
PRCCEEDINGS OP' THE

1620 USERS GROUP JOINT CANADIAN~IDWESTERN REGION

FEBRUARY 19-21, 1964

AT THE O'HARE INN, DES PLAINES, ILLINOIS

FRANK H. MASKIELL

REGICIlAL SECRETARY

PAGES

2

5

11

31

85

86

III

117

TABLE OF CONTENTS

MEETING SCHEDULE

ATTENDANCE ROSTER

A RELOCATABIE SYMBOLIC PROGRAMMING SYSTE}{

KINGSTON FORTRAN II

CARLTON COLLEGE CCMPILER - CARLTCN BINARY SlMULATOR

MODIFYING MCNITOR I TO INCLUDE OTHER PROGRAMMING SYSTE}{S

A NEW eOURSE IN CCMPUTER APPRECIATION

EDUCATION PANELISTS

124 A SURVEY OF THE BEGINNING PROGRAMMING COURSE

127 DATA PROOESSING TECHNICIAN TRAINING

154

163

166

169

172

178

:nrI'RODUCTION TO MATRICES

A FAMILY OF TEST MATRICES

THE 1620 AS ANALYTICAL AND CCMPOSITIONAL AID IN 12 TONE MUSIC

LOGIC THEORPM IETECTION PROGRAM

AN ADDITIVE PSEUDO-BAN1Dl: NLMBER GENERATOR

A MODEL DIFFUSION-REACTION PROGRAM

186 AUTCEPOTLESS NlMERICAL CONTROl,

195 AUTCEPOT II PREPROCESSOR PROGRAM

204 MANAGEMENT INFOJt1ATION

MEETING SCHEDULE

1620 USERS Group

February 19-21, 1964 O'Har~~D~s~1ailJes ,Ill.

WEDNESDAY, FEBRUARY 19, 1964

8:45 GEN ERAL SESSION
8:45 Announcements
8:55 IBM Announcements
9:00 IBM Announcements
9:10 Programming Syst. Announcements
9:30 Index R~gister Concepts
9:50 Kingstran

10:30 Coffee & Rolls

10:45 SELECTED SPS TOPICS-Elementary

SPS WORKSHOP-ADVANCED

12:15 Lunch

1:30 EXPLORATORY PROGRAMMING

3:00 Coffee

3:30 PANEL OF 1710 USERS

SPS WORKSHOP-ADVANCED

7;30 SOUND-OFF SESSION

THURSDAY, FEBRUARY 20, 1964

Convention Hall

Grecian Room

Convention Hall

D 4

Grecian -Room

7:45 NEW USER) MEETING (coffee & rolls) D 3

8: 45 INTRODUCTION TO MONITOR I

PANEL OF 1311 USERS

10: 15 Coffee & Rolls

10:45 INTRODUCTION TO MONITOR I

MONITOR I WORKSHOP-ADVANCED

Magnetic Tape 1:Jsers Meeting

2

Convention Hall

Grecian Room

Convention Hall

D 4

D 3

~-. Burrows
i;less~:e)
G". B.'ert:;qOG.i
L. Fosf:
B. Soc~
D. Jarc:Qe

D. Pratt

J. Morrissey

J. C. Hill

D. Pratt

J.A.N. Lee

B. Burrows

IBM

B. Burrows

& Conven. Hall

IBM

IBM

B. Robinson

12:15

1:30

6:30

7:30
8:30

o

Lunch Convention Hall

INTRODUCTION TO MATRICES

MONITOR I WORKSHOP-ADVANCED D 4

EDUCATION PAPERS
1:30 A New Course in

"Computer Appreciation"
1; 4 5 A Survey of the Beginning

Programming Course

Grecian Room

2:00 Data Processing Technicians;
an Integrated Training Approach
at Hibbing Area Tech. Inst.

C. Maudlin, Jr.

IBM

C. Davidson

C. B. Germain

w. J. McGraw

3:00 Coffee Conven. Hall, Grec.Rm. -& D 4

3:30 Introduction to Regression Conven. Hall

MONITOR I WORKSHOP-ADVANCED D 4

APPLICATION PAPERS
3: 30 The IBM 1620 as an

Analytical & Pre
Compositional Aide in
12-Tone Music

3: 50 A Family of Test Matrices

Grecian Room

4:10A New Random Number Generator
4:30 Logic Theorm Detection Program

Movies
MONITOR I & II Demos
Repeat of 6: 30 Program
Repeat of 6: 30 Program

Convention Hall
D 2
Repeat

C. Phillip Cox

IBM

A. Tepper

A. C. R. Newberry
H. T. Wheeler
J. Wheatley

IBM
IBM

FRIDAY, FEBRUARY 21, 1964

8:45

10:15

Panel of Commercial Data Processing D 4

PROGRAMMING SYSTEMS PAPERS Convention Hall
8:45 Magic I and II
9:15 Kingstran

PANEL ON EDUCATION Grecian Room

/

R. Thomas

J.A. N. Lee
D, Jardine

Coffee & Rolls Conven. Hall, Grec. Rm. and D 4

3

c

10:45

10:45

10:45

12:15

1:30

3:00

ENGINEERING & CONTROL PAPERS D 4
10: 45 AUTOSPOT II Pre-Processor Prog. D 4
11:00 Autospotless Numerical Control D 4

with the 1620
11: 30 Montecarlo Techniques applied to

Radio Chemistry D 4

PROGRAMMING SYSTEMS PAPERS Convention Hall
10:45 Carleton College Compiler
11:00 Carleton Binary Simulator
11: 15 A Completely Relocatable SPS
11:30 Modifying Monitor I to Include

Other Programming Systems

PANEL ON EDUCATION

Lunch

GENERAL SESSION
Sound-Off Answers
Questions & Answers

Adjournment

4

Grecian Room

Convention Hall

~

D. McManigan
E. Ray Austin

J .K. Lewis

D. Taranto
W. Gage
M. Dor!

A. Purcell

oil

AGGER'AARD PAUL L GREEN GIANT COMPANY LE SUEUR MINN DAVIDSON JAMES L LONG ISLAND LTG HICI<VILLE NY
aLCCRNtiiRBERT R MISSOURI SCHOeL OF MINES & MET ROLLA MO DAVICSON CHARLES UNIVERSITY OF WISCONSIN MADISON WIse
alCR,JCH F C CLDS"'OBIlE OIVISICN LANSING MICH tAwSeN J IBM CORPORATION CALGARY ALB
M,l'DlHOfF JOHN ElECTRO-MOTIVE DIV-GMC LA GRANGE ILL D!~!<_~~!4!~_ C ______ INLAND STEEL COMPANY EAST CHICAGO INO
.MOR~ ANTHONY BELOIT CORPORATION BELOIT wIse DEMERATH ALSERT J KIMBERLY-CLARK CORPORATION WEST CARROLLTON OHIO
ARENI A IBM CORPORATION wHITE PLAINS N Y VENISONGECR~E B FAIRBANKS "'ORSE CO BELOIT WIS
11KH'S JOSEPH TEl DUPCNT DE NEMOURS CO INC PARKERSBURG W VA DEUEL MICHAEl KEARNEY & TRECKER CORPORATION WEST ALLIS WISC
ITKI~S OR D FERREL EASTERN ILLINOIS UNIVERSITY CHARLESTON ILL DEVENNEY WILLIA~ S WABASH COLLEGE CRAWFORDSVILLE INO
AUSTIN E R COMBUSTI~ENGINHRING INC- C;-HATfANOCGA TENN eICK£RSCN RICtiARO F CONTAINER CORP OF AMERICA CtilCAGO ILL
AUSHN HUBERT TRI-STATE COLLEGE ANGCLA IND __ eIlU~~~_~OR -! L UNIVERSITY OF 1l1lNDIS CHICAGO ILL
BUleNE ROBEIlT C USAF - ACIC ST LCUIS '"0 DORL MICHAEL UNIVERSITY OF WISCONSIN MADISON WISC
BICtffiUBER JOHN J INST OF PAPER CHEM APHETCN \ld S _ J:jOUGLAS LEO C _~______ ARGCNNE NAll LAB LAMCNT ILL
.AE~RS'AD HAROLD L SUNDSTRANO MACHINE TCOL BELVIDERE ILL COULOFf A A TRANS CANADA PIPE LINES TORONTO ONT
8ARBUTES ROBERT F IBM tORPORATlCN YOUNGSTOWN OHIO DRESSLER eYReN e kENT STATEUNIV KENT OHIO
URRON JD IBM TORDNTO----- ONT DUGGAN JO'-:W- HAWKER S IDOELEY CANAOA L TO TORONTO-- ONT
.ART~ WILLIA~ EOO CORPORATION COLLEGE POINT N Y DULlnK ROBERT W YOUNGSTOWN SHEET AND TUBE to YOUNGSTOWN OHIO
8A1MJRST t YNN L RUST ENGINEERING CO BIRMINGHAM ALA DUN.N JACK T AVCO CORPORATION HUNTSVILLE ALA
81TS(JII 1I1llIAM B JR NASHVILLE BRIDGE COMPANY NASHVIllE TENN DYE DAVID IBM WHITE PLAINS NY
8EAVDliAU DCREEN UNIVERSITY OF WISCONSIN MILWAUKEE WISC EDIE ROBERT STATE UNIVERSITY CF NEW YORK BUFFALO N Y
8ElClltlS S P COLUMBIA GAS SYSTEM COlUI'!BUS 12 OHIO EOWARDS OAVID 0 E I OU PCNT CIRCLEVILLE OHIO
'1EMENT LYlE Ii MALUlRY TlMERStoKPANY INDIANAPOLIS INO -- EDWARDS- OR "'-IrLOYD KANSAS STATE TEACHERS COLLEGE EMPORIA - KAN
8ERNIER J L GREAT NORTHERN OIL COMPANY ST PAUL MINN EIKENBERRY PROF R S UNIVERSITY OF NOTRE OAME NOTRE OAME INO
.E~T AL~ERT GLlbOEN COMPANY JACKSONVILLE FLA ELWElL WALTE« G NEBRASKA WESLEYAN UNIVERSITY LINCOLN NEBR
6EST WIllIAM R VA BICSTATISTICAL RSCH SUPP HIHS III ESCHBAtH CAREL THE UNIVERSITY Of TOLEOO TOLEDO Otim
BICKFORD PAUL OKLA UNIV RESEARCH COMP CTR OKLAHOMA CITY OKLA FIELD A WANNE FIRST AEROSPACE CONTROL SQUAO COLO SPRINGS COLO
BlLUNGH.lM CAROL LEONARO REFINERIES INC ALMA MICH FIELD J A UNIVERSITY OF TORONTO TORONTO 5 GNT
elHI(RICHARD H UNIVERSITY OF WISCONSIN MILWAUKEE 11 WISC SLAn JAMES G PUB UTIL DIST .2 GRANT COUNTY EPHRATA WASti
elOWOUtSl ROY ILL INSI OF TECH CHICAGO ILL FLIESS MANFRED JONES & LAUGHLIN STEEL CORP PITTSBURGH 30 PA
80EIItlIlff "PETEI" MRD GATC NILES III FOOOR JOYCE UNIVERSITY OF WISCONSIN MADISON WISC
.611ftN DAVID A LOYOLA COllEGE MONTREAL QUE FOR<SS LEONARD SUNDSTRAND AVIATION ROCKFORD III
BOWMAN RUTH T E M KLEIN & ASSOC CLEVELAND OHIO FORsrTH D W CONTINENTAL CAN COMPANY CHICAGO ILL
eRIOGFORD ROBERT UNIVERSITY OF WISCONSIN MILWAUKEE WISC I'OSTER t L IBM CORPORATION SAN JOSE CAL
8RI:DSiR DAVID WASHINGTON UNlVERStfv ST LOUIS MISS FOX J BAINE IiIASHINGTON & lEE UNIVERSITY LEXINGTON VA
•• ntAIN ".AUl E U S NAVAL ACADEMY ANNAPOLIS MO IRAI~ING WILLIAM D UPJOHH COMPANY KALAMAZOO .II1ICH
.I~N ROBERT W GENERAL MOTORS INSTITUTE FLINT 4 MICH fRANK DR WERNER BOWLING GREEN STATE UNIVERSITY BOWLING GREEN OHIO
BUCttl.!R DANIEL ANACONDA WIRE ANO CABLE SYCAMORE IllfREOERICK OR KENNIITH J ASBOTT LABORATORIES NORTH CHICAGO . ILL
&UHLIG W' l SPENCER CtiEMICAL COMPANY KANSAS CITY MO fUC~S IVAN UNITEO AIRCRAFT OF CANADA MONTREAL QUE
a~RKEll S B JR PAN AM AIRWAYS PATRICK AFB FLA GolDE EUGENE T ABBOTT LABORATORIES NORTH CHICAGO ILL
aURNS R E AMERICAN WELDING & MFG CO WARREN OHIO ~AGE WILLIAM CARLETON COLLEGE NORTHfiELD MINN
euaRaWS WILlIA~ A DRAVO CORPORATION PITTSBURGH PA SA~lERE CARL KEARNEY & TRECKER CORPORATION WEST ALLIS WISC
CILl~S CLIFFORD L GREENVILLE TEC GREENVILLE SC GAUNa lIENDY IBM CORPORATION MINNEAPOLIS MINN
CAPP' JOAN UNIVERSITY OF ILLINOIS CHICAGO ILL GERMIIN CLARENCE B COLLEGE OF ST THOMAS ST PAUL MINN
CIILICII MIllON E NCRTHERN ILLINOIS UNIVERSITY DE KALB ill GILBERT PAUL NW STATES PORTLAND CEMENT MASON CITY IOWA
CARLSON KERMIT ~ VALPARAISO UNIVERSITY VALPARAISO INO GILBERT PAUL F USAf - lCIC ST LCUIS MO
CAStlN JA~ES C U S AIR FORCE WRIGHT-PAT AFB OHIO GIVENS CLYOE JR NORTHERN ILLINOIS UNIVERSITY OE KALB ILL
IlHERIIUKDR E A CARLETON UNIVERSITY OTTAWA ONT CLANBER HAROLO CARROll COllEGE WAUKESHA WISC
CHRUTJANSON G DOUGHBOY INDUSTRIES INC NEW RICHMCND WISC GOU'SMITH TT LAWRENCE COLLEGE APPLETON WIS
~HRISTOFk RUSSELL E ELECTRIC MACHINERY MFG CO MINNEAPOLIS 13 MINN GCNZAlES RICHARD l BRIDLEY UNIVERSITY PEORIA III
~Hal$.UIIS DONAlD 0 U S NAVAL ACADEMY ANNAPOLIS "'0 GRANT JEAN M J , l STEEL-GRAHAM RES--lAB PITTSBURGH 30 PA
COLE .ESLEY G PIONEER HI-BRED CORN COMPANY OES MOINES IOWA GRAVES EARL CONDUCTRON CORPORATION ANN ARBOR MICH
ceo« lE«'OY l DIV OF RAOIOLOGICAL HEALTH ROCKVIllE MO GREGG ROBERT 0 LINK-BEl T COMPANY CHICAGO 9 III
'O~TEllO DOHALD f WIS STATE COLLEGE OSHKOSH WIS SRJ~BEN CLIFfORD J INDIANAPOLIS POWER & LIGHT CC INOIANAPOLIS IN[
COUCH JOHN 0 KANSAS STATE TEACHERS COLLEGE EMPORIA KAN GRIFfiTH WALLACE CENTRAL MO STATE COLLEGE WARRENSBURG MO
COX ROBERT C HUMBLE OIL & REFINING CO BATON ROUGE LA GUTOUHST HANS ElECTRO-MOTIVE DIY-GMC LA GRANGE ILL
CRUL~ JAMES KiARNEY & TRECKER CCRPORATION WEST ALLIS WIse HAtLOCK ALAk BELOIT CORPORATION BELOIT wise
ea:IERODNIY G [ONSOER TOWNSENO ASSOC CHICAGO IL_L__ .. AGER HAROLD li SfJUTtiEAST MISSOURI STATE COL CAPE GIRAROEAU MO
I)AlTeN CLARENCI H SOUTHEAST MISSOURI STATE COL CAPE GIRARDEAU MO tiAJNAl TlIlOR E TRANS CANAOA PIPE LINES TORCNTO ONT
BAlY JAMeS E DIV OF RADIOLOGICAL HEALTH ROCI<VlllE MO ____ ~tj!!(L~AVlt_A___ LOUISIANA POLYTECHNIC INST RUSTON LA
DANON REBfCC" WESTERN RESERVE UNIVERSITY CLEVELAND OHIO t!A~llTON JAMES R JR IBM ARLINGTON VA

5
•

rJ o (----\
, I

."

o c ~
•

HARtt SlIiPtiEN 8 I8..--------~-~--------P1TTSBURGH---P-A---·--- MASK)~ii FRAhK H PENNSYLVANIA TRANSFORMER DIV CANONSBURG PA
t-!A~US EDIE IB.. CETRCIT MICH .ATHEWS GERALD BELOIT CORPORATION BELOIT WISC
~ATFJELD FREe A LINE .. ATERIAL INDUSTRIES lANESVILLE ChIO MATTt-IEISS PAlL K SUN OIL COMPANY MARCUS HOOK PA
~ATTCRI M KOIC-KEIKAKU STRUCT ENG FIRM TOKYO JAP "ATT~UELLER OCNALC ARMY MAP SERVICE WASHINGTCN DC
-~ELlERN{)RA L ---------~CNSANTO-IfESEARCH"cORP---------M lAM ISBUR~----------oHTO-·· ---- flAUOlIN ttlARLES E' JR -UNIVERSITY CF'-oif[At:iOMA- NORMAN CKLA
~ERS~EY tCLLIN DRAVO CCRPORATION PITTSBURGH PA MAURER ROBERT kESTERN MICHIGAN UNIVERSITY KALA~AZCC MICH
HETHfRINGTONRICHARD UNIVERSITY OF KANSAS LAWRENCE I<AN jc-oONAiO-DAVfDlf- FEDERAL RESERVE BANK MINNEAPOLIS ,..INN
~EW(qT SYLVIA E I OUPONT OE NEMOURS FLINT ~ICH we KEf LOWRY L HOFSTRA UNIVERSITY hE~PSTEAC N Y
~EY~CRTH A UNIVERSITY OF ALBERTA EDMCNTON ALe MC MANIGAl CAVIt F IBM CORPORATICN POUGtiKEEPSIE N y.
H1lL JOHN CARROLL PURDUE UNIVERSITY LAFAYETTE INC - MCCRAW WILLIAM J HIBBiNG AREA TECH SCHOOL hiBBING ,..INN

wItnz ANN --- IBM CCRPORATlCN CHICAGO III MEAGtJER PRClF-JACK R- -WESTERN MICHIGAN LNIVERSITY KALAflAZOC JoIICH
HOLl~EIER RC~ALD J PIONEER SERVICE & ENGINEERING CHICAGO ILL MEIDL RANDOLPH A JOSEPH SCHLITZ BREWING CO MILWAUKEE ~ISC
HOUlE! JOtiN "" CCOPER-BESSEMER CO~------MOUNT"""VERNC-N----C~- iEi.i{j-iE6Ni~- GEOPHYSICS CORP OF AMERICA BEDFCRD ""ASS
MCG~ EVERETT L WAGNER ELECTRIC CORP ST LOUIS MO MERGEN FRANK BRACLEY UNIVERSITY PEORIA ILL
HO •• IGAN TIMCTHY J COOK ELECTRIC CC MORTCN GROVE ILL MILLER EDhARD H R B - SINGER INC STATE COLLEGE PA
HOTC~KISS GARY ETHYL CORPORATION FERNDALE MICH JfI~E DAVE IBM CHICAGO III
IiUGHES NOR'UN L VALPARAISO UNIVERSITY---------VAlPARA1so----~- MORRiSSEy-J - ISM-CORPORATION NEW YORK N Y
IYENGAR SRINIVASA H SKIDMORE OWINGS & .. ERRIll CtJICAGO 3 III MCSC~ETTI JOHN ELLIOTT COMPANY GREENSBURG PA
»aNSEN JOHN H CENTURY ELECTRIC COMPANY ST LOUI S -------~-- MYERS ClARHice- EElI lillY AND COMPANY INDIANAPOLIS 6 INC
JARelNE D A DUPCNT OF CANADA LTC KINGSTON CNT MYLIUS WM G JR RUST ENGINEERING CO BIRMINGHA,.. ALA
JES-.rJ J ts .. CORPORATION CHICAGO III NAIKELIS lJ STANLEY UNIVERSITY OF ILLINOIS CHICAGO ILL
JOR~fNSEN OCt DRAVO CORPORATION PITTSBURGH PA NAYLOR R W SPENCER CHE .. ICAL COMPANY KANSAS CITY MO
MALLE~ C L UNIVERSITY OF SASKATCHEWAN SASKATCHEWAN CAN - --- NElSCN-MARviN-l--------DAWES LABORATORIES INC CHICAGO 32 ILL
KA'.~E FRAN~ WHEATON COLLEGE WHEATON ILL NEUHAUSER VINCENT E LUKENS STEEL COMPANY COATESVILLE PA
ICAUFltAN MARV·IN UNIVERSITY OF MISSOURI COLUMBIA "0 'iEWBERYCRAC-R-- UNIVERSITY OF ALBERTA CALGARY ALB
_IUU E.DWARD H AMERICAN CYANAMID BOUND BROOK N J NEWTCN LAWRENCE E ,. 0 ANDERSON HOS&TUM INST HOUSTON 25 TEX
KELE~AR BRANf IBM BIRMINGHAM ALA ~ICELEY JOHN B RICHLAND TEC~ EDUC CENTER COLU~BIA S C
KfL~ER DR RCY UNIVERSITY Of MISSOURI COLUMBIA ~O HOlLE HENRV J RCA SERVICE CO COCOA BEACH FLA
.ELlMAN SIDNEY NAVAL AIR ENGINEERING LAB PHILADELPHIA 12 PA .. oENVf BERNARD UNIVERSITY OF MANITOBA WINNIPEG 19 MAN
KEaR H e TENNESSEE POLYTECHNIC INST COOKEVELLE TENN HeRBV RALPH LIN~-BELT COMPANY CHICAGO 9 ILL
KIEN DR GERALD NORTHWESTERN U MEOICAL SCHOOL CHICAGO ILL ---NCRTHiM-jA~- UPJC~N COMPANY KALAMAZOO MICH
KLATSKY $TEP~EN S ERIE MINING CCMPANY HOYT LAKES MINN ONEIL R T AMERICAN OIL CO .. PANY WHITING INC
.OLLE~ E PULP , PAPER RES INS OF CAN ,.CNTREAL 2 QUE eRLCfF ~llTON J GENERAL .. OTORS INSTITUTE FLINT MICH
KRaFT DON ELECTRO-MOTIVE DIV-GMt LA GRANGE ILL OTTC FREDERICK,. CLARK OIL' REFINING CO BLUE ISLAND ILL
KaUPaA ~ M CONTINENTAL CAN COMPANY CHICAGO ILL ~Ei DAYIC--'- MIAMI-DADE JUNIOR COllEGE MUMI FlA
AANeE ROIERT G AUTOMATIC ELECTRIC LABS NORTHLAKE ILL
lARCADE GfORGE A HAlliBURTON CCMPANY DUNCAN OKLA

PACt-ION HEBEJTO AUTOMATIC ELECTRIC LABS NORTHLAKE ILL
'.i~j"R-- P G POLYMER CORPORATION LIMITED SARNIA ONT

lAWRENCE DEAN W MID~EST RESEARCH INSTITUTE KANSAS CITY 10 Me 'ARKE~ CHARLES 0 GENERAL MCTORS PROVING GROUND MILFORD MICH
lEE DR J A H QUEENS UNIVERSITY KINGSTON ONT PAR~ER S THO .. AS KANSAS STATE UNIV MANHATTAN KAN
lEE E S UNIVERSITY OF TORONTO TORCNTO 5 ONT
l.ElC~US RICHARD IB.. NYC NY

.ARKER ROBERT NORTHERN ELECTRIC OTTAWA ONT
---- PATERSON A R IBM MONTREAL QUE

lEII£~ GECRGE E ERIE MINING COMPANY HOYT LAKES MINN PAUL RO.ALD STANDARD OIL COMPANY CLEVELANC OHIO
lElav DAVID P IBM CORPORATION NEW VORK CITY N Y . --'E-R-Ct:C(J-- G IB .. CORPORATION WHITE PLAINS N Y
lITTEll. DR ARTHUR S WESTERN RESERVE UNIVERSITY CLEVELAND OHIO 'ETRA80RG JARROLD LINK-BELT COMPANV CHICAGO 9 ILL
lOGAN S WM P R MALLORY & CO INC INDIANAPOLIS IND 'L~ GEORGE MC DOWELL-WELLMAN ENG CO CLEVELAND 14 OHIO
.OGUE W E AMERICAN WELDING & MFG CO WARREN OHIO .CORE JESSE H JR LOUISIANA POLYTECHNIC INST RUSTCN LA
LOHREY JOHN GIDDINGS & LEWIS MACH TOOL CC FOND DU lAC WISC foifn.i"N-cTiC[--- ~UMERICiI-cONT&CCMP SERVICES CLEVElAND OHIO
tONG JULIA ABBCTT LABORATORIES NORTH CHICAGO ILL 'RATT RIC~ARD L AIR FORCE INSTITUTE OF TECH WRIGHT-PAT AFB OHIO
aD", PHll IBM KANSAS CITY 1'40 iRiTl-Hc.;A~------- TU--STAlE COllEGE ANGOLA INC
.ONGIAN JACK WESTERN MICHIGAN UNIVERSITY KALAMAZOO ,..ICH .URCELl P~ILIP LEONARD REFINERIES INC AL .. A MICH
tYNCH MARY LIZ IB.. CLEVELAND OHIO .URCELL AtA~ V LNIVERSITY OF WISCCNSIN MADISON 6 WISC
aAAS ALlERT C GREEN GIANT COMPANY lE SUEUR MINN ~AAI PAUL V ALLEN-BRADLEY COMPANY MILWAUKEE WISC
.ACDONNEll L M ROYAL MILITARY COLLEGE OF CAN KINGSTON CNT RAFAEL IAN LECN A CO NT AVIATION & ENG CORP DETROIT MICH
aAGEE ROLAND H THE MAGNA VOX CO .. PANY FORT WAYNE IND RECT~R ROBERT R LCUISIANA POLYTECHNIC INST RUSTON LA
IIANleTES VR JOHN PURDUE UNIVERSITY HAMMOND INO -~EjiiH DAVID H NATIONAl LIFE & ACC INS CO NASHV IUE TENN
IIAR.NUlI RICHARD SlATE UNIVERSITY OF NEW YORK BUFFALO N Y REITER NED SEWS REG PLAN COMM WAUKESHA WIS
.AIK£VICH ERNEST UPJOHN COMPANY KALAMAZOC MICH ~ESU EDWARD V IBM SAN JOSE CAl
aARQtJARDT ROSERT " fIICNSANTC RESEARCH CORP MIAMISBURG OHIO
~RTIN ~ATHlEEN UNIVERSITY OF CINCINNATI CINCINNATI 21 CHID

RICK.OND EUGENE L JOSEPH SCHLITZ BREWING CO MIL~AUKEE wise
.. RClfiN-SCNC--G-----------[)U-ptNTcyCANADA LTC KINGSTON ONT

L __ _ {)
- - -.-.--.-.---.--------~~~~~~

RO!JMSONROlfRT J MARQUETTE UNI\!
ROEotl LT GEtRGE L FIRST AEROSPACE CONTROL SQUAt
«OSS IICHARD 0 UNIVERSITY OF MISSISSIPPI
RUG.. J "ALMER E I DUPONT DE NEfolOURS
SANDEIS PAUL G ABBOTT LABORATORIES
'ANtILLI A J NATIONAL STEEL CORPORATION
SCARLEtT JOliN C SURFACE COfllBllSfION DIVISION
~CH.TZ NATHAN NAVAL AIR ENG LAB
ICHAUSS CHARlES E If S WEATHER BUREAU
SCHERII MATHIAS E PIONEER SERVICE , ENGINEERING
SCHElTL--eRRTCHAjD C SOUTHERN ILLINOIS UNIVERSITY
SCHROEDER R08ERT l H F CAMPBELL COfilPANY
S-U),fH CARMIN J IBM CCRPORATICN
ICOIT EDWARD E LU~ENS STEEL COMPANY
SEIIII JOHN IBM CORPORAlION
SHANAHAN GREGORY J CECO STEEL PRODUCTS
'HIEDY PAUL J CLARK OIL , REFINING CO
SHIOUIA NORIO UNIVERSITY OF ILLINOIS
'IJUIIC)NSttAIC[O If CLAR~ OIL , REFINING CORP
SMalTZ HUIIERT J DE PAUW UNIVERSITY
IJIlW-WILI!ORN H AIRI!DRNE INSTR LAB
'MI." N8EL T INDIANA STATE COLLEGE
'M'lH I.YAN NCRTHERN ELECTRIC
,MI.MJY G UNIVERSITY OF TORONTO
10C.S IT--- IBM CORPORAT ION
SOL~. LtJUIS NATIONAL LEAGUE FOR NURSING
I".lkl.' GA-RY ..- UN I VER S ITY OF OKLAHOMA
nfHR ~EC.GE R UNIVERSITY OF WISCONSIN
.'ftll LAURA B GENERAL MOTORS INSTITUTE
"IJ~A1DT NICHOLAS INDIANAPOLIS POWER' LIGHT CO
IfUltIIWTCH-J R ROCICFORD 80 Of EDUCATION
"DNE J I!M CORPORATION 5' ... Y~rC-- SOUTHDA~OTA STATE COLLEGE
.'U-'E C CLINnlN JR SEUllT CORPOUlION
'IROWSE E I COLUM81A GAS SYSTEM
.lYLIS JIf'MU C JUNIOR COllEGE Of BROWARD CY
5UlL1VAM RONALD A CANADA DEPT OF AGRICULTURE
.. CICO CHARLES U Of P.D SCHOOL OF MEDICINE
.AIA.TO DCNALD CARLETON COLLEGE
JAYLOR DUN JR U S NAVAL ACADEMY
TEtRER ALBERT HOFSTRA UNIVERSITY
TE.aJ£~ICZ GEO AMERICAN AIRLINES
THaYER RAYfIICNDJ LINE Jl!ATERIAL INDUSTRIES
]:tUft. c".nE AN.. IBM
JHOMAS IO!ERT J DE PAUli UNIVERSITY
T~OM.S IICHARD B FIDERAL RESERVE BANK
ft4C)".IO.~AJCR IVAN I SCHOOL OF SYSTEMS , lOG I STICS
IHOM'~N GEORGE ETHYL CORPORATION
THURSTON A 14 IBM COMPlNY LIMITED
lRANJU" JOHN MRD GATC
, •• ~. ~ARD 8 AMERICAN OIL COMPANY
TREY1NDJCSE INSTITUTO TECH DE MONTERREY
~CK HARVEY R IBM
{JlJCNR liE SOUTH DAKOTA STATE COLLEGE
,.,aEY.JA"ES LJI J R AHART INC
J~aNE.ROWALD R LANSING BOARD OF EDUCATION
WlIAa CHARLOTTE A IBM
VANSEN RICHARD J CGNT AVIATION & ENG CORP
VANS ICICLE GfCRGE INDIANAPOLIS POWER & LIGHT CO

9

rJ

MILWAUKEE
COLO SPRINGS
UNIVERSITY
fLINT
NORTH CHICAGO
WEIRTON
TOLEDO 1
PHIlA
WASHINGTON
CHICAGO
CARBONDALE
DETROIT 10
CHICAGO
COATESVILLE
MIUiAUKEE
CICERO
BLUE ISLAND
CHICAGO
BLUE ISLAND
GREENCASTlE
MELVILLE
TERRE HAUTE
OTTAWA
TORllNTO 5
CHICAGO
NEW YORK
NORMAN
MILWAUKEE
flINT
INDIANAPOLIS
ROCKFORD
WHITE PlA INS
BROOI<INGS
BELOIT
COLUMBUS 12
FT LAUDERDALE
OTTAIiA
BALTIMORE
NORTHFiElD
ANNAPOLIS
HEMPSTEAD
FLUSHING 11
lANESVILLE
CLEVElAND
GREENCASTlE
MINNEAPOLIS
DAYTON
FERNDALE
TORONTO
CHICAGO
WHITING
MUNTERREY
DAYTUN
BROOKINGS
DAYTON 6
LANSING
ST PAUL
DETROIT 15
INO UNApOLI S

WIS
CeLO
~ISS

MICH
III
WVA
OHIO
PA
o C
III
III
MICH
III
PA
WIse
III
III
III
III
INC
NY
INO
ONT
CNT
III
N Y
Ol<lA
WISC
MICH
IND
III
N Y
SOAK
WIS
OHIO
FLA
ONT
~o

MINN
MD
N Y
N Y
OHIO
OHIO
INC
MINN
OHIO
foiICH
ONT
ILL
INO
MEX
OHIO
SOAK
OHIO
MICH
MINN
MICH
INC

--_._- -_._._-----

VERYAERT JCtih
\/ICI< E
YIDEeECI(CR RIC~ARD
VRCOtl I< E
WALKER -OChALC--C
WANG JAf(ES C
WAYBRIGHT GLENN E
WEBER HEINZ C
WEiDEP.AN kILLlA ..
WESTERMAN E A

-WHEATlEY CR-J--
WHEELER H T

--------WIGCAtlL AllEN -B-~-

o

1IilGtn'AN 'AItV G
IILHEL. JACCUElYN
IriILLUJI!S C R
'IL~HCfF ~E~NET~ F
'ItS~N RCEERT
klNI<. ANNA T
Ii~Ot F W
~OCDS ARTHUR P JR
tiDDt' S,TANLEY W
WODlIonH J A
IfIRlGtlT DONALD L
IAct.1 IU~A IR A
IA"A~URA E A
IANAGISAIiA HARUC
IAHN JULIA
IU~E LOIS

BELOIT CORPORATION BELOIT WISC
DOUGHBOY INDUSTRIES INC NEW RICHMOND WISC
UNIVERSITY OF MISSOURI COLUMBIA MO
PULP & PAPER RES INS Of CAN MONTREAL 2 CUE
DRAVO CCRPORATION PITTSBURGH PA
TUSKEGEE INSTITUTE TUSKEGEE ALA
RUST ENGINEERING COMPANY PITTSBURGH PA
SURVEYER NENNIGER & CHENEVERT MONTREAL 25 QUE
.. ARCUETTE UNIV MILWAUKEE WIS'
JOHN ~ORRELl AND COMPANY OTTUMWA 10hA
CUEENS UNIVERSITY KINGSTON ONT
CARLETON UNIVERSITY OTTAWA CNT
AlLEN-BRACLEY COMPANY MILWAUKEE WISC
HEWITT ASSOC LIBERTYVILLE III
THE UNIVERSITY CF TOLEDO TOLEDO OHIO
DOW CHEMICAL COJl!PANY HOUSTON TEX
THE MAGNAVOX COMPANY fORT WAYNE IND
JEFFERSON CITY PUBLIC SCHOOLS JEFFERSON CITY MO
INDIANA STATE COLLEGE INDIANA PA
NATIONAL TECH CORP WEIRTON WVA
ARMCO STEEL CORP MIDDLETOWN OHIO
STATE HGWY COMM OF WISCONSIN MADISON WIse
DOW CHEJI!ICAL COMPANY HOUSTON TEX
GEORGETOWN UNIVERSITY WASHINGTON D C
RAlSTllN PURINA COMPANY ST LOUIS 8 MO
DUPONT OF CANADA LTD KINGSTON ONT
CONTAINER CORP OF AMERICA CHICAGO ILL
MCDONNELL AIRCRAFT CORPORATION 5T LOUIS 66 MO
VA HINES HOSP-BIOSTAT RES DEPT HINES ILL

•

c

A Relocatable Program1Dg S7llta

A relocating usembler tor the purpos. of this di.cuadOll i. on. which

usemblea a program in such a form that it 11&1' be placed aJl1Vhere in memory

at load time, i.e. the program does Dot have to be re-usembled to change its

O1"ig1D. 'lh1e bas been accanpl1ahed in the put by lWlualq placing flags on the

digits of the op-code 01" by using origins greater than the machine siz.. 'lbe

author t1Dd8 that these systems haTe dafini te disadvantages and has decided on a

system in which each operand (either instruction or IBA) carries with it a s7lltem

assigned relocating tag which determines its relocatabUl ty status.

.An as".bler which produces a relocatable object deck should be of much use

in progr ... employing sutroutines (Fortran, SPS) or in systems of programs.

The ~-SPS system which should be in the library by June of 1964 consists of

essentially a 3 pus Systeml Two assembly passes and one canpressing pus. 'lbe

as.lIIlblT PUHs mq be batched as 111&7 the CCIIIpressing pas ••

The lain disadvantage of the s7lltem 18 the increased sise of the object

deck.

The following pages ':oaken fran the program wri te-up f'urther .erve to explain

the 171- and its use.

"

Micbael Dcrl
IDgineer1q Caapat1nc LaboratorT
Univeraity of Wiscoasin

5-5-64

~ ~-j

.ll..t!.!.:
Author:

~:

~Group ~:

Proqram~

R_SPS

Michoel Oorl
Engineering Computing Leboratory
University of Wisconsin

1-1-64

)155

!ll.!:!£.!. Inquiries 12: Prof. C. H. Oevidson
Director,

Descrio t lon/Purpose

Engineering Computing Leboretory
University of Wisconsin
Medlson, Wisconsin 53706
Phone 608-262-3892

~

R_SPS provides the copebility of relocetlng ordlnery SP5 progrems et
load time. The assembled decks which it produces ere reloceteble in the
full sense of the word. The system provides the programmer with complete
control over the reloceting featUre, either through menu/ll intervention
or through progromming. In eddition error checking has been expanded
and essembly speed Increosed.

Sped fi ce t Ions

Storeqe:

EquIpment:

40 K or lerger (self-edjusting)

a) Cerd system
b) Autometic divide
c) Indirecteddressing

The eutomatlc divide feature is used only to process one seldom used
Instruction (NORG). Thus the Auto-dlvic:e restriction could be easily over
come by not usIng that Instruction.

The program connot be used on e 20 K maChine.

Proqram language U _5PS

L"nguage ~.l!!. !:::..l.!.!-!::£. Engi ish

~
AI though UW_SPS is not In the programming I ibruy, iT is qui te simi lar

to R_SPS (see write_up). Copies are available upon request from the author.

12.

J'b.

Table of Contents

~ labelli-ng ~

Program ~-,!;!£

General Data

Introduct ion

Input Fonnet

S ta temen ts (t ypes)

Special Ch~racters

~

Processor Instructions and Declarative Instructions

Processor Instructions, Examples

Machi ne Ins truct ions

Error'S ••••••

Table of Op_Codes

Tab I e· of Errors

Output Format

Operating Instr~ctions

.~ Cards ••••• ',.

Importent Ador-esses

!:QZ~ •••••

~'"" ~-)

13

1

2

2

2

4

8

8

J.1

9

12

15

P

16

17

17

Pr-ogrem ~:

~:

Pr-ogremmer:

Progr-am ~_.!:!£.

~Qill.

R-SPS

.-Michael Dor-I
Eng I ,',eerl ng Comput i ng Leborator-y
University of Wisconsin
:toed ison, Wi scons in
Phone 608-~62-J892
User Code 3155

~ Conf i gu r-a t i<ln Regu ired

Progrem Developed ~

a) Card rio
b) 40 K or more
c)
d)

a)
b)
c)
d)

Indirect addressing
Aute-divide

1620 NOO 1
Card I/O
Indirect addressing
60 K

e) Auto_divide

Programm i ng Sys tem Used ~ Devel 00men t

R_SPS was assemb I ed us i ng an R_SPS assemb I ed by UW_SPS. AJ though
UW_SPS is not in the progrem library, it is quite similar to R_SPS.
Copies of UW_SPS may be obtained from the author.

The final form of R_SPS 15 e dumped deck. The dumper is also availa
ble from the author.

In t roduc t ion

R_SPS Is a !!elocetable 2.ymbol ic ~rogr-arrrning 2.ystem. It gives the pro_
g,..,,~mer much more complete and ecsy control over the loading and relocating
operation than any of the sever-a I other- systems available for the 1620. The
aecks whiCh it produces can be r-e,ocated at load time under complete contr-ol
cf the prograrrrner. In edditioro, assembly I)as been speeded up by e random
symbol table store and recovery technique so that the assembler is r-eader
bound dur i ng pass 1 and punch bound dur i ng pass 2.

In the following discussion it is assumed thet the reader is familiar
-,,' th the use 0: 18/,\ SPS and the SPS Reference Manuel (IBM 1620/1710 Symbol ic
;o"-ograrrrning Sy: .. .,m __ C 26-5600).

14

-\

0

t:..
_ 2 _

~~~ 

Two separate card input formats are provided. 

1) UW_SPS forma t 

columns 7-12 for label 

columns 14-17 for instruct ion 

columns 19-77 for operands and comments 

2) IBM SPS forma t 

columns 6-11 for label 

columns 12-15 for ins t ruc t Ion 

columns 16-74 for operands end comments 

The author bel ieves the UW_SPS format to be superior in that all three 
fields are sep~rated by'at least one blank on the card, permitting consistent 
skipping to the beginning of each new field during keypunching. 

Note that the IBM SPS format is modified sl ightly in that columns 16-74 
are avai lable for operands and comments, rather than columns 16-75. 

Use of either card format is at the option of the user. The assembler 
recognizes both types as legal, and they may be intermixed in the same pro
gram. 

Columns 1-5 are available for card identification under both ~ard for_ 
mats; however these columns will not appear on the object listing. Since 
column 6 is used in determining the card format, its use is prohibited for 
other than label field under IBM Format. 

Columns 78-80 for UW_SPS Format and columns 75-80 for IBM SPS Format 
are also available for card identification. 

Statements 

Statements are of three types: 

1) Processor Instructions, which give the assembler certain commands, 

2) ,\Ioacr,ine Instructions, which are translated to actual Machine oper_ 
at ions, 

3) Declarative Instructions, which tell the processor to set aside 
certain work areas or set up actual constants to be used. 

Special Characters 

The "', ., and i are used f or spec i a I purposes In R-SPS. 

15 

~ 
,,--.~ f!"tJ 

- 3 -

The @sign is used to Call for e r~cord merk to b~ incorporeted in 
either a declarative operetion or in the P or Q field of an inatruc_ 
t ion. 

If an@slgn is used in a declarative operation it must appeer as 
the last character in the constant. For example, 

x DC 
DC 
DC 
DAC 
DACF 

3,0)1} 
2,~ 
1,~, * 
2,,, 
2,,.. 

In the DAC and DACF instruction only terminal ~ signs generate re
cords marks. 

In the case where a label is attached to a DC with anct sign, the 
address assigned to the label will be the address of the record merk. 

The~sign :nay be used to generate a record merk.in position P6 or 011 of an instruction: 

TOM 
8 

A = 15000 
A,~ 
fI' 

15 15000 0000* 
49 0000* 00000 

The ~ will be translated as a record mark in po~ition P6 or Q
11 

respectively; however the ~when used In this way must appear alone. 

The * when usee f or address adjus tmen t ref ers to: 

1) the last assigned address when used in declarative or pro
cessor Instructions. 

2) the address of the Instruction in which it is used. 

The * is treated as a relative address. 

The $ sign is used to call for a symbolic address under a given 
head character. For example, 

A$HI 

refers to HI headed by A. 

Operands used in instructions, for length definition, or for assigned 
addresses may be of the followIng form. 

+ A + B + C + D 

Up to four terms may be included and may be added or subtracted as 
indicated. No mul t iol icatlon is allowed. 

The dollar sign may be used to generate a group merk at the end of 
a numeric constant in the same manner as an~ sign. 

tf, 

" 



_ 4 _ 

The rules which determine wnether en operend is reloceteble (end 
therefore must ~e chenged duri~ loed time) or absolute ere given below: 

1) The s~ or dlffereace of two ebsolute quentities is absolute. 

2) The s~ or difference of en ebsolute end e relative quentity 
is relative. 

:» The difference of two relative quantities Is absolute. 

4) Calling for the sum of two relative quantities is Illegal. 

The sign of a relocateble operand is preserved at load time, for 
onl y its .. gn i tude is increased by the re I oce t i ng v~c·tor. 

Processor ~ Declarative Operations 

In deClaratiye operations, labels or Symbolic addresses may be es
signee .. in 130\\ SPS; tlQwever, the relocating of such e lebel :s deter
.inect by it. assigned address according to the following rules: 

1) An integer address is absolute and meke~ the essocieteo lebel 
absolute. For .. .-.pIe, in 

A OS 2, 807 

A will be teken as equivalent to an absolute 807 wherever 
it appears. 

2) A Sytnbolic acfdress 9iY" its relocltebi I ity to the lebel. If 
Q is en absol-ute quantity and Z is a relat ive Quant i ty then 

In the following stetements 

A OS , Q 
AA OS , Z 

A will be absolute and AI. will be relative. 

:» A processor-ass i gned address is re Ie t i yeo 

e.g. A OS 2 

In the Declarative Operations which follow all constant lengths must 
be absolute. 

Q£,~~~.~ 

These pseudo-operations define storoge in exactly the some wey as 
described in the IBM 1620/1710 SPS Menual. The sole difference is thet 
if comnents are included without assigning an address to tne constent 
end if the assigned eddress field consists of several blanks, the pro
cessor does not take the address to be zero but rather assumes it to be 
0lIl1 tted. 

Slenks must not eppeer In the middle of a numeric constant. 

17 

t- "', 

- .5 -

DACF (Qefine ~Iphabetic fonstant flagged) 

This pseudo-operation performs the same function as does the OAC, 
except that elphabetic pairs appear with their high order digits flagged. 

DSC, ~, DSB 

These pseudo-operations are not available in R-SPS. 

DORG 

This pseudo-operation is used es described in the IBM 1620/1710 
Menuel. Although its operend may be either ebsolute or reletive, it 
is treeted es rel,dive. 

~ 

This pseudo_operetion is used to define the end of e R-SPS program 
; , optionelly to specify the locetion et whiCh it rs to begin. The 

beginning eddress mey be either reletive or absolute; if reletive the 
relocating vector will be ed,ded to it et loed time. Whenever 'this 
operation is used control is teken from the loeder and pessed either 
to the specified eddress or to e "Helt; BranCh-te-zero" peir. This 
operation does not cause the erithmeti'c tebles to be includeo in the 
Object proS;;;;.-

~ (~dify Q!!i~in) 

This operation is used to set the next assigned address register to 
the next lerger multiple of the operand. The operend which must eppeer 
must elso be absolute, non_negetive, and non_zero. 

This operatiQn is especielly useful {or sterting tebles et even 
multiples of 10, 100, or 1000. It should be kept in mind thet the re_ 
locetlng vector will. influence the velue of the lest assigned eddress 
at load time. 

It is for this operetlon theteutometic divide hordwere is required. 

LOAD (Punch LOADer) 

The R_SPS system employs e relocatable loeder which must be called 
for. The stetement: 

LOAD X 

causes the loader to be incorporated in the object deck in such a form 
thet its first digit will be X. The operand ~st be ebsolute, or mey 
be omitted. If the operand Is omitted the beginning digit of the loader 

18 

/ .. 



o 

- 6 -

must be supplied from the console typewriter at loed time. The operation 
also causes the add table to loaded. 

This feature makes It possible to load Pllrt of the program from e 
loader at position X end loed another part from e loader et a different 
position Y. It should be remembered, however, thet incorporetion of e 
second loader destroys all old values of Relocating Vector and the next 
Load Address. The loeder occupies 1220 digits. 

The instruction mekes it possible to assemble e program in perts 
while including pnly one loader in the final deCk. 

~ (Set i!elocating Yf,£tor) 

This instruction is used for specifying the value of the relocating 
vector at assembly time. The operation 

RVEC 10184 

causes location 99 to be filled in with 10284 at load time. This in_ 
struction has no effect on the last assigned address register. The 
operand must be absolute. The relocating vector is initially set to 1000. 

TABL (Punch ~e) 

This instruction, which requires no operand, causes the arithmetic 
tables to be punched out. The add table is loaded along with the loader 
but the multiply table is not; thus if any use is made of the multiply 
table this cO!lTlland must be given. 

.!:!E.Q (.!::!.SaQ) 

This Instruction is used as in IBM SPS. The heading character may 
be either alphabetic or numeric. 

~ 

The pseudo-ap 

LINK A,B,C,D,E,F 

is used to pass control at load time from the loader to a program which 
has either been loaded previously by the loader or to a program originally 
in core. 

The A operand, which may be a relocatable symbol, is the address 
to which control is to pass. The e, C, D, E, and F operands serve 
as identification fields, and ere available for use by the user's pro
gram. Upon reading the cerd at load time the following fields are in 
core. 

II} 

c c 

- 7 -

locetions 95-99 
I oce t Ions 90-94 

I ocat ions 85-89 

locet ion 84 
I ocet ions 26-30 
I ocet Ions 43-47 

locet ions 4$-62 

Upon fil ling in these areas, a 
control to e type six card at zero. 

Present Relocating Vector 
The memory address into which 

the next digit of an in_ 
struction will be loaded. 

The address to which a branch 
must occur to pass control 
beck to the loader. 

A zero. 
A 

The I as tass i gned address re
gister at the end of pass 1 • 

The operllnds 8, C, 0, E, f 

8 to 0 is executed thus transferring 
(Site Output FOnn8t). 

This cerd relocetes the A operand if necessary and transmits con_ 
trol to the address A via a 8T A, A_I. After the user has modified 
any of the ebove constants which are required, control may be passed 
back to the loader via a 8 to -89 or SS Instruction. 

The single digit at location 84 is a switch which controls whether 
or not the program following the LINK instruction is to be loaded into 
core or ignored. If location 84 contains a zero the program following 
the LINK statement down to the next LINK statement will be loeded; if 
on the other hand location 84 is set to a flagged"one the program following 
the LINK statement down to the next LINK statement will be ignor~d by the 
loader (although the cards will be sequence checked). 

It should be noted that the loader does not relocate the operand's 
B _ F • 

!!:!Q 

This instruction, which also requires no operand, Is to define the 
end of an R_SPS program without halting the loading operation. This in
struction is used to end pert of a fragmented program which is to be 
loeded as one piece. " 

2.0 

..... 



A) 

_ 8 _ 

Ex~mples of Use of Processor InstructIons 

This example ShQ~S how lINK might be used to type a progrem name on 
the console typewriter after the first few cards have been loaded. 

TYPE 

COMl 

lOAD 
RYEC 
DORG 
ReTY 
WATY 
BB 
DORG 
DAC 
LINK 

30000 
o 
.50000 

COM1 
,,, (B -89 would also dO). 
*-9 . 
l3,PROGRAM NAME ~ , 
TYPE 

B) This program shows how LINK could be used to read the relocatIng vector 
for a program from the typewriter. 

LOAD 55000 
RVEC 1000 

START ReTY 
WArY MESSA 
RNTY 95 
Bc4 *-::;6 
SF 95 
eM 99,0 
8N START 
B -89", (OR B8) 

MESSA DAC 6,RVEC-., *-2 

~ Instructions 

Any of the symbolic operatIons in the following table may be used and 
are trensle7.:d es shown. In addition nunieric op-co<les in the operation field 
are recognhed providing that only two eppear and ere left justified. four 
new operet io:-,s, 

TON _ Turn ON 
TOFF _ Turn OFF 
BON _ BranchON 
fJOFF _ ~ranch OFF 

ere Included. They are .. ed es switches as explained below. 

2.1 

rJ 
~ 

r{j 

- 9 ... 

It Is often convenient to remember .. past condition by setting a two 
way switch to either a zero or 'lagged one, and then testing it at SOIN 

later time with either a BNF or BO Instruction. The use of the four new 
Instruct Ions is equ iva I ent to the following 01 d i nstruet Ions. 

TON 
TOFF 
BON 
BOFF 

ADSW 
ADSW 
Z,ADSW 
Z,ADSW 

TOM 
TOM 
BMf 
BO 

ADSW,O 
ADSW,_l 
Z,ADSW 
Z,ADSW 

A symbolic label associated with an Instruction is a relatlYe 
quont Ity. 

The flag operand is used as in IBM SPS with one exception. Blanks 
mey be inc I uded in the fI ag operand to set epert Its vari ous perts. 

e.g. 0 1 10 

However a pair of characters cannot be connected across a blank. 

e.g. 1 0 is IIlegel 

10 is legal' 

TABLE 

TABLE OF ALLOWABLE MNENONIe OPCODES AND THEIR 1620 EQUIVALENTS 

A 21 xxxxx XXXXX 
AM 11 XXXXX XXXXX 
B 49 XXXXX XXXXX 
BA 46 XXXXX 01900 
BB 42 XXXXX XXXXX 
BCl 46 XXXXX 00100 
BC2 46 XXXXX 00200 
BC::; 46 XXXXX 00:300 
BC4 46 XXXXX 00400 
BD 43 xxxxx XXXXX 
BE 46 XXXXX 01200 
BH 46 XXXXX 01100 
B I 46 xxxxx XXXXX 
Bl 47 xxxxx 01)00 
BlC 46 XXXXX 00900 
BMf 46 xxxxx 01600 
B~~ 46 xxxxx 01700 
BN 47 XXXXX 01)00 
BNA 47 xxxxx 01900 
BNel 47 XXXXX 00100 
BNC2 47 XXXXX 00200 
BNe::; 47 XXXXX 00)00 
BNe4 41 XXXXx 00400 

22 

oJ 



o ~ ~ t 

- 10 - - 11 -

BriE 47 XXXXX 01200 
9NF 44 xxxxx xxx xx 

5 22 XXXXX xxxxx 
SF 32 xxxxx XXXXX 

3NH 47 XXXXX 01100 

BN! 46 xxx xx XXXXX 
5,\\ 12 XXXXX XXXXX 

BNl 46 XXXXX 01300 
SPTY 34 XXXXX 00101 

BNlC 47 XXXXX 00900 
TBTY 34 xxxxx 00108 

BNME 47 XXXXX 01600 
TO 25 XXXXX xxxxx 

BNNO 47 XXXXX 01700 
TOM 15 XXXXX xxxxx 

BNN 46 xxxxx 01300 
TF 26 xxx XX XXXXX 

BNP 47. XXXXX 01100 
TFM 16 xxx XX XXXXX 
Tl'iF 7J XXXXX XXXXX 

BNR 45 XXXXX xxxxx 
BNRO 47 xxxxx 00600 

TNS 72 XXXXX xxxxx 

BNV 47 xxxxx 01400 
TOFF 15 XXXXX OOOOJ_FLAGGEO ONE 
TON 15 XXXXX 00000 

BN'M> 47 xxxxx 00700 TR 31 XXXXX XXXXX 

BNZ 47 XXXXX 01200 
BOFF 43 xxxxx XXXXX 

WA 39 XXXXX XXXXX 

BON 44 XXXXX XXXXX 
WACO 39 xxxxx 00400 
WNTY 38 xxxxx 00100 

BP 46 xxxxx 01100 
BRO 46 XXXXX 00600 

'liN 38 XXXXX xxxxx 

BT 27 XXXXX XXXXX 

WNCD 38 xxxxx 00400 

BTl ... 17 XXXXX XXXXX 
WATY 39 xxxxx 00100 

BV 46 xxxxx 01400 
SK 34 xxxxx X07)(l 
ROGN 36 xxxxx X07XO 

BWO 46 XXXXX 00700 
BZ 46 XXXXX 01200 

WOGN 38 XXXXX X07XO 

C 24 XXXXX XXXXX 
CDGN 36 xxxxx X0701 

CF 33 xxxxx XXXXX 
RTGN 36 xxxxx X0704 

CM 14 XXXXX XXXXX 
WTGN 38 XXl(XX X07X4 

0 29 xxxxx xxx XX 
CTGN 36 xxxxx X07x5 

DM 19 XXXXX XXXXX 
RON 36 xxxxx X0702 

ON 35 XXXXX XXXXX 
v.tlN 38 xxxxx X07X2 

ONCD 35 xxxxx 00500 
CON 36 xxxxx X07XJ 
RTN 36 xxxxx X07X6 

DNTY 35 XXXXX 00100 
H 48 xxxxx xxxxx 
K 34 xxxxx XXXXX ~ 
LD 28 xxxxx xxxxx 
LOM 18 XXXXX xxxxx In the course of essembling e progrem, verious error conditions cen 
N. 23 xxxxx XXXXX erise es Illustreted in the following teble. 
MF 71 XXXXX xxxxx 
lIN. 13 xxxxx xxxxx 
NOP 41 XXXXX XXXXX 

Afte~ encountering en error condition the essembler types out en error 

RA 37 XXXXX XXXXX 
code, e I rne ~umber es referred to the lest lebeled stetement, end e copy 
of the offendrng stetement. The mechine then helts. 

RACD 37 xxxxx 00500 
RATY 37 XXXXX 00100 
RCTY 34 XXXXX 00102 

Depending on the setting of console switches one end two, the error 
Is treeted as shown below when the stert key Is depressed: 

RN 36 XXXXX xxxxx 
RNCD 36 xxxxx 00500 
RNTY 36 xxxxx 00100 

Switch 2 on __________ errors ere ignored 
Switch 1 on __________ stetements in which errors 

occur ere treeted as NOP·s. 

23 
24 



12 -

If the user elects to NOP en instruction in which en error occurs, 
the listirg of the progrem conteins e comment that the error h~s occurred 
in place of the mnenonic instruction. 

If switches 1 end 2 are off the assembler expects a corrected state_ 
ment to be entered from the console typewriter •. The statement is read Into 
the cleared input_erea. Correct processing can not be assured if more than 
80 charac ters are typed. 

If an error in typing is made, the user can recover via console switch 4. 

Addltionel ~ 

Three additional error conditions can occur which are not treated as 
~~~ 

1) If the program is loaded in e 20K machine the comment "MACHINE
TOO SMAll" wi'l be typed on the console typewriter. It is not
possible to proceed.

2) If t'he symbol table becomes full tl;le com.':lent "SYMOL TABtE FULL"
will be typed. All following symbols will be checked for multiple
definition, but they will not be defined. The comment is typed
onl yonce.

J) If ~t the end of pass 2 the contents of the lest assigned address
counter do not agree with the contents of that counter as of the
end of pass 1, the cOrMlent "END CONFLICT" is typed. Processing
proceeds after this comnent.

TABLE 2

ERROR CODES

C-1 oORG operand Is missing or zero
<_2 DEND or iNo operand is negetive
C-J ONB I~r.gthis illegal
C_4 Asse~~jer instruction contains a label
C-5 Incorrect cerd formet

0-0

0-1

0-2

0-3

Illeg .. 1 length specified in cons tent or
i I I egc I firs t operand

Illegal length specification for OS, DC,
oAS, oAC, or OACF

oAC or OACF length specified will not fit
on card

Illegal address specified for OS, DC, OAS,
oAC, or oACF

25

a tj

0_4
0-5

0-6
0-7
0-8
0-9

F_1
F_2

1-1
1_2
1-3
1-4

P-O

P-1
;--2

P-3
P_4
P-5
p-6
P-?
P-8

N-l

N_2
N_;

S_o

S-l
S_2
S-3

- 13 -

IlIore than one ar; thmet ic sign occurs in c DC
More then fifty numeric cherecters supplied

or more charec ters supp I ied than speci f i ed
in a DC, OAC or OACF .

Field not blank after record mark in DC
Field after alphabetic constant not blank
N'.ore than 10 terms in a OSA
oSA term inc I udes~ or ••

Non_numeric character in flag operend
Flog operdnJ sub term5 not In ascending order

Illegal identificetion operand in LINK
Illegal LINK address
I I I ega I LOAD address
!llegal RVEC operand

Field conteins something in addition to ••
or character

Too comp I icated en expression
Alphab.etic symbol contains too many characters

or numeric constant contains too meny digits
Unmatched operator or operand
Illegal use of alphabetic symbol
Two operators in is row
Two operands ina row
Illegal charecter in an operand
Multiply relocatable constant

Leading numeric character followed by alphebetic
character in op_code

Velid numeric op-code followed by non_blank ~haracters
Op_code not in table

Symbol conhins speciel character or 1eading numeric
charecter

Undef ined symbol
Previously defined symbol
Symbol undefined wi th full symbol table.

Operating Procedure

The following list of operations must be perfonned in order to run
R_SPS:

1) LOG~ the R_SPS deck. It is not necessary to clear memory.

2) Pre~s stert. If you desire operating procedures to be typed
out 'urn switch 4 on and press start again. If you wish to
bypass this type_out turn switch 4 off and press start.

2'

r'\
//

~
\c:I

- 14 -

,) The console typewriter asks: -IS SOURCE DECK TO BE STORED ON
DISK, TYPE YES OR NO-. If you heve e disk file end wish to
store the source deck on the disk for use during pess 2,
type eYES. ,.If you do not wiSh to use this option type NO.

The machine then corrrnents -SWITCH 1 ON TO CHANGE DISK
MODE-. This provides for change in the cese of error In
the above operat ion.

4) Place the source program in the read hopper and start the
reader.

The source program will be read in and processed. If any errors
are discovered, they may ~e treeted individually as described in the
ERROR sect ion. At the end of pess one the ccmnent -END OF PASS 1 n

will)e typed out.

S) If you desire output on pass 2 turn switch, off and press
start. If you desire R-SPS to suppress output turn switch
) on and press start.

60) If the source program has been stored on disk during pass 1,
processing for pass 2 will proceed using the stored source
stetements.

60) If the source program was not stored on disk during pess 1
it must be reed in egain during pess 2.

7) If the R_SPS program nas been producing en object deck, near
the end of pass 2 the program will type "SWITCH 1 ON FOR SYMBOL
TABLE-. The symool table will ~e punched out if switch 1 is on
and start is pressed. Otherwise the pass is finiShed, after
stort is depressed and 0 comnent is typed.

Steps 3-5 may be repeated for many source programs without reloading
the processor.

For those installations wi thout a disk file steps 3 and 6a mey be
ignored. They mey be eliminated froin the processor by placing a'UNUS
SIGN in column 1 of the last cord.

The object deck whiCh R-SPS produces will not in generel be ready
to use unt iii t is ,compressed. (The compressor punches out the loader).

8) Load the compressor ..

9) Enter your object deck and press stert.

The compressor will read the o~ject deck and produce a compressed
deck which may be loaded into the mtlchlne.

27

\~ o

- 1S -

Steps 8 end 9 mey be repeated for meny object decks without re
loeding the compressor.

All decks which ere processed or loaded must be in ~orrect sequence.
If an error in sequence is discovered a typewriter comment will be made.
Rearrange the deck in correct order and proceed.

Output Format

There are six types of output cards as specified by the digits 1-6
in cotumn76 of each card. They are used as specified below:

1) Card type 1 is used to load up to five instructions per card
into me~ory. Columns 1-60 hold the instruction while columns
61-70 hold a pair of rei-tags (digits which determine tne re
locatabilityof the various P and Q fields) for each instruc_
tion on the card. Each pair of rei-tags pertains to one in_
struction, the first to the P field and the second to the Q
field. ir, all such uses of rei-tags a 2 imp I ies a relative
Quantity while a 4 stands for an absolute Quantity. Further_
more, the number of instruct ions is determined by the number
of rei-tag pairs.

2) Type 2 cards are used to specify the neKt digit into which an
instruction will be looded. The value in columns 1-4 of the
card is stepped by t!"le-relocating vector and. saved in NEXDIG
of the I ooder.

3) Type 3 cards cause the loeder to trdnsfer control to the card
itself. Instructions located in columns 0-79 of the card are
then executed and control is returned to the loader by a branch
to 89 indirectly. These cards are used to:

a) load or reset the relocat ing vector.

b), cnange the next card check number (see patch cards).

4) Cards witn a 4 in column 76 ar~ used to load records of abso
lute numeric information into rnemory. They consist of a record
of information beginning in column 1 of the card, a beginning
address A in memory for the record, a memory address B to
be preserved during the loading operation, and a single rei-tag
which determines the relocatability of A and B. A is in
columns 56-60, B in columns 61-65, and the rei-tag in column
55. This card type is similar to the one used exclusively in
SPS to load information.

S) This c:lrd t)-'pe is used to loed DSA's Into core. Up to 10
eddresses appear in columns 1-50 of the cerd foliowed by one
rei_tag for each address in columns 52-61. Again the number
of i terns is determined by the number of rei-tags.

26

~)

- 16 -

This final card type is used to process the LINK statement.
The card loads the followind data into locations 0-72:

A • + 30 , 99 .. THESE INSTRUCTIONS ARE
A * + 23 , 99 .. NOP S IF A ABSOLUTE
8T A, A-l
B -B9,WIDTH
DSA Xl,X2,X3,x4,X5

A return address to the loader is filled in locations 85-89 and
location 84 is set to <l zero before control is transferred to location
zero (see LINK statement).

A 4 digit consecutive card number is found in columns 77-80 of
all cards.

~ Cards

Various errors in the object deck can be corrected by means of
patch cards placed in the compressed deck. These patch cards may
be of the forr.1 of any 'of th-e six card types speci f ied above.

For example to place an

AM A,2,10

in location 1000 relative, where A is 14287 rel8tive, the
following two cards could be used.

01000
1114387000-2

'-- column
column 61

24

I

- 287
2
1

L7: 288

These two cards would be incorporated into the patched deck before the
last card and the whole deck renumbered.

An alternate procedure to renumbering the deck is to incorporate
a type. 3 card to change the next card check number located in the
digit of the loader. The following 3 cards would then do the trick.

o

-287
fu~ ~~
1114287000-2 24 1-289
1100089-002216000890~2881200089-0022 3-290

~
_288

4 0008-
column 76

2~

/()

- 17 -

Important Addresses

Assembler

Beg inn i ng Pass

3eg inn i n9 Pass 2

Symbol Table Punch Routine

!nltiillizati6n

00822

00894

05.582

30002

~ (lo.::atEcQ at L)

Nex t Card Check Number

Relocating Vector

L+22

Next Instruction Address

00099

00094

Compressor

Entry 20506

~ Board

The board wiring shown in the following diagram can be used for
I isting the unccmpressed output of an R_SPS program. It also serves
to I ist IB".~ and UW_SPS uncompressed output. The switch operatio(\s lire
as fOi lows:

Swi tch on double space
off single space

Switch 2 on for ISlA SPS

Switch 3 on for R_SPS

All switChes are off for UW_SPS.

30

o

KINGSTON FORTRAN II

FOR THE IBM 1620 DATA PROCESSING SYSTEM

by:

J.A.A. Field,1 D.A. Jardine,2, E.S. Lee,1

J.A.N. Lee,s and D.G. Robinson2

Presented at the Joint Canadian-Midwest Region
Meeting of the 1620 Users Group, Chicago,

February 19-21, 1964

1. Dept. of Electrical EngineerIng, University of Toronto,
Toronto, Ontario.

•. Research Centre, Du Pont of Canada Limited, Kingston,
OntaJ'10 '

3. Computing Centre, Queen's University, Kingston, OntariO

31

c

ACKNOWLEDGElo'lENTS

During the early stages of developing this
many people in the 1620 Users Group were canvassed
useful ideas on compiler and systems construction.
those who, in any way, contributed to this venture,
authors extend their heartfelt thanks.

()

system,
for

To all
the

We would like to recognize the following people
who made particularly useful contributions to the project:

J.W.' Holmes 1 - for his extremely well written arithmetic
and function subroutines which appear, with
some modification, in this system.

F.H. Maskiel12 - for many helpful suggestions, particularly
in the coding and testing of the arithmetic
and fun~tion subroutines.

C.H. Davidson3 - 1620 Users Group representative on the
A.S.A. Fortran II subcommittee, for
explaining to us the structure of American
Standard Fortran II, and for pointing us
in the right direction for extending the
language. _

1. Cooper-Bessemer Corp., MOQ~t Vernon, Ohio.

2. McGraw-Edison Corp., Penn. Trans. Div., Canonsburg, Pa.

3. University of Wisconsin, Madison, Wis.

.32

- 1 -

HISTORY

The writing of compilers seems to be one of the
more popular pursuits of the members of the 1620 Users
Group. At least six different FORTRAN compilers for the
1620 have been written by non-IBM personnel, which
testifies to the enthusiasm and ability of 1620 users and
to their very real desire to build the best possible
mousetrap.

All previous user-written compilers have accepted
variations of the FORTRAN I language, with the exception
of the University of Wisconsin FORGO, a load-and-go
compiler for student problems, which accepted a somewhat
restricted FORTRAN II. To our knowledge, KINGSTON
FORTRAN II is the first user-written FORTRAN II for the
1620. We hope that this initial effort will encourage
others to tackle the problem and improve on our system in
the same way that improvement followed improvement in the
user-written FORTRAN I compilers.

The initial impetus for KINGSTON FORTRAN II came
in about August 1963, from those of us living in Kingston,
Ontario, when we started to find out how UTO FORTRAN
operated, with the intention of providing a suitable
FORTRAN for a 40K 1620. It soon became apparent that
many useful features of FORTRAN II could be incorporated
at little extra work. Messrs. Lee and Field, authors of
UTO FORTRAN, were approached for ideas and suggestions, the
outcome of which was a decision to Join forces. After some
preliminary discussion, it was found that it would be no
more work to write a whole new system than to make the
deSired alterations in UTO FORTRAN.

The basic concepts were conceived in three
rather long evening sessions during the October 1963,
1620 Users Group Meeting in Pittsburgh, Pa. By the end
of this meeting the source language structure and the
organization and general logic of the compiler were
developed and agreed upon. The .various sections were
then allocated to the individuals best qualified to
handle them. By the first week in January, the main
sections of the compiler had been written and tested
and it remained to tie the pieces together in a operating
system. This was done in Kingston, Ontario, during late
January, when all 5 authors worked for five days on two
identical 40K 1620's (Du Pont of Canada and Queen's
University) .

.33

a o

- 2 -

We hope that Users with 40K 1620's will find the
system useful and easy to operate. We have tried to
include every useful idea from other people's efforts so
that the system would be as speedy and compact as possible.

The work was divided as follows:

J.A. Field - Input/Output statements, 00 statements,
input/output subroutines, FORMAT
statement.

D.A. Jardine - Arithmetic and function subroutines,
write-ups and operating manuals.

E.S. Lee - Compilation of arithmetic expressions.

J.A.N. Lee - Compilation of everything not handled
by the other authors.

D.G. Robinson - Symbol table organization, including
COMMON, DIMENSION, FltUIVALENCE, TYPE.

34

(

o

- 3 -

KINGSTON FORTRAN II

This write-up describes a FORTRAN system for the
IBM 1620 equipped 'with automatic division, indirect
addressing, additional instructions (TNS, TNF, MF),
card input-output and minimum 40K memory. It is assumed
that a Model E-8 or larger 407 is available for listing.

The language is that of IBM's FORTRAN II with a
few modifications and a number of additions. For the
purposes of this write-up it is expected that the reader
is at least on speaking terms with the FORTRAN II
language.

The compiler for this system batch compiles a
source programtnone pass, at approximately twice the
speed of existing compilers for the 1620. The execution
speed of the object program .is also approximately twice
that of IBM's FORTRAN II. Considerable effort has been
made to speed up all important parts of the system; in
addition, more core storage is available for the object
program than existing FORTRAN II compilers allow.

SOURCE PROGRAM CARDS

These are as required for IBM FORTRAN II. Any
number of continuation cards are possible, but the
statement may not contain more than ~OO characters
(blankS not included except in Format statements).

ARITHMETIC PRECISION

Real numbers: ,8 digit mantissa, 2 digit exponent.

Notation is excess 50; (i.e. 1.0 • 5110000000)

Integer nUillbers: 4 digits, modulo 10000

VARIABLES

These are as in IBM PORTRAH II. 1 to 6
alphabetic or. numeric characters, starting with a letter,
which, for integer variables, must be one ot I, J, K, L.
M, H, unless otherwise specified 1n a TYPE declaration.

SUBSCRIPTS

A variable with, at the most, two subscripts
appended to it can reter to an element ot a one- or two
dimensional array. Three dimensional subscripting 1s not
permitted. A subscript may be an express10n of any ---

35

~

- II -

desired complexity, provided only that the result.ot the
eva.1uation of the expression be an integer quantity.
This should be positive if you want to avoid trouble.
However, a zero or a negative subscript can be used. To
use this effectively, the programmer must know how data
areas are laid out in memory. See the operating
ln~tructlons:

Examples of Subscripts:

I
3
2+MU
MU+2
J*5+M
5*J
6*J-K+2-l0/L+M
4*J(K+2-L+M)+K(M(N+2))!3
FIXF (A *B+3. O**SIN (X))+L/2

o

The variable in a subscript may itself ,be subscripted, and
this process of subscripting may be carried on to any
desired depth of subscripting. It can, 1n fact, be carried
far beyond the pOint where the average programmer understands
what he is doing.

SUBSCRIPTED VARIABLES

Only singly or doubly subscripted arrays may be
defined. The size of these must be specified in a DIMENSION
statement.

EXPRESSIONS

These are defined and organized exactly as in IBM
FORTRAN II.

LIBRARY FUNCTIONS

Ten library (closed) functions are included 1n the
KINGSTON FORTRAN II System. These are listed in Table I.

.36

- 5 -

TABLE 1

Closed Subroutines

Punction
Definition

Sine of the argument

Cosine of the argument

Function
Name(s)

SIN

COS

Exponential (ex) of the EXP
argument

Square Root of the argument SQRT
Nat,~al logarithm of

the argument LOG

Arctangent of the
argument' ATAN

Arctangent of (argl/
ar~) ARCTAN

Signum of the argument;
=-l.for X<O.,=O. for
X,O.,=+l. for X>O. SIGNUM

Absolute value of Arg 1
with the sign of Arg 2 SIGN

Choosing the larger value
of the two arguments MAX

Choos1ng the smaller value
of the two aI'guments MIN

No. of
Arguments

1

1

1

1

2

2

2

2

Type Of
Function Argument

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Table 2 lists the op~n or built-Yn functions. These are
compiled in-line every time the function is referred to.

Function
Definition

Absolute value of the
argument

TABLE 2

Function No. of
Name Arguments

ABS
ABS

1
1

Type Of
Function Argument

Real
Integer

Real
Integer

Table 3_11sts closed functions which are permanently
stored in themachlne, whether or not they are mentioned by
name in a FORTRAN source program.

37

() n ~/

- 6 -

Function
Definition ------

Function No. of
Name Arguments

Type Of
~unction ~rgument

Floating an integer

Truncation, largest integer
in the argument, modulo
10,000, with sign of

FLOAT

argument FIX

THE ARITHMETIC STATEMENT

Real

1 Integer

The arithmetic statement is the same as in IBM
FORTRAN II except for the extensions in complexity of
evaluati~n of subscripts.

CONTROL STATEMENTS

The control statement flexibility in standard
FORTRANls leaves something to be desired, particularly
where the program is complex and core storage is at a
premium. These conditions, it might be noted, are the
normal ones for almost all problems. KINGSr,ON FORTRAN II
attempts to improve this situation by expanding the
capabilities of the ASSIGN and assigned 'GO TO statement
and by extending the ASSIGN concept to the other control
statements.

ASSIGN STATEMENT

ASSIGN TO n

Integer

Real

In IBM FORTRAN II, the ASSIGN statement is used only
in conjunction with an assigned GO TO statement. For
instance,

ASSIGN 3 TO J

GO TO J, !3,5,g,243)

will cause a branch to the statement numbered 3.

The effect of the ASSIGN statement is to "equate" the
non-subscripted integer variable J to statement number 3. The
subsequent GO TO J, (3,5,9,243) is then interpreted as GO TO 3.

38

n

- 7 - .

In KINGSTON FORTRAN II, this concept has b.een
modified and expanded considerably. To describe these
changes, the following definitions are used:

Statement Label - A statement label is the name attached
to the memory location containing the first instruction
compiled from the statement identified by the label. There
are two kinds of statement labels:

Numeric Statement Label - usually known as a
statement-numoer:--An-unsigned integer number of
from one to four digits long.

Alphabetic Statement Label - A variable which may
6e-sufiscrIptea-to-any-aesIred complexity and which
by one or more ASSIGN statements has been equated
to a numeric statement label (statement number).

It is most important to realize the difference between a
statement label and an arithmetic variable. ASSIGN 3 TO J
will place in J the address of the first instruction compiled
from statement number 3. J = 3 will cause the number 0003
to be placed in J. The sequence of statements

ASSIGN 3 TO J

GO TO J

will cause a branch to statement numbered 3.

J = 3

However,

~ ~

- 8 -

The following examples illustrate the ASSIGN statement:

ASSIGN 3 TO N (St. label N is equated to St. label 3)
ASSIGN (N) TO J (St. label J is equated to St. label N)

ASSIGN 3 TO I(K) (same as the line above. K must have been
defined before this statement and I must be
dimensioned).

ASSIGN (I(K)) TO L(3+M/4-M**3)
(same as above. The alphabetic statement
labels can be subscripted as desired).

Since the primary definition of a statement identifier is its
occurrence as a statement number, it is necessary that any
given statement identifier must ultimately be defined (through
a series of ASSIGN statements if necessary) in terms of a
statement number. Failure to observe this rule will cause
trouble. For example,

3 A = B

ASSIGN (J) TO K(L)

is not correct, because J has not been associated with any
statement identifier when the ASSIGN statement is executed.
However,

3 A = B

GO TO J ASSIGN 3 TO J

will result in disaster. Moreover,

ASSIGN 3 TO J

J = J + 1

GOWJ

will not transfer control to the statement nwnbered 4.
Arithm-etic on assigned variables is not permitted; assigned
variables are not in any way the same-as arithmetic variables,
except that they may be subscripted and stored in an array.
They may also appear in COMMON, DIMENSION, and EQUIVALENCE
statements.

It is possible in KINGSTON FORTRAN II, to equate two
alphabetic statement labels by an ASSIGN statement. If the
first statement label in the ASSIGN statement is alphabetic,
it must be enclosed in parentheses.

39

ASSIGN (J) TO K(L)

is correct.

Alphabetic statement labels may be used in the
following control statements:

GO TO (both unconditional and assigned)
IF (SENSE SWITCH i)
IF (arithmetic expression)
Computed GO TO

Alphabetic statement labels may not be used in a DO statement.

GO TO STATEMENT

GO TO n unconditional GO TO

GO TO n, (nl,n2,---nm) assigned GO TO

40

- 9 -

where n is a statement lab~l. If n is alphabetic, then it
must previously have been defined in an ASSIGN statement.
The assigned GO TO statement is treated exactly like the
GO TO statement. The comma and parenthesized list are
optional and will be accepted but ignored by the compiler.

computed GO TO Statement

GO TO (n1,na,n3---nm),i

where n1,n2---nm are statement labels. If alphabetic they
must have been previously defined by ASSIGN statements.
i is a fixed point (integer) variable or expression. i may
be subscripted as desired~

ARITHMETIC IF STATEMENT

IF(a)n1,n2,n3

where a is an integer or real {floating point) expression
of any complexity, and n1,n2,n3 are statement labels. If
alphabetic, n1,n2,n3 must have been previously defined in
ASSIGN statements.

IF (SENSE SWITCH) STATEMENT

IF (SENSE SWITCH i)n1,n2

where i is a one or two digit unsigned integer number or an
integer expression, and n1,n2 are statement labels. If i is
an integer expression, the low order two digits of the value
of the expression are used as the value of i. The two digit
numbers resulting from this are the numbers of machine
indicators, not just console switches.

THE DO STATEMENT

DO n i m1,ffi2,ms

where n is a statement number, i is an unsigned integer
variable which may be subscripted and m1,ma,m3 are
integer variables or integer expressions of any desired
complexity, positive or negative. n may not be an
alphabetic statement label, and i may not-oe an expression.
There are no particular restrictions Onlm1,ffi2,m3' In
particular they may be positive or negative quantities.
If ml=IDa, the DO will be executed once only. m1,ma,mS
should be chosen so that the DO loop terminates. See below
for an example of a never-ending DO-lOOp.

Example:

DO 5J K+L-5, M-I(JDB(KK)),-L

4/

rJ C)

- 10 -

If m1,m2,m3 are expressions, their values are the values of
the expressions when the DO statement is encountered at
object time, and these values are unaffected by alteration
inside the DO of the values of the variables in the
expressions m1,m2,m3.

As a result of allowing positive or negative values
for m1,ffi2,m3, it is legal to have DO loops which count
down. For example,

DO 3 I 10, 1,-1

will cause I to run from 10 to 1 in steps of (-1). The
following is also permitted.

DO 10 J -10,5,2

which will cause J to assume successively the values -lD, -8,
-6, -4, -2, 0, 2, 4. If the DO variable assumes zero or
negative values, it may be used, with caution, as a subscript.
Intelligent use of negative or zero subscripts demands
knowledge of the layout of data areas in memory, as described
in t!<e operating instructions.

Care should be taken to see that the DO index
terminates properly. For instance,

DO 20 K -10, -1, -"2

will increment nearly 5000 times before termination. The
same is true of

DO 40 K 10, 1, 2

Termination in both cases occurs bec~use integer arithmetic
is performed modulo 10000.

All the restrictions on DO statements currently
imposed by IBM FORTRAN II are also in force in KINGSTON
FORTRAN, except as already mentioned.

CONTINUE STATEMENT

Same as IBM FORTRAN II.

PAUSE STATEMENT

PAUSE

PAUSE n, where n is a fixed point constant, ~riable
or expression.

'12

r-

~

- 11 -

The typewriter types PAUSE n, together with error
messages (see operating instructions) and the machine halts.
If n is a variable or expression, its current value is typed.
PAUSE (without n) generates an in-line halt command; there
is no typing. In either case, depression START will cause
resumption of program.

STOP STATD1ENT

STOP

STOP n, where n is a fixed point constant, variable
or expression.

The typewriter will type STOP, followed by the
current value of n. If n is not specified, STOP 0000 will
be typed. CALL EXIT is then executed (see operating
instructions) ..

END STAT~ENT

END is an instruction to the compiler that the
program is complete. An END statement must be physically
the last card Qf the main line program and of each sub
program which is associated with the job. The END statement
results in CALL EXIT except in a sub-program, where it is
interpreted as a RETURN statement.

FUNCTION AND SUBPROGRAM STATEMENTS

FUNCTION and SUBPROGRAM statements are the same in
KINGSTON FORTRAN as in IBM 1620 FORTRAN II, and the same
restrictions apply.

Because the compiler is one-pass, the subprograms
are not compiled separately from the main program. See the
operating instructions for further details.

INPUT/OUTPUT STATEMENTS

The INPUT/OUTPUT statements in KINGSTON FORTRAN II
are similar to those of IBM FORTRAN II, except that
expressions are pel'mitted, as well as simple variables,
in certain places in INPUT/OUTPUT Ilsts. Indexed lists,
array names (to handle a whole array) and all other standard
FORTRAN II features are allowed. It is not necessary to
specify a FORMAT statement number in an I/O statement. If
no FORMAT statement number is given, the system will supply
FORMAT i5N). See the descriptlon of FORMAT for an
explanation of FORMAT 15N).

43

~

- 12 -

The permitted INPUT/OUTPUT statements are:

READ (card input), ACCEPT TAPE, ACCEPT (input on console
typewriter), REREAD (re-reads last input record), PUNCH,
PUNCH TAPE, TYPE (console typewriter), PRINT (on-line
printer).

Indexed I/O Lists

As in IBM FORTRAN II, the stateMent

READ 10, {(A)I,J), 1=1,10), J=l,lO)

o

will cause 100 numbers A(l,l) to A{lO,IO} to be read into
array A. Similarly,

READ 10,((A(I,J), I=K,L), J=M,N)

will cause various elements of A to be read in under the
control of the indices I and J.

In KINGSTON FORTRAN II, the limits on the implied
DO's (I=K,L; J=M,N) may be expressions. Furthermore, the
names of the input variables may be subscripted to any
desired depth. For example:

READ 10,(((A(I(Kl), J(Ml)), Kl=K-JOB*2,L+5-J6),Ml=M*S-MM9,N-3*NlS)

will be executed as

DO

DO

100 Ml

100 Kl

M*S-MMg, N-3*NlS

K-JOB*2,L+5-J6

100 READ 10, A(I:Kl , JIMl))

where I and J are names of one-dimensional arrays which must
previously have been defined.

KINGSTON FORTRAN II permits the same kinds of expressions
in indexing as are permitted in standard DO statements. The
implied DO in and I/O list may run forward or backward, and
may have integer expressions of any desired complexity.

INPUT LISTS

In an input list, the variables may be only simple
variables or indexed variables. Input of expressions is
meaningless, and not permitted. For example:

'1'1

~, ,)

- 13 -

READ 10, M, Q, A(I(K+4*L), M(N-5*L+4)),B

is permitted, provided I, K, L, N and~ are previously defined.

READ 10, A+B-C(K) is not permitted.

OUTPUT LISTS

Output lists may be fully indexed lists, as
described above. In addition, expressions may appear in the
list as output quantities. For example:

PUNCH 20, C*D/(LOGF(X-Y*Z)+10.3), Y, D

will cause

C*D/LOGF(X-Y*Z)+10.3

to be calculated atthe time the punch statement is encountered
and its value to be punched, together with the values of Yand
D, on a card, according to Format statement 20. The value
of the expression in an output list is lost when it is
output, an~ is not available for further calculation. The
expression in an--I/O list may be of any desired complexity,
and may be indexed as required, either by DO statements, or
by implied DO statements in the list itself. For example:

PUNCH 20,(((C*SQRTF(A(I,J))-M(I)),I=1,L+4,3),J=I+l,K-10,5)

will cause values of C*SQRTF(A(I,J))-M(I)

to be punched out for values of J from 1+1 to K-10 in steps
of 5 and values of I from 1 to L+4 in steps of 3.

ASSIGNED FORMAT NUMBERS

Format statement numbers may be assigned by ASSIGN
~tatements in the same way any other statement number can.
Hence, input/output statements may use alphabetic statement
labels in place of Format statement numbers. For example,
the follow1ng program is permitted:

3
4
5

10

FORMAT (5(I3,F10.5))
l"ORMAT (515)
FORMAT (517)
ASSIGN 3 TO J
ASSIGN 4 TO K(1)
ASSIGN 5 TO K(2)
READ J, (M(1),A(1), 1=1,5)
DO 10 L=1,2
READ K(L), (M4(1), 1=1,5)

45

- 14 -

Note that the first statement will be executed according to
Format statement 3, while the second READ statement will be
executed according to Format Statement 4 when L=l, and
according to Format Statement 5 when L=2.

The subscripted variables in all the above examples
must previously have been mentioned in a DIMENSION statement.

ARRA Y NAMES IN I/O LIST

As in IBM FORTRAN II, array names without subscripts
may appear in I/O lists. Mention of an array name will
cause the entire array, as specified in the DIMENSION
statement to be input or output. Two dimensional arrays
are handled column-wise -

DIMENSION A(lO,lO)
READ, A

will cause the entire 100 elements of A to be read in, in 5N
notation. The elements of A must be in order A(l,l), A(2,1),
A(3,1), A(4,1), A(5,1), A(6,1), etc.

FORMAT STATEMENTS

Format statements are, in general, equivalent to
Format statements allowed in 7090/94 FORTRAN II. E, F, I
and A conversion are permitted. Repetition of field format
is allowed before E, F,I or A. Thus FORMAT (I2,3E12.4) is
equivalent to

FORMAT (I2,E12.4,E12.4,E12.4)

Parenthetical expressmn is permitted in order to
enable repetition of data fields accord1ng to certa1n Format
specificat10ns within a longer FORMAT statement. The number
of repetitions is limited to 99. Thus,

FORMAT (2(F10 .6,E10.2) ,14)

The level of parenthesizing can be extended to a second level,
thus:

FORMAT (2(I4,2(F6.2,F8.3))) is equivalent to

FORMAT (I4,F6.2,F8.3,F6.2,F8.3,I4,F6.2,F8.3,F6.2,F8.3)

The depth of such nesting of parent-heses must not exceed 5,
which appears to be more than would ever be necessary.

'If:,

(

~

- 15 -

N-Format

Rigid format on input data is not always desirable,
and in many cases makes key-punching more difficult.
KINGSTON FORTRAN allows so-called "free form" input, as well
as the more familiar fixed or rigid format. If the FORMAT
statement specifies I, E or F format on input, then the
input data record must conform to the normal rules for such
format as specified in IBM manuals. However, if N format
(denoting "free form") is used, the data numbers may appear
anywhere on the card, and input is controlled by the input
list.

N format is used like E, F or I format except that
no width or decimal point location digits are required or
permitted. For example,

'READ 10, I, J, A, C, Z

10 FORMAT (5N)

will cause the program to read in a record of 2 integer
numbers followed by 3 floating-point numbers. In N format,
a number is defined as: any number of leading blanks,
followed by a r.leaningful collection of digits, followed by
1 trailing blank. Note that the blank column immediately
following the right-most digit or character of the number
is considered part of the number, and serves to delineate
the right-hand end of the number.

In the case of E numbers handled with N-format,
blanks after the letter E are ignored, and the machine
uses the next set of digits as the exponent. For example:

bl.2345678E-05b

will be interpreted as .000012345678.

The number bl.2345678Ebbbbb-05b

will be interpreted in the same way.

bl.2345678Ebbbbl03

will result in an error condition (see operating instructions).

bl.2345678E bb 00005

will be interpreted as 123456.78. Leading zeros before
either the mantissa or exponent are ignored.

Lf7

c o

- 16 -

An E- type number handled by N-format ends with the
blank after the exponent digits.

A FORMAT statement may specify N, E, F, I or A format
as required, thus allowing both free and rigid format on the
same card. Note that, in N format, if a floating point
number does not have a decimal point, it is assumed to be
after the low-order digit of the number.

Some examples may help:

READ 10, I, J, A, C, Z

10 FORMAT (5N)

The card might look like:

bb123bbbbbb12bbb16.3bbbbbl.2E6b123000bbb etc.

N Format requires only that at least 1 blank column
follow the number. In this case, I, J, A, C, Z would be
stored as 123, 12, 16.3, 1.2E06, 123000. resp.

READ 11, I, J. A, C, Z

11 FORMAT {I3, 16, N, Fl~.3, N)

The Format requires that I, J, C follow rigid format.
The card might look like:

~
b12bbb12bbbbbb120.bbbb1234567bbb16.8bbb etc.

ThiS would give the following results:

Variable

I
J
A
C
Z

Value

12
120
120.
1234.567
16.8

Note that the F-spec1fication for C starts on the
first column after the blank following 120., (see the position
of the arrow) since this blank is considered part of the
value of an N-Format number.

An output, N format is equivalent to IPE14.7,lX
for floating point numbers, and I5,lX for integer numbers.

Ji8

- 17 -

N Format allows repeated format and parenthesiz1ng,
and follows the usual rules for them.

If a number is pos1tive, the output under E, F, I
or N Format will not contain a lead1ng plus sign. On I
Format, no space is left for it, so that it is possible to
construct a fully packed output record provided all numbers
are pos1tive. N Format generates a space for a + sign and a
space following the number.

If a floating po1nt number 1s output under Iw Format,
the integer part of the floating point number is convered to
lw Format. Thus 128342.56 output with 110 Format would
appear as bbbb128342.

SCALE FACTORS

To permit more general use of E and F conversion, a
scale factor followed by the letter P may precede the
specification. The scale factor is defined such that

Output number = internal number x 10scale factor

Internal number = input number x 10-scale factor

This operates exactly the same as in IBM FORTRAN'II for the
larger mach1nes. For example

FORMAT (2PFlO.4)

used on output w1ll multiply the number by 100 before output.
On input. it will div1de the external number by 100 before
stor1ng it 1n the machine.

On E-Format output, the effect of P-scaling is to
shift the decimal point in the mant1ssa and to adjust the
exponent by the amount of the shift.

VARIABLE FORMAT

KINGSTON FORTRAN II allows variable Format. That is,
Format specifications may be read in at object time. In this
way, data may be read 1n under control of a Format Statement
which itself has been read in. Variable Format statements
must be read under A-Format into an array by means of a
normal Read statement.

49

~.>' r . -i , /
F~

"\.c/)

For example;

10

- 18 -

DIMENSION FMT (15)

READ 10, (FMT(I), 1=1,14)

FORMAT (15A5)

will cause 70 charac ters of input record (1. e. the Format
Statement being read in) to be stored in array FMT. It is
'then possible to write;

READ FMT, A, B ~ X, Z, (A (J) ,J = 1 , 10)

where the input variables will be read in according to the
Format Statement stored in array FMT.

It is also possible to alter array FMT by programming.
This should be done with some care, otherwise the Format
Statement stored in array FMT may become completely
unintelligible.

The name of the variable Format' specification must
appear in a DIMENSION Statement, even if the Array size is
only 1.

The Format read in at object time must take the same
form as a source program Format Statement except that the
word Format is omitted, i.e. the variable Format begins
with a left parenthesis.

SPECIFICATION STATEMENTS

COMMON

Variables, including array names, appearing in
COMMON statements will be assigned core storage locations
beginning at the high end of memory, and will b~ stored at
object time in descending sequence, 10 digits per variable,
or per item of a dimensioned variable, as they are
encountered in the COMMON statement. If a variable is a
dimensioned variable, the size of the dimensioned array must
appear in the COMMON statement, and the variable must not
again be dimensioned in a DIMENSION statement. The COMMON
statement must precede EQUIVALENCE or DIMENSION statements
(if any) and must precede the first statement of the source
program. For example;

COMMON A,B,I,J,X(10,3),Y(5)

(Inclusion of dimensioning information in COMMON statements
is allowed in FORTRAN IV).

50

/
(

c

- 19 -

DIMENSION

The DIMENSION statement is the same as IBM FORTRAN II
except tnat variables already mentioned in COMMON may not
again be dimensioned and that only 2 subscripts are allowed.

DIMENSION Z(lO,5),V(400) is permitted

DIMENSION X(lO,5,IO) is not permitted

~UIVALENCE

EQUIVALENCE (a,b,c,---), (d,e,f,--),---

where a,b,c,d,e,f, are variable names. KINGSTON FORTRAN
imposes some restrictions on ~UIVALENCE statements which are
not pesent' in IBM FORTRAN II. These are noted below:

l.

2.

3.

4.

5.

Single variables may be equivalenced only to Single
variables.
Arrays may be equivalenced to other arrays, of the same
size only.
Single variables may not be equivalenced to individual
items of arrays, nor may single items of two arrays be
equivalenced. In general, no subscripts may appear in
an Equivalence statement.
Because the compiler is single pass, 'it is crucial that
the order in the source deck be:

COMMON (if any), DIMENSION (if any), EQUIVALENCE (if al Y) •

They must precede the first executable statement of the
program.

If arrays are to be equivalenced, the first item only
in the list must have been defined previously in a
COMMON, or DIMENSION declaration, and the remaining items
in the list must not have been so defined. The
Equivalence statement itself defines these remaining
items. If single variables are to be equivalenced, and
any item in the Equivalence list has been defined in a
previous COMMON or TYPE statement, it must be first in
the ,Equivalence list, and the other items must not have
been defined in a COMMON or TYPE statement. For example,

COMMON A,B(IO,3),C
DIMENSION D(50)
~UIVALENCE (A,F,G),(D,X)

This puts A, array B, and C in common storage; defines
array D; defines F and G as single variables in the same
memory location as A; and defines X as a 50-item vector in the
same location as D. The following are errors: (in the
example above).

51

c ~

- 20 -

EQUIVALENCE D,A) para.l,2)
EQUIVALENCE B(l,l),G) para. 3)
EQUIVALENCE X,D) para.5, X not defined)
EQUIVALENCE G,A,F) para.5, G not defined,

A defined)
EQUIVALENCE (D(50),X(50)j (para.3)

6, To preserve compatibility with other FORTRAN systems,
which require DIMENSION statements for all array variables
in an Equivalence list, KINGS70N FORTRAN allows extra
DIMENSION statements after the Equivalence statements.
Such DIMENSION statements may be used to mention the
equivalenced variables, but since they have already been
defined in the Equivalence Statement, the compiler will
ignore them. It will not, however, call them errors. For
example:

DIMENSION X(lO), Y(20)
EQUIVALENCE (X,A,B), (Y,C,G)
DIMENSION A(lO), B(lO), C(20), G(20)

is permitted. The variables A,B,C,G in the second
DIMENSION statement are ignored by the compiler, because
they have already been defined in the preceding EQUIVALENCE
Statement.

7. It is possible to equivalence items not of the same type
or mode: e.g. EQUIVALENCE (A,I) - where A is real and
I is integer.

TYPE

Two TYPE declarations are permitted. These statements
determine the type of variable aSSOCiated with each variable
name appearing in the statement. This TYPE declaration is in
effect throughout the program. The two declarations are

INTEGER a,b,c,
REAL a,b,c,

where a,b,c, are variable names appearing within the program.
Function names may not appear in TYPE declarations.

Rules:-

(1) A variable defined to be of a given type remains of
that type throughout the program.

(2)

(3)

INTEGER indicates that the variables listed are integer,
and over-rides the alphabetic naming convention.

REAL indicates that the variables listed are floating
point, and over-rides the alphabetic naming convention.

52

- 21 -

The TYPE declaration must occur before the first
executable statement of the program. If any of the variables
mentioned in a TYPE declaration are mentioned in a COMMON or
DIMENSION statement, the TYPE declaration must follow such
mention.

If a TYPE declaration precedes an EQUIVALENCE
statement, then it defines a variable in the sense required
by the EQUIVALENCE statement, and all variables equivalenced
to the one declared in the TYPE statement will be of the same
type.

If a TYPE declaration follows an EQUIVALENCE sta~ement,
then only the specific variable names mentioned in the
declaration will be affected.

Examples,

1. INTEGER A
EQUIVALENCE (A,B,C)

2.

3.

EQUIVALENCE (A,B,C)
INTEGER A

EQUIVALENCE {A,B,C)
INTEGER A,B,C

4. INTEGER A,B,C
EQUIVALENCE (A,B,C)

Examples 1 and 3 cause A,B,C, to be integer variables and
occupy the same memory location.

Example 2 causes A to be integer, B,C to be real, and
A,B,C to occupy the same memory location.

Example 4 is an error in KINGSTON FORTRAN (see para. 5 under
EQUIVALENCE) •

KINGSTON FORTRAN II

OPERATING CONCEPTS AND SUBROUTINE DECK DESCRIPTIONS

by:

J.A.A. Field,l D.A. Jardine,2 E.S. Lee,l

J.A.N. Lee,3 and D.G. Robinson2

Presented at the Joint Canadian-Midwest Region
Meeting of the 1620 Users Group, Chicago,

February 19-21, 1964

1. Dept. of Electrical Engineering, University or Toronto,
Toronto, Ontario.

2· Research Centre, Du Pont of Canada Limited, Kingston,
Ontario

3. Computing Centre, Queen1s University, Kingston, Ontario

53 5~

(J t-) \,

o

1.

KINGSTON FORTRAN II

OPERATING CONCEPTS

KINGSTON FORTRAN has incorporated in it the ability
to recognize certain control cards both at compile and object
time. The control cards recognized by the compiler are, with
one exception, instructions to the compiler to execute various
options such as symbol table output, compile with or without
trace, etc. A list of these and their functions appears later.
The control cards recognized by the object program are intended
to help in the operation of programs involving blocks of data
and to permit continuous flow of programs through the machine
with a minimum of operator intervention. The system will
allow stacking of programs in the read hopper and execution
of these programs, in the order they are presented to the
machine,< without requiring button pushing at each program
load.

COMPILER OPERATION

The compiler deck is self-loading and self
identifying. To load the compiler, push RESET, LOAD. The
SWitch settings ~re:

Parity - STOP
I/O - Program
Sense Switches - not used. Position immaterial.

Because the 1620 typewriter is prone to write-checks, any
errors in its operation are completely ignored. Card I/O
read- and write-checks are handled by programming.

The source deck is assembled with the main-line
program accompanied by all subprograms in source language.
The main-line and subprograms may be in any order:-:Secause
the ca.piler is one pass, and to avoid the complications
of subprogram object loaders, the entire deck is compiled
at one time. The job size must be such that the main
program and all its subprograms can be accommodated in
core at one time. That is, no overlay of subprograms by
other subprograms is permitted. This restriction also
exists in IBM 1620 PORTRAN II.

The end of the mainline program and of each
subprogram must be indicated by an END statement. Thus a
program may contain more than one END statement. A
special control card is used to indicate the end of the
entire job; a job, in this context, means the set of
main-line program and all required subprograms.

55

c

2.

The following section gives the compiler control
cards and their function. All control cards must have a
1, *, or 1 symbol in column 1, and the identifying word
in eols. 7 and following.

BEGIN TRACE

Form: ColI - 1,*, or t
Col 7 - BEGIN TRACE

Location in Deck: anywhere

Function

END TRACE

Form:

Trace instructions are compiled,
beginning with the next arithmetic
statement. Tracing generates no
additional instructions.

Col 1 - J, *, or ~
Col 7 - END TRACE

Location in Deck: anywhere

c

Function If trace instructions were being compiled,
this card stops compilation of trace
instructions. If trace instructions were
not being compiled, this card has no
effect.

LIST

Form: ColI - 1, *, or •
Col 7 - LIST

Location in Deck anywhere

Function: The typewriter starts typing the object
time location of the first machine
language instruction of each source
statement. The source statement itself
is not typed. The typed locations can
be matched with a 401 off-line listing
of the source program, if desired.

1)0

i
i
I

I

~

MAP

JOB

3.

Form: Col 1 - ,. *, or ,

Col 7 - UNLIST

Locat1on In Deck: anywhere

lI'unctIon: If the typewriter had previously been
typing locatIons as a result of a
LIST card, the UNLIST card stops it.
Otherwise, the UNLIST card has no
effect.

Form: Col 1 - " *, or ~
Col 7 - MAP

Location in deck: anywhere before any END
statement.

Function:

Form:

The symbol table for the main program
or subprogram (depending on which END
statement is currently being processed)
is punched on cards when the END
statement is encountered, provided a
MAP card occurred previously in that
section of the job. A separate MAP
card is required for each section of the
job for which a symbol table is wanted.

Col I

Col 7-9
- " *, or t
- JOB

Col 10-79- any valid information

Location in deck: The JOB card must be the first
card of any source de~k.

Function: The JOB card informs the compiler that
what fellows is a FORTRAN source
program. The compiler will not recognize
a source program until a JOB card is
found, and will read cards indefinitely
until it finds one. The JOB card is
reproduced (from column 7 onwards) into
the object deck so that the object deck
is self-identify1ng when it is loaded.

57

c

4.

END OF JOB

LOAD

PRESCAN

Form: Call - ~, *, or t
Col 7 - EOJ

Location in Deck: The EOJ card must be the last
card of any source deck, i.e. must be
the last card of the job. It is in
fact, the super END card.

Function: The EOJ card informs the compiler that
the end of the source deck has been
reached. The machine will stop,
allowing removal of the object deck.
PreSSing start will cause the compiler
to read cards searching for a JOB card
or a LOAD card (q.v.).

Form: Col 1 - ~, *, or t
Col 7 - LOAD

Location in Deck: following the last EOJ card of
the last source deck.

Function: Because this is a batch compiler, a
control card is needed to inform the
compiler that what follows is not a
source deck, but rather a new program
to be loaded. When the compiler finds
a LOAD card, it executes a 1620 load
operation on the card immediately
following, on the assumption that it
is the first card of a self-loading
program. If it is not, you will be in
trouble.

Form: ~ol 1 - ~, *, or ~
Col 7 - PRESCAN

Location in Deck: anywhere

Function: Inhibits punching of ~bject deck.
Error cards are punched if errors are
found. A PRESCAN card may be used in
place of a JOB card.

58

~'\

o

~

ORIGDI

Form:

5.

ColI - ~, *, or.
Col 7 - SIZE NNNN9

Location in Deck: Immediately following JOB card,
i.e. 2nd card of source deck.

Punction: The SIZE card specifies the highest
numbered core l~cation which the object
program is to occupy. NNNN are any 4
dig1ts, but for instance would usually
be. 1999 if compiling for a 20K machine
on a _OK machine. It, however, can be
any 4 digits whatsoever. If the
assignment of this highest memory
location is such that the job will not
fit, an overlap message will result.

Porm: ColI - ~, *, or •
Col 7 - ORIGIN NNNNN

Location in Deck: Immediately follows SIZE card
if one exists. Otherwise it follows
the JOB card.

Function: The ORIGIN card specifies the core
location in which the first machine
language instruction of the compiled
program will be placed. NNNNN must
be an even number. If not, you-wIIl
have dIffIcultIes. By suitable
choice of SIZE and ORIGIN, the object
program can be put almost anywhere in
core. In fact, it is possible to
specify so little core for the object
program that no source program whatsoever
will fit in it.

If the or1g1n is not specified by an
ORIGIN card, the object program will
'start at location 5900. This is not
quite as good as it looks, because, as
is common with many computing systems,
you may need extra bits and pieces to
make th1ngs work. See the section on
subroutines.

59

\~

SUMMARY

6.

To compile a program, load the compiler followed
by the source deck. The source deck order is:

JOB card

o

Main-line program with END card)these may be
Subprogram(s) with END card(s))in any order
EOJ card.

If another source deck is to be compiled, make it
up in the same way, and stack up in the reader
hopper. If the next thing to be done is a self
loading program, precede it with a ~LOAD card.

Symbol Table

If a MAP card occurred in the source deck, a
symbol table will have been punched. Because a separate
symbol table may be punched for the main program and each
subprogram, it is not possible to avoid interspersing the
object deck and the symbol table. For this reason, the
symbol table cards are identified by a par,tlcular code
on the card. The 407-ES wiring diagram in this, write-up
will detect which are symbol table cards and print only
those, ignoring object program cards. The symbol table
is punched 4 symbols per card.

Whether or not a symbol table is punched, the
compiler punches I blank card following completion of the
job. This allows removal of the object deck without
using the non-process runout feature on the 1622. The
next deck to be punched will be preceded by the blank
card, which must be discarded.

Error Checking

The KINGSTON FORTRAN compiler has built in provision
for checking errors in the source program. Because of the
expansions in the language t certain statements which are
unacceptable to a normal FORTRAN compiler will, of'course,
be accepted by the KINGSTON FORTRAN compiler.

All errors will be punched on cards suitable for
407 listing using the panel described in this write-up.
The 407 will ignore any object program cards in the deck.
The error card will contain an error code followed by the
line number in which it occurred. The errors and their
codes are described in Table 1.

C:,o

Error

Ql
Q2
Q3
Q4

Q5
Q6
Q7
Q8
Q9
PI
P2
P3
p4
P5
p6
P7

WA
VB
WC
WD

WE
WF
WH

WG
WJ
WS

WP

WT

WK

c

7.

TABLE I

ERRORS AT COMPILE TIME

Reason

Character after Format not
No EOJ card
Continued Error
Argument List in Subroutine or Function Declaration
not a Simple variable.
Unpaired Parentheses.
No statement number in Format.
Unrecognizable.
Statement exceeds 300 characters.
Doubly defined St. No.
Incorrect Go To Statement.
Invalid Assign Statement.
Invalid If Statement.
Invalid Computed Go To Statement.
EOJ Card not preceded by an End Card.
Expression in Subr.
Invalid Call.

Illegal Operator in Expression is ~ or~.
Illegal sequence of operators.
Mode Error.
OP-VAH-OP Sequence Illegal; Syntax error in
Statement.
) not followed by an operator.
Invalid operator in subscripting.
Number of subscripts does not agree with DIMENSION
Statement.
Floating Subscript.
Expression Ends in Illegal Character.
Invalid expression on left-hand side of Arithmetic
Statement.
Invalid expression on right-hand side of Arithmetic
Statement.
One of the tables used in compiling Arithmetic is
f~ll; i.e. Statement is too long.
Syntax error in Arithmetic expression.

(01

o

8.

Table I (cont'd)

Error

Rl
R2

R3

FI

F2

F3

ER99
ER98
ER97
ER96

ER95
ER94

EB93
ER92
ER91
ER90
ER89
ER88
ER87
ER86
ER85
ER84

Reason

Incomplete DO or I/O Statement.
Expression in Input List.
Unpaired () in Assigned Format No.
Invalid Delimiter in I/O Statement.
Invalid Use of () in I/O Statement.
Format too verbose for Simple minded compiler or,
(before completion of repeating format.
Most likely, invalid format, DO, I/O, or Arithmetic
Statement. If Format, can be: - sign that is not
part of P-Type, incorrect specification of length
of H type; no closing); statement not complete;
non permissible character.
More than 5 levels of repeating format
Repeated Power Format has more than 49 repeats
Field Width is missing in I, A, F, E, Specs
A-Width greater than 50
D missing in Ei<l.D or FW.D
Decimal missing in EW.D or FW.D
Non-permissible character.
D greater than W in EW.D or FW.D
(W-D) greater than 45
Field Width greater than 80.
A-Type has zero field width.
Symbol is more than 6 characters.
Fixed point number has too many digits.
Floating point number too big.
Floating point number too small.
Symbol table full.
Symbol which should be a function is not.
Simple variable in Dimension Statement.
Dimension IMAX not followed by) or ,
Missing) on Dimension Variable.
No , between DimenSion or Common items.

Unidentified Card.
First item in Equiv List not in Table.
Missing or, in Equivalence.
Number in Equiv Statement.
Variable Dimensioned Twice.
Arith'. St. Func. Defined Twice.

(,2

o

9.

OBJECT PROGRAM OPERATION

1. Introduction

The permanent subroutines package contains
routines which facilitate the handling of multi-part
programs and the handling of multiple data sets for
the same program. The'routines also have the ability
to recognize certain control cards as described below.
This is not hy any means a resident monitor, but it
uses' some of the Simpler concepts involved in monitor
systems.

An object program will operate perfectly satis
factorily withoutreferririg to the resident supervisor
program. If this kind of operation is desired, then
the running of the object program is the same as for
any other card 1620 FORTRAN. Load the object program,
followed by .the suwoutine deck, followed by the data,
and pray.

2. Error Messages at Object Time

No method really satisfactory to all people can
be devised for handling errors at object time. Some
people want every error, however trivial, brought to
their attention every time it happens, either by type
writer message or by stopping the machine. Others say
that any error snould result in passing control to the
monitor and delivering to the programmer a core dump
(preferably in binary) together with a cryptic indication
as to the possible source of his trouble. Still others
assert that no errors should be detected at all, that
the machine should run merrily on and that it 1s up to
the programmer to figure out post facto why his answers
are out by a factor or 1035 • ---- -----

The position taken in KINGSTON FORTRAN is that a
40K1620 is a little too expensive to p€rmit unbridled
chattering by the typewriter, but is still cheap enough
to permit some stopping during the course of debugging
a program.

Object time errors are collected in an 18 digit
error field located in the permanent subroutines. Digits
are inserted in this field to indicate various kinds of
errors, and system CALL statements have been included
to allow interrogation, typing, and resetting of this
error field.

Most errors do not result in stopping the machine,
and the error is not communicated when it occurs.

~3

\~~ c

10.

The error field is also typed out when a PAUSE,
STOP or END statement is encountered. The error codes
are given in Table 2. If a check digit is zero, the
error in question did not occur.

The systems CALL statements for interrogating
and using the error field, follow:

CALL EPRT

If the error field contains one or more non-zero digits
(i.e. at least one error has occurred) the .typewriter
types the 18 digit field followed by CHECK. If the
error field was zero throughout, only the word CHECK
is printed. The error field is not reset to zero by
CALL EPRT. Control is passed to~e next executable
statement of the program.

CALL RESET

The error field is reset to zero. It is not typed
out. Control is passed to the next exebutable statement
of the program.

CALL ERRCK(J)

The error field is interrogated. If it is non
zero (at least one error has occurred) the integer
variable J is set equal to 1. If no €rrors have
occurred, J is set equal to 2. The error field is
printed out (if non-zero) and reset to zero. Control is
passed to the next executable statement of the program.

The error field is also typed out by certain
supervisor control cards, as described in the next
section.

THE SUPERVISOR

The resident supervisor can recognize 3 kinds of
control cards. One of these signals that the following
card is the first card of a new job and that a load
operation is called for. The other two are used to
delineate blocks and files of data for a given program.

New Program Card

Form: Col 1 1
Col 2-80 any alpha numeric information

Location: first card of an object program deck.
b~

Punction:

End of Block

11.

This card informs the object program
that a new Job is waiting to be loaded.
If the current object program reads such
a card under the misapprehension that it
is a data card, the words END OF DATA are
typed followed by the word CHECK and the
error field (if non-zero). The typewriter
then types out the contents of the card,
and the computer Simulates the load
operation to read in the next job.

Porm Col -1062 .-: "
Col ,-80- any alphanumeric information.

Location: At the end of a block of data.

Punction: When a card containing " is read under
control of a READ statement, the End of
Block Indicator is turned on, and the
typewriter types the contents of the

End of Pile

Bnd of Block card, followed by the word
CHBCK and the error field _ (if non-zero).
Control is then transferred to the first
executable statement of the program-.----

The End of Block Indicator may be
interrogated by calling the End of File
or Block subprogram. See below. (The
End of Block Indicator is a program switch,
not a hardware feature).

Porm: Col 1,2" ~
Col _-SO any alphanumeric information

Location : at the end of a set of blocks of data

Punctlon: When a card containing ~, is read under
qontrol of a READ statement, the End of
Pile Indicator is turned on, and the
typewriter types the contents of the End

rJ

of Pile card, followed by the word CHECK
and the error field (if non-zero). Control
is then transferred to the first executable
statement of the pr~gram.

The End of Pile Indicator may be inter
rogated by calling the End of File or
Block Subprogram. See below. (The End of
Pile Indicator is a program switch, not a
hardware feature).

,5

1(-)

12.

The End of File or Block Subroutine Subprogram
(which is built into the system) may be used to
interrogate the End of File and End of Block
Switches.

CALL EOFB(J)

The End of File and End of Block indicators are
interrogated.

If the End of File Indicator is on, J is set equal
to 1.

If the End of Block Indicator is on, J is set equal
to 2. If neither is on, J is set equal to 3. Both
indicators are set to the OFF position after inter
rogation. Control is transferred to the next
executable statement of the program.

~~~~_~~_!~~_~~~_~~_~~~:~~:~!~~t_~~~:~~:~~~~~ 

In a job Which is processing data in batches, it 
is convenient to have some way of telling the computer 
where the end of a data set is, and also to tell the 
machine which is the last set of such data. 

The end of a set of data is called a "block" in 
our nomenclature. It may be of variable number of data 
paints (as in many statistical problems), but at least it 
is the amount of data which is appropriate for the whole 
job or for a section of it. 

Many jobs are set up to process several blocks of 
data in mor~ or less the same way for each block. It is 
useful, however, to identify the end of the last block so 
that the program is informed that no more data exist. The 
End of File Indicator accomplishes this. In our nomen-
clature, a "file" is a set of one or more "blocks" of data. 

Since reading an End of Block or End of Pile card 
returns control to the first executable statement of the 
program, it, is ~uggested that this first statement should 
be 

CALL EOFB(J) 

followed at a suitable place by a computed GO TO using J 
as its index. 

Two other system subroutine call statements are 
provided in KINGSTON FORTRAN: 

CALL EXIT bb 



o 

13. 

When this subroutine call is encountered the object 
program is stopped and control is passed to the 
supervisor. The machine will read ca~ds until it finds 

~ 

a new job card. When this is found, the number of cards 
read before finding the new program card is typed out as 
BYPASS N where N is the number of cards. The error check 
field is typed and the new program card is handled in the 
normal way. 

CALL SKIP 

This subroutine call causes interruption of the 
normal program. The machine will read cards until the 
next end-of-block or end-of-file (~~ or 111) card is 
encountered, at which time control is transferred to the 
first statement of the program. If a new job card is 
encountered before at 11 or 111 card, a normal exit to 
new program will result. In any case, the check field is 
typed, together with BYPASS N as explained above under 
CALL EXIT. 

CALL SKIP will usually be employed to stop 
calculation on a block of data because of an abnormal 
situation (e.g. failure to converge on an iteration, 
bad data) which has occurred in the block of data. 
In such a case, CALL SKIP will cause that particular 
calculation to be abandoned, and a new set of data to be 
presented to the program. 

CALL EXIT and CALL SKIP may also result from 
certain object time error conditions. See Table 2. 

Certain input-output errors are also detected 
at object time. If one of these is encountered, the 
typewriter will type the words I/O ERROR, followed by a 
digit. A list of these errors is shown in Table III. 

~7 

o 



---_ ...•.. _ ..... _._ .....• , ...... , .•.... , .. 

Position 
in Error 
Field 

1st digit 

2nd 

3rd 

4th 

5th 

6th 
6'-
(X) 

7th 

8th 

9th 

loth 

llth 
12 
13 
14 
15 
16 
17 
18 

I/O 
Error 

0 
1 
2 

3 
4 

5 

6"-6 
~7 

IF 

2F 

3F 

READ 1 
READ 3 
READ 5 

TABLE 2 

Object Time Errors 

Digit Meaning Action Taken (FAC Accumulator Resul t Field) 

1 

2 

3 

4 

5 

Floating Point Underflow 

Floating Point Overflow 

Floating Point Divide by 
Zero 

Fixed Point Divide by Zero 

Square Root of Neg. Number 

FAC 

FAC 

0000000000 

±9999999999 

FAC = ±9999999999 

FAC is unchanged, i.e. J/O = J 

Square root of absolute value of argo 

6 Log of zero or Neg.Number Log(O) ~ -9999999999; otherwise log of abs. value 
of argo 

7 Sin or cos, argo > 108 CALL EXIT 

8 Exp(x) out of range FAC = ±9999999999 

9 

1 

Input number too small 

Input number too big 

The number entered memory as 0000000000 

The number entered memory as ±9999999999 

2 l 3 
4 
5 ) 6 
7 
8 
9 

Unused. Available for 
user-defined relocatable 
subprograms. 

TABLE 3 . 

I/O Errors at Object Time 

Reason 

Input record from TjW or paper tape over 120 characters long 
Non-alphabetic data on A-type output 
Field Width too small on I, E, F, output 
Invalid character on input data on I, E, F, or N Format 
Read in integer with E, F, or N Format and has lost right-hand end digits 
Input-Output list with no numeric specifications between last opening
closing parenthesis pair in Format statement 
Format requires more than 120 characters in a record 
Write-check occurred 3 times when attempting to punch output or trace 
card 
Error in Variable Forma~ - similar to error Fl at comp11e t1me 

Ditto Similar to error F2 at compile time 

Ditto - similar to error F3 at compile t1me 

Read check on TjW 
" " "paper tape 

" cards 

4 

Result 

CALL EXIT 
CALL EXIT 
CALL SKIP 
CALL SKIP 
CALL SKIP 

CALL EXIT 
CALL EXIT 

I-' 

CALL EXIT ';l1 
CALL SKIP 

CALL SKIP 

CALL SKIP 

Computer halts. 
When start is 
pressed, the 
mach1ne will 
attempt to read 
the record again 

! 

I'" 



o 

16. 

MEMORY ALLOCATION AT OBJECT TIME 

All constants and variables are stored in 10 digit 
words. The address of the low order digit ends.always in 9. 
Hence the address .. of the high order digit ends in O. 

SIMPLE VARIABLES 

Real Variables - 10 digits, low order digit address ends 
in 9. 

Integer Variables - 4 digits, low order digit address ends in 
9. 

Real Constants - same as real variables. 

Integer Constants - In the rare cases that fixed point 
constants are stored in the object program, 
both the negative and positive value of 
the constant are stored. The positive 

A-Pormat Words -

ARRAYS 

~8-

value occupies the 10w order 4 digits of 
the 10 digit word; the negative value has 
its low-order digit address ending in 4. 
The other 2 cores are unused. 

address 
e.g. 0 1 2 3 4 5 6 7 ~ 9 

o 5 6 7 B 0 5 6 7 8 

This illustrates storage of 5678 

are stored in a 10 digit ~ield, the low 
order address of which ends in 9. The 
digit at the high order address (ending 
in 0) is flagged. 

one-dimensional arrays. 
Vectors are stored starting with the first 
eleaent at the highest numbered address, 
and with succeeding elements at 
progressively lower numbered addresses. 
That is, the vector dimensioned A(lO) 
would be stored A(1),A{2),A(3),--A(lO) 
at successively lower memory locations. 
The address of element A(I) may be 
calculated from: 
Address of A(I) = Address of A(O)-lO*I 
where the address of A(O) is called the 
base address of A. 
Note that A{O) = A(l) + 10 
Zero and negative subscripts will perform 
properly on a vector provided space is 
available. 

70 

<'J 

Matrices -

17. 

two dimensional arrays. Matrices are 
stored starting with the first element, 
B(l,l), stored at the highest numbered 
address. The elements are stored column
wise at progressively lower pumbered 
addresses: B(1,1),B(2,1),B(3,1) etc. 
The address of B)I,J) may be calculated 
from: 
Address of B(I,J) = Address of B(O,O)-lO 

(J*IMAX+I) 
where the address of B(O,O) is called the 
base of B. IMAX is the maximum number of 
rows in B as specified in the DIMENSION 
statement. 

Note that: 

The address of B(O,O)=address of B(l,l)+lO 
(IMAX+l) 

c 

Negative or zero subscripts on a matrix 
will work properly on the second subscript, 
but not on the first subscript. For 
instance, if B is dimenSioned B(3,3), then 
B(3,1) and B(0,2) will be in the same 
memory location, a condition which may be 
undesirable. However, B(2,O) will be 
stored in the second item before B(l,l). 

An example of a memory layout may help. 
Suppose the program has the following 
COMMON statement: 

COMMON X, A(4), B(2,3) 

The layout of memory is: 

Variable 
X 

!~~~ 
A(3) 
A(4) 
B(l,l 
B(2,1 
B(1,2 
B(2,2 
B(1,3 
B(2,3 

71 

Memory Location 
(lOW order digit) 
39999 (Base or A) 

89 
79 {Base of B) 
69 
59 
49 
39 
27 
19 
09 

39899 



18. 

STATa4ENT NUMBERS 

The address of the statement 1s stored in a 5 digit 
fleld~ which is .referred to indirectly. Two such 5 digit 
fields are contained in a 10 digit word, whose low order 
address ends in 9. 

SUBPROGRAM ADDRESSES 

FORTRAN subprograms or arithmetic statement functions 
require two 5 digit addresses for their entry pOints. These 
are stored in a 10 digit word whose low order address ends in 
9. 

TEMPORARY ACCtJruLATORS 

(I) la-digit aCCUIIlUlators IIIIlY be required during the 
evaluation of an arithmetic expression. These are 
treated exactly like storage for simple variables. 

(2) 5-digit accumulators are used in subscripting calculations. 
Two of these are stored per 10 digit word. 

72 

~ -y 
F) 

19. 

THE SUBROUTINE DECK 

No provision is made for reproducing the subroutine 
deck into the object program. It is the opinion of the 
writers of KINGSTON FORTRAN II . .that the 1620 should not be 
used to reproduce subroutine decks indiscriminately. For 
that reason it is required that the subroutine deck be 
placed behind the object deck when loading. If a condensed 
program is desired, use a suitable core-dump-and-reload 
program. 

The subroutine deck consists of 3 parts, which are, 
in order: (a) the relocator,which handles the loading of 
the relocatable subprogram (as requested by the object 
program) into core storage; (b) the relocatable subpro~ams 
which consist of the library function subprograms(sin, 
cos, exp, etc.), parts of the input-output subr.outines and 
any subroutine subprograms which the user may wish to 
write; (c) the permanent subroutines containing the 
programmed floating-point arithmetic routines, the fixed 
point routines, the supervisor, the trace routine, and a 
hard cord of the input-output routines. 

These three sections are essentially-independent. 
The relocator is a completely separate program which uses 
information contributed by the object deck (memory Size, 
subprograms desired, where empty space is available for those 
subprograms, etc.) to select and load into core storage the 
relocatable subprograms needed for the Job. 

In a small machine, like the 1620, it is essential 
to conserve memory space. For this reason, the input
output routines have been broken up into pieces, and are 
treated like any other relocatable routines. For instance, 
if the object program does not use A-specification, the 
routine to handle this will not be loaded into core. 
Thus, only the input-output routines needed by the obj~ct 
program will be loaded. ---

The question arises, how far should this be 
carried. About 2000 cores of input-output routine are 
used by all other input-output routines, and these are 
part of the permanent subroutines package. The routines 
for exponentiation, floating and integer, and for integer 
division were made relocatable. All others are part of 
the permanent package. Some consideration was given to 
making the trace routine (300 cores) relocatable. This 
was rejected on the grounds that any program which fits 
into the machine should also be traceable. The only way 
this can be assured is to have the trace routine 
permanently in place. 

73 



0.---;;. 

20. 

The permanent subroutines are a self-contained deck 
independent of the relocator. This deck is so programmed 
that after loading, control is tran8ferred to the core 
location containing the first machil'.e language instruction 
of the object program. 

A list of the relocatable subprograms is given in 
Table II. 

RELOCATABLE SUBPROGRAMS 

User-defined-relccatable-subprograms (abbreviated 
UDRS) may be of several types, depending on the coding 
generated by the compiler when the subprogram name is 
encountered in a FORTRAN Sl);lrce statement. Tr.e generated 
coding is controlled by the m~keup of cards placed at the 
end of the compiler deck. These tr-aller cards inform the 
compiler what subprograms ar~ available and also supply 
auxiliary information about them. 

Each entry on a trailer card consists of a two digit 
subprogram number, followed by the subprogram name (six 
characters maximum) followed by a 3 digit cede number 
enclosed in parentheses. A typical entry has the form: 

NNJCXXX.XX(n1 na n3) 

where NN is a two digit number unflagged). 

XXXXXX is a 1 to 6 chara~ter name 

n1nan3 is a 3 digit code which describes the subprogram 
properties to the compiler 

NN is any two digit number between 01 and 66. 

XXXXXX is any name beginning with a letter. It does not 
have to end in F and its starting letter is 
independent of the fu~ction mode; e.g. integer 
functions do not have to begin with I, J, K, L, 
M, or N. 

n1n2n3 is made up as follows: n1na form a two digit number 
controlling the codil'.g ger.erated by the compiler; 

SVECT 

n3 describes the function properties. Table I 
describes this. 

is a location in a subprog~am transfer vector 
located in the perma~ent subroutines. This vector 
contains the relocated address cf the subprogram, 
as explained below. 

lL! 

(") n .-..-/ 

21. 

TABLE I 

Digits Coding 
n1 na 

10 TF 
BTM 

20 BT 
BT 

BT 

25 BT 

30 TF 
BT 

BT 
BT 

35 BTM 

BTM 
BTM 

Generated 

B1FAC,ARG 
-SVECT,*+12 

-SVECT,ARGk -SVECT ,ARGk _
1 

-SVECT ,ARGI 

-SVECT,ARG 

B1FAC, AR~ 
-SV!'CT ,A~Gk_1 

-SVECT ,ARGa 
-SVECT,ARG1 

-SVECT,ARGk 

-SVECT,ARG1 
-SVECT+5,*+12 

Use and Notes 

Single argo UDRS which may inter
nally branch and transmit 

Multi-argument, single entry UDRS. 
If one of the arguments is already 
in B1FAC when the UDRS is called, 
it will not be transmitted by a 
BT-SVECT,ARG. If one of the 
arguments is not already in B1FAC, 
then ARGk is Placed in B1FAC and 
ARGk to ARG1 are transmitted 
through SVECT. This type of 
entry is designed for functions 
like MAX and MIN. 

Single argument UDRS which may not 
internally branch and transmit 

Similar to n1n2=20 above, where 
ARGk is forced into B~AC 

A UDRS which may have any number 
of arguments (including no 
arguments at all) and which may 
branch and transmit internally, 
and which does not have any of its 
arguments in B1FAC when entered. 
This entry is required if the UDRS 
is to be used as a subroutine sub
program. 

If n1 is flagged, the UDRS is expected to produce a floating 
point result. If n1 is not flagged, the UDRS is expected to 
produce an integer result. 

n3 

B 

o 

can have 3 possible values: 

denotes an even function, i.e. f(x)=f(-x); used only 
for single argo functions 
denotes an odd function, i.e. f(x)=-f(-x); used only 
for single argo functions. 
denotes a function which is neither odd nor even. 

75 

I 
I 



22. 

If in doubt, set ns=O, which w11l never cause 
trouble. (Certain economies at object time are possible 
if the compiler knows 'whether the function is odd or even). 

A UDRS may ~e used as an arithmetic function or 
as a subroutine subprogram. If a UDRS is called as the 
result of the appearance of its name in FORTRAN arithmetic 
statement or expression, it will be compiled as if it were 
a function; that is, it must have a single number for a 
result, and this result must be left in ~AC on exit from 
the UDRB. 

However, if the UDRS is used as a subroutine 
subprogram its naae must appear in a FORTRAN CALL statement. 
In this case, more than one result can be generated, and 
these are transmitted back to the calling program by the 
foraal parameter list or through COMMON storage. The only 
permissible n1na fort~is case is 35. 

The same subprogram may be given several names. 
All that is necessary is to construct several entries in 
the trailer card using the same subprogram number and code 
digits, but different names. Entries on the trailer cards 
must be packed with no blanks. After the last entry on 
each card, a single record mark (0-2-8) is placed. After 
the last en~ry on the last trailer card, two record marks 
are placed. 

For example, a trailer card might look like: 

05BLAP(lOO)05BLAPF(lOO)10GURK(200)18A(15I)10RUNCH(200) 
IOFLAPF(200)+ 

The code digits have been described above. 
Subprogram 05 is known by the names BLAP and BLAPF, 
subprogram 10 by GURK,RUNCH and FLAPF, and subprogram 18 as 
A. 

As many trailer cards as necessary are constructed 
and placed after the compiler deck. They should be inserted 
between the second and third card from the end. The last 
two cards contain the names of the system relocatables; the 
last card contains two record marks at the end of its 
entries (see above)~ 

PROGRAMMING RELOCATABLE SUBPROGRAMS 

UDRS are to be coded and assembled using either 
IBM 1620/1710 SPS II or AFIT SPS. To aid in understanding 
the process of adding subprograms, a short description of 
the subprogram relocator behaviour follows. 

7~ 

() ~-) 

23. 

The relocator will relocate all addresses of 80000 
or more. Thus subprograms are preceded with a DORG 80000 
instruction. Any address below 80000 will .not be relocated. 
The relocator assumes that all instructions are to be 
relocated; however a constant (defined by DC, DSC, DAC) or 
a DSA will be relocated only if its location is at or above 
80000. Furthermore, the constant assembled from a DSA will 
have both its value and its location relocated if they 
lie at or above 80000 and provided also that it occurs 
before the first executable instruction of the subprogram. 
This will become clearer later. 

The compiler constructs entry commands to the 
subprogram as described previously. Note that the user 
can force compilation of instructions (in the object 
program) which culminate with BTM -SVECT,*+12. Since in 
this case, the UDRS has a real 5-digit return address 
stored away and control is passed back to the main program 
by branching indirectly to this 5 digit address. This 
allows the user to employ BT and BTM instructions In:his 
own subprogram. This feature permits direct access to all 
the floating arithmetic routines and also to other 
re10catab1e subprograms. It is alsO possible tor a UDRS to 
ca1~ other re10catables, even though the FORTRAN source 
program does not require them directly. 

Linkage to the relocated subprogram is provided 
by a transfer vector located in the permanent subroutine 
package. It is defined by a DSB in the permanent package 
source deck, a copy of which is included with the systems 
decks. There is thus no reason for the user to concern 
himself with absolute addresses, since each UDRS will be 
compiled with the aid of the permanent subroutines source 
deck. 

The user must specify certain information, in 
SPS, before the coding of his UDRS. This information 
becomes the header cards used by the relocator to select 
and relocate the subprogram properly. 

For functions entered by BT -SVECT, ARG, the 
coding must look like: 

DORG 

DC 
DC 
DC 
DC 

DORG 
DSA 

DORG 
DS 

a 

2,NN 
2,11 
2,JJ 
2,KK 

B~SVECT-9+5*NN 
START, 99999, Nxx-80001 

80000 
10 77 



o 
24. 

START function coding 

taX DAS . 1 
DEND 

The list of DC's at the beginning define the subprogram 
nuaber NN, tollowed by the numbers II, JJ, KK, etc. of the 
relocatable subprograms required by this subprogram. These 
constants .ust be preceded by a DORG 0 (zero); the 
relocator identifies them as subprogram numbers by this 
tac t • A subprogram may ca 11 a l1mi t ot 29 other subprograms, 
i.e. there may be a maximua of 30 DC's in this list. 

The next item is a DORG to the proper place in the 
transfer vector ~SVECT, followed by a DSA list. The first 
item in this list is the address of the first executed 
instruction ot 'the subprogram. The next item in the DSA 
list must be 99999. The next item is constructed such that 
it will assemble to a 5 digit number which is the size of 
the subprogram. Note that NIX (or other suitable label) is 
a DAS I which must appear Just before the DEND statement of 
the sUbtrogram. Obviously N.XX-Boool will be an even number 
and wIi be the number of digits occupied by the subprogram. 
The relocator assumes that the DSA immediately following 
a DSA 99999 is the subroutine size. 

The coding_of the subprogram itself is preceded 
by DORG Boooo. 

In the case of multiple argument subprograms, two 
entries in the transfer vector are necessary. The subprogram 
arguments are transmitted through vector location 
B;tSVECT +5", where NN 1s the subprogram number; the 
return address 1s transmitted through B;tSVECT- 9-+-5*NN. 
The programmer must provide coding to handle the arguments 
and return address as they are transmitted. For such a 
subprogram, two DSA's for transfer vector entries must be 
programmed. For example, 

SOAK 

DORG 
DC 
DORG 
DSA' 
DORG 

START -

MY DAS 

o 
2,MM 
B;tSVECT - 9 +5 *MM 
START, SOAK, 99999,NY-80001 
80000 

1 

78 

~") n ,----'" 

25. 

In such a case, SOAK is the entry for coding to 
handle argument addresses, and START is the beginning of the 
multi-argument subprogram. 

MM is the 2-digit subprogram number. Note that 
the two entries in the transfer vector must be contiguous, 
and that the first one may not be used for any other 
subprogram. Thus, if MM is the number of this subprogram, 
MM+l may not be used as the number of any other subprogram, 
since the transfer vector location which it needs has 
already been used by multiple argument subprogram MM. 

For example, let us program a subprogram to 
calculate the hyperbolic sine of a floating point argument, 
by the well known formula 

SINH(X) ='~(eX _ e-x ) 

To do this we will need the exponential routine, subprogram 
number 69 and we will use the floating subtract and multiply 
routiries. 

HEAD K 
HYPERBOLIC SINE OF X, SUBPROGRAM NO. 12 
DORG 0 
DC 2,12 
DC ·2,69 

DORG 
DSA 

DORG 
DS 

SINH TF 
BT 
TF 
TF 
BT 
BT 
BT 
BT 
B 
DORG 

FLHAF DC 
BINI DS 
BIN2 DS 
N12 DAS 

DEND 

B;tSVECT - 9+5 * 12. 
SINH,99999,N12-80001 

80000 
5 
BIN2,B;tFAC 
B;tSVECT-5+5*69,B;tFAC,6 
BIN1,B;tFAC 
B;tFAC,BIN2 
B~VSGN,B~VSGN-I 
B;tSVECT-5+5*69,B;tFAC,6 
B;tFSBR,BIN2 
B;tFMP ,FLHAF 
SINH-l,,6 
*-3 
10,5050000000 
10 
10 
1 

79 



26. 

Several points should be noted 

(1 ) 

(2) 

(3) 

(4) 

(5) 

This is an example only. Much better methods for 
SINH(X) exist. 

A UDRS must be heaQed. DO NOT USE HEADING CHARACTERS B 
NOR S. These are already used in the permanent 
subprograms. 

The first DC defines this subprogram as number 12. 
The second DS causes the relocator to load in 
subprogram number 69, the exponential routine (see 
Table II for a list of systems relocatables). 

The next DORG and DSA define the transfer vector entry 
and the subprogram length. 

Since this subprogram calls other subprograms, it 
will be entered by having the argument in B~AC, and 
the compiler. wilL ienerate BTM B~SVECT-5+5*12, *+12,6. 
The compiler trailer card entry would be: 

12SINH(IOO) 

(6) The coding for the subprogram follows directly. The 
first instruction saves the argument x, the second 
calculates eX, the third instruction stores this 
result away. We then reverse sign of x in the next 
two instructions, and calculate e-x . 

The two exponentials are then subtracted, and multiplied 
by 0.5. The result remains in B~AC, and the subprogram 
branches indirectly to the return address carried into 
the subprogram. 

A special method must be used to handle DSA's which 
are used internally in a UDRS. A DSA used internally must 
have both its value and itslocation adjusted by the relocator. 
A true constant, defined by a DSC, DC or DAC, must have its 
location adjusted but its value left unchanged. Unfortunately, 
in a condensed deck prepared by IBM 1620/1710 SPS II, a DSA 
and a constant are indistinguishable. For this reason, the 
following rules must be observed. 

RULE 1: Any DSA which is local to the subprogram and which 
~ve botn-Tts location and its value adjusted by the 
relocator, must be defined after the DORG 80000 statement 
and before the first instruction of the subprogram. 

RULE 2: Any constant which is local to the subprogram and 
wnrcn-is to have only its location adjusted by the relocator, 
aust be defined after the first instruction of the subprogram. 
Por example, 

r~ ., } 

80 

F 
~ 

27. 

* EXAMPLE SUBPROGRAM NO. 38 
DORG 0 
DC 2,38 
DORG B~SVECT-9+5*38 
DSA GLOP,99999,N38-80001 

DORG 80000 
DSA Al,A2,A3 
DS 20 

GLOP (an instruction) 

Al 
A2 
A3 

GORP DC 25,0 
GORPl DC 35,1 
N38 DAS 1 

The DSA Al,A2,A3, will be adjusted as required, because it 
occurs before the first instruction which in this case is 
labelled GLOP. The two DCls, GORP and GORPl will have their 
location adjusted, but their value unchanged, because they 
occur after the first instruction. 

ASSEMBLY OF A UDRS 

Program the subprogram as described above. Place 
it behind the source deck for the permanent subprograms. 
USing IBM 1620/1710 SPS II, or AFIT SPS, put this comb~ned 
source deck through Pass 1 of the assembly in the normal way. 
For PASS II of the assembly, read in only the source deck for 
the UDRS; it is not necessary to read in the source deck of 
the permanent subprograms for Pass I. Get a condensed object 
deck for the UDRS. Throwaway the first two and last seven 
cards of this deck. What remains is the subprogram coding 
itself, preceded by its built-in headers. 

The UDRS condensed deck is to be inserted in the 
deck after the relocator, which ends with card No. ZZZ. 
The UDRS must be located physically in front of any subprogram 
which it calls. If this is not adhered to, an error message 
will result when loading an object deck (see operating 
instructions). ObviOUSly the relocator cannot load a 
subprogram which it has already bypassed before the calling 
subprogram appeared. 

81 



c 

o 

o 

TABLE II 

Subprogram 
Number 

Length of 
Subprogram 

Sub .called 
by this Sub. 

Entry to 
Subprogram 1 Purpose of Subprogram 

67 
68 
96 

69 
70 
71 
72 
76 

74 
77 
78 
73 
75 

79 
r:::n80 

N 81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
97 

98 

99 

Routine 

o 
694 
132 

528 
578 
308 
866 
54 

304 

1048 
1056 
124 
100 
104 
68 
156 
122 
74 
436 
122 
130 
268 
64 
1794 
180 
176 
188 

226 

122 

Floating Add 
Floating Subtract 
Reverse Floating Sub-
tract 

Floating Multiply 
Floating Divide 
Reverse Floating Divide 
Reverse Fixed Subtract 
Fixed Multiply 
Reverse Sign 
Float 
Fix 
Zero Accumulator 
Floating Overflow 

'Ob(sets error code) 
Ul 

Floating underflow 
STOP N 

PAUSE N 
CALL ERRCK(N) 
CALL EPRT 

CALL RESET 

CALL SKIP 

CALL EXIT 
CALL EOFB(N) 

Return typewriter 
carriage and type a 
mess3.go. 

68 

69,70 

72 

84 

BT -SVECT,ARG 
BT -SVECT ,ARG 
BT -B~P¢3,A 
BT -B~PS14,B 
BT -SVECT,ARG 
BT -SVECT,ARG 
BT - SVECT,ARG 
BT -SVECT,*+12 
BT -SVECT,ARG 

BT -SVECT,ARG 

Special 
Special 
Special 
Special 
Special 

Special 
92 Special 

Special 
Special 

92 Special 
Special 
Special 
Special 

94,95 Special 
Special 
Special 
BT -B~P9'l,A 
BT -BSEXP)12,I 
BT -BSEXP\t5,I 
BT -BSEXP¢6,J 
BT -B~l,I 
BT -B 2,J 

Trigonometric COSINE of argument 
Trigonometric Sine of argument 
Reverse Float-Float Exponentiation A**FAC~FAC 
Float-Float Exponentiation FAC**B~FAC 
Exponential function of argument,Exp(arg) 
Natural logarithm of argument 
Square Root of argument 
Arctangent of argument; argo 
Signum of Arg; Argument: >0 

in B~AC 
Result: +l. 

=0 O. 
<0 

Random number generator; see 
Larger of (argl,argZ) 
Smaller of (argl,arga) 

-l. 
spec.description 

Arctangent of (argl/arga) 
Sign of argl,arga. Magnitude of argo with the ~ 
sign of arg2. 
Input of E,F,I, or N-type numbers 
Output of E,F,I, or N type numbers 
Routine to handle Hollerith Fields 
Routine to handle I/O implied DOls 
Routine to handle I/O of arrays (formal) 
Routine to handle I/O of arrays 
I/O subscripting routine for A(I,J) 
Accept 
Type 
Print (on-line) 
Accept tape 
Punch tape 
Reread 
Snip (part of Accept and Accept Tape) 
Variable Format 
Routine to handle repeated ,parenthesized ,Format 
Routine to handle A-type numbers 
Reverse Float-Fixed Exponentiation,A**FAC~FAC 
Float-Fixed Exponentiation,FAC**I~FAC 
Reverse Fixed-Fixed Exponentiation,A**FAC~FAC 
Fixed-Fixed Exponentiation FAC**I~FAC 
Reverse integer division I/FAC~FAC 
Integer division FAC J*FAC 

in e trans er vector w 
B$SVECT-5~5*NN, where NN 

program. 

Purpose 

FAC+A~FAC 

FAC-A-IlFAC 

A-FAC~FAC 
FAC*A~FAC 
FAC/A~FAC 
A/FAC~FAC 
I-FAC~FAC 
FAC*I~FAC 
-FAC~FAC 

(A=I ~~FAC 
(I=A ~FAC 

TABLE III 
Permanent Subroutines 

Symbolic 
Address 

BpAD BT 
B~SB BT 

BpSBR BT 
BPMP BT 
B~DV BT 
BPDVR BT 
BpXSR BT 
B~XM BT 
B~VSGN BT 
B~LOAT BT 
B~IX BT 

Floating Zero~FAC B~ERFC BT 

Entry to Subroutine 

BPAD,A 
B~SB,A 

epSBR,A 
B~P,A 
B~DV,A 
B~DVR,A 
B~XSR,I 
B~XM,I 
B~VSGN,B~VSGN-l 
B~LOAT,I 
B~IX,A 
B~ERFC ,B1lERFC-l 

± Floating nines 
B1ER9 BT B1ER9,B1ER9-1(sign of answer ~FAC must be in location 00099) 

Floa t ing z ero~FAC B1ER9' BT B~S1,B~~-l 
See general B~ST~P BT B~ST9'P,N 
specifications 

II " B~PZUSE BT B~PAUSE,N 
Check error field B1ERRCK BTM B1ERRCK,N 
Print out error B1EPRT BT B1EPRT,B1EPRT-l 
field 

Reset error field B1RESET B'l' B~ESET,B~ESET-l 
to zeros 
Find next block 

or file card 
B~IT BTM B~IT,O,lO 

Find next program B~IT BTM B~IT,l,lO 
Interrogate block B1EOFBR BTM B1EOFBR,N 
and file indicators 

t\) 

'? 

Obvious B1TWSR BTM B~SR,LOC,.where LOC is the address 
of the record to be typed. 



30. 

TABLE IV 

Useful Constants and Their Addresses· 

Address 

~LONE 

~INES 

B~NlNE 

B~ZER~ 

BPZERC 

~NE 

B1ERRF 

HINTS AND l«)TES 

Constant 

Field Address of 5110000000 

Field Address of 9999999999999 

Field Address of 9999999999 

Field Address of 0000000000 

Defined as DC 21,~ 

Defined as DC 14,10000000000000 

Defined as DSC 18,0 
This is the error field. 

(1) All object time subprograms should assume that the 
arithmetic overIlow light is ON. Flx~d add and 
subtract are done in line, not by subroutine, so 
there is lots of opportunity for it to get turned 
on. All the routines of Table III assume the 
overflow is ON. Conversely, if your subprogram 
turns on the overflow light, the other routines 
could not ~are less. They turn it off themselves 
if they need it. 

(2) The console area (locations 00000 to 00099) is 
available for work area. Routines of all sorts use 
it for temporary storage. Watch out for possible 
complIcations if your' subprogram calls other 
subprograms which also use the console area as a 
scratch pad. The accumulator is in B~AC, loc 50-59. 
Put the result of a function subprogram there. 

(3) The error field has blank spaces in it for user-defined 
error codes. The high order digit of the error field 
is 1n location B~ERRF. Use a TDM instruction to put a 
suitable digit in the right place. Do not used flagged 
digits in the error field. It will foul up the compare 
instruction used to find out whether the field is all 
zero or not. 

8Lf 

a () 

The following papers were presented at the joint Canadian and l·:id.-western Regional 
meeting of the IBU 1620 Users Group in Chicago, February 19-21, 1964. 

These programs will be submitted to the 1620 Users Group Program Library in the 
near future. 

CAP.LETON COLLEGE CO: l' ILl!l? by Donald H. Taranto, Carleton College, Northfield, J.l1nn. 

The Carleton College Cocpiler is a load-and-go algebraic cocpiler designed especially 
for the 20X, autoIJatic floating-point card system with indirect add.ressing and additional 
instructions. Compilation and execution are fast, and batch operation is handled quickly. 

The langllB€e includes the usual 4-digit fixed-point, lO-digit mantissa floating-point, 
and elementary function arithcet ic. In addit ion, there are boolean, maximum-minimum, and 
remainder operations, Subroutine calls are allowed and flexible alphameric typed output 
is available, 

The entire compiler occupies 9-11X of core (depending upon what function subroutines 
ar. included) and is practically fool-proof, Source statements .are thoroUE;h1y checked 
for legality during cOwpilation, 

This fast, versatile compiler is bought at the price of severe (but not serious) 
restrictiOnS on variable and statement fornats, 

CARLETOn BINARY SI:·!ULATOR by William R. Gage, Carleton College, lIorthfield, Minn, 

The Carleton Binary Simulator is an interpreter which turns the 1620 into a 
fixed-word-length, single address, binary computer, There aro 4096 words of 16 
bits (15 bits and sign) each, a 32-bit accumulator-remainder ur.it, and a 12-bit 
index register, There is a generous supply of arithIIietic, boolean, control, and 
input-output instructions, 

This versatile and unusual interpreter is bought at the price of rather slow 
execution of a source program. Machine requirements are 20K Card System, Automatic 
Divide, Indirect AddreSSing, and Additional Instructions. 

85 



o 

Modifying Moni tor ! 
!i2. Inolude ~ Programming SystEs 

by 

Alan V. Pure e 11 

Engineering Computing Laboratory 

University of Wisconsin 

Madison, Wisconsin 



Mod1tY1nc Monitor I 
~ ~ ~ ~1.iig SystEIIS 

I Introduction 

A. ObJectiTes or ModU'ication 

1. Monitor I Compatibility 

2. Compatibility with system 
to be added 

B. FORGO as an eDllple or such a Modification 

II Integration ot the Systems 

A. Modifications to Monitor 

B. Mo1itieation. to FORGO--a typical 
sys tea to be added 

C. Operation ot the Resulting Sys tern 

II! S(l!ll~ Suceested Chall&es to Monitor I 

Appendix 

87 

c o 

Mod4f~ing Monitor I 
~ Inclu~ oFer PrOgi=iiiiii'"ing SY!terns 

I Introduction 

The purpose of this paper is to show hOil it is possible to include 
other programllling systems in the Monitor I package, even if the systems 
to be added require different types of control cards and occupy the sCllle 
memory locations as the Monitor I Supervisor. To warrant such a modifi
cation, the system would have to btl in use frequently enough to justify 
including it on a level with mtl'RAN II-D, the Disk Utility Program, and 
SPS II-O and it would presumably be undesireable to re-asserable it under 
SPS II-D and use it under the ~ option of Monitor I. 

The resulting modified monitor system would have complete compati
bility with Monitor I, i.e. all Monitor I functions would be performed 
as before. In addition, the modified Supervisor would recognize control 
cards for the additional system and transfer control to it when such 
an option is specified. The system to be added would require some modi
fication to require it to return control to the Supervisor routine when 
a Monitor I control card is specified. 

In this paper the necessary changes to Monitor I are explained. 
As an example of a typical sys tem to be added, the FORGO Fortran can
piler is used throughout. By way of explanation and background, FORGO 
is .~ compiler which is uniquely suited for educational use because: 

(a) FCRGO is a load-and-go FOR IRAN compiler. Since it resides 
in memory at all times, it eliminates processor reloading 
and object deck haridling. 

(b) It has exrememly complete di~no5tlcs, both at compile time 
and run time. Even at run time, all conunents are referred 
back to the us~r 's source language program. 

(c) FeRMAT is optional, permit.ting the postponing of this single 
. most canplicated FORTRAN statement until after running ex

perience has been gained. 

It should also be noted that the version of FC1l.GO used was the 
two pass system, in which the compiler section is overlayed in memory 
by the subroutines at program execution time. The compiler section 
is known as FOR-'ro-GO A and the subroutine section is known as FOR-· 
1'O-GO B. 

Under this scheme, if a FORGO control card is recognized by the 
lIonitor I SuperVisor, FOR-ro-GO A is called into core. If the progr_ 
is accepted, FOR-ro-GO B is called in and the program executed. If a 
Monitor I Control Record is then read in, control returns to the Super
visor, and the appropriate systefl is called in. Thus mixing types or 
jobs (1.'9. FCRTRAN II, SPS, FORGO, previously assembled or compiled 
object progrlUlt, etc.) is perfectly allowable and requires no operator 
interTentlon to load decks. 

88 



·if.jijjmp··,..·.. "J.i+f.:.w,i.y.,:pn" f""jj"jlj .. ' TTTT""·Ji.I~~,i;lili"r:,,"·"J""'1QI,,",f"""'IiHF!""·lfOF"""!l!5F,",9'D"'''·..,f" .. ii' ... ·'"""""""" __ ..... _ ..... ___ ~_'_~_~ ________ --:: ...... _____________ --------

\.0 
o 1 

FORTR_olli II-D 
Con;pilcr 

FORTRAN II-D 
Cor;piler 

Supervisor Program 

-----._-------------\----------

r-:~:l 
1 . !:;emblor I 
I I 

Figure 1 - IHi 1620 }.'onitor I System 

-,_._---

Supervisor Program 

I 

1 
SPS Il-D l Assembler 

Disk Utility 
gram Pro 

Figure 2 - Educational t!onit'or System 

Disk utility 
PrograJ: 

FORGO 

__________________________________________ """" ..... ilIiiiiil ..... ilii_ ........... ~'.L 



- 4 -

II Integration 2!. ~ systems 

A. Modifications to Monitor I 

Tbe basic lIIOditication to the Monitor I system is, ot course, 
the inclusion of the additional By.tell to be added. FCRGO is used 
here &8 an example. 

lhls modification is made more difficult by the fact that the 
superviaory routine ot Monitor I requires all core locations below 
location 2402, as does the FeRGO compiler. 'nlis means that FO~O 
will bave to replace the Supervisor in !lemory, yet be called into _.ory under control ot the Supervisor. Also, patches to Monitor I 
lIust go above the area used by the Supervisor (i.e. above 13160) 
and mst be replaced every time they are destroyed. 'lbe specific 
patches to accomplish this are found in the Appendix; it suffices 
to outline them generally here. 

'lbe patches to Monitor consist of two main parts; one is the 
routine which reads in the patch area of the Supervisor every time 
it is destroyed J and the other is the routine which scans the in
cOIling cards for FORGO control cards--as well as for Monitor I con
trol cards. 'nlis firs~ patch area, beginning at location 2914 in 
the Supervisor, reads the Monitor I Supervisor patch area into lo
cation 13162 and branches to it to execute the instructions dis
placed by the first patch area. The choice of location 2914 to 
begin these read instructions was not arbitrary. 'nle instructions 
in this area are executed every time the Supervisor is read into 
core, thus assuring that the second patch is in core also. It is 
a location that makes certain that several disk indicators are reset, 
so that reading in the second patch area does not cause erratic disk 
oper at ions. 

'n1e second pat~h area foI':1ls the linkage between the Moni tor I 
SystSll and the F<EGO compiler. Upon recognition of a FORGO control 
card, the FOROO canpiler is read in and supervisory control passes 
to it. Ibu!, in this patch area is the routine which scans for FORGO 
control cards. 

D. Modifications to FORGO--A typical System to be added 

'nle patches to FORGO are chiefly those required to link FffiGO 
and the Monitor I Supervisor (see flow chart, Fig. 3). Using the 
modified system, it a FORGO control card is recognized by the Super
visor, P'OR-To-GO A (the compiler) is called into core frCWII disk. If 
the prograll\ is acceptable, FDR-ro-GO B (the subroutines) is called 
in and the progralll is executed. Control is then returned to the 
Supervisor, and the process repeated. Every card read under the 
superylsory control of FCRGO is checked to see if it h a Monitor I 
control card; if it is, Fffioo operatlon is terminated with an error 
cOlhent it appropriate, the Supervisor is read from disk, the card 
is set-up in the Supervisor input area in memory, and supervisory 
control is relinquished to the Supervisor. 

91 

() 

s 

Figure 3 - Flow-chart of Modified System 
92 

() 



o 

- 6 -

Creation ot the Resulting System 

the procedure used in creating the working version of the resulting 
9ystem is given here. The pertinent listings and typewriter sheets are 
given in the appendix ot this paper. 

'ftle s_e basic procedure is used in adding the main patch area to 
Monitor I and in adding the additional system. It is necessary that 
the actual changes to the Supervisor, which are done using the D. U. P. 
routine DlLTR, be done last. 

'ftle basic procedure was to first load the Monitor I system on disk 
as described in the Monitor I Systems Reference Manual. After this has 
been accOlllpllshed the system to be added, for example, FOR-TO-GO A, is 
loaded into core. '!he Disk Write Program is used to transfer it to the 
work cylinders, and the Monitor I D. U. P. routine DLOAD is used to 
move the infor.ation from the work cylinders to the desired disk cylinders
in this case cylinders twenty-six and twenty-seven were used to contain 
FORGO and the Supervisor patch area. Exactly the same procedure is followed 
tor aidingtbe chief Supervisor patch area {which starts in core at 13162}. 

To make the patches within the Monitor I Supervisor itself, the 
Disk Utility routine DALTR was used, and the desired changes were typed 
in (see typewriter sheets). Now the entire system in on disk in the 
torm required for operation. 

To get decks which will load under control of the Monitor I System 
Loader and to eliminate the need to do all of the preceding steps every 
time it is deSired to reload the system on to disk, the DUP routine DDUMP 
was used. '!he system tables, the modified Supervisor,FOR-1O-GO A, FOR
'ro-OO B, and the Monitor patches were dumped on cards. It was then nec
essary only to add the System Loader control card to each deck, the format 
ot which is described in the Monitor I Systems Reference Manual. 1he 
systems tables deck replaces deck two of the original system, the Super
visor deck replaces deck seven, and the other decks are added at the end 
ot the other Monitor I decks when it is desired to load the s.ystem on to 
disk. 

Concerning ordinary operation of the modified system, it is the same 
as the Monitor I system. Cold start procedures are exactly the same. 
Disk cylinders twentY-Six and twenty-seven are not available for use, 
however. 'lhese cylinders are protected by the Monitor I system tables. 

III SOllIe Suggested Changes to Monitor I 

B. Improvements to Monitor I 

other systel1lS could be added to Monitor I, using much the same 
techniques as were used in adding FORGO to Monitor I. Possible 
addi tional systems could be ALGOL, UW-SPS, COGO, etc. Sui table cor.
trol cards could be designed, and the routine which scans for FORGO 
control cards could easily 0e expanded to include a scan for the 
other control card types. 

93 

c 

- 7 -

A very import311t modification which shoul:i be ma'~ to the 
Y.onitor I system loader,whether FORGO has been added to the Monitor 
system as described in this paper or not, would be one which puts 
read-only flags on the sector addresses or the Monitor I system 
routines as they are loaded onto the disk. The purpose of these 
flags is to file-protect the information contained on the flagged 
sectors; information contained thereon lIay t~en be read bUt can:1ot 
be written over and destroyed. Although parts of the system must 
be left capable of being changed (i.e. the system tables), the un
changing parts could be file-protected by the loader--perhaps sig
naled to do so by a punch in a certain column in the heading con
trol card of the decks to be loaded. Not file-protecting the sys
tem routines is a serious error on the part of the creators of the 
syi;tem, and as it stands~ any SPS program could, through use of disk
write instructions, destroy the system routines on disk and neces
sitate reloading the entire system from cards. 

);' 

~ 



\..9 
~ 

02914 
02914 49 02938 00000 
02926 48 00000 00000 
02938 34 04088 00701 
02950 36 04088 00702 
02962 46 02926 01900 
02974 49 13162 00000 
04080 
04080 49 13242 00000 
04088 
04088 
04093 
04096 
04101 J3162 
04340 
04340 45 13310 13001 
13162 
13162 25 09794 02878 
13174 31 02110 04046 
13186 26 02103 02857 

13198 25 00 1,'10 02857 
13210 32 00 1.56 00000 
13222 15 0196 7 00009 
13234 49 02986 00000 
13242 
13242 25 13265 02855 
13254 26 04941 10700 
13266 1,4 04104 13160 
13278 15 09828 00001 
13290 33 13~60 00000 
13302 49 04104 00000 
13310 

13310 33 13001 00000 
13322 32 13000 00000 
13334 14 13001 000M3 

\.Q13346 47 04056 01200 
6'.13358 32 13002 00000 

13370 33 13.003 00000 
13382 14 13003 00000 
1-:. ",'i, 1,7 01·G56 01200 
1 ),.(;6 32 13004 00000 
13418 33 13005 00000 
131.30 14 13005 00000 
13'.42 47 04056 01200 
13454 32 13006 00000 
13 1+66 33 13007 00000 
13 1178 14 13007 000M3 
1 )/.90 47 04056 01200 
13502 34 13602 00701 
13514 39 13001 00400 
13526 46 13538 00900 
13538 31 18600 13558 
13550 49 18612 00000 
13558 
13558 48 00000 00000 
13570 36 13602 00702 
13582 46 13558 01900 

***********************************************************.**~****.* 
***********************************************~******************~~* 
***** ** *** * * * ***** ******* * ** *******. **** * *.* ****** ** * ** **** ** l:. ** * * * *~. ** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THESE ARE THt PATCHES TO THE IBM 
IT RECOGNIZE FORGO CONTROL CARDS 
FOR-TO-GO A COMPILER FRO~ 0ISK. 
EXACTL Y AS ON A COMPUTER "I THOUT 
MONITOR OPERATION IS MAINTAINED. 

* * * 
ALAN V. PURCELL 
ENGINEERING COMPUTING LABORATORY 
THE UNIVERSITy OF WISCON~IN 
MADISON, "!I:,c:o~!~rr': 53706 

MONITOR I SYSTEM TO ~AKE 

AND TO CALL THE 
FORGO OPERATION wILL BL 

MONITOR. BUT COMPLETE 

00002 
OOCC .. 
000';0 
00008 
00010 
00012 
00014 
00016 
00018 
00020 
ooon 
00024 
00026 
00028 
00030 
ooc, i 2 

* uuu34 
*************************************************************.*.*:**. 00036 
***********************************************************.********~ 00038 
************* •• *****.**************************.****** ••• ********~*** 00040 

OORG 2914 ••• 
S *+24 
H 
K OPTH.701 
RN OPTH.702 •• 
SA HALT 
B PATCH 
DORG 4080 ••• 
B FORCD 
OORG *-3 

IN SECTOR 19664 

READ IN PATCk AREA FROM DISK 

IN SECTOR 19675 

000112 
000'14 

OPTH DC 1·1" THIS IS DDA FOR MONITOR PATCH AREA 
OC 5.5387 
DC 3.5 
DSA PATCH 
DORG 4340 ••• IN SECTOR 19678 
BNR CARD.13001 
DORG 13162 

PATCH TO 9794.2878" REPLACE INSTRUCTIONS 
TR 2110.4046 
TF 2103.2857 

TO 440.2857 00085 
SF 456" • REPLACE INSTRUCTION 00087 
TOM 1967.9 00089 
B 2986 00091 
OORG *-3 00093 

FORCO TO *+23.2855 •• REPLACE I :JSTRUCT IONS 00095 
TF 4941.10700 00097 
BNF 4104013160 .. CHECK IF CARO READ BY FORGO 00099 
TOM 9828.1 •• INHIBIT READING A CONTROL CARD 00101 
CF 13160 00103 
B 4104 00105 
DORG *-3 00107 

* 00109 
* CHECK FOR FORGO CONTROL CARDS 00111 
* 00113 

CARD CF INAR 
SF INAR-l 

001l!l 

CM INAR.43tlO 
00111 

BNE BACK 
00119 
00121 

SF INAR+1 ••• PUT FLAGS ON EVEN NUMBERED 00123 CF INAR+2 ••• POSI nONS FOR FIRST FOUR COLU~NS 00125 
CM INAR+2.0.10 
ENE BACK 

00127 

SF INAR+3 
00129 

CF INAR+4 
00131 

CM INAR+4.0.1U 
00133 

BNE BACK 
00135 

SF INAR+5 
00137 

CF INAR+6 
00139 

CM INAR+6.43.10 
00141 

BNE BACK 
00143 

K FORA.701 .. 
00145 

WACO INAR 
A FORGO CONTROL CARO HAS BEEN FOUNO 00147 

BLC *+12 
00149 

TR 18600.*+20 
00151 

B 18612 
00153 

OORG *-3 
00155 

HT H 00157 

RN FORA.702., REAO 
00159 

BA HT 
IN FOR-TO-GO A 00161 

* 
00163 
00165 

(-~" 
. " 



C: 
13594 49 01342 00000 
13601 1 
13602 
13001 0 
040')6 
13602 
13607 
13610 
13615 
13162 

o 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 

~ 118 
119 
120 

00904 121 
00908 5 J8540 122 
01070 123 
01070 47 09404 00300 124 
01234 125 
01234 49 18080 00000 126 
02144 127 
02144 49 18328 00000 128 
09404 129 
09404 34 18440 00701 130 
09416 49 18490 00000 131 
09668 132 
09668 39 09491 00100 133 
09680 43 18420 18195 134 

0 09692 46 01114 00400 135 
18080 136 
18080 45 18100 00423 137 
18092 49 18140 00000 138 
18100 139 
18100 45 18120 0042') 140 

• 
• 

INAR 
BALK 
FORA 

NLJTE---BfFORE DUMPINC, FOR-TO-GO II FOR DISK, AT LEAST ONE 
CARD MU~T HAVE etEN READ ~O THAT THLRE ARE FLAG~ I~ THE 
CORRECT PO~ITION~ IN THE 1/0 AREAS. 

B 1342 
DC 1 .@.*-4 
DORG *-3 
DS d 3001 
DS ,4056 
DC 1.1 •• I.H I S I ~ DDA FOR FOR-TU-GO A 
DC 5.5200 
DC 3.186 
DC 5.0 
DENt) 13162 

********.**********************.****.***** ••••••• * ••••••• *.********* 
**.****** •• **********************************.*.*.* •• *************** 
*******~*******.*.*******.**** •• '****** ••• **.*.*.*****.***********.* 

* 

* 

* 
* • 
* 
* 
* 
* 

THESE ARE THE PATCHES TO THE 3-62 FOR-TO-GO A DECK 
TO OPERATE UNDER CONTROL Of THE IBM MONITOR 
OPERATING ~YSTEM. TO. ALL APPEARANCES. OPE~ATI0N IS 
JUST LIKE REGULAR FORGu UN A N0N-MONITOR SYSTE~. 

* * * 
ALAN V. PURCELL 
ENGINEERING COMPUTING LABORATORY 
THE UNIVERSITY OF WISCONSIN 
MADISON 6. WISCONSIN 
NOVEr.',BER.1963 

***********.**.~*.*.* •• *.********************************««*.**.**** 
******************* •• ************************************«****«***,* 
***********************************************************'*~****** 

REO 

DORe; 904 
DSA FIRDIG 
DORe; 1070 
BNO 9404 
DORe; 1234 
B RECA 
DORe; 2144 
B NSCAN 
DORG 9404 
K FORB.701 •• 
B READB 
DORe; 9668 
WATy 9491 
BD LC3.PNA •• 
BC4 1114 
DORG 18080 
BNR *+20.423 •• 
B RECMK-48 
DORe; *-3 
BNR *+20.425 

READ t3 DECK IN FROM DISK 

TEST IF LC-3 ERROR 

CHECK FOR RM ON C C CARD 

00l~7 

00169 
00171 
00173 
00175 
00177 
00180 
00182 
00184 
00186 
00189 
OUln 
0019~ 
00198 

__________________________________________________________________________________________________________________ ma~DD.Whm~_I~Q~,~~ 



-----_._._-_ ..... _._--_ ..... __ ._-_ ..... _. __ ... _ .... 

18112 49 18140 00000 141 B RECMK-48 
18120 142 DORG *-3 
18120 24 01257 00423 143 C 1257,423" REPLACE INSTRUCTION 
18132 49 01246 00000 144 B 1246 
18140 145 DORG *-3 
18140 16 18295 -0581 146 TFM IN~ND,581 

18152 16 18463 -0422 147 TFM INAR,422 
18164 49 18188 00000 148 B *+24 
18176 48 00000 00000 149 HAL T H 
18188 34 18464 00701 150 RECMK K MON,701" CALL IN MONITOR AND 
18195 0 151 PNA DS ,*-4 
18200 16 18458 nooo 152 TFM INMON.13000,7. PUT CARD IN INPUT AREA 
18212 15 00031 00005 153 TDM 31,5 
18224 36 18464 00702 154 RN MON,702 
18236 46 18176 01900 155 BA HALT 
18248 25 1845Q 1846L 156 TO TD -INMON,-INAR 
18260 11 18458 0'00-1 157 AM I Nt·lON , 1 , 1 0 
18272 11 18463 000-1 158 AM INARoltlO 

\l)18284 14 18463 -0581 159 CM INAR,581 
'-.018295 0 160 INEND DS ,* 

18296 47 18248 01300 161 BN TO 
18308 32 13160 00000 162 SF 13160.,. INDICATE CARD ALREADY READ 
18320 49 02402 00000 163 B 2402 
18328 164 DORG *-3 
18328 16 02162 00P37 165 NSCAN TFM 2162,737,9, REPLACE INSTRUCTION 
18340 45 18360 00595 166 BNR *+20.INPU TZ 
18352 49 18372 00000 167 B *+20 
18360 168 DORG *-3 
18360 45 02156 00597 169 BNR 2156,INPUT2+2 
18372 16 18463 -0595 170 TFM INARolNPUT2 
18384 16 18295 -0653 171 TFM INEND,653 
18396 15 18195 00001 172 TDM PNA.l 
18408 17 09892 N343K 173 BTM 9892,-53432.7, ERROR LC-2 IF MON C CARD 
18420 15 18195 00000 174 LC3 TDM PNA,O •• TURN OFF INDICATOR 
18432 49 18188 00000 175 B RECMK 
18440 176 DORG *-3 
18440 1 177 FORB DC 1 .1, • THIS IS A DDA TO CALL B DECK ~'-""'" 

18445 5 178 DC 5.5400 V 18448 3 179 DC 3,175 
184'i3 5 180 DC 5.958 
18458 5 181 INMON DS ') 

18463 5 182 INAR DS 
005" 5 a 183 INPUT2 DS ,595 
18464 1 184 MON DC 1,1, , THIS IS A DDA TO CALL MONITOR 
18469 5 185 DC 5 tl9636 
18472 3 186 DC 3,113 
18477 5 187 DC 5,102 
18478 48 00000 00000 188 HT H 
18490 36 18440 00702 189 READB RN FORB,702,. READ IN B DECK FROM DISK 
18502 46 18478 01900 190 BA HT 
18514 ,+6 15918 01400 191 BV 15918", TURN OFF OVERFLOW INDICATOR 
18526 49 15918 00000 192 B 15918", AND GO,GO,GO 
185.34. 193 DORG *-3 
18540 194 MORG 10 
18540 195 FIRDIG DS 1 
01070 196 DEND 1070 

~ 
~ 



c! ,I 

(~) 

. "." ~ 

· ··-miY 

~ ....... 

01082 
01082 
17648 
17648 
,')4276 
04276 
18080 
18080 
18092 
18104 
18112 
18112 
18124 
18136 
18148 
18160 
18172 
18184 
18196 
18208 

18220 
18232 
18244 
18252 
18252 
18264 
18276 
18288 
18300 
18312 
18320 
18320 
18332 
183','. 
18356 
18364 
18368 
18373 
18374 
18379 
18382 
183117 
01070 

~ 

49 

49 

49 

16 
45 
49 

45 
16 
16 
16 
25 
11 
11 
14 
47 

32 
17 
49 

48 
34 
15 
36 
46 
49 

39 
46 
48 
49 

101 
102 
10 3 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
J.16 
117 
118 
119 
120 
121 

18264 00000 122 
123 

18320 00000 124 
125 

18080 00000 126 
127 

03708 -0423 128 
18112 00423 129 
18124 00000 130 

131 
04288 00425 132 
18368 00M22 133 
18368 -0422 134 
18373 J3000 135 
1837L 1836Q 136 
18368 000-1 137 
18373 000-1 138 
18368 -0583 139 
18160 01300 140 

13160 00000 141 
17104 N3432 142 
18264 00000 143 

144 
00000 00000 145 
18374 00701 146 
00031 00005 147 
18374 00702 148 
18252 01900 149 
02402 00000 150 

151 
00595 00400 152 
18356 00400 153 
00000 00000 154 
18264 00000 155 

156 
157 

5 15S 
1 159 
5 160 
3 161 
0; 162 

163 

******************************************************************** 
******************************************************************** 
******************************************************************** 

* 
* 
* 
* 
* 
* 
it. 

* 
* 
* 
* 
* 
* 
* 

THESE ARE THE PATCHES TO THE 3-62 FOR-TO-GO B DEC~ 
TO OPERATE UNDER CUNTRUL OF THE IBM MONITOR 
OPERATING ~YSTEM. TO ALL APPEARANCES. OPERATIUN IS 
IDENITAL TO REGULAR FOKGO ON A NON-MuNITOR SYSTEM. 

* * * 
ALAN V. PURCELL 
ENGINEERING COMPUTING LABORATORy 
THE UNIVER~ITY OF WISCONSIN 
MADISON. wISCONSIN 53706 
NOVEI·~l\LK. 1963 

******************************************************************** 
******************************************************************** 
******************************************************************** 

DORG 1082 
a READI," •• READ IN r-10NITOR 
DORG 17648 
a END-12 
DORG 4276 
B aREC ... CHECK FOR RECORD I-lARKS IN DATA 
DORG 18080 

BREC TFM 3708.423.7. REPLACE INSTRUCTION 
BNR *+20.423 •• TEST FOR MONITOR CONTROL CARD 
a *+20 
DORG *-3 
BNR 4288.42:' 
TFM INAR.422,9. PUT CARD INMON I TOR INPUT AREA 
TFM INAR.422 
TFM INMONtl3000 

TD TD -I Nr-'10N .-1 NAR 
AM INARdtlO 
AM I NI/,OI~. 1. 10 
CM INAR.583 
aN TD 

SF 13160 ... INDICATE i'lON. C. RECURD ALREADY 
8TM 17104.53432.1. READ. ERROR LC-2 
B *+20 
DORG *-3 

HALT H 
READt.., K MON.701 

TOM 31.5 
RN MON.702 •• READ IN MONITOR 
BA HALT 
B 2402 
DORG *-3 
WACD 595 ... REPLACE INSTRUCTION 

END BC4 *+24 
H 
B READM 
DORG *-3 

INAR DS 5 
INMON DS 5 
MON DC 1.1 •• THIS IS A ODA TO CALL MONITOR 

DC 5019636 
DC 3.113 
DC 5.102 
DEND 1070 



19000 
19000 34 00000 00102 
19012 39 19263 00100 

~19024 34 00000 00102 
w19036 36 19254 00100 

19048 34 00000 00102 
19060 39 19321 00100 
19072 34 00000 00102 
19084 36 19257 00100 
19096 31 00000 19228 
19108 34 00000 00102 
19120 34 192 1,8 00701 
19132 38 19248 00702 
19144 36 19248 00703 
19156 '47 19204 01900 
19168 39 19397 00100 
19180 48 00000 00000 
19192 49 19108 00000 
19204 39 19487 00100 
19216 48 00000 00000 
19228 41 00000 00100 
19240 1,9 01070 00000 
19247 
19247 

19248 
19253 
19256 3 
19261 5 
19263 29 
19321 38 
19397 45 
19487 26 
19000 

- ---- -- --.. " ....... ----~-.. --------.-•... ----.. -.-" .. ,-...... ,,- .. "" ... ,"., ........ "" ...... . 

~*******.*********************.*************.**.************~*.**~*2* 
*******************************************************.************* 
it 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS IS A PROGRAM TO WRITE A PROGRAM IN CORE ONTO THE 
DISK WORK CYLINDERS. CHECKING IS DONE FOR CORRECT TRANSFER 
OF DATA. 

* * * 
ALAN V. PURCELL 
ENGINEERING COMPUTING LAHORATORY 
THE UNIVERSlly OF WISCONSIN 
MADISON. WISCONSIN 53706 

*************************************************.*.****.************ 
******.*~****.;;~*I*'**C*~RG*.~~~*:u~~'.******I*IC**~**I**I*I~; ;I~~~ 

DORG 19000 
START RCTY 

WATY MES1 
RCTY 
RNTY IN-2 
RCTY 
WATY ME52 
RClY 
RNTY BEGIN-4 
TR .FORGO •• TO PUT CORRECT FORGO INSTRUCTIONS 

DISK RCTY 
K WK.701 
WN WKt702 
RN WK.703 
BNA *+48 
WATY MES3 
H 
B DISK 
WATY MES4 
H 

FORGO NOP .100 
B 1070 
DORG *-4 
DC 1.@ 

WK DC 1.1" THIS IS THE DISK CONTROL FIELD 
DC 5.4000 

IN DC 3.0 
BEGIN DC 5.0 
MES1 DAC 29.TYPE A 3 DIGIT SECTOR COUNT @. 
MES2 DAC 38.TYPE A 5 DIGIT CORE STARTING ADDRESS @. 
MES3 DAC 45.INCORRECT DATA TRANSFER. PUSH START TO RETRY@. 
MES4 DAC 26.D15K OPERATION SUCCESSFUL@. 

DEND START 

/--. 

\'_.c. 

00002 
00004 
00006 
00008 
00010 
00012 
00014 
00016 
00018 
00020 
00022 
00024 
00026 
00028 
00030 
008:i2 
OUli3 .. 
00()36 
00038 
00040 
00042 
0004 /, 
OO()I.6 
000'.8 
00050 
000:'2 
0005 /, 
00056 
ooose 
00060 
00062 
00064 
00066 
00068 
00070 
00072 
00074 ",..-'", 
00076 

U 00078 
00080 

• 
00083 
00086 
00089 
00092 
00095 
00099 
C0103 
OC107 
00111 

4 
I 



o 

16QOo0800000RS 
EQUTA~LOADED FROM ;( 5000 TO 155079 
DIMfOR LOADED FROM ;l '800 TO 154999 
S£Q PL LOADED FROM 0~9801 TO 019380 
DUP A LOADED FROM ,-18139 TO J 18599 
DUPB LOADED FROM, '-19300 TO '19399, 
DUP t lOADED fROM ',17084 TO 117127 
SUBSUP LOADED fROM 017024 TO 017074 
ALLSUB LOADED -FROM OH,lfOO TO 016799 
SPSI W L--QADED FROM 0-18600 TO 019291 
SUPERI LOADED FROM 11'9600 TO 119799 
PH l-A LOAO(Q fBOM 0-17200 TO 01733CJ 
PH 1+2 LOADED FROM O'i 7400 TO o-iE J 38 
LOAD' LOADED FROM oT6000 TO 016199 
LOAS 2 LOADEO fROM 016940 TO 016964 
SET 1 LOADED fROM 019400 TO 019599 
SET 2 LOADED FROM alG80\) TO 016939 
DIM FS LOADED FROM OCi lf802 TO 004807 
FlN fS LOADED FROM {l'i6200 TO 016211 
f£XPfS lOADED FROM 016211 TO 016227 
SUB FS LOADED -fROM .OI6228 TO 016234 
DKioFS LOADED FROM 016235 TO 016267 
S+C FS LOAnED FROM uT6268 TO 016280 
FATNFS LOADED fROM 016281 TO 01£298 
SQRTfS LOADED FROM 016299 TO 016306 
A~S FS 19AOED fROM 016307 TO 016308 

'UJOB 5 

l1!>UP 5 

*GfIN£ 

**PAUS 
END Of JOB 

105 

5 

c 

3-62A FOR-TO-GO 
TYPE A 3 DIGIT SECTOR :CJNT 
186ES 
TYPE A 5 DIGIT CORE ST~PTING ADDRESS 
OOOOORS 
DISK OPERATION SUCCESSFUL 

ttJOB 5 WRITE FROM WORK CYLINDERS 

HDUP 

*DLOADFORGOA 02001040001041850052000000001070DIP026027 

OUp* TURN ON WRITE ADD~ESS KEY~ START 
DUP* TURN OFF WRITE ADDRESS KEY~ SThRT 
OK ~OAO£O fORGOA 0200 0052001860140201070l 
END ~F JOB 

3-62B, FOR-TO-GO 
TYPE A 3 DIGfl SECTOR COUNT 
'75RS 
TYPE A 5 DIGIT CORE STARTING ADDRESS 
00958RS 
DI~K OPE~AT10N SUCCESSFUL 

WR1li fROM WORK CYll NDfRS -HJOB 5 

:l:;tDUP 

*OLOADFORGOB 8201 t.D4000 1041]4005<,0000958010700 I P02 7028 

ouP* TURN ~N WRITE ADDRESS ~EY. START 
DUP* TURN OfF WRJTE ADDRESS KEY~ START 
OK LOADED fORGOB 0201 005400175009S801070l 
END Of JOB 

TYPE A 3 UIG1T SECTOR cnUNT 
005RS 
TYPe: A 5 DIGIT CORE START! NG ADDRESS 
13162RS 
DISK OPERATION SUCCESSfUL 

WRITE FROM WORK CYLINDERS HJOB 5 

HDUP 

*DLOADMONPAT 02021040001040040053871316202402DIP026027 

DUP* TURN ON WRITE ADJ~ESS KEY. START 
DUP* TURN Ot'F WRITE AD::;:·,ESS KEY~ START 
DK LOADED MONPAT 0202 Ou33870051316202402l 
:::ND OF JOB 

lo~ 

~ 



**Joa 5 

**ouP 
*DALTR 

SECTOR 
119664RS 

ALTER MONITOR SECTORS 

lST.HALF 340ODOOOOI 922509]940 2878310211 0040462602 1030285725 ORIGINAL 
2ND.HALF 0044002851 3200456000 0015019670 0009430316 2004781509 ORIGINAL 

SECTION 
l}2M ~1 022509 Q40 TYPE CHANGE XX490~ 00004800000000003404088007013604088007024602926019004913162RS 
IST.HAlF 3400000001 0225097940 2878310211 0040462602 1030285725 ORIGINAL 
l~r.~LF 3400000001 0249028320 Ov00480000 0000003404 08800]0136 CORRECTED 

2N-D.HALF 00440028573200456000 OGi5019670 00094303'16 2{)04781509 ORIGINAL 
2NO .. tJA~.f' 0408800702 46029i6019 00491316200009430316 2004781509 CORRECTED 

s fC'f.) ON 
*RS 
~~-CT-OO 119664-'CORRfCn::n 

11967SRS 

151' .'flAtf 5660403322 040l8* 11-96 o~OOI 028fil ;2209732;0 00.0;010101 OR 1£1 NAL 
lm).4iALf OJ.to150982 8000002S04 1270285515 0410302855 2-604941107 ORIGINAL 

SECTt-O~ > • • ,. • • 

OBRS . 
1270~B5525 TYPE CHANGE ,--- b)"te tVj7I#:J e,-~t?/ 
XXXXXXXXJ.tJOJJIR; . <----.....I .' /1 
~ST~~Alf 56~0403322 0401~*1196 63001~2802 *2259732;0 000;015101 ORIGINAl 
1ST .HAlf 566'0403322 04018;1196 -6300102-801 1:2209732;0 oooWToloT CORRECTED 

2HO.'HAU:; 01-*0-150982 £000002504 i 2J028552~ -041D302855 2604941 W7 DR I G I NAL 
2ND.HALF 01~01S0~82 8000002504 1270285513 qb91ge~a55 2604941to7 CORRECTED 

SECTION 
oaRs 12J024355~.)3 TYPE CHAN.G£ ~ corr~et,P~ of errpr 
XXXXX.xXX4913242Dl05387005 13162R5 ~ _ . 
1ST.HAtf 5660403322 04018;1196 63D0102802 ;2209732to -000:1=01-0101 ORIGINAL 
lST.HALF 5660403322 04OJ8;1196 ~300102802 ;2209732*0 000;010101 ~ORRECTED 

2tW.HAlf 01*0150981 80000025"0-4 1270285513 qti9190W55 2604941107 ORICINAl 
2ND.HAlF OH0150982 8000001-504 12702~S549 1324201053 870D513162 CORRECTEO 

~fCTJON 
:;:~S 
DUX SECTOR 119675 CORRECTED 
SECTOR 
1196]6 

tJ 

107 

RS 

lST.HALF 6044043280 4121340obo ~Q01021509 8280000145 0405613001 ORIGINAL 
2ND.HALF 4504D56J30 0316097040 0004170803 ·8130054504 4440973045 ORIGINAL 

SECTION 
O~~5613001 TYPE CHANGE 

UO.otr.S <? -r y j71" r; ~ r,.p, 
lST.HALF 6044043280 4127340000 0001021509 828600-0145 0405613001 ORIG1NAL 
1ST.HAlF 6044043~80 ~127340000 0001n21509 8280000145 q66~613001 CORRECTED 

2ND.HALF 4504056130 0316097040 0004170803 8130054504 4440973045 ORIGINAL 
2ND.HAlF 4504056130 0-" -"''l7n 1)o oOi'l 11170r.03 8-130054504 4440973045 CORRE.eHD 

stCllON 
05RS 
4664613001 TYPE CHANGE 
133 10R:S < C, "r r e c. f" H 0 -F e!. ~ r" r 
lST.HALF 6044043280 4127340000 0001021509 8280000145 qbE~6J3001 ORIGI~Al 
IST.HAlF 60440 Lf3280 ~127340000 0001021509 8280000145 1331013001 CORRECTED 

2ND.HAlF 4504056130 0316097040 0004170803 8130054504 4440973045 ORIGINAL 
2ND. HALF 4,-04056130 0316097045 '0004170803 8130054504 4440973045 CORRECTED 

SECT fON 
:j:RS 
DiSK .sECTOR 119:676 -CORKECHD 
SECTOR 
;RS 

() 

/08 

() 
',- ~ / 



o 
**OUP 

*OOUMP 

END OF JOB 

UJOB 5 

uouP 
*OOUMP 

END OF JOB 

UJOa 5 

**DUP 
*DDUMP 

END OF JOB 

UJOB 5 

uouP 
*DOUMP 

END OF JOB 

UJOB 5 

uouP 
*DDUMP 

END OF JOB 

UJOB 5 

UOUP 

*DDUHP 

END Of JOB 

c 
eso 

.CI 

CE 

CL 105200105385 

CL 105387]05391 

CL 105400105574 

109 

3iblioIT?-''1'·" 

1. International Busine3s ;:achines Corpo!'ation, IEi~ 7090/70Q4 

2. 

3. 

4. 

5. 

6. 

Prop;p_m:'ling Systc's ~, FOitTi1'l.;! IV L?n,'!Uage, Form 

C 28-62 74-1, White Plains, Neli York, 1963. 

_____ -', IB;'; 16?0 Data Processinl! System, Form A 26-4.500-2, 

iihite Plains, New York, 1961. 

______ , IEI-: 1620/1710 Symbolic PrograJ:'JIline' System. Form 

C 26-5600-1, ';Ihite Plains, new York, 1962. 

______ , ill! 16:)0 ~ I Svstcr:s Reference Hanual, Form 

C 26-5739-1, i-Jhite Plains, New York, 1963. 

_____ -", IQ1 1620 ;·;oni tor I (Sul)crvisor Listings) ~ Fora 

1620-?R-026, ~tc Plalns, New York, 1963. 

_____ -", 11lli. illl Disk Storage ~ ~ 1, Form A 26-

5650-1, White Plains, New York, 1963. 

7. Leeds, Herbert D., and -.!einberg, Gerald H., Computer Programming 

Fundamentals, New York, HcGra"I-Hill Book .Co:npany~ Inc.., 1961. 

8. HcClure, Charles W., f.Qill)Q ,'-TId FOR-TO-GO ~, v1hite Plains, 

New York, 1620 General Program Library, IBl-i Corporation, 1961. 

110 

~ 



!New~ 

in 

Computer Appreciation 

Charles H. Davidson 
Engineering Canpu ting Laboratory 

Vni versi ty of Wisconsin 

Canputer Education is be caning a recognized nece~8ity for the tech
nical student in cOllege. At ;'isconsin it has been incorporatea in the 
required expel'ience of all engineers for som~ time, and is being made 
increasingly available ,,0 int.erest.eu students with various bacKgrounds 
and degrees of preparation, as is indicar.ed 1n Figure I, which lists "he 
courses available in the Numerical Anlliysis Department. 

'nle first entry in this tabl.'t:!, ho .. ever, lepresents an innovation in 
the teaching philosophy. Here for the first time is a course deliberately 
aimed at the non-tecl:nically tra. ned student. As is pointed out in Figure 
II, the catalog descri~tlon of the course, the only prerequ1.site is inter
mediate level h1.gh school algebra, e~uivalent to about two and one hall' 
units of high school mat.he'l'latics; it is estblated that about 3/4 of our 
University freshInen are eligible to take this course. 

"Introduction to Computing Hachinfls" is intended to be more of a 
cultural than a professional course. Many of the students who take it 
may indeed never use a canputer again, but they will all hear about ~an
puters every week of their lives. ' .. Jhenever they receive a paycheck, re
gister for a class, pay an insurance pre!'nium, make an airline reservation, 
or watch a rocket la\Ulching or an election return, it is almost certainly 
an I!t1 card or a computer-produced document they will be dealing with. 

As the course is taught, the firs t two weeks are devoted to acquiring 
enough of a rudimentary knO'wledge of FOrtmAN to be able to present simple 
problems to the canputer. The rest of the course consists of examining 
some of the areas of significant application of the computer, classified 
as far as possible accordiilg to the particular advantages or capabilities 
of the cClllputer. In each case, the students actually do simplified, 
watered down exa~ple proble~s illustrating its use, and extrapolations 
hopefully point OIl t and make meaningful the true role of the canputer 

, in these areas. During the first semester it was offered, the students 
each did about twelve problems on the computer, including problems in: 

1) finding roots of polynomials 
2) class scheduling 
3) sorting and tahle look-up 
4) inv"ntory control 
5) missle tracking 
6) library information retrieval 

and several others. 

(I! 

~ ~j o 

- 2 -

All of this laboratory work has been done in the Engineering Coli
puting Laboratory using the FORGO system, which is ideally suited for 
th is type of teaching, iii th the exception of one prohl_ near the end 
of thf' senester in which the use of the CDC 1604 and monitor syste. 
operation were demonstrated. 

Figure II I presents a condensed outline o! the course, indicating 
some of the topics discussed and their sequence. Perhaps, however, one 
of the best pictures of the scope of the course can be obtained trca the 
list of Review west ions shown in Figure IV, which wu distributed shortly 
before final exam time, and represents material which they might be ex
pec tf~d to ha va learned. 

Since there is obviously no text-book existing which treats such a 
ranpe of material in this fashion, we are preparing all of our own notes 
for the course, which will be published as a textbook • .4 preliminary 
vers ion of the notes will be printed tor use with the third offering ot 
the course in the faU of 1961J, and the official published version of 
the book is expec ted to be out in the late spring of 1965. 

Some people are referring to the course in a colloquial fashion &8 

"Computer Appreciation". TI1is we accept as an apt description, provided 
it is modified to read "Introduction to Computing Machines--a do-it-your
sel! course in canputer appreciation". 

/ 12 

(j 



~ 

UNIVERSITY OF WISCONSIN 
Couraes in Computer Programming 

NUMBER TITLE OF COURSE PREREQUISITE 

NA 132 tntrowction to Computing Machines Intermediate high 
school mathematics 

NA 301 Computer Programming in the Differential 
Physical Sciences Equations 

NA315 Introduction to Data Processing One semester 
Methode college math 

NA413 Introduction to Numerical Analysis Differential equations 

NA415 Intermediate Programming Methods Differential equations 
and elem. FORTRAN 

NA 814 a.b AdvaDced Numerical Analysis (year) NA 413 

Plua seminars and short course. 

Ti~,,,'. X 

//3 

CREDITS 

3 

2 

3 

3 

3 

3,3 

c 

THE UNIVERSITY OF WISCONSIN 
COI.I.&O. O~ .NOIN.& ... NO 

MADISON' 

DCfI"'"TwKNT OP 
ItL.ItCTRICAI. ItNOINItIl"INO 

Numerical Analysis 132 

.IHTRODUCTION 1'0 CQ>lPUTING ;'~ACHlNESlI 

Haw canputers work; cClllllUnicating with canputers; areas of application 
and significance; simple FO~rRAN programming; elementary data processing 
and problem solving. Prerequisite, intermediate level c4 high school 
mathematics. Offered each se:r.ester, 3 credits. 

An opportunity for the r.on-technically trained person to acquire an 
understanding of the uses, method of operation, and significance ot 
the electronic canputer in the world aroond him. Students will both 
hear about and actually use the canputer in solving problems in 
mathematics, business, gane pla:y1ng. and lIan, other fielda. 

'!he course will be taught jointly by the Numerical Analysis Department 
and the Electrical Engineering Department, with two leotures and a 
laboratory period each week. It will be firS t offered in the tall 
of 1963. 

"F!glAre n 

"" 

c t 
( 
i 



Chapter 

Chapter 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 

Chapter 

Chapter 9 

Chapter 10 

Chapter 11 

Chapter 12 

Chapter 13 

Chapter 14 

Chapter 15 

a 

Numerical Analysis 132 

I "INTRODUCTION TO COMPUTING MAC-HINES" I 

The Information Machine 

The FORTRAN Language 

Things Worth Computing: (A) Routine Repetition 

The Second Industrial Revolution 

Things Worth Computing: (B) Try and Try Again 

Further FORTRAN 

Things Worth Computing: (C) When Mistakes are Costly 

What Goes on Inside Computers 

Things Worth Computing: (D) Hurry. Hurry, Hurry 

The Language of the Machine 

Things Worth Computing: (E) Simulating the Real Thing 

Other Kinds of Computers 

Things Worth Computing: (F) Memory Like and Elephant 

Things Worth Computing: (G) Just plain Curiosity 

Computers and the Future 

'F;~ure m 

/ /5 

o 

NA 132 

REVIEri ~ 

1. Actual FORGO operating procedure on the 1620. 

2. Distinguish between: a) machine language b) symbolic language 
e) a18ebraic language 

3. What is the ditference between "compile" time and "execute" tae? 
How does FORGO mark the transition? 

4. Name two (data handling) processes at which the human 18 more 
ettic1ent than the canputer. 

5. Below are listed tive characteristics or computers. List three 
important areas ot application that take advantage or each (not 
necessarily mutual~ exclusive). 

a) high speed 
b) accuracy (treedom trom mistakes) 
c) repetetive ability 
d) large non-forgetting lIIemory 
e) logical ability 

6. What are IIpseudo-randan" numbers? What good are they? 

7 • How are computers used in inventory control? 

8. What trends are observed in busineu uses ot computers? 

9. How are computers used in product design? How does thi. canpare 
and contrast with autanation? 

10. What is a "critical path"? 

11. When is a canputer operating in IIreal" time? Illustrate. 

12. Elementary binary arithmetic. 

13. Why is binary arithmetic used? 

14. What are the tive .ain functional units in a general purpose digital 
computer? Diagraa then, showing the principal paths of data tlow 
and control. 

1S. What is meant by a single address computer? two address? cme-plns
one address? three address? Glve an example of each type of in
struction. 

16. Compare analog and digital canputers. 

17. Name the three main logical cOIIponents of an analog cClllputer. Which 
is used to get distance trom velocity? How? 

18. How do you program an analog canputer? 

19. Why are libraries concerned with AIntormation Retrieval"? 

20. What are sOlIe of the probl_s in attempting to upgrade the intelll
gence of a canputer? 

'Fi~qre .N: 

II~ 



o 

COMPUTER CENTER 

~ Michigan Univers!.!l. 

The Computer ·'Center was established in Room 372 of 
Wood Hall in August 1962. Professor Jack R. Meagher 
was appointed Director. 

The Computer Center is organized as a University-wide 
service, like the University Library, to provide research, 
training and service facilities for faculty, staff and 
students. A basic policy of the Center is to encourage 
widespread interest and use of all its equipment. High
ly technical knowledge is not required. Information 
concerning the use of the ~ter's equipment is being 
prepared and will soon be distributed. 

An Advisory C.ommittee, consisting of the Director of the 
Computer Center, the Dean of the School of Graduate Stud
ies, and nine other faculty member's have been appointed 
by the Vice President for Academic Affairs. This 
committee will (1) be representative of the whole Univer
sity, (2) present the Computer Center's operations to 
the University, and (3) establish broad, general policy 
for the Center. 

The following diagram portrays the Computer Center 
organization: 

Secretary-Key Punch Operator Assistants 

1/7 

c 

FORTRAN WOR!SROP 

Jack R. Meagher 

MAJrm, 1964 

The foll"'inI equipment has been iMtalled 1D the Cc.puter 
Center at Westem Michigan Uni'Yere1tyr 

11M 1620 Central ProceeeiDg Unit - (20,000 p08itioll8 
of core storage, a console p&D8l, and an 
input-output t7P8vr1ter.) 
J.utOlll8tic Dinde 
Indirect Addressing 
Table Protection 
Additional IDetrnctioDB 
ll.oating Point Arltlsetic 

1622 card-Read Punch 

1623 Storage Unit (additional 20,000 pOllitie118 of 
core ItOr&ge) 

In addition to the Illot 1620 Data Proceae1ng System, which 11 
an electronic COllPuter systftl for scientific aDd technological 
application, the COIIIputer Center has the following auxiliary 
machines I 

2 Key Punch. (026) A baIIic machine for tran.ferring data 
'to punched cards. It al80 can print the punched data 
on othe r cards. 

S orte r I ( 082 ) - vi t h Count 1ng Unit) This III&cbiDe sorts 
---ca-rds into a nuaber of pre-.elected categories. The 

counting device tabulates the nunber of carda in ea;::h 
category. 

Coliatort (077) The buic function of the oollator 1.a 
--.:nII'ng... It 11 capable of mald.ng cc.parieone between 

!iecke of carda; and then merging, select1nc, or check
ing thll sequences of the carda. 

Reproducer. (514) Thi8 .. chine can produce carda that 
hi'Ye been previoual;r punched. It can duplicate the 
original pattern cr aelect and/or rearranlfl the punched 
pattern. 

Interpreter. ( 552) This II&chine prints on the face ot 
cardS the data that ill punched in thell. It facUitat .. 
reading and editing the carda. 

Accounting Machine: (407) The eClllputer eenter vill u.e 
'this mach1De primarUy to print the input and output 
data of the computer. This machine has m&n;r other cap
abilities. 

118 

c 



A. MathIMtica Depart.nt t 

~Worbh9? 

A short, intelUlift, no-credit coune for 20 clock houn. 
The worbhGp is non-technical in nature, and baa no pre-requisit •• 
The purp~e of the workshop is to teach the !'waduIental. of 
Fortran Pl'Oll'-inl. This workshop is offend each aemester and 
each .u..er •••• ioo. 

Procrua1D1 !!!: CC!lPutel'll - 506 

Organisation of, probla preparation for, and ~neral 
... of, high-epeed ccaputing .. chines tram the poiat or view of 
.cienUtlc and eJlliDHrmg cCllllputatioDl!l. Flow chart. and pre
cr- will be p1"8paNd for problelll!J nch lUll social .ecurit:y, 
~ root, quadratic equation e:xponent1&J., .w.t1p11cat100 ot 
_trice., .olution of polynca1ale and correlation. Problelll 
will be dene in .. chtn. language followed b:y the \\8e ot a coa
pUer ('ortran). Boolean algebra. Int.gration of one ordinal"1' 
dimrent.1al. equatioD D_riCalq. Pre-requiaite I Calculus. 
'!'hie 18 ot~red ."'17 ..... ter. 

.... rieal ~ - 507 

_rieal _thode .. applied to matrix inftl'8ion, set. 
ot linear equaUODl!l, liawar progr_iBr; proble., eigon-values 
and e1pn vec\Ol'll. Integration of ordinary differential equa
ti .... and integration of partial differential equatioDl!l will be 
pNHnted. Pre-requie1te I Math 530 (Vecton and Matrices) 

B. S-tn. •• AdIlia1etrationr 

IDtelrated Data Pr.cusinl - 359 

A 8Ul'ft7 of Mehanical and electnmic data procoaainr; 
Mth. with particalar .lIphu1e on tbe application ot the 
.lectrGDic .,.tea and with special reference to acainietraUq 
probl._ .zperiMl~d in introducing ccaputer .Jllt ... 

IIItrodut1a !! JI&Da.-nt ~ - 554 

Medem .cS-ntitic techniques .ad in bue1De.. and 
iDdaatl"1' tor ooutrollin« operatiCIM, JlUbd.sing profite and mn1Jt
biDe coate. WoeatiClll of MD, -7 and .. chines .ong altemat
iTe .... other .trategia. and control Mthoda applicable to 
aanapMnt, MJ'btiDI and tlaaace. Preq.--a COU1'8e in Statietiea. 

Electronic ~ ProoessiDl ~ - 55, 

!xamination of current literature in electronic data 
proce.a1ng with special 8IIphu18 on 8J1Itell8 analyaie, applieatione 
et cClmputera to busine •• problems, and feasibilit:y .tudie •• 
Pre-Requidtet A Ca.puter Coune or COMent. 

119 

o r, 
~~ 

Exercises Assigned in Math 506 Programming for Comnuters 

1. Volume of Right Circular Cylinder 

2. Social Security Problem 

3. Square Root by Newton's Method 

4. Ouadiatic Equation 

Machine La~guage 

Machine Language 

Machine Language 

Machine Language 

5. Volume of Right Circular Cylinder, Use Fortran 
Sense Switch to Compute 

V= '7Trr h f 

1/= '7rr~h ? 
V = '11'r', h / 

6. Ouadfa tic Eguation (Use Hollerith Statement) Fortran 

7. Given the coordinates of two line segments, 
find coordinates of the points of inter
section. 

8. Evalcate eX 

9. Multiply two matrices 

10. Find the Inverse of Matrix 

11. Solve a cubic equation 

12. Correlation Coefficient of X,Y,X 

13. Solve a system of simultaneous equations 

14. Correlation Coefficient up to and 
including 20 variables. 

15. a. Calculate an integral by Trapezoidal 
Rule; 
Calculate an integral by Simpson Rule 

b. Solve a differential equation by the 
Runge Kutta Method. 

/20 

Fortran 

Fortran 

Fortran 

Fortran 

Fortran 

Fortran 

Fortran 

Fortran 

Fortran 



o 

The following is a resume of my talk presented to the jOint meeting of the 
Canadian and Midwestern Regions of the 1620 Users Group in Chicago, 
February 21, 1964: 

Miami Universit'y, having no engineering school, has concentrated its 
computer education courses in the new Department of Systems Analysis. 
This department functions as both a degree granting department and a 
service department for other University departments. 

In its role of a service department, a course in 1620 FORTRAN 
(2 credit hours) is offered each semester and during the summer term. 
In addition, students from other departments are free to take any Systems 
Analysis courses offered provided they have the necessary prerequisites 
(proper mathematics background in most cases). 

For majors in Systems Analysis, two alternatives are offered, business 
or scientific.' In either case, the first two years are devoted to program
ming' computer analysis, and an introduction to systems analysis. The 
programming progresses from machine language, to assemblers, and then 
to the various compilers. The third and fourth years are devoted to the 
tools of analysis where all examples are worked on the computer. 

The Systems Analysis courses offered are: 

Introduction to Systems Analysis I and II 
Computer Analysis I and II 
Systems Design and Selection 
Linear Programming 
Analog and Hybrid Systems 
Operations Research I and II 
Simulation and Model Building 
Dynamic Programming 
Advanced Data Processing Applications I and II 
Management Science 

Commercial majors are required to take some business and accounting 
courses as well as 20 or more credit hours of mathematics. Scientific 
majors are required to take some physics as well as 30 or more credit 
hours of mathematic s. 

LA WRENCE J. PRINCE 

121 

~ 
" ~J 

Department of Mathematic. 

Phy8ical Science Building 

KANSAS STATE UNIVERSITY 

MANHATTAN, KANSAS 
66504 

February 27, 1964 

~ 

The following is a brief outline of my talk at the 1620 UseI'5' 
Group (Panel on Education), February 21, 1964, at Chicago. 

Kansas State Unive1'8ity, a land Grant school, has approxiJr.ate~ 
9000 students in a wide variety of curricula. Our buic cOllputer 
course, 2 hours credit, offered every aeme.ter, baa an enrollment 
of 100 to 140 every time. Enroll.lllent will be larger since the 
Engineering School is JIl8king the course mandatory. We teach peri
pheral equipnent, then 1620 and 1401-1410 series. We stress flow 
charting, then some machine language, some S.P.S., and then 
Fortran. We use McCracken's book as text, with IEti Jll8nuals, and 
we recClllll8nd Gennain's book as well. 

The Business College uses Schmidt and Meye,rs as a text. 

We teach Scientific Computing Techniques, requiring differential 
equations and the basic course as prerequisites. Our text is Ralston 
and Wilf. In addition we have a number of canputer-oriented cOUl'llea 
such as our Numrical Analysis I, II and III and certain COUI'lleS iD 
Network Logic, CClllponents, etc., taught in Engineering. 

Our atafr consists of four regular faculty JllelllbeI'5, with half
time cOO1puting center appointments, a !1IDIber of graduate assistants 
each one-quarter t:l:me, 2 1/2 key-punch operators, and a machine 
operator. 

STPlnT 

/22 

IoUl'8 ftry tnil¥, 

S. ThC*llls Parker, Director 
Computing eenter 



Resume of talk delivered at 1620 Users Group February 19-20, 1964 

by Roy F. Keller, University of Missouri 

The Computer Research Center of the University of Missouri is responsible for 
both educational and research computing. The computing facilities utilized 
are three (3) 1620 computers with one disk drive each and a 1410 system. The 
1410 is used primarily for business and hospital administrative activities and 
assembling of medical records. One 1620 is set up to serve most of the educational 
activities. 

At present the Wisconsin FORGO system is primarily being used for student problems. 
We hope to put FORGO into the monitor system. I understand Wisconsin is doing so, 
if possible, we will use their system. 

Courses presently being taught are: 
in Mathematics Department 

Math 104 - Fundamentals of Prograllll\ing Digital Computers 
Math 323 - Numerical Analysis 
Math 423 - Advanced Numerical Analysis in engineering 

Fortran Prograllll\ing 
Eng. 304 - Engineering Problems 

and in the Business School 

Accounting 101 - Coumercial Prograllll\ing (COBOL) (1410 is used). 

In addition to the above formal courses we have a series of lectures and workshops 
to acquaint faculty and graduate students with computing techniques. Both prograllll\ing 
and use of library routines are discussed in these 1ec tures and workshops. One of the 
most important requirements for a good educational program is to acquaint the faculty 
with computing. 

123 

~ 

\~ J 
~. 
~j' 

A SURVEY OF THE BEGINNING PROGRAMHING COURSE 

Clarence B. Germain 
College of St. Tholilas 

February 20, 1964 

Last Fall, a questionaire was sent to the 280 schools which are me;T.bers of the 
USERS Group. 115 schools responded. The results are tabulated on the following pages. 

1. No allowance has been made for non-reepondents. This does bias the results. 

2. Since the survey covers only schools having 1620' s, the figures for the end Oi' 

1964 do not reflect the influence of schools which will acquire their f::'rst l62U 
during the year. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

A suprising number of respondents gave incoaistent answers; e.g., they indicated 
floating-point hardware, but not divie hardware, or they indicated that 35~ of 
their students run their own SPS programs, while they taught SPS only to 2U/o 
of their students. 

Figures for index registers, binary capabilities, and the 1627 plotter may not 
be indicative since the questionaire was circulated too Go.on after announcement 
of these features. 

Average enrollment in the beginning programming courses in 170 students per 
school per year. 

Many of the Model II 1620's will supplement existing Modell's, not replace them. 

Relatively few schools indicated any plans ;;0 obtain the 1443 printer. 

The disk units will more than double in popu::"arity during 1964 with 1/3 of all 
schools having at least one disk unit by the end of .the year. 

While 3°fo of the schools offered no course involving Fortran, 35% of the students 
were taught mor~ than one version of Fortran. 

At the end of 1963, 51';(, of the schools had the hardware necessary to run Fortran 
II; by the end of 1964, this figure will rise to 59%. 

85% of the students get "hands on" experience in running their o\m programs on 
the computer. This percentage is about the same regardless of what progr8!llllling 
systems (SPS, GOTRAN, etc.) are taught. 

Jim Moore' s Multi-Trace, 1.4 .C03, was the most cOlIlr.Jonly mentioned trace program 
taught to students. However, 85% of the schools indicated that they used no 
trace progr~~ in their courses. 

The figures for textbooks are for use in at least one course. Many schools use 
more than one text in a course. 31«, of the schools use only IBM publ1catL~ns 
as texts. While a wide variety of texts, many unrelated to either Fortran or 
the 1620, are in use, only four cOllliaercial texts and a half-dozen IBM publica
tions are used with any frequency. Of the non-programming type texts, numerical 
analysis books, particularly Stanton's, were most often mentioned. 

The textbook percentages b. no way indicate sales of books; these figures are 
qui te different from the percentages shown here and were not a part of this study. 

12 L/ 



o 

RESPONSES OF 175 SCHOOLS TO A SEFTEl.ffiER 1,)63 QUESTIONAIRE 

Results are gi'..'en as a percentage of the number of schuols replying to the ques
tionaire. Probable errors do not exceed :!:3), except for iteL1S marked with an asterisk 
(if) .There the probable error is less than t81,. Results are given for the end of 1)G3 
and for the end of 1964. Changes for 1964 are only for equipment now on Clrder. Slight 
discrepancies in the Jl'"rcentages are due to rounding. 

1620 Model: 

I 
II 

Special Features, t-iodcl I 

AFP, Div, IDA, Edit 
AFP, Div, IDA 
AFP, Div, Edit 
AFP, Div 

Div, IDA, Edit 
Div, IDA 
Div, Edit 
Div 

~,Edit 

II». 
Edit 

No special features 

SUIII!I8l'Y: 
Automatic Floating-Point 
AutOlll&tic Divide 
Indi.rect Addressing 
Additional (Edit) Instructions 

Storage: 

20K core, DO disk 
~OK core, DO disk 
60Ic core, no disk 
201( core, disk 
ltoK core, dialt 
60K core, disk 

!nput-Output : 
Paper Tape only 
Per.er Tape and Cards 
Cal-ds only 

i-laznetic Tr-pe 
Paper Tape 
Cards 1622-1 
Cards, 1622-2 
Cards, RFQ to read 80u CPID 

1443 Printer 
Disk, one or more 
1(.27 Plotter 
1710 

1963 1964 

~ 8% 
2 11 

31 31 
3 3 
0 0 
1 1 

31 ~l 
14 14 

1 1 
3 3 
1 1 
3 3 
1 

:1.3 13 

34 35 
[:)2 82 
82 62 
64 611 

48 38 
21 18 
17 13 

5 12 
4 9 
5 9 

4 4 
10 10 
86 80 

4 4 
13 14 
83 81 
13 16 

3 3 
6 

::..4 3':' 
II :. 
2 

125 

Number of 1620' s in the school: 

One 95'10 
Two 5 

Special Features, :~vdel II (19:~4) 

Autonatic Floating-Point b~_ * 
Index Registers C* 
Binary Capabilities 5-;: 

Installations with Printer (1'j:j4) 
No disl~ 23-' 
1 disk 15* 
2 disks 54* 
3 disks (': .. 

4 disks L* 

Type of Courses Offered: 

Both credit and non-credit 5 
Non-credi t courses only 36 
Credit courses only 13 
No answer or no courses 47 

:Jepartments which off~r courses: 

E~ineering 40 
Education 1 
Mathematics 45 
Business 31 
Other 40 

Subjects Taught: 

Machine Language 32 
Operation of the Computer u; 
SPS 2'~ 

GOTRAN 1-( 
FORTRAN with FORIAT 47 
FORTRAN II or II-D 33 
FORGO, etc. 3:5 

Use of some library tra~e 13 
Blod: Diagra"ll.ling .~.~ 

!~Gnitor I 

c ~ 

:jisy.s· Students are expe~t':!d to ;;rite and 

No disk 
1 disk 
2 disks 

d:.sks 
:. disks 

H3rdlolare r.ecessary to 
Fortran II only 
FClrtran II and Il-D 
Fortran II-D onlJ 

run: 

Required or reco=ended texts: 

IBM Public:ations 

1620 Referen.:::e ~lanua::" 
1710 Reference Manual 
SPS Reference Manual 

GOTRAN Reference t--Ianual 
1620 FORTRAN Reference Manual 
1620 FORTRAN II Bulletin 
1'()r.TRAN General Infonnation f4anual 

86 68 
8 20 
5 11 
0 0 

37 29 
:,) 19 

11 

1620 Program \~riting and Testing Bulletin 
In+,roduction to IBM Datu Processing Systems 
ProgramminG and Block Dia;ramming Techniques 

Comnerc ial Publicatio;1s 

Gemain-Programming the IBM 1620 

run the~r own programs using: 

SPS II 
GOTRAN 
FORTRAN \~i th FOrtMAT 
FORTRAN Pre-Compiler 
FORTRAN II 

Lecson-Dimitry-Basic Progrrurning Concepts and the IBM 1620 Computer 
C,rlll:nberger-McCracken-Introduction to Electronic Computers 

t-1cC:racken-A Guide to FORTRAN Programming 
Organick-A FORTRAN Primer 
Colman-Smallwood--Computer Language 
Smi th-Johnson-FORTRAN Autotester 

/20 

25 
15 
43 
28 
27 

74 
4 

4? 
22 
61 
38 
23 

12 
15 
12 

27 
39 

6 

38 
38 
6 
3 

I 



DATA PROCESdjJIG TECIDlICIAN TRAINING 
The Need; The Attempts; 

The ReI,'.dining Void 

Computers: Are the nucleus of an extrer.-,ely large field of operations 

called Electronic Data Processing. All handling of infonnation within present 

day la%11e oroanizations m\lSt be done witil the electronic caaputer in mind. The 

rat. of qrowth of that o%11anization, coupled with the rate of developnent of 

ccnpact, fast, efficient, econocical caaputers demands that any and all internal 

operations be designed with the caaputer as a possible, if not central, theca. 

Many more smaller organizations enter th~ field of caaputer operations each week, 

to say nothing of the acquisition of el~ctronic data processing equip:tent on the 

part of larger corporations. SCfJe of these canpanies decide to make use of 

ccmputera because of prefit JaOtives. Others I.me the switch to cOOlputers 

defenisvely because their caapeti ti(m dcwn the block hils installed a cOOlputer. 

Those basic reasons and Irany more subtle factors are at work in forcing businesses 

toward the world of Electronic Data Processing. 

Agility, ability, capability and speed of the eldctronic cOClputers 

cause c~lete rovamping cf internal operating syst~~. Even the word ·Systecs· 

takos on a different significance when used in c')njunction with "Electronic 

CaJput.ra.- Infol'J'OOtion processing n'}w has to bl;! looked upvn on the ~otal Systems 

Concept,- that is, the processing, handling, generation, and analysis of data 

throlllJh a ainglo Deans; the electr..,nie c<:cputer. !l:;.;"\ll centers ,Jf a ctivity in the 

li". of infon:l<ltion travel, and for til~t matter entire lin\?s of travel have been 

elWnated by the eaaputer. The Total Systans Concept dictates a caaplete review 

and analyais of informatiun requir(ll·.~ents, rltlthuds of handling data, necessity for 

various reporting codes, lin<:s of data tlovaaent and necessity f,n generation of 

infoIlll4tion. 'nIe cOCIputers capability uf retention of data in its original 

fOIlldt in many cas.as cctupletely elbuinat·;s the need for r,",g~nGr'ltion c(;lnters along 

the lines of infoIr.ldtion trilvel. The speed of operation ilnd f.\<:\ther.w.tical as well 

as storage ability oftentir.les prcr.Joted an entirely new system uf operation. Whilt 

before had to re done beci.'.use d pure necessity could now be acc';('Iplished ·on 

line.- Even "Empire Building· tOv1:: a s<!rious setback. These things were 

127 

r~ 
". 

~-\ 
t ) 
'Z., ~/ 

Paqe 2. 

accCl'aplished only if a cuncerted effort was JlI<ldc to qet them accomplished. ~ly 

the foolish attenpted to incorporate a cct.lputer as a sir.qle iten part of an oVolrall 

system now operuting for thl3 single purposo of getting a sinqle job done. Foolish 

or not, this has often been done. 

Integrated computer operations deluanded integrated personnel operations. 

People, or qroups of people within an organization, that before never had any 

interrelationships now found themselves st~ing over one another vonderiDQ what 

next t;) be done. The Tabulating Departt'.ent people on the one hand found that the 

Systems Department people on the other hand seer.led to ~ working at odd ends with 

them. The ccoputers praaise of the sc far intangible broUQht ilb0ut a coordinated 

effort on the part of these two groups. In fact, sa.e dato1 proceJIsinq people were 

even caught taking courses in Systema Analysis and vice versa. Most ~~jor cacputer 

installaticns today are n:~de up of two categories of personnel, Data ProcesBing 

and Syster.\S Analysis, working together quite harmoniously. Their acccnplishmenta 

have been fantastic to say the least. But saa.lthing is definitely lacking; 4 

sOClethinq which cuuld and would provide Sol uuch IIOre; a s<JUething "hich could and 

would reduce caoputer operaticnal cost qlIite significantly. That a~thinq 1a a 

single brain thinkinq and w,-rkbg an integrated o..~ta ProceSSing, Systau Analysia 

approach. 

Staple ec~nocics d<!r~nds that w.a now find pers0ftnel with beth the Data 

Processinq and Systems Analysis training and experience. The Bh"rtcaainga .of 

sinqle field training when cvnsidering overall car~ter ~~~nt are bec~no 

more and Dore significant avory day. There are savE/reil r.a""aons for' this, fint, 

single field training limits an individual's awr'l4ch, definitivn, and solution 

selection to a pr0blom. Sec.mdly, reduced c<)st of a ctUtll equip-Jent n8Q'ates the 

advisability of enploying two to dv the job of ond. Thirdly, because of coat of 

op0rati(;ns, vision as well as practicality is required in the selection of fields 

of cOOlputer applications. Fourth, the SI.laller urgrlllizationa cannut tl<1intain high 

computer ov<!rhead cvst. Fifth, fr.:r... a pr.)fit standpoint, efficiency aust be 

caintained in direct proporti,:m tc capability of the equi):llt!nt involved. 

128 



() c o 
Page 3. Page 4. 

The deI<1And for proper, effective training, therefore, is filntastically training. The O-J-T ap,_rvach was profitable fr;)f,l tw·,; standpoints, 

greater today than it has ever buon in the past and it continues to grow more and first, few dollars invested, sec Jnd, appreciably high production after training. 

more with each computer instilllation. F:u too often we in industry find thilt our Without having to be cognizant l'f the previous cperation or the next operation to 

present staff is not adequately ca~x:.ble to prvvici.: our r.villi-l<;ier,lEmts with the come, an operator could attain r,.nxir,llll:l production efficiently and quickly. This 

desired level of results frqn a c~nputer operation. All too S00n, we realize that was true also in the Data Precessing field. For the mc,st part, training of 

the answer lies in integratoLi training, fonaally applied, ilOO practical experience. personnel was acccr.lplished in relation to operation of a specific machine or group 

All too soon, we realize that there is no s()urce of supply for this category of of IJ.achines. Key punch opurators learned to simply key punch and verify. Tab 

individual.. Training, therefore, becomes a major probler.l to us. operators learned the operation of a series of machines, nnd in Sl..llle cases also 

Proper adequate training is the focal point of the single major problem learned to wire control panels for t.lese machines. FrOOl a traininq standpoint, 

of industry in the field of Electronic D3ta Processing. Training in the practical these data pn'cessing jobs were just as any "ther job in any clLlpany, i.e., learn 

way of doing saaething has always been Cicccmplished by a given organization within a specific process fur a spucific operation without cc)nsideratiun ,)f any related 

its own environment. Different ccop::mies within the same industry had much areas. 

different ways of acccmplishing the same thing, and, therefore, each organization Computers brought about the n~cessity fer training ev~n more c~tegcries 

trained its own personnel in its own way. Naturally, industry relied, and still of personnel. Systems analysts, progracraers, cudors, progr;)li' librarians, infunna-

does rely, upon fonnal e;lucatiun to proville the basic general concepts as well as tion librarians, cunso'le operators, became new and impusing personnel categories. 

related principles. Industry solved its training problem for the f.lOst part by New, because they came in the fr0nt' door just ahead of tl\e c0mputer. Imposing, 

setting up In-house, On-the-Job training programs designtld to get the raost fer the because for the first tine a jub cCltcgury c·lme along th11.t demanded an acute 

least cost. Many tir,les th'~se }.Jr<.JC;r::.ms wer~ extr0uely limit<lJ in scope simply interest in what has happened b.:;f, re "this op:r'ltiun" and what will ha,:pen after 

because of tha fact that industry chose to use personnel with extrez;lely limited "this operation." No longer cL'uld c:n "operiltcr" b~ trained to siluply acccmplish 

backgrounds. Much of the reason for this was a lack of willingness to pay higher a single operation. SuBe syster:; of training had to be d",veloped which would allow 

w~es for lesser scale jobs. these new categories' to ba trJ.ined in a reason:ilile perioo of tir.le and at reil.SOn-

Profit motive restricted training to il HUb'T level and added none of the able cost. The on-the-job training approilch again was utilized by industry in 

frills of lJUri;ileral, or related areas of training. The objective of "i\.dequilte conjunction with sh0rt term c:Jurses put on h'.1 the manuic.cturers. Initially these 

Button Pushers· seemed to be the most efficient level of in-house trainirlg. In two Il1IJdia proved to be just adequate. The only reason that they were adequate was 

reality, this is all that industry shaulL! be responsible for providing. In all that the personnel origin;'\lly selected tv enter the trcining prcgrar.ts, and then to 

categories of jobs" this in-house training w.::.s enough to ,~llow profitable operation. handle the ccopubns, were p>3rs~Jnnel with long exporience with the COl,lpany involved. 

Most jobs did not require a great deal of knowlecige, if any, about the last opera- The fact that they did have the COI1p<my (lx,Jerience, and, thlilrefcre, knew the 

tion or the next operatiun in the line of process. It was only necessary for the internal aspects of the :Jrganiz'ltie;n quite int imutely, alluwed thezn tu Sul ve most 

individual to know his ur her own s~cial fUIlcti0n. all mnjor probleras without to\.., fituch loss af tir.w 'Jr IJ.onoy. 

Until the computer came illong this was a fairly satisfflctory m"thod of 

129 
At the Silme tir<te, these pers(mncl \-lere garnering thu necessary hands-on 

/30 



PdQe s. 

experience on th\l c(;IDputer invc.lled. ':his puric-i of ti~ .. ", hilS ~en it substantial 

one. Scoe of the early C:.lo";ll-'Ilto:!TS ..leliv~re-.i to thd industries c;::ue alonQ in the 

eilrly 1950's. The ~rsonn~l sel~ct.:ld for th~ c(l.:;JUter cper'lticns did thrcugh 

trial iUld error, and QJT ra.1:hOtis, fin:llly ctbin :l ,bc;re.:l of }Jrcficiency in the 

handling of bJth the cc:£lPUters and the inf.:>n·.1tion invLlve..!. Howev<!r, this took 

seToral years of hard wert an:i c severe c,"lI.~}Jr!r.ise of \.'riC;;in.'11 Q.:.als and tarqet 

datas. 

Mvrnal attriti.,n f .. r Vilrh.us r<!i1s~ns ..iicti'ltei th.'lt en a..lequata atteClpt 

be oacle in-house tv train replilCEl:lents. The J::aj..'r iJroblem here was .me of tir.'.e. 

InUustry could not afford to invest tilr·]e tv five years of traininq f",r each of 

the replaCiltlents. Job att.r~tion rolte W.:lS far b.:!yono.l this TS}Jlacl:f:lent rate. SIDe 

fut DeanS of tr.:lining we. :Ws.:lutely essential. Here tne qu<!sti"n was r.'!.ised, 

"'Do lM do thia in-house 11Qilin, cr d::> wa Q;) outside for cur sup..,ly of j:Jeople?-

(byiously, the in-h.)use tr.lininCJ c~st JIIil..!e another S-.lurce .;f suWly J:l..lre desirable. 

What then was the • ..,urce to be? Wvuld tha, apperent returns ... f eL:jJloyment draw 

Tery ~y c.l~l. people into private traininq c~raticns? Wcul~, in turn, the 

private training operati·ms yr~vi..!e a.1equ<lte levels of reli.::ble training for 

reason..,ble costs? DiJ <my t r~ining filCili ty, ..,ri v:~te or ..,ublic have the necessarY 

instructcrs 4Tail.::ble? Wh.'lt 1-r(.(.Jr.~.1l Wo>ul.: the inuustries have t:.; unjertake to 

attain 9vOO levels uf &JucaUon in the .. ublic schvol syster"s? Host Clajor 

industri •• qatholreJ t'lCJvther f~r the iJUJ'yOs~ ,,'f -leten.linin.,; s .... \tl <..,f the answers 

to cost ~'f the que.tiuns. 

.k>.ny .:JIlNera wre foune. and, as i\ result, many yrul.\;sals by inlustry 

were IIIc:lde t..> e~luciltiun. ;\11 uf th..a w",re rebuffe..l f;Jr viuicus re<ls.;ns. In surne 

cas",s, euucllti()n aJr.linistrat1un j.l(!rs.)nnel w.ore willin<J t<) t..u:e on the respcnsi-

bilitil!s of these new Nquir.c.ents but ccul,j n"t find fllculty tQ st"ff such an 

enu.a<lyur. More of ton thlUl not, it n .. -<.jcltive attitude on the jJ::.rt vf administraticn 

pers.mllel in public eJucati:.'n rtlsult\?d in illl:UStry g.:>inc; hack t() costly in-house 

methods. People in universities iUlJ cvllt.;es c,·.llsidereJ th..: fi"lJ tv be a 

vocatiun.'ll oRa an.! n.,)t an :lcc1\.!.:Qic ...:nc, an.!, U,eref...:re, it c.;ulcl not be touched 

/3/ 

o 

Pat;1e 6. 

wi th a -ten foot !>Ole. - The ;;0 ... ",le in v~lCati·:;n.11 schoels were .:1.11 t;l' willing to 

accept the chalh,nyo?, but c\..Clpletely neg:-.te,l the requiremunts of industry by 

telling industry that their desires for .:my thing beY..lnd the -.lj)er.Jt..,r status were 

ridiculous, an.:!, thereby, vvcc.ti ... nal educoltiun 'f~ll JOlin on U.~ jGl;>. Industry 

then racted in the negative quite viulimtly. lul proiA.sals to education were 

wi thdralln and in-h-.luse, eXl-"ensive, tiJ.ltl-consW',ling training was ~t into effect. 

In SJole of the mvre c;)JUprehensive vf these progrllms, it was not at all uncCllIllon 

t..; find the' cost of trainin'J at the $30,000.00 tu $40,000.00 nark. Time stretched 

out frer. the nOImill one ur tW'J llonth perioJ tv s01LlElwilere in the area of three to 

five years, with all its built-in rar.lifications. 

Public education finally entered the fiel.l ()f Data Processing en a late, 

llIea'Jer, but welcome basis. First vf 1111, the educators hi\d t" be educated. Those 

adrninistraturs an;! fc:culty personnel of various iJUblic school Syster.1S who desired 

entry into the fiel.:!. uf Data Prl'cessing h<J.j,to leave their pusts full time or at 

least part tL~e to get a bit cf euucation themselves. The prdblena involved here 

were r.lany hnd varied. The cri(,;in<ll tlstin.:.tcs on the ~rt ;;f bc.:·th Clanufacturers 

and users that at least il college degree in I.lathelJUtics W·:lS an essential pre-

requisite t() cOl.lputer o~r.}tions W:lS ir..!:.ressive an:i r::.any uniVerSity and colle<Je 

personnel tuok this to heilrt. LC(lv,:s of ;ilisenc..: wero grante,l t..l S(..1'le very few 

PHD lotatheLidtics typo! ~Q}Jle willing to ex~se ther.lSulves t" the rigors I.)f the 

industrial wurld. Others went to tha 1ll.1nufacturers' short courses in s.-ecific 

operations to acquaint thel.lSelves with S-.lIae of the cOl:llJUter requirer.lents. This 

traininl} svon b.:CJf.le lJretty much of ,:J b"llldwi'lgcn effort. If the education ~ople 

were ilt all interested, which they pr"b~ly waren 't, they triu.l to get on the 

banuwilCJvn. St:I.lch"w they q.'lt .therJselvcs <!x~se<.l to <l course or two, <lnci tv a lot 

of convers,~tion so th,,,,t they at least knew the teZlllinoloqy of the field. Because 

of the influence of the m,1nufitcturers initially, almost all first caners fran 

e...!uciltiun t,) the fiel,l vf D.J.ta Prveessinq were in the J:l-:ther.l.1tics .J.rea. To 

conVerse with these ~o~le on thL:ir <JWI\ level, an ilttcm.,>t WilS maJ.e to train them 

in the finer arts of CUr:l;Jutur utility by InoJans ,)f r.l-"lth<.!l.l,-:tici~l }Jroblem soluticn. 

/32 

C) 



o 
P.:lge 7. 

This, indee-l, serv.;..! its purposu, but it also hac; so.":ltJ very unJesirable results. 

The first ond most inport.:mt "f thes~ was to in.lefinitely postpone inuU5try'. 

desire uf Data Prvcessing trainin<;;. The reasen was quite l,bvious, of course. 

M<lthenaticians would n"tur.:l.lly .et Uj.J m.:;thi:lil::tics typ.; courses first, and perhaps 

other courses Inter. 

Educ.:ltors frum other fields Qra-iually C.Jl.19 to either industry or the 

J:laJ\ufacturers tc gain S<XaJ insic,;ht int·;) the world of cUJapu.ters. S<Xle went to the 

manufactuzers for their short courses in specific operations and s~cific ~chines. 

Others left the field d education c.:ll~letely anJ entered in.lustry bent on learn-

ing all they cuuld about the entire fiel,! of D.:lta Preeeasin<;, ant.! then returned 

after several years to education to set up courses of their uwn in thdir own 

professional fields. Th.;,se that ,U.l return to education foun<! theJ:lSelves beset 

with obstacles SCl[.lctimes insun.iountable. Of these, r,;any beCc3LlE! Jisillusioned 

quickly and again left euucation. Of thc few that were left, only a han<.!ful 

persisted .in the eff-;rts to eS1:i1blish the uesired courses. The rer.laininCJ ;jrouj.J 

21001\ t.!ivertet.! their attentions fror .• settinc;l up ccurses desire-.l by industry to 

settinc;l up the courscs which thdr iA..uticular a,!r.linistri~tiun h::t-'ycneJ to think fit 

wll into the schal.le cf cvery .. by livin.;. F·)r the Bost purt, thesc turned out to 

be person"l research project type courses, unj.Jrl..'c1uctivu o.n~ invi:.luable to the 

students th<lt maJe the misbke .:,f tnkinq then. EJucaticn ~c.:uae quite wraR*i up 

in the business cf trying tc <;.et SClae. jecent CUUrlll1S ~st.:lblisheJ. IntelJllingled 

with this W.:1S the perscncl desire of the p.uticular inJivi.!u..u instructor, and an 

unending <lvaliUlche of proJ)a(jan.1..1 fra.: C'.ny and all sources. 

Gradually, inJustry h,lS lessened its requira.;ents in the selection of 

persrmnel. This is :.lue in r:lost p<~rt initi'llly to the f.:!ct th~t j:)<)ople with h<1in-

inq wer~ siMply nun-existent. ;\s inJustry ,'lcceptl:!j lower scale ~rllonnel, it 

hecane app.:tNnt th3t ~rh.:ps a D<~ctvr;~te J)JQrc~ in r:l.ltht!r.,.ltiCS WClsn't quite the 

t:lost esscnti;11 single pre-r~uisite. This f~~lin<J ho1.S s"u~ how }Jeme'ltw into the 

educ~tion field until t~y s~.~ of ua feel that caybc even ~ lowly coll~J8 fresh-

fJill\ just f.lic,;ht h7.VC " chiUlc.:l .:f un,iorstan.liny cCElpu.tl)rS, prl..viJing, of course, that 
133 

~ o 
P~e a. 

he first attain 20 ye.'lrS of expurience on.! four collC(Je Jeqrce •• 

There is .till il b:1aic cvntrilliction in the awroach t<.> the problem by 

education,1l pcrsonn.al. The zl:!.11 on the J><'!rt vf rnuny C..oduc<.tilrs to acccaplish 

personal gc.:!ls, as concerns cCl.l~t~ra, has ciluseu IOk1nY of these people to lose 

sight of their oriqinal pu.rpose. In~ustry requests well-defined, practically 

oriente 1 courses of training. E<!ucaticn ha. cooe up with a hoJl;;e-podqe of one-

quarter courses which are, fvr the ~st part, unrel<lted and unguided. Soae 

universities offer only one section of one course aach year, and that course is 

usually nothing more than an intr~uct,)ry type of c:.>urse. FORTRi~ is often taUQht 

as the I&leMS L'f solviny busin~ss prablel,18. Syst_ courses can usually be defined 

as courses in machine cap,iliility ntiu:r than in their true lic;;ht. 

This has been due in ~reat part to the .hortcamings of computer educa-

tion of the educators. For purposcs :.>f quict exposure, each learned about computers 

in his or her own field. The raathElllatician learne.i haw to !Kllve math j%oblaD8 and 

never tillked to the bU5iness departl'.ll!nt.The business' people learned how to solve 

the accountin<; ty~ problems anJ never t:!lteu to the encin_ring department. The 

engincerino.; department people learnl:!<l tu solve the stl'.ndcrd stre.s prvblem and 

never t<llked to the science uOlJ<'lrn..ent. ~ science Uepartment people learned to 

do Sale of t~ir vc.rk on tho c<X:lputers and for;;;ot about thd rest of the C.-pwl 

crotid canplOltely. Many and varie-i requests for equi~.mt CCDe to tht! adainis

trators frca all of these "roulAS. Noun of these werOl coordinated nor even exposed 

to the scrutiny of any oth~r departuents. Peovle on the ~nistrative staffs were 

rather prone to allowint;1 each anu every departLlent to function inde})el\dently as in 

every other facet of their oj.Jeration.. In many cases, it was a first-ca... firat-

serve-.l tyj)E! of o})llrntion in the acquisition of a comput.;r. The results were, of 

course, chaos in the sGlection, orJerin~ and installation of both the ~unt of 

junk- inv~lved, and alaJ the courses ~eciJed upon by the powers to be to be offered. 

As is usual, a trecenJoua .JLlount wes left to be desint<l in aettinc;; up Data Process-

in~ education in uur pmlic achool syatOLlS. 

The evolution I)f coq.'Uter and Jata processing courses follC/llM\.i an .u.o.t 

/31/ 



Pave 9. 

identical path in every casEi. First c,~e the -hunk of junk.- hfter s.:rae ·semblance 

of study within d particulilr depnrtrlcnt, a caaputer WaS ordere<l and installed. In 

!;fenaral, there was very, very little c0orc.linativn bet~1een the various university 

departrolents relative to how the COI:lputer coul~ be used. In general, there was 

always the stij)U].ation on the part of the adlainistration that it was to be used 

also for adrolinistration purpos~s. I 5m t~pted to wonder if this is also true of 

the microscopies of the biology deP1\rttlent, and the ty~writers of the secret<4rial 

delJdI"tnent and the foothilll shoes of the athletic department. 

Next CaLle the exoiting question, "'What am I guinc;; to do with this crazy 

adding LIIlchine?- The individuals invol vad in the overwhelnting tClsk of convincing 

the adrJinistration to acquire a com!->Uter had s~nt all their til.le in just that, 

and no tUJe at all in the practical developnent of courses to be installed after 

the cOOlputer had been installed. The short s).)ace of tirae left in between fina.!. 

oruer oli1te and installCl.tion date of the cOl:lputer was not at all aJequate for 

developilVJ d goud cc·urse of instruction on the l.l:lchine. Result: an unrealistic 

approach of -Gettinc; sUI~ething t r.1;Jether wfore the e.<.Ir.1inistration finds out ... 

For the JOOst part, this turned Cout to be a hurrcJly PUt trJ<jether FORTRt.N course 

built on the notes fr'A.1 the instructors uwn atten;iance at a manufacturer's short 

course. In suo'; cases, thes~ even ~r'Jved. tl) Lc enouyh to;) <J~t through a full 

semester course. The main ;.:.rubla:n with this W.'lS the fact tlnt tilis method was 

actually beiny usC<.l. Under the !Jretext of beinr,; too busy with other aspects of 

educational life, usually because the indivUui\l hirJSelf w~s still quite in the 

dark about what elctually e cClla~ter was cll about, the stuJI:Jnts were thrown the 

bone of s<1ll1ple problens from the m:mufactur.jr's course, whilv the Prof. wtlnt on 

his ~rry way tryinc; to find out f·.>r sure just wh"t ..lid h'W1Jen when a laultiply 

ca:r.lal\d was o;Iiven. Generally, win'; unf':-J'ailiar with a cOCllJUter lan(]uaqe, led to 

the dev"lOI!Uent vf many cuurses bein<; put tvrjether on nothin<J mor;! them machine 

liUYJUayc. l-lachine lanc.;u'll;e and FORTRAN bcccrae thu ever l->rescnt uy-lilws and by-

words. J.L~ny, in fact most, cuur!les be<-,;an and en,!ed on this level. 

/35 

a .0 

Paye 10. 

Of particularly si.,;,::iEcant illtvreat to in<.lustry WitS the method in which 

the cOOlputer itself was h-:n,.~lc;: within t:le SCl1001 olJeration. Therl! set!llk.>G to exist 

therein a fervent desire to r"strain tae stu."nt frol~ ever h,winy ar.y contact what-

soever, exce1->t by reference ",urin(; il lecture, with the c'::lln..;ui:er. Perhaps the 

administratian was fearful of lY..>ssible re,.Jc"1ir costs; parhil,:>s th~ PrAll. involveU 

wer!:! dfruid that the stu'~(:l1ts \'1"uli.i find out which were the ri.;,;ht buttons tu push 

before the Pr·Jfs. did; at any rate, the aotual o.;eratiun of the caaputer center was 

built ilround ;~ sdecteJ stolff of 0ratluilte 3tuu,mi:s who c.!.i,l .::11 the actual oyera-

tions" !Jrocesse.J any an l illl stude,"1t prc<jrru:lS, and lau<;;he::': rather hideously when a 

lOCjic error appeared in a student's work. The said p<~:d: of all this wes that the 

students never diJ g"t to fine! ,:·ut what the cOla..,uter really dld lo.)k like, n'Jr what 

it did while in operation. On-line di<l"n(jstics anu debu;;c;ing techniques were never 

even r.lOntione..l to the stu<.!.::nts f..>r fCJ.r that S.:til" quesU"ns nit;ht be asked. Sadly 

enouyh, sume of this was justifiej sirn"ly wC<"1u:;e '.)f tir.\e •. It would be iralJOssible 

to crara intu a single quarter course any morl! than ,1n·ex~sure to a lan~~~e such 

as FORTR.\N and expect the stu.Jent to "ct i).S far as writin:; ,a sin'.Jlc j.or..qrat.l. In a 

seMester course, he mir;ht L.~ ex;.;ected to wr ite two f:h')rt jJr·xJraIaS, punch them into 

car:ls or tape and just ::Elylk ~!et the::\ int) tit" C()l:Jp11tin0 center. i.tter .illl, this 

WelS more than the Pr·.)f. h,-:.1 acc'::"~Jlishil·.i at the l.tmuf"ctu:.-er's short coursa in 

sliyhtly less tirae. It 'is IJOssible to ilcc(n,Jlish only s" '-1UC;l in il SO-hour 

quarter (;r 90-hour s~star, unci this WelS the only interest uri,.:inally--tho ane 

quarter or one setJester course. 

Unfortun,'\tely, this is still true of .~lmost every cvlld'Je an~ university 

cOluputer centtlr in the country. Tvday's ufferin<;s in courses actu,"111y c::mount tv 

nothinv !:lor", th'ln a conc.;lCEeratic·n of o..!:s and en,is which, for the I,loSt part, 

reflect only the lack of lmowle.ive on the i-Yirt ..>f those !lettin\i the C0urse up. 

The lack of truly dilivtrnt effort i~ '-1 th:)rn in the side uf E.,;,uc1tion. 

Just as in industry, the computer on campus becaIne a status symbol. 

Many schools beqan to wear it as a badr,ie of sa:le sort. Other schools without a 

computer soon found theruselv9s in a race to tna wire in acqui.rinQ a "hunk of junk" 

/3<0 



.--..." 

o 
Paqe 11. 

and QettinQ it into operation. It bec.,1e very fashionable to be s.ttinQ up 

"CClInputi!s." centers; comput~ canters, not Ca;lput!,! centera. The terminoloqy 

was indeed indicative of understanding on tl,8 part of both faculty and adminis-

tration people as reqaros the cOl:lputl!rls place in industry. It was just another 

machine for the solution of a particular problem, preferably a mathematical 

problem. The true UDplication of the cauputer in the luodern business and scienti~ 

fic world was rdalized by only a very few across the country. These fee compre-

hended the computer. ramifications, but they made the significant mistake of 

placinQ the "hunk of junk" on thtl "Qraduate school level only," and, th~r~by, 

effectively eliminated almoat all students. The result could only be that of 

ineffective application insofar I\S th>l genur:.l situation Wi!S conc<lroed. Those 

I:IOst in need of expoaure to computer education could not be exposed simply 

because they never Qot into Qraduate school. 

Aqain, we have the situation of a ~lachine languege or a FORTRAN course 

for under-qraduates, wherein a proqram was l~ited to being writton, passed 

throur,:h the keyhole to the Qraduate stud~nt and the Qarb,lge results received back 

throUO'h the keyhole with a note telling the J:A;or frusman to do it over <'lqain. In 

most cases, even thu Qradu(\te stud,:nt l~n the inside nuv,~r 9-,t tu run any diagnos-

tics of debuQQinQ un the prUQr-lr.1 s~ply because he h.ld nev.::r been t cught to. 

However, thay did Qet tll help the Prof. whil\.l th~ pr"f. was Quing about qettinq 

his .lWI\ computer education, so they were able t,) Qarner S'.l:le extra tidbits of 

tnowl~ reqarciinQ cC(.tputers., 

This is where W\.l stand in acndeLl1c educati.m today. The ruquests of 

industry hClvtl been f.JrQ:)tten vr releqilted to the area of unir.lportance, and most 

on-campus cc:m~tors have been qllbbl~ up by Pn'fs. dcinq p()rs~n.:ll rl.?search for 

doctor."lte deqrees while the cnly effective courses .'lle ->n the qri:'.du;:te school 

level. In other words, almost t.,t.'l.l ineffectiveness. 

137 

c c 
Page 12. 

The attempts of vocati •. n.,l scho01s and area technic.'ll sch0018 hava also 

been ineffective. The tr.:lditi0n.:ll appr<Jilch of the v,'lCationoJ.l school in traininq 

fur a specific skill has resulted in just anoth~r series ·.;.f "Lp.=rator" type courses 

which industry has been 3hle to suWly for l!l<~Y yeilrS. V')c<'ltic.n<ll schools have 

been successful to some degree in supplying industry with adequ,.te input trainee 

personnel for specific job cateq:.ries in the opuratcr jobs. These personnel still 

had tll complete in-hl>usc, on-the-jeJb tr,lining after being hired by a company. 

True, bec.:>.use of their training in school, the in-he·use OJT training programs 

could bt! significantly reduced in length. 

Again a failure te; cc!;;prtlhend the true rurnif iC:ltions of conputers within 

a business caused the vocational IlCuple t') continue on their Iaerry way setting up 

operator type courses in the various job c·.te<Jqories of il cr .. .r.lputer center. All of 

these were specific in nnture, th.lt is, the Key Punch operilbr W.1S c·.mcerned only 

with ~chinq curds; the Tabulat ... r operat\)r was c,mcE.:rncd unly with prvcessin9 the 

cards in a tabulatur vr surter; the Cur.lputer Const;le :)perc:it.,r WIS t<1ll9'ht t'J push 

buttons and cuunt tajJe reels; c.nd thQ Prr:qr.)I.1f.ler was just 'l.n",th",r individuul j0b 

cl>nceroed with writing instructivns f'Jr the cur:.puter. N.m.;! of these categories 

received any additiun.::l tr.-:ining .;r evun UXi-- :sura to adjacent opurational areas. 

Even the previous cr next vpurations were left 'Jut of th~ tr.-:.ining courses. 

The stress on individu'll jub C;!i€,gvrics by the v.)c·:!ti,mcJ.l sche .. .>l people 

has relegCltod the prc .. <}r.JOacr's j.;.o t.:: that '.Jf just an\)th .. r oOJQr:lt.;.r in the cycle 

of business eVtmts. Aqain, this W,lS due tu al.CJ.ost the S<Uf.U f.:l.ct",rs as those' aris-

inq in the aCcJ.d\!lilic wurld. Tou little ..::ducation on the iXlrt vf f.:lculty and 

adrninistratiun led to unpractical courses beinq set up. An unwillinQness to adlait 

that there just [.1iqht be ,l. ntled f.)r educiltion b.:yond just the "operi:.t",r" level 

left all related course tr'-lining out. In th,;se la.:>st advanced schools, there S('iile

times apptlared a course in nldthQll\ .• tics t·. ::b:,ut the level (.f boginninq .1.lgebra. 

Never did we find the ilre.:: "f syster..5 b.:inq c.,vor",>d, fvr this was fdt to be 

unrealistic; and, theref,;re, aCild<r.;ic in sc(.lJE). 

138 



P<Y,1e 13. 

Tho." courso. in "C"I:,put2r ProgrC'l:r:linq" which were aet up followed 

almost exactly tha efforts within the ac,:.deraic l-lVrld in ddng the aar.te thing. 

Short courses in the usa of a c':mt:'Ut;;Jr l;::ngu:.ge such as Abs.:'lute und FORTRAN made 

their appearance, and _re handled in virtually the S'1J:'.e way. After an ex»vaure 

to a language, the student was expected to write a prcgr.:l1U and subject it tv the 

processor by way f)f either the Prof. of his assistant. Alnwst invaric:.bly, what 

little hands-on experience that was vrovided was channeled unly into the area of 

what buttons to push -to get the darned thing t:; run. - All of these courses were 

set up on the '"'liW" basis, with little or no solid l~cturf; ccnt,"nt. For the most 

part, the instructor was a convert ... >d Business Educatiun tY»e j.>ers,.:.n with a 

specialty of office machines or ty;;ing who had be~n eXj)Osed tv a short course at 

a oanufacturer'. school sauewhere. The results uqain were very similar to that in 

the c011eges and universities. The l'rincipal PL)blern here W:lS a reluctance to 

admit that any job could have ir:.plications or raoifications beyond its own seem-

ingly iliIDediate scope. The aaninistratic>n and faculty peuple refused to even 

attempt to deviate frcn their 15.::t ways of educatiun and set up S~I;\e semblance of 

an adequate course in computers. 

This satisfied the requir~l:\ents for '"'o[Jl.:rator'"' type >-eople but left the 

original }:oroblem ccn.:;letely uns'ltisfiad. The se-called corn~ter vroqraomer was 

nothing LlOre than a ldllqUag(? c.xiinq clerk.. lacking any and all knuwledge of how 

to really PUt a cC£lputer to effecti va use within an organization. The Systeos 

Analyst dealt only with the abstract it seer.ted, and, therefore, had no place in 

vocational education. Because of this, so-called l-'rcqranl".ler courses could give 

the student nothing m.;re thilll a l.:mguuge backgrC'und. The cOl:';'-i!Ilies hiring these 

graduates found thelJSel ves right ~cl: wh," re they startJd with their vwn in-house 

OJT prograrJs. The vvcatiun"l schoels did effectivaly pr0vid," invut trainees for 

operatvr jobs, but left much to be desired when it c<:/,-,e tv effecti V,3 usa of equip-

ment within a Data l'r('ccssill<,l center. 

Ccxnvuters and th~ir effective use dene.nd an integrated tr,'lininc; ..,rograr.:. 

In general, every business cr~~uter install~ti0n de~nds UPC'n a staff of persennel 

139 

a o 

paqe U. 

which has had a good acader.\ic background in a particular field such as Aocountinq, 

Engineering, Mathematics, t>cience, etc., und also a vocational skill training in 

machine use and operation. Industry has found that it W4sn't en':>l¥}h to jUJIt be 

an accountant or engineer, a scientist or me>.theI!llltician, just a systems analyst 

or prograr.Der. It wasn't enough to have just a high school education followed by 

quicky type operator courses. It wasn't enough to have an eXJJOsure to a ~rter 

course in a cOl.lputer language. It wasn't encugh to approach a cCllllJUter with simply 

vroblern solution in mind. Scmehow the benefits of college or uniYersity academic 

training had to be Qolded toyether with hands-on vocati~nal training into a useful 

lev<ll ,)f cOOlpetency and judgnent. The far-reaching aspects of every caoputer 

applicatiun made it very desirable tc provide the ty~ of training Which would 

allow the individual to make the utmost use of a particular "hunk of junk.-

During the last two to three years, it has bec.:tae mon, and Qore a~ent 

that more than one acadanic field had to be included as well as Qore than one type 

of ccxnputer trc.ining in any effective cc&pllter CGurse. In addition to accounting, 

sU'lle mathaaatics, English, and st,'\tistics were very necossary. In addition to an 

eXJJOsure to c.xaputer IJroqraLEing via learninq a c:'J4Uter language, a background in 

probleI:l analysis and s,)lution, in Syrnb,~lic l'Ul0uage as well ~ FORTRAN, in handa-

on debugging oethnls as well ilS desk checking were all vitally necessary. 

fuaputer o~rativns trc:ininq was the iu<le<!iate concern, and primary 

coursell had to be directeU tow,~rd this end. However, the larger as~ct. of 

cClilputer ability had to be l'lUde the \1-.~l of all traininc). S'.r.lehvw the Methods 

Analyst, Systems Engineer, C<Ei-'uter Prvyrilr.:uer, Data Ptocessiny Uanager, 

Controller, Accountant, Sales ~,,-:n~gor, PrO<!uction Su~rintendent, F:lctory Foreman, 

InventGry Clerk, Gruunc!s Ke'lper, an,! G.:rbage Collector h:::d to be rolled up into a 

single individual via an ",ffecti ve trainin;; ..,rCXJrar.l. 

Fr~ a practical stanji-'0int, this conglur.JOration of far apart fields 

had to be rolled into one, but this isn't quit~ j)Ossible within the IIhort peri.xis 

of til.le aV;lilable fer training. Still it is ap~,'!rent that quite a different 

enj.l\asis in traininy is required. Rdher than being just an0ther tool or method, 

lifO. 

() 



o c ~ 

Page 15. Page 16. 

the cCII:lput-er h,1S beccr.te the cimt"r of operations affectint) all <.;ther delJartroents thin<,Js which is expectej to. cont inue as the way 'J£. doin') thin'Js f .)r zr.c.ny years to 

of all organization •. N0 si!1\'le J;:.oeration escC1ped the inevitable scrutiny of the cane. In ccraput ... r operatiulls, this is nL t at all true. Yester...!'l.Y's method. was 

canputer. Training, therefore, had to inclu~\e all tNssible .fi~lLis 0f endeavor, ancient history as s:,cn as it was us~::i. To"':uy's j.l'-'!th·xl will be outmoded bef:)re 

so as to provide the cOIrrputur ~rsonnel with as broad a scoye a5 lJOssible to enable the job is dune t<)night. Tor.lorr;)W's I:I8thod is already (;::tnerin<J ~le, c;reen mold 

thet:l to I:IUke sound Jecisions. EXiNsur~s tv C,thiJT fields -had to be realistic and of disuse. 

sound as well as effective, but thest! eJCl-t:'sur"s had to -be mtlJe within realistic As an intemedi.lte solution tv the j..-r0bler.1 of yx(;viJing industry with 

tiue allocations. ad ... 'quate input ~xsonnel, th", two-year tuchnici;m p.rograr.l has b€::en. s~qested and 

The -).>ressure of tdesco}.JE.><.i tiI,le has nvt allowed industry the luxury of put into use. These, t00, have falhm into the s.:u:-,e tra"s f'Jr the sane reasons 

retruining elLier staff r.lcrnOOrs. Thou<;h these personnel hud extrenely good know- as the acaJenic courses ancl tte vocation.:>l C0urses. The reason for t·his is 

lihlge of the urq:mizatitm, it eften required more tine than we had available to obvious. The very sane faculty ,1nJ ·'.lw;,inistr,:ltive ;,;eople are I.cline; the very same 

bring them to a j.lOint of .c.i:\i-€tency in ccIr.~uter utility. Additional pers')nnel unintell igent decisions aD.lut this c,'urse curr icul urn anJ. setu .... 

with "Wide an<;;le" -<:uaputer buckgrounJs had to be discoverec! and acquired. Host During the last two to three years, there has taken place a yreat rush 

of these car.le frUl.l th" fields vf eith~r Data Prucessing 'Jr Syster.s Analysis, but to "get on the Data Processinc,; bandwa<Jon." Unfortunately, the depth of sincerity 

even these c!id not h·we the ..,rOl--er back<;rounds of Ilutli..,le field. The <;reatest here seems to go only that far. :"Y,/ain we find unacquainted adrn~nistrative 

deterent trJ t-hese in aclinatizir.g theaselves t.) c;:oputer olJerations was j..-r0- personnel and untrained instructor personnel attempting to set up and teach a 

fessional prejuJ.ice. Until C(f.liJuters, these twu fielJsstocd at oJ.c.:.s with one totally unfarailiar curriculum. For the r.lOst part, these attempts have been made 

another. This factor became a serious r~stricti:;n t~) further <levelopaent wi thin in junior colleges and vocational schools on a post hi<Jh school basis. In almost 

the c~puter field. every instance a basic two year curriculum, su<;(]ested by several of the manu-

The twv year Dat.:: Processin(J Technician C,)urse se<Jj,lS to 0ffer S')I.le facturers and approved by the U. 3. Department of Health, Education and '.Jelfare, 

indication .of an adequate ilnswer tn the pr0bler.l. The intec;rc;tion of all t-he has been t!le sum and substance of these attempts. These sug<;ested curriculums had 

requirecl facets intu a sin<;le "l...,~lieJ course can, of course, bt; the only true been set up on a purely theuretlcal basis, and had not be2n put into practical 

solution to the prcblel':l of acquisition of trilinecl, catxilile iJers:...nnel. This is not operation ~fore being foisted upon an unsuspecting education group. Perhaps in 

goine; to t.:lke place very soon because ,Jf Sor:le of th.:: reasons already mentioned. awe of the suggesting body, perhaps for lack of personal knowledge, perhaps for 

In the rleantir.:le, SOlJe a..iequate substitute must be found. To ask inJustry to desire to be "one of the bunch," education accepted the'se curriculums and attempted 

centinue their ewn extruJ:\.:lly eXj..ensive tr,'.lininrj ..,ro0r.1I':lS is not realisttc. In the to do their best at training peopl" in D"ta ProcesGing, without first doing any 

first place, this is f.u too ex~ensive a lacele of trv.ininy. Secunc:ly, it is extensive exploration of the curriculum. 

unrealistic in the cunsum~tion c,f tir.Je. This is the point at which the most significant of failur8s occurs. 

Develo}r.lents in th" field of cCJj,lputer utility Qrrive se fast and in such Scrutiny of the suggest",d curriculums by those in Data Processing management 

quantities az to render ineffective any long rilI1<;ie in-house, un-the-job training positions in industry would perho.ps have pointed out some of the most glaring 

prc:;ram. InJustry training IJr.:c;;ral':ls are usually baseJ on a s",t way of cloing inadequacies. SOJ.1l~ of these are: first, a purely theoretical approach to subject 

{iff I '-t 2. 



Page 17. 

matter without adequate experience emphasis; second, basic courses being taught 

last in sequence, with advanced courses cct'lling first; third, emphasis on language 

cOOllllunications with the mach1ne rather than a solid foundation in ffi:"lchine operation 

characteristics; fourth, relagati;:m of tile DLlta Processing courses to a status of 

just another course rather than a st.:;tus of cor~ C0urs~. 

AI; an example of tLis, let us eXc1r.lin<.? the most c_,~.monly found curriculuru. 

It is set up as follows: 

First Year 

Data Processing hathemLltics I ,md II 
Accounting I and II 
Cct'Llllunicati0ns I and II 
Basic Ccruputing l~chin~s 
Uni t R"cord liachines 
Data Processing Applications 
Intr,)duction to Prc'gr1f.mting Systeus 

Second Year 

Computer ProgrilllEing I and II 
Social Sci~nce 
Statistics 
Business Organization 
C0St Accounting 
Syster.ls D~val:..)jDent a.nd Desiqr. 
Advanced Computing & frL;qr$l:,inc; SysteJl.\s. 
Data Processing Field Project 

First ':)UDeSter 
Credi t ~!ours 

4 
3 
3 
5 

Tnlrd Ser.lester 
Credi t Hours 

Second :3er.lester 
Credi t l';oilrs 

4 
4 
3 

Fourth s.araestcr 
Credit Hours 

3 
3 
6 

An exurainC'ticn of the c ,ntent ,:·f each,f tilese Data Processing c~urses gen~rally 

reveals thil h,llowing c.:;urse descriptivns: 

BA:::>IC OOiPU'i'ltiG- r .. '.CHINES. This is a survey courSe "f C0;.r.k'n fundar.\ental concepts 

of data processing systens. It describes the eVc.lutiJn ')f c .. :l.lputer systerllS--frurn 

manu •• 1 to stercd progr . .r,1 n<.?th·...ds. 

UNIT RECO?.D l:r.CHINal. This c~urse is a survey ;:.f unit rec0ro equiJXlent. It illus-

tr:ltes the need for IilaC!line-pr"cess.illle s-.·lutil..ns L. accounti:lg ~nd recorcikeeping 

pr:.Jbler..s ... Lab ... -r,-;tor}, pr<..blens include wiring of cvntr"l Pc.nels. 

DATA. PROCE&>ING lU'PLICnTIOHS... This course is design~d to 'Ccq".:unt the student with 

act~al bUSlness datil pr,_cessing .'1pplic<ltivna. The student leurns thr ... 'ugh lecture 

und Cllse stucUes to apply the d.cta prJcessing equip..ent previ... usly StUdl0i t(. 

143 

c f\ 
'-.. J 

P.lQe 18. 

various applicati0ns. Through this study, the student gi::ins an understandinq of 

how nuchines and syster.lS ar" c • .;bin<.'<i, .:md the adv=t.:lges uf laechanizatiGn. 

INTRODucrION TO PR(X;R."J!:iING oiYJ'l'wiS. The b.'isic c'~ncepts of pr(,)Qr<".llili.:ing lSyst.a8 

are taught in this C0urse. During this cl~ss, U,e student bc.cC('~"s ilwar\;j that 

progr$J;llng systeIaS are as inpurtwt es the m:lchine hardw.re. This cJurse f.lCIil i-

ariz",s the student with the purpose and function uf tn" V.Ul-.lUS types vf prOQr=-

minq syst~s or languages. 

CctfPl':'ER PROGR.\JlllllIG. ~he B::'sic Conputuq Machines c')urSe in the fint secester 

proVldes thc the'Jretlcal basis f.)r d"tclileci stud)' of datu processing tl.lchinas in 

this course. Progr=ling drills, c·:lse studies and exercises serve tu bridqe the 

(],,-p fron the the0retical t.J the lJr.:1ctical use of d':lt'l pr;:.cessinc;. The two huur 

per week lab.)ratory Sessions provide further reinforcel.l8nt of basic principles by 

pruVld1ng -hands-on" tHiining. The FORTR:ili lclnguage is the L3.in lJudia of trilin-

inq, while the student is intr;:.duced to llachine Lan<;;uage and Syr,ib~lic Pr<:qr~ing 

Syster.ls. 

SYSTEHS DEVELOP!:ENT jJW DESIGN. :, survey course dillcu5sing the etfectiv<' use of 

data pr:.Jcessing. equipuent in I •• eeting the int.:;rr.:.:>ticn needs ~ f bl..sinc:5s. The course 

is deSigned to guidi.! thO;! student t:.r·_·ugh the y,-,rious stnqes vf syster.1 devel0lIJent. 

ADV:""JJCED <XliPtrrING "ND PROJR.jlIING dYS'l'EiiS. The "b]ective vf this course is to 

provide the student with suf i icient Itn-:vlleck;;e of proqral.i .• in.; limquil<;e c.mcepts so 

that he r,lay easily master any sp.2ci£lc systec with 3. niniuUla of instructi.:;n, 

Actual proqrar:1I1ing languages are nut taught. However, individual phases vf certain 

selected 1 -mguage syster.lS aTe trC<'lted 1n det.)il in order that the stud<.!nt IJ.i1Y learn 

(ldvanced prvgr':!I"lI'.~inoJ language techniques contairred in scphisticilted syste;.UI. 

Let's ex.mine these c~urses a littlefill}r~ filinutely fnn the standpoint 

of "what 1S being taU<Jht when." In tOld first semdstdr we havd b'J p.~rilllel C0urses, 

Basic Conputing hachines and Unit Rec..)rd K'ichines. The B,:.sic COClputin<,l. I1dchines 

course is almost always J pure th(;ury c.,urs,," eXi'I.lining the ·v,uious rtylds and 

types of nachines. Little or no eff,rt is mc'!de t-l acqu,.int the student with the 

J:lcthoos of prubleJu s01utLm requir~d by" erlch d these types :.Jf machinds. Since 
Il.{tf 



0_------

Page 19. 

this is usually a three hour per week Celu-rse, there is reully no time to go 

beyond a ten.1 definition stage of learninq. The Unit Record M.:lchines course is 

a li tt1e nore definitive in that the student d-:..as <,;et some "hands-on" exverience 

in control panel wiring. This, too, is very limited since thJ five ht'urs per week 

during one semester must be spread over several types of rJachine3 and all the 

punched card processing ~ilosoj:hy involved in each of them. The student receives 

a total of about 20 hours per machine type. Certainly nut enough even tv conplete 

the acquaint.:mceship st'ltus of kn )wlecige. 

The simple fact that these two courses are so drastically limited in 

scope negates their desirability as foundations f')r further data processing courses" 

The Basic Cwputing Machines course should have as its prine objective tec1chinq 

the student the vGrious methods of prcblera solution used in the v::tri...,us types of 

ccnputers. Since problem soluticn is r'-lally the prir,le ccnsideration .Jf dl sub-

sequent courses, and all activities involving c~~puters, it would be f~r more 

desirable to teach this h,pic rather than r.lechanical cunf igurat ion and opcrilt ion 

in the initial course. 

During the s~cond sel1ester, the student is expcsed to s0l1lething Culled 

Data Processing Applic.:ttions. Duriny this course, he "leurns through lecture nnd 

case study tu apply the d~lta processing equijXlent previously studied" tu business 

applications. This is u11 well und good, but since the Busic COClputing Hachines 

course did nothing racre thun acqu,1int hila with mach.'mical ccmfiguration, thIs C0urse 

will still leave him asking "h()w, what, where?" This course wuuld b.a infinitely 

mure appropriate were it taught f..lllowing SOfile eXposure to practical prcgrumming 

experience. [,t least, then the student would have some meuna by which he could 

relate the machines to the applications. Far too nany students .:md yruduates COOle 

to industry knowing all abuut computers or lunguage systems, but are unable to 

put this knowledge to work on a practical application. 

juso, during this econd semester, the student is subjected to a course 

called HIntroduction to Proc,;raruming Systens." This is b.'l.sically a course which 

examines the various types of prograr.ming lunguages. It is = exploration of the 

J48 

~ 
~ c 

Pclqe 20. 

"software" wherein the student "OOC'.)l;1CS aware that pro.:;ragning systems are as 

important as hardware." ~ain, this course is pretty Lluch a the·nettcd! one with 

little or no practical pr()(}rillllI,linq experience. For the n0st part, the l:lIlguaqes 

qenerally discussed are not a part vf the software package of the computer which 

is install.;d. Here ayain, the stud~nt is left wunderiny- "what to do with it" 

as concerns all of these lang~¥Jes. 

So filr, two full sel.1esters helve "one by and the stud"nt still hasn't 

"soloed" on the ccmputer." He has still to write his first practical problem and 

run it on the c::mputer. It would seer.! to be an awful waste of time. 

Finally, in the third senester, a course called C~puter Progr~i~; I 

shows uP. Welc0lIle at long last, even though it falls far short A its rightful 

qeal. During this course, "prr.x_;ra!a:lin<;; drills, case stULlies ~nd exerciaes serve 

to bridqe the gap frOCl the theor~tical to the practical." This objective is 

perhaps a sound one, but since the FORTRAN language is generally used, with only 

an exposure tv Symbolic and Hi'l.chine Language, it is doubtful that it can ever be 

reached. The FORTRl.N lan~uaCje still gives the student no ins iqht into data 

Ii\C\nipubtions within the machine. FORTR.-.N d..les not alloW un-line debU;/<jin<j and 

diagnostics. FORTRAN dues n.,t even allow the student to dev~lop his own pre<;ram

mine lCX;;ic techniques. FORTR.'.N liI:lits hir,\ entir.;,:ly tu i\ ri",id set of rules 

evolved fran S(:i:\eone -else's 10.Jio. In th :s~ c.ourses wher", k'c'line language is 

taught as the basic media, the student is severely lir.lited by the clerical 

activity involved, and also by the fact that cnly relatively siLlple prc;blems can 

be attempted. We find, therefore, that in the third seuester when the student 

should be at an advanced level, he is in reality just be<;inning. Ion exanination 

of the number of ctr-lputers installed and in use reveals that appn xinately 95+1. 

are used in business type operations. Why then use a m~thematical language suCh 

as FORTRAN, with all its inherent restrictions .:111'1 l:ir.litations, as a training 

media? Why not giVe the student the type of traininq which is (,join<,; h· equip him 

for 95~ of the job market? 

In the fourth sU!:\ester, unother course is 'liven in Pr~ral!li11ng Systeraa. 
Il/tD 



Page 21. 

This usually is a survey tyPd c0urse desir,,-neu as an extension of the intr.)duction 

course Qiven in the second semester. These two courses could well have beei\ 

cOl:lbined into Il siIll:;le course ..luring this sel.ltlster. By the tL3e the f.)urth 

aemester has bagun, tha stuJent is just barely cap:J.ble of nakin" effective use 

of the hiyh-powered lanQu4<;es usually discussed in this course. The philusophy 

of operatioo involYed in CXE;;L, .J.GO and StlfIW of the I.lther more sc.,nisticated 

lanquar.:e. are beyond practical c:..Iilprehension until the stooent has had an adequate 

expoaure t~ manilAllation of data throu;;h the use of sane lessor lanquaye system. 

The thin! s_ster Cvurlkl in cOlllVut.:lr pr~raI:lllinq will acccra1--lish this t.) a certain 

deuree, but places the wcond Se::lester course, "Introduction to Pro<'Jral.l.ling 

aysteca,- in a wasted atatus. 

The "Sy.t ...... l)eTull.lp:.lent and Design" course in the fcurth sel.lester is 

a ~ractical one, tho~h it COlileS a little late. Far nore tlr.l\llasis needs to be 

placell on "the effective use of Data Processin<;; equipnent in business neells." 

This theme must eff .. ctively be built intl.l each '1nd every Se~iI.lent uf each and every 

u.lta processin<J course beQinnin<) with the very FIR!:>'T day c)f instructLm. Without 

thh, the student in his theoretical surr,)undin<;,;s loses sight c...f the lJractical 

Ilpplication cf lihat he is studying. 

Because of the inad<aquaci~s of su:;l.;ested an~ a.:olJted courses, a new 

appruach to courSIt setu},> and content had to be taken. i.t Hibbiny, we first tried 

to detemine what type of indivi.1ual was really in demiU\d by industry. It was all 

well and good for U8 to listen to the clai.LIs d alrol.lst everyone that the field 

of Data PrQCe.sing vaa ,'ne of 1II\1imitetl o~rtunity and a ncver-endiny sponge 

which would gather u},> any anll all graduates of any and all tYlJli!s of courses. 

HavilV,l apent a few years in the business world, I found this quite hard to believe. 

We spent a ~reat deal of tiwe and effurt finding out what we believed in fr~ the 

first--that not juat any old vne-quarter course approach \o1Oul<l suffice; that some-

hiN, we w;uld haTe to be\Jin at the level of a oJOI.ld workable cOlilputer lanquage from 

both the practical and e:iucational point of view and C;v un frem there. 

Realizinv that we hau opened the door to a vast area of extr~ely hard 

11./7 

~) 
'\t .. ,...1 

~, 
l j 
~_/ 

.page 22. 

work, we went about th~ task vf j~veloJ-lin0 our core courses. After much serious 

investiyation as to where the c=put<.lrs were being useu, we lecided to place the 

em;:hasis of our core courses)n business applicatiuns. ';le, therefure, asred our 

college instructurs in il.ccountiny, Hathez.latics, ECl.lncraics and English to put 

to<,;ether a group of inteyrated courses Buff icient to sUPiJOrt an intensive level 

of training in Data Processing. 

All courses devdloped were to be integrated with the Data Processing 

courses. The probla-.1S discussed in the Accounting and Hathematic8 courses were 

to be Jiscussed from .:m inte<jrateJ cOl.tputer oiJerations point vf view. The 

Cor.raunicdions En.;lish cuurses were to elaphasize public speakinc,; and technical 

relXlrt writiny, with Data Pr . ..cessing iWl->licaticns as tOl->ics. These courses were 

accelerated versions of the same basic courses tau;;ht in our Juni;)r College, by 

the saue instruct·..;rs, but with a much different objective in si(,;ht. The level of 

truining, therefore, was intensive, but it was Lllso vory well lirected along the 

Data Processin,; lines. 

The Data Processin<j cuurses, buH t arounl the IBI{ 1620 cCJlaputer and 

IBM 407 accountinv Iaachine eIajJhusizell a t0tel integration vf Ccmputer PrograJlllling 

and Syst€!!uS Analysis. No prvbler;l was t.) be cliscussecl in the Data ProcessiIlQ 

cl.lurse grouping without a th0rcugh investigLltion of ~ll the syster.tS rear.\ifications 

of the probleza. In this n<mner, we h0iJed to be able to ilcquaint the stooent tv a 

good degree with all factors involved with a v.'lrticular ty~ of prubltlr.l, and not 

just with "a ty:.;ical lJrvgral:Ining"aj:.~roilch. The significance of the several means 

ancl Iilethocls of problem solution was als0 brought t,,> the student in the discussion 

of each problem. 

Early examination of the fieLl of data processing showed that a ~rti-

cular type of persl.ln was in greut Jemand. This was a jJerS0n with more than just 

an exposure to machines and computer prcgr=ing. This was a ;.,erS0n with sound 

fundamental training in Business CL)UrSeS urd r.l0re than just an acquaintance with 

Systells Analysis and Pr,~ce,lures. This was a person ca}.l<1ble ·jf evaluating the 

relative costs of several 1.1<1thdJS of jJrcbler.\ solution and ,jut'! handling and g.ble 

'LIB 



~ 
~ 
~ 

i 
E' 

r 
~i 

~! 
~i 

o 

Page 23. 

to make a s'JWld, 1Jrofitable juJ0'Il\ent und -lecision. This WuS 11 perS0n capable of 

more than just consele oper~tivn, er uebu<J<Jinq through a list af error codes. 

This was a person who loo~ed at eV0ry delta vroc9ssing prubler.l through two sets of 

eyes, those of the 5ystelas Analyst an-l tltJse of the Data Processing Technician. 

To achi~ve satisf"ctorily the g0<,l of training this person, we put 

together the following curricul\El. 

Course Title 
FrrSts;;;;;;;St'er: 
Principles of AccoWlting 
Data Pr\JCessing 11ilthematics 
Intr'.x.iuction to Ccml'uters 
Unit R~~orJ Equi~nt 
CoanWlications English 

Second Ser.lester: 
Principles of [.ccounting II 
Data Processing MathelllC'tics II 
COhGWlications English II 
Computer Programming 

Thircl Semestt!r: 
Cost hccoWlting 
H\lIJaI\ Relati'Jns 
Business Organizati0n 
Data Processing ;"p!Jlications 
Introduction to Systems 

Fourth Semester: 
Systet:lS Develotnent 
JWvanced PruyraIllluing 
Data Processing Field Project 

Totals 

Hours lJer week 

~~ 

4 4 
2 2 
3 2 
4 4 
3 2 

IT IT 

4 4 
4 
3 2 
8 5 

19 II 

4 1 
4 1 
4 1 
4 4 
4 3 

W 10 

5 
5 

10 
10 20 

1170 990 

Semester 

~ 

4 
2 
3 
4 
4 

17 

4 
3 
4 
8 

19 

4 
IT 

5 
5 
5 

IS 

68 

Total Semester 

~ !!2!:!!!. 
144 
72 
90 

144 
90 

540 

144 
72 
90 

234 
540 

90 
90 
90 

144 
126 
540 

180 
180 
180 
540 

2160 

Beginning in the first se:nester, our individUill Data Prvcessil\9 course 

content is as follows. 

UNIT RECORD EQUIPtlENT. This course exatlines the use of must Wlit record 1JW\ched 

card !:lachine. including the key punch, vurifier, sorter, reporlucer, collator and 

accoWlting machines. Heavy er;lJ:hasis is plolce,.! on ;,;.roficiency on the IBM key lJUI\ch 

and verifier, and c,n corilplex boar'i wiring for both the 085 collat'Jr lmd the 407 

accoWltiIlO' IJachine. Fon,ls design fur b\)th cilrcl fonlats and kJrinted output is also 

th..>rol¥.;hly c()vere<l. This course fol'Ills the basis f0r all future l:lboriltory probl-

lema in that the stulent must wire all necessilry control panels for each machine 
/49 

c c-, 

Paqe 24. 

used in any laboratory lJroblem solution. 

INTRODUCTION TO CCf1PUl'ERS. This course is the key to success or failure in 

ccmputer proqrilItlilin<;. This course is divi~el int;) three major sec;IIII9nts each of 

which covers a single basic tYkJ9 of c~puter. These are Disk-Druu type machine, 

the Core-card prucessing machine an,l the Core-l·~etic Tape machine. Th. loqical 

approach to probler.l solution for each of these basic raachine types is stressed in 

this course. Flow charting and detail block diavr.JDaiWJ of proble& solution 

becwes the stu-..lent's central concern. The labor·ltory portion of this course 

consists of settinc:j u.., the IBH 1620 cOClputer for problem ;..>rocessing and of console 

operations using 1620 user-group library progr~ anel probl~ for these programs. 

C(JfilUTER PROGR."J.lliING. This second semester course in IBM 1620 cOlilputer proqram-

Iaing fonns the solic! foun...iation ')n which all future pro • .;rarJOing courses are built. 

This course has the two-fold <.Objective of teaching the stu-lent c,:IIlyuter proyram-

ming techniques, and of C1cquainting the stu,lent with how a ccruputer is used in 

business thruUlJh carefully developed laborah'ry j.lroblems. The first three weeks 

of this course are L1evoted to the ,-.bsdute l1achine L.llv.iua<:;e of the 1620 cailputer. 

Basic techniques vf on-line debUlJ<;inq are <'Ilso stressel ·';'!uriru; this yeriod. Th. 

remaining 15 weeks of this course are given ()ver to the usc of the 1620 Symbolic 

Proqr<JCJl1ing System Lun<,;ua<;e. Business ;.;roblems of increasing cCi4Jlexity are 

han:lled as the course j.;ro'Jresses. With each problem, the sic;nificance of the 

ccm~ter relative to overall syster.us and proca<lures is stresse,l to the students. 

The laboratory problems are <lesigned to ~xtend and reinforce the basic c~ter 

logic ideils covered in the first semester as well as tv develo!> proficiency in 

1620 canputer prO<jramainc;. 

Dl.T[, PROCE::iSING IJlPLIChTIONS ;~ DlTRO!JUCTION TO ~r};S. These two Ildullel 

third sesaester courses brinq to Ii practical w(;rkinq level all the princij.)les of 

Computer Pr~)rumming and Syst~ and Yrucedures l~arnod in the seconn secester. 

The student cuntinues his ~yr.ID~lic Procjr<£llain<J with each laboratory lJroblem, but 

he now eXlldnds his operiltions by developing the source and handlinq of all data 

for a particular vroblem. For each laboratory j.!rvblec, the student develops a 

150 



Page 25. 

complete system of information handling culminated by a complex computer program 

necessary to arrive at desired results. Caaplex applications such as incentive 

payrolls, canplete accounts receivable processing including aqinq, inventory 

processing and item use and scrap analysis, general ledger and other integrated 

systems of information handling. The student also designs dIld develops any and 

all necenary documentation of the system incl udinq both w.nual and machine 

operations. The stress in th~se two courses is on polishinq computer progrUIlllling 

techniques and acquiring practical system and procedures knowledge. 

STh"'TEl5 DEVELOFMENT qi ven as a fourth semester course cont inues the third semester 

Introduction to Systems course with heavy erui¥lasis on the total systems concept 

and the developnent of syster.lS and procedures throughout an orgdIlization which 

will support the nocessary profitable operation of a computer. Discussions and 

laboratory problo3lls include practical exposure to PERT and Critcal Path techniques 

both on and off the computer, in ,addition to standard systeras of InfoIlTliltion 

Retreival. 

ADVANCED PROORAMHING in the fourth senester consists of IIl1 1401 cOIaputer Syr.Jbolic 

ProqrilLUing training. Host basic lLlhoratory pn,bler,ls fr'~m thc sec()nd and third 

ser:1ester Progr<lllllling and 1\pplicati,ms courses are reviewed and 1401 pr..,gr,cms are 

written and tested solving these prublems. FORTRAN is also t'lught during this 

course. 

DATA PROCESSING FIELD PROJECT during the fcurth semester consists of the student 

actively enqaqinq in shop operation of a local ar~a data proccssinq department of 

local industry. Durinq this period, th", student selects an inf'JIlllation system whic;, 

he completely d,;,ouments ·llJld prvgr,1r.lS for the C<T,lputer. His solution must be one 

which is better than the system in operation which he selects to study. 

The obj~tive cf traininq Data Frvcessing technicians dictated the 

attainment of a thvrough l:n.:,wledqe of coraputer operaticns. To achi3ve our desired 

end, we decidod early in our investiqations th'3t w~ w('uld ut ilize the SYI:tbolic 

PrOljJr«.EIinq Lanqu,lQe as our majcr computer instructional tool. Our foundiltion was 

to be thorough unciorstllJldinq of internal data handling by use Clf J\bsulute l-1achine 

/51 

u 

Page 26. 

LanquilQe. The relative advilntages ilnd disadvantages were thoroughly explored and 

the decision fur Symbulic wagu"ge was bflsed upon the primary requirement of solid 

understandinq of the internal cap,":lbilities of the equipnent involved. All labora-

tory problems were designed with hands-on assembly, testing, debugging, and pro-

cessinq as a significant pa.rt c'f the probleI,\. A requirement f0r thirty clock 

hours of solo timG on the 1620 computer by the end vf the second semester became 

a mandatory objective. "Console Confidence" could be attained only through 

personal contact with the machines. Mastery of the FORTRAN Language was also 

included in the curriculur.t, but as a secondary rath",r thill1 prir,lary languaQ'e. 

FORTRl-.N progrurnming, as well as 1401 Syr,lbulic prograr:lllling was included in the 

fourth semester area of th", cuurse. 1\ course in Systems Analysis was designed 

which eI:\~asized methods of date. h~dling outside of, but urientatad to computers. 

The how to do it approach of integrated data flow operations was tied in directly 

to (\ computer pr,:qram to solve a given problem. In all cases, the discussivns of 

various probler.lS included and revol v~ around the ramifications of a computer in 

the systenls area. Topics in the Data Processing group of courses ranged fnn 

sil:lple payroll type problems to int\.)gratad gun0r.:ll ledgers; fror~ production control 

to sales analysis; from historicill C<lc.,rds to uperation<ll research; frCiIl inf0rma-

tion retrieval tu bUSiness sinul.::ltion. ;.11 uf these t"pics were arranged with two 

things in mind; first l the h;JW and why t;f computer s'Jlution; IlJld, second, the 

Iil8th.xi of pruqrar.-oing the problum within tllEi C0I.lputer. 

In :Ill c-:mputer applicatL;,ns,. each studdnt was required tv do his uwn 

on-line debugQing and diuqnostics. Each laburatory pr,)blem required the sub-

mission of a written report on the problems which the student h,"1d encountered while 

solvinq the pcc)blem. This technical report 'had to include <"i c"r"plete explanation 

of the prugranll.linq method used, the aasel,lbly and processing techniques, and the 

Diagnostic and Debugqinq procedures utilized by the student. The original 

objective of the overall outlook and integn:ted problem sulution tachniques were 

repeatedly brought to bear in each of the courses. Various systel:lS and procedures 

of apprvach were explored with a1ch lilhuratory prvblE!l:l, ilnd students were each 

152 

r 
\ 



I 
~ 

I 
~ 
~ 
i 
~ 
~ r,i 

o c 
PaQe 27. 

encouraqed t~ attecpt different ~~thods of arrivinq at a solution to the part!-

cular problem. 110 two like solutions Wl!re to be accepted in the caIIP\lter proqram-

minCiJ J:i\ases and syst8lo1ll Pl"~ses of tho courae. Individual thinkinq ru\d explorativn 

was thus encouraQed to the utmost throughout the course structure. Failure on the 

P/lrt of the faculty t·:J foster and nurture this aspect of student devalopnent 

would in reality be a failure of the entire course structure. The tW'.) year pro-

CiJrc is not the an8W8r to the problem, ~d will probably anon be outmoded. The 

two year proqran CmD8 about as a stoP-CiJap measure necessitated by the inadequate 

fumblings of colleges, universities and vocational schools. To date, only meager 

atteapts have been made to proTide inteqrated trainil¥;l. Most of these have been 

of the too little, too late variety. Most courses of any value are on the qradu-

ate school level, where most students never appear for traininy. Courses on the 

underqraduate level are ineffective because of too narrow scope and FORl'RAN type 

approaches. Much hard work remains to be done in course develoIrJant before uni-

versity, colleqe and vocational schc.'ol progrf.lfilS offer the type of trainilYJ 

necea8<l.ry to provide industry with adequate input Ptlrsonnel. Without this course 

development work, all such ~roqr~ will ~ ncthinq more than a waste of time and 

!DOney. Universities, c'~llOQes an<l vucationul schools must brine; tlunaselves to 

recoqnize the fact that caaputers have bac<.CIS a factual wa.y OJ! life fur both 

orqanizations ~ personnel. Without this, Ed~ation can never h"pe to ciltch up 

to the world of reality. Where does yvur proqralll stand? 

153 

Charles E. Maudlin, jr. 
University of Oklahoma 

INTRODUCTION TO MATRICES 

() 

Intended for users with no knowledge of matrices and little background in 
mathematics. What a matrix is, matrix operations, singular matrices, how 
errors arise in matrix operations. Example of matrix inversion by 
Gaussian elimination. 

In working with simultaneous linear algebraic equations, it seems reasonable 
to work with the coefficients only. For exaIIlple, in the system 

x + 
lX 

3Y = 4 
9Y =-7 

We would expect to find the solution values by some set of operations on the 
numbers 

1 3 4 
l -9 -7 

Indeed we would expect to find the same solution values if the equations ..... ere 

a 
la 

3b = 4 
9b =-7 

It now seems reasonable to make the following definition: 

A rectangular array of numbers is called a~. 

Ex.: ~ 3 41 
~ -9 -~ 

The size of a matrix is characterized by the number of rows and the number of 
columns. 

l x 3 

A matrix consisting of exactly one row or exactly one column is called a ~. 

G~J 

154 



ai. denotes the element in the i-th row and j-th column of a matrix. 
J 

aZl = Z 

a. denotes the i-th element of a vector. 
1 

aZ =-7 

r; 3 :J G alZ a l] Ila IJ ~.l 
~ -9 -~ la!! a ZZ az~, ~ 'L11 

equivalent symbols to denote a matrix. 

(a ) , 
i j 

A are 

Definition: Two matrices are equal if and only if they have the same size and 
correspondingly placed elements a~e equal. 

We will define a multipli.cation process by introducing the concept of linear sub
stitutions to matrices. Suppose we are given the set of equations: 

3x + Zy + 76 = a 
Zx 

x + 
y 

y + 

In matrix form this looks like: 

36 b 

6 = c 

~ -: -~ [j 0 r~] 
For the present, this means: 

[coeffiCient~ x [x's, y's, ~,~ [a's, b's, c'~ 
Later we will show that the form used is consistant with our definition of 

multiplication. 

Now suppose further that: 

u + v x 
Zu v y 

u - 3v 

or in matrix form [i ] [~J 0 [:] 

-Z-

/55 

o 

(Z) 

C) 

It would not be very helpful to use this thing called a matrix unless we could 
substitute from equation (2) into equation (I) and obtain 

[-; -]u] [~] 0 m (3 ) 

We would also like to believe that this represents the same relationships that 
would be obtained if we had performed the actual substitutions and written the 
results in matrix form. The steps in making the substitutions are: 

3(u+v) + Z(Zu-v) + 7(u-3v) = a 
2(u+v} l(2u-v) 3(u-3v) b 
1 (u+v) + l(Zu-v) + 1 (u-3v) c 

(3·1 +Z· Z + 7·1)u + (3.1 +Z· (-1)+ 7· (-3))v = a 

(Z· 1 -1· Z - 3- l)u+ (2· 1 - 1· (-1) -3· (-3)) v = b 

(1·1+1·Z+ l·l)u+ (1·1+1· (-1)+1·(-3))v= c 

l4u 20 v a 

~3u + IZv 

4u - 3 v 

b 

t: -m [~] -m 

(4J 

(5) 

We want (3) and (5) to say the same thing. Multiplication will defined so that 

U Z 7J ~ ] t4 
Z -1 -3 Z -1 = -3 
1 1 1 1 -3 4 

-Z~ lZ 

- 3 

By examining (4), we can see the manner in which the product matrix should be 
formed. 

(a) 
(b) 

(c) 

(d) 

Each element of the product matrix is the sum. of three products. 
Each product contains one factor from the left matrix and one from 
the right. 
Elements of the i-th row of the product matrix are formed from 
elements of the i-th row of the left matrix. 
Elements of the j-th column of the product matrix are formed 
from elements of the j-th column of the right matrix. 

-3-

/5fo 

o 



I 
I 
i 
~ 

o 

If ai- , bi- and Ci- are typical elements of the matrices A, B, and C where A is 
the 6rigidal coefAcient matrix, B is the substitution matrix and C is the product 
matrix then 

3 
Cij = k~ 1 aik bkj i = 1, 2, 3 j = I, 2 

In general: IF "rxs·and Bsxt are multiplied, the result is given by 

s 

"r x s Bs x t Cr x t I c i j = If= 1 a 1 k b k j , i = 1, 2, "', r , j = 1, 2, .• " t 

Notice that matrix multiplication is not defined unless the number of columns of the 
left matrix equals the number of rows of the right matrix. Even when such multi
plications are defined, it is not true in general that AB = BA. Examples: 

G ~ a -] = IT ] 
G -n ~ ~ =G-~ 

Dl [3 ~ 
[3 4J~1 

[} ~ ~ -~ = E -~ 
G -~ [1 ~ is not defined 

G ~ 
[IIJ 

When the multiplication is def'ned A (BC) (AB) C 

The proof is omitted here but it can be shown to be true by applying the definition 
of multiplication twice to each side to determine the typical element. 

We can see that our original matrix equations are catlsistant with this definition. 

A square matrix with I' s on the diagonal and zeros elsewhere is called the 
identity matrix. If there are n rows and columns, it is denoted by In. When no 
confusion is apt to arise about size, the subscript is dropped. 

Thm 

Proof 

For every matrix A, AI = A and 1A = A (The size of I may have to be 
adjusted if A is not square). 

Let (a
ij

) = A, (b
ij

) = I then b
ij 

== 0 unless i = j and b ii = l. 

consider a typical element in the product AI: 

n 
~=1 aik bkj aij The only term in the summation that survives is the 

one for k == j (otherwise bk- = OJ. 
This leaves aij b jj == a ij } 1 == aij 

-4-

/37 

c c-) 

The other half of the theorem is proved in an analagous manner. 

For some matrices A, there exist corresponding matrices B having the property 
that AB = 1. When this occurs B is said to be a right inverse of A (A is a left 
inverse of B). If A is s.9-pare then AB =BA == 1. B is the inverse of A and is 
usually denoted by B = A . Just statement - no proof here. 

fl Z\ rs -zL (i ~L \5 -21 f7 21 
~ ~ l:.Z D LO ~ I:.Z Jj 11 5J 

A diagonal matrix is a square matrix with all non-diagonal elements equal to zero. 
The identity matrix I is a special case. 

~ 0 ~ o 0 0 is a diagonal matnx 
o 0 -7 

The multiplication of a matrix by a number is called scalar multiplication. The 
multiplier is called a scalar and the product matrix is obtained by multiplying each 

element of the OrigrTn~1 ~atrix by the scalar. ["7 14 2il 
IF A = L 6 5 ~ then 7 A == A 7 = I.1l 3 5 ~ 

Incidentally, the elements of a matrix are scalars too. 

A scalar matrix is a diagonal matrix with all diagonal elements equal. 

The identity matrix is a special case. 

U
3 

0 TI 0-3 0 
o 0-3 

is a scalar matrix 

For every square matrix A and every scalar matrix S of the same size AS == SA. 

-1 -1-1 
When the terms are defined (AB) = B A 

(B- 1 A-l)(AB) == ~B-l A-I};} B = ~-I(A-l A~ B (B-IB)=1 

so (B-IK l ) is the inverse of (AB) 

Addition of matrices is accomplished by adding correspondingly placed elements. 

It is obvious then that the matrices m~st be of the same size. 

-5-

/S8 



A t B C 

~ 2 ~tU o 

if lj ai j 

-l\Ji 2 Zl 
~ ~ 6 6J 

t b
ij 

Properties of addition: When the operations are defined: 

A t (BtC) = (AtB) t C 
A t B == BtA 

(1) 
(2) 
(3) 
(4) 

A t Z == ZtA = A (where h- is of proper size and all elements are zero) 
For every matrix A there is a matrix B = (-1) A such that 

AtB = BtA = O. B is usually denoted by -A. 

When the operations are defined A (B+C) 
and (A+B) C 

AB+AC 
AC+BC. 

Suppose we are presented with rnatrices A, x 5' B5 x 7' Cs x 7 and we wish to 

determine D= A(B+C). The following computer program will accomplish this. 

The matrix B will be lost in the process. 

C SAMPLE PROGRAM 
C 

DIMENSION A(3,S),B(S,7),C(S,7),D(3,7) 
c 
C FORTRAN II I/O BECAUSE ITS SHORTER 
C 

C 

READ " B I,J ,J-l,7 ,1-1,5 READ l'I{A{I,J},J=1,5}".,,3} 
READ 1, C I, J , J-l, 7 ,1 .. 1, S 
FORMAT 5E 15.8) 

C NOW TO ADD BAND C 
C 

C 

DO 2 1-1,5 
DO 2 J-l,7 

2 B(I,J)-B{I,J)+C(I,J) 

C NOW TO MULTIPLY A TIMES THE SUM 
C 

DO 3 1-1,3 
DO 3 J-l,7 
D( I,J)-O 
DO 3 K-l,S 

3D{I,J)-o(I,J)+A(I,K)*B(K,J) 
c 
C NOW TO PRINT THE RESULTS 
C 

PRINT 4,«D(1 t J),J-1 t 7),I-l,3) 
4 FORMAT (5E1S.~/2E1S.~/I/) 

STOP 
END 

-6-159 

o () 

-1 
Now let's start looking for this nebulous thing A • Remember - it doesn't 
always exist. Suppose we are presented with 

A= ~ 1 ~ 
~4~ 

and we wish to determine -1 ~ll b
12 

bill3 A =B = b 21 b 22 b 23 
b 31 b 32 b 33 

This is equivalent to solving three sets of simultaneous equations 

u ~ ~ ~:'l~~1 2 4 5 b
21 

0 31 

~ :~~II ~12 ~mo~ 0 j\=- \ ~: ~ [:IH!] 2 4 5 b21 22 23 0 1 2 4 5 b
22 

31 b
32 

b
33 

0 0 1 32 0 

[~ ! i1 [;~~om 
If we choose the elimination technique, we can solve the three sets simultaneously 
since the operations depend only on the coefficients. Writing the constants in a 
rectangular array: 

U 
4 0 

~ 2 0 I 
4 5 0 0 

Dividing the first equation in each set by the leading 

~ 
3/2 2 1/2 0 

~ coefficient (2) we get 2 0 1 
4 5 0 0 

Copying the first equations: then subtracting 3 times G 3/2 2 1/2 0 

~ the first from the second: and then 2 times the first o -7 /2 -4 -3 / 2 1 
from the third. o -1 "0 

Interchange 2nd and 3rd equations in each set. ~ 3/2 2 1/2 0 

~ o I -1 0 
o -7 /2 -4 -3 / 2 

Subtract 3/2 of 2nd from 1 st [ 0 1/2 2 O_3~ 
Subtract -7/2 of 2nd from 3rd o 1 1 -1 o 1 

o Q -1/2 - 5 1 7/2 

-7-

IreD 



o 

What have we accomplished thus far? 
Let's interpret that portion which represents the 
first set of equations. ~ 0 j ~1~ [: ~ o 1 0 b21 = -11 

o 0 1 b 31 10 

By looking at the second and third sets of equations we can ·see that 

[

3 1 
B = -11 2 

10 -2 -~ This Means U ~~ 3 1 ~~O~ 3 2 -11 2 8: 0 1 0 
2 4 5 10 -2 -7 0 0 1 

How did we do it? We wrote the given matrix and appended the identity on the 
right. We transformed the given matrix into the identity using only the following 
operations. 

1. Multiplication of a row by a constant. 
2. Interchange of two rows. 
3. Addition of a multiple of a row to a different row. 

By carrying out these same operations on the identity, it was transformed into the 
identity. 

While no special order is necessary, only these operations are valid. 

ILL-Conditioned Sets of Simultaneous Linear Algebraic Equations 

Suppose we are presented with the system: 

Ll = 
L2 = 
L3 = 
L = 

4 

lOxl+ 7x2+ 8x3 + 7x4 
7xl + 5x2 + 6x3 + 5x4 
8xl + 6x2 +l O~ + 9x 4 
7x1+ 5x

l 
+ 9x3 +1 OX

4 

32 
23 
33 
31 

Suppose further that we have by some means arrived at an approximation to the 
solution: xl = 9.2, Xz =-12.6, x3 = 4.5, x

4 
=-1. 1 

How good is it? Is it acceptable? We can substitute these values into the left 
members above and see if the equations are satisfied. This gives: 

Ll = 3Z. 1 
L2 = 22.9 
L3 = 33. 1 
L = 30.9 

4 

This looks like it might be acceptable. 
it? The true solutionis: xl = I, x

2 

worst relative error 230 ~ .430/0 

The worst error is less than 1/20/0. But is 

I, x3 = I, x 4 = 1. 

-8-

I~I 

c ~ 

The worst error is 13600/0. That is not acceptable. What constitutes an accept
able criterion? It depends upon why the problem is being solved but some 
possibilities are: 

(a) 
(b) 
(c) 

Make the residuals small. (the first test applied) 
Make the solution nearly exact. (the second test applied) 
Determine numbers such that only a small change in the 
coefficients is necessary to make the solution exact. 

Unfortunately b) is usually the test which must be satisfied. 

-9-

1~2 



A FAMILY OF TEST HATRICES 

A, C. R. Newbery 
University of Alberta, Calgary, Alberta, Canada 

A family of test matrices wit(the following properties 

is here described: (a) An explicit inverse is given, (b) The 

characteristic polynomial is easily obtained, (c) A large measure 

of control over the eigenvalues is possible, (d) In special cases 

the eigenvalues and eigenvectors can be given explicitly, and the 

P-condition number can be arbitrarily assigned. 

Consider a matrix of the form Q ~~], where S is a 

scalar, R is a row-matrix {r2 ,r
3

" •• ,rn }, C is a column-m~trix 
T 

{c
2

,c
3
""'cn } and D is a diagonal matrix with elements d

2
,d

3
,.,.,dn • 

By use of the bordering method [lJ the inverse is found to be 

-1 rS' R'] .-1 Q = Lc' H' , where each submatr~x of Q has the same form as 

the corresponding submatrix of Q, except that H' is generally not 

diagonal. Letting the subscripts of R', c', H' run from 2 to n, 

we find that 

S' 
n 

1/[S-Lr.c./d.J, 
2 ~ ~ ~ 

M~j = [oij-cirjJ/di , 

I 
c i -S'ci/di , 

, 
r i 

, 
-S ri/di , 

where 6
ij 

is the Kronecker delta. The inversion can be performed 

in 2(n-l)(n+2)+1 long operations; it might be possible to improve 

this figure with some ingenuity. 

The eigenvalue problem. Let A be an eigenvalue of Q, 
_ T ., . 

and let x = {1,x
2

, ••• ,x
n

} be the assoc~ated e~genvector. Th~s 

leads to the following set of n equations: 

n 
S + ~ r.x. 

2 ~ ~ 

o 

A, c i + dix i AXi for i ~ 2. 

/~3 

o 

On eliminating the Xi we obtain 

0) S + L r.c./(A-d.) - A 
2 ~ ~ ~ 

o. 
n 

If we write n(A) nO-d.), n.O) 
2 ~ ~ 

n(A)/(A-di ), then on clearing 

the fractions in (1) we obtain 

(2) 
n 

(A-S)rr(A) - L r.c.rr.(A) = O. 
2 ~ ~ ~ 

This is the characteristic equation. The following statements can 

be made concerning the eigenvalues: 

(A) If all rici > 0 and all di are distinct, then all the eigenvalues 

are real and are separated by the diG 

(8) If all d i are equal to d, then there are n-2 eigenvalues equal 

to d; the remaining two are zeros of the quadratic function 
n 

A2 -(S+d)A + Sd - ~ r.c;. These zeros are real if, arid only if, 
2 ~. 

(S_d)2 + 4Lri c i ~ O. 

(C) If all d i are equal to d, then the eigenvectors associated 

with the mUltiple eigenvalue d have zero as their first component, 

and they are orthogonal to the vector {0,r 2 , ••• ,rn }. Eigenvectors 

corresponding to the other two eigenvalues are {A p-d,c
2

, ••• ,c
n

}, 

where Ap is a zero of the quadratic given in (8). 

Proof of (A). Let H(A) denote the left side of (1), and 
, , , 

let {d i } denote a reordering of the {di } so that di < d i +
l

• We 

note that H(A) is continuous in any interval which does not enclose 

any of the d~, and that for sufficiently small £ H(d~ +d > 0 and 
, 

H(di+l-E) <D. Hence there is a zero of H(A) between each consecutive 

pair of the {d~}; moreover since H(--) > 0 and H(-) < 0, there are two 

more real zeros of H(A) outside the interval (d' ,d'). 
2 n 

I r., 'i 



I; 

~ 

";1 

O··~.~.-.. -~ 

Proof of (B), If all the di are equal to d, then 

neAl (A_d)n-l and ni(A) = (A_d)n-2. nThe characteristic equation (2) 

then reduces to (A_d)n-2[(A_S)(A_d) - ~ rici] & O. The discriminant 

of the quadratic factor is (S-d)2 + 4Lri c i • Statement (C) may be 

directly verified. 

The P-condition number, i.e. the largest absolute ratio 

to two eigenvalues [2], can most conveniently be assigned by letting 

d i d; then, using statement (B), we can choose S and Irici in 

such a way as to assign any desired zeros to the quadratic; hence 

any desired maximum ratio of eigenvalue magnitudes may be procured. 

~. If the inverse matrices are included along with 

the original family, then we have freedom within the family to 

specify sparse. non-sparse, symmetric, non-symmetric, well- or ill

conditioned matrices; furthermore we can require that the eigenvalues 

shall be all real or mixed real and complex. This should provide 

sufficient versatility for most test purposes. 

REFERENCES 

1. FADEEVA, V. N., Computational Methods of Linear Algebra. Dover 
New York, 1959. 

2. MARCUS. M., Basic Theorems of Matrix Theory, N.B.S. Appl. Math. 
Sere 57. 1960. 

U~5 

c 

THE IBM l.620 AS lRlLlTIClL All) PR&-CCJUIOOI!IoaL AID IB 12~ MtmC 

Br Albert Tepper. A..oe1ate PI'et .... .r IiIaS.c 

Wat.ra 1JaiwraitJ' 
CallputM' CeDt.I" 

l.620 Users Group Ito. 1320 

******** 

Time requ1red tfW' presentation: 20 IIi.Jnltee 

Sp8cial projection equi~t requ1.redt Tape J'ecorder. oqrbead projector 

******** 

~ 

In the ear17 1920'. tbe Austrian mus1.c:1aa Amold Scbo.abers evolftd a eClllp081Uaoal 

techniq_~ proJeotec1 tra. an ~1a of b1JI c.n wariaI, which be called 1 MIl'IIJD C'JI 

CO"lpa;Dr. liITR TME TWELVE TOOKS RElA'l'BD OILY 1'0 BACH omR. In tb1a ..thod all twl .. 

pitch clas ... in ~ chro_Uc taeal. are arranged in sa. apec1t1c .-de!' called a 

"toae ,...., !trow" or "serie8". '!be totalll1alber or r-o.e po8dbla. b:r tbl1RIi1. 1a 

12!J ie.o. 479.001,600. 

The row 18 a coutant group or relatlonsbi,. tor a part1cular caip081t.1on aDd all 

aepect8 or p1tch ClI"gllDisatian derive tro:a it.. two or naore MqUential pltehM plaJ*l 

sueeeaaiwq create _lodJ'J two or IIlOl"8 .... Ual p1tcllte plaJ8d m..l~y areete 

baNOD1' .. 

When read torward (trca left \0 rigbt)t t._ rw 18 Mid to be in i\8 lIor1g1nalll or 

Npn-._ tonlo R-.d backward. the row 18 in 1t.. ·ret.rasrade" tone-« Id.rrar ms.." 
Another IIlr'rar Dace-=the in"J'8ion-~ia ereatecl b7 altering the d1NeUon et u.eh 

nll~ee8sbelJ' adjacent pair ot tones" lSI' QIIIIPl.eI it pitch 12 u.. three a.-1-tcJaM 

'].00'1'8 pltoh Ill' it. invm'eioa 1dll lie \line .-1-t...e bel-I 1t pitch 13 l1ee ODe 

1 .. 
/(P~ 



!be 1111 l620 .&a '-l;rUoal ADd Pnt::Colp!1tioaal Aid ill 12-!oae aaAc (COIlt 'd.) 

• .a-ten. bel_ pitch h, 1\8 iDYers101l w1l1 lie one ...s.-toDe abow. A backard 

readbc of tile 1Mera1oo Ii'" _ the ret1'alnde in_n100. !be_ t'oIIr tor. ot the 

... ~, retropoMe, Slnwaloa ad re~ ilnend.OIl-eOUtitate t.be llbu1c 

aetll. B.eh bu10 _t t. _pUle ot ~ -.d-Vlat s., traMpoMd-f'roa 1\8 CMl 

pitch 1.-1 to ....,. at.ber pitch 1eYel. or tb8 ~UO _ale, -.1 ... p1tcb 1 ... I. in 

all. 'IIIu t~bt apec1tlc pitch ..-.t.aJ ............ b7 - .... !be 00IIIp0eU' 

ebOON8 rr- ... t.be t~bt ill ........ he ... fl.t. 

M:Ut.aa Rabbl" of PriDcetoo Un1:nrai" hAlt ..... Vlat \be tovr oziaiJal ton. ot t.be 

rOlf plaaa all v....po.1\iou ha ... t.be ~ ot a .. t ad ...,. .- ....... a _trU. 
Rather tUB lAIbal the t1Joft pitell in tile pI'Ue tan 11, tile _ODd pitch I'l, ad ao OIl, 

let U8 dedpate euh pitob bT Us ...s.-tGaal dtnuae trca pitch 11, 1Ih1ell fAt .. t at 

aero. Slaoe Gal'Satereat S. iD pitch e.1.ann rather tbaD apec1t1c pitcbea (.1 el. 
ba" \be._ ftl., all r ~ haft tbe ... ftl.u, all B flab haw the! _ 

ftl_. eto.). let .. aleo arbitJ'U'1ly .. _ C to • pitch 11 nth the WLl,. at ...... 

Ia 0111' .... -' ...-lll' ~ tunitw .,nea, C 8bup II1II D tlat are tbe ... pitch 

aDd l1e _ ...s.-tGae abon C, t.hereb;r bari.Iw tbe -._ of 1. D ... \be ft.1De of 2, 

D ebUp ... I nat 1m ftlue of 3. B u.. ftlae or Ia. etc. B, 0118 -.d.-taM below C, 

S. u.o ~ .-1-taa.8 abo ... , md t~at ...... \be ftlae ot 110 

As the d1ataoe betwea UJ' two p1tcbu .. ..-r • leu than avo .... d as aIV' pori

ti ... ftl .. createi' than II duplioate. a pUa clau iD the aero to U l'UIp, it tollon 

tbat _ are l1JI1ted to _ole JmIIbel'll with bue 12. 

A 12 I 12 pitch _trix eu t.bua be stated ill ~ artu..t.ical ter... Bac,h rank is 

both pn. aDd ntl'O£l"ade ton. at on. or the "-1_ p1tch levels, eaeh 00],..,. is both 

tlmJrd_ ... re~ iIlYen101l tOl'lW at eN ot the tlMl .. pitch 1eftla< S1nce the 

_trix ah .. alll'OW poas1b1liUes in conpct tOni and at a ,lance, ita 'ftlue to both 
2. 

/to 7 

f"j 
'~lL- j'" 

~\ 

~-j/ 

The IBM 1620 As Analytical And Pr.-Compositional Aid in 12-10118 Music (ContI d.) 

the 12-tone COIIp088r and JlWS1cal ana178t S. obrioue. But 1IbUe the l1h cella or the 

_trix ~ be tillad in b;r llhaIld". the job 18 a ted101J11 one. taId.Ilg 20.w.t.ea. 

with 132 1D1Ual poae1.b1l1t.1ee tor erT'Ol'. n ..-d 1fOI"thIIh1l., th...t01'8. 110 pro

g!'all the co-..ater to produce a _triz troll a linn l'Wo 

Mr. Lcwrr L. 1Id.M, Aaa1ataDt D1I'ector ot .. Hotatra Uabcsl" ~r Cater. 

guided, 1Mt.nn.4. helped ud _~ _ 1Ib1le I ~d .Ub tI.- preblMa. 0..-

tain ~s were added &8 we lNIlt al.oaK ... toll ... 

1. S1Dee MCh pitah cla_ a1read7 W _ uai.&Md _ue. 1t .. DO loepr a.cu-

s81"7 to .tart. ...,h row 1d.th "0. '!'be twl .. cards ot the data deck. _til with a 

nuller frca NI'O to 11, .. be placed ill tbe '-ad Happel" in art7 ol'Cler. 

2. !be _trb is stated in thr .. t... .. a •• t of mabel'8J .. a set ot pitch 

cluaes duiiat.ed b7 the letters or the ...teal alpbabet tro. A to 0, in tbe1J" Datura]. 

and sbup ftriaIlu (the plu 8ip subatitatea tor \he ahaJop), aDCt &8 a _t fII pitob 

clash. r... A te Q in their _tara! and nat ftI'iaIlta (the II11\-. slp aut.t.1.tutea 

tor the nat). 

3. AD iD--t1De pheo~oa. whloh eu be ueelel to the 12~taae~" t. 

the abllit.7 or oertaiD l'OIr t~ to C<lIIIb_ aDd create peraatat.iona. GeGI'p Bochberl 

ot the tIa1wrs1tr of Peall8J1~ baa d.-dMd an &Z'1ta.et.1cal teet tor1ih1a. All Odd 

DUllber flo-. 1 to 11 18 added as a co_tat to each ot the t1rat ah 'falu.. bs t.be 

pn. toa- tIb1U .g1Da vith aeroQ TIle ... oo_tat 1a theft added to "'17 pail" or 
the _ a1x ftl.ao It the 8UII in eaoh ihatace 18 _lther 12 nor 2". the tirst .ix 

Yalu_ (that t., the first balt) or the priM tona and the first balt at the in ...... 

sioa will OC*biM UId create a 12-tone pe~tat101l at the ...s.-taDe d18taJloe ot the 

COIl8taDtQ !he aeaODd MlftS ot both pr_ ..s imwaiOll vill &lao collhlne ill the 

.... ..... r. !be .... ult is ot course ~b1e to all pitch leYela o 'l'he p~ 

deY1aed .., Ifro IIeIee an:l .,..u pert ... tbU opera\iOll and auppl1ea the realt ill 

tboee iutances lIbere the NSUn la ~it.i_o 
). 
ItO 8 



I ; 
~ 
~ 
~' 

~ 
~ 

~~ 

o 

Delivered to the 1620 Users Group Meeting, 1964, in Chicago. 

!.oaic Theorem Detection Progrillll 

The program is designed to bke conventionally written (i.e., not in a 

bracket-free notation) well formed formulae (WFF) of the propositional 

calculus as input, test them for theoremhood, and state the result as output. 

There are several subsidiary output results possible. Input and output are 

via the typewriter. The program is written in SPS for the IBM 1620 co~uter. 

I t uses about 5500 cores and consists in about 400 cOJl'lllands plus storage. 

Conditions of use. The original WFF may contain only three primitive 

variable. (p, Q, & R) and four operators (those for conjunction, disjunction, 

i~lication & negation). The WFF may be up to 49 symbols in l~ngth and may 

contain up to seven pairs of brackets. Thus the WFF which may be processed 

conform to the requirements of a fully developed propositional calculus and 

there is, in any case, no theoretical difficulty in extending the range of 

WFF which may be processed. The computer does not take all the conventional 

logical symbols and the following symbolisation has therefore been usedl 

disjunction '+', conjunction'.', impli.cation 'I', negation '-'. 

The rules for WFF are formulated in different ways for the propositional 

calculus. The follOwing fOrtll.llation is used herel Any primitive variable 

is well formed. If anything which is a WFF is deSignated by X, Y, etc., 

then. -X is well formed, (X.Y) is well formed, (X + Y) is well formed; 

(x,N) is well formed. The brackets round the whole of a WFF to be tested 

for theoremhood need not be included, e.g., p/(p + Q) may be tested for 

theoremhood as it stands. It should be noticed that (P.Q.R), (p + Q + R), 

etc. would not be well formed in this formulation but would have to be 

written (P. (Q.R», «p + Q) + R), etc. These rules are entirely typical 

for a propositional calculus. 

I~ 9 

~ \. __ f ~ 

-2-

The program operates as follows (see attached sheet for sample). It 

announces itself and invites typein of a IFF. It then types the result. 

The following subsidiary results may be obtained on the Consul switches. 

(1) By well known theorems of the propositional calculus, any number of 

negatives greater than one ('stacked negatives') before a WFF may be reduced 

to one or none. On switch 1, the original WFF is typed without stacked 

negatives. (2) The method of processing employed is to break the original 

WFF down into a two variable form, the computer supplying new variables 

where required. These new variables themselves stand for ~F which are 

broken down in the same way. The effect is to produce a tllO variable list 

in which no brackets are required (they are not required for the same reason' 

that brackets are not needed round the whole of a WFF to be tested), the 

first item in the li.st is the Original WFF in two variable form and the 

subsequent items define the new variable or variables introduced by the 

computer. This process continues until all the introduced variableS are 

defined. On switch 2, the list is t'fl-ed, with each introduced variable 

explicitly defined. (3) The method employed in the logiC section of the 

program is to build a truth-table, with a set of values for each variable, 

primitive or defined. On switch 3 this table, or a desired portion of it, 

can be obtained. The operator types in a variable and the computer gives 

the associated set of values; by typing in all the variables used or 

introduced by the computer, plus 'F' for the original WFF, a complete 

table is obtained. The table is biniary, containing either 01 (true) or 

00 (false) in each of its eight columns; if the WFF being tested is a 

theorem, the table will contain eight entries of 01 for the original 

WFF. Typing in 'N' returns the computer to the main program. 

170 

Jon Wheatley, Philo !IOphy, 

Queen's University at Kingston, 

Ontario, Canada. 

I 



LOGIC THEOREM DETECTION PROGRMI - ~VHEATl£Y, FHILOSO;HY, QUEEr,S, nov 1963 

TyrE I N ~/FF 
(P/-Q}/(Q/-P) 
THEORHI 

TYPE IN HFF 
«P.-P).--Q)/«(Q+-P)+(R.-Q»+---p) 
TEST ON Cl - WFF WITHOUT STACKED NEGATIVES 
«P.-P).Q)/«(Q+-P)+(R.-Q»+-P) 
TEST ON C2 - WFF AS TWO VARtAELE LIST 
WFF S/U 

S ... T.Q 
T= P.-P 
U= V+-P 
V- ~/+X 
..,,= Q+-P 
X= R.-Q 

HIEOREH 
TEST Otl C3 - TRUTH TAELE ON OHlAND 
PI:'iOl 01 01 01 00000000 
QlSOl 01 000001 01 0000 
RP.SO 10001000 1000100 
SRSOOUOtlotlotlotlotloOo 
TR')OOOOOotlotlotlOOotlo 
~~OIOIOIDoOltlIOlul 
W,0101D1UOtll010101 
\'.r~D Ii] 1 OOOOtll 0 10 1 0 1 
;:R:)OOUOO 1 UoUotloo 100 
FR'>O 1 0 1 tll tll 01 n I 0 1 01 
NlS 

TYPE IN \-/FF 
(-Q+-(R+(-Q+P»)/--(-R.(Q.P» 
TEST ON Cl - WFF WITHOUT STACKED NEGATIVES 
(-Q+-(R+(-Q+P»)/(-R.(Q.P» 
TEST ON C2 - WFF AS TWO VARIABLE LIST 
WFF S/V 

S= -Q+-T 
T= R+U 
U= -Q+P 
V- -R.'t' 
W,.. \,l.P 

NO THEOREM 

~" 
L~_~ ) 

171 

AYJ Adcliti"le Pseudo-r"mdom Number Gener3tor . 

H.T. Wheeler"', J.K. Lewis, E.A. Cherniak 

Department of Chemi 5 try 

Carleton Dni versi ty 

Ot ta '.la, C3 nada 

INTRODUCTION - This generator was developed for use in a machine language pro

gramme (1) requiring randOOl digits and short randOOl fields. The method of 

generation exploits the variable field length feature of the 1620 by adding 

fields of several hundred digits in length. A small table of random digits 

is genera ted and stored in memory. FrOOl this table are selected random 

digits and/or fields as required. When any table is used up a new table is 

generated using the old table as input d.ata. 

The original rrogr-d:rne has been modified and rewritten in SPS for use "as 

a FL,.-t" an suLro..ltirle. Since ':he method cf generation invoLTes addition only, 

this generator is f3.ster than the usual mUltiplicative generator. 

The tests for randomness which have been perfonned on the output of the 

generator have given quite satisfactory results. 

METHOD - The genera:or requires 3n initial randOOl number of 501 digits. 

This initial number may be conveniently obtained from a table of randOOl 

nunbers such as the Rand Corporation, 111,000,000 Random Digits with 100,000 

Normal Deviates ll
• 

The initial number, which will be denoted N
l

, is divided into two cCIJ1porent 

fields, Al and B
l

, of 311 and 190 digits respectively. Thus: 

Nl ::: (AI) (10
190 ) + Bl 

A second number, C
l

, is fanned by reversing the order of the two com

ponent fields. Thus: 

*Speaker (to whom enquiries concerning this program should be sent) 
172 



I 
I 
rj 
~ 

l 
~I 
~I 
f. 
:,9,' 

1 .. ~[' .. ,:;·li'·! 

~, 

~:~~ 

o 

-2-

C
1 

= (B
l

) (10311 ) + A 
1 

The second random number, N2 , is formed by adding C
l 

to Ni and discarding 

the high order carry, if any: 

N2 :: (C1 + Nl ) (modulo 10501 ) 

The ntl!l.ber Ni is generated from Ni _
l 

by the same procedure. 

The choice of the values 501, 311, and 190 for the field lengths was 

largely arbitrary although it was intuitively felt that better performance 

would be obtained if each of the values had few prime factors and no common 

factors existed among the three values. 311 is a prime number; 501 and 190 

factor into (167) (3) and (19) (5) (2) respectively. 

RATE OF GENERATION - The 501 digit number ~s generated in 6l..5 milliseconds 

(for a Modell). The average time taken to obtain an B digit field, normalize, 

and store in FAC, when the generator is used as a Fortran floating point 

subroutine, is about 4.5 milliseconds. The time taken by the Fortran 2 

variable precision subroutine is roughly given by (3.5 + fiB) milliseconds, 

where f is the mantissa length. 

TESTS FOR RANDCMNESS - The major tests which have been performed on the 

generator were for the freouency distributions of single digits, of ordered 

pairs of digits, and of runs of repeated like digits. These tests were 

performed on the 501 digit numbers without any division into smaller fields. 

Some of the test results are shown in the following tables. 

In Table 1 the results cC a digit frequency test on one million digits 

are shown. Except for the somewhat large chi-square values for blocks 9 

and 10 t:1e results are very satisfactory. 

173 

c ~ 

-3-

Table 2 shows ~ typical result of the ordered pair analysis. The 

expected value for each entry in the matrix is 501. The frequency of the 

ordered pair xy is the yth term in the xth row. 

In Table 3 the repeated like digit analysis results are shown. 

The results of these tests are sufficiently good to indicate a usable 

degree of randomness. If a greater degree of randomness is required the 

output of two sepln-ate generators could be added, to produce an improved 501 

digit table. 

We are grateful to the Na tioT:nl Research Council of Canada for the 

financial assistance which made this work possible and the Computer Policy 

Committee of Carleton University for granting us the necessary machine time. 

1. L3wis, Wheeler, Cherniak - A Model Diffusion-reaction programme for the 
1620 - 1620 Users Group Joint Meeting (Canadian and Mid-Western Regions) 
Chica(,o, February, 1964. 

/7'1 



-4-

TABLE I 

DIGIT FREQUENCY TEST 

ONi MILLION DIGITS 

Block 

No. 0 1 2 3 4 6 7 8 9 CHI2 

1 4956 5014 5025 5077 4960 5050 4909 5009 4996 5004 4.24 
2 5038 4927 5054 4934 4943 5056 5008 4965 4967 5108 6.85 
3 5039 4954 4994 4978 5006 5061 4923 4926 5035 5084 5.52 
4 4979 5002 5073 5041 5056 4947 4980 4967 5027 4928 4.16 
5 5005 4907 4906 5117 5025 5094 4909 5079 4976 4982 11.21 
6 4973 5108 4983 4996 4914 5010 .5079 4877 5079 4981 9.63 
7 4938 5028 4995 4902 5096 5063 5087 4999 4974 4918 8.48 
8 5011 5047 4938 5064 5006 4871 5036 4957 5064 5006 6.85 
9 4995 4806 4966 5040 5011 4884 4960 5026 5163 5149 20.78 

10 5125 5063 5000 5062 4832 5117 5060 4924 4992 4825 21.08 
11 4974 5032 4908 5062 5021 5019 4961 4908 5109 5006 7.34 
12 4964 4934 5111 4930 5096 5018 4862 5004 5121 4960 13.54 
13 4965 5004 5027 5021 5076 5044 5021 4995 4931 4916 4.48 
14 5056 5077 4898 5081 5053 4972 4897 5000 4856 5110 14.61 
15 4960 5094 5037 1..876 4990 4995 5108 4963 5006 4970 8.24 
16 4981 4930 5046 4982 5077 4970 5035 5083 4970 4926 5.80 
17 4977 5071 5096 4955 4982 4863 4972 4962 5077 5045 9.22 
18 5116 4996 4990 5009 4981 4972 4848 4987 4943 5157 13.19 
19 5008 4880 5042 4943 5008 5093 5024 4968 5014 5020 6.08 
20 4015 4998 4989 4950 5106 4968 5012 4963 4970 5029 3.67 

100075 100078 100239 99691 100270 

Total 99872 10::'020 100067 99562 100125 

CHI2 (totals) = 4.660 Probability (> CHI2) :::: 0.86 

Of the 200 frequencies 64 deviate by more than sigma (=67.08) 

(expected mDllber = 63.4) and 9 frequencies deviate by more than 
two sigma 

(expected number = 8.2). 

Tests on column totals CHI 2 Probabili ty 
Odd versus even digits 0.498 0.49 
Within odd digits 2.372 0.68 
Wi thin even digits 2.287 0.69 

175 

o () 



c; TABLE II 

ORDERED PAIR ANALYSIS ON 100 NUMBERS 

OF 501 DIGITS. 

0 1 2 4 7 8 9 CHI2 

0 472 504 544 477 509 490 496 496 493 454 11.54 

1 519 494 511 516 487 527 503 516 503 506 3.64 

2 502 490 497 514 474 502 530 505 519 511 4.62 

....... J 514 520 499 494 451 5l.7 479 505 507 518 8.31 
'I 

4 479 480 489 49) 472 496 508 456 462 530 12.84 (5'\ 

511 502 520 529 482 492 505 514 472 475 6.76 

6 • 495 542 498 476 521 495 517 530 527 513 9.38 

7 468 507 507 506 489 513 486 483 498 509 4.18 

8 476 . 562 492 496 508 469 544 475 479 487 17.42 

9 500 483 493 509 469 498 540 479 530 499 8.65 

CHI 2 
7.32 13.46 5.31 5.20 12.59 4.73 10.51 9.58 9.58 9.07 

Probability (CHI2 > 16.92) = 0.05 

TABLE III 

REPEATED LIKE DIGIT 

RUN ANALYSIS RESULTS - TESTS ON 

50,100 DI GITS 

LENGTH OF RUN 

TEST NO. 1 2 3 4 6 

'" 
1 40723 3987 411 40 2 0 

" 2 40592 4079 404 49 1 0 

3 40639 4036 406 34 7 0 

4 40488 4122 391 45 3 0 

40570 4068 397 42 7 0 

AVERAGE 40590 4058 402 42 4.0 • 0.0 

mECTEIl 40581 4058 406 41 4.1 0.4 

0 



A MODEL DIFFUSION-REACTION PROGRAMME FOR THE 1620. 

J.K. Levis, H.T. Wheeler, E.A. Cherniak* 
Department of Chemistry 

Carleton University 
Ottawa, Canada 

Diffusion, particularly neutroIHiiffusion, has been studied by Monte 

Carlo on digital computers since the introduction of the ENIAC. However, 

as far as we know, no extensive applications of this method, to diffusion-

reaction problems of a chemical nature, have yet been given. This paper 

describes one approach to such a problem. 

In the radiolysis of liquid benzene, it is well known that a high 

energy particle leaves behind it a cylindrical track of excited molecules 

and ions. The track is of varying density, depending on the energy of the 

incident particle. It ws believed that certain phenCllllena, notably the 

variation of hydrogen yields with stopping power, could be explained, in a 

way, suggested by Burns(l), by assuming that these activated molecular 

enti ties were of one form, B*, which could react in the following way: 

B~B* 

B* + B* BR ) H + pC?) 
2 

B* + B 

The _in feature then to be explained was the variation of H2 yields with 

stopping power. This is shown in figure I where the experimental average 

values of the H2 yields, compiled by Burns and Barker(2), from the results 

of the investigations of a number of workers, are given as a logarithmic 

function of the Ganguly and Magee(3) aver4ge stopping power Z. 

* Speaker (to whan enquiries concerning this programme should be sent.) 

178 

o () 



I 

I 
~i 

1-

~ 
I! 
~; 

o 
-2-

In the programme which we eventually used, a particle was represented by 

i~s coordinates, each coordinate having four digits and the total comprising a 

field of twelve digits with a single flag on the high-order digit. Reacted 

particles were denoted by a flag on the low-order digit. The quenching reaction 

(UR) was treated as an unimolecular process and for the bimolecular process (BR) 

the coordinates of each FSrticle had to be compared. 

The "tracks" (see flow chart 1) were set up in the most elementary fashion. 

A few cards were read in, each with the coordinates of a particle and the number 

of: particles with those coordinates to be set. When all the cards were read, 

the track could be stored elsewhere in memory. The numbers controlling the 

r5.tes of reaction and the width of the initial distribution were then read in. 

The initial particle distribution was then generated by allowing the 

The particles to be moved the specified number of times without reacting. 

distribution generated in this manner by, say, six pre-reaction moves is quite 

close to Gaussian. 

The particles were then moved and reacted, alternately;' (see flow chart 2) 

ti."ltil all the particles were gone, after which the numbers of particles 

reacted was typed and the programme repeated. 

Each particle waS moved by adding to ita 10 digit field with a random 

digit in the first, fifth and the ninth positions from the right. Thus the 

centre of gravity of the particles "drifted" steadily through model space. 

It was found that random digits with a rectangular distribution, i.e. equal 

probabilities for all the digits, caused the particles to diffuse off at an 

inconveniently high rate. We were thus laced with the problem of generating 

large numbers of digits rapidly with a skewed distribution. The obvious method, 

playing a game of chance, proved cumbersome. However, a simple modification 

of the random number generator, descrl.bed by Wheeler(4), proved successful. 

179 

c ~ 

-)-

To produce a distribution of digits the programme replaced the add tables 

with special add tables having digits in the desired frequency. Thus these 

digits could be produc~d in an average time < 250....-4sec./digit. Further

more, the frequencies of the digits could be controlled to 1 part in 100, 

a lthough as our particles had a moving centre of gravity, the frequency 

distribution had to be symmetrical about the mean move length, restricting 

our control to 1 part in 50. This was far more than sufficient. 

The "react" routine (flow chart 2) contained a scanner which scanned the 

appropriate section of memory until it found either a record mark, indicating 

the em of the particles, or an unreacted particle. Then, depending upon the 

state of a simple flip-flop operating on bdls and tdmls, the particle would be 

"reacted" first unimolecularly •••• and then b:.molecularly, or vice versa. This 

altergration on unimolecular and bimolecular from one particle to the next was 

found necessary at high concentrations of FSrticles. 

To ascertain whether a particle was to have reacted unimolecularly or 

not, a four digit field was taken from the random number generator and compared 

with a control number. If the random number chosen was less than the 

control number, the particle was assumed to have reacted, a flag was placed 

on its units position, a counter was incremented, and control returned to the 

scanner to fim another particle. The four digit length was actually found 

to be necessary to give adequate control over the unimolecular rate. If 

greater 
the random number was than the control number, the program would p~oceed 

to the next particle or would consider the particle for bimolecular reaction, 

depending on the status of the flip-flop. 

For the bimolecular reaction, the particles above the particle under 

consideration were examined for whether or not they were reacted. When an 

unreacted one was found, its coordinates were compared, by a single c 

instruction, with the particle under consideration. Analysis showed that it would 

probably be faster to comFSre all twelve digits of each sets of coordirli tes 
180 



-4-

at once than divide them into 3, of which only the first four would be 

compared for two non-coincident particles. When two particles were found 

to coincide, the usual chance game was played to aetermine if reaction had taken 

place. Unlike the unimo-lecular reaction, however, only a three digit control 

number ws used and two digits would have sufficed. 

The programme described above, which ws written in about 1000 machine 

language commands on a 40K 1620 with automatic divide, will "react -----' 150 

particles to completion in 5-15 minutes,depending on conditions, but typi-

A cally 7 minutes, with a standard deviation of --15% in the results. 

comparison of our results with the experimental data is shown in figure 1. 

By varying the control numbers it was found that the experimental data could 

be fitted quite closely and that the values this fitting procedure gave for 

the rate constants were in fact plausible. 

We are now engaged in refining our interpretation to get improved values 

for rate constants. Actually, this problem of interpretation is the main 

Our disadvantage of our approach vis ~ vis a numerical integration method. 

programme is probably as fast or faster than a numerical programme for the 

same mechanism, and the --~'15% deviation is not excessive for experimental 

values accurate to better than 10% are rare in this field. However, the 

process of getting from our model to the physical situation is rather involved. 

First we work out a one dimensional distribution of particles which have moved 

several times with the move distribution we use. We then fit a Gaussian curve 

to this and from this obtain a model diffusion coefficient. A good value for 

th~ real self-diffusion coefficient is available, so this gives us a value 
2 

for "model length) / model time" in real units. If a good model length is 

f:lUnd, then the model time drops out. From the diffusion coefficient and 

the control numbers the two rate constants are readily obtained. However, 

181 

~ 
'--j o 

-5-

the "model length" poses the problem. After some thought we decided it 

should be twice the "collision diameter" of the molecule, but, in liquids 

this is a rather ill-defiried quantity, and reasonable values b8.sed on 

various definitions tend to differ somewhat. 

The main virtue of'our program ws its flexibility. It can handle 

ragions of intermep,iate stopping power, where the track resembles billiard 

balls strung together on a cord, which are particularly difficult for 

standard numerical integration procedures. It can also handle varying 

amounts' of particles corresponding to different input power, and with modi

fications could treat other problems, such as effects of small amounts of 

reactive solutes. These last two features were never used, partly because 

o?: a paucity of experimental data, because the effects are notable chiefly 

through their apsence, but principally because crude, hand calculations upon 

the "plausible" rate constant values were sufficient to show that these 

effects should in fact be small. 

We are grateful to the Nati.onal Resear'ch Council of ·Canada for the 

financial assistance which mad~ this work possible and the Computer Policy 

Committee of Carleton University for granting us the necessary machine 

time. 

1. Burns, Trans. Faraday Soc. 2.<t 101 (1963). 

2. Burns and Barker, United Kingdom A.E.R.E. Report 4240 (1963). 

3. 

4. 

Ganguly and Magee, J. Chem. Phys. Z.2 129 (1956). 

Wheeler, Lewis, Cherniak - A new random number generator -
1620 Users Group Joint Meeting 
(Canadian and Mid-Western Regions) 
Chicago, February, 1964. 

16 Z 



o 

OJ 

50 

Z 0 

10 

FIG I Vari ation of IlIperimental G(Hzl (e) with averaQe L E. T in the 

radiolYlil of liquid C,H •• ---obtained by diffulion rlaction 

programme. ------predictld by diffulion reaction prOQromml. 



IN 
NO PARTICLE SPUR 

AND 

NO 

ASSIeN 
.. AND UNI 
'Il TER NOS 

FLOW CHART I Diffusion-reaction programme. tracll and 

initial particle distribution generator. 

18 tj 

,~. 
U \ 

"- j 

FLOW CHART 2 Diffulion-reaction routine 

/85 

f"l 
\ ... j ) 



o 

o 

AUTOSPOTLESS NUMERICAL CONTROL 
WITH THE 1620 

by 

Eo Ro Austin 

Engineering Computer Facility 
Combustion Englneerings Inc & 

Chattanooga~ Tennessee 

Presented February 21i 1964 

18 fa 



AUTOSPOTLESS NUMERICAL CONTROL 
WITH THE 1620 

A great deal of emphasis is being given to the 1620 and its role 

in the numerical control of machine tools. This is certainly as 

it should be. However, the resulting emphasis on the APT (Auto

matically Programmed Tools) language and the Autospot subset of 

this language is unjustified. 

The use of Autospot assumes: 

1. The only output desired is a paper tape and a listing 

of its contents. 

2. Sufficient 1620 time to use a four deck processor 

(including post processor) for each workpiece. 

3. The existence of a post precessing program. 

4. The existence of trained "parts programmers". 

Due to the specialized nature of our numerically controlled ma-

chines~ operator's instructions must accompany the tape as it 

enters the shop. Furthermore, Industrial Engineering must prepare 

standard hours for entry on the shop routing or traveler. Thus~ 

it has been decided that all these documents should be computer 

created. Autospot does not lend itself to this effort. 

/67 

o () 

-2-

Over 175 workpieces are processed monthly on our Ingersoll header 

drill. This represents drilling and chamfering some 70,000 holes 

each month. For the Autospot processor, this represents over 70 

hours of computer time. This would mean second shift operation 

for almost any 1620 facility. 

The creation of a post processor involves understanding of Autospot, 

the tool to be controlled, the 1620 and the controlling mechanism 

itself. This, coupled with the fact that Autospot is really more 

comprehensive than is necessary for our applications, makes the 

creation of a fixed format input processor most advisable. 

With such fixed format input programs, no "parts programmers" are 

required. Industrial Engineering members can readily interpret 

engineering drawings and compactly represent this information on 

input sheets. 

The total time from the interpretation of the drawing to the 

creation of pertinent documents is greatly reduced by use of 

this concept. To illustrate~ the Ingersoll header drill with 

its accompanying functions and required documents can be cited. 

The N/C Ingersoll header drill is used for drilling and counter-

boring cylinders on the order of 60 feet long, 1 ft. outSide 

diameter and two inch (2") thick walls. The holes in this cylinder 

normally align themselves into six (6) or less rows down the 

header. The hole spacings are highly irregular and are a function 

188 

(j 



o c o 

-3- -4-

of the boiler system of which the header is a part. The work Proper representation of input data permits the creation of all 

which preceeds the actual drilling of a header is best described these documents. Autospot does not lend itself to such a repre-

by fig. 1. The three (3) documents entering the shop serve the sentation. For example, Autospot must be tolg which tool to use. 

following functions: Our feeling is that the program should select the tool. The 

1. Routing slip computer selection of a tool el~minates a great deal of human 

a. Provides operational sequence thought and potential error since tool choice is a function of 

b. Shows standard hours allocated for each operation material type. nipple o.d., nipple wall thickness, thickness of 

c. The approximate date on which each operation should header, etc. This selection then fixes the counterboring diameter, 

occur is also' shown counterboring depth, drilling feed and speed, counterboring feed 

2. Tape contains and speed, g~ar range, etc. 

a. Positions for drilling The input sheet used by our program is shown in fig, 2. The 

b. Drilling feeds and speeds manner in which the completion of this sheet fits ,into the 

c. Counterboring feeds and speeds overall picture of fig. I is shown by fig. 3. 

d. Spindle starts and stops Several pOints are worth noting about this system: 

e. Gear changes 1. No parts programmers are required. Technicians complete 

3. Operators instructions the input sheets. 

a. Shows angularity of each row from a given point 2. No post processor is required 

b. Tells the operator when to use what tools 3. Two SPS programs can create all the described documents. 

c. Provides settings for limit switches 4. A typical header can be processed through the 1620 in 

less than .1 hour to produce all documents. 

/8~ /~o 

I 
~ 



-5-

t. Autospot would require no less than .4 hours to create 

tape information alone. 

When the total systems approach is applied to N/C problems, the 

fixed format input exemplified by this system and other systems 

like the IBM 1401 Autoprops seems to have definite advantages over 

APT processors. 

/'J/ 

a 

r'<:jul<'~ '., 

oe.s/~'" 

M~~ 

j'j2 

o 

l'D~rllJ(J, SliP 

AAlJ> . .sTII"'/)A~D 

I!OIIR :C~l~U
LAT/VAJ-S 



~C~U~~~O~ME~R~ __________ ~S~.~q~'~~L)~' ______________ ~D~RA~W'NG W), DATE 
PART NAME NO. OF FINISHED PIECES PROGRAMMED BY 

--H--H-----I,-+--J·-J---J-4--~-+--I--~-I-----I......I------·--- -.-
NIPPLE WALL I..HAtJ INITIAL FINAL 

ANGLE ("Q THK FER x· SPACE x 

- I 

i I 

! 

I I 

I I 

I I I II 

I I 
! ! ! ! I I : I: 

i , I ~ I 

=: -llH- ~-+i I 
I I i 1 i +1 I I' -;--<-- '--~-__ 1 ___ .-..-L ~f--4-";-""""'--I--I--I.-~ _. __ -_ -o.-~---L- __ 
I : I ' ! i ~ I' i I I 

I i I I i I IT I I T I I i I ~-i-t-+-

o 





c 

o 

o 

Technical· Publication 

, ~' 

AUTOSPOT n 
PREPROCESSOR PROGRAM 

Poughkeepsie Manufacturing Engineering 
Data Systems Division 

/9~ 

By D. F. McManigal 
PRG 26.0006 



ABSTRACT 

The Autospot 11 Preprocessor is on I BM computer program 
used to help the ports programmer prepare correct input 
data for Autospot I I. 

January 2, 1964 

1.0 -INTRODUCiION 

Autospot II (AUTOmotic System for POsitioning Tools, Model 11) is a 
computer program for the IBM i620 Data Processing System (see Figure I). 
It was designed to aid the parts programmer in preparing instructions for 
numerically controlled point-to-point machine tools. Autospot permits the 
use af easily remembered codes, such as DRILL, TAP, and MILt, 1nsteod of 
the more complicated numeric codes used by numerical control machine tools. 
Autospot performs many computations for the parts programmer, and reiieves 
him of much redundant coding. 

AUTOSPOT n 

F:;:Jl).f:} 1. A-utospot II Pr.:>gram Flo'" 

/96 

"""! ~ /:3 

r\ 
~, ) . ./ 

Autospot II consists of a Genera1 Processor which is common to all 
machine tools and a' Post ProcesSor for each machine tool. The Beneral 
Processor performs such operat~ons as translation to numeric codes and 
machining ~ttem manipulation. The Post Processor tai10rs l-he output of 
the General Processor to suit the individua4 machine tool reqvir.ements. 
The input to the General Processor is a SOUTce statement cord deck and the 
output from the Post Processor is a punched tope containing machine tool 
commands in the proper code. 

2.0 THE NEED FOR A PREP~OCESSOR 

To reduce the number of passes required in the General Processor, 
error detection and diagnosis were limited to a minimum. Most source 
statement errors result in general error messages; however, many errors 
cause a computer check stop or hong-up condition, without -on error 
-message. 

The lock of extensive diagnostic information is not a serious problem 
when the parts programmer has adequate experience with Autospot. Much 
time is lost, .however, in identifying errors and the assistance of a 1i>20 
programmer is frequently required. An inexperienced parts progrommer 
often encounters so much difficulty with SGU1'ce program errors that much of 
the advantage of Autospot is lost. For-example: If a parts programmer 
inadvertently substitutes a dec imal point for a comma at the end of a 
coordinate dimension, the 1620will hang-up -in on--infinite loop when'the 
Generol Processor reads the statement. The parts programmer may then 
need tfle assistance of a 1620 programmer to laC{lte the error. 

3.0 PREPROCESSOR DESCRIPTION 

The Autospot Preprocessor (see Figure 2) i-s a one pass pfOgrom for the 
1620 system. Jts purpose is to detect aAd diagnose most of the errors which 
occur in Autospot II source statements. Error detection is 'Sufficiently 
detailed to permit immediate recogni-ti-on of most common errors, :and-to 
significantly reduce the time reG!uired to diagnose unusual e...-rofS. On-line 
editing permits immediate correction of mo'St errors during preprocesStng. 

The Preprocessor is capable of detecting two .types of error: formot 
errors, such as typographical mistakes; and, violations of Autospot rules, 
such as illegal pattern manipulation. Most of the 35 possible error messages 
refer to rul-e Violations because these errors {;Ire usually more difficult to 
diagnose than are errors of form. 

2 
;q7 

!' 
''.) 

\ 
I 

/ .. 



~ 
~ 
I 
i 
I 
~ 
~: 
~. 

o 

EXAMPLE I 

[3"/ 
, , , 

AUTOSPOT 0 
PREPROCESSOR ~ 

Figure 2. Autaspot Preprocessor 

The use of too many machining patterns will result in the error message: 

E COUNT PAT PAT I. 

where PAT I is the symbolic label assigned to the pattern by the ports 
progranmer. This error message is specific because the nature of the 

error is not readily evident. 

EXAMPLE 1/ 

The use of the letters DQ instead of DP for specifying a depth will 

result in the error message: 

C FORM AUX DQ. 

This indicates a format error in the auxiliary section of the statement. 
The specific nature of the error is readily evident. 

When on error is encountered, the preprocessor will type: 
one of the 35 different error messages, 
the entire erroneous line, 
the contents of the dota field in question, and 
the punctuation terminating that field. 

Th. data field or statement section is not necessarily in error, but this indicates 
that the error was recognized at that point. The octuol error may appear 

anywhere up to that point. 

3 
198 

c c-, 

3. 1 PREPROCESSOR ERROR MESSAGES 

The error messoges are in abbreviated form and contain error type codes 
which indicate the corrective action to be taken. A blank code indicates 
that the typeout is for information only and requires no action. A "P" code 
indicates that the field in question is acceptoble but unusual and is a pouible 
error. An "E" code indicates that there is a definite error which cannot be 
corrected on-line, but which will result in on erroneous edited deck. A "C" 
code indicates that the error is definite but can be corrected on-line. 

The computer takes no action on a blank or lOP" coded error. The 
erroneous statement is deleted an on "E" type error but no holt occurs. 
Program switch settings determine the action on a "C" type error. If the 
editing feature is disabled, the error is treated as on "E" type error. If 
editing is required, a progrom holt occurs to permit correction Of omission of 
the erroneous statement (at the discretion of the operator). 

The non-stop mode of operation permits operators who are not familiar 
with Autaspot to run the Preprocessor. The Preprocessor wiU also calculate 
effective drill lengths, a feature which reduces the number of calculations 
the ports programmer is required to make. 

3.2 PREPROCESSOR ADVANTAGES 

The effectiveness of the Preprocessor is i lIushated by a test problem 
.vhich was run at IBM Poughkeepsie. The port being progranmed was on 
ochol ;>roduction piece, requiring o!Jproximately 3,000 lines of numerical 
controls for the Kearney and Trecker Mi~oukee-Motic machine tool. The 
Autospot source deck required 126 lines, including 107 lines of machining 
statements. Using the Preprocessor, this large program was debugged in less 
than 30 minutes, of which only 14 minutes was 1620 computeT time. This 
time included the initial run and two reruns after corrections (corrections 
being made off-line due to type"E" errors). The same source progran was 
partially debugged/by the ports programmer who wrote it,in four hours. The 
experiment was then terminated and the job completed using the Preprocessor. 

little time is last in running good source statements through thE 
Preprocessor. Error free source cords are processed at the overage rate of 
one line per second, assuming nearly full lines. If no errors are found, mast 
source decks may be checked in less than one minute (including Program lood 
time). 

4 
/99 

'" 



4.0 SUMMARY 

The Autospot II General Processor provides limited error diagnosis. 
Because of this,many advantages are obtained by using the Autospot 
Preprocessor. The Preprocessor pinpoints most common errors and provides 
sufficient diagnostic information to significantly reduce the diagnosis time 
for unusual errors. 

5.0 PREPROCESSOR DEBUGGING (SAMPLE) 

Figure 3 shows the General Processor listing of 0 sample problem. 
Note error messoges. 

Figure 4 shows the output of the Autospot Preprocessor for the some 
program. Note error messages. 

Figure 5 shows the rerun of the edited program deck. 

200 

a 

5 

C
~\ 

, ~/) 

REMARK/ GENERAL PROCESSOR ERROR MESSAGES $ 

DASHA(J.5,2.75)$ 

DASHI-DASHA(0.0,S.25,-I.O)$ X,Y,Z ENTRIES SHOULD AGR[[ WITH DASHA 

DASHC(9.0,7.S)$ SHOULD HAVE TAILE POSITION 

CL(O.3)$ 

(, OH( 1.0,1.0,1.0)$ 

OH(0.5, 0.3, 0.3)$ 

DH(I.0,O.5,O.5)$ 

9 DH(0.5,0.S)$ LIM I TIS THR[[ 0[[1' HOL[ SEQUENCES 

10 TOOL/DRILL 1301 0.25 

11 TOOL /SPDRL 1302 0.5 

12 TOOL/DRILL 1303 0.4 

7.5 

120.0 7.0 

119.0 6.5 

2000 10.0 07$NO EFF LENGTH 

2000 8.0 07$ 

A.O 07$NO SPINOLE S'[[O 
13 START$ 

14 PAT1-/DM, SX(0.0)SY(0.0)EX(9.0)NH(5)$ INCREMENTAL SEQUENC E 

15 PAT2-SPORL, H02/PAT1/DI (0. Z)THEN, PAT1 (0.0, 1.0)THEN, PATI (2.75,2 .0)AT(90 .0)$ 

16 DRILL, H01/PAT2/DQ(2.0)OH(I)D'r/$ OQ SHOULD BE OP 

ERROR MINOR SECTION 16 DRILL, 130l/PAT7./DQ(2.0)DH(l)DW$ DC) SHOULD IE DP 

17 PAU-/PATI (5.0, O.O)THEN. PAT1 (6,0, 0.0 )THEN, PAT1 (7.0,0.0)$ 

19 DRILL, 1303/REV.'AU/DP(Z.0)DH(4)THEN,DAI,PAT3, THt:N,DAC,PAT3$ OH 4 WRONG 

19 REMARK/ REVERSAL OF St:COND Gt:NERATION 

20 R£HARK/ PATTERN I S NOT PERI-II SS tiLE 

21 REMARK/ ERROR DETECTED I N PHASE 2 

22 R£HARK/ THE FOLLOWING STAT£HENT CAUSES 

23 REMARK/ A HANG - UP I H THE GP. 

24 DR ILL. 1303/DAC(-1.0, 0,0)( -10,0.0.3, -0.5) /01'(0. 7)DH(J)$ 

NOTE ... INDICATED ERRORS WHICH CAUSED NO ERROR 

~~:S:g~T ~og:~~~~D o~ N ';~A~~ ~LL ~R IN 

Figure 3. General Processor Listing of Sample Processing 

6 

20/ 

;r 



~ 

f 
~, 

~! 

o 

AUTOSPOT PItE:~[sSOR DAno 12/1 8/63 

1 REMARKI ~EftROCESSOR ERROR MESSAGES 
1 OASHAO.5.1.75)$ 

.. NO T.. $ 
3 DASHI.DASHA(0.0.5.25.-1.01$ X.,Y.Z ENTRIES SHOULD AGREE WITH OASHA 

C COUNT POINT -1.0 ) 
3 OASHD.OASHA(0.0.5.25)$ 

.. NO T.. $ 
It DASHC(?0.7.5)$ 

.. NO TP $ 
5 CLIO.l)$ 
6 DH 1.0,1.0. 1.011 
7 DH 0.5.0.3,0.3 
G DH 1.0,0.5(0.5 

E COUNT DH DH 

ON-LINE CORRECTION P.S 

SHOULD HAVE TABLE POS I T ION 

LIMIT IS THREE DEEP HOLE SEQUENCES 9 DH 0.5.0.511 

T~gL r~~/~~~ I~~i 1 ~A~~ EFFLENG ~i~ 07.4249 2000 10.0 07$NO EFF LENGTH 

11 TOOl/SPDRL 1302 0.5 120.0 7.0 2000 B.o 07$ 
12 TOOL/DRILL 1303 0.4 119.0 6.5 !l.0 07$NO SPINDLE SPEED 

TOOL 1303 EFFUNG SET 06.3fl27. 
TOOL 1303 NO S S 

1) STAAT$ 
14 "An-10M SX(0.0ISY(0.0)EX(9.0)NH(SI$ INCR~ENTAL SEQU[tlCE 
15 "AT7.3SPDnl, 1302/PAT 110 1(0 r7.) THEN, "AT 1 (0 .Ot 1.0 ITHfN. PAT 1 (2.75, l.O P T (:1'1.0») 
16 DFlILL.1301/PAT7.![)(!(2.0)DH 1)DW$ uQ SHOULD UE OP 

C FORI! .lUX o~ ( 
16 DRIlL,1301/FAP/DP(2.0IoH(1 lOWS ON-LINE COrf!EcrJ(ln .1 
17 PATh/PAT1(C;.O,O.O)THEN PATI(6.0 O.O)THEN PATI(7.0,O.0)$ 
13 QRILL t 1303/P.EV."ATJ/OP(LO)OH(l,jTHEN, DAB,hn. THEN.OAC, P~TJ? [;H 4 W,,(1tIG 

C PAT tlAtIl p PATJ I 
18 ORILL.1303/PAn/D"p.0)OH(It)THEN.oAI,PAn, THEN.OAC,PAn$ ON-LINE CORR. R, 

C UMO£F DH 4 ) 
18 DRILL.1303"'AH/0 .. (2.0)DHO)THEN t DA .... AT3

I
THEN.OAC.PAT3$ 'NO CORRECTION RI 

1') REMARKI R£VERSAL OF SECOND GENERATION 
20 r£).IARKI PATTERN IS NOT PERHISSIBLE 
21 fl£tlARKI ERROr- DETEcno IN "HASE 2 
22 f!~ARKI THE FOLLOWING STATEMENT CAUSES 
Z3 RDIARKI A HANG - UP I N THE G ... 
24 OR I L~l 1303/0AC (-1.0.0.0)( -10.0.0.3, -0. 5) 10P(0. 7l DH(3) $ 

C FOAM tllNOP. -10.0 • 
24 DR ILL. 1303/DAC (-1.0, ° .0)( -1 0 .0.0.3. -1). 5) 10P(0. 7l DH(3)$ ON-li ~lE corRECT I (1t!RS 
25 FINI$ 

END pnE"ROCESSOR 

Figure 4. Autospot Preprocessor Output 

202 7 

c ~ 

AUT~SPOT PREPROCESSOR DATED 12IIR/(,3 

1 
2 

P NO 
3 
NO 
1+ 
NO 
5 
6 
7 
e 

10 
11 
12 

TOOL 
13 
lit 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
1 'i 

END 

REMAR~/ RE-RUN OF El)I TEO SOURCE nECK 
OASHA(3.5,2.75)$ 
TP $ 
DASIi8~DASHA(0.O,5.25)$· ON-L IUE CORr.ECTION 
TP $ 
DASHC(9.0.7.S)$ SHOULD HAVE TAHE POSITIOtl 
TP $ 
CL~0.3 )$ 
DH 1.0.1.0. 1.0l1 
OH O. 5, o. 3 • 0 • 3 
DH ( 1 .0, o. 5. 0 • 5 . 
TOOL/DRILL 1301 0 .• 7.5 IIC.O 7.5 07.47.4<;2000 10.0 07$110 EFt LEtIGTI! 
TOOL/SPDf!L 1302 0.5 120.0 7.0 2000 B.O 07$ 
TOOL/DRILL 1303 0.1t 119.0 c.s 06.3B22 B.O 07~NO SPINDLE CPEEfi 
1303 NO SS 
STARTS 
PAT1 ~/DAA, SX (0.0) SY (0.0) EX (9.0 )NH (5) S INCREMENTAL srr:U[tICE 
PAT2;SPDRL.1302/PATl/DI (012)THEtI. PATI (0.Ol'.0)THENl PATl (2.75, 7..o)AT(':IO.O)$ 
DRILL.1301/PATZ/OP(2.0)DH 1 )OW$ oN-LINE CoRRECTION 
PAT)2/PAn (5 .O.O.O)THEN, PATI (6.0.0.0)THEN, PATI (7.0,0.0)$ 
DR ILL,. 1303/ PAn/DP( 2.0 )OH( 3) THEN, OAt, I'ABlTHEN. DAC, PAT 3$ 2NO CORREC T IOH 
REMARK/ REVERSAL OF SECOND GENEUTlO., 
REMARKI PATTERN IS NOT PEAMISSIIlE 
REMARKI ERROR DETECTED IN PHASE 2 ~ 
REMARKI THE FOLLOWING STAT~ENT CAUSES ~ 
R9I-'RK/ A HANG - U" IN THE GP. ~ 
DR 1 LL, 130310AC (-1.0. O. 0)( - 10.0. o. 3. -0.5) /!'JP(O. 7l OH(3)$ ON-L I HE CORRECT ION 
F IN I $ 

PREI'ROCESSOR 

Figure 5. Edited Program Deck (Rerun) 

8 
2D3 



MANAGEMENT INFORMATION 

BY 

ALBERT C. MAAS 

DIRECTOR, OPERATIONS RESEARCH AND STATISTICAL ANALYSIS 

GREEN GIANT COMPANY 

LE SUEUR, MINNESOTA 

PAPER PRESENTED AT THE 

MID-WESTERN REGION - IBM 1620 USERS' GROUP 

CHICAGO, ILLINOIS 

FEERUARY 21, 1964 

MANAGEMENT INFORMATION 

There are different reasons why one may address himself to and accept 

the challenge of discussing, .presenting, or reviewing a given topic. He 

may be an authority on the subject and discuss it in that capacity, or he 

may hold a position of responsibility in which the method may be applied 

and so discuss it from that point of v·iew. When I was invited to present 

this paper, I was aware that my qualifications are not those of an 

authority but rather those of a practitioner in the field of Management 

Information. An interest in the subject and a recognition that there is 

applicability in present day business management provides motivation for 

preparing and presenting these remarks. 

One way of organizing material for a presentation such as this 

would have been to search the literature and quote the authorities. I did 

not do this but rather elected to speak on the subject as I SEH! it in 

general and somewhat specifically in my company. If a bibliography of 

writings on this topic were to be assembled, I am sure it would be impressive. 

I am also sure that the list~f articles on the subject will grow at an 

increasing rate in the years before us and that our present state of 

knowledge and level of practice will be dwarfed by future developments. 

My comments will be organized around the following ~ints: 

1. A revi~w of what constitutes information. 

2. A definition of terms that are ~ssociated with the subject. 

3. A brief discussion of the functions that constitute the totality 

of company activity. 

4. The s"tate of the business world with special concern about the 

1964 need for scientifically developed Management Information. 

o 

GREEN GIANT COMPANY 

LE SUEUR, MINNESOTA 

2..0t.! 

o 
205 

(0.) 
~ 



I 
~ 

i 
II 
it 
m 

~; 

o 
5. Relationships among Management Information, the compute=, and 

personnel. 

Inforllation 

In discussing this topic one must soon come to grips with what is 

meant by the word "information", and what the connotation must be when 

used in discussing business problems. A dictionary or academic definition 

- 2 -

may add a note of scientific precision to this presentation but, in keeping 

with the intent of the paper, it seems more appropriate to define the word 

by using it in context for a few paragraphs. It is the intent here to 

define its meaning as used in the language of business decision making. 

Let us first agree that usage of the word suggests the addition of 

something new to the hearer's store of knowledge. Let us also agree that 

this information may be used as the basis for making decisions, either in 

the business world or in private lives; that it will be used as the basis 

for setting in motion courses of action. We must agree, if the preceding 

has been accepted, that information must have some value; that is, it must 

be appropriate, accurate, and it certainly must be timely. 

We can quite likely agree that information, in part, may consist of 

reports, lists, graphs, comparisons, counts, or any other statements that 

something is or is not. In a moment we will be considering that information 

might be classified as available before an act takes place or after an act 

takes place, thereby giving it a. form of time dimension. 

A common example of information that is available after an act has 

taken place is found in performance measurements. These would include data 

on production to date, sales to date, costs incurred, capacity utilized, 

asset position, and liability position. Position records such as earning 

statements and the balance sheet could be looked to as other examples of 

information made available after an act has taken place. In all of these 

200 

~ o 

cases, the information is an accounting for something that has happened or 

a position that has been reached. 

Information that is made available before an act takes place is of 

considerably greater interest, in this paper, than after-the-act 

information. Examples of this are found in a broad category of planning 

statements. The document or report that describes plans for expanding 

production capacity, for entering a new market, for assigning facilities, 

and others of this type constitute information before an act takes place. 

It is the intent in this paper to consider an important and necessary 

element in the information that is generated in the before-an-act-takes-

place category. This is the element that changes information from a 

recitation of facts to true decision-making support. We might think of 

this element as that property in the totality of information that answers 

the question about what the consequences would be to taking alternate 

courses of action. It is, therefore, to some extent, a plan and a 

prediction. 

In past years and currently, the element has to a greater or lesser 

degree been supplied by management; that is, the decision maker. The 

advances made in methodology and equipment have given support to the 

organization of information-generating groups who, as technically trained 

management science practitioners, are able to provide this element. The 

change that this implies, within the area of Information Generation, may 

either be advocated or predicted. In either case it is taking its place 

on the scene of business operations. 

The relative effort spent on developing information by the before and 

after categories is an indication of company vitality. Information after 

the act might be compared to the rear view mirror in an automobile. By 

looking into the mirror the driver is able to see where he has been. It 

207 

\. 

- } -



- 4 -

follows that the more strategically located and the larger that mirror 

the better the view will be of where the driver has been. 

Information before the act is then likened to the windshield of the 

automobile. If this is large and clear, the driver is able to see where 

he is going and can take steps necessary to get him there fast and safely. 

The relative size of the windshield in comparison to the rear view mirror 

is important in an automobile and it certainly is important in the 

operation of a business enterprise. 

It must be recognized at this point that these remarks are concerned 

with degree rather than absolute lack of conformity to the concept being 

discussed. Historical information has and always will be used for 

preparing predictions, and analysts have always contributed toward producing 

that element within the totality of information upon which decisions can 

be based. It is argued, however, that considerably more effort should 

be directed toward using the analytical techniques known to management 

science personnel, and that this be used to generate decision-making 

information before it is given to management. The decision maker; that is, 

the manager, should be in a position to ask the question, "What will 

happen if I take this or if I take that course of action?" The management 

scientist, using the analytical tools avai~able to him and working with 

historical data, is able to add that element which will make it a more 

reliable basis for planning courses of action within the business enter-

prise. 

Definition of Terms 

It will be convenient, for expository purposes, to define some terms 

and expressions that are used in discussing the activities in the business 

world. The definitio~~ p~e not intended to be precise in the academic 

sense but rather as cl;~~·.irications for the purpose of presenting views in 

this paper. 

208 

o o 

- 5 -
A. Business Problems 

The activities of a busin~ss enterprise constitute a process 

in which the resources under the control of the business firm 

are used, in a production phase, to create added value and then 

to bring into a realization that added value through a distribution 

and marketing phase. Business problems exist because the total 

process does not operate without disturbances. Resources, 

including materials, supplies, facilities, and the skills of 

employees are limited and imperfect. There is resistance in 

the market to paying more than ~Gessary for the products of the 

business enterprise and there is a constant need for attention 

to the mechanism of the production phase. The existence of these 

disturbances, as well as the need to plan for the growth of the 

enterprise, constitute business problems. 

B. :ourses of Action 

These relate to the steps that are and must be taken by 

management to correct a business problem. The course of action 

is therefore simply the doing of something, the execution of the 

plan that r~sulted from a management dicision. 

C. Dynamic 

A moment's reflection on the business problem and its 

resolution in a business enterprise suggests that many problems 

occur repeatedly. In fact, it will soon be observed that the 

majority of the operating problems are recurring. The frequency 

with which they occur and especially the speed with which they 

can be resolved play an important role in the competitive position 

of a business enterprise. These observations partially provide 

the basis for describing a business, especially as measured by its 

problems, as dynamic. 

209 

I" \ 

" ,,/ r 



i 
I 
~ 
~ 
~: 

o 
- 6 -

D. Information Retrieval 

This term relates to a fairly well-defined process of 

cataloging the content of articles, abstracts, books, and 

the like and for providing a means for locating the document, 

or a brief statement of its content, in response to the user's 

need. Management Information, the title of this paper, is not 

related to Information Retrieval except as the latter may be a 

part in the process of generating decision-making information 

for management. An issue is made of this comparison since 

there is a possibility fo.r confusion, the belief that the ability 

to rapidly extract data from files will serve the need of manage-

ment for information. 

Functions of. a Company 

The totality of activity associated with the operation of a company 

can be categorized in various ways. To focus attention on a specific 

function, the generation of information, four categories are formed, which, 

by definition should include all the activities that can and do take place 

in a business enterprise. These categories include: 1. Production-

Marketing-Distribution. 2. Recording "and Control. 3. Decision Making. 

4. Information Generation. 

Production, marketing a;nddistribution,the operations function in 

a company, include the obvious activities of utilizing facilities and 

resources to produce something, to market it, and to move it through the 

distribution channels into the consumer's hands. In a processing industry 

such as the canning industry, this will appear as, and in fact is, the 

dominant function of the enterprise. 

The activities of maintaining company operations records, company 

operating plans, and providing a measure of performance against plans 

constitute, in part, the function of recording and control. There is 

210 

c o <... 

~ 

- 7 -
obviously considerably more that could be said about this and about the 

operations function, but since it is the objective in this paper to discuss 

Information Generation, further elaboration on these other functions will 

be omitted. 

Decision making is a function that is executed at all levels of 

company operations. As a first impression it appears that this might be 

a function reserved for the top executives. This is not true, however, 

since the worker on the line must, and does, make decisions, or at least 

apply a measure of judgment, in operating a piece of equipment or using 

a resource. Top executives make decisions about such ~atters as finance, 

plant or production expansion, personnel assignments and the like. The 

vast majority of the decisions in any business enterprise, however, are 

made by the operating and management personnel between the line worker and " the top executive. In any case, the decisions at all levels must be 

appropriate and they must be timely. The skill with which this function 

is executed will be reflected in the effectiveness of the operations 

function and also in the effectiveness of recording and control. 

If it is agreed that setting in motion the appropriate courses of 

action at the different levels in a company is dependent on the quality 

and timeliness of decisions, the foregoing statement is obviously supported. 

The function to be discussed in greater detail in this paper is that 

of Information Generation. The importance of this is underscored by 

recognizing that the function of Decision Making is not executed in a 

vacuum, it is not independent of the other functions. A course of action 

within the operations function is not put into motion unless there has been 

a decision to do this and unless there has been a decision to commit certain 

of the company's resources. 

The basis upon which a decision is made, however, is that of the 

information available to the decision maker. Information about the process 

ZIt 



- 8 -

and information developed in the planning sense must be ofrercr. t,o the 

manager, the person who will translate it into a decision. It is at this 

point that the function of Information Generation achieves its significance. 

State of the Business World 

Business decisions are not made in a vacuum and business enterprises 

are not operated independently of the business world environment. One of 

the cbaraeteristics of the business world, it is contended, is that changes 

are taking place rapidly and that the function of decision making, as a 

result, is becoming increasingly complex. 

If we accept as true that there is, in fact, a rapidly changing climate 

in the businesa world, then we must also accept that the advanced techniques 

for coping with these changes must be developed and applied. It is 

especially required that support for decision making be made available 

accurately, adequately, and timely. This constitutes the heart of the 

total Management Information idea. 

Technology in problem solving has changed and has improved very 

rapidly during recent years. The mathematical methods of linear programming, 

critical path analysis, inventory control, estimating, forecasting, and 

many others bave been developed, improved, and made available to manage

ment. Books, artioles, courses, and seminars have been employed during 

the years since World War II to disseminate the information. 

It is of special interest to observe that the mathematical techniques, 

if considered by themselves, are of limited value. These techniques must 

be a part of the total ~roblem solving system if they are to be of service 

to a business enterprise. The process of information generation is built 

around this concept. It is one of the objectives in this paper to demonstrate 

.that information, in addition to being a record or recitation of events that 

have taken place, also includes those elements of information that will point 

up the most ideal steps that can be taken in the decision-making process. 

2/2 

o 
-~--~.--------- -- ~---- --- _._---

o 

- 9 -

Another characteristic of the business world today, in comparison to 

past years, is the intensification of competition and its attendant 

problems. New products are coming on the market at a faster pace and the 

costs of developing them are higher than was true several years ago. The 

advantage to the company developing a new product, it is contended, is 

either short lived or the margin of profit is narrow. This is the result 

of competition not only among manufacturers of the same product, but among 

all manufacturers competing for the consumer's dollar. This underscores 

the necessity for having pertinent information available to management, 

information that can be used as a basis for rapidly formulating decisions 

and effecting courses of action. The significance of these observations 

is in the necessity for much faster action than in previous years, and for 

-fewer mistakes in committing companies' resources to an operations course 

of Rction. 

A single development that has- been instrumental in stepping up the 

pace of business activity, and has als~ been providing a means for 

servicing the stepped-up pace, is that of the computer and the technology 

for program~ing and operating it. This combination of equipment and 

technology has made possible the rapid processing of voluminous data, as 

well as analyZing data complexes such as are common to the management 

science field, The reduction of voluminous records and the evaluation 

of complex sets of data provides a source of information that has not been 

available in the past. 

In addition to the data processing equipment, there has been develop

ment in communications which makes possible real time or near real time 

data analysis for decision making. All of this clearly dictates the need 

to develop a system through which the tools of information generation can 

be employed most effectively. It must be possible to develop clear and 

concise elements of information that can be used in the decision-making 

2/3 

\ 



o ~ o \.. 

of 

- 10 - - 11 -

process with a minimum of further analysis or data reduction by the user; It certainly is a function and it has a place among those that define 

that is, by the decision maker, the totality of company activi ty_. Information generation is not new. Rather 

A logical consequence of the foregoing is that management by exception it has been practiced as long as businesses have been operated. The method 

will be and must be practiced. It is not possible and certainly not for doing it, especially its organization within the company, have changed 

necessary for a manager to weigh all the facts that can be developed by over the years and the importance it has played and plays now is certainly 

an information generation system. Rather, he must be given those elements changing. It shall be the objective in the following sections of this 

of information to which he can add his skills and thereby reach the paper to present views as to what constitutes Information Generation, how 

decisions that are most beneficial to the company. it has changed over time, and what might be expected in the future. 

It is also necessary that the Information-Generating process produce ~e may think of this function as an operating process with inputs, 

facts that can be translated directly into routine courses of action. A service, and output stages. This analogy with the operations functions of 

certain percentage, perhaps quite high, of this type of tasks in a company a company will provide a convenient medium for presenting some of the 

can be reduced to decision rules that can be operated upon by an electronic basic ideas. 

computer or, at most, require clerical attention. The net result is that The inputs to the proces3 initiate at various sources. Company 

this will leave additional time to the manager to deal with the more accounting records provide data on costs such as those for personnel, 

complicated decision problems, proolems that cannot, or at least not very power, raw materials, supplies, and others. Operating standards~ capacities, 

readily, be reduced to a decision rule. and facilities availability data can generally be obtained from company 

The intent of these comments has been to demonstrate that the role engineering records. Prices of merchandise offered for sale become 

of the manager, decision maker, is changing rapidly as a result of the available from the company's marketing department. 

technological advances. The business climate within which the decision Institutional data constitute another input to the process. These 

maker works i~ being changed by him and in turn requires that he change would include such items as taxes, insurance, interest rates, freight rates, 

with it. He is, in a sense, a victim of his profession. economic indicators, and the like. Agency data, such as facts about 

Relationships Among Management Information. The Computer. and Personnel industry stock position, and industry prices provide a third source of 

The remarks to this point have been intended primarily to set the input. A fourth source would need be recognized to include estimates by 

stage for a detailed review of the Information Generating function, its knowledgeable persons. There are many blanks in the data requirements 

place in the company, and the impact it may have upon the Decision-Making associated with a given analysis, blanks that must be filled before the 

process. Its impact upon the personnel involved and a review of the analysis can be made. In many cases the best estimates of knowledgeable 

current state of the art will be considered briefly. As a point of persons will constitute the total availability of this type of input 

departure, it will be well to take a look at what is meant by "Information information. 

Generation." The input information is directed into the service phase of the 

21'/ information-generating function, an area designed for and increasingly 
21S 



delegated to the management science personnel. By way of contrast it· 

might be observed that the service phase could be limited to the 

organization of data into reports, tabulations, graphs, ratio tables, 

and the like. This service could be and likely would be provided by the 

The general accounting or by the cost accounting groups of the company. 

management science personnel, however, are, or at least should be, 

qualified to add that element to the information flow which changes it 

from a presentation of history to a basis for deciding upon a course of 

action. 

The management science contribution at this point should therefore 

- 12 -

be to work with operating personnel, decision makers, and upon recognition 

of a business problem, define and formulate it for the analysis phase. 

After the problem has been defined, it is obviously required that the 

~ctual solution be effected and the results prepared in a form that will 

be most useful to the decision maker. 

There is an impressive array of analysis tools available to the 

management scientist with which he is able to cope with the complexities 

of the problems to which reference was just made. 

It is not the intent in this paper to discuss in detail the analysis 

tools that are available. It is rather the intent to describe some of 

the characteristics of the analysis methods and to support a claim that 

Some of the many and powerful tools of this type are available. 

characteristics, with which these analysis techniques can cop~ are: 

1. There are involved, inter-relationships among the factors of 

the problem. These are inter-relationships that cannot be 

dealt with readily by means other than an appropriate mathematical 

formula and the necessary computing facilities. An example of such 

a problem is the one in which shipping schedules are formulated. 

The factors of this problem are the supply of the homogeneous 

21fo 

F' " ) 

- 13 -
product at a number of origin points, the demand for the product 

at a number of destination points, and the shipping cost per unit 

for moving a unit of the product from a point of origin to a 

point of destination. The objective in the solution is to find 

that combination of routes which, if followed, will transfer the 

merchandise from the points of origin to the destinations at the 

lowest possible total freight cost. In working with problems of 

this type, it is soon found that interaction frequently necessitates 

the use of the rates, other than the lowest because, if this were 

not done, another rate of even greater disadvantage would be 

forced into use. This is all brought about by the complex 

inter-relationships of the factors in the problem. Solution to a 

problem of this type is brought about readily with the analytical 

tool known as the Transportation Model. 

2. In these problems there is either a maximum or a minimum that 

must be found and that serves as a criterion in evaluating the 

solution. In the Transportation Model, the minimum freight bill 

is found, whereas in another type of analytical tool a maximum 

profit might be found. 

3: The solutions to problems may lead directly to the application 

of results in a routine type course of action or they may lead. to 

alternative courses of action in a planning type analysis. In the 

latter case various conditions might be evaluated through a 

simulation of the process. 

In direct solutions there must have been a prior implementation of 

the procedure so that the results of a given analysis can be fed directly 

to it. This is a form of automated decision making. 

In another case, the output of the information-generation process, 

frequently involving simulation, takes the form of a report to management. 

217 

o ./ 

, 



o 
- 14 -

The manager or decision maker receives this information and adds to it 

his knowledge of the process. This, then, is the basis upon ~hich decisions 

about a course of action ~an be made. 

In the discussion of the service phase of this function it was 

pointed out that direct solutions might be used in implementing courses of 

action where a procedure has been implemented and where the course of 

action is routine. In thpse cases where that is not done, there is 

management by exception; that is, the manager is concerned with those 

steps in the operation of a business that cannot be processed or put into 

force through decision rules programmed into an electronic data processing 

system, 

The output from the service phase of the information-generating 

process may there~ore take two forms. It may be a decisi~n rule that can 

put into effect routine courses of action through the medium of ~he data 

processing system or the int~rventiun of a clerk. In the other ease, and 

in a more important sense, the output will be guides ~~r personnel in the 

decision-making function who will act to initiate those courses of action 

that are associated with planning and t~e operations function of the 

company. 

A system does not function without people, and therefore, consideration 

must be given to the personnel involved in the Information-Generating 

function. Just as there is no clear distinction between persons involved 

in the decision making and in the operating functions, there is also no 

clear distinction among persons involved in information generation and the 

other functions in the company. It is rather to be found that the persons 

in the company are or should be aware of this function and become associated 

with it in whatever position they may hold. They may be involved directly, 

as. suppliers of data, as a user of the output, or in a capacity that is a 

combination of these. 

2/8 

~ ~ 

- 15 -

A logical way to establish who is part of the information-{Tnerating 

function and what the relationship between those persons and others outside 

that function is, is to consider this in the light of information flow. A 

look at the input-service-output analogy discussed in the preceding section 

will provide some guidance. 

The output of the Inf~rmation-Generating function is the input to the 

Decision-Making function and takes the form of reports that have been 

developed from prime data. The prime data is the input to the Information

Generating system. The personnel involved,- theref-Dre, include those 

responsible for supplying data from prime records, those who analyze the 

data, and those who deliver the output to the decision-making personnel. 

A question that can and must now be considered is concerned with the 

relationship between accounting and management science personnel. If an 

integrat€d and consistent flow of information is to be generated it is 

not reasonable to expect that some reports into the decision-making process 

shall originate in the accounting group and others in the management science 

group. There can be n{) guarantee that such an arrangement will assure 

consistent and noncontradictory information. It creates the possibility 

of sending still picture type of information into the Decision-Making 

process when the dynamics of the business call for information of the motion 

picture type. The conclusion that follows from these comments is that the 

Information-Generating function must be organized and managed in such a 

way that it will assure the generation of the most valuable information 

possible and that it will be sent in its most appropriate form into the 

Decision-Making function. 

The comments made in the preceding paragraphs suggest that there might 

need be a change in the concept of information ge·neration today as compared 

with that applying in past years. The idea of information generation is 

not new, but some concepts associated with the total management information 

219 

\. 

~ 



- 16 -

methods has in it aspects to which there must be adjustment by the personnel 

involved in that function. Some observations about the difference of 

concept may be itemized as follows: 

1. Reports based on individual studies could be, and many times 

should be, replaced by information logs derived from a series 

of simulation analyses. This replaces the static snapshot report 

with the dynamic motion picture type report. 

2. Reports of individual projects will be, and certainly can in 

• any places, be replaced by the results of team effort. Team 

effort has in its favor, many attributes even though it does 

carry with it the problem of rivalries, and other problems 

associated with having persons work as a team. 

,. A greater reliance will be placed on decision rules programmed 

into the data processing system. This will be true partly 

because of the much 8reater magnitude of data that needs be 

reyiewed and also becaus-e $)f. the analytical and data processing 

techniques that are available for accomplishing this. This will 

lead to greater eBphasis on management by exception. 

4. The environment or cl~mate within the company must be created in 

which the Information-Generating fun~tion can be executed 

effectively. Mana8ers must realize that the working paper study 

or report ·cannot and does not give them all the information they 

need for decision-making responsibilities. The manager must also 

learn to accept t!1at a. large part of the routine decisions for 

which .he may be responsible can be rrocessed on electronic equip-

ment. The reluctance to relinquish detailed control over the 

activities for which he is responsible can prove to be one of the 

greatest hindrances in establishing a management information 

system. 

~, 
\, ) 

220 

F\ ',- ) 

- 17 -

5. It must be recognized that the electronic data rro::e~"i~.G equip-

ment can serve a purpose much greater than that served in billing, 

processing ac~ounts receivable and accounts payable, recording 

inventory and the like. The electronic equipment properly 

managed by technically trained management science personnel can 

produce that element in the Information-Generating function that 

could tip the scale from mediocre to high level and effective 

decision making . 

In sultmary, let us conclude that management information is the 

Froduct $)f our efforts which, when coupled with a well-executed 

Decision-Making function, puts into effect the correct courses of action 

wi th respect to business problems, and \~hich in turn finti e;:;-'"ession 

in profit generation. 

22/ 

!~"; 

.,( 

f 



C: 

o 

KINGSTON FORTRAN II 

FOR THE IBM 1620 DATA PROCESSING SYSTEM 

by: 

J.A.A. Field,l D.A. Jardine,2, E.S. Lee,l 

J.A.N. Lee,s and D.G. Robinson2 

Presented at the Joint Canadian-Midwest Region 
Meeting of the 1620 Users Group, Chicago, 

February 19-21, 1964 

l. Dept. of Electrical Engineering, University of Toronto, 
Toronto, Ontario. 

2. Research Centre, Du Pont of Canada Limited, Kingston, 
Ontario 

3. Computing Centre, Queen's University, Kingston, Ontario 



o 

ACKNOWLEDGEMENTS 

During the early stages of developing this 
many people in the 1620 Users Group were canvassed 
useful ideas on compiler and systems construction. 
those who, in any way. contributed to this venture, 
authors extend their heartfelt thanks. 

system, 
for 

To all 
the 

We would like to recognize the following people 
who made particularly useful contributions to the project: 

J.W. Holmes 1 
- for his extremely well written arithmetic 

and function subroutines which appear, with 
some modification, in this system. 

F.R. Maskiel12
- for many helpful suggestions, particularly 

in the coding and testing of the arithmetic 
and function subroutines. 

C.R. Davidson3 - 1620 Users Group representative on the 
A.S.A. Fortran II subcommittee, for 
explaining to us the structure of American 
Standard Fortran II, and for pointing us 
in the right direction for extending the 
language. 

1. Cooper-Bessemer Corp., Mount Vernon, Ohio. 

2. McGraw-Edison Corp., Penn. Trans. Div., Canonsburg, Pa. 

3. University of Wisconsin, Madison, Wis. 



- 1 -

HISTORY 

The writing of compilers seems to be one of the 
more popular pursuits of the members of the 1620 Users 
Group. At least six different FORTRAN compilers for the 
1620 have been written by non-IBM personnel, which 
testifies to the enthusiasm and ability of 1620 users and 
to their very real desire to build the best possible 
mousetrap. 

All previous user-written compilers have accepted 
variations of the FORTRAN I language, with the exception 
of the University of Wisconsin FORGO, a load-and-go 
compiler for student problems, which accepted a somewhat 
restricted FORTRAN II. To our knowledge, KINGSTON 
FORTRAN II is the first user-written FORTRAN II for the 
1620. We hope that this initial effort will encourage 
others to tackle the problem and improve on our system in 
the same way that improvement followed improvement in the 
user-written FORTRAN I compilers. 

The initial impetus for KINGSTON FORTRAN II ca.me 
in about August 1963, from those of us living in Kingston, 
Ontario, when we started to find out how UTO FOR~AN 
operated, with the intention of providing a suitable 
FORTRAN for a 40K 1620. It soon became apparent that 
many useful features of FORTRAN II could be incorporated 
at little extra work. Messrs. Lee and Field, authors of 
UTO FORTRAN, were approached for ideas and suggestions, the 
outcome of which was a decision to join forces. After some 
preliminary discussion, it was found that it would be no 
more work to write a whole new system than to make the 
desired alterations in UTO FORTRAN. 

The basic concepts were conceived in three 
rather long evening sessions during the October 1963, 
1620 Users Group Meeting in Pittsburgh, Pa. By the end 
of this meeting the source language structure and the 
organization and general logic of the compiler were 
developed and agreed upon. The various sections were 
then allocated to the individuals best qualified to 
handle them. By the first week in January, the main 
sections of the compiler had been written and tested 
and it remained to tie the pieces together in a operating 
system. This was done in Kingston, Ontario, during late 
Janu.ary, when all 5 authors worked for five days on two 
identical 40K 1620's (Du Pont of Canada and Queen's 
University) • 



- 2 -

We hope that Users with 40K 1620 l s will find the (~' 
system useful and easy to operate. We have tried to 
include every useful idea from other people1s efforts so 
that the system would be as speedy and compact as possible. 

The work was divided as follows: 

J.A. Field - Input/Output statements, DO statements, 
input/output subroutines, FORMAT . 
statement. 

D.A. Jardine - Arithmetic and fu.nction subroutines, 
write-ups and operating manu.als. 

E.S. Lee - Compilation of arithmetic expressions. 

J.A.N. Lee - Compilation of everything not handled 
by the other authors. 

D.G. Robinson - Symbol table organization, including 
COMMON, DIMENSION, EQUIVALENCE, TYPE. 



- 3 -

KINGSTON FORTRAN II 

This write-up describes a FORTRAN system for the 
IBM 1620 equipped with automatic division, indirect 
addressing, additional instructions (TNS, TNF, MF), 
card input-output and minimum 40K memory. It is assumed 
that a Model E-8 or larger 407 is available for listing. 

The language is that of IBMts FORTRAN II with a 
few modifications and a number of additions. For the 
pu.rposes of this write-up it is expected that the reader 
is at least on speaking terms with the FORTRAN II 
language. 

The compiler for this system batch compiles a 
source program in one pass, at approximately. twice the 
speed of existing compilers for the 1620. The execution 
speed of the object program is also approximately twice 
that of IBM's FORTRAN II. Considerable effort has been 
made to speed up all important parts of the system; in 
addition, more core storage is available for the object 
program than existing FORTRAN II compilers allow. 

SOURCE PROGRAM CARDS 

These are as required for IBM FORTRAN II. Any 
number of continuation cards are possible, but the 
statement may not contain more than 300 characters 
(blanks not included except in Format statements). 

ARITHMETIC PRECISION 

Real numbers: 8 digit mantissa, 2 digit exponent. 

Notation is excess 50; (i.e. 1.0 ~ 5110000000) 

Integer numbers: 4 digits, modulo 10000 

VARIABLES 

These are as in IBM FORTRAN II. 1 to 6 
alphabetic or numeric characters, starting with a letter, 
which, for integer variables, must be one of I, J, K, L, 
M, N, unless otherwise specified in a TYPE declaration. 

SUBSCRIPTS 

A variable with, at the most, two subscripts 
appended to it can refer to an element of a one- or two
dimensional array. Three dimensional subscripting is not 
permitted. A subscript may be an expression of any 



- -'--- ... - -"- ..... -.... '- .. --~-

- 4 -

desired complexity, provided only that the result of the 
evaluation or the expression be an integer quantity. 
This should be positive if you want to avoid trouble. 
However, a zero or a negative subscript can be used. To 
use this effectively, the programmer must know how data 
areas are laid out in memory. See the operating 
ins t,ruc t ions: 

Examples of Subscripts: 

I 
3 
2+MU 
MU+2 
J*5+M 
5*J 
6*J-K+2-l0/L+M 
4*J(K+2-L+M)+K(M(N+2))/3 
FIXF(A*B+3.0**SIN(X))+L/2 

The variable in a subscript may itself be subscripted, and 
this process of subscripting may be carried on to any 
desired depth of subscripting. It can, in fact, be carried 
far beyond the point where the average programmer understands 
what he is doing. 

SUBSCRIPTED VARIABLES 

Only singly or doubly subscripted arrays may be 
defined. The size of these must be specified in a DIMENSION 
statement. 

EXPRESSIONS 

These are defined and organized exactly as in IBM 
FORTRAN II. 

LIBRARY FUNCTIONS 

Ten library (closed) functions are included in the 
KINGSTON FORTRAN II System. These are listed in Table I. 



(~ 

(~ 
. -,/ 

- 5 -

TABLE 1 

Closed Subrou.tines 

Function Funct~on No. of Type Of 
Definition Name(s) Arguments Function Argu.ment 

Sine of the argument SIN 1 Real Real 

Cosine of the argument COS 1 Real Real 

Exponential (ex) of the EXP 1 Real Real 
argument 

Natural logarithm of 
the argument LOG 1 Real Real 

Arctangent of the ATAN 1 Real Real 
argument 

Arctangent of (argJ./ 
arga) ARCTAN 2 Real Real 

Signu.m of tne argument; 
=-l.for X<O. ,=0. for 
X,O.,=+l. for X>O. SIGNUM 1 Real Real 

Absolute value of Arg 1 
with the sign of Arg 2 SIGN Real Real 

Choosing the larger value 
of the two arguments AMAXI 2 Real Real 

Choosing th.e smaller 
value of the two 
arguments AMINI Real Rea.l 

Table 2 lists the open or bu,11 t-in funotions. These are 
compiled in-line every time the funotion is referred to, 

Funotion 
Definition 

Absol~te value of 
the argu.ment 

TABLE 2 

Funotion No. of 
Name Arguments., 

ABS 
ABS 

1 
1 

Type of' 
Funotion Argu,ment" 

Real Real 
Integer Integer 

Table 3 lists closed functions whioh are permanently 
stored in the maohine, whether or not they are mentioned by 
name in a FORTRAN sou,rce program. 



- 6 -

TABLE 3 

Function 
Definition 

Function No. of 

Floating an integer 

Truncation, sign of 
argument times value 
of the largest 
integer in the argument 

THE ARITHMETIC STATEMENT 

Name Arguments 

FLOAT 1 

FIX 1 

Type Of 
Function Argument 

Real Integer 

Integer Real 

The arithmetic statement is the same as in IBM 
FORTRAN II except for the extensions in complexity of 
evaluation of subscripts. 

CONTROL STATEMENTS 

The control statement flexibility in standard 
FORTRAN's leaves something to be desired, particularly 
where the program is complex and core storage is at a 
premium. These conditions, it might be noted, are the 
normal ones for almost all problems. KINGSTON FORTRAN II 
attempts to improve this situation by expanding the 
capabilities of the ASSIGN and assigned GO TO statement 
and by extending the ASSIGN concept to the other control 
statements. 

ASSIGN STATEMENT 

ASSIGN i to n 

In IBM FORTRAN II, the ASSIGN statement is used 
only in conjunction with an assigned GO TO statement. 
For instance, 

ASSIGN 3 TO J 

GO TO J, (3,5,9,243) 

will cause a branch to the statement numbered 3. 

The effect of the ASSIGN statement is to "equate" 
the non-subscripted integer variable J to statement number 
3. The subsequent GO TO J, (3,5,9,243) is then interpreted 
as GO TO 3. 



c 

- 7 -

In KINGSTON FORTRAN II, this concept has been 
modified and expanded considerably. To describe these 
changes, the following definitions are used: 

Statement Label - A statement label is the name attached 
to the memory location containing the first instruction 
compiled from the statement identified by the label. There 
are two kinds of statement labels: 

Numeric Statement Label - usually known as a 
statemeiit-numoer:--Aii-unsigned integer number of 
from one to four digits long. 

Alphabetic Statement Label - A variable which may 
fie-sufiscrlptea-to-aiiy-aeslred complexity and which 
by one or more ASSIGN statements has been equated 
to a numeric statement label (statement numper). 

It is most important to realize the difference between a 
statement label and an arithmetic variable. ASSIGN 3 TO J 
will place in J the address of the first instruction compiled 
from statement number 3. J = 3 will cause the number 0003 
to be placed in J. The sequence of statements 

ASSIGN 3 TO J 

GO TO J 

will cause a branch to statement numbered 3. 

J = 3 
GO TO J 

will result in disaster. Moreover, 

ASSIGN 3 TO J 

J = J + I 

GO TO J 

However, 

will not transfer control to the statement numbered 4. 
Arithmetic on assigned variables is not permitted; assigned 
variables are not in any way the same;as arithmetic variables, 
except that they may be subscripted and stored in an array_ 
They may also appear in COMMON, DIMENSION, and EQUIVALENCE 
statements. 

It is possible in KINGSTON FORTRAN II, to equate'two 
alphabetic statement labels by an ASSIGN statement. If the 
first statement label in the ASSIGN stateme!n.it.:(;~f?'r,,~).phab;~ti;G, 
it must be enclosed in parentheses.;·~!"~'(;·';"~!~}··<; \Jj 'ie' 



- 8 -

The following examples illustrate the ASSIGN statement: 

ASSIGN 3 TO N 
ASSIGN (N) TO J 

ASSIGN 3 TO I(K) 

(St. label N is equated to st. label 3) 
(St. label J is equated t~ St. label N) 
(same as the line above. J must have been 

ASSIGN (I(K)) 

defined before this statement and I must be 
dimensioned). 

TO L(3+M/4-M**3) 
(same as above. The alphabetic statement 
labels can be subscripted as desired). 

Since the primary definition of a statement identifier is its 
occurrence as a statement number, it is necessary that any 
given statement identifier must ultimately be defined (through 
a series of ASSIGN statements if necessary) in terms of a 
statement number. Failure to observe this rule will cause 
trouble. For example, 

3 A = B 

ASSIGN (J) TO K(L) 

is not correct, because J has not been associated with any 
statement identifier when the ASSIGN statement is executed. 
However, 

3 A = B 

ASSIGN 3 TO J 

ASSIGN (J) TO K(L) 

is correct. 

Alphabetio statement labels may be used in tne 
following oontrol statements: 

GO TO (both unoonditional and aSSigned) 
IF (SENSE SWITCH i) 
IF (arithmetio expression) 
Computed GO TO ' 

Alphabetio statement labels may ~ be used in a DO statement. 

GO TO STATEMENT 

GO TO n unconditional GO TO 
GO TO n, (nl,na,---nm) assigned GO TO c 



CI 

c 

- 9 -

where n is a statement label. If n is alphabetic, then it 
must previously have been defined in an ASSIGN statement. 
The assigned GO TO statement is treated exactly like the 
GO TO statement. The comma and parenthesized list are 
optional and will be accepted but ignored by the compiler. 

C9mputed GO TO Statement 

GO TO (n1,n2,n3---nm),i 

where n1,n2---nm are statement labels. If alphabetic they 
must have been previously defined by ASSIGN statements. 
i isa fixed point (integer) variable or expression. i may 
be subscripted as desired o 

I I 

ARITHMETIC IF STATEMENT 

IF(a)n1,n2,ns 

where a is an integer or real (floating point) expression 
of any complexity, and n1,n2,n3 are statement labels. If 
alphabetic, n1,n2,n3 mu,st have been previously defined in 
ASSIGN statements. 

IF (SENSE SWITCH) STATEMENT 

IF (SENSE SWITCH i)n1,n2 

where i is a one or two digit unsigned integer number or an 
integer expression, and n1,n2 ,are. statement labels. If i is 
an integer expression, the low order two digits of the value 
of the expression are used as the value of i. The two digit 
numbers resultin'g from this are the numbers of machine 
indicators, not just console switches. 

THE DO STATEMENT 

where n is a statement number, i is an unsigned integer 
va.riable which may be subscripted and m1,ID2,ms are 
integer variables or integer expressions of any desired 
complexity, positive or negative. n may not be an 
aIpl'iaEetie statement label, and i may not-oe an expression. 
There are no particular restrictions on1ffi1,~,mS. In 
particular they may be positive or negative quantitieso 
If m1=m2, the DO will be executed once only. m1,m2,mS 
should be chosen so that the DO loop terminates. See below 
for an example of a never-ending DO-loop. 

Example: 

DO 5J = K+L-5, M-I(JOB(KK)),-L 



- 10 -

If m~,1112 ,'ms are expressions, their values are the values of 
the expressions when the DO statement is encountered at 
object time, and these values are unaffected by alteration 
inside the DO of the values of the variables in the 
expressions IDl,ID2,mS. 

As a result of allowing positive or negative values 
for m~,ffi2,m3, it is legal to have DO loops which count 
down. For example, 

DO 3 I = 10, 1,-1 

will cause I to run from 10 to 1 in steps of (-1). The 
following is also permitted. 

DO 10 J ~ -10,5,2 

which will cause J to assume successively the values -10, -8, 
-6, -4, -2, 0, 2, 4. If the DO variable assumes zero or 
negative values, it may be used, with caution, as a subscript. 
Intelligent use of negative or zero subscripts demands 
knowledge of the layout of data areas in memory, as described 
in the operat1.ng instructions. 

Care should be taken to see that the DO index 
terminates properly. For instance, 

DO 20 K = -10, -1, -2 

will increment nearly 5000 times before termination. 
same is true of 

DO 40 K = 10, 1, 2 

The 

Termination in both cases occurs becau.se integer arithmetic 
is performed modulo 10000. 

All the restrictions on DO statements currently 
imposed by IS. FORTRAN II are also in force in KINGSTON 
FORTRAN, except as already mentioned. 

CONTINUE STATEMENT 

Same as IBM FORTRAN II. 

PAUSE STA~EMENT 

PAUSE 

PAUSE n, where n is a fixed point constant, variable 
or expression. 

{r 
\L/ 



c 

- 11 -

The typewriter types PAUSE n, together with error 
messages (see operating instructions) and the machine halts. 
If n is a variable or expression, its current value is typed. 
PAUSE (without n) generates an in-line halt command; there 
is no typing. In either case, depression START will cause 
resumption of program. 

STOP STATEMENT 

STOP 

STOP n, where n is a fixed point constant, variable 
or expression. 

The typewriter will type STOP, followed by the 
current value of n. If n is not specified, STOP 0000 will 
be typed. CALL EXIT is then executed (see operating 
instructions). 

END STATEMENT 

END is an instruction to the compiler that the 
program is complete. An END statement must be physically 
the last card of the main line program and of each sub
program which is associated with the job. The END statement 
results in CALL EXIT except in a sub-program, where it is 
interpreted as a RETURN statement. 

FUNCTION AND SUBPROGRAM STATEMENTS 

FUNCTION and SUBPROGRAM statements are the same in 
KINGSTON FORTRAN as in IBM 1620 FORTRAN II, and the same 
restrictions apply. 

Because the compiler is one-pass, the subprograms 
are not compiled separately from the main program. See the 
operating instructions for further details. 

INPUT/OUTPUT STATEMENTS 

The INPUT/OUTPUT statements in KINGSTON FORTRAN II 
are similar to those of IBM FORTRAN II, except that 
expressions are permitted, as well as simple variables, 
in certain places in INPUT/OUTPUT lists. Indexed lists, 
array names (to handle a whole array) and all other standard 
FORTRAN II features are allowed. It is not necessary to 
specify a FORMAT statement number in an I/O statement. If 
no FORMAT statement number is given, the system will supply 
FORMAT (5N). See the description of FORMAT for an 
explanation of FORMAT (5N). 



- 12 -

The permitted INPUT/OUTPUT sta~ements are: 

READ (card input), ACCEPT TAPE, ACCEPT (input on console 
typewriter), REREAD (re-reads last input record), POOCH, 
PUNCH TAPE, TYPE (console typewriter), PRINT (on-line 
printer) . 

Indexed I/O Lists 

As in IBM FORTRAN II, the statement 

READ 10, (( A ( I "J ), 1=1, 10 ), J = 1 , 10 ) 

will cause 100 numbers (A(l,l) -to A(lO,lO) to be read into 
array A. Similarly, 

READ 10,((A(I,J), I=K,L), J=M,N) 

will cause various elements of A to be read in under the 
control of the indices I and J. 

In KINGSTON FORTRAN II, the limits on the implied 
DO's (I=K,L; J=M,N) may be expressions. Furthermore, the 
names of the input variables may be subscripted to any 
desired depth (not exceeding 40). For example: 

READ 10,((A(I(Kl), J(Ml), Kl=K-JOB*2,L+5-J6),Ml=M*S-MM9,N-3*NlS) 

will be executed as 

DO 100 Ml = M*S-MM9, N-3*NlS 

DO 100 Kl = K-JOB*2,L+5-J6 

100 READ 10, A(I(Kl), J(Ml)) 

where I and J are names of one-dimensional arrays which mu.st 
previously have been defined. 

KINGSTON FORTRAN II permits the same kinds of 
expressions in indexing as are permitted in standard DO state
ments. The implied DO in and I/O list may run forward or 
backward, and may have integer expressions of any desired 
complexity. 

INPUT LISTS 

In an input list, the variables may be only simple 
variables or indexed variables. Input of expressions is 
meaningless, and not permitted. For example: 



c 

- 13 -

READ 10, M, Q, A(I(K+4*L), M(N-5*L+4)),B 

is permitted, provided I, K, L, Nand M are previously defined. 

READ 10, A+B-C(K) is not permitted. 

OUTPUT LISTS 

Output lists may be fully indexed lists, as 
described above. In addition, expressions may appear in the 
list as output qu.antities. For example: 

PUNCH 20, C*D/(LOGF(X-Y*Z)+10.3, Y, D 

will cause 

C*D/LOGF(X-Y*Z)+10.3 

to be calculated atthe time the punch statement is encountered 
and its value to be punched, together with the values of Y and 
D, on a card, according to Format statement 20. The value 
of the expression in an output list is lost when it is 
output, and is not available for further calculation. The 
expression in ao--1/0 list may be of any desired compleXity, 
and may be indexed as required, either by DO statements, or 
by implied DO statements in the list itself. For example: 

PUNCH 20, ( (( C*SQRTF (A (I,J) ) -M (I) ) ,I=1,L+4,3) ,J=I+l ,K-lO,5) 

will cause values of C*SQRTF(A(I,J))-M(I) 

to be punched out for values of J from 1+1 to K-IO in steps 
of 5 and values of I from 1 to L+4 in steps of 3. 

ASSIGNED FORMAT NUMBERS 

Format statement numbers may be assigned by ASSIGN 
statements in the same way any other statement number can. 
Hence, input/output statements may use alphabetic statement 
labels in place-of Format statement nu.mbers. For example, 
the following program is permitted: 

3 FORMAT (5(I3,FlO.5)) 
4 FORMAT (515) 
5 FORMAT (5I7) 

ASSIGN 3 TO J 
ASSIGN 4 TO K(l) 
ASSIGN 5 TO K(2) 
READ J, (M ( I ) , A ( I ), I =1 ,5 ) 
PO 10 L=1,2 

10 READ K(L), (M4(I), I=1,5) 



____ ~ - --- ----- -- - -- --c- - --_ ----.--__ 

- 14 -

Note that the first statement will be executed according to 
Format statement 3, while the second READ statement will be 
executed according to Format statement 4 when L=l, and 
according-to Format Statement 5 when L=2. 

The subscripted variables in all the above examples 
must previously have been mentioned in a DIMENSION statement. 

ARRAY NAMES IN I/O LIST 

As in IBM FORTRAN II, array names without subscripts 
may appear in I/O lists. Mention of an array name will 
cause the entire array, as specified in the DIMENSION 
statement to be input or output. Two dimensional arrays 
are handled column-wise -

DIMENSION A(lO,lO) 
READ, A 

will cause the entire 100 elements of A to be read in, in 5N 
notation. The elements of A must be in order A(l,l), A(2,1), 
A(3,1), A(4,1), A(5,1), A(6 f l), etc. 

FORMAT STATEMENTS 

Format statements are, in general, equivalent to 
Format statements allowed in 7090/94 FORTRAN II. E, F, I 
and A conversion are permitted. Repetition of field format 
is allowed before E, F,I or A. Thus FORMAT (I2,3E12.4) is 
equivalent to 

FORMAT (I2,E12.4,E12.4,E12.4) 

Parenthetical expressio n is permi tted in order to 
enable repetition of data fields according to certain Format 
specifications within a longer FORMAT statement. The number 
of repetitions is limited to 99. Thus, 

FORMAT (2(FlO.6,ElO.2),I4) 

The level of parenthesizing can be extended to a second level, 
thus: 

FORMAT (2(I4,2(F6.2,F8.3))) is equ.ivalent to 

FORMAT (I4,F6.2,F8.3,F6.2,F8.3,I4,F6.2,F8.3,F6.2,F8.3) 

The depth of such nesting of parentheses must not exceed 5, 
which appears to be more than would ever be necessary. 



CI 

o 

- 15 -

N-Format 

Rigid format on input data is not always desirable, 
and in many cases makes key-punching more difficult. 
KINGSTON FORTRAN allows so-called "free form" input, as well 
as the more familiar fixed or rigid format. If the FORMAT 
statement specifies I, E or F format on input, then the 
input data record must conform to the normal rules for such 
format as specified in IBM manuals. However, if N format 
(denoting ufree form") is used, the data numbers may appear 
anywhere on the card, and input is controlled by the input 
list. 

N format is used like E, F or I format except that 
no width or decimal point location digits are required or 
permitted. For example, 

READ 10, I, J, A, C, Z 
10 FORMAT (5N) 

will cause the program to read in a record of 2 integer 
numbers followed by 3 floating-point numbers. In N format, 
a number is defined as: any number of leading blanks, 
followed by a meaningful collection of digits, followed by 
1 trailing blank. Note that the blank column immediately 
following the right-most digit or character of the number 
is considered part of the number, and serves to delineate 
the right-hand end of the number. 

In the case of E numbers handled with N-format, 
blanks after the letter E are ignored, and the machine 
uses the next set of digits as the exponent. For example: 

bl.2345678E-05b 

will be interpreted as .000012345678. 

The number bl.2345678Ebbbbb-05b 

will be interpreted in the same way. 

bl.2345678Ebbbbl03 

will result in an error condition (see operating instructions). 

bl.2345678E bb 00005 

will be interpreted as 123456.78. Leading zeros before 
either the mantissa or exponent are ignored. 



- 16 -

An E- type number handled by N-format ends with the 
blank after the exponent digits. 

A FORMAT statement may specify N, E, F, I or A format 
as required, thus allowing both free and rigid format on the 
same card. Note that, in N format, if a floating point 
number does not have a decimal point, it is assumed to be 
after the low-order digit of the number. 

Some examples may help: 

READ 10, I, J, A, C, Z 

10 FORMAT (5N) 

The card might look like: 

bb123bbbbbb12bbb16.3bbbbbl.2E6b123000bbb etc. 

N Format requires only that at least 1 blank column 
follow the number. In this case, I, J, A, C, Z would be 
stored as 123, 12, 16.3, 1.2E06, 123000. resp. 

READ 11, I, J, A, C, Z 

11 FORMAT (13, 16, N, FlQ.3, N) 

The Format requires that I, J, C follow rigid forma-t. 
The card might look like: 

-l
b12bbb12bbbbbb120.bbbb1234567bbb16.8bbb etc. 

This would give the following results: 

Variable 

I 
J 
A 
C 
Z 

Value 

12 
120 
120. 
1234.567 
16 .. 8 

Note that the F-spec1fication for C starts on the 
first column after the blank following 120., (see the position 
of the arrow) since this blank is considered part of the 
value of an N-Format number. 

An output, N format 1s equivalent to IPE14 .. 7,lX 
for floating point numbers, and I5,lX for integer numbers .. 



C:' 

- 17 -

N Format allows repeated format and parenthesizing, 
and follows the usual rules for them. 

If a number is positive, the output under E, F, I 
or N Format will not contain a leading plus sign. On I 
Format, no space is left for it, so that it is possible to 
construct a fully packed output record provided all numbers 
are positive. N Format generates a space for a + sign and a 
space following the number. 

If a floating point number is output under Iw Format, 
the integer part of the floating point number is convered to 
Iw Format. Thus 128342.56 output with 110 Format would 
appear as bbbb128342. 

SCALE FACTORS 

To permit more general use of E and F conversion, a 
scale factor followed by the letter P may precede the 
specification. The scale factor is defined such that 

scale factor Output number = internal number x 10 

t b la -scale factor In ernal num er = input number x 

This operates exactly the same as in IBM FORTRAN II for the 
larger machines. For example 

FORMAT (2PF~0.4) 

used on output will multiply the number by 100 before output. 
On input, it will divide the external number by 100 before 
storing it in the machine. 

On E-Format output, the effect of P-scaling is to 
shift the decimal point in the mantissa and to adjust the 
exponent by the amount of the shift. 

Thus, if FORMAT(E15.8), used for output, produced 
the number .12345678E-04, then FORMAT (3PE15.5) would produce 
123.45678E-07 for the same number. Note that for E-Format 
output, P-scaling does not change the magnitude of the number. 
It shifts the decimal point, and makes a compensating change 
in the ex onent. For F-Format P-scalin alters the rna nitude 
of the number on in ut out ute 

VARIABLE FORMAT 

KINGSTON FORTRAN II allows variable Format. That is, 
Format specifications may be read in at object time. In this 
way, data may be read in under control of a Format Statement 
which itself has been read in. Variable Format statements 
must be read under A-Format into an array by means of a' 
normal Read statement. 



- 18 -

For example: 

DIMENSION FMT (15) 

READ 10, (FMT(I), 1=1,14) 

10 FORMAT (15A5) 

will cause 70 characters of input record (i.e. the Format 
Statement being read in) to be stored in array FMT. It is 
then possible to write: 

READ FMT, A, B, X, Z, (A(J),J=l,lO) 

where the input variables will be read in according to the 
Format Statement stored in array FMT. 

It is also possible to alter array FMT by programming. 
This should be done with some care, otherwise the Format 
Statement stored in array FMT may become completely 
unintelligible. 

The name of the variable Format specification must 
appear in a DIMENSION Statement, even if the Array size is 
only 1. 

The Format read in at object time must take the same 
form as a source program Format Statement except that the 
word Format is omitted, i.e. the variable Format begins 
with a left parenthesis. 

SPECIFICATION STATEMENTS 

COMMON 

Variables, including array names, appearing in 
COMMON statements will be assigned core storage locations 
beginning at the high end of memory, and will be stored at 
ob ject time in. ,descend tng sequence, 10 d igi ts per variable, 
or per item of a dimensioned variable, as they are 
encountered in the COMMON statement. If a variable is a 
dimensioned variable, i:;he size of the dimensioned array must 
appear in the COMMON statement, and the variable must not 
again be dimensioned in a DIMENSION statement. The COMMON 
statement must precede EQUIVALENCE or DIMENSION statements 
(if any) and must precede the first statement of the source 
program. For example: 

COMMON A,B,I,J,X(lO,3),Y(5) 

(Inclusion of dimensioning information in COMMON statements 
is allowed in FORTRAN IV). 



('~"','., I 

-' 

- 19 -

DIMENSION 

The DIMENSION statement is the same as IBM FORTRAN II 
except that variables already mentioned in COMMON may not 
again be dimensioned and that only 2 subscripts are allowed. 

DIMENSION Z(10,5),V(400) is permitted 

DIMENSION X(10,5,10) is not permitted 

EQUIVALENCE 

EQUIVALENCE (a,b,c,---), (d,e,f,--),---

where a,b,c,d,e,f, are variable names. KINGSTON FORTRAN 
imposes some restrictions on EQUIVALENCE statements which are 
not pesent in IBM FORTRAN II. These are noted below: 

1. Single variables may be equivalenced only to single 
variables. 

2. Arrays may be equivalenced to other arrays, of the same 
size only. 

3. Single variables may not be equivalenced to individual 
items of arrays, nor may single items of two arrays be 
equivalenced. In general,' no subscripts may appear in 
an Equivalence statement. 

4. Because the compiler is single pass, it is crucial that 
the order in the source deck be: 

COMMON (if any), DIMENSION (if any), EQUIVALENCE (if an y ) . 

They must precede the first executable statement of the 
program. 

5. If arrays are to be equivalenced, the first item only. 
in the list must have been defined previously in a 
COMMON, or DIMENSION declaration, and the remaining items 
in the list must not have been so defined. The 
Equivalence statement itself defines these remaining 
items. If single variables are to be equivalenced, and 
any item in the Equivalence list has been defined in a 
previous COMMON or TYPE statement, it must be first in 
the Equivalence list, and the other items must not have 
been defined in a COMMON or TYPE statement. For example, 

COMMON A,B(10,3),C 
DIMENSION D (50) 
EQUIVALENCE (A,F,G),(D,X) 

This puts A, array B, and C in common storage; defines 
array D; defines F and G as single variables in the same 
memory location as A; and defines X as a 50-item vector in the 
same location as D. The following are errors: (in the 
example above). 



-. ....,...-.....-.- . __ ._._ . ....-_--...... --..--..., ... ....,..,.......- ....... -~- ,-- ~..... --

- 20 -

(para.l,2) 
(para. 3) 
(para.5, X not defined) 
(para.5, G not defined, 

EQUIVALENCE (D,A) 
EQUIVALENCE (B(l,l),G) 
EQUIVALENCE (X,D) 
EQUIVALENCE (G,A,F) 

A defined) 
(D(50),X(50)) (para.3) EQUIVALENCE 

6. To preserve compatibility with other FORTRAN systems, 
which require DIMENSION statements for all array variables 
in an Equivalence list, KINGSTON FORTRAN allows extra 
DIMENSION statements after the Equivalence statements. 
Such DIMENSION statements may be used to mention the 
equivalenced variables, but since they have already been 
defined in the Equivalence Statement, the compiler will 
ignore them. It will not, however, call them errors. For 
example: 

DIMENSION X(lO), Y(20) 
EQUIVALENCE (X,A,B), (Y,C,G) 
DIMENSION A(lO), B(lO), C(20), G(20) 

is permitted. The variables A,B,C,G in the second 
DIMENSION statement are ignored by the compiler, because 
they have already been defined in the preceding EQUIVALENCE 
Statement. 

7. It is possible to equivalence items not of the same type ~_/ 
or mode: e.g. EQUIVALENCE (A,I) - where A is real and 
I is integer. 

TYPE 

Two TYPE declarations are permitted. These stateme:p.ts 
determine the type of variable associated with each variable 
name appearing in the statement. Th1s TYPE declaration is in 
effect throughout the program. The two declarations are 

INTEGER a,b,c, .... 
REAL a,b,c, .•.• 

where a,b,c, are variable names appearing within the program. 
Function names may not appear in TYPE declarations. 

Rules:-

(1) A variable defined to be of a given type remains of 
that type throughout the program. 

(2) INTEGER indicates that the variables listed are integer, 
and over-rides the alphabetic naming convention. 

(3) REAL indicates that the variables listed are floating 
point, and over-rides the alphabetic naming convention. 



C'''' 
, ./ 

o 

it."#' 

- 21 -

The TYPE declaration must occur before the first 
executable statement of the program. If any of the variables 
mentioned in a TYPE declaration are mentioned in a COMMON or 
DIMENSION s~atement, the TYPE declaration must follow such 
mention. 

If a TYPE declaration precedes an EQUIVALENCE 
statement, then it defines a variable in the sense required 
by the EQUIVALENCE statement, and all variables equivalenced 
to the one declared in the TYPE statement will be of the same 
type. 

If a TYPE declaration follows an EQUIVALENCE statement, 
then only the specific variable names mentioned in the 
declaration will be affected. 

Examples, 

1. INTEGER A 
EQUIVALENCE (A,B,C) 

2. EQUIVALENCE (A,B,C) 
INTEGER A 

3. EQUIVALENCE (A,B,C) 
INTEGER A,B,C 

4. INTEGER A,B,C 
EQUIVALENCE (A,B,C) 

Examples 1 and 3 cause A',B,C, to be integer variables and 
occupy the same memory location. 

Example 2 causes A to be integer, B,C to be real, and 
A,B,C to occupy the same memory location. 

Example 4 is an error in KINGSTON FORTRAN (see para. 5 under 
EQUIVALENCE) • 


