of student written programs. 

H. B. Kerr, Tennessee Tech. 

Grade Normalizing and Plotting. 
Joyce Foder, University of Wisconsin. 

7:00 PM New Users Meeting 

An introduction to the 1620 Users Group for those attending 
their first meeting. 

7:30 PM SOUND-OFF 

Our chance to speak directly and publicly to IBr4 concerning 
their hardware, their software, their policies, and their 
treatment of their best customers - us. We have been promised 
an answer to all questions asked, if not at this session then 
at the answer session on Friday morning. 

Thursday, March 4 

9:00 A~ Monitor Workshop-Advanced 

A session for those interested in the internal construction 
of Monitor, with an eye toward changing it to make it work 
better. 

9:00 AM Demonstration Programs 

Demonstration Programs Enjoying Great Popularity. 
Kurt Eisemann, Catholic University of America 

HOOTIE I & II, a music program for the IBM 1620. 
Peter Boekhoff, General American Transportation Corp. 



Thursday, March 4(cont.) 

9:00 M~ Programming Systems 

TABTRAN - A language to facilitate, cross-tabulation, and 
analysis of multiple data cards per entity. 

Hilliam R. Best, M. D., Biostatistic Research 
Support Center, Hines V.A. Hospital. 

10:15 AM Coffee 

10:45.AM Monitor Workshop-Advanced (continued) 

10:45 AM IBM Seminar-1620 Draftin~ System 

A more detailed and technical treatment of the 1620/1627 
drafting system than was made during the "announcements" 
session, with opportunity for questions and discussion. 

10:45 AM Programming Techniques 

Machine Language programming techniques. A tutorial session 
that assumes familiarity with SPS and machine language at 
the elementary/intermediate level. 

Richard L. Pratt, Data Corporation. 

12:15 PM Lunch 

1: 30 PM: "Programming Languages and Hhere They are Going e tr 

D. D. t-1cCracken 

This must be regarded as a "Feature Presentation rt • Dr. l-1cCracken 
is as well known for his knowledge of programming language 
theory as he is for his ability to communicate his ideas. 

3:00 PM Coffee 

3:30 PM Programming Systems 

The 1710 FORTRAN Executive Programming System. 
James C. Deck, Inland Steel Company & 
Gordon Kaufmann, IBM 

The University of Toronto Operating System. An operating 
system for 1710 users. 

E. S. Lee, J. A. A. Field, P. I. P. Boulton 
University of Toronto 

IBM Seminar-IBM 1130 

A more detailed and technical treatment of the 1130 than 
was made during the 1t announcements" session, with 
opportunity for questions and discussion. 



Thursday, March 4(cont.) 

3:30 PM Applications 

A General Traffic Handling Systems Simulator. 
Donald L. Dietmeyer, Univeristy of Wisconsin 

Linear Multiple Regression with Prescribed Terms. 
Richard W. Nelson, Institute of Paper Chemistry 

Determination of the Normalized Autocorrelation Function. 
James S. Taylor, Data Corporation 

Friday, March 5 

9:00 AM Programming Systems 

PDQ-P FORTRAN. An improved version of PDQ that includes 
provision for use of the 1443 Printer. 

James S. Taylor, Data Corporation 

The development of a Syntax Directed Translator, a new 
approach to a more generalized language for computer 
program generation. 

Robert A. Freiburghouse, University of North Dakota 

Modifications to Monitor I. 
Fred A. Hatfield, Line Haterial Industries. 

9:00 AM Education 

Registration Statistics of the 1620 for the small college. 
Arthur F. Jackson, The Agricultural and Technical 
College, Greensboro, North Carolina. 

Speciman Machine Interpreter. A teaching device to allow 
students to learn machine language programming on a simple 
hypothetical computer. 

T. R. Hoffman, Union College 

The 141 Data Processing Machine. An educational device for 
teaching elements of computer programming. 

10:15.AM Coffee 

10:45.AM The Answer Man. IBM's answers to the Sound-Off Session 
and to other questions. 

12:15 PM Lunch and formal closing of meeting. 

1: 15 PM Meeting rooms "rill be available for special interest groups 
and/or discussions. 

(4 ) 



~.tt'·fM i"j···ijs·+ifl-q-·····_·.···;······m···"-t,,·.··"'· 

.,,' . 

o 

CHITRAN 

Peter G. Boekhoff, 
John tv. Trantum 

General American Transportation Corporation. 

USER #3193' 

o 
March 3, 1965 



.. 

o 

o 

INTRODUCTION 

CHITRAN is a system based, for reasons which by now should 
be familiar to most USERS, upon PDQ FORTRAN. The objective of, 
CHITRAN is to retain all the features (including running speed) 
of PDQ while providing a more powerful source language and a 
shorter, more efficient object program. In addition, CHITRAN 
provides several system options (in particular, load-and-go in 
a 40K or larger machine) not available in PDQ, UTO, or Cro
Magnon FORTRAN, and improved diagnostics and a revised error 
routine. 

CHITRAN does possess one disadvantage as compared to PDQ. 
It was necessary to come up with. a shorter Class A arithmetic 
package, and there is no tightening PDQ arithmetic; Mr. Holmes 
was not kind enough to include any slop in his routines. So a 
new set of rou~ines was written; while considerably shorter, 
CHITRAN arithmetic ~s a bit slower. No exact times are avail
able'at this writing, but. the difference is on the order of two 
to five percerit. The function routines are almost identical to 
those of PDQ, with the addi tio.n of mode checking and improved 
diagnostics; they are therefore longer and slightly (not per
ceptibly) slower. 



o 

. . 
\ 

\ 

\ 
-2-

\ 

\ 

\ SOURCE LANGUAGE 

The CHITRAN language includes PDQ' (wi th REREAD) as a subset 
(except for DRB), which defines most of the CHITRAN language. 
This section describes the additional language specifications. ' 

Function subroutines have been expanded. In addition to the 
SIN, COS, EXP, LOG, SQRT, ATAN, ABS, and DRR (retitled INT) 
functions, CHITRAN includes SIGN, ONE, FIX, and FLT. SIGN is 
the signum function also present in UTO; its value is -1, 0, 
or +1 respectively as its argument is negative, zero, or positive. 
ONE is the Heaviside unit step function, defined to be 0, .5, or 
1 respectively for negative, zero, or positive argument. FIX 
fixes a floating-point argument; FLT floats a fixed-point argument. 

Each function will operate on an argument in either mode, and 
with the exception of FIX and FLT, each returns a result in the 
same mode as its argument. This produces some intriguing results; 
for example 

COS, (I) = 

AT~N(I) = 
{., 

{l,I=O 
{O,IFO 

l-l ,I<-l 
O.,-l~I~l 
+l,I>l 

FIX and FLT are in fact identical. Each simply reverses the 
'mode of its argument. Thus the FIX-FLT routine is involutory: 

FIX (3.0) = 3 
FLT (3.0) = 3 

FLT(FLT(3.0» = FIX(FIX(3.0» = 3.0. 

The ASSIGN statement ,is perhaps the most powerful (and danger
ous) in the language. Its "normal ll use is in the sequence 

ASSIGN 3 TO J 

GO TO J 

which will cause a branch to statement number 3. The ASSIGN 
statement may, however, literally be use'd to assign anything to 
anything. For example, 



.. 

o 

o 

-3-

ASSIGN 2.718 TO ARRAY{2,3) 
ASSIGN SQRT,TO 3 
ASSIGN 3 TO 4 
ASSIGN 3, TO 4 
ASSIGN A, TO I 

are all valid. Note that if the first argument is a function 
name or a non-subscripted variable, it must be followed by a 
comma. The comma after a statement number, floating constant, 
or subscripted variable is optional. 

'. ASSIGN simply generates a transmit 'record instruction, and 
may therefore be used (intentionally or oth~rwise) to redefine 
any .part of the symbol table, or all of core. A small amount of 
thought on the part of the programmer is recommended. Record 
marks will appear in the symbol table at the end of the branch 
instruction corresponding to a statement number, at the end of 
the 20-digit entry corresponding to each Procedure, at the end 
of the branch for eich function subroutine which is used in the 
program, and in each undefined variable. 

A statement-number list in an assigned GO TO will be in
terpreted by the processor as a subscript list; thus 

GO TO N(3,4,5,6) 

will generate a branch to N(3,4) and will result in a compilation 
error if N has not been dimensioned. 

The statement COHPARE A,B will compile the single instruction 

C A,B 

Sense switches 11, 12, or 13 may then be tested. Since excess
fifty notation permits a straight compare of two floating-point 
numbers, the load-and-subtract of an IF(A-B) statement may be 
avoided. Since 87.3% of all IF statements are of this form, the 
programmer who knows how to use the HIP and E/Z indicators can 
economize considerably. A, B, or both may be subscripted. The 
only restriction is that A mus~ not be a fixed7Pointcoristant 
(B may be). 

The frequent appearance in.FORTRAN programs of such state
ments as PI=3 .'1415927 and ZERO=O. 0 has led to the inclusion of 
the DATA state~ent in CHITRAN. Whereas the above two statements 
will generate 4 '$.ymbols and 2 instructions, the statement 

\ 

\ 

\ 
\ 

\ 



o 

o 

-4-

DATA(PI=3.l4l5927), (ZERO=O.O) 

accomplishes the same purpose with only two symbols and no object 
instructions, by loading the constants into PI and ZERO at load 
time. With certain restrictions, alphameric data may also be de
fined this way. The first character must be non-numeric, no more 
than five (nonblank) characters are permitted, and the data will 
be assembled left-justified with blanks cleared. Thus the state
ment 

DATA ( TITLE = N A ME) 

will'cause ~54l544500 to be loaded into location TITLE when the 
object program is loaded. 

The DUMMY statement reserves space in the object program for 
subsequent patching. We define it here by example. Space for 
five instructions may be reserved by the statement 

DUMMY 60 

which will genera~e the 7-digit instruction 

B7 *+60' 

followed by 53 digits of garbage. The branch instruction pre
vents disaster if the programmer' decides (none of us ever for
gets) not to include the patch. The number of digits must be 
an unsigned integer less than 10000. The processor will merrily 
accept a DUMMY statement with an odd number. Caveat. 

As implied in the description of the COMPARE statement, two
digit SENSE SWITCH numbers may be referenced in an IF statement. 
The IF statement includes a continuation feature: '. any (or all) 
of the statement numbers following the right parenthesis may be 
replaced by *, which refers to the following statement. Tha~ 
statement need-not be numbered unless it is referenced elsewhere. 
For example, the statements . 

IF ( J-3 ) I, 2, 1 
'1 I ::; I + 1 
2 

may be written 

IF ( J - 3 ) * 2, '* , 
I = 1+1 

2 . . . • 



.. 

o 

o 

-S-

. thus'saving two branches and the symbol-table entry for the state
ment number 1. In this particular example, of course, it would 
be more efficient to write 

COMPARE J, 3 
IF (SENSE SWITCH 12) 2, * 
I = I + 1 

2 • • • 

Two FORMAT specifications have been added. These are Sw.d 
and Kw. On input, these are treated respectively as Fw.d and ,Iw. 
On output, they are also Fw.d and Iw unless the numbers being 
output are zero, in' which case SW.d and Kw are both converted to 
wX. The function of these speci+ications is thus simply zero 
suppression. 

The MOVE statement appears in the language at the suggestion 
of the ubiquitous J. W. Holmes. Its basic form is 

MOVE n,A,B 

which will transmit n consecutive fields beginning at A to n 
consecutive locations beginning at B. For example, 

DIMENSION A(S,3) ,B(S,3) . .. . 
MOVE S,A(1,1),B(1,2) 

will move the first column of matrix A to the second column of 
matrix B, and is equivalent to 

B(1,2) = A(l,l) 
B(2,2) = A(2,1) 
B(3,2) = A(3,1) 
B ( 4 , 2 ). =, A ( 4 , 1 ) 
B (S , 2) =. A ( S , 1 ). 

The MOVE statement may also be written as 

MOVE n,A,B,i,j 

This will cause every ith field beginning at A to be moved, to 
every!jth location beginning at B. Thus 

DIMENSION A (S, 3) , B (S, 3) 

MOVE 3,A(l,1),B(2,1),S,S 
.. 



.. 

C
~.,..\ 
"~I 

o 

-6-

will move the first row of A to the second row of B, and is 
equivalent to 

B(2,l) = A(l,l) 
B(2,2) = A(l,2) 
B(2,3) = A{l,3) 

Either i or j may be zero; thus 

DIMENSION A(5,3) 

HOVE l5,ZERO,A(1,l},O 
\\ 

will move ZERO 'to each element of A (the omitted argument will 
be assumed td b~\l). 

Another of the ,many uses for this statement is·the replace
ment of the sequende' 

by the sequence' 

''qIMENSION K (6), A (6), B (6), C (6), X (6) 

DO 1 I = 1,6 
1 READ lO 0, K ( I), A ( I), B (I), C ( I), X ( I ) . 

COMMON K ( 6), A ( 6), B ( 6), C ( 6), X ( 6 ) 

DO 1 I = 1,6 
READ 10 0, K ( 6), A ( 6) ., B (6), C ( 6 ) ., X ( 6 ) . 

1 MOVE 5, K ( 6), K (I), 6, 6 

which will compile five fewer object instr.uctions (saving 60 
locations). 

The increments i and j may also be negative~ thus the first 
column of A may be reversed by 

DIHENSION A(5,3), TENP(5) 

MOVE 5,A(I,1) ,TEMP(l} 
MOVE 5,TEMP(l},A(5,1),,-l 

The MOVE statement generates 3 instructions in the object 
program. The restrictions are that only one of the arguments A 
and B may contain variable subscripts (this restriction will be 
removed if compiler space permits), and that n, i, and j must be 
fixed-point constants" signed or unsignttd, between ±999. If ri.~O, 
no data will be moved. 



. . 

f 
" 

" 
\ 

\ 

\ 

\ 

\ -7-

If any operand is omitted, its omission must be indicated, 
by a comma. The statement 

MOVE, P, Q,,3 

is a valid way to write 

MOVE O,P,Q,1,3 

since 'n is assumed to be zero if unspecified; i and j, to be one. 



.. .. 

-8-

DIAGNOSTICS AND DEBUGGING 

Compilation diagnostics are for the most ?art the same as 
those of PDQ, with additions related to the new statements. Two 
further diagnostics have been added. An expression of the form 
I**J, which used to be accepted and to compile garbage, will re
sult in CHITRAN in an error #5 (same as mixed mode). An error 
will be generated by the END statement if there are any DO state
ments whose ranges have not been defined. 

The error routine has been rewritten. Object-program punch
ing is no longer terminated when an error is found. Instead, the 
appropriate error message is typed, the computer halts, and one 
of three actions may be taken: 

1) Get off the machine. 

2) If switch 2 is on when START is pressed, a corrected 
statement may be entered at the typewriter. 

3) If switch 2 is off, the erroneous statemenF. i$ ignored 
and processing continues. \ 

Execution d,agriostic procedures have been modified. The 
major modificatf6ns are in SIN-COS and in LOG. If the argument 
in SIN or COS is too large, an etrormessage is typed and the re
sult· set to zero, which seems a bit more productive than an arbit
rary dead-end halt •. If the argument in LOG is zero, the result 
is set to 9999999999 (minus infinity), instead of the nonsensical 

. 9999999999 (plus infinity). Arguments out of range in EXP will 
yield the messages EXOFLO or EXUFLO, according to the sign of the 
argument. 

To facilitate debugging, ~950oo~ooO will be placed at load 
time in each symbol-table location whose contents have not been 
defined. Any attempt to use an undefined symbol will thus usually 
hang up immediately rather than wipe out assorted areas of core 
before causing recognizable trouble. A branch to an undefined 
statement will cause a hangup on a 69 op code; a reference to an 
undefined FORMAT will hang on an address of OOOO~. Attempting to 
perpetrate arithmetic operations on the record mark will generally 
hang up bef.ore any· grave pro.blems are generated. 

This feature also makes possible some obscure uses of the 
ASSIGN statement through the judicious placement of intentionally 
undefined variables; for example, an arr,:ly may be moved as.a single 
record. . 



o 

C J 
" 

-9-

SYSTEM OPTIONS 

The option of punching source statements and symbol table 
has been removed. They may optionally be listed on the typewriter. 
Whether the listing of the program is being produced or not, the 
object address of each statement is listed. This list may be used 
together with an off-line source listing for debugging. The sym
bol table may be listed with or without the function names, or 
not listed at all. If the symbol table is not listed, the highest 
core address below the symbol table will be typed, to show the 
size of the table. 

No compilation error is generated if the program runs into 
the symbol table. Instead, the subroutine loader keeps track 
of the end of the program (including function subroutines) and 
the beginning of the table, and will type 

NNNNN DIGITS OVERLAP 

if the program overlaps the table, where NNNNN is the amount of 
overlap. If there {s no overl~p, the message 

NNNNN DIGITS REMAINING 

will be typed to tndicate the amount of room avail~ple for program 
extension. It is~believed that this pair of messa~ij, is somewhat 
more informative than a compilation error (or no er'ror indication 
if the overlap is due to the function subroutines). 

If desired, a map listing showing the entry point for each 
function subroutine used will also be typed; this saves hunting 
in the symbol table for the address. 

Two sets of Class A subroutines (fixed and free format) are 
provided as in PDQ. 'In addi tion, there are tvV'o sets of Class C 
(relcicatable function) subroutines. The second set is a stripped 
version which does not provide for fixed-point arguments (except 
in FLT). Use of this deck will permit more core for the object 
program, but will generate garbage if functions (again excluding 
FLT) of fixed-point arguments are called for in the object program. 

There exists a 1443 version of CHITRAN using essentially the 
1443 PDQ patches written, surprisingly, by J. W. Holmes. 

A load-and-g0 version for 40K, is being written. Language 
specifications will be same as 20K CHIT~N; details are prese~tly 
of questionable relevance (i.e., unavailable). 



}, ~. 

o 

-10- , 

A derivative of CHITRAN, though not properly a version of 
it, is SEX FORTRAN, a system which through certain restrictions 
on input and output format permits the object program to begin in 
location 03000. The language of SEX includes CHITRAlJ (except for 
REREAD) as a subset. In addition, there are the SELECT and 
EXTERNAL statements which define I/O, and a set of instructions 
relat~d to ten SENSE LIGHTS. As an added attraction, SEX'gener
ates a shorter symbol table than CHITRAN (which is shorter than 
PDQ, which is ••• ). 

SELECT defines the I/O device and the format; EXTERNAL 
generates the actual I/O instructions. The standard PRINT, PUNCH, 
etc.~ are translated by the processor into SELECT and EXTEru~AL. 
The SENSE LIGHTS may be referenced either numeric:ally or sy.mboli
cally; they may be turned on or off singly or collectively. 
Examples of statements related to the LIGHTS are: 

LIGHT 3 OFF 
LIGHT N ON 
LIGHTS ON 
IF(SENSE LIGHT Q) 3,4 

A detailed description of the SENSE LIGHT instruction and 
of SELECT and EXTERNAL may be found in the proceedings of the 
May 1964 Eastern Region meeting, in the paper on SEX FORTRAN for 
paper tape. 



;/ 

c 

\ 
'. 

GASPS 

ULLR 

EATS 

Pet,er G. Boekhoff 
\ 

\ 

3193 

F1e~t Information Systems Group 
General Am~rican Transportation Corporation 
131 South Wabash Avenue, Cl+icago, Illinois 

312-3~6-4123 Ext. 585 

March 3, 1965 



~ , 

c 

'0---
',''' I 

GASPS 

General American SPS is a paper-tape system written to get 
away from the inadequacies of existing tape systems (SP-008 and 
SP-021). GASPS is essentially a rewrite of SP-008; the author 
found it impossible to live with the card-image output of SP-021 
for ~ program of any great length. One deletion was made from 
SP-008: GASPS has no subroutines. They were unnecessary for the 
application (compilers) for which GASPS was wri tten, and the author. 
decided that better, use could be made of the core used to process 
them. GASPS possesses four major advantages over the older sys
tems: processing is faster; the label table is larger; the 
language has been expanded; printed and/or punched output may be 
suppressed, e.g. for diagnostic use as pre-assembler. 

Processing speed was increased by rewriting the op-code 
table and the op-code and label-table scans, along with some 
streamlining of the other routines. 

The label table was enlarged, of course, by shortening the 
processor. This was done by deleting the macro routines and 
tightening the remainder of the processor. Even with the addi
tion of some new source .... language statements and the corresponding 
assembly routines, the entire processor except for the op~code 
table occupies less than 10K. This was a secondary objective of 
GASPS; it makes possible the handling of processor ~ddresses as 
4-digit fields, so that GASPS will run in a machine;wi.th IA (which, 
nowever, GASPS does not use). The label table will handle up to 
$15 entries. 

~ 

When GASPS i~'loaded, it types the message 

SWITCH 1 ON TO SUPPRESS PUNCH 
SWITCH 4 ON TO SUPPRESS PRINT 
THEN PRESS START. 

and halts. When START is pressed, it adjusts itself accordingly 
, and types 

RESET SWITCHES FOR ASSE~~LY 
THEN PRESS START. 

Assembly begins when START is pressed., This feature can save 
considerable time when an assembly listing is not needed. GASPS 
requires just under 3 hours to assemble itself with a full listing; 
with no listing, the time is less than half an hour. 



t, 

""J,J'~I·i\fMltlti".*****'="'tij~ IS'}}' 1rWW/11w,l!U '. ;,,···t····di:i@' .. ·¥iW;!l"iijij·iIIW·w'i'P'E"fFlIIi 

" 

C~.'·' , , 

o 

-2-

Declarative mnemonics added to GASPS include SEND (somehow 
absent from SP-OOS), which as usual simply halts the processor. 

DACF (Define. Alpha Constant with Flags) and DACN (Define 
Alpha Constant with No flag) are identical to DAC except that 
DACN omits the high-order flag and DACF flags each two-digit 
character. 

DCNF (Define Constant with No Flag) omits the high-order 
flag of a DC and assigns the label and/or address to the low
order position. 

DSCF (Define Special Constant with Flag) generates the high
order flag and assigns the label and/or address to the high-order 
position. 

DNB (Define Numeric Blanks) does not'define numeric blanks, 
but is included so that card programs may be assembled without 
hanging up. It is assembled as aDS. 

DSSA (Define Special Symbolic Address) omits the high-order 
flags from the generated addresses. The label, if any, is 
equated to the high~order position of the first address. 

Defining a constant (with any of the 4 DC statements) with 
a preceding minus sign will flag the low-order digit of the 

I 

constant. 

Examples: 

DC 2,@ Or! 

DC 2,-@ O~ 

DC 2,-12 12 

DCNF 2,-12 12 

DSC 2,-12 12 

DSC 2,-@ O~ 

Imperatives added include the missing BI and BNI instruc
tions for I/O and parity indicators (BRe, BWC, Bl'IlE, BHO, BNRC, 
BNWC, BNME, BNMO) , card commands (including BLC and BNLC) , edit 

• 



c 

-3-

instructions (MF, TNS, TNF) , and Model II instructions (BS, TRNM). 
Index-register-related instructions are not included. 

Also added are the mnemonics B7, BB2, and BB7, which are 
defined by: 

B7 is equivalent to B 
DORG *-4 

BB2 is equivalent to BB 
DORG *-9 

Definition of BB7 is left as an exercise for the reader. 

Inclusion of the @ symbol in the third (flag) operand.of 
any imperative will cause a record mark to be placed in Qll of 
the instruction. The·@ comes at the end of the third operand. 
Examples: . 

TDM 01234,56789,@ 15 01234 5678~ 

TFM 444,,10@ 16 00444 OOOU~ 

TFM 444,,@ 16 00444 OOOO~ . 

TFM 444,,1011@ 16 00444 OOOO~ 

- - - -
B7 lOOO,24680,O2468l0@ 49 01000 

GASPS was written for use in a 20K machine; it will, how
ever, adjust itself to take advantage of larger capacity. If it 
is used in a Model II with index registers on, it will turn them 
off. Thus GASPS may be used in any paper-tape 1620. 

Division is not used in address arithmetic; the only valid 
operators in address operands are +, -, and * The remaining 
symbols 

• ) $ / ( = @ 
I . • 

may be used in labels. Using one of these special characters as 
the first character of a label, however, is not recommended,. 

\ 
\, 

\ 

\ 

\ 

\ 



# 

c.\ " 

-4-

ULLR 

The Unlimited-Length Label Referencer is available for 
either tape or cards; the two programs are essentially identi
cal. The program occupies just under 3000 positions of core, 
leaving 17000 (in 20K) for the table. ULLR does not use IA. 
It will expand it~ own table if the.machine is larger than 20K. 

ULLR reads an SPS source program and produces a listing of 
all labels in alphabetical order, with the line numbers where 
they are defined and all line numbers where they are used. There 
is no diagnostic checking. An undefined label will be declared 
by ULLR to have been defined at line 99999; a multiply-defined 
label will be listed once for each definition. 

When ULLR encounters a DEND statement, or when the table is 
full, the output~is listed on the typewriter, in the usual label
referencer for~ai. 61 lines are typed per page, fo~lowed by 5 
blank lines. . A'l;'~;the end 'of the output, ULLR hal tsa"nd reini tial
izes; another s6urce program (or the remainder of t~~ current one, 
in case of table overflow) may be processed by pokirtg START.' 

ULLR will copy all source-program remarks which precede the 
first SPS statement; the program identification may thus be in
cluded in the listing. 

ULLR for tape ,assumes that the input is in GASPS; that is, 
that all mnemonics are imperatives except DAC, DACF, DACN, DAS, 
DC, DCNF, DEND, DNB, DORG, DS, DSA, DSB, DSC, DSCF, DSS, DSSA, 
and SEND. Card ULLR is the same except that SEND ~s omitted 
from the "list. 



tI..;#www.-.Mh .. a ·--ij·,I' ... ·ij'" 

, 

'-5-

Editing and Titling System 
(Util~ty ~rogram) 

Program Revision and Tape Tit~ing System 
Accepts SPS Source 

EATS is a utility program for paper tape. It consists of 
two parts, either of which may be used independently. 

Input to the Editing port~on is an SPS source program, with 
or without line numbers. EATS assigns sequential line numbers to 
its output, in increments of 10, beginning with the number speci
fied by the user. EATS simply renumbers and copies the source 
program and clears record marks in the op-code field, except when 
told otherwise by switch settings; for this normal course of events, 
switch 4 is turned on and I and 2 off (switch 3 tells EATS whether 
there are line numbers in the input). If switch 2 is turned on, 
EATS will read the'next tape record and halt. When START is pressed, 
that record is ignored and the next one is read. If switch 4 is 
turned off, EATS accepts the next statement from the typewriter. 
Switch 4 may be turned on to correct typing errors in the usual 
way.' If switch 1 is on, EATS reads a tape record and types it, 
and waits for a typed correction (if the statement is correct, 
RELE~SE and START will copy it to the output program). Thus addi-

,tions, deletions, and corrections may be made. The editing pro
gram, after it punches the DEND statement, drops into the titling 
program. 

The titling program accepts a title from the typewriter and 
punches reasonable visual facsimiles of the characters, so that 
the tape identification can be seen on the tape; this is simply 
an improved version of a similar program already in the library. 
Thus the usual scheme of things is for EATS to edit an SPS source 
program and punch' its title on the end of the tape. 

The first instruction in EATS is a test of switch 1; if this 
switch i~ on, control goes directly to the titling routine. Since 
EATS occupies locations l8l~0-19999, titles may be punched on the 
output'from a normal 20K FORTRAN or SPS batch run without destroy
ing the language processor. EATS must of course be reloaded each 
time it is to be used in this way. 



" i 

c 

THE USE OF MARK SENSING EQUIPMENT IN THE PREPARATION, PROCESSING, AND 
EXECUTION OF STUDENT WRITTEN PROGRAMS 

HoB 0 KERR 
DIRECTOR, COMPUTER CENTER 

TENNESSEE TECH 
COOKEVILLE, TENNESSEE 

ONE OF THE BIGGEST PROBLEMS FACING THE PERSON RESPONSIBLE FOR THE 
ADMINISTRATION OF A COMPUTER CENTER IN AN EDUCATIONAL INSTITUTION IS 
THE PREPARATION, PROCESSING AND EXECUTION OF STUDENT WRITTEN PROGRAMSe 
FOR lO THESE MANY YEARS, HOT ARGUMENTS HAVE BEEN WAGED ON THE RELATIVE 
MERITS OF AN oooOPENooo VERSUS A oooClOSEDooo COMPUTING FACILITY, THAT 
IS, WHETHER THE ooUSERooOF THE COMPUTING FACILITY SHOULD HAVE oaoHANDS 
ONcoo EXPERIENCE WITH BOTH ON-LINE AND OFF-LINE DATA PROCESSING EQUIP
MENT. IT IS NOT THE INTENTION OF THE SPEAKER TO EITHER ADD FUEL TO 
THIS CONTROVERSEY OR TO TAKE SIDES, ALTHOUGH FROM EXPERIENCE GAINED 
OVER THE PAST FOUR YEARS, I CAN SEE MERIT IN BOTH SIDES OF THE ARGU
~ENTo MANY OF THE lARGER COMPUTER CENTERS HAVE FOUND IT EXPEDIENT TO 
OPERATE ON THE oooCLOSEDooo BASIS AND HAVE STAFF HIRED ON TO KEY PUNCH 
THE STUDENT WRITTEN PROGRAMSo OTHER INSTALLATIONS, ONE OF WHICH I AD
MINISTER, HAVE FOUND IT NECESSARY TO PROVIDE PERSONNEL TO OPERATE THE 
COMPUTERS AND CERTAIN ASSOCIATED EQUIPMENT, BUT DO NOT HAVE THE TIME OR 
PERSONNEL TO PREPARE EACH STUDENT WRITTEN PROGRAM FOR COMPUTER EXECU
TIONo IT IS, THEREFORE, THE PROCESSING OF STUDENT WRITTEN PROGRAMS 
PREVIOUS TO COMPUTER COMPILATION AND EXECUTION ABOUT WHICH I WISH TO 
MAKE A FEW COMMENTS, AND, DURING THE LATTER PART OF MY TALK, MENTION 
SEVERAL OTHER USES OF MARK SENSE EQUIPMENTo 

AT TENNESSEE TECH, WE HAVE TWO TYPES OF STUDENT WRITTEN PROGRAMS 
TO BE EXECUTED -- MACHINE lANGUAGE PROGRAMS AND FORTRAN PROGRAMSo WE 
HAVE AN AVERAGE OF 150 STUDENT WRITTEN MACHINE LANGUAGE PROGRAMS AND 
175 FORTRAN PROGRAMS TO PROCESS EACH WEEK, IN ADDITION TO THE EXECUTION 
OF NUMEROUS LIBRARY, TEST SCORING, TEST ASSEMBLY, AND PAYROLL PROGRAMSo 
THE ONLY PEOPLE DIRECTLY ASSOCIATED WITH THE COMPUTER CENTER, IQ Eo, 
MYSELF AND MY ASSISTANT, ALSO MUST TEACH FROM FOUR TO EIGHT CONTACT 
HO U R SEA C H ItJ E E K 0 THE 11 U l K 0 F THE R 0 UTI NED A TAP ROC E S SIN G ItJ 0 R K fVlU S T , 
THEREFORE, BE DONE BY FROM FOUR TO SIX STUDENT ASSISTANTSo THE PER
SONNEL IS SIMPLY NOT AVAILABLE TO PREPARE SUTDENT WRITTEN PROGRAMS AND 

DATA FOR PROCESSINGo 

TO OVERCOME THE ABOVE MENTIONED PROBLEMS AND TO MAKE THE WORK 
lOAD OF THE COMPUTER CENTER MORE BEARABLE, WE HAVE GONE TO EXTENSIVE 
USE OF MARK SENSING EQUIPMENT -- NAMELY, MARK SENSE CARDS, HIGH 
GRAPHITE PENCILS AND AN IBM 514 REPRODUCING PUNCH EQUIPPED WITH TWENTY
SEVEN POSITIONS OF MARK SENSE BRUSHESQ WE HAVE ALSO MADE FREE USE OF 
CERTAIN IBM 1620 PROGRAMS WHICH lEND THEMSELVES TO ooeMARK-SENSEQoo 
OPERATION, AS WELL AS FREELY COPYING SUCCESSFUL TECHNIQUES USED 
BY OTHER SCHOOlS o INCIDENTALLY, I WANT TO MAKE IT CLEAR THAT I AM 
MAKING NO CLAIM AS TO ORIGINALITY IN THE CREATION OF ANY OF THE SYSTEMS 
I AM CURRENTLY USING~ I SIMPLY WANT TO COMMENT UPON THE APPLICATION 
OF SOME SPECIAL TECHNIQUES TO EXISTING PROGRAMS AND IDEASo 

FORTRAN CODING CARDS 

IN THE SUMMER OF 1964, REPRESENTATIVES OF THE UO So MILITARY ACA
DEMY AT WEST POINT PRESENTED A PAPER BEFORE THE AMERICAN SOCIETY FOR 
ENGINEERING EDUCATION ON THE PREPARATION OF FORTRAN PROGRAMS BY USE OF 
SPECIAL MARK SENSE CARDSo THIS IDEA LOOKED PROMISING TO THOSE OF US AT 
TENNESSEE TECH AND, WITH THE KNOWLEDGE AND CONSENT OF THE ORIGINATORS 

( 1 ) 



c 
OF THE WEST POINT CARDS, WE HAD MARK SENSE CARDS PREPARED FOR FORTRAN 
II D, WROTE A PROGRAM TO oooDECODEooo THIS INFORMATION AND PUNCH FOR
TRAN STATEMENT CARDS FOR PROCESSING IN THE USUAL FASHIONo A LATER 
MODIFICATION WAS TO INCORPORATE THE oooDECODEReoo PROGRAM AS A PROGRAM 
ON THE 1311 DISK rACK, UNDER MONITOR CONTROL~ TO ELIMINATE THE 
PUNCHING OF THE FORTRAN SOURCE PROGRAM, GOING DIRECTLY TO THE COMPILA
TION AND EXECUTION PHASESo AT THE TIME OF THIS WRITING, THE LATTER 
SYSTEM IS ONLY PARTLY COMPLETEo 

THE STUDENT PREPARES HIS FORTRAN PROGRAM By MARKING THE APPRO
PRIATE SLOT IN THE FORTRAN STATE~ENT CODING CARDo CERTAIN CONTROL 
WORDS SUCH AS IF, DIMENSION, AND IF SENSE SWITCH MAY BE FORMULATED BY 
BY MARKING ONLY ONE SLOTo ARITHMETIC STATEMENTS, STATEMENT NUMBERS, 
ETCo MAY ALSO BE FORMULATED, BY MARKING SINGLE OR MULTIPLE SLOTS IN A 
COLUMN 0 THE PROGRAMMER MAY CONTINUE A STATEMENT FROM ONE CARD TO 
THE NEXT BY MARKING A SLOT PROVIDED FOR THAT PURPOSEo CONTINUATION 
FORTRAN STATEMENT CARDS ARE PUNCHED AS NEEDED UP TO A MAXIMUM OF FOUR, 
AS PERMITTED IN FORTRAN II Do THE FORTRAN o~oDECODERooo PROGRAM IS 
AVAILABLE FROM THE LIBRARY (PROGRAM NOo 1030015)0 UNTIL THE 
ACQUISITION OF ITS NEW 40K, 1620 - 1311 SYSTEM, TENNESSEE TECH 
DECODED, COMPILED AND EXECUTED THE oooMARK SENSEDooo FORTRAN PROGRA~1S 
ON A 20K 1620 COMPUTER, USUALLY COMPILING THE PROGRAMS USING THE PDQ 
PROCESSOR (NO CONTINUATION CARDS BEING PERMITTED9 OF COURSE)o WE HAVE 
BEEN IN OPERATION UNDER MONITOR FOR ONLY A SHORT TIMEo HOWEVER, IT 
APPEARS THAT A VERY REAL TIME SAVING WILL BE EFFECTED BY BATCH COM
PILING IN ONE STEP ON THE 1620 - 1311 SYSTEMo I AM SORRY TO SAY THAT 
THAT I CAN QUOTE NO AVERAGE COMPILATION TIMES FOR THE 1620 - 1311 SYS
TEMo WHEN EXECUTING THE DECODER PROGRAM SEPARATELY, THE FORTRAN SOURCE' 
PROGRAM IS PRODUCED AT APPROXIMATELY PUNCH SPEED, 10 Eo, 250 CARDS PER 
MINUTE, IN OUR CASEo IF ANYONE WOULD BE INTERESTED IN TRYING OUT THIS 
SYSTEM, TENNESSEE TECH WOULD BE GLAD TO GIVE PERMISSION TO USE OUR 
ELECTRO PLATESo THE DECODER PROGRAM, AS WE HAVE SAID BEFORE, IS AVAIL
ABLE FROM THE LIBRARY. 

MACHINE LANGUAGE PROGRAMMING 

IN ADDITION TO STUDENT WRITTEN FORTRAN PROGRAMS, WE ALSO HAVE AT LEAST 
125 TO 150 STUDENT WRITTEN MACHINE LANGUAGE PROGRAMS TO EXECUTE EACH 
WEEKo TO FACILITATE THE HANDLING OF THESE PROGRAMS, TENNESSEE TECH IS 
MAKING USE OF A SERIES OF PROGRAMS CALLED oooMARCATooo, WRITTEN BY 
PROFESSOR GUY RICKER OF NEW JERSEY CITY STATE COLLEGEo MANY OF YOU MAY 
HAVE HEARD HIS PRESENTATION AT THE FALL 1963 1620 USERS GROUP CONVEN
TION IN PITTSBURGHo PROFESSOR RICKER VERY KINDLY MADE HIS PROGRAMS AND 
WRITE UPS AVAILARLE TO ME AND I HAVE, WITH CERTAIN MODIFICATIONS AND 
RESTRICTIONS, INSTITUTED THEIR USE IN MACHINE LANGUAGE PROGRAMMING 
COURSESo OF COURSE, AS SO~1E OF YOU MAY KNOW, THIS PROGRAM MAY ALSO BE 
USED IN SPS PROGRAMMINGo 

FOR THE BENEFIT OF THOSE WHO ARE NOT FAMILIAR WITH oooMARCATooa9 
IT IS A PROGRAM WHICH WILL EXECUTE A STUDENT WRITTEN PROGRAM UNDER 
CONTROLLED CONDITIONS, CHECK THE ANSWER OR ANSWERS, AND (WITH MARCAT 
II) INITIATE AND PUNCH OUT A TRACE OF THE STUDENT*S PROGRAM IF THE 
ANSWERS FAIL TO CHECK OUTo IN ORDER TO MAKE THIS SYSTEM APPLICABLE 
TO MARK SENSE CARD INPUT AND BATCH PROCESSING, WE HAVE MADE CERTAIN 
RESTRICTIONS ON THE WRITING OF STUDENT PROGRAMS, SUCH AS -- THE ELIMI
NATION OF QooCONSTANTooo CARDS, AS PROVIDED FOR IN PROFESSOR RICKER*S 
PROGRAM, EVERY STUDENT*S PROGRAM MUST ORIGINATE AT 00500, THE IN
STRUCTIONS MUST BE CONSECUTIVE AND DATA INPUT CAN BE NO LONGER THAN 
27 DIGITS IN LENGTHo 

IN OPERATION, EACH CLASS IS ASSIGNED A UNIQUE ONE DIGIT NUMBER 
( 2) 



, 
1 , 

\ 11,'.n., .. j'J¥""lIt!I!.AAw' 1M 1 ·jipipiM.7··'j······ .. ·:"T·tj ;1···(",:,;;nNr-""jI·Tw·n 

o 

AND EACH STUDENT A UNIQUE TWO DIGIT NUMBER WHICH ALONG WITH THE PRO
BLEM NUMBER IS MARK SENSED INTO THE 10 Do CARD TO IDENTIFY THE STUDENT, 
COURSE, AND PROBLEM NUMBERo AT THE BEGINNING OF THE COURSE, EACH 
STUDENT IS GIVEN A PRE-PUNCHED PACKET OF CARDS AS FOLLOWS 

10 10 Do CARDS (MARK SENSE) 
50 PROGRAM CARDS (MARK SENSE) 
1 TRAILER CARD 
10 DATA CARDS (MARK SENSE) 

IN ADDITION, EACH STUDENT IS GIVEN A SET OF INSTRUCTIONS AND AN 
EXPLANATION OF HOW TO INTERPRET THE oooMARCAToao OUTPUTo PROBLEM 
STATEMENT SHEETS ARE DISTRIBUTED BY THE INSTRUCTORo THE PROBLEM 
STATEMENT MUST, OF COURSE~ BE WORDED VERY CAREFULLY IN ORDER THAT EACH 
STUDENT UNDERSTAND EXACTLY WHERE HIS DATA AND HIS ANSWERS ARE TO BE 
STORED, AS WELL AS A THOROUGH STATEMENT OF THE PROBLEMa THE PROPER 
PLACEMENT OF THE DATA AND ANSWER IS IMPORTANT BECAUSE, WHEN EXECUTING 
UNDER oooMARCAToao CONTROL, THE oooMARCATooo PROGRAM WILL NOP ALL 
INPl)T-OUTPUT INSTRUCTIONS, USING THE CORRECT DATA AS THAT STORED IN 
UPPER MEMORYo 

ONE OF OUR SHARPER STUDENT ASSISTANTS AT TENNESSEE TECH HAS 
WRITTEN A SIZEABLE PROGRAM WHICH, WHEN MARRIED TO THE EXISTING MARCAT 
II, READS IN THE STUDENT WRITTEN 10 Do CARD, PROGRAM CARDS, TRAILER 
CARD AND DATA CARD(S), INITIATES A oooFREE RUNooo OF THE PROGRAM, AND 
THEN BRANCHES (BY MEANS OF PATCHES) INTO THE MARCAT PROGRAM FOR AN 
ANALYSIS, EVALUATION AND (IF NECESSARY) TRACE OF THE STUDENT WRITTEN 
PROGRAMo THIS PROGRAM ALSO PUNCHES OUT CARDS WHICH IDENTIFY OUTPUT TO 
FOLLOW AND ALSO PROVIDE SEPARATION BETWEEN STUOENT PROGRAMSo IMPLE
MENTATION OF THIS PROGRAM HAS DECREASED THE NECESSARY PROCESSING TIME 
TO ABOUT 10 PERCENT OF THAT REQUIRED BY EARLIER SYSTEMS EMPLOYED AT 
TENNESSEE TECHo 80 - 80 LISTINGS ARE MADE OF ALL STUDENT PROGRAMS, 
OUTPUT CARDS, PROGRAM EVALUATION AND TRACE (IF ONE WAS PUNCHED) AND 
RETURNED TO THE STUDENTo 

EVERY ATTEMPT IS MADE TO PROCESS THE STUDENT WRITTEN PROGRAMS 
WITHIN A TWO OR THREE HOUR PERIODo MANY STUDENTS, WHEN THEIR PRO
GRAMS DEVELOP BUGS UPON EXECUTION, RETURN THE SAME PROGRAM SEVERAL 
TIMES FOR PROCESSINGo AS A MATTER OF FACT, THEY ARE ENCOURAGED TO DO 
SO , AND PROPER NOTE IS MADE OF THEIR REPEATED EFFORTSo THE INSTAL
LATION OF THIS SYSTE~~ HAS APPEARED TO GIVE THE STUDENT PROGRAMMERS 
CONSIDERABLE STIMULI TO LEARN COMPUTER PROGRAMMINGo THEY ARE ENCOUR
AGED TO oooHANG AROUNDooo THE COMPUTER CENTER AND OBSERVE THE PRO
CESSING TECHNIQUESo IN FACT, WHEN ONE OF THE COMPUTERS IS AVAILABLE, 
STUDENTS WITH THE INTEREST AND TIME TO DO SO HAVE BEEN PERMITTED TO 
LEARN CONSOLE OPERATION, WITH ASSISTANCE FROM THE STUDENT ASSISTANTS, 
TIME PERMITTING AND, WHEN THEIR COMPETENCE IS PROVED, THEY ARE ISSUED 
LICENSES TO OPERATE THE VARIOUS COMPUTERS AND PERIPHERAL EQUIPMENTo 

THERE HAVE BEEN SEVERAL BUGS AND INCONSISTENCIES WHICH HAVE 
DEVELOPED IN THE OPERATION USING MARCAT CONTROL, BUT, ALL IN ALL, THE 
RESULTS HAVE BEEN QUITE SATISFACTORYo 

TEST ASSEMBLY 

SEVERAL INSTRUCTORS AT TENNESSEE TECH ARE MAKING USE OF AN 
oooEXAMINATION ASSEMBLYooo SERVICE OFFERRED (THE OFFERING BEING SOME
WHAT RESTRICTED DUE TO THE LACK OF AVAILABILITY OF KEY PUNCH PER
SONNEL)o THIS PROGRAM IS AVAILABLE FROM THE LIBRARY AS NOo 130000120 
USE OF THIS PROGRAM NECESSITATES THAT A POOL OF EXAMINATION QUESTIONS 
BE PUNCHED INTO CARDSo PREVIOUS TO THE EXECUTION OF THE PROGRAM, 

( 3) 

,., .. tfft;::t'·"",,·'tt·· .. 



SELECTED QUESTIONS ARE CALLED FOR (THE INSTRUCTOR USUALLY MAKING HIS 
CHOICE BY MARK SENSE CARD), THE COMPUTER PROGRAM SEARCHES THE POOL OF 
QUESTIONS FOR THE SELECTED QUESTIONS, ASSIGNS A NEW SEQUENCE NUMBER 
AND PUNCHES THE RE-SEQUENCED QUESTIONS INTO CARDSo AN IDENTIFICATION 
CARD, INSTRUCTION CARDS, ETCo, ARE USUALLY PUT ON THE FRONT OF THE DECK 
AND A DITTO MASTER CUT ON THE 407 ACCOUNTING MACHINE {USING AN 80 - 80 
PANEL)o THE QUESTIONS MAY BE OF VARIABLE LENGTH AND MAY BE OF THE 
OBJECTIVE TYPE OR ESSAY TYPEo WIDE USE IS MADE OF THIS PROGRAM IN THE 
COMPUTER COURSES WHERE FORTRAN AND MACHINE LANGUAGE IS TAUGHTo 

TEST SCORING 

AT TENNESSEE TECH, WE MAKE CONSIDERABLE USE OF THE NORTHEASTERN 
TEST SCORING PROGRAM (LIBRARY NOo 13000003). THIS IS A COMPUTER 
PROGRAM WHICH WILL PERFORM THE OPERATION OF SCORING AN OBJECTIVE TYPE 
EXAMINATION CONSISTING OF UP TO 150, 5 CHOICE QUESTIONS, PERFORM A 
STATISTICAL ANALYSIS OF THE RESULTS, AND YIELD AN ITEM ANALYSIS, 
QUESTION BY QUESTIONo 

THIS PROGRAM HAS ACHIEVED A WIDE USAGE THROUGHOUT THE COLLEGE, AND 
HAS BEEN INSTRUMENTAL IN CAUSING A SAVING IN INSTRUCTION TIME, PER
MITTING LARGER CLASSES TO BE HANDLED IN CERTAIN COURSES, WITHOUT IM
POSING AN UNDUE HARDSHIP UPON THE INSTRUCTORo IN MANY COURSES, THE 
OUTPUT FROM THE NORTHEASTERN TEST SCORING PROGRAM IS PRESERVED AND AT 
THE END OF THE QUARTER, IS UTILIZED IN CONJUNCTION WITH THE GRADE 
AVERAGING PROGRAM (DESCRIBED LATER) IN DEVELOPING A COURSE GRADEo 

GRADE AVERAGING AND REPORTING 

AT TENNESSEE TECH, MARK SENSE CARDS ARE USED IN THE PREPARATION 
OF GRADE REPORTSo THE MILITARY SCIENCE DEPARTMENT REPORTS EXAM GRADES, 
MERITS AND DEMERITS, DRILL GRADES, ETCo' COMPLETELY ON MARK SENSE 
CARDSo THE COMPUTER CENTER HAS WRITTEN A SPECIAL PROGRAM WHICH CAL
CULATES COURSE GRADES, MILITARY STANDING, DEMERITS, ETCo AND PREPARES 
THE REPORT FOR THE ADMISSIONS AND RECORDS OFFICEo 

A MORE GENERAL COMPUTER PROGRAM HAS BEEN WRITTEN WHICH UTILIZES 
THE OUTPUT OF THE oooNORTHEASTERN TEST SCORING PROGRAMooo IN CALCU
LATING AND REPORTING COURSE GRADESo THIS PROGRAM PERMITS ANY NUMBER 
OF HOURLY TESTS AND ONE FINAL EXAMINATION TO BE WEIGHTED IN ACCORDANCE 
WITH THE WISHES OF THE INSTRUCTORo 

DATA COLLECTION USES 

LIMITED USE IS MADE OF MARK SENSE CARDS IN THE COLLECTION OF DATA 
TO BE USED IN MAKING CERTAIN STATISTICAL ANAlYSESo MANY TIMES, CER
TAIN OF THE FACULTY DESIRE THE CORRELATION AND ANALYSIS OF CERTAIN 
DATA, BUT HAVE NEITHER THE TIME OR THE INCLINATION TO COME TO THE 
COMPUTER CENTER TO PREPARE THE DATA FOR INTRODUCTION TO A COMPUTER 
PROGRAMo IN THIS EVENT, THE FACULTY MEMBER IS GIVEN MARK SENSE CARDS, 
AND PENCILS AND INSTRUCTED AS TO THEIR USE, AFTER WHICH HE PERFORMS 
THE MARKING OF THE CARDS AT HIS CONVENIENCE IN HIS OFFICEo THE MARKED 
CARDS ARE RETURNED TO THE COMPUTER CENTER FOR PROCESSINGo 

THE FACT THAT THERE ARE ONLY 27 MARK SENsE POSITIONS AVAILABLE 
PER SIDE OF A CARD DOES, OF COURSE, IMPOSES SOME RESTRICTIONS AND, IN 
SOME CASES CALLS FOR A SPECIAL PROGRAM TO COMBINE DATA CARDS, ETCo 

REGISTRATION SECTIONING 

AT TENNESSEE TECH, REGISTRATION SECTIONING IS DONE BY COMPUTER 
( 4) 



c 
(USING A RE-WRITTEN VERSION OF THE IBM oooSTUDENTooo PROGRAM, LIBRARY 
NOo 10030017)0 IN ORDER TO FACILITATE THE COLLECTION OF INFORMATION 
REGARDING THE COURSES DESIRED BY THE VARIOUS STUDENTS, EXTENSIVE USE 
OF MARK SENSE CARDS HAS BEEN MADEo CONSIDERABLE DIFFICULTY HAS BEEN 
ENCOUNTERED IN THIS APPLICATION, DUE TO THE HUMAN FACTOR9 10 E09 THE 
MISTAKES MADE BY THE STUDENTS IN MARKING THEIR COURSE REQUEST CARDSo 
THE DIFFICULTY HERE IS NOT IN THE MARKING OF THE CARDS AS MUCH AS IT 
IS THE INABILITY OF THE STUDENT TO READ HIS COURSE LIST AND SELECT THE 
RIGHT COURSESo WHEN HIS COURSE REQUESTS ARE PROCESSED BY THE COMPUTER 
AND HE FINDS HIMSELF ASSIGNED TO AN ENGLISH COURSE (WHICH HE REQUESTED) 
INSTEAD OF A HISTORY COURSE (WHICH IS WHAT HE INTENDED TO SELECT), THE 
STU DEN TIN V ,I)., R I A B L Y B L A "1 E .s THE CO Ivj PUT E R FOR THE ERR 0 RoT HE STU DEN T 
NEWSPAPER ALSO LOVES TO DWELL UPON THE CASE OF THE HAPLESS GIRL WHO IS 
ASSIGNED BY THE OQoELECTRONIC BRAINooo TO A SECTION OF MILITARY 
SCIENCE~ 

HOUSING RECORDS 

THE DEAN OF STUDENTS OFFICE AT TENNESSEE TECH IS REQUIRED TO SUB
MIT A NUMBER OF REPORTS TO THE STATE BOARD OF EDUCATION REGARDING THE 
HOUSING INFORMATION ON ALL STUDENTSo THESE REPORTS, AS WELL AS GENERAL 
HOUSING RECORDS, ARE NOW DONE BY THE USE OF SPECIAL MARK SENSE CARDS, 
AND THE MARK SENSE HOUSING CARD IS INCLUDED IN THE REGISTRATION PACKET 
FOR EACH STUDENTo AS AN ADJUNCT TO THIS PROCESS AUTOMOBILE REGIS
TRATION NUMBERS ARE MARKED ON THE HOUSING CARD AND ADDITIONAL LISTINGS 
MADE FOR THE DEAN OF STUDENT*S OFFICE, WITH THE HOUSING CARDS ALPHA
BETIZED BY STUDENT NUMBER AND ALSO IN NUMERICAL ORDER BY AUTOMOBILE 
REGISTRATION NUMBERo A CONSIDERABLE SAVINGS IN CLERICAL WORK HAS BEEN 
EFFECTED BY USE OF THE HOUSING CARDS AS WELL AS AN ACCELERATION OF THE 
PREPARATION OF THE REPORTSo 

STUDENT ELECTION RETURNS 

FOR THE PAST YEAR, THE ASSOCIATED STUDENT BODY AT TENNESSEE TECH 
HAS RUN THEIR ELECTIONS USING MARK SENSE CARDS AS BALLOTSo AFTER 
PROCESSING THROUGH THE 514 REPRODUCING PUNCH~ THE BALLOTS WERE TABU
LATED USING THE LIBRARY PROGRAM oooCASTooo (LIBRARY NOo 6000146)0 THE 
STUDENT OFFICIALS FEEL THAT THIS SYSTEM YIELDS MUCH QUICKER AND MORE 
ACCURATE RESULTS, AND AT THE SAME TIME DECREASES THE POSSIBILITY OF 
TAMPERING WITH THE BALLOTSo 

SUMMARY 

THE USE OF MARK SENSE EQUIPMENT AT TENNESSEE TECH HAS GROWN SO 
RAPIDLY THAT THE PROPER OPERATION OF THE 514 REPRODUCING PUNCH HAS 
BECOME EVEN MORE IMPORTANT THAN THAT OF ONE OF THE COMPUTERSo IN THIS 
RESPECT WE ARE BLESSED BY HAVING A SPARE 514 WITH MARK SENSE BRUSHES 
IN ANOTHER OFFICE OF THE CAMPUSo WE FEEL THAT THE USE MADE OF 
MARK SENSE EQUIPMENT IS, TO US, AN ABSOLUTE NECESSITY RATHER THAN A 
CONVENIENT LUXURYo THE PROBABILITY OF FUTURE ACQUISITION OF MORE UP
TO-DATE OPTICAL MARK SENSE EQUIPMENT WILL UNDOUBTEDLY STILL FURTHER 
ACCELERATE THE USAGE OF THIS METHOD OF INFORMATION COLLECTIONo 

( 5) 



o 

USE OF FORTRAN MARK SENSE CARDS 

DESCRIPTION - THIS PROGRAM WAS DEVELOPED TO OPERATE IN CONJUNCTION WITH 
MARK SENSE CARDS OF A FORMAT SIMILAR TO THE 000 CADETRAN 000 FORTRA, 
MARK SENSE CARDS DEVELOPED BY THE Uo So MILITARY ACADEMYo IT WAS 
DECIDED TO MODIFY THE CARD FORMAT OF CADETRAN TO MAKE IT SUITABLE F' 
USE WITH FORTRAN II D FOR THE IBM 1311 DISK FILEo 

BY MARKING THE SPECIAL CARDS WITH A PENCIL CONTAINING A HIGH GRAPHI 
CONTENT (SEE APPENDIX), IT IS POSSIBLE FOR A BEGINNING (OR EXPER
IENCED) FORTRAN PROGRAMMER TO PREPARE HIS FORTRAN STATEMENT CARDS 
INDEPENDENT OF A KEY PUNCHc THE PROGRAMMER SIMPLY FORMULATES HIS 
FURTRAl\!STATEMENT CARDS tr't--MARK I NG THE APPROpr-< I ATE SLOT S ON THE 
SPECIALLY PRINTED CARDSc PROVISION IS MADE FOR CONTINUING THE STAT 
MENT FROM ONE MARK SENSE CARD TO THE NEXT AND FOR DENOTING AND PUNC 
ING CONTINUATION CARDSo THE MARKED CARDS ARE THEN PASSED THROUGH 
A REPRODUCING PUNCH EQUIPPED WITH 27 POSITIONS OF MARK SENSE BRUSHE 
THE CARDS ARE THEN DECODED BY THE SUBJECT PROGRAM, INTERPRETED (IF 
DESIRED), AND THEN PROCESSED AS WITH ANY OTHER FORTRAN PROGRAMo A 
THREE DIGIT SEQUENCE NUMBER IS PLACED IN CARD COLUMNS 78 THROUGH 80 
OF THE FORTRAN STATEMENT CARDSo 

MARKING THE FORTRAN CARDS -

10 STATEMENT NUMBER - IF IT IS DESIRED TO USE A STATEMENT NUMBER, 
MARK THE INDICATED SLOTS (USING A FIRM PRESSURE WITH A SHARP 
POINTED, HIGH GRAPHITE CONTENT PENCIL}o ONLY A TWO DIGIT STAT; 
MENT IS PERMITTED {WHICH SHOULD BE SUFFICIENT FOR MOST PROGRAM: 

20 CONTINUATION - IF THE CARD IS A CONTINUATION OF A PREVIOUS CAR! 
THE 000 CONTINUATION 000 SLOT SHOULD BE MARKEDo IF IT IS NOT 
MARKED, THE SUBJECT PROGRAM ASSUMES THAT THIS IS A NEW STATE
MENTo 

30 COMMENTS - MARKING OF THE ~oo COMMENTS 000 SLOT CALLS FOR A 
LETTER C TO BE PLACED IN CARD COLUMN 1, THEREBY MAKING THE FOR· 
TRAN STATEMENT A COMMENTS STATEMENT. 

40 I/O, FORMATS, CALL, DO, ETCo - MARKING ANY ONE OF THESE SLOTS 
CALLS FOR THE APPROPRIATE WORD OR WORDS TO BE PLACED IN THE 
OUTPUT CARDo A BLANK USUALLY FOLLOWS THE WORD OR WORDSo ONLY 
ONE OF THE SLOTS IN THE THREE SPECIAL COMMAND COLUMNS MAY BE 
MARKEDo FAILURE TO MARK ONE OF THESE SLOTS WILL CALL FOR NO 
CHARACTERS OR BLANKS TO BE TRANSFERRED TO THE OUTPUT FORTRAN 
CARDo 

50 FIELDS - IN THE TWO MARK SENSE COLUMNS OF EACH FIELD ARE ALL 
NUMBERS AND CHARACTERS ORDINARILY USED IN FORTRAN STATEMENTSo 

LEFT HAND FIELD - ALL PUNCTUATION ORDINARILY USED IN FORTRAN Af 
MOST OPERATORS9 AS WELL AS CERTAIN FREQUENTLY USED SUB
ROUTINES ARE AVAILABLE IN THESE COLUMNSo IF NO MARK IS 
MADE IN THESE COLUMNS, NO CHARACTERS, PUNCTUATION OR BLAN~ 
ARE TRANSFERRED TO THE OUTPUT FORTRAN CARDo 

RIGHT HAND FIELD - ALL NUMBERS, ALPHABETICAL CHARACTERS (AS 
WELL AS THE SLASH, INDICATING DIVISION) ARE AVAILABLE IN 
THESE COLUMNSo IF NO SLOTS ARE MARKED, A BLANK WILL BE 
PLACED INTO THE OUTPUT FORTRAN CARDo IF A BLANK IS NOT 
DESIRED, THE 12 ZONE PUNCH ONLY (PRINTED A THROUGH I ON 

(6 ) 



o 

THE CARD) SHOULD BE MARKEDQ IF THERE IS NO MORE INFORMA
TION TO BE PLACED ON THE CARD, ONLY THE 11 ZONE PUNCH 
(PRINTED J THROUGH R ON THE CARD) SHOULD BE MARKEDo MARK 
THIS SLOT ALONE WILL CAUSE THE SUBJECT PROGRAM TO IGNORE 
REMAINDER OF THE CARDo 

OUTPUT - THE OUTPUT CARDS WILL BE IN THE PROPER FORTRAN FORMAT AS DESCRI' 
ED IN THE IBM FORTRAN II D LITERATURE, WITH THE ExCEPTION THAT ONLY 
TWO DIGIT STATEMENT NUMBER IS PERMITTEDo IF DESIRED, THE OUTPUT 
CARDS MAY BE INTERPRETED FOR EASE IN DEBUGGINGo 

(7) 



MARCAT PROGRAM CHECKER - GENERAL DESCRIPTION 

THE MARCAT PROGRAM CHECKER IS A PROGRAM THAT HAS BEEN DEVELOPED FOR 
THE PURPOSE OF CHECKING A STUDENT FORMULATED COMPUTER PROGRAM FOR ERRORS 
IN OPERATION AND ALSO TO CHECK FOR A VALID ANSWERo THE PROGRAM WAS DEVEL 
ED RY PROFESSOR GUY Wo RICKER OF JERSEY CITY STATE COLLEGE, JERSEY CITY, 
NEW JERSEYo THE COMPUTER PROGRAM WHICH CHECKS ERRORS IN THE STUDENT 
PROGRAM OCCUPIES THE TOP 12,000 DIGITS OF MEMORY (LOCATIONS 08~OOO THROUC 
19,999)0 FROM 3,500 TO 8,000 IS A STORAGE AREA USED BY THE PROGRAM o 
THIS MEANS THAT THE STUDENT MUST NOT USED OR ATTEMPT TO USE ANY LOCATION 
ABOVE 3,5000 IN FACT, WITH THE EXCEPTION OF THE LAST INSTRUCTION IN THE 
PROGRAM AS INDICATED BELOW, THE STUDENT IS PROHIBITED FROM MAKING 
REFERENCE TO LOCATIONS AROVE 3,5000 TO FACILITATE STUDENT PROGRAMMING 
EXTENSIVE USE OF MARK SENSE CARDS HAS BEEN MADE, THUS ELIMINATING ANY 
REQUIRED KNOWLEDGE OF KEY PUNCH OPERATION BY THE STUDENTo IN ORDER TO 
MAKE PROGRAMMING EASIER FOR THE STUDENT, LOCATION 00500 HAS BEEN ESTAB-
LISHED AS THE REQUIRED BEGINNING LOCATION FOR THE STUDENT PROGRAMo HIS 
PROGRA~ MUST BEGIN AT THIS LOCATION AND CONTINUE THROUGH CONSECUTIVE 
LOCATIONSo ANY CONSTANTS TO BE SUPPLIED TO THE STUDENT PROGRAM MUST BE 
SUPPLIED BY THE USE OF DATA CARDS (TO BE READ IN BY THE STUDENT PROGRAM)( 
THE LAST INSTRUCTION IN THE STUDENT PROGRAM MUST BE A BRANCH 
TO THE BEGINNING OF MARCAT 000 49 12000 00000 GOO WHICH WILL CAUSE THE 
TRACING AND CHECKING PROCEDURE TO BEGINo THERE IS A RECORD MARK AVAILABLE 
IN LOCATION 004,)0 THAT THE STUDENT MAY USEo MARCAT DOES NOT PERMIT 'THE 
STUDENT TO USE A RECORD MARK AS A PORTION OF ANY INSTRUCTIONo 

lJSING MARCAT, THERE ARE TWO WAYS OF OPERATING A STUDENT WRITTEN PRC
GRAM 000 RUNNING THE PROGRAM DIRECTLY OR RUNNING UNDER MARCAT CONTROlo 

DIRECT RUNNING 000 THE PRE-PUNCHED DECK OF CARDS YOU ARE GIVEN9 AFTE 
BEING PROPERLY MARK SENSED AND PUNCHED, CAN BE INCORPORATE 
WITH OTHER STANDARD CARDS PRESENT IN THE COMPUTER CENTER 
AND THE PROGRAM RUN AS ANY OTHER PROGRAMo ALL PROGRAMS 
WRITTEN BY THE STUDENT WILL BE RUN IN THIS FASHION BEFORE 
RUNNING UNDER MARCAT CONTROLo THE REASON FOR THIS IS 
TO ELIMINATE THE POSSIBILITY OF THE STUDENT WRITTEN PRO
GRAM DESTROYING THE MARCAT PROGRAMo THE STUDENT IS FREE 
TO CALL FOR ANY OUTPUT (PREFERABLY TYPEWRITER, IF THE 
OUTPUT IS NOT TOO LONG) THAT HE DESIRESo THE OUTPUT WIl~ 
INCLUDED IN THE PACKET RETURNED TO THE STUDENT BY THE 
COMPUTER CENTERo 

RUNNING UNDER MARCAT CONTROL 000 UNDER THE CONTROL OF THE MARCAT 
PROGRAM, THE STUDENT WRITTEN PROGRAM IS EXECUTED AND THE 
VALUES OF DATA AND ANSWERS ARE COMPARED AGAINST THOSE STOR 
IN THE MEMORY OF MARCATo NOTE IS MADE ON THE CORRECTNESS 
OF THE STUDENT ANSWERS AND9 IF THE ANSWERS ARE INCORRECT~ 

A TRACE IS INITIATED WHICH DOCUMENTS THE RESULT OF EACH 
INSTRUCTION EXECUTEDo THIS TRACE DOCUMENTATION WILL 
BE LISTED AND RETURNED TO THE STUDENT TO ASSIST HIM IN 
DEBUGGING HIS PROGRAMo THE INSTRUCTOR WILL BASE HIS 
GRADE UPON THE RESULTS INDICATED By THE MARCAT PROGRAMo 

STUDENT INSTRUCTIONS FOR MARKING CARDS FOR THE USE 

OF THE MARCAT PROGRAM CHECKER 

THE STUDENT WILL BE GIVEN THREE TYPES OF MARK SENSE CARDS o~o IDEN
TIFICATION CARDS, PROGRAM CARDS, AND DATA CARDSo CERTAIN STANDARD 
INFORMATION HAS BEEN PREPUNCHED INTO THE IDENTIFICATION CARDS AND THE 

(8) 



o 

o 

PROGRAM CARDSo THE CARDS ARE TO BE MARKED AS FOLLOWS (ALL COLUMNS REFER~ 
TO ARE MARK SENSE COLUMNS, NOT CARD COLUMNS)o 

IDENTIFICATION CARDS (GREEN CARDS) ~oo 

COLUMN 3 oeo CLASS NUMBER (TO BE ASSIGNED BY THE INSTRUCTOR) 
COLUMNS 4 AND 5 o~o STUDENT NUMBER 
COLUMNS 6 AND 7 oQO PROBLEM NUMBER (TO BE ASSIGNED BY 

THE INSTRUCTOR)o 

PROGRAM CARDS (NATURAL CARDS) 000 

COLUMN 3 000 CLASS NUMBER (OPTIONAL) 
COLUMNS 4 AND 5 000 STUDENT NUMBER (OPTIONAL) 
COLUMNS 6 AND 7 000 PROBLEM NUMBER (OPTIONAL) 
COLUMNS 11 THROUGH 22 000 THE INSTRUCTION DESIREDo ALL FLAGGE 

NUMBERS MAY BE INDICATED BY MARKING THE 11 ZONE 
SLOT AS WELL AS THE NUMBERo 

DATA CARDS (PINK CARDS) 000 

BEGINNING IN COLUMN 1, THE DESIRED DATA (UP TO A MAXIMUM OF 27 
DIGITS) IS TO BE MARKEDo FLAGS MAY BE INDICATED BY MARKING TH 
11 ZONE PUNCH AS WELL AS THE NUMBER DESIREDo DO NOT SPECIFY 
RECORD MARKS ON DATA CARDSo THERE IS A RECORD MARK AT LOCA
TION 00400 AVAILABLE FOR YOU TO USE AT ANY TIMEo 

WHEN THE CARDS HAVE BEEN PROPERLY MARKED, YOU SHOULD BRING THE 
CARDS TO THE COMPUTER CENTER, FILL OUT A PROCESSING REQUEST CARD, AND 
DEPOSIT YOUR DECK AND THE REQUEST CARD IN THE BOX MARKED 0000000000 IN 
0000000000000 THE COMPUTER CENTER PERSONNEL WILL RUN YOUR PROGRAM 
DIRECTLY AND THEN AGAIN UNDER MARCAT CONTROLo THE RESULTS WILL BE 
ATTACHED TO YOUR CARD DECK AND LEFT FOR YOU TO PICK UP IN THE BOX MARKED 
00000 OUTooooo 

IN ADDITION TO THE MARK SENSE CARDS DESCRIBED ABOVE9 THE STUDENT 
WILL ALSO BE GIVEN A SALMON CARD PRE PUNCHED WITH THE FOLLOWING IN
FORMATION PRINTED AT THE TOPo (FOR MARCAT PLACE THIS CARD AFTER YOUR 
LAST PROGRAM CARD - FOLLOW WITH DATA) 

THE AFOREMENTIONED CARDS WILL BE ARRANGED AS SHOWN BELOWo 

WHEN THE DECK HAS BEEN MARK SENSED AND ASSEMBLED AS SHOWN IN THE 
SKETCH ABOVE~ IT SHOULD BE BROUGHT TO THE COMPUTER CENTER, A PROCESSING 
REQUEST CARD MADE OUT AND PUT ON TOP OF THE DECK~ AND THE COMBINED DECK C 
CARDS PLACED IN THE BOX MARKED 000 INo 

( 9) 



0 

o 

TYPICAL STUDENT PROGRAM PARTIAL ERROR WITH TRACE ON ERROR 

~304Z010231119800004738000n2001004911980 360000000500490000004900012ROO{ 
~304 3604321005C)OZ J1- R 
2304 320432100000Z J1- R 
~304 320432400000Z J1.... R 
::304 320433100000Z J1- R 
>304 3204336000('OZ J1- F~ 
'304 230432304330Z J1- R 
~ 304 210009904335Z J1- R 
.304 260435000099Z J1- R 
~ 304 380432100400Z J1- R 
'304 4912000000Ci OZ J1- R 
304 320433000000Z J1- R 
304 230432304330Z J1- R 
304 220009904340Z J1- R 

.~ 304 260435CJOO099Z J1- R 
~ 304 380432100400Z J1- R 
~304 491200000000Z J1- R 
~ 304 230433504340Z J1- R 
~304 260435000099Z J1- R 
:304 380432100400Z J1- R 
~304 491200000000Z J1- R 
MARCAT - PLACE THIS CARD AFTER YOUR LAST PROGRAM CARDFOLLOW WITH DATA R 

)0001230000601111 
)05555N05321J2369 
)OOa00000666N4321 

MARCAT lID OUTPUT 
1000123U00060111100000n0375000000000 
'05555N05321J2369000555017ROOOQOOOOO 0 
l00000nOn666N43210000000666000000000 

~ 04 13 OK 23 NO 
)0500360432100500 
)0512320432100000 
)0524320432400000 
)0536320433100000 
10548320433600000 
)0560230432304330 
)0572210009904335 
)0584260435000099 
J0596380432100400 
J0608Lj-91200000000 
3 04 13 OK 23 NO 
00500360432100500 
J0512320432100000 
J0524320432400000 
00536320433100000 
J0548320433600000 
00560230432304330 
00572210009904335 

'J0584260435000099 
00596380432100400 
006084Q1200000000 

J 
o 
o 
J 

JOO 
0005555500 
000555017R 

33 NO 

K 
a 
o 
N 

KOO 
0000000000 
0000000666 

3 04 13 OK 23 NO 33 NO 

005555N 
05321 

000555017R 

0000 
- 666 

0000000666 

( 10) 

J 

J 
0005555500 
000555017R 
000555017R 

K 

N 

0000000666 
0000000666 



TYPICAL STUDENT PROGRAM WITH NO ERRORS 

l004Z010231119800 0473800002001004911980 
360432100500Z 

360000000500490000Q04900012ROO 

320432100000Z 
3204324000 ;)OZ 
3204331000LOZ 
32 043 3 6 000 :.: 0 Z 
230432304,30Z 
14000990()()(iOZ 
460065601200Z 
460068C01100Z 
220009904340Z 
260435000099Z 
380432100400Z 
491200000000Z 
230433504340Z 
490062000000Z 
210009904335Z 
490062000000Z 

MARCAT - PLACE THIS CARD AFTER YOUR LAST PROGRAM 
00001230000601111 
005555N0532112369 
00000000066654321 

MARCAT II D OUTPUT 
00001230000601111C000000375000000000 
J05555N05321J2369C00556786ROOOOOOOOO 0 
JOOOOOn00666N43210036177786000000000 
) 04 13 OK 23 OK 33 OK 

Jl- ~< 

J1- R 
J 1- FZ 
J1- R 
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-
J1-

CARDFOLLOW WITH DATA R 

1.:( 

R 
i~ 

R 
R 
R 
I~ 

R 
r-~ 

f~ 

R 
R 

TYPICAL STUDENT PROGRAM WITH ERRORS AND TRACE 1 PASS PROBLEM 

1602Z01023111980000473800002001004911980 
1602 360170800500Z 
1602 130171700002Z 
1601 260100001713Z 
1602 120100000005Z 
1602 210100000099Z 
1602 260170701000Z 
1602 380170100400Z 

360000000500490000004900012ROO 
J1- :~ 

J 1- F< 
Jl- R 
J1- R 
Jl- R 
Jl- R 
J1- 1-< 

Jl- R 1602 491200000000Z 
MARCAT - PLACE THIS 
250124 

CARD AFTER YOUR LAST PROGRAM CARDFOLLOW WITH DATA R 

MARCAT II D OUTPUT 
2680000250124000uOOOOOO 

''', 0 2 11 NO 
J0500360170800500 
00512130171700002 
00524260100001713 

;00536120100000005 
·00548210100000099 
00560260170701000 
00572380170100400 
J0584491200000000 

S 02 11 NO 

0124 
000268 
000025 
000.020 
000268 

( 11) 

02 
000025 

05 
000248 
000268 

000248 
000025 
000020 
000268 
000268 



0 ... 1 
/ 

o 

THE 141 DATA PROCESSING SYSTEM 
AN EDUCATIONAL COMPUTER FOR INSTRUCTION 

IN ELEMENTS OF COMPUTER PROGRAMMING 

Wilson T. Price 
Kenneth P. Swallow 

A basic course in the use of computers can serve many purposes. llndoubtedly the most 
important is to provide the beginner a firm, even if limited, foundation in stored pro
gramming concepts. The degree to which a beginning programmer grasps these basic 
principles will, to a large extent, determine his success in future programming classes. 
The choice of the computer, the programming language and the exercises to be used in the 
basic course are important factors in the ease with which stored program concepts can be 
imparted to the stud~nt. The 141 Data Processing System was designed solely as a vehicle 
for teaching these i1itial concepts. This system is an abbreviated version of the IBM 
1401 Data Processing System and is an internally stored program machine with the follow-
ing features: :' 

1. Input: IBM Card Reader 
2. Output: IBM Card Punch and 100 character 

per line Printer 
3. Storage: 1000 positions of core storage with 

three digit numerical addresses 
4. Instruction and data length: Variable 

Each position is designated by a three digit address in the range of 000 through 999 
and is capable of storing one character: a letter of the alphabet. a numeric digit or 
a special character such as , / + or (. Internal character coding is very similar to 
the Hollerith code used in the punched card. A group of consecutive storage positions 
make up a field. A special indicator called a word mark is placed in the high order, 
or left most. position to indicate the length of the field. Both data and instruction 
fields are variable in length so that no storage space need be wasted with meaningless 
blanks or zeros. The instruction set of the 141 system consists of 

1. Move Characters to A or B Wordmark MCW 
2" Set Wordmark SW 
3. Clear Wordmark CW 
4. Read a Card R 
5. Punch a Card P 
6. Write a Line W 
7. Branch (conditional and unconditional) B 
8. Compare C 
9. Add A 

10. Subtract S 
11. Halt H 
12. No Operation NOP 
13. Clear Storage CS 
14. Load Characters to /;l Wordmark LCA 

This set of fourteen instructions is sufficient to allow the coding of a wide range of 
programming problems, but at the same time it is small enough that the primary effort 
of the student is directed toward the understanding of programming concepts and not the 
memorization of a large nUmber of operational rules. Simple exercises in 141 program
ming can illustrate such concepts as 1) looping for iterative processes, 2) sequence 
checking, 3) counted loops. 4) address modification. 5) program switches, 6) sub
routine linkages, etc. Multiplication and division are accomplished through the use 
of 141 subroutines. ' 



... 

If coding a program builds confidence in the new programmer, seeing his program run and 
seeing it printed as it is represented in core storage can only strengthen that confi
dence and cement further the whole concept of stored programming in his mind. Any 141 
program can be run on an IBM 1401, 1410 or 1460 Data Processing System. It can also 
be run on an IBM 1620 Data Processing System through the use of a special simulator pro
gram. 

In addition to the concept of stored programming, a basic computer course should also 
include the introduction to a symbolic assembly language. The 141 system utilizes the 
IBM 1401 SPS (Symbolic Programming System) and 141 programs can be assembled on a 1401 
or a 1620. The SPS pseudo-instructions are 1) Define Constant with Wordmark 2) De
fine Constant 3) Define Symbol and 4) Define Symbolic Address for area definition and 
1) End 2) Origin and 3) Execute for processor control. 

Because a large number of schools have IBM 1620 computers, program packages have 
been prepared for assembling and running 141 programs on the 1620. The programs and 
an accompanying manual have been submitted to the IBM Program Library by Kenneth P. 
Swallow and Richard Gentry, originators of the concept and are available in four ver
sions to permit maximum utilization of hardware. The versions and their library file 
numbers are: 

Non-Monitor Versions 
Version A - Basic 1620 
Version B - 1620 with 1443 Printer 

Monitor Versions 

File Number 
13.0.015 
13.0.016 

Version C - 1620 with 1311 and indirect addressing 13.0.017 
Version D - 1620 with 1311, 1443 and indirect addressing 13.0.018 

The 141 SPS Assembler makes it possible to process 141 programs on a 1620 computer. 
The resulting object deck is a listing deck and includes the original SPS program as 
well as loading instructions and the machine language program. This deck can then be 
loaded and run on either a 1401 or a 1620 with. the simulator. 

Using the 141 Simulator, it is possible to run programs on the 1620. The simulator 
has been designed so that the 1620 "acts" like a 141 system. Students have completed 
a full semester programming course without the need for studying the 1620 language or 
characteristics, Features of the simulator include a storage dump in the 141 machine 
language with 141 addresses, provisions for altering programs in the 141 language 
through the 1620 typewriter, provisions for stepping through a program a single 141 
instruction at a time and a means for console debugging in the 141 language. 

The 141 has been used for teaching high school students and college students in such 
varied disciplines as business data processing, accounting and engineering (pre-FORTRAN). 
It has, in every sense of the word, served our need for teaching fundamental programming 
concepts. 


