

Section 5.2 MODEL USAGE RESULTS

Case 3: GO TO Label Variable - Erroneous Case

In this case, an erroneous GO TO is caught by the
Logical Model, with a diagnostic. The activation chain as
execution proceeds is shown below (the numbers denote the
sequence of calls and returns). The first activation of SUB
sets a label variable to a label constant in the then current
environment. After returning to MAIN, a second activation of
SUB attempts to branch to that label variable, but the environ­
ment, consisting of the first activation of MAIN and the first
activation of SUB, no longer exists, resulting in a user
diagnostic. Diagnostics in the Logical Model currently utilize
a syntactic APL error to stop execution. Although not printed
for the user in this version of the model, complete information
exists which can advise the user of the current line number,
environment, etc.

MAIN

I v i 2 3-k,

Set LBL = LO SUB S GO TO LBL

IBM CONFIDENTIAL

(

(

Section 5.2

START 2
<TYPF. C(WI1AlfJ»
]DISPJ,AY MAIN
< 0 >MAIll: PROC
<1>0=1111
< 2 >CA['L SUB
<3>0=1112
<4>CAJ,L sun
<5>0=1113
<6>F:ND
<T'ypr; COMtfAlJD>
]DISPLAY SUB
<O>SUH:PROC

MODEL USAGE RESULTS

<1 >DC[' A IllTIWF.R AUTOUATIC INTERNAL INI'i'(1)
< 2 >DC[, S INTEGIW STATIC II1TF:RNAI, n:IT(0)
<3>DCJ, L8I, LABEL VARIABLR STATIC II/TERl/AL
< I~ >[J= 2111
<5>[J=S
<6>8=S+1
<7>IF 8=1 THEN GOTO SETLEL
<8>0=2112
<9>GOTO LBL
<10>SETLBL:0=2113
<11 >J,BL=LO
<12>A=9
<13>RETURN
<14>[,0:0=2114
<15>[]=S'
<lG>n=A
<17>RF:TURll
<18>F.ND
<TIFT: COMMAND>
NAIN
24 1111
24 2111
16 0

SUB<lO> - 24 2113
24 1112
24 2111
16 1

SUB <8> - 24 2112
SYNTAX ERROR
EXEC[111] <INVALID BRANCll TO LABEL VARIABLE ATT'EMPTRD>

" Case 3

IBM CONFIDENTIAL

I()~

Section 5.2 MODEL USAGE RESULTS /10

Case 4: Entry Variable

This case portrays the Logical Model properly executing
a program using an entry variable defined in the PL/I language
specifications. The PL/I F compiler does not currently support
this capability. The three procedures A, B, and E are displayed
separately. The static n~sting, developed by COpy commands, is
shown below, along with the activation chain as execution proceeds
(the numbers denote the sequence of calls and returns).

Activation Chain
A --_ -----"

A

1 2 3

S.et EV=E B B Call EV

4

E

The first call of B s.ets the entry variable, EV, to R,
in the current environment. Then B re.turns, and is called again
by A, at which time B calls EV. In this case, the environment
that existed when EV was set (the first activation of A is still
active and the first activation of B is irrelevant since E is at
the same lexical level as E) still exists, and the program runs
properly to completion.

IBM CONFIDENTIAL

/' , , .

(

B<4>

B<8>
E<l>

("

Section 5.2 MODEL USAGE RESULTS

"

-

-
-

START 2
<,TYPE COMMAND>
]DISPLAY A
<O>A:PROC
<l>DCL X AUTO INIT(l)
<2>DCL 5 STATIC IlIIT(0)
<3>DCL EV ENTRY VARIABLE STATIC
<4>0=1111
<5>CALL B
<G>D=1112
<7>CALL B
<8>0=1113
<9>r:ND
<TYPP; COMMAND>
JDI5PLAY R
<O>li:PROC
<1>0=2111
<2>5=S+1
<3>IF S=2 THEN GOTO CALLEV
<4>0=2112
<5>X=9
<6>F:V=F:
<7>RF:TURli
<8>CALLr.V:O=2113
<9>CADL EV
<10>0=2114
<11>lWD
<TYPF. COl1MAND>
JDISPLAY E
<O>E:PROC
<1>0=3111
<2>0=S
< 3 >[l=X
<4>END
<TYPE COMMAND>
JCOPY E IN A
<COpy COMPLETED>
<TYPE COMMAND>
Ii
24 1111
24 2111
24 2112
24 1112
2 !I 2111
24 2113
2 !. 3111
lC 2
16 9
24 2114
24 1113
<TYPE COMMAND>
JOFF
<OFF>

Case 4

IBM CONFIDENTIAL

I I J

" ,

Section 5.2 MODEL USAGE RESULTS

Case 5: Entry Variable - Erroneous Case Caught

This case is identical to Case 4, except that the
static nesting is changed to that shown below.

A
B

E

In this case, the environment that exists when EV is set, as
far as E is concerned, consists of the first activation of A
and the first activation of B. However, the first activation
of B is destroyed immediately after B sets EV. Thus, when B
calls EV in B's second activation, the original environment
corresponding to that set in EV no longer exists, resulting
in an error.

<TYPE COMMAND>
It
24 1111
24 2111

B 4 - 24 2112
24 1112
24 2111

~ 8 - 24 2113
S.YNTIIX ImROU
EXEC[40] <!t:N'l'R.Y VAllIlIllLE F.NVIRONMENT NO LONGP.ll EXIt:TS>

1\

Case 5

IBM CONFIDENTIAL

/ /2-

(

Section 5.2 MODEL USAGE RESULTS

5.2.2 Performance Cases

Comparative runs have been made on the Timing Model
and in PL/I on the Model 85 using two methods of computing
factorial 4. Only the execution portion of the programs
were measured. Translation, Connection, and Linking Times
were excluded. Level 0 of the storage hierarchy was made
large enough to hold all the pages required which corresponds
to the program being contained entirely in the Model 85
buffer memory.

Case 1: Loop Method

The following loop was executed (in PL/I notation, with
compiled 360 ops):

LOOP: x = X * J; \
I = I + l'
IF M), = I' THEN GO TO LOOP;

L, L, M, SLDA, ST
L, A, ST
L, L, C, BC

For the Timing Model the loop was traversed 3 times.
For the Model 85 the loop was traversed several hundred thousand
times to get a measurable interval, but the result was normalized
to 3 times. (The variable, J, was needed to permit a large
number of repetitions on the Model 85. It was initialized to one.)

Two means of comparison are possible. First, we may
consider the storage references made by each machine. Since the
Timing Model fOr this AFS machine provides for the Lookaside
Memory which reduces the number of storage references due to
accessing data indirectly, three figures are shown.

Model 85
AFS Machine

Instructions

12
7

Data

10
(24

If
no

Lookaside

(In Words/Loop)

~ 19 /"'f 12
(1st Loop (Other loop~

with with
Lookaside Lookaside

Thus, based on storage references, the Model 85 requires 22
references per loop, and the AFS machine requires 19 (to 26
maximum) references per loop. The ratio is approximately 1:1.

Second, we may consider the times measured for each machine.
The Model 85, normalized to 3 iterations through the loop, took
9.5 microseconds and the AFS machine took 6.1 microseconds. The
fact that this time ratio is 9:6, rather than 1:1, is due to the

IBM CONFIDENTIAL

Section 5.2 MODEL USAGE RESULTS

current level of detail in the Timing Model, especially
with regard to storage reference and PPU times.

Case 2: Recursive Method

The recursive factorial function, FACR, shown below,
was called 4 times. On the Model 85 this was repeated several
hundred times.

-,,-

<O>FACR:PROC(N.X)
<l>X=l
<2>IF N>l THEN GQTO RECURS
<3>RETURN
<4>RECURS:CALL FACR(N-l.X)
<5>X=N*X
<6>RETURN
<7>END

The times measured for this case, normalized to one set
of 4 calls, are:

Model 85
AFS Machine

215 microseconds
20.8 microseconds

The ratio of 10:1 for this case should be strongly tempered by
the current level of detail in the Timing Model. But this is
illustrative of the type of advantage that results from managing
storing with commands such as CREATE, rather than GETMAIN as in
System/360.

5.3 An Instruction-Level Machine Compared with a Higher­
Level Language Machine

Concurrent with the Logical and Timing Model development,
another pair of models have been implemented which yield supportive
evidence to the performance potential of a higher level language
machine. These models, developed in Palo Alto, have been used
as a means of understanding techniques in the APL Machine, APLM,
described by Phillip Abrams in his recent thesis* and of obtaining
some crude estimates of the machine's performance vis-a-vis a
present day von-Neuman machine. The APLM incorporates two funda­
mental new processes which Abrams has termed "drag-along" and
"beating", where drag-along is defined as the process of deferring
evaluation of operands .and operators as long as possible, and
beating is defined as the machine equivalent of calculating
standard forms of selection expressions.

*Abrams, P.S. (1970) An APL Machine SLAC Report No. 114

IBM CONFIDENTIAL

Section 5.3 AN INSTRUCTION LEVEL MACHINE ••• II~

The von-Neuman machine used for comparison is based
on the MIX computer designed by Knuth and rather widely used
in computer science courses at Stanford and elsewhere. It is
intrinsically a simple, basic machine with an A-register, Q­
register, and six index registers working with a word-oriented
memory. The instruction repertoire somewhat resembles that of
the IBM 7094. The APLM uses an instruction buffer for subscript
offset calculations.

The CPU capabilities of the MIX machine have been augu­
mented to have an instruction power comparable to that of the
APLM. Thus, the performance of MIX versus APLM becomes a measure
of the number of storage accesses made into the various types of
storage media plus an estimate of the number of cycle required
for each instruction over and above storage cycles.

Example 6 in Abrams thesis has been coded and run on
both the APLM and MIX models. The APL statement is:

The statement has been hand coded for the MIX machine in two
ways. It has been coded in a highly optimized manner, including
unrolling of the loops, even though a compiler with such an
ability does not exist. It has also been coded in the manner of a
very good optimizing compiler. The number of references measured
for this example are:

Instructions Data Instruc. Buffer

APLM 131 33 66
MIX (Highly 87 60

optimized)
(Good 140 74
optimizing)

Since the APLM is reasonably complete in accounting for
CPU actions, and since the first set of values for the MIX
machine represent extremely efficient coding, the ratio of 2:3
between MIX and APLM may be taken as an indication of a worst
case bound. The ratio of 1:1 between the second set of values
for MIX and APLM are in keeping with the results determined
by the Timing Model.

IBM CONFIDENTIAL

Total

230
147

214

"lie:- .
Section 5.4 MODEL PLANS

5.4 Model Plans

Second versions of the Logical and Timing Models are
being planned which will extend the current set of capabilities.
Enhancements inclUde:

A more faithful representation of the PU,
including tracing and timing of the stack
manipulations required for the call and
return mechanism and for expression evaluation.

Byte addressing (rather than the current word
addressing)

A translator for an APL subset

An edit/change/continue capability

Implementation of the LDT as defined in this manual

Implementation of vectors and fixed and floating
point data types

IBM CONFIDENTIAL

\
"'-_/

(
~/

Chapter 6 IIi

GLOSSARY

Numbers refer to sections of this document. Cross references to
AFS Fundamental Concepts and System Language (SLM) are parenthesized.

Activation Tree
(2.3)

ADD
(4.2)

Allocation
(2)

Attach
(2.3)

BRING

Connect
(2.2)

CREATE
(4.2)

Descriptor and
pointer or value
(DAPOV) (2.5.1)

Data Object
(2,5)

DELETE
(4.2)

Descriptor
(2.5.1)

DESTROY
(4.2)

A structure in a Logical Machine
containing information about which
Hodules of that Logical Machine are
currently active, and the order in
which they called or attached each
other. (Activation Tree in SLM)

A storage operation defined in the text.

The process of creating a Reference
Table together with its contained
list of DAPOVs. (Insert and Delete
in SLM)

The invocation of a Module to be
executed as a separate Logical Task.
(Create and Parallel in SLM)

A storage operation defined in the text.

A command used to introduce a Module into
a Logical Machine by the creation of a
new node in the Program Tree.

A storage operation defined in the text.

A Descriptor together with its
associated data or a system pointer
which provides access to the data.

The set of a name, its descriptors,
and value. (Object in SLM)

A storage operation defined in the text.

Information specifying the type,
aggregation, and/or representation of
data.

A storage operation defined in the text.

IBM CONFIDENTIAL

Section 6.0

Dynamic Storage
Mechansim (2.4)

External Node
(2.2)

Generic Descriptor
(2.5.1)

Interpreter
(2.6)

Job
(3.1)

Link
(2.5)

Local Declare Table
(LDT) (2 . 5 . 2 . 3)

Local Link Table
(LLT) (2.5. 2. 1)

Local Symbol Table
(LST) (2.5.2.1)

Logical Input/Output
System (3.3)

Logical Machine
(2.1)

GLOSSARY

The collection of Storage Anchors
and Reference Tables used to provide
storage and execution time address­
ability for Data Objects.

A special node in the Program Tree
which contains the Local Symbol,
Link and Declare Tables for all the
external names of the program.

A descriptor associated with a name
in a Local Declare Table.

The logical executor of code.

Work performed during the time
between activation and deactivation of
a Logical Machine.

The process of resolving Symbolic Names
by searching the Local Symbol Tables
contained in the nodes of the Program
Tree.

A table containing all the information
that is knol~m a,bout ea,chSvmholic Na,me
declared or referenced in· 'the r-rodule.
The Generic Descriptor is part of this
information.

A table containing execution time
connectivity to the DAPOV for each
Symbolic Name declared or referenced
in the .Module.

A table containing all the Symbolic
Names declared or referenced in the
Module.

The facilities for the transfer of
information to and from the Logical
Machine.

That part o~ the system prov;t:ded ;fox
the processing of each ;t:nde?endent
unit of work.

IBM CONFIDENTIAL

I

~ /

t <-

(/

c

Section 6.0

Logical Machine Supervisor
(3.1)

Logical Name
(2.5.2)

Lookaside Memory
(4.2 & 4.3.6)

LREAD

Module
(3.2)

Offset
(4.2)

Ownership Tree
(3.2)

Pointer

System Pointer

Processing Unit
(PU) (4. 3 & 4. 4)

GLOSSAR~

A Logical Machine which is in
control of all other Logical Machines
in the system, and provides an inter­
face to the physical processors on
behalf of these Logical Machines.

The internal form of a Symbolic Name.

A local name associative array that
permits look-aside to minimize storage
accesses on repeated references to the
same information.

A storage operation defined in the text.

The combination of the source code,
executable code, line directory, LST,
LLT, and LDT for a sequence of source
statements in which all uses of the
same Symbolic Name refer to the same
object.

An index to a particular byte of a space.

A structure defining the ownership
relationship between all objects of
the system, and containing information
about the access rights of each object.

A generic term for a type of data whose
value is the logical address of another
data object, and for a System pointer.
A System Pointer is a type of system
data whose value is the physical addresR
of another space or of a byte within a
space.

A generic term for, a Program Processing
Unit or a Source-Sink Processing Unit.
Also used to represent the common func­
tional part of thest two units.

IBM CONFIDENTIAL

jz,o
Section6~O GLOSSARY

Program Processing Subsystem
(PPS) (4.3)

Program Processing Unit
(PPU) (4.3)

Program Tree
(2.2)

READ
(4.2)

Reference Table
(2.5)

Relative ID
(2.5.3)

Semaphore
(4.1.4)

Source-Sink Processing Unit
~SSPU) (4.4.4)

Source-Sink Subsystem
(SSS) (4.4.1)

Space
(4.2)

Storage Anchor
(SA) (2.4)

A physical subsystem (comprised
of one or more Program Processing Units)
which' processes all Physical Tasks not
requiring Source-Sink I/O.

A physical unit in the Program Processing
Subsystem.

A tree structure in a Logical Machine
which defines the static nesting of
Modules in the LM and is used to deter­
mine the static scope of name resolution.
(Static Environment Tree in SLM)

A storage operation defined in the text.

Storage for a list of one or more DAPOVs
together with a back pointer to previous
generations of this Reference Table.

The second field in a Local Link Table
which identifies the appropriate DAPOV i",
in a Reference Table. ~/

A special integer variable used by
Control to synchronise tasks and provide
access to serially re-usable resources.

A physical unit in the Source-Sink
Subsystem.

A physical subsystem (comprised of one or
more Source-Sink Processing Units) which
processes all physical I/O Tasks.

An independent portion of the storage
capable of linear extension and contract­
ion. Referenced in the Logical System
by Space Name and the Physical System
Space Number. ,

Storage Anchors are a component of the
Dynamic Storage Mechanism. System
Storage Anchors address the Reference
Tables directly associated with the
Program Tree. User Storage Anchors ~ ,
address the DAPOVs for variables under ~
user control. Storage Anchor Name and ,
Storage Anchor Register are the logical
and physical entities, respectively.

IBM CONFIDENTIAL

(-

J 2. J

Section 6.0 GLOSSARY

Storage Management Subsystem
(SMS) (4.2)

Symbolic Name
(2.5.2)

System Language
(SL) (1.1)

System Node
(2.2)

Task
(3.1)

Task Control Block
(3.1)

Translator
(3.2)

That portion of the physical system
that contains addressable storage and
the controls to allocate storage spaces,
determine the physical location of
stored information, and provide access
to that information. The SMS communi­
cates with the PPS and the SSS.

The external, character string, form
of the identifier of a Data Object
or Logical Object. (Symbol in SLM)

The logical description of the system
contained in the SLM. also, loosely,
the logical form of the execution
Language in the Logical System.

The root node of the program Tree which
contains the names of, and connectivity
to the system functions whtca are
available to· the LoC).ical Machine.

Each independent parallel activity
within a logical machine is a logical
task. The first task started is the
master task. The others are subtasks.
A physical task is the unit of work
dispatched to a PPU by the Logical
Machine Sypervisor through the Physical
Control System. (Process in SLM)

A Logical Task Control Block contains
the information which binds an Inter­
preter to the other mechanisms in the
Logical Machine in which it is active.
A Physical Task Control Block defines
the status of t~e physical task as it
is processed by a Processing Unit or is
queued in Control.

Takes user written code and builds a
Module.

IBM CONFIDENTIAL

Section 6.0

UNLK
(4.2)

Value Descriptor
(2.5.1)

WRITE
(4.2)

GLOSSARY

A storage operation defined in the text.

The descriptor associated with the
current value of a Data Object.

A storage operation defined in the text.

IBM CONFIDENTIAL

\'--.---"

.11

