GENERAL

CCP magnetic components are comprised of part numbers from various families of inductors, transformers, and delay lines. In most cases, these are card-mounted components and do not include large high-power magnetic devices. (See Figure 6-1.)

Magnetic component usage has continued in the past several years with improvements in packaging, performance, and cost. Magnetic components are used in all types of IBM manufactured equipment.

The following magnetic component families will be discussed in this section.

RF INDUCTORS AND POWER INDUCTORS

AF TRANSFORMERS AND INDUCTORS (FIXED AND VARIABLE)

PULSE AND WIDEBAND TRANSFORMERS

DELAY LINES

Magnetic components are not normally single parameter elements in that they usually are functionally designed to provide some ac signal response. Component performance must, therefore, be characterized on a functional rather than a purely parametric basis. An attempt will be made to identify those design factors and electrical parameters which are pertinent to the performance of each of the various magnetic component families. The user will obviously have to work closely with the appropriate component engineer to adequately define the component specifications for each magnetic component family, followed by definitions of the more commonly referred to terms. Each component family will be expanded upon in their individual sub-sections.

PASSIVE COMPONENTS MANUAL

Figure 6-1. Typical Examples of Magnetic Type Components Discussed in This Section

INDUCTORS

Inductors, sometimes called "chokes", fall into three main categories; radio frequency (RF) inductors, audio frequency (AF) inductors, and power inductors. Although the potential applications for each type appear to differ quite widely, each application takes advantage of the fact that inductive reactance (XL) varies directly with frequency. Through the use of this characteristic, selected frequency bands can either be passed, blocked, or "shaped". In this manner, pulse or sinusoidal wave shapes can be controlled.

Besides inductance and dc resistance, the important parameters for RF chokes and power inductors are quite different, so that it is advantageous to discuss each type separately.

RF INDUCTORS

DESCRIPTION

In circuit operation, an RF inductor is generally required to look like an ordinary low-valued resistor up to a specified frequency band. At the onset of this particular band, the inductive reactance (XL) part of the complex impedance begins to become significant and continues to increase with increasing frequency. Electrical energy is increasingly dissipated in the inductor, principally in the form of heat, while lower frequencies are relatively unaffected. Applying this characteristic, an RF inductor in series with a wide-band generator will attenuate the high end of the frequency range, but pass the lower band relatively undiminished, except near the high/low cross-over point. This situation is exactly reversed when the RF inductor shunts the wideband source.

Inductive reactance is described by the expression:

$$
\mathrm{X}_{\mathrm{L}}=2 \Pi \mathrm{fL}
$$

where L is the inductance at the frequency f. It is clear that inductive reactance is directly proportional to frequency and inductance.

The addition of suitably selected capacitance to either type of circuit, to form LC series or parallel resonant loops, enhance the sharpness of the "knee" between the band-pass and band-stop ranges.

RF INDUCTOR TECHNOLOGY

Packaging

RF inductors are constructed by putting turns of wire around a core. The core may be either a solenoid or H -shaped, and is generally composed of phenolic, powdered iron, or ferrite. Other core materials are available for specialized applications. The unit may be encapsulated in heat-shrinkable tubing with epoxy buttered ends (Figure 6-2) or in any of several lifferent kinds of hard Polymer such as alkyd (Figure 6-3). The latter is the more common packaging approach. A ferrite sleeve may be placed over the coil before final encapsulation as a shield to minimize coupling between adjacent components. This is especially important in high-density packaging configurations. Physically, an RF inductor may be either axial or radial-leaded (see Figures 6-4 through 6-6). The body size is determined by the required inductance, $D C R, Q$ value, and current capability. Figure 6-7 relates the two basic radial leaded packages to the approximate range of inductance each is capable of handling under typical performance/size constraints. There is some interest in a 0.100 lead spaced design. This is available. Contact CCP for details. Figure 6-8 shows ranges of inductance for typical axial-leaded inductor dimensions.

Figure 6-2. RF Inductor Packaged in Heat Shrinkable Tubing

Figure 6-3. RF Inductor Packaged in Molded Polymer

Cores

Phenolic - Phenolic core material has no significant magnetic properties. It is used solely as a mechanical form (in place of air) because it is physically stable with respect to current and temperature (up to approximately $155^{\circ} \mathrm{C}$). It is used in higher frequency operation where lower inductances are generally required. At extremely high frequencies the capacitance of phenolic becomes appreciable and must be taken into design account. It is the least expensive of all core materials. At temperatures higher than $150-160^{\circ} \mathrm{C}$, a ceramic core is used.

Phenolic core inductors show stable performance over a wide temperature range; typically from about $-20^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

Powdered Iron and Ferrite Cores - The majority of RF inductor designs controlled by CCP are based on either powdered iron or ferrite cores. In the frequency band from about 1.0 MHz to 8.0 MHz , either material may be used consistent with the several major trade-offs between them. Most paramount is cost. Powdered iron cores are less expensive than ferrite. Raw ferrite is more costly material to begin with. It is a ceramic which must be fired at high temperatures in a kiln after being molded to shape. Dimensions before and after firing can differ by as much as a 2 to 1 reduction. This means that expensive machining operations are necessary to bring ferrite cores into acceptable manufacturing tolerances.

Figure 6-4. Axial-Leaded Constructions

However, raw powdered iron, and any of several different binders, are subjected to molding pressure and a certain amount of heat to produce virtually any core form factor in a dimensionally stable condition. Additional machining is seldom required. Raw powdered iron is relatively low-cost material.

Figure 6-5. Radial-Leaded - 125 mil Spacings

Figure 6-6. Radial-Leaded - 375 mil Spacings

Inductance	S	$\mathrm{L}(\max)$	$\mathrm{H}(\max)$	T (max)	LL(max)
50 nH to 1 mH	0.125	0.233	0.370	0.125	0.090
$330 \mu \mathrm{H}$ to 10 mH	0.125	0.483	0.375	0.125	0.090

Figure 6-7. Radial Leaded (Module) - Dimensions in Inches

Figure 6-8. Axial Leaded - Dimensions in Inches

Ferrite can be produced with much higher permeabilities than powdered iron. Thus for higher inductance or Q requirements typically above 50 microhenrys and/or a Q of 50 , ferrite is more suitable. For the same reason, ferrite is generally more usable for designs in the frequency range below 1.0 MHz if significant inductance is necessary.

Where inductance/Q stability is required under heavy current loads, powdered iron is the better material since it does not saturate nearly so quickly as ferrite. In this function, inductance/Q levels must be fairly low, otherwise the number of turns required would make dc resistance prohibitive.

Powdered iron-based inductors are more temperature stable than typical ferrites. However, in recent years, a number of ferrite manufacturers have developed proprictary formulations which compare favorably with the most stable core materials, retain the high permeabilities available in ferrites, and still cost only $5-10 \%$ more than standard ferrites.

Miscellaneous Core Materials - Brass is sometimes used as a core material for low inductance, high resolution, variable inductors. This material actually reduces the permeability below that of a comparable air-core so that more turns may be included for greater resolution during adjustment.

Molybdenum permalloy is generally regarded as the best core material as far as current handling capability, temperature stability, and high permeability are concerned. It is also the most costly of the commonly available materials by a wide margin, and is therefore only used as the last option in difficult designs.

A material sometimes known as "Sendust", but also by other trade names, has been developed by some manufacterers, which is similar to moly permalloy but at a price just slightly above premium quality ferrite. Its disadvantages versus moly permalloy are slightly lower available permeabilities, and more difficulty molding into certain shapes.

Coils

The brunt of the cost of most RF inductors is associated with the coil itself. This is especially true as the intended operational frequency band is raised upward and the manner in which the coil is wound becomes critical.

Coil winding is both a science and an art. Fortunately, for most designs, textbook equations and design guidelines, together with the designer's experience will suffice. In the rare case where applications requirements demand high performance versus tight constraints on one or more parameters, the designer's ingenuity, exotic core materials, and numerous prototype iterations may be the only way to go. This approach inevitably escalates final production cost.

Numerous winding techniques are available, but the majority of designs utilize any one of three formats.

Layer wound, solenoid, or orthocyclic coils involve layers of aligned turns, as opposed to for instance, a randomly wound coil. Layer integrity generally vanishes after 4 to 5 layers. The desireable features of this type winding are, the highest inductance and lowest DCR per turn of any winding technique. The negative characteristic is an extremely high distributed capacitance which severely limits upper frequency operation. This is also the simplest wind and therefore the least expensive and most commonly used.

To minimize distributed capacitance at higher frequencies, a random wind is often used. This reduces distributed capacitance by lowering the voltage gradient between adjacent windings as, for instance in solenoid coils. As indicated, available inductances are lower and DCR's higher. In addition, inductance/Q variation is greater between units wound in the same production lot. The major tradeoff, however, is that inductance/Q stability with temperature is not great.

The Universal or Pi technique reduces distributed capacitance still further and thereby further extends the upper frequency range. Coils thus wound appear as an intermeshed diagonal pattern. Cotton-served wire is used in this technique and this limits the number of turns possible within a given volume. Cotton-served wire also tends to accelerate wear in wire feeding mechanisms. The manufacturer is thus obliged to factor his resultantly higher maintenance costs into the component unit cost. Tight control of inductance/Q tolerances are possible with a Pi wind. If the lowest achievable distributed capacitance is called for, a segmented Pi wind is used, in which the coil is wound in two or more sections on the same core. With fine coil wire, 非30 AWG or smaller, wire breakage between segments or sections becomes a problem and adversely affects yield and therefore price.

PARAMETERS AND SPECIFICATIONS

RF Inductors are normally specified at several standard operating frequencies. These are summarized by inductance range in Table 6-1.

Table 6-1. Inductance Range versus Standard Measurement Frequency

Inductance	Frequency
Above $0.1 \mu \mathrm{H}$ to $1.0 \mu \mathrm{H}$	25 MHz
Above $1.0 \mu \mathrm{H}$ to $10 \mu \mathrm{H}$	7.9 MHz
Above $10 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$	2.5 MHz
Above $100 \mu \mathrm{H}$ to 1.0 mH	790 kHz
Above 1.0 mH to 10 mH	250 kHz
Above 10 mH to 100 mH	79 kHz

The measurement frequency is generally selected so that it is about 0.08 to 0.12 of the inductor's self resonating frequency. However, in low frequency applications, an inductor may have its inductance specified at 1 kHz and its Q at a higher frequency. This is primarily due to the favorable equipment accuracy for inductance measurements at 1 kHz , and the fact that inductance is relatively constant with frequency over a given frequency range. The Q has to be specified at its operating frequency since it is a frequency-sensitive parameter and there is the possibility that core losses might significantly affect it.

RF inductors can be used at frequencies other than those specified. However, it should be realized that inductance increases linearly with frequency until the frequency nears the inductor's self-resonating frequency (SRF). At this point, the effective inductance increases exponentially, as shown in Figure 6-9. Beyond the SRF point, the impedance becomes capacitive rather than inductive. Powdered iron and phenolic core inductors exhibit stable performance over a wide range of temperatures $\left(-15^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$, while typical ferrite core inductors may be subject to significant changes in inductance. This is primarily due to the increase in permeability of ferrite cores with increasing temperature. By specifying the operating temperature range the manufacturer may alter the properties of the ferrite core to either increase or decrease the Curie point of the core. Increasing the Curie point tends to minimize inductance changes in the operating temperature range; however, production yields will decrease, and cost will correspondingly increase. The temperature coefficient of inductance is less than $\pm 1 \%$ for phenolic and powdered iron core inductors, and generally less than $\pm 3 \%$ for ferrite core inductors, over their useful operating temperature range.

Figure 6-9. Variation of Effective Inductance with Frequency

The temperature coefficient for premium ferrite has become almost interchangeaole with comparable powdered iron cores in the range from $-10^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. This (has been accomplished at only a moderate increase in the cost for "better" ferrite.

The worst-case absolute EOL inductance tolerance is primarily a function of the core material used in the inductor's construction. It will also vary from supplier to supplier due to process and material variations.

* Phenolic, as might be expected, is the most stable material. Long-term inductance variation, will be very slight and will essentially be due to small geometric changes in overall inductor structure.

Ferrite and powdered iron cores when used according to design intent, show approximately the same magnitude EOL change, and generally, an increase in inductance.

A broad range of W.C. absolute EOL tolerances for RF inductors is presented below for user awareness.

Purchase Tolerance: $\pm 3 \%$ to $\pm 10 \%$
TCL: $\pm 1 \%$ to $\pm 3 \%$
EOL Drift: $\pm 2 \%$ to ($+15,-5$)\%
W.C. absolute EOL

Tolerance: $\quad \pm 9 \%$ to ($+28,-18$) \%

Powdered iron cores have been improved to the point where EOL Drift (100K hour lifetime) will be on the order of $+2 \%$. This is due almost exclusively to improved binder materials.

The current rating of an inductor is determined by the size, length, and type of wire used for the inductive windings, encapsulating material, and core material. RF inductors are presently rated at a current level which will cause a temperature rise of less than $35^{\circ} \mathrm{C}$ in the windings unless otherwise noted. If an inductor is going to be operated in an ambient temperature of more than $60^{\circ} \mathrm{C}$, the current level should be derated linearly to approximately 50% at $80^{\circ} \mathrm{C}$. The maximum temperature rise of $35^{\circ} \mathrm{C}$ and/or a derating factor becomes very critical at high frequencies due to the phenomenon called skin effect. At high frequencies the electrons tend to flow in the windings on or near the surface of the wire; therefore, only a small portion of the wire is carrying all of the current. The effective decrease in wire cross-sectional area causes an effectively higher resistance and therefore a lower Q. This increase in resistance is known as skin effect and may be limited by specifying minimum Q and maximum ac equivalent series resistance.

Ferrite core inductors often have incremental current ratings specified along with a maximum dc rated current.

An incremental current rating is needed because ferrite core inductors tend to saturate under heavy dc current loads, and this can cause a substantial drop in inductance -up to 75% or even higher. It is important that the specified incremental current be such that the decrease in inductance will not exceed 10%. Phenolic and powdered iron core inductors are not adversely affected by rated dc current, and so incremental current is not specified.

Coefficient of coupling or mutual inductance is a parameter which must be considered when packaging several inductors on the same card, or when high density. card packaging is required. If two or more inductors or magnetic devices are placed within close proximity to each other, the current flowing in one may induce voltage in another. Often a ferrite shield is used over the core windings before encapsulating to prevent the lines of force from moving beyond the shield. The coefficient of coupling parameter is specified, therefore, to identify the maximum coupling effect which can be tolerated.

COST AND DESIGN CONSIDERATIONS

The major factor affecting inductor cost is over-specification by the user. Often, parameter and tolerance trade-offs are possible, and the application requirements can be met more economically. Total yearly volume and individual part number volumes affect the cost of the radial leaded inductors much more than the cost of axial leaded inductors due to their limited application to date. Below are representative price ranges of user costs for the various inductor types.

Radial lead ($0.125^{\prime \prime}$)	$\$.25$ to $\$.85$
Radial lead ($0.375^{\prime \prime}$)	$\$.45$ to $\$.90$
Axial lead	$\$.25$ to $\$.85$
Axial lead (shielded)	$\$.65$ to $\$ 1.15$

INDUCTOR SPECIFICATIONS

Inductors are covered by Engineering Specification 897833 and other general specifications. Failure rate is supported in Engineering Specification 866451.

POWER INDUCTORS

Description

Low power inductors, more commonly known as power chokes, are primarily used in rectification/filter sections of power supplies. Their function is to provide a high ac impedance to ripple current superimposed on the desired dc component of the rectifier output. The power choke, in conjunction with suitably selected capacitance, therefore "filters out" or reduces the ripple current to a functionally insignificant level. This is of importance in power supplies which are used in solid state systems which are very sensitive to small current fluctuations.

Figure 6-10 shows the several most common forms assumed by low to medium power level power chokes. All of the basic transformer/inductor technologies are normally utilized. This will be discussed in detail later.

1. Toroid
2. Encapsulated Pot Core
3. Solenoid
4. Laminate

Figure 6-10. The Four Basic Power Choke Technologies

Power Inductor Technology

Operating Temperature - The power choke must be able to perform its function with a temperature increase which does not exceed a specified maximum. It must also have a dc resistance low enough so that the voltage drop across it does not inhibit the voltage regulation of the power supply. A rise in temperature is a normal part of a power choke's operating characteristic, just as it is for a power transformer. The materials used in its manufacture must therefore be selected to be compatible with the maximum temperature level which the unit will see in normal operation. These materials are defined by UL for several prescribed temperature ranges and are referred to as "insulation systems". Table 6-2 lists the insulation class and the maximum temperature rise associated with each.

Table 6-2. UL Inspection Classes and Maximum Permissible Temperature Rise

Insulation Class*	Maximum Temperature Rise
105 (formerly class A)	$55^{\circ} \mathrm{C}$
"E" (formerly class B)	$70^{\circ} \mathrm{C}$
$1300^{\circ} \mathrm{C}$	
155 (formerly class F)	$105^{\circ} \mathrm{C}$
180 (formerly class H)	$130^{\circ} \mathrm{C}$

Temperature Rise ($\Delta \mathrm{T}$) is calculated using the "change in dc resistance" method. This method is more accurate than the use of thermocouples since it "measures" the integrated temperature rise therefore not susceptible to false readings caused by sensing at localized hot or cold spots. In practice, the units under test are powered at maximum rated power for a specified time, generally at least 2 hours, and in a specified ambient temperature. The dc resistance is measured, using a 4 -point probe, before power is applied and immediately after, and the values plugged into the well-known formula:

$$
\Delta T=\left[\begin{array}{l}
R_{2}-1 \\
-- \\
R_{1}
\end{array}\right] \quad\left(234.5+T_{0}\right)
$$

where:

$$
\begin{aligned}
R_{1} & =d c \text { resistance before power-on } \\
R_{2} & =d c \text { resistance after power-off } \\
234.5 & =\text { correction factor for Copper } \\
T_{0} & =\text { ambient temperature }
\end{aligned}
$$

The fully qualified power choke design, therefore, must be compatible with the materials and temperature considerations defined by UL, as well as electrical, dimensional, and cost specifications and targets, identified by the user.

[^0]ailable Core Types - Power chokes may be based on any of the four basic transrmer/inductor technologies: toroid, pot core, solenoid, or laminate. Figure © -10 shows typical power chokes based on each technology. The units may be excapsulated, as is the pot core (unit B, Figure 6-10). This adds mechanical and environmental protection where it is generally not required and also adds significantly to the unit cost. In some hostile environments, pot core designs can benefit from encapsulation. As a general rule, however, a power inductor design is simple and rugged enough so that encapsulation is not necessary and this additional cost need therefore not be borne by the production designs.

Pot Cores - The pot core design is the most expensive of the four design approaches. Because of the relative ease of basic pot core design, however, it is the most popular format among circuit bread-board designers. Pot cores show t best advantüge where higl inductance and low dc crent capability are requared. The high permeabilities available in ferrites versus most other core materials, while permitting high inductance levels, also cause earlier and more extreme satur,ation under increasing dc current loads. Figure 6-11 indicates the relative saturation rates between ferrite pot cores and laminates. Ferrite pot core designs show a very steep inductance versus dc bias roll-off characteristic. To some extent, this can be mitigated by widening the air gap between core halves, but only at the expense of reducing inductance. This characterstic may have to be taken into design account in some applications. Greater current capability at high inductance levels requires more ferrite in addition to the core gap and an even higher cost for an already expensive designing to 10 dc amperes is about the practical maximum dc current level for pot core based power chokes.

Toroids - Figure 6-10, Unit A, shows a typical horizontally mounted open construction toroidal power choke. Toroid power choke technology is fairly versatile. The finished design presents a low silhouette when mounted, thereby offering minimum interference to convection cooling. Unit mass is also relatively low. Above about 20 amps operating current, prohibitive size (and mass) becomes necessary so that premium core materials, such as moly permalloy must be used. On a strict cost basis this type design then becomes less attractive. Both pot core and toroid technologies offer the lowest possibility of interaction with adjacent components on densely packaged boards, since they feature either closed or self-shielded magnetic paths. Unless premium core materials are used, toroid-based power choke designs are less expensive than comparable pot core designs in the region where their design capabilities overlap. The inductance versus increasing dc current load characteristic for toroids tends to resemble that of laminates as in Figure 6-11.

Figure 6-11. Inductance versus DC Current: Typical Ferrite, Laminate, Toroid, and Solenoid Cores

Laminates - The laminate is extremely rugged mechanically. Figure 6-9 unit D, shows a typical vertically mounted laminate. Where relatively low inductance and high dc current capability are required, laminates are admirably suited. Inductance delay versus increasing dc current is generally linear with a very moderate slope up to and exceeding the maximum design limit. Figure 6-11 indicates the relative inductance/dc current response difference between the two technologies. The coil for a laminate may first be wound on a bobbin and the entire unit then assembled, or it can be wound on the center post itself. A wide range of steel core materials are available for design flexibility. Interaction with closely adjacent components may be a problem with laminate designs and board lay-out may have to take this into consideration. The high mass of the typical laminate design may also present a problem where several laminate units must be mounted on a single board.

Solenoids - The remaining inductor technology, solenoid design, is the least expensive by a wide margin. It can involve nothing more than a self-leaded coil on a permeable slug. In actuality, the design is more subtle and sophisticated than this, and only a few manufacturers are capable of designing acceptable solenoids. A base header of some sort is frequently necessary to stabilize pin separation.

Solenoids have the drawback that in some applications circuit performance may be adversely affected due to interactions with susceptible adjacent components. Only moderate inductance levels are possible with a solenoid inductor (up to about $25-30 \mu \mathrm{H}$) because of the low permeabilities available and also because of the relative inefficiency of the magnetic system. Solenoid designs are significantly less expensive than other approaches both because of the low materials cost and the simple manufacturing processes which can be used.

PARAMETERS AND SPECIFICATIONS

Drawing specifications for power inductors are generally very basic. For the low to medium power designs presently controlled by CCP the following electrical parameters are usually specified:

1. Maximum dc resistance (dcR).
2. Maximum dc current handling capability ($I_{d c}$).
3. Minimum inductance @ specified frequency, voltage and $I_{d c}$.
4. Maximum temperature rise abnve ambient.
5. Insulation cláss.

In addition to the above, some applications may wish to specify:

1. Minimum dielectric strength.
2. Minimum insulation resistance.
3. Minimum impedance to ground.

Examples of representative part prints are Figures 6-12 and 6-13, which are for medium-power and low-power designs respectively. The pertinent specifications are:
\#866476 Engineering
\#866477 Quality

Other controlling specifications are common to all purchased components.

COST AND DESIGN CONSIDERATIONS

Design of a power inductor must optimize a number of different and sometimes conflicting requirements and characteristics: minimum package size, required electrical performance, maximum temperature rise under load, compliance with all pertinent IBM and UL specifications, low production cost, and vendor design and manufacturing expertise. As an example of this, when lower production costs are desired for a completely developed design, it can generally only be done by increasing the size, and/or reducing the required electrical performance, and/or raising the maximum temperature rise under load.

Again, if the size or volume must be reduced, either more costly core materials must be used, raising unit cost, or the limits must be relaxed for one or several of the remaining parameters.

Most user requests for power choke releases tend to specify dimensions so minimal that the required performance and cost targets are difficult to meet.

PASSIVE COMPONENTS MANUAL

In other words, "trade-offs" must be negotiated. Invariably, several feasibility design iterations are necessary. These should be accounted for in the release schedule, and may require that the application and component engineer negotiate design tradeoffs. Figures 6-12 and 6-13 show in the lower right hand quarter of each print, three design options. These are included on the print to avoid confusion, in manufacturing areas, which may arise upon receiving designs which do not look exactly like the print. They also allow each potential manufacturer who might be approached, to use the technology with which he is most expert. This gives the manufacturer design flexibility which can permit him to use what his specific experience indicates to be the lowest cost design options.

CLASSIFICATION REVIEWED VENDORABLE

Inductor Data	
	25 H
Tolerance	$\pm 25 \%$
IDC	20 A
EAC	
DCR Max	1.0 Volt
Insulation Class	9 mohm
	20
Max Temp Rise Above $650^{\circ} \mathrm{C}$ Ambient	$85^{\circ} \mathrm{C} \mathrm{Min}$

Notes
IBM Part Number, Date Code, Manufacturer's Identification and Nominal Inductance to Appear on this Surface.
2 Maximum Untinned Lead Length Shall Not Exceed $.040(1,02)$ from Seating Plane.
3 Location and Shape of Standoffs Optional Minimum of 3 Standoffs. Laminate Designs (Figure 1) Do Not Require Standoffs .

4 Shape of Component Optional . Maximum Dimensions Shall not be Exceeded. Alternate Configurations Shown in Figures 1, 2 and 3.
5 Immersible in Deionized Water Only.
6 Paragraph 3.2 Not Applicable .

(See Figures 1, 2 and 3)

Optional Acceptable Configurations,
Notes 3 and 4

Figure 6-12. Medium Power Choke

Notes
1 IBM Part Number, Date Code, Manufacturers Identification and
Nominal Inductance to Appear on this Surface
2 Maximum untinned Lead Length Shall not Exceed $.040(1,02)$ from Seating Plane.

3 Location and Shape of Standoffs Optional Minimum of 3 Standoffs. Laminate Designs (Figure 1) Do not Require Standoffs
4 Shape of Component Optional Maximum Dimension Shall not be Exceeded. Alternate Configurations shown in Figures 1, 2 and 3.
5 Immersible in Deionized Water Only.
6 Paragraph 3.2 Not Applicable Inch Dimensions

Figure 6-13. Low Power Choke

AUDIO TRANSFORMERS AND INDUCTORS

DESCRIPTION

Audio transformers and inductors are used primarily in communications type circuits. Based on functional considerations, however, CCP includes almost all low-power level transformers and inductors which operate in the frequency range up to about 100 kHz , in this category.

Audio transformers are used for most of the classic transformer functions: interconnecting circuit stages; matching impedances (as for instance transducers to amplifiers); providing dc isolation between transmission lines and terminals; signal polarity change; and voltage or current level changes. An adjustable transformer or inductor provides a means for precisely tuning a series of parallel resonant RLC circuits. These types of circuits are used extensively in modulator/demodulator (modem), bandpass or bandstop, and tone generation applications. Audio transformers may also sometimes find application in lightening arrest circuits.

Audio Transformer/Inductor Technology

Theoretically, both AF transformer and AF inductor designs may use pot core, laminate or toroid technologies. In practice however, ferrite pot core designs are almost always superior to others in the optimization of performance, dimensions, and cost so that very few requirements are satisfied with any other format. For this reason only pot core AF transformer/inductor technology will be discussed in detail, in this section.

AF transformers and inductors using pot cores are manufactured by winding a specified number of turns of wire around a bobbin. If the part is a transformer, mylar tape may be placed between each winding to raise the minimum voltage breakdown level between windings. Insulation resistance between windings will typically be greater than $10^{10} \Omega$ The egress wires may also be taped to avoid windings shorting to each other or to the core. The completed coil is then usually vacuum impregnated with either epoxy or transformer varnish. This results in a moisture impervious unit which does not require a hermetically sealed case as proof against operational failure in high humidity environments. The core, which has been selected for proper permeability and gap size (in terms of "inductance factor", A_{L}) and to have an internal core volume large enough to contain the required coil, is then fastened around the bobbin using either metal clamps or epoxy cement. Core-half joining is described in more detail in the section titled "Cost and Design Considerations."

Figure 6-14 shows a completed pot core transformer on the left, and the varnish impregnated coil/bobbin/pin assembly on the right. The bobbin form and ferrite core are standard items; the coil itself is custom wound.

Figure 6-14. Typical Pot Core AF Transformer/Inductor Construction; Complete Unit on Left, Coil/Bobbin/Pin Unit on Right

If for some reason the unit must be encapsulated, the space between case and core can either be left empty (air) or filled with an "unstructured" material. Whatever the encapsulation backfill is, it must not be rigid or hard because it is then likely to introduce mechanical stresses into the ferrite, which in turn tend to alter inductance characteristics in an unpredictable manner. Figure 6-15 shows both a pot core transformer mounted on a specially molded and pinned header base before the case is added, and the completely encapsulated unit. This particular vendor backfills his units with a loose material referred to as "polymer baloons"-microscopic polymer globules.

Figure 6-16 shows a section through the middle plane of a typical pot core transformer with the pertinent features, which are mentioned above, identified.

Figure 6-15. Representative "Custom" AF Pot Core Transformer/Inductor Design Showing: "A" Specially Molded Header and "B" Complete Unit in Plastic Case. Not shown is the Unstructured Case Fill Material.

PASSIVE COMPONENTS MANUAL

Figure 6-16. Mid-Plane Section through a Typical AF Pot Core Transformer/ Inductor Assembly Showing:

1. Ferrite Core
2. Bobbin
3. Coil
4. Center Post Gap
5. Epoxy Cemented Core Half Plane (Slightly Offset)
6. Pins
7. Center Hole

Although ferrite cores can be obtained according to virtually any specification, it is advisable to base the design on one of the eight internationally standard (IEC) core sizes. These are listed in Table 6-3 which also gives the dimensions. In addition to these eight core form factors, which are available anywhere in the world, there are five or six other common sizes which are so widely used that their cost is comparably low. Each of these form factors can be obtained in a range of inductance factors (AL) and temperature coefficients of inductance (TCL) so that there is considerable design flexibility.

For adjustable designs, several types of adjustor are also available.

PASSIVE COMPONENTS MANUAL

Table 6-3. Internationally Standard Pot Core Form Factors

Pot Core Physical Dimensions

(All dimensions are in inches)

\#	Magnetic Path Length (cm.)	Figure	A	B	C	D	E	F	G	H
9×5	1.26	1	$.362 \pm .004$	$.298 \pm .003$	$.151 \pm .002$. $073 \pm .002$. $077 \pm .006$	---	$.145 \pm .003$	$.207 \pm .005$
11×7	1.55	2	$.437 \pm .007$	$.362 \pm .008$	$.181 \pm .004$.081 -.002	. $077 \pm .006$. 297 Nom.	. $179 \pm .006$	$.256 \pm .003$
14×8	2.0	2	. $551 \pm .008$	$.465 \pm .008$	$.232 \pm .004$	$.122 \pm .003$	$.126 \pm .006$. 376 Nom.	$.228 \pm .008$	$.329 \pm .005$
18×11	2.6	2	. $709 \pm .008$	$.598 \pm .008$	$.293 \pm .006$. 1221.003	. $116 \pm .006$. 503 Nom.	. $291 \pm .007$	$.415 \pm .005$
22×13	3.15	2	$.851 \pm .015$. $717 \pm .011$	$.364 \pm .006$	$.179 \pm .004$	$.122 \pm .004$. 590 Nom.	$.369 \pm .007$	$.528 \pm .007$
26×16	3.75	2	$1.004 \pm .019$	$.850 \pm .015$	$.444 \pm .007$.	$.219 \pm .004$	$.122 \pm .004$. 710 Nom.	$.440 \pm .007$	$.634 \pm .007$
30×19	4.5	2	$1.181 \pm .019$. $999 \pm .015$	$.524 \pm .007$. $219 \pm .004$	$.163 \pm .006$. 902 Nom.	$.519 \pm .007$	$.740 \pm .008$
36×22	5.3	2	$1.402 \pm .015$	$1.192 \pm .015$	$.626 \pm .008$	$.219 \pm .004$	$.163 \pm .006$	1.096 Nom.	$.582 \pm .007$	$.855 \pm .011$

\#Size designation in mm . for O.D. and pair height.

PARAMETER AND SPECIFICATIONS

An AF transformer or inductor may be selected on the basis of the following criteria:

1. Circuit function.
2. Voltage level.
3. Frequency band.
4. Dimensions.
5. Source and load impedances.
6. Shielding requirements.

The use of all of the above parameters may not be necessary in a given application. The choice of parameters as well as exact parameter levels may be selected by calculation and/or testing in a prototype circuit. Based on these considerations the pertinent parameters can be selected and nominal levels together with tolerances can also be set.

The most generally useful parameters for pot core AF transformers and inductors are presented below:

1. Inductance: @ specified frequency and voltage.
2. Adjustment range (if required).
3. DC bias current.
4. Self resonant frequency (SRF).
5. Transformation ratio (T / R).
6. Leakage inductance: @ specified frequency and voltage.
7. Shield efficiency (if required).
8. Temperature coefficient of inductance (TCL).
9. Primary open circuit impedance (OCZ).
10. Insertion loss or frequency response.

Generally, no more than four to six of the above parameters will be required to adequately define most AF transformers or inductors.

Temperature coefficients are available over a fairly wide range, and can be selected to compensate the negative TCC of specific styrene capacitors where this is an application requirement. Stable operating characteristics are available in the temperature range from $+10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Units can also be supplied which will perform satisfactorily with a dc bias on the windings in excess of 60 mA or
under the relatively high rms voltages used in series incorporate an airgap in the central core post.

An additional advantage of the airgap is the EOL stability it provides to the component. Worst-case EOL inductance drift will be within $\pm 1 \%$ and generally closer to $\pm 0.5 \%$. Changes in Q are insignificant.

Where necessary, an electrostatic shield can be placed between windings to provide a low impedance path to ground for high-voltage transients.

The applicable specifications for AF transformers and inductors are:

$$
\begin{aligned}
& \text { Engineering Specification - } 5103333 \\
& \text { Quality Specification }-866482
\end{aligned}
$$

us Codes:

1. Adjustable AF transformers - 23732
2. Fixed AF transformers - 23731
3. Adjustable AF inductors - 23722
4. Fixed AF inductors - 23721
5. Low power AF transformers - 23736

The failure rate for $A F$ transformers and inductors is listed in failure rate specification 866451.

COST AND DESIGN CONSIDERATIONS

The original AF pot core transformers and inductors released for use within the IBM corporation, were generally encapsulated designs on unique pin formats which were compatible with a 125 mil grid pattern. The pot core halves were fastened together with some form of metal clamp which was either brass or stainless steel. This type design was expensive from both a materials and labor point of view. Figure 6-17 shows typical examples. The three parts shown are the same P/N by three different manufacturers.

Notes:

1. Core halves held together by brass bolts or stainless steel spring clips (in one instance forming a case),
2. Pins set into custom molded plastic base headers, and
3. The apparent high degree of manual labor necessary for the construction of each.

Figure 6-17. Some Examples of Older, Costly AF Transformer/Inductor Construction Practices

For contrast, refer again to Figure 6-14. This inductor is composed of standard components available to any manufacturer with no additional tooling or custom design costs.

Notes:

1. Core halves fastened together with epoxy cement,
2. Coil wound on glass impregnated nylon bobbin which also contains dual-in-line flanges into which pins may be staked at 150 mil seperations between pins. Pins staked in alternate positions will be separated by 300 mils which is compatible with a 100 mil grid,
3. Not readily apparent is the great reduction in the amount of hand operation required for component build.

Because these components are industry-standard, they are manufactured in high-volume by many different vendors and are therefore relatively inexpensive. The part in Figure 6-14 is approximately 50 to 60% less expensive than the same part would be if constructed using the design approach of the parts in Figure 6-17. The open construction unit in Figure 6-14 meets the same IBM specifications as in Figure 6-17. For this reason, CCP has been recommending adoption. This approach may offer additional cost savings where several $\mathrm{P} / \mathrm{N}^{\prime} \mathrm{s}$ are based on the same core/coil components, and the vendor is therefore able to "group" these $\mathrm{P} / \mathrm{N}^{\prime}$ s into a single large volume lot for pricing.

In order to implement this, component requests should be initiated before the point where pin position on the circuit board becomes unchangeable.

The number of required parameters should be kept as small as possible and tolerances should be as broad as circuit requirements permit.

To-user costs will range between $\$ 2.50$ and $\$ 6.00$ per unit with most applications centering near the lower figure.

PULSE AND WIDEBAND TRANSFORMERS

DESCRIPTION

General

Although pulse and wideband transformers address apparently different circuit requirements, from a technical standpoint the two designs are virtually indistinguishable. This can $t e$ immediately grasped, if it is recalled that in a mathematical sense, a square wave requires a considerable number of sine-function frequencies to express it. These may actually be isolated by suitable filter circuits and examined. Since a square wave does contain a long series of frequencies, good square wave response is also an indication of smooth frequency response, which is the major performance criteria for wideband transformers. It is this commonality which justifies the usage of a single set of engineering specifications to describe the two types of transformers.

Ferrite toroidal-core transformers have a range of permeabilities from 500 to 10,000 over a frequency range of 1 kHz to 200 MHz . The ferrite cores are wound, conformally coated, and encapsulated (either molded or epoxy filled) for mechanical protection (see Figure 6-18). The particular case size and pin layout are generally tailored for specific applications. The ferrite toroidal-core is the core most commonly used for IBM applications.

The pot-core transformer (see Figure 6-19) is also a ferrite core but larger in size. The effective permeability is considerably lower due to a ground surface air gap between core halves; however, this design has the advantage of excellent inductance stability under extreme temperature and humidity conditions. A bobbin, which has been wound with the required number of turns of wire, is totally enclosed by the two pot core halves. Lead egress is accomplished by vertical slots in the pot core wall. The core is encapsulated by either transfer molding or by back filling an epoxy case.

The laminated-core transformer (see Figure 6-20) employs a ferrous metal (e.g., steel or nickel-iron) instead of a ferrite. The laminates are various shapes and are stacked and epoxied together to form a low reluctance path. The coil is machine wound on a bobbin prior to core lamination. The entire unit is molded or placed in a case and epoxy back filled.

Approximately 60 part numbers, in many different body sizes, are released for wideband and pulse transformer applications; however, three body sizes have emerged as the standard designs and are illustrated in Figures 6-21 through 6-23.

The R-Case is used for primary winding inductance less than $50 \mu \mathrm{H}$. The Z -Case is used for primary winding inductances for $50 \mu \mathrm{H}$, while the $1 / 2 \times 1 / 2$ case is used for 1 mH to 30 mH .

Most of the released designs have pin spacing on a 125 mil grid. Present board layout practice is based on a 100 mil pattern and all recent releases are consistent with this. Virtually any grid spacing or case size is available on a c stom basis, but costs can be held lowest when standard formats are requested. Contact CCP for advice before selecting a format.

Wideband Transformers

Wideband transformers are used to match different impedances, to set accurate current or voltage ratios, to provide interconnectionsetween circuits, and to establish dc isolation. They are generally not required to transmit appreciable amounts of power.

Figure 6-18. Toroidal-Core Transformer

Figure 6-19. Pot-Core Transformer

Figure 6-20. Laminated-Core Transformer

Figure 6-21. R-Case Design

Figure 6-22. Z-Case Desigr.

Figure 6-23. $1 / 2 \times 1 / 2-$ Case Design

The input voltage seen by a wideband transformer is usually complex, containing energy distributed over a wide frequency spectrum. The requirement is that the voltage waveform appearing across the load shall not have had excessive distortion introduced by the transformer. Accordingly wideband transformers are designed to pass signals in a frequency band specified by acceptable attenuation levels at an upper and lower frequency. The maximum allowable distortion between these limits is defined. A secondary load output no more than 3 dB lower than the mid-band gain is generally chosen as the limit for both the high and low frequency cut-off points.

Pulse Transformers

Pulse transformers are also required to transmit energy spread over a wide frequency spectrum. However, the pulse transformer is specified in terms of its effect on the shape of an input pulse, rather than in terms of the frequency spectrum, as is the wideband transformer. The input pulse shape is accurately described as trapezoidal rather than square (see Figure 6-25). The pulse transformer must transfer the input pulse from the primary circuit, which may sometimes also be the pulse generating circuit, to the load circuit without excessive distortion. It must be capable of doing this while performing any of the traditional transformer functions; for example:

1. dc isolation.
2. Polarity Reversal.
3. Balance or unbalance to ground.
4. Impedance matching.
5. Voltage/current transformation.

PULSE/WIDEBAND TRANSFORMER EQUIVALENT CIRCUIT

Abstract

Pulse Transformers

As stated, both pulse and wideband transformers can be described by almost exactly the same mathematical or electrical considerations. However, the two differing application requirements must be covered by different part print parameters.

These are set by the desired frequency response in the case of wideband transformers and allowable pulse shaping or distortion for pulse transformers.

Figure 6-24 is a lumped element equivalent circuit for either a wideband or pulse transformer. Secondary elements have been referred to the primary side by multiplying by $1 / \mathrm{N}^{2}$, all primary elements are designated by prime notation.

The following discussion for each type of transformer will be based on this circuit.

Pulse Characteristics and Definitions

Figures 6-25 and 6-26 show input and output pulse shapes respectively in a somewhat exaggerated form. Input pulse characteristics can be adjusted at the pulse or function generator so that droop is zero, and input pulse shape and rise/fall times will closely approximate the idealized pulse shape of Figure 6-25. When the pulse energy appears on the loaded transformer secondary it has undergone reshaping or distortion due to the finite reactances associated with any transformer. Figure 6-26 is a typical transformer output or secondary pulse shape. The significant characteristics of a secondary pulse are shown and are described in more detail below. Referring to Figure 6-26.

1. Rise Time - The time required for the input pulse voltage to travel between the 10% and 90% points of the leading edge of the pulse waveform.
2. Overshoot - The amount by which the first maximum occurring in the pulse top region, exceeds the intersection of the extrapolated line segment fitted tangentially to the pulse top and the line tangent to the rise time trace.
3. Ringing - Oscillation occurring immediately after maximum overshoot.
4. Pulse Top - Top part of pulse; between leading and trailing edge.
5. Pulse Duration - The time interval between the 90% point of the leading edge and the 90% point of the trailing edge.
6. Pulse Width - Differentiated from "pulse duration"... The time interval between the 50% point of the leading edge and the 50% point of the trailing edge.

PASSIVE COMPONENTS MANUAL

7. Droop (or Tilt) - The amount expressed in percent, of the intersection between the extrapolations for pulse top and trailing edge below the maximum input voltage related to that voltage.

8 Fall Time - The time required for the pulse voltage to travel between the 90% and 10% points of the trailing edge of the pulse waveform.
9. Backswing - The maximum amount of which the instantaneous voltage swings below the zero axis in the region following the fall-time.
?). Pulse Repetition Frequency (PRF) - The number of pulses per second (PPS)... may also be expressed in terms of "duty cycle".

Figure 6-24. $\begin{aligned} & \text { Lumped Element Equivalent Circuit for Pulse or Wideband Transfor- } \\ & \text { mers }\end{aligned}$

raSSIVE COMPONENTS MANUAL

Figure 6-25. Typical Input Pulse Waveform and Characteristics

Figure 6-26. Typical Secondary Waveform

It is immediately apparent, that unlike most electrical measurements, all of these pulse characteristics are subject to a considerable degree of operator interpretation. It is therefore important that the required tangential line extrapolations be assigned with extreme care. In practice, all ten characteristics do not have to be specified. In most cases, it will suffice to define pulse amplitude, rise time, duration, and PRF for the input pulse, and rise time and droop for the secondary pulse with both input and output circuits defined.

The degree of overshoot, or ringing, and backswing are also frequently specified.

The desired secondary waveshape may be assured by defining the proper values for pulse inductance, leakage inductance, interwinding capacitance, dc resistance, and primary and secondary impedances.

Generally, these values are initially set by calculation and then fine-tuned in the application.

Leading Edge

The leading edge is shown in Figure 6-26. The equivalent circuit for the leading edge only is approximated in Figure 6-27. Output rise that time ($t_{r o}$) is the combination of input rise time $\left(t_{i}\right)$ and transformer rise $\left(t_{t}\right)$ and is given by the vector sum:

$$
t_{r o}=\left(t_{i}^{2}+t_{t}^{2}\right)^{1 / 2}
$$

Shunt impedances may be ignored because of a negligible build-up of magnetizing current during the relatively short rise time period.

$\mathrm{R}_{\mathrm{A}}=$ source resistance (Ω)
$L_{L}=$ leakage inductance (H)
$C_{D}=$ total shunt capacitance (F)
$\mathrm{R}_{\mathrm{b}}=$ load resistance (Ω) (referred to primary)

Figure 6-27. Equivalent Circuit for Leading Edge Portion of Pulse

Leading edge response is therfore primarily a function of the high frequency characteristics of the transformer and, of course, the load conditions.

The rise time ($t_{r o}$) may also be expressed in terms of lumped parameters;

$$
t_{r o}=K\left(L_{L} C_{D}\right) 1 / 2,
$$

where K is a dampling constant related to the load conditions. It is clear that rise time can be reduced by minimizing the product of the leakage inductance $\left(L_{L}\right)$ and total shunt capacitance $\left(C_{D}\right)$ and/or the damping constant (K). Actually, for most applications the damping constant will be between 0.8 and 0.5 . It is mainly dependent upon winding geometry, which also has an influence on $L_{L} C_{D}$. The latter two parameters must be optimized within the overall application constraints.

Pulse Top

The pulse top and the method of determining it are shown in Figure 6-25. The equivalent circuit having a bearing on pulse top is shown in Figure 6-28. The "pulse top" concept is not altogether obvious because this portion may also include pronounced pulse distortion features such as "ringing" and "droop". The extension of the line drawn tangent to the most linear part of the pulse top is used for calculations.

Winding and source resistances have been lumped together in R_{A} since they are in series. The effects of leakage inductance and interwinding capacitance are negligible and are therefore not considered in pulse top calculations. A linear L_{p} is assumed in the time period when the pulse top portion of the pulse envelope is pertinent. Primary inductance dominates top period response. If the inductance and load voltage remain constant, the current associated with L_{p}
(magnetization current) will increase linearly with time. With finite source impedances, the magnetization current will cause an increasing drop in load voltage which is referred to as "droop" and is clearly shown in Figure 6-26.

$R_{A}=$ source resistance (Ω)
$L_{p}^{\prime}=$ shunt inductance (H)
$R_{b}^{\prime}=$ load resistance (Ω) (referred to primary)

Figure 6-28. Equivalent Circuit for Top Portion of Pulse

Droop is related to the element values by the expression:

$$
D=\left[1-\left(E X P \quad-\begin{array}{cc}
-t_{d} R \\
& L_{p}
\end{array}\right)\right] \times 100 \%
$$

where:

$$
\begin{gathered}
t_{d}=\text { pulse duration } \\
R_{s} R_{b}^{\prime} \\
R_{s}=R_{b}^{\prime}
\end{gathered}
$$

In practice, droop is measured from the intersection of the extrapolated lines shown in Figure 6-26, and expressed as a percentage of the 100% level of the output voltage which is also shown in this figure. It can be seen from the expression, that droop approaches zero as the exponential function approaches unity. This means that droop is inversely related to L_{p}, but tends to increase with pulse duration and/or source and load resistances.

This is demonstrated a bit more clearly in Figure 6-29, which is a plot of the exponential argument $\left(L_{p} / t_{d} R\right)$ versus \% pulse droop.

The equivalent circuit for the trailing edge portion of the secondary pulse is shown in Figure 6-30.

Figure 6-29. $L_{p} / t_{d} R$ as a Function of Pulse Droop in \%

$\mathrm{R}_{\mathrm{A}}=$ source impedance
(Ω)
$L_{P}=$ shunt inductance
(H)
$C=$ total shunt capacity (F) (referred to primary)
$R_{b}^{\prime}=$ load impedance (Ω) (referred to primary)

Figure 6-30. Equivalent Circuit for Trailing Edge Portion of Pulse

Trailing edge response is primarily a function of stored energies being released. It is usually of much less importance that leading edge and pulse top response so that almost no design attention is assigned to it. Its characteristics are generally predetermined by other design criteria.

PASSIVE COMPONENTS MANUAL

ET Rating

Another useful way of specifying pulse transformer performance is to define the flux handling capability of the core. This may be determined by the E-T rating or volt-micro second product, which is given by the expression:

$$
E T=N B A,
$$

where:
$\mathrm{E}=$ pulse voltage (in volts)
$\mathrm{T}=\mathrm{pulse}$ width (in microseconds)
$\mathrm{N}=$ number of primary turns
$B=$ maximum flux density
$A=$ cross-sectional area of core.

It is thus clear that this parameter is also based on pulse shape.
If the input voltage pulse is impressed upon the primary with the secondary open circuited, a characteristic waveform similar to Figure 6-31, will result.

Figure 6-31. Magnetizing Current, $I_{\text {MAG }}$ versus Time

The current ramp will begin departure from linearity when the core begins to saturate. This is shown as point $\left(I_{3}, t_{3}\right)$ in the figure. The time of saturation (${ }_{\text {SAT }}$) is arbitrarily defined, by IBM, as that point in time where the magnetizing current is 1.1 times the linear extrapolation of the current ramp. At saturation, point $\left(I_{S A T}, t_{S A T}\right), I_{S A T}=1.1 \times I_{3}$. Since the value of sinewave inductance (L_{p}) alone is not sufficient to explain the pulse behavior of transformer, the concept of magnetizing pulse inductance (L_{m}) has been introduced where:

$$
\left.L_{m}=\begin{array}{c}
E\left(t_{2}-t_{1}\right) \\
I_{2}-I_{1}
\end{array}\right] \text { or }\left[\begin{array}{l}
\text { ET rating } \\
-\cdots---- \\
\Delta I
\end{array}\right]
$$

L_{m} can differ from the sinewave inductance by a factor of as much as two or three, so that it is a parameter of limited value when specifying pulse transformers.

It should be mentioned that the rest of the industry generally defines $\mathrm{L}_{\mathrm{SAT}}$ as $1.5 \times \mathrm{I}_{3}$ instead of 1.1 as is IBM practice.

Wideband Transformers

A transformer designed to pass signals in a given frequency band between specified upper and lower frequency limits is called a wideband transformer. In general, the maximum allowable distortion and attenuation between the upper limit and lower limit and at the mid-band frequency is stipulated. An output response of 3 dB lower than the mid-band response is chosen as the lower limit for both the high frequency (f_{2}) and the low frequency (f_{1}) cut-off points.

Figure 6-32 shows a typical frequency response envelope for a wideband transformer. The significant areas are defined.

Each region will be considered separately with electrical performance related to the lumped parameters defined in the equivalent circuit of Figure 6-23.

1. Low-Frequency Region

The low-frequency region is where insertion losses (in addition to mid-band gain attenuation) start to increase and continue to do so to some predetermined limit (f_{1}) or at some specified rate. The insertion losses at low
frequencies are due primarily to the shunt impedances of the primary open circuit inductance (L_{p}) and the core loss (Rc). Core loss in low power
applications is ignored; in higher power applications it is lumped with the load resistance. The attenuation, in dB , is related to the shunt inductance by:

$$
\begin{aligned}
& A_{1}=10 \log _{10}\left[1+\left(\begin{array}{c}
R \\
--- \\
\omega L p
\end{array}\right)^{2}\right] \\
& \text { where } R=-\frac{R s R^{\prime} b}{R s+R^{\prime} b}
\end{aligned}
$$

And the phase shift, ϕ, is given by:

$$
\operatorname{Tan} \phi=\frac{R}{\omega L p}
$$

Figure 6-32. Frequency Response

2. Mid-Band Region

The mid-band region is where a relatively flat attenuation characteristic is exhibited over the major portion of the response curve. The major parameters in this region are the circuit resistance values ($\mathrm{Rw}, \mathrm{R}^{\gamma} \mathrm{w}$, Rs, $R_{L}, R c$). The shunt resistance, Rc, is usually high and is ignored in low frequency transformers ($<1 \mathrm{MHz}$) using ferrite cores. Rw and R'w are lumped and should be kept small in relation to $R s$ and R_{L} in order to maintain a low insertion loss.

$$
\begin{aligned}
& A_{1}=20 \log _{10} 1\binom{R_{W}}{R_{S}+R_{b}^{\prime}} \\
& R_{W}=R_{W}+R_{W}^{\prime}
\end{aligned}
$$

R_{S} and R_{L} should be such that $\eta=\left(R_{L} / R_{S}\right)^{1 / 2}$ that is, source and load resistances are matched) so that maximum energy transfer occurs. The attenuation, in dB , can be expressed as follows:

$$
A_{1}=20 \log _{10} \begin{gathered}
1+m \\
--\sqrt{m}
\end{gathered}
$$

where $m=R_{L} / R_{S}=\eta^{2}$
3. High Frequency Region

The high frequency region is where the transmission characteristic starts to droop and continues to do so to some required limit (F_{2}) or at some
specified rate. The major parameters causing high frequency droop are leakage inductance and/or shunt capacitances. The winding resistance is normally neglected because the capacitive and inductive impedances are extremely high as to render the R_{W} insignificant.

For a step-down or low-impedance circuit, the leakage inductance normally predominates in droop consideration. Attenuation due to leakage is given by:

$$
A_{1}=10 \log _{10}\left[\begin{array}{c}
\omega L_{L} \\
1+\cdots--R_{b}^{\prime}
\end{array}\right]
$$

where $L_{L}=L_{L 1}+L_{L 2}$
and phase shift by:

TAN $\varnothing=-\cdots-{ }^{-}$

$$
R s+R_{b}^{\prime}
$$

PASSIVE COMPONENTS MANUAL

For a step-up or high-impedance circuit, the shunt capacitances usually predominate and attenuation is given by:

$$
A_{1}=10 \log _{10}\left[1+(\omega C R)^{2}\right]
$$

$$
\text { where } R=\frac{R_{s} R_{b}^{\prime}}{\operatorname{Rs}+R_{b}^{\prime}}
$$

and phase shift by:

$$
\operatorname{TAN} \phi=-\omega C R
$$

Equivalency of Pulse and Wideband Transformers

Pulse and wideband transformers may be related to each other by a number of standard expressions. Of most general use are the following:

$$
\begin{aligned}
& f_{1}
\end{aligned}
$$

where:
$\mathrm{f}_{1}=$ low 3 dB point, and
$f=$ pulse repetition frequency at 50% duty cycle.

$$
\text { RISE TIME }=\frac{0.35}{-\mathrm{f}_{2}}
$$

where: $f_{\mathbf{2}}=$ high 3 dB point.

Utilizing these expressions it is sometimes possible to use a transformer designed for one mode in the other mode of operation. It should be borne in mind, however, that acceptable performance can only be assured when a design is used within the parameter levels specified on the drawing.

PARAMETERS AND SPECIFICATIONS

Pulse or wideband transformer specifications should be selected to assure proper operation in the intended application. It is also important that criteria are set which can ensure that the quality of the unit is maintained. Towards this end, the following points are pertinent:

1. One parameter should describe core performance,
2. One parameter should describe winding performance, and
3. All of the directly applicable electrical parameters should be included.

The following summary has been prepared as a guide in selection of parameters. It should be borne in mind, that unit cost escalates with over specification, so that the total number of specifications should be as brief as possible.

Sine wave inductance is an effective indicator of core uniformity, but has very little bearing on pulse or wideband performance.

COST AND DESIGN CONSIDERATIONS

In addition to the selection of the proper set of parameters, it is also convenient, as well as cost effective, to specify parameters at levels which are well within the available ranges of typical measurement equipment, and as maximum/minimum.

Some suggestions (to be observed wherever possible):

1. Inductance (either sine wave or pulse) - Specify as a minimum at a PRF $=1.0$ kHz for pulse inductance, and either 1.0 kHz or 100.0 kHz for sine wave inductance;
2. ET - Specify as a minimum at a $P R F=1.0 \mathrm{kHz}$ with an $\mathrm{I}_{\mathrm{MAG}}=1.1$ times the linear extrapolation.
3. Leakage Inductance $\left(L_{L}\right)$ - Specify as a maximum at either 10.0 kHz or 100.0 kHz ;
4. Interwinding Capacitance (Cw / w) - Specify as a maximum at $10.0 \mathrm{kHz}, 100.0$ kHz or 1.0 MHz ;
5. DC Winding Resistance (DCR) - Specify as a maximum,
6. Hi-Pot - DC test value is preferred,
7. Insulation Resistance (IR) - Minimum of 100 Vdc as stated in engineering specification.

Table 6-4. Significant Pulse Transformer Parameters

Core Perforialance

Parameters are listed in order of general preference. Only one parameter should be specified.

Parameter	Specification	Tolerance	Comments
1. Sine Wave Inductance	Millihenries	Minimum	Most commonly specified. Not always indicative of performance in pulse circuit. Easy to measure.
2. Pulse Magnetizing Current	Milliamperes	Maximum	Indicative of performance in pulse circuit. Subject to reading error.
3. Pulse Droop; Coupling Circuit	Per Cent	Maximum	Indicative of performance in pulse circuit. Subject to reading error. Requires correlation samples.
4. ET Constant	Volt Microseconds	Minimum	Indicative of core saturation characteristics. Subject to reading error.
5. Performance in Application Circuit	Droop - \% Backswing, \% Recovery time, (Microseconds)	Maximum Maximum Maximum	Requires special fixture plus correlation sample. Difficult due to transistor and circuit variations. Increases unit cost. Not recommended.

Listed in order of general preference. Only one parameter should be specified.

Parameter	Specification	Tolerance	Comments
1. Leakage Inductance and Inter Winding Capacity	Microhenries Picofarads	Maximum Maximum	Definitive and easy to measure. Conservative indicator of C. Easy to measure.
2. Rise Time and Overshoot	Microseconds Per Cent	Maximum Maximum	Indicative of performance under specific operating conditions. Correlation samples requirrd.
3. Frequency Response High 3 dB Low 3 dB Returns	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~dB} \end{aligned}$	Minimum Maximum Maximum	Indicative of performance under specific operating conditions. Correlation samples required.

Electrical Performance

Several of the specifications below should be included. Coupled with one of the core performance specifications and one winding specification, quality of the transformer is greatly assured.

Parameter	Specification	Tolerance	Comments
Peak Pulse Voltage	Volts	Maximum	
Transformation Ratio	Per Cent	5%	Can be tightened to $\pm 1 \%$ on balanced transformers.
RC Resistance of Windings Hi-Pot Insulation- Resistance	Ohms	Maximum	

It should be understood that tolerances should be used only wherever a narrow performance "window" is required.

The preceding suggested levels obviate any requirement to purchase special test equipment or to set up special test procedures at additional cost.

At incoming inspections it is also much simpler to read maximum/minimum, on a go/no-go basis, than to adjust test systems and testing personnel to measure tolerances.

Very tight droop requirements, extremely short rise times or increased fractional bandwidths rapidly escalate cost.

In general, unnecessarily high costs can be averted if parameters and dimensions can be negotiated before final release of the part.

SPECIFICATIONS

Specifications applicable to pulse and wideband transformers are:

$$
\begin{array}{ll}
\text { Engineering } & -896953 \\
\text { Quality } & -873552 \\
\text { DCS Codes } & \\
\text { Pulse } & -23733 \\
\text { Wideband } & -23734
\end{array}
$$

GENERAL COMMENTS ON COST

In the preceding sections, frequent reference is made to practices which directly affect component cost. At this point, it is advisable to make a few comments on cost effectiveness in general.

Some transformer/inductor designs are released costing the user more than is absolutely necessary because component release activity was initiated so late in the machine development program, that the CCP product engineer was locked into cost increasing requirements.

Custom designs are often not absolutely necessary. It is not always necessary to find the optimum solution to a design problem. If trade-offs can be negotiated, it is sometimes possible to use a standart part or a modified standard part at a lower cost. Quite often savings by the manufacturer on quantity material purchases, for use in standard items, can be passed on to the customer.

Another common source of escalated cost is over-specification. This generally is the result of the requester being overly conservative and either specifying too many parameters or using too close tolerances.

Summarized in a list below are some of the more common reasons why transformers and inductors may become expensive:

1. Tight electrical tolerances or parameters which require individual adjustment.
2. Taps in windings.
3. More than 3 windings.
4. Electrostatic shields.
5. Tight coil fit within small dimension ease.
6. Close mechanical tolerances requiring special fixturing or tooling.
7. Hand marking or uniquely dimensioned units.
8. High material cost due to special requirements.
9. High number of turns required.
10. High voltage insulation.
11. Non-standard lead pattern requiring special drill fixtures.
12. Unusual temperature coefficients of inductance.

Electrical parameters should always be toleranced as loosely as is consistent with acceptable circuit performance. If a parameter becomes critical enough so that 100% testing is necessary in production, the cost will be correspondingly greater than if AQL sampling were used.

The escalating cost effect of many of these considerations can be blunted if the product engineer at CCP is contacted early enough in the program so that suitable tradeoffs can be negotiated between program requirements, manufacturer capability and IBM specifications.

DELAY LINE

DESCRIPTION

Electromagnetic delay lines are inductor and capacitor networks which simulate in a miniaturized package the impedance and time delay characteristics of a transmission line. They should be treated in applications exactly as you would handle other transmission lines with respect to reflections, distortion, and loading.

There are two types of delay lines most commonly used; lumped constant, and distributed constant. Lumped constant designs employ wound coils and discrete capacitors to satisfy the following:

$$
\begin{align*}
& \text { Delay per } \\
& \text { section }\left(t_{d}\right)=\sqrt{L C} \tag{1}\\
& \text { Characteristic } \\
& \text { Impedance }(Z o)=\sqrt{L / C} \tag{2}
\end{align*}
$$

LC sections of the desired impedance and of small increments of delay are added in series to obtain the desired total delay. The number of sections is dictated by the performance requirements, number of tap (if any), size restrictions, and cost.

The major cost/performance tradeoff of lumped constant designs is that related to the number of sections and high frequency performance. Better high frequency (fast rise time) performance is obtained by using more sections of smaller delay per section. This obviously increases the component count and complexity, and therefore the cost and size. As the number of sections increases, poor pulse fidelity (distortion, reflections) can become a problem due to the buildup of component tolerances and the increased number of interconnections each of which contributes an impedance mismatch.

Figure 6-33 shows a conventional lumped constant design using wound rods and mica capacitors. Because of the demand for smaller packages and faster delays, chip capacitor assemblies are becoming increasingly popular. (See Figure 6-34.)

A distributed delay line most closely resembles an ideal transmission line and is the easiest to build. The conventional distributed delay line design employs a metallized road of glass or phenolic with a dielectric coating. The rod is wound with wire to provide an inductance. The capacitance is obtained between the windings and the metallized plane and is distributed throughout the length of the line. In some cases, capacitors are used on the input and the output of the device to improve frequency response. (See Figure 6-35.)

Figure 6-33. Lumped Constant Delay Line

Figure 6-34. Typical Chip Capacitor Assembly

Figure 6-35. Distributed Constant Delay Line

Figure 6-36. Active Delay Line Schematic

Figure 6-37. Typical R-Pac Delay Line Construction

Distributed lines are the least expensive and provide the best pulse fidelity but have poor high frequency response for longer delays and have the lowest delay density per package. A stripline version of the distributed line is available in a 4 -pin R-Pac configuration for delays up to 10 ns (See Figure 6-37). Its advantages and disadvantages are identical to those of other distributed lines.

Recently, CCP developed an active delay line in a 14 pin dip package. This packaging incorporates the marriage of a passive delay line and a logic circuit. The logic circuit is represented by a 74 S 04 IC which provides an active input and output to the delay line. (See Figure 6-36.)

The TTL buffered active delay line can be used with super high speed TTL, standard TTL and DTL logic; thereby, providing many time applications with minimum interface. The active circuit also permits output rise time less than 4 nsec independently of the total delay.

Active delay line $T_{\mathbf{2}}$ completion is scheduled for $2 Q 82$ and therefore a matrix of the active delay lines is not available at this time. Any information pertaining to these devices should be referred to the responsible CCP component engineer.

AVAILABLE TYPES

The following definitions are important in understanding delay line performance specifications (see Figure 6-38);
$\boldsymbol{t}_{\mathbf{d}}$ - Time delay; measured from 50% of the amplitude of the leading edge of the input pulse to the 50% amplitude of the leading edge of the output pulse.
\mathbf{t} - Input and output pulse width; measured at the 50% amplitude points.
tri - Input rise time; measured from the 10% to the 90% point of the leading edge of the input pulse.
tro - Output rise time; measured from the 10% to the 90% point of the output pulse leading edge.
tfi - Input fall time; time duration between 10% and 90% of the trailing edge of the input pulse.
tfo - Output fall time; time duration between 10% and 90% of the trailing edge of the output pulse.
α - Attenuation (in $d B$) $=20 \log _{10}$ Ein/Eo. It is the difference between the input and output pulses.
Z_{0} - Characteristic impedance; measured by observing the reflections on the input pulse when the delay line is terminated into a resistor whose value is equal to the nominal characteristic impedance. The following calculation is used (see Figure 6-38).

$$
Z_{0}=\frac{V 2 R}{------V 1-V 2}
$$

td/tro - Quality factor: the delay to rise time ratio determines the number of LC sections needed for a given delay line.

Packages/Form Factors

The available types of delay line packages are illustrated in Figure 6-39. They represent both established technology and recent development work. Almost all delay lines are plastic encapsulated and wettable, and are intended for use on standard IBM cards.

The one exception is the top design in Figure 6-40 which shows the newly developed pluggable delay line module series which employs a 32 -pin socket handling up to four delay lines. Figure 6-41 shows the delay lines and socket assembly. This arrangement provides delay selectivity from 0 to 8 ns in $1 / 2 \mathrm{~ns}$ increments with an accuracy of ± 0.2 ns.

Figure 6-38. Typical Pulse Waveforms

PASSIVE COMPONENTS MANUAL

Figure 6-39. Available Delay Line Packages

(A) Tapped Delay Line

(B) Programmable Delay Line

Figure 6-40. Delay Line Schematics

Figure 6-41. Pluggable Delay Line and Socket

PERFORMANCE CHARACTERISTICS

Parametric Limits

Table 6-5 shows the ranges of performance available in current technology delay lines:

Parameter	Range
Delay Time (td)	0 ns to $1.2 \mu \mathrm{~s}$
Delay tolerance	$\pm 5 \%$ or 0.2 ns whichever is greater

Parameter	Range
Output rise time ($t_{r o}$)	1 ns minimum
Characteristic Impedance (Z_{0})	50Ω minimum
Temperature Coefficient	$\begin{aligned} & +50 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & \text { minimum } \end{aligned}$
Output distortion	$\pm 10 \%$ minimum
DC Resistance	typically less than 10Ω
Operating voltage	typically less than 5 Vdc

Increments of total delay are available in most packages as "taps" or as electrically isolated "programmable sections." The schematics in Figure 6-40 illustrate the differences between tapped and programmable delay lines.

EOL Limits

EOL tolerance is made up of purchase tolerance, temperature coefficient and drift due to aging. The worst-case absolute EOL tolerance for delay is estimated to be:
Purchase $\pm 5 \%$ to $\pm 10 \%$
tolerance
Temperature $\pm 0.5 \%$ to $\pm 2 \%$
coefficient
Aging $\quad \pm 0.5 \%$ to $\pm 1 \%$

Worst case $\pm 6 \%$ to $\pm 13 \%$
absolute EOL
tolerance

DESIGN/APPLICATION CONSIDERATIONS

Rise Time

1. ratio of delay time to rise time is considered a figure of merit for delay us. As the number of sections is increased, the ratio increases. A 100 ns $c=1$ ay line with a 15 ns rise time may require 10 sections. To decrease the rise time to 10 ns may require 18 to 20 sections of proportionately lower values of aductance and capacitance.

However, as rise times approach 1 ns , performance is limited by stray reactances more than by the values of the component sections. These same considerations make it impractical to specify a delay tolerance of tighter than $\pm 0.2 \mathrm{~ns}$.

Impedance and Loading

The selection of the proper impedance involves several tradeoffs. For best pulse fidelity (lowest distortion), the line should match the impedance of the signal plane (80Ω to 90Ω in current technology). However, the logic may not be able to drive this low an impedance (MST may; Dutchess can not). Special line drivers should be used in those cases where the logic capability does not match the signal plane impedance.

In cases where the signal lines are short and some noise (reflections) can be tolerated, a higher impedance can be selected. However, equations (1) and (2) show that a higher impedance for a given delay implies a lower capacitance. Their lower capacitance for each section makes the line more susceptible to load capacitance; especially in the case of multi-tapped delay lines.

The output of each delay line must be terminated into its characteristic impedance. In addition, for tapped delay lines, the selected tap should be terminated into an impedance greater than 10 X the characteristic impedance (See Figure 6-42). Also, it is recommended that only one tap at a time be used on a given delay line as the loading at one tap affects the delay and distortion of all others.

Figure 6-42. Tapped Delay Line Loading Circuit

From an economic standpoint the most important factors with regard to the delay line are the td/tr ratio, delay tolerance, and size. For a given delay, faster rise times require more sections and therefore cost more. As with any other component, tighter tolerances will cost more money. Tolerances tighter than $\pm 5 \%$ or $\pm 0.5 \mathrm{~ns}$ (whichever is greater) should be avoided. Unreasonable miniaturization also can be very costly. The package limitations outlined in Figure 6-39 should be followed.

$$
i
$$

Reliability Considerations

The supported SPQL for all delay lines is 100 PPM.
No reliability algorithm has been developed for delay lines but its reliability for the most part depends on that of the capacitors used. It is adversely affected by high temperature, high humidity, and high voltage. Failure rates are presented in F / R specification 866451 or in the component data bank.

APPLICABLE SPECIFICATIONS

Delay lines are covered by the following engineering specifications:
Engineering Specification - 895491
Quality - 873559
Flammability - 2413138

INDUCTORS

COMPONENT DATA BANK - P/N CATALOG

DCS CODES
23721 - Audio, Fixed
$2323-R F$, Fixed
$23724-R F$, Variable

PG. 1 06/30/82 23:34 UR0206 $* * *$ IBM INTERNAL USE $* * *$ COMPONENT DATA BANK INTERNAL USE ONLY CDB/IN ALL/IN IN/PARI IN/IND/UH GT 000000.00 SEQ/LH IN/IND/UH TECH DCS

PART NUMBER	$\begin{aligned} & \text { INDUCT } \\ & \text { MICRO } \\ & \text { HENRY } \end{aligned}$	TOL	Q/MIN FREQ MHZ		DCR MAX OHMS	DC/MAX CURRENT MILAMP	$\begin{aligned} & \text { MIN } \\ & \text { SRF } \\ & \text { MHZ } \end{aligned}$	BODY LENGTH MILS	BODY HEIGHT MILS	$\begin{aligned} & \text { BODY } \\ & \text { DIAM } \\ & \text { MILS } \end{aligned}$	LEAD LENGTH INCHES	$\begin{aligned} & \text { LEAD } \\ & \text { DIAM } \\ & \text { MILLS } \end{aligned}$	$\begin{aligned} & \text { VERT } \\ & \text { PIN SP } \\ & \text { MIIS } \end{aligned}$ MILS	DCS CODE
2391896	. 05	10	30AT	50.000	. 10	10.00	680.00	228	345	115	08	20		23723
0217103	.10	10	50at	25.000	. 06	1,800.00	500.00	440		172	1.50	24		23723
1589018	. 10	10	35AT	25.000	. 25	200.00	500.00	200		90	1.50	16		23723
0217104	. 12	10	50at	25.000	. 07	1,700.00	450.00	440		172	1.50	24		A 23723
0217106	. 15	10	50at	25.000	. 07	1,700.00	410.00	440		172	1.50	24		A 23723
0217107	. 18	10	50AT	25.000	. 08	1,600.00	380.00	440		172	1.50	24		23723
4429622	. 18	2\%			. 10	100.00	00	121	340	190	09	20	100	23723
0217108	. 22	10	50AT	25.000	. 08	1,600.00	350.00	440		172	1.50	24		23723
4429624	. 22	2\%			. 10	. 12	. 00	121	340	190	. 09	20	100	23723
2391150	. 23	100	35AT	50.000	. 25	50.00	190.00	228	345	115	. 08	20	125	23723
5615561	. 23	2.0\%	35AT	50.000	. 25	50.00	190.00	345	228	115	. 50	20	125	A 23723
2391269	. 24	50	35AT	50.000	. 25	50.00	190.00	228	345	115	08	20	125	- 23723
0217109	. 27	10	50AT	25.000	. 09	1,500.00	310.00	440		172	1.50	24		23723
0217111	. 33	10	50AT	25.000	. 09	1,500.00	290.00	440		172	1.50	24		A 23723
0217113	. 39	10	$45 A T$	25.000	. 10	1,400.00	270.00	440		172	1.50	24		A 23723
0222363	. 47	10	45AT	25.000	. 11	1,350.00	260.00	440		172	1.50	24		A 23723
0550054	. 47	5	60AT	2.500	. 10	550.00	250.00	450		180	1.31	24		A 23723
0217116	. 56	10	$45 A T$	25.000	. 14	1,200.00	240.00	440		172	1.50	24		A 23723
0217117	. 68	10	$45 A T$	25.000	. 15	1,150.00	230.00	440		172	1.50	24		A 23723
0217118	. 82	10	$45 A T$	25.000	. 27	860.00	210.00	440		172	1.50	24		A 23723
8272104	90	3\%	45AT	25.000	. 30	820.00	200.00	440		172	1.50	24		C 23723
0222405	1.00	10	45AT	25.000	. 30	815.00	190.00	440		172	1.50	24		A 23723
0550055	1.00	5	60AT	7.900	. 12	500.00	160.00	450		180	1.31	24		A 23723
2395860	1.00	100	55AT	0.500	16.50	120.00	2.80	478	370	115	08	20	125	C 23723
4429670	1.00	+/-4x	$45 A T$	25.000	. 30	815.00	190.00	440		188	1.50	24		23723
8493173	1.00	10\%	$1304 T$	15.000	. 03	4.000 .00	136.00	900		310	1.50	28		- 23723
0217119	1.10	5	60AT	7.900	. 11	1,300.00	155.00	440		172	1.50	24		A 23723
0222433	1.20	5	60AT	7.900	. 12	1,250.00	145.00	440		172	1.50	24		A 23723
0492683	1.20	5	35AT	0.250	3.00	400.00	1.10	900		375	1.31	40		A 23723
0550056	1.20	5	60AT	7.900	. 15	400.00	150.00	450		180	1.32	24		A 23723
2392068	1.20	100	55AT	0.500	20.00	120.00	1.75	478	370	115	. 08	20	125	C 23723
0217121	1.30	5	60AT	7.900	. 12	1,250.00	140.00	440		172	1.50	24		A 23723
0492364	1.50	5	60AT	7.900	1.13	1,200.00	130.00	440		172	1.50	24		A 23723
0550057	1.50	5	60AT	7.900	. 15	350.00	130.00	450		180	1.31	24		A 23723
0217122	1.60	5	60AT	7.900	. 15	1,100.00	125.00	440		172	1.50	24		A 23723
8272103	1.70	3\%	60AT	7.900	. 16	1,050.00	122.00	440		172	1.50	24		C 23723
0217123	1.80	5	60AT	7.900	. 16	1,050.00	120.00	440		172	1.50	24		A 23723
2218773	1.80	5	¢0AT	7.900	. 70	500.00	100.00	265		115	. 75	20		A 23723
0217124	2.00	5	60AT	7.900	. 17	1,050.00	115.00	440		172	1.50	24		A 23723
0491218	2.20	5	60 AT	0.790	. 18	1,000.00	110.00	440		172	1.50	24		A 23723
2391006	2.20	10	35AT	7.900	1.00	150.00	50.00	228		115	. 08	20	125	C 23723
$\begin{aligned} & 2391694 \\ & 4429623 \end{aligned}$	2.20 2.20	10	35AT	7.900	1.00	150.00 100.00	50.00	250	340	115 190	1.25 .09	20 20	100	N 23723 $C 23723$
0217126	2.40	5	60AT	7.900	21	940.00	105.00	440		172	1.50	24		C 23723
2392069	2.40	100	30AT	0.160	45.00	10.00	1.50	478	370	115	. 08	20	125	C 23723
0491219	2.70	5	60AT	7.900	. 24	870.00	100.00	440		172	1.50	24		A 23723
0222434	3.00	5	60AT	7.900	. 26	845.00	93.00	440		172	1.50	24		A 23723

E45-0359 Rev. $2 \quad$ 6-59 \quad September 15, 1982

AUDIO TRANSFORMERS AND INDUCTORS

COMPONENT DATA BANK - P/N CATALOG

DCS CODES

23731, 2 - Audio Frequency (AXF)

PULSE AND WIDEBAND TRANSFORMERS

CQ.PONENT DATA BANK - P/N CATALOG

DC CODES
2.33 - Pulse (PXF)

2734 - Wide Band (PXF)

06/30/82 23:34 UR0206 TECH ALL/PXF PXF/PARI					*** IBM INTERNAL USE ${ }^{* * *}$ COMPONENT DATA BANK INTERNAL USE ONLY DCS SEQ/LH DCS NO/LIMIT.									
T	TRA	NSFO	RMAT	ION	PRIMARY	l-measure	MAGNET	N1	N2	N3	N4	WIND	leakage	
U PART C NUMBER		RAT	IO		INDUCT	FREQ	CURRENT	DCR	DCR	DCR	DCR	CAPAC	INDUCT	
C NUMBER	N1	N2			MIL-HEN	KHZ	MIL-AMP	OHMS	OHMS	OHMS	OHMS	PF	MIC-HEN	CODE
A 0349431		. 0	. 0	. 0		. 00		. 00	. 00	.00	. 00	0	0	23733
C 0483126	1	1.0	. 0	. 0	. 194	.00		. 72	. 80	.00	.00	20.0	.5	23733
C 0483503	1	3.1	. 0	. 0	320.0	. 30		30.00	550.00	. 00	.00		.0	23733
A 0483504	1	1.0	. 0	. 0	247.0	1.00		73.00	110.00	.00	.00	85.0	0	23733
A 0483505	1	1.0	. 0	. 0	135.0	2.20		44.00	63.00	. 00	.00	885.0	0	23733
A 0492462	1	1.0	1.0	. 0		. 00		44.00	63.00	. 00	.00	- 5	0	23733
C 0492689	1	2.0	2.0	. 0		. 00		120.00	200.00	200.00	.00	0	0	23733
C 0518436	1	9.0	9.0	. 0		. 00		120.00	7.60	200.00	.00	25.0	1.2	23733
A 0595451	1	1.0	. 0	. 0	NO DATA	.00		. 100	. 00	. 00	.00	25.0	1.0	23733
L 0734452	1	1.0	. 0	. 0		. 00		30.00	30.00	00	.00	. 0	0	23733
C 0737512	1	1.0	. 0	. 0	25.0	40.00		8.00	8.00	. 00	.00	100.0	40.0	23733
A 0813238	1	1.0	. 0	. 0	154.0	1.00		46.20	71.00	.00	.00	85.0	40.0	23733
A 0813239	$\frac{1}{1}$	1.0	. 0	. 0	167.0	1.00		48.80	74.50	.00	.80	85.0	0	23733
C 0814203	1	1.0	. 0	. 0		. 00		440.00	440.00	. 00	.80	85.0	0	23733
C 0814229	1	1.0	. 0	. 0	135.0	. 82		60.00	98.00	. 00	.00	85.0	0	23733
C 0814230	1	1.0	. 0	. 0	262.0	. 99		135.00	237.00	. 00	. 00	85.0	0	23733
C 0814231 C	1	1.0	. 0	. 0	77.4 117.0	1.23 1.40		36.00 54	60.00	. 00	. 00	85.0	0	23733 23733
c 0814233	1	1.0	.0	.0	117.0	1.40 1.64		54.00	93.00	. 00	. 00	85.0	0	23733
C 0814234	1	1.0	. 0	.0	53.7	1.81		14.80 24.00	24.50 39.50	. 00	. 00	885	0	23733 23733
0814235	1	1.0	. 0	. 0	18.9	2.05		7.00	11.30	. 00	.00	88.0	0	23733
C 0814236	1	1.0	. 0	. 0	29.6	2.22		13.50	22.50	.00	.00	85.0	0	23733
C 1582637	1	1.0	. 0	. 0	7.000	20.00		11.00	11.00	. 00	.00	4.5	22.0	23733
C 1582679	1	4.8	. 0	. 0	1.8	1.00	800	3.00	. 70	. 00	. 00	90.0	18.0	23733
C 1582680 C 1582681	4	1.0	. 0	. 0	14.000	100.00		4.00	1.50	. 00	. 00	20.0	1.0	23733
$\begin{aligned} & C \\ & C \\ & C \\ & \hline \end{aligned} 5828812$	4	1.0 1.0	. 0	. 0	14.000 4.000	100.00		4.00	1.50	. 00	. 00	20.0	1.0	23733
C 1582917	2	. 5	18.1	18.0	4.800 2.860	22.00		3.50	3.50	18.00	800.00	300.0	10.0	23733
C 1582943	1	3.1	. 0	. 0	2.850	15.75		. 20	. 15	10.00	800.00	.0	10.0	23733 23733
C 1582944	77	10.0	0	.0	7.300	15.75		. 60	10	.00	.00	0	180.0	23733 23733
C 1589274	4	1.0	0	. 0	5200.000	10.00		64.00	17.00	. 00	.00	. 0	180.0	23733
C 1589423	1	1.0	$\frac{1.0}{3}$. 0	7.5	1.00		50.00	40.00	4.00	.00	60.0	30.0	23733
C 1589457	1	3.0	3.0	1.0	4.500	20.00		3.00	21.00	24.00	9.00	40.0	. 0	23733
C 2161075	2	1.0	0	. 0	76.000	. 00	500	10.00	16.00	. 00	. 00	28.0	999.0	23733
A 2183700	1	1.0	1.0	. 0	11.0	1.00 .00		8.00	9.00	. 00	. 00	6.0	24.0	23733
C 2196865	1	2.0	. 0	.0	.	. 00	600	. 16	. 81	. 31	. 80	14.0	. 8	23733 23733
B 2390107	1	1.0	0	.0	. 007	. 00	600	20	20	. 00	. 00	15.0	2	23733
C 2390118	2	1.0	1.0	. 0	5.0	100.00		6.00	3.00	. 00	.00	40.0	10.0	23733
C 2391140	1	1.0	. 0	. 0	1.0	. 00	320	. 85	. 85	.00	.00	30.0	. 5	23733
B 2391146 C 2391175	2	1.0	. 0	. 0		. 00	570	80	45	. 00	.00	12.0	. 7	23733
C 2391175 $C 2391188$	1	2.0 1.0	. 0	. 0	6.0	. 00		10.00	20.00	. 00	. 00	50.0	10.0	23733
C 2391189	1	1.0	$\frac{1}{2.0}$. 0		. 00	200 180	. 75	$\begin{array}{r}.75 \\ \hline .50\end{array}$. 75	. 00	35.0	3	23733
C 2391203	1	1.0	1.0	.0	2.0	100.00	180	1.50 5.00	1.50 2.50	3.00	. 00	8.0 50.0	1.5	23733 23733
C 2391215	1	1.0	2.0	.0		100.00	460	5.40	2.50 .40	80	. 00	50.0 20.0	1.2	23733
A 2391235	1	1.0	1.0	. 0	5.0	.00	460	5.00	4.00	4.00	.00	40.0	10.0	23733
C 2391270	1	1.0	1.0	. 0	. 026	.00		1.50	1.50	1.50	.00	28.0	10.6	23733

Component Data Bank - P/N Catalog
Pulse and Wideband Transformers

SATURABLE TRANSFORMERS

COMPONENT DATA BANK - P/N CATALOG

DCS CODE
\qquad

23735 - Saturable (SXF)

$\begin{aligned} & \text { PG. } \frac{1}{\mathrm{CDB} / S \times F} \end{aligned}$	06/30/82 $23: 35$ UR0206 ${ }^{*}$ \%* IBM INTERNAL USE $* * *$ COMPONENT DATA BANK INTERNAL USE ONLY															
		MAXWELL	MAXWELL	Nl	N2	N3	$N 4$	N5	N6	N7	N8	N9	N1O		LEAK	
PART	U	TURNS	TURNS	DCR	CAPAC	INDUCT	DCS									
NUMBER	C	MIN	MAX	MIL-O	MIL-0	MIL-0	MIL-0	MIL-0	MIL-O	MIL-O	MIL-O	MIL-0	MIL-O	PFD	UH	CODE
5213454	c	7100	7900	170	170	86	86	25	25					25.0	0	237
5261444	C	92300	102800	395	395	125	125	230	230	135	135	135	135	60.0	. 8	237

$\begin{aligned} & \text { PG } \quad \frac{1}{C D B / S X F} \end{aligned}$	06/30/82 PN TECH T RATED	$\begin{array}{r} 23: 35 \\ \text { DCS EQ } \\ \text { TEST } \end{array}$	$\begin{aligned} & \text { UR0206 **) } \\ & 23735 \text { SXF } \\ & \text { INPUT } \end{aligned}$	IBM INT AR2 NO INPUT	NAL USE ** MIT. INPUT(MIN)	COMPONENT INPUT (MAX)	DATA BANK RATED(MAX)	ERN
	T RATED	TEST	INPUT	INPUT	INPUT(MIN)	INPUT (MAX)	RATED(MAX)	
PART NUMBER	U FREQ	FREQ KHZ	MIL	$\begin{aligned} & \text { VO } \\ & \text { MIL- } \end{aligned}$	CURRENT	CURRENT MIL-AMPS	CURRENT MIL-AMP	DCS CODE
5213454	C 20.00	. 40	556.0	89.0	20.80	34.80	00	23735
5261444	C 2.50	. 40	314.0	576.5	23.50	39.20	195.00	23735

$\begin{aligned} & \text { PG. } \quad \frac{1}{\mathrm{CDB}} / S \times \mathrm{F} \end{aligned}$	06/30/8 PN TECH T MAX	$\begin{aligned} & 3223 \\ & \text { D DCS } \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & =35 \mathrm{U} \\ & \mathrm{EQ} 2 \\ & M A X \end{aligned}$	20206 735 PIN	$\begin{aligned} & * * * \text { IB } \\ & X F / P A R \end{aligned}$	$\begin{aligned} & \text { INTE } \\ & \text { NO/L } \end{aligned}$		***	ONEN	DATA	NK IN	NNAL US	ONLY		
PART	\cup HGHT	WDTH	LGTH	DIAM	TR	DCS									
NUMBER	C MILS	MILS	MILS	MILS	N1	N2	N3	N4	N5	N6	$N 7$	N8	N9	N10	CODE
5213454	C 500	1000	1000	35	6.67	6.67	3.34	3.34	1.00	1.00	. 00	. 00	. 00	. 00	23735
5261444	C 780	1800	1800	31	3.00	3.00	. 00	. 00	. 00	. 00	1.00	.00	. 00	1.00	23735

COMPONENT DATA BANK - P/N CATALOG

DCS CODES

23781
23782

[^0]: *The numbers quoted under Insulation Class are the maximum temperatures, in degrees centigrade, which a power choke in that class may reach.

