
I 
Prolra •• er·s 

GuidelDlb. 
11M lien Rinl 

D 

D 
I \ 

Willial H. RUlzheil 



A C Programmer's 
Guide to 

the mM Token Ring 

William H. Roetzheim 

Prentice Hall, Englewood Cliffs, New Jersey 07632 



Library of Congress Cataloging-in-Publication Data 

Roetzheim, William H. 
A C progrumer's guide to the IBM Token Ring I William H. 

Roetzhe im. 
p. em. 

Includes bibliographical references (p. and index. 
ISBN 0-13-723768-5 
.1. IBM Token-Ring Network (Local area network system) 2. C 

(Co.puter program language) 
TK5195.8.I24R64 1991 
005.265--dc20 90-14199 

Editorial/production supervision: Brendan M Stewart 
Manufacturing buyer: Kelly Behr and Susan Brunke 

© 1991 by Prentice-Hall, Inc. 
A Division of Simon & Schuster 
Englewood Cliffs, New Jersey 07632 

CIP 

This book can be made available to businesses and organizations at a special discount when ordered in large 
quantities. For more information contact: Prentice-Hall, Inc., Special Sales and Markets, College Division, 
Englewood Oiffs, N.J. 07632 

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY: 

The author and publisher of this book have used their best efforts in preparing this book 
and software. These efforts include the development, research, and testing of the theories and pro
grams to determine their effectiveness. The author and publisher make no warranty of any kind, ex
pressed or implied, with regard to these programs or the documentation contained in this book. The 
author and publisher shall not be liable in any event for incidental or consequential damages in con
nection with, or arising out of, the furnishing, performance, or use of these programs. 

Printed in the United States of America 
10 9 8 7 6 5 4 3 2 1 

ISBN 0-13-723768-5 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro 



To my wife, Marianne, for being so incredibly fun. 





Contents 

Preface ix 

Acknowledgements x 

Companion disk offer xi 

1 Local Area Network Overview 1 
1.1 What Is a Local Area Network 2 
1.2 Network Components 3 
1.3 To What Level Will You Code? 10 
1.4 Road Map to This Book 13 
1.5 Suggested Reading 14 

2 Relying On The Redirector 15 
2.1 PC LAN Memory Requirements 16 
2.2 Supporting Network Paths in 

Your Application 17 
2.3 Using File and Record Locking 18 
2.4 Hints and Warnings 31 
2.5 Suggested Readings 32 

v 



Contents VI 

3 Portability Using NetBIOS 33 
3.1 NetBIOS Network Control Blocks 35 
3.2 Naming Conventions and Procedures 41 
3.3 Datagram-Oriented Communication 46 
3.5 Miscellaneous NetBIOS Commands 58 
3.6 NetBIOS Command Summary 61 
3.7 NetBIOS Return Code Summary 74 
3.8 Suggested Reading 78 

4 Speed with DLC Programming 79 
4.1 DLC Command Control Block Structure 81 
4.2 Addressing While Using DLC 88 
4.3 Adapter Initialization 94 
4.4 Connectionless Communication Using DLC 103 
4.5 Connection Oriented Communication Using DLC 116 
4.6 Adapter Shutdown 122 
4.7 Summary of DLC Commands 122 
4.8 Summary of DLC Return Codes 176 
4.9 Suggested Reading 182 

5 Register Direct Programming 184 
5.1 Talking to the Adapter 185 
5.2 Programmed I/O 185 
5.3 Memory Mapped I/O 188 
5.4 Interrupt Status Registers 194 
5.5 Shared RAM 199 
5.6 Adapter Command Blocks 201 
5.7 Suggested Readings 

6 Token Ring Adapter Hardware 229 
6.1 4-Mbps Adapter 229 
6.2 16-Mbps Token Ring Adapter 230 
6.3 Token Ring Network Adapter Cable 231 



VII Contents 

6.4 Suggested Readings 232 

7 Using APPC for Transaction Processing 233 
7.1 APPC Overview 234 
7.2 Addressing in an APPC/PC Environment 235 
7.3 Communicating with APPC/PC 236 
7.4 Sending a Transaction in APPC 247 
7.5 Receiving Transactions Using APPC/PC 250 
7.6 Summary of APPC/PC Commands 250 
7.7 Primary Return Codes 256 
7.8 Suggested Reading 259 

A Glossary 260 

B Acronyms 264 

C References 266 

Index 269 





Preface 

H you write application programs for the MS-DOS arena, you 
must consider the operation of your software over the mM Token 
Ring Network. In the past, this requirement could only be met by 
wading through dozens of highly technical, difficult to understand 
reference documents. This book distills the key elements from these 
documents and presents it in an easy to understand, concise fashion. 
For most programmers, everything they ever need to know about the 
mM Token Ring Network can now be found in one convenient 
volume. Programming for this environment is covered at the BIOS 
redirector, NetBIOS, DLC, register direct, and APPC level. The token 
ring hardware is described, with a particular emphasis on the 
interaction between the hardware and your application program. 
Dozens of tables and charts provide a convenient reference to all 
interrupts, functions, and return codes. Each concept is illustrated with 
complete C functions which serve both as examples and form the basis 
of a working library to be used over and over. For advanced users 
developing network oriented system software, detailed and highly 
specific references are included to simplify the search for additional 
details. 

IX 



Acknowledgements 

I would like to thank Dean Ostergaard for his valuable inputs 
regarding the sample code in this book. Many functions reflect 
improvements suggested by Dean. 

I would also like to thank the Computer Support Corporation 
for permission to use Arts and Letterstm, which was used to create the 
figures and illustrations in this book. I would also like to thank mM 
for providing technical reference materials used in the book's prepara
tion, and Borland International for providing an advance copy of their 
latest Turbo C compiler used to write and test all code examples. 

x 



Companion Disk Offer 

The author has created a set of companion disks to A C 
Programmer's Guide to the IBM Token Ring to save you time typing and 
proofreading the large number of token ring functions provided in this 
book. The complete source code for all functions contained in this 
book is available in 5.25 inch mM format. If you have questions about 
the files on these companion disks, you can contact the author through 
Compuserve at [7653,1365]. 

The companion disks to A C Programmer's Guide to the IBM 
Token Ring are available only from William H. Roetzheim. To order, 
send $14 (plus $2.50 per set for domestic postage and handling, $8 per 
set for foreign orders) to: William H. Roetzheim & Associates, Attn: 
Companion Disk Offer, 13518 Jamul Drive, Jamul, CA 92035. 
Payment must be in U.S. funds. You may pay by check or money 
order (payable to William H. Roetzheim & Associates). Sorry, no 
COD or purchase orders are accepted. 

xi 





1. Local Area Network Overview 

More and more large companies are installing local area 
networks, or LANs, in their offices. These networks are normally 
installed to facilitate the sharing of data and equipment between 
personal computers within the offices. If you write software which will 
be used by large or midsized corporations, you must address the issue 
of network compatibility for your program to be successful. For many 
applications, the end users will not be satisfied if you claim that your 
software is usable on their network; they want software that is designed 
to take advantage of the capabilities offered by the network. This book 
assumes that you are interested in developing application software that 
might potentially operate on computers attached to aLAN. This book 
provides sufficient information for you to develop LAN-based 
applications successfully without having to wade through volumes of 
technical details which are primarily of interest to system level 
programmers. We have chosen to focus our discussion on IBM's 
Token Ring Network because of its popularity and growing market 
share. By early 1989 the IBM Token Ring had captured SO percent of 
the microcomputer local area network market and over 20 percent of 
all LAN applications worldwide (Glass, 1989). In addition, you will find 
that much of the discussion will also apply to competing networks. 
Examples shown were compiled and tested using Borland's Turbo C 

1 



2 Chap. 1 Local Area Network Overview 

version 2.0, although every effort was made to ensure compatibility 
with Microsoft eversion 5.1. 

This chapter provides an introduction to networking in general 
and mM's Token Ring Network in particular. The purpose of this 
introduction is to familiarize the reader with basic networking concepts 
which will be used later in the book. 

1.1 What Is a Local Area Network? 

Stallings defines a local area network as "a communications network 
that provides interconnection of a variety of data communicating 
devices within a small area" (Stallings, 1984). We can look at four 
aspects of this definition to understand LANs better: 

1. Communications network A LAN consists of a commu
nications network. The communications are provided by 
various protocols and drivers designed into the network 
adapters or resident above the adapters in the host 
device. 

2. Interconnection The devices we are dealing with must be 
connected via some form of cable (or other data trans
mission path). 

3. Data Communicating Devices LANs typically include 
both other computers and shared devices, including 
printers and disk drives. 

4. Small area A local area network typically covers a small 
geographic area. For our purposes, we can interpret this 
to mean that data communications will be at a fairly 
high rate. You will find performance over the mM 



Sec. 1.2 Network Components 3 

Token Ring Network to be roughly equivalent to perfor
mance using a slow hard disk. 

1.2 Network Components 

A network consists of user devices (computers and peripherals) 
connected together by some form of transmission media. The devices 
are connected to the transmission media using an adapter interface, 
which can be a card plugged into the computer's backplane or a chip 
set already built into the motherboard of the device. 

Transmission Media 

Network transmission media normally consists of physical wires or 
cables which must be installed throughout the building, although 
wireless networks using infrared or radio wave transmissions have been 
attempted with some success. These wires can be: 

• Coaxial cables 

• Fiber optic cable 

• Twisted pair 

Coaxial cable is familiar to most people because this is the 
transmission media used by cable TV companies to broadcast their 
programming. Coaxial cables can be either 75 ohm or 50 ohm. 50-
ohm cable is used for digital networks (on-off signaling), including 
ethemet. 75-ohm cable is used by the cable TV companies and in 
networking is typically used for broadband network transmissions using 
analog waveforms. Broadband networks are normally used to connect 
different buildings from one company, often combining video, voice, 



4 Chap. 1 Local Area Network Ovetview 

and digital information. Digital information on broadband networks 
must be encoded for transmission using a modem. 

Fiber optic cable is a thin, flexible cable with a center consisting 
of a thread of glass or plastic, used to guide light. Fiber optic cable is 
more expensive than coaxial cable, although reduced installation costs 
(due to its light weight and immunity to nearby electrical energy) may 
offset much of this difference. Light is generated using either a high
intensity light-emitting diode (LED) or an injection laser diode. 
Reception is accomplished using a photodiode. Modulation is typically 
accomplished using the presence or absence of light at a given 
frequency. Data rates over 3 gigabytes per second have been demon
strated in the laboratory, and ranges of hundreds of megabytes per 
second are common (Stallings, 1987). Token ring networks operating 
at approximately 100 Mbps have been demonstrated (e.g., Housley, 
1987; Tanimoto, 1987) using fiber optic cable. mM supports a fiber 
optic repeater which is normally used to extend the range of ordinary 
token ring networks (without increasing the data rate). 

Twisted pair wiring is used throughout most homes and offices 
for telephone connections. mM's Token Ring Network operates over 
twisted pair wires. When running at 4 Mbps, the token ring adapters 
can use either mM type 3 unshielded twisted pair cable (24 gauge 
wire), or conventional twisted pair phone lines can be used with a 
media filter. the media filter is a low-pass filter designed to filter out 
high-frequency harmonics of the signal that might interfere with other 
equipment near the network lines. When running at 16 Mbps, mM 
type 1 or 2 shielded twisted pair cable is required, and conventional 
phone lines cannot be used. These cables contain 22 gauge twisted 
pair wire with a metallic shield and plastic cover. Type 1 cable 
contains two twisted pairs, while type 3 contains four pairs. 

For the mM Token Ring Network, the adapter (computer) 
connector is a DB-9 connector. The other end of each workstation's 
wire consists of a special plastic connector, called a data connector, that 



Sec. 1.2 Network Components 5 

plugs into the multistation access unit (MAU). The multistation access 
unit is described in the following section. 

Connectivity 

Fig. 1 illustrates four common network topologies. The star topology 
involves centralized switching between pairs of stations and is often 
used for digital PBX and digital data switch products. The bus 
topology involves attaching all stations to a single wire. This is the 
topology of most ethemet networks. The tree topology is a generaliza
tion of the bus topology. Tree topologies are common for factory 
automation networks. Finally, the ring topology consists of a set of 
repeaters configured in a ring. The mM Token Ring Network uses a 
modified ring topology. 

For the mM Token Ring Network, the basic ring topology was 
modified to look similar to Fig. 1.2. Although this topology resembles 
the star topology at first, a closer look will reveal that it is simply a 
ring in which each segment has been looped to a common point. This 
modification of the basic ring was made to facilitate network mainte
nance. It is useful when isolating network problems and simplifies 
adding and deleting nodes from the ring. 

At the center of the mM Token Ring Network star you will find 
one or more multistation access units. Each MAU allows up to eight 
workstations to joining the network and also contains two plugs (called 
ring-out and ring-in) to connect multiple MAUs together. The MAU 
is a box approximately 4 inches high, 6 inches deep, and 18 inches long 
with all connectors on the front panel. The MAU is completely 
passive, using the power from the network adapter to open a relay, 
thus connecting the adapter into the network. When a computer is 
disconnected from the network (or turned off), the network adapter 
loses power, the relay opens, and the computer is automatically dis
connected from the network. mM also provides a battery-operated 
test plug which allows the proper functioning of each MAU port to be 



6 

Q Q 
Q)=fQ 

Q 
Star 

Q Q Q 
I I I 

I I 

Q Q 
Bus 

Chap. 1 Local Area Network Overview 

Q 
~ 

Q Q 
I ~ 

Q Q Q 
Tree 

Ring 
Fig. 1.1 Network topologies. 



Sec. 1.2 Network Components 

tested off-line. 

Fig. 1.2 mM Token Ring Network con
figuration. 

Media Access Method 

7 

The most significant difference between mM's Token Ring Network 
and its leading competitor, ethernet, is the method used to control 
media access. Ethernet networks operate with a bus topology using a 
media access method called carrier sense multiple access/collision 
detection, or CSMA/CD for short. Carrier sense multiple access implies 
that each network adapter listens to the ethernet bus to determine 
when the bus is available. Data is then transmitted. Because two 
adapters may both listen, ~ear that the bus is available, and begin 
transmitting at the same time,-Jt is possible for data to collide and be 



8 Chap. 1 Local Area Network Overview 

destroyed. This is where the collision detection capability comes into 
play. When an ethernet adapter senses that its data was destroyed, it 
waits for a period of time, and then retransmits it. The wait time is 
normally a randomized, exponentially increasing number. 

Token ring networks use a different media access method. An 
electronic token (unique series of bits) is passed around the bus 
continuously. When an adapter has data to transmit, it waits for the 
token to arrive, removes the token, transmits its data, then puts the 
token back on the bus. With this approach, the problem of collisions 
is avoided. 

Ethernet's media access protocol is simpler to implement (in the 
adapter), is less susceptible to errors due to adapter malfunctions, and 
performs well as long as the network is lightly loaded. The biggest 
single advantage of the token ring metwork's media access protocol is 
that the worst case delay time prior to being able to transmit is 
deterministic. It is possible to look at the largest allowed network 
packet size and the number of computers on the network and then 
determine what the absolute worst case delay is between your desiring 
to send data and the network becoming available. This information 
can then be used when sizing your network requirements. 

Network Adapters 

A network adapter is a hardware interface which allows transmission 
of data on a local area network. The network adapter often includes 
firmware to support functions such as media access (who transmits 
when), flow control, and error detection and correction or retransmis
sion. Some "software-only" networks have been tried using a serial 
port on the networked computers, but the low cost is offset by the poor 
performance. Many VME-based single-board computers offer a built
in ethernet interface as part of the motherboard. This is possible 
because of the low cost and wide availability of VLSI chips supporting 
the ethernet interface. ffiM's Token Ring Network currently requires 



Sec. 1.2 Network Components 9 

that a network adapter be purchased as a board which is plugged into 
the computer's backplane, although the introduction of a Texas 
Instrument chip set supporting token ring network protocols (Carlo, 
1986; Lang, 1989) may point to the future incorporation of the 
adapter on some vendor's motherboards. 

Token ring adapters are available from mM as well as third
party vendors (e.g., Proteon, 3Corn, and Lantana). Up to two adapters 
can be put in one computer. Two adapters are used when you want 
the computer to act as a bridge between two token ring networks. 
Five adapter models are currently available from mM: 

1. The original adapter comes with 8 Kbytes of shared 
RAM. This adapter operates at 4 Mbps. 

2. The Adapter IT improves performance by including 16 
Kbytes of shared RAM. This adapter operates at 4 
Mbps. 

3. The Adapter/A is used on mM PS/2 computers using 
the MicroChannel architecture. This adapter operates 
at 4 Mbps. 

4. The 16/4 Adapter has 64 Kbytes of shared RAM. This 
adapter operates at 4 or 16 Mbps. Frame sizes are 
increased from 2 Kbytes to 18 Kbytes in 16 Mbps mode 
or 4.5 Kbytes in 4 Mbps mode. In addition, the new 
adapter implements an early token release capability to 
decrease token propagation lag on large networks. 

5. The 16/4 Adapter/A is identical to the 16/4 Adapter, 
but is designed for use with the MicroChannel architec
ture. 



10 Chap. 1 Local Area Network Overview 

Token ring adapters share RAM with the host system. This 
shared RAM can be configured to start at OxCCOOO or OxDCOOO. 
OXCCOOO is the default. The adapter can be set to operate using 
hardware interrupt levels 2, 3, 6, or 7. Level 2 is the default, and level 
6 should normally not be used (IRQ 6 is used by the disk controller). 
Finally, the adapter must be told if it is the primary adapter (default) 
or a secondary adapter in a system unit with two adapter cards 
installed. 

1.3 To What Level Will You Code? 

As shown in Figure 3, programmers can work with the mM Token 
Ring Network at five different levels. 

1. At the highest level, you can require that your users 
install a local area network program (e.g., PC LAN) and 
then rely on the BIOS redirector within the LAN pro
gram to implement network data transfers. The PC 
LAN program offered by mM requires between 50 and 
350 Kbytes of memory and uses enough CPU cycles to 
slow down the routine operation of most applications. 
Relying on this level of compatibility provides the 
greatest amount of hardware and network protocol 
independence. You can be reasonably sure that a 
properly written application will operate on virtually all 
LANs available for MS-DOS machines, including both 
token ring network products and ethemet. This ap
proach is the simplest for the application programmer to 
implement. For applications which are primarily not 
network oriented, but where network compatibility is 
important, relying on the BIOS redirector is often best. 
We discuss this level of network support in Chapter 
Two. 



Sec. 1.3 To What Level Will You Code? 

[ BIOS Redirector 1 
[_N_8t_B,o_s __ l 
[ __ A_pp_C_/PC_....,l 

[ __ D_LC ___ 1 
[ Register direct 1 

Fig. 1.3 To what level will you 
code? 

11 

2. You can achieve a good degree of network portability by 
programming using NetBIOS services. NetBIOS support 
is available from many vendors for a wide range of netw
orks, including several minicomputer networks running 
UNIX and most PC ethemet networks. NetBIOS supp
ort is also included in OS/2. NetBIOS support for the 
mM Token Ring Network will require approximately 24 
Kbytes of RAM and normally does not have a noticeable 
affect on CPU performance. NetBIOS programming is 



12 Chap. 1 Local Area Network Overview 

not difficult, although your application must be designed 
to use NetBIOS services. For general-purpose applicati
ons where network support is central to the application's 
success, NetBIOS programming is often appropriate. 
We discuss this level of network support in Chapter 
Three. 

3. An alternative to NetBIOS is liM's Advanced Program
to-Program Communication (APPC) protocol, which is 
available for all liM networks. APPC is a remote 
transaction processing protocol that is common in the 
liM mainframe world. Because APPC is much less 
popular than NetBIOS in the PC area (and APPC is 
quite complex), the discussion of APPC is delayed until 
Chapter Seven. 

4. It is possible to improve the performance of network 
data transfers significantly by programming at the Data 
Link Contro~ or DLC, level. This involves programming 
using the IEEE 802.2 standards for link level control 
(LLC). DLC support is available with all liM Token 
Ring Network adapters and is built into OS/2. DLC 
support requires approximately 16 Kbytes of RAM and 
normally does not have a noticeable effect on CPU 
performance. DLC programming is normally appropriate 
for specialized, short network programs (a file transfer 
utility, for example) or for callable network functions for 
which performance is critical. If you wish to implement 
a new network protocol (e.g., TCP /IP), it would proba
bly be appropriate to program at the DLC level. We 
discuss this level of network support in Chapter Four. 



Sec. 1.4 Road Map to This Book 13 

5. At the lowest level, it is possible to program the adapter 
directly using the registers and shared RAM. The 
adapter supports the IEEE 802.5 specifications for token 
ring networks at this level of programming. This method 
is obviously very hardware dependent. The code is 
extremely timing sensitive. Shared RAM must be used 
for data transfers, requiring careful attention to prob
lems involving concurrent updates. Multilevel interrupts 
must be handled, often with stringent timing constraints. 
This level of programming is normally only appropriate 
for diagnostic programs and perhaps for network pro
grammers wishing to implement new low-level protocols 
that will not operate efficiently over DLC. This level of 
network support is briefly discussed in Chapter Five. 

1.4 Road Map to This Book 

As noted, Chapters Two through Five discuss programming for the 
IBM Token Ring Network at varying levels of support. Chapter Six 
presents a more technical description of the token ring hardware. 
Chapter Seven discusses the APPC program interface. 

Appendix A is a glossary, Appendix B is a list of acronyms, and 
Appendix C is a list of references. 

This book is designed to provide you with a broad understand
ing of issues surrounding programming for the IBM Token Ring 
Network. In addition, the book provides sufficient detail to allow you 
to exploit 80 percent of the capabilities of the adapter. Many details 
and exceptions are glossed over to simplify and clarify the key 
requirements, capabilities, and procedures. For most applications, the 
level of detail in this book will be completely adequate to do all 
necessary programming to exploit IBM's Token Ring Network fully. 
If you find yourself working on one of those rare applications where 
the information presented here is too broad or general, you can use 



14 Chap. 1 Local Area Network Overview 

the Suggested Reading section found at the end of each chapter to 
delve further into the details. 

1.5 Suggested Reading 

Glass, B. (1989), 'The Token Ring," Byte, Vol. 14, No. 1 
(January), pp. 363 - 376. 

Keller, H, and H.R. Mueller (1985), "Engineering Aspects for 
Token-ring Design," Proceedings of the IEEE COMPINT 85 
Conference, September, (Washington, D.C.: IEEE Computer 
Society Press). 

Stallings, William (1987), Handbook of Computer Communica
tions Standards, (Volume 2) Local Network Standards, New 
York: Macmillan. 

Strole, N.C. (1987), ''The mM Token-ring Network: A Func
tional Overview," IEEE Network, Vol. 1, No.1, (January), pp. 23 
-30. 

Strole, N.C. (1989), "Inside Token Ring Version II, According 
to Big Blue," Data Communications, (January), pp. 117 - 125. 

Tanenbaum, Andrew (1988), Computer Networks, Englewood 
Cliffs, NJ: Prentice-Hall. 

Townsend, Carl (1987), Networking with the IBM Token-Ring, 
Blue Ridge Summit, P A: Tab Books 



2. Relying On The Redirector 

The easiest way to use IBM's Token Ring Network is to simply 
ignore it. When the token ring network is installed and a LAN 
program is operating on each user's computer, a small routine called 
the BIOS Redirector is initialized. The BIOS Redirector was developed 
by Microsoft under the name MS-NET and is offered with most PC
based LAN programs. This routine intercepts BIOS and DOS 
interrupts and redirects them, as necessary, to the appropriate network 
handling routines. These routines provide an equivalent capability 
(from your application's perspective), but access data using the 
network. Your program cannot tell the difference between opening, 
reading, and closing a file on the local disk and doing the same 
operations on a remote disk. The entire process is transparent. 
Although your users must install the LAN program prior to running 
your application program, this is also true for most other applications 
and the user's will expect it. The reduced available RAM must be 
allowed for, and some degradation in application performance 
anticipated. Because available RAM is so critical to many applica
tions, we will begin by helping you estimate the amount of RAM that 
your user's LAN software will use. We will then discuss how to design 
your application so that your users can gain the most utility from their 
network, including discussions of file locking and record locking. 

15 



16 Chap. 2 Relying on the Redirector 

Finally, we will discuss some specific warnings and hints that apply 
when writing programs which may run on LAN-based computers. 

In this chapter we will define the following BIOS redirector 
support functions which will simplify the development of application 
software at this level of network support: 

• net_open () This function allows you to open files on 
the network file server. 

• lock_read ( ) This function allows you to lock and 
read a record from within a record structured file. 

• lock_write () This function allows you to write then 
unlock a record from within a record structured file. 

• lock_open ( ) This function allows you to lock an 
entire file when opening it. 

• lock_close ( ) This function allows you to close and 
unlock a file. 

2.1 PC LAN Memory Requirements 

There are four possible configurations that computers running the PC 
LAN program can select (Fig. 2.1). The file selVer configuration is 
used for the computer that stores shared files, although the file server 
can also run application programs. By default, this configuration 
requires 350 Kbytes of the system memory. This total can be reduced 
by approximately 112 Kbytes if expanded memory is available or if the 
mM disk cache program is used to replace the network cache. The 
total can be reduced by another 30 Kbytes if the file server will not 
also act as a printer server. The file server is normally the only 
computer which can share devices (disks, directories, printers). 



Sec. 2.2 Supporting Network Paths in Your Application 17 

Fig. 2.1 PC LAN configurations. 

The messenger configuration can use network devices which 
have been shared by the file server, but can not share its devices. The 
messenger configuration can also access the PC LAN from within an 
application through the use of network request keys, and can transfer 
network messages (notes from one user to another). This configura
tion requires approximately 160 Kbytes. 

The receiver configuration requires 68 Kbytes of memory, which 
allows it to use network devices and send and receive messages. This 
configuration cannot access the PC LAN services from within an 
application, resulting in the bulk of the memory saving relative to the 
messenger configuration. This configuration is likely to be the most 
popular configuration for your end user workstations on the PC LAN. 

For applications requiring that the most possible memory be 
available, the redirector configuration operates using a total of 50 
Kbytes. This configuration can use network devices and send 
messages, but it cannot receive messages. 

In general, if your application will function well on a computer 
with 70 Kbytes of memory allocated to an external application (the PC 
LAN), it should operate well over a networked computer. 

2.2 Supporting Network Paths in Your Application 

You will open files on the network file server by using a path which 
looks identical to paths used for current applications. For example, 
you might open a file located at "D:\GST\DATA\file01". You must 



18 Chap. 2 Relying on the Redirector 

allow your users to configure your application to look at the path 
(including drive designator) of their choice when opening files. Many 
users might also wish to store files in a local drive which is at their 
desk. The best solution is to define two global variables in your 
program: 

• path: This variable points to the local drive and directo
ry, if any. 

• netyath: This variable points to the remote (network) 
drive and directory. 

By default, these variables point to the same local drive and 
directory. If the user is operating over a network, a configuration 
screen is called up and the netyath variable is modified to point to 
the file server. In this manner you can create local files (including 
temporary files) using the path variable, and read and write global data 
using the net yath variable. 

2.3 Using File and Record Locking 

When operating over a network, extra precautions must be taken when 
doing file input-output because more than one person might be 
simultaneously manipulating the same file. For example, suppose we 
have a file called DATAOI that stores the account balance for each 
customer. Let's look at the following scenario: 

1. User George opens DATAOl, reads in record 1, and 
begins to record a payment of $150 (i.e., reduces the 
amount due by $150). 



Sec. 2.3 Using File and Record Locking 19 

2. User Mary opens the same file, reads in record 1, and 
begins to record an invoice of $300 (Le., increases the 
amount due by $300). 

3. User George writes out his modified record 1 to 
DATA01. 

4. User Mary writes out her modified record 1 to DATA01. 

At this point, user George thinks that the file has been modified 
based on his entries, but the record of the customer's $150 payment 
was lost when user Mary wrote out the record. File and record locking 
were features added to MS-DOS version 3.0 and higher to prevent this 
type of problem. In general, software written to operate properly on 
a LAN requires MS-DOS version 3.0 or higher for this reason. 

When implementing file and record locking, the type of 
protection which is appropriate depends on the nature of the data in 
the file. 

1. Read only files. Files which are read only (they are 
never written to) do not create any problems when used 
over a network. These files can be opened, accessed, 
and closed exactly as you would for a single user system. 

2. Temporary files. Temporary files must be created to 
ensure that the filename does not conflict with another 
user creating the same temporary file at the same time. 

3. Sequential files. Sequential files must be accessed using 
the appropriate file locking calls. 

4. Record oriented files - Record oriented files must be 
accessed using the appropriate record locking calls. 

I:, 

:1 
I 
Ii 



20 Chap. 2 Relying on the Redirector 

We will discuss the proper approach to handling temporary files, 
sequential files, and record oriented files in the paragraphs that follow. 

Temporary Files 

You must be careful when creating temporary working files within your 
application. For example, suppose you hard coded your application to 
use a temporary file called MY-APP.TMP using a call to fopen() 
designed to create the file; that is, 

fp = fopen("HY-APP.TMP", "w+b"): 

Let's look at what might happen to this code in a network environ
ment: 

1. User Susan runs your application and the file "MY
APP.TMP" is created on the file server. She begins to 
enter data which is stored in the temporary file. 

2. User Bob runs your application and the file "MY
APP.TMP" is created on the fileserver. Note that this 
deletes the existing version of the temporary file. Bob 
begins to enter data. 

3. The next time Susan attempts to access the temporary 
file, the program will bomb because the file has been 
deleted (and Susan will lose her work to date). 

Luckily, the solution is easy. Whenever you need to open a 
temporary file, use the code fragment shown in Code Box 2.1. The 
function tmpfile() creates a guaranteed unique file in the "W+b" 
(binary read/write) mode. The files are created in your working 
directory and named tmpxxxxx where XXXXX is a sequential number. 



Sec. 2.3 Using File and Record Locking 21 

The file is automatically deleted when closed or when your program 
terminates normally. H your program terminates abnormally, these 
temporary files will remain in your working directory. This is 
especially common when using a debugger to debug the program. In 
this case, you may need to periodically delete all files in your working 
directory starting with tmp. 

Record-Oriented Files 

Record oriented files contain multiple blocks of data, with each block 
the exact same size. For example, a file which stores an array of 
structures would be a record oriented file. The blocks of data in the 
file (records) are typically accessed and updated individually. For 
example, suppose we defined a structure to contain name and address 
information for our customers: 

'include 

maine ) 
{ 

} 

<stdio.h> 

FILE *fp; 

fp = tmpfile(); /* open temporary file with unique name */ 
if (fp == NULL) perror("Could not open temporary file"); 
• • • Application code here 
• • • fclose( fp); /* close temporary file */ 

Code Box 2.1 Using temporary files. 



22 Chap. 2 Relying on the Redirector 

struct address 
{ 

char name[41]; 
. char addrl[41]; 
char addr2[41]; 
char city[21]; 
char state[3]; 
char zip[10]; 

}; 

We can then read, edit, and write an individual record within 
the file using the approach outlined in Code Box 2.2. Unfortunately, 
we are still faced with our familiar concurrency problem; i.e., two users 
simultaneously read the record, then perform some updates, then write 
the record out resulting in one update not being recorded. We can 
overcome this problem by locking the record while we are working on 
it. 

Record locking capability is not built into the resident BIOS on 
the computers. These capabilities are built into a share, • exe or 
.CODl program distributed with MS-DOS version 3.X and higher. 
Share must be executed by the user prior to running your application 
for record locking to be available. File locking (discussed in the 
following section) is available without running share. Code Box 2.3 
and Code Box 2.4 show a routine which will test for the presence of 
the share software. If share is not installed, test_share ( ) 
attempts to install it. If share was found to be installed, or was 
successfully installed, test_share () then disables the control-break 
interrupt. This must be done to prevent the user from terminating 
your application while record locks remain on a file (the results of 
doing this are officially "undefined"). Prior to terminating your 
program, you should call test_share ( ) again with the input flag set 
to RESTORE. This will restore the control-break interrupt vector. 



Sec. 2.3 Using File and Record Locking 

int 
struct 
int 

fh; 
address record; 
record_number; 

23 

fh = open("database", O_RDWR I O_CREAT 10_BINARY, S_IREAD I S_IWRlTE); 

record_number = 5; /* Update record number 5 */ 
Iseek(fh, record number * sizeof(struct address), SEEK SET); 
read(fh, record,-sizeof( struct address»; -
• • • Edit record 
• • • Iseek(fh, record number * sizeof(struct address), SEEK SET); 
write(fh, record7 sizeof(struct address»; -

close(fh); 

Code Box 2.2 Record-oriented file access. 

Records only need to be locked if the user will (or might) write 
the record back out to disk. There is no reason you need to prevent 
multiple users from simultaneously reading the same record so the 
approach described in Code Box 2.2 is satisfactory. When a write is 
possible, each record is locked just prior to reading the data and then 
is unlocked just after the data is written. The command used to lock 
a specific portion of a file varies from one compiler to another. For 
portability reasons, it is best localize this compiler dependency in one 
function. We can conveniently work with record oriented network files 
by defining and using three new functions. These functions will 
supplement open ( ), read(), and write ( ) in the previous sample 
code fragment. 

Code Box 2.5 shows the include file used with all BIOS 
redirector support functions. This include file contains function 
prototypes and compiler defines. 

The net_open ( ) function defined in Code Box 2.6 allows you 
to open a network file without worrying about the appropriate path 
each time. The global variable net -path should be initialized early 



24 

'include 
#include 
'include 
#include 

void 

<process.h> 
<stdio.h> 
<dos.h> 
"redirect.h" 

interrupt 

Chap. 2 Relying on the Redirector 

'****************************************************************** 
: test_share() - test to see if share is installed 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters 

Global 

Returns: 

Notes: 

flag (in) - set to INSTALL or RESTORE 

Turbo C global variables for register values 

o for success, -1 for failure 

This function tests for share. axe. If the share program is 
not installed, it tries to install it. If share is successfully 
installed, it disables interrupt Ox23 to prevent 
abnormal termination (leaving locks in place). This interrupt 
is re-enabled by calling this function with the flag set to 
RESTORE. 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

int test_share(int flag) 
{ 

void 
void 
static 

(*interrupt_function); 
interrupt do_nothing(); 
*old_interrupt; 

if (flag == RESTORE) 
{ 

} 

if (old_interrupt 
else 

NULL) return -1; 

{ 
_AH ... Ox25; 
_AL .. Ox23; 
_DS = FP_SEG(old_interrupt); 
_DX = FP_OFF(old_interrupt); 
geninterrupt(Ox21); 
return 0; 

continued next code box 

Code Box 2.3 test_share () function definition. 



Sec. 2.3 Using File and Record Locking 

• continued from previous code box 

_AH = OxlO; 
AL OxOO; 

geninterrupt(Ox2F); 

/* test for share */ 
/* get installed state */ 

if (_AL == OxOO) /* not installed, OK to install */ 
{ 

spawnlp(P WAIT, "share", "share", NULL); 
_AH = OxlC; _AL = OxOO; geninterrupt(Ox2F); 

if LAL == OxFF) 
{ 

/* successfully installed */ 

} 

/* get original value */ 
AH = Ox35; 

-AL = Ox23; 
old_interrupt = MK_FP(_ES, 

/* set new value */ 
interrupt_function = do_nothing; 

AH = Ox25; 
-AL = Ox23; 
:OS = FP_SEG(interrupt_function); 
_OX = FP_OFF(interrupt_function); 
geninterrupt(Ox21); 
return 0; 

else return -1; 

void interrupt do_nothing() 
{ 

return; 

Code Box 2.4 test_share () function definition (continued). 

'define MAX PATH 
'define RETRY 

'define INSTALL 0 
/Ide fine RESTORE 1 

/* function prototypes */ 

80 
10 

/* maximum path to network files */ 
/* retrys on failure during read/lock */ 

int test share(); 
int net_open(char *file_name, int access, unsigned mode); 
int lock_read(int fh, char *buffer, unsigned int length); 
int lock_write(int fh, char *buffer, unsigned int length); 
int lock_open(char *filename, int access, unsigned mode); 
int lock_close(int fh); 

Code Box 2.5 redirector. h. 

25 



26 

linclude 
'include 
'include 

extern char 

<string.h> 
<io.h> 
"redirect.h" 

net-path[]; 

Chap. 2 Relying on the Redirector 

1****************************************************************** 
* net_open() - open shared file 
* 
* 
* 
* 
* 
* 

Parameters: 
file_Dame (in) - file name to be opened 
access (in) - defined identical to open() 
mode (in) - defined identical to open() 

* Global: 
* net-path - location of all shared files. 
* 
* 
* 
* 
* 
* 
* 
* 

Notes: 

Returns: 

Assumes that net-path variable already contains 
trailing backs lash (if required). 

Same as return value fram open() 

* History: 
* Original code by William H. Roetzheim, 1989 
**********************************************************************1 

int net_open(char *file_name, int access, unsigned mode) 
{ 

} 

char file[MAX_PATH]; 

strcpy(file, net-path); 
strcat(file, file_name); 
return open(file, access, mode); 

Code Box 2.6 net_open () function definition. 

in your program using some form of configuration file which the user 
can modify. 

The lock_read() function shown in Code Box 2.7 works 
exactly like read ( ), except that lock_read ( ) locks the record prior 
to reading. H the record cannot be locked (possibly because another 
user has already locked it), the function retries at 1 second intervals 
until either successful or timed out. lock_read () should be used 
instead of read whenever you expect to write the record out to disk. 

The lock_write ( ) function shown in Code Box 2.8 works 
exactly like write ( ) except that lock_write ( ) unlocks the record 
just after writing. lock_write ( ) should be used anytime you write 
a record to a network file, and must be used whenever you have 
previously used lock_read () to read a record. H you use 



Sec. 2.3 Using File and Record Locking 

I/include 
I/include 
l/include 
I/include 

<io.h> 
<errno.h> 
<dos.h> 
"redirect.h" 

/******************************************************************* 
* lock_read() - read shared data from a network file 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

Notes: 

handle (in) - file handle to read from 
buffer (in) - buffer to place data in 
count (in) - number of bytes to read 

Return code is identical to read() 

1. If the desired record is locked, this routine will 
retry at 1 second intervals for RETRY attempts. 

* History: 
* Original code by William H. Roetzheim, 1989 
**********************************************************************/ 

int lock_read(int fh, char *buffer, unsigned int length) 
{ 

} 

int 
unsigned 

timeout = RETRY; 
int count = EACCES; 

while «lock(fh, lseek(fh, a, SEEK_CUR), length) 1= 0) && (timeout> 0» 
{ 

timeout--; 
sleep( 1); 

if (timeout > 0) 
{ 

/* wait one second */ 

/* record is successfully locked */ 

count = read(fh, buffer, length); 

return count; 

Code Box 2. 7 lock_read () function definition. 

27 



28 

'include 
'include 
'include 
Unclude 

<io.h> 
<errno.h> 
<dos.h> 
"redirect.h" 

Chap. 2 Relying on the Redirector 

1····***··**·*****·*********·**···**·*·***·***·********* ••••• ****A** 
* lock_write() - write shared data to a network file 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

Notes: 

handle (in) - file handle to read from 
buffer (in) - buffer to place data in 
count (in) - number of bytes to read 

Return code is identical to write() 

1. This routine assumes that the record to be written 
was previously read using net_read(). 

* History: 
* Original code by William H. Roetzheim, 1989 
*******.**.* ••• *****.********** ••• *******.** •• ************************/ 

int lock_write(int fh, char *buffer, unsigned int length) 
{ 

int count; 

count = write(fh, buffer, length); /* write data out */ 
unlock(fh, Iseek(fh, -length, SEEK_CUR), length); 

return count; 

Code Box 2.8 lock_write ( ) function definition. 

lock_read ( ) to lock and read a record, then decide to not write the 
record back to disk at all, you must call unlock () directly in your 
code. 

Sequential Files 

Sequential files are treated as a single entity which is either locked or 
unlocked (file locking). The file is locked when it is opened, then 
unlocked when it is closed. File locking is appropriate for any file 
which is not record oriented. If you are reading (but not writing) data 
from a sequential file, you should use the regular net_open () and 
close () functions because there is no need to lock the file. If you 



Sec. 2.3 Using File and Record Locking 29 

may write new or modified data to the file, you will want to lock the 
file just prior to opening it, then unlock it 
after closing it. The function lock_open () as defined in Code Box 
2.9 locks the file while opening it. Although Turbo C supports this 
function with the addition of a flag to the open ( ) function, you should 
use a separate function here to isolate system dependencies. 

Unclude 
Unclude 
'include 
'include 
lIinclude 

<fcntl.h> 
<sys\stat.h> 
<share.h> 
<io.h> 
"redirect.h" 

/****************************************************************** 
* lock_open() - lock, then open a file 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

filename (in) - filename to open 
access (in) - defined as in open() 
mode (in) - defined as in open() 

return values identical to open() 

* Copyright: 
* Original code by William H. Roetzheim, 1989 
**********************************************************************/ 

int 
{ 

} 

lock_open(char *filename, int access, int mode) 

return net_open(filename, access I SH_DENYRW, mode); 

Code Box 2.9 lock_open () function definition. 



30 

tinclude 
'include 
tinclude 
linclude 
'include 

extern char 

<sys\stat.h> 
<stdio.h> 
<string.h> 
<io.h> 
"redirect.h" 

netJlAth(]; 

Chap. 2 Relying on the Redirector 

1****************************************************************** 
* lock_close - unlock and close a file 
* * Parameters: 
* fh (in) - file handle for open file 
* * Global: 
* netJlAth (in) - path to network files 
* 
* 
* 
* 
* 

Notes: 
Assumes that net-path variable already contains 
trailing backslash (if required). 

* Returns: 
* return value is identical to close() 
* * Bistory: 
* Original code by William B. Roetzheim, 1989 
**********************************************************************/ 

int lock_olose(int fh) 
( 

setmode(fh, S_IREAD I S_IWRITB); 
return close(fh); 

Code Box 2.10 lock_close () function definition. 

Sequential files must be unlocked after they are closed. The 
function lock_close ( ) (Code Box 2.10) can be used to perform this 
operation. H your program fails to unlock a file (e.g. power fails prior 
to closing the file), you will find that the file is left with the read only 
bit set. The file can be unlocked using the DOS attrib command 
with the following syntax attrib -r filename. You should 
include clear instructions in your User's Manual describing how to 
unlock files which are accidentally left locked. You might also include 
a built in capability within your application to unlock a locked file 
(using a call to chmod( ». 



Sec. 2.4 Hints and Warnings 31 

2.4 Hints and Warnings 

The following miscellaneous hints and warnings will help smooth your 
programming when relying on the BIOS Redirector: 

• Use the highest level of interrupt available for each 
function. For example, print data by opening a printing 
device and outputing to that device rather than directly 
calling the routines to print a single character. 

• Do not directly modify the display mode, as this will 
confuse the IAN software if the user attempts to pop up 
a IAN 
control screen from within your application. Use the 
BIOS service routine for this instead, or simply use the 
built in Turbo-C functions for modifying the display 
mode. 

• It is possible for a non-file server configuration to allow 
another PC to temporarily access its local devices (disk, 
printer, etc.) Most application software does not use this 
feature, but if your application would benefit from this 
capability, look up the NET USE and NET SHARE com
mands in your IAN manual and the penni t command 
in your DOS manual. 

• Test your application with an appropriate amount of 
RAM reserved for network software use. If your 
computer does not have the network software installed, 
set aside the appropriate amount of RAM by setting up 
a RAM drive sized to the amount of memory (from 
Section 2.1) that a IAN program will require to func
tion. 



32 Chap. 2 Relying on the Redirector 

2.5 Suggested Readings 

Borland International (1988), Turbo C Reference Guide, Scotts 
Valley, CA: Borland International. 

mM (1987), IBM PC LocalArea Network Program User's Guide, 
Austin, TX: International Business Machines Corporation. 

Microsoft (1987), Microsoft C Run-Time Library Reference, 
Redmond, WA: Microsoft. 

Svobodova, Uba (1984), "File Servers for Network Based 
Distributed Systems," ACM Computing SUNeyS, Vol. 16, no. 4, 
(December). 

Van Name, M.L. (1989), "Anatomy of a IAN Operating 
System," Byte, Vol. 14., no. 6, (June), pp. 157-160. 

Wiederhold, Gio (1983), Database Design, New York: McGraw
Hill. 



3. Portability Using NetBIOS 

Programming to the NetBIOS interface provides the program
mer with independence from the LAN hardware, the LAN protocol, 
and the underlying operating system. In addition, NetBIOS provides 
a high level of protocol support which handles many of the network 
communication issues (e.g., error detection) common to network 
communications. NetBIOS support is available on vitually all MS-DOS 
and OS/2 machines which are attached to a LAN and requires very 
little system memory to operate. 

NetBIOS programming assumes that two processes (programs) 
are cooperating to exchange data. For example, you cannot use 
NetBIOS alone to open and read a file on a remote network node. 
Rather, you must write and run a program on the remote system that 
will listen for file input-output commands (over the network), read the 
data locally, and then send it back to you. 

NetBIOS works by first establishing a unique name (unique 
within the network) for each participant. It is then possible for users 
to exchange data using either a connection-oriented protocol or a 
datagram protocol. A connection-oriented protocol (also called a virtual 
circuit) offers guaranteed delivery of the data, but with a performance 

33 



34 Chap. 3 Portability Using NetBIOS 

sacrifice. Guaranteed delivery in this context means that the data was 
either safely and accurately delivered or else your application was 
notified of the problem. Datagram protocols make a best effort to 
deliver the data, but there is no guarantee that it was safely received, 
nor are you notified in the event of a failure. A connection-oriented 
protocol is normally appropriate for functions such as file transfers. A 
datagram protocol is appropriate for functions such as periodic status 
updates, where timeliness is more important than guaranteed delivery. 
Datagram protocols are also used when your application is performing 
its own flow control and error correction/detection processing. 

In this chapter we will learn how to use NetBIOS to send and 
receive data Over the network. We begin by discussing the NetBIOS 
Network Control Block and interrupt procedures. We then discuss 
name conventions Over NetBIOS and show how to register a name. 
The next two sections are devoted to session-oriented data transmis
sion and datagram oriented data transmission. We then wrap up our 
discussion by describing some miscellaneous NetBIOS commands. 
Finally, the end of the chapter contains a reference table of NetBIOS 
commands and NetBIOS return codes. 

The following functions are defined in this chapter: 

ini t _ncb () This function initializes a network control block. 

int _ netbios ( ) This function issues an interrupt to 
NetBIOS, requesting the processing of a Network Control 
Block. 

init_netbios () This function initializes NetBIOS and 
registers an application name. 

shutdoWD._netbios ( ) This, function terminates NetBIOS 
processing and deletes an application name. 



Sec. 3.1 NetBIOS Network Control Blocks 35 

dg_write() Write a datagram using NetBIOS. 

dg_read() Receive a datagram using NetBIOS. 

max _ dg () Return the largest possible datagram size. 

sn_open() Open a session over NetBIOS. 

sn _read () Read data from a session. 

sn_write() Write data over a session. 

sn_close() Terminate a session. 

sn _ receive () Initiate a session-oriented receive operation 
in background. 

sn _send () Initiate a session-oriented send operation in back
ground. 

get_session _status () Get current session status. 

3.1 NetBIOS Network Control Blocks 

Communication between your application and the NetBIOS is 
accomplished using a structure called the Network Control Block, or 
NCB. The format for the NCB is shown in Code Box 3.1. The 
structure description assumes that you are using unsigned characters 
(a Turbo C compiler option) and that pointers are 32 bits long (large 
or huge memory model). H you have your compiler defaulting to 
signed characters, you should explicitely declare the structure variables 
as unsigned char. H you are using a memory model with 16 bit 
pointers for data, cast the pointer to buffer to be a far pointer. H 



36 Chap. 3 Portability Using NetBIOS 

you are using a memory model with 16 bit pointers for code, cast the 
pointer to post to be a far pointer. 

The variables in the structure have the following meanings: 

• command This is the command number to be executed. 

• ret_code This is the return code after completion of 
the command. 

• lsn This is the logical session number assigned by 
NetBIOS. This field is only used for connection oriented 
communication as discussed in Section 3.3. 

• number This field contains the number assigned by 
NetBIOS to your application program. This field is dis
cussed in Section 3.2. 

• buffer This field points to your local buffer from 
which data will be sent or into which data will be 
received. 

• length For transmitted data, this field contains the 
length of the data to send. For received data, this field 
contains the number of characters received. 

• r _name Remote system name. This field is discussed 
further in Section 3.2. 

• I_name Local system name. This field is discussed 
further in Section 3.2. 

• rto Receive time out in .5 second increments. 



Sec. 3.1 NetBIOS Network Control Blocks 

struct net_control_block 
{ 

char command; 
char ret_code; 
char lsn; /* logical session number */ 
char nUlllber; /* application name table entry */ 

char *buffer; 
unsigned int length; /* buffer length * / 

char r_name[16]; 
char 1_name[16]; 
char rto; /* receive time out */ 
char stc; /* send time out */ 

void * post; /* post routine location * / 
char adapter; /* adapter number */ 
char complete; 

char reserved[14]; 
}; 

Code Box 3.1 net _ control_block structure definition. 

• sto Send time out in .5 second increments. 

37 

• post Address of post routine. This field is discussed 
later in this section. 

• adapter Adapter number (in this computer): 0 for 
the primary adapter, 1 for the alternate adapter (nor
mally 0 except when performing gateway functions). 

• complete This field is set to 0xFF during adapter 
processing, then set to the same value as ret_code 
upon completion. This field is discussed later in this 
section. 

• reserved Used as a work area by NetBIOS during 
processing. 



38 Chap. 3 Portability Using NetBIOS 

When you call NetBIOS to process the Network Control Block, 
it is possible to instruct the adapter to perform its processing (e.g., data 
transfer) independently (in background) while control is returned to 
your application immediately. For example, you might use this 
capability to prepare the next data packet while the current data 
packet is being transmited. One way to tell when the adapter has 
completed the current command is to use the post field of the 
Network Control Block. The post field is a pointer to a function that 
should get control after completion of the command. The function 
pointed to by post should be a short interrupt handling function. 
When called, the AX register will contain the completion code for the 
command while the ES and BX registers will point to the Network 
Control Block. The post routine should be declared to be of type 
void interrupt. When the post handling function is done, it must 
use an interrupt return instruction, 1 which is handled automatically by 
Turbo C when you declare the routine to be of type interrupt. 

The more common method of determining when the adapter 
has finished processing the Network Control Block command is to 
monitor the complete field in the structure. This field is set (by the 
adapter) to 0xFF during processing, so your application can simply test 
this field until the value is something other than 0xFF. Until the 
complete field indicates that the adapter is done processing this 
Network Control Block, you must not modify either the Network Control 
Block structure contents nor the buffer contents pointed to by the Network 
Control Block When using this approach, the value in the post field 
should be set to NULL, which tells the adapter that no post routine is 
installed. This is the normal way the NetBIOS commands are handled. 
Of course, if you do not use the NO_WAIT option to the commands, 
your application program will be suspended until completion of the 
adapter processing and you will not need to concern yourself with 

1 The post routine is slightly different if you are using OS/2. Refer 
to the OS/2 specific chapter of this book for details. 



Sec. 3.1 NetBIOS Network Control Blocks 39 

either the post routine or monitoring the complete field in the 
Network Control Block. 

When the adapter is done processing the Network Control 
Block, it sets both the complete field and the ret_code field to the 
same return value. The adapter always uses OxOO to indicate successful 
completion of the command. The meaning of other possible return 
codes (error conditions) are listed in Section 3.7. 

The following listing shows the netbios • h header file used for 
all NetBIOS support functions described in this chapter. This file 
includes a number of defines to clarify NetBIOS calls, the 
net _ control_block structure definition, and our NetBIOS function 
prototypes. 

'define RECEIVE TIMEOUT 0 
'define SEND_TIMEOUT 0 

/* flags included for clarity */ 
'define CLIENT 0 
'define SERVER 1 
'define FIRST 0 
'define NEXT 1 

/* NetBIOS commands * / 

/* no timeout, wait forever */ 

'define NCB ADD GROUP NAME Oxl6 
'define NCB-ADD -NAME - OxlO 
'define NCB-CALL OxlO 
'define NCB-CANCEL Oxl5 
'define NCB-CHAIN SEND Ox17 
'define NCB-CHAIN-SEND NO ACK Ox72 
'define NCB-DELETE RAMi - Oxll 
'define NCB-FIND NAME Ox78 
'define NCB-HANG - UP Ox12 
'define NCB-LAN STATUS ALERT OxFl 
'define NCB-LISTEN - Oxll 
'define NCB-RECEIVE Ox15 
'define NCB-RECEIVE ANY Ox16 
.define NCB-RECEIVE-BROADCAST ~GRAM Ox2l 
'define NCB-RECEIVE-DATAGRAM - Ox2l 
'define NCB-RESET - Oxl2 
'define NCB-SEND Ox14 
'define NCB-SEND BROADCAST ~GRAM Ox22 
'define NCB-SEND-DATAGRAM - Ox20 
'define NCB-SEND -NO ACK Ox71 
'define NCB-SESSION -STATUS Oxl4 
'define NCB-STATUS - Oxll 
'define NCB-TRACE Ox79 
'define NCB:UNLINK Ox70 

/* NetBIOS command flags */ 
'define WAIT OXOO 
'define NO_WAIT Ox80 

/* NetHIOS return values */ 
'define NO_NETBIOS OXOO 



40 Chap. 3 Portability Using NetBIOS 

OxFF 

struct net_control_block 
{ 

}; 

char 
char 
char 
char 

command; 
retcode; 
lsn; 
number; 

char *buffer; 
unsigned int 

char r_name[16]; 
char l_name[16]; 
char rto; 
char sto; 

void *post; 
char adapter; 
char complete; 

char reserved[14]; 

/* logical session number */ 
/* application name table entry */ 

length; /* buffer length */ 

/* receive time out */ 
/* send time out */ 

/* post routine location */ 
/* adapter number */ 

struct session_status 
{ 

}; 

char 
char 
char 
struct 
{ 

number; /* name table entry */ 
number of sessions; 
outstanding_receive_datagram; 

char 
char 
char 
char 
char 
char 

session_number; 
state; 
l_name[16]; 
r name[16]; 
outstanding_receive; 
outstanding_send; 

session; 

/* function prototypes */ 
void in it ncb(struct net control block *ncb); 
void int_netbios(struct net_control_block *ncb); 
unsigned int init netbios(char *name); 
unsigned int shutdown netbios(char *name); 
int dg_write(unsigned int number, char *destination, char *buffer, int 
length); 
int 
int 
int 
int 
int 
int 
struct 
struct 
struct 

dg_read(unsigned int number, char *from, char *buffer, int length); 
max_dg( ); 
sn_open(char *from, char *to, int flag); 
sn_read(char lsn, void *buffer, unsigned int nbytes); 
sn write(char lsn, void *buffer, unsigned int nbytes); 
sn=cIOse(char lsn); 

net_control_block *sn_receive(char lsn, void *buffer, unsigned int nbytes); 
net control block *sn send(char lsn, void *buffer, unsigned int nbytes); 

- session_status *get_session_status(char *name, int flag); 



Sec. 3.2 Naming Conventions and Procedures 41 

Most NetBIOS commands can be executed with or without 
blocking.2 When executed with blocking, your application program 
blocks (waits) until the adapter has finished executing the command. 
This is the default for all commands. When executed without blocking, 
your application program continues to execute while the adapter 
processes the command in background. To execute a command with 
blocking, you would use the following syntax: 

ncb. command = NCB_CALL I WAIT; 

The WAIT flag is optional because this is the default for all 
commands. NCB_CALL is one sample NetBIOS command defined in 
netbios • h. To execute the same command without blocking, you 
would use 

Our programming will be simplified with two support NetBIOS 
functions, ini t _ncb ( ) and int _ netbios ( ). ini t _ncb () (Code 
Box 3.2) clears a Network Control Block and sets the defaults for sent 
timeout and receive timeout. int _ netbios ( ) (Code Box 3.3) clears 
a Net Control Block and sets the defaults for sent timeout and receive 
timeout. int_netbios () (Code Box 3.4) executes a NetBIOS NCB. 

3.2 Naming Conventions and Procedures 

Each lliM Token Ring Network adapter can store up to 255 network 
user names. OXOO and OxFF are not used, and OX01 is permanently 
assigned based on a unique number burned into each adapter, leaving 
252 available name slots. Name OX01 is used as a guaranteed unique 
name which is assigned to each adapter. Names can be up to 16 

2 The exceptions are NCB_RESET, NCB_CANCEL, and NCB_UNLINK. 



42 

linclude 
linclude 

<string.h> 
"netbios.h" 

Chap. 3 Portability Using NetBIOS 

1****************************************************************** 
• init_ncb - clear and initialize net control block 
• 
• Parameters: 
• ncb (in/out) - net control block to be cleared 
• 
• Notes: 
• This code sets the network adapter number to 0 (primary) 
• 
• History: 
• Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

void init_ncb(struct net_control_block .ncb) 
{ 

memset(ncb, 0, sizeof(struct net_control_block)); 
ncb->rto = RECEIVE TIMEOUT; 
ncb->sto = SEND_TIMEOUT; 

Code Box 3.2 init_ncb() function definition. 

characters long, although restrictions on the range of the last character 
make it simpler to restrict names to 15 characters. Names are 
normally assigned so that they are unique on any given network. For 
example, if your application registered a unique name of 
fileserver, no other adapter could use this name until you released 
it. The only exception is group names, which may be shared among 
adapters. 

For two cooperating processes, you will normally know both the 
registered network name of your application and the network name of 
the other application. These two names can then be used to communi
cate. This approach would not work very well for a file server, 
however, because the file server has no way of knowing in advance 
who will call on it for assistance. In this case, the file server name is 
made available to other applications and the file server issues a receive 
any network request. This will allow it to receive any messages 
directed to it without requiring that it know the name of the sender a 
priori. Client applications would then address messages to the server 
by its previously known name. 



Sec. 3.2 Naming Conventions and Procedures 43 

'include 
'include 

<dos.h> 
"netbios.h" 

extern int 

/****************************************************************** 
" int_netbios - interrupt NetBIOS with net control block 
" " " 
" 
" " " " 
" 

Parameters: 

Global: 

ncb (in/out) - initialized net control block 

_ES - ES register 
_BX - BX register 
net_error - set to command return code 

" History: 
" Original code by William H. Roetzheim 
***********************************.**********************************/ 

void int_netbios(etruct net_control_block "ncb) 
{ 

ES = FP SEG(ncb); 
-BX = FP-OFF(ncb); 
geninterrupt(Ox5C); 
net_error = ncb->retcode; 

Code Box 3.3 int_netbios () function definition. 

The NetBIOS commands which are related to naming are 

• NCB_ADD _GROUP_NAME This command allows you to 
add a group name to your adapter's network name table. 
Group names are not necessarily unique across the 
network. The command will fail if another adapter has 
previously registered the same name as a unique name. 

• NCB ADD NAME This command allows you to add a 
unique name to your adapter's network name table. 
This command will fail if another adapter has previously 
registered the same name as either a unique or group 
name. 

• NCB DELETE NAME This command deletes a name 
from your adapter's network name table. 



44 

• 

Chap. 3 Portability Using NetBIOS 

RCB FIND NAHE This command uses a broadcast 
message to find every adapter on the network with a 
specified name registered. It uses the adapter unique 
name (stored in slot OxOl of the name table) to tell you 
specifically which adapters are using the name. 

Code Box 3.5 shows a function which should be used at the 
beginning of your NetBIOS program. init_netbios() begins by 
testing to ensure that NetBIOS is installed and appears to be function
ing properly. If this test fails, the function returns RO_NETBIOS 

(defined in netbios. h). It then attempts to registered your 
application name as a unique name. If this fails, it returns 
INVALID_RAKE. You can then either display an error message or try 
again with a different name. If NetBIOS is installed and the name is 
successfully registered, ini t _ netbios () returns the name table 
number assigned to your unique name. This number will be needed 
later if your are using NetBIOS datagram services. 

When you are done using NetBIOS, you can use the 
shutdown _ netbios () function defined in Code Box 3.6 to delete 
your application name from the adapter name table. It is important 
that you delete unused names to avoid filling the adapter name table 
with unused names as well as preventing other users on the network 
from using those names. The RCB _RESET command can also be used 
to delete your application name from the adapter name table because 
this command deletes all names from the name table. Many books on 
NetBIOS routinely use RCB_RESET to "clean up" when their applica
tion is done. You must be careful with this approach because under 
DOS RCB _RESET clears all names in the table, not just those that your 
application registered (RCB_RESET works differently under OS/2). 
This could cause obvious problems if other applications were using 
NetBIOS (and the adapter name table) along with your program. 



Sec. 3.2 Naming Conventions and Procedures 

'include 
'include 

<dos.h> 
"netbios.h" 

1****************************************************************** 
* init_netbios - test for RetHIOS presence and register application 
* 
* Parameters: 
* name (in) - application name for network use 
* * Returns: 
* Rame table number if successful, else: 
* RO RETBIOS if RetHIOS not installed or adapter 
* - failure 
* INVALID_RAME if name is already in use or invalid 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Rotes: 
The name table number is required for datagram support but not 
for connection oriented support. 

Application names longer than 15 characters are truncated. 

The first three characters of the name should not be "IBM". 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

unsigned int init netbios(char *name) 
{ -

int i; 
unsigned 
struct 

long int_vector; 
net_control_block ncb; 

/***** start by testing for RetHIOS installation *****/ 
/* is interrupt vector initialized? */ 
int_vector - (unsigned longl getvect(Ox5C); 
if «int_vector -- OxOOOO) I (int_vector -= OxPOOO» 
{ 

} 

/* no interrupt handler installed */ 
return RO_RETBIOS; 

/* is RetHIOS responding? */ 
init_ncb(&ncb) ; 
ncb. command - OxPP; /* an invalid command */ 
int_netbios(&ncb); 
if (ncb.retcode I- Ox03) /* error, invalid command */ 
{ 

} 

/* now attempt to register name on network */ 
init_ncb(&ncb); 
for (i - 0; i < 15; i++) 
{ 

} 

if (name[i] == 0) break; 
ncb.l_name[i] • name[i++]; 

ncb. command = RCB_ADD_NAME; 
if (ncb.retcode 1- 00) return 
alse return ncb.number; 

Code Box 3.4 init_netbios() function definition. 

45 



46 Chap. 3 Portability Using NetBIOS 

linclude 
lincl.ude 

<dos.h> 
"netbios.h" 

1****************************************************************** 
* shutdowu_netbios - Clear name table entry 
* * Parameters: 
* name (in) - application name used during init_netbios() 
* * Returns: 
* 0 for success, el.se 
* return codes defined for NCB_DELETB_RAMI command 
* * History: 
* Original code by William H. Roetzheim 
**********************************************************************1 

unsigned int 
( 

shutdown_netbios(char *name) 

i; 
net_central_block 

} 

int 
struct 

init_ncb(&ncb); 
for (i - 0; i < 15; i++) 
{ 

} 

if (name[!] == 0) break; 
ncb.1_name[i] • name[i++]; 

ncb.command = NCB DELETE RAMI; 
return nCb.retcode; -

ncb; 

Code Box 3.5 shutdown_netbios() function definition. 

3.3 Datagram-Oriented Communication 

Datagrams are messages which are transmitted over the network 
without any attempt to verify error free reception. They are fast, easy 
on network resources, simple to use, and require a mjnjmum of 
coordination between the communicating programs. For these reasons, 
datagrams are often used (or functions such as status updates, initial 
coordination to establish session-oriented communications (discussed 
in the following section), and applications where your software will be 
performing error correction and detection anyway. 

The application which will be receiving datagram packets should 
be initialized first. It then waits to receive any datagrams addressed 
to it. The dg_read() function defined in Code Box 3.7 can be used 
to receive datagrams. Its syntax is somewhat similar to the read( ) 



Sec. 3.3 Datagram-Oriented Communication 47 

function. You need to supply the function with the name table number 
assigned to your application name. This is the number returned from 
your call to ini t _ netbios ( ). You also supply a pointer to a buffer 
area and the length of the buffer. Note that you do not provide the 
name of the application you expect to receive the datagram from. 
Upon successful receipt of a datagram, the function returns the 
number of bytes successful placed in the buffer. The adapter provides 
us this information by modifying the length field of the Network 
Control Block. The adapter also provides us with the name of the 
application sending the datagram (using the r_name field), which is 
returned as the from parameter. The from parameter should point 
to a block of memory at least 16 bytes long. 

In the event of an error, dg_read() returns minus 1 and sets 
the global variable net_error equal to the NetBIOS error return 
code. net_error is an integer which should be declared above your 
main function. The possible return codes are defined in Section 3.7 of 
this chapter. 

The dg_write() function, shown in Code Box 3.8, is used to 
send datagrams to another application. Unlike dg_read(), this 
function requires that you include both your own name table entry 
number and the name of the destination. The destination is addressed 
by a 16-character name, not a name table entry number. You also 
supply a pointer to a buffer containing the data to send and the 
number of bytes of data to send. Note that the syntax is similar to the 
standard write () function. 

The maximum size of a datagram packet will vary from one 
adapter to the next. There is no 100 percent consistent method of 
determining the maximum packet size except to try various sizes until 
you find the one which is just barely too big. Code Box 3.9 illustrates 
a brute-force approach to performing this function. The function 
max _ dg ( ) returns the largest acceptable datagram size for the current 
adapter. This brute force approach is normally acceptable because this 
function only needs to be performed one time, so optimization is not 



48 

'include 
'include 

<string.h> 
"netbios.h" 

Chap. 3 Portability Using NetBIOS 

1****************************************************************** 
* dg_read - read a datagram over the network 
* 
* 
* 
* 
* 
* 
* 

Parameters: 
number (in) 
from (out) 
buffer (in) 
length (in) 

- your name table address number 
- name of user sending datagram 
- location to put received data 
- maximum number of bytes to receive 

* Global: 
* net error - used to store NetBIOS return code for error 
* processing. 
* * Returns: 
* Number of bytes received for success, -1 for failure 
* * Notes: 
* Number is the value returned from a successful init_netbios(). 
* 
* 
* 
* 
* 
* 

This code assumes that you are using a memory model which will 
result in buffer being a far pointer. 

From must point to a block of memory at least 16 bytes long. 

* History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int dg_read(unsigned int number, char *from, char *buffer, int length) 
{ 

} 

ncb; 

init_ncb(&ncb); 
ncb. command = NCB_RECEIVE_DATAGRAM; 
ncb. length = length; 
ncb. buffer = buffer; 
ncb. number - number; 
int netbios(&ncb); 
memepy(from, ncb.l_name, 16); 
if (ncb.retcode == 0) return ncb. length; 
else return -1; 

Code Box 3.6 dg_ read () function definition. 



Sec. 3.3 Datagram-Oriented Communication 

lIinclude 
lIinclude 

<string.h> 
"netbios.h" 

1****************************************************************** 
• dg_write - write a datagram over the network 
• 

Parameters: 

Global 

Returns: 

number (in) - your name table address number 
destination (in) - destination name (1-15 characters) 
buffer (in) - data to be transmitted 
length (in) - number of bytes to transmit 

net error - global integer used to return net error codes. 
net=error is set to zero for normal return 

49 

• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• Number of bytes transmitted for success. -1 for failure. 

• 
• 
• • 
• 
• 
• 
• 
• 
• • 
• 

Notes: 

In the event of failure, the global variable net_error is 
set to the NetBIOS return code for error processing. 

Destination must have already executed an 
NCB_RECEIVE_DATAGRAM command 

Number is the value returned from a successful init_netbios(). 

This code assumes that you are using a memory model which will 
result in buffer being a far pointer. 

• History: 
• Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int dg_write(unsigned int number, char ·destination, char *buffer, int length) 

struct 
char 
int 

net control block 
dest_name [16] ; 
i; 

memset(dest name, 0, 16); 
for (i = O;-i < 15; i++) 
{ 

ncb; 

if (destination[i] == 0) break; 
else dest_name[i] = destination[i]; 

init_ncb(&ncb) ; 
ncb. command = NCB SEND DATAGRAM; 
ncb. length = length; -
ncb. buffer = buffer; 
ncb. number = number; 
strcpy(ncb.r name, dest name); 
int netbios(&ncb); -
if (ncb.retcode == 0) return length; 
else return -1; 

Code Box 3.7 dg_write() function definition. 



50 

Itinclude 
Itinclude 

<string.h> 
"netbios.h" 

Chap. 3 Portability Using NetBIOS 

1****************************************************************** 
* max_dg - Determine largest acceptable datagram size 
* * Parameters: 
* * Returns: 
* Maximum valid datagram size in bytes 
* * Notes: 
* This code assumes that you are using a memory model which will 
* result in buffer being a far pointer. 
* * History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int max_dg( ) 
{ 

struct net control block ncb; 
int length = 0;-

init ncb(&ncb); 
while (ncb.retcode == 0) 
{ 

} 

length++; 
init ncb(&ncb); 
ncb. command = NCB SEND DATAGRAM; 
ncb. length = length; -
ncb. number = Ox01; /* use our adapter standard name */ 
int_netbios(&ncb); 

return length -1; 

Code Box 3.8 max _ dg () function listing. 

very rewarding in terms of overall application performance. If you find 
the running time to be burdensome, you can easily 
modify the function to use a binary search algorithm to find the largest 
acceptable size. 

3.4 Session-Oriented Communication 

Session-oriented communication is appropriate for the majority of 
NetBIOS oriented data communication. This protocol provides 
acknowledgments to give you some assurance that the data has been 
received intact. Session-oriented communication is logically similar to 
placing a telephone call. The steps involved are 



Sec. 3.3 Datagram-Oriented Communication 51 

1. You call a remote adapter (dial the number). 

2. You send and receive data (talk and listen). 

3. You terminate the session (hangup the phone). 

We will describe four session-oriented communciation support 
functions. These functions are designed to operate similar to standard 
file I/O functions included with your C compiler. The functions we 
will define are 

• sn _open () This function opens a connection 

• sn_write() This function write data over a connec-
tion. / 

• sn_ read () This function reads data over a connection. 

• sn _close () This function closes a connection. 
Code Box 3.10 shows the code for the sn_open() function. 

This function opens a logical session (connection) between two 
adapters. Two communicating application programs must both call 
sn _open ( ). One must call sn _open () while setting the value for 
the flag parameter to CLIENT while the other must set the flag 
parameter to SERVER It does not matter which application is the 
client and which is the server, as long as they are not both one or the 
other. The names used to establish a session are the names used by 
each application program during their call to ini t _ netbios ( ). 
sn _open () returns the logical session number for success, or minus 
1 for error. Ifminus 1 is returned, the global variable net_error can 
be checked to determine the exact error number. You use 
sn _open () just like you would use open () and treat the return 
value just like you would treat a handle returned by open ( ) . 



52 Chap. 3 Portability Using NetBIOS 

After you have opened a connection using sn _ open ( ), you can 
read and write data over the connection using sn _read () and 
sn_write(). These functions are defined in Code Box 3.11 and 
Code Box 3.12, respectively. The syntaxo is very similar to the syntax 
for the read ( ) and write ( ) functions you are already familiar with, 
except that 
the file' handle has been replaced with a logical session number 
(returned by sn_open( ». 

Although the syntax is similar to read () and write ( ), you 
must remember that there is a big difference between session oriented 
communications and reading or writing to/from a disk drive. When 
you are interacting with a disk drive, you are in command. The disk 
controller waits for your command, the either performs the read or 
write action as directed. When you are communicating over a 
network, you are no longer automatically in control. If you execute an 
sn _ read( ), the other application program must execute an 
sn_write() for anything to happen. Similarly, if you execute an 
sn_write(), the other application program must execute an 
sn _ read() for communication to be effective. This coordination 
problem is often handled in one of two ways. 

One approach is to establish a protocol for who should be 
sending and who should be receiving at any point in time. For some 
applications, there might be only one sender (the server) and one 
receiver (the client). For other applications, it might be appropriate 
for the application programs to take turns, alternating sending and 
receiving. Another approach is to establish an in-band or out-oJ-band 
coordination protocol. For an in band protocol, you might include 
some header information at the beginning of each transmission to tell 
if the receiver should continue to listen or should transmit after receipt 
of the data buffer. Out-of-band coordination might involve using 
communicating using datagrams (in addition to the session-oriented 
communication) for coordination information. 



Sec. 3.3 Datagram-Oriented Communication 

/tinclude 
'include 

<string.h> 
"netbios.h" 

1******************************************************.********* •• 
* sn_open - open a connection oriented session using NetBIOS 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Global 

from (in) - your application name 
to (in) - name of destination application 
flag (in) - CLIENT or SERVER 

net_error - integer giving latest net error condition 
Returns: 

logical session number (LSN) on success, -1 on error 

Notes: 
On error, check net_error for error number 

* History: 
* Original code by William H. Roetzheim, 1990 
*********.*****.******************************************.***********/ 

int sn_open(char *from, char *to, int flag) 
( 

int 
struct 
char 

i; 
net control block 
name[16]; -

init_ncb(&ncb); 
if (flag == SERVER) ncb.command 
else ncb. command = NCB_LISTEN; 
memset(name,0,16); 
for (i = 0; i < 16; i++) 
{ 

} 

if (from[i] == 0) break; 
else name[i] = from[i]; 

strcpy(ncb.l_name, name); 

memset(name, 0, 16); 
for (i = 0; i < 16; i++) 
{ 

} 

if (to[i] == 0) break; 
else name[i] = to[i]; 

strcpy(ncb.r_name, name); 
int_netbios(&ncb); 

ncb; 

if (ncb.retcode 0) return ncb.lsn; 
else return -1; 

Code Box 3.9 sn _open () function definition. 

53 



54 Chap. 3 Portability Using NetBIOS 

'include 
Unclude 

<stdio.h> 
"netbios.h" 

1****************************************************************** 
* sn_read - read data from an already open logical session number 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

Notes: 

lsn (in) - logical session number from sn_open() 
buffer (in) - far pointer to data buffer 
nbytes (in) - available size of buffer area 

number of bytes actually received, or -1 for error 

On error, check net_error for error number 

* History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int sn_read(char lsn, void *buffer, unsigned int nbytes) 
{ 

struct net_control_block ncb; 

init ncb(&ncb); 
ncb. command = NCB RECEIVE; 
ncb.lsn = lsn; -
ncb. length = nbytes; 
ncb. buffer = buffer; 
int netbios(&ncb); 
if (ncb.retcode == 0) return ncb. length; 
else return -1; 

Code Box 3.10 sn_read() function definition. 

An alternate approach, which is often more appropriate if 
extensive two-way communication is required, is to establish two 
sessions simultaneously. One session is used for transmitting data from 
application A to application B, while the other is used for transmitting 
data from application B to application A Basically, each of the 
sessions is used as a simplex (one-way) communication link. One 
approach to accomplishing this is as follows: 

1. Call sn _open () twice to establish two sessions. You 
do not need to use different names, nor do you need to 
change the value for the flag. It is completely appropri
ate, and normally best, to simply make two calls with the 
identical parameters. 



Sec. 3.3 Datagram-Oriented Communication 

'include 
'include 

<stdio.h> 
"netbios.h" 

1****************************************************************** 
* sn_write - write data to an already open logical session number 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

Notes: 

lsn (in) - logical session number fram sn_open() 
buffer (in) - far pointer to data to transmit 
nbytes (in) - number of bytes to transmit 

number of bytes actually transmitted, or -1 for error 

On error, check net_error for error number 

* History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int sn_write(char lsn, void *buffer, unsigned int nbytes) 
{ 

} 

struct net_control_block ncb; 

init_ncb(&ncb); 
ncb.command • NCB_SEND; 
ncb.lsn .. lsn; 
ncb. length = nbytes; 
ncb. buffer = buffer; 
int netbios(&ncb); 
if (ncb.retcode == 0) return ncb. length; 
else return -1; 

Code Box 3.11 sn _ write () function definition. 

55 

2. Use sn_receive() (Code Box 3.13) rather than 
sn _read ( ). sn _ receive () is modified as follows: 

• The NetBIOS command has been modi
fied to use the NO_WAIT option. 

• The net control block variable has been - -
modified to be a static variable (so that it 
will remain available after return from the 
function). 



56 Chap. 3 Portability Using NetBIOS 

I#inc~ude 
I#inc~ude 

<stdio.h> 
"netbios.h" 

1*****************************************************-*****---_ •• -
: sn_receive - initialize a receive operation in background 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Returns: 

Notes: 

lsn (in) - ~ogical session number from sn_open() 
buffer (in) - far pointer to data buffer 
nbytes (in) - avai~able size of buffer area 

address of net control block used during receive 

Only one sn_receive() operation must be outstanding at a time 

* History: 
* Original code by William H. Roetzheim, 1990 
a.*a_ •• a**_*_ ••••• __ ••••• ____ •••••• _ •••• _ ••••••• ***_*_****************/ 

struct net_control_block *sn_receive(char lsn, void *buffer, unsigned int nbytes) 
{ 

static struct net_control_block ncb; 

init ncb(&ncb); 
ncb.command = NCB RECEIVE I NO_WAIT; 
ncb.lsn = lsn; -
ncb. length = nbytes; 
ncb. buffer = buffer; 
int_netbios(&ncb); 
return &ncb; 

Code Box 3.12 sn_receive() fimction definition. 

• The function returns the address of the 
net control block variable rather than an - -
indication of the number of bytes received. 

3. Use sn_send() (Code Box 3.14) rather than 
sn_ write ( ). sn _send ( ) received the same modifica
tions as sn _ receive ( ). 

4. Call sn _ receive () early in your application, using a 
buffer area set aside for this purpose. Save the return 
value as a pointer to the receive Network Control Block, 
perhaps calling it receive_ncb. Periodically check the 
complete field to determine if a message has arrived 



Sec. 3.3 Datagram-Oriented Communication 

#include 
'include 

<stdio.h> 
"netbios.h" 

1****************************************************************** 
* sn_send - write data out in background 
* 
* .. .. .. .. 

Parameters: 
lsn (in) - logical session number from sn_open() 
buffer (in) - far pointer to data to transmit 
nbytes (in) - number of bytes to transmit 

.. Returns: 

.. Address of net control block used for write .. 

.. Notes: 

.. Only one sn_send operation can be outstanding at a time .. 

.. History: 

.. Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

struct net control block *sn send(char lsn, void *buffer, unsigned int nbytes) 
{ - - -

static struct net_control_block ncb; 

in it ncb(&ncb); 
ncb.command = NCB SEND I NO_WAIT; 
ncb.lsn = lsn; -
ncb. length = nbytes; 
ncb. buffer = buffer; 
int netbios(&ncb); 
return &ncb; 

Code Box 3.13 sn _send () function definition. 

57 

(receive_ncb->complete will be some value other 
than OxFF). H a message has arrived, immediately copy 
the receive buffer contents to a working area, then call 
sn _ receive () again for the next message. 

5. Call sn_send() whenever you need to send data, using 
a buffer area set aside for this purpose (not the same 
buffer area used for sn_receive() I). Save the return 
value as a pointer to the send Network Control Block, 
perhaps calling it send_ncb. Periodically check the 
complete field to determine if the message has been 
successfully transmitted (send _ ncb->completewill be 



58 Chap. 3 Portability Using NetBIOS 

some value other than 0xFF). After the message has 
been sent, you may send another if desired. 

Using this approach, it is possible to simultaneously conduct 
two-way data communication over the two data connections (sessions). 

3.5 Miscellaneous NetBIOS Commands 

RCB _RESET is used to reset· the adapter. When the adapter is reset 
under DOS, all current NetBIOS names are deleted, all current 
sessions are aborted, and all outstanding Network Control Blocks are 
purged. In addition to the cODDIland field, three Network Control 
Block fields are used by RCB _RESET: 

1. adapter This field indicates the adapter number to 
reset (0 for primary, 1 for secondary). init_ncb() 
sets this field to O. 

2. Isn This field is used to indicate the maximum number 
of sessions the adapter should support. This number 
cannot be greater than the maximum value specified as 
a load parameter when NetBIOS was loaded. Setting 
this field to 0 allows the adapter to select a logical 
number. The adapter will use 6 if the load parameter 
RESET. VALUES = no (default), or else it will use the 
load parameter maximum sessions. ini t _ncb () sets 
this field to O. 

3. number This field is used to indicate the maximum 
number of outstanding Network Control Block com
mands. This number can not be greater than the 
maximum value specified as a load parameter when 
NetBIOS was loaded. Setting this field to 0 allows the 



Sec. 3.5 Miscellaneous NetBIOS Commands 59 

adapter to select a logical number. The adapter will use 
12 if the load parameter RESET. VALUES = no (de
fault), or else it will us the load parameter maximum 
commands. ini t _ncb () sets this field to O. 

RCB_SESSIOR_STATUS is used to monitor the status of all 
currently active NetBIOS sessions on your adapter. The structure 
session_status (as defined in netbios .h) is used to examine the 
current status. The structure contains four fields which apply to all 
outstanding sessions for a given name along with a structure called 
session, which contains information for a single outstanding session. 
H we declared a structure of type session status (e.g., struct 
seSSion_status ss), we would access the state field for a single 
session as ss . session. state. The state field within the structure 
has the following possible meanings: 

Ox01 - listen outstanding 
Ox02 - Call pending 
OX03 - Session established 
Ox04 - Hang up pending 
OX05 - Hang up complete 
OX06 - Session aborted 

Because one application can have multiple sessions simulta
neously outstanding, there may be more than one session portion of 
the session_status structure. Code Box 3.15 shows one possible 
approach to handling this possibility. The function 
qet_session_status () is initially called with the FIRST parame
ter. A pointer to a session_status structure is returned and the 
session portion of the structure is initialized to the first session. 
get_session_status() can then be called repeatedly using the 
NEXT parameter. Each call replaces the session portion of the 
structure with the next session. When all sessions have been viewed, 



60 

linclude 
'include 
linclude 

<stdio.h> 
<string.h> 
"netbios.h" 

Chap. 3 Portability Using NetBIOS 

extern int net_error; 
'define MAX SESSIONS 12 
'define BUFFER_SIZE (4 + (36 * MAX_SESSIONS» 
1********************************************************a*a*a.**** 
* get_session_status - get session status information 
* * Parameters: 
* name (in) - name to inquire about 
* flag (in) - FIRST or NEXT 
* * Global: 
* net_error - set if problem encountered 
* * Returns: 
* Pointer to session status structure, or HULL when no 
* more information -
* History: 
* Original code by William H. Roetzheim, 1990 
**aaa*a*****a*****_**** •• *_*****_****_**.*_*******.*******************1 
struct session_status *get_session_status(char *name, int flag) 
{ 

} 

int 
static 
char 
static 
static 
struct 

i; 
int location; 

application_name[16]; 
char buffer [BUFFER_SIZE]; 
struct session status ss; 
net_contral_bloCk ncb; 

if (flag == FIRST) 
{ 

} 
else 
{ 

} 

memset(buffer, 0, BUFFER_SIZE); 
/* read status information into buffer */ 
init_ncb(&ncb) ; 
ncb.command = NCB SESSION S~S; 
m8D1set(application_name, 0, 16); 
for (i • 0; i < 15; i++) 
{ 

if (name[i] -- 0) break; 
else application_name[i] = name[i]; 

} 
strcpy(ncb.l_name, application_name); 
ncb.lengtb c BUFFER_SIZE; 
ncb. buffer = buffer; 
int_netbios(&ncb); 
/* copy initial portion to session status structure */ 
memcpy(&SS, buffer, sizeof(struct session_status»; 
location = sizeof(struct session_status); 

if (location < 4 + (ss.numbar_of_sassions * 36» 
{ 

} 

memcpy(&ss.session, &buffar[location], 
sizaof(struct sassion_status»; 

location +- sizeof(struct sassion_status); 

alsa location • -1; /* past and */ 

if (location ,- -1) return &ss; 
alsa raturn HULL; 

Code Box 3.14 CJet_session_status () function definition. 



Sec. 3.6 NetBIOS Command Summary 61 

a NULL is returned. 
Sections 3.6 and 3.7 summarize all NetBIOS commands and 

return values. Some less common NetBIOS commands were not 
covered earlier in this chapter, so you should read these two sections 
to be aware of all available NetBIOS commands. If you need to work 
with the NetBIOS at a more detailed level than covered in this 
chapter, you should refer to Section 3.8 (Suggested Readings) for 
additional details. 

3.6 NetBIOS Command Summary 

The following table presents a summary of all NetBIOS 
commands. The columns have the following meanings: 

1. Command The command name. These names are 
defined in netbios . h. These are the values to use for 
the Network Control Block's command field prior to 
calling the NetBIOS for processing. All of these com
mands can be used with the NO_WAIT flag (i.e., COM

HAND I NO_WAIT) except for NCB_CANCEL, 

NCB_LAN_STATUS_ALERT, NCB_RESET, and 
NCB UNLINK. 

2. Input The fields within the Network Control Block (in 
addition to command) that should be initialized prior to 
using the command. 

3. Outputs The fields within the Network Control Block 
that are modified by the command during processing. 

4. Summary A brief description of the command function. 



62 Chap. 3 Portability Using NetBIOS 

Command Inputs Outputs Summary 

NCB_ADD_GR adapter retcode Add shared name to adapter name 

OUP_NAME I_name number table. 
(0x36) post reserved 

NCB_ADD_GR adapter retcode Add unique name to adapter name 

OUP_NAME I name number table. 
(0x30) post reserved 

NCB_CALL adapter retcode Call to establish session oriented 

(000) t name lsn connection. 
r_name reserved 
post 
rto 
&to 

NCB_CANCEL adapter retcode Cancel command located at buffer. 
(0135) buffer reserved 

NCB_CHAIN_S adapter retcode Send one buffer, then immediately 

END length reserved send a second buffer. 
(007) buffer 

post 
lsn 

r_name (bytes 0-1 = 
length2, bytes 2-5 

*buffer2) 

NCB_CHAIN_S adapter retcode Send on buffer, then immediately 
END_NO_ACK length reserved send a second buffer. Do not re-
(Ox72) buffer quest acknowledgments. 

post 
lsn 
r name (bytes 0-1 
length2, bytes 2-5 
*buffer2) 

NCB_DELETE_ adapter retcode Delete a name from the adapter's 
NAME I name reserved name table. 
(0x31) post 

NCB_FIND_NA adapter retcode Find the address of any adapters 
ME length reserved which have registered a specific 
(Ox78) buffer length name. 

post 
r name 

NCB_HANG _ UP adapter retcode Close a connection orienled session. 
(Ox12) lsn reserve 

post 



Sec. 3.6 NetBIOS Command Summary 63 

NCB_LAN_STA post Used to ootHy an appJication in the 

TUS_ALERT event of Iow- level ring errors. 
(0xF3) 

NCB_RECEIVE adapter retcode Receive counection oriented data via 

(0xlS) IBn length a session. 
butler reserved 

post 
length 

NCB_RECEIVE adapter retcode Receive COIlIIedion oriented data 

_ANY length IBn from any session. 
(0x16) butler length 

post reserved 

number number 

NCB_RECEIVE adapter retcode Receive a datagram from any name 

_BROADC length reserved on the network sending a broadcast 
ASf_DATAGRA butler length datagram. 
M post r_Dame 
(0x23) number 

NCB_RECEIVE adapter retcode Receive a datagram addressed to 
DATAGR length reserved number. 

AM butler length 
(0lI"21) post r_name 

number 

NCB_RESET adapter retcode Clear the adapter name table, abort 

(1b32) IBn reserved all sessious, purge all outstanding 

number NCB's, and open the adapter. 

NCB_SEND adapter retcode Send data to the session partner 
(0x14) length reserved (ideJltified by IBn). 

buffer 
post 
IBn 

NCB_SEND_BR adapter retcode Send a datagram to every station 

OADCAST_ length reserved with an outstanding 
DATAGRAM buffer NCB_RECEIVE_BROADCAST _ 

(1b22) post DATAGRAM. 
number 

NCB_SEND _DA adapter retcode Send a datagram to a specific name 
TAGRAM length reserved ideJltified by r _name. 
(0lI"20) butler 

post 
number 

r_name 



64 Chap. 3 Portability Using NetBIOS 

NCB_SEND_NO adapter retcode Send data to a session partner with-
_ACK length reseIVed out requiring an acknowledgment 
(Ox71) bufl'er upon receipt. 

post 
Jsn 

NCB_SESSION _ adapter retcode Obtain the status of all sessions for 
STATIJS length reseIVed a local name or all sessions for all 
(0x34) buffer length 1ocal1l8DleS. 

post 
I_name 

NCB_STATIJS adapter retcode Query the status of a local or remote 
(003) bufl'er reseIVed NetBIOS. 

length length 
r_name 
post 

NCB_TRACE adapter retcode Activate or deactivate a trace of all 
(0x79) buffer reseIVed Network Control Blocks. 

length buffer 
number (0xFF = trace length 
OD, 0x00 = local trace 
on; OxOl - local and 
remote trace off) 

NCB_UNLINK adapter retoode Provided for compatibility only. 
(Ox70) reseIVed Performs no function. 

NetBIOS Command Specifics 

NCB ADD GROUP NAME 
Add a group name to the local adapter name table. 

Group names can be used by more than one adapter (or 
application on an adapter). Group names can not also be 
registered as unique names. The name must be 16 characters, 
although the last character must not be in the range of OXOO 
through Ox1F and the first three characters cannot be "ffiM." 
The add name request is processed by transmitting name query 



Sec. 3.6 NetBIOS Command Summary 65 

requests over the network and monitoring any responses. When 
successful, the command returns the name table entry number. 
This number is assigned between Ox02 and OxFE (OXOO and 
OxFF are not used, OxOl is permanently assigned based on the 
adapter's unique serial number). If more than 252 names are 
registered, the later names overwrite the earlier names (Le., the 
numbers roll over). See also NCB ADD NAME, - -
NCB_DELETE_NAME, NCB_FIND_NAME. 

NCB ADD NAME - -
This command works identically to 

NCB_ADD _GROUP_NAME except that the name must be unique 
across the network. See also NCB_ADD _ GROUP_NAME, 
NCB_DELETE _ NAME, NCB_FIND_NAME. 

NCB CALL 
Establish a session by calling a remote application. The 

remote application must have an NCB_LISTEN outstanding for 
this command to succeed. The session is opened with the 
application that has a registered name of r _name. Multiple 
sessions may be established between the same pair of names. 
Timeout intervals (rto and sto) are 500 millisecond units, 
with 0 implying no timeout. Upon success, a local session 
number (Isn) is returned. Lsn's are assigned in a round-robin 
technique in the range of OxOl - OxFE. See also 
NCB_LISTEN, NCB_RANG_UP, NCB_SEND, 
NCB RECEIVE. 

NCB CANCEL 
Cancel a Network Control Block (command). The 

command which is cancelled is located at the address pointed 
to by buffer. Canceling any session oriented command will 



66 Chap. 3 Portability Using NetBIOS 

automatically close the session. The following commands can 
be canceled: 

• NCB CALL 

• NCB CHAIN SEND - -

• NCB CHAIN SEND NO ACK - - --

• NCB HANG UP - -

• NCB LAN STATUS ALERT - - -

• NCB USTEN 

• NCB RECEIVE 

• NCB RECEIVE ANY -

• NCB RECEIVE BROADCAST ANY - - -

• NCB RECEIVE DATAGRAM - -

• NCB SEND 

• NCB SEND NO ACK - --

• NCB STATUS 



Sec. 3.6 NetBIOS Command Summary 67 

NCB CHAIN SEND - -
This command allows two buffers to be automatically 

concatenated together and sent at once. The meaning of the 
r _ name field is modified to contain the following information: 

• Bytes ° - 1 (length of second buffer) 

• Bytes 2 - 5 (far pointer to second buffer) 

Lengths between 1 and 65,535 are valid for each of the 
two buffer, allowing this command to send up to 131,070 bytes. 
See also NCB_CHAIN_SEND_NO_ACK, NCB_SEND, 
NCB RECEIVE. 

NCB CHAIN SEND NO ACK - - --
This command works identically to NCB_CHAIN _SEND, 

except that the receiving adapter is not required to send 
acknowledgments back (this becomes an application responsi
bility). See also NCB_CHAIN_SEND. 

NCB DELETE NAME - -
Delete a name from the local name table. When data 

is queued for transmission or reception over a session using this 
name, the actual name deletion is delayed until the data 
transmission/reception is complete. See also 
NCB ADD NAME. - -

NCB FIND NAME - -
Find the network location of the adapter owning a 16 

character name, including how the name is registered (unique 
or group). If the name is not found, the rete ode field is set 
to Ox05 (command timed out). If one or more adapters did 
respond, the length field is set to the length of the returned 



68 Chap. 3 Portability Using NetBIOS 

data. Data is placed at the location pointed to by buffer. 
The number of responses will be the first two bytes located at 
buffer. This number will always be OxOl unless the name is 
registered as a group name. The format of the remainder of 
the data in the buffer varies and is described fully in (lliM, 
1988). 

NCB HANG UP - -
This command closes a session (connection) as specified 

by the local session number (lsn). The command will com
plete any Network Control Block which is in the process of 
being sent, but will cancel all other outstanding Network control 
blocks destined for this session. See also NCB_CALL, 
NCB _ llSTEN, NCB_CANCEL. 

NCB LAN STATUS ALERT - - -
This command always runs in the NO_WAIT mode. As 

long as the token ring operates properly, this command is 
queued by NetBIOS (does not return). The command complete 
when a ring error condition occurs which lasts longer than one 
minute. This command can be used for network administration 
or network management software. See also 
NCB_SESSION_STATUS, NCB_STATUS. 

NCB LISTEN 
This command enables a session to begin with the 

application identified as r _name. If the first character of the 
r_name is an asterisk ('*'), a session will begin with any 
network node that calls this application. An NCB_LISTEN for 
a specific name will preempt data over an NCB_LISTEN for a 
wildcard name. rto and sto are the timeout intervals in 500 
millisecond increments, with 0 implying no timeout. This 
command returns a local session number (lsn). If a wildcard 



.. 

Sec. 3.6 NetBIOS Command Summary 69 

name was used, the r_ naJIle is also modified to be the actual 
name of the network node performing the NCB_CALL. See also 
NCB_CALL, NCB_RECEIVE. 

NCB RECEIVE 
After a session is established, this command is used to 

receive data from a session partner. This command receives 
data sent using 

• NCB CHAIN SEND - -

• NCB CHAIN SEND NO ACK - - --
• NCB SEND 

• NCB SEND NO ACK - --
NCB_RECEIVE has priority over NCB_RECEIVE_ANY. 

See also NCB_SEND, NCB_RECEIVE_ANY, NCB _ USTEN. 

NCB RECEIVE ANY - -
This command receives data for any session registered 

to the network node identified by number in the name table. 
If number is set to 0xFF, this command will receive data for 
any session addressed to any name in the local adapter. The 
NCB_RECE IVE command has priority over 
NCB_RECEIVE _ANY. It is possible to use this command and 
receive data destined for a different application running on the 
local computer. See also NCB_RECEIVE. 

NCB_RECEIVE_BROADCAST_DATAGRAH 
This command receives a broadcast datagram from any 

application on the network which issued a 



70 Chap. 3 Portability Using NetBIOS 

SEND_BROADCAST _ DATAGRAH. The buffer length (specified 
by length) must be large enough to receive the entire 
datagram or the remaining data will be lost. See also 
NCB_RECEIVE_DATAGRAM, NCB_RECEIVE_ANY. 

NCB RECEIVE DATAGRAM - -
This command receives a datagram from any name on 

the network that issues an NCB_SEND _DATAGRAM to the local 
name table entry given by number. If number is set to 0xFF, 
then datagrams addressed to any name in the local name table 
will be received. This command will not receive a broadcast 
datagram. See also NCB_RECEIVE_BROAD
CAST_DATAGRAM, NCB_RECEIVE. 

NCB RESET 
The exact functioning of NCB_RESET is dependent on 

the version of NetBIOS you are running and whether or not you 
are running under OS/2. For all variations, NCB_RESET 

deletes NetBIOS names from the name table, closes current 
sessions, purges all outstanding NCBs, and turns the adapter on. 
Under DOS, all names and sessions are closed, while under 
OS/2 only those names and sessions specific to your local 
process are closed. See also NCB_CANCEL 

NCB SEND 
This command sends the data located at buffer to the 

session partner defined using the local session number (Ian). 
If more than one NCB_SEND is pending, buffers are transmitted 
in a FIFO order. Message buffers can be between 0 and 65,535 
bytes long, with the length of the buffer passed in length. If 



Sec. 3.6 NetBIOS Command Summary 71 

the RCB _SEND cannot be completed the session is closed. See 
also NCB_RECEIVE, NCB_SEND _NO _ACK 

NCB SEND BROADCAST DATAGRAM - - -
This command sends a broadcast datagram to every 

station with an RCB_ RECEIVE_BROADCAST _DATAGRAM: 
outstanding. H the station transmitting the broadcast datagram 
also has an RCB _RECEIVE_BROADCAST_DATAGRAHoutstand
ing, it will receive its own transmission. Receipt of one 
broadcast datagram satisfied all outstanding 
RCB _RECEIVE_BROADCAST _DATAGRAM: commands (multiple 
commands are not queued). See also 
NCB RECEIVE BROADCAST DATAGRAM. - - -

NCB SEND DATAGRAM - -
This command sends a datagram to any unique name or 

group name on the network. The destination is shown in the 
r_name field. The source (your name table entry) is passed in 
the number field. See also NCB RECEIVE DATAGRAM. - -

NCB SEND NO ACK - --
This command works exactly like RCB _SEND, except that 

the recipient of the data is not required to transmit an acknowl
edgment back (this becomes an application responsibility). See 
also NCB SEND. 

NCB SESSION STATUS - -
This command is used to determine the status of all 

sessions for a local name (it can also be used to determine the 
status for all sessions for aIL local names). To return the status 
for all local names, the first character of the 1 name field must 
be an asterick (,*'). Normally, the I_name field will tell the 
local name you are interested. The space pointed to by buffer 



72 Chap. 3 Portability Using NetBIOS 

is used to store data, and its maximum size (shown in length) 
should be at least 4 bytes plus 36 times the maximum number 
of sessions you expect to be returned. The format of the 
returned data was described in Section 3.6. See also 
NCB STATUS. 

NCB STATUS 
This command returns the current status of a local or 

remote NetBIOS. To return the local status, the first byte of 
the r_name field must be an asterick ('*'). To return the 
status of a remote adapter, the r_ name field should contain the 
name of the adapter. The status information is returned to the 
memory location identified by buffer. The length of the 
buffer (designated in length) must be at least 60 for this 
command to succeed. H you want to receive all available 
information, the length of the buffer must be 60 plus 18 times 
the maximum number of names registered for the adapter. The 
structure of the returned information is shown in Code Box 
3.16. This command may not be available on non-ffiM versions 
of NetBIOS, or if available, the returned information may be 
different. See also NCB SESSION STATUS. - -

NCB TRACE 
This command activates and deactivates a trace of all 

Network Control Blocks processed by NetBIOS, including both 
transmits and receives. This command only available under 
DOS. The number field is used to determine the action of the 
command (0xFF = trace on, OxOO = local trace off, OxOI = 
local and all remote traces off). The field length is set to the 
length of your trace table (1024 bytes or larger) and buffer 
points to the start of the trace table. The trace table contains 
a 32 byte trace table header followed by by each trace entry. 
The exact format of the trace table is somewhat complex, and 



Sec. 3.6 NetBIOS Command Summary 

struct ncb_status 
{ 

char 
char 
char 
char 

char 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

adapter[6]; 
release; 
reserved 1; 
netbios_l; 

/* encoded adapter address */ 
/* NetBIOS version 1, 2, or 3 */ 

/* OxFF = Token Ring Adapter */ 
/* OxFE = PC Network Adapter */ 
/* NetBIOS version 1, software level */ 
/* NetBIOS version 2/3 */ 
/* bits 0-3 = software version; */ 
/* bits 4-7 = Ox1 */ 
/* for old parameters */ 
/* Ox2 for new parameters */ 

duration; /* Duration of rep period in minutes */ 
f received; /* Number of frames received */ 
f-sent; /* Number of frames transmitted *1 
f:rec_error; 1* Number of receive frames in error *1 
f aborted; 1* Number of transmissions aborted *1 
long packets_sent; 1* Number of successfully *1 

1* transmitted packets *1 
packets rec; 1* Number of successfully *1 

-1* received packets *1 
f sent error; 1* Number of transmit frames in error *1 
long - reserved 2; 
free ncb; 7* Number of free net control blocks *1 
max ncb; 1* Maximum number of net control blocks *1 

long 

73 

unsigned 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
struct 

max:ncb-poss; 1* Maximum number of net control blocks *1 
buf not avail; 1* Number of times a xmit buf was not avail *1 
max-datagram; 1* Maximum datagram size *1 

{ 
char 
char 
struct 
{ 

pend_ses; 1* Number of pending sessions *1 
max-pend; 1* Configured Max number of pending sessions *1 
max-pend-poss; 1* Maxinum number of pending sessions *1 
max-packet; 1* Maximum size of session data packet *1 
tot_names; 1* Number of names in the local name table *1 

name[16]; 
number; 

unsigned int 
unsigned int 
unsigned int 

type : 1; 
reserved 3 
status :-3; 

1* OxOO = unique, Ox01 = group *1 
4; 1* bit field *1 

1* OxO being registered *1 
1* Ox4 registered *1 
1* Ox5 deregistered *1 
1* Ox6 detected duplicate *1 
1* Ox7 detected dup, pending *1 

} bit; 
} name_table_entry[]; 

Code Box 3.15 NCB STATUS return structure. 



74 Chap. 3 Portability Using NetBIOS 

interested readers are referred to (IBM, 1988) for the details. 
See also NCB_STATUS, NCB_SESSION_STATUS. 

NCB UNLINK 
This command acts like a NOP for mM NetBIOS 

implementations. It is provided for compatibility reasons only. 

3.7 NetBIOS Return Code Summary 

This section lists all return codes which are valid for the NetBIOS. 
Return codes are returned in the rete ode field of the Network 
Control Block structure. H you are using the init _ netbios ( ) 
function defined earlier in this chapter, the return code is also placed 
in the global variable net_error. A return of OXOO is always a valid 
return without error. A return of anything other than OXOO indicates 
some type of error. The specific meaning of each possible return code 
is as follows: 

Code Name Description Action 

SUCCESS Operation completed normal- NODe. 
Iy. 

OxOl BUF _LENGTIi The buffer IeDgth passed in MoclliY the length. 
the Network Control Block 
was invalid. 

0x03 INVALID_COMMAND Invalid NetBIOS command. MoclliY c:ommand. 

0x0S TIME_our Command timed out. Check that a receive Is out-
standing for any send com-
mand. RetJy. 

BUFFER_SIZE Received data could not fit in NCB_RECEIVE and 
buffer. NCB_RECEIVE _ ANY - reis-

sue command to get remain-
ing data. Other commands, 
the data Is lost. 



Sec. 3.7 NetBIOS Return Code Summary 

0x07 

INVALID LSN 

0x09 

0x0A 

OxOB CANCELLED 

OxOD 

OxOE NAME FULL 

OxOF 

Oxll 

0xl2 

Ox13 

0x14 

0x15 

One or more data packets 

send using 
NCB_SEND_NO_ACK or 
NCB_CHAIN_SEND_NO_A 

CK was not properly received. 

The local session number (lsn) 
specified is not valid. 

The remote application pro
gram does not have any avail

able sessions remaining to 
establish a new session. 

The transmitting side closed 
the session (this is the normal 
return code in this case). 

Command was cancelled. 

Specified name is already in 

use. 

The name table is full or has 

exceeded the number defined 

at initialization (default = 17). 

The name was deregistered, 
but active sessions are out

standing. 

The local session table is full. 

The number of sessions can 
be modified at injtialization or 

using NCB_RESET. 

The remote node does not 
have an outstanding 
NCB USTEN command. 

The name table number is not 

valid. 

No response to NCB_CALL 
command. 

The name was not found, 
contains an 8Sterick C*') as 
the first charcter, or contains a 
0x0 as the first character. 

75 

Application-level error recov

elY is required. 

Use correct !sn. 

TIY again later. 

None. 

None. 

Use a different name. 

Delete a name. 

Close all sessions using this 
name. 

Close a session. 

Wait until an NCB _ USTEN is 

outstanding. 

Use a valid number. 

Check receiving application 
for proper operation. 

Use a valid name. 



76 

1In6 

1In7 

1In9 

OJ21 BUSY 

COMPLETED 

1Ia37 

Chap. 3 Portability Using NetBIOS 

The _ is already registered 

by a remote NetBIOS. 

The JIlIIIIe was already deleted. 

The BeII8ion was terminated 

abnormaUy. NormaUy this 

occurs when a sending com
mand times out while waiting 
for a receive command to be 

)I06ted. 

Two or more ideJdical names 
have been detected on the 
network. 

NetBIOS is bUB)' or out of 
local raources. 

Too many Netwolk Control 
BIoc:ks are outstandiog 

An invalid adapter number 
was specified. 

Tried to c:anc:el a command 
wbich bas already been com
pJeted. 

Attempt to c:aDl:el a c:ommand 

which can not be CIIIII:elIed. 

Another environment bas 
already defined the name. 

The enviJODJDeDt bas not been 

defined. 

The operating system raourc
es are exbausted. 

The maximum number of 
applic:ations defined at load 
time (NetBIOS 3.0 only) are 
already nIIIIIing (OS/2). 

The adapter bas no SAPs 

available for NetBIOS (OS/2). 

The requested raoun:e is not 
available (OS/2). 

Use a difl'erent name. 

Add the JIlIIIIe to the name 

table. 

Use a loDger timeout interval. 

Tty agatn later. 

Tty later or increase the 1IIUi

mum. 

Use 0x00 for primary, 0x01 for 
sec:oDdaJy (if instaIled). 

None. 

None. 

Use a difl'erent name. 

Rehylater. 

Wait until another applic:atioD 
terminates. 

Tty later. 

Use a smaJler number of re
sources. 



Sec. 3.7 NetBIOS Return Code Summary 77 

Ox39 INVAliD_NCB The Network Control Block Correct NCB address. 

address is invalid or its length 
will not fit in a segment For 

this error, the return value is 

placed in register AL but not 

in the Network Control Block 

itself. 

Ox3A RESET_INVAliD An NCB_RESET command Correct application driver. 

was issued while the adapter 

was processing a bardware 

interrupt (device driver OS/2 
interface using NetBIOS 3 

only). 

Ox3B INVAliD_OO_lD The device driver identifica- Correct 00 _lD value. 

tion was invalid (OS/2 using 

device driver interface only). 

0x3C LOCK]All.ED NetBIOS attempted to lock Try la1er. 

user storage (file locking) and 

lock failed. 

Ox3F 00_ OPEN]AlL A device driver open failure. Ensure thal NetBIOS is ini-
Either the device driver did tialized properly with ali re-

not function properly or the quired device drivers. 

NetBIOS device driver was 

not loaded. 

Ox40 OS2_ERROR OS _ 2 indicates an operating Issue NCB_RESET and try 
system error. again. 

Ox4E NEl'_STATUS_1 Network bardware failure, bits Issue NCB_RESET. 

12, 14, or 15 indicate failure. 

Ox4F NEl'_STATUS_2 Network bardware failure, bits Issue NCB_RESET. 
8 - 11 indicate failure. 

0xF6 CCB_ERROR Unexpected error on CCB Issue NCB_RESET. 

completion (low level protocol 
error). 

0xF7 OlR _lNIT _ERROR Error altempting to perform Issue NCB_RESET. 

DlR_INITlALlZE (OLC 
command). 

0x:F8 OlR_OPEN_ERROR Error altempting to perform Issue NCB_RESET. 
OlR _OPEN command 

0xF9 INfERNAL_ERROR NetBIOS support software Issue NCB_RESET. 

internal error. 



78 Chap. 3 Portability Using NetBIOS 

OxFA Adapter hardware error. Issue NCB_RESET. 

0xFB The NetBIOS code is either Load NetBIOS. 
not loaded or invalid. 

0xFC Error attempting a Issue NCB_RESET. 
DIR_OPEN_ADAPfER or 
DLC_OPEN_SAP. 

0xFD ADAPfER CLOSED The adapter was closed while Issue NCB_RESET. 
NetBIOS was executing. 

The application program ex- Close the adapter and reissue 

plicit1y opened the adapter the NetBIOS command 
while NetBIOS was not opera-
tional. 

3.8 Suggested Reading 

Glass, B. (1989), "Understanding NetBIOS," Byte, Vol. 14, no. 
1, (Jananuary), pp. 301-306. 

mM (1987), NetBIOS Application Development Guide, Research 
Triangle Park, NC, International Business Machine Corpora
tion. 

mM (1988), Local Area Network Technical Reference, Research 
Triangle Park, NC: International Business Machine Corpora
tion. 

Schwaderer, W. David (1988), C Programmer's Guide to 
NetBIOS, Indianapolis, IN: Howard W. Sams. 



4. Speed with OLe Programming 

When a token ring network adapter card is installed, the user 
modifies his/her config.sys file to install two new device drivers. 
DxmaOmod.sys is a token ring network interrupt arbitrator and 
dxmcOmod.sys is the adapter support device driver. These two drivers 
plus firmware on the adapter card itself provide full support for the 
IEEE 802.2 Logical Link Control (LLC) services, which are called 
Data Link Control (DLC) services by ffiM. The DLC support is 
normally available on any computer with a token ring network adapter 
installed, and requires a minimal amount of system RAM (less than 16 
Kbytes). DLC support provides the programmer with both connection 
oriented service (guaranteed delivery) and connectionless service 
(datagrams). The NetBIOS (and all higher services) translate user 
requests into appropriate DLC commands and use DLC for all actual 
network operations. 

Although DLC programs run fast, they are somewhat more 
difficult to program than NetBIOS programs. You may also find that 
DLC programs are less portable in the PC environment than NetBIOS 
(although they may actually be more portable to some wide area 
network environments). Using DLC services is very similar to using 
NetBIOS. Instead of a Net Control Block (NCB), the DLC interface 
uses a Command Control Block (CCB). As with the NCB, the CCB 

79 



80 Chap. 4 Speed with DLC Programming 

contains both the command and the pass parameters. The CCB is 
then executed using interrupt OxSC. You might wonder how the same 
interrupt (OxSC) can be used both for NetBIOS interrupts and for DLC 
programming? The answer is that the adapter support software looks 
at the first byte of the memory block that is passed to it. If the first 
byte is a OxOO or OxOl, it assumes that the block is a CCB and 
processes it accordingly. If the first byte is greater than Ox03, it 
assumes that the block is an NCB and passes the block on to NetBIOS 
for processing (Ox02 and Ox03 are reserved and return an error). 

In this chapter, we begin by studying the CCB in more detail. 
We then discuss addressing using the DLC interface, which is consider
ably different from the addressing we used with NetBIOS. We are 
then prepared to discuss adapter initialization, connectionless commu
nication, connection oriented communication, and adapter shutdown. 
Finally, we conclude the chapter with a summary of DLC commands 
and a description of return values. 

The following functions are defined in this chapter: 

init_ccb() Initialize a Command Control Block (CCB). 

int _adapter ( ) Interrupt the adapter and instruct it to 
execute a CCB. 

ini t _adapter ( ) Initialize the adapter to prepare it for 
communication. 

open_sap () Open a SAP (defined later) for communication. 

build_Ian_header ( ) Build a token ring network IAN 
header for use with connectionless DLC services. 

transmit _ ui _frame () Transmit a datagram oriented frame 
( data packet). 



Sec.4.1 DLC Command Control Block Structure 81 

receive _ dlc () Receive a datagram or connection oriented 
DLC frame. 

receive...,process() Interrupt handler for incoming DLC 
data frames. 

buffer_free ( ) Return an adapter buffer list to the buffer 
pool. 

close_sap() Close a SAP. 

open_station() Open a link access station for connection 
oriented communication using DLC. 

connect_station () Establish a connection. 

xmi t _ i_frame ( ) Transmit a connection oriented frame 
(data packet) using DLC. 

4.1 OLC Command Control Block Structure 

To execute DLC commands, a Command Control Block (CCB) 
is used. Code Box 4.1 shows the format for all CCBs. The fields 
within the structure have the following meanings: 

adapter: This field is set to OxOO if the primary adapter is to be 
used, or OX01 for the secondary adapter. Secondary adapters 
are only used on PCs which are acting as a gateway (or bridge) 
between networks. 

command: This field defines the command to be performed. 
Valid commands are shown in the dlc. h header file later in 



82 Chap. 4 Speed with DLC Programming 

this section, and are discussed in the remainder of this chapter. 
0xFF is permanently defined as an invalid command code. 

retcode: This command is set (by the adapter) to 0xFF while 
the command is pending. Upon completion, it is set to OxOO for 
uccess or an error number for failure. 

struct command_control_block 
{ 

}; 

char adapter; 
char command; 
char retcode; 
char work; 
void * queue; 
void *post; 
void *parameters; 

Code Box 4.1 Command control block structure definition. 

work: This field is a buffer for internal use by the adapter. 

queue: While processing, this field is used internally by the 
adapter. When the command is complete, this field may 
contain a pointer to a CCB queue (a queue of CCBs). This 
capability is used when sending DLC "I" frames and using the 
post field (as discussed next). 

post: This field contains a far pointer to an interrupt process
ing function to be called upon completion of the command. 
When your function is called, the address of the CCB block will 
be found in registers ES and BX and the rete ode field will be 
copied to the AL register. If the CCB indicates that a DLC "I" 
frame has been acknowledged, the queue field may point to 
the next CCB in a list of CCBs which have all been acknowl-



Sec.4.1 OLC Command Control Block Structure 83 

edged. This approach is used because one acknowledgment 
may acknowledge an entire series of "I" frames. 

parameters: Most DLC commands require additional parame
ters. If these parameters require four or fewer bytes, they are 
passed in this field. If they require more than four bytes, this 
field contains a far pointer to a buffer containing the additional 
parameters. 

The following listing shows the contents of the dIe. h header 
file. This header file contains the DLC commands which are available 
with the mM token ring network, our function prototypes, and some 
miscellaneous defines included to improve the clarity of function code. 

lIinclude "paramblk.h" 

/* DLC Related Commands */ 
IIdefine DIR INTERRUPT OxOO 
IIdefine DIR=OPEN_ADAPTER Ox03 
IIdefine DIR_CLOSE_ADAPTER Ox04 
IIdefine DIR_INITIALIZE Ox20 

IIdefine DLC_RESET Oxl4 
IIdefine DLC_OPEN_SAP Oxl5 
IIdefine DLC_CLOSE_SAP Ox16 
IIdefine DLC OPEN STATION Ox19 
IIdefine DLC=CLOSE_STATION OxlA 
IIdefine DLC_CONNECT_STATION OxlB 
IIdefine DLC_MODIFY OxIC 
IIdefine DLC_FLOW_CONTROL OxlD 
IIdefine DLC_STATISTICS OxlE 

IIdefine RECEIVE Ox28 
IIdefine RECEIVE_CANCEL Ox29 
IIdefine RECEIVE_MODIFY Ox2A 

IIdefine TRANSMIT_DIR_FRAME OxOA 
IIdefine TRANSMIT I FRAME OxOB 
IIdefine TRANSMIT-Ur FRAME OxOD 
IIdefine TRANSMIT:::XID_CMD OxOE 
IIdefine TRANSMIT XID RESP FINAL OxOF 
IIdefine TRANSMIT-XID-RESP-NOT FINAL OxlO 
IIdefine TRANSMIT=TEST_CMD- - Oxll 

IIdefine BUFFER FREE Ox27 
IIdefine BUFFEI(GET Ox26 

IIdefine PDT_TRACE_ON Ox24 
IIdefine PDT_TRACE_OFF Ox25 

/* define received data message types */ 



84 

'define NT_MAC 
'define NT_I 
'define NT UI 
'define NT-XID CP 
'define NT-XID-CRP 
'define NT-XID-RP 
'define NT:TBST_RP 
'define NT TBS~ BNF 
'define NT:O'l'BEii 

1* general defines for readability 
'define NO_ADAPTER 
'define INI~_PAILURB 
'define OPER_PAILURB 

'define WAI~ 
'define RO_WAI~ 

'define RO'.IumCEIVED 
'define OVERLOAD 
'define a.rHER_EBROR 

*1 

Chap. 4 Speed with DLC Programming 

OX02 
OXO' 
OX06 
OX08 
OxOA 
OXOC 
OxOC 
Ox12 
Ox14 

0 
1 
2 

0 
1 

1 
2 
3 

2 
6 

1* limitations *1 
'define DLC MAX SAP 
'define DLC-MAX-S~ATIORS 
'define woRK_AREA_SIZE ('8+ (36*DLC_MAX_SAP) + (6*DLC_MAX_S~~IONS» 

struct command control_block 
( 

cher adapter1 
char cOllllll&nd1 
char retcode1 
char work; 
void *queue1 
void *post; 
void *parameters1 

)1 

1* function prototypes *1 
void init ccb(struct command control block *ccb); 
void int_adapter(struct command_control_block *ccb, int wait); 
unsigned int init_adapter(void); 
unsigned int openf~~t sap, int resv_link); 
void *buf (unsigned int station_id, int number); 
void build lan eader(char destination[6], void *buffer); 
int tranBm1t_ui_frame(unsigned int station_id, unsigned int sap, 

int 
void interrupt 
unsigned int 
unsigned int 
unsigned int 

unsigned int 
int 

char destination [6] , unsigned int data_len, char *data); 
receive_dlc(unsigned int station_id)1 
receive-process(); 
buffer_free(unsigned int station_id, void *buffer)1 
close_sap(unsignedint station_id); 
open_station(unsigned int station_id, unsigned int sap, 

char destination[6])1 
connect_station(unsigned int station_id)1 
xmit_i_frama(unsigned int station_id, unsigned int sap, 
unsigned int data_len, char *data); 

In addition, a number of parameter structures will be used 
throughout these chapters. These structures are defined as follows 



Sec. 4.1 DLC Command Control Block Structure 85 

(and described fully as they are used during the remainder of the 
chapter): 

struct dir_initialize-parameters 
{ 

}; 

unsigned int 
unsigned int 

bring_ups; 
sram_address; 

char work[4); 

void (*adapter_error); 
void (*netw_status_error); 
void (*pc_error); 

/* Not normally used */ 
/* 0 will default to OxD800 for */ 
/* adapter 0, OxD400 for adapter 1 */ 

/* Work space */ 
/* --- Interrupt function pointers --- */ 
/* Adapter error handler */ 
/* Network error */ 
/* Operating system or PC hardware */ 

struct dir_open_adapter-parameters 
{ 

struct adapter-parms 
struct direct-parms 
struct dlc-parms 
struct ncb-parms 

*ap; 
*dp; 
*dlcp; 
*ncbp; 

/* pointer to adapter param table */ 
/* pointer to direct param table */ 
/* pointer to dlc param table */ 
/* pointer to NetBIOS param table */ 

}; 

struct adapter-parms 
{ 

}; 

unsigned int 
unsigned int 
char 
char 
char 
unsigned int 
unsigned int 
unsigned int 
unsigned char 
char 
unsigned int 
void 

struct direct-parms 
{ 

}; 

unsigned int 
unsigned int 
void 
void 
void 
void 
void 
unsigned int 
unsigned int 

struct dlc-parms 
{ 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

unsigned char 

/* used by dir_open_adapter command */ 

open_error_code; 
open_options; 
node address[6); 
group_address[4); 
functional addr[4); 
number_rcv=buffers; 
rcv buffer len; 
dhb=buffer=length; 
data hold buffers; 
reserved;
open_lock; 
*product_id_address; 

dir buf size; 
dir~ooI_blocks; 
*dir-pool_address; 
(*adpt_chk_exit); 
(*netw_status_exit); 
(*pc_error_exit); 
*work_addr; 
work_len_req; 
work_len_act; 

dlc_max_sap; 
dlc_max_stations; 
dlc_max_gsap; 
dlc_max_9IDem; 
dlc_t1_tick_one; 

dlc_t2_tick_one; 

/* return - set by adapter */ 
/* 16 bit flags */ 
/* this node's address */ 
/* set group address */ 
/* set functional address */ 
/* number of receive buffers */ 
/* length of each receive buffer */ 
/* length of transmit buffers */ 
/* number of transmit buffers */ 

/* protection code */ 
/* Address of 18 byte product ID */ 

/* size of direct buffers */ 
/* length of buffers in segments * / 
/* location of buffer pool */ 
/* adapter error interrupt hndlr */ 
/* network status err into hndlr */ 
/* OS or PC hdwr err int hndlr */ 
/* adapter work area */ 
/* requested work area size */ 
/* reqUired work area size */ 

/* maximum number of SAPs * / 
/* maximum number of stations */ 
/* maximum number of group SAPS */ 
/* maximum group members per SAP */ 
/* dlc timer t1 interval */ 
/* group 1 */ 
/* dlc timer t2 int, group 1 */ 



86 Chap. 4 Speed with OLe Programming 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 

struct nCbJ>arms 
{ 

*/ 

}; 

char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

unsigned char 
char 
unsigned char 
unsigned char 
char 
unsigned char 
unsigned char 
unsigned char 
char 
unsigned char 
unsigned int 
void 
unsigned char 
unsigned char 

dlc_ti_tick_one; 
dlc_tl_tick_two; 
dlc t2 tick two; 
dlc=ti=tick=two; 

work areal[4]; 
ncb timer t1; 
ncb-timer-t2; 
ncb-timer-ti; 
ncb-maxout; 
nCb-maxin; 
nCb=maxout_incr; 

ncb_max_retry; 
work area2[4]; 
nCb_accessJ>ri; 
ncb stations; 
work area3[19]; 
ncb max names; 
ncb-max; 
ncb-max sessions; 
work_area4[2]; 
ncb_options; 
nCbJ>ool_length; 
*ncbJ>ool_address; 
ncb transmit timeout; 
ncb=transmit=count; 

struct dlc_open_sapJ>arms 
{ 

}; 

unsigned int 
unsigned int 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned int 
unsigned char 
unsigned char 

unsigned char 

char 
unsigned char 
void 

void 

unsigned int 
unsigned int 
void 

struct bufferJ>arms 
{ 

station id; 
user_stat_value; 

timer tl; 
timer-t2; 
timer=ti; 
maxout; 
maxin; 
maxout_incr; 
max_retry_cnt; 
max members; 
max-i field; 
sap=value; 
optionsJ>riority; 

station_count; 

reservedl[2]; 
group_count; 
*group_list; 

dlc buf size; 
dlc~ool_len; 
*dlcJ>ool_addr; 

/* dlc timer ti int, group 1 */ 
/* dlc timer tl int, group 2 */ 
/* dlc timer t2 int, group 2 */ 
/* dlc timer ti int, group 2 */ 

/* response timer value */ 
/* acknowledgment timer value */ 
/* inactivity timer */ 
/* transmit window size */ 
/* receive window size */ 
/* dynamic window increment value 

/* N2 value */ 

/* ring access priority */ 
/* maximum netbios link stations */ 

/* maximum entries in name table */ 
/* maximum outstanding NCBs */ 
/* maximum number of sessions */ 

/* various bit options */ 
/* length of ncb buffer pool */ 
/* start of ncb buffer pool */ 
/* time to wait for one query */ 
/* max times to transmit queries */ 

/* SAP station ID */ 
/* User value passed back on */ 
/* DLC status */ 
/* Tl response timer value */ 
/* T2 ack timer value */ 
/* ti inactivity timer value */ 
/* Maximum xmits w/o receive ack */ 
/* Maximum rcvs w/o transmit ack */ 
/* dyn window increment value */ 
/* N2 value */ 
/* Maximum SAPs for a group SAP */ 
/* Max rcved information field */ 
/* SAP value to be assigned */ 
/* Sap options and ring */ 
/* access priority */ 
/* Number of link access */ 
/* stations to reserve */ 

/* Length of data in group_list */ 
/* Far pointer to address of */ 
/* group SAP values */ 
/* Function pointer to status */ 
/* change interrupt routine */ 
/* Size of each dlc buffer */ 
/* Size of entire dlc buf pool */ 
/* Far pointer to dlc buf pool */ 



Sec. 4.1 DLC Command Control Block Structure 

}; 

unsigned int 
unsigned int 
unsigned char 
char 
void 

station id; 
buffer left; 
buffer:::get; 
reserved1[3]; 
*first_buffer; 

struct transmit-parms 
{ 

}; 

unsigned int 
unsigned char 
unsigned char 
void 
void 
unsigned int 
unsigned int 
void 
void 

station id; 
transmit_fs; 
rsap; 
*xmit_queue_one; 
*xmit_queue_two; 
buffer len one; 
buffer-len-two; 
*buffer one; 
*buffer:::two; 

struct receive_buffer_type 
{ 

}; 

struct 
{ 

}; 

struct 
{ 

}; 

struct 
{ 

}; 

unsigned int 
char 

data_length; 
*data; 

receive_buffer_type struct 

receive-parms 

unsigned int station_id; 
unsigned int user_length; 
void * received_data; 
void *first_buffer; 
unsigned char options; 

dlc_open_station-parms 

unsigned int sap_station_id; 
unsigned int link_station_id; 
unsigned char timer_tl; 
unsigned char timer_t2; 
unsigned char timer_ti; 
unsigned char maxout; 
unsigned char maxin; 
unsigned char maxout_incr; 
unsigned char max_retry_cnt; 
unsigned char rsap_value; 
unsigned int max_i_field; 
unsigned char access-priority; 
char reserved1; 
void *destination; 

dlc_connect_station-parms 

unsigned int station_id; 
char reserved[2]; 
void *routing_addr; 

87 

/* SAP station id *1 
1* number of buffs left in pool * / 
1* number of buffers to get *1 

1* addr of first buff obtained *1 

1* station sending data *1 
1* returned FS field *1 
1* remote SAP value */ 
1* address of the 1st xmit queue *1 
/* address of the 2nd xmit queue *1 
/* length of 1st xmit buffer *1 
1* length of 2nd xmit buffer *1 
1* address of 1st buffer *1 
1* address of 2nd buffer *1 

1* station receiving data *1 
/* length of user data in buffer * I 
1* user exit for received data *1 
1* pointer to first buffer *1 
1* receive options *1 

1* SAP station id *1 
1* link station id (Oxnnss) *1 
1* response timer value */ 
/* acknowledgment timer value */ 
1* inactivity timer value *1 
1* max xmits w/o an ack *1 
/* max receives w/o an xmit ack *1 
1* dynamic wind increment value * I 
1* N2 value *1 
1* remote SAP value */ 
1* max received info field *1 
1* ring access priority *1 

1* pointer to remote address *1 

1* link stat ID to be connected *1 

1* pnter to 18 bytes of rte info * I 



88 

ltinclude 
ltinclude 

<string.h> 
"dlc.h" 

Chap. 4 Speed with OLe Programming 

1*******·********·****************************·******************** 
* init_ccb - clear and initialize command control block 
* 
* Parameters: 
* ccb (in/out) - command control block to be cleared 
* * Notes: 
* This code sets the network adapter number to 0 (primary) 
* 
* History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

void 
{ 

} 

init_ccb(struct command_contro1_block *ccb) 

memset(ccb, 0, sizeof(struct command_control_block»; 

Code Box 4.2 ini t _ ccb () function definition. 

In addition, it will simplify the remainder of our examples if we 
define two functions at this point. init_ccb() (Code Box 4.2) 
initializes a CCB, which simply involves clearing the CCB. 
int_adapter() (Code Box 4.3) performs an interrupt ODC using 
the passed address of a CCB. int _adapter () is passed both the 
address of your ccb and a flag which is set to either WAIT or 
NO_WAIT based on whether or not you want the function to wait for 
command completion prior to returning control to your program. As 
with int _ netbios ( ), int _adapter () sets a global variable 
net_error equal to the return value in the ccb on return. You 
should note that this value will only be valid if the WAIT option was 
selected. 

4.2 AddreSSing While Using OLe 

Recall from our discussion of NetBIOS addressing that every mM 
token ring network adapter is identified by a unique 6 byte number (12 
hexadecimal digits), which NetBIOS calls the permanent node name. 
These six bytes are assigned by the manufacturer and are permanently 



Sec. 4.2 Addressing While Using DLe 89 

Itinclude 
Itinclude 

<dos.h> 
"dlc.h" 

extern int 

/********************************************************* •••••• *** 
• int_adapter - interrupt adapter with command control block 
* 
* • 
* 
* 
* • 
• 
* 
* 
* 
* 
* • 
* 

Parameters: 

Global: 

Note: 

ccb (in/out) - initialized command control block 
wait (in) - flag set to WAIT or NO_WAIT 

_ES - ES register 
_BX - BX register 
net_error - set to command return code 

net error will only be set to a valid value if the WAIT option 
is used. If the NO WAIT option is used, the ccb.retcode must 
be checked and net_error set by the calling program. 

• History: 
• Original code by William H. Roetzheim 
***.*.** •••• *.* •• *** •••••••• **.**** ••• * •• *.* •••••• *.******************/ 

void 
{ 

int_adapter(struct command_control_block *ccb, int wait) 

_ES = FP_SEG(ccb); 
_BX = FP_OFF(ccb); 
geninterrupt(Ox5C); 
if (wait == WAIT) 
{ 

while (ccb.retcode 
} 
net_error = ccb.retcode; 

OxFF); 

Code Box 4.3 int _adapter () function definition. 



90 Chap. 4 Speed with DLC Programming 

burned into the adapter card's ROM, although it is possible to override 
this number at boot time with a locally assigned 6-byte number. 
NetBIOS simplified addressing by allowing us to register symbolic 
names over the network which could then be used for addressing 
instead of the 6-byte number. DLC programming requires that you 
know your own 6 byte permanent node name and the 6 byte permanent 
node name of every adapter you wish to communicate with. It is this 
address which is used over the LAN to identify which adapter should 
read a packet of information. You use the permanent node names 
either when you establish a connection (connection oriented service) 
or when you build your own LAN header (datagram-oriented service). 
In most environments, this information is simply read (by an operator) 
from the literature included with each adapter, then entered into a 
table for use by your software. When an adapter is changed or new 
users are added, the table is updated. It is also possible to implement 
a protocol to transmit this information over the network (as is done by 
NetBIOS), but this is beyond the scope of this book. 

Within the adapter, DLC programming requires that you use 
one or more protocol engines called service access points, or SAPs. 
SAPs contain data link level protocol capabilities, including windows, 
timeouts, media access, etc. SAPs can be initialized to receive all 
frames (packets) addressed to this adapter, only Media Access Control 
(MAC) frames, or only non-MAC frames. MAC frames are used for 
direct communication (by-passing DLC) as covered in the next chapter. 
Non-MAC frames are DLC and NetBIOS frames. 

When you open a SAP, a SAP number is returned to you for 
use during communications. Each adapter supports up to 255 different 
SAPs, although the actual maximum is set when the adapter is 
initialized and is normally closer to 2 user defined SAPs (Plus the 3 
just mentioned). Within DLC programming, SAPs are used for 
connectionless communication. 



Sec. 4.2 Addressing While Using DLe 91 

As with NetBIOS names, SAPs can be either unique (individu
al) or group. A unique SAP number is always even while a group SAP 
number is always odd. 

U you are using DLC's connection-oriented protocols, you need 
to establish a connection between you and another adapter. This 
connection is called a link access point, and is assigned as a connection 
over a SAP. When you open the connection, the link access point 
number is provided to you by the adapter for use during subsequent 
communications. Each adapter can support up to 255 simultaneous 
link access points (connections), although the actual number supported 
is established when the adapter is initialized. These link access points 
can be distributed among your available SAPs however you chose. For 
example, you could have 255 link access points assigned to a single 
SAP, or you could have 1 link access point assigned to each of 255 
SAPs. 

The SAP number and, optionally, a link access point number 
within the SAP are combined and called the Station ID. The first byte 
of this two byte number is the SAP number, the second byte is the link 
access point number. SAPs alone would be represented as a number 
of the form OXSSOO where SS was replaced with the SAP number and 
second byte was set to O. Unk: access points are represented as 
OXSSLL, where SS is the SAP number and LL is the link access point 
number. Station IDs are used extensively in DLC programming. 

When the token ring adapter is initialized, two SAPs are 
automatically opened: 

• OXOO is automatically opened and provides the capability 
to respond to remote nodes when no other SAPs have 
been opened. This SAP responds to only XID and Test 
Command frames ( discussed later). 

• OxFF is a group SAP with all individual open SAPs as 
members. Sending frames to an adapters group SAP 



92 Chap. 4 Speed with DLe Programming 

(0xFF) will ensure that the frames are passed to each of 
the individual SAPs that are opened. 

In addition, three station IDs are automatically established 
when the adapter is open: 

• OXOOOO receives all frames not directed to other defined 
stations within this adapter. 

• OxOOOl receives just MAC frames not directed to other 
defined stations within this adapter. 

• OX0002 receives just non-MAC frames not directed to 
other defined stations within this adapter. 

Any of these three stations (OXOOOO - Ox0002) can be used to 
transmit MAC and non-MAC frames. You should also keep in mind 
that the ability to receive frames via a SAP does not imply that data is 
received. Some type of receive command must be initiated prior to 
receipt of any data via a SAP. 



Sec. 4.2 Addressing While Using OLe 

linclude 
,include 
'include 
linclude 

<string.h> 
<stdio.h> 
<dos.h> 
"dlc.h" 

1****************************************************************** 
* init_adapter - test for adapter presence and initialize adapter 
* Returns: 
* 0 for success, or 

NO ADAPTER 
INIT FAILURE 
OPEN:FAILURE 

* 
* 
* 

if adapter or dlc driver not installed 
if error during initialization 
if error during adapter open 

* Notes: 
* If INIT FAILURE or OPEN FAILURE is returned, net error can 
* be checked for the specIfic error return code. -
* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 
unsigned int init_adapter() 
{ 

unsigned long 
struct command control block 
struct dir_initialize-parameters 
struct dir_open_adapter-parameters 
struct adapter-parms 
struct direct-parms 
struct dlc-parms 

int vector; 
ccb; 
init-parm; 
parm; 
adapter; 
direct; 
dlc; 

/***** start by testing for adapter installation *****/ 
/* is interrupt vector initialized? */ 
int_vector • (unsigned longl getvect(Ox5C); 
if «int_vector _. OxOOOO) I (int_vector·- OxFOOO» 
{ 

} 

/* no interrupt handler installed */ 
return NO_ADAPTER; 

init ccb(&ccb); 
ccb.command • DIR INTERRUPT; 
ccb.retcode - OxFO; /* invalid code */ 
int_adapter(&ccb, WAIT); 
if (ccb.retcode -- OxFO) return NO ADAPTER; 
/* adapter and driver are installed */ 

/* now initialize adapter */ 
init_ccb(&ccb); 
ccb.command - DIR INITIALIZE; 
memset(&init-parm7o, sizeof(struct dir_initialize-parameters»; 
ccb.parameters • &init-parm; 
int_adapter(&ccb, WAIT); 
if (ccb.retcode 1= OxOO) return INIT_FAILURE; 

***** continued next code box 

Code Box 4.4 ini t _adapter () function definition. 

93 



94 Chap. 4 Speed with DLC Programming 

***** Continued from previous code box 

/* now open the adapter */ 
init ccb(&ccb); 
ccb.command = OIR OPEN ADAPTER; 
ccb.parameters = &parm; 
parm.ap = &adapter; 
parm.dp = &direct; 
parm.dlcp = &dlc; 
parm.ncbp = NULL; /* use default for NetBIOS */ 
mamset(&adapter, 0, sizeof(struct adapter-parms»; 
mamset(&direct, 0, sizeof(struct direct_parms»; 
mamset(&dlc, 0, sizeof(struct dlc-parms»; 
dlc.dlc_max_sap = OLC_MAX_SAP; 
dlc.dlc max stations = OLC MAX STATIONS; 
int_adapter(&ccb, WAIT); - -
if (ccb.retcode 1= OxOO) return OPEN FAILURE; 
return 0; -

Code Box 4.5 init_adapter() function definition continued. 

4.3 Adapter Initialization 

Code Boxes 4.4 and 4.5 show the code for our function, 
ini t _adapter ( ), which tests for the adapters presence, ensures that 
the drivers are loaded, initializes the adapter, and opens the adapter. 
The function operates as follows: 

• We begin by testing that the interrupt vectors at OxSC 
are properly initialized. This will ensure that the drivers 
are installed. 

• We then interrupt the adapter with a nap (no operation) 
type instruction after first placing an invalid return code 
into the rete ode field of our eeb structure. If the 
returned eeb still has the same invalid return code, we 
know that the adapter is not installed (or responding) or 
that there is some other problem with the driver at 
OxSC. If the return code is valid, we know that the 
adapter and driver appear to be installed and working 
properly. 



Sec. 4.3 Adapter Initialization 95 

• We then initialize the adapter. This command resets all 
adapter tables and buffers and forces the adapter to run 
the bring-up tests. You should note that this command 
will cause any outstanding eebs to be lost. The 
OIR _INITIALIZE command is covered in more depth 
later in this section. 

• Finally, we open the adapter with the 
OIR OPEN ADAPTER command. This command makes 
the adapter ready for normal network communication 
and sets adapter parameters and limitations. This 
command is also covered in more depth later in this 
section. 

The structure fields discussed in the remainder of this section 
are defined in the paramblk. h include file which was listed earlier 
in this chapter. 

4.3.1 OIR INITIALIZE command 

When using OIR_INITIALIZE, the parameters field of the eeb 
must be set equal to the address of a dir_initialize-para
meters structure. The contents of dir _ initialize -parameters 
can be set to zero and the adapter will use default values for all fields. 
The sample code sets all parameters to zero ( default). The fields 
within the dir _ initialize -parameters structure have the 
following meanings: 

• bring_ups: This field should be initialized to zero. 
If the adapter detects an error during initialization, it 
will return a return code (in the CCBs rete ode field) 
of OX07 and will put an amplifying error description in 



96 Chap. 4 Speed with DLC Programming 

this field for use by your application. These ''bring-up 
errors" are listed at the end of this chapter. 

• sram _address: This field contains the segment where 
the adapter shared RAM should be located. H the field 
is zero, the default values of 0xD800 for the primary 
adapter or 0xD400 for the secondary adapter. H you 
select a different value, you must ensure that the address 
is on an even boundary of the adapter shared RAM size 
(e.g., for an adapter with 16 Kbytes of shared RAM, the 
segment must be on a 16K memory boundary). 

• adptr _ chk _ exit: This field contains a far pointer to 
a function which the adapter should call whenever it 
encounters an adapter hardware failure. This address is 
stored in the adapter for use until the adapter is 
reinitialized or the value is changed by your application. 
A value of zero means that no error handler is installed 
for this type of error. 

• netw_status_exit: This field is identical to 
adptr _ chk _ exit, except that it is called whenever a 
network error is encountered. 

• pc_error _ exit: This field is identical to 
adptr _ chk _ exit (above), except that it is called 
whenever an operating system or PC hardware failure is 
encountered. 

When using this command, the parameters field of the CCB 
structure must be initialized to point to a 



Sec. 4.3 Adapter Initialization 97 

dir _open_adapter yarameters structure. This structure is used 
for double indirect address, containing four far pointers to other 
structures: 

1. adapteryanna: 
parameters. 

Contains adapter initialization 

2. direct yanna: Contains direct interface initialization 
parameters. We discuss the adapter's direct interface in 
the next chapter. 

3. dIc yanna: Contains DLC interface initialization 
parameters. 

4. ncbyanna: Contains NetBIOS interface initialization 
parameters. 

The first three pointers must be initialized to point to valid 
structures. Null pointers (zero) are not accepted. The last pointer, 
ncb yanna can be set to NULL to instruct the adapter to use default 
values for NetBIOS. The contents of the three structures can be 
initialized to zeros, which will instruct the adapter to use the default 
values for each class of initialization. The sample code sets most of 
these parameters to zero (default). 

The adapter yanna structure contains the following fields 
which you can set, if desired: 

• open_error_code: This field is used to return (to 
your application) the adapter error code upon opening. 
H the CCB retcode field is OX07, you should check this 
field to determine the specific problem. The error codes 
are documented at the end of this chapter. 



98 

• 

• 

• 

• 

• 

Chap. 4 Speed with DLC Programming 

open_options: This field contains bit fields which 
are used to turn on (or off) varous options. 1 indicates 
on, 0 indicates off. 0 is the default (and usual) value for 
each field. The only bit field you will probably be 
interested in is bit 9. If this bit is set to 1 and the 
DIR_OPEN_ADAPTER command is called, the fields in 
the adapter...,parDlS structure will be set to their 
current values (i.e. to the values the adapter is currently 
using). Other bit field meanings are documented in 
IBM (1988). 

node_address: If the NODE_ADDRESS parameter 
was provided by the user when the adapter support 
software was loaded, this field is strictly used to return 
the current adapter node address to you. If the 
NODE_ADDRESS parameter was not specified, this field 
may be used to override the default (hardware) adapter 
NODE ADDRESS. If the field is all zeros, the hardware 
address will be used and returned in this field. 

group_address: Sets the adapter's group address for 
receipt of group messages. Zero means the adapter 
belongs to no groups. 

funetional_addr: Sets the adapter's functional 
address. Zero means the adapter belongs to no func
tional group. Functional addresses are discussed later. 

number_rev _ buf fers: If this field is less than 2, the 
adapter will only successfully open if 8 receive buffers 
are available. If you wish to run with less than 8 buffers, 
you must set the required number of buffers in this field. 



Sec. 4.3 Adapter Initialization 99 

• rev_buffer_len: Each receive buffer uses 8 bytes 
for overhead and stores data in the remaining space. 
The default receive buffer size (used if this field is zero) 
is 112 bytes, or 104 bytes of data. This field can change 
the buffer size to a value between 96 and 2048, although 
the new value must be a multiple of 8. Although 
received data which overflows a buffer will be chained, 
your application performance can be improved if you 
match the receive buffer size to your expected packet 
(message) size. 

• dhb_buffer_length: The length of each transmit 
buffer. The data space within the buffer is equal to the 
buffer length minus 6 bytes overhead. The default 
(obtained using zero for this field) is 600 bytes (594 
bytes of data). The maximum size available for the 
original token ring network adapters was 2048. H all 
adapter cards on the network are the newer models, the 
maximum size is 4464 at 4 Mbps or 17960 at 16 Mbps. 

• data hold buffers: The number of transmit 
buffers on the card. This number should be two or less 
to protect the integretity of your data. H this field is 
zero, the default value of one buffer is used. Transmis
sion efficiency will be improved somewhat by setting this 
value to two, but you will have less space available for 
receive buffers. 

• open_lock: This field allows the adapter to be 
protected in a multi-tasking DOS environment. H this 
field is set to anything other than zero, the adapter is 
opened in a keyed mode where the key value is the 
number passed in this field. The adapter can then only 



100 Chap. 4 Speed with DLC Programming 

be closed (or initialized) by a program using the proper 
number in this field. 

• product id address: This field should always be 
initialized to all zeros. 

The direct J>arms structure contains the following fields 
which you can set, if desired: 

• dir_buf_size: The size of buffers in the direct 
buffer pool. The number must be at least 80 bytes and 
must be a multiple of 16. The default (zero) value is 
160. 

• dir ...,pool_blocks: This parameter is only used if 
the dir""pool_address field is nonzero. This field 
indicates the number of 16 byte blocks assigned as the 
direct station buffer pool, with a default of 256 (4096 
bytes). 

• dir...,POol_address: A far pointer to the address 
where the adapter should build a buffer pool. H this 
field is zero, the application program must build its own 
buffer pool using BUFFER_FREE and BUFFER_GET. 

• adpt _ chk _ exit: This field is identical to the same 
field described under DIR_INITIALIZE. 

• netw_status_exit: This field is identical to the 
same field described under DIR INITIALIZE. 

• pc_error _ exit: This field is identical to the same 
field described under DIR INITIALIZE. 



Sec. 4.3 Adapter Initialization 101 

• work _ addr: The adapter work area can be internal to 
the adapter or external to the adapter (in your applica
tion memory space). The amount of space required is 
48 plus (36 * DLC_MAX_SAPS) plus (6 * 
DLC_MAX_STATION). If you chose to use your applica
tion memory as the adapter work space, this field should 
point to the memory location to be used. 

• work_Ien_req: If this field is zero, the adapter's 
internal memory will be used. If you chose to identify 
the adapter work area, this field points to the buffer size 
of the space located at work _ addr. The space must be 
at least as large as the size identified. 

• work_len _act: This field contains the actual work 
area space which will be used by the adapter. If this 
number is greater than work_len _ req, the open fails 
and a return code of Ox12 is returned. 

The dlc --'parms structure contains the following fields which 
you can set, if desired: 

• dlc_lDaX_sap: The maximum number of simulta
neously opened SAPs. If NetBIOS is installed, it uses a 
SAP which is not counted in this total. The default is 
two, the maximum is 126. 

• dlc_lDaX_stations: The maximum number of 
simultaneously opened link stations. The default is 6, 
the maximum is 255. 



102 

• 

• 

• 

• 

• 

• 

Chap. 4 Speed with DLC Programming 

dIc_DlaX_9sap: The maximum number of simulta
neously open group SAPs. The default is zero, the 
maximum is 126. 

dIc_DlaX_gmem: The maximum number of SAPs that 
can be assigned to any given group. The default is zero, 
the maximum is 127. 

dIc tl tick one: The number of 40-millisecond - - -
intervals between timer ticks for the Tl timer. The Tl 
timer is the response timer. The default is 5 (200 
milliseconds). 

dIc _ t2 _tick_one: The number of 40-millisecond 
intervals between timer T2 ticks. The T2 timer is the 
receiver acknowledgment timer. The default is one (40 
milliseconds). 

dIc _ ti _tick_one: The number of 40 millisecond 
intervals between timer Ti ticks. The Ti timer is the 
inactivity timer. The default is 25 (1 second). 

dIc _ tl_ tick_two: Each of the three timers has a 
long value associated with it. The default for this field 
is 25 40-millisecond ticks (1 second). 

• dIc _ t2 -'-tick_two: The default for this field is 10 
40-millisecond ticks (400 milliseconds). 

• dIc _ ti _tick_two: The default for this field is 125 
40-millisecond ticks (5 seconds). 



Sec. 4.4 Connectionless Communication Usmg DLC 103 

After the adapter is successfully opened, you can communicate 
using OLe in either a connectionless or connection-oriented mode. 
Recall that connectionless communication uses the SAPs while 
connection oriented communication uses link stations. We will begin 
by discussing OLe communication using connectionless protocols. 

4.4 Connectionless Communication Using OLC 

In this section we will describe how to use the token ring adapter to 
perform datagram communication at the OLe level. The steps 
involved are as follows: 

1. Open a service access point. SAPs were discussed fully 
in section 4.2. This SAP is a protocol engine which can 
be used for OLe communication. Both the sending 
adapter and the receiving adapter must open a SAP on 
their token ring adapter cards. The SAPs can be (and 
often are) the same number for both the sending 
adapter and the receiving adapter. If your application 
will be the only application running on both the sending 
and receiving computers, you can use one of the stan
dard SAPs if desired (see Section 4.2). In general, it is 
best to designate a specific SAP number to support your 
application over the network. The process of opening a 
SAP is covered in Section 4.4.1. 

2. Build a LAN header. As shown in Figure 3.1, the LAN 
header is one of the most outermost layers of a frame 
on the network. This header is used to identify the 
destination adapter. When communicating at the 
datagram level, your application must build the LAN 
header. The process of building the LAN header is cov
ered in Section 4.4.2. 



104 

AC 
1 byte 

FC 
1 byte 

Dest. Addr. 
6 bytes 

Src. Addr. 
6 bytes 

Routing info. 
0-18 bytes 

DSAP 
1 byte 

SSAP 
1 byte 

Control 
2 bytes 

Data bytes 

Chap. 4 Speed with DLC Programming 

LAN 
header 

OLe 
header 

Fig. 3.1 Frame header 
layering. 

3. Transmit datagrams using DLC. Data packets are then 
transmitted over the network. Your applications are 
responsible for ordering of data between packets, ac
knowledging packets, and so on. The token ring network 
makes a "best effort" to deliver the packet in an error 
free condition. In addition, the circular nature of the to
ken ring allow your adapter to determine if the packet 
was successfully removed from the network by an 
adapter (hopefully, the destination adapter). This is pos
sible because the receiving adapter sets a specified bit in 



Sec. 4.4 Connectionless Communication Using OLC 105 

the data frame prior to sending it on its way (eventually 
back to you). This process is covered in Section 4.4.3. 

4. Receive datagrams from the network. We will see that 
the receive processing is identical whether the received 
data is datagram or connection oriented. To avoid 
losing new packets while processing an adapter, we will 
implement the receive processing as an interrupt-driven 
background process. This approach then also serves as 
an example for programmers wishing to implement other 
functions as background processes. This process is 
covered in Section 4.4.4. 

5. Received datagrams are temporarily stored in buffers 
under the control of the token ring adapter. We will 
want to remove the data from these buffers as quickly as 
possible, the tell the adapter that the buffer is free. This 
process is also covered in Section 4.4.4. 

4.4.1 Opening a SAP 

We normally open one SAP for each application using the token ring 
network. The SAP is can be opened with unique values for timers, 
window sizes (windows in the sense of protocol based acknowl
edgments), and so on. When you want to communicate with another 
application, you address the adapter card the process resides on and 
the SAP within the card. 

In general, opening a SAP is a relatively simple matter (see 
Code Box 4.6). This is because zero for any of the parameters 
automatically causes the adapter to open the SAP with a predefined 
default value. If you look at the fields defined in the 
dlc_open_sap-parms structure, you will find that most of them are 
identical to fields we saw when initializing or opening the adapter itself 



106 

#include 
#include 

<string.h> 
"dlc.h" 

Chap. 4 Speed with DLC Programming 

extern int 

1****************************************************************** 
* open_sap() - open a SAP on this adapter 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Global: 

Returns: 

Notes: 

sap (in) - SAP number to use 
resv_Iink (in) - number of link access stations to reserve 

The opened SAP station id on success, 0 for failure 

This routine assumes that your application only opens one SAP 
at a time. If you open multiple SAPs, you must modify the code 
to use malloc() to allocate the buffer space used by the SAP 
(and free the memory when the SAP is closed). 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

unsigned int 
{ 

open_sap(int sap, int resv_Iink) 

} 

struct 
struct 
static 

dlc_open_sap~s 
command control block 
char - -

init_ccb(6iccb) ; 
ccb.command D DLC OPEN SAP; 
ccb.parameters = iparma; 

parms; 
ccb; 
buffer[4096]; 1* SAP buffer space *1 

memset(6iparmB, 0, sizeof(struct dlc_open_sap~»; 
parma. sap_value = sap; 
parma. station_count = rasv_Iink; 
parma.dlc-POol_addr = buffer; 
int_adapter(6iccb, WAIT); 
if (net_error == 0) return parma.station_id; 
elsa return 0; 

Code Box 4.6 open_sap () function definition. 



Sec. 4.4 Connectionless Communication Using DLC 107 

(Section 4.3). When you open a SAP, the default is to use the values 
specified for the adapter when it was initialized or opened. However, 
you are allowed to override these values if they should be different for 
one specific SAP (perhaps to test two different protocols, for example). 

The code shown assumes that this application will open only 
one SAP at a time, so the SAP local buffer pool is initialized to a 
static storage area within this function. H you may open multiple SAPs 
simultaneously, this would obviously not work (multiple SAPS would 
be trying to use the same storage space). In this case, you would need 
to assign each SAP its own storage space, probably using malloe ( ) 
to obtain the memory. You must then keep track of the various 
memory pointers so that they can be freed up when you are done. 

After the SAP is successfully opened, a station_id is 
returned which can be used to identify this SAPs location for outgoing 
packets. Incoming packets will address this SAP by its SAP number, 
not its station id 

4.4.2 Building the LAN Header 

When communicating over the token ring network, DLC programming 
uses a non-MAC frame. Media access control frames are used for 
direct programming as discussed in the next chapter. The non-MAC 
frame, or packet, consists of three parts: 

1. A IAN header used by the token ring adapter to route 
the frame to its intended adapter. 

2. A DLC header used by the destination adapter to route 
the frame to the appropriate SAP (and link station when 
applicable). 

3. The data itself. 



108 Chap. 4 Speed with OLe Programming 

The DLC header is always provided by the adapter itself. The 
data portion of the frame is always provided by your application. The 
LAN header is provided by your application if you are using datagram
oriented DLC communication or is provided by the adapter if you are 
using connection oriented communication. Luckily, the LAN header 
can normally be built once, and then used for aU outgoing frames 
without change. 

The IAN header consists of five fields: 

1. A I-byte access control (AC) bit field, which specifies 
things like priority. 

2. A I-byte frame control (FC) bit field, which specifies 
things like the type of frame. 

3. A 6-byte destination address (the destination adapter 
number in hex). 

4. A 6-byte source address (your address). 

5. A 0 - 18 bytes routing information field specifying up to 
three intermediate gateway adapter addresses. 

Creating the header is not as complicated as this might lead you 
to believe. The first two bytes are automatically filled in by the 
adapter, so you don't need to worty about them. The 6-byte destina
tion address must be filled in by your application. The 6-byte source 
address is automatically filled in by your adapter, so you don't need to 
worty about this. Finally, the routing information field is required only 
if you will be sending data from one token ring network to another 
token ring network. 



Sec. 4.4 Connectionless Communication Using DLC 

/******************************************************** •••••••••• 
* build_lan_header() - build LAN header in a buffer 
* 
* Parameters: 
* destination (in) - six byte destination address 
* buffer (in/out) - address of buffer for LAN header 
* * History: 
* Original code by William H. Roetzheim 
••••• w •••••••••••••••••••• * ••••••••••••••••••••••• * ••• ****************/ 

void build_lan_header(char destination[61, char *buffer) 
{ 

int i; 

memset(buffer,O,14); 
/* byte 0 a Access Control: supplied by adapter */ 
/* byte 1 • Frame Control: supplied by adapter */ 
/* bytes 2-7 - destination address */ 
memcpy(&buffer[21, destination, 6); 
/* bytes 8-13 ~ source address: supplied by adapter */ 

Code Box 4. 7 build_Ian_header () function definition. 

109 

Code Box 4.7 shows sample code to build an IAN header. H 
you wish to go through a gateway to another token ring network, you 
must add the routing information. 

4.4.3 Transmitting Datagrams Using DLe 

For connectionless (datagram) DLC service, the transmit routine is 
called TRANSMIT _ UI _FRAME. This routine needs to know your 
station_id (assigned when you opened the SAP), the destination 
SAP number (which is normally the same as your local SAP number), 
and the destination address. In addition, a pointer to your data and an 
unsigned integer indicating the length of data in the buffer are 
required. The data length should be small enough to fit within one 
frame. 

The TRANSHIT_ UI_FRAME command takes two buffers (and 
buffer lengths) in its parameter table. The first buffer and length 
describes the LAN header. This buffer will normally be used for all 
outgoing transmissions to a given destination adapter. The second 



110 

/tinclude 
/linclude 

<string.h> 
"dlc.h" 

Chap. 4 Speed with OLe Programming 

1****************************************************************** 
* transmit_ui_frame() - transmit datagram at DLC level 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Global: 

Returns: 

station_id (in) - value returned from DLC_OPEN_SAP 
sap (in) - SAP number used for communication 
destination (in) - destination address 
data_len (in) - length of data in bytes 
data (in) data to transmit 

net_error is set by int_adapter() 

o for success, NOT RECEIVED if the frame was not copied from 
the ring, OVERLOAD-if the destination was overloaded and 
did not receive the frame, or else OTHER_ERROR 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 
int transmit_ui_frame(unsigned int station_id, unsigned int sap, 

char destination[61, unsigned int data_len, 
char *data) 

struct 
struct 
char 

command control block 
transmit-parms -

init ccb(&ccb); 
ccb.command = TRANSMIT UI FRAME; 
ccb.parameters = &parms; -

ccb; 
parms; 
lan_header[141; 

memset(parms, 0, sizeof(struct transmit-parms); 
parms.station_id = station_id; 
parms.rsap = sap; 
build_lan_header(destination, Ian header); 
parms.buffer len one = 14; 7* buffer 1 MUST be the Ian header */ 
parms.buffer-one-= Ian header; /* The adapter will take buffer 1, */ 
parms.buffer-len two =-data len; /* add the DLC header, then the data */ 
parms.buffer:two-= data; - /* and transmit the entire frame */ 
int_adapter(&ccb, WAIT); 
switch (parms.transmit_fs) 
{ 

} 

case OxCC: return 0; 
case OxOO: return NOT RECEIVED; 
case Ox88: return OVERLOAD; 

return OTHER_ERROR; 

Code Box 4.8 transmit ui _frame () function definition. 



Sec. 4.4 Connectionless Communication Using DLC 111 

buffer and length contains the actual data. Code Box 4.8 shows sample 
code allowing you to transmit a datagram frame. 

After the data is successfully transmitted, the adapter can look 
at the frame control field to determine if the frame was successfully 
removed from the ring. The three possibilities are 

1. The frame could have been received successful (at least 
as far as the hardware is concerned). The defined 
function then returns OxOO. 

2. The frame could have been removed successfully from 
the token ring network (by the destination adapter) but 
never successfully picked up by the destination software. 
This often indicates that the destination adapter is 
temporarily too busy or that all buffers are temporarily 
filled. This routine then returns OVERLOAD. It would 
also be logical to modify the function so that when this 
condition occurs, the function is called again 
(recursively) to retransmit the data. You might include 
a static variable indicating the level of recursion to 
prevent infinite recursion (and an eventual crash). 

3. The frame could have gone all the way around the 
network without ever being removed by the destination 
adapter. This normally indicates a hardware problem 
with the destination adapter (perhaps it is turned off) 
and is indicated by a return value of NOT_RECEIVED. 
You should not immediately try to recursively send the 
packet again if this error is returned (it probably won't 
do any good). 

Note that when you are sending multiple packets, you normally 
only need to change the value for data and data_len. The routine, 



112 Chap. 4 Speed with DLC Programming 

as written, will build a new IAN header for each outgoing data packet. 
As mentioned earlier, this is normally not necessary and you can 
modify the code to reflect this fact if performance is really critical. 

4.4.4 Receiving DLe Data Packets 

Under DLC, the identical receive function is used to receive all 
types of frames, including datagrams and connection oriented frames. 
The function receive _ dIc ( ) shown in Code Box 4.9 can be used to 
start the receive process running. This function takes as an argument 
a station _ id as returned by open_sap () for datagram service or 
open_station () for connection-oriented service (as we will see in 
Section 4.5). This function only needs to be called once for each SAP 
or link access station. It then sets up the interrupt vectors so that 
incoming frames will be received continuously until the SAP/station is 
closed or an error occurs. The interrupt processing routine that it sets 
up is called receive -process ( ). This is the routine which actually 
processes incoming frames upon demand. Because this interrupts the 
adapter with the NO_WAIT option, the proper return value is 0xFF, 
showing that the command is running after the return. 

Code Box 4.10 and Code Box 4.11 show our interrupt routine 
designed to handle incoming frames. This function is setup by 
receive _ dIc () and should never be directly called by your 
application. It is called (via interrupt) by the adapter itself when a 
frame is available. When the function is called, registers _ ES and _ BX 
point to the first receive buffer, while registers _ DS and _ SI point to 
the Command Control Block used during the call. 

Our goal is to move the received data from the adapter work 
area to user buffer space as quickly as possible so that the adapter is 
free to receive additional buffers. We have created a structure, called 
receive_buffer_type to identify received data available for user 
processing. This structure contains a pointer to the received data 
(stripped of header information) and the length of data at the address. 



Sec. 4.4 Connectionless Communication Using DLC 

Unclude 
Unclude 
Unclude 

<string.h> 
<stdlib.h> 
"dlc.h" 

extern int 

1****************************************************************** 
* receive_dlc() - receive dlc frame data 
* 
* 
* 
* 
* 
* 
* 

Parameters: 
station_id (in) - station id to receive frames from 

Global: 
net_error is set by int_adapter(). 

* Returns: 
* 0 for success, net_error for error 
* * Notes: 
* This function runs continuously (in background) to receive 
* data from the specified station_id. Data is placed in 
* receive buffer (a linked list of received buffers). The 
* command-terminates when the SAP or Link Station is closed. 
* 
* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

int 
{ 

receive_dlc(unsigned int station_id) 

struct 
struct 
void 

receive~ 
command_control_block 

init_ccb(&ccb); 
ccb.command = RECEIVE; 
ccb.parameters = &parma; 

parma; 
ccb; 
receive-process(); 

memset(&parms, 0, sizeof(struct receive-parma»; 
parms.station_id = station_id; 
parma. received_data = (*receive-process); 
int_adapter(&ccb, NO_WAIT); 
if (net_error == OxFF) return 0; 
else return net_error; 

Code Box 4.9 receive_dIe () function definition. 

113 



114 

linclude 
'include 
,include 
linclude 
'include 

<dos.h> 
<stdlib.h> 
<string.h> 
<stdio.h> 
"dlc.h" 

Chap. 4 Speed with DLC Programming 

1****************************************************************** 
* receive-process() - interrupt function to receive buffers 
* 
* 
* 
* 
* 

Global: 
rb - used to store incoming buffer 
_ES, _BX - pseudo-variables used by Turbo C for these registers 

* Returns: 
* None - interrupt function 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Notes: 
Data buffers pointed to by rb should be freed when you 
are done with them (use free() ). 

This function is automatically "called" by the adapter 
every time a frame is received. It is NOT called by 
your application. It is initialized by receive_dlc(), 
which IS called by your application. 

* History: 
* Original code by William H. Roetzheim 
***.******************************************************************1 

void 
{ 

interrupt 

char 

receive-process() 

* first_buffer; 
start; int 

int 
unsigned 
int 
char 
struct 
struct 
struct 

length; 
int station id; 

receive:index; 
*working_buffer; 

receive_buffer_type 
command control block 
receive~arms -

*rb-ptr; 
*ccb; 
*parms; 

/* find first available receive buffer */ 
/* N~: if multiple applications might use the same receive */ 
/* buffer linked list, the next three lines of code */ 
/* shOUld be protected by a semaphore or executed with */ 
/* interrupts turned off */ 
rb-ptr .. &rb; 
while (rb-ptr->next_buffer '''' NULL) rb-ptr - rb-ptr->next_buffer; 
rb-ptr->next_buffer .. malloc(sizeof(struct receIve_buffer_type»; 
• • • Continued in next code box 

Code Box 4.10 receiveJ>rocess() function definition. 



Sec. 4.4 Connectionless Communication Using DLC 115 

} 

/* ••• continued */ 
first_buffer ~ MK_FPLES, _BX); /* init first buffer to ES and BX */ 
ccb .. MK_FPLDS, _SI); /* points to CCB */ - -
parms = ccb->parameters; 
station_id .. parms->station_id; 

/* find length of DATA portion of buffers */ 
rb-ptr->data_length .. 0; 
for (working_buffer" first_buffer; working_buffer 1= NULL; 

working_buffer = *(char **) (&working_buffer[O]» 
{ 

rb-ptr->data_length += *(unsigned int *)(&working_buffer[6]); 
} 
rb-ptr->data .. malloc(rb-ptr->data_length); 

/* read data fram buffers into our application buffer */ 
receive index .. 0; 
for (working_buffer = first_buffer; working_buffer 1= NULL; 

working_buffer .. *(char **) (&working_buffer[O]» 
{ 

start .. *(unsigned int *) (&working_buffer[8]) + 
*(unsigned int *) (&working_buffer[lO]); 

length = *(unsigned int *) (&working_buffer[6]); 
memcpy(&rb-ptr->data[receive_indexl, &working_buffer[start], 

length); 
receive_index += length; 

Code Box 4.11 reeeive""process () function definition. 

Because we may receive more than one frame before the user 
processes the data, we will use a linked list of these structures. The 
last structure in the list is available for our use. The other members 
of the chain contain data received previously which has not been 
processed by the user. 

We begin by moving down the linked list to determine the last 
structure in the list, which is the one we will use. The final element 
is identified by the next_buffer field being NULL. We then "claim" 
this structure for our use by using malloe () to add a new structure 
to the list. If you are running in a multitasking environment, this 
process should be protected by semaphores (or in some other way) to 
avoid contention for the buffer structure. 

We then process all buffers containing the frame information. 
Received frames are stored in the adapters frame pool as a linked list 
of buffers. The exact format of each buffer will vary based on whether 



116 Chap. 4 Speed with DLe Programming 

this is the first buffer in the list or one of the subsequent buffers, but 
the important field are common to all buffers as follows: 

• The first four bytes are a pointer to the next buffer, or 
NULL for the final buffer. 

• Bytes 6 and 7 contain the length of the data portion of 
the buffer. 

• Bytes 8 and 9 contain the offset to an area of the buffer 
called the user space. 

• Bytes 10 and 11 contain the length of the user space. 

The data portion of the buffer begins at the end of the user 
space, or bytes 8 and 9 (the start of the user space) plus bytes 10 and 
11 (the length of the user space). 

We traverse the buffer list initially just to determine the total 
length of user data in the buffers. This number is then used to 
allocate memory for storage of the user data. We then traverse the 
buffer list again, copying the data from the buffers to the allocated 
memory block. Finally, we tell the adapter that its buffers are now 
available using the buffer_free ( ) command, shown in Code Box 
4.12. 

4.5 Connection Oriented Communication Using DLC 

Datagram communication involves communication between two 
applications using the SAPs on their token ring adapters. By their 
definition, datagram architectures provide no guarantees 

• That the data was successfully received. 



Sec. 4.5 Connection Oriented Communication Using DLC 

'include 
'include 

<string.h> 
"dlc.h" 

extern unsigned int 

1****************************************************************** 
* buffer_free() - free a buffer from the dlc buffer pool 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

Parameters: 

Global 

Returns: 

Notes: 

station_id (in) - station id of opened SAP to use 
buffer (in) - pointer to buffer to be freed 

net_error is set by int_adapter() 

o for success, net_error for failure 

The buffer size is determined when the SAP is opened. The 
default is 160 bytes. 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************1 

unsigned int buffer_free(unsigned int station_id, void *buffer) 
( 

struct command control block ccb; 
struct bufferjiarms parms; 

in it ccb(&ccb); 
ccb.command - BUFFER FREE; 
ccb.parameters ~ &parma; 

memset(&parms, 0, sizeof(struct buffer-parms»; 
parms.station_id = station_id; 
parms.first_buffer = buffer; 
int_adapter(&ccb, WAIT); 
return net_error; 

Code Box 4.12 buffer_free ( ) function definition. 

117 



118 

• 

• 
• 

Chap. 4 Speed with OLC Programming 

That groups of datagrams will be delivered in the order 
they were transmitted. 

That the received data is not corrupted. 

That flow control will prevent buffer overflow. 

The architecture of the token ring network improves the 
situation somewhat for all transmissions, including datagrams. 
Specifically, 

• The circular nature of the network allows you to confirm 
that a frame was successfully removed from the network. 

• The token passing protocol inherent in the token ring 
network assures that datagrams will be delivered in 
order (although there may be some gaps if frames were 
not successfully delivered). 

• Receipt of corrupted data can be ignored for all but the 
most critical applications because of the inherent 
reliability of the network, a media access control ap
proach which eliminates collisions, and built-in 
hardware-level error detection. The exceptions typically 
involve transaction-oriented systems where an error 
would be very damaging (e.g., bank money transfers), 
but these applications will almost certainly build in 
application-level error detection features no matter how 
reliable the underlying network was. 

In spite of these advantages, it is often easier to use a connec
tion-oriented approach to communications. Connections automatically 
provide you with complete assurance that the data was successfully 



Sec. 4.5 Connection Oriented Communication Using DLC 119 

received by the destination application. This is accomplished through 
the use of acknowledgements and automatic retransmissions as 
necessary. In addition, the protocols used for connection oriented 
service automatically provide you with flow control between your 
application and the destination application. 

Under DLC, connection oriented communication is accom
plished via link access stations. As discussed in Section 4.2, link access 
stations are an additional level of protocol which runs on top of the 
existing datagram service available through a SAP. In this section, we 
will 

• Describe how to open a link access station. 

• Describe how to open a connection over a link access 
station. 

• Describe how to transmit data over a connection. 

Note that we do not address receipt of data over a connection. 
This is because the function previously defined to receive datagram 
packets will operate, without change, for both receipt of datagram 
frames and connection-oriented frames. In fact, the receive buffers are 
identical for both forms of transmission. 

4.5.1 Opening a Link Access Station 

To perform connection oriented communication using DLC, you must 
first open a link access station. To open a DLC link access station, 
you use the open_station() function defined in Code Box 4.13. 
This function takes your local station Jd (as returned from your call to 
open_sap ( ), the SAP number you wish to communicate with at your 
destination, and your destination address. Remember, the destination 
address is 12 hexadecimal digits assigned by the manufacturer or set 



120 

#include 
#include 

<string.h> 
"dlc.h" 

Chap. 4 Speed with DLC Programming 

extern int 

1****************************************************************** 
* open_station() - open a link access station on this sap 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Parameters: 

Global: 

Returns: 

station_id (in) - value returned from OLC_OPEN_SAP 
sap (in) - SAP number used for communication 
destination (in) - destination address 

net_error is set by int_adapter(). 

The opened link station_id for success, 0 for failure 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

unsigned int open_station(unsigned int station_id, unsigned int sap, 

struct dlc_open_station-parms 
struct command_control_block 

init ccb(&ccb); 
ccb.command = OLC OPEN ST~ION; 
ccb.parameters = 'parma; 

parms; 
ccb; 

char destination[6]) 

memset(&parms, 0, sizeof(struct dlc_open_station-parms»; 
parms.sap_station_id = station_id; 
parms.rsap_value = sap; 
parms.destination = destination; 
int_adapter(&ccb, WAIT); 
if (net_error == 0) return parms.link_station_id; 
else return 0; 

Code Box 4.13 open_station () function definition. 



Sec. 4.5 Connection Oriented Communication Using OLC 121 

when the adapter is initialized, all stored in 6 bytes. Other parameters 
available allow you to tailor the protocol parameters to your applica
tion by setting values for timers and windows. One field you may 
decide to use is access....Priority. This field lets you assign 
different priorities to various applications using the token ring network. 
Higher-priority applications will be able to transmit data prior to low
priority applications. 

#include 
/tinclude 

extern int 

<string.h> 
"dlc.h" 

1****************************************************************** 
* connect_station() - connect to a link access station 
* * Parameters: 
* station_id (in) - value returned from DLC_OPEN_SAP 
* * Global: 
* net_error is set by int_adapter(). 
* * Returns: 
* 0 for success, net_error for failure 
* * History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

unSigned int 
{ 

connect_station(unsigned int station_id) 

} 

struct dlc_connect_station-parms 
struct command_control_block 

init_ccb(&ccb) ; 
ccb.command = DLC_CONNECT_STATION; 
ccb.parameters = &parma; 

parms; 
ccb; 

memset(&parms, 0, sizeof(struct dlc_connect_station-parms»; 
parma.sap_station_id = station_id; 
int_adapter(&ccb, WAIT); 
return net_error; 

Code Box 4.14 connect_station() function definition. 



122 Chap. 4 Speed with DLe Programming 

4.5.2 Establishing a Connection 

When you open a link access station, all processing is local (ie., within 
your adapter). You must still establish the connection between your 
application and the destination application prior to communicating. 
This process involves physically establishing connectivity over the 
network and allocating buffer space at both ends of the connection. 
To establish a connection, you use the connect_station ( ) function 
shown in Code Box 4.14. 

4.5.3 Transmitting a Connection-Oriented Data Packet 

After a connection is established, the xmi t _ i_frame ( ) function can 
be used to transmit data over the connection. Unlike the 
transmit_ui_frame() function, both the DLe header and the 
LAN header are automatically created by the adapter. You simply 
pass the local station }d, the remote SAP number, a pointer to the 
data to send (data only), and the length of the data. This function is 
defined in Code Box 4.15. 

4.6 Adapter Shutdown 

When you are done communicating, you should close your SAP. 
Dosing the SAP automatically closes all link access stations associated 
with the SAP. To close a SAP, you can use the close_sap ( ) 
function shown in Code Box 4.16. 

4.7 Summary of DLC Commands 

The following table presents a summary of all DLe commands. The 
columns have the following meanings: 



Sec. 4.7 Summary of OLC Commands 

'include 
'include 

<string.h> 
"dlc.h" 

extern int net error; 
1***************************************************************.** 
• xmit_i_frame() - transmit datagram with connection service 
• 
• 
• • 
• • 
• 
* • • 
• 
• 
• 

Parameters: 
station id (in) - value returned from DLe OPEN SAP 
sap (in) - SAP number - -
data_len (in) - length of data in bytes 
data (in) data to transmit 

Global: 
net_error is set by int_adapter() 

Returns: 
o for success, net_error for failure 

• History: 
• Original code by William H. Roetzheim 
********.*************************************************************/ 

int xmit_i_frame(unsigned int station_id, unsigned int sap, 
unsigned int data_len, char ·data) 

struct command control block 
struct transmit-parms-

init ccb(&ccb); 
ccb.command = TRANSMIT I FRAME; 
ccb.parameters = &parms;-

parms.station_id = station_id; 
parms.rsap = sap; 
parms.buffer_len_one = data_len; 
parms.buffer one = data; 
int_adapter(&ccb, WAIT); 
return net_error; 

ccb; 
parms; 

Code Box 4.15 xmit i_frame ( ) function definition. 

123 



124 Chap. 4 Speed with DLe Programming 

,include 
ltinclude 

<string.h> 
-dlc.h-

extern int 

1****************************************************************** 
* close_sap() - close a SAP on this adapter 
* * Parameters: 
* sap (in) - station id to close (returned from open_sap(» 
* * Returns: 
* 0 for success, net_error for failure 
* 
* 
* 
* 
* 
* 

Notes: 
This routine assumes that your application only opened one SAP 
at a time. If you opened multiple SAPs, you must modify the code 

to use free the buffer memory space allocated by open_sap(). 

* History: 
* Original code by William H. Roetzheim 
**********************************************************************/ 

unsigned int 
{ 

close_sap(unsigned int station_id) 

struct command_control_block ccb; 

init_ccb(&ccb); 
ccb.command = OLC CLOSE SAP; 
ccb.parameters = (void *) (unsigned long) station_id; 
int_adapter(&ccb, WAIT); 
return net_error; 

Code Box 4.16 cIose_sap{) function definition. 

1. Command The command name. These names are 
defined in dIc . h. These are the values to use for the 
Command Control Block's command field prior to 
calling the adapter for processing. 

2. Inputs The fields within the Command Control Block 
(and in associated parameter structures) which are used 
as input. 

3. Outputs The fields within the Command Control Block 
and associated parameter structures which are modified 
by the command during processing. 

4. Summary A brief description of the command function. 



Sec. 4.7 Summary of DLe Commands 125 

Command Inputs Outputs Summary 

BUFFER]REE station _Id (*) bufferJeft Returns one or more buff-
(Cb27) fiIIIt_buffer (*) en to tile SAP's buffer pooL 

BUFFER_GET station_1d (*) buffer_Jell Gets one or more buffers 
(0x26) buffer; fiIIIt _ buffer 110m tile SAP's buffer pooL 

DLC_ CLOSE_SAP statlon_1d (*) CIoIIes a SAP. 
(0xl6) 

DLC_CLOSE_fiATION station_id (*) CIoIIes a link _ station. 

(0xlA) 

DLC_ CONNECr _fiAT station_id (*) Places both loc:aI and re-
ION routiDg_ addr mote stations in data 

(0xlB) traosfer state. 

DLC_FLOW_ CONTROL station)d (*) Sets a SAP or link _ 

(0xlD) now _ eontrol (*) station busy status. 

DLC_MODIFY statlon_ id (*) ~ working parameters 
(0xlC) timer_tl for an open SAP or link 

timer_t2 _station. 
timer_Ii 
mamut 
maxin 

maxout)ocr 
max_rehy_ c:nt 
aa:ess "priority 
group _ c:ouut 
group_list 



126 

DLC_OPEN_SfATION 
(0x19) 

DLC RESEr 
(0x14) 

DLC _SET _ TIlRESHOL 

D 
(0x33) 

timer_U 

timer_t2 
timer_ti 

maxout 
maxin 

maxoutJncr 
max Jetly _ eDt 

max_members 
max _i_field 
sap_value (*) 

options "'priority 

group_count 
group_list 
die_status _ exit 
die _ bu(size 

die "'pool_len 
die ..,POOt addr (*) 

sap_station Jd (*) 
timer_tl 
timer t2 

timer_ti 
maxout 
maxin 

maxoutJncr 
max _ retly _ eDt 

rsap _value (*) 

max)_field 
acoess "'priority 
destination (*) 

station Jd (*) 

station _id (*) 

buffer_threshold (*) 

alert_semaphore (*) 

sap_station)d (*) 
log_ buf )ength (*) 

log_ buf_ addr (*) 

options 

lock_code (if opened with 
a lock code) 

Chap. 4 Speed with OLe Programming 

Activate a SAP and reserve 
SAP link acoess stations. A 

buffer pool is also assigned 

for the SAP. 

Allocates 10caI resources for 

a link acoess station in prep
aration for establishing a 
connection. 

Reset a SAP and all asso
ciated link acoess stations. 

If a station_id of 0x0000 is 

used, all SAPs and link 

acoess stations are resel 

This command applies to 
OS/2 only and is not avail

able for DOS. 

Read (and optionally reset) 

aDLC log. 

CIose an adapter and ter

minale network communt
cation. 



Sec. 4.7 Summary of OLC Commands 

DUR_DEFlNE_MUF_EN 
VIRONMENT 
(0x2B) 

DIR _MODIFY_OPEN_ 
PARMS 
(OxOl) 

DUR_RESTORE_OPEN 
_PARAMETERS 
(0x02) 

DIR _ SET_EXCEPTION 

FlAGS 
(0x2D) 

ncb_input (*) 

ncb_open (*) 

ncb_close (*) 

sram _ address 

adptr _ ehk _ exit 

netw _status_exit 
pc error exit 

dir_bufyize 

dir JlOOI_ blocks 

dir JlOOI_ address 
adpt _ ehk _ exit 

netw status exit 
pc error exit 
open_options 

adapter yarms (*) 

direct yarms (*) 
die yarms (*) 

ncb""parms 
(NOTE: The contents of 
the four structures are de
scribed fully in Section 
4.32) 

ncb enable 

Various - see section 
4.32 

127 

This command applies to 
OS/2 only and is not avail
able for DOS. 

This command allows a 
NetBIOS emulator to oper
ate with the adapter support 

software. 

This command initiaIizes 
the adapter, resets all adapt

er tables and buffers, and 
performs bring-up tests. 

This command forces an 
adapter interrupt but per
forms no action (a NOP). 

This command allows you 
to modify many default 
values set when an adapter 
was opened. 

This command opens the 
adapter and reinitiaIizes all 
buffers and tables. Parame· 
ter structures set defaults for 

use within the adapter. 

This command is used to 
restore adapter parameters 
set when the adapter was 

opened after they have been 
modified with 
DIR MODIFY OPEN PA - - -
RMS. 

This command applies to 
OS/2 only. 



128 

DIR_SET_FUNcrJON 
ALADDRESS 
(0x07) 

DIR _ SET_GROUP _ AD 
DRESS 
(0x06) 

DIR_SET_USEJl_~ 

NDAGE 
(0x2D) 

DIR SI'ATUS 
(0x21) 

DIR TIMER CANCEL - -
(0x23) 

DIR _ TIMER_CANCEL 
_GROUP 
(0x2C) 

adpt chit exit 
netw _ status_exit 

pc_error _ exit 

ccb ..,pointer (*) 

post (*) 

time (*) 

Chap. 4 Speed with DLC Programming 

encoded addr 

node_address 
group_address 
functional_ addr 

max_sap 
open-sap 
max_station 
open station 
avail_station 
adapter _ config 

microcode )evel 
adapter .J>811DS _ addr 
adapter_mac _ addr 
tick _ cntr _ addr 

last _ ntwk _status 

1bis command allows you 

to temporarily moditY the 
adapter's internal address 

used for receiving frames 

from the token ring netw
ork. 

1bis command allows you 

to temporarily moditY the 
adapter's internal group 

address. 

1bis command allows you 

to set (or moditY) the adapt
ers interrupt seIVice func

tions you wish called on 

certain conditions. 

1bis command returns sta
tus information about the 
adapter. 

1bis command cancels a 

timer set with 
DIR _TIMER_SET. 

1bis command cancels all 

timers whose post address 

(from the CCB) is equal to 
post 

1bis command starts a pro
grammable timer set to 
interrupt your application at 
time * .5 seconds. Upon 

expiration, the post routine 

(from the CCB block) will 

be executed. 



Sec. 4.7 Summary of DLC Commands 

PURGE RESOURCES 
(0x36) 

READ 
(0x31) 

RECEIVE 
(0x28) 

RECEIVE_MODIFY 
(0x2A) 

TRANSMIT_1'ESf_ CMD 
(0x11) 

station}d (*) 

user }ength (*) 
received data 
options 

station _ id (*) 

user}ength 

received_data 

subroutine (*) 

station}d (*) 

rsap (*) 
xmit_queue_one 

xmit_ queue_two 

buffer }en_ one 
buffer }en _ two 

buffer_one 

buffer two 

station}d (*) 

rsap (*) 

xmit_queue_one 

xmit_ queue_two 

buffer len one 
buffer_len _ two 

buffer one 

buffer two 

current oII 
start_tick _ 0 

stop_tick _ 0 

start_tick _1 
stop_tick _1 

first buffer 

first buffer 

transmit fa 

129 

This command 10(!ll all in
terrupts for adapter traffic. 

This command stops loging 

of all interrupts for adapter 

traffic. 

This command applies to 

OS/2 only. 

This command applies to 

OS/2 only. 

This command applies to 

OS/2 only. 

This command is used to 
receive all DLC data, 
whether connection oriented 

or datagram. 

This command cancels an 
outstanding receive com

mand. 

This command receives 

specially formated data and 
places it into both the SAP 

buffer pool and a user buff

er. 

This command transmits a 

frame of data over a con

nection. 

This command transmits a 

test command frame with 

the poll bit set 



130 

TRANSMIT _ XID _ RESP 

ONSE _ NOT_FINAL 
(OxlO) 

BUFFER FREE 

station)d (*) 
rsap (*) 
xmit _queue_one 
xmit _queue_two 
buffer_len _one 
buffer_len_two 
buffer_one 
buffer_two 

station)d (*) 
rsap (*) 
xmit _queue_one 
xmit_queue_two 
buffer_len_one 
buffer _len_two 
buffer one 
buffer two 

station _id (*) 
rsap (*) . 

xmit _queue_one 
xmit _queue_two 
buffer len one 
buffer }en _two 
buffer_one 
buffer_two 

station)d (*) 
rsap (*) 
xmit_ queue_one 
xmit _queue_two 
buffer_len _one 
buffer _len_two 
buffer_one 
buffer_two 

Chap. 4 Speed with OLC Programming 

transmitJli 

transmitJli 

transmit _ fs 

transmit fs 

This command transmits a 

datagram. 

This command transmits an 
XID (transmit ID) com
mand with the poll bit set to 
on. 

This command transmits an 
XID response with the final 
bit on. 

This command transmits an 
XID response with the final 

bit off. 

DLC Command Specifics 

This command returns a linked list of buffers to the SAP's 
buffer pool. The address of the first buffer in the linked list is passed 
as a buffer address. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 



Sec. 4.7 Summary of OLC Commands 131 

Offset Parameter Type 

o 
2 
4 
8 

station id 
buffer left 
reserved 
first buffer 

(in) unsigned int 
(out) unsigned int 
4 bytes 
(in) far pointer 

station id: SAP number using buffer. Only SAP 
number portion of station id is used (the 
link access station portion is ignored). 

buffer left: Upon completion, this variable will be set 
to the total number of buffers available in 
the SAP buffer pool. 

first buffer: Pointer to first buffer to be added to the 
pool. A NUlL value will cause an imme
diate return with no buffers freed. 

BUFFER GET 

This command gets one or more buffers from the SAP buffer 
pool. The parameters are passed indirectly (using the parameter 
pointer in the CCB) in the following format: 

Offset Parameter Type 

o 
2 
4 
5 
8 

station id 
buffer left 
buffer get 
reserved 
first buffer 

(in) unsigned int 
(out) unsigned int 
(in) unsigned int 
3 bytes 
(out) far pointer 



132 Chap. 4 Speed with DLC Programming 

station id: SAP number using buffer. Only SAP 
number portion of station id is used (the 
link access station portion is ignored). 

buf fer left: Upon completion, this variable will be set 
to the total number of buffers available in 
the SAP buffer pool. 

buffer_get: The number of buffers to return, or 1 if 
the default value is requested (i.e., the 
field is set to zero). 

first buffer: Pointer to first buffer available. 

The first four bytes of each buffer (bytes 0 - 3) are a far, 
pointer to the next buffer in the linked list of buffers. The final buffer 
in the list will contain a NULL pointer for the first four bytes. User 
data is placed in the buffer starting at byte number 4. 

DLC CLOSE SAP - -
This command closes a service access point. Prior to calling this 

command, all associated link access stations must be closed using the 
DLC CLOSE STATION command. The station id of the SAP to - - -
close is placed in the first two bytes of the parameter field of the 
CCB. There is no parameter structure associated with this command. 

DLC CLOSE STATION - -
This command closes a link access station. The station id of 

the link access station to close is placed in the first two bytes of the 
parameter field of the CCB. There is no parameter structure 
associated with this command. 



Sec. 4.7 Summary of DLC Commands 133 

DLC CONNECT STATION - -

This command is used to complete a connection between two 
applications using link access stations to perform connection-oriented 
communications. Both applications must issue a 
DLC CONNECf STATION for this command to work. The - -
parameters are passed indirectly (using the parameter pointer in the 
CCB) in the following format: 

Offset Parameter Type 

o 
2 
4 

station id 
reserved 
routing_addr 

(in) unsigned int 
2 bytes 
(in) far pointer 

station id: This is the link access station ID to be 
connected, as returned by the 
DLC OPEN STATION command. - -

routinq_ addr: This is a far pointer to a routing address. 
If the pointer is NULL, the station is 
assumed to be on the local token ring 
network. The routing address consists of 
up to three 6-byte addresses of interme
diate gateway nodes. 

DLC FLOW CONTROL - -

This command is used to control the flow of frames through a 
SAP (which will affect both datagram communications and all link 
access stations for that SAP). The first two bytes of the parameter 
field of the CCB contain the station _id of the SAP you are interested 



134 Chap. 4 Speed with DLC Programming 

in controling. The third byte contains the flow control option byte. 
This bytes functions as follows: 

• If bit 7 is off (0), the SAP enters a "local busy" state. If 
bit 7 is on, the adapter exits its "local busy" state in 
accordance with bit 6. 

• If bit 6 is off, the adapter exits from a user set "local 
busy" state. If this bit is on, the adapter exits from an 
adapter set "local busy" state. 

DLC MODIFY 

This command is used to modify default values for an open link 
access station or SAP. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 

Offset Parameter Type 

0 reserved 2 bytes 
2 station id (in) unsigned int 
4 timer t1 (in) unsigned char 
5 timer t2 (in) unsigned char 
6 timer ti (in) unsigned char 
7 maxout (in) unsigned char 
8 maxin (in) unsigned char 
9 maxout iner (in) unsigned char 
10 max Jetry _ cnt (in) unsigned char 
11 reserved 3 bytes 
14 access yriority (in) unsigned char 
15 reserved 1 byte 
19 group_count (in) unsigned char 
20 groupJist (in) far pointer 



Sec. 4.7 Summary of OLC Commands 135 

station id: 

timer tl: 

timer t2: 

timer ti: 

maxout: 

maxin: 

SAP or link access station to be modified. 

Number of timer ticks to wait for an ac
knowledgement prior to generating an 
interrupt. The value of each tick is set 
when the adapter is opened (or as a con
figuration parameter when the adapter 
software is loaded). Valid range is 1 
through 10. 

Number of timer ticks to delay prior to ac
knowledging a connection-oriented frame. 
This delay allows multiple frames to be re
ceived and acknowledged simultaneously. 
Valid range is 1 through 10. If the value 
is over 10, the delay is set to zero. If the 
value is zero, the current value is un
changed. 

Number of timer ticks to wait for link 
activity prior to generating an interrupt. 
Valid range is 1 through 10 

Number, between 1 and 127, of outstand
ing frames that can be transmitted over a 
connection prior to receipt of an acknowl
edgment. This value is called the transmit 
window in many protocol books. 

Number, between 1 and 127, of received 
frames that the station can receive over a 
connection prior to sending an acknowl-



136 Chap. 4 Speed with DLC Programming 

edgment. This value is called the receive 
window in many protocol books. 

maxout incr: This parameter is designed to reduce 
bridge congestion over multiple network 
connections. If the t1 timer expires and 
the adapter is forced to retransmit a 
frame, the transmit window is reset to a 
size of one. Each successful acknowledg
ment then causes the adapter to increase 
the transmit window by maxout _ incr 
until it is eventually restored to the origi
nal value set in maxout. 

max_retry _ cnt: Number of retry attempts, between 1 and 
255, for transmissions where no acknowl
edgement is received. 

access...,priority: The transmit access priority for the 
token ring network. Valid numbers are 0 
through 3, with 3 being the highest priori
ty. The actual access priority is left shift
ed five places prior to storing in this byte 
(Le., the format is B'nnnOOOOO'. 

Number of entries in group list (below). 

Far pointer to group list. Each entry in 
the group list is a i-byte SAP number with 
the low order bit set to zero to join that 
SAP's group or 1 to leave that SAP's 
group. 



Sec. 4.7 Summary of DLC Commands 137 

For all parameters, a value of zero will leave the current 
settings unchanged. 

DLC OPEN SAP - -
This command is used to open a SAP and override default 

parameters. The parameters are passed indirectly (using the parame
ter pointer in the CCB) in the following format: 

Offset Parameter Type 

0 station id (out) unsigned int -
2 user stat value (in) unsigned int - -
4 timer t1 (in) unsigned char -
5 timer t2 (in) unsigned char -
6 timer ti (in) unsigned char -
7 maxout (in) unsigned char 
8 maxin (in) unsigned char 
9 maxout incr (in) unsigned char -
10 max Jetry _ cnt (in) unsigned char 
11 max members (in) unsigned char 
12 max i field (in) unsigned int 
14 sap_value (in) unsigned char 
15 options j>riority (in) unsigned char 
16 station count (in) unsighed char -
17 reserved 2 bytes 
19 group_count (in) unsigned char 
20 group_list (in) far pointer 
24 dlc status exit (in) far pointer - -
28 dlc buf size (in) unsigned int -
30 dIe j>ool}en (in) unsigned int 



138 

32 dlc yoot addr 

station id: 

Chap. 4 Speed with OLC Programming 

(in) far pointer 

Station id for the opened SAP. This 
value should be stored, as it will be used 
to identify this SAP for other functions. 

user stat value: On entry to the DLC status inter 

timer tl: 

timer t2: 

timer ti: 

rupt function (as set in 
dIe_status _ exit), this value is passed 
back to the user function in register SI. 

Number of timer ticks to wait for an ac
knowledgement prior to generating an 
interrupt. The value of each tick is set 
when the adapter is opened (or as a con
figuration parameter when the adapter 
software is loaded). Valid range is 1 
through 10. The default is 5. 

Number of timer ticks to delay prior to ac
knowledging a connection oriented frame. 
This delay allows multiple frames to be re
ceived and acknowledged simultaneously. 
Valid range is 1 through 10. If the value 
is over 10, the delay is set to zero. If the 
value is zero, the default value of 2 is 
used. 

Number of timer ticks to wait for link 
activity prior to generating an interrupt. 
Valid range is 1 through 10. The default 
is 3. 



Sec. 4.7 Summary of OLC Commands 139 

maxout: 

maxin: 

Number, between 1 and 127, of outstand
ing frames that can be transmitted over a 
connection prior to receipt of an acknowl
edgement. This value is called the trans
mit window in many protocol books. The 
default is 2. 

Number, between 1 and 127, of received 
frames that the station can receive over a 
connection prior to sending an acknowl
edgment. This value is called the receive 
window in many protocol books. The 
default is 1. 

maxout incr: This parameter is designed to reduce 
bridge congestion over multiple network 
connections. If the t1 timer expires and 
the adapter is forced to retransmit a 
frame, the transmit window is reset to a 
size of one. Each successful acknowledge
ment then causes the adapter to increase 
the transmit window by maxout _ incr 
until it is eventually restored to the origi
nal value set in maxout. The default is 1. 

max_retry_cnt: Number of retry attempts, between 1 and 
255, for transmissions where no acknowl
edgment is received. The default is 8. 

max members: If this SAP is a group SAP, this field 
designates the maximum number of indi
vidual SAPs that may join this group. 
This field should normally be left at zero, 



140 

max i field: 

Chap. 4 Speed with DLC Programming 

because this will default to the value 
specified in DIR _OPEN_ADAPTER, which 
is the largest permissible value anyway. 

This parameters specifies the largest I 
frame that can be received by this SAP. I 
frames are the data packets used for 
connection-oriented service. The default 
is 600 bytes. 

The SAP value you wish assigned to this 
SAP. This value should be an even num
ber because the low order bit is used by 
the adapter to designate if this SAP is an 
individual or group SAP. 

options-priority: 
Bit field with the following meaning: 

Bits 7-5, ring access priority; normally 0 
Bit 4, reserved; set to zero 
Bit 3, XID option; 0 means adapter han-

dles XID frames, 1 means XID 
frames are passed to your applica tion 
Bit 2, individual SAP bit (1 implies indi 
vidual SAP) 
Bit 1, group SAP bit (1 implies group 
SAP) 
Bit 0, group member bit (1 implies member 

of group SAP) 

station count: link stations to reserve within this SAP. 
A value of zero will reserve no link sta-



Sec. 4.7 Summary of DLC Commands 141 

tions and prevent you from performing 
connection-oriented communication. 

Number of entries in group list (below). 

Far pointer to group list. Each entry in 
the group list is a I-byte SAP number with 
the low-order bit set to zero to join that 
SAP's group or one to leave that SAP's 
group. 

dIc status exit: Interrupt function to call if the DLC 
status changes. 

dIc buf size: The size of the buffers in the SAP buffer 
pool. The minimum size is 80, and the 
number must be a multiple of 16. The 
default is 160 bytes. 

dIc...,POoI_Ien: The number of 16 byte blocks (not buff
ers) in the buffer pool. The default is 256 
(4096 bytes). 

dIc...,POol_addr: The location within PC memory where the 
adapter should build the SAP buffer pool. 

DLC OPEN STATION - -

This command is used to open a link: access station and override 
default parameters. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 



142 

Offset Parameter 

0 sap station id - -
2 link station id - -
4 timer t1 -
5 timer t2 -
6 timer ti -
7 maxout 
8 maxin 
9 maxout incr -
10 max Jetry _ cnt 
11 rsap_value 
12 max i field 
14 access yriority 
15 reserved 
16 destination 

sap_station_id: 

Chap. 4 Speed with DLC Programming 

Type 

(in) unsigned int 
( out) unsigned int 
(in) unsigned char 
(in) unsigned char 
( in) unsigned char 
(in) unsigned char 
(in) unsigned char 
(in) unsigned char 
( in) unsigned char 
(in) unsigned char 
(in) unsigned int 
(in) unsigned char 
1 byte 
(in) far pointer 

Station Jd for the opened SAP, as 
returned by DLC_OPER_SAP. 

link station id: This is the link access station 
station _id which is returned by the 
adapter for later use by you. 

timer tl: Number of timer ticks to wait for 
an acknowledgment prior to gen
erating an interrupt. The value of 
each tick is set when the adapter is 
opened (or as a configuration pa
rameter when the adapter software 
is loaded). Valid range is 1 
through 10. The default is 5. 



Sec. 4.7 Summary of DLC Commands 143 

timer t2: Number of timer ticks to delay 
prior to acknowledging a connec
tion-oriented frame. This delay 
allows multiple frames to be re
ceived and acknowledged simulta
neously. Valid range is 1 through 
10. If the value is over 10, the 
delay is set to zero. If the value is 
zero, the default value of 2 is used. 

timer ti: Number of timer ticks to wait for 
link activity prior to generating an 
interrupt. Valid range is 1 through 
10. The default is 3. 

maxout: 

maxin: 

maxout incr: 

Number, between 1 and 127, of 
outstanding frames that can be 
transmitted over a connection prior 
to receipt of an acknowledgment. 
This value is called the transmit 
window in many protocol books. 
The default is 2. 

Number, between 1 and 127, of re
ceived frames that the station can 
receive over a connection prior to 
sending an acknowledgment. This 
value is called the receive window 
in many protocol books. The de
fault is 1. 

This parameter is designed to re
duce bridge congestion over multi-



144 

max i field: 

access-priority: 

Chap. 4 Speed with DLC Programming 

pIe network connections. If the t1 
timer expires and the adapter is 
forced to retransmit a frame, the 
transmit window is reset to a size 
of one. Each successful acknowl
edgment then causes the adapter to 
increase the transmit window by 
maxout _ incr until it is eventually 
restored to the original value set in 
maxout. The default is 1. 

Number of retry attempts, between 
1 and 255, for transmissions where 
no acknowledgement is received. 
The default is 8. 

This is the SAP number you wish 
to communicate with on the desti
nation adapter. Note that this is a 
SAP number, not a station}d for 
the remote adapter (which you 
would have no way of knowing). 

This parameters specifies the larg
est I frame that can be received by 
this station. I frames are the data 
packets used for connection orient
ed service. The default is the num
ber set with DIR _ OPEH_ ADAPTER. 

The access priority, between 0 and 
3, to be used for transmitted 
frames. The format is B'nnnOOOOO'. 



Sec. 4.7 Summary of DLC Commands 

destination: 

DLC REALWCATE 

145 

The default is zero. Using num
bers larger than zero will cause the 
open to fail if the adapter is not 
authorized to use the higher priori
ty. 

Far pointer to a 6-byte location 
which contains the destination node 
address. 

This command is used to increase or decrease the number of 
link stations available for a given SAP. The parameters are passed 
indirectly (using the parameter pointer in the CCB) in the following 
format: 

Offset Parameter 

o 
2 
3 
4 
5 

station id 
option_byte 
station count 
adapter_available _stns 
sap _ available _ stns 

station id: 

Type 

(in) unsigned int 
(out) unsigned char 
(in) unsigned char 
(out) unsigned char 
(out) unsigned char 

The SAP station id to be modified. 

Bit 7 indicates if you want the 
number of link: stations increased 
(0) or decreased (1). Bits 0 
through 6 are reserved and should 
be set to zero. 



146 

station count: 

Chap. 4 Speed with DLe Programming 

The number of link stations to be 
added or deleted (in accordance 
with the option byte). 

adapter_available_stns: Number of available link 
stations remaining for this adapter 
after this command completes. 

sap_available _ stns : Number of available link stations 
remaining for this SAP after this 
command completes. 

DLC RESET 

This command resets one or more SAPs and their associated 
link access stations. The SAPs are closed after queued transmissions 
are completed. The station _id to reset is placed in the two high order 
bytes of the parameter field of the CCB. If the station)d is zero, all 
SAPs (and their link access stations) will be reset. 

LLC SET THRESHOLD - -

This command applies to OS/2 only. 

DLC STATISTICS 

This command reads the DLC logs and can also be used to 
reset the logs. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 

Offset Parameter Type 

o (in) unsigned int 



Sec. 4.7 Summary of OLC Commands 147 

2 
4 
8 
10 

log_ buf _length 
log_buffer _ addr 
log_ actJength 
options 

options: 

(in) unsigned int 
(in) far pointer 
( out) unsigned int 
(in) unsigned char 

The station id of the SAP or link 
access station you are interested in. 

The length of your buffer space 
you have allocated for the log buff
er. 

A pointer to the log buffer space 
that you have allocated for this 
purpose. 

The actual length of the data trans
ferred to your log buffer. If this 
length is greater than 
109_ buf _length the remaining 
data is simply discarded by the 
adapter. 

Bit 7 on causes logs to be reset, off 
leaves logs intact. Bits 0 through 6 
are reserved and should be zero. 

For a SAP, the log format is as follows: 

Bytes Type 
0--3 unsigned long 
4-7 unsigned long 

Meaning 
Number of frames transmitted. 
Number of frames received. 



148 

8-11 unsigned long 

12-15 unsigned long 
16-17 unsigned int 

Chap. 4 Speed with DLC Programming 

Number of frames discarded (no receive 
outstanding) 
Number of times data was lost. 
Numbers of buffers available in buffer 
pool. 

For a link access station, the log format is as follows: 

Bytes Type 
0-1 unsigned int 
2-3 unsigned int 
4 Unsigned char 
5 Unsigned char 
6-7 unsigned int 
8 unsigned char 
9 unsigned char 
10 unsigned char 
11 unsigned char 
12 unsigned char 
13 unsigned char 
14 unsigned char 
15 unsigned char 
16-47 char[] 

DIR CLOSE ADAPTER - -

Meaning 
Number of I frames transmitted 
Number of I frames received 
Number of I frame receive errors 
Number of I frame xmit errors 
Number of times t1 expired 
Last command/response received 
Last command/response sent 
link primary state 
link secondary state 
Send state variable 
Receive state variable 
Last received NR 
Length of network header in xmits 
Network header being used 

This command will shut down the adapter and terminate all 
outstanding CCBs. If the adapter was opened with a lock code, the 
lock code must be placed in the first two bytes of the parameter 
field of this CCB. Trying to close the adapter with an invalid lock 
code results in a return code of Ox05. 



Sec. 4.7 Summary of DLC Commands 149 

DIR CLOSE DIRECT - -

This command applies to OS/2 only. 

DIR DEFINE MIF ENVIRONMENT - --
This routine allows you to write a NetBIOS emulator which 

processes NetBIOS NCBs using your own code. See mM (1988) if you 
are interested in this area. 

DIR INITIALIZE 

This command initializes the adapter, resetting all tables and 
buffers and causing the adapter to run the bring-up tests. If this 
command is executed while the adapter is already open, all outstanding 
CCBs are lost. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 

Offset Parameter Type 

o 
2 
4 
8 
12 
16 

bring_ups 
sram address 
reserved 
adptr _ chk _exit 
netw status exit - -

( out) unsigned int 
(in/out) unsigned int 
4 bytes 
(in) far pointer 
(in) far pointer 
(in) far pointer 

If the adapter detects an error 
during bring-up tests, it returns a 
value of OX07 for this CCB and sets 
the brinq_ up field to the specific 
error detected. Bring-up error 



150 

sram address: 

netw status exit: 

Chap. 4 Speed with OLC Programming 

codes are included in the next section. 

This field is a segment value. If a 
nonzero number is included in this 
field on command execution, the 
adapter will locate shared RAM at 
the specified address. A zero as 
input causes the adapter to use the 
default values (0xD800 for the 
primary adapter, 0xD400 for the 
secondary). Upon command com
pletion, this field is set to the actu
al shared RAM segment. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects an 
adapter hardware error during 
execution. If the field is zero, no 
user function will be called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
network problem. If the field is 
zero, no user function will be 
called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
PC hardware or operating system 
error. 



Sec. 4.7 Summary of OLC Commands 151 

DIR INTERRUPT 

This command forces an adapter interrupt, but performs no 
action. 

DIR MODIFY OPEN PARMS - - -
This command allows you to temporarily modify many values 

set when the adapter was initially opened. The parameters are 
restored with the DIR_RESTORE_OPEN_PARMS command. This 
command will fail if a receive command is outstanding. After this 
command has been completed, it may not be used again until after a 
DIR_RESTORE_OPEN_PARMS has been issued. The parameters are 
passed indirectly (using the parameter pointer in the CCB) in the 
following format: 

Offset Parameter Type 

o 
2 
4 
8 
12 
16 
20 

dir buf size 
dir yool_ blocks 
dir yool_ address 
adptr _ chk _exit 
netw status exit - -
pc_error _exit 
open_options 

dir buf size: 

(in) unsigned int 
(in) unsigned int 
(in) far pointer 
(in) far pointer 
(in) far pointer 
(in) far pointer 
(in) unsigned int 

The size of each buffer in the di
rect buffer pool, including over
head. The minimum is 80, and the 
length must be a multiple of 16. 
The default is 160. 



152 

netw status exit: 

Chap. 4 Speed with OLC Programming 

The length of the direct buffer pool 
in terms of 16-byte blocks. 

Far pointer to the beginning of the 
buffer pool. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects an 
adapter hardware error during 
execution. If the field is zero, no 
user function will be called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
network problem. If the field is 
zero, no user function will be 
called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
PC hardware or operating system 
error. 

Various options, each represented 
by one bit. A bit turns the option 
on, 0 turns it off. Bit 15 is the 
leftmost bit. 

The open_options bit fields have the following meanings: 



Sec. 4.7 Summary of OLC Commands 153 

bit meaning 

15 Wrap interface. All user transmissions will be wrapped around 
as received data without going on the network. 

14 Disable hard error. Prevents network hard errors from causing 
interrupts. 

13 Disable soft error. Prevents network soft errors from causing 
interrupts. 

12 Pass adapter MAC frames. Causes all adapter class MAC 
frames which are not recognized by the adapter to be passed to 
the application (they are ignored by default). MAC frames are 
covered in the next chapter. 

11 Pass attention MAC frames. Causes all attention MAC frames 
to be passed to the adapter. Multiple identical attention MAC 
frames will only result in one frame being passed to your 
application (the first one). By default, these frames are not 
passed to the application. 

10 Reserved. Set to zero. 

9 Pass parameter table. If the adapter is already open and this 
bit is set, all fields will be filled with the current values being 
used by the adapter. 

8 Contender. This option allows the adapter to participate in 
contention for token ring media access protocols if necessary. 



154 Chap. 4 Speed with DLe Programming 

7 Pass beacon MAC frames. Passes all unique beacon MAC 
frames to the application. 

6 Reserved. Set to zero. 

5 Remote program load. This bit prevents your adapter from 
joining the ring until at least one other adapter is up on the 
ring. 

4 Token release. This bit turns off the early token release option 
of the newer 16/4 adapters. This capability is discussed in the 
token ring network hardware section. 

0-3 Reserved. Set to zero. 

DIR OPEN ADAPTER - -
This command opens the adapter. The parameters were 

discussed in detail in Section 4.2. 

DIR OPEN DIRECT - -
This command applies to OS/2 only. 

DIR READ LOG - -
This command reads and resets the direct logs. The parameters 

are passed indirectly (using the parameter pointer in the CCB) in 
the following format: 

Offset Parameter Type 

o log id (in) unsigned int 



Sec. 4.7 Summary of OLC Commands 155 

2 
4 
8 

log buf length 
log_ buf _addr 
log_act Jength 

(in) unsigned int 
(in) far pointer 
(out) unsigned int 

Identifies the log to read, as fol
lows: OXOOOO - read adapter error 
log; OX0001 - read direct interface 
error log; OX0002 - read both logs. 

The length of your buffer space 
you have allocated for the log buff
er. 

A pointer to the log buffer space 
that you have allocated for this 
purpose. 

The actual length of the data trans
ferred to your log buffer. If this 
length is greater than 
loq_ buf _length, the remaining 
data is simply discarded by the 
adapter. 

For the adapter, the log format is as follows: 

Bytes Type 

o 
1 
2 
3 
4 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

Meaning 

Line errors 
Internal errors 
Burst errors 
Ale errors 
Abort delimiter 



156 

5 
6 
7 
8 
9 
10 
11 

1 byte 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
3 bytes 

Chap. 4 Speed with DLC Programming 

Reserved 
Lost frames 
Receive congestion 
Frame copied errors 
Frequency errors 
Token errors 
Reserved 

For the direct interface, the log format is as follows: 

Bytes Type Meaning 

0-3 unsigned long 
4-7 unsigned long 
8-11 unsigned long 

12-15 unsigned long 
16-17 unsigned int 

Number of frames transmitted 
Number of frames received 
Number of frames discarded (no receive 
outstanding) 
Number of times data was lost 
Numbers of buffers available in buffer 
pool 

DIR RESTORE OPEN PARMS - --
This command restores the default parameters to the adapter 

after they have been temporarily reset using 
DIR _MODIFY_OPEN _PARMS. 

DIR SET EXCEPTION FLAGS - - -
This command only applies to OS/2. 



Sec. 4.7 Summary of DLe Commands 157 

DIR SET FUNCTIONAL ADDRESS - - -
This command allows you to modify the functional address for 

the adapter. The four bytes of the parameter field contain a bit 
pattern representing the bits to change, not the actual new address. 
The bits field is formated as a 4-byte character array. The least 
significant and most significant bit are ignored. For example, 
OxFFFFFFFF will reset all address bits, while Ox00000060 will reset 
bits 5 and 6. 

DIR SET GROUP ADDRESS - - -
This command allows you to set a group address which the 

adapter will use to receive messages. The parameter field contains 
4-byte character array which represents the group address which should 
be added. 

DIR SET USER APPENDAGE - - -
This command allows you to modify the interrupt functions set 

when the adapter was opened or initialized. The parameters are 
passed indirectly (using the parameter pointer in the CCB) in the 
following format: 

Offset Parameter Type 

o 
4 
8 

adptr _ chk _exit 
netw status exit - -
pc error exit - -

adptr chk exit: - -

(in) far pointer 
(in) far pointer 
(in) far pointer 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects an 



158 

netw status exit: 

Chap. 4 Speed with DLC Programming 

adapter hardware error during 
execution. H the field is zero, no 
user function will be called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
network problem. H the field is 
zero, no user function will be 
called. 

This field is a function pointer to 
your interrupt function you want 
the adapter to call if it detects a 
PC hardware or operating system 
error. 

An NULL pointer for any field will restore that function pointer 
to the address being used before the last call to 
DIR_SET_USER_APPENDAGE. 

DIR STATUS 

This command returns adapter status information. The 
parameters are passed indirectly (using the parameter pointer in the 
CCB) in the following format: 

Offset Parameter 

o 
6 
12 
16 

encoded addr 
node address 
group address 
functional addr 

Type 

(out) char[ 6] 
(out) char[6] 
(out) char[4] 
(out) char[4] 



Sec. 4.7 Summary of DLC Commands 

20 
21 
22 
23 
24 
25 
26 
36 
40 
44 
48 

max_sap 
open_sap 
max station 
open_station 
avail station 
adapter _ config 
microcode level 
adapter-parms_addr 
adapter_mac_addr 
tick cntr addr - -
last ntwk status - -

encoded addr: 

node address: 

functional addr: 

max station: 

(out) unsigned char 
(out) unsigned char 
( out) unsigned char 
(out) unsigned char 
(out) unsigned char 
(out) unsigned char 
(out) char[10] 
(out) far pointer 
(out) far pointer 
(out) far pointer 
(out) unsigned int 

159 

The permanent address encoded by 
the manufacturer on the adapter. 

The adapter's network address, 
which will equal the encoded addr 
unless modified (for example, dur
ing DIR _ OPER_ ADAPTER). 

The adapter's group address. 

The adapter's functional address. 

The maximum number of SAPs al
lowed for this adapter. 

The number of SAPs which are 
currently open. 

The maximum number of link 
access stations allowed for this 
adapter (across all SAPs). 



160 

avail station: 

adapter_config: 

Chap. 4 Speed with DLC Programming 

The number of link access stations 
which are currently open. 

The number of link access stations 
which are available. Link access 
stations are considered unavailable 
if the either are already open or if 
they were reserved when a SAP 
was opened. 

A bit field in which bit 7 indicates 
if this is an original PC network 
adapter, bit 4 indicates if the early 
token release capability of the 16/4 
adapter is turned on, and bit 0 
indicates the adapter's data rate (0 
= 4, 1 = 16 Mbps). 

microcode level: A number representing the release 
of the adapter microcode. 

adapter""parms_addr: The address of the adapter's mem
ory containing adapter parameters. 
This memory cannot be written by 
an application program. 

adapter_mac_addr: The address of the adapter's mem
ory containing MAC buffers. This 
memory cannot be written by an 
application program. 

tick cntr addr: The address of an unsigned long 
containing the number of 100-milli-



Sec. 4.7 Summary of DLC Commands 

last ntwk add.r: 

DIR TIMER CANCEL - -

161 

second intervals that have ellapsed 
since the last DIR_IRITIALIZE 
command. 

The most recent network status 
change. 

This command cancels a timer set with the DIR_TlHER_SET 
command. The parameter field of the CCB contains a far pointer 
to the CCB block used to start the timer. 

DIR TIMER CANCEL GROUP - - -
This command cancels a group of timers. The parameter 

field of the CCB contains a far pointer to an interrupt function. The 
interrupt function is the function which DIR _ TlHER _SET was 
instructed to call when the timer expired. All timers using this 
interrupt function as their exit function will then be canceled. 

DIR TIMER SET - -

This command starts a timer. The first two bytes of the 
parameter field contain an unsigned integer indicating the number 
of timer ticks to wait. The valid range is 0 through 13,107. Each timer 
tick is .5 seconds. When the command completes, the interrupt 
function pointed to in the post field of the CCB is called. 



162 Chap. 4 Speed with DLC Programmjng 

PDT TRACE ON - -
This command starts an interrupt trace for all adapter traffic. 

The trace capability stores all CCBs which are started, all CCBs which 
are completed, all NCBs which are started, and all adapter interrupts 
of the PC. Timer interrupts are stored and a count is output when a 
non-timer interrupt occurs. The parameters are passed indirectly 
(using the parameter pointer in the CCB) in the following format: 

Offset Parameter Type 

o 
2 
4 
8 
12 
16 
20 
31 

table Jength 
current off 
start tick 0 - -
stop_tick _0 
start tick 1 - -
stop _tick _1 
reserved 
table 

current off: 

(in) unsigned int 
(out) unsigned int 
(out) unsigned long 
(out) unsigned long 
(out) unsigned long 
(out) unsigned long 
12 bytes 
char[???] 

The length of the trace table you 
have setup in your memory space. 
The minimum value is 256 bytes. 
Each entry in the trace table is 16 
bytes long. 

This is the offset into the trace 
table. This field is updated contin
uously as the trace table is updat
ed. The trace table wraps when 
full. 



Sec. 4.7 Summary of DLC Commands 163 

start_tick _0: This is the value of the timer 0 tick 
counter when the trace started. 

start tick 1: - -

table: 

This is the value of the timer 0 tick 
counter when the trace stopped. 

This is the value of the timer 1 "tick 
counter when the trace started. 

This is the value of the timer 1 tick 
counter when the trace stopped. 

This is the space where the actual 
trace table entries are made. This 
array must be equal is size to the 
number specified in 
table_length, 

Four trace entry formats are used (and will be intermixed in the 
trace table). Each entry is 16 bytes long. The valid ranges for byte 0 
of each entry are different for each of the four formats, allowing the 
type of interrupt to be determined. The four valid formats are 

CCB Trace Entry 
Byte Meaning 

o Adapter number (0/1) 
1 Bit flags 7 = adapter initialized 

6 = initialize in process 
5 = adapter opened 
4 = open in process 
3 = SRB busy 
2 = Block bit on 



164 

2 
3 
4-7 
8-11 
12-15 

Chap. 4 Speed with OLC Programming 

1 = always 0 
o = no adapter found 

CCB command 
Return code 
SS:SP registers 
Pointer to interrupted application program code 
Pointer to CCB 

Adapter Interrupt Entry 
Byte Meaning 

o Interrupt status register processor (lSRP) even bit 
flags 

7 = always 1 
6 = always 1 
5 = reserved 
4 = programmable timer interrupt 
3 = error interrupt 
2 = access interrupt 
1 = always 1 
o = adapter number (0/1) 

1 ISRP odd-bit field 
7 = reserved 
6 = adapter check 
5 = SRB response 
4 = ASB free 
3 = ARB command 
2 = SSB response 
1 = reserved 
o = reserved 

2 Command code of interrupt 
3 Return code 
4-7 SS:SP registers 



Sec. 4.7 Summary of OLC Commands 165 

8-11 Address of interrupted application code 
12-15 CCB address, or zero if interrupt not result of 

CCB 

Adapter Timer Interrupt Entry 
Byte Meaning 

o 0xD2 for primary adapter, 0xD3 for secondary 
1 OXOO 
2-3 Total timer interrupts (both adapters) 
4-7 SS:SP registers 
8-11 Address of the interrupted application code 
12-15 CCB address if this interrupt causes a 

DIR _TIMER_SET command to be completed, 
OXOO otherwise 

NCB Trace Entry 
Byte Meaning 

o OxOF when NCB first issued 
Ox1F when executing user post routine 
Ox2F when returning from post routine 

1 adapter number (0/1) 
2 NCB command 
3 return code 
4-7 SS:SP registers 
8-11 address of interrupted application program code 
12-15 pointer to NCB 

PDT TRACE OFF - -
This command turns off the adapter trace capability. There are 

no parameters. 



166 Chap. 4 Speed with OLC Programming 

PURGE RESOURCES 

This command applies to OS/2 only. 

READ 

This command applies to OS/2 only. 

READ CANCEL 

This command applies to OS/2 only. 

RECEIVE 

This command receives all types of DLC frames and places 
them in the buffer pool for use by your application. If an interrupt 
handler is defined in the receive command, the command remains 
active and continues to receive frames until specifically canceled. If no 
interrupt handler is defined, the command terminates upon completion 
and must be started again after a frame is received. The parameters 
are passed indirectly (using the parameter pointer in the CCB) in 
the following format: 

Offset Parameter Type 

o 
2 
4 
8 
12 

station id 
user length 
received data 
first buffer 
options 

station id: 

(in) unsigned int 
(in) unsigned int 

(in) far pointer 
(out) far pointer 
(in) unsigned char 

The station id to receive frames 
for. This is the number returned 



Sec. 4.7 Summary of OLC Commands 

received data: 

first buffer: 

167 

by DLC_OPEN_SAP or 
DLC _OPEN_STATION. In addition, 
the following station_ids are auto
matically established when the 
adapter is opened: 

OxOOOO to receive MAC and 
non-MAC frames 

Ox0001 to receive MAC 
frames 

Ox0002 to receive non MAC 
frames 

This allows you to tell the adapter 
to reserve a space at the start of 
each buffer for user data. The 
length of this user space is speci
fied in this field. 

This is a far pointer to a function 
which should be called each time a 
frame is received. When this inter
rupt handler is called, the DS:SI 
registers are set to point to the 
CCB and the ES:BX registers are 
are set to point to the first received 
buffer. 

The address of the first received 
buffer. 



168 

options: 

Chap. 4 Speed with DLC Programming 

Bit flags with the following mean
ings: 

7 - (on) store all MAC 
frames contiguously and in 
their entirety; (off) store 
MAC frame headers in 
buffer 1, remaining frame 
data in the second buffer 

6 - same as 7, but applies 
to non-MAC frames 

5 - place all data in second 
buffer, leaving first buffer 
empty except for header 
information 

0-4 reserved, set to zero 

The buffer format for noncontiguous receipts (the default) is as 
follows: 

Buffer One format 
Offset Type 

o far pointer 

4 unsigned int 

6 unsigned int 

8 unsigned int 

Meaning 

Pointer to next buffer, or 
NULL for last 
Length of entire received 
frame 
Number of frame bytes in 
this buffer 
Offset from buffer start to 
user field 



Sec. 4.7 Summary of DLC Commands 

10 
12 
14 
16 
18 
19 
20 
21 
22 
54 
58 

?? 

unsigned int 
unsigned int 
unsigned char 
unsigned int 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
char[32] 
char[4] 
char[???] 

char[???] 

Length of user field 
Receiving station _id 

169 

Option byte used in receive 
Buffers remaining 
Frame status field from frame 
Adapter number (0/1) 
LAN header length 
DLC header length 
LAN header 
DLC header 
User space defined by 
user length 
Received data 

Note that the received data always starts at the value user_offset 
plus user }ength. 

Buffer Two format 
Offset Type 

o 

4 

6 

8 

10 
12 

?? 

far pointer 

unsigned int 

unsigned int 

unsigned int 

unsigned int 
char[???] 

char[???] 

Meaning 

Pointer to next buffer, or 
NULL for last 
Length of entire receive 
frame 
Number of frame bytes in 
this buffer 
Offset from buffer start to 
user field 
Length of user field 
User space defined by 
user}ength 
Received data 



170 Chap. 4 Speed with DLC Programming 

RECEIVE CANCEL 

This command cancels an outstanding receive command for a 
station _ide The station _id you are interested in is placed in the first 
two bytes of the parameter field of the CCB as an unsigned into 

RECEIVE MODIFY 

This command receives data and puts some of the data into a 
local user buffer (not one assigned from the SAP buffer pool). This 
command is not normally used by application programmers. H 
necessary, refer to the suggested readings for command specifics. 

TRANSMIT I FRAME 

This command transmits one or more buffers using a connection 
over a link access station. All buffers are transmitted (and must fit 
within) one frame. This size is limited based on the least capable 
adapter you will encounter on your network. The limitations are 2025 
for the original adapters, 4441 for the 16/4 adapters running at 4 
Mbps, and 17937 for the 16/4 adapters running at 16 Mbps. The 
adapter software automatically adds the frame's DLC and LAN 
header, so each buffer contains actual data only. The parameters are 
passed indirectly (using the parameter pointer in the CCB) in the 
following format: 

Offset Parameter Type 

o 
2 
3 
4 
8 

station id 
transmit fs 
reserved 
xmit_ queue_one 
xmit _queue_two 

(in) unsigned int 
(out) unsigned char 
1 byte 
(in) far pointer 
(in) far pointer 



Sec. 4.7 Summary of OLC Commands 171 

12 
14 
16 
20 

buffer len one 
buffer len two 
buffer one 
buffer two 

(in) unsigned int 
(in) unsigned int 
(in) far pointer 
(in) far pointer 

The adapter will send all data pointed to by the transmit 
queues/buffers in the following order: 

1. Transmit queue one will be used. 
2. Transmit queue two will be used. 
3. Buffer one will be used. 
4. Buffer two will be used. 

You may put your outgoing data in any combination of the four 
queues/buffers, although applications typically do all transmissions 
using buffer one only. The field descriptions are as follows: 

station id: 

transmit fs: 

The station id of the link station as 
returned by DLC_OPEN _STATION. 

The frame status field values after 
the frame has made a complete 
circuit around the ring. 

The first of a linked list of transmit 
buffers. Each buffer starts with a 
far pointer to the next buffer (or 
NULL for the last buffer), followed 
by 

• A 2-byte reserved 
field. 



172 

buffer len one: 

buffer len two: 

buffer one: 

Chap. 4 Speed with OLe Programming 

• An unsigned int 
giving the lenght of 
actual data in this 
buffer. 

• An unused unsigned 
int for user use. 

• An unsigned int 
giving the size of 
user space. 

• A character array 
equal in size to the 
user space just speci
fied. 

• The actual data. 

The first of another linked list of 
transmit buffers using the same for
mat as transmit queue one. 

The length of the first transmit 
buffer. 

The length of the second transmit 
buffer. 

The address of the first buffer of 
data to transmit. The buffer con
tains data only. 



Sec. 4.7 Summary of OLC Commands 173 

buffer two: The address of the second buffer of 
data to transmit. The buffer con
tains data only. 

Transmit queue one and two buffers can be obtained from the 
SAP buffer pool using buffer _qet. If this approach is used, transmit 
queue two buffers will be automatically freed (using buffer_free) 
after the frame is successfully transmitted. This is not true of transmit 
queue one. 

TRANSMIT TEST eMD - -
This command transmits a test command frame with the poll bit 

set. This command is normally not used by application programs. 
Refer to the Suggested Readings for further information. 

TRANSMIT UI FRAME 

This command transmits a datagram over a SAP (not a link 
access station). The application program is responsible for providing 
the IAN header, although the adapter will add the DLC header. All 
buffers are transmitted (and must fit within) one frame. This size is 
limited based on the least capable adapter you will encounter on your 
network. The limitations are 2025 for the original adapters, 4441 for 
the 16/4 adapters running at 4 Mbps, and 17937 for the 16/4 adapters 
running at 16 Mbps. The parameters are passed indirectly (using the 
parameter pointer in the CCB) in the following format: 

Offset Parameter Type 

o 
2 
3 

station id 
transmit fs 
rsap 

(in) unsigned int 
(out) unsigned char 
(in) unsigned char 



174 

4 
12 
14 
16 
20 

reserved 
buffer len one 
buffer len two 
buffer one 
buffer two 

station id: 

transmit fs: 

rsap: 

buffer len one: 

buffer len two: 

buffer one: 

buffer two: 

Chap. 4 Speed with DLC Programming 

8 bytes, set to zero 
(in) unsigned int 
(in) unsigned int 
(in) far pointer 
(in) far pointer 

The station id of the link station as 
returned by DLC_ OPEN_SAP. 

The frame status field values after 
the frame has made a complete 
circuit around the ring. 

The remote SAP number you wish 
the data sent to. Note that this 
number is not necessarily equal to 
the remote station id associated 
with this SAP. 

The length of the first transmit 
buffer. 

The length of the second transmit 
buffer. 

The address of the first buffer to 
transmit. This buffer must contain 
the LAN header only. 

The address of the second buffer of 
data to transmit. The buffer con
tains data only. 



Sec. 4.7 Summary of OLC Commands 175 

The IAN header has the following format: 

Offset Type 

o 
1 
2 
8 

14 

unsigned char 
unsigned char 
char[6] 
char[6] 

char[??] 

Meaning 

AC byte, added by adapter 
FC byte, added by adapter 
Destination node address (12 digits) 
Your node address, added by 
adapter 
0-16 bytes of routing information 

The only field you are required to enter is the destination node 
address. You need to enter 1, 2, or 3 intermediate node addresses 
(routing information) if the frame must be routed through 1, 2, or 3 
gateway nodes to different token rings. The remaining fields are filled 
in by your adapter automatically. 

TRANSMIT XID eMD - -
This command transmits an XID command with the pool bit set 

on. This command is normally not used by an application program. 
Refer to the Suggested Readings for command specifics. 

TRANSMIT XID RESP FINAL - - -
This command transmits an XID response with the final bit on. 

This command is normally not used by an application program. Refer 
to the Suggested Readings for command specifics. 



176 Chap. 4 Speed with OLC Programming 

TRANSMIT XlD RESP NOT FINAL 

This command transmits an XID response without the final bit 
on. This command is normally not used by an application program. 
Refer to the Suggested Readings for command specifics. 

4.8 Summary of OLC Return Codes 

CCB command return codes are returned in the rete ode field 
of the Command Control Block structure. H you are using the 
int_adapter() function defined earlier in this chapter, the return 
code is also placed in the global variable net_error. A return of 
OxOO is always a valid return without error. A return code of 0xFF 
indicates that the command is continuing to operate. A return of 
anything else indicates some type of error. The specific meaning of 
each possible return code is as follows: 

Code 

0x00 

OxOl 

0x02 

0x03 

0x05 

Name Description Action 

SUCCESS Operation completed normally. None. 

INV AIID _ COMMAND The command code passed in the Use a valid code. 

CCB was invalid 

DUPLICATE_COMMA Only one command of this type Wait for the earlier com-
NO can be outstanding at a time, but maud to complete. 

you tried to execute a second 

ADAPrER CLOSED 

one. 

This command requires that the Qose the adapter. 
adapter be closed, but the 

adapter is already open. 

This command requires that the Open the adapter. 
adapter be opeD, but the adapter 
is c10sed 

A required parameter was not Cbeck your input param-
provided. eters to be sure that no 

required parameters are 
coded to zero. 



Sec. 4.8 Summary of OLC Return Codes 

0x06 

0x07 

0x08 

0x0A 

OxOB 

0x0C 

0xl0 

0xl1 

0xl2 

0x13 

INVALID OPTIONS 

UNRECOVERABLE F 
AlLURE 

UNAUTHORIZED PR 
IORITY 

CLOSE CANCEL 

NOT OPEN SUCCESS 

An invalid option was provided, 
or a combination of options is 

invalid. 

The adapter bas been closed 
because of an unrecoverabte 

error condition. 

The requested access priority is 

not authorized for this adapter. 

The adapter must be initialized 
for this command to work, and it 
bas not been initialized. 

The command was successfully 
cancelled per user request 

The adapter was closed while this 

command was in progress. 

The command completed, alth
ough the adapter is not opened. 

NetBIOS was accessed but it is 

not loaded, or one or more 
NetBIOS parameters used during 
the adapter open command was 
invalid. 

A timer value for timer_set or 
timer_cancel is not in the range 
of 0-13107, or you tried to cancel 

a timer which was never set 

The available work area bas over

flowed. The work area includes 

the adapter's internal memolY 
and the application provided 
work space. 

The requested log)d is not de

fined. 

177 

Check your option lists 

andll)'again. 

Determine the cause of 
the error, correct the 
error if necessmy, then 
initialize and open the 
adapter. 

Use a lower priority. 0 is 

always valid. 

Initialize the adapter. 

None. 

Determine why the adapt
er was closed. 

None. 

If you will be using 
NetBIOS, close the 
adapter, correct the prob

lems, then reopen the 
adapter. 

Correct and lI)' again. 

Reduce the values for 
max station and/or 

max_sap. You can also 
increase the memolY 
made available to the 

adapter to match the 

value returned in the 
work_len _ act field. 

Correct and rell)'. 



178 

0xl4 

0xl6 

Ox17 

0xl8 

0xl9 

0xlA 

0xlB 

Oxle 

0xlD 

0x:20 

BUFFER TOO lARGE 

NETBIOS OPERATIO 

NAL 

INVALID_BUFFER_L 
ENGTII 

PARAMATER lNVALI 
D 

LOST_DATA_NO_BUF 
FERS 

Chap. 4 Speed with DLe Programming 

1be &bared RAM segment or size 

is invalid. 

The buffer allocated for the log 
was too small, resulting in the 
loss of some statistics. 1be infor
mation that overflowed is perma
nently lost if the command indi
cated reset. 

The requested buffer size cannot 
be satisfied using the SAP buffer 
pool 

Attempt to change a NetBIOS 
parameter which is currently 
being used by NeffiIOS. 

1be specified SAP buffer size is 

invalid 

Inadequate buffers remain to 
satisty the request. 

1be user requested area is too 
large for the available buffer 
sizes. 

1be CCB parameter field pointer 
is invalid. This am be caused by 

the pointer pointing inlo the PC 
system interrupt vector area or 

being too near the end of the 
segment which will cause wrap
around for some of the fields. 

A pointer within a parameter 
table is invalid. 

1be ccb _ adapter value is outside 

of the prescn"bed range. 

1bere were no available buffers 
in the SAP's buffer pool when a 
frame was received, resulting in 
lost data. This error only occurs 
for connectionless transmissions. 

Adjust the value. Values 
must often be even multi
ples of 16. 

Be sure to use a buffer 
size which is large 
enough. 

Increase the SAP buffer 
pool size or decrease the 
requested buffer size. 

Close, then reopen the 
adapter. 

The size must be at least 
80 bytes and a multiple of 
16. 

Retty with fewer buffers 
or wait for more buffers 
to become available. 

Reduce the user length 

field value. 

Correct and retry. 

Correct and retry. 

Correct and retry. 

Free some buffers 
(buffer_free), then retry. 



Sec. 4.8 Summary of DLC Return Codes 

Ox21 

0x23 

0x24 

0x2S 

Ox27 

0x32 

Ox33 

LOST DATA BUFFER 

OVERFLOW 

FRAME ERROR 

UNAUIHORlZED MA 
C 

INADEQUATE_RCV_ 
BUFFERS 

There was inadequate space in 
the SAP's buffer pool to hold a 
received frame. Part of the frame 

will be lost This message only 
occurs for connectionless trans

missioos. 

The frame was not successfully 
transmitted. 

A frame error was detected dur
ing transmission. This may indi
cate that corrupted data was 
received by the destination. 

An attempt was made to send a 
MAC frame which this adapter 
was not authorized to do. Pos
sible causes include an invalid 
source c1ass, an attempt to send a 
MAC fram or a SAP, or an at
tempt to send a MAC frame on 
the PC Network (not token ring). 

us transmit commands are al
ready cued for this station. 

An error was detected over a 
connection, causing the connec
tion to be closed. 

The frame length is to short to 
contain header information or 
too long for the transmit buffer. 

If you are using a connection, 
this error atso causes the con
nection to enter a disconnected 
state. 

There were an inadequate num
ber of receive buffers allocated 

when the adapter was opened. 

The defined node address is in
valid 

The receive buffer length is over 

the allowed maximum, less than 
the allowed minimum, or not a 

multiple of 8. 

179 

Free some buffers, then 

relly. 

Check the FS byte in the 
CCB to determine the 
cause of failure. 

Application specific. 

Adjust the source class 
value and lIy again. 

Wait for some commands 
to complete. 

Tty to re-open the con
nection using 
dlc _connect_station. 

ModilY the frame length. 
For connection, re-open 
the connection. 

Free up RAM using open 
adapter parameters. 

The node address con
tains an unallowed bit or 
number. 

Adjust and retJy. 



180 Chap. 4 Speed with DLC Programming 

INVALID _XMlT_BUF_ The traDsmIt buffer IeDgth is over AdjIJllt and reby. 
LEN the aDowed maximum, _ tban 

the aJIowed mlDlmum, or DOt a 
multiple of 8. 

JNVAIlD _STA110N_ID The station Jd either does DOt Be sure that you are us-
exist or is DOt vaIld for this par- iDS the SAP or IiDk ac-
tiI:uIar command. c:eBII station station Jd as 

assiped by the adapter. 

1k41 PROTOCOL_ERROR Attempt to c:OJIIIeCt a IiDk station Correct your application 
wbile the IiDk Is disc:onDected or CXJde. 
c:IoIIed (you mIIIIt first open it). or 
to traDsmIt over a c:QDDeCtion 

which is not CODDeCted. 

PARAMETER_TOO _L One or more parameten exceed Correct and reby. 
ARaB the maximum aIIDwed. 

INVALID_SAP The SAP value is either invalid Inva1Id SAPs are the DuD, 
or aJready in use. global, and group sap. 

Correct and reby. 

INVALID_ROUTB The routiDg field is too short, Correct and reby. 
larger tban 18 bytes, or an odd 

number of bytes 1oJ18. 

INVALID_GROUP _RB An attempt was made to join a Correct and retry. 
QUEST DIlIIUisteDt group. 

INADBQUATB_UNK_ When openlJI8 a SAP. this error Correct and retry. 
STA110NS IDdkates that the adapter bas 

iDadequate IiDk stations remain-

iDS to ~ the request. When 
openlJI8 a &tatioD, this error indi-
cates that all IIIIIiped IiDk sta-
tions for this SAP are aJready in 
use. 

LINK_STA110N_ OPEN An attempt was made to close a Close the IiDk stations 
SAP which bas ODe or more IiDk prior to c:\oslng the SAP. 
stations open. 

1k49 GROUP_SAP _FULL The group SAP is c:urrently full Appllcatlon specific:. 

IIlI4A SEQUENCE_ERROR The station is c:\oslng or estab- Wait for the command to 
Iisbing a CODDeCtion while you complete before tJylJI8 
are attemptlJI8 to eDCUte a com- your comand. 
mand. 

Ik4B STA110N_CLOSB_NO_ The station c:IoIIed without re- Application specific:. 
ACK mote admowledgmeot. 



Sec. 4.8 Summary of OLC Return Codes 181 

Ox4C 

Ox4D 

Ox4F 

OUTSTANDING_COM 
MANOS 

Attempt to close a link station 
whlle outstanding commands are 

queued. 

The link station could not estab
lish a connection. 

The remote address is not valid 

because the bigh bit is set to 1 
which indicates a group address, 
but a group address is not al

lowed for tbis command. 

Wait until commands 
complete or issue a reset. 

VerilY rsap values, rout

jug information, the re

mote adapter address, 
and physical connectM1y, 

then try again. 

Correct the remote ad

dress. 

Other types of data which the adapter passes to your application 
are covered individually: 

Adapter Status Parameter Table 
This information is returned in response to a DIR_STATUS 

COMMAND: 

Offset Name Type Meaning 

0 phys _ addr char(4] Adapter physical address 
4 up node addr char(6] Address of next node in ring 

10 Up"'phys _ addr char(4] Physica1 address of next node 
14 poll addr char(6] Last poll address 
20 auth env char(2] Authorized environment 
22 8CC"'priority char(2) Transmit aa:e&S priority 
24 source class char(2] Source class authorization 
26 att_cOOe char(2] Last attention code 

28 source _ addr char(6) Last source address 
34 beacon_type char(2] Last beacon type 
36 major_vector char(2] Last major vector 
38 netw status char(2] Network status 

40 soft_error char(2] Soft error timer value 
42 fe_error char(2] Front end error counter 
44 local_ring char(2] Ring number 
46 mon _error char(2] Monitor error code 

48 beacon transmit char(2] Beacon transmit type 
50 beacon_receive char(2] Beacon receive type 
52 frame _ correl char(2] Frame correlation save 
54 beacon_nann char(6] BeaconiDg station NAUN 
60 reserved char(4] 



182 Chap. 4 Speed with DLC Programming 

64 beacon yhys cbar(4) Beaconlng station physical address 

Frame Status Byte 

After each frame makes a circuit around the ring, the frame 
status (FS) byte can be examined. Some values and their meanings are 

OxCC The frame was copied 
OXOO No adapter recognized the address 
Ox88 The destination adapter saw the frame but didn't copy it. 

Bring-up Error Codes 

Code Meaning 

0x0020 Diagnostics could not execute 

0x0022 ROM diagnostics faiJed 

0x0024 Shared RAM diagnostics failed 
0x0026 Processor instruction test faiJed 
0x0028 Processor interrupt test failed 

0x002A Shared RAM interface register diagnostics failed 
OxOO2C Protocol handler diagnostics faiJed 

0x0040 Adapter's programmable timer for the PC syslem faiJed 

0x0042 Cannot write to shared RAM 
0x0044 Cannot read from shared RAM 
0x0046 Allowed to write into shared RAM read-only area 
0x0048 Initialization timed out 

4.9 Suggested Reading 

mM (1988), Local Area Network Technical Reference, Research 
Triangle Park, NC: International Business Machines Corpora
tion. 



Sec. 4.9 Suggested Reading 183 

mM (1987), Token-Ring Network Architecture Reference, 
Research Triangle Park, NC: International Business Machines 
corporation. 

Poo, Gee-Swee and Wilson Ang (1989), "Data Link Driver 
Program Design for the mM Token Ring Metwork PC Adapt
er", Computer Communications, Vol. 12, no. 5, (October), pp. 
266-272. 



5. Register Direct Programming 

It is possible to program the adapter without requiring that any 
adapter support software be loaded to provide such "fluff' as DLC 
control, NetBIOS support, or heaven forbid, BIOS redirectors. The 
question you must ask yourself is why would anyone in his or her right 
mind want to do this? I must confess that it is interesting to have an 
understanding about how the adapter works when you strip away the 
insulating shells, and there is a certain macho pride in feeling like you 
can do it if you really need to ... but let's stop at that point and not 
really try to do things the hard way. With that warning in mind, this 
chapter will explain how the adapter works at the lowest possible level 
and will provide sufficient information to give you a good head start 
if you ever find an application that absolutely requires you to work at 
this level. We will not try to present detailed code examples or sample 
applications for this level of programming. If you need to "make it 
work", use this chapter as a starting point; then read Chapter seven of 
mM (1988) about 15 times and it will start to make sense. 

184 



Sec. 5.2 Programmed I/O 185 

5.1 Talking to the Adapter 

Communication between your application and the adapter is accom
plished using three mechanisms: 

1. The adapter supports programmed I/O (PIO) ports at 
fixed memory locations. In Turbo C these ports can be 
accessed using inport ( ), inportb ( ), outport ( ), 
and outportb () functions. PIO ports are discussed 
further in Section 5.2. 

2. The adapter supports memory-mapped I/O (MMIO), 
which is accessed as fixed addresses relative to a starting 
address which can change. MMIO addresses can be 
accessed in Turbo C using peek ( ), peekb ( ), poke ( ), 
and pokeb ( ). MMIO addresses are actually mapped to 
RAM/ports on the adapter. MMIO is discussed in 
Section 5.2. 

3. The adapter supports shared RAM in your application's 
address space. This shared RAM is used for passing 
control blocks and actual data back and forth. Shared 
RAM is discussed in Section 5.5. 

5.2 Programmed I/O 

You can perform three functions using PIO with ordinary PC adapters: 

1. Control adapter interrupts. 

2. Determine the starting address of the MMIO area and 
the current interrupt level. 



186 Chap. 5 Register Direct Programming 

3. Control adapter resets. 

5.2.1 Controlling Adapter Interrupts 

You can enable interrupts for all installed adapters (primary and 
alternate) with a write to address Ox02Fn, where "n" is the desired 
interrupt level. Valid interrupt levels are 0 through 3, with the 
meaning of each discussed in Section 5.2.2. For example, to enable 
interrupts using interrupt level 0 for all installed adapters, you would 
write 

Qutportb(Ox02FO, 1); 

The actual value output (1, in this case) is irrelevant. The 
simple act of writing anything is what performs the desired action. 

Similarly, you can enable interrupts for just the primary adapter 
by writing to address OXOA23, or just the alternate adapter by writing 
to address OX0A27. In this case, the interrupt level cannot be changed. 

5.2.2 Determining MMIO Starting Location 

The primary and alternate adapter will each have an independent 
memory mapped I/O (MMIO) area, and each will be located at a 
different location. To determine the starting address for the MMIO 
for the primary adapter, you read from a port located at OX0A20 (the 
address is OxOA24 for the alternate adapter). The byte value can be 
read as follows: 

unsigned char byte; 

byte = inportb(Ox0A20); 

Bits 2 through 7 indicate the starting address of the MMIO area 
(bits 0 and 1 will be discussed momentarily). The following code 



Sec. 5.2 Programmed I/O 187 

converts the byte value returned into a far pointer to the start of the 
MMIO: 

void 
unsigned int 

*Donio; 
segment; 

byte &= Ox03; /* mask lower two bits */ 
segment = byte; /* convert to integer */ 
segment «= 7; /* left shift by 7 */ 
mmio = MK_FP( (segment, 0); 

Before you start writing me letters, yes I know that there are 
much more efficient ways to do the same thing I do in this code 
fragment. In all code examples in this chapter, I am describing the 
algorithm using straightforward, crude, often inefficient C code to 
make it very clear what is going on. If you have read this far, you are 
probably a better C programmer than I anyway, and you will not have 
any difficulties taking my examples and making them more efficient to 
your hearts content! 

You can also mask off bits 2 through 7 of the byte and use the 
remaining two bits (bits 0 and 1). These two bits tell you the current 
interrupt level set for the adapter as follows: 

Value PC I/O Bus Micro Channel 

0 IRQ2 IRQ2 
1 IRQ3 IRQ3 
2 IRQ6 IRQ10 
3 IRQ7 IRQ 11 

We will" see how to use these numbers later when using 
interrupts to communicate with the adapter. 



188 Chap. 5 Register Direct Programming 

5.2.3 Controlling Adapter Resets 

You can force the adapter to enter a reset mode which is similar to 
the power-on state. To force the adapter to enter the reset mode, 
write to address OX0A21 (or Ox0A25 for the alternate adapter). The 
adapter will then stay in this reset mode until you write to the adapter 
reset release port (OX0A22 for the primary adapter, OX0A26 for the 
alternate). 

5.3 Memory Mapped I/O 

Allright, the two key things you've used the PIO to learn are the 
starting location of the MMIO area and the interrupt level of the 
adapter. Let's put that information to some use. We will start with 
the MMIO segment, determined as described in Section 5.2.2. 

In that section we combined the segment with a zero offset to 
determine the starting location of the MMIO area. To actually 
perform MMIO functions, we need to modify the offset as follows: 

• Bits 0 - 4 select a particular register of interest. 

• Bits 5 and 6 select the operation to perform on the 
register. 

• Bits 7 and 8 select the area of interest within the MMIO 
area. 

Let's talk about each of these categories individually, starting 
with bits 7 and 8. These bits operate as follows: 

• 00 selects the attachment control area. This is the 
normal selection. 



Sec. 5.3 Memory Mapped I/O 189 

• 01 is reserved. 

• 10 selects the adapter identification area A containing 
the adapter encoded address. 

• 11 selects the adapter identification area B containing 
test patterns. 

In general, you will only be concerned with the attachment 
control area, as this is where the MMIO registers are located. Bits 5 
and 6 allow you to perform four operations on these registers: 

• 11 is used to read from a register. 

• 00 is used to write to a register. 

• 10 is used to bitwise OR a byte with a register. 

• 01 is used to bitwise AND a byte with a register. 

Bits 0 through 4 select the register you are interested in. There 
are 18 registers, as follows (9 pairs of even and odd): 

• RRR (shared RAM relocation registers) - even and odd 

• WRBR (write region base registers) - even and odd 

• WWCR (write window close registers) - even and odd 

• WWOR (write window open registers) - even and odd 

• ISRP (interrupt status registers - PC system) - even and 
odd 



190 

• 

• 
• 
• 

Chap. 5 Register Direct Programming 

ISRA (interrupt status registers - adapter) - even and 
odd 

TCR (timer control registers) - even and odd 

TVR (timer value registers) - even and odd 

SRPR (shared RAM paging registers) - even and odd 

RRR even uses bit pattern 0000, RRR odd uses bit pattern 
0001, WRBR even uses bit pattern 0010, WRBR odd uses bit pattern 
0011, and so on. We will discuss the purpose of these registers next, 
but first a hint about accessing them. The following example shows a 
convenient way to address various registers assuming that the variable 
segment was previously set to point to the top of the MMIO area: 

'define RRR EVEN OxOO 
'define RRR -ODD OxOl 
'define WRBR EVEN Ox02 
'define WRBR - ODD Ox03 
'define WWCR - EVEN Ox04 
,define WWCR -ODD OxOS 
'define WWOR - EVEN Ox06 
IIdefine WWOR - ODD Ox07 
'define ISRP-EVEN Ox08 
'define ISRP -ODD Ox09 
'define ISRA-EVEN OxOA 
IIdefine ISRA -ODD OxOB 
,define TCR EvEN OxOC 
IIdefine TCR - ODD OxOD 
IIdefine TVR - EVEN OxOE 
IIdefine TVR - ODD OxOF 
IIdefine SRPR EVEN OxlO 
IIdefine SRPR::::ODD Oxll 

'define READ Ox60 
'define OR Ox40 
.define AND Ox20 
'define WRITE OxOO 

unsigned int segment; 
unsigned char byte; 

/* write OxOO to RRR EVEN */ 
pokeb(segment, RRR_EVEN I WRITE, OxOO); 

/* read TVR_EVEN into byte */ 
byte = peekb(segment, TVR_EVEN I READ); 



Sec. 5.3 Memory Mapped I/O 191 

Now let's talk about each of the registers individually, starting 
with the RRR registers. RRR _EVEN is used to set the starting 
address of shared RAM (this register is unused for PCs with the Micro 
Channel bus). Bits 1 through 7 of this register map to bits 13 through 
19 of the shared RAM address, so writing Ox02 to this register sets the 
shared RAM address to 8K, Ox04 to 16K, Ox06 to 24K, and so on. The 
shared RAM address boundary set using this register must be an even 
multiple of the shared RAM size, which brings us to register 
RRR ODD. 

RRR ODD is used to determine the amount of shared RAM 
used by your adapter. Bits 2 and 3 of this register can be read to 
determine the shared RAM size as follows: 

• 00 for 8K 

• 01 for 16K 

• 10 for 32K 

• 11 for 64K 

You must remember to mask the remaining bits prior to doing 
your comparison. 

We've now used the MMIO's RRR registers to determine the 
amount of shared RAM supported by the adapter and to set the 
shared RAM starting location to a value we have allocated from the 
global heap. Note that because the shared RAM must begin on a 
fixed boundary, you will normally need to allocate more memory than 
required (using malloe ( »), then use as your address the first valid 
address within the allocated block of memory. Don't forget to save 
your original pointer so that the memory block can be freed when you 
are done. The next question is, How is the shared memory controlled 
to prevent the adapter and our application program from simulta-



192 Chap. 5 Register Direct Programming 

neously accessing the same memory area? The answer is the write 
management register pairs. 

Although your application can always read data from anywhere 
in the shared RAM area, there are only two regions where writes are 
allowed (writes to other areas generate a PC access error interrupt). 
These two regions are called the write region and the write window. 
The write region base register (WRBR) points to the start of the write 
region. The top of the write region is the end of the shared RAM 
block which was setup. Similarly, the write window wpen register 
(WWOR) points to the start of the write window within the shared 
RAM, while the write window close register (WWCR) points to the 
end of the write window. Either the write region or the write window 
(or both) may zero size (closed). H any of these registers has a value 
of zero, the associated window is closed for all writing. H the value is 
nonzero, you must convert the register value into an actual address as 
described next. 

Recall that each of these three registers (WRBR, WWCR, and 
WWOR) is actually a pair of registers, one even and one odd. The 
even and odd register values are combined to produce a 16-bit offset 
into the shared RAM. The even register contains the most significant 
byte of this offset, while the odd register contains the least significant 
byte of the offset. 

The interrupt status registers (ISRA and ISRP) are used by the 
adapter to interrupt your application and by your application to 
interrupt the adapter. These registers are covered in depth in Section 
5.4. 

Three timer registers are used by your application: 

• TCR EVEN is used to control the timer. 

• TCV ODD is used to select a countdown timer initial 
value. 



Sec. 5.3 Memory Mapped I/O 193 

• TCV EVEN contains the actual value of the timer. 

TCR _EVEN contains 6 bits for your use. The bits have the 
following meanings: 

• Bit 2: PC system interlock. This bit is set when the 
adapter wants to prevent your application from accessing 
any of the timer registers while critical functions are 
being performed. 

• Bit 3: PC system programmable timer count status. 
This bit is set by the adapter when the countdown timer 
contains a nonzero value. 

• Bit 4: PC system programmable timer overrun status. 
This bit is set by the adapter when the countdown timer 
expires and is not reset by your application. 

• Bit 5: PC system programmable timer count gate. This 
bit is used by the application program to control the 
countdown timer. Writing a one to this location starts 
the countdown timer counting. Writing a zero pauses 
the timer. Writing a one when the timer has already 
expired (reached zero) causes the timer to be reloaded 
and restarted. 

• Bit 6: PC system programmable timer reload mode. If 
this bit is one, the timer is automatically reloaded when 
it expires. If this bit is zero, the timer must be manually 
reloaded using bit 5. 

• Bit 7: PC system programmable timer interrupt mask. 
If this bit is one, the timer will interrupt your application 



194 Chap. 5 Register Direct Programming 

when the countdown timer expires. H this bit is zero, 
the timer will not interrupt your application and you 
must manually check the timer values periodically. The 
discussion of ISRP and ISRA in the next section discuss 
the process of interrupting your application in more 
detail. 

The timer value registers (even and odd) contain timer values 
in 10 millisecond increments. The timer value is initially written to 
TVR_ODD (and changed by writing a value to TVR_ODD. It must 
then be transferred to TVR _EVEN and started when you want it to 
commence counting. This is accomplished using the appropriate bits 
in TCR_EVEN, as discussed earlier. 

The shared RAM page register (even) is used for paging of 
shared RAM to and from your PC-accessible memory (the odd register 
is not used). This register is only used on computers supporting RAM 
paging. For details, refer to mM (1988). 

5.4 Interrupt Status Registers 

Your application and the adapter communicate using interrupts. 
These interrupts are initiated via the interrupt status register adapter 
(ISRA) and the interrupt status register PC (ISRP). The ISRA _0DD 
register is used by your application to interrupt the adapter. To 
interrupt the adapter, a specific bit is written to the ISRA _0DD 
address using a pokeb () call. To understand these interrupts fully, 
we must first look ahead and examine how you communicate com
mands and data to the adapter. 

You application write three types of data into the shared RAM: 
Data Holding Buffers (DHBs), System Request Blocks (SRBs), and 
Adapter Status Blocks (ASBs). You read four types of data from 
shared RAM: System Status Blocks (SSBs), Adapter Request Blocks 
(ARBs), Receive Buffers (RBs), and SAP and Link Station Control 



Sec. 5.4 Interrupt Status Registers 195 

Blocks. The exact nature of each of these blocks will be covered in 
the next section. 

With this in mind, the following bits may be used: 

• Bit 5 indicates that you have placed a new command in 
the SRB and are ready for the adapter to process the 
command. 

• Bit 4 indicates that you have placed a response (an 
ASB) in the shared RAM which is available for the 
adapter's use. 

• Bit 3 indicates that you are ready to put an SRB in the 
shared RAM, but that a previous command is still 
pending. The adapter will then interrupt you when the 
previous command is completed. 

• Bit 2 indicates that you are ready to put an ASB in the 
shared RAM, but that a previous ASB is still pending. 
The adapter will then interrupt you when the previous 
ASB is copied. 

The ISRA EVEN register bits provide current adapter status 
information. These bits are normally not used by an application 
program, but their meaning is as follows: 

• Bit 7 - Internal parity error (on adapter's internal bus) 

• Bit 6 - Timer interrupt pending 

• Bit 5 - Access interrupt (attempt by adapter to access 
illegal address) 



196 

• 

• 
• 
• 

• 

Chap. 5 Register Direct Programming 

Bit 4 - Adapter microcode problem (microcode dead
man timer expired) 

Bit 3 - Adapter processor check status 

Bit 2 - Reserved 

Bit 1 - Adapter hardware interrupt mask (prevents 
internal interrupts) 

Bit 0 - Adapter software interrupt mask (prevents 
internal software interrupts) 

The ISRP registers are used by the adapter to interrupt your 
application. The actual interrupt will occur as a hardware interrupt 
using the IRQ number available at MMIO address OX0A20 (primary 
adapter) or OXOA24 (alternate adapter). The selected IRQ number is 
mapped to an MS-DOS interrupt number by taking the IRQ number 
and adding OX08 (i.e., IRQO = MS-DOS interrupt OXOS, IRQ1 = MS
DOS interrupt 0x09, etc.). Prior to activating the token ring adapter, 
you must ensure that the MS-DOS interrupt vector for the appropriate 
interrupt number is set to your interrupt handler. The interrupt 
handler is simply a function declared to be of type void interrupt. 
The procedure for changing the normal interrupt processing is as 
follows: 

1. Determine the MS-DOS interrupt number by first 
finding (or setting) the adapter's internal IRQ number. 

2. Use getvect () to read and store the current value for 
this interrupt. The stored value will be a far pointer to 
the current interrupt processing code. 



Sec. 5.4 Interrupt Status Registers 197 

3. Use setvect () to modify the current value for this 
interrupt to your own interrupt function. setvect ( ) is 
passed the interrupt number of interest and a far pointer 
to your interrupt function. 

4. Within your interrupt function, use values stored in 
ISRP _ODD and ISRP _EVEN (discussed next) registers 
to determine if the interrupt was generated by the 
adapter for you. 

5. If the interrupt was for you, process the interrupt 
expeditiously and return. If the interrupt was not for 
you, call the original interrupt code returned from 
getvect ( ); then return. 

As we just mentioned, most of the bits in ISRP _EVEN and 
ISRP _ODD are designed to let you know if an interrupt was for you, 
and if so, what the nature of the interrupt was. Starting with 
ISRP _ODD, the meaning of appropriate bits is 

• Bit 6 - Adapter check. The adapter has encountered a 
serious problem and has closed itself. There are proce
dures, described in mM (1988), for determining the 
cause of the problem. 

• Bit 5 - SRB response. The adapter has accepted an 
SRB request and set the return code within the SRB. 

• Bit 4 - ASB free. The adapter has read the ASB and 
this area can be safely reused. This interrupt is only 
used if your aplication has set the ASB free request bit 
in ISRA _ ODD or if an error was detected in your 
response. 



198 

• 

• 

• 

Chap. 5 Register Direct Programming 

Bit 3 - ARB command. The adapter has given you a 
command for action. The command is located in the 
ARB area of shared memory. 

Bit 2 - SSB response. The adapter has posted a re
sponse to your SRB (the response is located in the SSB 
area of shared memory). 

Bit 1 - Bridge frame forward complete. 

Within ISRP EVEN, the following bits are used to describe 
interrupt conditions: 

• Bit 4 - Timer interrupt. The TVR EVEN timer has 
expired. 

• Bit 3 - Error interrupt. The adapter has had an internal 
error. 

• Bit 2 - Access interrupt. You have attempted to write 
to an invalid area of shared RAM or an invalid register 
within the MMIO. 

In addition, the following bits within ISRP _EVEN can be 
turned on or off by you to control the interrupt processing: 

• Bit 7 - If 0 the adapter will issue a CHCK, if 1 an IRQ. 
This should normally be set (by you) to 1. 

• Bit 6 - Interrupt enable. If 0, no interrupts will occur. 
If 1, interrupts will occur normally. Normally set to 1. 

• Bit 0 - Primary or alternate adapter. Set to zero if this 



Sec. 5.5 Shared RAM 199 

adapter is the primary adapter, 1 if this adapter is the 
alternate adapter. 

We've kind of danced around the terms DHBs, SRBs, ASBs, 
etc., alluding to the fact that they are areas within the shared RAM. 
Now that you understand how ISRP and ISRA registers are used to 
communicate (via interrupts) back and forth between the adapter and 
your application, we are ready to discuss the structure of shared RAM. 

5.5 Shared RAM 

There are four formatted control blocks used for communication 
between the adapter and your application: 

1. The System Request Block (SRB) 

2. The System Status Block (SSB) 

3. The Adapter Request Block (ARB) 

4. The Adapter Status Block (ASB) 

The System Request Block is used to pass a command and its 
associated parameters from your application to the adapter. The SRB 
is functionally identical to the Net Control Blocks and Command 
Control Blocks discussed in earlier chapters. H the command is 
completed immediately, the return values will be passed back in the 
SRB space. H the command is accepted but not completed, the SRB 
return code field is set to OxFF. 

The System Status Block is used when the adapter accepts a 
command but does not complete the command immediately. The SSB 
is used to pass back return values when the SRB command is finally 
completed. 



200 Chap. 5 Register Direct Programming 

The Adapter Request Block is used by the adapter to communi
cate with your application. If the ARB contains information only, your 
application should note the information, then inform the adapter that 
the ARB has been read. If the ARB asks for some type of response, 
you notify the adapter that the ARB has been read and pass your 
response to the adapter using the ASB (discussed next). 

The Adapter Status Block is used by your application to 
respond to an ARB issued by the adapter. 

All four blocks are located in the previously identified shared 
RAM, but where? You begin by initializing the adapter using PIO and 
MMIO operations. Mer the adapter is initialized, the WRBR register 
tells you the base of the write region offset within the shared RAM. 
This is where you place your first SRB, a command to open the 
adapter. Mer the adapter is open, the response returned by the 
adapter tells you the location of the four block areas within the shared 
RAM (Le., the SRB location, SSB location, ARB location, and ASB 
location). You store these four addresses and use them until the 
adapter is closed (due to a DIR _ CLOSE_ADAPTER, DIR _ CONFIG
URE _BRIDGE_RAM, DIR _OPEN_ADAPTER, or error condition 
which causes the adapter to automatically close). You must then 
repeat the procedure and store the shared RAM addresses. In 
summary, the steps involved in opening the adapter are 

1. Issue an adapter reset PIO command. 

2. Delay for at least 50 milliseconds to ensure that the 
adapter responds. 

3. Issue an adapter release PIO command. 

4. Set the interrupt enable bit (bit 6) in the ISRP _EVEN 
register. 



Sec. 5.6 Adapter Command Blocks 201 

5. Wait for the adapter to interrupt you (via ISRP _ODD 
bit 5). This takes between one and three seconds. At 
that point you can can use the WRBR to determine the 
address of a SRB containing diagnostic information 
regarding the adapter, if necessary. 

6. Use the shared RAM segment address combined with 
the WRBR offset to post a DIR _ OPEN_ADAPTER 
command. The specifics of this command are covered 
in the following section. 

7. When the DIR _OPEN_ADAPTER command completes 
(you will be interrupted with ISRP _ ODD bit 5), read 
bytes 6 through 15 in the SRB to determine the value 
for ASB _address, SRB _address, ARB _address, and 
SSB address. These addresses are the offset from the 
start of shared RAM to the area used for 
reading/writing the specified block of data. Unless 
specifically mentioned, the internal structure of the SRB 
and SSB are identicaL 

Now that the mechanics of communicating with the adapter are 
more or less clear, it is time to cover some specifics. This involves 
looking at the ASB, SRB, ARB, and SSB blocks in more detail. As 
you read the following section, you will find that the block structures 
(and the parameters they contain) are very similar to the structure of 
the associated CCB as discussed in the previous chapter. 

5.6 Adapter Command Blocks 

You control the adapter using command blocks called System Request 
Blocks. The general procedure for issuing a command to the adapter 
is as follows: 



202 

1. 

2. 

Chap. 5 Register Direct Programming 

The appropriate SRB structure is filled with parameters 
and moved into the SRB area of shared RAM. 

ISRA _ODD bit 5 is set to interrupt the adapter. The 
adapter checks the validity of the SRB contents and 
either 

• Completes the command, sets a return 
code other than OxFF, and interrupts the 
PC using ISRP _ ODD bit 5. 

• Performs initial processing only, sets the 
return code to OxFF, and provides a com
mand correlator. The PC will normally 
not be interrupted at this point. An ex
ception is that if you have told the adapter 
that you have another SRB to send (using 
ISRA _ODD bit 3), the adapter will inter
rupt you using ISRP _ ODD bit 5 to con
firm that it has performed initial process
ing on the SRB. 

3. For some commands, the adapter may then request 
further data using the ARB and DHB blocks (and 
interrupts to tell you about the request). The PC system 
uses the ASB command block to respond to these 
commands. 

4. When a command is completed that was started (i.e., the 
return code was set to OxFF in the SRB), the adapter 
puts the final return code in the SSB and interrupts the 
PC using ISRP _ ODD bit 2. 



Sec. 5.6 Adapter Command Blocks 203 

5. After you read the data from an SSB, you inform the 
adapter that you are done reading it by setting 
ISRA ODD bit O. 

The following commands are available using the adapter direct 
interface. For common commands, the command specifics are 
included. For less common commands, the command is summarized 
and interested readers are referred to mM (1988) for more details. 
In most cases the parameters are identical (in name and function) to 
the parameters used for the identical CCB discussed in the previous 
chapter. In addition, the valid return codes (and their meaning) is 
identical to the CCB return codes covered in the last chapter. 



204 Chap. 5 Register Direct Programming 

5.6.1 DIR _CLOSE_ADAPTER (Ox04) 

This command is used to close the adapter. The command does not 
return until completed. The SSB and SRB structure definition is 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 

5.6.2 DIR _INTERRUPT (OXOO) 

command; 
reserved; 
retcode; 

This command forces an adapter interrupt, but performs no operation. 
The command does not return until completed. The SSB and SRB 
structure definition is 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 

command; 
reserved; 
retcode; 

This command is used to modify the open_options parameters for the 
adapter, normally temporarily. The format of the open options field 
is covered under DIR OPEN ADAPTER. The command does not - -



Sec. 5.6 Adapter Command Blocks 

return until completed. The SSB and SRB structure definition is 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
reserved1; 
retcode; 
reserved2; 
open_options; 

5.6.4 DIR _OPEN_ADAPTER (Ox03) 

205 

This command is used to open the adapter for normal ring communi
cations (or for adapter loopback testing). The command does not 
return until completed. The SSB structure definition is 

struct 
{ 

unsigned char 
unsigned char 
R WORD 
char 
char 
char 
R WORD 
R WORD 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

command; 
reserved1; 
open options; 
node _ address[6]; 
group _address[4]; 
funct_address[4]; 
num Jcv _ buf; 
rcv _ buf }en; 
DHB}ength; 
num_DHB; 
reserved2; 
dlc max sap; - -
dlc _ max _ sta; 
dlc _ max _gsap; 



206 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
char 

Chap. 5 Register Direct Programming 

dlc _max _gmem; 
dlc _ tl_ tick _one; 
dlc _ t2 _tick_one; 
dlc _ ti _tick _one; 
dIe _ tl_ tick _two; 
dlc _ t2 _tick_two; 
dlc _ ti _tick _two; 
product id[18]; 

The parameters are identical to the similarly named parameters 
discussed for DIR _OPEN _ADAPTER in Chapter four. One discrep
ancy is that the transmit buffers from Chapter four are called DHB 
buffers when using the adapter direct interface. 

The SRB response for this command is not identical to the SSB. 
The format of the SRB response is 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 
R WORD 
R WORD 
R WORD 
R WORD 

command; 
reserved 1; 
retcode; 
reserved2[3]; 
open error code; - -
ASB _address; 
SRB _address; 
ARB_address; 
SSB _address; 

The four addresses are offsets from the beginning of the shared 
RAM area to the start of the specified block. 



Sec. 5.6 Adapter Command Blocks 207 

5.6.5 DIR _READ _LOG (OxOS) 

This command reads log data and resets the adapter error counters. 
The command does not return until completed. The SSB structure is 
identical to the SRB structure and is defined as 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
char 
unsigned char 

command; 
reserved 1; 
retcode; 
reserved2[3]; 
log_ data[14]; 

Upon return, the 14 bytes of log data have the following 
meaning: 

log_ data[O] = line errors 
10g_data[1] = internal errors 
log_ data[2] = burst errors 
log_ data[3] = a/ c errors 
log_ data[ 4] = abort delimiters 
log_ data[5] = reserved 
10g_data[6] = lost frames 
log_ data[7] = receive congestion count 
log_ data[8] = frame copied errors 
log_ data[9] = frequency errors 
log_ data[10] = token errors 
10g_data[11-13] = reserved 



208 Chap. 5 Register Direct Programming 

5.6.6 DIR _RESTORE_OPEN _PARMS (Ox02) 

This command restores the adapter parameters to their values prior to 
calling DIR_MODIFY_OPEN_PARMS. This command does not 
return until complete. The open_options field is set (by you) to the 
values stored in the adapter prior to calling DIR _MODIFY _ O
PEN _ P ARMS. The structure of the SRB and SSB are identically 
defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
reserved1; 
retcode; 
reserved2; 
open_options; 

This command is used to set the functional address for the adapter to 
receive messages. Bits 31, 1, and 0 of the functional address are 
ignored. This command does not return until complete. The structure 
of the SRB and SSB are identically defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

command; 
reserved1; 
retcode; 
reserved2; 
funct_ address[4]; 



Sec. 5.6 Adapter Command Blocks 209 

5.6.8 DIR _SET_GROUP _ADDRESS (Ox06) 

This command is used to set the group address for the adapter to 
receive messages. This command does not return until complete. The 
structure of the SRB and SSB are identically defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

5.6.9 DLC _CLOSE_SAP (Ox16) 

command; 
reserved1; 
retcode; 
reserved2; 
group address[4]; 

This command is used to close a SAP (see Chapter four for a 
discussion of SAPs). This command does not return until complete. 
The structure of the SRB and SSB are identically defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
reserved1; 
retcode; 
reserved2; 
station _id; 



210 Chap. 5 Register Direct Programming 

This command is used to close a station (see Chapter four for a 
discussion of stations). This command returns immediately (with a 
return code of 0xFF) if the initial values are valid, and then interrupts 
your application with the final return code when the station is 
successfully closed. The structure of the SRB and SSB are identically 
defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
cmd_ correlate; 
retcode; 
reserved2; 
station _id; 

The cmd. _correlate field is used to provide a unique 
identifier for this command block so that you will be able to identify 
the block later when the command actually completes. 

5.6.11 DLC _CONNECT_STATION (Ox1 B) 

This command is used to establish a connection with a remote adapter 
via an already opened station. This command returns immediately 
(with a return code of 0xFF) if the initial values are valid, then 
interrupts your application with the final return code when the 
connection is successfully established. The structure of the SRB and 
SSB are identically defined as follows 



Sec. 5.6 Adapter Command Blocks 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 
char 

command; 
cms _correlate; 
retcode; 
reserved2; 
station _id; 
routing_info[18]; 

211 

The cmd _correlate field is used to provide a unique 
identifier for this command block so that you will be able to identify 
the block later when the command actually completes. 

5.6.12 DLC_FLOW_CONTROL (Ox1D) 

This command is used to control the flow of information into your 
application via the adapter. This command returns only upon 
completion. The structure of the SRB and SSB are identically defined 
as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 
unsigned char 

command; 
reserved1; 
retcode; 
reserved2; 
station _ id; 
flow_options; 

Flow option bits are defined as follows: 



212 

Bit 7 

Bit 6 

Bits 5-0 

Chap. 5 Register Direct Programming 

Exit (bit value of one) or enter (bit value of zero) 
a local busy state. 

If this bit is one, then a zero in bit 7 will reset 
the local busy state. If this bit is zero, then a 
zero in bit 7 will reset the system set busy state 
(buffer busy). 

Reserved 

5.6.13 DLC _MODIFY (Ox1 C) 

This command is used to modify the adapter parameters. The 
command does not return until completed. The SSB and SRB are 
identically defined as 

struct 
{ 

unsigned· char 
unsigned char 
unsigned char 
char 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

command; 
reserved1; 
retcode; 
reserved2; 
station)d; 
timer_t1; 
timer_t2; 
timer_ti; 
maxout; 
maxin; 
maxout_ incr; 
max Jetry _count; 
access yriority; 



Sec. 5.6 Adapter Command Blocks 

}; 

unsigned char 
unsigned char 

sap .-8Sap _ mem; 
gsaps[13]; 

213 

The parameters are identical to the similarly named parameters 
discussed for DLe OPEN STATION in Chapter four. The group sap - -
member list (gsaps) contains 0 to 13 items (the exact number is 
specified by sap _gsap _men H the low-order bit of a SAP value is 
1 then membership in that group SAP is canceled, a 0 indicates that 
the group SAP should be joined. 

This command is used to open a SAP. The command does not return 
until completed. The SSB anq SRB are identically defined as 

struct 
{ 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 
unsigned char 

command; 
reserved1; 
retcode; 
reserved2; 
station _id; 
timer_t1; 
timer_t2; 
timer_ti; 
maxout; 
maxin; 
maxout)ncr; 
max_retry _count; 
gsap _ max _ mem; 
max _i_field; 
sap value; 



214 

}; 

unsigned char 
unsigned_char 
unsigned char 
unsigned char 
unsigned char 

Chap. 5 Register Direct Programming 

sap_options; 
station_count; 
access yriority; 
sap JSap _ mem; 
gsaps[13]; 

The parameters are identical to the similarly named parameters 
discussed for DLC OPEN STATION in Chapter four. The group - -
SAP member list (gsaps) contains 0 to 8 items with the exact number 
specified by sap_gsap_:meDL H the low-order bit of a SAP value is 
1 then membership in that group SAP is canceled, a 0 indicates that 
the group SAP should be joined. 

This command is used to open a link access station. The command 
does not return until completed. The SSB and SRB are identically 
defined as 

struct 
{ 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

command; 
reserved1; 
retcode; 
reserved2; 
station)d; 
timer_t1; 
timer_t2; 
timer_ti; 
maxout; 
maxin; 
maxout_ iner; 



Sec. 5.6 Adapter Command Blocks 

}; 

unsigned char 
unsigned char 
R WORD 
unsigned char 
unsigned char 
char 

max retry count; - -
rsap value; 
max _i_field; 
station options; 
reserved; 
remote _ address[6]; 

215 

The parameters are identical to the similarly named parameters 
discussed for DLC _OPEN_STATION in Chapter four. 

5.6.16 DLC_REALLOCATE (Ox17) 

This command is used to increase or decrease the number link stations 
which a SAP can support. The command does not return until 
completed. The SSB and SRB are identically defined as 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

command; 
reservedl; 
retcode; 
reserved2; 
station)d; 
option byte; 
station_count; 
adapter count; 
sap_count; 

The option byte can be zero to make more link stations 
available to a SAP, or one to make less link stations available to a 
SAP. The field station count is the number of link stations to add or 



216 Chap. 5 Register Direct Programming 

delete. The adapter returns the retcode field and also sets the field 
adapter_count equal to the number of link stations available for 
the adapter (not allocated to a SAP) and sets sap_count equal to the 
number of link stations available for this SAP. 

5.6.17 DLC_RESET (Ox14) 

This command is used to reset either one SAP and all of its link 
stations or all SAPs and their link stations. The command does not 
return until completed. The SSB and SRB are identically defined as 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 

command; 
reserved 1; 
retcode; 
reserved2; 
stationJd; 

H station _ id is OXOOOO, then all SAPs and their link stations 
will be reset. Otherwise, the specified SAP and its associated link 
stations will be reset. 

5.6.18 DLC_STATISTICS (OX1E) 

This command reads (and optionally resets) statistics for a link station. 
The command does not return until completed. The SSB and SRB are 
identically defined as 

struct 
{ 

unsigned char command; 



Sec. 5.6 Adapter Command Blocks 

}; 

unsigned char 
unsigned char 
char 
R WORD 
R WORD 
R WORD 
unsigned char 
unsigned char 

reserved1; 
retcode; 
reserved2; 
station _id; 
counters _ addr; 
header _ addr; 
header length; 
reset_option; 

217 

The counters addr is an offset from the start of the SRB to a 
table of counters. This table contains the following information: 

struct 
{ 

}; 

R WORD 
R WORD 
unsigned char 
unsigned char 
R WORD 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

t frame _ xmit_ count; 
t frame _rcv _count; 
i_frame _ xmit_ err; 
t frame Jcv _err; 
t1 expired; 
station Jcvd _ cmd; 
station _sent_ cmd; 
station yrmy _state; 
station _scdy_state; 
station _ vs; 
station _ vr; 
station_va; 

Most fields are self-explanatory. The station _ rcvd_ cmd and 
station_sent _ cmd variables are the last command sent or received, 
not the total. The station J)rmy _state variable is a bit field with 
the following meanings: 



218 Chap. 5 Register Direct Programming 

• Bit 7: link closed 

• Bit 6: Disconnected 

• Bit 5: Disconnecting 

• Bit 4: link opening 

• Bit 3: Resetting 

• Bit 2: FRMR sent 

• Bit 1: FRMR received 

• Bit 0: Link opened 

The station_scdy_state variable is a bit field with the 
following meanings: 

• Bit 7: Checkpointing 

• Bit 6: Local busy (user set) 

• Bit 5: Local busy (buffer set) 

• Bit 4: Remote busy 

• Bit 3: Rejection 

• Bit 2: Clearing 

• Bit 1: Dynamic window algorithm running 



Sec. 5.6 Adapter Command Blocks 219 

• Bit 0: Reserved (may be 0 or 1) 

The header _ addr is an offset within the SRB to a copy of the 
IAN header being used. 

5.6.19 TRANSMIT _ DIR _FRAME (OxOA) 

This command is used to transmit a MAC frame on the token ring 
network. The command completes as soon as the validity of the SRB 
has been checked. The format for the SRB is as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
cmd _correlate; 
retcode; 
reserved; 
station _id; 

When the adapter is ready for you to transfer the actual data to 
it, it will request the data using a TRANSMIT DATA REQUEST - -
ARB. This command is covered later. 

After the command completes, the adapter returns an SSB in 
the following format 

struct 
{ 

unsigned char 
unsigned char 
unsigned char 
unsigned char 
R WORD 

command; 
cmd _correlate; 
retcode; 
reserved; 
station _id; 



220 Chap. 5 Register Direct Programming 

unsigned char 
}; 

5.6.20 TRANSMIT _'-FRAME (OXOB) 

This command is used to transmit data over a connection using a link. 
access station. The procedure and syntax is identical to that for 
TRARSXIT_DIR_PRAlIE covered in Section 5.6.21. 

5.6.21 TRANSMIT _ U'-FRAME (OXOD) 

This command is used to transmit a datagram using a SAP. The 
procedure and syntax is identical to that for TRARSXIT _ DIR _PRAllE 
covered in Section 5.6.21. 

This command is used to transmit an XID command. This command 
is normally used by the link. station protocol driver, not an application 
program. The procedure and syntax is identical to that for TRARS
XIT_DIR_FRAHE covered in Section 5.6.21. 

This command is used to transmit an XID response (final). This 
command is normally used by the link. station protocol driver, not an 
application program. The procedure and syntax are identical to that 
for TRARSXIT_DIR_PRAlIE covered in Section 5.6.21. 



Sec. 5.6 Adapter Command Blocks 221 

This command is used to transmit an XID response (not final). This 
command is normally used by the link station protocol driver, not an 
application program. The procedure and syntax is identical to that for 
TRANSHIT_DIR_FRAME covered in Section 5.6.21. 

5.6.25 TRANSMIT_TEST_CMD (OX11) 

This command is used to transmit a test command. The procedure 
and syntax is identical to that for TRANSHIT _ DIR _FRAME covered in 
Section 5.6.21. 

5.6.26 OLC_STATUS (OX83) 

This command is issued (via interrupt) from the adapter to your 
application. The command is found in the ARB area of shared RAM 
and must be acknowledged via ISRA ODD bit 1. This command 
requires no response. The adapter is informed of the presence of a 
response by setting ISRA _ODD bit 4. This command indicates that 
there has been a change in DLC status. The ARB contains the 
following information: 

struct 
{ 

unsigned char 
char 
R WORD 
R WORD 
char 
unsigned char 

command; 
reserved[3]; 
station _ id; 
status; 
FRMR _ data[5]; 
access yriority; 



222 

char 
unsigned char 

}; 

Chap. 5 Register Direct Programming 

remote _address[6]; 
rsap _value; 

status is a bit field where each bit has the following meaning: 

• Bit 15: Link lost 

• Bit 14: DM or DISC received or DISC acknowledged 

• Bit 13: FRMR received 

• Bit 12: FRMR sent 

• Bit 11: SABME received for an open link station 

• Bit 10: SABME received, link station opened 

• Bit 9: Remote station has entered local busy state 

• Bit 8: Remote station has left local busy state 

• Bit 7: Ti timer has expired 

• Bit 6: DLC counter overflow 

• Bit 5: Access priority reduced 

5.6.27 RECEIVED_DATA (Ox81) 

This command is used by the adapter to tell you that a data frame has 
been received. The format for the ARB is 



Sec. 5.6 Adapter Command Blocks 

struct 
{ 

}; 

unsigned char 
char 
R WORD 
R WORD 
unsigned char 
unsigned char 
R WORD 
unsigned char 

command; 
reserved[3] ; 
stationJd; 
receive_buffer; 
Ian header length; - -
dIc _ hdr Jength; 
frame_length; 
ncb type; 

223 

The field receive buffer is the offset to the first receive 
buffer in shared RAM. The buffer format is 

• Two reserved bytes 

• 2-byte R _ WORD offset to next buffer + 2 

• One reserved byte 

• 1-byte FS/Address match (last buffer only) 

• 2-byte buffer length (length of data) 

• Frame data (n bytes) 

The fields lan_ header_length and dIe _ hdr_Iength are 
the length (in the first buffer) of the LAN and DLC header. The field 
ncb_type can take on anyone of the following values based on the 
frame type: 

• OX02: MAC frame 



224 Chap. 5 Register Direct Programming 

• Ox04: I frame 

• Ox06: VI frame 

• Ox08: XID command poll 

• OxOA: XID response final 

• Oxoc: XID response not final 

• OxlO: TEST response final 

• Ox12: TEST response not_final 

• Oxl4: Other or unidentified 

You must copy the data from the shared RAM to your local 
memory and then inform the adapter that the data has been transfered 
by providing a return code to the adapter in an ASB, copying it to the 
appropriate area of shared RAM, and setting ISRA _ODD bit 4. The 
format of the ASB used by you to send a message back to the adapter 
is 

struct 
{ 

}; 

unsigned char 
char 
unsigned char 
char 
R WORD 
R WORD 

command; 
reservedl; 
retcode; 
reserved2; 
station _id; 
receive_buffer; 



Sec. 5.6 Adapter Command Blocks 225 

The rete ode field can be OXOO for success, or Ox20 for "Lost 
data on receive, no buffers available." 

5.6.28 RING_STATUS _CHANGE (Ox84) 

The adapter uses this ARB to indicate a change in the network status. 
The format of the ARB is as follows: 

struct 
{ 

}; 

unsigned char 
char 
R WORD 

command; 
reserved[5]; 
netw _status; 

netw_status is defined fully in mM (1988). 

5.6.29 TRANSMIT_DATA _REQUEST (Ox82) 

The adapter informs you that it is ready to receive actual data (in 
response to a transmit SRB) by sending you a TRANSMIT_DATA_
REQUEST ARB. The format of this ARB is as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
char 
R WORD 
R WORD 

command; 
cmd _correlate; 
reserved[2]; 
station _ id; 
dhb _ address; 

After receiving this ARB, you should read it, then acknowledge 



226 Chap. 5 Register Direct Programming 

it to the adapter using ISRA _ ODD bit 1. You then use the Data Hold 
Buffer (DHB) offset from the ARB to prepare the data for the 
adapter. This offset is relative to the start of shared RAM. The data 
written to the DHB address is 

• The data only for I frames. 

• The entire message (including IAN header) for direct 
frames (MAC frames). 

• For all other frames the format is the IAN header with 
space reserved for the source address to be inserted by 
the adapter, followed by three bytes for the adapter to 
insert the DLC header, followed by the data. 

Mer the data has been transfered to the Data Hold Buffer in 
shared RAM, an ASB response structure is completed, transfered to 
the ASB area of shared RAM, and transmitted to the adapter by 
setting ISRA _ ODD bit 4. The ASB structure is defined as follows 

struct 
{ 

}; 

unsigned char 
unsigned char 
unsigned char 
char 
R WORD 
R WORD 
unsigned char 
unsigned char 

command; 
cmd _correlate; 
retcode; 
reserved; 
station)d; 
frame_length; 
header Jength; 
rsap _value; 



Sec. 5.7 Suggested Readings 227 

5.7 Suggested Readings 

mM (1988), IBM Local Area Network Technical Reference, 
Research Triangle Park, NC: International Business Machines 
Corporation. 



6. Token Ring Adapter Hardware 

This chapter briefly discusses the token ring adapter hardware. 
We begin by discussing the 4-Mbps adapter, then discuss the newer 
4/16 Mbps, and finally discuss the adapter cables used to connect 
adapter cards to the media access unit (MAU). 

6.1 4 Mbps Adpaters 

The majority of token ring network adapter cards (4 Mbps) are 
based on the TMS380 chipset. This chipset provides support for token 
ring networks at the physical and media access control (MAC) level in 
hardware. The physical layer functions supported are signal coding, 
clocking, and control of the physical connection to the ring. At the 
MAC level the chipset supports controlled access to the ring, frame 
transport service at the MAC level, and error detection. To support 
these functions, the adapter provides hardware support for 

228 

• LAN processing to ensure that frames have the correct 
headers and control information. 



Sec. 6.1 4-Mbps Adapter 229 

• LAN buffers for local storage of transmit and receive 
data awaiting transfer to shared RAM. 

• Host interface to support interrupt-based communication 
with the host application. 

• Ring operation and signaling to support correct ring 
voltages for signaling, data transmission, and token 
regeneration. 

• Maintenance and management to assist in maintaining 
accurate clocks, detection of faulty ring functioning, and 
removal of malfunctioning adapters. 

The TMS380 chipset consists of five major components: 

1. 

2. 

3. 

4 and 5. 

The system interface chip controls communication 
between the adapter and the host PC. 

The communications processor is a microprocessor 
which executes the MAC processing firmware and 
controls the on-board buffers. 

The actual MAC protocol code is stored on the 
protocol handler chip (a ROM). 

The ring interface and transceiver chips interface 
with the ring itself. Data on the token ring is 
transmitted in analog format, so these two chips 
are the interface between the analog world of the 
ring and the digital world of the remainder of the 
adapter. 



230 Chap. 6 Token Ring Adapter Hardware 

OSC 
r---------------------------------1----------------------------------------------------------------------------------------------------j ..... 

i_" Clocking I ~ ~ Analog /' i r-:;:' bus decode r Protocol I' front Ring 
i & arbitrat. handler ~ end / IF 

...... I '\V Addr. I D Dt 
! Custom 
i micro- --1\ ..... A 

i processor Da a ,~--.,..,---... ---

User data I II ~VR ... ~ 
i RCVR , 
i ~ 

User addr. -< itt· V 
i U '" 
i User [...." Shared / I " control f'7 RAM 

User cntl. .... i /' & decode control , 

V 
DRVR 
RCVR 

DRVR 
RCVR 

L _________________ .... __ . ___________________________ ._--------------------------·-0--------------------------t--------------------

Addr. U Data 

ROM/RAM/PROM 

Fig. 6.1 Chip set functional diagram. 

6.2 16-Mbps Token Ring Adapter 

The newer, 16-Mbps token ring adapters have replaced the five 
chips required by the original token ring adapter with a single CMOS 
VLSI module which performs all major LAN adapter functions. Fig. 
6.1 is a functional block diagram of the chip. You will notice that all 
of the functional components found in the earlier chipset are still 
present within the newer VLSI module. The module is supported by 
external PROM and RAM modules. The module supports 

• Analog data encoding and decoding. 



Sec. 6.3 Token Ring Network Adapter Cable 231 

• Address recognition. 

• Frame assembly and disassembly. 

• Linked buffer list processing. 

• Interrupt control. 

• Token capture. 

• Serialization and deserialization of frames. 

In addition, the protocol handler within the module supports 
state machines to automatically transmit and receive frames. The 
custom microprocessor shown in the diagram is a 16-bit microprocessor 
running at 32-MHz and yielding a performance of 3 MIPS. In 
addition, the microcode within the module has been expanded to 
support the ILC protocol directly (on chip). For those of you who are 
into raw numbers, the module contains 106,000 transistors. 

6.3 Token Ring Network Adapter Cable 

The token ring network adapter uses a cable with a 9-pin D 
connector at the computer end and a custom 6-pin modular plug at the 
MAU end. The nine pins at the computer end function as follows: 

1. Receive 

5. Transmit 

6. Receive 

9. Transmit 



232 Chap. 6 Token Ring Adapter Hardware 

Other pins are unused. The D ring housing is used as shield 
(ground). For mM cables, within the cables the wiring is as follows: 

• The cables shielding is used for ground. 

• The red wire is for pin 1. 

• The black wire is for pin 5. 

• The green wire is for pin 6. 

• The orange wire is for pin 2. 

6.4 Suggested Readings 

East, W. (1988), "New Developments Lead to Further Integra
tion of a High Performance Token Ring Adapter," Proceedings 
of the Networking Technology and Architectures, (Pinner, UK: 
Blenheim Online), pp. 89-105. 

Lank, K. (1989), "A 16 MBPS Adapter Chip for the mM Token 
Ring Local Area Network," Proceedings of the IEEE 1989 
Custom Integrated Circuits Conference, (May), pp.11.3.1-11.3.5. 

Strole, N. (1989), "Inside Token Ring Version II, according to 
Big Blue," Data Communications, Vol. 18, no. 1, (January), pp. 
117-125. 



7. Using APPC For Transaction 
Processing 

Many network-oriented software applications are basically 
transaction oriented. An application "calls up" another application 
(normally on a different computer), passes a record structure, and 
requests that some action be performed on that structure. A typical 
example might be a hospital. A central database containing all patient 
information might be maintained on an ffiM mainframe computer. 
Local PCs throughout the hospital are used to read/update the 
information in this central database. For example, the pharmacy 
might access the patient database to review patient allergies, update 
the database with the medications the patient is taking, and then later 
access the patient database to determine the patient's room number so 
that the medicine can be delivered. The hospital kitchen, switchboard, 
nurse's stations, and accounting office might also use PCs to access and 
update this same database. Similar requirements arise from a wide 
variety of other fields, including airline reservations, point-of-sale 
systems, and automatic bank teller machines. ffiM handles this type 
of transaction-oriented network environment using the Application 
Program-to-Program Communication, or APpc. This chapter describes 

233 



234 Chap. 7 Using APPC For Transaction Processing 

the PC version of APPC, known as APPC/pC, and presents some 
examples illustrating how to use APPC/PC. APPC/pC is sufficiently 
rich (i.e., complex) that this book cannot do it justice in a single 
chapter. We can, however, present a sufficient flavor of APPC/PC for 
you to know if it is worthwhile to pursue the topic using the Suggested 
Readings. 

The following functions are defined in this chapter: 

• test_appc() test for presence of APPC/pC 

• int _ appc () process appc command block 

• ascii_to_ebcdic() 
EBCDIC 

convert ASCn string to 

• attach -pu () attach a physical unit 

7.1 APPC Overview 

APPC/PC works over both token ring networks and synchronous data 
link control (SDLC) connections. Using APPC/PC, it is possible to 
implement a transaction oriented application which communicates 
transparently with a wide. range of computers, including the following: 

• mM System /370 CICS/VS 

• mM System /370 IMS LU 6.2 Adapter 

• mM System /38 

• mM System /34 



Sec. 7.2 Addressing in an APPC/PC Environment 235 

• mM System /1 

• mM System /88 

• Other mM PCs 

In general, a connection is established only long enough to 
complete a transaction. The time required to process a transaction will 
vary widely, because a transaction can be as short as a record update 
or as lengthy as a file transfer. When using dial-up phone lines for 
connectivity, you can set up APPC/PC so that dialing in to the host 
computer is performed as part of the transaction initiation procedure. 

APPC/PC provides a PC based Systems Network Architecture 
(SNA) programming environment. APPC/PC functions as an SNA 
logical unit (LU) 6.2 platform and as an SNA physical unit (PU) 2.1 
network node. LUs and PUs are discussed further in the following 
section. 

7.2 Addressing in an APPC/PC Environment 

There are five addresses you use in an APPC/PC environment: 

1. The network name is an application defined unique 
name used for APPC/PC communication. This value 
must be eight characters long, so names less than eight 
characters must be blank padded on the right. This 
name must be known by all other applications wishing to 
communicate with you. 

2. The physical unit (PU) name is an 8-character name 
which is used to tag error messages logged to the system 
log. This name is normally the same as the network 
name. 



236 

3. 

4. 

5. 

Chap. 7 Using APPC For Transaction Processing 

The logical unit (LU) name which is the same as your 
network name. 

Your LU local address, which is only used for terminals 
attached to mainframe computers. This value should be 
set to zero for PCs. 

Your LU adapter address, which is the 16-byte adapter 
address (either the ROM address or the address set 
during adapter configuration). 

To complicate the situation further, mM does not use ASCll 
for any of these addresses. Each of the addresses must be converted 
to EBCDIC prior to transmission, and converted back to ASCn for 
received messages if you intend to display the messages to the user. 
At least the task is simplified somewhat by a conversion capability built 
into APPC/PC (discussed later). 

7.3 Communicating with APPC/PC 

From a network layer perspective, APPC/PC is roughly similar to 
NetBIOS. Both operate on top of the underlying DLC layer to provide 
a hardware/network protocol-independent method of communicating 
with other applications. You will also find that communicating with 
APPC/PC is roughly similar to working with NetBIOS. You fill in a 
structure with the command and pass parameters; you call APPC/PC 
using one of the pes interrupt vectors; and then you read return 
values in your structure. 

The first thing you must do is test to ensure that APPC/PC is 
installed and running on your PC. This can be accomplished using the 
code shown in Code Box 7.1. APPC/PC uses interrupt Ox68. Recall 
that because each interrupt vector is a far pointer, this interrupt vector 
is stored at Ox68 * 4. We can read this interrupt vector value, and 



Sec. 7.3 Communicating with APPC/PC 

Unclude 
Unclude 

<dos.h> 
"appe.h" 

1************************************************************* 
* test_appc() - Test for presence of APPC/PC 
* * Returns: 
* 0 for success (APPC/PC installed) 
* -1 for failure 
* 
* History: 
* Original code by William H. Roetzheim, 1990 
*****************************************************************/ 

int 
{ 

int 
char 
char 

i; 
*appc; 
*valid = nAPPC/PC"; 

appc • (char *) getvect(Ox68); 

for (i = 0; i < 7; i++) 
{ 

if (appe!-9 + i] 1= valid!i]) return -1; 
} 
return 0; 

Code Box 7.1 test_appc () function definition. 

237 

then determine if APPC/PC is installed by looking at the memory 
location 9 bytes prior to the address pointed to by the interrupt vector 
and looking for the string "APPC/PC." 

The actual call to APPC/PC involves filling a structure which 
is unique to each command, pointing the DS:DX register pair to the 
beginning of this structure, setting the AH register to the command 
type, then executing an interrupt Ox68. The function int _ appc ( ) 
shown in Code Box 7.2 shows how this can be done. 

The header file appc. h (shown below) defines each of the 
appc commands, each of the appc command structures, and all return 
codes. 

/* APPC Commands */ 
'define ALLOCATE 
'define ALLO~ FAMILY 
'define CONFIRM -
'define CONFIRM FAMILY 
'define CONPIRMiD 
'define DEALLOCATE 
'define DEALLO~_FAMILY 

OxOOOl 
Ox02 
OxOOOJ 
Ox02 
Ox0004 
Ox0005 
Ox02 



238 Chap_ 7 Using APPC For Transaction Processing 

#include 
Unclude 

extern int 

<dos.h> 
"appc.h" 

,*****************************-************************************ 
* int_appc() - execute an appc command block 

Parameters: * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

command_block (in) - pointer to command block 
command_family (in) - command family to execute 

Global: 
net_error - updated with primary return code value 

Returns: 
o for success, net_error for error 

* History: 
* Original code by William H. Roetzheim, 1990 
**********************************************************************/ 

int 
( 

char 

int_appc(void *command_block, unsigned char command_family) 

*cb - command_block; 

DS • FP SEG(command block); 
:DX = FP:OFF(cOmmand:block); 
_AB = command_family; 
geninterrupt(Ox68); 
net_error = * (int * ) (& cb[20]); 
return net_error; 

Code Box 7.2 int _ appc () function definition. 

'define FLUSH 
'define FLUSH FAMILY 
'define GET_AiTRIBUTES 
'define GET ~IBUTES FAMILY 
'define GET-TYPE -
'define GET-TYPE FAMILY 
,define POST ON RECEIPT 
'define POST-OR-RECEIPT FAMILY 
'define PREPiRE:TO_RECEIVE 
'define PREPARE TO RECEIVE FAMILY 
'define RECEIVE-AND WAIT -
'define RECEIVE-AND-WAIT FAMILY 
'define RECEIVE-IMMiDlAii 
'define RECEIVE-IMMEDIATE FAMILY 
'define REQUEST-TO SEND -
'define REQUEST-TO-SEND FAMILY 
'define SEND ERRoR- -
'define SEND-ERROR FAMILY 
'define TEST - -
'define TEST FAMILY 
'define WAIT-
'define WAIT FAMILY 
'define CROS -
'define CNOS FAMILY 
'define ACCES LU LU PW 
'define ACCESS_LU_LU_PW_FAMILY 
'define CONVERT 
'define CONVERT_FAMILY 

Ox0006 
Ox02 
Ox0007 
Ox02 
Ox0008 
Ox02 
Ox0009 
Ox02 
OxOOOA 
Ox02 
OxOOOB 
Ox02 
OxOOOC 
Ox02 
OxOOOE 
Ox02 
Ox0010 
Ox02 
OX0012 
Ox02 
Ox0013 
Ox02 
Ox0015 
OX06 
OX0019 
Ox02 
OxOOlA 
Ox251 



Sec. 7.3 Communicating with APPC/PC 

'define DISPLAY 
'define DISPLAY FAMILY 
'define TRANSFER_MS_DATA 
'define TRANSFER MS DATA FAMILY 
'define ATTACH PU - -
'define ATTACH-PU FAMILY 
'define ATTACH-LU-
'define ATTACH-LU FAMILY 
'define CREATE:TP-
'define CREATE TP FAMILY 
'define TP STARTED 
'define TP-STARTED FAMILY 
'define TP-ENDED -
'define TP:ENDED_FAMILY 
'define SYSLOG 
'define SYSLOG FAMILY 
'define DETACH-PU 
'define DE~CH-PU FAMILY 
'define GET_ALLocATE 
'define GET_ALLO~_FAMILY 
'define TP VALID 
'define TP-VALID FAMILY 
'define CHANGE_LU 
'define CHANGE LU FAMILY 
'define ACTIVAiE DLC 
'define ACTIVATE:DLC_FAMILY 

typedef unsigned int RWORD; 
typadef unsigned long 

OxOOlB 
OxOl 
OxOOlC 
Ox05 
Ox0020 
OxOl 
Ox0021 
OxOl 
Ox0023 
OxOl 
Ox0024 
Ox03 
Ox0025 
Ox04 
Ox0026 
OxOl 
Ox0027 
OxOl 
Ox0028 
Ox03 
Ox0029 
Ox04 
OxOO2A 
Ox03 
Ox002B 
OxOl 

1* byte reversed integer *1 
RLONG; 1* byte reversed long *1 

1* structure definitions for APPC/Cammands *1 
struct 
{ 

}; 

struct 
{ 

}; 

struct 
{ 

access_lu_lu-pw 

char 
unsigned int 
char 
char 
char 
char 
char 
char 

activate_dlc 

char 
unsigned int 
char 
RLONG 
char 
char 

allocate 

char 
unsigned int 
char 
char 
RWORD 
RLONG 
char 
RLONG 
char 
char 

reserved[12]; 
command; 
lu_id[8]; 
lu nama[8]; 
partner_lu_nama[8]; 
partner_lu_fully_qualified_lu_nama[17]; 
password_available; 
password[8]; 

reservedl[12]; 
command; 
reserved2[6]; 
return_code; 
dlc_nama[8]; 
adapter_number; 

reservedl[12]; 
command; 
verb_extension_code; 
reserved2[5]; 
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv id; 
conversation_type; 
sync_level; 

239 



240 

}; 

struct 
{ 

}; 

char 
char 
char 
char 
char 
unsigned char 
char 
char 
char 
unsigned char 
char 
unsigned char 
char 
unsigned int 
far 

attach_lu 

char 
unsigned 
char 
RLONG 
unsigned 
char 
char 
unsigned 
unsigned 
far 
char 
far 
char 
unsigned 
unsigned 
far 
char 
unsigned 

struct 
{ 

int 

int 

char 
char 

char 
char 

int 

unsigned 
unsigned 
char 
unsigned 
unsigned 
unsigned 
char 
unsigned 
unsigned 
char 
unsigned 
struct 
{ 

int 
int 

char 
char 
int 

char 
char 

int 

Chap. 7 Using APPC For Transaction Processing 

reserved3[2); 
return control; 
reserv9d4[S); 
partner_lu_name[S); 
mode name[S); 
tp_name_length; 
tp_name[64); 
security; 
reserved5[1l); 
password_length; 
password[lO); 
user_id_length; 
user id[lO); 
pip_data_length; 
*pip_data; 

reservedl[12); 
command; 
reserved2[6); 
return code; 
offset=to-partner_lu_record_length_field; 
lu name[S); 
lU-id[S); 
lu-local address; 
lu-session limit; 
*create_tp=exit; 
reserved3[4); 
*system_log_exit; 
reserved4[4); 
max_tps; 
queue_dpeth; 
*lu_lu-password_exit; 
*reserved5[4); 
total_length_of-partner_lu_records; 

length_of_this-partner_lu_record; 
offset to start of mode records; 
partner_lu_nameTS); -
partner_lu_security_capabilities; 
partner_lu_session_limit; 
partner_lu_max_mc_send_ll; 
partner_lu_dlc_name[S); 
partner_lu_adapter_number; 
length_of-partner_lu_address; 
partner_lu_adapter_address[16); 
total_length_of_all_mode_name_records; 

unsigned int 
char 

length_of_this_mode_name_record; 
mode name[S); 
ru_sIze_high_bound; unsigned int 

unsigned int 
unsigned char 
unsigned int 

ru size low bound; 
mode_~_negC;tiable_session_limit; 
pacing_size; 

} modename [MAX_MODE); 
partner_lu [MAX_PARTNER_LU); 



Sec. 7.3 Communicating with APPC/pc 241 

struct attach-pu 
{ 

char reservedl[12]; 
unsigned int command; 
char reserved2[6]; 
RLONG return_code; 
char reservedJ[2]; 
unsigned char version; 
unsigned char release; 
char net_name[8]; 
char pu_name[8]; 
char reserved4[8]; 
far *system_Iog_exit; 
char reserved5[4]; 
unsigned char return_control; 

}; 

struct change_lu 
{ 

char reservedl[12]; 
unsigned int command; 
char reserved2[6]; 
RLONG return_code; 
char reservedJ[2]; 
far *lu_id_create_tp_exit; 
char reserved4[4]; 
far *system_log_exit; 
char reserved5[4]; 
unsigned char JDaX_tps; 
unsigned char queue_allocates; 
far *lu_lu-password_exit; 
char reserved6[4]; 

}; 

struct cnos 
{ 

char reservedl[12]; 
unsigned int command; 
char reserved2[6]; 
RWORD primary_return_code; 
RLONG secondary_return_code; 
char lu_id[8]; 
char reservedJ[8]; 
char partner_Iu_name[8]; 
char mode_name[8]; 
unsigned char mode_name_select; 
unsigned char partner_lu_mode_session_limit; 
unsigned char min_conwiriners_source; 
unsigned char min_conwinners_target; 
unsigned char auto_activate; 
char reserved4; 
unsigned char termination_settings; 

}; 

struct confirm 
{ 

char reservedl[12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[5]; 
RWORD primary_return_code; 
RLONG secondary_ret urn_code; 



242 Chap. 7 Using APPC For Transaction Processing 

char tp_id[8] ; 
RLONG conv_id; 
unsigned char request_to_send_received; 

}; 

struct confirmed 
{ 

char reservedl[12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[S]; 
RWORD primary_return_code; 
RLONG secondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 

}; 

struct convert 
{ 

char reservedl[12]; 
unsigned int command; 
char reserved2[6]; 
RLONG return_code; 
unsigned char direction; 
unsigned char character_set; 
unsigned int length; 
char *source; 
char *target; 

}; 

struct create_tp 
{ 

char reservedl[12]; 
unsigned int command; 
char reserved2[6]; 
RLONG sense_code; 
char tp_id[8]; 
char lu_id[8]; 
RLONG conv_id; 
unsigned char type; 
unsigned char sync_level; 
char reserved3; 
unsigned char transaction-program_name_lengthi 
char tpn[64]; 
char reserved4[6]; 
unsigned int length_of_error_log_data_to_return; 
far *pointer_to_error_log_data_to_return; 
char partner_lu_name[8]; 
unsigned int length_of_fully_qualified-partner_lu_name; 
char partner_fully_qualified_lu_name[17]; 
char mode_name[8]; 
char reservedS[12]; 
unsigned char length_of-password; 
char password[lO]; 
unsigned char length_of_user_id; 
char user_id; 
unsigned char already_verified; 

}; 



Sec. 7.3 Communicating with APPc/pc 243 

struct deallocate 
{ 

char reserved1 [ 12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[5]; 
RWORD primary_return_code; 
RLONG sBCondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 
char reserved3; 
unsigned char type; 
unsigned int length_of_error_log_data; 
far *address_of_Brror_log_data; 

}; 

struct detach_lu 
{ 

char reserved1[12]; 
unsigned int command; 
char reserved2 [6] ; 
RLONG sense_code; 
char 1u_id[8]; 
char reserved3; 

}; 

struct detachj)u 
{ 

char reserved1[12]; 
unsigned int command; 
char reserved2[6]; 
RLONG sense_code; 
char type; 

}; 

struct display 
{ 

char reserved1[12]; 
unsigned int command; 
char reserved2 [6] ; 
RLONG sense_code; 
char reserved3[2]; 
char lu_id[8]; 
char partnBr_lu_namB[8]; 
char mode_name[8]; 
unsigned char lu_session_limit; 
unsigned char mOde_max_negotiable_session_limit; 
unsigned char current_session_limit; 
unsigned char min_negotiated_winnBr_limit; 
unsigned char min_nBgotiated_loser_limit; 
unsigned char active_session_count; 
unsigned char active_conwinner_session_count; 
unsigned char active_conlosBr_session_count; 
unsigned char session_termination_count; 
unsigned char termination_settings; 

}; 

struct flush 
{ 

char reservedl[12]; 



244 

}; 

unsigned int 
unsigned char 
char 
awaRD 
RLONG 
char 
RLONG 

struct get_allocate 
{ 

}; 

char 
unsigned int 
char 
RLONG 
char 
char 
unsigned char 
far 

struct get_attributes 
{ 

}; 

struct 
{ 

}; 

struct 
{ 

char 
unsigned int 
unsigned char 
char 
RWORD 
RLONG 
char 
RLONG 
char 
char 
unsigned char 
char 
char 
char 
char 
unsigned char 
char 
char 
unsigned char 
char 

get_type 

char 
unsigned int 
char 
RWORD 
RLONG 
char 
RLONG 
char 

post_on_receipt 

char 
unsigned int 

Chap. 7 Using APPC For Transaction Processing 

command; 
verb extension code; 
reserved2 [5]; -
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv_id; 

reservedl[l2]; 
command; 
reserved2[6]; 
sense_code; 
reserved3[2]; 
lu_id[8]; 
type; 
*pointer_to_create_tp_record; 

reservedl[12]; 
command; 
verb extension code; 
reserved2 [5]; -
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv id; 
lu_id; 
reserved3; 
sync_level; 
mode name[8]; 
own net name[8]; 
own::)u_name [8] ; 
partner_lu_name[8]; 
length_of-partner_fully_qualified_lu_name; 
partner_fully_qualified_lu_name[17); 
reserved4; 
length_of_user_id; 
user_id[lO); 

reservedl[12); 
command; 
reserved2[6]; 
primary_return_code; 
secondary_return_code; 
tp_id[8) ; 
conv_id; 
type; 

reservedl[12); 
command; 



Sec. 7.3 Communicating with APPCjPC 245 

char reserved2[6]; 
RWORD primary_ret urn_code; 
RLONG secondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 
unsigned int max_length; 
unsigned char fill; 

}; 

struct prepare_to_receive 
{ 

char reservedl[12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[5]; 
RWORD primary_ret urn_code; 
RLONG secondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 
unsigned char type; 
unsigned char locks; 

}; 

struct receive_and_wait 
{ 

char reservedl[12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[5]; 
RWORD primary_return_code; 
RLONG secondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 
unsigned char what_received; 
unsigned char fill; 
unsigned char request_to_send_received; 
unsigned int max_length; 
unsigned int data_length; 
far *data.Jltr; 

}; 

struct receive_immediate 
{ 

char reservedl[12]; 
unsigned int command; 
unsigned char verb_extension_code; 
char reserved2[5]; 
RWORD primary_return_code; 
RLONG secondary_return_code; 
char tp_id[8]; 
RLONG conv_id; 
unsigned char what_received; 
unsigned char fill; 
unsigned char request_to_send_received; 
unsigned int max_length; 
unsigned int data_length; 
far *data.Jltr; 

}; 



246 

struct request_to_send 
{ 

char 
unsigned int 
unsigned char 
char 
RWORD 
RLONG 
char 
RLONG 

}; 

struct send_data 
{ 

char 
unsigned int 
unsigned char 
char 
RWORD 
RLONG 
char 
RLONG 
unsigned char 
char 
unsigned int 
far 

}; 

struct send_error 
{ 

char 
unsigned int 
unsigned char 
char 
RWORD 
RLONG 
char 
RLONG 
unsigned char 
unsigned char 
char 
unsigned int 
far 

}; 

struct tp_ended 
{ 

char 
unsigned int 
char 
RLONG 
char 
char 

}; 

struct tp_started 
{ 

char 
unsigned int 
char 
RLONG 

Chap. 7 Using APPC For Transaction Processing 

reservedl[12]; 
command; 
verb_extension_code; 
reserved2[5]; 
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv_id; 

reservedl[12]; 
command; 
verb extension code; 
reserved2 [5]; -
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv id; 
request_to_send_received; 
reserved3; 
data_length; 
*dataJltr; 

reservedl[12]; 
command; 
verb extension code; 
reserved2 [ 5]; -
primary_return_code; 
secondary_return_code; 
tp_id[8]; 
conv id; 
request_to_send_received; 
type; 
reserved3[4]; 
log_data_length; 
* log_data; 

reservedl[12]; 
command; 
reserved2[6]; 
return code; 
reserved3[2]; 
tp_id[8]; 

reservedl[12]; 
command; 
reserved2[6]; 
return_code; 



Sec. 7.4 Sending a Transaction in APPC 247 

}; 

char 
char 
char 

reserved3[2]; 
lu_id[8]; 
tp_id[8]; 

struct tp_valid 
{ 

}; 

char 
unsigned int 
char 
RLONG 
char 
char 
far 

reservedl[12]; 
command; 
reserved2[6]; 
return code; 
reserved3[2]; 
tp_id[8]; 

*create_tp.Jltr; 

1* function prototypes *1 
char *attach_Iu(char *local_Iu, char *remote_lu[], char *remote_address[]); 
int test_appc (void); 
int int_appc(void *command_block, unsigned char command_family); 
char *ascii_to_ebcdic (char *ascii); 

7.4 Sending a Transaction in APPC 

To establish an outgoing connection in APPC/PC, five APPC/PC 
commands are used: 

1. attach-pu ( ) defines a local APPC physical unit 
(PU). 

2. attach_Iu() defines a local APPC logical unit (LU) 
for your use. Although a given PC will normally only 
have one PU, it is possible for the same computer to 
have multiple LUs. For example, if you wish to establish 
full-duplex communication with a remote host, you 
would normally use two LUs (one for send, one for 
receive). 

3. enos ( ), which stands for change number of sessions, is 
used to establish or teardown an actual connection. 
Establishing a connection involves raising the session 
limit for a given partner LU from 0 to 1 and telling if 
the connection should be a transmit connection or a 



248 Chap. 7 Using APPC For Transaction Processing 

receive connection. Other parameters (not discussed) 
come into play if you have multiple simultaneous 
sessions and you want negotiations to be performed 
between APPC/PC nodes for network resources. 

4. activate _ dlc () is used to activate APPC over the 
token ring network adapter. If you were also using an 
SDLC adapter, you would need an additional call to 
activate_dlc() to activate the SDLC adapter. 

5. allocate() is used to reserve buffers and prepare the 
connection for use by the application. 

Code Box 7.3 shows sample code for attach -pu ( ). This code 
is included for illustrative purposes only to demonstrate how typical 
APPC/PC commands are executed. The end result of this entire 
procedure will be a valid tp_id (transaction program ID) and 
conv_id (conversation ID). The transaction program ID is an 8-
character string (blank padded), while the conversation ID is a 4-
character string (blank padded). Both strings are EBCDIC (not 
ASCII), and neither is null terminated. 

For some commands, you may wish to modify a parameter 
which is defined as a RWORD or RLONG. These parameters are 
unsigned integer or long integer variables where they byte (and word) 
order is reversed from that used in the IBM-PC. For example, you may 
have noticed that all the return values passed back from APPC/PC are 
returned in byte (and for longs, word) reversed order. You may wish 
to modify int _ appc () to reverse the return values prior to storing 
the value in net_error. 

After you have established a connection (called a conversation), 
actually sending the transaction is relatively simple. You use the 
re~ send command to request permission to send data, the send the 
data using send_data. The data is EBCDIC and consists of two 



Sec. 7.4 Sending a Transaction in APPC 

#include 
#include 

<string.h> 
"appc.h" 

extern int net_error; 

/*****************************************************.** ••• ** •• * •• 
* attach-pu - attach physical unit to network 
* 
* 
* 
* 
* 
* 
* 

Parameters: 
network (in) - network name, 8 characters w/blank padding 

Returns: 
o for success, net_error for failure 

* History: 
* Original code by William H. Roetzheim, 1990 
.*.** •• ******* •• *****************.*.*.****.*******_.******************/ 

int attach-pu(char *network) 
{ 

struct attach-pu apu; 

memset (&apu, 0, sizeof (struct attach-pu»; 
apu.command = ATTACH PU; 
memcpy (apu.net_name;ascii_to_ebcdic (network), 8); 
memcpy (apu.pu_name, apu.net_name, 8); 
apu.system_log_exit = (void *) OxFFFFFFFF; /* none */ 
apu.return_control = OxOO; /* complete */ 
int_appc(&apu, ATTACH_PU_FAMILY); 
return net_error; 

Code Box 7.3 attach yuO function definition. 

249 

bytes specifying the length (in reversed order from the mM-PC) 
followed by the actual data in any format you desire. 

Part of establishing the conversation involves specifying a 
transaction program name. This name is specified in EBCDIC and is 
up to 64 characters long. When the receiving computer receives a 
transaction, it uses this name to load the program specified by this 
transaction program name. For example, if the transaction program 
name was command. com the computer would look for and load 
command.com when the conversation was established; The data 
passed as an actual transaction is then given as input to the newly 
loaded program. 

When you are done, the conversation must be terminated. This 
involves freeing up resources ( deallocate), calling cnos () to 



250 Chap. 7 Using APPC For Transaction Processing 

change the number of sessions from 1 to 0, and calling detach _lu ( ) 
and detach -pu () to terminate the conversation. 

7.5 Receiving Transactions Using APPC/PC 

To a large extent, the receiving program's tasks are the mirror image 
of the sending program's tasks. You still must use the functions 
attach-pu, attach_Iu, enos, and activate_dIe to establish 
a connection. In this case, the partner _lu related fields might 
include multiple partners, one for each remote system from which you 
may be receiving transactions. When transactions arrive, they can 
either be queued or you can be notified of their arrival via an 
interrupt. A structure is available to you which includes the name of 
the transaction program (in EBCDIC) which should be executed. If 
the transaction program requested exists, you issue a tp _valid to 
confirm the conversation to the remote computer. You then use the 
receive_and_wait or receive_immediate command to receive 
the actual data for the transaction program. You then use the 
tp _ended command to tell APPC/PC that the program is done, 
calling enos () to change the number of sessions from 1 to 0 and 
calling detach _lu () and detach -pu ( ) to terminate the conversa
tion. 

7.6 Summary of APPC/PC Commands 

The following table presents a summary of all APPC/PC commands. 
The columns have the following meanings: 

1. Command - The command name. These names are 
defined in appc • h. These are the values to use for the 
command structure's command field prior to calling 
APPC for processing. The command family (to be 
placed in register AH) is also defined in APPC.h. 



Sec. 7.6 Summary of APPC/PC Commands 251 

2. Inputs - The fields within the command structure which 
are used as input. 

3. Outputs - The fields within the command structure 
which are modified by the command during processing. 

4. Summary - A brief description of the command func
tion. 

Command 

ALLOCATE 

Inputs 

command 
lu_id 
lu name 
partner )u_ name 
pm1Der Jully _ qualified )u
_name 

command 
verb_extension _ code 

tp id 

conversation_type 
sync)evel 
return_control 
partner lu name 

mode name 
tp _ name )ength 

tp_name 
security 
user _ id _length 

user id 
pip_data _length 
pip_data 

Outputs 

password_available 
password 

return code 

primmy_ return_code 
secondary_return _code 
conv id 

Summary 

Request (by APPC/PC) 
for you to provide a pass
word for a specified part

nerLU. 

Activates a OLC adapter. 
This command must be 
issued for each OLC ad

apter instaIled. OLC ada

pters include the Token 
Ring Adapter and the 
SOLC adapter. 

Allocates a session be
tween the local LU and a 
remote LU and identifies 

the remote transaction 
program the local LU 
wishes to talk to. 



252 Chap. 7 Using APPC For Transaction Processing 

ATfACH_LU command return code Creates a Jocal LU with 
offset_to yartner _Iu Je- lu)d the specified parameters. 
cord_length _ field 

lu_name 
lu )ocal_ address 
lu _session )imit 
create _ tp _ exit 

system )08.. exit 

max_tps 
queue_depth 
lu _lu yassword _ exit 

total_length_of .Jlartne-

r)u_records 
length _of_this .Jlartner-
_lu_record 
offset_to _start _ of_ mod-

e records 
partner )u_ name 
partner )u _security _ cap-

abilities 
partner _Iu _session )imit 
partner _Iu _ max _mc _ sen-

d_U 
partner lu dlc name 
partner_Iu_adapter_num-
ber 

1eJJsth _of.Jlarlner _lu _ada-
pter address 
partner _lu _adapter _ add-

ress 
total_length _ of_aU _mo-
de_name _ records 

length_of _this_mode _-
name record 
mode_name 
ru _size_high _ bound 
ru _size_low_bound 
mode_max _negotiable _-
session_limit 
pacing_size 

ATfACH_PU command return code Defines a local physical 

net_name version unit with the specified 
puname release parameters. 
system _log_exit 
return_control 



Sec. 7.6 Summary of APPC/PC Commands 

CNOS 

CONFIRM 

CONFIRMED 

CONVERT 

DEALLOCATE 

COIIIIII8IId 
lu id 
create _ tp _ exit 

system _los.. exit 

max_tps 
queue_allocates 
lu )u ...JHIIISWord _ exit 

command 
Iu_id 
partner _Iu_ uame 
mode_Dame 
mode_Dame _ select 
partner _Iu _mode _ sessi
on_limit 
min _ conwinnen _ source 
min _ conwinnen _ target 
auto_activate 
termination_settings 

command 
verb_extension _ code 
tp_id 
conv}d 

command 
verb_extension_code 
tp_id 
conv_id 

command 
dire<:tion 
cbarad:er _ set 
length 
source 

length _ ot error _los.... data 

los..data 

command 
lu)d 

COIIIIII8IId 

type 

return code 

primaJy_ return_code 
secondaJy_ return_code 
request)o _ send_received 

return code 

return code 

253 

Allen spec:lfied parame
len for an existing local 
LU. 

Establishes a session for a 
given LU to LU conver
sation. 

Sends a request for con
firmation to a remote 
ttansadion program and 
waits for a reply. 

Sends a confirmation 
reply to a remote transac
tion program (partner). 

Converts between ASCII 

and EBCDIC 

Terminstes the spec:lfied 
conversation. 

Terminstes a local LU. 

Terminstes the local PU. 



254 

DISPlAY 

FLUSH 

Chap. 7 Using APPC For Transaction Processing 

command 
vertJ _ eKtellllion _ c:ode 

tp}d 
CODY_id 

collllD8.lld 
lu_id 
type 

command 
tp_id 
CODY id 

collllD8.lld 
vertJ _ exteusion _ c:ode 

tp_id 
convJd 
max}ength 

fill 

return _c:ode 
lu _ &elISion }Imlt 

partner _Iu _&elISion }Imlt 
mode_max _ negotiable

_session_limit 

curreDt ~n_1Imit 
min _negottlated _ winn

er_limit 
mln_negotlated_loaer_

limit 
active _ sasion _count 
active _ conwinner _ sess

ion_count 
active _ conloser _ sessio

n_count 
session _ tenoInation _ count 

termination_settings 

return _ c:ode 

pointer_to _create _ tp _

record 

primaly_ return_cOde 
secondaly _ return _ c:ode 

lu_id 
sync level 

mode_name 
own_net _name 
own}u_name 
partner}u _ name 
prutneI" _ fuDy _qualified }u-
_name 

Returns the curreDt pa
rameteJB associated with a 
1oc:al LU. 

Flushes the send buffer 

for the 1oc:al LU. 

Returns the next Incomm

iDg allocate request which 
bas been queued. 

Returns parameteJB de
scribiDg a specified con
'VeIBII1ion. 

Tells you wbether a con
versation is basic or 
mapped. 

DuriDg a conversation, 

iDstruds APPC/pc to 
interrupt you when It re
ceives the next Incomm

iDg data buffer. 



Sec. 7.6 Summary of APPC/PC Commands 255 

PREPARE_TO _REC- command primaJy_ return_code CJumges a basic CODYeJSII-

EIVE verb_extension _ code secondaJy_ return_code tion from the send state 
tp)d to the receive state. 
conv)d 
type 
locks 

RECEIVE_AND _ WAIT command primaJy _return_code Waits for data to arrive 
verb_extension _ code secondaJy_ return_code for a specified CODYeJSII-

tp)d wbat received tioD, then pJaces the inco-
conv)d request_to _send_received mming data into the ap-
fill data _ Jength plication designated buff-
max)ength er area. 
dataytr 

RECEIVE}MMEDIA1E command primaJy_ return_code If information is avaiJ-

verb_extension _ code secondaJy _ return_code able, receives the infor-
tp)d wbat received mation. If no informa-
conv)d request_to _ send_received tion is available, returns. 
fill data)ength 
max)ength 

REQUEST_TO _ SEND command primaJy_return _ code Tells the partner LU tbat 

verb extension code secondaJy_ return_code the JocaJ LU wishes to - -
tp_id enter a send state. 
conv)d 

SEND_DATA command primaJy_ return_code Seuds one data record to 
verb _ exteDSion_ code secondaJy_ return_code a partner LU. 
tpid request_to _ send_received 
conv_id 
data_ Jength 

dataytr 

SEND_ERROR command primaJy _return_code Tells the partner LU tbat 
verb_extension _ code secondaJy_ return_code an error was detected. 
tp_id request to send received 
conv)d 
type 
Jog_data _ Jength 

Jog_data 

TEST command primaJy _ return_code Tests the specified con-
verb_extension _ code secondaJy_ return_code versation to determine if 
tp_id the conversation has been 
conv)d posted or if a requesU-
test 0_ send has been received. 



256 Chap. 7 Using APPC For Transaction Processing 

TP_ENDED command return_code Tells APPC/pc that the 

tpJd specified traDsadion pro-
gram bas exited (termi-

nated). 

TP_STARTED command return_code TeJl& APPC/pc that a 
lu id tpJd transadion program bas 

aw:cessfulJy been started 
and requests APPC/pc 
to assign a tp _ id to the 
new proram. Programs 
automatically started as a 
result of an incomiDg 
allocate do not require a 
can to tp _ started. 

TP_VAUD command return _ c:ode Tella APPC/pc that the 
tpid program oamed in an 
create _ tp.Jlir incomiDg allocate exists 

and is vaUd. 

TRANSFER_MS _DATA command return_code Transfers network man-

data_type agemeot iDformation be-

verb_options tween nodes. 
data_length 
data 

7.7 Primary Return Codes 

Code Name Description Action 

0x0000 OK Command completed None. 
normally. 

IbdIOOl PARAMErER_ CHECK A parameter is bad in the Check the aecondaly re-
command structure. tum code for the specific 

parameter which is bad. 

STATE_CHECK Attempt to iDaease the The session limit must 
session limit (without first be set to zero, then 
starting at zero). modified. 

1bdIOO3 AlLOCATION_ERROR Conversation could not Check aecondaly return 
be aIloc:ated. code for reason. 



Sec. 7.7 Primary Return Codes 

1bdIOO7 

0x0008 

0x0014 

IbdIOOB 

DEAlLOCATE _ADEN
DPROG 

DEALLOCATE NORM

AL 

UNSUCCESSFUL 

DATA_POSTING_BL
OCKED 

PROG_ERROR_NO

_TRUNC 

'The remote traDsadion 
prognun cancelled the 
conversation unexpected-

ly. 

The remote transaction 

prognun cancelled the 
conversationUDeXpeCtedly 

and set the deallocate Oag 
to "pros". 

The remote traDsadion 

prognun cancelled the 
conversationUDeXpeCtedly 

and set the deallocate Oag 
to ·sve·. 

The remote transaction 

prognun cancelled the 

conversationUDeXpeCtedly 

and set the deallocate Oag 
to "timer". 

The conversation was 
terminated normally. 

'The prognun specified re

turn control immediate 
but APPC was not able 
to allocate the conversa

tion because no sessiODS 

were avaiJable. 

'The APPC internal space 
isfuU. 

Posting is not active for 

the specified conversation 
and you tested the con

versation. 

'The remote prognun de

tected a transmission 

error but no logical re
cord was affected. 

257 

Check the traDsadion 
prognun for errors. 

Check the transaction 
prognun for errors. 

Check the transaction 
program for errors. 

Check the traDsadion 

program for errors. 

None. 

Re-issue using return 
control when session 

activated. 

Issue a receive_immediate 
or receive and walt to 
empty some APPC buff
ers. 

Issue post_on Jeceipt 

before testing the conver

sation. 

Check the secondaIy_

return_code for the error 

type. 



258 

OxOOOB 

OxOOOD 

OxOOOF 

OJdIOIO 

OxOOll 

0x0012 

0x0013 

0x0014 

0JdI018 

0JdI019 

0xF004 

Chap. 7 Using APPC For Transaction Processing 

SVC_BRROR_NO_TR
UNC 

SVC_BRROR_PURO
INO 

UNSUCCESSFUL 

INCOMPLETE 

The remote program de
tected a tmDsmiBsion 
enor and logical records 
were affected (and 
purged). 

The remote program de

tected a tnmsmiBsion 
error and logical records 
were truDcated. 

A temporary failure 
caused an abnormal ter
miDaIion. 

Conversation was abnor
mally terminated. 

The remote program 
issued a BYe enor but did 
not truncate any logical 
records. 

The remote program de

tected a tmDsmission 
enor and logical records 
were truDcated. 

The remote program 
issued a BYe enor and is 
purging ODe or more logi

cal records which were 
received in error. 

There is nothing to re

ceive. 

The partner LU rejected 
the CNOS request. 

Use of both basic and 
mapped commands in 
one convenation.lssue 
only one type of verb. 

The issued command was 
suspended without com
pleting. 

Check the error and pre
pare to re-transmit the 
data. 

Check the error. 

Establish the connection 
apIn. 

Normally indicates a 
hardware problem. 

Check the secondaly_

retum_ code for the error 
type. 

Check the error. 

Check the error and pre
pare to retransmit the 

data. 

None. 

Check the secondaIy re
turn code for the reason. 

To avoid deadJock, issue 

verbs on any other trans
action programs desired, 
then issue get_allocate to 
empty the incoming 

queue, then re-issue this 



Sec. 7.8 Suggested Reading 259 

0xF005 

0xFFFF 

0x0012 

command without CDaD

ging any parameter. 

INCOMPLETE ALTER- A command that was re- ModiJy your code to 
ED VERB turned as incomplete was properly handle incom-

changed and re-issued (or plete commands. 
you issued a new com-
mand to a transaction 
program with an incom-
plete command out-
standing). 

The command code is Check the command code 

wro~ andthecommand~ 

(in register AH). 

The remote program de- Check the error. 
tected a transmission 
error and logical records 

were truncated. 

7.8 Suggested Reading 

ffiM (1987), APPC/PC User Application Interface, Document 
number GG24-3025-0, Boca Raton, FL: International Business 
Machine Corporation. 

ffiM (1986), Advanced Program-to-Program Communication for 
the IBM Personal Computer Programming Guide - 2nd edition, 
Raleigh, NC: IBM product 84X0561. 

ffiM (1986), An Introduction to Programming for APPC/pC, 
Document number GG24-3034, Raleigh, NC: International 
Business Machine Corporation. 



Appendix A 
Glossary 

Advanced Program-to-Program Communication A set of 
protocols that provides communication capabilities between computer 
programs, often on diverse hardware. 

alias An alternate name that you can be known by on the network. 

alignment error The number of frames received with excessive or 
missing bits causing a CRC error. 

application program interface The set of commands used by 
the application program to communicate with a lower level process in 
general (or APPC in particular in this book). 

bind Establish an LV 6.2 session. 

buffer Memory area temporarily reserved for use in performing 
input/ output operations. 

260 



Glossary 261 

collisions When a transmitting adapter detects any type of line 
noise during transmission of a frame, the adapter stops transmitting 
and registers a collision. 

contention loser In APPC, the LU that must request and receive 
permission from the session partner LU to allocate a session. 

contention-loser polarity The designation that an LU is the 
contention loser for a session. 

contention winner The LU that can allocate a session without 
requesting permission from the session partner LU. 

contention-winner polarity The designation that an LU is the 
contention winner for a session. 

control verb Commands an application subsystem issues under 
APPC to set up the hardware and software to perform a remote 
transaction. 

conversation The communication between two transaction 
programs under APPC. 

conversation type Under APPC, either basic or mapped. 

cyclic redundancy check An error detection algorithm using a 
cyclic algorithm. 

datagram A single data packet delivered with best effort. No 
retransmissions or automatic resequencing of multiple packets is 
performed. 



262 Appendix A Glossary 

deadlock A situation in which two or more processes are waiting 
for resources held by each other which will never become available. 
In APPC, deadlock can occur when using transaction processing 
commands. 

duplex Simultaneous two-way independent transmission. 

exhausted resources The number of frames discarded because 
of a lack of memory. 

flow control The process of managaging the rate at which data 
packets or transactions are sent and received. 

frame A low level packet of information which is used to implement 
all higher level protocols. 

hot carrier A transmitter locked in transmit mode. 

local session number A unique number assigned to each session 
established by an adapter. 

logical unit A set of logical services allowing one user to communi
cate with each other using sessions. 

pacing window size In APPC, the number of RUs that a 
program can send before getting permission to send more. 

poi nt-to-poi nt A connection between exactly two nodes on a 
network. 

virtual connection A transport layer connection between two 
network nodes that supports reliable data communication. 



Appendix B 
Acronyms 

APPC Advanced Program-to-Program Communication 

API Application Program Interface 

ASCII American National Standard Code for Information Exchange 

BIOS Basic Input Output System 

CICS Customer Information Control System 

CICS /VS Customer Information Control System for Virtual Storage 

CRC Cyclic Redundancy Check 

DLC Data Link Controld 

EBCDIC Extended Binary-Coded Decimal Interchange Code 

263 



264 

FMH Function Management Header 

GOS General Data Stream 

LU Logical Unit 

NAU Network Addressable Unit 

NCB Network Control Block 

Appendix B Acronyms 

NetBIOS Network Basic Input Output System 

NMVT Network Management Vector Transport 

PIP Program Initialization Parameter 

PLU Primary Logical Unit 

PU Physical Unit 

RAM Random Access Memory 

RH Request/response Header 

ROM Read Only Memory 

RU Request/response Unit 

SOLC Synchronous Data Link Control 

SLU Secondary Logical Unit 



Acronyms 

SNA Systems Network Architecture 

SSCP System Services Control Point 

SOLC Synchronous Data Link Control 

VT AM Virtual Terminal Access Method 

265 



Appendix C 
References 

266 

Carlo, J. T., and G. R. Samsen (1986), ItHigh-Level Communica
tion Protocols on the Token-Ring Network,1t Proceedings of the 
Localnet '86 Conference, November 18-20. 

East, W. (1988), ItNew Developments Lead to Further Integra
tion of a High Performance Token Ring Adapter,1t Proceedings 
of the Networking Technology and Architectures (Pinner, UK: 
Blenheim Online), pp. 89-105. 

Housley, N. (1987), ItAn mM Token Ring Backbone Facility,1t 
Networks 87, Proceedings of the European Computer Communica
tions Conference (Pinner, UK: Online International). 

mM (1988), Local Area Network Technical Reference, Research 
Triangle Park, NC: International Business Machine Corpora
tion. 

Lang, K. W. et. al. (1989), itA 16 MBPS Adapter Chip for the 
mM Token-Ring Local Area Network,1t Proceedings of the IEEE 
1989 Custom Integrated Circuits Conference, May 15-18. 

Lank, K. (1989), itA 16 MBPS Adapter Chip for the mM Token 
Ring Local Area Network,1t Proceedings of the IEEE 1989 
Custom Integrated Circuits Conference, May (New York: mEE), 
pp. 11.3.1-11.3.5 



References 267 

Stallings, W. (1987), Handbook of Computer Communications 
Standards (VoL 2): Local Network Standards, New York: 
Macmillan. 

Stallings, W. (1984), Local Networks: An Introduction, New 
York: Macmillan. 

Strole, N. (1989), "Inside Token Ring Version II, according to 
Big Blue," Data Communications, Vol. 18, no. 1, (January) pp. 
117-125. 

Tanimoto, M., et. al. (1987), "Development of a High Speed 
Fiber Optic LAN to Connect Heterogeneous Computers in the 
Department of Information Engineering at Kyoto University," 
Sumitomo Electronics Technical Review, (January) Japan, pp. 
131-136. 





Index 

16/4 Adapter/A 9 
16/4 Adapter 9 
50 ohm 3 
75 ohm 3 
Access control field 108 
Access JuJu yw structure 239 
Activate dlc function 248 
Activate dlc structure 239 
Adapter 37, 81 
Adapter/A 9 
Adapter field 58 
Adapter hardware 228 
Adapter IT 9 
Adapter interface 3 
Adapter interrupts 185 
Adapter models 9 
Adapter request blocks 194, 199 
Adapter resets 186, 188 
Adapter shutdown 122 
Adapter status block 194, 199 
Adapter status parameter table 
181 

Adapter yarms 97 
Adapter yarms structure 85 
Addressing 88 
Adptr _ chk _exit 96 
Allocate function 248 
Allocate structure 239 
APPC 12,233 
Appc.h 237 
Ascii to ebcdic function 234 
Attach lu function 247 
Attach lu structure 240 
Attach yu function 247, 234, 249 
Attach yu structure 241 
Attrib command 30 
BIOS redirector 10, 15 
Blocking 41 
Bridge 9 
Bring-up error codes 182 
Bring ups 95 
Broadband 3 
Buffer 36, 115 
BUFFER FREE 130 

269 



270 

Buffer_free function 81, 116, 117 
BUFFER GET 131 
Buffer yarms structure 86 
Build_Ian _header function 80, 109 
Bus topology 5 
Cable 229 
Carrier sense multiple access 7 
CCB 79,81 
Change lu structure 241 
Chipset 228 
Chmod command 30 
CLIENT 51 
Close_sap function 81, 122 
Cnos function 247 
Cnos structure 241 
Coaxial cables 3 
Command 36,81 
Command control block structure 
82 
Command control block 79,81 
Communications network 2 
Communications processor 229 
Complete 37 
Config.sys 79 
Configurations 16 
Confirm structure 241 
Confirmed structure 242 
Connect_station function 81, 121, 
122 
Connection establishment 122 
Connection oriented protocol 33 
Connection oriented communica
tion 116 
Connectionless communication 
103 
Convert structure 242 

Create tp structure 242 
CSMA/CD 7 

Index 

Data communicating devices 2 
Data connector 4 
Data holding buffers 194 
Data Link Control 12, 79 
Data rates 4 
Datagram 34,46, 103 
Deallocate structure 243 
Detach lu structure 243 
DgJead function 35, 46, 48, 
Dg_ write function 35, 47, 49 
DHB 194 
DIR CLOSE ADAPTER 204 - -
DIR DEFINE MIF ENVIRON-- --
MENT 149 
DIR_UNffL\LEZE 95, 149 
Dir _initialize yarameters structure 
85 
DIR _INTERRUPT 151, 204 
DIR MODIFY OPEN PARMS - --
151,204 
DIR _OPEN_ADAPTER 95, 96, 
154,205 
Dir _open_adapter yarameters 
structure 85 
DIR OPEN DIRECT 154 - -
DIR_READ_LOG 154,205 
DIR RESTORE OPEN PARMS - --
156,208 
DIR SET EXCEPTION FLAGS - - -
156 
DIR SET FUNCT ADDRESS - - -
208 
DIR SET FUNCTIONAL ADD-- - -
RESS 157 



Index 

DIR SET GROUP ADDRESS - - -
157,209 
DIR SET USER APPENDAGE - - -
157 
DIR STATUS 158 
DIR TIMER CANCEL 161 - -
DIR TIMER CANCEL GROUP - - -
161 
DIR TIMER SET 161 - -
Directyarms 97, 100 
Direct yarms structure 85 
Display structure 243 
DLC 12, 79, 112 
DLC addressing 88 
DLC return codes 176 
DLC CLOSE ADAPTER 148 - -
DLC CLOSE DIRECT 149 - -
DLC _CLOSE_SAP 132, 209 
DLC _CLOSE_STATION 132,210 
DLC _CONNECT_STATION 133, 
210 
Dlc _connect_station yarms struc
ture 87 
DLC _FLOW_CONTROL 133, 
211 
DLC _MODIFY 134, 212 
DLC_OPEN_SAP 137,213 
Dlc _open_sap yarms structure 86 
DLC_OPEN_STATION 141, 214 
Dlc _open _ stationyarms structure 
87 
Dlc yarms 97, 101 
Dlc yarms structure 85 
DLC_REALLOCATE 145,215 
DLC_RESET 146,216 
DLC _STATISTICS 146, 216 

DLC STATUS 221 
DxmaOmod.sys 79 
Establish a connection 122 
ethernet 7 
Fiber optic 3 
File locking 18 
File server 16, 42 
Flush structure 243 
Frame control field 108 
Frame pool 115 
Frame status byte 182 
Get allocate structure 244 

271 

Get attributes structure 244 
Get_session _status function 35, 
60 
Get_type structure 244 
Group names 42 
Guaranteed delivery 34 
Hardware 228 
Header 103, 107 
Hints and warnings 31 
Host interface 229 
IEEE 802.2 12, 79 
IEEE 802.5 13 
In-band 52 
Init_ adapter function 80, 93, 94 
Init_ ccb function 80, 88 
Init_ ncb function 34, 41, 42 
Init_ netbios function 34, 44, 47, 
51 
Int_ adapter function 80, 88, 89 
Int _ appc function 234, 238 
Int_ netbios function 34,41,43, 88 
Interconnection 2 
Interrupt 10 
Interrupt status registers 194 



272 

Interrupts 185 
ISRA EVEN 195 
L name 36 
IAN buffers 229 
IAN definition 2 
IAN header 103, 107 
Length 36 
Link access point 90 
Link access station 119 
LLC 79 
LLC SET THRESHOLD 146 - -
Local address 236 
Lock_close function 16, 30 
Lock_open function 16, 26, 29 
Lock Jead function 16, 27, 28 
Lock_write function 16, 26 
Logical link control 79 
Logical unit 236 
Low-pass filter 4 
Lsn 36 
Lsn field 58 
LV 236 
Maintenance and management 
229 
Market share 1 
MAV 5 
Max _ dg function 35 
Max_dg function 47,50 
Media access control 90 
Media access method 7 
Memory mapped I/O 188 
Messenger 17 
MicroChannel 9 
MMIO 185, 186 
Multistation access unit 5 
NCB_ADD _GROUP_NAME 43, 

64 
NCB_ADD_NAME 43,65 
NCB CALL 65 
NCB CANCEL 65 
NCB CHAIN SEND 67 - -

Index: 

NCB CHAIN SEND NO ACK - - --
67 
NCB_DELETE _NAME 43, 67 
NCB_FIND _NAME 44, 67 
NCB HANG UP 68 - -
NCB IAN STATUS ALERT 68 - - -
NCB LISTEN 68 
Ncb yarms 97 
Ncb yarms structure 86 
NCB RECEIVE 69 
NCB RECEIVE ANY 69 - -
NCB RECEIVE BROADCAST -- - -
DATAGRAM 69 
NCB RECEIVE DATAGRAM - -
70 
NCB_RESET 44, 58, 70 
NCB SEND 70 
NCB SEND BROADCAST DA-- - -
TAGRAM71 
NCB SEND DATAGRAM 71 - -
NCB SEND NO ACK 71 - --
NCB_SESSION_STATUS 59,71 
NCB STATUS 72 
NCB STATUS return structure 73 
NCB TRACE 72 
NCB UNLINK 74 
Net control block 37 - -
Net control block structure 39 - -
Net_error 47, 74 
Net_open function 16, 23, 26 
Netyath 18, 23 



Index 

NetBIOS 11, 33 
NetBIOS command specifics 64 
NetBIOS command summary 61 
NetBIOS return codes 74 
Netbios.h 39 
Netw status exit 96 - -
Network adapter cable 229 
Network components 3 
Network name 235 
NO WAIT 38 
Number 36 
Number field 58 
Open function 51 
Open_sap function 106, 112 
Open_sap function 80 
Open_station function 81, 112, 
119, 120 
Opening a SAP 105 
OS/2 12 
Out-of-band 52 
PC LAN configurations 16 
PCLAN 10 
Pc error exit 96 - -
PDT TRACE OFF 165 - -
PDT TRACE ON 162 - -
Physical unit 235 
Post 36, 37, 82 
Post_on Jeceipt structure 244 
Prepare_to Jeceive structure 244 
Primary adapter 10 
Programmed I/O 185 
Protocol handler chip 229 
PS/2 9 
PURGE RESOURCES 166 
Queue 82 
R name 36 

R name field 47 
RAM 10 
READ 166 
READ CANCEL 166 
RECEIVE 166 
Receive any 42 
Receive buffers 194 

273 

Receive and wait structure 244 
Receive _buffer_type structure 87 
RECEIVE CANCEL 170 
Receive _ dlc function 81, 112, 113 
Receive immediate structure 244 
RECEIVE MODIFY 170 
Receive yarms structure 87 
Receive yrocess function 81, 112, 
114 
RECEIVED DATA 222 
Receiver 17 
Receiving DLC packets 112 
Receiving transactions 250 
Record locking 18 
Record oriented files 21,23 
Redirector 10, 15, 17 
Redirector.h file 25 
Request_to _send structure 246 
Resets 186, 188 
Ret code 36 
Retcode 82 
Return Codes 176,256 
Ring interface 229 
Ring operation 229 
Ring signaling 229 
Ring topology 5 
Ring-in 5 
Ring-out 5 
RING STATUS CHANGE 225 - -



274 

Routing information 108 
RRR EVEN 191 
RRR ODD 191 
Rto 36 
SAP 90,105 
Secondary adapter 10 
Send data structure 246 
Send error structure 246 
Sequential files 28 
SERVER 51 
Service access points 90 
Session-oriented communication 
50 
Session status 59 
Session status structure 40 
Share 22 
Shared RAM 10 
Shutdown _ netbios function 34, 44, 
46 
Simplex 54 
Small area network 2 
Sn _close function 35, 51 
Sn _open function 35, 51, 53 
SnJead function 35,51,54 
Sn Jeceive function 35, 56 
Sn_send function 35,57 
Sn _write function 35, 51, 55 
Sram address 96 
SRB 194 
Star topology 5 
Starting address 185 
Station ID 90 
Sto 37 
System interface chip 229 
System request blocks 194, 199 
System status blocks 194, 199 

TCR EVEN 192 
TCV EVEN 193 
TCV ODD 192 
Temporary files 20 
Test appc function 234, 237 
Test_share function 22,24 
Tmpfile function 20 
TMS380 228 
Token 8 
Topology 5 
Tp _ended structure 246 
Tp _started structure 246 
Tp _valid structure 247 
Transceiver 229 
Transmission 247 

Index 

Transmission media 3 
TRANSMIT DATA REQUEST - -
225 
TRANSMIT DIR FRAME 219 - -
TRANSMIT_I_FRAME 170, 220 
Transmityarms structure 87 
TRANSMIT _1EST _ CMD 173, 
221 
TRANSMIT VI FRAME 109, 
173,220 
Transmit ui frame function 80, 
110 
TRANSMIT _ XID _ CMD 175,220 
TRANSMIT XID RESP FINAL - - -
175, 220 
TRANSMIT XID RESP NOT -- - - -
FINAL 176,221 
Tree topology 5 
Twisted pair 3 
Virtual circuit 33 
VME 8 



Index 

Warnings 31 
Work 82 
WRBR 192 
Write function 47 
WWCR 192 
WWOR 192 
Xmit i frame function 81, 122 

275 





Ie 
PpogpalDlDep·s 

Guidelolhe 
IBM loken Ring 

William H. Roellheim 

This book distills the key elements from the IBM Token Ring Network 
reference documents and presents it in an easy-to-understand, concise 
fashion. For most programmers, everything you will ever need to know 
about the IBM Token Ring Network can now be found in this convenient 
volume. Programming for the Token Ring environment is covered at the 
BIOS redirector, NetBIOS, DLC, register direct, and APPC level. Token Ring 
hardware is described, with a particular emphasis on the interaction 
between the hardware and your application programs. Dozens of tables 
and charts provide a convenient reference to all interrupts, functions, and 
return codes. Each concept is illustrated with complete C functions which 
serve both as examples and form the basis of a working lib-rary to be used 
over and over. For advanced users, detailed and highly specific references 
are included to simplify the search for additional details. 

PRENTICE HALL, Englewood Cliffs, N.J. 07632 

ISBN 0-13-723768-5, 
I 

90000> 

9 


