nstruments

Computer System
Operating System Reference Manual

Part 2.
Assembler Programmer’s Guide to
Logical I/0 and System Services

Release 1.1

GC22-9200-1



Computer System
Operating System Reference Manual

Part 2.
Assembler Programmer’s Guide to
Logical I/0 and System Services

Release 1.1

GC22-9200-1



Second Edition (October 1983)

The contents of this edition are subject to change. Changes will be
included 1in subsequent Technical Newsletters or editions of this
publication.

Requests for copies of IBM Instruments, Inc., publications should be made
to your IBM Instruments, Inc., representative or by calling, toll-free,
800-243-3122 (in Connecticut, call collect 265-5791).

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM
Instruments, Inc., Department 79K, P.0O. Box 332, Danbury, CT 06810. IBM
Instruments, Inc. may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation
whatever.

© Copyright IBM Instruments, Inc., 1983

01107830

Preface ii



PREFACE

This

manual describes the 1logical I/0 facilities and programming

interfaces of the IBM Instruments Computer System. It consists of 20
chapters and five appendixes.

Chapter 1 -- "Introduction to Logical I/0 and System Services'" -- is
divided into two parts; one discusses the general concepts of logical
I/0 briefly, and one goes into more detail about the commands used to
perform logical I/0 or gain system services.

Chapter 2 -- "Keyboard Driver" -- describes how the keyboard can be
controlled.
Chapter 3 -- "Keypad Driver" -- describes how to control the computer

system's keypad through the keypad driver.

Chapter &4 -- "CRT Alphanumeric Display Driver" -- describes the
information required by this driver for its control of the CRT screen.

Chapter 5 -- "CRT Graphics Driver" -- describes the type of
information that must be provided to this driver to perform various
graphics functions of the CRT.

Chapter 6 -- "Printer Driver" -- describes the various settings
required by the driver to control print color, etc.

Chapter 7 -- "File Access and Structure'" -- describes methods for
accessing files stored on diskette and on hard disk.

Chapter 8 -- "Diskette Driver" -- describes the use of the diskette
driver.
Chapter 9 -- "Hard Disk Driver" -- describes the use of the hard disk
driver.
Chapter 10 -- "RS-232  Asynchronous Communications Driver' — --

describes how to use the RS-232 driver.

Chapter 11 -- "IEEE-488 Interface Driver" -- describes how to use the
IEEE-488 driver.

Chapter 12 -- "Parallel Port Driver" -- describes the use of that
driver.

Preface iii



Chapter 13 -- "Intertask Communication Channels Driver' -- describes
the Read and Write channels used to exchange data between two
concurrently running tasks.

Chapters 14 through 18 describe the drivers that are associated with the
computer system's optional Sensor I/0 board:

L]

Chapter 14 -- "A/D Converter Driver" -- describes how analog to
digital conversion can be accomplished through the A/D driver.

Chapter 15 -- "Switch Input Driver" -- describes how to use this
driver to set up switch input.

Chapter 16 -- "LED Output Driver'" -- describes how the LED driver can
accomplish LED output.

Chapter 17 -- "Sensor Board Parallel Ports Driver" -- shows how the
parallel ports driver associated with the Sensor I/0 board works.

Chapter 18 -- "Counter Driver" -- shows how to use the driver to
manipulate the counter.

Chapter 19 -- "Semaphore Manager" -- describes how tasks can be
controlled with semaphores.

Chapter 20 -- "System Calls" -- describes how system calls can be
made.
Appendix A -- "Error Messages and Codes'" -- provides a list of the

most commonly used error messages and codes.

Appendix B -- "Command Summary' -- provides a brief summary of the
I/0-related command presented in this manual.

Appendix C -- "Sample Coding" -- shows some samples of how various
drivers and I/0 routines could be coded.

Appendix D -- "Include Files on Extension Diskette" -- 1lists the
equate statements and macros that can be used with the assembler.

Appendix E -- "Disk Structure" -- describes the internal structure
disks and diskettes.

Preface iv



Related Publications:

Publications that discuss related aspects of the Computer System are:

Computer System Product Description, GC22-9183

Computer System BASIC Reference Manual, GC22-9184

Computer System Pascal Reference Manual, GC22-9190

Computer System FORTRAN Reference Manual, GC22-9194

Computer System Operating System Reference Manual
Part 1: Operating System, GC22-9199

Computer System Problem Isolation Manual, GC22-9192

Additional References:

A good understanding of assembler language programming is assumed in much
of this manual. There are many sources of information on the subject,
whether formal classroom education or through use of books and other
student material.

A knowledge of the facility of the 68000 microprocessor is also important,
especially for understanding the instruction types and notation
conventions which apply to this microprocessor. There are several books
available on the 68000, two of which are:

N Motorola MC68000
16-Bit Microprocessor User's Manual, 3rd edition
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982

i 68000 Assembler Language Programming
by Gerry Kane, Doug Hawkins, and Lance Leventhal
Osborne/McGraw-Hill, Berkeley, CA, 1981

Preface v



Preface vi



CONTENTS

Preface

1.0 Introduction to Logical I/0 and System Services
1

An

I
ool e = =R S e e
...O....
== E W

> O
£

N RN DN DN
WWWLWWLELWLWWLWLWPRWLWLWLWWWLWWNREOO U WD DS

D

o W R e N

—
O B i o I T e R G R G R S e S T = T = B S R OV

1.

Overview of Logical I/O

Device Drivers

Logical Unit Numbers (LUN) and Loglcal Dev1ce Names
Using the Higher Level Languages

The Structure of Logical I/0

Information Can Be Passed

.4.1 Device Initialization Block (DIB)
.4.2 Data Transfer Control Block (DTCB)
.4.3 Function Packet (FPKT)

Information is Used
Overview of System Services
System Calls

Timer Services
Asynchronous 1/0

Event Posting

Semaphores .

The SUSPEND Command

tailed Information on Logical I/O

When to Use Synchronous, Asynchronous, and Byte I/O
More Information on SYSIO Commands

.1 Block-Oriented I/0 Commands

Byte I/0 Facilities

Byte I/0 Commands .

Event Posting With EVENTMGR Commands
Opening Events

Closing Events

Arming Events

.8 Polling Events . .
More Information on the SUSPEND Command
Timer Services and the "Real-Time' Manager

NNNNNNNN
~N O BN

.4.1 Polled and "Wake-up' Mode

.2 Time and Date Format

4 Printing the Time .
.5 Sample Program Using the Real T1me Manager
a
1

4
.4.3 RTT Block Format
4
4

Naming and Other Conventions

.5. File Name Format

.5.2 File Extensions

5.3 Logical Device Naming
.5.4 Numbers

2.0 Keyboard Driver
2.1 Driver Description

iii

T S T S SO
[
O O VW OO UIWWRNNRFE

i
[ T B
=
== O

1-11
1-12
1-12
1-13
1-14
1-24
1-24
1-29
1-29
1-29
1-30
1-30
1-34
1-39
1-39
1-40
1-40
1-41
1-50
1-50
1-50
1-52
1-52
1-53

2-1

2-1

Preface vii



wwoN

wwbwwwwv—a

v o

%]

~J

U1UI}~Q u»h - EEPRROREEN S
a
Nl—";dv——-lawr\);—n

O\O\J-\O\LJJO\NH

.2 Device Initialization Block (DIB)
2.2.1 DIB Format
.3 Keyboard Data Transfer Control Block (DTCB)
2.3.1 DTCB Format e e e e e e e
.4 Keyboard Functions
2.4.1 Summary of Keyboard Functlons
2.4.2 Keyboard Function Descriptions
5 Keyboard Usage
Keypad Driver .
Driver Description
Device Initialization Block (DIB)
.2.1 DIB Format .
Keypad Data Transfer Control Block (DTCB)
.3.1 DTCB Format e e e
Keypad Functions .
.4.1 Summary of the Keypad Functlons
.4.2 Keypad Function Descriptions
CRT Alphanumeric Display Driver
Driver Description

Device Initialization Block (DIB)
DIB Format
Character Attrlbutes
Attribute Code
Data Transfer Control Block (DTCB)
DTCB Format e e e
T Functions .
b Summary of Functlons
4.,
CRT Graphics Driver
Driver Description
Device Initialization Block (DIB)
.2.1 DIB Format
Graphics Data Transfer Control Block (DTCB)
Graphics Functions e e
.4.1 Summary of Graphics Functlons
.4.2 Graphics Function Description
Printer Driver .
Driver Description
Device Information Block (DIB)
.2.1 DIB Format .
Printer Data Transfer Control Block (DTCB)
.3.1 DTCB Format
Printer Functions .o
.4.1 Summary of Printer Functlons
.4.2 Printer Function Descriptions
File Access and Structure

.1 Introduction
.2 File Access Methods

7.2.1 Sequential (DTCREC = 0)

Alpha Window Manager Functlon Descrlptlons

3-1

PP L0 WwWWwWwWwWwww
1
O O = O 00~ ~O O

=

EREE SR D SR SR S
]
[ay
—

5-1

NN NN OO LUt Ut
] [ T T |
NH RSNV PP OO0 WO

w1
=

] 1 1 1 1 1 ] ¥

Preface viii



(o]
o O NN NN ~
\IO\U‘IOOOOJ-\OOL»OONH

el
O O WO OO

O

9.

9.

kom\l\d\lo\\l\llﬁ\l-l-\\l\l\l\l\l\l\lw\l

\JON\O\OLHKO-L\U)NI—‘

.2.2 Relative Record (DTCREC not 0)

Device Initialization Block (DIB)

DIB Format

DIB Option Word B1t Def1n1t1ons

DIBTYP Definition

DIBACS Definition

DIBRLG Definition

DIBIET Defaults

DIBSET Defaults

Flle Access Data Transfer Control Block (DTCB)
.4.1 DTCB Format

File Access Functions .o

.5.1 Summary of File Access Functlons

.5.2 File Access function Descriptions

SYSIO Calls for Accessing Files

End-of-File Considerations

.7.1 Variable Length Sequential Access Method
.7.2 Fixed Length Access Methods

Error Codes

Examples of Control Blocks

L;JL)JOOUJU)UJL)J
\IG\UI-I-\L»)NI—'

.10 Data Structure on Disk
.11 Space Allocation on the Disk

7.11.1 Disk Space Allocation Algorlthms
Diskette Driver e e e
Driver Description .

Device Initialization Block (DIB)

.2.1 DIB Format

.3.1 DTCB Format

Diskette Driver Functlons .
.4.1 Summary of Diskette Functions
.4.2 Diskette Function Descriptions

Definitions

Error Codes

Examples of Control Blocks
Hard Disk Driver

Driver Description .

Device Initialization Block (DIB)

DIB Format .

Disk Driver Data Transfer Control Block (DTCB)
.4.1 DTCB Format

Disk Driver Functions

.5.1 Summary of Disk Functlons

.5.2 Disk Function DeSCIlpthHS

Error Codes

Examples of Control Blocks

10.0 RS-232 Asynchronous Communications Drlver
10.1 Driver Description .
10.2 Device Initialization Block (DIB)

Diskette Driver Data Transfer Control Block (DTCB)

~N N

L B BN N BN BN B B B N e B BN AN
[l =L L I T B |
WWNhNOVWEIYNOTOOTULIULLEDNDDNDDN

7-13

8-1

1 ] 1

1 0O 0O 0o o 0o Co
[

o o @
1
o

O O O WV WYVW\WWYWWOWWOWWOUWYWWYWWYYI
[} 1
NP FROUPFEWORNNNNNRE R HEPROPRRPFOOWOUNDDN P&

[

Preface ix



10.2.1 DIB Format .o e e e e e o .. 10-4

10.3 RS-232 Data Transfer Control Block (DTCB) . e v . . . . 1l0-4
10.3.1 DTCB Format . O £ 0 S
10.3.2 Return Status Codes O X £

10.4 RS-232 Functions .o O ¢ Y
10.4.1 Summary of Functlons .o O 1 0 £ &)
10.4.2 RS-232 Function Descrlptlons e e . .o .. o . . .. 10-8
10.4.3 Circular Buffer Parameter Block e e e e e 10-23
10.4.4 Character Translation Subroutine e e e e e e 10-24
10.4.5 Control-Character Tables e e e e e e e e e 10-25

"11.0 IEEE-488 Interface Driver D

11.1 Driver Description e B R
11.1.1 Bus Sequences e B R
11.1.2 Asynchronous Events e B S
11.1.3 Request Queuing O A
11.1.4 Device Detachment P B )
11.1.5 Service Requests .o T B 5

11.2 Device Initialization Block (DIB) e e e e e o . . . . . 11-5
11.2.1 DIB Format .. e e e . . .. 11-5

11.3 1IEEE-488 Data Transfer Control Block (DTCB) e e . . .. 11-6
11.3.1 DTCB Format O O )

11.4 IEEE-488 Functions O O R
11.4.1 Summary of Functions .o B B R
11.4.2 IEEE-488 Function Descrlptlons e D 8

12.0 Parallel Port Driver . 2L

12.1 Driver Description . e L B

12.2 Device Initialization Block (DIB) T e |
12.2.1 DIB Format .o e e .. 12-2

12.3 Parallel Port Data Transfer Control Block (DTCB) oo .. 12-2
12.3.1 DTCB Format e

12.4 Parallel Port Functions O R
12.4.1 Summary of Functions .o e
12.4.2 Parallel Port Function Descrlptlons e e e e 12-4

12.5 Error Codes .. e e e e e e e e s 127

13.0 Intertask Communlcatlon Channels Drlver S L 8 |

13.1 Driver Description . B iR

- 13.2 Device Initialization Block (DIB) P L
13.2.1 DIB Format .. S i £ A

13.3 Data Transfer Control Block (DTCB) e e e e e oo ... 13-2
13.3.1 DTCB Format .. e e+« . . . . 13-3

13.4 Intertask Communlcatlon Channel Functlons e+« . .« . . 13-3
13.4.1 Summary of Functions O 1 /%
13.4.2 Function Descriptions e R R

13.5 1ITC Error Codes O G £ )

14.0 A/D Converter Driver . r /S

14.1 Driver Description . B /S |

14.2 Device Initialization Block (DIB) T R/ 5 |
14.2.1 DIB Format .. B X
14.2.2 DIB Option Word Blt Deflnltlons e e e e e o 142

Preface x



14.3 A/D Converter Data Transfer Control Block (DTCB) .. . . 14-3

14.4 A/D Converter Functions O /A
14.4.1 Summary of Functions .o T AL %
14.4.2 A/D Converter Function Descrlptlons . e e . . . . . 14-5

14.5 Error Codes T C X

15.0 Switch Input Driver B R |

15.1 Driver Description . B T

15.2 Device Initialization Block (DIB) e e e o . ... .. 15-1
15.2.1 DIB Format - e e e e . . . . . . . 15-3
15.2.2 DIB Option Word Blt Deflnltlons . .. . . . 15-3

15.3 Switch Input Data Transfer Control Block (DTCB) ... 15-4
15.3.1 DTCB Format e e e . e e o . . . . . . 15-4

15.4 Switch Input Functions e

15.5 Error Codes e G £

16.0 LED Output Driver R ]

16.1 Driver Description .. S L 1 |

16.2 Device Initialization Block (DIB) R 1
16.2.1 DIB Format . e e e e . .. . . . . 16-3
16.2.2 DIB Option Word Blt Deflnltlons . e . . . . 16-3

16.3 LED Output Data Transfer Control Block (DTCB) .. .. 16-4

16.4 LED Output Functions O I R 8

16.5 Error Codes . e

17.0 Sensor Board Parallel Ports Drlver B VA

17.1 Driver Description . B VA

17.2 Device Initialization Block (DIB) . S |
17.2.1 DIB Format . e A |
17.2.2 DIB Option Word B1t Deflnltlons . . 17-3

17.3 Sensor Board Parallel Ports Data Transfer Control Block

(DTCB) .. . I /%
17.3.1 DTCB Format . B R A
17.4 Sensor Board Parallel Ports Functlons F N
17.5 Error Codes D
18.0 Counter Driver e K 1

18.1 Driver Description .o B R L

18.2 Device Initialization Block (DIB) B R R
18.2.1 DIB Format .o e e e e . . . . . . . 18-5
18.2.2 DIB Option Word B1t Deflnltlons . e e e . ... 18-5

18.3 Counter Data Transfer Control Block (DTCB) . e« . . . . 18-6
18.3.1 DTCB Format e - 1)

18.4 Counter Functions . O, < R
18.4.1 Summary of Functlons .o N - 1Y
18.4.2 Counter Function Descrlptlons e k2

18.5 Error Codes O ¥ £ 1)

19.0 Semaphore Manager B R !
'19.1 Manager Description . T L
19.2 Example Program with Semaphores e e e 19-16

20.0 System Calls . A O
20.1 Issuing System Calls (SC) A O R S |
20.2 SC Routine Index A O R B

Preface xi



MmO aQw

HEHHEHEHEEEO O OO

0~ U WN

20.3 Command-Parsing Routines
20.4 Filename Formatting

20.5 Initialization and Warmstart
20.6 Display Control .

20.7 Utility System Calls

20.8 Directory Search

20.9 Time Operations

20.10 Loading Programs .

20.11 Multitask System Calls

20.12 Program Development .
20.12.1 Programs Called From The SYSTEM Task
20.12.2 Tasks Started By RUNTASK or GETPCB
20.12.3 Memory Available to Application Programs
20.12.4 Managing Memory Among Several Tasks
20.12.5 Performing Screen I/0

.0 Appendix A - Error Messages and Codes

Error Messages from Operating System Commands
Common Device and Manager Error Codes
.2.1 Message Format .o .
.2.2 Common Device-Driver Error Codes
.2.3 Manager Error Codes

.2.4 Codes for Asynchronous Requests
Driver Error Codes

.1 CRT Graphics Driver (#GR) .
CRT Display Driver (#SCRN, #CNSL)
Keyboard Driver (j#CON)

Keypad Driver (§#KPD)

Printer Driver (#PR)

RS-232 Driver (#SER)

IEEE-488 Driver (#BUS)

ITC Driver (#ITC)

.9 Parallel Port Driver (#PPU)

.10 Disk Drivers (#FDOX or #HDOX)
.11 Sensor I/0 Drivers .
Abnormal-Termination Screen

Macro Assembler

A.5.1 Error Messages .

Appendix B - Command Summary

Appendix C - Sample Coding

O~ PWN

O N N N N N T N S B> P
W W wWwWwWwWwwwwww

> >

Appendix E - Disk Structure
Volume Label Sector
Backup Volume Label
Bad Sector Table
Bit Map
File Index
Directory File
Backup File Index
Diagnostic Areas

Appendix D - Include Files on Exten81on Dlskette

20-3
20-5
20-6
20-6
20-7
20-9
20-10
20-11
20-11
20-14
20-14
20-15
20-15
20-15
20-16

cB>B>B>D>B>3,>DI>D>B>D>D>B>D>
O O WWMWMWOHNO U P

D>(I>Dl>'J>D'>B>
1 1
= b e
NN = O

A-13
A-15

i
—
w

] I 1 1 ]

NN RoNoNoNoNoNoNe el
[
U WODNRNN

Preface xii



1.0 INTRODUCTION TO LOGICAL I/0O AND SYSTEM SERVICES

The IBM Instruments Computer System 9000 Operating System (CSOS) contains
two major facilities:

1. Logical I/0

This part of CSOS handles input-output. An introduction to logical
I/0 follows, and Chapters 2-6, 8-12, 14-18 describe the various
device drivers. Chapter 7 describes how to access files, and Chapter
13 describes two pseudo devices that allow intertask communication.

2. System Services

This part of CSOS provides facilities for program loading, message
printing, command parsing, task startup and exit, high-resolution
timing, and semaphores. An introduction to system services can be
found in this chapter (Section 1.2).

1.1 AN OVERVIEW OF LOGICAL 1/0

One of the features of the IBM Instruments Computer System is the variety
of peripheral devices that can be attached to it and the flexibility of
its own I/0 devices such as the CRT, the keypad, and the printer/plotter.
The Computer System's operating system enhances this flexibility by
providing a number of programming facilities that allow users to easily
configure and access the various devices and interface ports directly, at
run-time. The remainder of this section outlines these facilities.

1.1.1 DEVICE DRIVERS

The Computer System handles device control through device "drivers". Each
device or communications port is controlled by at least one driver. In
some cases, more than one driver may be associated with a device. The
drivers provided by the Computer System are separated from the rest of the
operating system so that new devices can be added without difficulty and
without affecting system operation. Facilities also exist that allow
users to write their own-drivers and attach them to the system -- all
without regenerating the operating system itself.

Introduction 1-1



1.1.2 LOGICAL UNIT NUMBERS (LUN) AND LOGICAL DEVICE NAMES

The Computer System's I/0 structure simplifies the transfer of data to and
from devices by making direct references to specific physical devices

unnecessary. Instead, devices are referred to generically by logical
rather than physical labels. This has a number of advantages, the first
of which is that users need not deal with physical locations at all -- the
system will do that. All devices can be dealt with logically by logical
device names. Another concept -- that of logical unit numbers, or "LUNs"

-- allows the association between a logical unit number and a logical
device name to be deferred until run-time when it can be made by command
line parameters or by a user response to a program menu. In this way, a
logical unit number specified in a user's program can refer to the CRT for
one program run and the printer for another run without rewriting the
program itself.

The Computer System associates or 'binds" logical unit numbers (LUNs) with
logical devices by means of a system OPEN command. (This and other system
commands are discussed later in this chapter.) A single task running in
the system may open up to 127 LUNs (if space permits) and any number of
LUNs may be assigned to a single device. Once a device is OPENed, it can
be referred to by its LUN only. Logical unit numbers are 'local"
variables; that is they are known only to the tasks that OPENed them.
OPENing a device is further explained in Section 1.1.4, "The Structure of
Logical I/0".

1.1.3 USING THE HIGHER LEVEL LANGUAGES

The Computer System's I/0 facilities are accessible not only through
Assembler language but also through the higher level languages like BASIC,
FORTRAN, and Pascal. Essentially, this access consists of a higher level
language "CALL" to the Computer System's I/0 function. (See the BASIC
Programming Manual, GC22-9184; FORTRAN Reference, GC22-9194, or Pascal
Reference, GC22-9190 for further details.) Each of these languages has
its own interface to the Computer System's I/0 facilities, but while these
interfaces may differ from one higher level language to another, the
underlying structure of I/0 management remains constant.

Introduction 1-2



1.1.4 THE STRUCTURE OF LOGICAL 1/0

This section briefly explains the ways in which a user can provide
I/0-related information to the system at the Assembler language level and
how the Computer System uses that information. (The higher level
languages allow users to present information to the system without
necessarily using all of the data structures described below.) Figure 1-1
shows the relationship between the user and system programming and you
should refer to it throughout this discussion.

How Information Can Be Passed

Information can be passed to the Computer System by I/0 or system service
commands and through data structures called 'control blocks". These
commands and control blocks should be included as part of any user-written
program that deals with input or output.

The I/0 commands include the OPEN command briefly mentioned in section
1.1.2 and others used to establish or release associations between logical
unit numbers and devices, or perform read/write operations. The OPEN
command (SYSIO OPEN) includes a logical unit number, a label that
identifies an error handling routine which is branched to if the operation
fails. For example:

SYSIO OPEN,#10,GRDIB,0PENERR
The control blocks that can be used are as follows:

e DIB

The Device Initialization Block; used to provide information about a
device at Open time. This includes the device name and any specific
options that a user wishes the device to have.

» DTCB

The Data Transfer Control Block; used only for operations that involve
the transfer of data. This control block tells the system where a
user program is storing the data that is to be transferred.

Introduction 1-3



"SYSIO OPEN,LUN,DIB,ERRORLABEL"

SYSTEM SPACE

lF 1
. 1 |
|| ||
] 1/0 MANAGER | ]
|| ||
|| | ‘
i |
IF X[ 1 j!
I | TCB POINTER | | CcoMMAND | |
|| | b STATUS |
o | 7 J ]
] | | DTCB POINTER | -
| |JUMP TABLE | ‘! | DRIVERS [ ]
|| LT — | { |
| | ] DCB POINTER || | ]
| | | 1| » ||
| | F + | |
| ! | PHYSICAL DEVICE BLOCK | | b
| : / |
| I |
USER SPACE
I 1
!I | | | I II
| | | 1 | OTHER CONTROL | |
| | DATA TRANSFER | |  FUNCTION | | BLOCKS ||
| | CONTROL BLOCK | [ PACKET | - 1 |
|| | L ||
‘l | L \‘ ‘|
| } {
| o o |
DEVICE 1 |
| | DATA TRANSFER | |p\rprarrzarion] | !
| BUFFER | ; BLOCK | l |
| . | |
‘I L o Ii
| |
L |

Figure 1-1. Data Structures in System and User Space

Introduction 1-4



«  FPKT

The Function Packet; used with the FUNCTION command to change a device
state to something other than the system default or the state set by
the options specified in the DIB at initialization.

The format of this control block is identical for all devices. It's
use is driver specific, for example, it can be used for setting a baud
rate or reading a cursor position. It is the control block that is
most often used by the higher level languages.

1.1.4.1 Device Initialization Block (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at OPEN time. This
information is used by the I/0 manager. First it is checked for validity,
then it is copied from user space -into the appropriate control block in
system space. The DIB must be aligned on a word boundary.

DIB FORMAT

The following fields describe the DIB format.

DATA
MNEMONIC LENGTH DESCRIPTION OF USE
DIBVOL DS.B 6 Volume or device name. Use the appropriate names
from section 1.3.5.3.
DIBDTD DS.B 1 Data Transfer Direction. Use 0 for WRITE,
1 for READ or 2 for bidirectional.
DIBTRN DS.B 1 Enter 0 for fixed length or 1 for variable length

transfers.
DIBRSO DC.L 0,0 User sets this field to 0.
DIBOPT DS.W 1 Configuration Options. (Used for File I/0)

DIBFCN DS.L 1 Insert pointer to function packet or set this field
to $0000 0000 to select the default mode.

Introduction 1-5



DIBBIO DS.L 1 Byte I/0 field. To open the driver for byte I/0
enter -1 (SFFFF FFFF), otherwise set it to $0000
0000. After open the I/0 manager fills this field
with an identifier which is used for SYSIO-BREAD,
SYSIO-BWRITE and SYSIO-BTEST.

DIB EXTENSION

DIBXXX Only File I/0 may use a DIB extension.

1.1.4.2 Data Transfer Control Block (DTCB)

The Data Transfer Control Block (DTCB) holds I/0 status and buffer
information during READ's and WRITE's. It is a required operand of the
SYSIO macro. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer request after the request has been made. The DTCB
must be aligned on a word boundary. (See also Figure 1-2.)

DTCB Format

DATA
MNEMONIC LENGTH  DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/0 operation.

DTCTBU DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable Length transfer
here.

DTCTBL DS.B 1 User puts lower limit to be used for Transfer
Termination characters in Variable Length transfer
here.

DTCRSO DC.B 1 This field is reserved. User puts $00 here.

DTCBFS DS.L 1 User puts Buffer starting address here.

Introduction 1-6



lq— Longword ———

‘4\ Word —
—»-‘ Byte (=

Figure 1-2.

Mnemonic Purpose
DTCSTA DataTransfer Status $NN
DTCTBU Transfer Termination Range (upper limit) SNN
DTCTBL Transfer Termination Range (lower limit) $NN
DTCRSO | Reserved Space $00
p—— | DTCBFS Buffer start address SNN | NN | NN NN
DTCBFL Buffer length $03 FF
DTCBPT Buffer offset pointer $00 0A
DATA TRANSFER CONTROL BLOCK
\
=1 Start Address ¢
10
S ———
bytes
A
— Beginning of Record
USER DATA TRANSFER BUFFER
1024
bytes —

Data Transfer Buffer and Control Block

Introduction 1-7



DTCBFL DS.W 1 User puts count of number of bytes in data buffer
here.

DTCBPT DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record to be transferred. This
offset value will be incremented by the driver for
every byte transmitted. It should be reset after
every READ/WRITE (when the buffer is reused).

----- The next field is required for Disk Drivers or file access only----

DTCREC DS.L 1 User puts the Relative or Logical Record number of
the particular record to be transferred here.

DIBBIO DS.L 1 System used Byte I/0 field. To OPEN the RS-232
driver for Byte I/0 enter -1(SFFFF FFFF), otherwise
set it to zero. After OPEN the I/0 manager fills
this field with an identifier which is used for
SYSIO-BREAD, SYSIO-BWRITE, and SYSIO-BTEST.

1.1.4.3 Function Packet (FPKT)

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
reading the cursor position and selecting a font table. It is required
for the FUNCTION command and optional for the OPEN command. It is used by
the application program to configure a device to something other than its
default mode.

The Function Packet is a list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero, indicating END-OF-LIST. The COMMAND word
must be a positive number 1 or higher. The COMMAND word is followed by
zero or more words, or longwords that send or receive the immediate DATA
for the COMMAND, or a longword that points to the DATA for that COMMAND.

Each of the I/0 commands and system service commands is described in
greater detail later in this chapter. Chapters 3 through 18 explain what
control blocks are required by each device driver and how to specify
options in those control blocks to configure a device. Configuring a
device or port consists of defining all of its pertinent characteristics
for use by a specific program -- the color used to print output on the
printer/plotter or the baud rate for a port, for example. Default
characteristics exist in each case; these are listed in each driver's
chapter.

Introduction 1-8



How Information is Used

When an OPEN command is encountered in a user's program, the Computer
System's "I/0 Manager" is given control and several things happen:

* The system 'binds" the logical unit number provided as part of the
command, to the logical device name identified in the DIB specified
with the command. (It is the I/0 Manager that carries this one step
further to identify the actual physical device.) In our example
above, the logical unit number #10 would be associated with the
logical device name specified in the DIB called GRDIB.

. The I/0 Manager determines which device driver is required and uses
its "jump table" of addresses to locate the appropriate portion of
that driver for an OPEN operation. (If another type of I/0 command
were entered, the I/0 Manager would "jump" to another location within
the driver.)

. The device is configured to either its default characteristics or to

characteristics specified in the optional function packet specified
in DIBFCN.

After a logical device has been OPENed, the options specified for it can
still be changed. Another SYSIO command, SYSIO FUNCTION, allows users to

alter a device's characteristics after they have been set through the
OPEN.

1.2 AN OVERVIEW OF SYSTEM SERVICES

Understandably, when many tasks with various priorities are requesting
the use of many I/0 devices, things can get complicated. The Computer
System provides a number of system services that can help manage the
situation. The I/0 Manager's role in controlling task and device
management has already been briefly mentioned. The other services
provided by the system are:

. System Calls

. Timer Services

i Asynchronous I/0

i Event Posting

i Semaphores, and

Introduction 1-9



i The SUSPEND Command

Each of these will be briefly discussed below. Detailed information about
how these services function is found later in this chapter.

1.2.1 SYSTEM CALLS

The System Calls are very helpful to users programming in assembler. They
can be used in the areas of parsing, error messages, directory searching,
loading programs, task manipulation, and timing operations. For details,
see Chapter 20, "System Calls".

1.2.2 TIMER SERVICES

The Computer System is equipped with a timer that can be used to control
the execution of a task. For example, one task can be stopped for a
specified period of time to provide an opportunity for another task to
run-- perhaps using the same device(s) as the first task. The first task
resumes running when the time period has elapsed.

Timers must be OPENed and CLOSEd in the same way as devices. System
commands exist that allow users to start the timer, make inquiries about
its status, or stop it as necessary. They are described in Section 1.3.4.

1.2.3 ASYNCHRONOUS 1/0

Normally, the operations that take place in a program are synchronous.
That is, if the program calls for data transfer (a request for data from
diskette storage, for example) execution of further commands in that
program cannot continue until the I/0 operation has completed.

Asvnchronous operations like AREAD and AWRITE (discussed later in this
chapter) work differently, however. When a program initiates an
asynchronous I/0 operation, an "interrupt' structure is used to signal the
completion of the data transfer. This allows the program to continue
executing. The program receives word that the I/0 operation has started
successfully and can continue to do other things while the I/0 operation
takes place. The program can check at various points during its execution
to see whether the data transfer has completed or it can be "interrupted"

Introduction 1-10



by the news that the transfer operation was completed by use of the
SUSPEND facility. See below.

1.2.4 EVENT POSTING

The Computer System's Event Posting facility is similar to the status
checking capabilities provided by asynchronous I/0 except that other
non-I1/0 events can be checked. Event posting allows users to set aside a
control block in their user space that is associated with the occurrence
of a specific event. This control block is "kept posted" by the operating
system and user programs can check-- or "poll" it to determine the status
of the event. This status could be that the event occurred, occurred more
than once, or did not occur at all. The event control block can also be
used to pass information from a driver to a user program.

In addition to polling, a user can suspend the execution of a task until a
particular event has taken place.

1.2.5 SEMAPHORES

The computer system's semaphore facility provides a means of
synchronization in a multitasking environment. The semaphore is
typically used as a BATON which is passed from task to task to indicate
the owner of a non-shareable resource. The "BATON-PASS" requires only a
binary semaphore. More complicated strategies are possible if one takes
advantage of the counting semaphore facility implemented on the CS 9000.
Uses of the counting semaphore include:

resource management (non-shareable)
Task prioritization control

queue management

Chapter 20 describes the counting semaphore implementation on the CS 9000.

1.2.6 THE SUSPEND COMMAND

The SUSPEND command is used in conjunction with the other system services
outlined above. User application programs can use the SUSPEND command to
wait for the completion of timer, asynchronous I/0, event posting, or

Introduction 1-11



semaphore requests. The program can be made to wait for the completion of
one or many requests. The way in which this command works is more fully
described later in this chapter (see Section 1.3.3, "More Information on
the SUSPEND Command").

1.3 DETAILED INFORMATION ON LOGICAL 1/0

This section provides more detailed information about the commands and
facilities outlined earlier in this chapter. It also describes some
additional aspects of the operating system that are not driver- or
device-specific, such as byte I/0 and the naming conventions used by the
Computer System.

This section presumes a moderate level of understanding of Assembler
language and a familiarity with Computer System Operating System
Reference: Part 1, GC22-9199. Computer system operating system commands
are implemented as macros available to Assembly language programs. High
level languages implement operating system facilities through use of
these macros.

1.3.1 WHEN TO USE SYNCHRONOUS, ASYNCHRONOUS, AND BYTE 1/0
Synchronous Commands: OPEN, CLOSE, SREAD, SWRITE, FUNCTION

These forms of SYSIO might be called the "normal' type of I/0 facility in
that your task is blocked from further execution until the desired
operation has completed. For general purpose application programming it
is perfectly satisfactory to have your program wait for the outcome of
each 1/0 before continuing along.

The operating system uses any available CPU time during synchronous 1I/0
for other READY tasks. If there are no READY tasks, then the IDLE task
consumes unused CPU time.

Asynchronous Commands: AREAD, AWRITE, CANCEL

These forms of SYSIO allow your program to perform buffered I/0 operations
and to take advantage of any available CPU time that occurs while the I/0
device is waiting. You would want to use this method in situations where

Introduction 1-12



you want to provide multiple buffers or where you wish to overlap the
operation of more than one I/0 device from a single task.

It would be possible to construct programs which perform several AREAD's,
and which perform a different action depending on which one completes. A
program can intermix AREAD and AWRITE with Timer and Semaphore calls to
have all kinds of event driven control. You would use CANCEL to abort any
outstanding I/0 requests that you no longer wanted to occur.

It would also be possible to chain together several requests that always
proceed one after the other. For example, an editor program might always
perform 24 writes to disk from a screen buffer. This could be performed
by 24 AWRITES, allowing the editor to continue while the 24 transfers take
place.

Please remember that each outstanding AREAD or AWRITE requires a separate
DTCB.

Byte I1/0 Commands: BREAD, BWRITE, BTEST

These forms of SYSIO allow your program to perform I/0 operations at the
lowest possible physical level. You would use this facility when you want
to exercise real-time byte-by-byte control of I/0 without device driver
buffering or pre-processing. By handling each byte individually you are
able to practically make up your own 'device driver" within your
application program.

This facility can be useful for capturing keystrokes from the optional
keyboard device, or for sending ASCII characters directly to the next
character position of an open alpha window.

Remember that in byte I/0 there is no waiting performed by the driver.
Your program always gets immediate control back after SYSIO. It is up to
you to check D7.W for error status on each request. Zero indicates
successful transfer of the byte, non-zero usually means that the driver
cannot send or receive a byte right now, but that you should try again at
some later time.

1.3.2 MORE INFORMATION ON SYSIO COMMANDS

Application programs can use SYSIO to perform all logical I/0 operations.
SYSIO allows you to issue one of twelve commands as shown on the following
pages. There are two ways of transferring data with SYSIO. One is a

Introduction 1-13



block-oriented path that can be used for record I/0, OPEN, CLOSE, and
FUNCTION. The second is a '"fast path" available for byte operations such
as SYSIO-BREAD, SYSIO-BWRITE, SYSIO-BTEST. Each is described below.

1.3.2.1 Block-Oriented 1/0 Commands

The commands have a common syntax. First specify the command itself, such
as SYSIO OPEN. Next provide the logical unit number; then the name of a
control block, and finally the address of a user exception-handling
routine (ERRORLABEL, in the examples which follow.)

The logical unit number may be specified either in immediate notation
using a # sign, such as #1, as the label of a byte containing the value,
such as LOGUNIT or in a register such as D3. If register D5 already
contains the logical unit number, simply code D5 and no load instruction
will be generated by the macro. The same scheme is used to specify the
control block. It can be an address label at the start of the block, such
as GRDIB, or in an address register.

The SYSIO macro generates in-line code to carry out the command. It loads
register A6 with the address of the control block. Then it loads register
D5.B with the logical unit number. Next, it issues a TRAP #6 instruction
followed by the command word. This is followed by a branch to the user's
exception handling routine for error handling. If the command is
unsuccessful, this branch is taken and register D7.W will contain an error
code. If the call is successful, the branch is not taken and control will
continue with the next sequential instruction following the macro.

The AREAD and AWRITE commands are asynchronous operations while all other
commands are synchronous. Synchronous operations execute in the invoking
program's instruction stream. This means that your program will be
blocked from continued execution until the operation is complete. When
you get control back from SYSIO, register D7.W will contain the completion
status. Asynchronous operations are initiated in the invoking program's
instruction stream with the interrupt used to signal completion of data
transfer. The invoking program gets control back after queuing the
request, with a -1 in register D7.W to indicate that the operation has
started successfully. Any other word in register D7.W means that an
exception has occurred and that the operation has been aborted.

With asynchronous I/0 it is possible for the invoking program to perform
other things while the data transfer takes place. When the program wants
to see if the transfer is complete it can do either of two things: It can
keep checking the contents of the DTCSTA field of the Data Transfer
Control Block (-1 dindicates still busy; zero indicates successful

Introduction 1-14



completion, any other positive status is an exception completion code).
Or the program can use the SUSPEND macro to wait for completion.

Asynchronous I/0 is particularly useful for multi-buffering, since each
I1/0 request is queued with a separate DTCB and a companion buffer.

Introduction 1-15



SYSIO OPEN, LUN,DIB,ERRORLABEL

This

command performs an OPEN operation for the logical unit number

specified, "binding" it to the logical device name specified in the DIB.

Register Usage:

A6.L points to the DIB
D5.B contains the LUN
D7 .W returns status

Completion Codes:

$8200
$8400
$8500
$8600
$8700
$8800
$8900
$8A00
$8C00

Note:

Invalid SYSIO call

Inadequate system space

Duplicate logical unit number

Device not found

Not device owner

Nonsharable device is already open

Device does not support byte I/0

Non-null request queue for byte I/0
Invalid DIB field (DIBTRN, DIBDTD, DIBRSO)

This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DIB (on a word boundary)

Optional Control Block:

FPKT (on a word boundary) specified within the DIB

Coding Example:

47t
471 0 00000000 £YS10 OPEN,#2%,DIEELK, ERROR
0 00000000 4DF90000020C LIA DIBBLK,A¢ + LOAD ADDRESS OF CONTROL BLOCK
0 00000006 Q06ECD400010 ORI.W $50040,DIBOPT(AS) + 1.1 OR LATER SYS10 OPEN
0 0000000C fA3CO01T MOVE.B  #21,D3 + LOAD LOGICAL URIT NUMBER
0 00000010 4E4¢ TRAP L1 + TRAP TO 1/0 KAKAGER
0 gogooot2 ooot oe.w SIGOPEIN + COMMAND WORD
0 00000014 600001F2 BRA.L ERROR + BRANCH TO USER ERRCR HANDLER

Introduction 1-16



SYSIO CLOSE,LUN,0,ERRORLABEL
- or -
SYSIO CLOSE, LUN, FPKT, ERRORLABEL

This command performs a CLOSE operation on the device specified by the
logical wunit number. Note that no control block need be specified,
however O is required by the macro as a placeholder.

Register Usage:

A6.L points to the Function Packet
D5.B contains the LUN
D7.W returns status

Completion Codes:

$8200 Invalid SYSIO call

$8300 Logical unit number not opened
$8600 Device not found

$8700 Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Optional Control Blocks:

Function Packet(on a word boundary)

Comments:

You may optionally specify that a Function Packet be part of CLOSE for

files. Other device drivers do not accept a function packet at close

time.

Coding Example:

478
479 0 Qoooo01s SYSIC CLOSE, #21,0,ERROR
0 00000018 4DFBO0OC LER 0,A¢é + LOAD ADDRESS OF FPKT
0 0000001C TA3CO013 MOVE.E  #21,D9 + LOAD LOGICAL UNIT NUMBER
0 00000020 4E4¢ TRAP L1 + TRAP TO I/0 MANAGER
0 do0c00022 0002 DC.v SIOCLOSE + COMMAND WORD
0 00000024 00001E2 BRA.L ERROR + BRANCH TC USER ERROR HANDLER

Introduction 1-17



SYSIO SREAD,LUN,DTCB,ERRORLABEL

This

command performs a synchronous read operation from the device

associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
D5.B contains the LUN
D7 .W returns status

Completion Codes:

$8200
$8300
$8600
$8700
$8F00

Note:

Invalid SYSIO call

Logical unit number not opened
Device not found

Not device owner

Invalid buffer address for read

This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary)

Coding Example:

484
487 0 0co00028 SYSIO ~ GSREAD,#21,DTCBLK, ERROR
0 00000028 4DF9O0000210 LEA DTCBLK, A6 + LOAD ADDRESS OF CONTROL BLOCK
0 0000002E 1A3COO01S MOVE.B  #21,0% + LOAD LOGICAL UNIT NUMBER
0 00000032 4E4¢ TRAP L33 + TRAP TO /0 MANAGER
D 00000034 0003 pe.w SIOSREAD + COMMAND WORD
0 00000036 600001D0 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-18



SYSIO SWRITE,LUN,DTCB,ERRORLABEL

This

command performs a SYNCHRONOUS WRITE

associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
D5.B contains the LUN
D7 .W returns status

Completion Codes:

$8200
$8300
$8600
$8700

Note:

Invalid SYSIO call

Logical unit number not opened
Device not found

Not device owner

operation to the device

This dis only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to

the device driver named in the DIB.

The chapter describing that

particular device driver should be consulted for additional error

codes.

Required Control Blocks:

DTCB (on a word boundary)

Coding Example:

494

495 0 0000003A SYSI0 SWRITE, #21,DTCELK, ERROR
0 0000003 4DF90000021C LEA DTCBLE, A6 +
0 00000040 1A3CO0IS MOVE.B  ¥21,D% +
0 00000044 4E44 TRAP L 1 +
0 00000046 0004 v SIOSWRITE +
0 00000048 400001BE BRA.L ERROR +

LOAD ADDRESS OF CONTROL BLOCK
LOAD LOGICAL UKIT NUKEER
TRAP TO [/0 MANAGER

COMMAND WORD

BRANCH TO USER ERROR HANDLER

Introduction 1-19



SYSIO AREAD,LUN,DTCB,ERRORLABEL

This command performs an ASYNCHRONOUS READ operation from the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB
D5.B contains the LUN
D7.W returns status

Completion Codes:

$8200 Invalid SYSIO call

$8300 Logical unit number not opened
$§8600 Device not found

$8700 Not device owner

$8F00 Invalid buffer address for read

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary).

Each outstanding AREAD must have its own DTCB.

Coding Example:

502
303 0 oooagedc SYSI0O  ARLAD,#21,DTCELX,ERROR
0 0000004C 4DF900000210 LEA DTCBLK, A$ + LOAD ADDRESS OF CONTROL BLOCK
0 00000032 1A3CO01S MOVE.B  #21,D3 + LOAD LOGICAL UNIT NUMBER
0 00000034 4E44 TRAP L 13 + TRAP TO I/0 MANAGER
0 o0c00038 8003 DC.W STOAREAD + COMMAKD WORD
0 00C00CSA 60000IAC BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-20



SYSIO AWRITE,LUN,DTCB,ERRORLABEL

This command performs an ASYNCHRONOUS WRITE operation to the device
associated with the logical unit number.

Register Usage:

A6.L points to the DTCB

D5.B contains the LUN

D7.W returns status

Completion Codes:

$8200 Invalid SYSIO call

$8300 Logical unit number not opened

$8600 Device not found
$8700 Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

DTCB (on a word boundary).

Each outstanding AWRITE must have its own DTCB.

Coding Example:

30
310 0 0000003E SYSIO AWRITE, #21,DTCELY, ERROR
0 0000003E 4DF900000210 LEA DTCBLE,Aé + LOAD ADDRESS OF CONTROL BLOCK
0 00000044 1A3CO013T HOVE.B  #21(,D3 + LOAD LOGICAL UNIT NUHBER
0 00000048 4E44 TRAP # + TRAP TO [/0 MANAGER
0 0000004R 8004 e SIOAWRITE + COMMAND WORD
0 0000004C 600001%A BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-21



SYSIO CANCEL,LUN,0,ERRORLABEL

This command performs a CANCEL on the device associated with the logical
unit number. Normally you would use CANCEL to abort one or more
outstanding asynchronous I/0 operations which had not yet completed. You
might be waiting for keyboard or RS-232 input using AREAD and then decide
to cancel the input request. O is required by the macro as a placeholder.

Register Usage:

A6.L contains 0
D5.B contains the LUN
D7 .W returns status

Completion Codes:

$8200 1Invalid SYSIO call

$8300 Logical unit number not opened
$8600 Device not found

$8700 Not device owner

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

None.

Coding Example:

317
318 ¢ ooccoore SYS10 CANCEL, #21,0,ERROR
0 00000070 4DFBOOOC LEA 0,8 + LOAD ADDRESS OF CONTROL BLOCK
0 00000074 1A3CO01S MOVE.B  #21{,D3 + LOAD LCGICAL UNIT NUMBER
0 00000078 4E48 TRAP L33 + TRAP TO [/0 MANAGER
0 00000074 g007 eV SIGCANCEL + COMMAND WORD
0 00060007C 4000018A BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-22



SYSIO FUNCTION, LUN,FPKT,ERRORLABEL

This command performs a FUNCTION on the device associated with the logical
unit number. The specified function packet (FPKT) contains one or more
device specific functions.

Register Usage:

A6.L points to the Function Packet
D5.B contains the LUN
D7 .W returns status

Completion Codes:

$8200
$8300
$8400
$8600
$8700

Note:

Invalid SYSIO call

Logical unit number not opened
Inadequate system space

Device not found

Not device owner

This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Required Control Blocks:

FPKT (on a word boundary)

Coding Example:

523
526 € 00000080 8YS10 FUNCTION, #21, FPXTELK, ERROR
0 00000080 4DE9O000CO214 LEA FPKTEBLK, AS + LOAD ADDRESS OF CONTROL BLOCK
0 g0000088 1A3CO01S MOVE.B  #21,D3 + LOAD LOGICAL UNIT NUHBER
¢ 000000BA 4E4S TRAP L1} + TRAP TO [/0 MANACER
0 0000008C 0006 pe.w SIOFUNCTION + COMMAND WORD
0 000000BE 60000178 BRA.L ERROR + BRANCH TO USER ERRCR HANDLER

Introduction 1-23



1.3.2.2 Byte 1I/0 Facilities

The Computer System has provided an efficient mechanism for transferring
data on a byte basis. Upon opening a device for byte I/0 and a specific
direction, subsequent transfers may be initiated using SYSIO-BREAD,
SYSIO-BWRITE or SYSIO-BTEST trap calls. These calls require the following
register usage: DO.B contains the byte on write (or DO.W for the CRT
driver -- See Chapter 4) and is returned with a byte on test or reads.
Register D7.W is returned with a status code. No scheduling is done for
these requests and if the device is busy with another request, the code
returned in D7.W will indicates that condition. This facility is best
used for application programs using non-shareable devices (the first task
to open a non-shareable device owns the device until it is closed) or
devices supported by reentrant drivers such as the CRT. In addition,
register A6.L must contain the system identifier returned in the DIBBIO
field of the device initialization block. If a device will not support
byte I/0, an I/0 Manager error code will be returned in D7.W at open time.

Note that single-byte transfers (either asynchronous or synchronous) may
be initiated using the other I/0 facilities, but these transfers must be
scheduled and may therefore require some system overhead.

1.3.2.3 Byte |I/O Commands

The Byte I/0 mechanism is meant to be a "fast path' between application
programs and device drivers. There is no scheduling and no use of dynamic
control blocks. On the average, less than 25 instructions are executed by
the I/0 manager between the SYSIO call and entry to the driver. This
section describes the SYSIO commands used to perform byte I/0 operations.

Unlike the block-oriented requests, byte I/0 requests do not have an error
return label. It is up to the application program to monitor D7.W for
completion status. Register DO.B is used to pass or receive the byte.
Register A6 is loaded with the system identifier stored in the DIBBIO
field after successful completion of the OPEN command. Register D7.W
contains the completion status (see ERROR CODES of appropriate driver and
Appendix A).

To OPEN a device for BYTE I/0 you must place a -1 in the DIBBIO field and a
specific direction (either O for write or 1 for read) in the DIBDTD field.
After OPEN, the DIBBIO field will contain an identifier to be used for
SYSIO-BREAD, SYSIO-BWRITE, and SYSIO-BTEST.

Introduction 1-24



BTEST operates as a BREAD, but does not increment the buffer pointer. It
will return a $0C error code in D7.W if the buffer is empty otherwise the
byte value is returned in DO.B.

The SYSIO macro will load the system identifier, obtained from DIBBIO,
into register A6.L. If the register already contains the proper
information place A6 in the BYTEID field of the call. This eliminates
redundant register loading.

Introduction 1-25



SYSIO BREAD,BYTEID -or- SYSIO BREAD, A6

This

command reads a byte from the device associated with the system

identifier BYTEID.

Register Usage:

A6.L points to the driver Byte Read Entry point
DO.B receives the byte
D7.W returns status

Completion Codes:

$8200
$8300
$8A00
$8B00

Note:

Invalid SYSIO call

Logical unit number not opened
Non-null request queue for byte I/0
Not open for byte I/0

This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

933

S34 0 oo000092 £YSI0 BREAD,BYTEID
0 00000092 2C7900000218 MOVEA.L BYTEID,AS + LOAD SYSTEM IDENTIFIER
0 00000098 4E4¢ TRAP L1 + TEAP TO 1/0 KANAGER
0 00000094 Q008 D STOEREAD + COMMAND WORD

Remember that there is no error branch on Byte I/0. Your program must
always check the contents of D7.W to determine whether the operation
was ‘successful or whether the byte was not transmitting for some reason.

Introduction 1-26



SYSIO BWRITE, ID -or- SYSIO BWRITE, A6

This command writes a byte to the device associated with the system
identifier BYTEID.

Register Usage:

A6.L points to the driver Byte Write Entry Point
DO.B or DO.W (CRT Driver) contains the byte to be written
D7 .W returns status

Completion Codes:

$§8200 Invalid SYSIO call

$8300 Logical unit number not opened
$8A00 Non-null request queue for byte I/0
$8B00 Not open for byte I/0

Note: This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

S4¢

541 0 0000809C SYSIO BYRITE,BYTEID
0 0000009C 2C7900000218 MOVEA.L BYTEID,A$ + LOAD SYSTEM IDENTIEFIER
0 000000A2 4E4¢ TRAP L) + TRAP TO 1/0 KAHAGER
0 000000A4 0009 DC.V SIOBWRITE + COMMAND WORD

Introduction 1-27



SYSIO BTEST,IDFIELD -or- SYSIO BTEST,A6

This

command reads a byte from the device associated with the system

identifier BYTEID without incrementing the internal buffer pointer.

Register Usage:

A6.L points to driver Byte Test Entry Point
DO.B passes the byte
D7.W returns status

Completion Codes:

$8200
$8300
$8A00
$8B00

Note:

Invalid SYSIO call

Logical unit number not opened
Non-null request queue for byte I/0
Not open for byte I/0

This is only a partial listing of exception codes which may be
returned when this macro is used. Other codes will be specific to
the device driver named in the DIB. The chapter describing that
particular device driver should be consulted for additional error
codes.

Coding Example:

7

548 0 0000C0A SYSI0 BTEST,BYTEID ]
0 000000AS 2C7900000218 MOVEA.L BYTEID,A4 + LOAD SYSTEM [DENTIFIER
0 000000AC 4E4S TRAP 6 + TRAP TO 1/0 HANAGER
0 00GOOOAE COCA v SIOBTEST + COMMAND WORD

Introduction 1-28



1.3.2.4 Event Posting With EVENTMGR Commands

Asynchronous event posting allows users to detect the occurrence of
specific device driver events. By associating an Event Block (EVB) in the
user's data area with a specific event known to the operating system the
user can detect when that event occurs. Currently the events available to
the user are:

1. IEEE-488 Bus Service request

RS-232 Break Key

3. Keyboard. CTRL-BREAK, CTRL-NUMLK, Functions Keys
and State Change

4. RS-232 Character Input

N

For more information on these events refer to the section for those
specific device drivers. The EVENTMGR MACRO generates in-line code to
carry out the command. It loads register A6 with the address of the
current control block. A '0' is required by the Macro as a place holder.
It is 1loaded dinto D5 but not used. Register D7.W returns with a
completion code.

1.3.2.5 Opening Events
The association of event with EVB is done by the user issuing an EVENTMGR
OPNEVBLK command. The format of the EVB is as follows:
EVBSEM DS.B 1 (S) Event indicator
EVBRSO DS.B 1 (S) Reserved. Set this byte to $00.
EVBSTA DS.B 4 (S) User sets these bytes to $00.
EVBNAM DS.B 4 (U) Event mnemonic

(S) means set by system.
(U) means set by user.

The EVBSTA field is used to pass optional information to the user.

1.3.2.6 Closing Events

Once a user is finished processing events, he should issue an EVENTMGR
CLSEVBIK to remove any further association of the EVB with the event.

Introduction 1-29



1.3.2.7 Arming Events

If a user would prefer to wait for an event rather than poll for it, he can
"arm' the event. This command followed by the SUSPEND macro will suspend
the user until the event occurs. The user must rearm the event each time
it occurs in order to be resumed when the event occurs again.

Once the event has been opened the user can poll the EVB to determine if -
the event has occurred, or he can arm the event and suspend himself until

the event occurs.
sections.

1.3.2.8 Polling Events

These two methods are described in the following

Polling an EVB consists of a Test-and-Set (TAS) instruction on the EVBSEM
field. TAS sets one of the following three condition codes in the 68000

Status Register:

MI (minus) - No event has occurred
EQ (equal) - One event has occurred since the last TAS
Pl (plus) - More than one event has occurred since the last TAS

When the condition code is PL the seven low-order bits contain the number
of times the event has occurred since the last TAS.

Coding Example:

INCLUDE TOMCLB50.INC
POLLEVENT EQU *
LEA EVBLK,AQ
TAS EVSEM(AOQ)
BMI EXIT
BEQ EVTOCCUR
BPL OVERRUN
EXIT RTS
OVERRUN MOVE.B EVBSEM(A0),DO
AND.B #$7F ,DO
MOVE.B DO,OVERCNT
BSR EVTOCCUR
BRA EXIT
EVTOCCUR  EQU *
RTS
EVBLK DS.B 10

OVERCNT DS.B 1

event block offset equator

point AO to event block
test indicator byte
nothing happened

process event's occurrence
more than one happened
return

pick up event count

turn off upper bit

save overrun count

event handler subroutine
return

process event here

10 bytes of storage for the EVB
overrun count storage

Introduction 1-30



EVENTMGR OPNEVBLK,#0,EVENTBLK,ERRORLABEL

Register Usage:

A6.L points to the Event Block (EVB)
D5.B contains the LUN

D7.W

returns status

Completion Codes:

$0000
$8200
$8300
$8400
$8600
$8700
$8D00
$8E00

Success

Invalid SYSIO call

Logical unit number not opened
Inadequate system space

Device not found

Not device owner

Event Descriptor Block not found
Event not opened

Data Structures:

Event Block (EVB)

Coding Example:

533
586 0 000000B0 EVENTHGR OPNEVEKL, €0, EVENTBLY, ERROR
0 000000BO SYSIO OPNEVEKL, #0,EVENTBLK  ERROR + INTERNALLY CENERATED COMMAND
0 00000080 4DE9COCOC21C LEA EVENTBLK, A$ + LOAD ADDRESS OF CONTROL BLOCK
0 000000B6 1A3COCO0 HOVE.B  #0,D3 + LOAD LOGICAL UNIT NUMBER
0 CO0000EA 4E4¢ TRAP L1 + TRAP TO 1/0 MANAGER
0 GOGOO0OBC 0O0OB nc.v SICOPNEVBKL + COMMAND WORD
0 000000BE 60000148 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-31



EVENTMGR CLSEVBLK,0,EVENTBLK,ERRORLABEL

Register Usage:

A6.L points to the Event Block (EVB)
D5.B contains the LUN

D7.W returns status

Completion Codes:

$0000 - success
$8E00 - event not opened

Data Structures:
EVB

Coding Example:

363
364 0 oooonoce EVENTHGR CLSEVELX, #0,EVENTBLX, ERROR
0 oooogec SYSIO CLSEVBLK, #0,EVENTBLK ,ERROR + INTERNALLY GENERATED COMMAND
0 gocogocz 4DEsOOOOO2IC LEA EVENTELK, Aé + LOAD ADDRESS OF CONTROL BLOCX
0 goQoeecs tA3CO000 MOVE.B  #0,D3 + LOAD LOCICAL UNIT NUMBER
0 000000CC 4E4S TRAP 4 + TRAP TO I/0 MANAGER
0 000000CE 000C pe.v SIOCLSEVBLK + COMMAND WORD
0 000000D0 0000138 ERA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-32



EVENTMGR ARMEVENT,#0,EVENTBLK,ERRORLABEL

Register Usage:

A6.L points to the event block
D5.B contains the LUN
D7.W returns status

Completion Codes:

$0000
$8200
$8300
$8D00
$8E00

Success

Invalid SYSIO call

Logical unit number not opened
Event Descriptor Block not found
Event not opened

Data Structures:

Event Block (EVB)

Coding Example:

370
571 0 000000D4 EVENTKGR ARMEVERT, #0, EVENTBLK, ERROR
¢ 000000D4 SYSIO ARMEVENT, #0,EVENTBLK,ERROR + INTERNALLY CENERATED COMMAND
0 000000D4 4DEFO000021C LEA EVENTBLK, AS + LOAD ADDRESS OF CONTROL BLOCK
0 000000DA 1A3CO000 MOVE.B  #0,D3 + LOAD LOGICAL UNIT NUMEER
0 000000DE 4E4S TRAP 1! + TRAP TO I/0 MANAGER
0 COCOGOED 000D DC.W SIOARMEVENT + COMMAND WORD
0 G0Q000E2 60000124 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-33



1.3.3 MORE INFORMATION ON THE SUSPEND COMMAND

User programs can use the SUSPEND command to wait for the completion of
outstanding asynchronous requests. The program can be made to wait for
the completion of one request or all requests.

The functions of the SUSPEND command include:

SYNCH Retrieve the number of outstanding
I/0 requests.

SUSPEND TILLANY Wait until any outstanding request
is completed.

SUSPEND TILLALL Wait until all outstanding requests
are complete.

The SUSPEND function will not wait for a specific request but only for a
change in the count of outstanding requests that is kept for each task.
User programs that are interested in the completion of one specific
request out of several outstanding requests must check the status field of
the Data Transfer Control Block, timer block, semaphore block, or event
block in question.

If the program uses decision logic based on the status fields, there is a
possibility that the status will change between the time that the program
tests the field and the time that a SUSPEND is issued. To allow
synchronization, there is a SUSPEND-SYNCH command to capture the number of
outstanding requests before any decision logic takes place. This number
will subsequently be used as an operand of a SUSPEND-TILLANY command so
the I/0 manager can work with the same set of initial conditions.

The macro generates in-line code to carry out the command. It issues a
TRAP #9 to the I/0 manager and either passes or receives a value contained
in register DO.

Introduction 1-34



SUSPEND TILLALL, ,ERRORLABEL

The current task is suspended until all outstanding requests are complete.
Register Usage:

DO.B returns the number of outstanding I/0 requests
D7.W returns status

Completion Codes:

On error branches D7.W will be loaded with $8200 (invalid call);
otherwise D7.W is set to zero.

Required Data Structures:
None

Coding Example:

STe
$79 0 000000ES SUSPEND TILLALL,,ERROR
0 0000C0ES 4E4Y TRAP # + TRAP TO I/0 MANAGER
0 000000ES 0002 be.w $0002 + TILLALL COMKAND WOKD
0 COGOOOEA 60000124 ERA.L ERROR + BRANCH TO USER ERRCR HANDLER

Introduction 1-35



SUSPEND TILLANY,DO,ERRORLABEL

The current task is suspended until any outstanding request 'is completed.
The command is non-specific as to which request will satisfy the wait.
Register DO.B must contain the number of requests that were outstanding
before it was decided to perform the SUSPEND. This value is obtained via
SUSPEND-SYNCH. The I/0O manager will resume the task as soon as the number
of outstanding requests is less than the number passed in register DO.B.

Register Usage:

DO.B must contain the number of outstanding requests
D7 .W returns status

Completion Codes:

On error branch. D7.W=$8200 Invalid call
D7 .W=$8300 Invalid Synch value.

Required Control Blocks:
None

Coding Example:

386
387 0 (00COOEE SUSPEND TILLANY,DC,ERROR
0 00CCOOEE ocoOOGGOO D5 ¥ ¢ + D0 ASSUMED TO COKTAIN SYNCH COUNT
0 00C000EE 4E49 TRAP 134 + TRAP 70 1/0 MANAGER
0 000000F0 0003 DLW $0003 + TILLANY COMMAND WORD
0 000G00F2 40000114 ERA.L ERROR + BRANCH T0 USER ERROR HANDLER

Introduction 1-36



SUSPEND TILLANY,NOSYNCH,ERRORLABEL

The current task is suspended until any outstanding asynchronous request
is completed. The operand NOSYNCH instructs the system to use the current
request count as a starting number. The command is non-specific as to
which request (I/0, timer, event) will satisfy the wait. No wait will
take place if the number of outstanding requests is zero.

Register Usage:

DO.B
D7.W returns status

Completion Codes:

On error branches D7.W will be loaded with $8200 (invalid call)
Required Control Blocks:

None

Coding Example:

374
395 0 000000F4 SUSPEND TILLANY,NOSYNCH,ERROR
0 COO0COQFE 103CEFEF ‘MOVE.B  #-1,D0 + INDICATE TILLANY-NOSYNCH CALL
0 000000EA 4E49 TRAP . 3} + TRAP 70 I/0 MANAGER
0 000000FC €003 DC.W 56003 + TILLANY COMMAND WORD
0 0OCOOOFE 40000108 ERA.L ERROR + BRANCH TO USER ERROR HAKDLER

Introduction’l-37



SUSPEND SYNCH,DO,ERRORLABEL

The number of outstanding requests for the current task is returned in
register DO.B.

Register Usage:

DO.B returns the number of outstanding requests
D7.W returns status

Completion Codes:

On error branches D7.W is loaded with $8200 (invalid call); otherwise
D7 .W contains $0000.

Required Control Blocks:
None
Comments:

As an example of the SUSPEND SYNCH command, let us assume that there are
three outstanding requests which use the Data Transfer Control Blocks:
AAADTCB, BBBDTCB, and CCCDTCB. A user program wishes to wait until
AAADTCB is complete; the other requests do not matter. Furthermore, the
fields AAASTA, BBBSTA, and CCCSTA are all set to -1 indicating that the
request 1s not yet complete. The program statements might look as
follows:

WAITAAA SUSPEND SYNCH,DO,ERR Get current number of requests.
IF.B AAASTA <EQ>#-1 THEN If the one you want is not done
SUSPEND TILLANY,DO,ERR1 Then wait for any request to
BRA WAITAAA complete and see if it is the one
ENDI you want.

Coding Example:

601

£03 0 go000i02 SUSPEND SYRCH, DO, ERROR
0 00000102 4E49 TRAP L3} + TRAP TO 1/0 MANACER
0 00000104 000t bc.v $0001 + SYNCH COMMAKD WORD
0 00000106 60000100 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-38



1.3.4 TIMER SERVICES AND THE "REAL-TIME" MANAGER

The Computer System's timer services, controlled by a '"real-time"
manager, allow programs to access a real-time clock with a resolution of
1/32768 seconds. User programs can query the time of day or specify a
time interval that will elapse before an "alarm" is set in either polled
or 'wake-up' mode. This interval has a 1/1024 second resolution and may
be specified as relative (to current date and time) or absolute.

The '"Real-Time" Manager is based on the CS 9000 time-of-day clock and
therefore provides a much more accurate timing facility than the DELAY
system call which is based on the time-slice clock.

Please keep in mind when using these timing facilities that user programs
are run at hardware interrupt level zero and that any interrupt activity
at all, whether disk, keyboard I/0, time slicing, or whatever, will
necessarily preempt your application program and cause delays.

It is not realistic to presume that you can program time periods of only a
few milliseconds and maintain accuracy while at the same time you have
initiated I/0 activity which will preempt your program during the data
transfer process. In such cases the Real Time Manager will make your
program READY at the proper time, but your program will not run at that
time because other activity of a higher priority level is taking place.

The Real Time Manager is most suitable for providing periodic interrupts
at an accurate repetition rate, and for providing the ability to schedule
events in the future at a precise time. These characteristics are useful
for direct instrument control and for taking periodic samples at a precise
rate.

1.3.4.1 Polled and "Wake-up" Mode

When an alarm timeout is started with either ALRM or ALRMR, the RTT mode
field is checked to determine whether polled or wake-up mode was selected.
In the polled mode, the alarm will simply provide an indication in the RTT
status area. In wake-up mode, an asynchronous operation will be started
and when the alarm occurs, the RTT status will be updated and the user
program is awakened if in a suspended state according to its priority.

Introduction 1-39



1.3.4.2 Time and Date Format

The time format for the RTT data output and the RTT data input areas is
identical. Byte fields of hexadecimal values are used for the time and
date, while the "fractional seconds field" is a 15-bit counter value. The
format is as follows:

RTTDA | 00 | year | month | day | (4 byte field)
RTTTM | 00 | hour | minute | second] (4 byte field)
RTTMS | count | (2 byte field)

The date "January 2, 1983" and time "13:30:59" would be:

RTTDAO DC.L $00530102 83/01/02
RTTTMO DC.L $OOOD1E3B 13:30:59
RTTMSO DC.W $0000 0

1.3.4.3 RTT Block Format

The information below represents the data in the system include file for
the RTT block. The notation "S" means that the system sets this field
while "U" means that the user program sets this field. This control block
must be aligned on a word boundary.

RTTSTA DS.B 1 (S) status (Idle = 0,
Ticking = SFF,
Alarm occurred = 1)

RTTMOD DS.B 1 (U) mode (Polled = 0, Wakeup = 1)
RTTIDX DS.W 1 (S) index

RTTDAO DS.L 1 (U) date -- data output area
RTTTMO DS.L 1 (U) time

RTTMSO DS.W 1 (U) count

RTTDAI DS.L 1 (S,U) date -- data input area
RTTTMI DS.L 1 (5,U) time

RTTMSI DS.W 1 (5,U) count

The real-time manager commands are listed on the following pages.

For all of the commands, a branch to an error routine identified as
ERRORLABEL in these pages is executed. Status is also returned in D7.W;
zero indicates success but a positive value indicates an error.

Introduction 1-40



1.3.4.4 Printing the Time

One way of printing the time is to convert it to GETTIM output, use the
FMTTOD system call (to get ASCII format), and then display that. The
conversion program is as follows:

LEA STRING,A6 18-character string
CLR.L D1

CLR.L D2

MOVE.L RTTDA(Ax),D3 year/month/day
MOVE.B D3,D2

LSR.L #8,D2

LSL.L 4#8,D3

MOVE.B D3,D2

LSR.L #8,D2

LSL.L #8,D3

MOVE.B D3,D2 day/month/year in D2
MOVE.L RTTTM(Ax),D3 hour/minute/second
MOVE.B D3,D1

LSR.L #8,D1

LSL.L #8,D3

MOVE.B D3,D1

LSR.L #8,D1

LSL.L #8,D3

MOVE.B D3,D1 second/minute/hour in D1
FMTTOD input is D1,D2,A6

code for printing desired
string or portion of string

Introduction 1-41



RTMGR OPEN,RTT,ERRORLABEL

This command opens the timer facility and points to the task data block
that will be used for timer control and date/time transfer.

Register Usage:

A6.L points to RTIT block
D7.W returns status

Completion Codes:
D7.W=0 successful open, D7.W=5 unsuccessful (cannot allocate RTT block).

Probable cause for an error during OPEN is that all RTMGR system timer
blocksare currently in use.

Data Control Blocks:
RTT

Note: You must issue the RTMGR OPEN Command before using any of the other
RTMGR commands.

Coding Example:

610
611 0 00COOICA RTHGR  OFEN,RTTBLK, ERROR
¢ CO00010A 4DERGOGOO220 LEA RTTBLK, A6 + LOAD ADDRESS OF CONTRCL BLOCK
0 00000110 4E4A TRAP LR + TRAP TO REAL-TIME MANAGER
0 6000011z 0001 eV RTOPEN + COMMAND WORD
0 00000114 60C000F2 ERA L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-42



RTMGR CLOSE,RTT,ERRORLABEL

This command releases the timer facility associated with the specified RTT
block.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=0 successful completion. D7.W=5, timer completed, RTMGR stop
must be issued before CLOSE.

It is illegal to try and close an RTT block that still has an
active timeout running on it.

Data Control Blocks:
RTT

Coding Example:

618
619 0 00000118 RTHGR CLOSL,RTTBLX, ERROR
0 ¢o000118 4DF900000Z20 LEA RTTBLK, A$ + LOAD ADDRESS OF CONTROL BLOCK
0-0000011E 4E4A TRAP LYY + THAP TO REAL-TIME MANAGER
0 ooo00120 0002 DV RTCLOSE + COMMAND WORD
0 00000122 400000E4 ERA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-43



RTMGR QTIME,RTT,ERRORLABEL

This command returns the current date/time to the RTT block input area.
The time is at a resolution of 1/32768 seconds.

Register Usage:

A6.L points to RTT block

D7.W returns status

Completion Codes:

D7 .W=0 successful completion.

Data Control Blocks:

RTT

Coding Example:

618
627 G 00000126
0 00000124 4DES0O000220
0 0000012C 4E4A
0 C0000IZE 0003
0 00000130 600000D6

RTHGR
LEA
TRAP
ne.v
BRA.L

OTIME, RTTELK, ERROR
RTTBLK, A4

£

RTQTIME

ERROR

No error code is defined.

+ LOAD ADDRESS OF CONTROL BLOCK
+ TRAP TO REAL-TIME KANAGER

+ COMMAND WORD

+ BRANCK TO USER ERROR HANDLER

Introduction 1-44



RTMGR QALRM,RTT,ERRORLABEL

This command returns the current setting of the task alarm to the RTT
input area. The alarm may be active or inactive as indicated by the RTT
status.

Register Usage:

A6.L point to RTT block
D7 .W returns status

Completion Codes:

D7.W=0 successful completion. D7.W=5 unsuccessful (RTT invalid or not
opened).

Error if RTT not opened, or if user has modified SYSTEM fields in
the RTT.

Data Control Blocks:
RTT

Coding Example:

634
633 0 00000134 RTMGR QALRH, RTTELK,ERROR
0 00000134 4DF90COC0220 LEA RTTBLK, &6 + LOAD ADDRESS OF CONTRCL BLOCK
0 0000013A 4E4A TRAP Y + TRAP TO REAL-TIME MANAGER
0 0000013C 0004 DC.w RTGALRM + COMMAND WORD
0 0000C13E 600000C8 ERA.L ERROR + BRANCH TO USER ERRCR HANDLER

Introduction 1-45



RTMGR STOP,RTT,ERRORLABEL

This command can be used to terminate a currently active alarm.

Register Usage:

A6.L points to RTIT block
D7 .W returns status

Completion Codes:

D7.W=0 successful completion

D7 .W=5 unsuccessful (RTT invalid or not opened)

Data Control Blocks:
RTT

Coding Example:

641

§43 0 00000142 RTHCR
"7 00000142 4DF90000G220 LEA
¢ 00000148 4E4A TRAP
0 0000014A 0006 be.w
0 €000014C 600000BA ERA.L

STOP,RTTELK, ERROR
RTTBLK, A6

£10

RTSTCP

ERROR

+ LOAD ADDRESS OF CONTROL BLOCK
+ TRAP TO REAL-TIKE MANAGER

+ COMMAND WORD

+ BEANCH TO USER ERRCR HANDLER

Introduction 1-46



RTMGR ALRM,RTT,ERRORLABEL

Set the absolute date/time for an alarm from the RTT data output area.
The time will be truncated to a 1/1024 second resolution. You must set
RTTMOD to either polled or wakeup mode before issuing this macro.

Register Usage:

A6.L points to RTT block
D7 .W returns status

Completion Codes:

D7 .W=0 successful completion
D7.W=5 unsuccessful completion (RTT invalid or not opened)

An error is returned if the alarm setting is for a time in the
"past", or is less than 1 millisecond into the future.

Data Control Blocks:
RTT

Coding Example:

630
€31 0 0000150 RTHGR ALRM, RTTBLK, ERROR
0 00000130 4DF9G0000220 LEA RTTBLE, A4 + LOAD ADDRESS OF CONTROL BLOCK
0 00000136 4E4A TRAP §10 + TRAP TO REAL-TIME MANAGER
0 00000138 G007 W RTALRM + COMMAND WORD
0 0000015K £00000AC BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-47



RTMGR ALRMR,RTT,ERRORLABEL

Set the alarm from the relative date/time in the RTT data output area.
The resulting absolute alarm time may then be queried with the QALRM
command. You must set RTTMOD to either polled or wakeup mode before
issuing this macro.

Register Usage:

A6.L points to RTT block
D7.W returns status

Completion Codes:

D7.W=0 Successful completion
D7.W=5 Unsuccessful completion (RTT invalid or not opened).

An error is returned if the alarm setting is for a time in the
"past'", or is less than 1 millisecond into the future

Data Contro! Blocks:
RTT

Coding Example:

638
639 0 0000015E RTHGR ALRHMR,RTTBLK, ERROR
0 000COISE 4DF9O0000220 LEA RTTBLK,A¢ + LOAD ADDRESS OF CONTROL BLOCK
0 00000164 4E4A TRAP #0 + TRAP TO REAL-TIME MANAGER
0 go0000ics o008 e RTALRMR + COMMAND WORD
0 000001468 £000009E ERA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-48



RTMGR SUM,RTT,ERRORLABEL

This command returns the sum of the date/time in the RTT data output area
and the RTT input area to the data input area in the correct format.

Register Usage:

A6.L points to RTT block
D7.W returns the status

Completion Codes:

D7 .W=0 successful completion
D7 .W=5 unsuccessful completion, (RTT invalid or not opened)

Data Control Blocks:
RTT

Coding Example:

s6¢
667 0 0000016C RTHGR SUM,RTTBLX, ERROR
0 0000016C 4DFPOCO00220 LEA RTTBLK, A6 + LOAD ADDRESS OF CONTROL BLOCK
0 00000172 4E4A TRAP £10 + TRAP TO REAL-TIME MANAGER
¢ 00000174 0009 bC.v RTSUM + COMMAND WORD
0 00000176 60000090 BRA.L ERROR + BRANCH TO USER ERROR HANDLER

Introduction 1-49



1.3.4.5 Sample Program Using the Real-Time Manager

The program on the opposite page illustrates one use of the real-time
manager. It opens the RTT block, reads the current time, sets the mode to
wakeup, issues an alarm for 15 seconds into the future, issues a suspend
for the timeout, and then closes the RTT.

1.3.5 NAMING AND OTHER CONVENTIONS

1.3.5.1 File Name Format

A fully qualified filename consists of three fields: A volume identifier,
a filename, and an extension. When file names are specified within system
commands, you must use specific delimiters to separate the fields. The
standard format is shown below:

<volume:>filename.ext

volume is one to six alphanumeric characters always terminated by a
colon. This field can be omitted in which case the default
volume is used. Specifying a logical drive number in the
volume field (0-3 for diskette drives #FDOO-#FD03)

OPENs the volume name that is mounted in the specified
drive.

filename 1is one-to-eight alphanumeric characters with the leading
character alphabetic. This is always followed by a period
and the filename extension.

ext is one to three alphanumeric characters with the leading
character alphabetic.

EXAMPLES:
123456 :BLUE.SRC SAMP: TESTCASE.BIN
VOL7:CALCPGM.REL SPECT1.REL

The '"Wildcard Feature" is the same as described in Computer System
Operating System Reference, Part 1, GC22-9199, except that it does not
apply to volume names.

Introduction 1-50



i RTHTEET 1DNT i1

34 * RTMMACS(Y INC REV 21-SEP-83 HAS BEENM INCLYDEE
387 * SYSRACIC INC REV 22-SEF-83 HAS BEEN INCLUBED
7 ¥ IORCLESO. IRC REV 22-5EP-B0 HAS BEEN INCLUDED
i
389 % CI000000 TIFE {OPENING RTT BLOCK}
600 0 20000822 RTHER OPEN,RTTBLOCK, ERRERIY
e0L 0 50066038 TYPE (READING CURRENT TIME)
602 ¢ 0€0C0EIS RTHGR QTIME, RTTBLOCK, ERREKIY
603 * NOTE THAT WE ARE KOT USING THIS READIKG FOR ANYTEIKS IN THE SAMPLE
804 * PROGRAX BUT IT IS5 AVAILABLE IN THE RTT IMPUT AREA IF VWL WANT IT.
608 * FCR EXAMPLE WE C2ULD USE IT TO COMPUTE AN "ABSOLUTE® WAKEUP TIME.
404 ¢ CUODGES TYPE {SET ALARM [§ SECONDS FROM NOW, WALEUF MODE:
407 * WE'RE YSING THE RELATIVE ALARM... 15 SECONDS EROK NOW
08 0 OOGUOUAL qZBIO00DULLS CLR.L RTTELOCK +RTTODAD NO CHANGE TO DATE
§09 ¢ QCUHOGAs 23FCOCOOOOCE MOVE.L  #50000000F,RTTELOCK+RTTTHC RELATIVE 15 SECOMDZ TO TIKE
Drogoise
E1G L QDCOCORY 427900000:4C CLR.W RTTELOCK+RTTHSS NG CHANGE TO PRACTIONRL SECONES
410 0 0GOOOGRBE (3FCOO010000 MOVE B i ,RTTELOCK+RTTMOD SET MODE TO WAKEUP
Gidt
£13 0 DQC00HEE RTMGR ALRKR, RTTELOCK, ERREXIT
£:3 ¢ G00804EC TYPE {SUSPEND ISSUED)
314 ¢ OEGOOEC SUSPEND TILLALL,#0,ERREXIT
0 QOURUUEG £0UC0N4S BRA L ERREXIT + BRANCH TC USER ERROR HANDLER
613 0 Qeeaderd TYPE {PROGRAM AVWAKEKED. [SSUING RTT CLOSE)
416 & 0000Gize RTMGR CLOSE RTTBLOCK,ERREXIT
0 0C006122 f0800624 BEA . L ERREXIT + ERANCH T0 USER ERROR HANDLER
£17 ¢ G00UCLI34 TYPE (PROGRAM ENDED
18 4 000043 EXIT
619 0 00060:38 ERREXIT PRTERR
620 0 GoC0C1sSC EXiT
621 0 00000L60 000COO0Y RTTBLOCK DS.W [} ALIGN TO WORD BOUMNDARY
622 0 00000140 g00CO0: D5.E i RTTSTA  STATUS
£23 0 QU0OCI6E QO0CCOQUE DS B i RTTMGD MODE
624 0 00000162 00000¢C02 Ds.W i RTTIDY INDEX
£23 0 (0GC0169 GQO0G0UY ps.L 1 RTTDAQ !
626 € 000001¢8 00000004 D5.L 1 RTTTHC | DATA OUTPUT
627 0 0G00014C cogqLo02 DS.W 1 RTTMSC
626 0 0000GI4E 00000004 Bs.L 1 RTTDAL !
629 0 GOCQLI7Z 00OOQO0Y DS L i RTTTHI !1 DATA INPUT
630 0 00060174 00000002 D5.W i RTTHED 1
§3t ENG
x#raax TOTAL ERRORS §-- 6ié

Introduction 1-51



1.3.5.2 File Extensions

BIN
ASM
INC
OBJ
LNK
SUB
DRV
SYS
LIB

Binary programs and files

Assembler source statement files

Assembler include files

Relocatable object files - individual
Relocatable object files - linked together
Submit files

Binary device drivers

Operating system programs and files
Library files

Files extensions to avoid:

TMP
BAK

These extensions are used by the editor program.

1.3.5.3 Logical Device Naming

Logical device names are established by the device drivers. The names of
devices attached to the system can be displayed by the operating system
LISTDEV command. These names are 'bound" to user program logical unit
numbers with the SYSIO-OPEN command and a Device Initialization Block
(DIB) supplied by the user's program. Task logical unit assignments can
be displayed with the SHOW command. The pre-assigned logical device names
are shown below.

Hard Disk #HDOO through #HDO3

Floppy Diskette #FDOO through #FDO3

IEEE-488 Bus #BUSO0 (additional devices would be
, #BUSO1, etc.)

Parallel Port #PPU

Keyboard/Keypad ##CON

Keypad/control #KPD

CRT Graphics #GR

Printer ##PR

RS-232 Asynch #SERO1, #SER02

RS-232 Bisynch/Asynch J##SER0OO

CRT (see note) #SCRNO for page O

#SCRN1 for page 1
J#CNSLO

Note: The CRT has ability to display one of the two memory pages at any
given time. The page to be displayed can be set by using a
function call or the PAGE command.

Introduction 1-52



1.3.5.4 Numbers

. Unless otherwise noted, numbers are decimal.

. Hexadecimal numbers are preceded by a dollar sign, e.g. $4FFFO.

Introduction 1-53






2.0 KEYBOARD DRIVER

2.1 DRIVER DESCRIPTION

The Keyboard Driver supports the keyboard option. Note: The optional
keyboard must be installed to use this driver. The IBM Instruments
Computer System can be configured with just keypad and softkeys. See
Chapter 3 for information related to the keypad and softkeys and the
keypad driver. The Keyboard Driver is sharable and supports Byte I/0,
asynchronous event posting and asynchronous requests but does not support
attach or detach devices. The keyboard and keypad driver share the same
resources. If either is "detached" the other will also be detached.

EVENTS SUPPORTED BY #CON DRIVER

Name When Signalled

"CBUF" Any key depression or shift state change.
The EVBSTA field returns the current BYTE
I/0 longword.

"CTLB" When CTRL-BREAK is pressed.
"CTLN" On CTRL-NUMLOCK EVBSTA=-1, on RESUME EVBSTA=0.
"F1 " When Function Key 1 is pressed.
"F2 " When Function Key 2 is pressed.
"F3 " When Function Key 3 is pressed.
"F4oo " When Function Key 4 is pressed.
"F5 " When Function Key 5 is pressed.
"F6 " When Function Key 6 is pressed.
"7 " When Function Key 7 is pressed.
"rg " When Function Key 8 is pressed.
"F9 " When Function Key 9 is pressed.
"F10 " When Function Key 10 is pressed.

KEYBOARD ENCODING AND USAGE
ENCODING

The keyboard routine provided by IBM in ROM is responsible for converting
the keyboard scan codes into what will be termed "Extended ASCII".

Extended ASCII encompasses one byte character codes with possible values
of 0-255, an extended code for certain extended keyboard functions and
functions that are handled within the keyboard routine or through
interrupts.

Keyboard Driver 2-1



CHARACTER CODES

The following character codes are passed through the keyboard routine to
the system or application program. A "-1" means the combination is
suppressed in the keyboard routine.

[ T I I T 1
|  KEY | BASE CASE |  UPPER CASE | CTRL | ALT ]
| 1 | | ] |
[ | | 1 I 1
| 1 | ESC [ ESC 1 ESC | -1 |
] 2 | 1 | 3 | -1 | Note 1 |
| 3 | 2 | @ | NUL (000) Note 1| Note 1 |
| 4 | 3 ! # | -1 | Note 1 1
| 5 f 4 | $ ’ -1 | Note 1 |
| 6 | 5 | % l -1 | Note 1 |
|7 ! 6 l | RS (030) | Note 1 |
| 8 | 7 | & | -1 | Note 1 |
|9 l 8 | | -1 | Note 1 g
| 10 | 9 ‘ ( | -1 | Note 1 |
|11 | 0 I ) | -1 | Note 1 |
|12 | - | _ | US (031) | Note 1 |
|13 | = l + | -1 | Note 1 |
| 14 | Backspace (008)| Backspace (008)] DEL (127) | -1 |
| 15 | » (009> |« (Note 1) | -1 fo-1 |
| 16 t q l Q f DC1 (017) | Note 1 |
| 17 | w | W | ETB (023) | Note 1 :
|18 | e | E } ENQ (005) | Note 1 |
|19 | r | R | DC2 (018) | Note 1 1
| 20 | t | T i DC4& (020) | Note 1 |
|21 I y | Y | EM (025) | Note 1 ;
| 22 | u ! U ( NAK (021) | Note 1 |
|23 I i | I | HT (009) | Note 1 |
| 24 | o | 0 | SI (015) | Note 1 |
| 25 | o | P | DLE (016) | Note 1 |
|26 | [ | { | ESC (027) | -1 5
|27 | ] I } I GS (029) ! |
| 28 | CR | CR | LF (010) | -1 ;
| 29 | -1 | -1 | -1 | -1 |
| 30 | a | A ! SOH (001) | Note 1 i
|31 i s | S | DC3 (019) | Note 1 |
| 32 I d | D | EOT (004) | Note 1 |
| 33 | £ | F | ACK (006) | Note 1 z
| 34 ! g | G | BEL (007) | Note 1 |
L ! | i I |

Keyboard Driver 2-2



CHARACTER CODES (Cont.)

[ I T I T

| KEY | BASE CASE | UPPER CASE | CTRL | ALT

| | | | |

| 1 ! | I

| 35 | h | H |  BS (008) | Note 1

| 36 | J | J | LF (010) | Note 1

| 37 | k ] K | VT (011) | Note 1

| 38 | 1 | L | FF (012) | Note 1

| 39 l ; | : | -1 -1 |

| 40 l ' I ! | -1 -1 I

|41 I l ~ I -1 -1 |

|  42SHIFT| -1 | -1 | -1 -1 |

| 43 | \ | | FS (028) | -1

| 44 | z | 7 | SUB (026) | Note 1

| 45 | X | X | CAN (024) | Note 1

| 46 | c | C | ETX (003) | Note 1

| 47 | v | \Y |  SYN(022) | Note 1

| 48 | b | B | STX (002) | Note 1

| 49 | n | N | SO (014) | Note 1

| 50 | m | M | CR (013) | Note 1

| 51 ! ' | < I -1 -1 |

| 52 ! : l > ! -1 -1 |

| 53 1 / | ? | -1 -1 |

|  S54SHIFT| -1 | -1 | -1 -1 |

| 55 | * | (Note 2) | (Note 1) -1

|  56ALT | -1 | -1 | -1 -1 |

| 57 | SP | SP | SP SP |

| 58CAPS | -1 | -1 | -1 -1 |

I LOCK | | | I

| 59 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 60 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 61 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 62 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 63 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 64 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 65 | NUL (Note 1) | NUL (Note 1) |  NUL (Note 1) | NUL (Note 1)
| 66 | NUL (Note 1) | NUL (Note 1) |  NUL (Note 1) | NUL (Note 1)
| 67 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1) |  NUL (Note 1)
| 68 | NUL (Note 10 | NUL (Note 1) | NUL (Note 1) | NUL (Note 1)
| 69NUM | -1 | -1 | Pause | -1

| LOCK | ] | (Note 2) |

|  70SCROL| -1 1 -1 | Break | -1

| LOCK | | | (Note 2) !

| | l i |

% | I 1 1

| Note 1: Refer to Extended Codes (see below).

|

{ .

| Note 2: Refer to Special Handling (see below).

{ -

Keyboard Driver 2-3



Keys 71-83 have meaning only in base case, in NUMLOCK (or shifted) states,
or in CTRL state. It should be noted that the shift key temporarily
reverses the current NUMLOCK state.

Note 1: Refer to Extended Codes (see below).

Note 2: Refer to Special Handling (see below).

Note 3: The meanings of keystrokes is a recommendation for
applications, and is not implemented in the operating
system command interpreter.

r T T | [ 1
| KEY #| NUM LOCK | BASE CASE | ALT | CTRL |
| ! | (Note 3) | | (Note 3) |
| | ! | |
| 1 1 i T |
| 71 | 7 | Home (Note 1) | Note 1 | Clear Screen

| 72| 8 | A (Note 1) | Note 1 | -1 |
| 73 | 9 | Page Up (Note 1) | Note 1 | Top of Text & Home |
| 74 | - | - | -1 | -1

| 75 | 4 | <«  (Note 1) | Note 1 | Reverse Word |
|76 | 5 ] -1 | Note 1| -1 i
| 77 | 6 l - (Note 1) | Note 1 | Adv Word |
| i | l (Note 1| |
| 78 | + l + l -1 |1 |
| 79 | 1 | End (Note 1) | Note 1 | Erase to EOL

| 80 | 2 i v  (Note 1) | Note 1 | -1 ]
| 81 | 3 | Page Down (Note 1) | Note 1 | Erase to EOS |
| ! | (Note 1) ! | |
| 82 | 0 ] INS | Note 1| -1 {
| 83 | | DEL (Notes 1,2) | Note 2 | Note 2 |
o | i L | |
| |
l i
| |
| |
| l
| !
| |
| B

A. EXTENDED CODES

For certain functions that cannot be represented in the standard
ASCII code, an extended code is used. This indicates that the system
or application program should examine a second code that will
indicate the actual function. Usually, but not always, this second
code is the scan code of the primary key that was pressed. Extended
ASCII cannot be read with a normal SYSIO SREAD command. The extended
code can be accessed through BYTE I/0, through Function Key Mode, or
through a "table lookup facility." These capabilities are described
later on.

Keyboard Driver 2-4



Keyboard Extended Codes

SECOND CODE FUNCTION (Note 3)

l
‘r
|
|
|
l
|
%
!
l
|
|
l
l
I
|
l
i
|
|
|
|
|
!
|

T
1

3 \ NUL Character

15 | < 16-25 ALT Q,W,E,R,T,Y,U,1,0,P

30-38 | ALTYA,S,D,F,G,H,J,K,L

44-50 | ALTYZ,X,C,V,B,N,M

59-68 | F1-F10 Function Keys Base Case

71 | Home

72 | A

73 | Page Up & Home Cursor

75 | -

77 | -+

79 [ End

80 |

81 | Page Down & Home Cursor

82 i INS

83 1 DEL

84-93 | F11-F20 (Upper Case F1-F10)

94-103 1 F21-F30 (CTRL F1-F10)

104-113 i F31-F40 (ALT F1-F10)

114 | CTRL PRTSC Key 55

115 | CTRL« Reverse Word

116 | CTRL> Advance Word

117 f CTRL END Erase EOL

118 | CTRL PG DN Erase EOS

119 | CTRL HOME Clear Screen and home

120-131 i ALT 1,2,3,4,5,6,7,8,9,0,-,=(Keys 2-13)
1

B. SHIFT STATES

Most shift stater are handled within the keyboard routine
transparently to the system or application program. In any case, the
current set of active shift states are available by using BYTE I/0 or
by monitoring the event "CBUF". The following keys result in altered
shift states.

Shift - Temporarily shifts keys 2-13, 15-27, 30-41, 43-53, 55, 59-68
to upper case (lower case if in CAPSLOCK state). Temporarily
reverses NUMLOCK/NONUMLOCK state of keys 71-73, 75, 77, 79-83.

CTRL - Temporarily shifts keys 3, 7, 12, 14, 16-28, 30-38, 43-50, 55,
59-71, 73, 75, 77, 79, 81 to CTRL state. Used with ALT and DEL to
cause ''system reset' function described in Section 2.4. Used with

Keyboard Driver 2-5



C.

SCROLL LOCK to cause 'break' function described in Section 2.4. Used
with NUMLOCK to cause 'pause' function described in Section 2.4.

ALT - Temporarily shifts keys 2-13, 16-25, 30-38, 44-50, and 59-68 to
ALT state. Used with CTRL and DEL to cause system reset function
described in Section 2.4.

CAPS LOCK - Shifts keys 16-25, 30-38, 44-50 to upper case. A second
depression of CAPS LOCK reverses the action. Handled internal to
keyboard routine.

NUM LOCK - Shifts keys 71-73, 75-77, 79-83 to numeric state. A
second depression of NUM LOCK reverses the action. Handled internal
to keyboard routine.

SCROLL LOCK - Interpreted by appropriate application programs as
indicating that the use of the cursor control keys should cause
windowing over the text rather than cursor movement. A second
depression of SCROLL LOCK reverses the action. The keyboard routine
simply records the current shift state of SCROLL LOCK. It is up to
the system or application program to perform the function.

SHIFT KEY PRIORITIES AND COMBINATIONS

If combinations of ALT, CTRL and SHIFT are pressed and only one is
valid, the precedence is as follows: Highest is ALT, then CTRL, then
SHIFT. The only valid combination is ALT CTRL, which is used in
system reset.

SPECIAL HANDLING

A.

SYSTEM RESET

The combination of ALT CTRL DEL (Key 83) will result in the keyboard
routine initiating the equivalent of a system restart. Handled
internal to keyboard routine.

BREAK

The combination CTRL BREAK will result in the keyboard routine
signaling event "CTLB". See also Functions 7 and 8.

PAUSE

The combination CTRL NUM-LOCK will cause the keyboard interrupt
routine to 1loop, waiting for any key except PRTSC to be pressed.
This provides a system/application transparent method of suspending
list/print/etc. temporarily, and then resuming. The event "CTLN" is

Keyboard Driver 2-6



signalled whenever the system enters or leaves ''Pause' state. A
value of -1 is returned if PAUSE is on. A zero is returned if PAUSE
is off. The "Unpause" key is thrown away. Handled internal to
keyboard routine. See also Function 9.

D. TYPAMATIC ACTION

The following keys will have their typamatic action suppressed by the
keyboard routine: CTRL, SHIFT, ALT, NUM-LOCK, SCROLL-LOCK, CAPS
LOCK, INS.

E. PRINT SCREEN

The combination SHIFT-PRINT SCREEN (Key 55) will result in an
interrupt invoking the print screen routine. This routine works in
graphics mode.

DRIVER PRINCIPLE OF OPERATION

The Keyboard driver processes key strokes from the keyboard. Each
keystroke generates two hardware scan-codes; one when the key is pressed
and one when the key is released. See Figure 2-1. An interrupt is
generated, the associated character (if any) is echoed to an Alpha Window
on the CRT and the scan-codes are stored in a 32 keystroke buffer where
they are held until they can be individually processed by the keyboard
driver. The keyboard driver stores them, along with their extended ASCII
translation and two other bytes which represent the state of the keyboard
at the time the key was pressed. For example Control Keys, Alternate
Keys, Numbers Lock etc. From this 32 entry circular buffer (#CON) the
information is available to transfer to a user buffer or for use by an
applications program. Extended ASCII encompasses one byte character
codes with possible values of 0 to 255, an extended code for certain
extended keyboard functions and functions that are handled by the keyboard
driver or through interrupts. Entries may also be made into the #CON
buffer from the keypad driver. See Chapter 3 for information on how this
is accomplished.

If the circular buffer becomes full and an additional keystroke comes in,
then the last keystroke in the buffer will be overlaid. This procedure
allows user programs to use EVENTS without ever reading from the buffer.
(If the additional keystrokes were ignored, then the user program would
need to keep reading from #CON in order to make the buffer not become
full.)

Each SYSIO-BREAD will obtain a longword from the #CON buffer. Register
DO.L will always contain information on the last key that was struck,
regardless of whether there is a byte available in the buffer or not.

Keyboard Driver 2-7



BYTE 1/0 LONGWORD DESCRIPTION

BYTE O: Contains "KBFLAG" defined as follows:

Bit 7: Insert state

Bit 6: Caps lock has been toggled
Bit 5: Numeric lock has been toggled
Bit 4: Scroll lock has been toggled
Bit 3: Alt shift key depressed

Bit 2: Control shift key depressed
Bit 1: Left shift key depressed

Bit 0: Right shift key depressed

BYTE 1: Contains "KBFLAG1" defined as follows:
Bit 7: Insert key depressed
Bit 6: Caps lock key depressed
Bit 5: Numeric lock key depressed
Bit 4: Scroll lock key depressed

BYTE 2: Contains the scancode of the key that was pressed.

BYTE 3: Contains the translated ASCII code of the key that was
pressed. Contains zero if there is no ASCII representation.

Each SYSIO-AREAD or SYSIO-SREAD will transfer a line of console input to
the buffer specified in the Data Transfer Control Block (DTCB). There are
several line-editing options that may be specified with function packets
using SYSIO-OPEN or SYSIO-FUNCTION. See Paragraph 2.4.2.

There is a "table lookup facility'" in the keypad driver that may be used
to translate non-ASCII keystrokes such as function keys and cursor keys
into program control functions or into ASCII strings. See functions 12,
13 and 19 of the Keypad Driver for an explanation on how to use this
facility.

Function and cursor keys are normally ignored if they do not appear in the
lookup table. However, you can use '"Function Key Mode'" to gain access to
them. In this mode you will receive an exception code of $10 whenever a
control or function key is pressed that could not be translated. Three
bytes will be placed in the buffer specified in your data transfer control
block starting at the offset contained in the DTCB buffer pointer. The
first byte is KBFLAG, the second is KBFLAGl, and the third is the
SCANCODE. Text entered before the exception key was pressed remains in
the buffer. You may also use SYSIO-BREAD to gain access to function and
cursor keys.

Keyboard Driver 2-8



2.2 DEVICE INITIALIZATION BLOCK (DIB)

"DIB" refers to a form of control block that is used at OPEN time which can
specify a non-default mode of operation for the device. There is unique
information that the device driver needs to know at open time. This
information is used by the I/0 manager. It is copied from user space into
the appropriate control block in system space.

To open the keyboard the user must create a DIB and within an
initialization routine perform a SYSIO-OPEN to the device. When this is
done all standard SYSIO operations described in Chapter 1 are allowed
except writes.

2.2.1 DIB FORMAT

DATA

MNEMONIC LENGTH DESCRIPTION OF USE

DIBVOL DS.B 6 Device name. Use #CON for keyboard driver.

DIBDTD DS.B 1 Data transfer direction. Use 1.This driver
is read only.

DIBTRN DS.B 1 Enter 0 for Fixed length or 1 for Variable
length transfers.

DIBRSO DC.L 0,0 Not used. User sets this field to O.

DIBOPT DC.W O Not used by this driver. User sets this
field to 0.

DIBFCN DS.L 1 Insert pointer to function packet or set this
field to $0000 0000 to select the default
mode.

DIBBIO DS.L 1 System used Byte I/0 Field. To open the

keyboard for Byte I/0 enter -1 (SFFFF FFFF),
otherwise set it to zero. After OPEN the I/O
manager fills this field with an identifier
which is used for SYSIO-BREAD and SYSIO-BTEST

Keyboard Driver 2-9



2.3 KEYBOARD DATA TRANSFER CONTROL BLOCK (DTCB).

The Data Transfer Control Block (DTCB) holds I/0 status and buffer
information during READs. It is required operand of the SYSIO macro for
READs or WRITEs. The application program uses it to determine information
required in completing each data transfer request, and to monitor the
status of the transfer after the request has been made.

2.3.1 DTCB FORMAT

DATA
MNEMONIC LENGTH DESCRIPTION OF USE

DTCSTA DS.B 1 User monitors this field for status on I/0 operation.

DTCTBU DS.B 1 User puts upper limit to be used for Transfer
Termination characters in Variable length transfer
here.

DTCTBL DS.B 1 User puts lower limit to be used for Transfer
Termination characters in Variable length transfer
here.

DTCRSO DC.B 0 This field is reserved. User puts zeroc here.
DTCBFS DS.L 1 User puts Buffer starting address here.

DTCBFL DS.W 1 User puts count of number of bytes in data buffer
here.

DTCBPT DS.W 1 User puts byte offset into buffer (if any) to the
first byte of the record. This pointer will be
incremented by the driver for every byte transmitted.
It must be reset after every READ.

2.4 KEYBOARD FUNCTIONS

The Function Packet Control Block provides for device specific operations
not necessarily involving data transfer. This would include things like
setting the amount of space between tab columns or causing a prompt string

Keyboard Driver 2-10



such as ENTER: to appear on the CRT. It is required for the FUNCTION
command and optional for the OPEN command. It is used by the application
program to configure a device to something other than its default mode.

The function packet is a 1list of COMMAND-DATA pairs terminated by a
terminating COMMAND of zero indicating END-OF-LIST. The COMMAND word is
followed by 2zero or more words or longwords that send or receive the
immediate DATA for the command, or a longword that points to the DATA for
that COMMAND.

2.4.1 SUMMARY OF KEYBOARD FUNCTIONS

The function listed in this section can be used with the SYSIO-FUNCTION
command of the I/0 manager using FUNCTION packets.

COMMAND ERROR
FUNCTION PURPOSE WORD CODE DATA REQUIRED
ENDLIST 0 ($0000) NONE NONE
SET TRANSFER MODE 1 ($0001) $0021  WORD
SET EDIT OPTIONS 2 ($0002) NONE WORD
PROMPT ON 3 ($0003) NONE NONE
PROMPT OFF 4 ($0004) NONE NONE
ECHO ON 5 ($0005) NONE NONE
ECHO OFF 6 ($0006) NONE NONE
RESET CTRL-BREAK 7 ($0007) NONE NONE
GET CTRL-BREAK ADDRESS 8 ($0008) NONE LONGWORD ADR RETURNED
GET CTRL-NUMLOCK 9 ($0009) NONE LONGWORD ADR RETURNED
ADDRESS
SET ECHO 10 ($0004) NONE LONGWORD
SET TAB 11 ($S000B) $002B  WORD
SET PROMPT 12 ($000C) NONE LONGWORD POINTER
PARSE NEXT TOKEN 13 ($000D) $002D  NONE
FUNKY MODE ON 14 (SO000E) NONE NONE
FUNKY MODE OFF 15 ($000F) NONE NONE
PARSING ON 16 ($0010) NONE NONE
PARSING OFF 17 ($0011) NONE NONE
SET SCROLL LOCK ON 18 ($0012) None NONE
SET SCROLL LOCK OFF 19 ($0013) NONE NONE
GET SCROLL LOCK STATE 20 ($0014) NONE WORD RETURNED
SET NUM LOCK ON 21 ($0015) NONE NONE
SET NUM LOCK OFF 22 ($0016) NONE NONE
GET NUM LOCK STATE 23 ($0017) NONE WORD RETURNED
SET CAPS LOCK ON ' 24 ($0018) NONE NONE
SET CAPS LOCK OFF 25 ($0019) NONE NONE
GET CAPS LOCK STATE 26 ($001A) NONE WORD RETURNED

Keyboard Driver 2-11



SET INSERT MODE ON 27
SET INSERT MODE OFF 28
GET INSERT MODE STATE 29
GET EDIT OPTIONS 30
GET PROMPT STATE 31
GET ECHO STATE 32
GET TAB AMOUNT 33
GET FUNKY MODE 34
GET PARSING MODE 35
GET TRANSFER MODE 36
SET CTRL-BREAK 37

2.4.2 KEYBOARD FUNCTION DESCRIPTIONS

COMMAND

($001B)
($0010)
($001D)
($O01E)
($001F)
($0020)
($0021)
($0022)
($0023)
($0024)
(50025)

FUNCTION PURPOSE

ENDLIST

Function Data

Error Code

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE
NONE
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
NONE

RETURNED
RETURNED

(0/1) RETURNED
(0/1) RETURNED
RETURNED

(0/1) RETURNED
(0/1) RETURNED
(0/1) RETURNED

FUNCTION DESCRIPTION

Terminate processing of the function

packet.
None

None

SET TRANSFER MODE

Function Data

Data = $0000
$0001

Allows user to specify either fixed

length or variable length transfers.
When fixed length transfers are
specified the driver refers to the
buffer length specified in the Data
Transfer Control Block (DTCB) to
determine the amount of the data to
transfer.
transfers are specified the driver will
check each byte to see if it lies
within the range specified in the Data
Transfer Control Block for termination
characters and will terminate transfer
of data it is does.

Word, integer.

When variable length

Selects fixed length transfers.
Selects variable length transfers.

Keyboard Driver 2-12



Error Code

§0021 Data out of limits.

SET EDIT OPTIONS

Function Data

Data Bit 8 = O
9 =20
11 =0

Error Code

Default Setting:

Allow the user t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>