
= - - Instruments
= ::-:. === Inc --------·- .

Computer System

Operating System Reference Manual

Part 2.

Assembler Programmer's Guide to

Logical 1/0 and System Services

Release 1. 1

GC22-9200-1

= - - Instruments
= ::-.:. === Inc --------·- .

Computer System

Operating System Reference Manual

Part 2.

Assembler Programmer's Guide to

Logical 1/0 and System Services

Release 1. 1

GC22-9200-1

Second Edition (October 1983)

The contents
included in
publication.

of this edition are subject to change. Changes will be
subsequent Technical Newsletters or editions of this

Requests for copies of IBM Instruments, Inc., publications should be made
to your IBM Instruments, Inc., representative or by calling, toll-free,
800-243-3122 (in Connecticut, call collect 265-5791).

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM
Instruments, Inc., Department 79K, P.O. Box 332, Danbury, CT 06810. IBM
Instruments, Inc. may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation
whatever.

©Copyright IBM Instruments, Inc., 1983

01107830

Pref ace ii

PREFACE

This manual describes the logical I/O facilities and programming
interfaces of the IBM Instruments Computer System. It consists of 20
chapters and five appendixes.

• Chapter 1 -- "Introduction to Logical I/O and System Services" -- is
divided into two parts; one discusses the general concepts of logical
I/O briefly, and one goes into more detail about the commands used to
perform logical I/O or gain system services.

• Chapter 2 -- "Keyboard Driver" -- describes how the keyboard can be
controlled.

• Chapter 3 -- "Keypad Driver" - - describes how to control the computer
system's keypad through the keypad driver.

• Chapter 4 -- "CRT Alphanumeric Display Driver" describes the

•

information required by this driver for its control of the CRT screen.

Chapter 5 -- "CRT Graphics Driver"
information that must be provided to
graphics functions of the CRT.

describes the type of
this driver to perform various

• Chapter 6 -- "Printer Driver" describes the various settings
required by the driver to control print color, etc.

• Chapter 7 -- "File Access and Structure" -- describes methods for
accessing files stored on diskette and on hard disk.

• Chapter 8 -- "Diskette Driver" -- describes the use of the diskette
driver.

• Chapter 9 -- "Hard Disk Driver" -- describes the use of the hard disk
driver.

• Chapter 10 -- "RS-232 Asynchronous Communications
describes how to use the RS-232 driver.

Driver"

• Chapter 11 -- "IEEE-488 Interface Driver" -- describes how to use the
IEEE-488 driver.

• Chapter 12 -- "Parallel Port Driver" -- describes the use of that
driver.

Preface iii

• Chapter 13 -- "Intertask Communication Channels Driver" -- describes
the Read and Write channels used to exchange data between two
concurrently running tasks.

Chapters 14 through 18 describe the drivers that are associated with the
computer system's optional Sensor I/O board:

• Chapter 14 -- "A/D Converter Driver" describes how analog to

•

digital conversion can be accomplished through the A/D driver.

Chapter 15 -- "Switch Input Driver"
driver to set up switch input.

describes how to use this

• Chapter 16 -- "LED Output Driver" -- describes how the LED driver can
accomplish LED output.

• Chapter 17 -- "Sensor Board Parallel Ports Driver" -- shows how the
parallel ports driver associated with the Sensor I/O board works.

•

•

•

Chapter 18 -- "Counter Driver"
manipulate the counter.

Chapter 19 -- "Semaphore Manager"
controlled with semaphores.

Chapter 20 -- "System Calls"
made.

shows how to use the driver to

describes how tasks can be

describes how system calls can be

• Appendix A -- "Error Messages and Codes" -- provides a list of the
most commonly used error messages and codes.

• Appendix B - - "Command Summary" - - provides a brief summary of the
I/0-related command presented in this manual.

• Appendix C - - "Sample Coding" - - shows some samples of how various
drivers and I/O routines could be coded.

• Appendix D -- "Include Files on Extension Diskette" lists the
equate statements and macros that can be used with the assembler.

• Appendix E -- "Disk Structure" -- describes the internal structure
disks and diskettes.

Preface iv

Related Publications:

Publications that discuss related aspects of the Computer System are:

Computer System Product Description, GC22-9183

Computer System BASIC Reference Manual, GC22-9184

Computer System Pascal Reference Manual, GC22-9190

Computer System FORTRAN Reference Manual, GC22-9194

Computer System Operating System Reference Manual
Part 1: Operating System, GC22-9199

Computer System Problem Isolation Manual, GC22-9192

Additional References:

A good understanding of assembler language programming is assumed in much
of this manual. There are many sources of information on the subject,
whether formal classroom education or through use of books and other
student material.

A knowledge of the facility of the 68000 microprocessor is also important,
especially for understanding the instruction types and notation
conventions which apply to this microprocessor. There are several books
available on the 68000, two of which are:

• Motorola MC68000
16-Bit Microprocessor User's Manual, 3rd edition
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982

• 68000 Assembler Language Programming
by Gerry Kane, Doug Hawkins, and Lance Leventhal
Osborne/McGraw-Hill, Berkeley, CA, 1981

Pref ace v

Preface vi

CONTENTS

Preface iii

1.0 Introduction to Logical I/O and System Services 1-1
1.1 An Overview of Logical I/O 1-1

1.1.1 Device Drivers 1-1
1.1.2 Logical Unit Numbers (LUN) and Logical Device Names 1-2
1.1.3 Using the Higher Level Languages 1-2
1.1.4 The Structure of Logical I/O 1-3

How Information Can Be Passed 1-3
1.1.4.1 Device Initialization Block (DIB) 1-5
1.1.4.2 Data Transfer Control Block (DTCB) 1-6
1.1.4.3 Function Packet (FPKT) 1-8
How Information is Used 1-9

1.2 An Overview of System Services 1-9
1. 2. 1 System Calls 1-10
1.2.2 Timer Services 1-10
1.2.3 Asynchronous I/O 1-10
1.2.4 Event Posting 1-11
1. 2. 5 Semaphores 1-11
1.2.6 The SUSPEND Command 1-11

1.3 Detailed Information on Logical I/O 1-12
1.3.1 When to Use Synchronous, Asynchronous, and Byte I/O 1-12
1.3.2 More Information on SYSIO Commands 1-13

1.3.2.1 Block-Oriented I/O Commands 1-14
1.3.2.2 Byte I/O Facilities 1-24
1.3.2.3 Byte I/O Commands 1-24
1.3.2.4 Event Posting With EVENTMGR Commands 1-29
1.3.2.5 Opening Events 1-29
1.3.2.6 Closing Events 1-29
1.3.2.7 Arming Events 1-30
1.3.2.8 Polling Events 1-30

1.3.3 More Information on the SUSPEND Command 1-34
1. 3. 4 Timer Services and the "Real-Time" Manager 1-39

1.3.4.1 Polled and "Wake-up" Mode 1-39
1.3.4.2 Time and Date Format 1-40
1.3.4.3 RTT Block Format 1-40
1.3.4.4 Printing the Time 1-41
1.3.4.5 Sample Program Using the Real-Time Manager 1-50

1.3.5 Naming and Other Conventions 1-50
1.3.5.1 File Name Format 1-50
1.3.5.2 File Extensions 1-52
1.3.5.3 Logical Device Naming 1-52
1.3.5.4 Numbers 1-53

2.0 Keyboard Driver 2-1
2.1 Driver Description 2-1

Preface vii

2.2 Device Initialization Block (DIB)
2.2.1 DIB Format

2.3 Keyboard Data Transfer Control Block (DTCB).
2.3.1 DTCB Format

2.4 Keyboard Functions
2.4.1 Summary of Keyboard Functions
2.4.2 Keyboard Function Descriptions

2.5 Keyboard Usage
3.0 Keypad Driver

3.1 Driver Description
3.2 Device Initialization Block (DIB)

3.2.1 DIB Format
3.3 Keypad Data Transfer Control Block (DTCB)

3. 3. 1 DTCB Format
3.4 Keypad Functions

3.4.1 Summary of the Keypad Functions
3.4.2 Keypad Function Descriptions

4.0 CRT Alphanumeric Display Driver
4.1 Driver Description
4.2 Device Initialization Block (DIB)

4.2.1 DIB Format
4.2.2 Character Attributes
4.2.3 Attribute Code

4.3 CRT Data Transfer Control Block (DTCB).
4.3.1 DTCB Format

4.4 CRT Functions
4.4.1 Summary of Functions
4.4.2 Alpha Window Manager Function Descriptions

5.0 CRT Graphics Driver
5.1 Driver Description
5.2 Device Initialization Block (DIB)

5.2.1 DIB Format
5.3 Graphics Data Transfer Control Block (DTCB)
5.4 Graphics Functions

5.4.1 Summary of Graphics Functions
5.4.2 Graphics Function Description

6.0 Printer Driver
6.1 Driver Description
6.2 Device Information Block (DIB)

6.2.1 DIB Format ·
6.3 Printer Data Transfer Control Block (DTCB)

6.3.1 DTCB Format
6.4 Printer Functions

6.4.1 Summary of Printer Functions
6.4.2 Printer Function Descriptions

7.0 File Access and Structure
7.1 Introduction
7.2 File Access Methods

7.2.1 Sequential (DTCREC = 0)

2-9
2-9

2-10
2-10
2-10
2-11
2-12
2-22

3-1
3-1
3-6
3-6
3-7
3-7
3-8
3-8
3-9
4-1
4-1

4-10
4-10
4-11
4-11

. 4-12
4-12
4-13
4-13
4-15

5-1
5-1
5-8
5-8
5-9
5-9
5-9

5-10
6-1
6-1
6-4
6-4
6-4
6-5
6-5
6-6
6-7
7-1
7-1
7-1
7-2

Pref ace viii

7.2.2 Relative Record (DTCREC not 0)
7.3 Device Initialization Block (DIB)

7.3.1 DIB Format
7.3.2 DIB Option Word Bit Definitions
7.3.3 DIBTYP Definition
7.3.4 DIBACS Definition
7.3.5 DIBRLG Definition
7.3.6 DIBIET Defaults
7.3.7 DIBSET Defaults

7.4 File Access Data Transfer Control Block (DTCB)
7.4.1 DTCB Format

7.5 File Access Functions
7.5.1 Summary of File Access Functions
7.5.2 File Access function Descriptions

7.6 SYSIO Calls for Accessing Files
7.7 End-of-File Considerations

7.7.1 Variable Length Sequential Access Method
7.7.2 Fixed Length Access Methods

7.8 Error Codes
7.9 Examples of Control Blocks
7.10 Data Structure on Disk
7.11 Space Allocation on the Disk

7.11.1 Disk Space Allocation Algorithms
8.0 Diskette Driver

8.1 Driver Description
8.2 Device Initialization Block (DIB)

8.2.1 DIB Format
8.3 Diskette Driver Data Transfer Control Block (DTCB)

8.3.1 DTCB Format
8.4 Diskette Driver Functions

8.4.1 Summary of Diskette Functions
8.4.2 Diskette Function Descriptions

8.5 Definitions
8.6 Error Codes
8.7 Examples of Control Blocks

9.0 Hard Disk Driver
9.1 Driver Description
9.2 Device Initialization Block (DIB)
9.3 DIB Format
9.4 Disk Driver Data Transfer Control Block (DTCB)

9.4.1 DTCB Format
9.5 Disk Driver Functions

9.5.1 Summary of Disk Functions
9.5.2 Disk Function Descriptions

9.6 Error Codes
9.7 Examples of Control Blocks

10.0 RS-232 Asynchronous Communications Driver
10.1 Driver Description
10.2 Device Initialization Block (DIB)

7-2
7-2
7-2
7-4
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-8
7-8
7-9

7-12
7-13
7-13
7-13
7-15
7-15
7-16
7-17
7-17
8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-4

8-10
8-11
8-11

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-4
9-5
9-6

10-1
10-1
10-2

Preface ix

10.2.1 DIB Format
10.3 RS-232 Data Transfer Control Block (DTCB)

10.3.1 DTCB Format
10.3.2 Return Status Codes

10.4 RS-232 Functions
10.4.1 Summary of Functions
10.4.2 RS-232 Function Descriptions
10.4.3 Circular Buffer Parameter Block
10.4.4 Character Translation Subroutine
10.4.5 Control-Character Tables

- 11.0 IEEE-488 Interface Driver
11.1 Driver Description

11.1.1 Bus Sequences
11.1.2 Asynchronous Events
11.1.3 Request Queuing
11.1.4 Device Detachment
11.1.5 Service Requests

11.2 Device Initialization Block (DIB)
11. 2 .1 PIB Format

11.3 IEEE-488 Data Transfer Control Block (DTCB)
11.3.1 DTCB Format

11.4 IEEE-488 Functions
11.4.1 Summary of Functions
11.4.2 IEEE-488 Function Descriptions

12.0 Parallel Port Driver
12.1 Driver Description
12.2 Device Initialization Block (DIB)

12.2.1 DIB Format
12.3 Parallel Port Data Transfer Control Block (DTCB)

12.3.1 DTCB Format
12.4 Parallel Port Functions

12.4.1 Summary of Functions
12.4.2 Parallel Port Function Descriptions

12. 5 Error Codes
13.0 Intertask Communication Channels Driver

13.l Driver Description
13.2 Device Initialization Block (DIB)

13. 2. 1 DIB Format
13.3 Data Transfer Control Block (DTCB)

13.3.1 DTCB Format
13.4 Intertask Communication Channel Functions

13.4.1 Summary of Functions
13.4.2 Function Descriptions

13.5 ITC Error Codes
14.0 A/D Converter Driver

14.1 Driver Description
14.2 Device Initialization Block (DIB)

14.2.1 DIB Format
14.2.2 DIB Option Word Bit Definitions

10-4
10-4
10-5
10-5
10-6
10-6
10-8

10-23
10-24
10-25

11-1
11-1
11-3
11-4
11-4
11-5
11-5
11-5
11-5
11-6
11-6
11-7
11-7
11-9
12-1
12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-4
12-7
13-1
13-1
13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
14-1
14-1
14-1
14-2
14-2

Preface x

14.3 A/D Converter Data Transfer Control Block (DTCB)
14.4 A/D Converter Functions

14.4.1 Summary of Functions
14.4.2 A/D Converter Function Descriptions

14.5 Error Codes
15.0 Switch Input Driver

15.1 Driver Description
15.2 Device Initialization Block (DIB)

15.2.1 DIB Format
15.2.2 DIB Option Word Bit Definitions

15.3 Switch Input Data Transfer Control Block (DTCB)
15.3.1 DTCB Format

15.4 Switch Input Functions
15.5 Error Codes

16.0 LED Output Driver
16.1 Driver Description
16.2 Device Initialization Block (DIB)

16.2.1 DIB Format
16.2.2 DIB Option Word Bit Definitions

16.3 LED Output Data Transfer Control Block (DTCB)
16.4 LED Output Functions
16.5 Error Codes

17.0 Sensor Board Parallel Ports Driver
17.1 Driver Description
17.2 Device Initialization Block (DIB)

17.2.1 DIB Format
17.2.2 DIB Option Word Bit Definitions

14-3
14-4
14-4
14-5
14-7
15-1
15-1
15-1
15-3
15-3
15-4
15-4
15-5
15-5
16-1
16-1
16-1
16-3
16-3
16-4
16-4
16-4
17-1
17-1
17-1
17-1
17-3

17.3 Sensor Board Parallel Ports Data Transfer Control Block
(DTCB)
17. 3 .1 DTCB Format

17.4 Sensor Board Parallel Ports Functions
17.5 Error Codes

18.0 Counter Driver
18.1 Driver Description
18.2 Device Initialization Block (DIB)

18.2.1 DIB Format
18.2.2 DIB Option Word Bit Definitions

18.3 Counter Data Transfer Control Block (DTCB)
18.3.1 DTCB Format

18.4 Counter Functions
18.4.1 Summary of Functions
18.4.2 Counter Function Descriptions

18.5 Error Codes
19.0 Semaphore Manager

·19.1 Manager Description
19.2 Example Program with Semaphores

20.0 System Calls
20.1 Issuing System Calls (SC)
20.2 SC Routine Index

17-4
17-4
17-4
17-5
18-1
18-1
18-3
18-5
18-5
18-6
18-6
18-6
18-7
18-7
18-9
19-1
19-1

19-16
20-1
20-1
20-1

Preface xi

20.3 Command-Parsing Routines
20.4 Filename Formatting
20.5 Initialization and Warmstart
20.6 Display Control
20.7 Utility System Calls
20.8 Directory Search
20.9 Time Operations
20.10 Loading Programs
20.11 Multitask System Calls
20.12 Program Development

20.12.1 Programs Called From The SYSTEM Task.
20.12.2 Tasks Started By RUNTASK or GETPCB
20.12.3 Memory Available to Application Programs
20.12.4 Managing Memory Among Several Tasks
20.12.5 Performing Screen I/O

A.O Appendix A - Error Messages and Codes
A.1 Error Messages from Operating System Commands
A.2 Common Device and Manager Error Codes

A.2.1 Message Format
A.2.2 Common Device-Driver Error Codes
A.2.3 Manager Error Codes
A.2.4 Codes for Asynchronous Requests

A.3 Driver Error Codes
A.3.1 CRT Graphics Driver (#GR)
A.3.2 CRT Display Driver (#SCRN, #CNSL)
A.3.3 Keyboard Driver (#CON)
A.3.4 Keypad Driver (#KPD)
A.3.5 Printer Driver (#PR)
A.3.6 RS-232 Driver (#SER)
A.3.7 IEEE-488 Driver (#BUS)
A.3.8 ITC Driver (#ITC)
A.3.9 Parallel Port Driver (#PPU)
A.3.10 Disk Drivers (#FDOX or #HDOX)
A.3.11 Sensor I/O Drivers

A.4 Abnormal-Termination Screen
A.5 Macro Assembler

A.5.1 Error Messages
B.O Appendix B - Command Summary
C.O Appendix C - Sample Coding
D.O Appendix D - Include Files on Extension Diskette
E.O Appendix E - Disk Structure

E.1 Volume Label Sector
E.2 Backup Volume Label
E.3 Bad Sector Table
E.4 Bit Map
E. 5 File Index
E.6 Directory File
E.7 Backup File Index
E.8 Diagnostic Areas

20-3
20-5
20-6
20-6
20-7
20-9

20-10
20-11
20-11
20-14
20-14
20-15
20-15
20-15
20-16

A-1
A-1
A-4
A-4
A-5
A-6
A-7
A-8
A-8
A-8
A-8
A-9
A-9

A-10
A-10
A-10
A-11
A-12
A-12
A-13
A-15
A-15

B-1
C-1
D-1
E-1
E-1
E-2
E-2
E-2
E-3
E-4
E-5
E-5

Preface xii

1.0 INTRODUCTION TO LOGICAL 1/0 AND SYSTEM SERVICES

The IBM Instruments Computer System 9000 Operating System (CSOS) contains
two major facilities:

1. Logical I/O

This part of CSOS handles input-output. An introduction to logical
I/O follows, and Chapters 2-6, 8-12, 14-18 describe the various
device drivers. Chapter 7 describes how to access files, and Chapter
13 describes two pseudo devices that allow intertask communication.

2. System Services

This part of CSOS provides facilities for program loading, message
printing, command parsing, task startup and exit, high-resolution
timing, and semaphores. An introduction to system services can be
found in this chapter (Section 1.2).

1.1 AN OVERVIEW OF LOGICAL 1/0

One of the features of the IBM Instruments Computer System is the variety
of peripheral devic~s that can be attached to it and the flexibility of
its own I/O devices such as the CRT, the keypad, and the printer/plotter.
The Computer System's operating system enhances this flexibility by
providing a number of programming facilities that allow users to easily
configure and access the various devices and interface ports directly, at
run-time. The remainder of this section outlines these facilities.

1.1. 1 DEVICE DRIVERS

The Computer System handles device control through device "drivers". Each
device or communications port is controlled by at least one driver. In
some cases, more than one driver may be associated with a device. The
drivers provided by the Computer System are separated from the rest of the
operating system so that new devices can be added without difficulty and
without affecting system operation. Facilities also exist that allow
users to write their own-drivers and attach them to the system -- all
without regenerating the operating system itself.

Introduction 1-1

1.1.2 LOGICAL UNIT NUMBERS (LUN) AND LOGICAL DEVICE NAMES

The Computer System's I/O structure simplifies the transfer of data to and
from devices by making direct references to specific physical devices
unnecessary. Instead, devices are referred to generically by logical
rather than physical labels. This has a number of advantages, the first
of which is that users need not deal with physical locations at all -- the
system will do that. All devices can be dealt with logically by logical
device names. Another concept -- that of logical unit numbers, or "LUNs"
-- allows the association between a logical unit number and a logical
device name to be deferred until run-time when it can be made by command
line parameters or by a user response to a program menu. In this way, a
logical unit number specified in a user's program can refer to the CRT for
one program run and the printer for another run without rewriting the
program itself.

The Computer System associates or "binds" logical unit numbers (LUNs) with
logical devices by means of a system OPEN command. (This and other system
commands are discussed later in this chapter.) A single task running in
the system may open up to 127 LUNs (if space permits) and any number of
LUNs may be assigned to a single device. Once a device is OPENed, it can
be referred to by its LUN only. Logical unit numbers are "local"
variables; that is they are known only to the tasks that OPENed them.
OPENing a device is further explained in Section 1.1.4, "The Structure of
Logical I/0 11 •

1.1.3 USING THE HIGHER LEVEL LANGUAGES

The Computer System's I/O facilities are accessible not only through
Assembler language but also through the higher level languages like BASIC,
FORTRAN, and Pascal. Essentially, this access consists of a higher level
language "CALL" to the Computer System's I/O function. (See the BASIC
Programming Manual, GC22-9184; FORTRAN Reference, GC22-9194, or Pascal
Reference, GC22-9190 for further details.) Each of these languages has
its own interface to the Computer System's I/O facilities, but while these
interfaces may differ from one higher level language to another, the
underlying structure of I/O management remains constant.

Introduction 1-2

1.1.4 THE STRUCTURE OF LOGICAL 1/0

This section briefly explains the ways in which a user can provide
I/0-related information to the system at the Assembler language level and
how the Computer System uses that information. (The higher level
languages allow users to present information to the system without
necessarily using all of the data structures described below.) Figure 1-1
shows the relationship between the user and system programming and you
should refer to it throughout this discussion.

How Information Can Be Passed

Information can be passed to the Computer System by I/O or system service
commands and through data structures called "control blocks". These
commands and control blocks should be included as part of any user-written
program that deals with input or output.

The I/O commands include the OPEN command briefly mentioned in section
1.1.2 and others used to establish or release associations between logical
unit numbers and devices, or perform read/write operations. The OPEN
command (SYS IO OPEN) includes a logical unit number, a label that
identifies an error handling routine which is branched to if the operation
fails. For example:

SYS IO OPEN, #10, GRDIB, OPENERR

The control blocks that can be used are as follows:

• DIB

The Device Initialization Block; used to provide information about a
device at Open time. This includes the device name and any specific
options that a user wishes the device to have.

• DTCB

The Data Transfer Control Block; used only for operations that involve
the transfer of data. This control block tells the system where a
user program is storing the data that is to be transferred.

Introduction 1-3

"SYSIO OPEN,LUN,DIB,ERRORLABEL"

SYSTEM SPACE

I/O MANAGER

TCB POINTER

DTCB POINTER
JUMP TABLE

DCB POINTER I
~---------<

DATA TRANSFER
CONTROL BLOCK

DATA TRANSFER
BUFFER

PHYSICAL DEVICE BLOCK

USER SPACE

FUNCTION
PACKET

I DEVICE I
!INITIALIZATION!
I BLOCK 1

I I

COMMAND
STATUS

DRIVERS

OTHER CONTROL
BLOCKS

Figure 1-1. Data Structures in System and User Space

Introduction 1-4

• FPKT

The Function Packet; used with the FUNCTION command to change a device
state to something other than the system default or the state set by
the options specified in the DIB at initialization.

The format of this control block is identical for all devices. It's
use is driver specific, for example, it can be used for setting a baud
rate or reading a cursor position. It is the control block that is
most often used by the higher level languages.

1.1.4.1 Device Initialization Block (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at_ OPEN time. This
information is used by the I/O manager. First it is checked for validity,
then it is copied from user space ·into th_e appropr:iate control block in
system space. The DIB must be aligned on a word boundary.

DIB FORMAT

The following fields describe the DIB format.

DATA
MNEMONIC LENGTH
-------- ------

DIBVOL DS.B 6

DIBDTD DS.B 1

DIBTRN DS.B 1

DIBRSO DC.L o,o

DIBOPT DS.W 1

DIBFCN DS.L 1

DESCRIPTION OF USE

Volume or device name. Use the appropriate names
from section 1.3.5.3.

Data Transfer Direction. Use 0 for WRITE,
1 for READ or 2 for bidirectional.

Enter 0 for fixed length or 1 for variable length
transfers.

User sets this field to 0.

Configuration Options. (Used for File I/O)

Insert pointer to function packet or set this field
to $0000 0000 to select the default mode.

Introduction 1-5

DIBBIO DS.L 1

DIB EXTENSION

Byte I/O field. To open the driver for byte I/O
enter -1 ($FFFF FFFF), otherwise set it to $0000
0000. After open the I/O manager fills this field
with an identifier which is used for SYSIO-BREAD,
SYSIO-BWRITE and SYSIO-BTEST.

DIBXXX Only File I/O may use a DIB extension.

1. 1.4.2 Data Transfer Control Block (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READ's and WRITE's. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made. The DTCB
must be aligned on a word boundary. (See also Figure 1-2.)

DTCB Format

DATA
MNEMONIC LENGTH

DTCSTA DS.B 1

DTCTBU DS.B 1

DTCTBL DS.B 1

DTCRSO DC.B 1

DTCBFS DS.L 1

DESCRIPTION OF USE

User monitors this field for status on I/O operation.

User puts upper limit to be used for Transfer
Termination characters in Variable Length transfer
here.

User puts lower limit to be used for Transfer
Termination characters in Variable Length transfer
here.
This field is reserved. User puts $00 here.

User puts Buffer starting address here.

Introduction 1-6

....--

Mnemonic

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

Purpose

DataTransfer Status

Transfer Termination Range (upper limit)

Transfer Termination Range (lower limit)

Reserved Space

B ff u er start a dd ress

Buffer length

Buffer offset pointer

r-- Longword __ __..

r-Word

-1 Byte

$NN

$NN

$NN

$00

$NN NN NN NN

$03 FF

$00 OA

DATA TRANSFER CONTROL BLOCK

Start Address 1
bytes

i
L Beginning of Record

USER DATA TRANSFER BUFFER

1024
bytes

t

Figure 1-2. Data Transfer Buffer and Control Block

Introduction 1-7

DTCBFL DS.W 1

DTCBPT DS .W 1

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record to be transferred. This
offset value will be incremented by the driver for
every byte transmitted. It should be reset after
every READ/WRITE (when the buffer is reused).

-----The next field is required for Disk Drivers or file access only----

DTCREC DS.L 1

DIBBIO DS.L 1

User puts the Relative or Logical Record number of
the particular record to be transferred here.

System used Byte I/O field. To OPEN the RS-232
driver for Byte I/O enter -1($FFFF FFFF), otherwise
set it to zero. After OPEN the I/O manager fills
this field with an identifier which is used for
SYSIO-BREAD, SYSIO-BWRITE, and SYSIO-BTEST.

1. 1.4.3 Function Packet (FPKT)

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
reading the cursor position and selecting a font table. It is required
for the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than its
default mode.

The Function Packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero, indicating END-OF-LIST. The COMMAND word
must be a positive number 1 or higher. The COMMAND word is followed by
zero or more words, or longwords that send or receive the immediate DATA
for the COMMAND, or a longword that points to the DATA for that COMMAND.

Each of the I/O commands and system service commands is described in
greater detail later in this chapter. Chapters 3 through 18 explain what
control blocks are required by each device driver and how to specify
options in those control blocks to configure a device. Configuring a
device or port consists of defining all of its pertinent characteristics
for use by a specific program -- the color used to print output on the
printer /plotter or the baud rate for a port, for example. Default
characteristics exist in each case; these are listed in each driver's
chapter.

Introduction 1-8

How Information is Used

When an OPEN command is encountered in a user's program, the Computer
System's "I/O Manager" is given control and several things happen:

• The system "binds" the logical unit number provided as part of the
command, to the logical device name identified in the DIB specified
with the command. (It is the I/O Manager that carries this one step
further to identify the actual physical device.) In our example
above, the logical unit number fJlO would be associated with the
logical device name specified in the DIB called GRDIB.

• The I/O Manager determines which device driver is required and uses
its "jump table" of addresses to locate the appropriate portion of
that driver for an OPEN operation. (If another type of I/O command
were entered, the I/O Manager would "jump" to another location within
the driver.)

• The device is configured to either its default characteristics or to
characteristics specified in the optional function packet specified
in DIBFCN.

After a logical device has been OPENed, the options specified for it can
still be changed. Another SYSIO command, SYSIO FUNCTION, allows users to
alter a device's characteristics after they have been set through the
OPEN.

1.2 AN OVERVIEW OF SYSTEM SERVICES

Understandably, when many tasks with various priorities are requesting
the use of many I/O devices, things can get complicated. The Computer
System provides a number of system services that can help manage the
situation. The I/O Manager's role in controlling task and device
management has already been briefly mentioned. The other services
provided by the system are:

• System Calls

• Timer Services

• Asynchronous I/O

• Event Posting

• Semaphores, and

Introduction 1-9

• The SUSPEND Command

Each of these will be briefly discussed below. Detailed information about
how these services function is found later in this chapter.

1.2.1 SYSTEM CALLS

The System Calls are very helpful to users programming in assembler. They
can be used in the areas of parsing, error messages, directory searching,
loading programs, task manipulation, and timing operations. For details,
see Chapter 20, "System Calls".

1.2.2 TIMER SERVICES

The Computer System is equipped with a timer that can be used to control
the execution of a task. For example, one task can be stopped for a
specified period of time to provide an opportunity for another task to
run-- perhaps using the same device(s) as the first task. The first task
resumes running when the time period has elapsed.

Timers must be OPENed and CLOSEd in the same way as devices. System
commands exist that allow users to start the timer, make inquiries about
its status, or stop it as necessary. They are described in Section 1.3.4.

1.2.3 ASYNCHRONOUS 1/0

Normally, the operations that take place in a program are synchronous.
That is, if the program calls for data transfer (a request for data from
diskette storage, for example) execution of further commands in that
program cannot continue until the I/O operation has completed.

Asvnchronous operations like AREAD and AWRITE (discussed later in this
chapter) work differently, however. When a program initiates an
asynchronous I/O operation, an "interrupt" structure is used to signal the
completion of the data transfer. This allows the program to continue
executing. The program receives word that the I/O operation has started
successfully and can continue to do other things while the I/O operation
takes place. The program can check at various points during its execution
to see whether the data transfer has completed or it can be "interrupted"

Introduction 1-10

by the news that the transfer operation was completed by use of the
SUSPEND facility. See below.

1.2.4 EVENT POSTING

The Computer System's Event Posting facility is similar to the status
checking capabilities provided by asynchronous I/O except that other
non-I/O events can be checked. Event posting allows users to set aside a
control block in their user space that is associated with the occurrence
of a specific event. This control block is "kept posted" by the operating
system and user programs can check-- or "poll" it to determine the status
of the event. This status could be that the event occurred, occurred more
than once, or did not occur at all. The event control block can also be
used to pass information from a driver to a user program.

In addition to polling, a user can suspend the execution of a task until a
particular event has taken place.

1.2.5 SEMAPHORES

The computer system's semaphore facility provides a means of
synchronization in a multitasking environment. The semaphore is
typically used as a BATON which is passed from task to task to indicate
the owner of a non-shareable resource. The "BATON-PASS" requires only a
binary semaphore. More complicated strategies are possible if one takes
advantage of the counting semaphore facility implemented on the CS 9000.
Uses of the counting semaphore include:

resource management (non-shareable)
Task prioritization control
queue management

Chapter 20 describes the counting semaphore implementation on the CS 9000.

1.2.6 THE SUSPEND COMMAND

The SUSPEND command is used in conjunction with the other system services
outlined above. User application programs can use the SUSPEND command to
wait for the completion of timer, asynchronous I/O, event posting, or

Introduction 1-11

semaphore requests. The program can be made to wait for the completion of
one or many requests. The way in which this command works is more fully
described later in this chapter (see Section 1.3.3, "More Information on
the SUSPEND Command").

1.3 DETAILED INFORMATION ON LOGICAL 1/0

This section provides more detailed information about the commands and
facilities outlined earlier in this chapter. It also describes some
additional aspects of the operating system that are not driver- or
device-specific, such as byte I/O and the naming conventions used by the
Computer System.

This section presumes a moderate level of understanding of Assembler
language and a familiarity with Computer System Operating System
Reference: Part 1, GC22-9199. Computer system operating system commands
are implemented as macros available to Assembly language programs. High
level languages implement operating system facilities through use of
these macros.

1.3. 1 WHEN TO USE SYNCHRONOUS, ASYNCHRONOUS, AND BYTE 1/0

Synchronous Commands: OPEN, CLOSE, SREAD, SWRITE, FUNCTION

These forms of SYS IO might be called the "normal" type of I/O facility in
that your task is blocked from further execution until the desired
operation has completed. For general purpose application programming it
is perfectly satisfactory to have your program wait for the outcome of
each I/O before continuing along.

The operating system uses any available CPU time during synchronous I/O
for other READY tasks. If there are no READY tasks, then the IDLE task
consumes unused CPU time.

Asynchronous Commands: AREAD, AWRITE, CANCEL

These forms of SYSIO allow your program to perform buffered I/O operations
and to take advantage of any available CPU time that occurs while the I/O
device is waiting. You would want to use this method in situations where

Introduction 1-12

you want to provide multiple buffers or where you wish to overlap the
operation of more than one I/O device from a single task.

It would be possible to construct programs which perform several AREAD's,
and which perform a different action depending on which one completes. A
program can intermix AREAD and AWRITE with Timer and Semaphore calls to
have all kinds of event driven control. You would use CANCEL to abort any
outstanding I/O requests that you no longer wanted to occur.

It would also be possible to chain together several requests that always
proceed one after the other. For example, an editor program might always
perform 24 writes to disk from a screen buffer. This could be performed
by 24 AWRITES, allowing the editor to continue while the 24 transfers take
place.

Please remember that each outstanding AREAD or AWRITE requires a separate
DTCB.

Byte I/O Commands: BREAD, BWRITE, BTEST

These forms of SYSIO allow your program to perform I/O operations at the
lowest possible physical level. You would use this facility when you want
to exercise real-time byte-by-byte control of I/O without device driver
buffering or pre-processing. By handling each byte individually you are
able to practically make up your own "device driver" within your
application program.

This facility can be useful for capturing keystrokes from the optional
keyboard device, or for sending ASCII characters directly to the next
character position of an open alpha window.

Remember that in byte I/O there is no waiting performed by the driver.
Your program always gets immediate control back after SYSIO. It is up to
you to check D7. W for error status on each request. Zero indicates
successful transfer of the byte, non-zero usually means that the driver
cannot send or receive a byte right now, but that you should try again at
some later time.

1.3.2 MORE INFORMATION ON SYSIO COMMANDS

Application programs can use SYSIO to perform all logical I/O operations.
SYSIO allows you to issue one of twelve commands as shown on the following
pages. There are two ways of transferring data with SYS IO. One is a

Introduction 1-13

block-oriented path that can be used for record I/O, OPEN, CLOSE, and
FUNCTION. The second is a "fast path" available for byte operations such
as SYSIO-BREAD, SYSIO-BWRITE, SYSIO-BTEST. Each is described below.

1.3.2.1 Block-Oriented 1/0 Commands

The commands have a common syntax. First specify the command itself, such
as SYSIO OPEN. Next provide the logical unit number; then the name of a
control block, and finally the address of a user exception-handling
routine (ERRORLABEL, in the examples which follow.)

The logical unit number may be specified either in immediate notation
using a # sign, such as #1, as the label of a byte containing the value,
such as LOGUNIT or in a register such as D3. If register DS already
contains the logical unit number, simply code DS and no load instruction
will be generated by the macro. The same scheme is used to specify the
control block. It can be an address label at the start of the block, such
as GRDIB, or in an address register.

The SYSIO macro generates in-line code to carry out the command. It loads
register A6 with the address of the control block. Then it loads register
DS.B with the logical unit number. Next, it issues a TRAP #6 instruction
followed by the command word. This is followed by a branch to the user's
exception handling routine for error handling. If the command is
unsuccessful, this branch is taken and register D7.W will contain an error
code. If the call is successful, the branch is not taken and control will
continue with the next sequential instruction following the macro.

The AREAD and AWRITE commands are asynchronous operations while all other
commands are synchronous. Synchronous operations execute in the invoking
program's instruction stream. This means that your program will be
blocked from continued execution until the operation is complete. When
you get control back from SYSIO, register D7.W will contain the completion
status. Asynchronous operations are initiated in the invoking program's
instruction stream with the interrupt used to signal completion of data
transfer. The invoking program gets control back after queuing the
request, with a -1 in register D7.W to indicate that the operation has
started success fully. Any other word in register D7. W means that an
exception has occurred and that the operation has been aborted.

With asynchronous I/O it is possible for the invoking program to perform
other things while the data transfer takes place. When the program wants
to see if the transfer is complete it can do either of two things: It can
keep checking the contents of the DTCSTA field of the Data Transfer
Control Block (-1 indicates still busy; zero indicates successful

Introduction 1-14

completion, any other positive status is an exception completion code).
Or the program can use the SUSPEND macro to wait for completion.

Asynchronous I/O is particularly useful for multi-buffering, since each
I/O request is queued with a separate DTCB and a companion buffer.

Introduction 1-15

SYSIO OPEN,LUN,DIB,ERRORLABEL

This command performs an OPEN operation .for the logical unit number
specified, "binding" it to the logical device name specified in the DIB.

Register Usage:

A6.L points to the DIB
DS.B contains the LUN
D7.W returns status

Completion Codes:

$8200
$8400
$8500
$8600
$8700
$8800
$8900
$8AOO
$8COO

Invalid SYSIO call
Inadequate system space
Duplicate logical unit number
Device not found
Not device owner
Nonsharable device is already open
Device does not support byte I/O
Non-null request queue for byte 1/0
Invalid DIB field (DIBTRN, DIBDTD, DIBRSO)

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DIB (on a word boundary)

Optional Control Block:

FPKT (on a word boundary) specified within the DIB

Coding Example:

470
471 0 00000000

0 00000000 4DF,0000020C
0 00000006 006£00400010
0 OOOOOOOC 1A3C001S
0 00000010 4E4£
0 00000012 0001
0 00000014 &00001F2

SYSIO OPEN,121,DIEEL~.ERROR

LtA DIBBLI,A& + LOAD ADDRESS OF CONTROL BLOC[
ORI.V 1$0040,DIBOPT<A&I + 1.1 OR LATER SYSIO OPEN

liOVE.B Ill.OS
TRAP I&
DC.\/ SIOOPEN
BRA.L ERROR

+ LOAD LOGICAL UNIT NUMBER
+ TRAP TO 1/0 ~ANAGER
+ COMMAtID \/ORD
+ BRAUCH TO USER ERRCR HANDLER

Introduction 1-16

SYS 10 CLOSE, LUN ,0, ERRORLABEL
- or -

SYSIO CLOSE, LUN, FPKT, ERRORLABEL

This command performs a CLOSE operation on the device specified by the
logical unit number. Note that no control block need be specified,
however 0 is required by the macro as a placeholder.

Register Usage:

A6.L points to the Function Packet
DS.B contains the LUN
D7.W returns status

Completion Codes:

$8200
$8300
$8600
$8700

Invalid SYSIO call
Logical unit number not opened
Device not found
Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Optional Control Blocks:

Function Packet(on a word boundary)

Comments:

You may optionally specify that a Function Packet be part of CLOSE for
files. Other device drivers do not accept a function packet at close
time.

Coding Example:

4 71
479 0 00000018

0 00000018 4DF80000
0 OOOOOOlC 1A3C001S
C 00000020 4EH
0 00000022 0002
0 00000024 600001£2

SYS!O
LEA
KOVE.B
TRAP
DC.II
BRA.L

CLOSE,121,0,ERROR
O,A6 + LOAD ADDRESS OF FPKT
121, DS + LOAD LOGICAL UNIT NUMBER
16 +TRAP TO l/O MANAGER
S!OCLOSE + COMMAND \/ORD
ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-17

SYSIO SREAD,LUN,DTCB,ERRORLABEL

This command performs a synchronous read operation from the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
D5.B contains the LUN
D7.W returns status

Completion Codes:

$8200
$8300
$8600
$8700
$8FOO

Invalid SYSIO call
Logical unit number not opened
Device not found
Not device owner
Invalid buffer address for read

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary)

Coding Example:

486
487 0 00000028 SYS IO SREAD,111,DTCBLK,tRROR

o oooono2s 4DF900000110 LEA DTCBLK,A6 + LOAD ADDRESS OF COliTROL BLOCl
0 0000002& 1A3C0015 KOVE.B 121, DS + LOAD LOGICAL UNIT NUMBER
0 00000032 4£46 TRAP I& +TRAP TO lfO MANAGER
0 00000034 0003 DC.W SIOSREAD + COMMAND VORD
0 00000036 60000100 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-18

SYSIO SWR ITE, LUN, DTCB, ERRORLABEL

This command performs a SYNCHRONOUS WRITE operation to the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
DS.B contains the LUN
D7.W returns status

Comp let ion Codes:

Invalid SYSIO call $8200
$8300
$8600
$8700

Logical unit number not opened
Device not found
Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary)

Coding Example:

4?4
4,S 0 0000003A

0 0000003A 4DF900D00210
0 00000040 !A3C0015
0 OOOOOOH 4E46
0 0000004£ 0004
0 00000048 600001BE

SYSlO
LEA
MOVE. B
TRAP
DUi

BRA.L

S\IRITE,t21,DTCBLK,£RROR
DTCBLK, A6 + LOAD ADDRESS OF CONTROL BLOCK
121,05 + LOAD LOCICAL UHIT NUHBER
16 +TRAP TO IIO KANACER
SIOSWRITE
ERROR

+ COMJ'IAND \/ORD
+ BRANCH TO USER ERROR HANDLER

Introduction 1-19

SYSIO A READ, LUN, DTCB, ERROR LABEL

This command performs an ASYNCHRONOUS READ operation from the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
DS.B contains the LUN
D7.W returns status

Completion Codes:

$8200
$8300
$8600
$8700
$8FOO

Invalid SYSIO call
Logical unit number not opened
Device not found
Not device owner
Invalid buffer address for read

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary).

Each outstanding AREAD must have its own DTCB.

Coding Example:

soz
503 0 0000004C SYS IO

0 0000004C 4DF900000210 LEA
0 00000052 1A3COO!S KOVE.B
0 00000056 4£46 TRAP
0 00000058 8003 DC.II
0 ODOOOOSA 600001AC BRA.L

AREAD,t21,DTCELK,ERROR
DTCBLK,A6 + LOAD ADDRESS OF CONTROL BLOC!
121,DS +LOAD LOGICAL UNIT NUMBER
u
SIOAREAD
ERROR

+TRAP TO IIO MANAGER
+ COMMAND \i'ORD
+ BRANCH TO USER ERROR HANDLER

Introduction 1-20

SYSIO AWR ITE, LUN, DTCB, ERROR LABEL

This command performs an ASYNCHRONOUS WRITE operation to the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
DS.B contains the LUN
D7.W returns status

Completion Codes:

Invalid SYSIO call $8200
$8300
$8600
$8700

Logical unit number not opened
Device not found
Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver name_d in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary).

Each outstanding AWRITE must have its own DTCB.

Coding Example:

SOf
510 0 OOOOOOSE

0 OOOOOOSE 4DF900000210
0 00000064 1A3C001S
0 000000&8 4£46
0 oooooou 8004
0 0000006C 6000019A

SYS!O
LEA
KOVE .B
TRAP
DUI
BRA.L

A\IRIT£,tZ1,DTCBLK,ERROR
DTCBL!,A6 + LOAD ADDRESS OF CONTROL BLOC!
t21,DS +LOAD LOGICAL UlHT NUMBER
16 + TRAP TO 1/0 KANAGER
SIOAWRITE
ERROR

+ COHKAND WORD
+ BRANCH TO USER ERROR HANDLER

Introduction 1-21

SYSIO CANCEL, LUN ,0, ERRORLABEL

This command performs a CANCEL on the device associated with the logical
unit number. Normally you would use CANCEL to abort one or more
outstanding asynchronous I/O operations which had not yet completed. You
might be waiting for keyboard or RS-232 input using AREAD and then decide
to cancel the input request. 0 is required by the macro as a placeholder.

Register Usage:

A6.L contains 0
D5.B contains the LUN
D7.W returns status

Comp let ion Codes:

$8200
$8300
$8600
$8700

Invalid SYSIO call
Logical unit number not opened
Device not found
Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

None.

Coding Example:

Sl7
518 0 00000070 SYSiO CANCEL,121,0,ERROR

0 00000070 4DF80000 LEA O,A6 + LOAD ADDRESS OF CONTROL BLOC!
0 00000074 1A3C0015 MOVE. B 121, DS t LOAD LOGICAL UK!T NUMBER
0 00000078 4E46 TRAP t6 + TRAP TO I/O MANAGER
0 0000001A 0007 DC. V SIOCANCEL + COMMAND VORD
0 0000007C 6000018A BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-22

SYSIO FUNCTION, LUN, FPKT, ERRORLABEL

This command performs a FUNCTION on the device associated with the logical
unit number. The specified function packet (FPKT) contains one or more
device specific functions.

Register Usage:

A6.L points to the Function Packet
DS.B contains the LUN
D7.W returns status

Completion Codes:

$8200 Invalid SYSIO call
$8300 Logical unit number not opened
$8400 Inadequate system space
$8600 Device not found
$8700 Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

FPKT (on a word boundary)

Coding Example:

525
520 0 00000080 SYS IO FUHCTION,121,FPKTBLK,ERROR

0 00000080 4DF900000214 LEA FPKTBLK,A6 + LOAD ADDRESS OF CONTROL BLOCK
0 00000086 1A3COQ1S KOV&.B t21, DS + LOAD LOGlCAL UNIT HUHBER
0 0000008A 4E46 TRAP 16 +TRAP TO IFO HAHAGER
o ooooooac 0006 DC.W s I orUHCT ION + COKHAND \/ORD
0 0000008£ 60000178 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-23

1.3.2.2 Byte 1/0 Facilities

The Computer System has provided an efficient mechanism for transferring
data on a byte basis. Upon opening a device for byte I/O and a specific
direction, subsequent transfers may be initiated using SYSIO-BREAD,
SYSIO-BWRITE or SYSIO-BTEST trap calls. These calls require the following
register usage: DO.B contains the byte on write (or DO.W for the CRT
driver -- See Chapter 4) and is returned with a byte on test or reads.
Register D7.W is returned with a status code. No scheduling is done for
these requests and if the device is busy with another request, the code
returned in D7.W will indicates that condition. This facility is best
used for application programs using non-shareable devices (the first task
to open a non-shareable device owns the device until it is closed) or
devices supported by reentrant drivers such as the CRT. In addition,
register A6.L must contain the system identifier returned in the DIBBIO
field of the device initialization block. If a device will not support
byte I/O, an I/O Manager error code will be returned in D7. W at open time.

Note that single-byte transfers (either asynchronous or synchronous) may
be initiated using the other I/O facilities, but these transfers must be
scheduled and may therefore require some system overhead.

1.3.2.3 Byte 1/0 Commands

The Byte I/O mechanism is meant to be a "fast path" between application
programs and device drivers. There is no scheduling and no use of dynamic
control blocks. On the average, less than 25 instructions are executed by
the I/O manager between the SYS IO call and entry to the driver. This
section describes the SYSIO commands used to perform byte I/O operations.

Unlike the block-oriented requests, byte I/O requests do not have an error
return label. It is up to the application program to monitor D7.W for
completion status. Register DO.B is used to pass or receive the byte.
Register A6 is loaded with the system identifier stored in the DIBBIO
field after successful completion of the OPEN command. Register D7. W
contains the completion status (see ERROR CODES of appropriate driver and
Appendix A).

To OPEN a device for BYTE I/O you must place a -1 in the DIBBIO field and a
specific direction (either 0 for write or 1 for read) in the DIBDTD field.
After OPEN, the DIBBIO field will contain an identifier to be used for
SYSIO-BREAD, SYSIO-BWRITE, and SYSIO-BTEST.

Introduction 1-24

BTEST operates as a BREAD, but does not increment the buffer pointer. It
will return a $0C error code in D7.W if the buffer is empty otherwise the
byte value is returned in DO.B.

The SYSIO macro will load the system identifier, obtained from DIBBIO,
into register A6.L. If the register already contains the proper
information place A6 in the BYTEID field of the call. This eliminates
redundant register loading.

Introduction 1-25

SYSIO BREAD,BYTEID -or- SYSIO BREAD,A6

This command reads a byte from the device associated with the system
identifier BYTEID.

Register Usage:

A6.L points to the driver Byte Read Entry point
DO.B receives the byte
D7.W returns status

Completion Codes:

$8200
$8300
$8AOO
$8BOO

Invalid SYSIO call
Logical unit number not opened
Non-null request queue for byte I/O
Not open for byte I/O

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

533
534 0 000000'2

0 00000092 2C7900000218
0 00000098 4E4&
o oooooon ooos

SYSIO BREAD,BYTEID
MOVEA.L BYTEID,A&
TRAP 16
Dc.\l SIOBREAD

+ LOAD SYSTEM IDENTIFIER
t TRAP TO l/O MANAGER
t COMMAND I/ORD

Remember that there is no error branch on Byte I/O. Your program must
always check the contents of D7.W to determine whether the operation
was successful or whether the byte was not transmitting for some reason.

Introduction 1-26

SYSIO BWRITE, ID -or- SYSIO BWRITE,A6

This command writes a byte to the device associated with the system
identifier BYTEID.

Register Usage:

A6.L points to the driver Byte Write Entry Point
DO.B or DO.W (CRT Driver) contains the byte to be written
D7.W returns status

Completion Codes:

$8200
$8300
$8AOO
$8BOO

Invalid SYSIO call
Logical unit number not opened
Non-null request queue for byte I/O
Not open for byte I/O

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

s 40
541 0 OOOOOD9C SYS IO Bl/RITE I BYTE ID

0 OOOOOD9C lC7900000l18 MOVEA.L BYTE ID ,A& + LOAD SYSTEM IDENTIFIER
0 OOOODOAl 4&46 TRAP 16 + TRAP TO 110 KANACER
0 OOOOOOA4 0009 DUI SIOB\r'RITE + COMMAND VORD

Introduction 1-27

SYSIO BTEST, IDFIELD -or- SYSIO BTEST ,A6

This command reads a byte from the device associated with the system
identifier BYTEID without incrementing the internal buffer pointer.

Register Usage:

A6.L points to driver Byte Test Entry Point
DO.B passes the byte
D7.W returns status

Completion Codes:

$8200
$8300
$8AOO
$8BOO

Invalid SYSIO call
Logical unit number not opened
Non-null request queue for byte I/O
Not open for byte I/O

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

S41
548 0 OOOOOOA&

0 OOOOOOA6 lC7,00000218
0 OOOOOOAC 4£46
0 OOOOOOAE OOOA

SYSIO BTtST,BYTCID
MOVEA.L BYTEID,A6
TRAP 16
DC.~ S!OBTEST

+ LOAD SYSTEM IDENTIFIER
+ TRAP TO 1/0 MANAGER
+ COMMAND VORD

Introduction 1-28

1.3.2.4 Event Posting With EVENTMGR Commands

Asynchronous event posting allows users to detect the occurrence of
specific device driver events. By associating an Event Block (EVB) in the
user's data area with a specific event known to the operating system the
user can detect when that event occurs. Currently the events available to
theuser are:

1. IEEE-488 Bus Service request
2. RS-232 Break Key
3. Keyboard. CTRL-BREAK, CTRL-NUMLK, Functions Keys

and State Change
4. RS-232 Character Input

For more information on
specific device drivers.
carry out the command.
current control block. A
It is loaded into DS
completion code.

these events refer to the section for those
The EVENTMGR MACRO generates in- line code to

It loads register A6 with the address of the
'o' is required by the Macro as a place holder.

but not used. Register D7. W returns with a

1.3.2.5 Opening Events

The association of event with EVB is done by the user issuing an EVENTMGR
OPNEVBLK command. The format of the EVB is as follows:

EVBSEM DS.B 1 (S) Event indicator
EVBRSO DS.B 1 (S) Reserved. Set this byte to $00.
EVBSTA DS.B 4 (S) User sets these bytes to $00.
EVBNAM DS.B 4 (U) Event mnemonic

(S) means set by system.
(U) means set by user.

The EVBSTA field is used to pass optional information to the user.

1.3.2.6 Closing Events

Once a user is finished processing events, he should issue an EVENTMGR
CLSEVBLK to remove any further association of the EVB with the event.

Introduction 1-29

1.3.2. 7 Arming Events

If a user would prefer to wait for an event rather than poll for it, he can
'arm' the event. This command followed by the SUSPEND macro will suspend
the user until the event occurs. The user must rearm the event each time
it occurs in order to be resumed when the event occurs again.
Once the event has been opened the user can poll the EVB to determine if
the event has occurred, or he can arm the event and suspend himself until
the event occurs. These two methods are described in the following
sections.

1.3.2.8 Polling Events

Polling an EVB consists of a Test-and-Set (TAS) instruction on the EVBSEM
field. TAS sets one of the following three condition codes in the 68000
Status Register:

MI (minus) - No event has occurred
EQ (equal) One event has occurred since the last TAS
Pl (plus) - More than one event has occurred since the last TAS

When the condition code is PL the seven low-order bits contain the number
of times the event has occurred since the last TAS.

Coding Example:

POLLE VENT

EXIT
OVERRUN

EVTOCCUR

EVBLK
OVERCNT

INCLUDE
EQU
LEA
TAS
BMI
BEQ
BPL
RTS
MOVE.B
AND.B
MOVE.B
BSR
BRA
EQU

RTS
DS.B
DS.B

IOMCLBSO. INC
;':

EVBLK,AO
EVSEM(AO)
EXIT
EVTOCCUR
OVERRUN

EVBSEM(AO),DO
#$7F,DO
DO,OVERCNT
EVTOCCUR
EXIT
7:

10
1

event block offset equator

point AO to event block
test indicator byte
nothing happened
process event's occurrence
more than one happened
return
pick up event count
turn off upper bit
save overrun count
event handler subroutine
return
process event here

10 bytes of storage for the EVB
overrun count storage

Introduction 1-30

EVENTMGR OPNEVBLK,#0, EVENTBLK, ERRORLABEL

Register Usage:

A6.L points to the Event Block (EVB)
DS.B contains the LUN
D7.W returns status

Completion Codes:

$0000
$8200
$8300
$8400
$8600
$8700
$8DOO
$8EOO

Success
Invalid SYSIO call
Logical unit number not opened
Inadequate system space
Device not found
Not device owner
Event Descriptor Block not found
Event not opened

Data Structures:

Event Block (EVB)

Coding Example:

SSS
5S6 0 00000080

0 00000080
£V£HTMCR OPNEVBKL,ID,EVEN1'BLK,ERROR

0 OOOOOOBD 4DF90000011C
0 00000086 1A3COOOO
0 OODDOOBA 4!:46
0 OOOOOOBC OOOB
0 OOOOOOBE 60000148

SYSIO OPNEVBKL,iO,EVEMTBLK,ERROR + INTERNALLY CENEHATED COMMAND
LEA EVEMTBLK,A6 + LOAD ADDRESS OF CONTROL BLOCK
HOVE.B 10,DS +LOAD LOCICAL UNIT MIJMBER
TRAP 16 + TRAP TO 1/0 HANACER
DC.V SIOOPNEVBKL + COMMAND WORD
BRA. L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-31

EVENTMGR CLSEVBLK,O,EVENTBLK, ERRORLABEL

Register Usage:

A6.L points to the Event Block (EVB)
DS.B contains the LUN
D7.W returns status

Completion Codes:

$0000 - success
$8EOO - event not opened

Data Structures:

EVB

Coding Example:

5 63
564 0 OOOOOOC2

0 OOOOOOC2
0 OOOODOC2 4DF90000021C
0 OOOOOOCB 1A3COOOO
0 oooooocc 4£46
0 OOOOOOCE OOOC
0 00000000 60000136

EVENTMGR CLSEVBLK,10,EVENTBLK,ERROR
SYSIO CLSEVBLK,10,EVENTBLK,ERROR + INTERNALLY CEN£RAT£D COMMAND
LEA EVENTBLK,A6 + LOAD ADDRESS OF CONTROL BLOCK
MOVE. B 10,DS + LOAD LOGICAL UNIT NUMBER
TRAP u + TRAP TO I/O MANAGtR
DC .'ii SIOCLSEVBLK + COMMAND VORD
ERA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-32

EVENTMGR ARMEVENT ,#0, EVENTBLK, ERRORLABEL

Register Usage:

A6.L points to the event block
DS.B contains the LUN
D7.W returns status

Completion Codes:

Success
Invalid SYSIO call

$0000
$8200
$8300
$8DOO
$8EOO

Logical unit number not opened
Event Descriptor Block not found
Event not opened

Data Structures:

Event Block (EVB)

Coding Example:

570
s 71 0 OOOOOOD4

0 OOOOOOD4
0 OOOOOOD4 4DF90000021C
0 OOOOOODA 1A3COOOO
0 OOOOOODE 4£46
0 OOOOOOEO 0000
0 000000&2 60000124

EVENTKGR ARMEVENT,10,EVEnTBLg,&RROR
SYSIO ARKEVENT,tO,EVENTBLg,ERROR + INTERNALLY GENERATED COMMAND
LEA EVENTBLK,A6 + LOAD ADDRESS OF CONTROL BLocg
KOVE.B 10,DS + LOAD LOGICAL UNIT NUMBER
TRAP 1£ + TRAP TO I/O MANAGER
DC.W SIOARKEVENT + COMMAND WORD
BRA. L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-33

1.3.3 MORE INFORMATION ON THE SUSPEND COMMAND

User programs can use the SUSPEND command to wait for the completion of
outstanding asynchronous requests. The program can be made to wait for
the completion of one request or all requests.

The functions of the SUSPEND command include:

SYNCH

SUSPEND TILLANY

SUSPEND TILLALL

Retrieve the number of outstanding
I/O requests.
Wait until any outstanding request
is completed.
Wait until all outstanding requests
are complete.

The SUSPEND function will not wait for a specific request but only for a
change in the count of outstanding requests that is kept for each task.
User programs that are interested in the completion of one specific
request out of several outstanding requests must check the status field of
the Data Transfer Control Block, timer block, semaphore block, or event
block in question.

If the program uses decision logic based on the status fields, there is a
possibility that the status will change between the time that the program
tests the field and the time that a SUSPEND is issued. To allow
synchronization, there is a SUSPEND-SYNCH command to capture the number of
outstanding requests before any decision logic takes place. This number
will subsequently be used as an operand of a SUSPEND-TILLANY command so
the I/O manager can work with the same set of initial conditions.

The macro generates in-line code to carry out the command. It issues a
TRAP U9 to the I/O manager and either passes or receives a value contained
in register DO.

Introduction 1-34

SUSPEND TILLALL, ,ERRORLABEL

The current task is suspended until all outstanding requests are complete.

Register Usage:

DO.B returns the number of outstanding I/O requests
D7.W returns status

Comp let ion Codes:

On error branches D7.W will be loaded with $8200 (invalid call);
otherwise D7.W is set to zero.

Required Data Structures:

None

Coding Example:

sn
sn o 000000£6 SUSPEND Tl LLALL I I ERROR

0 000000£6 4£41 TRAP IV + TRAP TO I/O MANAGER
0 000000£8 0002 DC.Ii $0002 + TILLALL COMMAND WORU
0 OOOOOOEA 60000124 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-35

SUSPEND Tl LLANY, DO, ERRORLABEL

The current task is suspended until any outstanding request is completed.
The command is non-specific as to which request will satisfy the wait.
Register DO.B must contain the number of requests that were outstanding
before it was decided to perform the SUSPEND. This value is obtained via
SUSPEND-SYNCH. The I/O manager will resume the task as soon as the number
of outstanding requests is less than the number passed in regi_ster D,O. B.

Register Usage:

DO.B must contain the number of outstanding requests
D7.W returns status

Completion Codes:

On error branch. D7.W=$8200 Invalid call
D7.W=$8300 Invalid Synch value.

Required Control Blocks:

None

Coding Example:

586
587 0 OOOOOOEE SUSPEND TILLAMY,DO,ERROR

0 000000££ 00000000 OS.It' 0
0 OOOOOOEE 4£0 TRAP 19
0 OOOOOOFO 0003 DC. I{ $0003
0 OOOOOOF2 60000114 BRA.L ERROR

+ DO ASSUMED TO CONTAIN SYNCH COIJNT
+ TRAP TO 1/0 KANAGER
+ TILLAHY COl'IMAND VORD
t BRANCH 'l"O USER ERROR HANDLER

Introduction 1-36

SUSPEND TILLANY ,NOSYNCH,ERRORLABEL

The current task is suspended until any outstanding asynchronous request
is completed. The operand NOSYNCH instructs the system to use the current
request count as a starting number. The command is non-specific as to
which request (I/O, timer, event) will satisfy the wait. No wait will
take place if the number of outstanding requests is zero.

Register Usage:

DO.B
D7.W returns status

Completion Codes:

On error branches D7.W will be loaded with $8200 (invalid call)

Required Control Blocks:

None

Coding Example:

SH
595 0 ODOOOOF6 SUSPEND TILLANY,NOSYNCH,ERROR

0 OOOOOOF6 103CFFFF ·MOVE. B 1-1, DO + INDICATE TILLANY-NOSYKCH CALL
0 OOOOOOFA 4£49 TRAP u + TRAP TO l/O KANAGER
0 OOOOOOFC 0003 DUI $0003 t TILLANY COMMAND ~ORD
0 OOODOOFE 60000108 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-37

SUSPEND SYNCH, DO, ERRORLABEL

The number of outstanding requests for the current task is returned in
register DO. B.

Register Usage:

DO.B returns the number of outstanding requests
D7.W returns status

Completion Codes:

On error branches D7.W is loaded with $8200 (invalid call); otherwise
D7.W contains $0000.

Required Control Blocks:

None

Comments:

As an example of the SUSPEND SYNCH command, let us assume that there are
three outstanding requests which use the Data Transfer Control Blocks:
AAADTCB, BBBDTCB, and CCCDTCB. A user program wishes to wait until
AAADTCB is complete; the other requests do not matter. Furthermore, the
fields AAASTA, BBBSTA, and CCCSTA are all set to -1 indicating that the
request is not yet complete. The program statements might look as
follows:

WAITAAA SUSPEND SYNCH,DO,ERR
IF.B AAASTA <EQ>#-1 THEN

SUSPEND TILLANY,DO,ERRl
BRA WAITAAA

ENDI

Coding Example:

6 Ol

Get current number of requests.
If the one you want is not done
Then wait for any request to
complete and see if it is the one
you want.

603 0 00000102 SUSP&ND SYNCH,DO,ERROR
0 00000102 4EO
0 00000104 0001
0 00000106 60000100

TRAP 19
DUI $0001
BRA.L ERROR

+TRAP TO I/O MANAGER
+ SYNCH COKHAHD '\/ORD
+ BRAMCH TO USER ERROR HANDLER

Introduction 1-38

1.3.4 TIMER SERVICES AND THE "REAL-TIME" MANAGER

The Computer System's timer services, controlled by a "real-time"
manager, allow programs to access a real-time clock with a resolution of
1/32768 seconds. User programs can query the time of day or specify a
time interval that will elapse before an "alarm" is set in either polled
or "wake-up" mode. This interval has a 1/1024 second resolution and may
be specified as relative (to current date and time) or absolute.

The "Real-Time" Manager is based on the CS 9000 time-of-day clock and
therefore provides a much more accurate timing facility than the DELAY
system call which is based on the time-slice clock.

Please keep in mind when using these timing facilities that user programs
are run at hardware interrupt level zero and that any interrupt activity
at all, whether disk, keyboard I/O, time slicing, or whatever, wil 1
necessarily preempt your application program and cause delays.

It is not realistic to presume that you can program time periods of only a
few milliseconds and maintain accuracy while at the same time you have
initiated I/O activity which will preempt your program during the data
transfer process. In such cases the Real Time Manager will make your
program READY at the proper time, but your program will not run at that
time because other activity of a higher priority level is taking place.

The Real Time Manager is most suitable for providing periodic interrupts
at an accurate repetition rate, and for providing the ability to schedule
events in the future at a precise time. These characteristics are useful
for direct instrument control and for taking periodic samples at a precise
rate.

1.3.4.1 Polled and "Wake-up" Mode

When an alarm timeout is started with either ALRM or ALRMR, the RTT mode
field is checked to determine whether polled or wake-up mode was selected.
In the polled mode, the alarm will simply provide an indication in the RTT
status area. In wake-up mode, an asynchronous operation will be started
and when the alarm occurs, the RTT status will be updated and the user
program is awakened if in a suspended state according to its priority.

Introduction 1-39

1.3.4.2 Time and Date Format

The time format for the RTT data output and the RTT data input areas is
identical. Byte fields of hexadecimal values are used for the time and
date, while the "fractional seconds field" is a 15-bit counter value. The
format is as follows:

RTTDA 00 year month day I (4 byte field)
RTTTM 00 hour minute second I (4 byte field)
RTTMS count (2 byte field)

The date "January 2, 1983" and time "13:30:59" would be:

RTTDAO DC.L $00530102 83/01/02
RTTTMO DC.L $000DlE3B 13:30:59
RTTMSO DC.W $0000 0

1.3.4.3 RTT Block Format

The information below represents the data in the system include file for
the RTT block. The notation "s" means that the system sets this field
while "U" means that the user program sets this field. This control block
must be aligned on a word boundary.

RTTSTA DS.B 1 (S) status (Idle = O,
Ticking= $FF,
Alarm occurred = 1)

RTTMOD DS.B 1 (U) mode (Polled = 0, Wakeup = 1)
RTTIDX DS.W 1 (S) index
RTTDAO DS.L 1 (U) date -- data output area
RTTTMO DS.L 1 (U) time
RTTMSO DS.W 1 (U) count
RTTDAI DS.L 1 (S,U) date data input area
RTTTMI DS.L 1 (S,U) time
RTTMSI DS.W 1 (S,U) count

The real-time manager commands are listed on the following pages.

For all of the commands, a branch to an error routine identified as
ERRORLABEL in these pages is executed. Status is also returned in D7.W;
zero indicates success but a positive value indicates an error.

Introduction 1-40

1.3.4.4 Printing the Time

One way of printing the time is to convert it to GETTIM output, use the
FMTTOD system call (to get ASCII format), and then display that. The
conversion program is as follows:

LEA STRING,A6
CLR.L Dl
CLR.L D2
MOVE.L RTTDA(Ax),D3
MOVE.B D3,D2
LSR.L #8,D2
LSL.L ift8,D3
MOVE.B D3,D2
LSR.L #8,D2
LSL.L #8,D3
MOVE.B D3,D2
MOVE.L RTTTM(Ax),D3
MOVE.B D3,Dl
LSR.L #8,Dl
LSL.L #8,D3
MOVE.B D3,Dl
LSR.L #8,Dl
LSL.L #8,D3
MOVE.B D3,Dl
FMTTOD

18-character string

year/month/day

day/month/year in D2
hour/minute/second

second/minute/hour in Dl
input is Dl,D2,A6

code for printing desired
string or portion of string

Introduction 1-41

RTMGR OPEN,RTT,ERRORLABEL

This command opens the timer facility and points to the task data block
that will be used for timer control and date/time transfer.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful open, D7.W=5 unsuccessful (cannot allocate RTT block).

Probable cause for an error during OPEN is that all RTMGR system timer
blocks are currently in use.

Data Control Blocks:

RTT

Note: You must issue the RTMGR OPEN Command before using any of the other
RTMGR commands.

Coding Example:

610
611 0 0000010A

0 0000010A 4DF900000220
0 00000110 4E4A
0 0000011% 0001
0 00000114 600000F2

RTMGR
LEA
TRAP
DUI
EllA.L

OPEN,RTTBL~,ERROR

RTTBLK,A& + LOAD ADDRESS OF CONTROL BLOCK
t10 + TRAP TO REAL-TIME MANAGER
RTOPEN + COMMAND 'llORD
ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-42

RTMGR CLOSE, RTT, ERRORLABEL

This command releases the timer facility associated with the specified RTT
block.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful completion. D7.W=5, timer completed, RTMGR stop
must be issued before CLOSE.

It is illegal to try and close an RTT block that still has an
active timeout running on it.

Data Control Blocks:

RTT

Coding Example:

611
619 0 00000118 RTMGR CLOS£,RTTBLK,ERROR

0 00000118 4DF900000220 LEA RTTBLK,A& + LOAD ADDRESS OF CONTROL BLOCK
0 0000011E 4£4A TRAP 110 + TRAP TO REAL-TIME MANAGER
0 00000110 0002 DU/ RTCLOSE + COMMAND WRD
0 00000122 600000£4 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-43

RTMGR QTIME, RTT, ERRORLABEL

This command returns the current date/time to the RTT block input area.
The time is at a resolution of 1/32768 seconds.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful completion. No error code is defined.

Data Control Blocks:

RTT

Coding Example:

626
621 0 00000126 RTMGR QTIKE,RTTBLK,ERROR

0 00000126 4DF90000D220 LEA RTIBLK,U + LOAD ADDRESS OF CONTROL BLOCK
0 OOOOO!lC 4£4A TRAP 110 + TRAP TO REAL-TIME MANAGER
0 0000012£ 0003 DUI RTGTIME + COMMAND WORD
0 00000130 600000D6 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-44

RTMGR QALRM,RTT,ERRORLABEL

This command returns the current setting of the task alarm to the RTT
input area. The alarm may be active or inactive as indicated by the RTT
status.

Register Usage:

A6.L point to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful completion. D7.W=5 unsuccessful (RTT invalid or not
opened).

Error if RTT not opened, or if user has modified SYSTEM fields in
the RTT.

Data Control Blocks:

RTT

Coding Example:

6H
635 0 00000134

0 00000134 4DF900000220
0 0000013A 4E4A
0 0000013C 0004
0 0000013£ 600000CB

RTMGR OALRM,RTTBLK,£RROR
LEA RirBLK,A6
TRAP 110
DUI RTOALRM
BRA. L ERROR

+ LOAD ADDRESS OF CO~'iROL BLDCI
+ TRAP TO REAL-TIM£ MANAGER
+ COMMAND VORD
+ BRANCH TO USER ERROR HANDLER

Introduction 1-45

RTMGR STOP, RTT, ERRORLABEL

This command can be used to terminate a currently active alarm.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful completion
D7.W=5 unsuccessful (RTT invalid or not opened)

Data Control Blocks:

RTT

Coding Example:

Hl
643 0 00000142 HT!iGH STOP,Ril'ELK,ERROR

"f 00000142 4DF90000G220 LEA RTTBLK,A6
~ 00000148 4£4A TRAP 110
0 0000014! 0006 DC. II RTSTOP
0 0000014C 600000BA BRA.L ERROR

+ LOAD ADDRESS OF CONTROL BLOCK
+ TRAP TO REAL-TIME MANAGER
+ COMMAND VORD
+ BRANCH TO USER ERROR HANDLtR

Introduction 1-46

RTMGR ALRM,RTT,ERRORLABEL

Set the absolute date/time for an alarm from the RTT data output area.
The time will be truncated to a 1/1024 second resolution. You must set
RTTMOD to either polled or wakeup mode before issuing this macro.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O successful completion
D7.W=S unsuccessful completion (RTT invalid or not opened)

An error is returned if the alarm setting is for a time in the
"past", or is less than 1 millisecond into the future.

Data Control Blocks:

RTT

Coding Example:

650
651 0 00000150 RTI!CR ALRM,RTTBLK,£RROR

0 00000150 4DF900000220 L£A RTTBLK,A6 + LOAD ADDRESS OF CONiROL BLOCK
0 00000156 4E4A TRAP 110 + TRAP TO REAL-TIME MANAGER
0 00000158 0007 DUI RTALRM + COMMAN:D llORD
0 0000015A 600000AC BRA.L ERROR + BRAHCH TO USER ERROR HANDLER

Introduction 1-47

RTMGR ALRMR,RTT,ERRORLABEL

Set the alarm from the relative date/time in the RTT data output area.
The resulting absolute alarm time may then be queried with the QALRM
command. You must set RTTMOD to either polled or wakeup mode before
issuing this macro.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=O Successful completion
D7.W=5 Unsuccessful completion (RTT invalid or not opened).

An error is returned if the alarm setting is for a time in the
"past", or is less than 1 millisecond into the future

Data Control Blocks:

RTT

Coding Example:

6Sa
659 0 0000015£ RTl1CR ALRHR,Ril'BLK,ERROR

0 0000015E 4DF900000220 LEA Ril'BLK,A& + LOAD ADDRESS OF CONTROL BLOCK
0 00000164 4E4A TRAP 110 + TRAP TO REAL-TIME MANAGER
0 00000166 0008 DC. II RTALRMR + COMMAND lt'ORD
0 00000168 6000009£ ERA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-48

RTMGR SUM, RTT, ERRORLABEL

This command returns the sum of the date/time in the RTT data output area
and the RTT input area to the data input area in the correct format.

Register Usage:

A6.1 points to RTT block
D7.W returns the status

Completion Codes:

D7.W=O successful completion
D7.W=5 unsuccessful completion, (RTT invalid or not opened)

Data Control Blocks:

RTT

Coding Example:

66£
667 0 ooooouc RTMGR SUM,Ril'BLK,ERROR

0 0000016C 4DF900000220 LEA Ril'BU:,A6 + LOAD ADDRESS OF CONTROL BLOCI
0 00000172 4E4A TRAP uo + TRAP TO REAL-T!KE MANAGER
0 00000174 0009 DC.\/ RTSUl'I + COl'IKAMD WORD
0 00000176 60000090 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-49

1.3.4.5 Sample Program Usrng the Real-Time Manager

The program on the opposite page illustrates one use of the real-time
manager. It opens the RTT block, reads the current time, sets the mode to
wakeup, issues an alarm for 15 seconds into the future, issues a suspend
for the timeout, and then closes the RTT.

1.3.5 NAMING AND OTHER CONVENTIONS

1.3.5. l File Name Format

A fully qualified filename consists of three fields: A volume identifier,
a filename, and an extension. When file names are specified within system
commands, you must use specific delimiters to separate the fields. The
standard format is shown below:

<volume:>filename.ext

volume is one to six alphanumeric characters always terminated by a
colon. This field can be omitted in which case the default
volume is used. Specifying a logical drive number in the
volume field (0-3 for diskette drives #FDOO-#FD03)
OPENs the volume name that is mounted in the specified
drive.

filename is one-to-eight alphanumeric characters with the leading
character alphabetic. This is always followed by a period
and the filename extension.

ext is one to three alphanumeric characters with the leading
character alphabetic.

EXAMPLES:

123456:BLUE.SRC
VOL7:CALCPGM.REL

SAMP:TESTCASE.BIN
SPECTl .REL

The "Wildcard Feature" is the same as described in Computer System
Operating System Reference, Part 1, GC22-9199, except that it does not
apply to volume names.

Introduction 1-50

54

m
598
599 0 QOOOOOOO
600 0 QilOOCG22
60l 0 !J000-0030
602 0 00000056

60B 0 QOOUOUAG 42B900000164
60~ 0 DGUODGl6 23FCOOOODOCF

OQQ00'58

610 DGCOOQBD 42?90DOD016C
6:1 OOOQOGB6 .3FCOOU!OOOO

016 l
61Z 0 OOOOOtiEE
L 3 u OOilGOGCC
614 0 OOCGOOE

0 OOGOD0FD 60000066
L :i 0 OOOiJQOF4
616 Q 00001!128

a OCUOD132 •ODD0624
6!7 D 000001!6
618 0 JOQOOi54
619 0 00000158
6ZO 0 0000015C

621 0 00000160 00000000
62Z 0 00000160 00000001
623 Q GUOD0161 OOODOGOI
624 0 00000162 00000002
625 0 0000016q 00000004
626 0 00000160 00000004
627 0 OU00016C 00000002
628 0 0000016£ 00000004
629 0 00000172 00000004
630 0 00000176 00000002
rn

RTl'IT ES'i.' l DNT 1. 1

• R~'MMAC50 INC RLV 22-SEP-83 HAS EWi iNWiDJ:D
* S!ShACjQ INC RLV ZZ-SEF-83 HAS BEEN INCLUDED
• IOHCLBSO. INC REV 22-SEP-03 HAS BEEN INCLUDED

TYPE
l\TMGR
TYPE
RTMGR

{QfENlNG RTT BLOCK)
OPEN, RTTBLOCK, ERR£& I'l'
<READING CURRENT T!M£i
UIIME,RTTBLDCK,ERREX!T

' NOTE TliAT IJ!: ARE !\GT U5!NG Tfil5 READING FOR Af!YTHING IN THE SAMPLE
t PROGRAM ilUT l'f !5 AVAILABLE IN THE RTT !NrUT AREA lF i/E \i1ANT rr.
* FOR EXAMPLE WE CDULD USE IT 10 COMPUTE AN "ABSOLUTE" WAKEUP T!ME.

TYPE {SET ALARM t5 SECONDS FROM NOW, liAHUP MODE:<

• WE' RE !JS!NG THl RELATIVE ALARM. j 5 SECONDS FROM Now

C~R.L RTTllLOCK+RTTDAO NO CHANGE TO DATE
MOVE.L HOGOOOOOf,RTTELOCK+RTTTl'iO RELAT!V£ 15 SECONDS TO TIME

CLR.\i1
MOVE B

RTTELOCK+RTT!150
ti,RTTBLOCK+RTTMOD

NO CHANGE TO FRACTIONAL SECONDS
SET MODE TO VAKEUP

fiTMGR ALRMR I RTTB LOCK I ERR EX lT
TYPE \SUSPEND !5SUEDI
SUSPEND T!LLALL,iO,ERREX!T
BRA.L
TYPE

ERR EX IT + BRANCH TO USER ERROR HANDLER
<PROGRAM AVAKENED, lSSUrNG RTT CL05Ei

RTMGR CLOSE,RTTBLOCK,ERREIIT
BRA. L ERR EX iT + BRANCH TO USER ERROR HANDLER
TYPE <PROGRAM ENDED)
EXIT

£RR£X IT PRTERR
mT

RTrBLOCK DS.'vl

05.B
DS.B
05 ''vi
as L
DS.L
DUI
DS.L
DS L
DS. lJ
END

ALICN TO 'v/ORD BOUNDARY
RTTSTA STATUS
RT'fMOD MODE
RTTlDX INDEX
RTTDAO
RTTTMO : DATA OUTPUT
RTTMSO
RTTDA! '' ''
RTTTM! I l DATA It!PUT ''
RTTMS! '' ''

rti••• TOTAL ERRORS 0-- 616

Introduction 1-51

1.3.5.2

BIN
ASM
INC
OBJ
LNK
SUB
DRV
SYS
LIB

File Extensions

Binary programs and files
Assembler source statement files
Assembler include files
Relocatable object files - individual
Relocatable object files - linked together
Submit files
Binary device drivers
Operating system programs and files
Library files

Files extensions to avoid:

TMP These extensions are used by the editor program.
BAK

1.3.5.3 Logical Device Naming

Logical device names are established by the device drivers. The names of
devices attached to the system can be displayed by the operating system
LISTDEV command. These names are "bound" to user program logical unit
numbers with the SYSIO-OPEN command and a Device Initialization Block
(DIB) supplied by the user's program. Task logical unit assignments can
be displayed with the SHOW command. The pre-assigned logical device names
are shown below.

Hard Disk
Floppy Diskette
IEEE-488 Bus

Parallel Port
Keyboard/Keypad
Keypad/control
CRT Graphics
Printer
RS-232 Asynch
RS-232 Bisynch/Asynch
CRT (see note)

#HDOO through #HD03
#FDOO through #FD03
#BUSOO (additional devices would be

#BUSOl, etc.)
#PPU
#CON
#KPD
#GR
#PR
#SERO 1, ifaSER02
#SEROO
#SCRNO for page 0
#SCRNl for page 1
#CNS LO

Note: The CRT has ability to display one of the two memory pages at any
given time. The page to be displayed can be set by using a
function call or the PAGE command.

Introduction 1-52

1.3.5.4 Numbers

• Unless otherwise noted, numbers are decimal.

• Hexadecimal numbers are preceded by a dollar sign, e.g. $4FFFO.

Introduction 1-53

2.0 KEYBOARD DRIVER

2.1 DRIVER DESCRIPTION

The Keyboard Driver supports the keyboard option. Note: The optional
keyboard must be installed to use this driver. The IBM Instruments
Computer System can be configured with just keypad and softkeys. See
Chapter 3 for information related to the keypad and softkeys and the
keypad driver. The Keyboard Driver is sharable and supports Byte I/O,
asynchronous event posting and asynchronous requests but does not support
attach or detach devices. The keyboard and keypad driver share the same
resources. If either is "detached" the other will also be detached.

Name

"CBUF"

"CTLB"
"CTLN"
"Fl
"F2
"F3
"F4
"F5
"F6
"F7
"FB
"F9
"FlO "

11

11

"
11

"
"
11

If

"

EVENTS SUPPORTED BY #CON DRIVER

When Signalled

Any key depression or shift state change.
The EVBSTA field returns the current BYTE
I/O longword.
When CTRL-BREAK is pressed.
On CTRL-NUMLOCK EVBSTA=-1, on RESUME EVBSTA=O.
When Function Key 1 is pressed.
When Function Key 2 is pressed.
When Function Key 3 is pressed.
When Function Key 4 is pressed.
When Function Key 5 is pressed.
When Function Key 6 is pressed.
When Function Key 7 is pressed.
When Function Key 8 is pressed.
When Function Key 9 is pressed.
When Function Key 10 is pressed.

KEYBOARD ENCODING AND USAGE

ENCODING

The keyboard routine provided by IBM in ROM is responsible for converting
the keyboard scan codes into what will be termed "Extended ASCII".

Extended ASCII encompasses one byte character codes with possible values
of 0-255, an extended code for certain extended keyboard functions and
functions that are handled within the keyboard routine or through
interrupts.

Keyboard Driver 2-1

CHARACTER CODES

The following character codes are passed through the keyboard routine to
the system or application program. A "-1" means the combination is
suppressed in the keyboard routine.

KEY BASE CASE UPPER CASE CTRL ALT

1 ESC I ESC I ESC I -1
2 1 I _! I -1 I Note 1 2

3 2 I @ I NUL (000) Note 11 Note 1
4 3 I # I -1 I Note 1
5 4 I $ I -1 I Note 1
6 5 I % I -1 I Note 1
7 6 I I RS (030) I Note 1
8 7 I & I -1 I Note 1
9 8 I 'i'(I -1 I Note 1

10 9 I (I -1 I Note 1
11 0 I) I -1 I Note 1
12 I - I us (031) I Note 1
13 = I + I -1 I Note 1
14 Backspace (008)1 Backspace (008)1 DEL (127) I -1
15 -+ (009> I +- (Note 1) I -1 I -1
16 q I Q I DCl (017) I Note 1
17 w I w I ETB (023) I Note 1
18 e I E I ENQ (005) I Note 1
19 r I R I DC2 (018) I Note 1 I

20 t I T I DC4 (020) I Note 1
21 y I y I EM (025) I Note 1
22 u I u I NAK (021) I Note 1
23 i I I I HT (009) I Note 1
24 0 I 0 I SI (015) I Note 1
25 p I ·p I DLE (016) ,I Note 1
26 [I { I ESC (027) I -1
27] I } I GS (029) I -1
28 CR I CR I LF (010) I -1
29 -1 I -1 I -1 I -1
30 a I A I SOH (001) I Note 1
31 s I s I DC3 (019) I Note 1
32 d I D I EDT (004) I Note 1
33 f I F I ACK (006) I Note 1
34 g I G I BEL (007) I Note 1

Keyboard Driver 2-2

CHARACTER CODES (Cont.)

KEY BASE CASE UPPER CASE CTRL ALT I

35 I h H BS (008) Note 1 I
36 I J J LF (010) Note 1 I
37 I k K VT (011) Note 1 I
38 I 1 1 FF (012) Note 1 I
39 I : -1 -1 I
40 I II -1 -1 I
41 I -1 -1 I
42SHIFT\ -1 -1 -1 -1 I
43 I \ FS (028) -1 I
44 I z z SUB (026) Note 1 I
45 I x x CAN (024) Note 1 I
46 I c c ETX (003) Note 1 I
47 I v v SYN(022) Note 1 I
48 I b B STX (002) Note 1 I
49 I n N so (014) Note 1 I
50 I m M CR (013) Note 1 I
51 I < -1 -1 I
52 I > -1 -1 I
53 I I ? -1 -1 I
54SHIFTI -1 -1 -1 -1 I
55 I "'k (Note 2) (Note 1) -1 I
56ALT I -1 -1 -1 -1 I
57 I SP SP SP SP I
58CAPS I -1 -1 -1 -1 I

LOCK I I
59 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
60 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
61 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
62 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
63 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
64 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
65 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
66 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
67 I NUL (Note 1) NUL (Note 1) NUL (Note 1) NUL (Note 1) I
68 I NUL (Note 10 NUL (Note 1) NUL (Note 1) NUL (Note 1) I
69NUM I -1 -1 Pause -1 I

I
LOCK I (Note 2) I

70SCROLJ -1 -1 Break -1 I
LOCK I (Note 2) I

I I

Note 1: Refer to Extended Codes (see below).

Note 2: Refer to Special Handling (see below).

Keyboard Driver 2-3

Keys 71-83 have meaning only in base case, in NUMLOCK (or shifted) states,
or in CTRL state. It should be noted that the shift key temporarily
reverses the current NUMLOCK state.

KEY ii I NUM LOCK BASE CASE ALT CTRL
I (Note 3) (Note

71 I 7 Home (Note 1) Note 1 I Clear Screen
72 I 8 t (Note 1) Note 1 I -1
73 I 9 Page Up (Note 1) Note 1 I Top of Text &
74 I -1 I -1
75 I 4 +- (Note 1) Note 1 I Reverse Word
76 I 5 -1 Note 1 I -1
77 I 6 -+ (Note 1) Note 1 I Adv Word

I (Note 1 I
78 I + + -1 I -1
79 I 1 End (Note 1) Note 1 I Erase to EOL
80 I 2 ~ (Note 1) Note 1 I -1
81 I 3 Page Down (Note 1) Note 1 I Erase to EOS

I (Note 1) I
82 I 0 INS Note 1 I -1
83 I DEL (Notes 1,2) Note 2 I Note 2

Note 1: Refer to Extended Codes (see below).
Note 2: Refer to Special Handling (see below).
Note 3: The meanings of keystrokes is a recommendation for

applications, and is not implemented in the operating
system command interpreter.

A. EXTENDED CODES

For certain functions that cannot be represented in the standard
ASCII code, an extended code is used. This indicates that the system
or application program should examine a second code that will
indicate the actual function. Usually, but not always, this second
code is the scan code of the primary key that was pressed. Extended
ASCII cannot be read with a normal SYSIO SREAD command. The extended
code can be accessed through BYTE I/0, through Function Key Mode, or
through a "table lookup facility." These capabilities are described
later on.

Keyboard Driver 2-4

3)

Home

Keyboard Extended Codes

SECOND CODE

3
15
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131

B. SHIFT STATES

FUNCTION (Note 3)

NUL Character
~ 16-25 ALT Q,W,E,R,T,Y,U,I,O,P
ALTYA,S,D,F,G,H,J,K,L
ALTYZ,X,C,V,B,N,M
Fl-FlO Function Keys Base Case
Home
t
Page Up & Home Cursor
~

End

Page Down & Home Cursor
INS
DEL
Fll-F20 (Upper Case Fl-FlO)
F21-F30 (CTRL Fl-FlO)
F31-F40 (ALT Fl-FlO)
CTRL PRTSC Key 55
CTRL~ Reverse Word
CTRL~ Advance Word
CTRL END Erase EOL
CTRL PG DN Erase EDS
CTRL HOME Clear Screen and home
ALT 1,2,3,4,5,6,7,8,9,0,-,=(Keys 2-13)

Most shift state~ are handled within the keyboard routine
transparently to the system or application program. In any case, the
current set of active shift states are available by using BYTE I/O or
by monitoring the event "CBUF". The following keys result in altered
shift states.

Shift - Temporarily shifts keys 2-13, 15-27, 30-41, 43-53, 55, 59-68
to upper case (lower case if in CAPSLOCK state). Temporarily
reverses NUMLOCK/NONUMLOCK state of keys 71-73, 75, 77, 79-83.

CTRL - Temporarily shifts keys 3, 7, 12, 14, 16-28, 30-38, 43-50, 55,
59-71, 73, 75, 77, 79, 81 to CTRL state. Used with ALT and DEL to
cause "system reset" function described in Section 2 .4. Used with

Keyboard Driver 2-5

SCROLL LOCK to cause 'break' function described in Section 2.4. Used
with NUMLOCK to cause "pause" function described in Section 2. 4.

ALT - Temporarily shifts keys 2-13, 16-25, 30-38, 44-50, and 59-68 to
ALT state. Used with CTRL and DEL to cause system reset function
described in Section 2.4.

CAPS LOCK - Shifts keys 16-25, 30-38, 44-50 to upper case. A second
depression of CAPS LOCK reverses the action. Handled internal to
keyboard routine.

NUM LOCK - Shifts keys 71-73, 75-77, 79-83 to numeric state. A
second depression of NUM LOCK reverses the action. Handled internal
to keyboard routine.

SCROLL LOCK - Interpreted by appropriate application programs as
indicating that the use of the cursor control keys should cause
windowing over the text rather than cursor movement. A second
depression of SCROLL LOCK reverses the action. The keyboard routine
simply records the current shift state of SCROLL LOCK. It is up to
the system or application program to perform the function.

C. SHIFT KEY PRIORITIES AND COMBINATIONS

If combinations of ALT, CTRL and SHIFT are pressed and only one is
valid, the precedence is as follows: Highest is ALT, then CTRL, then
SHIFT. The only valid combination is ALT CTRL, which is used in
system reset.

SPECIAL HANDLING

A. SYSTEM RESET

The combination of ALT CTRL DEL (Key 83) will result in the keyboard
routine initiating the equivalent of a system restart. Handled
internal to keyboard routine.

B. BREAK

The combination CTRL BREAK will result in the keyboard routine
signaling event "CTLB". See also Functions 7 and 8.

C. PAUSE

The combination CTRL NUM-LOCK will cause the keyboard interrupt
routine to loop, waiting for any key except PRTSC to be pressed.
This provides a system/application transparent method of suspending
list/print/ etc. temporarily, and then resuming. The event "CTLN" is

Keyboard Driver 2-6

signalled whenever the system enters or leaves "Pause" state. A
value of -1 is returned if PAUSE is on. A zero is returned if PAUSE
is off. The "Unpause" key is thrown away. Handled internal to
keyboard routine. See also Function 9.

D. TYPAMATIC ACTION

The following keys will have their typamatic action suppressed by the
keyboard routine: CTRL, SHIFT, ALT, NUM- LOCK, SCROLL-LOCK, CAPS
LOCK, INS.

E . PRINT SCREEN

The combination SHIFT-PRINT SCREEN (Key 55) will result in an
interrupt invoking the print screen routine. This routine works in
graphics mode.

DRIVER PRINCIPLE OF OPERATION

The Keyboard driver processes key strokes from the keyboard. Each
keystroke generates two hardware scan-codes; one when the key is pressed
and one when the key is released. See Figure 2-1. An interrupt is
generated, the associated character (if any) is echoed to an Alpha Window
on the CRT and the scan-codes are stored in a 32 keystroke buffer where
they are held until they can be individually processed by the keyboard
driver. The keyboard driver stores them, along with their extended ASCII
translation and two other bytes which represent the state of the keyboard
at the time the key was pressed. For example Control Keys, Alternate
Keys, Numbers Lock etc. From this 32 entry circular buffer (#CON) the
information is available to transfer to a user buffer or for use by an
applications program. Extended ASCII encompasses one byte character
codes with possible values of 0 to 255, an extended code for certain
extended keyboard functions and functions that are handled by the keyboard
driver or through interrupts. Entries may also be made into the #CON
buffer from the keypad driver. See Chapter 3 for information on how this
is accomplished.

If the circular buffer becomes full and an additional keystroke comes in,
then the last keystroke in the buffer will be overlaid. This procedure
allows user programs to use EVENTS without ever reading from the buffer.
(If the additional keystrokes were ignored, then the user program would
need to keep reading from #CON in order to make the buffer not become
full.)

Each SYSIO-BREAD will obtain a longword from the #CON buffer. Register
DO.L will always contain information on the last key that was struck,
regardless of whether there is a byte available in the buffer or not.

Keyboard Driver 2-7

BYTE 1/0 LONGWORD DESCRIPTION

BYTE 0: Contains "KBFLAG" defined as follows:
Bit 7: Insert state
Bit 6: Caps lock has been toggled
Bit
Bit
Bit
Bit
Bit
Bit

5:
4:
3:
2:
1:
0:

Numeric lock has been toggled
Scroll lock has been toggled
Alt shift key depressed
Control shift key depressed
Left shift key depressed
Right shift key depressed

BYTE 1: Contains "KBFLAGl" defined as follows:
Bit 7: Insert key depressed
Bit 6: Caps lock key depressed
Bit 5: Numeric lock key depressed
Bit 4: Scroll lock key depressed

BYTE 2: Contains the scancode of the key that was pressed.

BYTE 3: Contains the translated ASCII code of the key that was
pressed. Contains zero if there is no ASCII representation.

Each SYSIO-AREAD or SYSIO-SREAD will transfer a line of console input to
the buffer specified in the Data Transfer Control Block (DTCB). There are
several line-editing options that may be specified with function packets
using SYSIO-OPEN or SYSIO-FUNCTION. See Paragraph 2.4.2.

There is a "table lookup facility" in the keypad driver that may be used
to translate non-ASCII keystrokes such as function keys and cursor keys
into program control functions or into ASCII strings. See functions 12,
13 and 19 of the Keypad Driver for an explanation on how to use this
facility.

Function and cursor keys are normally ignored if they do not appear in the
lookup table. However, you can use "Function Key Mode" to gain access to
them. In this mode you will receive an exception code of $10 whenever a
control or function key is pressed that could not be translated. Three
bytes will be placed in the buffer specified in your data transfer control
block starting at the offset contained in the DTCB buffer pointer. The
first byte is KBFLAG, the second is KBFLAGl, and the third is the
SCANCODE. Text entered before the exception key was pressed remains in
the buffer. You may also use SYSIO-BREAD to gain access to function and
cursor keys.

Keyboard Driver 2-8

2.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIE" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at open time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open the keyboard the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device. When this is
done all standard SYSIO operations described in Chapter 1 are allowed
except writes.

2.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH
-------- ------
DIBVOL DS.B 6

DIBDTD DS.B 1

DIBTRN DS.B 1

DIBRSO DC.L 0,0

DIBOPT DC.W 0

DIBFCN DS.L 1

DIBBIO DS.L 1

DESCRIPTION OF USE

Device name. Use #CON for keyboard driver.

Data transfer direction. Use l.This driver
is read only.

Enter 0 for Fixed length or 1 for Variable
length transfers.

Not used. User sets this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet or set this
field to $0000 0000 to select the default
mode.

System used Byte I/O Field. To open the
keyboard for Byte I/O enter -1 ($FFFF FFFF),
otherwise set it to zero. After OPEN the I/O
manager fills this field with an identifier
which is used for SYSIO-BREAD and SYSIO-BTEST

Keyboard Driver 2-9

2.3 KEYBOARD DATA TRANSFER CONTROL BLOCK (DTCB).

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs. It is required operand of the SYSIO macro for
READs or WRITEs. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer after the request has been made.

2.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/O operation.

DTCTBU DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

DTCTBL DS.B 1 User puts lower limit to be used for Transfer

DTCRSO

DTCBFS

DTCBFL

DTCBPT

Termination characters in Variable length transfer
here.

DC.B 0 This field is reserved. User puts zero here.

DS.L 1 User puts Buffer starting address here.

DS.W 1 User puts count of number of bytes in data buffer
here.

DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ.

2.4 KEYBOARD FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
setting the amount of space between tab columns or causing a prompt string

Keyboard Driver 2-10

such as ENTER: to appear on the CRT. It is required for the FUNCTION
command and optional for the OPEN command. It is used by the application
program to configure a device to something other than its default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

2.4.1 SUMMARY OF KEYBOARD FUNCTIONS

The function listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

FUNCTION PURPOSE

ENDLIST
SET TRANSFER MODE
SET EDIT OPTIONS
PROMPT ON
PROMPT OFF
ECHO ON
ECHO OFF
RESET CTRL-BREAK
GET CTRL-BREAK ADDRESS
GET CTRL-NUMLOCK
ADDRESS
SET ECHO
SET TAB
SET PROMPT
PARSE NEXT TOKEN
FUNKY MODE ON
FUNKY MODE OFF
PARSING ON
PARSING OFF
SET SCROLL LOCK ON
SET SCROLL LOCK OFF
GET SCROLL LOCK STATE
SET NUM LOCK ON
SET NUM LOCK OFF
GET NUM LOCK STATE
SET CAPS LOCK ON
SET CAPS LOCK OFF
GET CAPS LOCK STATE

COMMAND
WORD

0 ($0000)
1 ($0001)
2 ($0002)
3 ($0003)
4 ($0004)
5 ($0005)
6 ($0006)
7 ($0007)
8 ($0008)
9 ($0009)

10 ($000A)
11 ($000B)
12 ($000C)
13 ($000D)
14 ($000E)
15 ($000F)
16 ($0010)
17 ($0011)
18 ($0012)
19 ($0013)
20 ($0014)
21 ($0015)
22 ($0016)
23 ($0017)
24 ($0018)
25 ($0019)
26 ($001A)

ERROR
CODE DATA REQUIRED

NONE
$0021
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE
$002B
NONE
$002D
NONE
NONE
NONE
NONE
None
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE
WORD
WORD
NONE
NONE
NONE
NONE
NONE
LONGWORD ADR RETURNED
LONGWORD ADR RETURNED

LONGWORD
WORD
LONGWORD POINTER
NONE
NONE
NONE
NONE
NONE
NONE
NONE
WORD RETURNED
NONE
NONE
WORD RETURNED
NONE
NONE
WORD RETURNED

Keyboard Driver 2-11

SET INSERT MODE ON 27 ($001B) NONE NONE
SET INSERT MODE OFF 28 ($001C) NONE NONE
GET INSERT MODE STATE 29 ($001D) NONE WORD RETURNED
GET EDIT OPTIONS 30 ($001E) NONE WORD RETURNED
GET PROMPT STATE 31 ($001F) NONE WORD (0/1) RETURNED
GET ECHO STATE 32 ($0020) NONE WORD (O/l) RETURNED
GET TAB AMOUNT 33 ($0021) NONE WORD RETURNED
GET FUNKY MODE 34 ($0022) NONE WORD (O/l) RETURNED
GET PARSING MODE 35 ($0023) NONE WORD (0/1) RETURNED
GET TRANSFER MODE 36 ($0024) NONE WORD (0/1) RETURNED
SET CTRL-BREAK 37 ($0025) NONE NONE

2.4.2 KEYBOARD FUNCTION DESCRIPTIONS

COMMAND

0

1

FUNCTION PURPOSE

ENDLIST

FUNCTION DESCRIPTION

Terminate processing of the function
packet.

Function Data None

Error Code None

SET TRANSFER MODE

Function Data

Data = $0000
$0001

Allows user to specify either fixed
length or variable length transfers.
When fixed length transfers are
specified the driver refers to the
buff er length specified in the Data
Transfer Control Block (DTCB) to
determine the amount of the data to
transfer. When variable length
transfers are specified the driver will
check each byte to see if it lies
within the range specified in the Data
Transfer Control Block for termination
characters and will terminate transfer
of data it is does.

Word, integer.

Selects fixed length transfers.
Selects variable length transfers.

Keyboard Driver 2-12

Error Code

2 SET EDIT OPTIONS

Function Data

Data Bit 8 0
9 = 0

11 = 0

Error Code

Default Setting:

3 PROMPT ON

Function Data

Error Code

4 PROMPT OFF

$0021 Data out of limits.

Allow the user to set the bits in the
Edit Control Word.

You may select whether backspaces
and forward tabs are to participate in
the line editing process. Keep in mind,
however, that the control characters
($08 and $09) will be echoed to the
window (if echoing is enabled) and also
placed in your input buffer.

If you specify that nulls are to be
transferred rather than ignored, this
means that you will receive an ASCII
character of $00 in your buffer if keys
are pressed which do not result in an
ASCII representation.

One Word, integer

Enables backspace.
Enable forward tab.
Disregard nulls not in look up table.

None

Driver initializes to zero at open time.

Causes the character string established
by SET PROMPT to be sent to the echo
device before a READ.

None

None

Disables the prompt character string
from being sent to the echo device.
This is the default setting at open time.

Keyboard Driver 2-13

5

6

7

8

Function Data

Error Code

ECHO ON

Function Data

Error Code

ECHO OFF

Function Data

Error Code

RESET CTRL-BREAK

Function Data

Error Code

GET CTRL-BREAK
ADDRESS

None

None

Cause the characters to be echoed to the
CRT window specified by SETECHO or to
the default window. This is the default
setting at open time.

None

None

Disables the echo function.
Characters will not appear on the CRT.

None

None

When the CTRL-BREAK Keys are depressed
a CTRL-BREAK byte is set to $FF .
This function resets this global byte
to $00 so that the occurrence of the
CTRL-BREAK can be detected and used
within an application program.
It is often used to abort a function
or leave a loop.

None

None

Returns the address of the CTRL-BREAK
byte. See Function 7 above and Function
37.

Keyboard Driver 2-14

9

10

11

Function Data

Error Code

GET CTRL-NUMLOCK
ADDRESS

Function Data

Error Code

SETECHO

Function Data

Data = $FFFF FFFF

Data = Longword
returned in DIBBIO

Error Code

SET TAB AMOUNT

Leave space for one longword, integer.

None

Returns the address of the CTRL-NUMLOCK
byte. This global byte is set to $FF
whenever CTRL-NUMLOCK is pressed and
reset to $00 whenever any other key is
pressed. Many programs need a way to
temporarily halt their operations and
then later resume via operator command.
One example is screen scrolling. The
CTRL-NUMLOCK global byte may be tested
within an application program to
accomplish this end.

Leave space for one longword, integer.

None

Allows the user who has opened a
window for Byte I/O to use that windo~
for keyboard echoing.

Longword, integer.

Specifies the default screen.

Identifies the window opened for Byte
I/O.
(A longword window identifier is
returned in DIBBIO by OPEN.)

None

Allows the user to specify the number
of spaces between tab columns.
When the tab key is pressed the cursor
is moved to the next tab column. The
default tab amount of 10 is set at open

Keyboard Driver 2-15

Function Data

Data = $000A

Error Code

12 SET PROMPT

,

Function Data

Data = $NNNN NNNN

Error Code

13 PARSE NEXT TOKEN

Function Data

Error Code = $002D

time.
Each LUN has its own tab control.

One word, integer.

Sets 10 spaces between tab columns.

$002B
Error if tab amount specified is zero or
is greater than 79.

Allows the user to create a prompt
string of up to 8 characters which will
be sent to the echo device before reads.
If less than 8 characters are required
fill the bytes on the right with blanks.
The long word specified in the data
points to the character string.
Note that you must issue Function 3 to
turn prompting on.

One longword, integer

Note: This address is not checked by
the driver. A DTAK TRAP error
will occur if you supply an
invalid address.

Points to user created character
string.

None

Causes the next token in the input line
to be parsed when the PARSING ON
function has been activated. Same as
NXTOK system call.

None

Parsing mode is not on.

Keyboard Driver 2-16

14 FUNKY MODE ON

Function Data

Error Code

15 FUNKY MODE OFF

Function Data

Error Code

16 PARSING ON

Activate the 11 Function Key Mode 11 •

In this mode any keystroke which
results in an ASCII byte of $00 will
cause an exception code of $10 to be
returned to the caller. The last three
bytes in the input buffer will contain
KBFLAG, KBFLAGl, and the scancode of the
key that was pressed which had a zero
ASCII code.

The buffer will contain ASCII codes for
any key that was pressed before the
ASCII code of zero was pressed.

None

None

This function turns off the 11 Function
Key Mode 11 described above. This is the
default setting at open time.

None

None

Activates the parsing mode in which the
input line on each READ is sent to the
parsing routine. This routine parses
the first token in the line and makes
the rest of the line available for
parsing through use of the
" PARSE NEXT TOKEN 11 function 13.

When parsing mode is on, each SREAD
behaves something like the System Call
GTCMD in that the input line is passed
to the NXTOK routine and the first token
is parsed. You use the same method of
obtaining parsing information as you do
with GTCMD/NXTOK, i.e. issue GSTAT to

Keyboard Driver 2-17

Function Data

Error Code

17 PARSING OFF

Function Data

Error Code

18 SET SCROLL LOCK ON

Function Data

Error Code

to get address of parsing fields in
register AS.

You may not concurrently parse from both
the command line and the SREAD or AREAD
buffer since the same parsing area is
being used for holding variable data.

Parsing is only
available for the SYSTEM task.

None

None

Turns off the parsing mode described
above. This is the default setting
at open time.

None

None

This function turns scroll lock on.

None

None

19 SET SCROLL LOCK OFF This function turns scroll lock off.

Function Data

Error Code

This is the default setting at cold
start.

None

None

Keyboard Driver 2-18

20

21

22

23

24

GET SCROLL LOCK
START

Function Data

Error Code

SET NUM LOCK ON

Function Data

Error Code

SET NUM LOCK OFF

Function Data

Error Code

GET NUM LOCK STATE

Function Data

Error Code

SET CAPS LOCK ON

Function Data

Error Code

This function returns a 0 if scroll lock
is off and 1 if scroll lock is on.

One word is returned.

None

This function turns numeric lock on.
This is the default setting at cold
start.

None

None

This function turns numeric lock off.

None

None

This function returns a 0 if numeric
lock is off and 1 if numeric lock is on.

One word is returned.

None

This function turns caps lock on.
This is the default setting at cold
start.

None

None

Keyboard Driver 2-19

25 SET CAPS LOCK OFF This function turns caps lock off.

Function Data None

Error Code None

26 GET CAPS LOCK STATE This function returns a 0 if caps lock
is off and 1 if caps lock is on.

Function Data One word is returned.

Error Code None

27 SET INSERT MODE ON This function turns insert mode on.

Function Data None

Error Code None

28 SET INSERT MODE OFF This function turns insert mode off.

29

30

Function Data

Error Code

GET INSERT MODE
STATE

Function Data

Error Code

GET EDIT OPTIONS

This is the default setting at cold
start.

None.

None

This function returns a 0 if insert mode
is off and 1 if insert mode is on.

One word is returned.

None

This function returns a word with bits
set according to the current edit options.
See function 2.

Keyboard Driver 2-20

Function Data

Error Code

31 GET PROMPT STATE

Function Data

Error Code

32 GET ECHO STATE

Function Data

Error Code

33 GET TAB AMOUNT

Function Data

Error Code

34 GET FUNKY MODE

Function Data

Error Code

35 GET PARSING MODE

Function Data

Error Code

Word returned

None

This function returns a zero if prompting
is off and a one if prompting is on.

Word returned

None.

This function returns a zero if echo is
off and a one if prompting is on.

Word returned

None

This function returns a word containing
the current tab amount

Word returned

None

This function returns a zero if funky
mode if off and a one if funky mode is on.
Word returned

NONE

This function returns a zero if parsing
is off and a one if parsing mode is on.

One word is returned

None

Keyboard Driver 2-21

36 GET TRANSFER MODE

Function Data

Error Code

37 SET CTRL-BREAK

Function Data

Error Code

2.5 KEYBOARD USAGE

This function returns the transfer
mode to the user
O=fixed, l=variable

One word is returned

None

This function sets the global byte
(accessed by Function 8) to $FF. It
also causes the 1 CTLB 1 Event to be
signalled. This may be useful in
terminating the execution of programs
and SUBMIT files.

None

None

This section summarizes a set of guidelines for key usage when performing
commonly used keyboard functions.

FUNCTION

Home Cursor

Return to outermost menu

Move cursor up

Page up, scroll backwards
25 lines & home

Move cursor left

Move cursor right

KEY(S)

HOME

HOME

t

PG UP

~Key 75

-+

COMMENT

Editors; word processors

Menu-driven applications

Full screen editor, word
processor

Editors; word processors

Text, command entry

Text, comand entry

Keyboard Driver 2-22

FUNCTION

Scroll to end of text
Place cursor at end of line

Move cursor down

Page down, scroll forwards
25 lines & home

Start/Stop insert text at
cursor, shift text right
in buffer

Delete character at cursor

Destructive backspace

Tab forward

Tab reverse

Clear screen and home

Scroll up

Scroll down

Scroll left

Scroll right

Delete from cursor to EOL

Exit/Escape

Start/Stop Echo screen
to printer

Delete from cursor to
EOS

Advance word

Reverse word

KEY(S)

END

PG DN

INS

DEL

~Key 14

I-+

~1

CTRL HOME

t

~

~

-+

CTRL END

ESC

PRTSC
CTRL K55

CTRL PG
DN

CTRL -+

CTRL~

COMMENT

Editors; word processors

Full screen editor, word
processor

Editors; word processors

Text, command entry

Text, command entry

Text, command entry

Text entry

Text entry

Command entry

In scroll lock mode

In scroll lock mode

In scroll lock mode

In scroll lock mode

Text, command entry

Editor, 1 level of menu,

Any time

Text, command entry

Text entry

Text entry

Keyboard Driver 2-23

etc

FUNCTION

Window Right

Window Left

Enter insert mode

Exit insert mode

Cancel current line

Suspend system (pause)

Break interrupt

System reset

Top of document and
home cursor

Standard Function Keys

Secondary function keys

Extra function keys

Extra function keys

KEY(S)

CTRL -+

CTRU-

INS

INS

ESC

CTRL
NUMLOCK

CTRL
BREAK

ALT CTRL
DEL

CTRL PG UP

Fl-FlO

SHIFT Fl-FlOI
CTRL Fl-FlO I
ALT n-no I

ALT Keys
2-13
(1-9,0,-,=

ALT A-Z

COMMENT

When text is too wide to fit
screen

When text is too wide to fit
screen

Line editor

Line editor

Command entry, text entry

Stop list, stop program, etc. I
Resumes on any key I

Interrupt current process

Reboot

Editors, word processors

Primary function keys

Extra function keys if 10
are not sufficient

Used when stickers are
put along top of keyboard

Used when function starts
with same letter as nne of
the alpha keys

Keyboard Driver 2-24

F1 F2

~ ru
F3 F4

~ ~
F5 F6

~ ~
F7 FB

l%] [%J
F9 F10

~ ~

Figure 2-1. Keyboard Scan Codes

Scan Code Whan

if~
Scan Coda when
key is released

Keyboard Driver 2-25

3.0 KEYPAD DRIVER

3.1 DRIVER DESCRIPTION

This driver processes keystrokes from the 3 row x 19 column tactile switch
matrix located on the front of the printer and the 1 x 10 softkey matrix
located directly beneath the CRT screen. It also processes non-ASCII
keystrokes from the optional keyboard attachment. The six LED's and the
system audible alarm is also controlled by this driver through FUNCTION
calls. This driver is sharable and supports Byte l/O and asynchronous
requests but does not support asynchronous events or Attach or Detach
Device. Detach driver is supported, however this will also detach the
#CON driver since they share resources and cannot exist separately.

The keypad driver is essentially a "TABLE LOOKUP FACILITY" where the user
can associate any desired ASCII string to a keystroke. Each key actuation
produces a one byte scancode which is read and decoded by the keypad
driver. The scancode is used as an argument for one of four scancode
lookup tables. Each lookup table associates scancodes with ASCII text
strings. The keypad driver searches the appropriate table for the
scancode and places the associated ASCII string in either.the #KPD or #CON
internal device buffer. It is from this internal buffer that you will
receive data when you issue a SYSIO-SREAD, AREAD, or BREAD. This scheme
allows the keypad, softkeys, and keyboard function/cursor keys to be
totally programmable by the user.

The user must define a table entry for each key to be used. If a key does
not appear in a scancode lookup table then that key is essentially "dead".
At system startup time the tables are empty, so all keys are "dead",

The MENU program, which is shipped with the CS 9000 in both source and
binary form, is an example of assigning ASCII strings to the ten keyboard
function keys. If MENU is run (usually with an AUTOEXEC at system
start-up) then the function keys are not dead, but instead have been made
useful for command line input. You have the option of redefining these
keys or any other keys in any way you desire.

A table entry is as follows:

SCANCODE
TABLE NUMBER
BUFFER CODE
ASCII STRING
DELIMITER

1 byte
1 byte
1 byte
from 1 to 20 bytes
1 BYTE

Keypad Driver 3-1

You use FUNCTION 19 or 12 to establish lookup table entries.

The SCANCODE can be $85 - $BD for the SHIFTED and NON-SHIFTED tables.
$BE - $C7 for the SOFTKEY table. (see Figure 3-1)
$01 - $84 for the FUNCTION KEY (keyboard) table.

The TABLE NUMBER is 0 for the NON-SHIFTED table
1 for the SHIFTED table
2 for the FUNCTION KEY table
3 for the SOFT KEY table.

The BUFFER CODE IS 0 for Send to last buffer
1 for Send to #KPD internal buffer
2 for Send to #CON internal buffer

The DELIMITER is either $04 or $OD. You use $OD if you want the text to go
into the buffer with a carriage return ($OD) as the last character. You
use $04 if text is to go into the internal buffer without an ending
carriage return. The $04 is not copied into the internal buffer. This
allows you to combine a series of keystrokes together, with only certain
of the keystrokes causing termination of the entry.

The flowchart in Figure 3-2 shows the processing which takes place for the
keypad shifted and non-shifted tables. One of the keypad keys can be
designated a "shift" key, allowing almost a doubling of the number of
strings that can be generated from user keystrokes. You are responsible
for making a table entry for each possibility. You can specify the
scancode of the key which is to be the "shift" key. The default scancode
for "shift" is $AB. When the shift key is pressed the shifted LED (under
key $AB. . . not programmable) is lit. The next keystroke is taken as
"shifted", and then the LED goes out.

The flowchart in Figure 3-3 shows the processing involved in determining
which buffer (#KPD or #CON) the ASCII string should be sent to. The
BUFFER CODE is used with the BUFFER POINTER to make this selection.

BUFFER CODE BUFFER POINTER ASCII STRING NEW BUFFER POINTER

0 0 to #CON buffer unchanged 0
0 1 to flKPD buffer unchanged 1
0 2 to #CON buffer unchanged 2
1 Don't Care to #KPD buffer 1
2 Don't Care to #CON buffer 2

The keypad keys may be programmed to send ASCII characters to either the
#CON buffer, the #KPD buffer, or else whichever buffer was last selected.
This is done by the BUFFER CODE table entry. The keypad driver remembers
the buffer which you last sent characters to in a variable called BUFFER
POINTER.

Keypad Driver 3-2

A recommended use of BUFFER CODE 0 is in the definition of the numeral
keys since any numeric input will most likely be intended for the buffer
that was last used.

When the "enter" key is pressed, a carriage return ($OD) is sent to the
last buffer (default #CON). You may specify which key is to be the
"enter" key with FUNCTION 21, or use the default, which is $BA.

Softkeys

Keypad

This is the default shift key. This is the default enter key.

* This key generates scancode A2, the same as the key located in row 2, column 11.
Software cannot distinguish these keys except possibly in the context of the applica
tion.

Figure 3-1. Keypad and softkey hex scan-codes.

Keypad Driver 3-3

Read scan-code.

Check SHIFTED FLAG. Is it set?

Yes

Check scan-code. Is it the
slshift code (default $AB)?

Yes No

• It

Reset
SHIFTED FLAG.

Reset SHIFTED FLAG.

Turn off
Turn off SHIFTED LED.

SHIFTED LED.
Search for scan-code in

Continue program~
Shifted Table.

'
NEXT ENTRY POINTER

T 1st Scan Code
Buffer Code (0, 1 or 2)
Character String Byte 1

Default i size is
100 Character String Byte N. N ~ 20

bytes EOF ($04) or CR ($OD) character

1
2nd Scan Code
Buffer Code (0, 1 or 2)

--------- - - -
-- - - - - - - - - -· -

Shifted Table

No

Check scan-code. Is it the
shift code l~AcodP,.., 'default $AB)?

shift e'

Yes No

It It

Set SHIFTED FLAG. Search for

Turn on SHIFTED LED. scan-code in the

Continue program. NON-SHIFTED
TABLE.

~

NEXT ENTRY POINTER

T 1st Scan Code
Buffer Code (0, 1 or 2)
Character String Byte 1

Default i size is
400

Character String Byte N. N ~ 20

bytes EOF ($04) or CR ($OD) character

1
2nd Scan Code
Buffer Code (0, 1 or 2)

- - R- - - - - - - - - -

Non-Shifted Table

Figure 3-2. Keystroke processing flowchart and table format.

Keypad Driver 3-4

Set

Buffer Pointer

to 1

Send String
to#:KPD

1

1

Keypad Interrupt

0

Figure 3-3. Buffer code processing flowchart.

2

2

Set

Buffer Pointer

to 2

Send String
to#CON

Keypad Driver 3-5

3.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for. the device. There is unique
information that the device driver needs to know at open time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open the keypad the user must cr.eate a DIB and within an initialization
routine perform a SYSIO-OPEN to the device.

3.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH
-------- ------
DIBVOL DS.B 6

DIBDTD DS.B 1

DIBTRN DS.B 1

DIBRSO DC.L o,o

DIBOPT DC.W 0

DIBFCN DS.L 1

DIBBIO DS.L 1

DESCRIPTION OF USE

Device name. Use #KPD for keypad driver.

Data transfer direction. Use 1. This driver
is read only.

Enter 0 for Fixed length or 1 for Variable
length transfers.

User sets this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet or null for
default.

System used Byte I/O Field. To open the
keypad for Byte I/O enter -1 ($FFFF FFFF),
otherwise set it to zero. After OPEN the I/O
manager fills this field with an identifier
which is used for SYSIO-BREAD and
SYSIO-BTEST.

Keypad Driver 3-6

3.3 KEYPAD DATA TRANSFER CONTROL BLOCK (DTCB)

The data transfer control block (DTCB) holds I/O status and buffer
information during READS. It is a required operand of the SYSIO macro.
The application program uses it to determine information required in
completing each data transfer request, and to monitor the status of the
transfer after the request has been made.

3.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH

DTCSTA DS.B 1

DTCTBU DS.B 1

DTCTBL DS.B 1

DTCRSO DC.B 0

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DESCRIPTION OF USE

User monitors this field for status on I/O operation.

User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

User puts lower limit to be used for Transfer
Termination characters in Variable length transfers
here.

This field is reserved. User puts zero here.

User puts Buffer starting address here.

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ.

Keypad Driver 3-7

3.4 KEYPAD FUNCTIONS

The Function Packet Control Block provides for device specific oper
ations not necessarily involving data transfer. This would include things
like turning a LED or the system audible alarm ON or OFF. It is required
for the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than its
default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
following by zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

3.4.1 SUMMARY OF THE KEYPAD FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- -------- ------ -------------
END LIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) $0021 WORD (0 or 1)
BEEPER ON 2 ($0002) NONE NONE
BEEPER OFF 3 ($0003) NONE NONE
TIMED BEEP 4 ($0004) $0024 WORD (1 thru 255)
SINGLE BEEP 5 ($0005) NONE NONE
TURN ON LED 6 ($0006) NONE WORD (1 thru 6)
TURN OFF LED 7 ($0007) NONE WORD (1 thru 6)
TURN ALL LEDS OFF 8 ($0008) NONE NONE
TURN ALL LEDS ON 9 ($0009) NONE NONE
TURN KEYPAD ON 10 ($000A) NONE NONE
TURN KEYPAD OFF 11 ($000B) NONE NONE
ADD TO TABLE 12 ($000C) SEE 4.5 SEVERAL WORDS
DELETE FROM TABLE 13 ($000D) NONE TWO WORDS
CLEAR SELECTED TABLE 14 ($000E) $002E WORD
SET BUFFER CODE 15 ($000F) $002F WORD (0,1,or2)
GET BUFFER CODE 16 ($0010) NONE WORD RETURNED
ALLOCATE TABLES 17 ($0011) SEE BELOW THREE WORDS
GET TRANSFER MODE 18 ($0012) NONE WORD RETURNED
ADD TO TABLE 19 ($0013) SEE BELOW THREE WORDS PLUS

Keypad Driver 3-8

DELETE TABLE ENTRY
SET ENTER/SHIFT KEYS
GET ENTER/SHIFT KEYS
DELETE TABLE ENTRY

20 ($0014)
21 ($0015)
22 ($0016)
23 ($0017)

SEE BELOW
$0035
NONE
SEE BELOW

LONGWORD
TWO WORDS
WORD
WORD RETURNED
TWO WORDS

3.4.2 KEYPAD FUNCTION DESCRIPTIONS

COMMAND

0

1

FUNCTION PURPOSE

ENDLIST

Function Data

Error code

SET TRANSFER MODE

Function Data

Data = $0000
$0001

Error Code

FUNCTION DESCRIPTION

Terminates processing of the
function packet.

None

None

Allow the user to specify either fixed
length or variable length transfers.
When fixed length transfers are
specified the driver refers to the
buffer length specified in the Data
Transfer Control Block (DTCB) to
determine the amount of the data to
transfer. When variable length
transfers are specified, the driver
will check each byte to see if it
lies within the range specified in
the Data Transfer Control Block for
termination characters and will
terminate transfer of data if it does.

Word, integer

Selects fixed length transfer.
Selects variable length transfer.

$0021, mode not 0 or 1

Keypad Driver 3-9

2 BEEPER ON

Function Data

Error Code

3 BEEPER OFF

Function Data

Error Code

4 TIMED BEEP

Function Data

Error code

5 SINGLE BEEP

Function Data

Error Code

6 TURN ON LED

Function Data

Turns the system audible alarm on
continuously.

None

None

Turn the system audible alarm off.

None

None

Turn beeper on for specified period,
then turn off. User specifies
period in units of·50 milliseconds.
Maximum beep is 255 periods or about
12.75 seconds, minimum is 1 period.

Word

$0024 Data out of limits.

Turns the system audible alarm on for
a period of about 20 milliseconds.

None

None

Turn on the LED specified by the
data.

One word, Integer

Keypad Driver 3-10

Data = $0001 Turns on the top left LED.
$0002 Turns on the middle left LED.
$0003 Turns on the bottom left LED.
$0004 Turns on the bottom right LED.
$0005 Turns on the middle right LED.
$0006 Turns on the top right LED.

Error Code $0026 Data out of limits.

7 TURN OFF LED Turns off the LED specified by the
data.

Function Data Word, integer.

Data = $0001 Turns the top left LED off.
$0002 Turns the middle left LED off.
$0003 Turns the bottom left LED off.
$0004 Turns the bottom right LED off.
$0005 Turns the middle right LED off.
$0006 Turns the top right LED off.

Error Code $0027 Data out of limits.

8 TURN ALL LEDs OFF Turns all LEDs off.

Function Data None

Error Code None

9 TURN ALL LEDs ON Turns on all LEDs.

Function Data None

Error Code None

Keypad Driver 3-11

10 TURN KEYPAD ON

Function Data

Error Code

11 TURN KEYPAD OFF

Function Data

Error Code

Allow the keypad to interrupt and
be READ by the system.

None

$0027

Disable keypad interrupt to the
system.

None

None

NOTE: This function can also be performed by Function 19. You should
use Function 19 if you are coding in PASCAL or ASSEMBLER, and you
should use Function 12 if you are coding in BASIC or FORTRAN.

12 ADD TO TABLE

Function Data

Argument Length

1 WORD

2 WORD

3 WORD

4 WORD

Allow the user to define the use and
interpretation of the keypad, softkeys
and function keys.
See paragraph 3.1 and figure 3-1 for
a better understanding of these
tables.

Consists of from 6 to 25 words
structured as follows.

Definition

Scancode of key to be added to a table.

Table which this scancode should be added to
0 = keypad non-shifted table
1 = keypad shifted table
2 = console function key table
3 = soft key table

Buffer Code 0 = put data in last used buffer
1 = put data in #KPD buffer
2 = put data in #CON buffer

String length in words

Keypad Driver 3-12

5-25 WORD(S)

Last WORD

Error Codes

String to be inserted. Each word contains
one character of the string in the low order
Byte. Up to 20 words (therefore 20
characters can be specified).

String Terminator. The low order Byte of
this word contains the terminating Byte,
either SOD or $04.

$0011
$0012
$0015
$0016
$0017

Scancode already in table
Not enough room to add this entry
Invalid table number
Illogical scancode for table type
String length too long, greater than
20

$0018 Bad terminator, not $04 or $OD

NOTE: This function has been superseded by Functions 20 and 23. It is
included here for compatibility with Release 1.0 programs. You
should not use it in new programs.

13 DELETE ENTRY FROM TABLE Allows the user to delete an entry

Function Data

Word 1 = $00NN

Word 2 = $000N

Word 3 = $00NN

Error Codes

from one of the key tables.
The data specifies which table and
which entry (Scancode) is to be
deleted.

Two Words, integer

NN = Scancode - see Figure 3-2.

Specifies which table to delete
from.
N=O Keypad non-shifted table.
N=l Keypad shifted table.
N=2 Function key table
N=3 Soft-key table

Ignored.

$0015 Table number invalid
$0014 Scancode not in table
$0013 Table organization error

Keypad Driver 3-13

14

15

16

CLEAR SELECTED TABLE

Function Data

Data = $0001
$0002
$0003

$0004

Error Code

SET BUFFER POINTER

Function Data

Data = $0000
$0001
$0002

Error Code

GET BUFFER POINTER

Function Data

Error code

Clears the table indicated by
data.

One word, integer

Clears the keypad shifted table.
Clears the keypad non-shifted table.
Clears the keyboard function
key table
Clears all tables.

$002E Table type invalid

This allows the application program
to set the status of the buffer
pointer (see buffer code processing
flowchart). The buffer pointer
controls the logic which determines
where Keystrokes are to be placed.

Word, integer (O, 1, or 2)

Make buffer pointer zero = unspecified
Place data in #KPD buffer
Place data in #CON buffer

$002F Invalid buffer pointer

The buffer pointer is set to
zero at cold start.

This allows the application
program to get the current buffer
pointer value.

Word returned

None

Keypad Driver 3-14

17 ALLOCATE KEYPAD TABLES This function allows the user to

18

19

Argument

1

2

redefine the amount of space for
Keypad lookup tables. The tables
must be cleared before issuing this
function.

Function Data Three Words (maximum of 32767 bytes)
Word 1 = Shift Table Size default is 100 bytes at cold

start
Word 2 = Unshifted Table Size default is 400 bytes at cold

start
Word 3 = Function Key Table Size default is 200 bytes at cold

Error Code

GET TRANSFER MODE

Function Data

Error Code

ADD TABLE ENTRY

Function Data

Length

WORD

WORD

$001D
$001E

$001F
$0031

start

Error returning memory
Tables not empty, can't
reallocate
Not enough memory for tables
Negative table size

Return transfer mode to the user.
0 = fixed, 1 = variable

Word returned

None

Allows the user to add strings to
the Keypad lookup tables.
Supersedes Function 12 which was
used in Release 1.0.

As follows:

Definition

Scancode of key to be added to table

Table which the scancode should be added
to: 0 = non-shifted keypad table

1 = shifted keypad table

Keypad Driver 3-15

3

4

20

Argument

1

2

WORD

LONGWORD

Error Codes

DELETE TABLE
ENTRY

Function Data

Length

WORD

WORD

Error Codes

2 = keyboard function key table
3 = soft key table

Buffer code 0 = put data in last used buf fe
1 = put data in #KPD buffer
2 = put data in #CON buffer

Address of ASCII string to be added. Strin
may be up to 21 characters long and must
include a terminating character of
$OD or $04.

Note: This address is not checked by the
driver. A DTAK take error will
occur if the address supplied is
invalid.

$0011
$0012
$0015
$0016
$0019
$0033

Scancode already in table
Not enough memory to add this entry
Invalid table number
Illogical scancode for table type
Illogical buffer code for table type
String too long or bad terminator

Allows the user to delete strings
from the keypad lookup tables.
Supersedes Function 13 which was
used in Release 1.0.

As follows:

Definition

Scancode of key to be deleted

Table from which the scancode is to be
deleted.

0 = non-shifted keypad table
1 = shifted keypad table
2 = keyboard function/cursor table
3 = soft key table

$0013
$0014

Table organization error
Scancode not found in table

Keypad Driver 3-16

$0015 Invalid table number

See Function 23 which is similar but which ignores scancode
not in table.

21

22

23

SET ENTER/SHIFT
KEY SCANCODES

Function Data

Error Code

GET ENTER/SHIFT KEY
SCANCODES

Function Data

Error Code

DELETE TABLE ENTRY

Allows the user to define the keys to
be used for ENTER and SHIFT. Any
scancode between $85 and $BD may be
defined for ENTER or SHIFT. The
default is $AB for SHIFT and $BA for
ENTER.

WORD
Byte 0 (Low order) is shift key
Byte 1 (High order) is enter key

$0035 Invalid Enter/Shift key.
Must be in the range $85
to $BD.

Retrieve current definitions for
these keys.

WORD returned.

None.

Same as Function 20, except no
error code is generated if scancode
is not found in the table.

Keypad Driver 3-17

\ ..

4.0 CRT ALPHANUMERIC DISPLAY DRIVER

4.1 DRIVER DESCRIPTION

The CRT Display Driver is a tool with which custom Alphanumeric displays
may be created. The Alpha Display Driver allows the user to manipulate
data within a user defined display area. This display area is called an
"ALPHA WINDOW". See Figures 4-1. A separate "CONSOLE BOX" of 3 Character
Lines by 80 Character Blocks is provided for system messages. Although
this CONSOLE BOX cannot be disabled it can be used to display other than
system messages by using the PRTERMSG Macro.

The CRT Display has two independent pages of refresh memory associated
with it. Only one page may be displayed at a given time. The displayed
page may be switched using the SETCRTCR system call. There are three
alphanumeric device names #SCRNO, #SCRNl, and #CNSLO. #SCRNO and #SCRNl
are associated with page 0 and 1 respectively, while #CNSLO is a reserved
console display area consisting of three lines at the bottom of page 0.

Each of the 2000 (25x80) Character Blocks in the ALPHA WINDOW is
addressable by specifying line and column numbers. To facilitate ease of
programming, line and column numbers begin with zero. The DISPLAY BUFFER
has two pointers associated with it. The cursor pointer determines the
location of the cursor. This pointer may be manipulated in a variety of
ways. The window pointer points to a character block within a window. It
may also be manipulated in a variety of ways, and is used when the cursor
is disabled. The normal user area may be divided into up to five separate
display areas or WINDOWS. Each WINDOW has its own CURSOR and WINDOW
POINTER and is assigned a unique Logical Unit Number when OPENed. Opening
#CNSLO counts as a window. The window's position and dimensions can be
redefined without closing and reopening that logical unit. See Figure 4-2.

Each window has a one character block border around the perimeter which is
not included in the dimensions specified by the user. This should be taken
into account in designing screen usage. This border may be filled with any
fill pattern. See Figure 4-3. Overlapping windows are allowed but the
user must provide space management to avoid overwrite. If the user does
not define a window the system defaults to the entire 25 x 80 character
block user area.

Each window may be framed at any time at the option of the user. The top
and bottom of the frame are formed by XORing pixels in the fourth scan
line above and below the window, while the sides of the frame are formed

CRT Alphanumeric Display Driver 4-1

by XORing the pixels three pixel columns to the right and left of the
window. These scan lines and pixels are part of the character border.
Each character block is 9 pixels wide by 16 scan lines deep. The entire
ALPHA WINDOW of the Display buffer is 720 pixels wide (80 character blocks
each 9 pixels wide) by 400 scan lines deep (25 character lines, each of
which is 16 scan lines deep). See figure 4-1. The contents of the DISPLAY
BUFFER are displayed on the CRT.

A second buffer, the CHARACTER BUFFER, is used to store the ASCII data
representation of the ALPHA WINDOW for later transfer to the DISPLAY
BUFFER. THE CHARACTER BUFFER is organized to have a one to one
correspondence with the DISPLAY BUFFER and has 2000 words arranged in 25
lines of 80 characters. Each word contains the character code in the
Least Significant Byte and a 4 bit attribute code in the least significant
nibble of the Most Significant Byte. See Figure 4-2. The most significant
nibble of this byte is not currently used. The contents of this buffer may
be "dumped" to the DISPLAY BUFFER for display on the screen. When this is
done the attribute nibble determines the characteristics of the character
such as inverse video or underlining. Attributes are discussed in more
detail in paragraph 4.2.2 and 4.2.3. I

The ASCII character code is used as a pointer to a location in a FONT TABLE
during dumps to the DISPLAY BUFFER. The user may specify use of the SYSTEM
FONT TABLE (Figure 4-4) or a USER created FONT TABLE. If a USER FONT TABLE
is specified, the user must specify the beginning address with the FONT
SELECT function. The font table entry at the location pointed to by the
ASCII character code will be used by the driver, along with the attribute
bits, to determine the bit makeup of the character block in the DISPLAY
BUFFER. See Figure 4-5 for a pictorial relationship between the buffers
and the font table. Each character is represented by 14 bytes in the font
table. Each byte represents the rightmost 8 pixels on a scan line. Only
the middle 14 scan lines of each character block are used. The 8 x 14 Font
is displayed in a 9 x 16 field. To create a USER FONT TABLE, reserve 3584
($0EOO) bytes of memory and specify the beginning address using the FONT
SELECT function. Draw the character in a 8 x 14 grid and determine the bit
pattern needed to create each scan line. The bit pattern for the first
scan line will become the first of the 14 bytes. Continue until all 14
bytes have been determined. These 14 bytes now become an entry in the user
font table. When the 256 entries have been created they may be entered in
any desired order in the font table. The first entry will be pointed to by
ASCII code $00 in the character buffer -- the last entry by ASCII code
$FF. See Figure 4-6.

CRT Alphanumeric Display Driver 4-2

The Character Buffer is treated as a circular buffer of 25 lines of 80
characters each or as up to 5 window buffers the size of which and
location of which corresponds to the window locations specified by the
user. Each window has associated with it a TOP LINE POINTER which
determines which line will be displayed as the top line in the Display
Buffer window when the Character Buffer is dumped to the Display Buffer.
This pointer may be set or read. Each window also has a character pointer
which may be set or read. This pointer determines where the next
character in the window is placed. By manipulating these pointers the
window may be scrolled or paged.

In addition to transfers of the Character Buffer contents to the Display
Buffer the user may specify dumps from specified buffers in application
memory. The manner in which these transfers are handled is determined by
the attribute decoding selected. If attribute decoding is not selected
each byte transferred is treated as a separate character code. If
attribute decoding is specified transfers are treated as full words, the
least significant byte must contain the character code and the low order
four bits of the most significant byte must be set to the desired
attribute code specified in paragraph 4.2.

Notes: Asynchronous write operations are not supported. The CRT driver
will treat an AWRITE as an SWRITE.

CRT driver functions relating to the character buffer are
subject to change or elimination (see Function Summary 4.4.1) in
order to implement future improvements.

For most drivers, Byte I/O transmits a byte in register DO.Band
does not use the remainder of register DO for any purpose. The
CRT driver differs from this general standard. It uses byte 0 of
register DO to transmit the ASCII character, just as other
drivers do; however, it also uses byte 1 of register DO to
transmit attribute information. See Section 4. 2. 2 (Character
Attributes) and Section 4.2.3 (Attribute Codes).

CRT Alphanumeric Display Driver 4-3

480
scan
lines

25
character

lines

l ""•11------------- 768 pixels wide --_-_-_-_-----------:_ -_-_-_-_-_-..;i,_~-1 ~•1 II""•-------- 80 character blocks wide ,.. .

... .-.tt--+---+- Column 0

... ~1+--+-- Column 1

~ Column2

Character line 0

Character line 1

ALPHA WINDOW

Character line 23

Character line 24

Column77 ~

Column 78 -+---+~•

Column 79 -+--+-~1~~

Console Box - 3 lines x 80 characters.

\
Each character block is 9 pixels wide
by 16 scan lines deep.

Figure 4-1. CRT Display

CRT Alphanumeric Display Driver 4-4

MSW

$NNNN

Alpha Window of Display Buffer
25 x 80 character blocks
Up to 5 user defined windows
Each window has its own cursor and
window pointer.

LSW MSW

$NNNN $NNNN

LSW

$NNNN

Line No Column No Line No Column No

Cursor Pointers Window Pointers

I
I Character Buffer 25 lines of 80 characters.
I One word per character -- 2000 words. Each
I window has a one word TOP LINE pointer and
I a character pointer. ASCII character codes
I stored here are used to point to an entry
I in a font table during dumps to the display
I buffer or can be output directly to a
I printer or user buffer. Attributes for each
I character are stored with the character.
;

Word MSW LSW MSB

$NNNN $NNNN $NNNN $XN

LSB

$NN

Line No Line No Column No Attributes !ASCII code!

Top Line Pointer Character Pointer Character Word

Figure 4-2. Display and Character Buffers

CRT Alphanumer:c Display Driver 4-5

FILLWORD FILL WORD FILL WORD FIL

BITS o 1 2 3 4 5 6 7 s 91011121314150 123456 7 B 91011121314150 1 2 3 4 5 6 7 s 91011121314150 1234 5 6

Step 1 1 o 1

SCAN LINE 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

BITS

S1ep 1

-----------Step 2

FILL WORD

tlO": lS
TIME FOR
ALL GOOD
MEN TO COM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
\\\\\\\\\\\\\\\)
t\\\\\\\\\\\\\\\
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 4-3. Fill Border Function

CRT Alphanumer c Display Driver 4-6

0 2 3 4 5 6 7 8 9 A B c D E F

00

10

20

30

40

50

60

70

80

90

AO

.J

BO
: d + t ..

co

..
DO

EO

FO

Figure 4-4. System Font Table

CRT Alphanumeric Display Driver 4-7

2000 Word
Character Buffer

0000

OOOE

001C

Font Table

Word Representation ,__ -...........__
002A

MSB

0000 0010

"-..--'
Attribute Bits

ASCII Character Code
Points to a Location
in a Font Table.

14 Bytes

.......... v
LSB I 256

14 Bytes Per Character ----<•.. Characters

ODCB .-- -.-,.._ /
0100 0001 ,.. 0006 55AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA

111 ASCII Code

7 6 5 4 3 2 1 0 - Bits

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

01010101 ••••

10101010

01010101 ••••
10101010 ••••

01010101 ••••

1 o 1 o 1 o 1 oJ----------J ... _~j•••O•(•J•••:•.::i•
01010101 .·.w
10101010 ••••
01010101 ••••

10101010 ••••

01010101 ••••

1 0 1 0 1 0 1 0

Bit Representation
of One Character.

, ,

Character Block

Alpha
Window

Display Buffer

),

Figure 4-5. Buffer and Font Table Relationship

CRT Alphanumeric Display Driver 4-8

•••••••• •••••••• • • • • • • •• • •• • •• • •• • •• • •• • •• • • •
Each character

is 8 pixels wide
by 14 scan lines deep.

Bits - 7 6 5 4 3 2 1 0

~
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

~ 0 1 1 1 1 1 1 1

~
0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 0 --:J 0 0 1 1 1 1 1 0

~ 0 0 1 1 1 1 1 0

~
0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

Bit Representation of One Character.

14
Bytes

76543210

....t 0 0 0 0 0 0 0 ol~

~~
0 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 1 1 0 1 0

~~ 1 1 1 0 1 1 1

----i 0 0 1 1 1 1 1 0

0 0 0 1 1 1 0 0

-i 0 0 0 1 1 1 0 0

;=j 0 0 0 1 1 1 0 0

0 0 0 1 1 1 0 0 :::--=J 0 0 0 1 1 1 0 0

~ 0 0 0 1 1 1 0 0

0 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1

Bit Representation of One Character.

>i

Bytes -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14

256
characters

$

$

00 00

00 08

vi-

,,---

55 7F 3E

1C 3A 77

3E 3E 3E 3E 3E

3E 1C 1C 1C 1C

~

~

User Font Table.

Figure 4-6. User Font Table

-3E 3E 7F 7F 00 -
1C 1C 3E 7F 0 1 ---

02

FD

FE

FF

CRT Alphanumeric Display Driver 4-9

4.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user ,space into
the appropriate control block in system space.

To open the CRT the user must create a DIB and within an initial.ization
routine perform a SYSIO-OPEN·to one of the devices using the Device Name
specified under DIBVOL. When this is done all standard SYSIO operations
described in Chapter 1 are allowed.

Characteristics of the display area or window can be specified at OPEN
time.

4.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DS.B 6 Device name. Use #SCRNO, #SCRNl, or #CNSLO,

DS.B 1 Data Transfer Direction. Enter 0 for WRITE.

DS.B 1 Enter 0 for Fixed length or 1 for Variable length
transfers.

DC.L 0,0 Reserved space. User sets this field to 0.

DC.W 0 Not used by this driver. User sets this field to 0.

DS.L 1 Insert pointer to function packet; null for default.

DS.L 1 System used Byte I/O Field. Byte I/O to the display
buffer is really a word at a time. DO.W contains
the attribute byte if attribute decoding is enabled.
To open the CRT for Byte I/O enter -1 ($FFFF FFFF),
otherwise set it to zero. After OPEN the I/O manager
fills this field with an identifier which is used for
SYSIO-BWRITE.

CRT Alphanumeric Display Driver 4-10.

4.2.2 CHARACTER ATTRIBUTES

Attributes which modify the display characteristics of individual
characters may be specified in an attribute byte which is stored in the
most significant byte of the word in the Character Buffer. Characters
with attributes are written as a word. The low byte is the ASCII value and
the high byte is the attribute byte.

4.2.3 ATTRIBUTE CODE

ATTRIBUTE BYTE

Bit No Value

7 X)
6 X)
5 X)
4 X)

3 0
3 1

2 0
2 1
1 0
1 1
0 0

0 1

Attribute

These bits not used at present. X = 0 or 1.

Display this character.
Character blanking (Do not display this
character).
Regular video.
Inverse video.
Do not underline this character.
Underline this character.
Use the system font table to display this
character.
Use the user font table to display this
character. (Note the FONT SELECT function
must also be used in order to set the
pointer to the user font table).

CRT Alphanumeric Display Driver 4-11

4.3 CRT DATA TRANSFER CONTROL BLOCK (DTCB).

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made.

4.3.1 DTCB FORMAT

DATA
MNEMONIC

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

LENGTH DESCRIPTION OF USE

DS.B 1 User monitors this field for status on I/O operation.

DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

DS.B 1 User puts lower limit to be used for Transfer
Termination characters in Variable length transfers
here.

DC.B 0 This field is reserved. User puts zero here.

DS.L 1 User puts Buffer starting address here.

DS.W 1 User puts count of number of bytes in data buffer
here.

DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ/WRITE.

CRT Alphanumeric Display Driver 4-12

4.4 CRT FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
reading the cursor position and selecting a font table. It is required
for the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than its
default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more bytes, words or longwords that send or receive
the immediate DATA for the command, or a long word that points to the DATA
for that COMMAND.

4.4. 1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

Note: An asterisk (•'•) indicates that a function is subject to change or
elimination in future releases.

FUNCTION PURPOSE

END LIST
SET TRANSFER MODE
FONT SELECT
FLOOD WINDOW
FLOOD LINE
CLEAR PAGE
GET CURSOR

WRITE CURSOR
•'• GET POINTER

•'• SET POINTER
CURSOR FONT SELECT

•'• DUMP CHARACTER BUFFER
SCROLL/PAGE SELECT

•'• ATTRIBUTE DECODING

COMMAND
WORD

0 ($0000)
1 ($0001)
2 ($0002)
3 ($0003)
5 ($0005)
6 ($0006)

13 ($000D)

14)$000E)
15 ($000F)

16 ($0010)
17 ($001l)
18 ($0012)
19 ($0013)
21 ($0015)

ERROR
CODE DATA REQUIRED

NONE
$0021
$0022
$0023
$0025
$0026
NONE

$002E
NONE

$0030
$0031
NONE
$0033
$0035

NONE
WORD
LONG WORD POINTER
WORD
WORD
WORD
LONG WORD
RETURNED
LONG WORD POINTER
LONG WORD
RETURNED
LONG WORD POINTER
WORD
NONE
WORD
WORD

CRT Alphanumeric Display Driver 4-13

"k FRAME ENABLE/DISABLE 23 ($0017) NONE NONE
'i': TARGET BUFFER SELECT 24 ($0018) $0038 WORD
'i': SET TOP LINE 25 ($0019) $0039 WORD
..): GET TOP LINE 26 ($001A) NONE ONE WORD RETURNED

SCROLL UP N LINES 27 ($001B) $003B WORD
SCROLL DOWN N LINES 28 ($001C) $003C WORD
TRUNCATE LINES SELECT 29 ($001D) $003D WORD
CONTROL CHARACTER FILTER 31 ($001F) $003F WORD

, CURSOR UPDATE MODE 32 ($0020) $0040 WORD
'i~ CHARACTER OVERWRITE MODE 34 ($0022) $0042 WORD

ERASE CURSOR 35 ($0023) NONE NONE
-;': SPECIFY FILL WORD 36 ($0024) $0044 WORD
;': FILL BORDER 38 ($0026) $0046 WORD

AUTO LINE FEED SELECT 39 ($0027) $0047 WORD
MOVE CURSOR 40 ($0028) $0048 LONG WORD POINTER
SET WINDOW 41 ($0029) $0049 FOUR WORDS

-·- SET CHARACTER BUFFER ADDRESS 42 ($002A) $004A LONG WORD ADDRESS
, SET CHARACTER BUFFER POINTER 43 ($002B) $004B LONG WORD POINTER
";': GET CHARACTER BUFFER POINTER 44 ($002C) NONE LONG WORD

RETURNED
-;': CLEAR LINE IN CHARACTER BUFFER 45 ($002D) NONE NONE
·,': CLEAR CHARACTER BUFFER WINDOW 46 ($002E) NONE NONE

CRT Alphanumeric Display Driver 4-14

4.4.2 ALPHA WINDOW MANAGER FUNCTION DESCRIPTIONS

COMMAND

0

1

2

FUNCTION
PURPOSE

END LIST

Function Data

Error Code

SET TRANSFER MODE

Function Data

Data = $0000

$0001

Error Code $0021

FONT SELECT

Function Data

Data = $0000 0000

$NNNN NNNN

Error Code $0022

FUNCTION DESCRIPTION

Terminates processing of the
function packet.

None.

None.

Activates terminal character
checking to delimit a record that
is being transferred.

One word, integer

Selects fixed length transfer mode

Selects variable length transfer
mode

Data out of limits

Permits selection of the system
font table or a user defined table.
The user defined font table could
contain APL or foreign language
character sets.

One long word, integer.

System font table is selected

User font table is selected and
data points to location of font
table.

Data out of limits.

NOTE: The FONT SELECTION has no effect on character

CRT Alphanumeric Display Driver 4-15

3

5

attributes, but if character attributes are for
USER FONT, one must be selected.

FLOOD WINDOW

Function Data

Data = $0000

$0001

$0002

$0003

Error Code = $0023

FLOOD LINE

Function Data

Data = $0000

$0001

$0002

$0003

Modifies the interior of the window
in accordance with the data word
defined below. The fill word is
defined by function 36 ($0024).
Neither the frame around the
window, nor the area outside the
window is affected. See Figure
4-3.

One word, integer.

Clear window.

Fill window with current "fill"
word.

Exclusive OR "fill" word with
window contents.

OR "fill" word with window contents

Data out of limits.

Modifies the line from the cursor
position to the end of the line in
accordance with the data word
defined below. The fill word is
defined by function 36 ($0024).
See Figure 4-3.

One word, integer

Clear line

Fill line with current "fill" word.

EXCLUSIVE OR "fill" word with
contents of line.

OR "fill" word with contents of
line.

CRT Alphanumeric Display Driver 4-16

Error Code $0025

6 CLEAR PAGE

Function Data

Data = $0000

$0001

Error Code = $0026

13 GET CURSOR

Function Data

Data = $0000 0000

= $000N OOON

Error Code

Data out of limits.

This is a global function which
clears the entire page of memory of
the graphics refresh buffer.
Since it affects all windows
and character buffers, including
those of other tasks it should be
used with caution!

One word, integer

Clear page 0

Clear page 1

Data out of limits.

Returns the cursor position. A
long word is returned in which the
most significant word indicates the
line count and the least
significant word indicates the
column count. Note that line and
column numbering begins with zero.

Leave space for one long word,
integer.

Cursor is in upper left corner of
window.

Cursor is on line N and in column
N.

None

CRT Alphanumeric Display Driver 4-17

14

15

WRITE CURSOR

Function Data

Data = $DOON ODON

Error Code = $002E

Places a new cursor at the location
specified by the DATA. The most
significant word of this long word
gives the line on which the cursor
will appear and the least
significant word indicates the
column in which it will appear.
Note that line and column numbering
begin with zero. The cursor at the
previous location is not erased and
the cursor erased flag is reset.

One long word, integer

Writes a cursor on line N and in
column N.

Data out of limits.

NOTE: This function does not change the pointer or cursor
position - it only draws one.

GET POINTER

Function Data

Data = $DOON DOON

Error Code

This function is used to determine
where the next character will be
placed when operating in the
stationary cursor mode. A long word
is returned in which the most
significant word indicates the line
count and the least significant
word indicates the column count.
Note that line and column numbering
begin with zero. The window pointer
is not changed by reads but is
incremented by each write to the
window.

Leave space for one long word,
integer.

Pointer points to line N and column
N.

None.

CRT Alphanumeric Display Driver 4-18

16

17

18

SET POINTER

Function Data

Data = $000N OOON

Error Code = $0030

CURSOR FONT SELECT

Function Data

Data = $003D

Error Code = $0031

Sets the pointer to the location
specified by the DATA. (Used only
with cursor disabled, otherwise no
effect.) The most significant
word of this long word specified
the line count and the least
significant word specifies the
column count. Note that line and
column numbering begin with zero.
Any subsequent write to the window
will increment this pointer if
stationary cursor mode is selected.

One long word, integer

Sets the pointer to line N and
column N.

Data out of limits.

Allows any symbol from either the
System Font table or the User Font
table to be used as a cursor. Each
window may have a unique symbol.

One word, integer character code.

ASCII equals character (=) is used
for cursor.

Data out of limits.

DUMP CHARACTER BUFFER Writes the contents of the character
buffer into the display buffer. The
write begins with the first
character of the current top line
of the character buffer as pointed
to by the TOP LINE pointer. The
function command "SET TOP LINE"
(function 25, $0019) can be used to
change the current top line.

CRT Alphanumeric Display Driver 4-19

19

21

Function Data None required.

Error Code None.

Note: Dumping the character buffer may overwrite the
cursor resulting in double cursors later on. Good
practice to erase cursor/dump character buffer/
redraw cursor.

SCROLL/PAGE SELECT

Function Data

Data = $0000

$0001

Error Code = $0033

ATTRIBUTE DECODING

Function Data

Data = $0000

$0001

Allows the user to select the
screen update mode. In the scroll
mode when the window is full the
contents of the window move up one
line and the bottom line is
cleared. In the page mode the
contents of the window do not move.
When the window is full the cursor
will move back up to the first
line.

One word, integer.

Scroll mode.

Page mode.

Data out of limits.

Allows the user to specify
attributes such as inverse video
for each character in the
character buffer. Character
attributes are described in
paragraph 4.2.3. While in this
mode, characters are word length.
LSB = ASCII value, MSB = attribute
byte.

One word, integer.

Character attributes are ignored.

Character attributes are decoded
and displayed, when the character

CRT Alphanumeric Display Driver 4-20

Error Code = $0035

23 FRAME ENABLE/DISABLE

Function Data

Error Code

24 TARGET BUFFER SELECT

Function Data

Data = $0000

$0001

Error Code = $0038

25 SET TOP LINE

Function Data

Data

Error Code = $0039

buffer is written to the display
buffer.

Data out of limits.

Allows the user to draw or erase
a frame around a window. Subsequent
calls reverse the previous state.

None required.

None.

Allows the user to specify either
the display buffer or the character
buffer as the "target" of
information transfers from the
User's Data Transfer Buffer.

One word, integer.

Selects display buffer as the
target.

Selects character buffer as the
target.

Data out of limits.

Allows the user to specify which
line of the character buffer will
be displayed as the top line on the
screen when the character buffer is
written to the display buffer. In
the scroll mode this counter is
incremented causing the contents of
the screen to move up.

One word, integer

Sets the top line pointer to line
N of the character buffer.

Data out of limits.

CRT Alphanumeric Display Driver 4-21

26 GET TOP LINE

Function Data

Data = $DOON

Error Code

27 SCROLL UP N LINES

Function Data

Data = $0005

Error Code = $003B

28 SCROLL DOWN N LINES

Function Data

Data = $000A

Allows the user to determine which
line within the character buffer
the top line pointer is pointing
to.
Leave space for one word, integer.

The top line pointer points to
line N and line N will be displayed
at the top of the window.

None.

The screen display is scrolled up
the number of lines specified by
the data. The top N lines are lost
and the bottom N lines are cleared
with the current fill word. The
fill word is defined by function
36 ($0024). See Figure 4-3.

One word, integer.

Moves everything on the screen up
5 lines and fills the bottom 5
lines with the current fill word.

Data out of limits.

The screen display is scrolled down
the number of lines specified by
the data. The bottom N lines are
lost and the top N lines are filled
with the current fill word. The
fill word is defined by function
36, $0024. See Figure 4-3.

One word, integer.

Moves everything on the screen down
10 lines and fills the top 10 lines

CRT Alphanumeric Display Driver 4-22

with the current fill word.

Error Code = $003C Data out of limits.

29

TRUNCATE

LINES ENABLED

TRUNCATE

LINES DISABLED

TRUNCATE LINES SELECT Allows the user to disable or
enable line truncation for the
display window. When line
truncation is enabled any line
which is longer than the width of
the window will be truncated. If
this function is not enabled the
line will "overrun" onto the next
line until the window is full. See
example in Figure 4-5.

Function Data One word, integer.

Data = $0000 Disable line truncation.

$0001 Enable line truncation.

Error Code $003D Data out of limits.

IN 0 w I S T H E T I M E F 0 R
I
IT H E Q u I C K B R 0 W N F 0 X
I
I
I
I
I
I
I

\N 0 w I S T H E T I M E F 0 R i
I I
IA L L G 0 0 D M E N T 0 c 0 M El
I I
IT 0 T H E A I D 0 F T H E I R I
I I
le 0 UN TRY I
I I
IT H E Q U I c K B R 0 W N F 0 X I

CRT Alphanumeric Display Driver 4-23

31

32

CONTROL CHARACTER
FILTER

Function Data

Date = $0000

$0001

Error Code = $003F

CURSOR UPDATE MODE

Function Data

Data = $0000

$0001

Error Code = $0040

This software filter screens out
the ASCII control characters ($0 to
$1F) from display. When disabled,
it allows for the display of these
characters in the font shown in
Figure 4-1. Note that if the filter
is disabled, carriage returns ($OD)
and line feeds ($0A) will not be
used for format control but will
simply be displayed. When the
filter is enabled these characters
are used for format control.

One word, integer.

Control characters are not
displayed.

Control characters are displayed.

Data out of limits.

Allows the cursor to be enabled or
disabled.

Note: This function acts upon the
cursor associated with a
particular window.

Note: If cursor is disabled
(stationary mode) writes
will be performed starting
at the pointer (see Function
16).

One word, integer.

Enable cursor.

Disable cursor.

Data out of limits.

CRT Alphanumeric Display Driver 4-24

34

35

36

CHARACTER OVERWRITE
MODE

Function Data

Data = $0000

$0001

$0002

$0003

Error Code $0042

ERASE CURSOR

Function Data

Error Code

SPECIFY FILL WORD

Function data

Data Example = SAAAA

Error Code = $0044

Allows the user to specify
treatment of existing data in
accordance with the data word
defined below.

One word, integer.

Overwrite existing data.

Exclusive OR character with
existing data.

Logical OR character with existing
data.

Overwrite in inverse video.

Data out of limits.

Allows the user to erase the
cursor.

None required.

None.

Allows the user to select a "fill
word". This word will be used in
the FLOOD WINDOW, FLOOD LINE, FILL
BORDER, SCROLL UP and SCROLL DOWN
functions and therefore should be
defined prior to calling any of
these function packets. It is
initialized to $0000. See Figure
4-3.

One word, integer character code.

Define fill word to be $AAAA.

Data out of limits.

CRT Alphanumeric Display Driver 4-25

38

39

40

FILL BORDER

Function Data

Data= $0000

$0001

$0002

$0003

Error Code = $0046

Uses the current fill word to
create a one character wide/high
border around the outside of the
window. The fill word will be
written according to the function
argument.

One word, integer.

Clear (reset pixels) with fill word

Fill (set pixels) with fill word

XOR (XOR pixels) with fill word

OR (OR pixels) with fill word

Data out of range.

AUTO LINE FEED SELECT Allows the user to elect to have a
line feed generated after every
carriage return or not to.

Function Data

Data = $0000

$0001

Error Code = $0047

MOVE CURSOR

One word, integer.

Line feeds are not generated
automatically.

Line feeds are generated after each
carriage return.

Data out of limits.

XOR's the cursor at the current
position, resets the cursor erased
flag and writes the cursor at a
location specified by the data. The
most significant word of this long
word indicates the line and the
least significant word indicates
the column in which the new cursor
will be. Note that line and column
numbering begin with zero.

CRT Alphanumeric Display Driver 4-26

41

42

Function Data

Data $DOON ODOM

Error Code = $0048

SET WINDOW

Function Data

Word 1 $NNNN
Word 2 $NNNN
Word 3 $NNNN
Word 4 $NNNN

Error Code = $0049

SET CHARACTER
BUFFER ADDRESS

Function Data

Data = $0000 0000

$NNNN NNNN

One long word, integer.

XOR's old cursor and writes new
cursor on line N, column M.

Data out of limits.

Allows the user to specify the
window position and dimensions to
other than the default values of 25
lines by 80 columns.
Four words are used. The first word
specifies the column number of the
left column. The second word spec
ifies the line number of the top
line. The third word specifies
the window width in number of
columns and the fourth word
specifies the window height in
number of lines. Note that line and
column numbering begin at zero.

Four words, integer.

Left column number.
Top 1 ine number.
Window width in columns.
Window depth in lines.

Data out of limits.

Allows the user to specify the
address of a character buffer.
operations will then uses this
address to locate the character
buffer. This must be an even
address.

One long word, integer.

All

Points to default character buffer.

Points to user specified character
buffer.

CRT Alphanumeric Display Driver 4-27

43

44

45

Error Code $004A

SET CHARACTER BUFFER
POINTER

Function Data

Data = $000N OOON

Error Code = $004B

GET CHARACTER BUFFER
POINTER

Function Data

Data = $000N OOON

Error Code

CLEAR LINE IN
CHARACTER BUFFER

Data out of limits or an odd
address was specified.

Allows the user to set the
character buffer pointer to point
to any location in the buffer. The
most significant word in the long
word specifies the line number and
the least significant word
specifies the column number. Note
that line and column numbering
begins with zero.

One long word, integer.

Sets the pointer to point to line N
and column N.

Data out of limits.

Returns a long word in which the
most significant word specifies the
line number and the least
significant word specifies the
column number. Note that line and
column numbering begins with zero.

Leave space for one long word,
integer.

The pointer is pointing to line N
and column N in the character
buffer.

None.

Fills the line from the current
pointer location to the end of the
line with the ASCII blank ($00) and

CRT Alphanumeric Display Driver 4-28

46

Function Data

Error Code

clears the attribute bits
associated with the cleared line.

None required.

None.

CLEAR CHARACTER BUFFER Fills entire window with ASCII
WINDOW blank ($20) and clears all

attribute bits.

Function Data None required.

Error Code None.

CRT Alphanumeric Display Driver 4-29

5.0 CRT GRAPHICS DRIVER

5.1 DRIVER DESCRIPTION

The CRT Graphics Driver provides the user with a means of performing
graphics operations. Access to the graphics routines is primarily through
the I/O manager FUNCTION call. The user OPENs a graphics window, which is
treated as an independent logical unit. A graphics window is a
rectangular area of the screen in which graphics primitives can be
displayed. Once a window has been opened the user may perform functions
such as drawing a line, filling a rectangular area, clearing the window or
drawing a character string. These operations are called "graphics
primitive operations." Paragraph 5.4.1 provides a summary of the various
functions which are available. When the user has completed his display
the window is CLOSEd by issuing a "CLOSE" call to the I/O manager using
the Logical Unit Number of the window. The window is defined in terms of
Screen Coordinates at OPEN time and is a region in either of the two pages
of graphics memory corresponding to a rectangular area on the CRT. Figure
5-1 shows the graphics coordinates for the CRT screen as well as the
coordinates for the "ALPHA WINDOWS" and the "CONSOLE BOX" used by the CRT
DISPLAY Driver. See Chapter 4.

The graphics driver maps between two coordinate systems. The first is the
"Screen Coordinates" referred to above and in Figure 5-1. The second is
"User Coordinates" in which the user specifies information to the Graphics
Driver. The driver maps these into Screen Coordinates by one of three
mapping modes .

In mode 0 User Coordinates correspond to Screen Coordinates on a 1-to-l
basis. In mode 1 User Coordinates become Device Coordinates which have a
window offset vector added. In mode 2 User Coordinates are scaled to fit
in the window and become Screen Coordinates with a window offset vector
added. See Figures 5-2 and 5-3.

When a graphics primitive is drawn it typically starts at the Current
Operating Point or COP and ends at a point specified in user coordinates.
Graphics primitives cause pixels to be filled according to the logic
specified by Function 5 and the current fill word (See Function 19). The
fill word acts as a bit mask. As each pixel is encountered the fill word
is rotated one bit to the right and the least significant bit in the fill
word determines what action will be performed on the pixel. If the
current least significant bit of the fill word is a 1 the pixel will be
SET, RESET, or EXCLUSIVE-ORed as specified by the logic selected by
Function 5. If the current least significant bit of the fill word is 0 no
action takes place. In this manner fill patterns, dotted lines, dashes
etc. can be created. See Figure 5-4. Function 5 was used to specify "SET"

CRT Graphfcs Driver 5-1

logic. This will cause the pixels in the graphics window to be SET when a
one is encountered in the fill word. This figure illustrates what the
driver does when Function 27, "DRAW A VECTOR" is used. The Current
Operating Point is where the vector begins. The driver checks the least
significant bit of the fill word. Since it is zero the driver does
nothing with the first pixel. The COP is now moved to the next pixel in
the direction of the End Point which was specified in Function 27 and then
the driver rotates the bits in the fill word one bit to the right as is
shown in Step 2. The driver checks the least significant bit of the fill
word and since it is now a one the driver takes action on the next pixel.
The driver SETs (turns on) the pixel at the COP. The COP is again moved to
the next pixel in the direction of the End Point and the bits in the fill
word are again rotated one bit to the right. The least significant bit is
now zero so no action is taken on the pixel at the COP. The action
proceeds in this fashion until the end point or the window boundary is
reached. Fill words of $5555 as shown will produce a dotted line as will
$AAAA - ($AAAA causes the first pixel to be SET rather than the second).
$FFFF will produce a solid line and $3333 will produce a string of narrow
dashes whereas $FOFO will make the dashes twice as wide.

The graphics driver also allows the user to create and use a SPECIAL FONT
TABLE. This could be a table of special symbols (APL or chemical symbols)
or all the different playing cards in a deck of cards or chess pieces or
whatever the user had a need to display on the CRT. Each character may be
up to 32 columns (pixels) by 32 lines (scan lines) deep. Figure 5-5 shows
how to create the SPECIAL FONT TABLE. Begin by deciding the font size and
use Function 15 to specify this size as well as the beginning address of
the table. Next draw the character (i.e. chess figure, playing card,
chemical symbol, etc.) in a grid of the same size you specified for font
size. Next convert each pixel into a binary value using 0 for the light
areas and 1 for the dark areas. Begin with the top line. Each line will
be represented by the smallest data size that will hold it (byte, word or
longword). An 11 column wide font will require a word for each line. Use
the 11 low bits and leave the 5 high order bits at 0. Each character will
require a byte, word or longword for each line as specified in the font
height. Enter the characters in the font table in the order you desire.
Although all 256 entries must be made, unused entries can be all blanks.
The entries are addressed by their relative position in the table and are
pointed to by the ASCII code of the character entered with the DRAW A
CHARACTER STRING Function (Function 29). For example if Function 15 is
used to specify a font table and if the entries in this table at positions
64-68 ($41-$45) are the ace, deuce, three, four and five of hearts, and a
character string of 5 bytes which are $41, $42, $43, $44 and $45 is
specified then these playing cards will displayed in the window. If
however, Function 15 is not used, the system will default to the system
font table and the letters A, B, C, D and E will be displayed in the
window. ($41 =A, $42 = B etc.).

CRT Graphics Driver 5-2

Note: At open time the window is initialized with the default parameters
shown in the function packet descriptions. Several of the more
significant defaults are shown below for convenience.

WINDOW BOUNDARIES (O, 0, 768, 479)
PAGE NUMBER 0
PIXEL MODE 1 SET PIXELS
MAPPING MODE 0 USER COORDS. = SCREEN COORD.
COORDINATOR INTERPRETATION 0 ABSOLUTE
CHARACTER ORIENTATION 0 LEFT TO RIGHT
CHARACTER MAGNIFICATION 1
CHARACTER FONT 0 INTERNAL
CHARACTER FIELD 9 x 16
FONT DIMENSIONS 8 x 14
FILL WORD $FF

(0,479)

#GR~
(767,479)

(9,463) (728,463)

Alpha Window
SCRNO,# SCRN1

(9,64) (728,64)

(9,47)
Console Box

(728,47)

(9,0) # CNSLO (728,0)

(0,0) (767,0)

Figure 5-1. CRT Graphics Coordinates

CRT Graphics Driver 5-3

(0,479)

{XSC,YSC

(410,290)

{XSC, YSC)

(320,240)

{LWBSC, BWBSC)

)

(0,0)

(XSC, YSC)

t
(0, 0)

{XUC, YUC)

• •

(90, 50)

{XUC, YUC)

.

Screen Coordinates = User coordinates plus window offset vector.

XSC = XUC + LWBSC

XSC = 90 + 320

XSC = 410

Abbreviations:

XSC X axis in Screen Coordinates

XUC X axis in User Coordinates

YSC Y axis in Screen Coordinates

YUC Y axis in User Coordinates

0 to 767

YSC = YUC + BWBSC

YSC = 50 + 240

YSC = 290

-16384 to 16383

0 to 479

-16384 to 16383

LWBSC Left Window Boundary in Screen Coordinates.

BWBSC Bottom Window Boundary in Screen Coordinates.

Note: Points outside the window are not displayed.

Figure 5-2. Mode 1 Mapping

(767,479)

(XSC, YSC)

(767,0)

{XSC, YSC)

CRT Graphics Driver 5-4

(50, 350)

(LWBSC, TWBSC)

(490, 220)

(XSC, YSC)

(50, 100)

(LWBSC, BWBSC)

(-8750, 2040) (1320, 2040)

(LWBUC, TWBUC) (RWBUC, TWBUC)

_.. ' '
•

-- t +
(-8750, 570) (490, 1890) (1320,570)

(LWBUC, BWBUC) (XUC, YUC) (RWBUC, BWBUC)

(690, 350)

(RWBSC, TWBSC)

(690, 100)

(RWBSC, BWBSC)

Screen Coordinates= User coordinates plus window offset vector and scaled to fit into window.

XSC = (XUC-LWBUC) (RWBSC- LWBSC) + LWBSC
RWBUC- LWBUC

xsc = (490 + 8750) (690-50) + 50
1320 + 8750

(640) xsc = (9240) --- +50
10070

xsc = (9240) (.0635) + 50

xsc = 587 .249 + 50 = 637 .249 = 637

YSC = (YUC-BWBUC) (TWBSC-BWBSC) + BWBSC
TWBUC-BWBUC

YSC = (1890-570) (350-lOO) + 100
2040-570

YSC = (1320) (~) + 100
1470

YSC = (1320) (.1700) + 100 = 1224.489 + 100 = 324.489 = 324

Additional Abbreviations:

LWBUC

RWBSC

RWBUC

TWBSC

TWBUC

BWBUC

Left Window Boundary in User Coordinates.

Right Window Boundary in Screen Coordinates.

Right Window Boundary in User Coordinates.

Top Window Boundary in Screen Coordinates.

Top Window Boundary in User Coordinates.

Bottom Window Boundary in Screen Coordinates.

Screen Coordinates of a window are specified with Function 1.

User Coordinates of a window are specified with Function 21.

Figure 5-3. Mode 2 Mapping

CRT Graphics Driver 5-5

FILL WORD

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o .----Least Significant Bit

Step 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

\\\\\\\\\\\\\\\J
f\\ \ \\\\ \\\\\ \\\

Step 2 0 1 0 1 0 1 0 1 O 1 0 1 0 1 0 1

\\\\\\ \ \ \ \\\\\\J
f\ \ \ \ \ \\\\\ \ \ \\ \

Step 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

t t
I I
I I
I I
+ +

Step 26 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 5-4. Draw a Vector Function

~
-

COP

•

•
•

End Point

GRAPHICS WINDOW

CRT Graphics Driver 5-6

Pixel represntation of
one character

1 byte, word
or long word
per line.
Column
width
determines
data size.

1 bit per pixel
Column width
determines
number of bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0000000001 1000000000000
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00000000 11 1 1 1 00000000000
0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0
0
0
0
0

~~---'-~~~ 0

Bit representation of 1 character in user Font Table

~32 long words per character~ A J /
-------r---, • .t lllllllllltll~- ry
~cha~-cters 1111flIIHIITI11ffi11 rl fin 11IID

User Font Table

Figure 5-5. User Font Table

CRT Graphics Driver 5-7

5.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager.

To open a graphics window, the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device. Following OPEN
the user may issue function calls to the graphics driver.

5.2. 1 DIB FORMAT

DATA
MNEMONIC LENGTH
-------- ------
DIBVOL DS.B

DIBDTD DS.B

DIBTRN DS.B

DIBRSO DC.L

DIBOPT DC.W

DIBFCN DS.L

DI BB IO DC.L

6

1

1

0,0

0

1

0

DESCRIPTION OF USE

Device name. Use #GR

Data Transfer Direction. Use 0. This
device is WRITE only.

Enter 0 for fixed length or 1 for
variable length transfers.

User sets this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet or set
this field to $0000 0000 to select the
default mode.

Byte I/O is not supported by this ·
driver. User sets this field to 0.

CRT Graphics Driver 5-8

5.3 GRAPHICS DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) is not used by this driver. The
graphics function packet is the means by which requests are relayed to the
driver.

5.4 GRAPHICS FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. It is required for the FUNCTION
command and optional for the OPEN command. It is used by the application
program to configure a device to something other than its default mode.

The Function Packet is a list of COMMAND/DATA structures terminated by a
zero, indicating END-OF-LIST. The COMMAND word is followed by zero or
more bytes, words, or longwords that send or receive the DATA for the
COMMAND, or a longword that points to the DATA for that COMMAND.

5.4.1 SUMMARY OF GRAPHICS FUNCTIONS

The functions listed below can be used with the SYSIO-FUNCTION command of
the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- -------- -------------
END LIST 0 ($0000) NONE NONE
SET WINDOW BOUNDARIES 1 ($0001) $0021 FOUR WORDS
GET WINDOW BOUNDARIES ') ($0002) NONE FOUR WORDS RETURNED "-

SELECT PAGE NUMBER 3 ($0003) $0023 WORD
GET PAGE NUMBER 4 ($0004) NONE WORD RETURNED
SELECT PIXEL MODE 5 ($0005) $0025 WORD
GET PIXEL MODE 6 ($0006) NONE WORD RETURNED
SET MAPPING MODE 7 ($0007) $0027 WORD
GET MAPPING MODE 8 ($0008) NONE WORD RETURNED
SET COORDINATE INTERPRETATION MODE 9 ($0009) $0029 WORD
GET COORDINATE INTERPRETATION MODE 10 ($OOOA) NONE WORD RETURNED
SET CHARACTER ORIENTATION MODE 11 ($000B) $002B WORD
GET CHARACTER ORIENTATION MODE 12 (SOOOC) NONE WORD RETURNED
SET CHARACTER MAGNIFICATION 13 ($000D) $002D WORD

CRT Graphics Driver 5-9

READ CHARACTER MAGNIFICATION 14 ($000E) NONE WORD RETURNED
SET CHARACTER FONT 15 ($000F) $002F LONG WORD POINTER
READ CHARACTER FONT DIMENSIONS 16 ($0010) NONE TWO WORDS RETURNED
SET CHARACTER FIELD 17 ($0011) $0031 TWO WORDS
GET CHARACTER FIELD 18 ($0012) NONE TWO WORDS RETURNED
SET FILL WORD 19 ($0013) NONE WORD
GET FILL WORD 20 ($0014) NONE WORD RETURNED
SET MAPPING COORDINATES 21 ($0015) $0035 FOUR WORDS
GET MAPPING COORDINATES 22 ($0016) NONE FOUR WORDS RETURNED
SET CURRENT OPERATING POINT 23 ($0017) $0037 TWO WORDS
GET CURRENT OPERATING POINT 24 ($0018) NONE TWO WORDS RETURNED
SET A PIXEL 25 ($0019) $0039 TWO WORDS
GET A PIXEL 26 ($001A) NONE THREE WORDS
DRAW A VECTOR 27 ($001B) $003B TWO WORDS
FILL A RECTANGLE 28 ($001C) $003C TWO WORDS
DRAW A CHARACTER STRING 29 ($001D) $003D LONG WORD POINTER
CLEAR THE WINDOW 30 ($001E) NONE NONE
FRAME THE WINDOW 31 ($00 lF) NONE NONE
DRAW AN ELLIPSE 32 ($0020) $0040 TWO WORDS
SCROLL WINDOW 33 ($0021) $0041 TWO WORDS

5.4.2 GRAPHICS FUNCTION DESCRIPTION

COMMAND

0

1

FUNCTION
PURPOSE

ENDLIST

FUNCTION DESCRIPTION

Terminates processing of the function
packet.

Function Data None

Error Code None

SET WINDOW
BOUNDARIES

Function Data

At open time the window is given the
default boundaries of 0,0,767,479 which
is the full screen. See Figure 5-1.
This function allows the user to redefine
the window boundaries using Screen
coordinates.

Four words, integer

CRT Graphics Driver 5-10

2

3

4

Default 0, 0, 768, 479

Word 1 Left window boundary 0 .. 767 ($000 .. $02FF)

Word 2 Bottom window boundary 0 .. 479 ($000.$01DF)

Word 3 Right window boundary 0 .. 767 ($000.$02FF)

Word 4 Top window boundary 0 .. 479 ($0000.$01DF)

Error Code=$0021 Data out of limits.

Note: Word 1 < Word 3
Word 2 < Word 4

GET WINDOW
BOUNDARIES

Function Data

Error Code

SELECT PAGE
NUMBER

Returns four words which specify the
window boundaries in Screen Coordinates.
See Function 1 above.

Leave space for four words, integer

None

Allows the user to specify which of two
pages will be used. (O,l)

Function Data One word, integer

Data = $0000 Selects graphics page 0

$0001 Selects graphics page 1

Error Code=$0023 Data out of limits

Default = 0

Note: This does not change the current displayed page.

GET PAGE NUMBER

Function Data

Returns the number of the graphics page
currently in use.

Leave space for one word.

CRT Graphics Driver 5-11

5

6

7

Error Code None

SET PIXEL MODE Selects the logic by which the graphics
primitives will cause pixels to be filled.

FUNCTION DATA One word, integer

Data = $0000 RESET pixels

$0001 SET pixels

$0002 XOR pixels

Error Code=$002B Data out of limits.

Default = 1

GET PIXEL MODE Returns the current pixel control mode
number in the data.

Function Data Leave space for one word, integer

Data = $0000 RESET mode

$0001 SET mode

$0002 XOR mode

Error Code None

SET MAPPING MODE Allows the user to select one of three
coordinate mapping modes. In mode 0 there
is 1-to-l mapping between the Screen
Coordinates and User Coordinates. In mode
1 User Coordinates become Screen
Coordinates with a Window Offset Vector
added. In mode 2 the User Coordinates are
"Scaled" and become Screen Coordinates
with a Window Offset Vector added.

Function Data One word, integer.

Data = $0000 Mode 0. User Coordinates = Screen

CRT Graphics Driver 5-12

8

9

$0001

$0002

Error Code=$0027

Default =

GET MAPPING MODE

Function Data

Data = $0000

$0001

$0002

Error Code

SET COORDINATE
INTERPRETATION
MODE

Function Data

Data = $0000

$0001

Error Code=$0029

Default =

Coordinates.

Mode 1. User Coordinates =Screen
Coordinates plus Offset Vector. See
Figure 5-2.

Mode 2. User Coordinates = Screen
Coordinates plus scaling plus offset
vector. See Figure 5-3.

Data out of limits.

0

Returns the current coordinate mapping
mode.

Leave space for one word, integer

Mode 0 is in effect.

Mode 1 is in effect.

Mode 2 is in effect.

None

Allows the user to specify either absolute
or relative coordinate interpretation.
Absolute coordinates are interpreted
literally. Relative coordinates are
interpreted as offsets to the Current
Operating Point.

One word, integer

Selects absolute interpretation

Selects relative interpretation

Data out of limits.

0

CRT Graphics Driver 5-13

10

11

12

GET COORDINATE
INTERPRETATION
MODE

Function Data

Data = $0000

$0001

Error Code

SET CHARACTER
ORIENTATION MODE

Function Data

Data = $0000

$0001

$0002

$0003

Error Code=$002B

Default =

GET CHARACTER
ORIENTATION MODE

Function Data

Data = $0000

$0001

$0002

$0003

Returns the current coordinate
interpretation mode.

Leave space for one word, integer

Absolute interpretation is in effect.

Relative interpretation is in effect.

None

Allows the user to specify the
orientation of text strings on the page.
Four modes are available. In each mode
the characters are rotated to match the
text orientation.

One word, integer.

Characters are oriented left to right.

Characters are oriented bottom to top.

Characters are oriented right to left.

Characters are oriented top to bottom.

Data out of limits.

0

Returns the current character orientation
mode.

Leave space for one word, integer.

Character orientation is left to right.

Character orientation is bottom to top.

Character orientation is right to left.

Character orientation is top to bottom.

CRT Graphics Driver 5-14

13

14

Error Code

SET CHARACTER
MAGNIFICATION

None

Allows the user to specify an integer
value by which the character
dimensions will be magnified.

Function Data One word, integer.

Data= $000N Characters are magnified N times.

Error Code=$002D Data out of limits.

NOTE: N must be greater than 0.

Default =

GET CHARACTER
MAGNIFICATION

Function Data

Error Code

1

Returns the current character
magnification value.

Leave space for one word, integer

None

15 SET CHARACTER FONT Allows the user to select and create a

1-8 COLUMNS

1 BYTE/ROW

N ROWS

256 CHARS
IN TABLE

TOTAL BYTES =
256 x N

user font table. This function specifies
the number of columns (1-32) and rows
(1-32) for each character and the start
address of the font table. The font table
must be 9rganized as follows:

9-16 COLUMNS 17-32 COLUMNS

1 WORD = 1 LONGWORD =
2 BYTES/ROW 4 BYTES/ROW

N ROWS N ROWS

256 CHARS 256 CHARS
IN TABLES IN TABLE

TOTAL BYTES = TOTAL BYTES =
512 x N 1024 x N

CRT Graphics Driver 5-15

16

17

Function Data

Longword

Erro~ Code=$002F

Default Font

GET CHARACTER
FONT DIMENSIONS

Function Data

Word 1

Word 2

Error Code

SET CHARACTER
FIELD

Characters are entered in the table row
at a time from top to bottom starting with
character 0 and ending with character 255.

To invoke this function the user must pass
a pointer to a font control block
containing the following:

FONT CONTROL BLOCK

ARG 1
ARG 2
ARG 3

WORD
WORD
LONGWORD

One Longword.

NUMBER OF COLUMNS IN FONT
NUMBER OF ROWS IN FONT
POINTER TO FONT TABLE

Pointer to Font Control Block.

Data out of limits.

8 Columns x 14 Rows

Returns the dimensions currently specified
for the user created font table.

Leave space for two words, integer.

Specifies the number of columns (width)

Specifies the number of lines (height)

None

Allows the user to specify the field in
which the font is to be set. This
provides a means to clip a few columns
or lines from the font or to add a few
columns or lines to the font. For example
the system font is 8 pixel by 14 scan
lines but is displayed in a field of 9
pixels by 16 scan lines. The font is
positioned in the upper right corner of
the field. If the field exceeds the
dimensions of the font the gap will be

CRT Graphics Driver 5-16

18

19

20

Function Data

Word 1

Word 2

Error Code=$0031

Default =

GET CHARACTER
FIELD

Function Data

Word 1

Word 2

Error Code

SET FILL WORD

Function Data

Data Range

Error Code

Default =

GET FILL WORD

filled with zero bits.

Two words, integer

Specifies field width (1-32 pixels)

Specifies field height (1-32 scan lines)

Data out of limits.

9 x 16

Returns the dimensions of the character
field.

Leave space for two words, integer.

Specifies the number of columns (width)

Specifies the number of lines (height)

None

Allows the user to specify the value of
the fill word which is used by DRAW A
VECTOR, FILL A RECTANGLE and the DRAW AN
ELLIPSE functions. The fill word acts
as a mask in conjunction with the pixel
control bits to SET, RESET or EXCLUSIVE
OR the pixels. For example a fill word
of $AAAA would create a dotted line and
$FOFO would create a string of dashes.

One word, integer

$0000 to $FFFF

None

$FF

Returns the value of the current fill
word.

CRT Graphics Driver 5-17

21

22

23

Function Data

Error Code

SET MAPPING
COORDINATES

Function Data

Word 1

Word 2

Word 3

Word 4

Error Code=$0035

Default =

GET MAPPING
COORDINATES

Function Data

Error Code

SET CURRENT
OPERATING POINT

Leave space for one word, integer

None

This function establishes the user
coordinate window boundaries for Mode 2
mapping described in Function 7, SET
MAPPING MODE.

Four words, integer.

Left window boundary in user coordinates
(-16384 to +16383).

Bottom window boundary in user coordinates
(-16384 to +16383).

Right window boundary in user coordinates
(-16384 to +16383).

Top window boundary in user coordinates
(-16384 to +16383)

Data out of limits.

0, 0, 768, 479

Returns the user mapping coordinates in
effect.

Leave space for four words, integer.

None

Allows the user to specify the Current
Operating Point (COP). The COP may be

considered as a graphics cursor and is a
point in two-dimensional space. When a
primitive is drawn it starts at the COP.
Some primitives cause the COP to move.
These are SET CURRENT OPERATING POINT,
DRAW A CHARACTER STRING, and DRAW A

CRT Graphics Driver 5-18

24

25

26

Function Data

Word 1

Word 2

Error Code=$0037

GET CURRENT
OPERATING POINT

Function Data

Error Code

SET A PIXEL

Function Data

Word 1

Word 2

Error Code=$0039

GET A PIXEL

Function Data

Word 1

Word 2

VECTOR. Other primitives simply use the
COP as a reference point. The COP is
initialized to 0, 0.

Two words, integer.

COP X axis in User Coordinates.

COPY axis in User Coordinates.

Data out of limits.

Returns the current operating point. The
COP may exceed the window boundaries.

Leave space for two words, integer.

None

Allows the user to draw a pixel at the
location specified in user coordinates in
the Function Data. The pixel will be SET,
RESET or EXCLUSIVE OR'd in accordance with
the current pixel control bits.

Two words, integer.

Specifies X axis in User Coordinates.

Specifies Y axis in User Coordinates.

Data out of limits.

Returns the current status of the pixel at
the location specified in User Coordinates
by the Function Data.

Three words, integer.

Specifies X axis in User Coordinates.

Specifies Y axis in User Coordinates.

CRT Graphics Driver 5-19

Word 3

Data = $0000

$0001

$FFFF

Error Code

27 DRAW A VECTOR

Function Data

Word 1

Word 2

Error Code=$003B

28 FILL A RECTANGLE

Function Data

Word 0

Word 1

Error Code=$003C

Leave space for one word, integer.

Pixel is OFF.

Pixel is ON.

Pixel is outside of window.

None.

Draws a vector to a point specified by the
Function Data. The vector begins at the
Current Operating Point and ends at a
point specified in the DATA words. If all
or a portion of the vector lies outside
the window boundaries it will be clipped
and only the portion within the window
will be displayed. The COP is
repositioned to the vector end point.

Two words, integer.

Specifies X axis in User Coordinates of
the end point.

Specifies Y axis in User Coordinates of
the end point.

Data out of limits.

This function fills the rectangular area
between the Current Operating Point and a
point specified in User Coordinates by the
Function Data with the current fill word.
If the fill area exceeds the window
boundary it will be clipped and only the
region within the window will be filed.

Two words, integer.

Specifies the X axis in User Coordinates.

Specifies the Y axis in User Coordinates.

Data out of limits.

CRT Graphics Driver 5-20

29

30

31

32

DRAW A CHARACTER
STRING

Function Data

Long Word

Error Code=$003D

CLEAR THE WINDOW

Function Data

Error Code

FRAME THE WINDOW

Function Data

Error Code

DRAW AN ELLIPSE

Draws the character string specified by
the Function Data from the Current
Operating Point in a direction specified
by the character orientation bits in the
option word. If the string exceeds the
window boundaries it will be clipped. The
first word in the Function Data must
specify the number of bytes (characters)
in the string. The COP is repositioned to
the lower left corner of the character
position following the last character.

Pointer to a text string, where a string
is defined as a one word length field
followed by text data in the form of ASCII
bytes.

Data out of limits.

Clears the window by complementing the
action of the pixel control bits in the
option word. For example if pixels are
being RESET this function will clear the
window by setting all .the pixels.

None

None

Draws a frame around the window which is
one scan line thick and one pixel wide.

None

None

Draws an ellipse centered on the Current
Operating Point and having X and Y axis
radii equal to the distance between the
COP and the values specified in Function

CRT Graphics Driver 5-21

Function Data

Word 1

Word 2

Error Code=$0040

33 SCROLL WINDOW

Function Data

Word 1

Word 2

Error Code=$0041

Data for the X and Y axes (maximum=256).

Two words, integer.

Specifies X axis radius in User
Coordinates.

Specifies Y axis radius in User
Coordinates.

Data out of limits.

Scrolls the contents of the window by the
distance between the Current Operating
Point and a point specified by the
Function Data.

Two words, integer.

Specifies X axis in User Coordinates.

Specifies Y axis in User Coordinates.

Data out of limits.

CRT Graphics Driver 5-22

6.0 PRINTER DRIVER

6.1 DRIVER DESCRIPTION

The printer driver provides for three modes of printer operation -- one
alphanumeric mode and two graphics modes. The alphanumeric mode is used
to output text characters while the graphics mode is used to output
graphics information. Access to the printer driver is provided through
general purpose system calls to the I/O manager using the SYSIO macro.
These include OPEN, CLOSE, AWRITE, SWRITE, FUNCTION, CANCEL and INIT.

In the Alphanumeric Mode text may be output either a byte at a time or in
blocks of fixed or variable length. A variety of functions are supported
including multiple colors, proportional spacing, text justification and
character enhancement. Printing in this mode is bidirectional.

In the Graphics mode either 100 dots per inch or 200 dots per inch may be
specified and only fixed length block output is permitted but successive
blocks may vary in length. Bytes received by the printer in graphics mode
specify the firing pattern for the upper seven wires on the print head for
successive horizontal positions. See Figure 6-1. The wires are spaced
4/336's of an inch apart. Graphics output lines can be interlaced one,
two or four times if desired to achieve increased vertical resolution.
The amount of vertical advance can be controlled with the SET ADVANCE or
the SET ABSOLUTE POSITION functions. In general, vertical Advance 1 is
used for this purpose.

Note: The printer driver has the following attributes:

Non-sharable -- Only one logical unit can open the printer
at a time.

Supports Asynchronous Transfers -- Asynchronous reads and
writes are supported by the printer.

Non-Reentrant The printer driver is non-reentrant.

Note: During Mode 0 (normal printing) operation_, control codes are
filtered out of the data stream with the exception of the normal
control characters $08 ... $OD (BS,HT,LF,VT,FF,CR). The data stream
is thus limited to printable ASCII characters and normal carriage
control.

Printer Driver 6-1

ASCII Character Set and Control Codes

ASCII
Control
Codes

CHFI DEC HEX

NUL 000
SOH 001
STX 002
ETX 003

EOT 004
ENQ OOS
ACK 006
BEL 007

BS 008
HT 009
LF 010
VT Oil

FF 012
CR 013
so 014
SI OIS

OLE 016
DC! 017
DC2 018
DC3 019

DC4 020
NAK 021
SYN 022
ETB 023

CAN 024
EM 025

00
01
02
03

04
05
06
07

08
09
OA
OB

oc
OD
OE
OF
10
11
12
13

14
15
16
17

18
19

SUB 026 IA
ESC 027 IB

FS 028 IC
GS 02g ID

RS o:lO l E
US 031 IF

SP 032 20
033 21
o:l4 22

t: 035 23

$ 036 24
't 037 25
& 038 26

039 27

040 28
041 29

* 042 2A
+ 043 28

CHFI DEC HEX

0
I
2
:l

4
s
6
7

8
9

<

>

(a

A
B
c
D
E
F
G

H

J
K

L
M
N

0
p

Q
R
s
T
u
v
w

044
045
046
047

048
049
050
051
052
053
054
oss
OS6
OS7
058
059

060
061
062
063

064
ObS
066
067

068
069
070
071

072
073
074
075

076
077
078
07g

080
081
082
083

084
08S
086
087

2C
2D
2E
2F

30
31
:l2
:l:l

34
3S
36
37

38
39
3A

3B

3C
30
3E
3F

40
41
42
43

44
4S
46
47

48
49
4A
4B

4C
40
4E
4F

so
SI
52
53

54
55
56
57

Figure 6-1. ASCII Character Set and Control Codes

CHFI DEC HEX

x
y

z
[

\
I
A

a

b

d

e

g

h

J
k

m

n

0

p

q

088 S8
089 S9
090 SA
091 SB

092 SC
093 SD
094 SE
095 SF

096 60
097 61
098 62
099 63

100 64
101 6S
102 66
103 67
104 68
lOS 69
106 6A
107 68

108 6C
109 60
110 6E
111 6F

112 70
113 71

114 72
!IS 73

116 74
u 117 7S
v 118 76
"' 119 77

120 78
y 121 79

122 7A
123 78

124 7C
125 70
126 7E

EE 127 7F

Printer Driver 6-2

SCAN
OF
PRINT HEAD

BIT7
IGNORED

RECEIVED BYTE

BITS 0-6 FORM
PRINTED DOTS

RECEIVED CHARACTER
BIT POSITIONS

TOP DOT

BOTTOM DOT

7 6 5 4 3 2 1 0

1st CHARACTER x 0 0 1 0 1 0 1

2nd CHARACTER x 0 1 0 1 0 1 0 f 3ffi CHARACTER x 1 1 1 1 1 1 1

ETC.

BITO •• •• BIT 1

•• BIT 2

•• BIT 3

•• BIT4

•• BIT 5

• BIT 6

Figure 6-2. Graphics Mode Pin Firing

NOTE
DOTS ARE OVERLAPPED IN ACTUAL PRINT OPERATION

Printer Driver 6-3

6.2 DEVICE INFORMATION BLOCK (DIB)

To OPEN the printer the user must create a Device Information Block (DIB)
and within an initialization routine perform a SYSIO-OPEN to the device.

6.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH
-------- ------

DIBVOL DS.B

DIBDTD DS.B

DIBTRN DS.B

DIBRSO DC.L

DIBOPT DC.W

DIBFCN DS.L

DI BB IO DS.L

6

1

1

0,0

1

1

1

DESCRIPTION OF USE

Device name. Use UPR for printer driver.

Data transfer direction. Use 0. This
driver is WRITE only.

Enter 0 for Fixed length or 1 for Variable
length transfers.

Not used. User setg this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet or null
for default.

System used byte I/O field. To open the
printer for Byte I/O enter -1($FFFF FFFF),
otherwise set it to zero. After open the
I/O manager fills this field with an
identifier which is used for SYSIO-BWRITE.

6.3 PRINTER DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during WRITEs. It is a required operand of the SYSIO macro
for WRITEs. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer after the request has been made.

Printer Driver 6-4

6.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH

DTCSTA DS.B 1

DTCTBU DS.B 1

DTCTBL DS.B 1

DTCRSO DC.B 0

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DESCRIPTION OF USE

User monitors this field for status on I/O operation.

User puts upper trigger byte to be used to delimit
Transfer Termination character range in Variable
length transfers here.

User puts lower trigger byte to be used to delimit
Transfer Termination character range in Variable
length transfers here.

This field is reserved. User puts zero here.

User puts Buffer starting address here.

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every WRITE.

6.4 PRINTER FUNCTIONS

The Funct_ion Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
setting margins, tab stops and form length. It is required for the
FUNCTION command and optional for the OPEN command. It is used by the
application program to configure a device to something other than its
default mode.

The function packet is a list of COMMAND/DATA words terminated by a zero
indicating end-of-list. The COMMAND word is followed by zero or more

.words or longwords that send or receive the DATA for the command, or a
longword that points to the DATA for that COMMAND.

Printer Driver 6-5

6.4.1 SUMMARY OF PRINTER FUNCTIONS

The functions listed in this section can be used with the SYS IO-FUNCTION
command of the I/O manager using FUNCTION packets.

COMMAND ERROR DATA
FUNCTION PURPOSE WORD CODE REQUIRED
---------------- ------- ------ ---------
ENDLIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) $0021 WORD
SET PRINTER MODE 2 ($0002) $0022 WORD
GET PRINTER MODE 3 ($0003) NONE WORD RETURNED
SET FONT 4 ($0004) $0024 WORD
GET FONT 5 ($0005) NONE WORD RETURNED
SET COLOR 6 ($0006) $0026 WORD
GET COLOR 7 ($0007) NONE WORD RETURNED
SET DENSITY 8 ($0008) $0028 WORD
GET DENSITY 9 ($0009) NONE WORD RETURNED
SET FORM SIZE 10 ($000A) $002A TWO WORDS
GET FORM SIZE 11 ($000B) NONE TWO WORDS RETURNED
SET MARGINS 12 ($000C) $002C TWO WORDS
GET MARGINS 13 ($000D) NONE TWO WORDS RETURNED
SET ENHANCE 14 ($000E) $002E WORD
GET ENHANCE 15 ($000F) NONE WORD RETURNED
SET PROPORTIONAL SPACING 16 ($0010) $0030 WORD
GET PROPORTIONAL SPACING 17 ($0011) NONE WORD RETURNED
SET INTERCHARACTER SPACING 18 ($0012) $0032 WORD
GET INTERCHARACTER SPACING 19 ($0013) NONE WORD RETURNED
SET TABS 20 ($0014) $0034 2-34 WORDS
GET TABS 21 ($0015) NONE 2-34 WORDS RETURNED
SET JUSTIFICATION 22 ($0016) $0036 WORD
GET JUSTIFICATION 23 ($0017) NONE ONE WORD RETURNED
SET ADVANCE 24 ($0018) $0038 TWO WORDS
GET ADVANCE 25 ($0019) NONE TWO WORDS RETURNED
PERFORM ADVANCE 26 ($001A) $003A WORD
SET ABSOLUTE X-Y POSITION 27 ($001B) $003B TWO WORDS
SET ABSOLUTE ROW-COLUMN 28 ($001C) $003C TWO WORDS
SET RELATIVE POSITION 29 ($001D) $003D WORD
RESET PRINTER 30 ($001E) NONE NONE
SET LINE FEED MODE 31 ($0020) $003F WORD
GET LINE FEED MODE 32 (0020) NONE WORD RETURNED
SET FORM FEED MODE 33 (0021) $0041 WORD
GET FORM FEED MODE 34 (0022) NONE WORD RETURNED

Printer Driver 6-6

6.4.2 PRINTER FUNCTION DESCRIPTIONS

COMMAND

0

1

2

FUNCTION
PURPOSE

ENDLIST

Function Data

Error Code

SET TRANSFER
MODE

Function Data

Data = $0000
$0001

FUNCTION DESCRIPTION

Terminates processing of the function packet.

None

None

Allows the user to change the data transfer
mode from that established at OPEN.

One word, integer.

Select Fixed length transfers.
Select Variable length transfers.

Error Code=$0021 Data out of limits.

Default

SET PRINTER
MODE

Function Data

Data = $0000
$0001
$0002

Set by User in DIBTRN at open time.

Allows the user to specify ALPHANUMERIC
or GRAPHICS MODE of operation. Alphanumeric
Mode 0 produces alphanumeric input from ASCII
character input. Control characters $08 to
$OD are accepted and the others are ignored.
Graphics (Mode 1) produces 100 dots per inch
graphic output from byte size integer input.
See paragraph 6.1 for further details.
Graphics (Mode 2) produces 200 dot per inch
graphic output from byte size integer input.
See paragraph 6.1 for further details.
Only fixed length block data transfer are
allowed in the graphics mode.

One word, integer.

Selects Alphanumeric Mode 0.
Selects 100 dots per inch Graphics Mode 1.
Selects 200 dots per inch Graphics Mode 2.

Printer Driver 6-7

3

4

5

Error Code=$0022 Data out of limits.

Default =

GET PRINTER
MODE

Function Data

Data = $0000
$0001
$0002

Error Code

SET FONT

Function Data

Data = $0000
$0001
$0002
$0003

0 (Alpha Mode)

Returns the present printer mode in the DATA
word.

Leave space for one word, integer.

Specifies Alphanumeric Mode 0.
Specifies 100 dots per inch Graphics Mode 1.
Specifies 200 dots per inch Graphics Mode 2.

None.

Allows the user to specify the desired
character font to be used for alphanumeric
output.

One word, integer.

Selects correspondence font.
Selects draft quality font.
Selects -90 degree rotated graphics font.
Selects non-rotated graphics font.

Error Code=$0024 Data out of limits.

Default = 0

GET FONT Returns the current character font in the
DATA word.

Function Data Leave space for one word
'

integer.

Data = $0000 Specifies correspondence font.
$0001 Specifies draft quality font.
$0002 Specifies -90 degree rotated graphics font.
$0003 Specifies non-rotated graphics font.

Error Code None.

Printer Driver 6-8

6

7

8

SET COLOR

Function Data

Data = $0000
$0001
$0002
$0003

Allows the user to specify one of four
possible ribbon positions numbered 0-3
starting at the top of the ribbon. Normally
the color order from the top will be
red-green-blue-black.

One word, integer.

Selects ribbon position
Selects ribbon position
Selects ribbon position
Selects ribbon position

0
1
2
3

(red)
(green)
(blue)
(black)

Error Code=$0026 Data out of limits.

Default =

GET COLOR

Function Data

Data = $0000
$0001
$0002
$0003

Error Code

SET DENSITY

Function Data

Data = $0000
$0001
$0002

3 (Black)

Returns the current ribbon position in the
DATA word.

Leave space for one word, integer.

Specifies ribbon position 0 (red)
Specifies ribbon position 1 (green)
Specifies ribbon position 2 (blue)
Specifies ribbon position 3 (black)

None

Allows the user to select the density that is
used for alphanumeric output.

One word, integer.

Selects a 10 character per inch density.
Selects a 12 character per inch density.
Selects a 16.8 character per inch density.

Error Code=$0028 Data out of limits.

Default = 0 (10 CPI.)

Note: If auto line feed is enabled and line width is set to
greater than 80, then character density will be

Printer Driver 6-9

9

10

11

increased to 16.8 characters per inch.

GET DENSITY

Function Data

Data = $0000
$0001
$0002

Error Code

SET FORM SIZE

Function Data

Word 1

Returns the current character density in the
DATA word.

Leave space for one word, integer.

Specifies a 10 character per in~h density.
Specifies a 12 character per inch density.
Specifies a 16.8 character per inch density.

None.

Allows the user to select the form length
and print field length. The form length must
be larger than or equal to the print field
length. Each length is expressed in 1/336 of
an inch. The default value for form length
is 3696. The default value for print field
length is 3696.

Two words, integer.

Selects form length. This value must be the
larger.

Word 2 Selects print field length.

Error Code=$002A Data out of limits.

GET FORM SIZE

Function Data

Word 1

Word 2

Error Code

Returns the current form length and print
field length in the DATA words.

Leave space for two words, integer.

Specified the current form length.

Specifies the current print field length.

None

Printer Driver 6-10

12

13

14

15

SET MARGINS

Function Data

Word 1 (0-960)

Word 'l (1-960) "-

Allows the user to set the right and left
margins. Both are expressed in 1/120 of an
inch units and the right margin must be a
larger value than the left margin.

Two words, integer.

Left margin position in 1/120 of an inch
units.

Right margin position in 1/120 of an inch
units.

Error Code=$002C Data out of limits.

Default =

GET MARGINS

Function Data

Word 1

Word 2

Error Code

SET ENHANCE

Function Data

Data = $0000
$0001

0' 960

Returns the current margin positions in the
DATA words.

Leave space for two words, integers.

Specifies position of the left margin.

Specifies position of the right margin.

None.

Allows the user to have the characters
printed with double width.

One word, integer.

Characters are printed in normal width.
Characters are printed in double width.

Error Code=$002E Data out of limits.

Default =

GET ENHANCE

0

Returns the current character enhancement
in the DATA word.

Printer Driver 6-11

16

17

18

Function Data

Data = $0000
$0001

Error Code

SET PROPORTIONAL
SPACING

Function Data

Data = $0000
$0001

Leave space for one word, integer.

Specifies normal width.
Specifies double width.

None

Allows the user to specify proportional
spacing of the output text. Inter-character
spacing cannot be used with proportional
spacing.

One word, integer.

Select regular spacing.
Select proportional spacing.

Error Code=$0030 Data out of limits.

Default =

GET
PROPORTIONAL
SPACING

Function Data

Data = $0000
$0001

Error Code

SET
INTER CHARACTER
SPACING
INCREMENT

Function Data

Data = $0007

0

Returns the current selection of proportional
spacing in the DATA word.

Leave space for one word, integer.

Specifies regular spacing.
Specifies proportional spacing.

None

Allows the user to adjust inter-character
spacing in 1/24's of a character width.
Inter-character spacing increment cannot
be used with proportional spacing.

One word, integer.

Specifies 7/24's of a character width
spacing increment.

Error Code=$0032 Data out of limits.

Printer Driver 6-12

19

20

21

Default =

GET
INTERCHARACTER
SPACING

Function Data

Error Code

SET TABS

Function Data

0

Returns the current inter-character spacing
value expressed in l/24's of a character
width.

Leave space for one word, integer.

None.

Allows the user to set the horizontal and
vertical tab stops for the printer. The
first argument selects either horizontal or
vertical tabs. The second argument is the
number of tabs the user wishes to set. The
following arguments are the positions of the
tab stops from left to right or top to
bottom. Thirty-two (32) horizontal tabs may
be specified in units of 1/120's of an inch
and eight (8) vertical tabs may be specified
in units of l/336's of an inch.

2 to 34 words, integer.

Word 1 = $0000 Selects horizontal tabs.
$0001 Selects vertical tabs.

Word 2 Selects number of tabs to be set.

Words 3-34 Specify positions of tab stops from left to
right in l/120's of an inch or from top to
bottom in l/336's of an inch.

Error Code=$0034 Data out of limits.

Default =

GET TABS

No tabs

Returns the current horizontal or vertical
tab positions in the DATA words. In the
first word the user selects horizontal or
vertical tabs and in the second word
specifies the number of tabs that are to be

Printer Driver 6-13

22

23

Function Data

read. The driver will return the current
tab stops in successive words in the DATA.
If a tab stop has not been set the driver
will return a zero in the corresponding
location.

Two words, integer plus space for up to 32
words as required to return the information
requested.

Word 1 - $0000 Specifies that horizontal tabs be read.
$0001 Specifies that vertical tabs be read.

Word 2

Words 3-34

Specifies up to 32 horizontal tab stops or
up to 8 vertical tab stops be read.

Specifies position of tab stops from left
to right in 1/120's of an inch for horizontal
tabs or from top to bottom in 1/336's of an
inch for vertical tabs.

Error Code=$0035 Data out of limits.

SET
JUSTIFICATION

Function Data

Data = $0000
$0001

Allows the printer to adjust the length of a
printed line to conform to the left and right
margins. Text should be sent as a single
line without carriage returns or line feeds.
The carriage return is used to terminate a
paragraph. If indenting is desired it may be
accomplished with an absolute head movement
or tab. If proportional spacing is selected
with this mode the printed text will approach
publication quality.

One word, integer.

Selects regular output.
Selects text justification.

Error Code=$0036 Data out of limits.

GET
JUSTIFICATION

Function Data

Returns the current state of text
justification in the DATA word.

Leave space for one word, integer.

Printer Driver 6-14

24

25

Data = $0000
$0001

Error Code

SET ADVANCE

Function Data

Word 1 = $0000
$0001
$0002

Word 2

Specifies that justification is not selected.
Specifies that justification is selected.

None

Allows the user to set one of three
Vertical Advance lengths. Advance 0 is a
forward advance equivalent to a line feed and
used for this purpose in the alphanumeric
mode. Advance 1 is also a forward advance
typically used as a line feed in Graphics
mode. Advance 2 is a reverse advance
typically used for super-scripting in
alphanumeric mode. Advance lengths are in
units of 1/336's of an inch. Default values
are:

Advance 0 = 56/336's of an inch
Advance 1 = 28/336's of an inch
Advance 2 = -28/336-' s of an inch (reverse)

Two words, integer.

Set Advance 0
Set Advance 1
Set Advance 2

Specifies advance length in 1/336's of an
inch.
(+ or - argument in case of Advance 2)

Error Code=$0038 Data out of limits.

GET ADVANCE

Function Data

Word 1 = $0000
$0001
$0002

Word 2

Error Code

Returns the current vertical advance length
in the second DATA word for the mode selected
in the first DATA word.

Leave space for two words, integer.

Specifies Advance 0 is selected.
Specifies Advance 1 is selected.
Specifies Advance 2 is selected.

Returns the current length selected in
1/336's of an inch.

None

Printer Driver 6-15

26 PERFORM ADVANCE Performs a vertical advance in the advance

27

28

Function Data

Data = $0000
$0001
$0002
$0003
$0004

mode specified by the DATA word. See
Function 24 above.

One word, integer.

Selects Advance 0
Selects Advance 1
Selects Advance 2
Selects Advance 0 with CR
Selects Advance 1 with CR

Error Code=$003A Data out of limits.

SET ABSOLUTE
X-Y POSITION

Function Data

Allows the user to move the print head to an
absolute horizontal (1/120's of an inch) or
vertical (1/336's of an inch) position.

Two words, integer.

Word 1 = $0000 S~lects horizontal axis.
$0001 Selects vertical axis.

Word 2 Specifies position on axis. 0-960 for
horizontal and any value greater than zero
and less than 9999 for vertical.

Error Code=$003B Data out of limits.

Note: Positions are with respect to top of form.
A form feed will reset top of form.

SET ABSOLUTE
ROW-COLUMN

Function Data

Allows the user to move the print head to an
absolute position expressed in column or row
units. The column-row unit dimensions
correspond to the current character width and
line height.

Two words integer.

Word 1 = $0000 Selects horizontal column.

Printer Driver 6-16

29

30

31

$0001 Selects vertical row.

Word 2 Specifies number of columns or rows. 0-120
for horizontal columns and any value greater
than zero for vertical rows.

Error Code=$003C Data out of limits.

Note: Positions are with respect to top of form.

SET RELATIVE
POSITION

Function Data

Data = $000N

Allows the user to move the print head an
incremental amount in the horizontal axis.
Units are 1/120's of an inch.

One word, integer. (-9999 to +9999)

Moves the print head N/120's of an inch.

Error Code=$003D Data out of limits.

RESET PRINTER

Function Data

Error Code

SET AUTO LINE
FEED MODE

Function Data

Data = $0000
$0001

Performs a hard and a soft printer reset.

None

None

Allows the user to select auto line feed.
Line feeds (LF) are automatically appended to
each carriage return (CR). If the line width
designated by the SET LINE WIDTH command is
exceeded, a CR-LF pair will be generated
automatically.

One word, integer.

Normal mode is selected.
Auto line feed mode is selected.

NOTE: If auto LF is enabled the character
density function will be adjusted to
match the line width value.

Printer Driver 6-17

32

33

34

35

Error Code:::::$003F Data out of limits.

Default :::::

GET AUTO LINE
FEED MODE

Function Data

Data ::::: $0000
$0001

Error Code

SET AUTO LINE
FEED MODE

Function Data

Data = $0000
$0001

1

Returns the current value of the auto line
feed mode in the DATA word.

Leave space for one word, integer.

Specifies normal mode.
Specifies auto line feed mode.

None

Allows the user to select auto form feed.
Form feeds will be automatically appended
whenever page depth exceeds the value
specified by the SET LINE DEPTH command.

One word, integer.

Selects normal mode.
Selects auto form feed mode.

Error Code:::::$0041 Data out of limits.

Default :::::

GET AUTO FORM
FEED

Function Data

Data ::::: $0000
$0001

Error Code

SET LINE WIDTH

1

Returns the current value of the auto form
feed mode in the DATA word.

Leave space for one word, integer.

Specifies normal mode is selected.
Specifies auto form feed mode is selected.

None

Sets the line width (characters per line)
count to be used with auto line feed.

Printer Driver 6-18

36

37

38

Function Data One word positive integer.

Error Code=$0043 Data out of limits.

Default =

GET LINE WIDTH

Function Data

Error Code:

SET LINE DEPTH

Function Data

80

Returns the (characters per line) line
width currently being used with auto line
feed.

One word positive integer (returned).

None

Sets the number of lines per page to be
used with the auto form feed function.

One word positive integer.

Error Code=$0045 Data out of limits.

Default =

GET LINE DEPTH

Function Data

Error Code:

60

Returns the current lines per page value to
be used with the auto form feed function.

One word positive integer (returned).

None

Printer Driver 6-19

7 .0 FILE ACCESS AND STRUCTURE

7. 1 INTRODUCTION

The file access method in release 1.0 was RSAM, Relative Sector Access
Method.,.,

Two new file access methods are available with 1.1 level systems:

• Sequential (fixed or variable length)

• Relative Record

This chapter discusses only the new access methods. The disk format is
completely changed from 1.0. File format can be requested contiguous or
defaulted non-contiguous.

Note: A file can no longer be opened for write simultaneously by more
than one user.

7 .2 FILE ACCESS METHODS

Access methods include Sequential Access Method for both fixed length and
variable length records and Relative Record Access Method for fixed length
records only. Either type of record can be from 1 to 65 ,535 bytes in
length.

* Programming written
the program is ever
macros must be used.
substituted.

using RSAM will continue to work on 1.1 systems. If
reassembled, the same FDMCLB44. INC/IOMCLB44. INC

Execution errors will occur if new 1.1 macros are

File Access and Structure 7-1

7 .2. 1 SEQUENTIAL (DTCREC = 0)

The position within the file starts at the beginning and continues through
the file with the next byte to be read or written. The number of bytes
read or written is controlled by the buffer length, DTCBFL, for fixed
length transfers (DIBTRN = 0), or by finding a delimitering character in
the buffer for variable length transfers (DIBTRN = 1). Delimiter
characters are specified in DTCTBU and DTCTBL.

7.2.2 RELATIVE RECORD (DTCREC NOT 0)

The position within the file is determined by the relative record (1-n)
specified in DTCREC. The record length (the number of bytes transferred)
is specified in DTCBFL. DIBTRN should always be zero indicating fixed
length transfer.

7.3 DEVICE INITIALIZATION BLOCK (DIB)

11DIB 11 refers to a form of control block that is used at OPEN time. The
information in the DIB is used by the I/O manager, the disk/diskette
driver and the file access methods. It is copied from user space into the
appropriate control block in system space.

To OPEN for file access, a DIE and DIE EXTENSION are needed with a volume
name specified in the "DIBVOL" field. The user should not have duplicate
volume identifiers on the system. The error condition will be detected if
it exists between two or more diskettes or between two or more hard disks.
It will not be detected between a diskette and a hard disk reliably.

7.3.1 DIB FORMAT

MNEMONIC

DIBVOL

DATA
LENGTH

DS.B 6

DESCRIPTION OF USE

Volume identifier. 1 to 6 ASCII characters padded
with blanks. If all blanks, default volume is
opened, or if 1 0 1 - 1 7 1 , the volume mounted in the
corresponding drive is opened.

File Access and Structure 7-2

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DS.B 1

DS.B 1

Data Transfer Direction. Use 0 for WRITE, 1 for READ
or 2 for bidirectional.

Enter 0 for fixed length transfers, 1 for variable
length transfers.

DC.L 0,0 User sets this field to 0.

DC.W 0 Insert option word described in paragraph 7.2.2.

DS.L 1 Insert pointer to function packet or set this field
to $0000 0000.

DC.L 0 Not used by file access. User sets this field to 0.

-------------------------------DIB EXTENSION------------------------------

DIBNMS

DIBOFS

DIBCAT

DIBNAM

DIBEXT

DIBTYP

DIBACS

DIBRSl

DIBVER

DIBFID

DIBRLG

DS .W 1

DS .W 1

Return area. Number of 252-byte blocks in existing
file (full or partial blocks).

Return area. End of File offset in last 252-byte
block of file (if 0, the block is the full 252 bytes)

DC.L 0,0 Reserved space. Set this field to 0.

DS.B 8

DS.B 3

DS.B 1

DS.B 1

DC.B 0

DC.W 0

DC.L 0

DS.W 1

File name. 1 to 8 ASCII characters, padded with
blanks.

File name extension.
padded with blanks.

1 to 3 ASCII characters,

File type (see paragraph 7.2.2.).

File access attributes (see paragraph 7.2.3).

Not used. User sets this field to 0.

Reserved space for future use. Set this field to 0.

Field for system use only. Set this field to 0.

Record length desired this open. DIBNMR and DIBOFR
are calculated based on this value. If variable
length sequential access is then used, record length
will be ignored. User sets this field to $0000, if
not desired.

File Access and Structure 7-3

DIBNMR DS.L 1

DIBOFR DS .W 1

DIBIET DS.L 1

DIBSET DS.L 1

Return area. Number of fixed length records in
file, full or par ital. Not set if DIBRLG = 0 or
variable transfer mode specified.

Return area. Offset into last record. If the
fixed-record-length mode has been specified, the
value 0 means a full sector. Not set if DIBRLG = 0
or variable transfer mode specified. (If 0, the
block is the full record length.)

Number of clusters desired in the first extent.
User sets this field to $0000 0000 to use the volume
default. A nonzero number is required for
contiguous files.

Number of clusters desired for subsequent extents.
User sets this field to $0000 0000 to use the volume
default.

7 .3.2 DIB OPTION WORD BIT DEFINITIONS

The option word is a bit significant word that can be used to select file
control parameters at open time. If the option word field is nulled at
open time the system will use the "set to O" condition specified for each I
bit as described in the following table (the defaults are bit= 0).

BIT SET
NO. TO

15
0
1

14
0

13
0
1

12
0
1

11

OPTION USE

Option word select
Ignore option word (use defaults)
Use option word

This bit used by the system. User sets this bit to zero.

Truncate extra blocks at CLOSE
Don't truncate blocks at CLOSE
(If contiguous file, user may not want to truncate it)

Normal file structure (extendable)
Contiguous file structure

File

File Access and Structure 7-4

1

0 Open existing file
1 Create new file

10 This bit used by the system.
0 User sets this bit to zero.

9-7 0 Unused.
User sets these bits to zero.

6 0 This bit used by the system.
User sets this bit to zero.

5-0 0 Unused.
User sets these bits to zero.

7.3.3 DIBTYP DEFINITION

This byte is set by the user to specify the file type when creating a new
file. For an OPEN on an existing file, the TYPE is returned in this field.

BYTE
SET TO MEANING

$00 Binary file
$01 Binary file with transfer address
$03 Text file (hex file)

7.3.4 DIBACS DEFINITION

This byte is set by the user to specify the file access attributes when
creating a new file. For an OPEN on an existing file, the ACCESS
attributes are returned in this field.

BIT SET
NO. TO MEANING

7-3 Unused.
0 User sets these bits to zero.

2 File access
0 Read and write.

File Access and Structure 7-5

1

0

1

0
1

0
1

Read only.

File renaming
File can be renamed.
File cannot be renamed.

File protection
File can be deleted.
File cannot be deleted.

Note: Read-only protection does not also imply delete protection. Both
bits are required, if both are desired.

7.3.5 DIBRLG DEFINITION

Record length is specified in units of bytes. A user would specify record
length only when planning to use fixed sequential or relative record
access methods for reading a file.

7 .3.6 DIBIET DEFAULTS

The primary extent default for a file on the following volumes is:

5~-inch diskette
8-inch diskette
hard disk

40 clusters (cluster = 1 block)
50 clusters (cluster = 1 block)
16 clusters (cluster = 8 blocks)

A block or sector is 256 bytes. Notice that each device has its own
cluster size. A cluster equals one bit in the bitmap and is the smallest
unit that can be allocated on the device.

7 .3. 7 DIBSET DEFAULTS

The volume defaults for secondary extensions to the file are the same as
the primary extent (see above).

File Access and Structure 7-6

7.4 FILE ACCESS DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand for all
SYSIO synchronous and asynchronous I/O commands. The application program
uses it to provide information required in completing each data transfer
request, and to monitor the status of the transfer request after the
request has been made.

7.4. 1 DTCB FORMAT

MNEMONIC

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DTCREC

DATA
LENGTH DESCRIPTION OF USE

DS.B 1 User monitors this field fbr status on I/O operation.

DS.B 1 User puts upper limit to be used for transfer
termination characters for variable length access
method. Ignored by other access methods.

DS.B 1 User puts lower limit to be used for transfer
termination characters for variable length access
method. Ignored by other access methods

DC.B 0 This field is reserved. User sets this field to 0.

DS.L 1 User puts Buffer starting address here.

DS.W 1 Buffer length. 1 to 65535 bytes is value range.
(When using fixed sequential, it can be different
for each SYSIO.)

DS.W 1 Byte offset into buffer. It indicates the byte in
buffer to start transfer and is updated by the file
access. Typically, the user would zero it before
each READ/WRITE.

DS.L 1 Record/Block number. Filled in only when using
relative record access method, where 1 is the first
record in the file.

File Access and Structure 7-7

7 .5 Fl LE ACCESS FUNCTIONS

The Function Packet Control Block provides for special operations. It is
required for the FUNCTION command and optional for the OPEN command.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

7 .5. 1 SUMMARY OF FILE ACCESS FUNCTIONS

The functions listed below indicate whether they are accepted with
SYSIO-OPEN, SYSIO-FUNCTION, and/or SYSIO CLOSE.

COMMAND ERROR DATA
FUNCTION PURPOSE WORD CODE REQUIRED
---------------- ------- --------

SET TRANSFER MODE 1 ($0001) ($0021) ONE WORD
(OPEN, FUNCTION)
GET DISK FORMAT LEVEL 2 ($0002) NONE ONE WORD (RETURN)
(OPEN, FUNCTION)
DELETE FILE (CLOSE) 5 ($0005) ($008C) NONE
GET DISK DEVICE NAME 12 ($000C) NONE 6 BYTES (RETURN)
(OPEN, FUNCTION)

*SET EOF OFFSET INTO 14 ($000E) NONE ONE WORD
LAST SECTOR (CLOSE)
POSITION TO BEGINNING 17 ($0011) NONE NONE
FILE (OPEN, FUNCTION)
POSITION TO END OF 18 ($0012) NONE NONE
FILE (OPEN, FUNCTION)
CHANGE ACCESS ATTRIBUTES 19 ($0013) NONE ONE WORD
(OPEN, FUNCTION, CLOSE)
RENAME FILE (CLOSE) 20 ($0014) ($008C) ONE LONG WORD
SET EOF TO AFTER LAST 21 ($0015) NONE NONE
RECORD WRITTEN
(OPEN, FUNCTION, CLOSE)
BUFFER FLUSH (OPEN, FUNCTION) 22 ($0016) ($0089) NONE

;'~ This function is included for Release 1.0 compatibility of
RSAM. It is not a valid function with the new access methods.

File Access and Structure 7-8

SET DEFAULT DRIVE/VOLUME
GET TRANSFER MODE
(OPEN, FUNCTION)

23 ($0017)
41 ($0029)

NONE
NONE

NONE
ONE WORD

7.5.2 FILE ACCESS FUNCTION DESCRIPTIONS

COMMAND

1

2

5

12

FUNCTION
PURPOSE

SET TRANSFER MODE

Function Data

Data = $0000
$0001

Error Code

GET DISK FORMAT
LEVEL NUMBER

Function Data

Error Code

DELETE FILE

Function Data

Error Code

GET DISK DEVICE NAME

FUNCTION DESCRIPTIONS

This function sets the mode to be used
for File I/O.

One word, integer

Fixed Length Record
Variable Length Record

$0021 illegal data value

This function is accepted at SYSIO
OPEN or SYSIO-FUNCTION.
If formatted by 1. 0 FORMAT,
1 is returned. If formatted
1.1 FORMAT, 2 is returned.

One word return area

None

This function packet is only accepted
on a SYSIO-CLOSE. It causes the file
that has been opened, to be
deleted from the directory.

None

$008C file protected from delete.

This function returns the name of the
physical device that contains the
opened file, and its logical drive
number.

File Access and Structure 7-9

14

17

18

19

Function Data

Error Code

STORE EOF OFFSET

Function Data

Error Code

Eight byte return area

None

This function is used with a SYSIO
CLOSE of a file being accessed via the
old access method (RSAM). It stores
the end of the file offset for the
last 252-byte block of the file.
This is the number of valid bytes of
data.

One word, integer.

None

POSITION TO BEGINNING This function causes a file to be
OF FILE "rewound" to the first record. It is

accepted only through a SYSIO-FUNCTION
call.

Function Data

Error Codes

POSITION TO END
OF FILE

Function Data

Error Codes

CHANGE ACCESS
ATTRIBUTES

Function Data

Data

None

None

This function causes a file to be
positioned just after the last record
so subsequent sequential writes will
be appended to the end of the file.
It is accepted only through a
SYSIO-FUNCTION call.

None

None

This function changes the file access
attribute word. It is accepted
through SYSIO-OPEN, SYSIO-FUNCTION and
SYSIO-CLOSE calls.

One word, integer.

See DIBACS

File Access and Structure 7-10

20

21

22

Error Codes

RENAME FILE

Function Data

Error Codes

SET EOF TO AFTER LAST
RECORD WRITTEN

Function Data

Error Codes

BUFFER FLUSH

Function Data

Error Codes

None

This function changes the name of the
opened file to the name supplied in
the function packet.

One long word - address pointing to
new filename which must be in the
following format:

0-7

8-10

11
12-13

filename (left-justified and
padded with blanks)
file extension (left-justified
and padded with blanks)
0 in it
1 in it (version of file; only
version in 1.1 is 1.)

NOTE: This address is not checked.
A DTAK trap error will occur if it is
an invalid address.

$008C file protected from rename.

This function sets the end of file to
the current position in the file, and
performs a buffer flush function

None

None

This function writes out the current
buffer if a change occurred, and
updates the File Index and Backup File
Index. It will not be accepted for
Read-only files.

None

$0089 Writing to read-only file

File Access and Structure 7-11

23

41

SET DEFAULT
DRIVE/VOLUME

Function Data

Error Code

GET TRANSFER MODE

Function Data

Data = $0000
$0001

Error Code

This function sets the default values
for drive number and volume.

None

None

This function returns a code
indicating the mode of file I/O
transfers.

One word return area

Fixed Length Records
Variable Length Records

None

7.6 SYSIO CALLS FOR ACCESSING FILES

1. SYSIO OPEN,lun,DIBname,errorlabel is the call to open a file. End of
file, type and access information for an old file is returned in the
DIB. If a file is to be created at Open and the same filename already
exists, the existing copy is automatically deleted. Whether the
records are fixed length or variable length is indicated by the user
in DIBTRN.

2. SYSIO S/AREAD,lun,DTCBname,errorlabel is the call to read a record in
·the above named file. If the Data Transfer Control Block Record
Number Field (DTCREC) is 0, the Sequential Access Method is used and
the next record is transferred. If DTCREC is not zero, the Relative
Record Access Method is invoked to read the indicated record and
place it in the user's buffer which must be word aligned. The
Relative Record Access Method is only for fixed length r~cords with
an even number of bytes and any attempt to use it for variable length
records will result in an error return. The length of fixed length
records must be equal to the Buffer Length field of the Data Transfer
Control Ble!>ck (DTCBFL). With either access method, an attempt to
read past the end of the file will result in an error return. (Read
"End-of-File Considerations" for specifics).

File Access and Structure 7-12

3. SYSIO S/AWRITE,lun,DTCname,errorlabel is the call to write a record
in the above named file. Either the Sequential Access Method is used
to extend the file and write another record or the Relative Record
Access Method is to write over the specified record (extending the
file if necessary).

4. SYSIO FUNCTION,lun,FKPTname,errorlabel is the call to execute a
function packet.

5. SYSIO CLOSE,lun,FKPTname,errorlabel is the call to close the above
opened file. FKPT name can be either 0 for no function packet or a
function packet list.

7.7 END-OF-FILE CONSIDERATIONS

Recognizing the end-of-file when reading a file or insuring a correct
end-of-file is established when writing a file are very important.

7. 7 .1 VARIABLE LENGTH SEQUENTIAL ACCESS METHOD

When reading a file in variable length sequential access method, the
end-of-file indicator is a "read beyond end of file" (#RDBY equate in
DKMCLBxx.INC or $85) error. See the coding example in appendix.

7. 7 .2 FIXED LENGTH ACCESS METHODS

When reading a file in Relative Record or Sequential fixed length a
partial last record is possible. Some possible cases are:

a) accessing a file of unknown created record
length or unknown access method

b) accessing a file with a different record
length than was used when the file was
created

File Access and Structure 7-13

c) accessing a file with sequential fixed
length and changing the DTCBFL from transfer
to transfer

d) accessing a file that was created with a
partial last record (see note below)

When a partial record is transferred, no error is returned to the access
method user. Therefore, the user cannot assume that a full buffer was
transferred.

There are two methods to detect end-of-file involving partial records:

1. For each read:

a) clear DTCBPT

b) after the read is completed, use only the DTCBPT
number of bytes in the buffer (do not assume
DTCBPT equals DTCBFL)

This method is the most universal and allows the "read beyond end of
file" error to accurately indicate the end-of-file.

2. DTCBFL must remain constant. The DTCBFL value is placed into DIBRLG
(record length) at OPEN. DIBNMR (number of full or partial records
of DIBRLG length in the file) and DIBOFR (number of bytes in the last
record) are returned by OPEN. Count the records as they are read
sequentially, and when the last one (DIBNMR) is processed, only the
number of good bytes (DIBOFR) should be processed. Note that if
DTCBPT were zeroed before this read, DTCBPT would equal DIBOFR after
the read completed.

If reading randomly in Relative Record access method, if the record
number being processed were equal to DIBNMR (last record in file) it
would have to be handled as above.

Note: To accomplish creating a partial last record while using
Relative Record Access Method, the second-to-last record must
be read or written, and then the last record is written using
Sequential (fixed length) Access Method. So, the last record
is written with DTCREC = 0 and DTCBFL =number of bytes.

File Access and Structure 7-14

7 .8 ERROR CODES

The following codes are returned in hexadecimal to register D7.W.

CODE MEANING

$0080
$0081
$0082
$0083
$0084
$0085
$0086
$0087
$0088
$0089
$008A
$008B
$008C
$008D
$008E
$008F

NO WRITING TO OLD STRUCTURED DISKETTE
FILE ALREADY OPEN FOR WRITE
OLD FILE NOT FOUND
ILLEGAL FILE ACCESS METHOD
INVALID FILENAME
READ BEYOND END OF FILE
BUFFER SIZE INCORRECT (RSAM ONLY)
FILE NOT EXTENDABLE
DISK FULL
WRITING TO READ ONLY FILE
WRONG FILE TYPE FOR THIS ACCESS
READ OR WRITE ILLEGAL SECTOR FOR FILE (RSAM ONLY)
FILE PROTECTED FROM DELETE/RENAME
READ ONLY ON NEW FILE
DIRECTORY & FILE INDEX HAVE INCORRECT NAME
NOT ENOUGH SPACE FOR CONTIGUOUS FILE

See disk driver chapters for additional I/O error codes.

7. 9 EXAMPLES OF CONTROL BLOCKS

The following DIB is used to open an old file on volume "TESTOl 11 for
read/write and record length 256. To open the same file as new, DIBOPT
would be $8800 and DIBRLG would be 0.

DS.W 0
DC.B I TESTOl' DIBVOL
DC.B 2 DIBDTD (read/write)
DC.B 0 DIBTRN
DC.L 0,0 DIBRSO
DC.W 0 DI BO PT
DC.L 0 DIBFCN
DC.L 0 DIBBIO
DC.W 0 DIBNMS
DC.W 0 DIBOFS
DC.L 0,0 DIBCAT
DC.B 'MERRILY I DIBNAM Eight character file name,

File Access and Structure 7-15

including spaces
DC.B 'ROW' DIBEXT Three character file name

extension
DC.B 3 DIBTYP
DC.B 0,0 DIBACS, DIBRSl
DC.W o,o,o DIBVER, DI BF ID
DC.W 256 DIBRLG
DC.W o,o,o DIBNMR, DIBOFR
DC.L 0,0 DIBIET, DIBSET

DTCB to read next variable length record from file into memory starting at
$40000.

DS.W 0
DC.B 0 DTCSTA
DC.B $OD DTCTBU (upper delimiter)
DC.B $04 DTCTBL (lower delimiter)
DC.B 0 DTCRSO
DC.L $40000 DTCBFS (buffer address)
DC.W 150 DTCBFL (buffer length)
DC.W 0 DTCBPT (updated by file access)
DC.L 0 DTCREC (zero if variable length)

7.10 DATA STRUCTURE ON DISK

Both the hard and soft disks will be formatted to have 256 byte physical
sectors with the first sector used for a Volume Label Sector.

The Volume Label contains pointers to a Bad Sector Table, Bit Map,
Diagnostic Test Areas, File Index and Backup File Index. The File Index
contains an entry (one 256-byte sector) for each file on the volume. Each
entry contains the file name, descriptive information, and a list of
extents used by the file. The first entry in the File Index describes the
File Index itself, the second entry is for the Directory of the Volume and
the third entry is for the Backup File Index.

The Master Directory is a file which contains filenames and pointers into
the File Index.

For more information on these data structures, see Appendix E.

File Access and Structure 7-16

7. 11 SPACE ALLOCATION ON THE DISK

Space is allocated to files in units called clusters which are groups of
one or more contiguous sectors. The number of sectors in each cluster is
determined when a volume is initialized and can vary from volume to
volume. The system maintains a bit map on each volume to indicate which
clusters are available and which are allocated.

7.11.1 DISK SPACE ALLOCATION ALGORITHMS

When a file has to be extended, the system will allocate the requested
space from the first contiguous free space on the disk that is large
enough to fulfill the request.

If the request cannot be satisfied, the largest available space will be
assigned, in the case of an extendable file. For a contiguous file, the
request will be aborted with an error code of $008D.

If the initial space request for an extendable file is not met and it
becomes necessary to extend the file for the first time before it is
closed, the system will attempt to allocate the larger of the amount
needed to fulfill the initial request or the normal amount for additional
extents.

When extending a file, the system attempts to enlarge the file's last
extent before allocating a new discontinuous extent even if this means
extending the file by less than the requested amount.

File Access and Structure 7-17

8.0 DISKETTE DRIVER

8.1 DRIVER DESCRIPTION

The diskette driver provides the user with a means of accessing or storing
data on a diskette. Each diskette device can be accessed through a file
1/0 structure, or physically, for direct sector I/O and track formatting.
This driver is sharable and supports asynchronous requests and an
alternate device ID (volume identifier). To use the file structure, see
File Access (Chapter 7).

The physical sector access scheme uses a Logical Sector Number which can
range from 0 through the total number of available sectors on the
diskette.

One to four diskette drives are supported, in any combination of 8-inch
Si-inch type drives. All sector transfers use Direct Memory Access (DMA),
and interrupts to provide a true asynchronous data transfer between
diskette and memory. Before any I/O is started, a hardware 'door-open'
status bit is tested. This provides the driver with a means of knowing
whenever a diskette has been changed. If a diskette has been changed, or
at start up time, the volume information sector is read. It contains data
that describes physical characteristics of the diskette, including the
volume identifier, sector size, density and number of sides. The 8-inch
diskette volume information sector follows the IBM Diskette Standard.

8.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open the Diskette Driver for physical access, the user must create a
DIB using one of the device names specified in "DIBVOL". During an
initialization routine a SYS IO-OPEN is performed to the device. Upon

Diskette Driver 8-1

successful completion all standard SYSIO operations described in Chapter
1 are allowed.

8.2.1 DIB FORMAT

MNEMONIC

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DATA
LENGTH

DS.B 6

DESCRIPTION OF USE

Device name. Use #FDOO, #FDOl, #FD02, or #FD03.

DS.B 1 Data Transfer Direction. Use 0 for WRITE, 1 for
READ or 2 for bidirectional.

DS.B 1 Enter 0 for fixed length transfers.

DC.L 0,0 User sets this field to 0.

DC.W 0 User sets this field to 0.

DS.L 1 Insert pointer to function packet or set this field
to $0000 0000 to select the default mode.

DC.L 0 Not used by this driver. User sets this field to
0.

8.3 DISKETTE DRIVER DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand for all
SYSIO synchronous and asynchronous I/O commands. The application program
uses it to provide information required in completing each data transfer
request, and to monitor the status of the transfer request after the
request has been made.

Diskette Driver 8-2

8.3.1 DTCB FORMAT

MNEMONIC

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DTCREC

DATA
LENGTH DESCRIPTION OF USE

DS.B 1 User monitors this field for status on I/O operation.

DC.B 0 Not used by this driver. User sets this field to 0.

DC.B 0 Not used by this driver. User sets this field to 0.

DC.B 0 This field is reserved. User sets this field to 0.

DS.L 1 User puts Buffer starting address here (must be on a
word boundary).

DS.W 1 Buffer length. User puts in the sector size of the
diskette (minimum buffer length accepted is 256).

DS.W 1 Byte offset into buffer. DTCBPT will be incremented
by the sector size after the I/O completes
successfully.

DS.L 1 Sector number. Specifies the logical sector number
being accessed.

8.4 DISKETTE DRIVER FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
setting the density or setting the number of sides on a diskette. It is
required for the FUNCTION command and optional for the OPEN command. It
is used by the application program to configure the device to something
other than its default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

Diskette Driver 8-3

8.4. 1 SUMMARY OF DISKETTE FUNCTIONS

The functions listed below can be used with the SYSIO-FUNCTION command of
the I/O manager using FUNCTION packets. Many of these functions are used
by programs attempting to access diskettes that are not recorded in the
supported formats.

FUNCTION PURPOSE

ENDLIST
GET LEVEL NUMBER
WRITE TRACK

SET SECTOR ORIGIN
SET SECTORS PER DISKETTE
SET BYTES PER SECTOR
SET SECTORS PER TRACK
SET NUMBER OF SIDES
SET DENSITY
SET TRACKS PER DISKETTE
SET VOLUME NAME
RE INITIALIZE
GET DISK TYPE
GET SECTOR ORIGIN
GET SECTORS PER DISKETTE
GET BYTES PER SECTOR
GET SECTORS PER TRACK
GET NUMBER OF SIDES
GET DENSITY
GET TRACKS PER DISKETTE
GET VOLUME NAME

COMMAND
WORD

0 ($0000)
2 ($0002)
3 ($0003)

6 ($0006)
7 ($0007)
8 ($0008)
9 ($0009)
10 ($000A)
11 ($000B)
13 ($000D)
15 (SOOOF)
16 ($0010)
32 ($0020)
33 ($0021)
34 ($0022)
35 ($0023)
36 ($0024)
37 ($0025)
38 ($0026)
39 ($0027)
40 ($0028)

8.4.2 DISKETTE FUNCTION DESCRIPTIONS

ERROR
CODE DATA REQUIRED

NONE
NONE

$0026
NONE
NONE
NONE
$002A
$002B
NONE

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE
WORD
WORD AND LONGWORD
POINTER
WORD
LONGWORD
WORD
WORD
WORD
WORD
WORD
THREE WORDS
NONE
WORD
WORD
LONGWORD
WORD
WORD
WORD
WORD
WORD
THREE WORDS

FUNCTION
COMMAND PURPOSE FUNCTION DESCRIPTION

0 ENDLIST Terminates processing of the function packet.

Function Data None

Error Code None

Diskette Driver 8-4

\

2 GET LEVEL NUMBER This function returns the file structure

3

6

Function Data

Data = $0001
$0002

Error Code

WRITE TRACK

Function Data

Word 1 = $NNNN

level number of the diskette.

Leave space for one word, integer.

Linked Sectors (old 1.0 file access method)
Bit Map Sector Allocation (new 1.1 file
access method)

None

This function is used for formatting a
track of a diskette. It calculates the
physical cylinder and side number from the
logical track number (see Section 8.5)
specified, and writes the data from the
user buffer to that track.

One word and one longword, integer.

Specifies logical track number.

Longword = $NNNN NNNN

Error Code

SET SECTOR
ORIGIN

Function Data

Data = $0000

$0001

Points to user data buffer; maximum length
10500.

Note: This address is not checked. A DTAK
TRAP error will occur if it is an
invalid address.

See Section 8.5

This function is used to specify the cylinder
number containing the first available logical
sector number on a diskette.

One word, integer.

Sets origin to cylinder 0.

Sets origin to cylinder 1.

Diskette Driver 8-5

7

8

9

Error Code=$0026 Data out of limits.

Default Setting

SET SECTORS
PER DISKETTE

Function Data

$0000
$0001

st-inch diskette
8-inch diskette

This function is used to specify the total
number of accessible sectors on the
diskette. (The IBM standard format for an
8-inch diskette reserves the sectors
located on cylinders 0, 7S and 76.)

One long word, integer.

Data = $NNNN NNNN Specifies number of sectors on the diskette.

Error Code

Default Setting

SET BYTES PER
SECTOR

Function Data

Data = $NNNN

Error Code

Default Setting

SET SECTORS PER
TRACK

Function Data

Data = $NNNN

Error Code

Default Setting

None

2S60
3848

st-inch diskette
8-inch diskette

This function is used to specify the number
of bytes per sector.

One word, integer.

Specifies number of bytes per sector.

None.

2S6

This function is used to specify the number
of sectors per track.

One word, integer.

Specifies number of sectors per track.

None

16 st-inch diskette
26 8-inch diskette

Diskette Driver 8-6

10

11

13

SET NUMBER OF
SIDES

This function is used to specify the number
of sides on a diskette.

Function Data One word, integer.

Data = $0000 Specifies single-sided diskette.

$0001 Specifies double-sided diskette.

Error Code=$002A Data out of limits.

Default Setting $0001

SET DENSITY

Function Data

Data = $0000

$0001

This function is used to specify the density
of a diskette.

One word, integer.

Specifies single-density.

Specifies double-density.

Error Code=$0028 Data out of limits.

Default Setting $0001

SET TRACKS PER
DISKETTE

Function Data

Data = $NNNN

Error Code

Default Setting

This function sets the number of
tracks on a diskette. The value is
calculated by multiplying the number of
cylinders by the number of sides on the
diskette.

One word, integer.

Specifies logical number of tracks.

None.

160 Si-inch diskette
154 8-inch diskette

Diskette Driver 8-7

15 SET VOLUME NAME

Function Data

This function writes the specified Volume
Identifier into the Diskette Volume Label
Sector (LSN 0). It is written to the Backup
Volume Label Sector if a file structure 2
format. If an 811 diskette, the IBM Standard
Volume Sector (track O, Sector 7) is also
updated.

Six ASCII Bytes.

Data = $NN NN NN NN NN NN Volume identifier

16

32

33

Error Code

REINITIALIZE

Function Data

Error Code

GET DISK TYPE

Function Data

Data = $0001
$0002

Error Code

GET SECTOR
ORIGIN

Function Data

Data = $0000
$0001

See Section 8.5

This function causes the driver to
reconfigure the device according to the
Volume Information Sector on the Diskette.

None

See Section 8.5.

This function returns a code word that
indicates the type of drive/size of diskette.

Leave space for one word, integer.

Si-inch drive type
8-inch drive type

None

This function returns the cylinder number
containing the first available logical sector
number on a diskette.

Leave space for one word, integer.

Origin is cylinder 0
Origin is cylinder 1

Diskette Driver 8-8

34

35

36

37

Error Code

GET SECTORS
PER DISKETTE

Function Data

Data = $NNNN NNNN

Error Code

GET BYTES
PER SECTOR

Function Data

Data = SNNNN

Error Code

GET SECTORS
PER TRACK

Function Data

Data = $NNNN

Error Code

GET NUMBER
OF SIDES

Function Data

Data = $0000
$0001

Error Code

None

This function returns the number
of sectors on the diskette.

Leave space for one long word, integer.

None

This function returns the number of bytes
per sector.

Leave space for one word, integer.

None

This function returns the number of
sectors on a track of a diskette.

Leave space for one word, integer.

None

This function returns the number of sides
on a diskette.

Leave space for one word, integer.

Single-sided
Double-sided

None

Diskette Driver 8-9

38

39

40

GET DENSITY

Function Data

Data = $0000
$0001

Error Code

GET TRACKS
PER DISKETTE

Function Data

Data = $NNNN

Error Code

GET VOLUME NAME

Function Data

Data = 'NNNNNN'

Error Code

8.5 DEFINITIONS

This function returns the density of a
diskette.

Leave space for one word, integer.

Single-density
Double-density

None

This function returns the total number of
tracks on a diskette.

Leave space for one word, integer.

None

This function returns the volume identifier
of the diskette (one to six ASCII characters).

Leave space for 3 words

None

The LOGICAL SECTOR NUMBER is converted to a physical address according to
the following algorithm; the Logical Sector Number is divided by the
number of sectors per track. The remainder plus one becomes the physical
sector number. The quotient is divided by the number of heads (sides).
The remainder here gives the physical side (0 or 1), and the quotient plus
the second origin (0 or 1) becomes the physical track number.

Diskette Driver 8-10

The LOGICAL TRACK NUMBER is converted to a physical cylinder and side
according to the following algorithm; the Logical Track Number is divided
by the number of heads (sides). The remainder gives the physical side (O
or 1), and the quotient is the track number.

8.6 ERROR CODES

The following codes are returned in hexadecimal to register D7.W. The
number specified as $~bb''*"'""'"*"'" is the logical sector number being accessed
when the error occurred.

CODE

$0010

$0011

$0012

$0013
$0014

$0015
$0016

$0017

$0018

$0019

$001A
$001B

$001C

$002F

MEANING

SEEK TRACK -- an error occurred while executing a track
seek or restore (seek track 0) command.
LOGICAL SECTOR OR TRACK NUMBER TOO BIG $>b'<*"i:>b'<>'<>'• -- the
logical sector or track number is larger than what the
disk is configured for. This can occur if there is bad data
in the Volume Information Section (LSN=O).
VOLUME CHANGED -- an I/O request was made and the
volume identifier had changed since the file or device was
opened.
Reserved
I/O REQUEST TIMED OUT -- the diskette sector transfer
did not complete (the DMA end interrupt was not received.)
Reserved.
ILLEGAL BUFFER ADDRESS -- the address must be an even word
boundary, and it cannot cross a 64K address boundary.
DISK FORMAT NOT RECOGNIZED -- the CS 9000 FORMAT program was
not used on this diskette, or if an 8-inch diskette, the
IBM Standard label does not exist.
DISK WRITE PROTECTED -- the notch is uncovered on an 8-inch
diskette, or the notch is covered on a 5!-inch diskette.
SECTOR BUFFER TOO SMALL -- the minimum length of a sector I/O
buffer (DTCBFL) is 256 bytes.
Reserved
CRC ERROR $.,.,.,.,.,'<>'<>b'<>b'< - - a CRC error was found in the ID or
data field of the sector indicated.
SECTOR NOT FOUND $"'".,."'<>'•~'<>'•*~'• -- the sector indicated was not
found.
ILLEGAL VOLUME IDENTIFIER

Diskette Driver 8-11

8. 7 EXAMPLES OF CONTROL BLOCKS

DIB is used to open the diskette in drive 0 for read/write

DS.W 0
DC.B 'llFDOO I DIBVOL
DC.B 2 DIBDTD (read/write)
DC.B 0 DIBTRN
DC.L 0,0 DIBRSO
DC.W 0 DIBOPT
DC.L 0 DIBFCN
D,C.L 0 DIBBIO

DTCB to read logical sector 0 into memory starting at $40000

DS.W 0
DC.B 0 DTCSTA
DC.B 0 DTCTBU
DC.B 0 DTCTBL
DC.B 0 DTCRSO
DC.L $40000 DTCBFS (buffer address)
DC.W 256 DTGBFL (buffer length)
DC.W 0 DTCBPT (updated by driver)
DC.L 0 DTCREC (logical sector number)

Diskette Driver 8-12

9.0 HARD DISK DRIVER

9.1 DRIVER DESCRIPTION

The hard disk driver provides the user with a means of accessing or
storing data on a disk. Each disk drive can be accessed through a file I/O
structure, or physically, for direct sector I/O. This driver is sharable
and supports asynchronous requests and an alternate device ID (volume
identifier). To use the file structure, see File Access (Chapter 7).

The physical sector access scheme uses a Logical Sector Number which can
range from 0 through the total number of available sectors on the disk.

One to four disk drives are supported. All sector transfers use Direct
Memory Access (DMA), and interrupts to provide a true asynchronous data
transfer between disk and memory. At start up time, the volume
information sector is read. It contains data that describes physical
characteristics of the disk, including the volume identifier, sector
size, and number of cylinders and heads.

9.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open the Hard Disk Driver for physical access, the user must create a
DIB using one of the device names specified in "DIBVOL". During an
initialization routine a SYSIO-OPEN is performed to the device. Upon
successful completion all standard SYSIO operations described in Chapter
1 are allowed.

Hard Disk Driver 9-1

9.3 DIB FORMAT

MNEMONIC

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DATA
LENGTH

DS.B 6

DS.B 1

DS.B 1

DC.L 0,0

DC.W 0

DS.L 1

DC.L 0

DESCRIPTION

Device name. Use #HDOO, #HDOl, #HD02, or #HD03

Data Transfer Direction. Use 0 for WRITE, 1 for
READ or 2 for bidirectional.

Enter 0 for fixed length transfers.

User sets this field to 0.

User sets this field to 0.

Insert pointer to function packet or set this field
to $0000 0000 to select the default mode.

Not used by this driver. User sets this field
to 0.

9.4 DISK DRIVER DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand for all
SYSIO synchronous and asynchronous I/O commands. The application program
uses it to provide information required in completing each data transfer
request, and to monitor the status of the transfer request after the
request has been made.

9.4.1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/O operation.

DTCTBU DC.B 0 Not used by this driver. User sets this field to 0.

Hard Disk Driver 9-2

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DTCREC

DC.B 1 Not used by this driver. User sets this field to 0.

DC.B 0 This field is reserved. User sets this field to 0.

DS.L 1 User puts Buffer starting address here (must be on
a word boundary).

DS.W 1 Buffer length. User puts in the sector size of the
disk (minimum buffer length accepted is 256).

DS.W 1 Byte offset into buffer. DTCBPT will be incremented
by the sector size after the I/O completes
successfully.

DS.L 1 Sector number. Specifies the logical sector number
being accessed.

9.5 DISK DRIVER FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. It is required for the FUNCTION
command and optional for the OPEN command.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

9.5. 1 SUMMARY OF DISK FUNCTIONS

The functions listed below can be used with the SYSIO-FUNCTION command of
the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
END LIST 0 ($0000) NONE NONE
GET LEVEL NUMBER 2 ($0002) NONE WORD
GET DISK TYPE 32 ($0020) NONE WORD
GET SECTORS PER DISK 34 ($0022) NONE LONGWORD

Hard Disk Driver 9-3

GET BYTES PER SECTOR
GET VOLUME NAME

35 ($0023)
40 ($0028)

NONE
NONE

WORD
THREE WORDS

9.5.2 DISK FUNCTION DESCRIPTIONS

FUNCTION
COMMAND PURPOSE

0 END LIST

FUNCTION DESCRIPTION

Terminates processing of the function packet.

Function Data None

Error Code None

2 GET LEVEL NUMBER This function returns the file structure

32

34

Function Data

Data = $0002

Error Code

GET DISK TYPE

Function Data

Data = $0004

Error Code

GET SECTORS
PER DISK

Function Data

level number of the disk.

Leave space for one word, integer.

Bit Map Sector Allocation (new 1.1
access method)

None

This function returns a code word that
indicates the type of drive/size of disk.

Leave space for one word, integer.

10 MB hard disk

None

This function returns the total number
of sectors on the disk.

Leave space for one long word, integer.

Hard Disk Driver 9-4

35

40

Data = $NNNN NNNN

Error Code

Default Setting

GET BYTES
PER SECTOR

Function Data

Data = $NNNN

None

39168

This function returns the number of bytes
per sector.

Leave space for one word, integer.

Error Code None

Default Setting 256

GET VOLUME NAME

Function Data

Data = 1 NNNNNN 1

Error Code

This function returns the volume identifier
of the disk (one to six ASCII characters).

Leave space for 3 words

None

9.6 ERROR CODES

The following codes are returned in hexadecimal to register D7. The
number specified as $''<>'d:;hb'<*;': is the Logical Sector Number being accessed
when the error occurred.

CODE

$0010
$0011

MEANING

SEEK TRACK -- an error occurred during a Restore command.
LOGICAL SECTOR OR TRACK NUMBER TOO BIG $''<>'<>'<>'<>'<>'<>'<>': - - the
Logical sector number is larger than what the disk is
configured for. This can occur if there is bad data in

Hard Disk Driver 9-5

$0017

$0019

$001A

$001B

$001C

$0070

$0072

$0076

$0077

$0078

Volume Information Section (LSN=O).
DISK FORMAT NOT RECOGNIZED -- the CS 9000 FORMAT Program
was not used on this disk.
SECTOR BUFFER TOO SMALL -- minimum length of a Sector I/O
buffer (DTCBFL) is 256 bytes.
WRITE FAULT $'bb':*'bh'd: -- a Write Fault condition exists on
the selected drive. It may be removed by de-selecting the
drive and then re-selecting it.
CRC ERROR $''<*''d':,'<"/:''<* - - a CRC error was found in the ID
field of the sector indicated.
SECTOR NOT FOUND $''<*'':,'d:,b'<-1: -- an ID field for the sector
indicated was not found.
DATA ADDRESS MARK NOT FOUND $•'d:,h'<,':**''< -- during a Read
Sector command, after successfully identifying the ID
field, the Data Address mark was not detected within 16
bytes of the ID field.
ABORTED COMMAND -- a valid command was received
that could not be executed based on status information from
the drive. For example, if a write sector command had
been issued while a Write Fault condition exists.
UNCORRECTABLE DISK ERROR $'hh':"/:''<**'': -- while reading the
data field or the ECG check bits, an error was detected
that the hard disk controller was not able to correct.
BAD SECTOR DETECTED $•hhhhh'<>h'< - - a Bad Block mark was
detected in the indicated sector ID field.
HARD DISK CONTROLLER NOT PRESENT -- the hard disk
controller board is not plugged into the system.

9. 7 EXAMPLES OF CONTROL BLOCKS

DIB is used to open the hard disk drive 0 for read/write

DS.W 0
DC.B '#HDOO I DIBVOL
DC.B 2 DIBDTD (read/write)
DC.B 0 DIBTRN
DC.L 0,0 DIBRSO
DC.W 0 DIBOPT
DC.L 0 DIBFCN
DC.L 0 DI BB IO

DTCB to read logical sector 0 into memory starting at $40000

DS.W
DC.B
DC.B

0
0
0

DTCSTA
DTCTBU

Hard Disk Driver 9-6

DC.B 0 DTCTBL
DC.B 0 DTCRSO
DC.L $40000 DTCBFS (buffer address)
DC.W 256 DTCBFL (buff er length)
DC.W 0 DTCBPT (updated by driver)
DC.L 0 DTCREC (logical sector number)

Hard Disk Driver 9-7

10.0 RS-232 ASYNCHRONOUS COMMUNICATIONS DRIVER

10.1 DRIVER DESCRIPTION

The RS-232 Asynchronous communications driver provides support for
multiple RS-232 ports. Independent control of each port is achieved via
separate control blocks and status save areas. The asynchronous port
software is interrupt-driven. This allows I/O transactions to be of the
"call and proceed" type, decoupling the calling task from the I/O rate of
the port. Programmable time-out periods are provided for transmission and
reception. The time-out will generate an interrupt which is reported to
the user, thus preventing the possible "hanging" of the port from tying up
the port beyond the time-out period. (See also Figure 10-1.)

The driver provides resident circular buffer space for both input and
output. The buffers have a length of 256 characters. The input buffer will
wrap-around if the buffer capacity is exceeded. This condition can be
avoided by using either the XON/XOFF protocol or the DTR line
enable/disable feature to halt input. These features must be activated via
function calls after the port is opened. The user may specify buffers in
his own space to be used instead of the default buffers, if buffers of a
greater length or with different XON and XOFF limits are required.

All ports default to operate at 9600 Baud, with framing of 8 data bits and
no parity and have a time-out of 30 seconds. Ports #SEROO and #SEROl are
configured as Data Communications Equipment (DCE) and Terminals may be
attached directly to the connectors .v Port #SER02 is configured as a Data
Terminal Equipment (DTE) and a Controller may be attached directly to the
connector. Port #SEROO has Direct Memory Access (DMA) capability. DMA is
invoked if #SEROO is in fixed-length transfer mode and if the record
length is greater than a programmable limit called the DMA LIMIT. This
limit is a port variable which can be set by function 36, and which has a
default value of 256. There is no discernible difference to the user if
DMA is used or not, but DMA dramatically reduces system overhead.

The port default characteristics are set following a system warmstart.
OPENs and CLOSES do not effect the port characteristics or the buffers; a
newly opened port may have junk (or valid) characters in the input buffer.
A PORT RESET function 39 exists which resets the dynamic state of the
port, including emptying the buffers, but does not alter the device
characteristics. Any changes made to the port must be "unmade" if the
standard configuration is to be restored. Any parameter that may be

RS-232 Driver 10-1

changed (via a FUNCTION call) may also be queried. This allows a function
packet to be built which contains the default characteristics.

For data input or output, the user must set up a Data Transfer Control
Block (DTCB). See paragraph 10.3. This block indicates the start and
length of the user buffer, Transfer Termination character range for
variable length transfers, and a buffer offset pointer that indicates the
current position within the user buffer. The port can send and receive
records up to a length of 32767 bytes. When receiving records longer than
the receiver circular buffer (256 character default length) data loss may
occur as a function of other system activity. This is because the
task-time portion of the driver is invoked to move characters into the
user's buffer when the port circular buffer is at the XOFF point. (Default
circular buffer XOFF point is when there is only room for 64 more
characters.) Depending on the baud rate and other system activity, the
port may be overrun. This can be prevented by using XON/XOFF or the DTR
line to halt input.

SYSIO SWRITE, AWRITE, SREAD, and AREAD requests for the port are kept in a
single queue - reads and writes are not queued separately. Therefore, a
read request by one task may keep the port tied up while waiting for data
to come in, and writes requests from another task will pile up behind it.
(This does not occur for byte I/O because the requests do not go through
SYSIO queuing.) There are several ways to avoid blocking the queue: one
is to put the port in the character mode for the receiver, as opposed to
the block (record) mode (see function 2), so that no waiting for an
end-of-record is done. Another method is to monitor the receiver character
count (see function 27) and not do an SREAD until a certain number of
characters have come in. A third method involves activation of the RSC
event(function 46), which is posted when the receiver buffer character
count goes from 0 to 1 character. Using this method a task may SUSPEND
itself and be awakened when the first character of a record comes in.

10.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver uses at OPEN time. This information is
used by the I/O manager. It is copied from user space into the appropriate
control block in system space.

To open an RS-232 port the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to one of the ports using one
of the Device Names specified under DIBVOL. When this is done all
standard SYSIO operations described in Chapter 1 are allowed.

RS-232 Driver 10-2

USER
Application
program

Call Task 1

Call Task 2

Call Task 3

Transmit
Parameter
Block
Pointer

System
Transmit
Parameter
Block

256 Byte
Transmit
Circular
Buffer

User Task 1

User Receive
Parameter
Block

Data Transfer
Control Block

User Receive
Data Transfer
Buffer

Receive
Parameter
Block
Pointer

System
Receive
Parameter
Block

256 Byte
Receive
Circular
Buffer

User Task 2 User Task 3

User Receive User Transmit
Parameter Parameter
Block Block

Data Transfer Data Transfer
Control Block Control Block

User Receive User Transmit
Data Transfer Data Transfer
Buffer Buffer

User Space

RS-232 DRIVER (System Space)

Serial 0 Serial 1 Serial 2

110c::.· :.·:: .·:.·:}0" I I 0\:.·: :. ·:. ·:. ?01 I I 10\:: :.·.·.·::."J0 I I
Ser 00 Ser 01 Ser 02

I
RS-232C Ports

Figure 10-1. RS-232 Driver Block Diagram

RS-232 Driver 10-3

10.2.1 DIB FORMAT

MNEMONIC

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DATA
LENGTH

DS.B 6

DS.B 1

DS.B 1

DC.L 0,0

DC.W 0

DS.L 1

DS.L 1

DESCRIPTION OF USE

Device name. Use #SEROO. #SEROl, #SER02,
#SERIO, #SERll, #SER12 or #SER13.

Data Transfer Direction.
Enter 0 for WRITE, 1 for READ or 2 for
bidirectional.

Enter 0 for Fixed length or 1 for Variable
length transfers.

Not used. User sets this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet; null for
default.

System used Byte I/O field. To OPEN the
RS-232 driver for Byte I/O enter
-1($FFFF FFFF), otherwise set it to zero.
After OPEN the I/O manager fills this field
with an identifier which is used for
SYSIO-BREAD, SYSIO-BWRITE, and SYSIO-BTEST.

10.3 RS-232 DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READ's and WRITE's. It is a required operand of the
SYS IO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made.

RS-232 Driver 10-4

10.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/O operation.

DTCTBU DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

DTCTBL DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

DTCRSO DC.B 0 This field is reserved. User puts zero here.

DTCBFS DS.L 1 User puts Buffer starting address here.

DTCBFL DS.W 1 User puts count of number of bytes in data buffer
here.

DTCBPT DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ/WRITE.

10.3.2 RETURN STATUS CODES

The fol lowing codes are returned in register D7. W and the low byte is
placed in the DTCSTA field for transactions involving a DTC.

Code Meaning

$0009
$000A
$000B
$000C
$000D
$000E
$0020
$0030
$0031
$0032

Variable length record longer than user buffer.
Device time-out
Transmit busy on BWRITE - transmit not done.
No character in receive buffer on BREAD.
Operation canceled.
Error in function call.
DTC buffer full before read (a request for 0 bytes).
Data suspect: parity error detected.
Data suspect: framing error detected.
Data lost: circular buffer overrun.Overrun can be prevented

RS-232 Driver 10-5

by using XON/XOFF or the DTR line to regulate input.
$0033 Data lost: hardware overrun - too many hardware interrupts are

occurring while receiving data.
$0034 BREAK received.

Note: Error conditions $0030 - $0034 are reset after being reported to
the user.

10.4 RS-232 FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. It is required for the FUNCTION
command and optional for the OPEN command. It is used by the application
program to configure a device to something other than its default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more word or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

10.4. 1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets. The error code
mechanism is the common system code $000E, which provides the offset of
the bad argument in the function packet.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- ------ -------------
END LIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) NONE WORD
SET MODE BITS 2 ($0002) NONE TWO WORDS
GET MODE BITS 3 ($0003) NONE TWO WORDS RETURNED
SET TRANSMIT TIMEOUT 4 ($0004) NONE WORD
GET TRANSMIT TIMEOUT 5 ($0005) NONE WORD RETURNED
SET RECEIVE TIMEOUT 6 ($0006) NONE WORD
GET RECEIVE TIMEOUT 7 ($0007) NONE WORD RETURNED
SET TRANSMIT CONTROL 8 ($0008) NONE WORD

RS-232 Driver 10-6

CHARACTER IN TABLE
GET TRANSMIT CONTROL 9 ($0009) NONE WORD RETURNED

CHARACTER FROM TABLE
SET RECEIVE CONTROL 10 ($000A) NONE WORD

CHARACTER IN TABLE
GET RECEIVE CONTROL 11 ($000B) NONE WORD RETURNED

CHARACTER FROM TABLE
SET TRANSMIT CONTROL 16 ($0010) NONE LONGWORD POINTER

CHARACTER TABLE POINTER
SET RECEIVE CONTROL 18 ($0012) NONE LONGWORD POINTER

CHARACTER TABLE POINTER
SET BAUD 20 ($0014) NONE WORD
GET BAUD 21 ($0015) NONE WORD RETURNED
SET FRAMING 22 ($0016) NONE WORD
GET FRAMING 23 ($0017) NONE WORD RETURNED
SET TRANSMIT BUFFER 24 ($0018) NONE LONGWORD POINTER

PARAMETER BLOCK POINTER
GET TRANSMIT BUFFER 25 ($0019) NONE LONGWORD POINTER

PARAMETER BLOCK POINTER RETURNED
SET RECEIVER BUFFER 26 ($001A) NONE LONGWORD POINTER

PARAMETER BLOCK POINTER
GET RECEIVE BUFFER 27 ($001B) NONE LONGWORD POINTER

PARAMETER BLOCK POINTER RETURNED
SET TRANSMIT CHARACTER 32 ($0020) NONE LONGWORD POINTER

TRANSLATION SUBROUTINE POINTER
GET TRANSMIT CHARACTER 33 ($0021) NONE LONGWORD POINTER

TRANSLATION SUBROUTINE POINTER RETURNED
SET RECEIVE CHARACTER 34 ($0022) NONE LONGWORD POINTER

TRANSLATION SUBROUTINE POINTER
GET RECEIVE CHARACTER 35 ($0023) NONE LONGWORD POINTER

TRANSLATION SUBROUTINE POINTER RETURNED
SET DMA LIMIT 36 ($0024) NONE WORD
GET DMA LIMIT 37 ($0025) NONE WORD RETURNED
TRANSMIT BREAK 38 ($0026) NONE WORD
RESET PORT 39 ($0027) NONE NONE
SET MODEM CONTROL LINES 40 ($0028) NONE WORD
GET MODEM CONTROL LINES 41 ($0029) NONE WORD RETURNED
ATTACH BRK EVENT 44 ($002C) NONE NONE
DETACH BRK EVENT 45 ($002D) NONE NONE
ATTACH RSC EVENT 46 - ($002E) NONE NONE
DETACH RSC EVENT 47 - ($002F) NONE NONE
GET DIBTRN 48 ($0030) NONE WORD RETURNED

RS-232 Driver 10-7

10.4.2 RS-232 FUNCTION DESCRIPTIONS

COMMAND

0

FUNCTION
PURPOSE

END LIST

Function Data

Error Code

FUNCTION DESCRIPTION

Terminates processing of the function
packet.

None

None

1 SET TRANSFER MODE Activates Transfer Termination Character

2

Function Data

Data = $0000
$0001

Error Code

SET MODE BITS

Function Data

Data Example

checking to delimit a record that is being
transferred.

One Word, integer.

Selects Fixed length transfer mode.
Selects Variable length transfer mode.

None.

Allows the user to modify the
characteristics of the RS-232 port.
The first word acts as a mask
on the second word. The second word is
formed using the word bit definitions.
Since the
first word acts as a mask, only the bits
representing the parameters that it is
desired to change are set. For example if
you wish to enable the XON/XOFF mode for
both transmit and receive bits 3 and 11
must be set to 1 in the mask word since
these are the bits it is desired to change.
The second word will have the same bits set
to 1 to enable the mode, or to 0 to disable
the mode.

One word integer

RS-232 Driver 10-8

BIT
NO.

15

14

13

12

11

10

Word

Word

Error

SET
TO

0
1

0
1

0
1

0

1

1 - $0808 Bit mask 0000 1000 0000 1000

2 - $0808 Enable data 0000 1000 0000 1000
$0000 Disable data 0000 0000 0000 0000

Code=$0022 Data out of limits.

RECEIVE MODE BITS
------- ----

OPTION USE

Not used - set to zero.

Echo Enable
Default - Do not echo character.
Transmit echo of each received character.

Not used - set to zero.

Character Filter (Table)
Default - Do not check for special characters.
Check for special characters as defined by
current entries in the receiver control character
table.

XON/XOFF character checking
Default - No XON/XOFF character will be sent.
XON/XOFF characters will be sent to control input.
The defined XOFF character will be sent when the
high limit is reached in the receiver circular
buffer. The defined XON character will be sent
when the character count is at the low limit.
These XON/XOFF limits are set by entries in the
circular buffer parameter block.
They cannot be changed when the
default system circular buffer is used. (See
function 26.)

Character or Block Mode Select
Selects Character Mode - no wait for
end-of-record will occur; the calling task will
never be SUSPENDED. An incomplete record may be
returned. The user must check the DTC upon
return.
Default - Selects Block Mode: the driver will

RS-232 Driver 10-9

9

8

7

6

5

4

3

2

0
1

0
1

0

0
1

0
1

0

1

0
1

SUSPEND the calling task on an SREAD while waiting
for a complete record.

Data Terminal Ready Control
Default - DTR line held active.
DTR line regulates input in the same way that
XON/XOFF regulates it with character handshaking.

Record length
Fixed length records
Default - Variable length records

TRANSMIT MODE BITS

Not used
This bit must be set to zero.

Echo Enable
Default - No echoes expected.
Get echo after each character transmitted.
The echoed character is placed.in the receivar
buffer. No comparison is made between the
character sent and received.

Not used - set to zero.

Character Filter (Table)
Default - Do not check for special characters.
Check for special characters as defined by
current entries in the transmit control character
table.

XON/XOFF Enable
Default - The transmitter is not regulated by
incoming XON/XOFF characters.
The transmitter is regulated by incoming XON/XOFF
characters as defined by the current table
entries.

Character or Block Mode Select
Default - Selects Character Mode
Selects Block Mode. Transmit option bit 4 must
also be turned on to use this feature. Record
transmission does not start until a "SEND" control
character has been received for each record sent.
Block mode cannot be used concurrently with the

RS-232 Driver 10-10

1

0

3

4

5

0
1

XON/XOFF transmitter mode.

Not used - set to zero.

Record Length
Fixed length records
Default - Variable length records.

GET MODE BITS

Function Data

Word 1 - $XXXX

Word 2 - $NNNN

Error Code

SET TRANSMIT
TIMEOUT

Function Data

Data - SNNNN
$FFFF

Error Code

GET TRANSMIT
TIMEOUT

Function Data

Data = $NNNN
$FFFF

Returns the current option word in the
second DATA word.

Leave space for two words, integer.

Driver will set this word to $FFFF

Specifies current option word. See
paragraph 10.2.1 for bit definitions.

None

Allows the user to spe~ify the transmit
time-out period in 50-ms increments. Period
can be any positive number between $0001
and $7FFF or -1($FFFF) to specify an
infinite time-out period.

One word, integer.

Specifies number of 50-ms periods.
Specifies infinite time-out.

None.

Returns the current Transmit time-out
period. The DATA word specifies the number
of 50-ms periods. $FFFF specifies an
infinite time-out.

Leave space for one word, integer.

Specifies number of 50-ms periods.
Specifies infinite time-out.

RS-232 Driver 10-11

6

7

8

Error Code

SET RECEIVE
TIMEOUT

Function Data

Data = $NNNN
$FFFF

Error Code

GET RECEIVE
TIMEOUT

Function Data

Data = $NNNN
$FFFF

Error Code

SET TRANSMIT
CONTROL CHARACTER
IN TABLE

None.

Allows the user to specify the Receive
time-out period in 50-ms increments. Period
can be any positive number between $0001
and $7FFF or -1($FFFF) to specify an
infinite time-out period.

One word, integer.

Specifies number of 50-ms periods.
Specifies infinite time-out.

None.

Returns current Receive time~out period.
The DATA word specifies the number of 50-ms
periods. $FFFF indicates an infinite
time-out.

Leave space for one word, integer ..

Specifies number of 50-ms periods.
Indicates infinite time-out.

None.

Allows the user to change entries in the
TRANSMIT CONTROL CHARACTER TABLE. (See
Table 10-2.) The most significant byte of
the DATA word specifies the entry number in
the table and the least significant byte
specifies the character to be entered at
that location.

Function Data One word, integer.

Data Example $040D Enter $OD at location 04 in the table.

Error Code None.

RS-232 Driver 10-12

9

10

11

16

GET TRANSMIT
CONTROL CHARACTER
FROM TABLE

Function Data

Data = $NNXX

Error Code

SET RECEIVE
CONTROL CHARACTER
IN TABLE

Function Data

Returns the current entry in the TRANSMIT
CONTROL-CHARACTER TABLE at the entry number
in the table specified in the most
significant byte of the DATA word.

Leave space for one word, integer.

$NN specifies table entry number.
$XX is the current character at that
location.

None.

Allows the user to change entries in the
RECEIVE CONTROL-CHARACTER TABLE. (See
Table 10-1.) The most significant byte
of the DATA word specifics the entry number
in the table and the least significant byte
specifies the character to be entered at
that location.

One word, integer.

Example Data $0104 Enter $04 at location 01 in the table.

Error Code

GET RECEIVE
CONTROL CHARACTER
FROM TABLE

Function Data

Data = $NNXX

Error Code

SET TRANSMIT
CONTROL-CHARACTER
TABLE POINTER

None.

Returns the current entry in the RECEIVE
CONTROL-CHARACTER TABLE at the entry number
in the table specified in the most
significant byte of the DATA word.

One word, integer.

$NN specifies the table entry number.
$XX is the current character at that
location.

None.

Allows the user to create and point to a
user created TRANSMIT CONTROL-CHARACTER
TABLE. This table will be copied from user

RS-232 Driver 10-13

18

20

Function Data

Data=$NNNN NNNN

$00000000

Error Code

SET RECEIVE
CONTROL-CHARACTER
TABLE POINTER

Function Data

Data=$NNNN NNNN

$00000000

Error Code

SET BAUD

Function Data

Data = $0000

space into the SYSTEM TRANSMIT CONTROL
CHARACTER TABLE and each entry number will
have the meaning specified in Table 10-2.
The longword pointer points to the
beginning of the 16 byte user created
table. If the pointer is set to zero then
the default values shown in Table 10-2
will be copied back into the table.

One longword, integer.

Points to the beginning of the 16 byte
table.
Copies default values into the system
table.

None.

Allows the user to create and point to a
user created RECEIVE CONTROL-CHARACTER
TABLE. This table will be copied from user
space into the SYSTEM RECEIVE CONTROL
CHARACTER TABLE and each entry number will
have the meaning specified in Table 10-1.
The longword pointer points to the
beginning of the 16 byte user created
table. If the pointer is set to zero then
the default values shown in Table 10-1
will be copied back into the table.

One longword, integer.

Points to the beginning of the 16 byte
table.
Copies default values into the system
table.

None.

Allows the user to change the BAUD rate
after OPEN time.

One word, integer.

45.5 Baud for ports #SEROO,#SEROl and

RS-232 Driver 10-14

21

22

#SER02.
$0000 3600 Baud for ports #SERlO, #SERll, #SER12

and #SER13.
$0001 so Baud
$0002 75 Baud
$0003 110 Baud
$0004 134.5 Baud
$0005 150 Baud
$0006 300 Baud
$0007 600 Baud
$0008 1200 Baud
$0009 1800 Baud
$000A 2000 Baud
$000B 2400 Baud
$000C 4800 Baud
$000D 9600 Baud
$000E 19200 Baud
$000F 38400 Baud for ports #SEROO, #SEROl and

#SER02.
$000F 7 200 Baud for ports #SERlO, #SERll, #SER12,

and #SER13.

Error Code=$0034 Data out of limits.

GET BAUD

Function Data

Data = $DOON

Error Code

SET FRAMING

Bits 15-8:

Bits 7-6:
01
10
11

Returns a value representing the current
baud rate in the DATA word. See Function
20 above for the baud rate equivalent of
this value.

One word returned, integer.

Current setting of baud rate.

None

Allows the user to specify framing by
creating a bit significant DATA word.

Not used. Set these bits to zero.

Specifies number of stop bits.
1 stop bit.
1.5 stop bits.
2 stop bits. Default.

RS-232 Driver 10-15

23

24

Bits

Bits

Bits

5-4:
00
01
11

3-2:
00
01
10
11

1-0:

00
01

11

Data = $00FC

Error Code

GET FRAMING

Function Data

Data = $00NN

Error Code

SET TRANSMIT
BUFFER PARAMETER
BLOCK POINTER

Specifies generated Parity bit
No parity bit generated. Default.
Odd parity generated.
Even parity generated.

Specifies number of data bits.
5 data bits
6 data bits
7 data bits
8 data bits. Default.

Specifies Mark or Space Parity use with
8 bit data only. This option forces data
bit 7 (highest order bit) to 0 for space
parity and to 1 for mark parity. 8 data
bits (bits 5-4 = 00) and no parity (bits
3-2 = 11) should also be specified.
No parity. Default.
Space parity (On transmit bit 7 is set to
0).
Mark parity (On transmit bit 7 is set to
1) On Receive bit 7 is forced to 0.

Specifies 2 stop bits, even parity and 8
data bits.

None.

Returns a bit significant word which
indicates the current framing in use. See
Function 22 for the significance of the bit
combinations.

Leave space for one word, integer.

Specifies current framing.

None

Allows the user to point to a Transmit
Circular Buffer Parameter Block in user
space. This parameter block will be pointed
to by the driver and be used in the
creation of a new circular buffer. If the
DATA longword pointer is set to zero the

RS-232 Driver 10-16

25

26

Function Data

Data=$NNNN NNNN

$0000 0000

Error Code

GET TRANSMIT
BUFFER PARAMETER
BLOCK POINTER

Function Data
Data $NNNN NNNN

Error Code

SET RECEIVE
BUFFER PARAMETER
BLOCK POINTER

Function Data

Data=$NNNN NNNN

$0000 0000

Error Code

driver points to the SYSTEM TRANSMIT
CIRCULAR BUFFER PARAMETER BLOCK. See
paragraph 10.4.3 for a description of the
circular buffer parameter block.

One longword, integer.

Points to the User Transmit Circular Buffer
Parameter Block.
Points to the System Transmit Circular
Buffer.

None.

Returns the pointer to the System Transmit
Buffer Parameter Block.

Leave space for one longword, integer.
Points to System Transmit Buffer Parameter
Block.

None.

Allows the user to point to a Receive
Circular Buffer Parameter Block in user
space. This parameter block will be
pointed to by the driver and be used in the
creation of a new circular buffer. If the
DATA longword pointer is set to zero the
driver points to the System Receive
Circular Buffer Parameter Block. See
paragraph 10.4.3 for a description of the
Circular Buffer Parameter Block.

One longword, integer.

Points to the User Receive Circular Buffer
Parameter Block.
Points to the System Receive Circular
Buffer Parameter Block.

None.

RS-232 Driver 10-17

27

32

33

34

GET RECEIVE
BUFFER PARAMETER
BLOCK POINTER

Function Data

Data=$NNNN NNNN

Error Code

SET TRANSMIT
CHARACTER TRANS
LATION SUBROUTINE
POINTER.

Function Data

Data=$NNNN NNNN

Error Code

GET TRANSMIT
CHARACTER TRANS
LATION SUBROUTINE
POINTER

Function Data

Data=$NNNN NNNN

Error Code

SET RECEIVE
CHARACTER TRANS
LATION SUBROUTINE

Returns the pointer to the System Receive
Buffer Parameter Block.

Leave space for one longword, integer.

Points to System Receive Buffer Parameter
Block. This block can be read by a task in
order to monitor the received character
count.

None.

Allows the user to point to a Transmit
Character Translation Subroutine. See
paragraph 10.4.4 for guidance in the
creation of this user subroutine and
particulars on how this driver will
interact with it.

One longword, integer.

Points to a user created Transmit Character
Translation Subroutine.

None.

Returns the pointer to the Transmit
Character Translation Subroutine currently
in use.

Leave space for one long word, integer.

Points to Transmit Character Translation
Subroutine.

None

Allows the user to point to a Receive
Character Translation Subroutine. See
paragraph 10.4.4 for guidance in the

RS-232 Driver 10-18

35

36

37

POINTER

Function Data

Data=$NNNN NNNN

Error Code

GET RECEIVE
CHARACTER TRANS
LATION SUBROUTINE
POINTER

Function Data

Data=$NNNN NNNN

Error Code

SET DMA LIMIT

Function Data

Data = $NNNN

Error Code

GET DMA LIMIT

Function Data

creation of this user subroutine and
particulars on how this driver will
interact with it.

One longword, integer.

Points to a user created Receive Character
Translation Subroutine.

None.

Returns the pointer to the Receive
Character Translation Subroutine currently
in use.

One longword returned, integer.

Points to Receive Character Translation
Subroutine.

None

Allows the user to specify the buffer
length, above which Serial Port #SEROO will
use DMA to do fixed length transfers from
the User Data Transfer Buffer to Serial
Port #SEROO. During DMA transfers
character checking and character filtering
are not in effect. The default length is
256 bytes.

One word, integer.

Specifies buffer length in bytes.

None.

Returns the current buffer length above
which DMA transfers will occur to Serial
Port #SEROO.

One word returned, integer.

RS-232 Driver 10-19

38

39

40

Error Code

TRANSMIT BREAK

Function Data

Data = $NNNN

Error Code

RESET PORT

Function data

Error Code

SET MODEM CONTROL
LINES

Function Data

Bit 0 = 1($0001)

Bit 1 = 1($0002)

Error Code

None

Allows the user to specify the duration
in 50-ms periods of the break condition.
When using modems a break condition of
this length may cause the modem to hang up.
A break of shorter duration may be sent
by dropping the transmitter baud rate and
sending a NUL character.

One word, integer.

Specifies the number of 50-ms periods that
the break condition will last.

None.

This function clears the circular buffers
and error conditions. If the XON/XOFF option
is enabled, an XON will be sent. If the DTR
option is enabled, the DTR line will be set
to an active condition.

None

None

Allows the user to set the modem control
lines in order to signal "Clear to Send
(CTS)" or "Data Terminal Ready (DTR)".
Only bits 0 and 1 in this
word have assigned meaning.

One word, integer.

Data Terminal Ready

Clear to Send

None.

RS-232 Driver 10-20

41 GET MODEM CONTROL
LINES

Function Data

Bit 0 = 1

Bit 1 = 1

1 = 1

Error Code

Returns a bit significant word in which
bits 0 and 1 signify "Clear to Send (CTS)",
"Data Terminal Ready (DTR)" or "Data Carrier
Detect (DCD)".

Leave space for one word, integer.

Data Carrier Detect

Data Set Ready for ports #SEROO, #SEROl and
#SER02.

Clear to Send for ports #SERlO, #SERll,
#SER12 and #SER13.

None.

44 ATTACH BRK EVENT Allows the user to use asynchronous event

Function Data

Error Code

Port #SEROO
#SEROl
#SER02
#SERlO
#SER11
#SER12
#SER13

posting as described in paragraph 10.1.5.
The events for each port have the names
specified below. Each event is posted
when a break condition is detected at the
port.

None

None

BRKO
BRKl
BRK2
BRK3
BRK4
BRK5
BRK6

45 DETACH BRK EVENT Detaches the break event named above from
the port.

Function Data None

Error Code None

RS-232 Driver 10-21

46 ATTACH RSC EVENT Allows the user to use asynchronous event

Function Data

Error Code

Port tf SEROO
#SEROl
#SER02
#SERlO
#SER11
#SER12
#SER13

posting as described in paragraph 10.1.5.
The events for each port have the names
specified below. Each event is posted when
the character count in the receiver circular
buffer goes from 0 to 1 (empty to
not empty).

None

None

RSCO
RSCl
RSC2
RSC3
RSC4
RSCS
RSC6

47 DETACH RSC EVENT Detaches the break event named above from
the port.

Function Data None

Error Code None

48 GET DIBTRN The current transfer mode is returned.

Function Data Word returned.
$0000 In fixed-length mode
$0001 In variable-length mode

Error Code None

RS-232 Driver 10-22

10.4.3 CIRCULAR BUFFER PARAMETER BLOCK

This parameter block format is used to create both transmit and receive
User Circular Buffer Parameter Blocks which are used by the user transmit
and receive buffers. The location of these blocks is specified with
Function 24 (Transmit) and Function 26 (Receive). The location of the
System Circular Buffer Parameter Blocks can be obtained with Function 25
(Transmit) and Function 27 (Receive). See paragraph 10.4.2 for a
description of these functions.

Circular Buffer Parameter Block Format

DS.L 1 Buffer starting address.

DS.W 1 Buffer length.

DS.W 1 Extract pointer. (Note 1). Set to 0 by PORT RESET.

DS.W 1 Insert pointer. (Note 2). Set to 0 by PORT RESET.

DS.W 1 Character counter. Set to 0 by PORT RESET.

DS.W 1 The XON limit: the character count at which an XON will be sent
if currently in an XOFF state.

DS.W 1 The XOFF limit: the character count at which an XOFF will be sent
if currently in an XON state.

DS.B 1 This byte is set by the system to indicate buffer status. (See
Note 3). Set to 0 by PORT RESET.

DC.B 0 Reserved byte.

Note 1. This pointer points to the next available character in the
buffer. User initializes this pointer to $0000.

Note 2. This pointer points to the character beyond the last character
in the buffer. User initializes this pointer to $0000.

Note 3. This bit significant byte indicates buffer status. The bit
significance is shown below.

BIT NO. 7

6

5

Reserved

Set if counter is at high limit and bit 3 has just
changed state.

Set if counter is at low limit and bit 3 has just

RS-232 Driver 10-23

changed state.

4 Reserved

3 Set when counter is at high limit. Cleared when
counter is at low limit. This is an XON or XOFF
state indicator.

2 Set when buffer is full. 0 when buffer is not full.

1 Set when buffer is overrun. 0 when buffer not overrun.

0 Set when buffer contains characters. 0 when buffer
is empty.

10.4.4 CHARACTER TRANSLATION SUBROUTINE

The character translation subroutine provides a place to perform general
character processing of the input or output character stream. The
subroutine is called as characters are moved between the user's data
buffer and the port circular buffer. The user specifies the subroutine
via FCN 34 for the receive side, and FCN 32 for the transmit side. Once
the user subroutine has been specified, the driver will continue to call
it as each character is transferred. Thus, it must remain in memory until
the driver is informed (via data 0 longword for FCN 32 or 34) that it
should not call the subroutine.

Useful examples of the subroutine would be to change lower case ASCII
character to . upper case, to delete or to insert linefeeds following
carriage returns, to split 8-bit data characters into two printable ASCII
characters, or to translate a non-standard end-of-record sequence into a
single carriage return.

At entry into the subroutine Dl.B contains the character from the data
stream, and the higher order byte of Dl.W is set to 0. If simple character
substitution is desired, Dl .B can be changed by the subroutine then a
return-from-subroutine performed. If it is desired to delete the current
character from the data stream, bit ffoB of Dl.W must be set (OR.W
#$0100,Dl) in the subroutine. If it is desired to insert an extra
character, or characters, into the data stream after the current
character, Bit #9 must be set (OR.W 11$0200,Dl). The subroutine must
corrupt no other register than Dl.

RS-232 Driver 10-24

10.4.5 CONTROL CHARACTER TABLES

The RS-232 driver must know about several "special" characters during
certain modes of operation. These characters are all kept together in
lists called control character tables. There is a separate table for
transmit characters and for receive characters. The operations
associated with these control characters are usually performed just·prior
to character transmission, or just after character reception.

As an example, the XON and XOFF characters are kept at offsets 2 and 3,
respectively, into the tables. If the XON/XOFF feature is enabled with
FCN ~ bits .!..!_ and ~ then the characters located at those positions in
the tables will be sent (transmit table) or matched against incoming
characters (receive table).

The rest of the characters in the table are activated by FCN ~ bits 12 and
4. These characters perform a few port control and data stream editing
operations. For instance, some entries in the receive control character
table specify characters which will be "thrown away" as they are received.
This is a handy way of getting rid of "troublesome" characters.

The tables are searched sequentially by the driver in order to find
matches. Searching stops after the first match is found, so the character
cannot perform multiple functions. The user may specify new characters
with FCNs 8 and 10.

RS-232 Driver 10-25

Table 10-1. Receive-Control Characters

+-Table Entry Number
I +-Character (Default Value is shown)
I I
I I Meaning

0 $7F Delete this character from the stream.
1 $7F Delete this character from the stream.
2 $11 Receive this character for XON.
3 $13 Receive this character for XOFF.
4 $18 Clear the Transmit circular buffer.
5 $12 Clear the Receive circular buffer.
6 $04 Delete the last character from the Transmit buffer.
7 $7F Delete the last character from the Receive buffer.
8 $01 Enable transmit to send record (Block Mode)
9 Unassigned
A $14 Line turn-around character in half-duplex.
B Unassigned
c $7F Delete this character from the stream.
D $7F Delete this character from the stream.
E Unassigned
F Unassigned

Table 10-2. Transmit-Control Characters

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

$11
$13

$12
$04
$7F

$14

$7F
$7F

Unassigned.
Unassigned.
Transmit this character for XON.
Transmit this character for XOFF.
Unassigned.
Clear the Receive circular buffer.
Delete last character from the Transmit buffer.
Delete last character from the Receive buffer.
Unassigned.
Unassigned.
Line turn around character in half-duplex.
Unassigned.
Delete this character from the stream.
Delete this character from the stream.
Unassigned.
Unassigned.

RS-232 Driver 10-26

User Receive
Data Transfer
Buffer (OTB)
(User Space)

cs/ 9000
Operating System

System Receive
Parameter Block
(System Space)

Receive Parameter
OR Block Pointer

" (System Space)

(

I

User Receive
Parameter Block
(User Space)

User Receive
Data Tranter
Control Block
(DTCB)

(User Space)

(

/
/

User Transmit
Data Transfer
Control Block
(DTCB)

(User Space)

RS-232 Driver
(System Space)

I
I
I
I
I
l..

' '

Figure 10-2. RS-232 Driver Overview Diagram

User Transmit
Data Transfer
Buffer (OTB)
(User Space)

System Transmit
Parameter Block
(System Space)

Transmit Parameter
Block Pointer OR

(System Space) .:(

I

User Transmit
Parameter Block
(User Space)

RS-232 Driver 10-27

11.0 IEEE-488 INTERFACE DRIVER

11.1 DRIVER DESCRIPTION

The IEEE-488 Interface Driver acts as a single controller or
talker/listener on the IEEE-488 General Purpose Interface Bus. This bus
consists of 16 signal lines which are used to carry INTERFACE MESSAGES and
DEVICE DEPENDENT MESSAGES among interconnected devices. The bus
structure is organized into three groups of signal lines, consisting of 8
data lines, 5 control lines and 3 handshake lines. See Figure 11-1. This
structure provides an unambiguous and effective communication link
between interconnected devices. INTERFACE MESSAGES are used to manage the
interface system and DEVICE DEPENDENT MESSAGES are used by the devices
interconnected by the bus. Three organizational elements manage the flow
of information exchanged among devices. This first element is a device
with the ability to CONTROL. This device can command other devices to
LISTEN or to TALK and can send INTERFACE MESSAGES which command specified
actions to be taken by specified devices. The device is specified by
means of an unique address. A device which has only the ability to
control does not send or receive device dependent messages. The second
element is a device with the ability to LISTEN. This device can be
addressed by an INTERFACE MESSAGE and commanded to receive DEVICE
DEPENDENT MESSAGES from another device connected to the bus. The third
element is a device with the ability to TALK. This device can be
addressed by an INTERFACE MESSAGE and commanded to send DEVICE DEPENDENT
MESSAGES to another device connected to the bus.

As shown in Figure 11-1 these three elements of CONTROLLER, TALKER and
LISTENER can occur individually or in combination in devices connected to
the. bus. In addition to the DEVICE DEPENDENT MESSAGES and INTERFACE
MESSAGES mentioned above the bus may carry INTERFACE MESSAGES to
accomplish serial polling, triggering or clearing. A serial poll sequence
is initiated when a TALKER device requires some action by the CONTROLLER
device. The TALKER transmits a service request message and the CONTROLLER
will then obtain the "Status Byte" of all devices in sequence to ascertain
which device requested service. Device triggering is the ability of a
device to be TRIGGERED on command by the CONTROLLER and CLEARing (Function
19) initializes the device.

The IEEE-488 Interface Driver allows the user to implement these actions
through the use of Function Commands. See Paragraph 11.4.1 for a summary
of the available functions.

IEEE-488 Driver 11-1

Each device of the IEEE-488 bus has a unique bus address, determined by 5
bits of the 8 bit wide data bus. Sometimes a device may have what is called
extended addressing, in which an address is comprised of two successive 5
bit addresses. At any particular time one device is designated the bus
controller. Other devices will have the ability to talk on the bus, or to
listen on the bus, or both. Customarily the bus controller has both talker
and listener capability in addition to the controller capability.

Each transaction on the IEEE-488 bus has two phases: the command phase,
when the ATN line is active, and the data phase, when ATN is inactive. It
is the bus controller's job to address the bus talker and the bus
listeners while it drives ATN low. It then releases the ATN line, which
allows the talker to place data on the bus, to be received by each
actively addressed bus listener. The rate of data transmission over the
bus is determined by the slowest listener, via the 3-wire handshake
mechanism. There is no possibility of data overrun at the receiver end.

The bus controller must detect the end of the data transmission in order
to regain control of the bus. Normally, this is done in one of two ways. In
the first method, the talker drives the EOI line active along with the
last data byte. In the second method the bus controller monitors the data
and watches for a special EOS character. It then regains control of the
bus after the EOS character. The bus controller also has the ability to
seize control after any data byte (called taking control synchronously,
TCS), or even mid-way in the data handshake (called taking control
asynchronously, TCA).

Typically, the CS 9000 is a bus controller, which includes the ability to
talk and to listen. Controlling, talking, and listening are three
independent functions. The CS 9000 switches from bus controller to bus
talker or listener by addressing itself during the bus command phase.
Then, during the bus data phase, it sends or receives data. Because of
this, it must have a bus address. The CS 9000 may also be just a
talker/listener on the bus, with no controller capability. This also
requires that the device have an address on the bus. The address is
supplied when the CS 9000 is attached to the bus via the "ATCHDRV BUS"
command, which requires one argument which is the device address, and a
second argument which determines controller or talker/listener only
configuration.

A program running on the CS 9000 may want to do I/O to an IEEE-488 device
on the bus. In order to do this, the program must inform the operating
system that there is such a device on the bus. This is done from the
command line by using the ATCHDEV command. Then, the program is free to do
OPENs, CLOSEs, SREADs, AREADs, SWRITEs, AWRITEs, and FUNCTIONs against
the device. Byte I/O is not supported. When doing I/O to a remote bus
device, the CS 9000, as controller, serves as a transparent node through
which program tasks talk to the bus.

IEEE-488 Driver 11-2

Because IEEE-488 device addresses are 5 bits only, printable ASCII
characters are used as arguments in ATCHDRV and ATCHDEV, but are stripped
down to 5 bits when placed on the bus. Thus, the ASCII letter 'A' or 'a'
becomes $01, 'B' becomes $02, etc. Extended addressing is usually not
used, and the extension address must be set to an invalid address as a
flag to that effect. The character'?' does this.

#BUSA?
#BUSB?
#BUSCD

address $01, no extension address
address $02, no extension address
address $03, extension address $04

NOTE: For hardware implementation, see the "computer System Technical
Reference Manual."

11. 1. 1 BUS SEQUENCES

When the computer system is the bus controller, the following bus sequence
is performed during a SYSIO SWRITE or AWRITE:

Universal Untalk
Universal Unlisten
My Talk Address (address of the computer system)
Other Listen Address (address of some other device)
Data transfer from user's Data Transfer Buffer, up to last byte
The EOI line is made active by the sender and the last data byte

is sent. (Computer system regains control of the bus)

When the computer system is the bus controller, the following bus sequence
is performed during an SREAD or SWRITE:

Universal Unlisten
Other Talk Address (Address of some other device)
My Listen Address (Address of computer system).
Data Transfer into user's Data Transfer Buffer, up to last byte
The EOI line is made active by the sender and the last byte is

received.(Computer system regains control of the bus.)

The following Function Packet, issued to the CS 9000 as bus controller,
will enable ~wo TALKER/LISTENER devices to transfer data to each other:

COMMAND
WORD

22 ($0016)
23 ($0017)
16 ($0010)

COMMAND
DATA

$NNNN

FUNCTION PURPOSE

Send Unlisten Command
Send Untalk Command
Send other Talker Address

IEEE-488 Driver 11-3

15 ($000F)
25 ($0019)

0 ($0000)

$NNNN Send other Listener Address
Take control on end
End list

Note: In order for the computer system to regain control of the bus
the TALKER must transfer the last data byte with the EDI line driven low
(by the talker). The time-out interval for the controller must be long
enough to allow the entire data transfer from device to device to occur.
This time interval is a determined by the slowest device involved in the
handshaking.

11.1.2 ASYNCHRONOUS EVENTS

As a CONTROLLER the IEEE-488 Interface driver supports asynchronous
events that indicate the occurrence of an SERVICE REQUEST (SRQ) on the
bus. When a TALKER/LISTENER forces an SRQ on the bus, the controller
performs a parallel, or serial, poll sequence. It then signals the event
as 'SQ--' where the last two characters are the device address. 'SQB?' is
the event which indicates TALKER/LISTENER device 'B?' has issued a service
request. In order for the SRQ event to the posted, the TALKER/LISTENER
must be opened with bit 4 in the DIBOPT field set to 1, and Function 39,
"Activate SRQ Event", must be executed to activate the event.

As a TALKER/LISTENER the IEEE-488 Interface driver supports two distinct
events. One indicates being addressed as a TALKER (Function 35 'ACTIVATE
TALKER') and the other indicates being addressed as a listener (Function
37 'ACTIVATE LISTENER'). The event names are 'TLKR' and 'LSNR'
respectively.

11. 1.3 REQUEST QUEUING

With multiple devices attached to the bus, access to the bus through the
controller is on a first-come first-serve basis; the queuing is done by
the I/O manager. The length of any particular bus transaction is a
function of that device's response time, the length of the transfer, and
eventually the time-out period specified for the device. Service requests
are handled after the completion of the current transaction, even though
other transactions may be waiting in the I/O queue. Byte I/O is not
supported by the driver.

IEEE-488 Driver 11-4

11. 1.4 DEVICE DETACHMENT

The DTCHDEV command removes a device from the bus. No control structures
are required from the user.

11.1.5 SERVICE REQUESTS

Service requests are handled by the controller, supporting both parallel
and serial polling. The controller configures a device for parallel poll
response if bits #5 and #4 are set in FUNCTION 42 data. If only bit #4 is
set, the device is serviced by serial polling. If parallel polling is
specified for the device, but all bit positions for parallel poll response
are taken, the polling method will default to serial and an error code
will be returned.

After the controller identifies the source of the service request and
fetches the status byte, it will post the service request event for the
task owning the device. The poll status byte will be transferred to the
event block for use by the task.

11.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIE" refers to a form of control block that is used at OPEN time. To open
the IEEE-488 General Purpose Interface Bus the user must create a DIB and
within an initialization routine perform a SYSIO-OPEN to the device. When
this is done all standard SYSIO operations described in Chapter 1 are
allowed.

11.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL DS.B 6

DIBDTD DS.B 1

Device name. Use #BUSOO for IEEE-488 driver.

Data transfer direction. Use 0 for WRITE, 1 for READ
or 2 for bidirectional.

IEEE-488 Driver 11-5

DIBTRN

DIBRSO

DI BO PT

DIBFCN

DIBBIO

DS.B 1 Enter 0 for Fixed length or 1 for Variable length
transfers.

DC.L 0,0 Not used. User sets this field to 0.

DC.W 0

DS.L 1

DC.L 0

Not used, set to 0.

Insert pointer to function packet or null for
default.

Not used by this driver. User sets this field to 0.

11.3 IEEE-488 DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made.

The DTCTBU and DTCTBL fields are only used for determining the length of
transmitted records while in variable-length mode. Received record
lengths are determined by the bus protocol. The sender either drives EOI
active on the last byte, or a single EOS character is detected by the
receiver. Functions 32 and 42 contain additional information about the
EOS character.

11.3. 1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/O operation.

DTCTBU DS.B 1 User puts upper limit to be used for Transfer

DTCTBL

Termination characters in Variable length transfer
here.

DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

IEEE-488 Driver 11-6

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DC.B 0 This field is reserved. User puts zero here.

DS.L 1 User puts Buffer starting address here.

DS.W 1 User puts count of number of bytes in data buffer
here.

DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ/WRITE.

11.4 IEEE-488 FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
issuing an interface clear command or disabling serial polling. It is
required for the FUNCTION command and optional for the OPEN command. It
is used by the application program to configure a device to something
other than its default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicated END-OF-LIST. The COMMAND word is
followed by zero or more bytes, words or longwords that send or receive
the immediate DATA for the command, or a long word that points to the DATA
for that COMMAND.

All functions return the standard system error code of $000E, which also
contains the offset to the bad element in the function packet.

11.4.1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets. The (C) suffix in the
following list indicates that the function is valid only for the CS 9000
as bus controller. The (T) and (L) suffixes show that the function is
valid only for talkers or listeners, respectively.

IEEE-488 Driver 11-7

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
END LIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) NONE WORD
SEND UNLISTEN AND DEVICE CLEAR (C) 2 ($0002) NONE NONE
SEND EOI 3 ($0003) NONE NONE
SEND EOS 4 ($0004) NONE NONE
FINISH HANDSHAKE 5 ($0005) NONE NONE
GROUP EXECUTE TRIGGER (C) 6 ($0006) NONE NONE
GO TO LOCAL 7 ($0007) NONE NONE
GO TO STANDBY 8 ($0008) NONE NONE
SET HANDSHAKE MODE 9 ($0009) NONE WORD
SEND INTERFACE CLEAR (C) 10 ($000A) NONE NONE
SEND LOCAL LOCKOUT (C) 11 ($000B) NONE NONE
RESET REN LINE (C) 12 ($000C) NONE NONE
SEND MY LISTENER ADDRESS (C) 13 ($000D) NONE NONE
SEND MY TALKER ADDRESS (C) 14 ($000E) NONE NONE
SEND OTHER LISTENER ADDRESS (C) 15 ($000F) NONE WORD
SEND OTHER TALKER ADDRESS (C) 16 ($0010) NONE WORD
SET REN LINE (C) 17 ($0011) NONE NONE
SEND BYTE COMMAND (C) 18 ($0012) NONE WORD
SEND SELECTED DEVICE CLEAR (C) 19 ($0013) NONE NONE
SEND SERIAL POLL DISABLE (C) 20 ($0014) NONE NONE
SEND SERIAL POLL ENABLE (C) 21 ($0015) NONE NONE
SEND UNLISTEN COMMAND (C) 22 ($0016) NONE NONE
SEND UNTALK COMMAND (C) 23 ($0017) NONE NONE
GET DATA BYTE 24 ($0018) NONE WORD RETURNED
TAKE CONTROL ON END (C) 25 ($0019) NONE NONE
TAKE CONTROL SYNCHRONOUSLY (C) 26 ($001A) NONE NONE
SEND SERIAL POLL (C) 27 ($001B) NONE SEVERAL WORDS
TAKE CONTROL ASYNCHRONOUSLY (C) 28 ($001C) NONE NONE
DISABLE TIME-OUTS 29 ($001D) NONE NONE
SET TIME-OUT 30 ($001E) NONE WORD
SPECIFY EDS CHARACTER 32 ($0020) NONE WORD
SEND DATA BYTE 33 ($0021) NONE WORD
SET DMA LIMIT 34 ($0022) NONE WORD
ACTIVATE TALKER EVENT (T) 35 ($0023) NONE NONE
DEACTIVATE TALKER EVENT (T) 36 ($0024) NONE NONE
ACTIVATE LISTENER EVENT (L) 37 ($0025) NONE NONE
DEACTIVATE LISTENER EVENT (L) 38 ($0026) NONE NONE
ACTIVATE SRQ EVENT (C) 39 ($0027) NONE NONE
DEACTIVATE SRQ EVENT (C) 40 ($0028) NONE NONE
SRQ (REQUEST SERVICE) (T) 41 ($0029) NONE WORD
SET OPTIONS 42 ($002A) NONE NONE
GET OPTIONS 43 ($002B) NONE WORD RETURNED
GET TRANSFER MODE 44 ($002C) NONE WORD RETURNED
GET EDS CHARACTER 45 ($002D) NONE WORD RETURNED

IEEE-488 Driver 11-8

GET DMA LIMIT
GET HANDSHAKE MODE
GET TIME-OUT

46 ($002E)
47 ($002F)
48 ($0030)

NONE
NONE
NONE

WORD RETURNED
WORD RETURNED
WORD RETURNED

11.4.2 IEEE-488 FUNCTION DESCRIPTIONS

FUNCTION
COMMAND PURPOSE FUNCTION DESCRIPTION

0 ENDLIST Terminates processing of the function
packet.

1

2

3

Function Data None

Error Code None

SET TRANSFER
MODE

Function Data

Data = $0000
$0001

Error Code

SEND UNLISTEN
AND DEVICE CLEAR

This function allows the user to select fixed
or variable length record transfers.

One word, integer.

Selects fixed length transfer mode.
Selects variable length transfer mode.

None

This function instructs the driver to issue
an UNLISTEN followed by a universal DEVICE
CLEAR.

Function Code None

Error Code None

SEND EOI This function instructs the driver to send
EOI on the next data byte transmitted but
the driver must first be in the talker mode.

Function Data None

IEEE-488 Driver 11-9

Error Code

4 SEND EOS

Function Data

Error Code

None

This function instructs the driver to send
the EOS character specified with Function 288

None

None

5 FINISH HANDSHAKE This function instructs the driver to issue

6

7

8

Function Data

Error Code

GROUP EXECUTIVE
TRIGGER

Function Data

Error Code

GO TO LOCAL

Function Code

Error Code

GO TO STANDBY

Function Data

Error Code

a local FINISH HANDSHAKE command.

None

None

This function instructs the driver to issue
a GROUP EXECUTE TRIGGER command to the bus.

None

None

This function instructs the driver to issue
a GO TO LOCAL command to the bus.

None

None

This function instructs the driver to issue
a local GO TO STANDBY.

None

None

IEEE-488 Driver 11-10

9

10

11

12

13

SET HANDSHAKE
MODE

Function Data

Data= $0000
$0001
$0010
$0011

Error Code

SEND INTERFACE
CLEAR

Function Data

Error Code

SEND LOCAL
LOCKOUT

Function Data

Error Code

RESET REN LINE

Function Data

Error Code

SEND MY LISTENER
ADDRESS

This function instructs the driver to set the
handshake mode to that specified by the DATA
word. This function is used for debugging.

One word, integer.

Selects normal handshake mode.
Selects RFD holdoff on all data mode.
Selects RFD holdoff on END mode.
Selects continuous mode.

None.

This function instructs the driver to issue
an INTERFACE CLEAR command to the bus for a
duration of approximately 200 microseconds.

None

None

This function instructs the driver to issue a
LOCAL LOCKOUT command to the bus. This will
effect all listeners which are in the REMOTE
state.

None

None

This function instructs the driver to reset
the REN line on the bus.

None

None

This function instructs the driver to send
the address of the "driver' to the bus as a
listener device.

IEEE-488 Driver 11-11

14

15

16

17

Function Data

Error Code

SEND MY TALKER
ADDRESS

Function Data

Error Code

SEND OTHER
LISTENER ADDRESS

Function Data

Data = $NNNN

Error Code

SEND OTHER
TALKER ADDRESS

Function Data

Data = $NNNN

Error Code

SET REN LINE

Function Data

Error Code

None

None

This function instructs the driver to send
the address of the driver to the bus as a
talker device.

None

None

This function instructs the driver to send
an OTHER LISTENER ADDRESS to the bus.
Extended addressing is supported.

One word, integer.

Specifies the other listener address

None

This function instructs the driver to send
an OTHER TALKER ADDRESS to the bus. Extended
addressing is supported.

One word, integer.

Specifies the other talker address.

None

This function instructs the driver to set the
REN line on the bus.

None

None

IEEE-488 Driver 11-12

18

19

20

21

22

SEND BYTE
COMMAND

Function Data

Data = $NNNN

Error Code

SEND SELECTED
DEVICE CLEAR

This function instructs the driver to send a
SEND BYTE command to the bus. The driver
must be the bus controller. The driver will
wait for previous handshaking to be completed
before transmitting the command byte.

One word, integer.

Command byte.

None

This function instructs the driver to send a
SELECTED DEVICE CLEAR command to the bus.

Function Data None

Error Code None

SEND SERIAL
POLL DISABLE

Function Data

Error Code

SEND SERIAL
POLL ENABLE

Function Data

Error Code

SEND UNLISTEN
COMMAND

This function instructs the driver to send a
SERIAL POLL DISA~LE command to the bus.

None

None

This function instructs the driver to send a
SERIAL POLL ENABLE command to the bus.

None

None

This function instructs the driver to send
an UNLISTEN command to the bus.

Function Data None

Error Code None

IEEE-488 Driver 11-13

23

24

25

26

SEND UNTALK
COMMAND

Function Data

Error Code

GET DATA BYTE

Function Data

Data =$00NN

Error Code

TAKE CONTROL
ON END

Function Data

Error Code

TAKE CONTROL
SYNCHRONOUSLY

Function Data

Error Code

This function instructs the driver to send an
UNTALK command to the bus.

None

None

This function instructs the driver to read
a single byte from the bus. The bus talker
and listeners including the driver must have
been previously configured. If time-outs are
enabled a time-out will be started.

One word returned.

Space into which the driver places the byte.

None

This function instructs the driver to take
control of the bus following the next END
message.

None

None

This function instructs the driver to TAKE
CONTROL SYNCHRONOUSLY after the next data
byte transfer.

None

None

27 SEND.SERIAL POLL This function instructs the driver to send a
SERIAL POLL to a list of devices. The list
is terminated with an illegal device address

IEEE-488 Driver 11-14

28

29

30

Function Data

Word 1 $NNNN
Word 2 $XXXX
Word 3 $NNNN
Word 4 $XXXX

Word N $3F3F

Error Code

TAKE CONTROL
ASYNCHRONOUSLY

Function Data

Error Code

DISABLE
TIME-OUTS

such as the printable characters"??". The
device response is entered into the location
in the Function Packet following the device
address.

Several words following the COMMAND number.

Device address.
Space for device status response.
Device address.
Space for device status response.

?? terminates the list.

None

This function instructs the driver to TAKE
CONTROL ASYNCHRONOUSLY regardless of the
current bus state.

None

None

This function instructs the driver to dis
able time-outs.

Function Data None

Error Code None

SET TIME-OUT

Function Data

Data = $NNNN

Error Code

This function instructs the driver to enable
time-outs and specifies the time-out interval
in the DATA word.

One word, integer.

Time-out period, number of 50-ms intervals.

None

IEEE-488 Driver 11-15

32

33

34

35

SPECIFY EOS
CHARACTER

Function Data

Data = $NNOO

Error Code

SEND DATA BYTE

Function Data

Error Code

SET DMA LIMIT

Function Data

Data = $NNNN

Error Code

ACTIVATE TALKER

Function Data

This function allows the user to specify
the EOS character for EOS generation and
detection. The character must be in the
least significant byte of the DATA word.

One word, integer.

Specifies EOS character.

None.

This function instructs the driver to send a
data byte to the bus. The computer system
must be configured as a talker. If time-outs
are enabled a time-out will be started. The
DATA word specifies the data byte to be
transmitted.

One word, integer.

None.

This function tells the driver the limit at
which data transfers switch from direct I/O
to DMA. If time-outs ae enabled while DMA is
progress the time-out period is 50-ms
multiplied by the record length.

One word, integer.

Specifies the limit at which DMA is in effect

None

This function instructs the driver to
activate the "addressed-as-talker" event when
the computer system is a talker/listener.
The event name is 1 TLKR 1 •

None

IEEE-488 Driver 11-16

36

37

38

39

40

Error Code

DEACTIVATE
TALKER

Function Data

Error Code

ACTIVATE
LISTENER

Function Data

Error Code

DEACTIVATE
LISTENER

Function Code

Error Code

ACTIVATE SRQ
EVENT

Function Data

Error Code

DEACTIVATE SRQ
EVENT

None

This function instructs the driver to
de-activate the "addressed as talker" event.

None

None

This function instructs the driver to
activate the "addressed as listener" event
when the computer system is a
talker/listener. The event name is 'LSNR'.

None

None

This function instructs the driver to
de-activate the "address as listener" event.

None

None

This function instructs the driver to
activate the SRQ event when the computer
system is the bus controller. The event name
is "SQ----" where the last two characters are
filled in with the device bus address.

None

None

This function instructs the driver to
de-activate the SRQ event for a particular
device.

IEEE-488 Driver 11-17

41

42

Function Data

Error Code

SRQ (SERVICE
REQUEST)

Function Data

Data = $00NN

Error Code

SET OPTIONS

Function Data

None

None

This function instructs the driver to send an
SRQ to the bus while the computer system is
talker/listener. The least significant byte
of the DATA word is sent to the bus
controller during SRQ polling.

One word, integer.

Specifies status.

None.

This function sets driver options.

BIT NO. SET TO OPTION USE

15

14-6

5

4

3

2

0
1

0

0
1

0
1

0
1

0

Option word select
Ignore option word.
Use option word.

Not used at present.
User sets these bits to zero.

Parallel Polling
No parallel polling.
Configures device for parallel polling.

Service Request
Device does not have service request capability.
Device has service request capabilities.

Time-outs
Time-outs are enabled.
Time-outs are disabled.

EOS character size.
7 bit EOS character

IEEE-488 Driver 11-18

1

0

43

44

1 8 bit EOS character.

EOS auto generation.
0
1

EOS character is not auto generated.
EOS character is auto generated.

EOS auto detection
0
1

EOS auto detection disabled.
EOS auto detection enabled.

Error Code

GET OPTIONS

Function Data

Data = $00NN

Error Code

GET DIBTRN

Function Data

Data = $0000
= $0001

Error Code

None

Return data as specified above.

One word returned, integer.

As above.

None.

Get the current transfer mode.

One word returned, integer.

In fixed-length mode
In variable-length mode

None.

45 GET EOS CHARACTER Get the current EDS character.

Function Data One word returned, integer.

Data = $DOON The EOS character.

Error Code None.

46 GET DMA LIMIT Get the current DMA limit.

Function Data One word returned, integer.

IEEE-488 Driver 11-19

47

48

Data = $NNNN

Error Code

GET HANDSHAKE
MODE

Function Data

Data = $000N

Error Code

GET TIME-OUT

Function Data

Data = $NNNN

Error Code

Character count at which DMA is invoked.

None.

Get the current handshake mode.

One word returned, integer.

None.

Get the current time-out interval.

One word returned, integer.

None.

IEEE-488 Driver 11-20

....
_;:;

CS/9000 COMPUTER SYSTEM
~ Able to talk, listen, and control

t:t .. , ... :

:
·, :.:: ~ ., : . .. : .

DEVICE A
Only able to listen

lL
:: ;

DEVICE B
Only able to talk.

L.I. .: ~

DEVICE C
Able to talk or listen.

t.D ~ . :·· :Cc

....
_;:;

DEVICE D _,i;,

Only able to control.
_,.

·'.::)''':. ?~

2i.i ~ '<:

Figure 11-1. IEEE-488 Bus

...l'.......&.

:

'···

REN

SRO

EOI

ATN

IFC

DAV

l Control
~Lines

NDAC } Handshake
Lines

NRFD

,_) ls Data
\Lines

IEEE-488 Driver 11-21

12.0 PARALLEL PORT DRIVER

12.1 DRIVER DESCRIPTION

The parallel port is a bidirectional 8-bit interface with 2-line
handshaking in each direction. The driver supports both fixed and
variable length WRITEs and READs. Both asynchronous and synchronous
operations are supported as well as byte I/O. The transfer mode may be
changed from fixed or variable length with a standard Function packet.
Standard Error Codes are returned by the driver for invalid control blocks
or unsupported operations. See paragraph 12. 5. The default device
timeout period is five seconds. For specific hardware implementation
information, see the "Computer System Technical Reference Manual".

The parallel port can be opened by only one task at a time.

The attributes of the parallel port driver are as follows:

(1) It is non-sharable
(2) It does not support asynchronous event posting
(3) It supports byte reads and byte writes but

not byte tests
(4) It supports asynchronous I/O
(5) It does not support attach or detach device

The default characteristics of the parallel port at open time are as
follows:

(1) Parallel printer mode (output strobed)
(2) Auto linefeed insertion on output
(3) Five second timeout
(4) Fixed-length transfers

12.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to the control block which is used at OPEN time to specify a
non-default mode of operation for the device.

Parallel Port Driver 12-1

12.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH

DIBVOL DS.B 6

DIBDTD DS.B 1

DIBTRN DS.B 1

DESCRIPTION OF USE

Device name. Use #PPU.

Data Transfer Direction.

Use 0 for fixed length or 1 for variable length
transfers.

DIBRSO DC.L 0,0 User sets this field to 0.

DIBOPT DC.W 0

DIBFCN DS.L 1

DIBBIO DS.L 1

Not supported by this driver. User sets this field
to 0.

Insert pointer to function packet; null for default.

System used Byte I/O field. To open the Parallel Port
driver for byte I/O enter -1 ($FFFF FFFF), otherwise
set it to zero. After open the I/O manager fills
this field with an identifier which is used for
SYSIO-BWRITE, SYSIO-BTEST and SYSIO-BREAD.

12.3 PARALLEL PORT DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during transfers. It is a required operand of the SYSIO
macro. The application program uses it to determine information required
in completing each data transfer request, and to monitor the status of the
transfer after the request has been made.

Parallel Port Driver 12-2

12.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH

DTCSTA DS.B 1

DTCTBU DS.B 1

DTCTBL DS.B 1

DTCRSO DC.B 0

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DESCRIPTION OF USE

User monitors this field for status on I/O operation.

User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

User puts lower limit to be used for Transfer
Termination characters in Variable length transfers
here.

This field is reserved. User sets this field to $00.

User puts Buffer starting address here.

User puts count of number of bytes in data buff er
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver after each byte
transmitted. It should be reset after every WRITE.

12.4 PARALLEL PORT FUNCTIONS

The Function Packet Control Block provides for device specific
operations. It is required for the FUNCTION command and optional for the
OPEN command. It is used by the application program to configure a device
to something other than its default mode.

The Function Packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero, indicating END-OF-LIST. The COMMAND word is
followed by a word that sends the immediate DATA for the COMMAND.

Parallel Port Driver 12-3

12.4. 1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
END LIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) $0021 WORD
GET TRANSFER MODE 2 ($0002) $0022 WORD
SET PARALLEL PORT MODE 3 ($0003) $0023 WORD
GET PARALLEL PORT MODE 4 ($0004) $0024 WORD
SET TIMEOUT 5 ($0005) $0025 WORD
GET TIMEOUT 6 ($0006) $0026 WORD
ENABLE/DISABLE AUTO 7 ($0007) $0027 WORD

LINEFEED
GET AUTO LINEFEED 8 ($000F) $0008 WORD

12.4.2 PARALLEL PORT FUNCTION DESCRIPTIONS

COMMAND

0

1

FUNCTION
PURPOSE

END LIST

FUNCTION DESCRIPTION

Terminates function packet processing.

Function Data None

Error Code None

SET TRANSFER
MODE

Activates Transfer Termination
checking to delimit a buffer that is being
transferred.

Function Data One word, integer.

Data = 0 Fixed-length transfer mode.

1 Variable-length transfer mode.

Error Code $0021 Invalid transfer mode.

Parallel Port Driver 12-4

2

3

4

5

Default =

GET TRANSFER
MODE

Data = 0

1

SET PARALLEL
PORT MODE

Data = 0

1

Error Code=$23

Default =

GET PARALLEL
PORT MODE

Data = 0

1

SET TIMEOUT

Data = $XXXX

$FFFF

Error Code=$25

Default =

Fixed-length transfers.

Get transfer mode, either fixed or
variable. Leave space for 1 word
following command.

Fixed.

Variable.

Adjust hardware to support unidirectional
or bidirectional mode.

Parallel printer mode.

Bidirectional.

Invalid Parallel Port Mode.

Parallel printer mode.

Get hardware mode of port, either
unidirectional or bidirectional.
Leave space for 1 word following command.

Parallel printer mode.

Bidirectional.

Set number of 50 millisecond intervals
driver will wait before assuming a
timeout has occurred on the device.

Number of 50 millisecond intervals.

Infinite timeout.

Invalid timeout specified.

$64 (5 seconds).

Parallel Port Driver 12-5

6

7

8

GET TIMEOUT

Data = $XXXX

$FFFF

ENABLE/DISABLE
AUTOLINEFEED

Data = 0

1

Error Code=$27

Default =

Gets timeout. Leave space for 1 word
following command

Number of 50 millisecond intervals.

Infinite timeout.

Enables or disables automatic linefeed
insertion into output streams following
carriage return ($OD characters.)

Disable autolinefeed.

Enable autolinefeed.

Invalid autolinefeed specifier.

Autolinefeed enabled.

GET AUTOLINEFEED Gets autolinefeed setting,

Data = 0

1

either 0 or 1. Leave space for 1 word
following command.

Autolinefeed disabled.

Autolinefeed enabled.

Note that when the parallel port is opened for the parallel printer mode
read operations are not permitted. In addition, the parallel printer
output will not work in bidirectional mode because of timing
characteristics of the port.

Parallel Port Driver 12-6

12.5 ERROR CODES

The following error codes are returned in hexadecimal to register D7.

Code Meaning

$0005

$000A
$000B
$000E
$000F
$0021
$0023
$0025
$0027
$0068
$006A
$006B

READ ERROR (trying to read in the parallel printer
mode).
DEVICE NOT READY.
BUFFER FULL ON WRITE BYTE.
INVALID CODE USED IN FUNCTION PACKET.
INVALID TRANSFER MODE SPECIFIED IN DIB.
INVALID VALUE FOR SET TRANSFER MODE DATA.
INVALID VALUE FOR SET PARALLEL PORT MODE DATA.
INVALID VALUE FOR SET TIMEOUT DATA.
INVALID VALUE FOR SET AUTOLINEFEED DATA.
BTEST IS NOT SUPPORTED BY THIS DRIVER.
ATTACH DEVICE IS NOT SUPPORTED BY THIS DRIVER.
DETACH DEVICE IS NOT SUPPORTED BY THIS DRIVER.

Parallel Port Driver 12-7

13.0 INTERTASK COMMUNICATION CHANNELS DRIVER

13.1 DRIVER DESCRIPTION

The Intertask Communication Channels are provided as a means of exchanging
data between two concurrent tasks consistent with the I/O structure of the
computer system. Each channel consists of two software (pseudo) devices,
a Read Channel and Write Channel. Device names are #ITRXX for Write
Channels and ITWXX for Read Channels where xx is the channel ID number.
Communication can only occur between devices with the same channel ID
number. For example device #ITWOl can write to device #ITROl. At
coldstart the system attaches intertask channel 01 consisting of devices
#ITROl and #ITWOl. Additional channels may be added using the ITCGEN
System Call #58 and providing a unique two character printable ASCII
channel ID number in register DO and clearing register Dl.W. Variable and
fixed length block transfer requests in synchronous or asynchronous mode
are supported. Time-out periods may be set via function packets. If a
request cannot be completed, it will be suspended until it is completed or
until it times out. Requests are queued on a first-in-first-out basis.

13.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open an intertask channel the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN using one of the Device Names
specified under DIBVOL.

Intertask Communication Channels Driver 13-1

13.2.1 DIB FORMAT

MNEMONIC

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DATA
LENGTH

DS.B

DS.B

DS.B

DC.L

DC.W

DS.L

DC.L

6

1

1

0,0

0

1

0

DESCRIPTION

Device name. Use #ITWXX or #ITRXX
where XX represents the channel
identifier.

Data Transfer Direction.
Enter 0 for WRITE, 1 for READ.

Enter 0 for Fixed length or 1 for
Variable length transfers.

User sets this field to 0.

Not used by this driver. User sets this
field to 0.

Insert pointer to function packet; null
for default.

Not used by this driver. User sets this
field to 0.

13.3 DATA TRANSFER CONTROL BLOCK (DTCB)

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during READ's and WRITE's. It is a required operand of the
SYS IO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made.

Intertask Communication Channels Driver 13-2

13.3.1 DTCB FORMAT

MNEMONIC

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DATA
LENGTH

DS.B

DS.B

DS.B

DC.B

DS.L

DS.W

DS.W

1

1

1

0

1

1

1

DESCRIPTION OF USE

User monitors this field for status on I/O
operation.
NOTE: During asynchronous operations, a DTSTA
field greater than $2F indicates that the DTC
buffer has been emptied and that the task is
free to re-use the data area.

User puts upper limit to be used for Transfer
Termination characters in Variable length
transfer here.

User puts upper limit to be used for Transfer
Termination characters in Variable length
transfer here.

This field is reserved. User puts zero here.

User puts Buffer starting address here.

User puts count of number of bytes in data
buffer here.

User puts byte offset into buffer (if any) to
the first byte of the record. This pointer will
be incremented by the driver for every byte
transmitted. It must be reset after every
READ/WRITE.

13.4 INTERTASK COMMUNICATION CHANNEL FUNCTIONS

The Function Packet Control Block provides for device specific
operations not necessarily involving data transfer. It is required for
the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than
its default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more word or longwords that send or receive the

Inte~task Communication Channels Driver 13-3

immediate DATA for the command, or a longword that points to the DATA
for that COMMAND.

13.4.1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the
SYSIO-FUNCTION command of the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
END LIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) $0021 WORD
GET TRANSFER MODE 2 ($0002) NONE WORD
SET TIMEOUT 3 ($0003) $0023 WORD
GET TIMEOUT 4 ($0004) NONE WORD

13.4.2 FUNCTION DESCRIPTIONS

COMMAND

0

FUNCTION
PURPOSE

ENDLIST

FUNCTION DESCRIPTION

Terminates processing of the function
packet.

Function Data None

Error Code None

1 SET TRANSFER MODE Activates Transfer Termination Character

Function Data

Data = $0000
$0001

Error Code=$0021

checking to delimit a record that is being
transferred.

One Word, integer.

Selects Fixed length transfer mode.
Selects Variable length transfer mode.

Data out of limits.

Intertask Communication Channels Driver 13-4

2 GET TRANSFER MODE Returns the current transfer mode in the

3

4

13.5

$0000
$0006
$0009
$000D
$000E
$000F

$0010
$0011

Function Data

Error Code

SET TIMEOUT

Function Data

Data = $XXXX

Error Code=$0023

GET TIMEOUT

Function Data

Data = $XXXX

Error Code

ITC ERROR CODES

NO ERROR

data word.

One Word, integer.

None

Sets timeout period in units of 50
milliseconds.

One Word, integer.

Specifies number of 50 millisecond
periods.

Returns the current timeout period.

One Word, integer.

Specifies the current timeout period in
SO millisecond units.

None

ILLEGAL DATA TRANSFER DIRECTION IN DIB
VARIABLE RECORD EXCEEDS BUFFER LENGTH
REQUEST CANCELLED
FUNCTION NUMBER NOT SUPPORTED
ILLEGAL DATA TRANSFER MODE

DUPLICATE ITC IDENTIFIER
INVALID ITC IDENTIFIER

Intertask Communication Channels Driver 13-5

$0015
$0016
$0017
$0018
$0019

$0021
$0023

$0062
$0063
$0065
$0066
$0068
$006A
$006B

$0070
$0071
$0072
$0073
$0075
$0076
$0077
$0078

LOWER TRIGGER BYTE EXCEEDS UPPER TRIGGER BYTE
BUFFER OFFSET EXCEEDS BUFFER LENGTH
EITHER BUFFER LENGTH OR OFFSET ILLEGAL
NO AVAILABLE SYSTEM MEMORY
RETURN OF SYSTEM MEMORY FAILED

INVALID TRANSFER MODE
INVALID TIME OUT PARAMETER

READ NOT SUPPORTED FOR THIS DEVICE
WRITE NOT SUPPORTED FOR THIS DEVICE
WTBYTE NOT SUPPORTED FOR THIS DEVICE
RDBYTE NOT SUPPORTED FOR THIS DEVICE
TSTBYTE NOT SUPPORTED FOR THIS DEVICE
ATACHDEV NOT SUPPORTED FOR THIS DEVICE
DTACHDEV NOT SUPPORTED FOR THIS DEVICE

READ WAIT FAILED
WRITE WAIT FAILED
READ SIGNAL FAILED
WRITE SIGNAL FAILED
REQUEST TIMED OUT
CHANNEL(S) IN USE DRIVER WILL NOT BE DETACHED
ERROR IN COLDSTART SEQUENCE
ERROR IN DETACH SEQUENCE-DETACH INCOMPLETE

Intertask Communication Channels Driver 13-6

14.0 AID CONVERTER DRIVER

14.1 DRIVER DESCRIPTION

The A/D converter driver allows a user to write application programs which
collect data from A/D converter channels on the sensor I/O board. NOTE:
The sensor I/O board option must be installed and certain hardware jumper
options must be made to the board. The "ATCHDRV SENSOR" command must have
been issued in order to use this driver. For hardware implementation, see
the "Computer System Technical Reference Manual."

The A/D converter driver supports synchronous and asynchronous read
requests. The Data Transfer Control Block (DTCB) specifies the buffer
address and buffer length in bytes. The buffer address must be word
aligned. The data returned to the buffer is in a scaled 32-bit integer
format. The relationship between the returned value and the actual
voltage is:

returned value
Actual voltage (V) =

1048576
1,048,576 = 1 volt

The specified channels are sampled and stored in the buffer in sequential
order. If the returned value is $7FFF FFFF an overrange condition has
occurred in the positive direction. $10000001 indicates a negative
overrange.

The default settings are 30 samples per second, unity gain, non-shared
access, no attenuation, no alternate channels, no bias, no summing and no
averaging.

14.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is uniqu~
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

A-D Converter Driver 14-1

To open an A/D Converter Channel the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device. When this is
done all standard SYSIO operations described in Chapter 1 are allowed,
except byte I/O.

14.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL DS.B 6 Device name. Use #ADCOO, #ADCOl, #ADC02 or #ADC03.

DIBDTD DC.B 1 Data Transfer Direction. Use 1. This device is READ
only.

DIBTRN DC.B 0 Enter 0 for fixed length.

DIBRSO DC.L 0,0 User set this field to 0.

DIBOPT DS.W 1 Insert option word described in paragraph 14.2.2.

DIBFCN DS.L 1 Insert pointer to function packet; null for default.

DIBBIO DC.L 0 Not used. User sets this field to 0.

14.2.2 DIB OPTION WORD BIT DEFINITIONS

If the option word field is nulled at open time the system will use the
"set to o" condition specified for each bit as described in the following
table.

BIT SET
NO. TO OPTION USE

15 Option word select

0 Ignore option word
1 Use option word

14-10 Not currently used
0 Set to zero

A-D Converter Driver 14-2

9

8

7-0

0
1

0
1

0

Attenuation (Note: A hardware jumper must be installed)
No attenuation
Attenuation on

Shared Access
Only one "OPEN" at a time
More than one "OPEN" at a time.

Not currently used.
Set to zero.

14.3 A/D CONVERTER DATA TRANSFER CONTROL BLOCK (DTCB)

The data transfer control block (DTCB) holds I/O status and buffer
information during READs. It is a required operand of the SYSIO macro.
The application program uses it to determine information required in
completing each data transfer request, and to monitor the status of the
transfer after the request has been made.

HNEMONIC

DTCSTA

DTCTBU

DTCTBL

DTCRSO

DTCBFS

DTCBFL

DTCBPT

DATA
LENGTH DESCRIPTION OF USE

DS.B 1

DC.B 0

DC.B 0

DC.B 0

DS.L 1

DS.W 1

DS.L 1

User looks here for status on I/O operation.

Not used by A/D Driver.

Not used by A/D Driver.

This field is reserved. User puts zero here.

User puts Buffer starting address here.

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte
transmitted. It must be reset after every READ.

A-D Converter Driver 14-3

14.4 A/D CONVERTER FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
specifying alternate channel sampling or shared access. It is required
for the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than its
default mode.

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more bytes, words or longwords that send or receive
the immediate DATA for the command, or a long word that points to the DATA
for that COMMAND.

14.4.1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
END LIST 0 ($0000) NONE NONE
SET GAIN 1 ($0001) $0021 WORD
SET SAMPLERATE 2 ($0002) $0022 LONG WORD
AVERAGING 3 ($0003) $0023 WORD
ALTERNATE CHANNELS 4 ($0004) $0024 SEVERAL WORDS
PASS SUM 5 ($0005) $0025 WORD
SET BIAS 6 ($0006) NONE LONG WORD

A-D Converter Driver 14-4

14.4.2 A/D CONVERTER FUNCTION DESCRIPTIONS

FUNCTION
COMMAND PURPOSE

0 ENDLIST

1

Function Data

Error Code

SET GAIN

Function Data

Data =$0000
$0001
$0004
$0020
$0100

FUNCTION DESCRIPTION

Terminates processing of the function packet.

None

None

Allows the user to select AUTORANGE mode in
which the A/D converter self-adjusts its gain
to an optimum scale to make the reading or to
FIXED GAIN mode in which the gain may be fixed
at 1, 4, 32 or 256.

One word, integer.

Specifies AUTO RANGE
Gain of 1
Gain of 4
Gain of 32
Gain of 256

Error Code=$0021 Data out of limits.

2 SET SAMPLE RATE Allows the user to specify the sample rate in

3

Function Data

microseconds (up to 33,333ms). The hardware
has a maximum sample rate of 30 samples per
second.

One long word, integer

Error Code $0022 Data out of limits.

AVERAGING If a sample rate slower than 30 samples per
second is selected the user may use this
function to specify that the data returned to
the application program be the average of all
the data converted during the sample period.

A-D Converter Driver 14-5

4

5

6

Function Data

Data = $0000

$0001

One word, integer.

Averaging is not used. The value returned is
that of the last sample taken in the period.

Averaging is in effect.

Error Code=$0023 Data out of limits.

ALTERNATE
CHANNELS

Function Data

Data = $0003
$0000
$0002
$0001
$FFFF

Error Code $0024

PASS SUM

Function Data

Data = $0000
$0001

This function allows data to be collected from
more than one A/D converter on the same Sensor
I/O Board. The DATA is a list of words, each
word specifies the channel that is to read
during that sample period.

Several words ending with $FFFF

Read channel 3 in this time period.
Read channel 0 in this time period.
Read channel 2 in this time period.
Read channel 1 in this time period.
Specifies end of list.

Data out of limits.

This function allows the user to specify that
the sum of all the data converted during a
sample period is to be returned to the
application program. This function requires
that averaging be specified also.

One word, integer.

Data is not summed.
Data is summed.

Error Code $0025 Data out of limits.

BIAS This function causes a fixed value specified
by the D.ATA long word to be added as a BIAS
to the data returned. The value must be a
scaled value. One volt is 1,048,576 or

A-D Converter Driver 14-6

$00100000. Two volts bias would be
$00200000, three volts $00300000, etc.

Function Data One long word, integer.

Data $NNNN NNNN Specifies value of the BIAS.

Data Example= $00AOOOOO is a bias of 10 volts.

Error Code None

14.5 ERROR CODES

The following error codes have been defined and may be returned by this
driver.

ERROR CODE

16 ($0010)

17 ($0011)

18 ($0012)

MEANING

DEVICE LOCKED. (OPEN ATTEMPTED AGAINST EXISTING
NON-SHARED OPEN.)
DEVICE ALREADY OPEN. (NON-SHARED OPEN ATTEMPTED
AGAINST AN EXISTING SHARED OPEN.)
A/D OVERRANGE.

A-D Converter Driver 14-7

15.0 SWITCH INPUT DRIVER

15. 1 DRIVER DESCRIPTION

The switch input driver allows an application program to detect the
momentary closure of one of the switch inputs on the sensor I/O board.
NOTE: The sensor I/O board option must be installed and the "ATCHDRV
SENSOR" Command must have been issued in order to use this driver. (For
hardware implementation, see the "Computer System Technical Reference
Manual.") Each switch is viewed as a separate device with device names of
#SWIOO thru #SWI07. Figure 15-1 shows the relationship between channel
numbers, start-stop designations and device names. Also note from Figure
15-1 that the status registers are all reset after every READ. This means
that the READ will be destructive to the data contained in other switch
registers. In addition the switched input should be a momentary closure
as shown in the "Typical Switch Input" in Figure 15-1. The momentary
closure is detected and latched by the data latch. The output of the data
latch will be a steady high or low which will be passed through the data
register when read and reset by the READ. The driver supports byte,
synchronous and asynchronous READ requests but only one value is returned,
0 for OPEN or 1 for CLOSED. For synchronous and asynchronous READ
requests the driver will wait for the next time that a switch is pressed
and at that time the driver puts a 1 in the buffer and the request is
terminated. Specifying #SWI08 at OPEN causes the driver to return a bit
significant byte in which the bits numbers correspond directly with the
switch numbers. 11110110 ($F6) would indicate that all switches except
#SWIOO and #SWI03 were closed. Asynchronous I/O is only allowed on
#SWI08.

15.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open a switch input the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the

Switch Input Driver 15-1

: Channel 1
I

Channel 2

Stop
SVVIOG

I Start

:~
Stop 1 Start

SVVl07 I SWI02
.. j_.._ --6

Channel3
I

1 Start

:~
Stop

SVV105 --
(18

I
1 Channel 4 1

I
1 Start
1 SVVIOO
1--

24

I
Stop 1

SVVI04 I
--1

I ::l Normally

Normal

Closed Contacts ~? : i;> s

ly Ope-;; Co;:;-ta~t;\ : Q30

10~: i;>11

j_31:

112 16j_: Q17

Q36 \)37 l
221: 1'23 I _L

Q42 1_43 : Q48 49 1]_
!)

1
1 System

------.. Reset
Logic

lrl ~
l__J ~

I

~TYP L
a

c_ R 1-- L__ L__ I--' ~ I-'
.--

..--- Data Data Data Data i--,
Latch Latch r Latch

I
Latch Jl

I I

I I

I,

I I

I

'

i I

j I I I

i i 1 Status Reset

~-on Read

J_ ~ JJJ r

l 1 __.r: :!::._ __:c
1~--

Data Register

r l l I

Data Byte

Figure 15-1.

Typical Switch Input
SPOT

Momentary Contact
S n Switch pring Retur

l

NO. ~NC

Inter nal
c
nd

Logi
Grou

Switch Input Driver 15-2

15.2.1 DIB FORMAT

MNEMONIC

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DATA
LENGTH

DS.B 6

DC.B 1

DC.B 0

DESCRIPTION OF USE

Device name. Use #SWIOO, #SWIOl, #SWI02, #SWI03,
#SWI04, #SWI05, #SWI06 or #SWI07 or #SWI08.

Data transfer direction. Use 1. This driver is
READ only.

Enter 0 for Fixed length.

DC.L 0,0 Set this field to 0.

DC.W 0

DC.L 0

DS.L 1

Insert option word described in paragraph 15.2.2.

Not used by this driver. Fill space with null.

System used Byte I/O field. To open the switch
input for Byte I/O enter -1 ($FFFF FFFF), otherwise
set it to zero. After open the I/O manager fills
this field with an identifier which is used for
SYSIO-BREAD.

15.2.2 DIB OPTION WORD BIT DEFINITIONS

If the option word field is nulled at open time the system will use the
"set to O" condition specified for each bit as described in the following
table.

BIT NO. SET TO OPTION USE
------- ------ ----------

15 Option word select
0 Ignore option word
1 Use option word

14-9 Not currently used
0 Set to zero

8 Shared Access
0 Only one "OPEN" at a time

Switch Input Driver 15-3

1

7-0
0

More than one "OPEN" at a time

Not currently used
Set to zero

15.3 SWITCH INPUT DATA TRANSFER CONTROL BLOCK (DTCB)

The data transfer control block (DTCB) holds I/O status and buffer
information during READs. It is a required operand of the SYSIO macro.
The application program uses it to determine information required in
completing each data transfer request, and to monitor the status of the
transfer after the request has been made.

15.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH
-------- ------

DTCSTA DS.B 1

DTCTBU DC.B 0

DTCTBL DC.B 0

DTCRSO DC.B 0

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DESCRIPTION OF USE

User looks here for status on I/O operation.

Not used by this driver. Set to 0.

Not used by this driver. Set to 0.

This field is reserved. User sets this field to 0.

User puts Buffer starting address here.

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ.

Switch Input Driver 15-4

15.4 SWITCH INPUT FUNCTIONS

This driver does not use Function Packets.

15.5 ERROR CODES

The following error codes have been defined and may be returned by this
driver.

ERROR CODE

16 ($0010)

17 ($0011)

MEANING

DEVICE LOCKED. (OPEN ATTEMPTED AGAINST EXISTING
NON-SHARED OPEN.)
DEVICE ALREADY OPEN. (NON-SHARED OPEN ATTEMPTED
AGAINST AN EXISTING SHARED OPEN.)

Switch Input Driver 15-5

16.0 LED OUTPUT DRIVER

16.1 DRIVER DESCRIPTION

The LED output driver allows the user to write application programs which
switch TTL level outputs on eight output lines which appear on connector
JA3 of the sensor I/O board.

Note: The sensor I/O board option must be installed and the "ATCHDRV
SENSOR" command must be invoked in order to use this driver. For
hardware implementation, see the "Computer System Technical
Reference Manual."

Only Byte I/O output using SYSIO BWRITE is supported by this driver. Each
output line is viewed by the driver as a separate device with device names
of #LEDOO through #LED07. A byte output of zero is used to output a logic
0 and any non-zero byte output will output a logic 1 (TTL levels). Each of
the outputs is latched by a 74LS174 Data Latch and driven by an Am2946 Bus
Driver. See Figure 16-1 for the specific pinouts on JA3 and note that
eight 270 ohm pullup resistors have been made available to nearby pins on
JA3. These resistors are provided for LED current limiting. Four pins
are also provided to connect logic ground with an external logic ground so
that an external 5 volt voltage source can be used to drive a 5 volt relay.
This source must be capable of providing enough current to drive the relay
and the relay must be diode shunted as shown or damage to the bus driver
may occur.

16.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open a LED-OUTPUT Channel the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device. When this is
done the SYSIO BWRITE operation may be used.

LED Output Driver 16-1

External +5V ..___~

~~o
Typical Relay Connection External Logic Ground

26

+5V

20
BO 81

:ti:LED 00 01 02 03 04 05

Am2946 Bus Driver

AO A3 A4 A5 A6
1 4 5 6 7

Address Decoding and Write Logic

Figure 16-1. LED Output Circuits

Typical LED Connection

06

A7
8

//

Internal
Logic Ground

All resistors
are 270.n.

07

9 10

74LS174
Data Latches

LED Output Driver 16-2

16.2.1 DIB FORMAT

DATA
MENMONIC LENGTH

DIBVOL DS. B 1

DIBDTD DS.B 1

DIBTRN DC.B 0

DESCRIPTION OF USE

Device name. Use #LEDOO, #LEDOl, #LED02, #LED03,
#LED04, #LEDOS, #LED06 or #LED07.

Data Transfer Direction. Use 0. This device is
WRITE only.

Enter 0 for fixed length.

DIBRSO DC.L 0,0 Set this field to 0.

DIBOPT DS.W 1

DIBFCN DC.L 0

DIBBIO DS.L 1

Insert option word described in paragraph 16.2.2.

Not used by this driver. Set this field to 0.

System used Byte I/O field. To open the LED OUTPUT
driver for Byte I/O enter -1 ($FFFF FFFF).
After open the I/O manager fills this field with
an identifier which is used for SYSIO-BWRITE.

16.2.2 DIB OPTION WORD BIT DEFINITIONS

If the option word field is nulled at open time the system will use the
"set to o" condition specified for each bit as described in the following
table.

BIT NO.

15

14-9

8

SET TO

0
1

0

0
1

OPTION USE

Option word select
Ignore option word
Use option word

Not currently used
Set to zero

Shared Access
Only one "OPEN" at a time
More than one "OPEN" at a time.

LED Output Driver 16-3

7-0
0

Not currently used
Set to zero

16.3 LED OUTPUT DATA TRANSFER CONTROL BLOCK (DTCB)

This driver does not use a DTCB. Output bytes are passed to the driver in
register DO. B.

16.4 LED OUTPUT FUNCTIONS

This driver does not use Function Packets.

16.5 ERROR CODES

The following error codes have been defined and may be returned by this
driver.

ERROR CODE

16 ($0010)

17 ($0011)

MEANING

DEVICE LOCKED. (OPEN ATTEMPTED AGAINST EXISTING
NON-SHARED OPEN.)
DEVICE ALREADY OPEN. (NON-SHARED OPEN ATTEMPTED
AGAINST AN EXISTING SHARED OPEN.)

LED Output Driver 16-4

17 .0 SENSOR BOARD PARALLEL PORTS DRIVER

17.1 DRIVER DESCRIPTION

The sensor board parallel ports driver allows the user to write
application programs which interface with the parallel ports on the sensor
I/O board. NOTE: The sensor I/O board option must be installed and the
"ATCHDRV SENSOR 11 Command must have been issued in order to use this
driver. There are four parallel ports each with a separate device name.
These ports appear on connector JAl. See Figure 17-1 and refer to the
Computer System Technical Reference Manual for further details. The ports
can be opened in units of bits, bytes or words. When bit I/O is desired
the bit number must be specified. See paragraph 17.2.2. This driver
supports synchronous and byte I/O only.

17.2 DEVICE INITIALIZATION BLOCK (DIB)

11DIB 11 refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open the Parallel Ports Driver the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device.

17 .2.1 DIB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL DS.B 1 Device name. Use tJPPAOO, #PPAOl, #PPBOO or #PPBOl.

DIBDTD DS.B 1 Data Transfer Direction. Use 0 for WRITE, 1 for
READ or 2 for bidirectional.
Bidirectional transfers must be done in
strobed-mode.

Sensor Board Parallel Ports Driver 17-1

DIBTRN DC.B 0 Enter 0 for fixed length, or 1 for variable length.
Variable length is used only in byte mode.

JA1

#PPAOO

Status Input Input Status
Input

Input Only
and

and Only and and
Hand- or Output Hand- or

Output shake Output shake Output

Only Only

'\ ., 7

\ I I

1PortB 1 / Port B'
I /

I I I
/ /

/
\ I I I ./' /

\ I I/
/ /

/
\ I I/ /

' \~ ; /

' /

' Control -1 '
/I' Contrcl

Register L-->. ~-.J Register

Write Only r-----, ,..- - - - - .., Write Only
..... ,,.

8255

High Low
Order Order
Byte Byte

16 Bit Data Bus

Figure 17-1. Sensor Board Parallel Ports

Sensor Board Parallel Ports Driver 17-2

DIBRSO

DIBOPT

DIBFCN

DIBBIO

DC.L 0,0 User sets this field to 0.

DC.W 0

DC.L 1

DS.L 1

Insert option word described in paragraph 17.2.2.

Not used by this driver. Set to zero.

System used Byte I/O field. To open the Parallel
Ports driver for Byte I/O enter -1 ($FFFF
FFFF), otherwise set it to zero. After open the I/O
manager fills this field with an identifier which is
used for SYSIO-BREAD, SYSIO-BWRITE. Byte I/O only
allowed with non-strobed mode.

17 .2.2 DIB OPTION WORD BIT DEFINITIONS

If the option word field is nulled at open time the system will use the
"set to 011 condition specified for each bit as described in the following
table.

BIT NO. SET TO OPTION USE
------- ------ ----------

15 Option word select
0 Ignore option word
1 Use option word

14 Non-strobed I/O
0 Strobed I/O (Not legal for bit 1/0).
1 Non-strobed I/O

13-11 Bit number for bit I/O
NNN Specifies bit number (0-7)

10-9 Size
00 Byte I/O.
01 Bit I/O.
10 Word I/O.

8 Shared Access
0 Only one "OPEN" at a time.
1 More than one "OPEN" at a time.

7-0 Not currently used.
0 Set to zero.

Sensor Board Parallel Ports Driver 17-3

17 .3 SENSOR BOARD PARALLEL PORTS DATA TRANSFER CONTROL BLOCK
(DTCB)

The data transfer control block (DTCB) holds I/O status and buffer
information during READs and WRITEs. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer after the request has been made.

17 .3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH

DTCSTA DS.B 1

DTCTBU DC.B 0

DTCTBL DC.B 0

DTCRSO DC.B 0

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DESCRIPTION OF USE

User looks here for status on I/O operation.

Upper limit termination character for variable length
transfers. User puts zero here for other transfers.

Lower limit termination character for variable length
transfers. User puts zero here for other transfers.

This field is reserved. User puts zero here.

User puts Buffer starting address here.

User puts count of number of bytes in data buffer
here.

User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ/WRITE.

17 .4 SENSOR BOARD PARALLEL PORTS FUNCTIONS

This driver does not use Function Packets.

Sensor Board Parallel Ports Driver 17-4

17 .5 ERROR CODES

The following error codes have been defined and may be returned by this
driver.

ERROR CODE

16 ($0010)

17 ($0011)

20 ($0014)

MEANING

DEVICE LOCKED. (OPEN ATTEMPTED AGAINST EXISTING
NON-SHARED OPEN.)
DEVICE ALREADY OPEN. (NON-SHARED OPEN ATTEMPTED
AGAINST AN EXISTING SHARED OPEN.)
ILLEGAL OPEN MODE.

Sensor Board Parallel Ports Driver 17-5

18.0 COUNTER DRIVER

18.1 DRIVER DESCRIPTION

The sensor I/O board has an Intel 8253 programmable counter chip which is
made available to the user by means of the COUNTER driver. The sensor I/O
board option must be installed and the "ATCHDRV SENSOR" command must be
used to "attach" and use this driver. (For hardware implementation, see
the "Computer System Technical Reference Manual.") The 8253 contains
three individually programmed 16-bit counters, two of which are available
to the user by means of the COUNTER driver, the third being used by the
system. The hardware outputs and inputs are made' available on RS-232
connector JA2 in accordance with Table 18-1 below.

Counter Number I 1 I 2
-------------------1-----1-------
Output Pin Number

External Clock Input Pin Number
Gate Input Pin Number

1 22 I 49
I 24 I 47
I 23 I 48

Table 18-1. JA2 Pin Assignments for the Programmable Counters

The two counters may be started or stopped and have their mode of
operation changed through the use of function commands. Six modes of
operation may be specified as follows:

MODE 0 -- This mode generates an interrupt which allows an
application program to continue. The user programs
the counter for MODE 0, sets the count and starts
the countdown via function packets using the SYSIO
FUNCTION macro. The next instruction in the applica
tion program must be a SYSIO WRITE macro which is
used as a pseudo instruction to "wait" for the
counter to count down. When the counter reaches
zero, the instruction following the WRITE will be
executed.

MODE 1 -- This mode allows the counter to be used as a program
mable one-shot. The output on the pin specified in
Table 18-1 will go low on the count following the
rising edge of the gate input on the pin specified
in Table 18-1. When the count reaches zero the output
returns hig_h. The counter may be read at any time
without affecting the one-shot pulse by using the
SYSIO READ macro. If a new count value is issued via

Counter Driver 18-1

function packet and the SYSIO FUNCTION macro while the
output of the counter is low it will not affect the
duration of the one-shot pulse until the next
trigger pulse appears on the gate input. The one-shot
is retriggerable, therefore the output will remain
low for the full count after any raising edge
of the gate input.

MODE 2 -- This mode allows the counter to be used as a Rate
Generator or Divide by N counter. When the mode
is set the output on the pin specified in Table 18-1
will remain high until the count register is loaded
via the START COUNT Function, at which time the
output will go low unless the gate input
is low, therefore the counter may be started in two
ways. The first is by software and requires that
the gate input be high. The counter is loaded via
the SET COUNT function and then started via the
START COUNT function. The second way is by
releasing the gate input from a held low state
and bringing it high. While it is low the output
pin specified in Table 18-1 will stay high even if
the START COUNT function is issued. ·The counter
will start from the initial count loaded when the
gate input can be used to synchronize the counter.
The output of the counter will be low for one
period of the input clock. If the internal 2 MHz.
clock input is jumper selected this period will be
.5 µs. The period from output pulse to output
pulse will equal the counts loaded via SET COUNT.

MODE 3 -- This mode is similar to MODE 2 except that the
output remains high until one half of the count
has been completed (for even numbers) and go
low for the remainder of the count, therefore
the counter can be programmed to be a Square
Wave Rate Generator. If the count is set with
an odd value the output on the pin specified in·
Table 18-1 is high for that value plus one
divided by two or in formula notation (N+l)/2
and low for (N-1)/2 counts.

MODE 4 -- This mode allows the counter to be used as a
Software Triggered Strobe. When the mode is
set the output goes high and stays there
until the counter reaches zero, at which time
the output goes low for one clock period,
and then returns high again. The count is
set and the counter started via function

Counter Driver 18-2

packets using the SYSIO FUNCTION macro.

MODE 5 -- This mode allows the counter to be used as a
Hardware Triggered Strobe. The mode is set,
the count is loaded and the counter started
via function packet using the SYSIO FUNCTION
macro. The counter will not start counting
until after the rising edge of a trigger
pulse on the gate input pin specified in
Table 18-1. When the terminal count is
reached the output will go low for one clock
period and return high again. The counter
is retriggerable. The output will not go
low until the full count after the last trigger
pulse (rising edge).

Each counter is viewed as a separate device with a unique device name
(#CTCOO for counter 1 and #CTCOl for counter 2).

The sensor I/O board has an on board 2 MHz clock and a 30 Hz clock which
can be jumpered to the clock input of the counter chip. If an external
clock input is desired, this jumper must be switched. See the Computer
System Technical Reference Manual for further details.

18.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/O manager. It is copied from user space into
the appropriate control block in system space.

To open a Counter the user must create a DIB and within an initialization
routine perform a SYSIO-OPEN to the device. When this is done then you
may issue the SYS IO SREAD, SWRITE , FUNCTION, and CLOSE macros . This
driver does not support Byte I/O or asynchronous operations. AREADs and
AWRITEs will be performed as SREADs and SWRITEs.

Counter Driver 18-3

30 Hz
Source

2MHz
Source

Figure 18-1.

Add This Jumper Plug

Cascading the Counters

0

JA2

Counter 1 Output

Counter 1 Gate In

Counter 1 Clock In

Counter 2 Gate In

Counter 2 Output

Counter 2 Clock In

8253

Programmable
Counter

Remove This

Jumper Plug

+5V

1 0

015

016

017

io-1-r2'tl~--to1a Interrupt Request Line o

H33

019

021

u-t---0022 Interrupt Request Line 4

Am 9519

Universal Interrupt
Controller

10

Counter Driver 18-4

18.2.1 DIB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL

DIBDTD

DIBTRN

DIBRSO

DI BO PT

DIBFCN

DIBBIO

DS.B 6

DS.B 1

Device name. Use #CTCOO or #CTCOl.

Data Transfer Direction. Use 0 for WRITE, and 1 for
READ.

DC.B 0 Enter 0 for fixed length.

DC.L 0,0 User sets this field to 0.

DC.W 0 Insert option word described in paragraph 18.2.2.

DS.L 1 Insert pointer to function packet; null for default.

DS.L 1 System used Byte I/O field. Use 0.
This driver does not support byte I/O.

18.2.2 DIB OPTION WORD BIT DEFINITIONS

If the options word field is nulled at open time the system will use the
"set to o" condition specified for each bit as described in the following
table.

BIT NO.

15

14-9

8

7-0

SET TO

0
1

0

0
1

0

OPTION USE

Option word select
Ignore option word
Use option word

Not currently used
Set to zero

Shared Access
Only one "OPEN" at a time
More than one "OPEN" at a time.

Not currently used
Set to zero

Counter Driver 18-5

18.3 COUNTER DATA TRANSFER CONTROL BLOCK (DTCB)

The data transfer control block (DTCB) holds I/O status and buffer
information during SREADs and SWRITEs. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer after the request has been made.

18.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User looks here for status I/O operation.

DTCTBU DC.B 0 Not used by this driver.

DTCTBL DC.B 0 Not used by this driver.

DTCRSO DC.B 0 This field is reserved. User sets this field to 0.

DTCBFS DS.L 1 User puts Buffer starting address here.

DTCBFL DS.W 1 User puts count of number of bytes in data buffer
here.

DTCBPT DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ.

18.4 COUNTER FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
specifying shared access. It is required for the FUNCTION command and
optional for the OPEN command. It is used by the application program to
configure a device to something other than its default mode.

Counter Driver 18-6

The function packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by zero or more bytes, words or longwords that send or receive
the immediate DATA for the command, or a long word that points to the DATA
for that COMMAND.

18.4.1 SUMMARY OF FUNCTIONS

The functions listed in this section can be used with the SYSIO-FUNCTION
command of the I/O manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
---------------- ------- -------------
ENDLIST 0 ($0000) NONE NONE
SET COUNT 1 ($0001) $0021 LONG WORD
SET MODE 2 ($0002) $0022 WORD
START COUNT 3 ($0003) $0023 WORD

18.4.2 COUNTER FUNCTION DESCRIPTIONS

COMMAND

0

1

FUNCTION
PURPOSE

ENDLIST

FUNCTION DESCRIPTION

Terminates processing of the function packet.

Function Data None

Error Code None

SET COUNT This function is used to set the initial count
of the counter. If the counter is being used
as a 16-bit counter only the least significant
word is used to load the counter with the
initial count and the most significant word is
not used. Count is actually loaded into
counter by SYSIO SWRITE or start count
function.

Counter Driver 18-7

2

Function Data One long word, integer.

Data $0000 NNNN Specifies initial count for 16-bit counters.

Error Code None

SET MODE

Function Data

Data $0000
$0001
$0002
$0003
$0004
$0005

Error Code

This function is used to select the mode of
operation of the counter. See Paragraph
18-1 for a description of the available
modes.

Set MODE to Mode 0.
Set MODE to Mode 1.
Set MODE to Mode 2.
Set MODE to Mode 3.
Set MODE to Mode 4.
Set MODE to Mode 5.

$0022

3 START COUNT

Data = 0
= 1

No operation performed.
Count loaded.

Counter Driver 18-8

18.5 ERROR CODES

The following error codes have been defined and may be returned by this
driver.

ERROR CODE

16 ($0010)

17 ($0011)

19 ($0013)

MEANING

DEVICE LOCKED. (OPEN ATTEMPTED AGAINST EXISTING
NON-SHARED OPEN.)
DEVICE ALREADY OPEN. (NON-SHARED OPEN ATTEMPTED
AGAINST AN EXISTING SHARED OPEN.)
COUNTER OVERFLOW.

Counter Driver 18-9

19.0 SEMAPHORE MANAGER

19.1 MANAGER DESCRIPTION

The counting semaphore provides a means of synchronization in a multitask
environment. It is useful to think of the semaphore as a container of
resource units. In a typical application one task (producer) will add
units to the semaphore while other tasks (consumers) will receive units
from the semaphore. For example a data acquisition task may use a
semaphore to communicate the number of data points it has acquired to
other processing tasks who will use the data after some number of points
have been acquired.

The available SEMMGR functions include:

ATTACH
DETACH
SEND
RECV
RECVIF
CANCEL

QUERY

Used to attach or "open" a semaphore
Used to detach or "close" a semaphore
Used to send units to a semaphore
Used to receive units from a semaphore (synchronous)
Used to receive units from a semaphore (asynchronous)
Used to cancel any pending asynchronous requests for the
cal ling task.
Used to obtain information about a semaphore's status

The semaphore manager uses a system identifier as an index to locate a
particular semaphore (once it has been attached). This system identifier
is returned to the owner task after an ATTACH command, and it must be used
in a subsequent reference to the semaphore for SEND, RECV, and RECVIF
operations.

If other tasks wish to know a semaphore's system identifier, they must use
the QUERY command and the 4-character name used when the semaphore was
first attached. The system identifier and the maximum semaphore count
will both be returned to the querying task.

Users gain access to the semaphore facilities by making calls to the
semaphore manager using the commands on the following pages:

Semaphore Manager 19-1

SEMMGR ATTACH,,APKPOINT,ERRORLABEL

The ATTACH function creates a semaphore and attaches. it to the operating
system. The task that performs the attach is responsible for detaching the
semaphore, no other task can perform this function. Three parameters must
be supplied at ATTACH time using the semaphore attach packet:

AP KN AM
APKICT
APKMAX

The semaphore name (4chars)
The semaphore initial count
The maximum semaphore count

-long word
- word
- word

The semaphore attach packet is described below.

APKNAM is a four character ASCII name for the semaphore. APKICT is the
initial count to be loaded in the semaphore and must be less than or equal
to the maximum semaphore count APKMAX.

Register Usage:

A6.L - Points to an Attach Packet
D4.L - Function number = 1
D5.L - Contains system identifier upon return
D7.W - Completion code upon return

Comp let ion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Semaphore Manager 19-2

Data Structures:

The semaphore attach packet (APK) is used with the attach function to
supply open time information to the semaphore manager. The fields in the
APK are as follows:

FIELD OFFSET VALUE DESCRIPTION

APKNAM EQU
APKICT EQU
APKMAX EQU
APKQMD EQU
APKLEN EQU

Comments:

0
4
6
8

10

SEMAPHORE NAME
SEMAPHORE COUNT
MAXIMUM COUNT
QUEUEING MODE
CONTROL BLOCK LENGTH IN BYTES

SIZE

4 BYTES
2 BYTES
2 BYTES
2 BYTES

TYPE

ASCII
INTEGER
INTEGER
INTEGER

APKNAM is the four character ASCII name of the semaphore. This field
must be nonzero. Tasks wishing to use the semaphore will supply
this name with a query function call to find the system identifier
for the semaphore and the semaphore maximum count.

APKICT is the initial count to be loaded into the semaphore. This field
is a positive 16 bit two's complement integer.

APKMAX is the maximum count the semaphore is allowed to have. This
field is a nonzero positive 16 bit two's complement integer.

APKQMD is the desired queueing mode for the semaphore. This field may
assume the 16 bit values (0,1) where:

0 denotes FIFO request queueing
1 denotes task priority FIFO request queueing

APKLEN is the total control block length (not a data field).

Example:

us a ooooom SEHKtiR ATTACH,,APKBLK,ERROR
0 0000017A 7801 HOVE.L IATTACH,D4 + LOAD ATTACH FUNCTION CODE
0 0000017C 4DF90DOOOllC LEA APKBU,U + LOAD ATTACH PACKET ADDRESS
o 00000182 4£40 TRAP IO + TRAP CALL TO SEMAPHORE llANACER
0 00000184 0031 DUI s' +
0 00000186 4EF900000ll0 JHP.L ERROR + ERROR EICEP'l"ION BRANCH

Semaphore Manager 19-3

I

SEMMGR DETACH,SYSID,,ERRORLABEL

The DETACH function removes the semaphore from the system and terminates
any pending requests against the semaphore. The DETACH function must be
performed by the task who initially opened the semaphore.

Register Usage:

D7.W - Completion code upon return

Completion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I. D .
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Data Structures:

None

Comments:

If other tasks have made unsatisfied requests, they will be resumed with
the appropriate completion code (See RECV and RECVIF completion codes)
returned in either D7.W or USBSTA.

Semaphore Manager 19-4

Example:

717 0 OGIOOllC
0 OOOD011C ?HZ
I IOGG011£ 2A3tGDOOG234
I ODIOU U Uta
D IOllDl U 1131
D DOOllttl 4EftlOOG0210

SEKKCR
flOVE.L
flOVt.L
TUP
DC.ii
JMP.L

OETACK,SYS!D,,£RROR
ISEIWETACH,04 + LOAD D£TAiCH FUNC7lON CODE
SYSlD,05 + LOAD IDEHTlF!ER .. + iRAP CAI.1 TO S£hAPHOR£ KAHACER
S6 +
£HOR + EiROR EJCEPTIOH BRANCH

Semaphore Manager 19-5

SEMMGR RECV ,SYSID, USBPOINT ,ERRORLABEL

The RECV function is a synchronous call to the semaphore manager. If more
units are requested than the semaphore has in its possession at the time
of the call, the calling task is suspended until the request can be
satisfied, the request times out, or the semaphore is detached. The
request time out period is specified in the USBTIM field of the user
semaphore block. A minus one in this field signifies an infinite time
out. Numbers greater than or equal to zero signify the time out period in
units of 50 milliseconds.

Register Usage:

A6.L - Points to a User Semaphore Block
D5.L - System identifier returned either by ATTACH or QUERY command

returns
D7.W - Completion code upon return

Completion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Semaphore Manager 19-6

Data Structures:

The Fields in the user semaphore block are as follows:

FIELD OFFSET VALUE
----- ------
USBSTA EQU 0
USBRSl EQU 1
USBRS2 EQU 2
USBCNT EQU 4
USBTIM EQU 6
USBLEN EQU 8

Comments:

DESCRIPTION

REQUEST STATUS
RESERVED BYTE
RESERVED WORD
REQUEST COUNT
REQUEST TIME OUT
CONTROL BLOCK LENGTH IN BYTES

SIZE

1 BYTE
1 BYTE
2 BYTES
2 BYTES
2 BYTES

TYPE

INTEGER

INTEGER
INTEGER

USBSTA is a one byte integer status field (see semaphore manager error
codes -- the $30 Semaphore Manager prefix is not loaded; only the
error suffix is).

USBRSl is a reserved byte

USBRS2 is a reserved word

USBCNT is a count to be exchanged between the task issuing the request
and the semaphore manager. This field is a two byte two's complement
positive integer.

USBTIM is a time out value (in 50 msec units) for the request. This
field is only used in the RECV and RECVIF functions. This field is a
2 byte two's complement integer which is greater than or equal to -1.
If a -1 is entered in USBTIM an infinite time out will be used.

Example:

724
ns o 0000019£ SEHKGR

0 0000019£ 7804 l'IOVE.L
0 OOOOOlAO 2A3900000234 KOVE.L
0 ODODOll6 4DF900000230 LEA
0 OOOOOllC 4£40 TRAP
9 OOOOOllE 0038 DC.V
0 000001BO 4£F900000210 JMP.L

RECV,SYSlD,USBBLl,ERROR
tSEMRECV,D4 + LOAD RECV FUNCTION CODE
SYSID,DS + LOAD IDENTIFIER
USBBLl,16 + LOAD USB ADDRESS
IO
S6
ERROR

+ TRAP CALL TO SEMAPHORE MANAGER
+
+ ERROR EXCEPTION BRANCH

Semaphore Manager 19-7

SEMMGR RECVI F, SYSID, USBPOINT ,ERRORLABEL

RECVIF is an asynchronous call to the semaphore manager to receive units
from a asemaphore. The RECVIF function is the same as the RECV function
except that it is performed asynchronously. If the request for units
cannot be satisfied, the request is queued. Control always returns
immediately to the calling task. The request status is monitored in the
USBSTA field of the user semaphore block. A minus one in this field
indicates that the request has been queued. A zero indicates that the
request completed. A positive value in this field indicates that an error
has occurred and the request has been terminated (i.e. time out or detach
of the semaphore).

Register Usage:

A6.L - Points to a User Semaphore Block (See SEMMGR RECV for details)
(NOTE: The USBCNT field will contain the remaining count in
custody of this semaphore upon satisfaction of this request.)

DS.L - System identifier returned either by ATTACH or QUERY commands
D7.W - Completion code upon return

Completion Codes:.

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT.,.WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Data Structures:

User Semaphore Block (See RECV)

Semaphore Manager 19-8

Comments:

This is a non-blocking request. A -1 in the USBSTA area indicates a
successful queuing of the request. The time count will be updated and is
available for testing by the task. The requested count must not exceed
the maximum specified by the owner task at ATTACH time.

Example:

733 o ooooam Sl:MMGR RCCVlf,SYSID,VSBBLK,ERROR
0 00000186 7805 KOV£.L ISEKRECVIF,D4 + LOAD RECVIF FUNCTION CODE
0 00000188 2A3900000234 ltOVE.L SYSID,05 + LOAD 1DENTIF1£R
0 0000018£ 4DF900000230 LEA USBBLK,A6 + LOAD USB ADDRESS
0 000001C4 4£40 TRAP tO + TRAP CALL TO SEMAPHORE MANAGER
0 000001C6 0038 DUI 56 +
0 000001t8 4EF900000210 JKP.L ERROR + ERROR EICEPTlON BRANCH

Semaphore Manager 19-9

SEMMG R SEND I s vs ID I us B PO INT IE R RO R LAB EL

This command can be used to send units to a semaphore.

Register Usage:

A6. L - Points to a User Semaphore Block (See RECV for format) Note
that USBCNT shall be filled with the count to be sent to the
semaphore and will return with the new TOTAL semaphore count!!!

DS.L - System identifier obtained from a QUERY or ATTACH command return.
D7.W - Completion code upon return

Completion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Data Structures:

User Semaphore Block (See RECV)

Comments:

None.

Semaphore Manager 19-10

Example:

740 0 000001 CE
0 OOOOOlt:E 7803
0 00000100 ZA3tOOOOOZ34
0 00000106 4DFt00000230
0 OOODOlDC 4£40
0 0000010£ 0038
0 000001£0 4EF900000210

SEKHGR S&ND,SYSID,USBHLK,ERROR
HOVE.L tSEHSEND,D4 +LOAD SEND FUNCTION COD£
KOVE.L SYS!D,D5
LEA USBBLK,A6
TRAP tO
DUI 56
JMP . L ERROR

+ LOAD iDEN'l'IFl~R

+ LOAD use ADDRESS
+ TRAP CALL TO SEMAPHOR& MANAGER
+
+ ERROR EXCEPTION BRANCH

Semaphore Manager 19-11

SEMMGR QUERY, SEMNAM, USBPOINT, ERRORLABEL

This command returns the semaphore system identifier and the maximum
semaphore count into the User Semaphore Block.

Register Usage:

A6.L - Points to a User Semaphore Block. Maximum count is returned in
USBCNT.

DS.L - Upon entry, this contains the left-justified ASCII name of the
semaphore to be queried. Upon return, this contains the system
identifier to be used in RECV, RECVIF, and SEND semaphore calls.

D7.W - Completion code upon return

Completion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Data Structures:

User Semaphore Block (See RECV)

Comments:

None.

Semaphore Manager 19-12

Example:

148 0 000001E6 SEl'iHGR
0 000001E6 7806 KOVE.L
0 000001E8 2A3900000238 l'IOVE.L
0 OOOOD1EE 4DF900000230 LEA
0 000001F4 4£40 TRAP
0 000001F6 0038 DC.II
0 000001F8 4EF900000210 JKP.L

GUERY,SEMKAK,VSBBLK,ERROR
tSEKGUERY ,D4 + LOAD GUERY FUNC'rION COD£
SEKNAK,DS + LOAD IDENTIFIER
USBBLK,A6 + LOAD USB PACKET ADDRESS
10 t TRAP CALL TO SEKAPHORE MANAGER
S6
ERROR

+
+ £RROR EXCEPTION BRANCH

Semaphore Manager 19-13

SEMMGR CANCEL,SYSID, USBPOINT, ERRORLABEL

This command is used to cancel all asynchronous requests by the calling
task to the semaphore identified in the cancel call.

Register Usage:

A6.L - Points to a User Semaphore Block (See RECV for format of this
block.)

DS.L - System identifier obtained by QUERY or ATTACH commands.
D7.W - Completion code upon return

Completion Codes:

$0000
$3001
$3002
$3003
$3004
$3005
$3006
$3007
$3008
$3009
$300A
$300B
$300C
$300D
$300E
$300F
$3010
$3011

NO ERROR
DUPLICATE SEMAPHORE NAME
ALL SEMAPHORES IN USE
ILLEGAL MAXIMUM COUNT
COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
ILLEGAL QUEUING MODE
ILLEGAL SEMAPHORE NAME OR INVALID SYSTEM I.D.
NOT OWNER TASK-CANNOT DETACH SEMAPHORE
REQUESTED COUNT EXCEEDS MAXIMUM COUNT
INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
SEMAPHORE HAS BEEN DETACHED-REQUEST TERMINATED
INVALID COUNT
SEMAPHORE NOT FOUND
INVALID TIME OUT VALUE
REQUEST TIMED OUT
FUNCTION NOT SUPPORTED
INITIAL COUNT EXCEEDS MAXIMUM COUNT-WILL BE TRUNCATED
REQUEST CANCELLED

Data Structures:

User Semaphore Block (See RECV)

Comments:

This call cancels all pending RECVIF requests for the Calling Task!

Semaphore Manager 19-14

Example:

757 0 OOOOOlFE
0 OOOOOlFE 7807
0 00000200 2A3,00000234
0 00000206 U40
0 00000208 0038
0 OOOOOZOA 4EF900000ll0

SEMMGR
MOVE.L
KOVE.L
TRAP
DUI
Jl'!P.L

CANCEL,SYSID,USBBLK,ERROR
ISEMCANCEL,04 + LOAD CANCEL FUNCTION CODE
SYS!D,D5 + LOAD IDENTIFIER
10 + TRAP CALL TO SEMAPHORE MANAGER
56
ERROR

+
t ERROR EXCEPTION BRANCH

Semaphore Manager 19-15

19.2 EXAMPLE PROGRAM WITH SEMAPHORES

ASSE"BLER LISTING SEnDEllO.AS" 0?/2'/83 14:46:01 PACE

10
II
12
13
14
IS
16

31,
m
321
322
323
324
32S
32'
327
m
32'
330
331
332
333
334
57'
S77
721
721
7'8
769
770
771
772
773 0 00000000
774 0 00000000 ?ODA
115 o ooooom zmmHF44
77& 0 00000008 243C5543S231
777 0 0000000£ 4DHOOOOOO!A
778 0 00000014
m o 00000011 4E75
710
711
711

783
714
785 0 000000 IA
786 0 OOOOOO!A 4FH00000484
787
711
78'

SEllDEllO IDNT O, 0 SEnDEKO SEllAPHORE DEl!ONSTRATION PROCRAll 26SEP83
tt U ttttttt I ttt tttttttttttt ttt t tt tt t tU t ttttt ttttt t tt t tttttt Uttttt tt t

t SEllTEST-A llULTITASl!NC DEllONSTRATION PROCHAK USING SEllAPHORES
AND GRAPHICS '126183

THREE TASKS ARE CREATED FOR THIS DEMONSTRATION:
PRODUCRI PRODUCES CSENDS> UNITS TO THE SEllAPHORE t

ONE AT A Tl!IE.
CONSlllll!I CONSUMES CRECE!VES> UNITS FROK THE

SEllAPHORE 350 AT A T!KE.
CONSlllll!I CONSUMES CRECE!VESl UNITS FROM THE

SEllAPHORE 350 AT A T!KE.
THE PRODUCTION AND CONSUMPTION or UNITS rs !!ADE VISABLE
THROUGH THE USE or BAR CHARTS. THE BAR CHART SERVES THE
ADDITIONAL PURPOSE or SLOV!NG THE PROCESS DOVN FOR V!EV!NC •

tt1ttututttt

tt. tt t ttt tt t t. t. t t. t t t. U: t t t t t t tt ttt t t tt t tu ttt t tt t ttt tt tt tt tt ttt t tt u

YARNING ON SYSllACSO

If you are ustabling this INCLUDE file into nistiug code~ •
it is possibh that a couent aay unwittingly becoae a
positional paraeter and cause unwanted results.

There should not be anything in the couent field of tbe
following aacros:
CllVC CETPCB GSTAT SETPR!
DELAY G!VPCB PRTKSG

tt

t SYSllACSO. INC REV ll-AUG-83 HAS BEEN INCLUDED

t lOMCLB50. INC REV 26-AUG-83 HAS BEEN INCLUDED

t SEllllACSO. !NC REV 07-SEP-83 HAS BEEN INCLUDED

t CRKCLB50. INC REV 08-AUG-83 HAS BEEK INCLUDED

ttttttttttttttt!tt

t SEllTEST-SPAVNS PRODUCRI TASK AND RETURNS TO THE OPERAT!NC SYSTEll t
tttttttt~ttt

SEllTEST EQU
MOVE. L 110, DO LOAD TASK PRIORITY
KOVE .L l'PROD' ,DI LOAD TASK NAnE
KOVE. L l'UCRI' ,Dl
LEA PRODUCR!,A& LOAD TASI START ADDRESS
GETPCB
RTS

Utttttttttttttttttttttttttttttttfltttttttttttttttttttttttfltttttttttttt

t PRODUCRl-PRODUCER TASI
ATTACHES AND PRODUCES UNITS FOR THE SEllAPHORE
SPAVNS CONSUKRI AND CONSUllR2 TASKS

tt t Ut ttttt t t t tt Utt t tut ttttt t t t ttt ttt t t t tt t ttt t tt t tt tttt tit t ti ttt t t t

PRODUCRI EQU
LEA PISTACK,A7 ALLOCATE STACK AREA FOR TASI

t OPEN GRAPHICS V!NDOV FOR BARCHART DISPLAY

Semaphore Manager 19-16

ASSElllLEI L!STINC SEllllEllO.ASll 8'/26113 14:U:DI PAGE

7JD D IDDDDDZO 411'DDDDDIF4 LEA P!&RDIB,AD LOAD DIB POlllTEI
791 D IODDODU 701A llOVE. L tDIBLEN,DI LOAD BYTE COUllT
m 1 nmmmmoo PILOOPO llOVE.B ID,!AOl+ CLEAR DIB
7'3 0 IOllOOZC 5!CIFFFA DBF DD,P!LOOPO
7'4 D DOODDD3D UUIDDGllF4 LEA P!&IDIB,lD BELOAD DBI POlllTER
m a omom mmmm llOVE .L l'l&R ',DIBVOL!lll LOAD DEVICE lllllE Ill D!B
m o mm1c mmzmH llOVE. V ,. ',DIBYOL+4!AD l
797 0 oomm 217COOOD02DE llOVE. L IPIOPNPIT ,DIBFCN!AD > LOAD PO lllTER TO. FPIT

1112
7U 0 OOIDIOU SYSIO OPEN,llO,P!GRDIB,P!ERRORZ OPEN THE VINDOV
7tt
m
111

t ATTACH SElllPHORE CALLED 'TANI'

182 0 IOOOOUl UF900000IEO
113 I OIDDI061 lOBC54414E48
114 o aomm mcmoam
115 I 01111074 317CIUDOD06
106 0 IODIOD7A 317CIDI00008
117 0 IOOOIOIO

LEA PllPl,AO LOAD POlllTER TO &Pl
llOVE.L l'TlNl',APINlll!lO> LOAD SElllPHORE NlllE IN &Pl
llOVE.V 10,lPl!CT!lll LOAD INITIAL COUNT IN &Pl
llOVE.V 1400,APlllll<lO) LOAD 1111. COUNT IN APl
llOVE.V 10,APlOllll!lO> SELECT FIFO QUEUEING
SEllll&R ATTACH,10,P!APl,P!ERBOR!

108 0 00000092 23CSOOODO!DC
m

llOVE.L D5,P!SYSID SAVE SYSTEll l.D. FOR SElllPHORE

llD
111

t IF lTTlCH IS SUCCESSFUL THEN SPlVll CONSUllER TlSIS 1 lND l

112 0 00001191 7DOA
113 0 IDDOOIU 223C434F4E53
114 D IDOOOOAO 243C554D523!
115 0 IOlllOU 4DFfllDI0416
au 0 IDOOIOAC
lf7
111 o ommo 1aoA
119 0 11011112 223C434F4ES3
120 0 ODODIOB& H3C554D523l
121 0 IOOllDBE 4DF9IOOIDl52
mo moom
123

llOVE. L
llOVE.L
llOVE. L
LEA
GETPCB

llOVE. L
llOVE. L
llOVE. L
LEA
&ETPCB

llO,DO LOAD TlSl PRIORITY
l'CONS' ,D! LOAD TlSl NAllE
l'UllR! ',Dl
CONSUllR! ,A6 LOAD TASI STAIT ADDRESS

110,DO LOAD TlSl PllOBITY
l'CONS' ,DI LOAD TASI NlllE
l'UllRl' ,DZ
CONSUllRl, A6 LOAD TlSl START ADDRESS

m
m

t ADD UNITS TO THE SEl!lPHORE ONE AT A TlllE AND SKOV URRENT CONTEllTS
t USING THE Bil CHART

126
m
m
129
m

OIODIDC& 323C06D6
IDOIDOCC 41F91DODl!El
moaoDz mcmoom

llOVE. V
LEA
llOVE. V

llOllODI 33C!DDOI0414 PILOOP! llOVE.V
131 DDDODODE UF9000DO!EA LEA
132 IOOIDDE4 IC61019DDOD4 P!IF! CllPI. V
133 DOIGOOEA 6CODI024 BGE
134 IOIDllEE 317CllO!I004 llOVE.V
135 DODOOOF4 SEllllGR
136 llOll!IC 60111120 BU
137 DOODl!!O 3!7CIOIDOOD4 P!ELSE! llOVE. V
131 DODOD! 16 SEllll&R
139 0 0000012E 3DUIOl4 P!ENDI! llOVE. V
140 I 01111132 4EB91001DUC JSR
141 0 ODDl8131 323900000414 llOVE.V
142 a DIOOl13E Hcnrn DBF
143 D ODI0014l P!ERROR! EOV

11750 ,DI
P!USB,AD
IO,USBCNT!lOl
DI ,CYCLES
P!USB,AO
14 DO, USBCllT!lO >
P!ELSE!
11, USBCllTIADl

LOlD llVllBER or CYCLES
LOAD PO INTER TO USB
INITIALIZE COUNT IN USB
SAVE CYCLE COUNT
LOAD PO lllTER TO USB
IF COVllT !:410 THEN

ADD llORE UlllTS
SEND, P 1 SYS ID, Pl USB, Pl ERROR!
P!ENDll
10, USBCllT!ll > ELSE
SEND ,P ISYSID ,P!USB ,P!ERBOR!
USBCNT!AD>.DO END!
P !BAR DRlV Bll CWT
CYCLES, D! RESTORE CYCLE COUNT
D! ,PILOOP! REPEAT

144 D IDOll! 42
145 0 IDOH!54

SEllllGR DETlCH,PISYSID,P!USB,PIERIORZ
P!ERRORZ SYSIO CLOSE,l!O,.P!CLSPIT,P!EIROR3

146 I llDIOU6 4210 PIEIROR3 CLR.L DD

Semaphore Manager 19-17

lSSEllBLER LISTINli SEllDEllO .ASll 19/Uf 13 14: 46: 01 PlliE

147 I OIOllUI
148
14'
150
m llOllUC
m ooooouc 41£71411
m momo ummmc
154 oDmm mcom
m m11 m memo
156 DODDOl7E 30FC0017
157 moam mcoou
151 IDD01116 mcom
m m11111 mcmc
160 ODOllUE 3DFCD078
161 motm mmmm
162 IGOOOl 91 164GIDZ8
163 11muc mmmm
164 oomuz mcm5
165 11111116 30FC8101
166 DOODDlll 30FCD017
867 IDlllllE 30FC0064
168 DoooDm 3orcom
169 11100116 30FCI01C
170 800001BA 30FC0078
171 DOOIOlBE 30F980DDD1F2
m 0 DOOD01C4
173 0 OOOOl1D6
174 0 DOOD01D6 4CDF4Ul
m 0 IODOOlDA ms
176
m
171
179 DDOODlDC OODDD004
m oomm momA
Ill DDOOO !EA DDIDIOOI
m ooooDm oooooooz
113 DOOOl1F4 DDODIOIA
184 OOOOOZOE om
m DDODU 10 OOl 7D03201C2
186 00001216 DOID
817 DDOD0211 IOOOD222
188 oomm 0000
119 DDOID21E 00 IE
190 00000220 0000
8'1
192 0 DOOOD2U 0008
893 0 00000224 51524F4U543
194
8'5 0 llOOD22C 00000064
lt6 0 00000290 000001 F4
mo 00011414
198 0 00000414 00000002
m
900
901
m
903
904

CIYPCB
Uttttttttttttttttttttttttttttttttttttttlltttttttttttttttttttttttttttt

t PlBAR-IOUTINES TO DISPLAY A Ill lllDICATOR ON m CIT
Utt

PlllR EOU DO CONTUHS BAR HElliHT

llOVEll. L DD/D51l8/U, -1171
LEA P 1 CRFPIT, AO LOAD FUNCTION PACUT BUrFEI

llOVE.V ICRSETPICTL, IAQ)+ CLEAR PIEVIOllS BAR USING
llOVE.V 10. uo l+ IECTANCVLAR rm
llOVE. V tliRSETCOP, llO h
llOVE. V llOD,(10)+
llOVE. V 141, UD)+
llOVE.V llilBLlFIL, <ID h
llOVE.V 1110. (101+
llOVE.V PlLSTVAL, <All+
lDD.V HO,DD
llOVE .V DO,P!LSTVAL
llOVE.V IGRSETPICTL, (lD h DRAV NEV BAR USING RECTANGULAR
llOVE. V 11, (lOl+ rm
llOVE. V IGRSETCOP, < lO l +
llOVE .V 1100, <AO>+
llOVE.V 140, <lO l+
KOVE .V ICRBLIFIL, UD h
KOVE.V IUD,!10)+
llOVE.V P!LSTVAL, (lilt

smo FUNCTION, II 0, PICRFPIT, f!FUHCER
PlFVNCER EQU

llOVEll.L (l7)+ ,Dl/D5/ l0/ l6
RTS

t STORACE FOR TlSl PRODVCR!

Pl SYS ID DS.L
PllPK OS.I APKLEN
P!VSB DS.B VSBLEN
P!LSTVAL DS.V l
P!CRDIB DS.B DIBLEN
PIOPNPIT DC.V CRCLRVIN CLEAR DISPLAY

DC.V GRSETCOP' 50' no DISPLAY Bil CHART HEADER

DC.V CRSETCHR
DC.I. PIKSG
DC.V

PICLSPlT DC.V CRCLRVIK CLEAR DISPLAY
DC.V

PlllSC DC.V BAR CHAIT HEADER
DC.B 'PRODUCER'

PICRFPlT 05.8 IOI
DS.B 500

Pl STACK EOV TASK STACK lREl

CYCLES 05.V CYCLE COUNTER
UttUtt t Utt t ttttttttttttltt tttt U tit Utt ttttt ti Utt Utt tit ttt It I Utt

t COllSVlllll COllSUllES VlllTS FROll A SElllPHORE CALLED TlHl IK 350 CHUNKS •
AND EATS TREK tlP 1 l A TlllE THE llVllllER OF UNITS ARE
DISPLAYED ON THE CRT

Semaphore Manager 19-18

ASSEllBLER LISTIKC SEllDEllO.ASH 19116/13 14:46:01 PACE

905
906
907 0 00000486
908 0 OQOQG4U 4FF900000151
909
910
911
911 0 0000041C 41F9000Q05C2
913 0 00000492 701A
914 0 00000494 !OFCOOOO
915 0 IOOOOOI SlCUFFA
916 0 OOOOOOC 41 F9000005Cl
917 0 00000412 208Cl3475120
918 0 00000411 317Cl0200004
919 o ooooouE rncaaaao5DC

m a oaooo4e6
m
912
913
924 0 000004CE

0011

915 0 000004£6 13C5000005B4
926
917
918

It I ttt U I Utt t t It t Utt t t Utt t t t tt l tit tt t ttttt tt tttt ttt tt t It t It tt t It t t t

COKSUlllll EQU
LEA C1STACK,A7 ALLOCATE STACK FOR COKSUllRl

t OPEN CRAPHICS lllllDO\I FOR BARCHART DISPLAY

LEA ClCRDIB,AO LOAD DID POINTER
llOVE.L IDIBLEK,DO LOAD BYTE COUt.'T

CI LOOP I llOVE. B 10, <AOl+ CLEAR DIB
DBF DO,ClLOOPI

LEA CICRDIB,AO RELOAD DID POINTER
llDVE .L l'ICR ',DIBVOL<AOl LOAD DEVICE KAllE IN DID
llOVE.11 I' ',DI BVOL+4<AO)
KOVE .L ICIOPNPKT ,DIBFCN<AO) LOAD OPEN FllNCTION PACKET

SYSIO OPEN,110,CICRDIB,CIERRORI OPEN THE lllNDOll

t QUERY THE SEHAPHORE FOR THE SYSTEH IDENTIFIER

SEHHCR QUERY, CISEHNAH, CIUSB, CIERRORl
KOVE.L D5,CISYSID

t IF SEHAPHORE IS FOUllD THEN RECIEVE UNITS FROll IT

'19 0 000004EC 41£900000588 CILOOP3 LEA CIUSB,AO LOAD POINTER TO USB
930 0 000004£1 317CFFFF0006 KOVE.11 1-1,USBTIK<AOl LOAD INFINITE Tl!IE OUT
931 0 000004£8 317COISE0004 !IOVE.11 mo' USBCllT<AO) LOAD UNIT REQUEST COUNT
931 0 000004££ SEHHi;R RECV ,C ISYSID, CIUSB ,CIERRORI
933 0 00000516 203COOOOOI SE !IOVE.L 1350 ,DO BEGIN CONSUKE LOOP
934 o oooomc 4£B9oaooo54D c1LooP2 JSR CISAR DISPLAY BAR CHART
935 o ooooom 51csrrrs
936 0 00000526 60C4
937 0 00000528
'38 0 0000053A 4280
939 o ooooom
940
941
942
943 0 00000540
944 0 00000540 48E7848l
945 0 00000544 41F9000005FA
vu o moo5u mcooo5
947 o 0000054£ mcoooo
948 0 00000552 30FC0017
VO 0 00000556 30FCOllC
m o aaoaasu 3orcoau
951 D 0000055£ 30FCOOIC
m o ooooorn mco140
953 0 000005'& 30F9000005CO
954 0 000005'C 06400028
955 o 00000510 moooomco
956 0 0000057& 30FC0005
957 0 0000057A 30FCOOO!
m o 000005 7E 3orcoa 11
959 0 00000582 30FC012C
960 0 00000516 30FCOOl8
961 0 0000051A 30FCOOIC

DBF
BRA

CIERRORI SYSIO
C!ERROR3 tLR.L

GIVPCB

DO, C !LOOP2 DECREHENT COUNT AND LOOP
CILOOPJ GET KORE UNITS
CLOSE, II 0, CICLSPlT, CIERROR3
DO

t t t t t t t t. t •• t t. t t tt. t. t. tt •••• tu. ••• t. t. t t ttt ••• * t. t • ••• tt t t •• u ••

• CISAR-ROUTINES TO DISPLAY A BAR INDICATOR OH THE CRT
Ut tt t t t t tt tt t t t t t tt t t t t tt t t t tt t tt t t tt t t t ttt t t t t It t It t t t tt tit t t t t tt t t t

CISAR EOU
llOVEK. L
LEA
KOVE.11
!IOVE.11
llOVE.11
llOVE.11
HOVE.II
llOVE.11
llOVE.11
llOVE.11
ADD.II
llOVE. II
llOVE.11
KOVE.11
llOVE .II
!IOVE. II
llOVE.11
!IOVE. II

DO IDS/ AO I A6, - 117)
C!CRFPlT ,AO
IGRSETPlCTL, <AOl+
10,<AOl+
ICRSETCOP, <AO l +
1300,(10)+
140, !All+
tGRBLUIL, IAOl+
1310, !AO)+
C!LSTVAL, <AO)+
t40, DO
00,CILSTVlL
IGRSETPlCTL, <AOl+
11,<AOl+
ICRSETCOP, <lO l+
1300, !AOI+
140,(Af)+
IGB.BLKFIL, llO)+

DO CONTAINS BAR HEIGHT

LOAD POINTER TO FUNCTION PACKET
CLEAR PREVIOUS BAR USINC
RECTANGULAR FILL

DRAll HEii BAR US !HG RECTAKCULAR FILL

Semaphore Manager 19-19

ASSEKBLER LISTING SEKDEIW.ASK 09/26/83 14:46:01 PACE

962 0 0000051£ 30FC0140
'63 0 00000$'2 30F9000005CO
964 0 00000598
rn o 000005AA
9U 0 OOOOOSAA 4CDF4UI
967 0 000005AE 4E75
968

"' '70
911 0 00000580 54414E4B
972 0 00000514 00000004
97 3 0 00000588 00000008
974 0 000005CO 00000002
975 0 000005C2 000000 IA

KOVE.11 1320,(10>+
KOVE.11 CILSTVAL,<All+
SYS IO FUHCTION, 110, C!CRFPIT, CIFUNCER

CIFUHCER EOll
KOVEK.L <17>+,DDIDHAD/U
ITS

t STORACE FOR TASK COHSUMRI

Cl SEllNAJ! DC. B
CISYSID DS.L
C!USB DS.B
CILSTVAL DS .II
CICRDIB DS .B

'TANI'
I

USBLEN

DIBLEN

SEMAPHORE HAKE
SAVE AREA FOR SYSTEM IDENTlrtER
USER SEMAPHORE BLOCI

976 0 000005DC 0017DOFAOICZ CIOPNPIT DC .II CRSETCOP, 250, 450
CRSETCHR

DISPLAY BAR CHART HEADER
n1 o ooooom OOID DC .11
978 0 000005E4 000005EA DC .L CIKSC
'79 0 000005E8 0000 DC. II 0
980 0 000005EA OOOA CIMSC DC .II 10 BAR CHART HEADER

911 0 000005EC 434F4E53554D DC .B 'CONSUMER I'
CRCLRllIN 912 0 000005F6 ODIE

983 o ooomr8 0000
'84 o oom5FA 00000064
985 0 0000065E OOOOOIF4
986 0 00000152
987
981
989
'90
991
992
993
'94
995 0 ooooom
996 0 00008152 4FF900000C IE
997

"' 999
1000 0 00000858 41F90000098E
1001 0 0000085E 701A
1002 0 00000860 IDFCDOOO
1003 0 00000164 SICIFFFA
1004 0 00000868 41F90000098£
1005 0 0000086E 20BC23475HO
1006 D 00000874 317CZ0200004
1007 0 0000087A !17COOOD09A8

1008 0 00000882
1009
1010
1011
1012 0 OOOODl9A

DOU

1013 0 00000182 23CS00000980
toi4
!DIS
1016

CICLSPIT DC .II
DC.II

CICRFPIT DS.B
DS.B

CISTAClt EQU

100
soo

CLEAR DISPLAY

u tut ttt t tau• u t ttt ttt ttt • t t t t t uu u t t tut ttt • t t • t ttt • tt ttttt u t tt •

• CONSUMRZ CONSUMES UNITS FROM A SEMAPHORE CALLED TANI IN 350 CHUNKS •
AND EATS THEM UP I A A TIHE THE HUHBER OF UNITS ARE
DISPLAYED ON THE CRT

t tu u ttt t tt t t t tut t t t tt t t t t t t tut tut t t. t tu ttt tat tt • • • t t t t t t t t t tut* t

CONSUMRZ EQU
LEA C2STACK,A7 ALLOCATE STACK FOR CONSUMRI

• OPEN GRAPHICS llINDOll FOR BARCHART DISPLAY

LEA CZCRDIB,AO LOAD D lB PO INTER
llOVE.L IDIBLEH,DO LOAD BYTE COUNT

CZLOOPI KOVE .B 10,(AOl+ CLEAR DIB
DBF DO,ClLOOP!
LEA CZCRDIB,AO RELOAD DIB POINTER
HOVE. L 1'.ICR ',DIBVOL<AOl LOAD DEVICE HAKE IN DIB

KOVE.11 I' ' , DIBVOL+HAO l
KOVE. L IClOPNPIT ,DIBFCN<AO > LOAD POINTER TO FPKT

SYSIO OPEN,110,C2CRDIB,ClERROR! OPEN THE ll!NDOll

• QUERY THE SEMAPHORE FOR THE SYSTEM IDENTIFIER

SEMMCR QUERY ,CZSEMNAK, CZUSB, C2ERRORI
MOVE. L D5, C2SYSID

t IF SEMAPHORE IS F011ND THEN RECIEVE UNITS FROK IT

1017 0 00000888 41F900000984 C2LOOP3 LEA C21/SB ,AO
1-1,1/SBTIM<AO>

LOAD POINTER TD 1158
LOAD INFINITE TIME OUT 1018 0 DODDDIBE 3!7CFFFF0006 MOVE.II

Semaphore Manager 19-20

ASSEKBLER LISTINC SEllDEllO.ASK 09/U/83 14:0:01 PAGE

1019 D 000008C4 317CD15EOOD4 KOVE.11 13 50, USBCMT lAD I LOAD UNIT REQUEST COUNT
mo 0 DODDOICA SEKKCR RECV ,CZSYSID, C2USB, ClERRORl
1021 D 000001!2 203CID00015E KOVE. L 1350 ,DO BEGIN CONSUKE LOOP
1Dl2 0 ooooom 4EB9DDDOD90C C2LOOP! JSR C2BAR DISPLAY BAR CHART
1023 0 OODOOBEE S1C8FFF8
1024 o ooooom 60C4
1025 0 DDDD08F4
1ou o 00000906 mo
!027 0 00000908
1021
1029
1030
1031 0 000009 DC
1032 0 0000090C 48E78481
1033 0 00000910 4lF9000009C&
1034 0 00000916 30FCOOOS
103S 0 0000091A lOFCOOOO
1036 0 OOOOOHE 30FC0017
1037 o ooooom 3orcom
m1 o ooooom 1orcoo28
103' 0 oooma 30FCOOIC
100 0 OOOOOllE 30FCOZ08
1041 o ooooorn 3moomnc
104! 0 00000938 0&400028
1043 0 0000093C 33COOD00098C
1044 o ooooorn mcom
I04S 0 CDOD0946 30FCDOOI
1046 0 000009U lOFCOu 17
1047 D 0000094£ 30FCOH4
1048 0 00000952 30FC0028
10'9 0 000009Sl 30FCDDIC
mo 0 000009SA 30FC0208
1151 0 000009$£ 30F9I000098C
1052 0 000009&4
1053 o oornrn
1os4 o ooooom 4cnmz1
1oss o 00000911 ms
IOS&
1057
IOS8
1059 0 DDOD097C 54414E4B
1060 0 00000980 00000004
1ou o coooon• ooomoa
1062 0 0000098C 00000002
10&3 0 0000098£ 000000 IA

DBF no ,C2LOOP! DECREKEKT COUMT AND LOOP
BRA C2LOOP3 GET KORE UNITS

C2ERROR1 SYSIO CLOSE,tlO,C1CLSPIT,ClERROR3
CZERROR3 CLR.L no

G IVPCB
tttttttttUttUltttttttttttttttUttttttttttttttttttt1ttU1tt•tttt:tttt-.

* C2BAR-ROUTINES TO DISPLAY A BAR :NDICATOR ON THE CRT
U tttt ttttttttttt 1ttt • tt Utt t: ti tt *'- ttttt Ut!t tttttUtilf' t tt ti ftttt tlttt

C2BAR EQU
llOVEK. L
LEA
KOVE.11
HOVE.I/
KOVE.11
KOVc .II
l!OVE.11
KOVE.11
llOVE.11
KOVE I.I

ADD.W
llOVE.11
l!OVE.\/
l!OVE.11
l!OVE.\/
l!OVE.11
l!OVE. W
KOVE.11
l!OVE.11
llOVE.11
SYS IO

C2FUHCER EQU
l!OVEK.L
RTS

DO IDS /AO IA!, -lA7 i
CZCRFPIC'f, AO
IGRSETPICTL, i&Oi+
10,(AOit
IGRSETCOP, 1 AO l+
1100, IAOlT
140, tAO~•
IGRBLHIL. lAQl+
1520, (AOlt
CHS!VAL, <AO!+
140 ,DO
DI, ClLSTVAL
IGRSETHCTl, <AO l+
11, lAOl+
IGRSETCOP, ilO)t

1500, <AO! t
140, lAOl+
IGRBLU !L, (10 It
t5l0 I ~AO I+

ClLSTVAL, (All+

no CONTAINS BAR HEIGHT

LOAD POINTER TO FUNCT!Oli PACKET
CLEAR PREVIO!iS liAR VSING
R£CTANGULAR FILL

&RA\/ HEii BAR \/ITH RECTAt«;ULAR nu

£UNCTION, UC. C!GRFPKT. ·:zrUNCER

t!il+,DOIDS!U/U

• STORAGE FOR TASK CONSUHRI

ClS£llNAll DC .B
ClSYSID DS.L
C2USB DS.B
CUSTVAL DS.11
ClGRDIB DS.B

'TAMI.'

USBLEN
1
j iBLEli

SE!UPHORE NAl!E
STORAGE FOR SISTEI! rn
USER SEr.APHORE HOCK

10'4 0 000009A& 001 lOICIDICl CiOPlii'lT DC\/ GR5ETCOP. m' m
CRSETCHR

DISPLAY BAR CRART HEADER
1065 0 000001AE 00 ID
10'6 0 00000980 00000?86
1061 o 00000914 om
IOU 0 000009B6 OOOl
10&9 0 00000'81 434F4ES3SS4D
1070 0 OOOD09CZ ODIE
1071 0 GOD009C4 ODDO
1071 0 OOOD09C6 00000064

·1073 D OOOOIAlA 000001£4
1874 D
1075

OOOOOCIE

tttut TOTAL ERRORS 0--

DC.II
DC.L
DC .II

CU!SG DC.II
DC.B

CZCLSPU DC. II
DC.II

CZGRFPlT DS. B
DS.B

CZSTACK EQU
END

Cll!SG

10
'CONSUKER Z'
CRCLR\llK
0
100
500

BAR CHART HEADER

CLEAR DISPLAY

uuu TOTAL \IARNINGS, _ J-: _ _j _______ -------------

Semaphore Manager 19-21

20.0 SYSTEM CALLS

20.1 ISSUING SYSTEM CALLS (SC)

All system calls are performed by a TRAP #0 instruction followed by a
command word. The Operating System automatically vectors the call to the
appropriate address. The System Call handler saves the contents of all
the registers that are not explicitly changed by the specific system
function.

Since each System routine call is done in the same way, that is, TRAP #0
with a command number, they can be made macros and used like new
instructions. For example, the Operating System's routine to print a·
message would be called as follows:

TRAP #0
DC.W 18

System Call
PRTMSG is no. 18

A macro could be written:

PRTMSG MACRO
TRAP #0
DC.W 18
ENDM

so that whenever a message is to be printed, a PRTMSG
given. The Computer System's operating system was
express purpose of providing a list of such
instructions."

20.2 SC ROUTINE INDEX

instruction can be
written with the
useful "extended

The following table lists the operating system's routines by their number.
See the following section for a description of each routine.

System Calls 20-1

* = System call usable only by the SYSTEM task.

1 reserved for users to implement customized system calls
2 unused
3 unused
4 unused
5 unused
6 unused
7 unused
8 unused
9

10
11
12":
13
14
15>':
16>':
17>':
18>':
19>':

reserved
DPRTERR
CHAIN
PRTERR
WRMST
LOADB
FMTDIB
NXTOK
GTCMD
PRTMSG
PRTERMSG

20 reserved
21
22
23
24
25
26
27
28
29
30
31":

32
33
34

CMWC
SECSIZ
GETTIM
SETTIM
GETPCB
GIVPCB
GSTAT
SETPRI
DELAY
WAKEUP
GTCMDE

SYS LEV
reserved
FMTTOD

35 reserved
36 reserved
37 unused
38
39
40
41 >':

42>':
43
44

unused
unused
SRCDIR
GETCMD
GETCMDE
EXIT
unused

45 unused

PRTERR to specific logical unit
load new transient and pass control to it
print system error message
warm restart of system
load binary file into memory
parse command line data into DIB fields
parse a token from command line
get a command line and parse first token
print a message to #SCRNO
print a message to #CNSLO

string compare with wildcards
returns the sector size
get the current time-of-day/date
update the time-of-day/date
allocate PCB to task (start task)
deallocate PCB (kill task)
get data from task PCB
change task priority
set PCBDEL value in PCB (suspend task)
clear PCBDEL value (resume task)
get a command line and parse first token; also
display on #SCRNO (screen)
get system level indicator

format time for GETTIM into ASCII characters

search directory
get command
get command, echo to #SCRNO
EXIT system call

System Calls 20-2

46 unused
47 unused
48 unused
49 unused
50 unused
51
52
53
53
54
55
56
57
58
59

unused
GBASPTR
reserved
unused
SETCRTCR
INQCRTCP
SEMMGR
reserved
ITC GEN
GPRTSCR

get the starting address of system common

60 reserved
61 unused
62 unused
63 unused
64 unused
65 unused
66 unused
67 reserved
68 reserved
69 reserved

set CRT control register
inquire CRT control register
Semaphore manager (see Chapter 19)

generator for intertask channels
graphics print screen

The remainder of this chapter describes the TRAP #0 services handled by
the system call handler.

20.3 COMMAND-PARSING ROUTINES

15 FMTDIB

This command is only available from the SYSTEM task. This routine parses
the next token in the command line for a device name (e.g., #FDOl) or a
file specification ([VOLUME:]filename.ext) and puts the result in the
DIBVOL, DIBNAM, DIBEXT fields of the DIB pointed to in register A6. Upon
return from FMTDIB D7.W contains status or error indications as follows:

0 - device name was parsed
1 - volume name only was parsed
2 - unambiguous filename (filename and extension were completely

specified)
3 - ambiguous filename (some part of filename/ext was wildcarded)

System Calls 20-3

$104 - missing file extension (filename was unambiguous)
$110 - invalid device name
$184 - invalid file specification

With all results, except $110 and $184, the command line is now ready for
the next token in the command line. If result is $110 o~ $184, the command
line pointers are unchanged.

The results of FMTDIB must be interpreted by its user. If the user can
only accept unambiguous filenames, then all other results are errors. If
the user will default a file extension, then upon a $104 result, the user
fills in DIBEXT.

16 NXTOK

This command is only available from the SYSTEM task. This routine breaks
up a command line into "tokens." A token is a substring of the command
line and is treated as a unit. The operating system defines the following
tokens:

NAME: A name is a string of characters which. begins with an alphabetic
character and contains only alphanumeric characters (no imbedded spaces).

NAME WITH WILD-CARD CHARACTERS: A name which may include the special
characters "~""" and "?".

NUMBER: A string of digits which may be decimal or hexadecimal.
Hexadecimal numbers must begin with a dollar sign($).

DELIMITER: One of the special characters defined by the system. This
includes the period (.), comma (,), colon (:), dollar sign ($), equals
sign(=), semicolon(;), and the arithmetic symbols+,-, and/ .

CARRIAGE RETURN: The ASCII carriage return character (OD hex).

ERROR: A token not falling into one of the above classes.

NXTOK uses SYSTEM common locations for its parameters. Scanning of the
command line begins at the character whose address is in CUCHAR. The
address of the first character of the token is returned in DESCRA. Note
that spaces are not part of any token. Spaces are skipped over by NXTOK
unless they are imbedded in a token. The count of the number of
characters 'in a token is returned in DESCRC. The system common locations
RC and CLASS return the classification of the token as follows:

System Calls 20-4

NAME
NAME (WILDCARD)
NUMBER

RC=Ol
RC=02
RC=03

CLASS=02
CLASS=02
CLASS=02

DELIMITER RC=ASCII code of character

CARRIAGE RET. RC=OD hex CLASS=OD hex

ERROR RC=OO CLASS=OO

CLASS =04

When CUCHAR is returned, it points to a location one character beyond the
end of the present token. If the token is a number (RC=03), its binary
value is returned in the system common location VALUE. NXTOK will
automatically convert unsigned decimal or hexadecimal numbers into binary
form. The hex numbers must have a leading dollar sign ($). NXTOK will
trap numbers that are too large(> 32 bits) as errors.

Example of use of NXTOK:

command line='LOAD l:MYFILE.EXT' carriage return

first token='LOAD'
second token='l'
third token=' : '
fourth token='MYFILE'
fifth token='.'
sixth token='EXT'
seventh token=c.r.

RC=Ol, CLASS=02
RC=03, CLASS=02, VALUE=OOOOOOOl
RC=3A, CLASS=04
RC=Ol, CLASS=02
RC=2E, CLASS=04
RC=Ol, CLASS=02
RC=OD, CLASS=OD

20.4 FILENAME FORMATTING

21 CMWC

This routine compares two strings skipping over the wildcard character "?"
which matches any character, including a space, when it occurs in the
first string. Register AO points to the first string, register Al points
to the second string. Register DO contains a byte count. Strings with up
to 255 characters may be compared. A string terminator (04 hex) in either
string terminates the comparison at that point. The results of the
comparison are returned in the condition codes.

System Calls 20-5

20.5 INITIALIZATION AND WARMSTART

13 WRMST

This routine reinitializes CSOS. It is essentially the same as pressing
CTRL-ALT-DEL.

32 SYSLEV

This returns the operating system release level number in DO.L, in the
following format:

byte byte word
level revision internal

for example: Release 1.0 would appear as $01000001 in DO.L, with an
internal level indicator of 1.

58 ITCGEN Intertask Channel Generator

The ITCGEN System Call is used to add or remove an intertask channel from
the system. (Further documentation on intertask channels is available in
Chapter 13.) This function expects the following arguments:

Dl.W OPTION SELECT
0 ATTACH INTERTASK CHANNEL
1 DETACH INTERTASK CHANNEL
2 SYSTEM USE
3 SYSTEM USE

DO.W CHANNEL IDENTIFIER
2 ASCII (PRINTABLE) CHARACTERS

20.6 DISPLAY CONTROL

Video Display Control

54 SETCRTCR

This routine loads the contents of DO.B into the CRT control register.
The bits on the one-byte field have the following significance:

System Calls 20-6

BIT 0 PAGE SELECT O=PAGE O; l=PAGE 1
BIT 1 NOT USED
BIT 2 INVERSE VIDEO O=NORMAL; l=INVERSE
BIT 3 VIDEO BLANKING O=BLANK; l=NORMAL
BIT 4-7 NOT USED

55 INQCRTCR

INQCRTCR returns the one-byte value of the CRT control register in DO.B
(See above).

20. 7 UTILITY SYSTEM CALLS

10 DPRTERR

This routine prints a system error to any device, except disk, whose
opened LUN is in register DS.B. When a SYSIO or other system manager,
call returns with an error, issuing DPRTERR will result in an error
message of the following format:

source ERROR # message test [TASK = taskname]

"TASK=" will only appear if the task is not the SYSTEM task.

12

This
same
BOX"

17

PRTERR

command is
as DPRTERR
is used.)

GTCMD

only available from the SYSTEM task. This routine is the
without DS. B (LUN} required. (The SYSTEM window "CONSOLE

This command is only available from the SYSTEM task. This routine accepts
a command line from the console or an open SUBMIT file. If in a SUBMIT
file, GTCMD reads characters from the file and expands any macro
parameters. If not in a SUBMIT file, the user is prompted and a new line
may be typed in. GTCMD passes the line directly to NXTOK, so on return
from GTCMD, the first token on the line has been parsed.

System Calls 20-7

18 PRTMSG

This command is only available from the SYSTEM task.~·~ This routine prints
a string on the screen (#SCRNO). Register A6 is pointed to the start of
the string. If the string terminates with a carriage return, a carriage
return-linefeed is issued. If the string terminates with 04 hex, no
carriage return linefeed is issued.

19 PRTERMSG

This command is only available from the SYSTEM task. This routine prints
a string in inverse video on the CRT error line (#CNSLO). The string must
end with a carriage return.

22 SECSIZ

This call returns in register DO.L the number of bytes in a disk sector.
The current system default is 256.

31 GTCMDE

This command is only available from the SYSTEM task.
the additional feature of displaying the command
(#SCRNO).

41 GETCMD

Same as GTCMD with
line on the screen

This command is only available from the SYSTEM task. This routine is the
same as GTCMD without the automatic NXTOK.

42 GETCMDE

This command is only available from the SYSTEM task. This routine is the
same as GTCMDE without the automatic NXTOK.

52 GBASPTR

This routine returns the starting address of system common in register AS.
This is needed by those programs that must examine variables in system
common such as memory bounds. The long word located at 4(A5) contains
APPBEGIN which is the start of user memory. The long word located at
12(A5) contains RAMEND which is the physical end of memory for the system.

~"In MSPMACSO. INC is an assembler macro PRNTMSG that can be used by any
task to print messages. It works with PRNTINIT macro and can be used as is
or tailored to fit the programmer needs.

System Calls 20-8

The long word located at 8(A5) contains APPEND which is the end of user
memory. (This address may be altered through use of the SET command, see
Part 1.) You use the include file COMDEFSO.INC to reference these fields.

59 GPRTSCR Graphics Screen Dump

This system call will cause the current display to be copied to the
printer.

CAUTION: If the printer is offline or in use,
this function will fail!

No arguments are required for this function.

20.8 DIRECTORY SEARCH

40 SRCDIR

This routine searches the directory of a disk (of old or new file
structure) for the filename requested. If the filename contains
wildcarding, repeated SRCDIR uses will find the additional matches in the
directory.

Upon input

DS.B = LUN of opened DIR.DIR file (a read-only file)

A6 = address of DTCB with the following contents:

DTCREC = 0 (on first call) left alone on additional calls
DTCBFS = address of 256-byte buffer
DTCBPT = left alone between calls
DTCTBL = left alone between calls

AO = address of 11 character string containing the formatted.
filename/extension to be found. The first 8 characters is the
filename, left- justified and padded with blanks. The last 3
characters is the file extension left-justified and padded with
blanks. If characters in the name are to be wildcarded a '?'
replaces that character.

Upon return from SRCDIR, if register D7 .W is zero (no SYSIO errors)
register Al will be valid. Register Al points to the 11 character
filename found. When Al is zero, the end of the directory has been
reached with no (additional) filename found.

System Calls 20-9

20. 9 TIME OPERATIONS

23 GETTIM

This system call retrieves the time-of-day and date and returns it in
registers Dl and D2 as binary bytes. The format of the registers is as
follows:

Dl.L = X:S:M:H where

x = undefined
s = seconds (0-59)
M = minutes (0-59)
H = hours (0-23)

D2.L = W:D:M:Y: where

w = day of week (1-7)
D = day of month (1-31)
M = month of year (1-12)
y = year (0-99)

24 SETTIM

This system call sets the time according to the values in registers Dl and
D2. The register contents should be formatted as shown in GETTIM. If the
time or date is invalid then register DO will contain a 1. If no error
occurred, DO will be cleared.

34 FMTTOD

This routine takes the output of GETTIM (Dl.L and D2.L) and formats it
into an 18 or 22 character ASCII string pointed to by register A6. A6 is
updated by FMTTOD to point to the next byte past the formatted time. The
format of the ASCII string is as follows:

[WWW] DD MMM YY HH:MM:SS

WWW day of the week
DD numerical day
MMM month of year
YY year (83)
HH hour (00-23)
MM minute (00-59)
SS second (00-59)

Syste~ Calls 20-10

The 18 character conversion is done when the day of the week is missing
(high-order byte of D2 is zero).

20. 10 LOADING PROGRAMS

11 CHAIN

This routine is the same as LOADB with the additional feature of
transferring control immediately to the transfer address of the program
loaded. It is useful when you wish to overlay the current program module
with another program module.

14 LOADB

This routine loads a program into RAM memory at the addresses specified
during the ALINK or SAVE process. Input to LOADB is:

A6 = address of 74-byte DIB containing:

DIBVOL
DIBNAM
DIBEXT
DIBDTD = 1 (read only)
DIBxxx = 0 (all other fields cleared)

D5.B = LUN that LOADB can use to open the file (program) to be loaded

Upon return from LOADB, register D7. W will contain status and if no
errors, register .A2 will contain the transfer address of the program
loaded. If no transfer address exists, A2 is 0.

The D7.W status maybe errors from SYSIO calls or ones specifically from
LOADB:

$151 invalid file format
$152 transfer address too low
$153 not enough memory to complete LOADB

20.11 MULTITASK SYSTEM CALLS

There are 7 system calls devoted to task control functions. Most require
a PCB number in register DO. B as a calling argument. The PCB number

System Calls 20-11

identifies the task by providing internal addressing to the PCB allocated
to the task. The user should normally not try to directly address a PCB.

25 GETPCB

This system call acquires a PCB and assigns it to a task. GETPCB starts
all tasks under CS-OS. The desired task name is passed in registers Dl.L
and D2.L. The task's priority is passed in register DO.B. The starting
address for the task is passed in register A6. GETPCB returns status in
DO.B and the PCB-number allocated to the task in Dl.B. The status can
take on the following values in hex:

00 = good
01 = no available PCBs
02 = invalid priority
FF = duplicates an existing task name

The value in Dl.B is valid only if the status is $00. Otherwise, the task
did not start. An example of how a task might be started under CS-OS is
illustrated below.

LOOP MOVE . L ii 'NEWT I 'D 1
MOVE.L #'ASK I ,D2
MOVE.B #100,DO
LEA.L TASKCD,A6
GETPCB
TST.B DO
BNE. S LOOP

MOVE.B Dl,MYPCB

name of task is NEWTASK

priority is 100
starting address
start task
good status?
no, try again

save PCB number

NEWTASK is placed on the ready queue and will run when its time comes.
Note that GETPCB affects only registers DO and Dl.

26 GIVPCB

This system call deal locates a PCB and thus "kills" the task associated
with it. GIVPCB is called with the PCB-number of the task to be killed in
register DO.B (if DO.B=O, then kill currently running task). You use this
facility to kill tasks which you had started via GETPCB. If you want to
terminate your own task (the current task) then you should use the EXIT
system call. GIVPCB returns a status byte in DO.B. The values returned
by GIVPCB are:

00 = good
01 = PCB-invalid number
04 = Trying to kill the system task.

System Calls 20-12

If GIVPCB returns nonzero status, the task still exists. Note: It is
possible for a task to kill itself, in which case GIVPCB does not return
but instead dispatches a new task to run. GIVPCB affects only register
DO.

27 GSTAT

This system call returns information from the PCB whose number is passed
in DO.B. If DO.B is zero, GSTAT returns information on the
currently-running task PCB, regardless of its actual number. (Note:
PCB-1 is normally the "idle" task and PCB-2 is the SYSTEM task.) GSTAT
returns the following information:

DO.B
Dl.L, D2.L
D3.L, D4.L
DS.B
AS

task priority
task name
task time-of-generation (in GETTIM format)
task status
address of "token-processing" variables for SYSTEM task,
zero for other tasks.

You use the INCLUDE file PARDEFSO. INC to reference token processing
fields. If the PCB-number specified is invalid, GSTAT returns task status
(DS.B) as zero. (PCB not allocated.)

28 SETPRI

0·~ Warning 0'< This system call now sets a return code. In release 1. 0 it
did not set a return code.

This system call changes the priority value of the task whose associated
PCB-number is passed in DO.B. If DO.B is zero, SETPRI will use the
currently-running PCB regardless of its actual PCB-number. The priority
value desired is passed in Dl.B. If the priority is less than 1 or greater
than 127, SETPRI returns a 2 in D7.W. If the PCB-number is less than 0 or
greater than 15, SETPRI returns a 1 in D7.W. Otherwise, if the priority
is adjusted correctly, SETPRI returns a 0 in D7.W.

29 DELAY

This system call suspends the execution of a task for a specified number
of time-slices. DELAY is called with the PCB-number of the desired task
in DO.B. If DO.B is zero, the currently-running task will be used
regardless of its actual PCB-number. The desired number of time-slices to
delay is passed in Dl.L. DELAY requires that the task to be delayed have a
name (so that "idle" cannot be delayed). DELAY does not change any
registers.

System Calls 20-13

30 WAKEUP

This system call clears the PCBDEL field in the PCB whose PCB-number is
passed in DO.B. If DO.B is zero, currently-running task will be used
regardless of its actual PCB-number. Otherwise, if the priority is
adjusted WAKEUP overrides DELAY and the task associated with the PCB will
resume its place on the ready-queue (or device queue). WAKEUP changes no
registers.

43 EXIT

This system call replaces RTS/GIVPCB in user BINS and tasks . It releases
resources the user may not have released, terminates the current task if
it is not the SYSTEM task, and does an RTS if it is the SYSTEM task.

20. 12 PROGRAM DEVELOPMENT

INVOKING PROGRAMS AND TASKS

CSOS allows you to "call" a program from the command line interpreter
which runs under the SYSTEM task. It also allows you to spawn new tasks by
use of the RUNTASK command or GETPCB system call.

20.12.1 PROGRAMS CALLED FROM THE SYSTEM TASK.

You may write programs which can be invoked by simply typing their name,
like "HELP" and "COPY". Such programs are loaded into user memory by the
command line interpreter with control transferred to them via a subroutine
call to the program transfer address.

On entry, your program will be in user mode. There is a default user stack
of 400 bytes. It can be used if large enough for your programs
requirements, otherwise you must establish your own user stack of
sufficient size.

On exit, your program will return to the command line interpreter via the
EXIT System Call. If you had established your own user stack then you
must restore the original pointer before returning.

Programs called from the SYSTEM task may use certain reserved logical unit
numbers established at cold start time for communicating with the keyboard
and CRT screen. LUN 249 is the output logical unit for #SCRNO configured

System Calls 20-14

as a 24x80 scroll display. LUN 246 is the input logical unit for #CON
which echoes to #CNSLO, using logical unit 250.

SYSTEM task programs may also use some special system calls for handling
command input. These include GETCMD, GETCMDE, NXTOK, PRTMSG, AND
PRTERMSG. (See Command-Parsing routines.)

20.12.2 TASKS STARTED BY RUNTASK OR GETPCB

The GETPCB system call establishes a new task separate from the calling
task, with its own task control block (PCB) and its own priority. You can
write programs which perform a GETPCB to establish a second instruction
stream, or you can use the RUNTASK system command which loads in a program
from disk and then performs a GETPCB at the priority specified in the
command syntax.

Tasks run in user mode. You must establish a user stack to allow for
subroutine calls (BSR, JSR) and for register saving. Remember that the
stack pointer should be set to the top of the stack.

You use the EXIT system call to terminate the task.

20.12.3 MEMORY AVAILABLE TO APPLICATION PROGRAMS

You may obtain the addresses of available memory by issuing the GBASPTR
system call. This call returns the pointers APPBEGIN and APPEND which are
the lower and upper bounds of unprotected user memory. The operating
system reserves the memory below APPBEGIN for 68000 exception handling
vectors and for system work areas. It also may reserve memory above
APPEND to RAMEND for certain optional device driver requirements.
Operating system memory is storage protected, therefore you cannot modify
it from a program running in user mode. An attempt to do this,·whether
intentional or accidental, will result in a protect violation and the
abnormal termination of your program.

20.12.4 MANAGING MEMORY AMONG SEVERAL TASKS

CSOS does not provide a facility for allocating memory dynamically to
programs at execution time. It is the responsibility of the application
programmer to pre-plan the use of memory for all programs and to establish

System Calls 20-15

separate user stack areas for each task. Note that the memory values
obtained from GBASPTR are globally available memory bounds, accessible to
all tasks. The proper allocation of memory into separate areas for each
task cannot be left to chance, but instead must be carefully thought out
with regard to the requirements of each task.

20.12.5 PERFORMING SCREEN 1/0

The application programmer is responsible for the layout of the window,
setting of the various window attributes, and providing for keyboard
echoing and prompting. There is no provision in CSOS for shared use of
the same window by multiple tasks.

System Calls 20-16

A.O APPENDIX A - ERROR MESSAGES AND CODES

A.1 ERROR MESSAGES FROM OPERATING SYSTEM COMMANDS

The fol lowing messages are those that occur most frequently. For a
complete list of errors related to a command, see the command description
in Chapter 1.

General Messages

COMMAND FORMAT ERROR

UPPER CASE REQUIRED

CHECK SPELLING OF COMMAND
OR PROGRAM NAME

Messages used by many commands.

SYNTAX ERROR

BAD PARAMETER

Data entered cannot
processed as a command.

be

Command must be entered in
uppercase.

Command not found.

The command line does not
conform to the syntax
specified for the command.

A bad argument in the command
line was encountered.

The following messages may occur during program loading --

LOAD ADDRESS TOO LOW

NOT ENOUGH MEMORY FOR LOAD

INVALID LOAD FILE FORMAT

Starting address must be
above APPBEGIN.

Ending address must be below.

File type must be binary, type
00 or 01.

The next two error messages result from use of the RENAME command:

DUPLICATE NAME Indicates that the new name
already exists on the disk.

Error Messages and Codes A-1

FILE PROTECTED Indicates that the old file is
protected from renaming
(access code = 02, 03, 06, or
07).

The next error message is from the SET command

ILLEGAL VALUE Value entered is unreasonable
for the type of command

The next 3 messages come from the RUNTASK command:

NO TRANSFER ADDRESS

NO MORE TASKS MAY BE STARTED

DUPLICATE TASK NAME

The binary load
specified in the
command does not
transfer address.

module
RUNT ASK
have a

There is no PCB available to
start a task with the run
command. All PCBs are in use.

There is already a PCB with
the name specified in the
RUNTASK command.

The next 3 messages are related to commands involving tasks (i.e.,
PRiority, DELAY WAKEUP, RUNTASK, KILL, DELAY, RESUME, SHOW)

NO SUCH TASK

INVALID PRIORITY

SYSTEM TASK CANNOT BE KILLED

There is no PCB with a task
name that matches the one
entered.

A priority outside the range
1-27 was used in a RUNTASK or
PRIORITY command.

You cannot issue the KILL
command for the system task.

The next two messages come from the SAVE command:

INVALID TRANSFER ADDRESS Transfer address must be
between the start address and
end address and be on an even
boundary.

ENDING ADDRESS IS TOO LOW OR TOO HIGH Ending address must be between
starting address and end of
system memory.

Error Messages and Codes A-2

The next two messages come from the SECURE command:

DIR.DIR FILE ACCESS CANNOT BE CHANGED DIR.DIR is the directory file
on the disk. Its access code
is not to be changed.

VALUE RANGE ERROR Access code specified is not
acceptable.

The next two messagers come from the SUBMIT command:

SUBMIT FILE ERROR

WRONG FILE TYPE

File-dependent messages

WRITE TO OLD-STRUCTURED FILE
FILE ALREADY OPEN FOR WRITE
FILE NOT FOUND
ILLEGAL FILE ACCESS METHOD
INVALID FILENAME
READ BEYOND END OF FILE
BUFFER SIZE INCORRECT
FILE NOT EXTENDABLE
DISK FULL
WRITING TO READY-ONLY FILE
WRONG FILE TYPE FOR ACCESS
INVALID SECTOR SPECIFIED
FILE PROTECTED
NEW FILE BEING READ
BAD FILE -- SYSTEM ERROR
NO SPACE FOR CONTIGUOUS FILE

An error occurred while
trying to open the requested
SUBMIT file or a command line
exceeded 80 characters.

A submit file must be text or
type 3.

Error Messages and Codes A-3

A.2 COMMON DEVICE AND MANAGER ERROR CODES

A.2.1 MESSAGE FORMAT

The Syntax for messages is:

component [ERROR=$NNNN][message text][TASK=taskname]

COMPONENT is the name of a device or operating system manager issuing the
message.

ERROR=$NNNN is a four digit hexadecimal error code which identifies the
error. Driver programs issue error codes in the range $0001
through $00FE. Manager programs issue the remaining error
codes. It is possible for a device driver to issue a manager
error return code. You can find the reason for this code by
looking through the manager error codes section.

This field of the message display is always printed if no
message text is available. If message text is available then
this field is printed only if you have SET EC=YES.

MESSAGE TEXT is supplied by device drivers and system managers for many of
the error codes listed in this section. Message text is printed
with the message, if it is available.

TASK=TASKNAME is printed with the error message for all tasks other than
the SYSTEM task.

Error Messages and Codes A-4

A.2.2 COMMON DEVICE-DRIVER ERROR CODES

$0001 reserved
$0002 reserved
$0003 reserved
$0004 NO CONTROL BLOCK STORAGE
$0005 READ/WRITE ERROR
$0006 INVALID DATA TRANSFER DIRECTION IN DIB
$0007 ILLEGAL BUFFER ADDRESS IN DTCB
$0008 END OF FILE
$0009 RECORD LARGER THAN BUFFER; TRUNCATED - input record too big
$000A DEVICE NOT READY
$000B NON-ZERO BYTE I/O WRITE STATUS - buffer full
$000C NON-ZERO BYTE I/O READ STATUS - buffer empty
$000D SYSIO REQUEST CANCELLED
$000E INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
$000F INVALID TRANSFER MODE IN DIB

$0021 INVALID VALUE FOR SETTRANS FUNCTION PACKET
$0022-$005F have a common meaning for function packet data errors in

all drivers. The error code is equal to the function code
number plus $0020. The message produced by the system is
as follows:

ERROR=$NNNN INVALID DATA IN FUNCTION $NNNN AT OFFSET
$NNNN.

$0060 CANNOT READ - DIBDTD SPECIFIED OUTPUT
$0061 CANCEL FAILED
$0062 READ NOT SUPPORTED - by device driver
$0063 WRITE NOT SUPPORTED - by device driver
$0064 FUNCTION NOT SUPPORTED - by device driver
$0065 BWRITE NOT SUPPORTED - by device driver
$0066 BREAD NOT SUPPORTED - by device driver
$0067 CANNOT WRITE - DIBDTD SPECIFIED INPUT
$0068 TSTBYTE NOT SUPPORTED - by device driver
$0069 DTACHDVR NOT SUPPORTED - by device driver
$006A ATACHDEV NOT SUPPORTED - by device driver
$006B DTACHDEV NOT SUPPORTED - by device driver
$006C reserved
$006D reserved
$006E reserved
$006F reserved

Error Messages and Codes A-5

A.2.3 MANAGER ERROR CODES

RTMMGR ERROR CODE

$2000 RTMMGR ERROR

SEMAPHORE ERROR CODES

$3001 DUPLICATE SEMAPHORE NAME
$3002 ALL SEMAPHORES IN USE
$3003 ILLEGAL MAXIMUM COUNT
$3004 COUNT EXCEEDS MAXIMUM COUNT - will be truncated
$3005 ILLEGAL QUEUING MODE
$3006 ILLEGAL SEMAPHORE NAME OR SYSTEM I.D.
$3007 NOT OWNER TASK - cannot detach semaphore
$3008 REQUESTED COUNT EXCEEDS MAXIMUM COUNT
$3009 INSUFFICIENT SYSTEM SPACE TO QUEUE REQUEST
$300A SEMAPHORE HAS BEEN DETACHED - request terminated
$300B INVALID COUNT
$300C SEMAPHORE NOT FOUND
$300D INVALID TIME OUT VALUE
$300E REQUEST TIMED OUT
$300F FUNCTION NOT SUPPORTED
$3010 INITIAL COUNT EXCEEDS MAXIMUM COUNT - will be truncated
$3010 REQUEST CANCELLED

MEMORY MANAGEMENT ERROR CODES

$6001 INVALID NAME IN MPD
$6002 DUPLICATE MEMORY POOL NAME
$6003 NO AVAILABLE FPD BLOCKS - internal storage
$6004 ILLEGAL NAME - passed as function argument
$6005 MEMORY POOL NOT FOUND
$6006 POOL STILL CONTAINS MEMORY - descriptor cannot be removed
$6007 ILLEGAL SUB POOL SIZE - must be greater than zero
$6008 ILLEGAL SUB POOL BOUNDARY - memory must be aligned on page boundary
$6009 SUB POOL OVERLAP - memory overlaps existing sub pool
$600A SUB POOL OVERLAPS SYSTEM.AREA
$600B NO AVAILABLE SPD BLOCKS - internal storage
$600C SUB POOL MEMORY NOT FOUND
$600D ILLEGAL DMA MEMORY REQUEST - greater than 64K
$600E reserved
$600F FUNCTION NOT SUPPORTED
$6010 MEMORY NOT AVAILABLE - see Appendix F, of Operating System

Reference Manual, Part 2 (GC22-9199)
$6011 reserved
$6012 MEMORY CANNOT BE RETURNED

Error Messages and Codes A-6

I/O MANAGER ERROR CODES

$8100 DUPLICATE VOLUME IDENTIFIER
$8200 INVALID SYSIO CALL
$8300 LOGICAL UNIT NOT OPENED.
$8400 NO CONTROL BLOCK STORAGE - inadequate system space.

See Appendix F, "System Memory Consumption," in the
Operating System Reference Manual, Part 1 (GC22-9199).

$8500 DUPLICATE LOGICAL UNIT
$8600 DEVICE NOT FOUND
$8700 NOT DEVICE OWNER
$8800 NON SHARABLE DEVICE ALREADY OPEN
$8900 BYTE I/O NOT SUPPORTED
$8AOO PROCESSING I/O REQUEST ALREADY
$8BOO NOT OPENED FOR BYTE I/O
$8COO INVALID DIB FIELD (TRN, DTD, or RSO)
$8DOO EVENT NOT FOUND
$8EOO EVENT NOT OPENED
$8FOO ILLEGAL READ BUFFER ADDRESS
$9000 CONTROL BLOCK NOT WORD-ALIGNED
$9100 CONTROL BLOCK OR BUFFER OUT OF RANGE

A.2.4 CODES FOR ASYNCHRONOUS REQUESTS

SYSIO will return a -1 in register D7.W if the asynchronous operation
has started successfully. Completion status is returned in the
DTCSTA field of the Data Transfer Control Block. The convention is
the same as for register D7 status. A -1 indicates that the
operation is not yet complete; a zero indicates complete with no
error; and a positive number indicates completion with an error.

Error Messages and Codes A-7

A.3 DRIVER ERROR CODES

A.3.1 CRT GRAPHICS DRIVER (#GR)

$0021-$0041 Data out of limits for a function packet
Function number = error number - $0020

A.3.2 CRT DISPLAY DRIVER (#SCRN, #CNSL)

$000E
$0015
$0016
$0021
through
$004B
$0069
$006A
$006B

INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
MAXIMUM NUMBER OF WINDOWS OPENED
ADDRESS BOUNDARY ERROR - OPEN FAIL
DATA OUT OF LIMITS FOR A FUNCTION PACKET
(Function number = error number - $0020)

DTACHDRV NOT SUPPORTED
ATTACHDEV NOT SUPPORTED
DTACHDEV NOT SUPPORTED

A.3.3 KEYBOARD DRIVER (#CON)

$0009
$000C
$000D
$000E
$0010
$0021
$002B
$002D
$0063
$0065
$006A
$006B

RECORD LARGER THAN BUFFER; TRUNCATED
NON-ZERO BYTE I/O READ STATUS
REQUEST CANCELLED
INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
KEYBOARD FUNCTION KEY EXCEPTION
BAD DATA IN SET TRANSFER MODE FUNCTION PACKET
INVALID TAB AMOUNT
COMMAND PARSING NOT ENABLED
WRITE NOT SUPPORTED
BWRITE NOT SUPPORTED
ATCHDEV NOT SUPPORTED
DTACHDEV NOT SUPPORTED

Error Messages and Codes A-8

A.3.4 KEYPAD DRIVER (#KPD)

$0009
$000C
$000D
$000E
$0011
$0012
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$001E
$001F
$0021
$0024
$0026
$0027
$002E
$002F
$0031
$0032
$0035
$0063
$0065
$006A
$006B

RECORD LARGER THAN BUFFER; TRUNCATED
NON-ZERO BYTE I/O READ STATUS
REQUEST CANCELLED
INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
(FPKT 12, 19) SCANCODE ALREADY IN TABLE
(FPKT 12, 19) NOT ENOUGH SPACE IN TABLE
(FPKT 13) ERROR IN TABLE STRUCTURE
(FPKT 13) SCANCODE NOT FOUND IN TABLE
(FPKT 12, 19, 13) INVALID TABLE NUMBER
(FPKT 12) ILLOGICAL SCANCODE FOR TABLE
(FPKT 12) STRING LENGTH <GT> 20
(FPKT 12, 19) BAD TERMINATOR, NOT $OD OR $04
(FPKT 12, 19) INVALID BUFFER CODE
(FPKT 17) TABLES NOT EMPTY, CAN'T REALLOCATE
(FPKT 17) NOT ENOUGH MEMORY FOR TABLES
(FPKT 01) DIBTRN MODE NOT 0 OR 1
(FPKT 03) BAD TIME VALUE (MINUS OR >256)
(FPKT 06) INVALID LED NUMBER
(FPKT 07) INVALID LED NUMBER
(FPKT 14) BAD TABLE #, MUST BE 1-4
(FPKT 15) INVALID BUFFER CODE
(FPKT 17) ~EQUESTED TABLE SIZE NEGATIVE
(FPKT 19) STRING TOO LONG OR BAD TERMINATOR
(FPKT 21) INVALID ENTER/SHIFT KEY
WRITE NOT SUPPORTED
BWRITE NOT SUPPORTED
ATCHDEV NOT SUPPORTED
DTACHDEV NOT SUPPORTED

A.3.5 PRINTER DRIVER (#PR)

$0006 INVALID DATA TRANSFER DIRECTION IN DIB
$0009 RECORD LARGER THAN BUFFER; TRUNCATED
$000A DEVICE NO'[.READY
$000B NON-ZERO BYTE I/O - WRITE STATUS
$000D REQUEST CANCELLED
$000E INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
$000F INVALID TRANSFER MODE IN DIB
$0010 PRINTER DRIVER COLDSTART FAILED
$0012 PARAMETER ERROR IN DTCB
$0014 ONLY FIXED LENGTH TRANSFER ALLOWED IN GRAPHICS
$0019 DETACH DRIVER FAILED
$0021-$0045 DATA OUT OF LIMITS FOR A FUNCTION PACKET

FUNCTION NUMBER= ERROR NUMBER -$0020.
$0061 CANCEL FAILED

Error Messages and Codes A-9

A.3.6 RS-232 DRIVER (#SER)

$0009 RECORD LARGER THAN BUFFER; TRUNCATED
$000A DEVICE NOT READY
$000D REQUEST CANCELLED
$000E INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
$0020 DTCB BUFFER FULL BEFORE READ
$0022 INTMGR ERROR DURING DMA OPERATION
$0030 DATA SUSPECT: PARITY ERROR DETECTED
$0031 DATA SUSPECT: FRAMING ERROR DETECTED
$0032 DATA LOST: CIRCULAR BUFFER OVERRUN
$0033 DATA LOST: HARDWARE OVERRUN
$0034 BREAK RECEIVED

A .3. 7 IEEE-488 DRIVER (#BUS)

$0009 RECORD LARGER THAN BUFFER; TRUNCATED
$000A DEVICE NOT READY
$000D REQUEST CANCELLED
$000E INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
$0020 CONTROLLER NOT ATTACHED
$0021 CONTROLLER ALREADY ATTACHED
$0022 DUPLICATE OR INVALID BUS ADDRESS
$0023 ATTACH WOULD EXCEED MAXIMUM DEVICE COUNT
$0024 DRIVER CANNOT DETACH: DEVICES ACTIVE
$0030 WRITE NOT STARTED: NOT ADDRESSED AS TALKER
$0031 WRITE ABORTED: TIMEOUT ON DMA DATA WRITE
$0032 WRITE ABORTED: ERROR DURING COMMAND SEQUENCE
$0033 WRITE ABORTED: TIMEOUT ON DATA
$0034 WRITE ABORTED: LOST TALKER STATE
$0035 WRITE NOT STARTED: NULL RECORD
$0040 READ NOT STARTED: NOT ADDRESSED AS LISTENER
$0041 READ ABORTED: TIMEOUT ON DMA DATA READ
$0042 READ ABORTED: ERROR DURING COMMAND SEQUENCE
$0043 READ ABORTED: TIMEOUT ON DATA
$0044 READ ABORTED: LOST LISTENER STATE

A.3.8 ITC DRIVER (#ITC)

$0006 INVALID DATA TRANSFER DIRECTION IN DIB
$0009 RECORD LARGER THAN BUFFER; TRUNCATED
$000D REQUEST CANCELLED

Error Messages and Codes A-10

$000E
$000F
$0010
$0011
$0012
$0015
$0016
$0017
$0018
$0019
$0021
$0023
$0062
$0063
$0065
$0066
$0068
$006A
$006B
$0070
$0071
$0072
$0073
$0075
$0076
$0077
$0078
$0079
$007A

INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
INVALID TRANSFER MODE IN DIB
DUPLICATE ITC IDENTIFIER
INVALID ITC IDENTIFIER
INVALID ATTACH/DETACH CODE
LOWER TRIGGER BYTE EXCEEDS UPPER TRIGGER BYTE
BUFFER OFFSET EXCEEDS BUFFER LENGTH
EITHER BUFFER LENGTH OR OFFSET ILLEGAL
NO AVAILABLE SYSTEM MEMORY
RETURN OF SYSTEM MEMORY FAILED
INVALID TRANSFER MODE
INVALID TIME OUT PARAMETER
READ NOT SUPPORTED
WRITE NOT SUPPORTED
BWRITE NOT SUPPORTED
BREAD NOT SUPPORTED
TSTBYTE NOT SUPPORTED
ATACHDEV NOT SUPPORTED
DTACHDEV NOT SUPPORTED
WRITE WAIT FAILED
READ WAIT FAILED
READ SIGNAL FAILED
WRITE SIGNAL FAILED
REQUEST TIMED OUT
CHANNEL(S) IN USE DRIVER WILL NOT BE DETACHED
ERROR IN COLDSTART SEQUENCE
ERROR IN DETACH SEQUENCE - DETACH INCOMPLETE
DRIVER NOT ATTACHED
DRIVER IS ATTACHED

A.3.9 PARALLEL PORT DRIVER (#PPU)

$0005
$000A
$000B
$000C
$000D
$000E
$000F
$0021
$0023
$0025
$0027
$0068
$006A
$006B

READ ERROR - trying to read in printer output mode
DEVICE NOT READY
NON-ZERO BYTE I/O WRITE STATUS - buffer full
NON-ZERO BYTE I/O READ STATUS - buffer empty
REQUEST CANCELLED
INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
INVALID TRANSFER MODE IN D IB
INVALID VALUE FOR SET TRANSFER MODE DATA
SET PARALLEL PORT MODE DATA INCORRECT
SET TIMEOUT DATA INCORRECT
SET AUTO LINEFEED DATA INCORRECT
BTEST IS NOT SUPPORTED BY THIS DRIVER
ATCHDEV NOT SUPPORTED
DTACHDEV NOT SUPPORTED

Error Messages and Codes A-11

A.3.10 DISK DRIVERS (#FDOX OR #HDOX)

$0005 READ/WRITE ERROR
$0006 INVALID DATA TRANSFER DIRECTION IN DIB
$0007 ILLEGAL BUFFER ADDRESS IN DTCB
$000A DEVICE NOT READY
$000E INVALID FUNCTION PACKET CODE AT OFFSET $NNNN
$0010 SEEK TRACK
$0011 LOGICAL SECTOR OR TRACK NUMBER TOO BIG $•':-l<*•'ddd<-1<

$0012 VOLUME CHANGED
$0013 reserved
$0014 I/O REQUEST TIMED OUT
$0015 reserved
$0016 ILLEGAL BUFFER ADDRESS
$0017 DISK FORMAT NOT RECOGNIZED
$0018 DISK WRITE PROTECTED
$0019 SECTOR BUFFER TOO SMALL
$001A WRITE FAULT $-l<>hhbhlr**
$001B CRC ERROR $•'r>'<>bh'r-l<-l<>'r
$001C SECTOR NOT FOUND $*•'d<M<>'<>'d<
$002F ILLEGAL VOLUME IDENTIFIER
$0061 CANCEL FAILED
$0065 BWRITE NOT SUPPORTED
$0066 BREAD NOT SUPPORTED
$0067 CANNOT WRITE - DIBDTD SPECIFIED INPUT
$0068 TSTBYT NOT SUPPORTED
$006A ATCHDEV NOT SUPPORTED
$006B DTACHDEV NOT SUPPORTED
$0070 DATA ADDRESS MARK NOT FOUND $>b'<'l<>bbblr*
$0071 reserved
$0072 ABORTED COMMAND
$0073 reserved
$0074 reserved
$0075 reserved
$0076 UNCORRECTABLE DISK ERROR $'"*'':-td'<>'''**
$0077 BAD SECTOR DETECTED $•'<M<>hh'<*"''
$0078 HARD DISK CONTROLLER NOT PRESENT

A.3.11 SENSOR 1/0 DRIVERS

$0010 DEVICE LOCKED
$0011 DEVICE ALREADY OPEN
$0012 A/D OVERANGE
$0013 CTC TIMER OVERRUN
$0014 ILLEGAL OPEN MODE
$0015 A/D TIME-OVERRUN

Error Messages and Codes A-12

A.4 ABNORMAL-TERMINATION SCREEN

CSOS includes a facility for detecting processor TRAPS and providing a
display of the pertinent information available as an aid in
troubleshooting.

There are two types of TRAPS:

TYPE 1 Standard processor TRAP

includes OPCO invalid OP code trap
DIVO divide by zero trap
CHKC check instruction trap
TRPV Trap V instruction
PRIV privilege violation
1010 illegal instruction
1111 illegal instruction
TR13 unexpected trap 13
TR14 unexpected trap 14
?INT unexpected miscellaneous trap
ABRT Abort button interrupt

TYPE 2 Extended information TRAPS

ADDR
SPUR
BUS
ABUS
DBUS
PROT

DTAK

MPAR
POWR

illegal address trap; word operand on odd address
spurious interrupt trap
bus error trap
address bus error
data bus error
memory protection error; attempt to store into
system memory
missing DTACK error
(This message can result from an attempt to
address memory or devices that are not
implemented on your machine. Every access must
terminate with "Data Transfer Acknowledge" or
DTACK. If it does not, an error message is
generated.)

parity error
power failure error

TRAP DISPLAY FORMAT

FNC=XXXX ADD=XXXXXXXX INR=XXXX } TYPE 2 ONLY

TASK=TASKNAME XXXX TRAP ERROR

PC=XXXXXX SR=XXXX USP=XXXXXX SSP=XXXXXX

Error Messages and Codes A-13

NOTES

DO=XXXXXXXX
D4=XXXXXXXX
AO=XXXXXXXX
A4=XXXXXXXX

Dl=XXXXXXXX
D5=XXXXXXXX
Al=XXXXXXXX
A5=XXXXXXXX

PRESS ANY KEY TO REBOOT

D2=XXXXXXXX
D6=XXXXXXXX
A2=XXXXXXXX
A6=XXXXXXXX

The extended information for type 2 traps is:

FNC = processor function code
ADD = access address at time of trap
INR = instruction register at time of trap

D3=XXXXXXXX
D7=XXXXXXXX
A3=XXXXXXXX
A7=XXXXXXXX

Error Messages and Codes A-14

A.5 MACRO ASSEMBLER

A.5.1 ERROR MESSAGES

Error messages generated during an assembly may originate from the
assembler or from Pascal or the operating system environment.
Assembler-generated messages may be of two forms:

1 . >hbb':~':>':ERROR xxx - - nnnn

where xxx is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous
error occurred.

Errors indicate that the assembler is unable to interpret or
implement the intent of a source line.

2. •h'd<>':>'d:WARNING xxx -- nnnn

where xxx is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous
error occurred.

Warnings may indicate possible recoverable errors in the source
code, or that a more optimal instruction format is possible.

Error Messages and Codes A-15

ERROR CODE MEANING OF ERROR

200
201
202
203
204
205
206

207

210
211
212
213
214
215
216
217
218
219
220
221

230
231
232
233
234
235
236
237
238
239

250
251
252
253

SYNTACTIC ERRORS

ILLEGAL CHARACTER (IN CONTEXT)
SIZE CODE/EXTENSION IS INVALID
SYNTAX ERROR
SIZE CODE/EXTENSION NOT ALLOWED
LABEL REQUIRED
END DIRECTIVE MISSING
REGISTER RANGES FOR THE MOVEM INSTRUCTION MUST BE SPECIFIED
IN INCREASING ORDER
A AND D REGISTERS CAN'T BE INTERMIXED IN A MOVEM REGISTER RANGE

OPERAND/ADDRESS MODE ERRORS

MISSING OPERAND(S)
TOO MANY OPERANDS FOR THIS INSTRUCTION
IMPROPER TERMINATION OF OPERAND FIELD
ILLEGAL ADDRESS MODE FOR THIS OPERAND
ILLEGAL FORWARD REFERENCE
SYMBOL/EXPRESSION MUST BE ABSOLUTE
IMMEDIATE SOURCE OPERAND REQUIRED
ILLEGAL REGISTER FOR THIS INSTRUCTION
ILLEGAL OPERATION ON A RELATIVE SYMBOL
MEMORY SHIFTS MAY ONLY BE SINGLE BIT
INVALID SHIFT COUNT
INVALID SECTION NUMBER

SYMBOL DEFINITION

ATTEMPT TO REDEFINE A RESERVED SYMBOL
ATTEMPT TO REDEFINE A MACRO; NEW DEFINITION IGNORED
ATTEMPT TO REDEFINE THE COMMAND LINE LOCATION
COMMAND LINE LENGTH MUST BE > O; IGNORED
REDEFINED SYMBOL
UNDEFINED SYMBOL
PHASING ERROR ON PASS2
START ADDRESS MUST BE IN THIS MODULE, IF SPECIFIED
UNDEFINED OPERATION (OPCODE)
NAMED COMMON SYMBOL MAY NOT BE XDEF

DATA SIZE RESTRICTIONS

DISPLACEMENT SIZE ERROR
VALUE TOO LARGE
ADDRESS TOO LARGE FOR FORCED ABSOLUTE SHORT
BYTE MODE NOT ALLOWED FOR THIS OPCODE

Error Messages and Codes A-16

254
255

260
261
262
263
264
265
266
267

270
271

280
281
282
283
284
285

286
287
288
289
290
291
292

300
301

302
303
304
305

MULTIPLICATION OVERFLOW
DIVISION BY ZERO

MACRO ERRORS

MISPLACED MACRO, MEXIT, OR ENDM DIRECTIVE
MACRO DEFINITIONS MAY NOT BE NESTED
ILLEGAL PARAMETER DESIGNATION
A PERIOD MAY OCCUR ONLY AS THE FIRST CHARACTER IN A MACRO NAME
MISSING PARAMETER REFERENCE
TOO MANY PARAMETERS IN THIS MACRO CALL
REFERENCE PRECEDES MACRO DEFINITION
OVERFLOW OF INPUT BUFFER DURING MACRO TEXT EXPANSION

CONDITIONAL ASSEMBLY ERRORS

UNEXPECTED 'ENDC'
BAD ENDING TO CONDITIONAL ASSEMBLY STRUCTURE (ENDC EXPECTED)

STRUCTURED SYNTAX ERRORS

MISPLACED STRUCTURED CONTROL DIRECTIVE (IGNORED)
MISSING "ENDI"
MISSING "ENDF"
MISSING "ENDW"
MISSING "UNTIL"
UNRESOLVED SYNTAX ERROR IN THE PRECEDING PARAMETERIZED
STRUCTURED CONTROL DIRECTIVE; RECOVERY ATTEMPTED WITH
THE CURRENT LINE
"=" EXPECTED; CHARACTERS UP TO "-" IGNORED
"<" EXPECTED; CHARACTERS UP TO "<" IGNORED
">" EXPECTED; CHARACTERS UP TO ">" IGNORED
"DO" EXPECTED: REMAINDER OF LINE IGNORED
"THEN" EXPECTED; REMAINDER OF LINE IGNORED
"TO" OR "DOWNTO" EXPECTED; "TO" ASSUMED
ILLEGAL CONDITION CODE SPECIFIED

MISCELLANEOUS

IMPLEMENTATION RESTRICTION
TOO MANY RELOCATABLE SYMBOLS REFERENCED

<LINKAGE EDITOR RESTRICTED>
RELOCATION OF BYTE FIELD ATTEMPTED
ABSOLUTE SECTION OF LENGTH ZERO DEFINED (LINK ERROR)
NESTED "INCLUDE" FILES NOT ALLOWED; IGNORED
FILE NAME REQUIRED IN OPERAND FIELD

Error Messages and Codes A-17

400
•
•
•

499

500
501
502
550
551

INTERNAL ERRORS

SOURCE CODE NOT OPTIMAL OR RECOVERABLE ERRORS

THIS BYTE WILL BE SIGN-EXTENDED TO 32 BITS
MISSING PARAMETER REFERENCE IN MACTRO SOURCE
TOO MANY PARAMETERS IN THIS MACRO CALL
THIS BRANCH COULD BE SHORT
THIS ABSOLUTE ADDRESS COULD BE SHORT

NOTE: If more than 10 errors occur in one line, the message

>'<>b'<>'<>'< TOO MANY ERRORS ON THIS LINE

will be generated.

Error Messages and Codes A-18

B .0 APPENDIX B - COMMAND SUMMARY

I/O COMMAND

SYSIO~OPEN

SYS IO-CLOSE

SYS IO-FUNCTION

SYSIO-AREAD

SYSIO-SREAD

SYSIO-AWRITE

SYSIO-SWRITE

SYS IO-CANCEL

SYS IO- BREAD

SYSIO-BWRITE

SYSIO-BTEST

DESCRIPTION

Assigns a logical unit number (LUN) to a file or device
specified in the Device Initialization Block (DIB).

De-assigns a LUN.

Handles device specific requests defined in a Function
Packet.

Initiates an asynchronous or non-blocking transfer
from a device or device buffer into a user buffer using
the Data Transfer Control Block (DTCB) of the request.

Initiates a synchronous transfer from a device or
device buffer into a user buffer using the Data
Transfer Control Block (DTCB).

Initiates an asynchronous or non-blocking transfer
from a user buffer to the device using the Data
Transfer Control Block (DTCB).

Initiates a synchronous transfer from a user buffer
directly to the device using the Data Transfer Control
Block (DTCB) .

Prematurely terminates and discards all I/O requests
currently associated with the specified LUN.

Performs a byte-read operation using the system
identifier obtained at OPEN time.

Performs a byte-write operation using the the system
identifier obtained at OPEN time.

Performs a test to determine whether a specified
buffer contains information.

Command Summary B-1

SYSTEM SERVICE
COMMAND

SUSPEND-TILLANY

SUSPEND-TILLALL

SUSPEND-SYNCH

DESCRIPTION

Suspends the execution of the invoking
instruction stream until the completion
outstanding asynchronous request.

Suspends the execution of the invoking
instruction stream until the completion
outstanding asynchronous requests.

task's
of any

task's
of all

Returns with the current number of outstanding
asynchronous requests.

EVENTMGR-OPNEVBLK Associates an Event Block in user task space with a
specific event which has been defined to the system by
a device driver.

EVENTMGR-CLSEBLK Disassociates an Event Block with the event.

EVENTMGR-ARMEVENT If a user task is suspended, posting of a specified
event will resume the task.

RTMGR-OPEN Seizes the time facility and designates the task data
block that will be used for timer control and
data/time transfer.

RTMGR-CLOSE

RTMGR-QTIME

RTMGR-QALRM

RTMGR-STOP

RTMGR-ALRM

RTMGR-ALRMR

RTMGR-SUM

Release the timer facility associated with the RTT
that was previously OPENed.

Get current date/time.

Get current alarm setting.

Terminate an active alarm.

Set absolute date/time alarm.

Set relative date/time alarm.

Compute sum of date/time for RTT block input and
output areas.

Command Summary B-2

C.O APPENDIX C - SAMPLE CODING

W)K)K·· • •
SAMPl ... E PF;:DGF~r.~M

1...UN' '.'l!

C:DPJ:J"T; F:X:l...E TESTEI'<, l..ST ON DEF r~1Ul...T Dl<I1.JE TO PF(J.:N'fER
UffX:NC BFDUENT:U11 ... (VAl'(U1Bl ... E LENGTH) 11cc1:::i:,~:; METHOD

:I INPUT

TNl"'UT (1:;:Ef.\D) E:l .. OCl<'.O:;, DTE:/DTCB
OUTPUT < l·!F(X:TE) [:i...OCl<S' n:n::/DTCB

... ,

.~: . OUTF'UT
•••

INCL.UDE :U:JMCl..B'.'50, INC
INCl...1 .. JDE Dl<MCl..l':~"iO, INC
:INCLUDE :::;y~:Wii"1C~.'iO, INC
TDNT o,o COl"'Y FUNCTTDN OB·· .. O'.,,.; B'.3

:oK

l..TNEl...EN E:C.H.J .TNE 1..ENCTH
..

• ciEAR CONTROi... 81...rn:vs

LEA INDJB,A3

•

)K

)!<:

MD'.JE,~i

CLP.I'::
DDF

l...Et1
MCJ 1,,JE., H
MOVE.I...
MDVF.H
MCJ'-JF, [:
MDI.IF .H
MCNE,I...
MCJ•.,11::: .; I..
MD'..JE.i...
M01,,JE,E:
MD1)E.,B
MD1,1E ., !":

l...Et1
MD1,I[,I...
MD1·JE, l,i
MCME. r:::

»: SET UP DTCI'': 'S

•

l...Et1
MD1)E,I...
MO',JE ., h'
MO'-..JF. B
MOVE,[:

l...E(:1
MD'-.IF,I...
MCJ',,JF ., \-,I
MO'..JE, [:
M01,l[,f:':

(IYJ)+

IND IT:, f.)'.":
'"':I. ,, D::u:::DTD (td)
,II,' ' ,, D:n::'-. .!01... (r13)
'"'' ' , .. D:n::!)CJl ... +'·i < P.1:::J)
,11,:1., LH:l'::DTD UU)
'"':I. :•DTi:::Tl';:N(r:'.J'.J)
•t.EVFPK,Ufl":FCN(A3l
*'TEST',.Dil":NAM<A:::Jl
*'ER '•Dll'::NAM+4(A:::Jl
'"'' I... ' , D::n:::EXT (1~3)
*'S' •Dl8EXT+:l(A3l
*'T' ,OJl":EXT+2(A3l

cH.rro::cr::: ,, t1·'1
'"' ' ,11,F'I';: ' "DTl:':'-..'UI. ((',.•:f)
'ii'' ' , i::u::i:::1.,1u1 .. +"{· < rVt l
'"':I. • l:>::CE':Tl';.:N ((d l

:rw:rrci::: ,, r'.lJ
,11,1...:UWT:UF, DTCE:I''·:::; (r-"13)
,11,L.INEL.FN. i:rrci::q::·1... ((1'.:l)
,11,~HI [) ,, DTCTE:U (t1'.:::)
,II,~!; 0 "f, DTCTE:I. (t13)

Ol.JTDTCB,. (.'.1·'·f

,11'1. .. TNEBUF, DTCE:F':'l ((l''l)
tl...TNEl...EN,DTCBFl...(A4)
,11,~1;. OD,, DTCTl::l .. J (1Vt)
'lhHH, DTCTBI ... (t1''f)

·------ .. _ .. _________ .. ----------·

CLEAR 1":1...0CK DUFFERS
........ (o:n::' E;. DTCB' :::;)

INPUT
INlT Uil":VC~ TD E:~ANKS

(DF:F1"'1ULT DRI:\.!F:)
1:;;[('10

VARIAE~E SEQ~~NTTAI... ACCESS
GET FCmMAT 1...EVEI... t
FTl...E ~ . .fi<~ME

Ol.JTl"'UT TD l"'RTNTER

VARIAHl...E L.ENGl~ DATA

TERMTNATIDN RANGE

Sample Coding C-1

)!(······-··············-··· ··-········· . ···································-················)!(
lK COPY F:n .. E:: TO PRINTt:J::)I(

)!(···· -················-···· ··-············ ··-···························· ·········-····· -······ ········ ········)K

~:>YffU:) OPl''JJ,,ll,:t .:nm:r:E:,.OPENl'':F!R:I. OF''EN F:H .. E
)I(TEXT FILE ON A NEW FORMf.iT ffH!UCTUm:: (DJI': (.\[)DI';: PUT :IN (.16)

IF. B l:HE:TYP (P.16) <ECl> 'il<:l P.1ND ., !-!
l...E'..)EI... <En> ~n THEN.!')

SYS IO
l'~El'''Er:\T

c1...1::: ,. ~~
BY:':lIO

OPEN, ,H,2 • 01 ... !TDIE: ,, OPENEl'!F::? Ol'''EN DEVICE
Tfo'°'IN'.'H''TJ:.: IX1T (.:1

sm~AD.t:l..INDTCE:.RDERR

r::i ... 1:::.w
~:JYSTO

DTCE:PT (r~1'l)
SWRJ~E.t2.0UTDTCE:rWRERR HF:.::ITF !...INF

M01.,JE1-~, I...
MCJVE.W

DTCE:FB (P.r'l) ,, t1l
DTCE:F'T ((1·'"}) , DO

MOVE.[: -1<AlvDO.w>.D2
l.JNTTI... ., 1:: D2 <EP> ,11,~1;01.1

GET TE1:::MINt1TTNG BYTE
EK.IT IF END····OF····Fil...E M(.1Rl<EF!

)I(

Cl ... rn:>E l:>YffID c1..o~:;i;:: "'L''' ()'CLOSE:!. Dl .. !TF''UT
ENDT l~XT FILE ON NEW FDRMAT DIE~

c1...om:::1. !'>YEn:o
CLDrn::2 EXTT
)I(

w. EFmCJE: f·li<~NDl...If\IG

w.
OPENEF:1';:1 l"'l'!Tl"J;:h:

EKIT
)I(

OPENEPR? l"'F:TEF:F:

CLOSE, 'Ii':!., 0,. Cl .. O!:':F:::>. INPUT

E:PA Cl...O!':E :I
:i<:

){(NOl'<:i''\{11... END····O!::· +:·:n .. E 1,ffl...L. DE D:rrn:::Ol)[JIED HEHi::: UNi...F:::>S FTl ... F HA~''
)l<: um::n THE UNNFCTSS1'1!'('("~\; 01.f" END····OF···FTL.F M;o,1:::1·<J::P
F<:DE:i:::I'! IF.,\.--! Dl <NE> ,11,l'(DEW THI::J·J ., ~:;; TEY:T FD!':: EDF'' (!';:FAD BEYOND FND EJ::l'!Ol'i:)

)I(

~JF:E"Tm

)I(

lK·

Pl';:TEPP c1::.:i:::rn::: , NOT EDF
FNDI
BF<:,,:, c1...om:·

F'h:TEF:F:
l'mt, CLfYlF

)I(FUNCTTON Pf'.'1C.:l<ET

l ... EVFl"'I<
l...E'JEI...

DC,H
[)~') "1,,1

DC., h'

CETl...FV
l
ENDLI!:lT

)!(------------------------·
L.:INEBUF IY:) ., E': l...INFl...FN
)I(·

lK FDl...l...OWING IS STORAGE CLJ~APFD AT BEGINNING OF PPC~RAM

Bl...l<LEN (D :CBFND+DJl':l...FN+7:>1([)TCl...EN)

..... ·······)I'.

IND:X:E: D~:> , D o:n::FND
DTE:\... EN
DTCL.FN
DTCl ... EN

DEVICE INTTIAl...:X:ZAT:X:C™ E~OCKS
OUTDTB D!'>,B
XNDTCB D3,E::
DUTDTCB Dn ., D

END

Sample Coding C-2

D.0 APPENDIX D - INCLUDE FILES ON EXTENSION DISKETTE

These files are for use with the Assembler. You use the Assembler INCLUDE
statement to merge them with your source statements. These files include
EQUATE statements and/or MACRO definitions.

COMDEFSO.INC

PARDEFSO. INC

DKMCLBSO.INC

GRMCLBSO.INC

IOMCLBSO. INC

KBMCLBS 0 . INC

KPMCLBSO.INC

PPMCLBSO.INC

PRMCLBSO.INC

RSMCLBSO.INC

SCMCLBSO. INC

SIMCLBSO. INC

RTMMACSO.INC

SEMMACSO. INC

SYSMACSO.INC

Equates for use with GBASPTR System Call.

Equates for use with GSTAT System Call.
Used for parsing the command line.

Equates for files and disk/diskette.
Note: This include must follow IOMCLBSO. INC

because it references DIB fields.

Equates for #GR Graphics driver.

Equates for EVB, DIB, DTCB, and common FPKT's.
Macros for SYSIO and SUSPEND.

Equates for #CON keyboard driver.

Equates for #KPD keypad driver.

Equates for #PPU parallel port driver.

Equates for #PR Printer Driver.

Equates for #SERnn Serial Port Driver.

Equates for #SCRNO, #SCRNl, #CNSLO Character Screen
Driver.

Equates for Sensor I/O.

Macro and Equates for RTMGR Timer Facility.

Macro and Equates for Semaphore Facility.

Macros for CS 9000 System Calls.

This INCLUDE file contains two sets of macros for
displaying messages from your program.

One set is TYPE and TYPES, which display messages

Include Files on Extension Diskette D-1

from programs running under the SYSTEM task to
#SCRNO via the PRTMSG SYSTEM Call.

You code TYPE <MESSAGE STRING>
To display a message with carriage return-line
feed.

You code TYPES <MESSAGE STRING>
To display a message without carriage return
line feed.

There is also a macro set called PRNTINIT and
PRNTMSG which can display messages to any open
window or device from any task.

You must perform a SYSIO-OPEN to the desired
window or device. You then issue PRNTINIT once
in your program to generate a DTCB for the
message. Code PRNTMSG <message text> for each
message. Register DS.B must contain the LUN.

Include Files on Extension Diskette D-2

E.0 APPENDIX E - DISK STRUCTURE

This appendix describes the internal disk structure that can be examined
with the REPAIR command.

E. 1 VOLUME LABEL SECTOR

The Volume Label Sector stores information about the physical
characteristics of the disk, and the file structure used on it. It is
contained in Logical Sector Number (LSN) 0 on CSOS formatted disks.

The Volume Label Sector is formatted as shown below.
parenthesis are hexadecimal offsets.)

BYTES

0-3
4-9

10

11

12-15
16-19
20-22

23

24-27
28-31
32-35
36-39
40-43
44-45

46-49
50-51

52-53
54-55
56-57

(O)
(4)
(A)

(B)

(C)
(10)
(14)
(17)

(18)
(2C)
(20)
(24)
(28)
(2C)

(2E)
(32)

(34)
(36)
(38)

DESCRIPTION

0 (reserved)
Volume identifier in ASCII
Surface indicator (diskette only)

I '=1, I 1 '=2, 'M'=2D, 'N'=lD
Sector size (diskette only)

I 1 =128, 1 1 1 =256, 1 2 1 =512, 1 3 1 =1024
0 (reserved)
'LEVL'
0 (reserved)
File structure Level #

l=Linked Sectors (old),
2=Bit Mapped Sectors (new)

Pointer to Bad Sector Table (LSN)
Pointer to Bit Map (LSN)
Pointer to File Index (LSN)
Pointer to Backup File Index (LSN)
Pointer to First Diagnostic Area (LSN)
Length First Diagnostic Area in

Sectors
Pointer to Second Diagnostic Area (LSN)
Length Second Diagnostic Area

in Sectors
Number of Bytes per Sector (=256)
Number of Sectors per Track
Number of Heads

(Values in

Disk Structure E-1

58-59 (3A) Number of Cylinders useable for File
System

60-61 (3C) Disk Type
1=5i-inch diskette
2=8-inch diskette
3=Reserved
4=10MB Hard Disk

62-69 (3E) Date and Time Formatted/Initialized
70-71 (46) Number of Sectors Per Cluster
72-73 (48) Default Number of 256 Byte Blocks

Per Extent
74-77 (4A) Number of Clusters
78-255 (4E) Not Used

E.2 BACKUP VOLUME LABEL

A backup copy of the Volume Label is stored in the last LSN on a diskette.
For the hard disk, it is stored in the first good LSN before the second
diagnostic area.

E.3 BAD SECTOR TABLE

The Bad Sector Table contains a list of defective sectors on the disk
media. The LSN of the Bad Sector Table is stored in the Volume Label
Sector, and is one sector in length. Each entry in the list is a 32 bit
LSN, and the list is terminated with an entry of -1 ($FFFFFFFF). It is
only supported on the hard disk.

E.4 BIT MAP

The Bit Map contains one bit for each cluster on the disk. A cluster is a
fixed number of contiguous sectors. The number of sectors per cluster is
stored in the Volume Label Sector along with the LSN of the Bit Map. A 0
indicates a cluster is in use, and a 1 indicates a cluster is available
for assignment. The MSB (most significant bit) of the first byte
corresponds to the first cluster on the disk and the LSB (least
significant bit) of the first byte corresponds to the eighth cluster on
the disk. Unused bits at the end of the last sector of the Bit Map are set
to zero.

Disk Structure E-2

E.5 FILE INDEX

The File Index is itself a file which contains a 256 byte entry for each
file on the volume. The LSN of the File Index is stored in the Volume
Label Sector. The first entry is for the File Index itself, the second
entry
Backup
files.

is for the
File Index.

BYTES

0 (0)

1 (1)

2-3 (2)

4-11 (4)
12-14 cc)

15 (F)
16-17 (10)
18-19 (12)
20-27 (14)
28-35 (IC)
36-43 (24)
44-45 (2C)
46-49 (2E)
50-53 (32)
54-57 (36)
58-61 (3A)
62-63 (3E)
64-67 (40)

68-72 (44)
73 (49)

74-75 (4A)
76-77 (4C)
78-81 (4E)

250-251 (FA)
252-255 (FC)

Directory (DIR.DIR), and the third entry is for the
The fourth and successive entries are for user created

DESCRIPTION

Type of this block (O=Unused, l=Extension,
2=Defines Contiguous file, 3=Defines Extendable
File)

Type of data (O=Binary, l=Binary with Transfer
Address, 2=ASCII Text)

(1= file is in directory, O= file is not in
directory)

File Name, ASCII
Extension, ASCII
Reserved, (=O)
Version, Binary (=1)
Revision Number
Date and Time Created
Date and Time Revised
Date and Time Backed Up
Reserved
Reserved for Owner Information
Access Control Information
User Area
Number of 256 Byte Blocks used in File
Number of Bytes used in Last Block
Number of Blocks Desired in each Extent

(O=Use Volume Default)
Number of Blocks Allocated to File
Number of Extents Defined in Rest of This Block
Pointer to First Extension Entry, 0 if None
Number of Blocks in First Extent
Pointer to First Extent

Number of Blocks in 30th Extent
Pointer to 30th Extent

Note: For the file index of the File Index, the following fields are
specially defined:

Disk Structure E-3

8-9 (8)
10-11 (A)

Number of free blocks in File Index
Next free File Index entry (block number)

As shown above, the first block allocated for a file contains descriptive
information and pointers to up to 30 extents. If a file expands past 30
extents then additional blocks are allocated in the File Index as
required. These Extension Blocks are formatted as follows:

BYTES DESCRIPTION

0 (0) Type (=1, Extension)
1-6 (1) Not Used

7 (7) Number of Extents Defined in the Rest of this
8-9 (8) Pointer to Next Extension Entry, 0 if None

10-11 (A) Number of Blocks in Next Extent
12-15 (C) Pointer to Next Extent

250-251 (FA) Number of Blocks in Last Extent (for this File
Index Block)

252-255 (FC) Pointer to Extent

E.6 DIRECTORY FILE

The Directory is a file which contains a 16 byte entry for each
file on the volume. The first entry is for the Directory itself.

BYTES DESCRIPTION

0-7 (0) Name in ASCII. First Character Blank if
Unused, 0 if End of Directory

8-10 (8) Extension in ASCII
11 (B) Reserved (=O)

12-13 (C) Version Number
14-15 (E) File Index entry/block number

Block

Disk Structure E-4

E. 7 BACKUP FILE INDEX

The Backup File Index is a copy of the File Index that is maintained to
allow recovery of file information if a defect develops in the File Index.
The LSN of the Backup File Index is stored in the Volume Label Sector.

E.8 DIAGNOSTIC AREAS

There are two separate diagnostic areas supported on the hard disk. (They
are not supported on diskettes.) Each area is reserved space for use by
diagnostic programs only. The LSN' s and the length of the First and
Second Diagnostic Areas are stored in the Volume Label Sector.

Disk Structure E-5

GC22-9200-1 READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate.

IBM Instruments, Inc. shall have the nonexclusive right, in its discretion, to use and distribute all submitted infonnation,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.

Note: Copies of IBM Instruments, Inc. publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM Instruments, Inc. product to your IBM
Instruments, Inc. representative or to the IBM Instruments, Inc. office serving your locality.

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful
comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and
omissions.

Page Number: Comment:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC22-9200-1

IBM Instruments, Inc.
P.O. Box 332
Danbury, Ct. 06810

Please do not staple

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Instruments, Inc.
P.O. Box 332
Danbury,Ct. 06810

Please do not staple

Fold and Tape

First Class
Permit 40
Armonk
New York

Fold and tape

GC22-9200-1

IBM Instruments, Inc.
P.O. Box 332
Danbury. Ct. 06810

