
IBM 3270
Workstation Program

Programming
Guide

84X0390
SA23-0343-0

11111111111 1111111 1111 III III I II I I 1111 I I II III I I

Programming
Guide

11 I I

First Edition (April 1987)

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, address comments to IBM Corporation, Department
95H/998, 11400 Burnet Road, Austin, TX 78758. IBM may use or distribute
whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1987

Preface

This manual describes how to use the services provided by the Application
Program Interface (API) for the IBM 3270 Workstation Program (also
referred to as the workstation program).

This book consists of five parts:

• The chapters in Part 1 introduce the Application Program Interface
(API) and the two types of services you can use:

Application program services that most application programs will
use. Described also are some supervisor services that directly
support the application program services.

Those supervisor services that allow application programs to run
together under the multitasking capabilities of the workstation
program.

• The chapters in Part 2 tell you how to invoke the application program
services. A sample block of code is provided for each service, so that
you can see how it is used in context.

• The chapters in Part 3 describe, and tell you how to invoke, the
supervisor services. A sample block of code is provided for each
service, so that you can see how it is coded in context.

• The chapters in Part 4 contain representative sample programs using
most of the services described in Parts 2 and 3.

• Part 5 consists of appendixes with specialized information. In
particular, Appendix A provides information on scan codes and shift
states for all supported keyboards. Appendix A also contains
ASCII/ASCII-mnemonic values common to all languages and the
additional values specific to U.S. English.

You will also want to use Appendix H, "Return Codes."

Preface III

WlntiiM!i"PHiRiMd

Enhancements

The 3270 Workstation Program Programming Guide contains revisions to
the 3270 PC Control Program Programming Guide, and incorporates the
following new material:

• Non-3270 PC Hardware. IBM Personal Computer AT® and XT system
units, without the keyboard adapter and 3270 PC display adapter cards
installed, are supported in this release. IBM Personal Computer AT
and XT keyboard foldouts can be found at the back of this book.

• ASCII keystroke API support. The Keyboard Service API allows
applications to send and receive keys in ASCII or ASCII mnemonics.
The 3270 Emulation Services API allows you to receive keystrokes in
ASCII. Chapters 5 and 9 contain more information on ASCII keystroke
API support.

• Keystroke API Support for READ. Keystroke API support for READ
now allows you to receive keys with a NOW AIT option which prevents
you from being suspended while waiting for input on your queue.

• Outbound Data Stream Preprocessor Option. ODSP allows the
preprocessing of a 3270 outbound data stream which can reduce the
amount of data traffic flowing through a network. See Appendix I for
more information on ODSP.

• SPIF Utility Enhancement. The SPIF utility has been enhanced to
allow you to run an application that installs an interrupt handler which
changes to its own stack and then enables interrupts. This may cause
unpredictable results on systems with an XMA card installed unless you
use the SPIF utility to update the INDIBM2.SIF file first. See the IBM
3270 Workstation Program User's Guide and Reference for more
information about updating INDIBM2.SIF.

Prerequisites for Your Using the API

IV

The API is written for application and system programmers who are
responsible for the design and implementation of assembler-language
programs for the IBM 3270 Personal Computer.

To use the API, you must have available the following software:

• DOS 3.2

• The IBM 3270 Workstation Program

• The IBM Macro Assembler or an equivalent assembler written for the
In tel 8088 architecture.

Prerequisite knowledge needed to be able to use the information in this
manual includes:

• Proficiency in the use of the IBM Personal Computer Macro Assembler
language

• Knowledge of the steps required to assemble, link, and run a macro
assembler program on the IBM 3270 Personal Computer

• Familiarity with the DOS function calls that can be used in a macro
assembler program

• Familiarity with the IBM 3270 data stream.

Related Publications

The following books are related to the 3270 Workstation Program and its
prerequisite hardware and software:

• Guide to Operations

The Guide to Operations shipped with your system unit contains
information about your work station hardware. It tells you how to set
up, use, and diagnose problems with the hardware.

• 3270 Personal Computer Hardware Introduction and Preinstallation
Planning1

This book contains information to help evaluate and plan for the 3270
PC hardware requirements at your site. For example, it lists the
physical dimensions and electrical requirements for all 3270 PC
hardware models.

• The following items are shipped with the workstation program
diskettes:

3270 Workstation Program User's Guide and Reference

This book contains information about setting up and using the
workstation program.

3270 Workstation Program Problem Determination Guide and
Reference

Contact your local IBM sales representative for information on how to obtain
copies of these books.

Preface V

VI

This book explains the procedures, messages, and return codes that
will help you solve software problems.

3270 Workstation Program Keyboard Quick Reference Cards

These cards are keyboard-specific synopses of information from the
User's Guide and Reference. You can use the one that relates to
your keyboard for quick reference. There are three cards in the
workstation program package:

• 3270 PC keyboard Quick Reference

• Enhanced PC keyboard Quick Reference

• AT and XT keyboard Quick Reference

3270 Workstation Program Keyboard Templates

The keyboard templates provided in the package assist you in using
the workstation program functions on your particular keyboard.
There are three templates in the package:

• Enhanced PC keyboard template

• AT keyboard template

• XT keyboard template

Online tutorial diskette (Helper)

This diskette contains introductory information and practice
exercises to help in learning to use the 3270 Workstation Program.

• 3270 PC High Level Language Application Programming Interface
(HLLAPI)2

The diskette and book that comes in this package make it possible for
you to write application programs in BASIC, Pascal, or COBOL
languages to use the API functions provided with the 3270 Workstation
Program.

• The IBM Programmer's Guide to the Server-Requester Programming
Interface for the IBM Personal Computer and the IBM 3270 PC2

This book explains how to write PC applications that request services
from an application at an IBM System/370 type host system. In this
relationship, the PC application is called the requester and the host
application is called the server. This book also contains the return
codes that are generated at the work station if problems occur in
transmitting requests or replies.

Contact your local IBM sales representative for information on how to obtain
copies of these books.

For information on IBM Personal Computer DOS, refer to the DOS manuals
that were shipped with the version of DOS you are using.

For information on IBM Personal Computer assembler language, use this
manual:

• IBM Personal Computer Language Series: Macro Assembler3

Provides a reference for experienced assembler language programmers
who use the IBM Personal Computer Macro assembler. Specific
information is provided on how to use the Macro assembler,
cross-reference facilities, pseudo-operations, and machine instructions.
(Includes diskette.)

For information on the IBM 3270 data stream, use this manual:

• IBM 3270 Information Display System: Data Stream Programmer's
Reference3

Provides information for programmers who need to know what is
involved in using the 3270 data stream to produce panels or information
at displays and printers.

3 Contact your local IBM sales representative for information on how to obtain
copies of these books.

Preface Vll

Vlll

Contents

Part 1. Introduction to the API

Chapter 1. Functions the API Provides 1-1
Overview of API Services 1-2
Terms You Need to Know 1-3
Examples of Using the API 1-4

Simplifying Setup and Control of Multiple Host Sessions 1-4
Using the Work Station Control Functions of the IBM 3270 Personal

Computer .. 1-5
Enhancing Interaction between the Operator and a Host 1-5
Extending the Workstation Program through the Use of System

Extensions ... 1-5
The Application Program Services .. ,......................... 1-5

Session Information Services 1-6
Keyboard Services 1-6
Window Management Services 1-6
Host Interactive Services 1-6
Presentation Space Services 1-6
3270 Keystroke Emulation Services 1-7
Copy Services .. 1-7
Translate Service 1-7
Operator Information Area Services 1-7
Multiple DOS Support Services 1-7

The Supervisor Services 1-7
Supervisory Object Services 1-8
Request Services .. 1-8
Task State Modifier Services 1-8
Semaphore Management Services 1-8
Logical Timer Management Services 1-8
Fixed-Length Queue Management Services 1-8
Interrupt Handler Management Services 1-9
Environment Manager Services 1-9

Using the Application Program Interface 1-9

Chapter 2. Programming Considerations 2-1
Introduction ... 2-2
System Information Files 2-2
Program Information Files 2-3
Creating and Modifying Program Information Files (PIFs) 2-4
Restrictions on Running under the Workstation Program 2-5
Guidelines for Running under Multi-DOS 2-6
How Multi-DOS Affects Application Program Performance 2-7
Using the Interrupt X'10' Function 2-8
Tips on Writing Applications to Run in Multi-DOS 2-9

When Personal Computer Sessions Will Be Suspended 2-10
Non-3270 PC Hardware Restrictions 2-11
Determining the Type of PC Your Application Program Is Running On 2-13
Determining the Level of the Control Program or the Workstation

Program That Is Loaded 2-13

Contents IX

x

Part 2. Application Program Services
Conventions Used in the API Service Descriptions

Chapter 3. Coding Supervisor Services 3-1
Introduction ... 3-2

Obtaining the Gate Name for the Services Your Application-Program
Will Use ... 3-2

Obtaining the Results of Services You Have Requested
Asynchronously 3-3

Creating Fixed-Length Queue Entries 3-3
Obtaining Data from a Fixed-Length Queue 3-3
Deleting Fixed-Length Queues 3-4
Requesting the Supervisor Services 3-4

Supervisor Service X'81': Name Resolution 3-5
Supervisor Service X'83': Get Request Completion 3-7
Supervisor Service X'04': Create Fixed-Length Queue Entry 3-9
Supervisor Service X'13': Dequeue Data 3-12
Supervisor Service X'06': Delete Entry 3-15

Chapter 4. Coding Session Information Service Requests 4-1
Introduction ... 4-2

Requesting the Session Information Services 4-3
Return Codes for the Session Information Services 4-4

Session Information Service X'Ol': Query Session ID 4-5
Session Information Service X'02': Query Session Parameters 4-10
Session Information Service X'04': Detach Session ID 4-14
Session Information Service X'05': Attach Session ID 4-17
Session Information Service X'06': Query W)ndows in Environment . 4-20
Session Information Service X'07': Query Environment of Window .. 4-23
Session Information Service X'08': Query PC Session Program

Information File (PIF) Information 4-26
Session Information Service X'OA': Query Base Window 4-30
Session Information Service X'OB': Query Session Cursor 4-33

Chapter 5. Coding Keyboard Service Requests 5-1
Introduction ... 5-2

Scan Code/Shift States 5-3
ASCII/ASCII Mnemonics 5-7
Keyboard Services 5-7
Requesting the Keyboard Services 5-8
Return Codes for the Keyboard Services 5-8

Keyboard Service X'Ol': Connect to Keyboard 5-9
Keyboard Service X'02': Disconnect from Keyboard 5-13
Keyboard Service X'03': Read Input 5-16
Keyboard Service X'04': Write Keystroke 5-22
Keyboard Service X'05': Disable Input i 5-30
Keyboard Service X'06': Enable Input 5-33
Keyboard Service X'07': Post Status Code 5-36

Chapter 6. Coding Window Management Service Requests 6-1
Introduction ... 6-2

Requesting the Window Management Services
Return Codes for the Window Management Services

Window Management Service X'Ol': Connect to Work Station Control
Window Management Service X'02': Disconnect from Work Station

Control .. .
Window Management Service X'03': Add Window
Window Management Service X'04': Change Window Position on

Screen
Window Management Service X'05': Change Window Size
Window Management Service X'06': Change Window Color
Window Management Service X'07': Change Window Position on

Presentation Space
Window Management Service X'08': Change Hidden State
Window Management Service X'09': Change Enlarge State
Window Management Service X'OA': Change Screen Background .. .
Window Management Service X'OB': Query Window Position on

Screen
Window Management Service X'OC': Query Window Size
Window Management Service X'OD': Query Window Colors
Window Management Service X'OE': Query Window Position on

Presentation Space
Window Management Service X'OF': Query Hidden State
Window Management Service X'10': Query Enlarge State
Window Management Service X'll': Query Screen Background Color
Window Management Service X'12': Query Window Names
Window Management Service X'13': Clear Screen
Window Management Service X'14': Select Active Window
Window Management Service X'15': Redraw Screen
Window Management Service X'16': Redraw Window
Window Management Service X'17': Delete Window
Window Management Service X'18': Query Active Window
Window Management Service X'19': Query Active Screen
Window Management Service X'lA': Query Window Attributes
Window Management Service X'lB': Change Window Attributes
Window Management Service X'lC': Select Active Screen

Chapter 7. Coding Host Interactive Service Requests
Introduction .. .

Requesting the Host Interactive Services
Return Codes for the Host Interactive Services

Host Interactive Service X'Ol': Connect to Host Session
Host Interactive Service X'02': Disconnect from Host Session
Host Interactive Service X'03': Read Structured Field
Host Interactive Service X'04': Write Structured Field
Host Interactive Service X'05': Define Buffer

Chapter 8. Coding Presentation Space Service Requests
Introduction .. .

Requesting the Presentation Space Services
Return Codes for the Presentation Space Services

Presentation Space Service X'Ol': Define Presentation Space
Presentation Space Service X'02': Delete Presentation Space
Presentation Space Service X'03': Display Presentation Space

Contents

6-5
6-6
6-7

6-11
6-14

6-17
6-21
6-25

6-29
6-33
6-36
6-38

6-41
6-44
6-47

6-51
6-54
6-57
6-60
6-63
6-66
6-69
6-72
6-75
6-78
6-81
6-84
6-87
6-92
6-98

7-1
7-2
7-2
7-3
7-4

7-11
7-15
7-20
7-25

8-1
8-2
8-2
8-2
8-4

8-11
8-14

Xl

Presentation Space Service X'04': Set Cursor Position 8-17
Presentation Space Service X'05': Switch Presentation Space 8-21

Chapter 9. Coding 3270 Keystroke Emulation Service Requests . 9-1
Introduction ... 9-2

Field Attribute Definition for 3270 Keystroke Emulation 9-2
Presentation Space Format for 3270 Keystroke Emulation 9-4
Requesting the 3270 Keystroke Emulation Services 9-5
Return Codes for the 3270 Keystroke Emulation Services 9-5

3270 Keystroke Emulation Service X'OI': Connect for 3270 Keystroke
Emulation .. 9-7

3270 Keystroke Emulation Service X'02': Disconnect for 3270
Keystroke Emulation 9-10

3270 Keystroke Emulation Service: Read Attention Identifier (AID)
Key .. 9-13

Chapter 10. Coding Copy Service Requests 10-1
Introduction .. 10-2

Requesting the Copy Services 10-3
Return Codes for the Copy Services 10-4

Copy Service X'OI': Copy String 10-5
Copy Service X'02': Copy Block 10-12
Copy Service X'03': Connect for Copy to PC Session 10-19
Copy Service X'04': Disconnect for Copy to PC Session 10-22

Chapter 11. Coding Translate Service Requests 11-1
Introduction .. 11-2

Requesting the Translate Service 11-2
Return Codes for the Translate Service 11-2

Translate Service X'OI': Translate Data 11-4

Chapter 12. Coding Operator Information Area Service Requests 12-1
Introduction .. 12-2

Requesting the Operator Information Area Services 12-3
Return Codes for the Operator Information Area Services 12-3

Operator Information Area Service X'OI': Read Operator Information
Area Image .. 12-4

Operator Information Area Service X'02': Read Operator Information
Area Group .. 12-7

Chapter 13. Coding Multi-DOS Support Service Requests 13-1
Introduction .. 13-2

Requesting the Multi-DOS Support Services 13-2
Return Codes for the Multi-DOS Support Services 13-3

Multi-DOS Support Service: Query Environment Size 13-4
Multi-DOS Support Service: Asynchronous DOS Function Requests 13-7
Multi-DOS Support Service X'Ol': Get Storage 13-12
Multi-DOS Support Service X'02': Free Storage 13-15
Multi-DOS Support Service X'03': Set Storage Allocation 13-18

Part 3. Supervisor Services
Conventions Used in the API Service Descriptions

Xll

Chapter 14. Supervisor Services 14-1
Introduction .. 14-2
Supervisory Object Creation and Deletion 14-2

Tasks '.................. 14-2
Components .. 14-3
Semaphores ... 14-4
Fixed-Length Queues 14-4
Gates .. 14-5
User Exit Tables 14-5
The Supervisor Call Instruction (SVC) Table 14-5
Creating Objects with Names 14-5
Supervisory Object Services Your Application Program Can Use 14-6

Task Requests ... 14-6
Use of Wait States 14-7
Sending a Request to Another Task 14-8
Receiving a Request from Another Task 14-8
Replying to a Request from Another Task 14-9
Obtaining Request Completion from Another Task 14-9
Task Request Services Your Application Program Can Use 14-9

Task State Modifiers 14-10
Dispatch Cycles 14-10
Task Dispatching Procedure 14-10
Task Dispatch Activity 14-11
Task Dispatcher States 14-11
Task State Modifier Services Your Application Program Can Use . 14-12

Semaphore Management 14-13
Considerations for Using Code Serialization Semaphores 14-13
Restrictions on the Use of Semaphores 14-13
Semaphore Management Services Your Application Program Can

Use .. 14-14
Logical Timer Management 14-14

Logical Timer Management Services Your Application Program
Can Use .. 14-15

Fixed-Length Queue Management 14-15
Fixed-Length Queue Management Services Your Application

Program Can Use 14-15
Interrupt Handler Management 14-15

Hardware Interrupt Handlers 14-16
Software Interrupt Handlers 14-17
Interrupt Handler Management Services Your Application

Program Can Use 14-19

Chapter 15. Coding Supervisory Object Services 15-1
Introduction .. 15-2

Requesting the Supervisory Object Services 15-3
Return Codes for the Supervisory Object Services 15-3

Supervisory Object Service X'92': Create Task Entry 15-4
Supervisory Object Service X'93': Create Component Entry 15-8
Supervisory Object Service X'94': Create Semaphore Entry 15-11
Supervisory Object Service X'04': Create Fixed-Length Queue Entry 15-14
Supervisory Object Service X'9A': Create Gate Entry 15-17
Supervisory Object Service X'97': Create User Exit Table Entry 15-21

Contents XUI

XIV

Supervisory Object Service X'OE': Install User Exit Table Entries 15-24
Supervisory Object Service X'81': Name Resolution 15-27
Supervisory Object Service X'Ol': ID Resolution 15-30
Supervisory Object Service X'06': Delete Entry 15-32

Chapter 16. Coding Request Services
Introduction

Requesting the Request Services
Return Codes for the Request Services

Request Service X'09': Make a Request
Request Service X'96': Get a Request
Request Service X'82': Reply to a Request
Request Service X'83': Get Request Completion
Request Service X'12': Send a Signal to a Task

Chapter 17. Coding Task State Modifier Services
Introduction

Requesting the Task State Modifier Services
Return Codes for the Task State Modifier Services

Task State Modifier Service X'9C': Query Active Task
Task State Modifier Service X'02': Set Task "Ready"
Task State Modifier Service X'05': Set Task "Unready"
Task State Modifier Service X'08': Set Task "Preemptable"
Task State Modifier Service X'07': Set Task "Nonpreemptable"
Task State Modifier Service X'03': Change Task's Priority
Task State Modifier Service X'95': Return to Dispatcher

Chapter 18. Coding Semaphore Management Services
Introduction,

Requesting the Semaphore Management Services
Return Codes for the Semaphore Management Services

Semaphore Management Service X'OD': Claim a Semaphore
Semaphore Management Service X'OA': Release a Semaphore
Semaphore Management Service X'OB': Query a Semaphore

Chapter 19. Coding Logical Timer Management Services
Introduction

Requesting the Logical Timer Management Services
Return Codes for the Logical Timer Management Services

Logical Timer Management Service X'85': Get Logical Timer
Logical Timer Management Service X'84': Set Logical Timer
Logical Timer Management Service X'8A': Release Logical Timer

Chapter 20. Coding Fixed-Length Queue Management Services
Introduction

Requesting the Fixed-Length Queue Management Services
Return Codes for the Fixed-Length Queue Management Services

Fixed-Length Queue Management Service X'OC': Enqueue Data
Fixed-Length Queue Management Service X'13': Dequeue Data
Fixed-Length Queue Management Service X'OF': Purge Queue Data .

Chapter 21. Coding Interrupt Handler Management Services ..
Introduction

16-1
16-2
16-2
16-2
16-3
16-8

16-11
16-14
16-17

17-1
17-2
17-2
17-2
17-3
17-4
17-7

17-10
17-12
17-14
17-16

18-1
18-2
18-2
18-2
18-3
18-6
18-8

19-1
19-2
19-2
19-2
19-3
19-5
19-8

20-1
20-2
20-2
20-2
20-3
20-5
20-8

21-1
21-2

Requesting the Interrupt Handler Management Services 21-2
Return Codes for the Interrupt Handler Management Services 21-3

Interrupt Handler Management Service X'86': Install a Hardware
Interrupt Handler 21-4

Interrupt Handler Management Service X'87': Install an Interrupt
Handler ... 21-7

Interrupt Handler Management Service X'88': Query Interrupt Vector
Contents .. 21-10

Interrupt Handler Management Service X'89': Remove an Interrupt
Handler ... 21-12

Chapter 22. Environments and the Environment Manager
Introduction
Environments .. .

Stoppable Environments
N onstoppable Environments
Environment Access Restrictions
Environment Management Services Your Program or System

Extension Can Use to Control Environments
Resource Managers

Environment Management Services Your System Extension Can
Use to Control Resource Management

Chapter 23. Coding Environment Manager Services
Introduction

Requesting the Environment Manager Services
Return Codes for the Environment Manager Services

Environment Manager Service X'10': Identify Resource Manager .. .
Environment Manager Service X'8E': Add Resource
Environment Manager Service X'8B': Delete Resource
Environment Manager Service X'8C': Query Resource
Environment Manager Service X'90': Suspend/Resume Environment
Environment Manager Service X'99': Stop/Reset Environment
Environment Manager Service X'll': Query Task's Environment ID .
Environment Manager Service X'8D': Query Environment

Characteristics .. .

Chapter 24. Coding System Extensions
Introduction
How to Create a System Extension

Resident Code .. .
Fixed Data
Initialization Code

How to Tell the Workstation Program about Your System Extension
Customization Procedure
Creating and Modifying System Information Files (SIFs)
How to Determine the Numbers to Use for Your System

Information File
How a System Extension Is Loaded
System Extension Messages and Return Codes

System Extension Return Codes
The System Extension Message Service

Contents

22-1
22-2
22-2
22-2
22-3
22-3

22-4
22-4

22-6

23-1
23-2
23-3
23-3
23-4
23-8

23-12
23-15
23-17
23-23
23-34

23-36

24-1
24-2
24-3
24-3
24-4
24-4
24-5
24-5
24-9

24-10
24-13
24-15
24-15
24-16

xv

XVI

Identifying Error Return Codes with the System Extension
Message Service 24-16

Requesting Error Messages with the System Extension Message
Service ... 24-17

Requesting Informational Messages with the System Extension
Message Service 24-17

Coding the System Extension Message Service to Identify Return
Codes .. 24-18

Coding the System Extension Message Service to Request Error
Messages .. 24-20

Coding the System Extension Message Service to Request
Informational Messages 24-23

Managing Resources 24-26
Design Considerations for System Extensions and the XMA Card ... 24-26

Components .. 24-27
Tasks ... 24-27
Fixed-Length Queues 24-27
General Notes ... 24-27

Part 4. Sample Programs

Chapter 25. Sample Program 1 25-1

Chapter 26. Sample Program 2 26-1

Chapter 27. Sample Program 3 27-1

Chapter 28. Sample Program 4 28-1

Chapter 29. Sample Program 5 29-1

Part 5. Appendixes

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic
Values ... A-I

Introduction ... A-2
Scan-Code/Shift-State Values A-2

Scan Code ... A-2
Shift State ... A-4

ASCII/ASCII Mnemonics A-4
Default Scan Codes for the IBM 3270 PC Keyboard (PC Mode) A-5
Default Scan Codes for the IBM 3270 PC Keyboard (MFI Mode) A-9
Default Scan Codes for the IBM Enhanced PC Keyboard (PC Mode) A-13
Default Scan Codes for the IBM Enhanced PC Keyboard (MFI Mode) A-16
Default Scan Codes for the PC XT Keyboard (PC Mode) A-19
Default Scan Codes for the IBM PC XT Keyboard (MFI Mode) A-22
Default Scan Codes for the IBM Personal Computer AT Keyboard

(PC Mode) ... A-25
Default Scan Codes for the IBM Personal Computer AT Keyboard

(MFI Mode) .. A-28
ASCII Characters Common to All Countries A-31
ASCII Mnemonics Common to All Countries A-34

Additional ASCII Characters Used by U.S. English A-37

Appendix B. Destination/Origin Structured Fields B-1
Introduction ... B-3
The 3270 Outbound Data Stream B-3
The 3270 Inbound Data Stream B-3
Verifying That the IBM 3270 Personal Computer Interface Is

Operational ... B-4
The Read Partition Query Structured Field B-4
The Query Reply Structured Field B-4

Query Reply ... B-6
Input Control .. B-6
PC Application Program and Display Interaction B-7
Exception Handling B-8
Structured Fields ... B-9

Destination/Origin B-9
Exception Condition B-10

X'DO' Structured Fields for Sending Data from the Host to the 3270
Personal Computer B-11

The Open X'DO' Structured Field B-12
The Insert and Insert Data X'DO' Structured Fields B-15
The Close X'DO' Structured Field B-18

X'DO' Structured Fields for Sending Data from Personal Computer to
Host ... B-20

The Open X'DO' Structured Field B-21
The Set Cursor and Get X'DO' Structured Field B-24
The Close X'DO' Structured Field B-28

Appendix C. Using Command Procedures for Save and Restore
and for File Transfer C-l

Introduction ... C-2
Command Procedures for Save and Restore C-2

Creating an AUTOEXEC.Bat File C-3
Programmed Command Procedures C-4
File Transfer Command Procedures C-6

Appendix D. Technical Notes D-l
Introduction ... D-2
3270 Limitations .. D-2
3270 Data Stream Functions D-3

In terface Codes ... D-3
Attributes ... D-6
Commands .. D-8
Write Control Character D-9
3270 Data Stream Orders D-11
Outbound 3270 Data Stream Structured Fields D-12
Inbound Structured Fields D-21
Transmission of Buffer Addresses D-31

Changes or Limitations to the Personal Computer Session D-34
N on-3270 PC Hardware Restrictions D-34

Personal Computer Physical Cursor D-35
Personal Computer Print Spooling D-35
Control Unit Communication Session Termination D-36

Contents XVll

XV111

IBM 3270 Personal Computer Failure
Color Limitations
Notes on AII-Points-Addressable Graphics
Using the Full-Screen APA Mode
Changing the Cursor Size or Position
Personal Computer Session Screen Size

Appendix E. Problem Determination Procedures and Debugging

D-36
D-36
D-37
D-37
D-38
D-38

Information .. E-l
Introduction ... E-2
System Error Problem Determination Procedures E-2
Dump Data Utilities E-3

Preparing Formatted Dump Diskettes E-3
Taking the Dump E-4
Using the Display Utility E-5

U sing the Trace Command E-8
Workstation Program Loading Procedure E-9
Debugging a PC Application Program E-I0
Debugging a System Extension E-I0
Control Blocks You Can Use during Debugging E-I0

The Supervisor's Data Area E-ll
The Dispatcher's Data Area E-ll
The Task Control Block E-12
The Supervisor Name Table E-14

Appendix F. Presentation Space Considerations
Introduction
Attributes .. .

Field Attributes
Extended Field Attributes and Character Attributes

Presentation Space Character Tables
Host and Notepad Session Character Codes
Personal Computer Session Character Codes

Presentation Space Sizes
Distributed Function Terminal (DFT) Host Presentation Space Sizes
Control Unit Terminal (CUT) Host Presentation Space Size
Notepad Presentation Space Size
Personal Computer Presentation Space Size

Appendix G. Calling Save, Restore, Send, and Receive from Your
Application Program

Introduction .. .
The DOS SETBLOCK Function Call
The DOS EXEC Function Call

The Environment String
The Command Line
The File Control Blocks

F-l
F-2
F-2
F-3
F-4
F-6
F-6
F-7
F-7
F-7
F-8
F-8
F-8

G-l
G-2
G-2
G-3
G-3
G-4
G-4

Appendix H. Return Codes H-l
Introduction ... H-2
Function ID X'12': System Services Return Codes H-3
Function ID X'13': Environment Manager Services Return Codes H-ll
Function ID X'22' or X'23': DOS Subsystem Services Return Codes . H-16

Function IDs X'24' or X'25': System Loader Return Codes
Function ID X'30': DFT Operations Return Codes
Function ID X'32': Host Interactive Services Return Codes
Function ID X'46': CUT Return Codes
Function ID X'51': Notepad Operations Return Codes
Function ID X'62': Keyboard Services Return Codes
Function ID X'63': Window Management Services Return Codes
Function ID X'64': Copy Services Return Codes
Function ID X'67': Draw Service Return Codes
Function ID X'69': Presentation Space Services Return Codes
Function ID X'6B': Session Information Services Return Codes
Function ID X'6C': Translate Services Return Codes
Function ID X'6D': OIA Services Return Codes
Function ID X'6E': 3270 Keystroke Emulation Services Return Codes
Function ID X'6F': Keystroke Definition Return Codes
Function ID X'72': Error Handler Return Codes

H-22
H-26
H-32
H-33
H-34
H-35
H-38
H-41
H-43
H-44
H-47
H-49
H-50
H-51
H-52
H-53

Function ID X'7F': Dump Task Return Codes H-54
Function ID X'81': Enhanced Connectivity Router Return Codes ... H-55
Function IDs X'Dx through Fx': User System Extension Return

Codes .. H-56
Return Code Error Steps H-57

Appendix I. Outbound Data Stream Preprocessor (ODSP) Option 1-1
Introduction ... 1-2

Customizing for ODSP 1-2
Initializing ODSP 1-2
Using ODSP ... 1-3
Entry Parameters 1-4
Return Parameters 1-4
ODSP Restrictions and Recommendations 1-5

Sample Program for Outbound Data Stream Preprocessing 1-5

Index ... X-I

Contents XIX

xx

Figures

1-1. Overview of the Application Program Interface 1-2
A-I. Default Scan Codes for IBM 3270 PC Keyboard (PC Mode) .. A-5
A-2. Default Scan Codes for IBM 3270 PC Keyboard (MFI Mode) . A-9
A-3. Default Scan Codes for IBM Enhanced PC Keyboard (PC

Mode) ... A-13
A-4. Default Scan Codes for IBM Enhanced PC Keyboard (MFI

Mode) ... A-16
A-5. Default Scan Codes for IBM PC XT Keyboard (PC Mode) .. A-19
A-6. Default Scan Codes for IBM PC XT Keyboard (MFI Mode) . A-22
A-7. Default Scan Codes for IBM Personal Computer AT Keyboard

(PC Mode) A-25
A-8. Default Scan Codes for IBM Personal Computer Keyboard

(MFI Mode) A-28
A-9. Valid ASCII Characters Common to All Countries A-31

A-10. Valid ASCII Mnemonics Common to All Countries A-34
A-II. Additional ASCII Characters Used by U.S. English A-37

B-L Read Partition Query Structured Field Format B-4
B-2. Query Reply Structured Field Format B-5
D-L United States EBCDIC I/O Interface Code D-3
D-2. EBCDIC Control Character I/O Codes D-5
D-3. Field Attribute Byte Bit Positions D-6
D-4. Field Attribute Character Bit Assignments D-6
D-5. The Structure of an Attribute Pair D-7
D-6. Attribute Type X'41' - Extended Highlighting D-7
D-7. Attribute Type X'42' - Color D-7
D-8. Attribute Type X'43' - Character Set Selection D-7
D-9. 3270 Data Stream Commands D-8

D-10. Non-SNA Channel Commands D-8
D-11. Write Control Character Reset Actions D-IO
D-12. 3270 Data Stream Orders D-l1
D-13. Set Reply Mode Structured Field Format D-13
D-14. Erase/Reset Structured Field Format D-14
D-15. Outbound 3270DS Structured Field Format D-14
D-16. Read Partition Structured Field Format D-15
D-17. Inbound 3270 Data Stream D-17
D-18. Short Read Format D-18
D-19. Read Modified and Read Modified All Format D-18
D-20. Read Buffer Format in Field Reply Mode D-19
D-2L Read Buffer Format in Extended Field and Character Mode . D-20
D-22. Usable Area Query Reply Structured Field Format D-22
D-23. Character Sets Query Reply Structured Field Format D-23
D-24. Character Set Descriptors D-24
D-25. Reply Modes Query Reply Structured Field Format D-24
D-26. DDM Query Reply Structured Field Format D-25
D-27. Auxiliary Device Query Reply Structured Field Format D-25
D-28. Document Interchange Architecture Query Reply Structured

Field Format ,..................... D-26
D-29. Direct Access Self-Defining Parameter D-26
D-30. Color Query Reply Structured Field Format D-27

Figures XXI

XXll

D-31. Highlight Query Reply Structured Field Format D-28
D-32. Implicit Partition Query Reply Structured Field Format D-29
D-33. Self-Defining Parameters D-30
D-34. Hexadecimal Representations D-33

E-l. Frequently Used Trace Buffers E-7
E-2. Dispatcher Data Address Offsets E-12
E-3. Name Table Address Offsets E-14
F-l. Field Attribute Bit Positions F-4
F-2. Field Attribute Bit Assignment F-4
F-3. Extended Field Attribute and Character Attribute Bit Positions F-5
F -4. Extended Field Attribute and Character Attribute Bit

Assignment F-5
F-5. Host and Notepad Presentation Space Character Table F-6
F-6. Personal Computer Presentation Space Character Table F-7
F-7. DFT Host Presentation Space Sizes F-8

IBM 3270 Personal Computer U.S. English Keyboard FO-l
IBM 3270 Enhanced Personal Computer U.S. English
Keyboard, PC Mode FO-3
IBM 3270 Enhanced Personal Computer U.S. English
Keyboard, MFI Mode FO-5
IBM Personal Computer AT U.S. English Keyboard .. " FO-7
IBM Personal Computer XT U.S. English Keyboard FO-9

Part 1. Introduction to the API

The chapters in Part 1 introduce the Application Program Interface (API)
and the two types of services you can use:

• Application program services that most application programs will use.
Described also are some supervisor services that directly support the
application program services.

• Those supervisor services that allow application programs to run
together under the multitasking capabilities of the workstation
program.

The chapters in this part are:

• Chapter 1, "Functions the API Provides," which contains an overview
of the API services and how you can use them.

• Chapter 2, "Programming Considerations," which introduces system
information files, describes program information files, and provides tips
and guidelines for coding programs.

Part 1. Introduction to the API

Chapter 1. Functions the API Provides

Overview of API Services 1-2
Terms You Need to Know 1-3
Examples of Using the API 1-4

Simplifying Setup and Control of Multiple Host Sessions 1-4
Using the Work Station Control Functions of the IBM 3270 Personal

Computer .. 1-5
Enhancing Interaction between the Operator and a Host 1-5
Extending the Workstation Program through the Use of System

Extensions ... 1-5
The Application Program Services 1-5

Session Information Services 1-6
Keyboard Services 1-6
Window Management Services 1-6
Host Interactive Services 1-6
Presentation Space Services 1-6
3270 Keystroke Emulation Services 1-7
Copy Services .. 1-7
Translate Service 1-7
Operator Information Area Services 1-7
Multiple DOS Support Services 1-7

The Supervisor Services 1-7
Supervisory Object Services 1-8
Request Services .. 1-8
Task State Modifier Services 1-8
Semaphore Management Services 1-8
Logical Timer Management Services 1-8
Fixed-Length Queue Management Services 1-8
Interrupt Handler Management Services 1-9
Environment Manager Services 1-9

Using the Application Program Interface 1-9

Chapter 1. Functions the API Provides 1-1

Overview of API Services

Overview of API Services

I
Multi
DOS KEYBOARD
API

The Application Program Interface (API) is just what the name implies: an
interface between an application program and the IBM 3270 Workstation
Program. Your application program requests services from the workstation
program using the API. The kinds of services that your application can
request are grouped into two categories:

• Application program services

• Supervisor services.

The application program services are services that most application
programs will use. The supervisor services are services that provide
support for applications that use the multitasking capabilities of the IBM
workstation program.

Service requests to the workstation program are generated by your
application program. The supervisor processes the requests or routes the
request to the appropriate API service.

Figure 1-1 illustrates the flow of a request from an application program.

Application

I
Supervisor

~
Environment SVC
Manager Router Services

""'-

I
I

~ f if if

3270 KS OIA
PCPSM EMULATION COpy WSCTRL SESSMGR

ACCESS
MFIC XLATE

Figure 1-1. Overview of the Application Program Interface

1-2

Terms You Need to Know

Terms You Need to Know

ASCII American National Standard Code for
\ Information Interchange. ASCII/ASCII

mnemonics can now be sent or received on the
Read Input and Write Keystroke API.

EGA Enhanced Graphics Adapter. For more
information, see the Technical Reference
Options and Adapters manual.

environment A contiguous area of storage and a collection
of system resources that are managed by an
operating system to allow a program or a
system extension to run. A program or a
system extension is said to "run in an
environment."

stoppable environment A type of environment that is used for running
DOS or personal computer application
programs. Stoppable environments can be
used for any program that can be removed
from the system without causing other
programs to fail. That is, programs running in
stoppable environments must not offer services
to programs running in other environments.

nonstoppable A type of environment used to run
environment system extensions. These system extensions

offer services to programs running in other
environments and need to be in the system at
all times.

Non-3270 PC Hardware IBM Personal Computer AT® and/or XT
system units without the keyboard adapter and
3270 PC display adapter cards installed.

ODSP Outbound Data Stream Preprocessor. ODSP
allows the preprocessing of a 3270 data stream,
which can reduce the amount of traffic flowing
through a network.

presentation space An area of storage that represents a logical
display. All IBM 3270 host sessions, IBM
personal computer sessions, and notepad
sessions have a presentation space. The data
contained in a presentation space, or a portion
of that data, is displayed on the screen when
that session's window is visible on the screen.

session A connection between your work station and a
host computer, personal computer, or notepad.

Chapter 1. Functions the API Provides 1-3

Examples of Using the API

system extension

window

XMA card

Code that runs in a nonstoppable environment.
It is loaded as part of the workstation program
and starts running automatically when the
workstation program is IPLed. A system
extension may offer services that other
programs can use.

The portion of the screen through which you
view a session's presentation space. A window
can be the same size as your full IBM 3270
Personal Computer screen or as small as one
character.

Expanded memory adapter card. The XMA
card is a hardware option card that provides
up to 2Mb of additional storage for as many as
6 PC sessions.

Examples of Using the API

The Application Program Interface (API) allows an assembler-language
application program in the personal computer session to use a powerful set
of services from the workstation program.

U sing these services, the application program can:

• Simplify setup and control of multiple host sessions

• Use the work station control functions of the IBM 3270 Personal
Computer

• Enhance interaction between the operator and a host

• Extend the workstation program through the use of system extensions.

Simplifying Setup and Control of MUltiple Host Sessions

1-4

For example, your application program can display a list of screen profiles
to the work station operator. When the operator chooses one of the screen
profiles, the program can send the necessary logon commands to each of the
host sessions defined in the profile. In this way, you can set up the work
station for use and eliminate the need for the operator to remember the
various logon procedures.

The Application Program Services

Using the Work Station Control Functions of the IBM 3270 Personal
Computer

Your application program can size and move windows, change the
foreground and background colors of windows, jump to other windows,
enlarge and hide windows, or do any of the other functions that are
available in work station control mode.

For example, your application program can translate a single key typed by
the operator into a series of work station control commands to set up the
IBM 3270 Personal Computer for data entry into a particular window on the
screen.

Enhancing Interaction between the Operator and a Host

For example, your application can log onto four host sessions and bring up
a different application on each host. Your application can present the work
station operator with a menu of functions to perform and then transform
the operator's choice into a command to the appropriate host application.

Extending the Workstation Program through the Use of System Extensions

You can write a system extension that is loaded with the workstation
program when the system is IPLed. A system extension can perform
services for other application programs that you write, and act as a
resource manager to allocate and deallocate resources to those application
programs.

The Application Program Services

The API provides the following kinds of application program services:

• Session information services

• Keyboard services

• Window management services

• Host interactive services

• Presentation space services

• 3270 keystroke emulation services

• Copy services

• Translate service

Chapter 1. Functions the API Provides 1-5

The Application Program Services

• Operator information area services

• Multiple DOS support services.

Session Information Services

Keyboard Services

The session information services allow your application program to query
the workstation program to find out what sessions are currently defined,
attach and detach from these sessions, and query what the characteristics
of these sessions are.

The keyboard services allow your application program to read and write
keystroke data from a specified session, to disable and enable operator
input from the keyboard of a specified session, and to notify the
workstation program of the status of your application program's keystroke
processing.

Window Management Services

The window management services allow your application program to use
the functions of the work station control session of the IBM 3270 Personal
Computer. Using these services, your application program can determine
the current size, position, or color of a window, and change them if desired.
You can jump to specified windows, enlarge or hide windows, or change to
a different screen profile. You can add a window, delete a window, or clear
the entire screen.

Host Interactive Services

The host interactive services allow communication between a personal
computer application program and a host application program using the
destination/origin structured field protocol. The host interactive services
also allow a personal computer application program to be notified when a
host presentation space or operator information area is updated.

Presentation Space Services

1-6

The presentation space services allow your application program to create
and delete personal computer presentation spaces, to display those personal
computer presentation spaces, and to control the position of the cursor in
those personal computer presentation spaces.

The Supervisor Services

3270 Keystroke Emulation Services

Copy Services

Transla te Service

The 3270 keystroke emulation services enable you to type into a personal
computer presentation space as if it were a host presentation space.

The copy services allow your application program to copy data into a
personal computer window, as well as copy data from one area of a personal
computer window into another area within the same personal computer
window. The copy services also allow copying of data from and to host and
notepad sessions.

Data that is displayed in host and notepad presentation spaces is
represented by numbers called host/notepad character codes. Data that is
displayed in personal computer presentation spaces is represented by ASCII
codes. The translate service allows your application program to translate
the data in a buffer from one type of data representation to the other.

Note: You cannot translate graphic characters or programmed symbol set
characters.

Operator Information Area Services

The operator information area services allow your application program to
determine the current status of a session as shown on the operator
information area (OIA).

The contents of the OIA can be determined by reading:

• An image of the OIA

• A bit string that represents a group of relatedOIA values.

Multiple DOS Support Services

The multiple DOS support services allow your application program to query
the size in paragraphs of a specified environment, and to request DOS INT
21H function calls asynchronously.

The Supervisor Services

The API provides the following kinds of supervisor services:

• Supervisory object services

• Request services

• Task state modifier services

Chapter 1. Functions the API Provides 1-7

The Supervisor Services

• Semaphore management services

• Logical timer management services

• Fixed-length queue management services

• Interrupt handler management services

• Environment manager services.

Supervisory Object Services

Request Services

The supervisory object services allow your application program to create
gates and user exit tables, and create and delete tasks, components,
semaphores, and fixed-length queues. The supervisory object services also
allow your application program to obtain the numeric ID of a supervisory
object by specifying its alphanumeric name, or obtain the alphanumeric
name of the supervisory object by specifying its numeric ID.

The request services allow tasks and components in your application
program to request services of other tasks or components and respond to
requests from other tasks.

Task State Modifier Services

The task state modifier services allow your application program to change
the dispatch state or priority of a task.

Semaphore Management Services

The semaphore management services allow your application program to
control the access to resources and the execution of nonreentrant code.

Logical Timer Management Services

The logical timer management services allow your application program to
control time-dependent events through the use of logical timers.

Fixed-Length Queue Management Services

1-8

The fixed-length queue management services allow your application
program to pass data to other tasks or components, and to receive data from
other tasks or components, using the fixed-length queue as a "pipeline" for
the data.

U sing the API

Interrupt Handler Management Services

The interrupt handler management services allow environments to share
the interrupt vector table on a cooperative basis. On hardware interrupts,
a device handler in any environment can receive control.

Environment Manager Services

The environment manager services allow a system extension to act as a
resource manager to control the allocation and de allocation of resources to
application programs. An application program has the ability to control its
own environment using the environment manager services.

U sing the Application Program Interface

To use the API, your program must store the required values in the system
registers. Services that need more information than can be contained in
the system registers use a data area called a parameter list to contain the
additional information. System registers ES and DI must point to the
segment and offset addresses of the parameter list. To request an API
service, your application must issue an INT '7 A' instruction to signal the
workstation program that it has a request to process.

Chapter 1. Functions the API Provides 1-9

U sing the API

1-10

U sing the API

Chapter 2. Programming Considerations

Introduction ... 2-2
System Information Files 2-2
Program Information Files 2-3
Creating and Modifying Program Information Files (PIFs) 2-4
Restrictions on Running under the Workstation Program 2-5
Guidelines for Running under Multi-DOS 2-6
How Multi-DOS Affects Application Program Performance 2-7
Using the Interrupt X'10' Function 2-8
Tips on Writing Applications to Run in Multi-DOS 2-9

When Personal Computer Sessions Will Be Suspended 2-10
Non-3270 PC Hardware Restrictions 2-11
Determining the Type of PC Your Application Program Is Running On 2-13
Determining the Level of the Control Program or the Workstation

Program That Is Loaded 2-13

Chapter 2. Programming Considerations 2-1

System Information Files

Introduction

Many application programs written for the IBM PC assume that the PC is
dedicated to running a single application program at a time. Without the
workstation program, this assumption is valid, since DOS provides a single
environment to run programs and does not provide multitasking facilities.
Some of these application programs take advantage of facilities available in
the PC that are not supported by DOS,or bypass the DOS facilities to run
more efficiently.

The Multi-DOS feature of the workstation program provides a set of
environments in which personal computer application programs can.run,
and a set of supervisor services that allow you to write programs that take
advantage of this multitasking capability. To preserve the integrity of
application programs running at the same time, the workstation program
uses program information files (PIFs) and system information files (SIFs) to
keep track of the application programs and system extensions that are
running in the system.

System Information Files

2-2

System information files are used by the workstation program to allocate
system resources for system extensions as well as for PC applications. A
system extension is a module that you code. It is loaded with, and runs as
part of, the workstation program. System extensions must observe all the
rules for well-behaved programs that are described in this chapter. To
include a system extension in your system, you must answer some questions
about that system extension during customization, and you must create a
system information file for that system extension. Chapter 24, "Coding
System Extensions," describes system extensions and discusses things you
need to know to create system information files.

There are several different system information files, which serve different
purposes. They are:

• INDIBMl.SIF - A special system information file which must be on the
IPL disk when you initialize the workstation program. It is created
during customization. It tells the workstation program how many
system resources to allocate for all the workstation program's system
extensions.

• INDIBM2.SIF - A special system information file which must be on the
IPL disk when you initialize the workstation program. It is shipped
with the workstation program diskettes. It tells the workstation
program how many system resources to allocate for use by programs
running in the PC sessions. If you have configured for Multi-DOS, the
workstation program will allocate this many system resources for each
PC session. This SIF may be tuned by the user to increase system
resources if the system runs short.

Program Information Files

• Individual SIFs - Every user system extension must have a system
information file to tell the workstation program how many system
resources to allocate for its use. See the IBM 3270 Workstation
Program User's Guide and Reference for more information on system
information files.

The rest of this chapter concentrates on program information files.

Program Information Files

Program information files are used by workstation programs configured for
Multi-DOS to control the execution of personal computer application
programs. The workstation program needs to know whether or not the
application program observes the rules for well-behaved programs so that
the program does not interfere with other application programs that may be
running at the same time.

To obtain optimum performance, any application that is written to use the
API services should be well-behaved. If you have customized your system to
include the Multi-DOS option, you should create a program information file
to tell the workstation program that your application is well-behaved.

Note: If you do not have a PIF, your application will be considered
ill-behaved and may suspend when it is not active.

There are different program information files which serve different
purposes. They are:

• 3270PC.PIF - This "consolidated PIF" must be on the IPL disk when
you initialize the workstation program. It is copied to the IPL disk as
part of the customization procedure. It contains program information
for many different programs, including the 3270 PC utilities. It is read
at IPL time. It is not in the same format as an individual PIF, described
below. Program information may be added to the consolidated PIF by
using the INDSPIF utility. Refer to the IBM 3270 Workstation Program
User's Guide and Reference for more information about the consolidated
PIF.

• Individual PIFs - Every application COM or EXE file may have a
corresponding PIF. An individual PIF may be created by either the
INDSPIF utility or the TopView "Create Program Information" utility
(if you use TopView). The individual PIFs used by the 3270 workstation
program are compatible with the individual PIFs used by Top View.
However, TopView PIFs have a different format than 3270 PC PIFs and
require that you identify the specific interrupts your program will take
over, even if your program takes them over using DOS and BIOS. The
workstation program, however, requires you to identify the interrupts
your program takes over only if you do not use DOS and BIOS. This
means that, if you use your TopView PIF, the workstation program will .
interpret your program as poorly behaved even if it is well-behaved.
See the IBM 3270 Workstation Program User's Guide and Reference for
more information about PIF files.

Chapter 2. Programming Considerations 2-3

Creating and Modifying PIFs

All of these PIFs and SIFs may be created, read, and modified using the
INDSPIF utility, except TV.PIF. '\

When a PC application is run, the workstation program first searches to see
if there was a record for it in the consolidated PIF (3270PC.PIF). Failing to
find it there, it will look for an individual PIF. If that fails, the
workstation program will assume that the answer is "yes" to all PIF
questions and that vectors to be swapped are OO-FF.

Since the consolidated PIF and all SIFs are read at IPL time, any changes
in these files will not be reflected until the next IPL of the workstation
program. A change in an individual PIF will take effect when that program
is next loaded.

Creating and Modifying Program Information Files
(PIFs)

2-4

You use the INDSPIF utility to create and modify PIFs. The INDSPIF
utility is provided on your workstation program diskettes.

To use the INDSPIF utility, follow these steps:

1. Determine the name of the EXE or COM file you will use.

Note: If you use a BAT file to run an application, you must create a PIF
for the EXE or COM file, not for the BAT file.

2. Decide whether the module is a system extension or a personal
computer application program.

a. For system extensions, determine how many of each type of control
block are needed for the system extension to run.

b. For application programs, determine which options apply to the
application.

3. At the DOS prompt, enter the INDSPIF command by typing INDSPIF
and then pressing the Enter key.

4. On the home panel, you may enter the module name or the path name.

a. To create a system information file, press PF2.

b. To read an existing system information file, press PF3.

c. To create a program information file, press PF4.

d. To read an existing program information file, press PF5.

e. To read existing program information from the consolidated PIF
(3270PC.PIF), press PF6.

f. To delete existing program information from the· consolidated PIF
(3270PC.PIF), press PF7.

Restrictions on Running under the Workstation Program

5. Depending on your choice, you will see either the PIF or the SIF panel.

6. Complete all items on the panel. When you are done, press PF3 to save
the PIF or SIF on diskette, or press PF4 to save the program
information into the consolidated PIF.

7. You may then press either Home, to return to the Home panel, or Esc,
to quit the INDSPIF utility; or you may change any information on the
panel and save it again.

Restrictions on Running under the Workstation Program

A number of situations should be avoided if the application is to run on the
3270 PC in a Multi-DOS environment. In general, anything that will cause
a contention for nonshareable resources should be avoided. The most
common example is reading or writing to fixed memory addresses. An
application should only read or write to addresses within its own address
space. If an application needs to interact with the hardware, it should do
so by issuing BIOS function calls, DOS function calls, or 3270 PC API
function calls.

The following are not supported and will cause system failures:

• Programming the Intel 8259 Interrupt Controller chip.

• Taking over interrupts X'50' through X'57' or X'7 A'.

• Disabling interrupts for an extended period of time.

• Disabling Direct Memory Access (DMA).

• Jumping to hard-coded addresses in the BIOS. All BIOS calls should be
made through the interrupt mechanism.

• Running two workstation program applications on the 8087 or 80287
math co-processor.

• Running an application that installs an interrupt handler that changes
its own stack and then enables interrupts. This will produce
unpredictable results on systems with an XMA card installed unless you
revise the INDIBM2.SIF file. See the IBM 3270 Workstation Program
User's Guide for more details about updating INDIBM2.SIF.

• Using application hardware interrupt handlers that modify the registers
and then CALLF AR the CHAINON address.

• For Uni-DOS on non-3270 PC hardware, an application is assumed to be
ill-behaved. The application will be suspended when:

It is not the top or active window
The WSCtrl key is pressed.

Chapter 2. Programming Considerations 2-5

Guidelines for Running under Multi-DOS

Guidelines for Running under Multi-DOS

2-6

Programs running with Multi-DOS should observe the following rules for
optimum performance:

• The program should not write to storage reserved by BASIC. See the
Technical Reference manual for the IBM PC/XT for these locations.

Note: Since BASIC itself writes to these locations, programs written in
BASIC violate this rule.

• The program should not write to the PC's interrupt vector table. The
DOS function calls or the supervisor interrupt handler management
services should be used to set interrupt vectors.

• The program should not write to the display refresh buffer. The BIOS
or DOS facilities should be used to write to the screen.

• The program should not reprogram the PC's timer. On non-3270 PC
hardware, reprogramming the PC's timer will cause host communication
failure.

• The program should not reprogram the PC's speaker.

• The program should not communicate directly with the keyboard. The
BIOS or DOS facilities should be used to read data from the keyboard.

• The program should not wait in an idle loop until keys are pressed.

• The program should not directly poll the Asynchronous
Communications Adapter (ACA). Instead, you should write an interrupt
handler to communicate with the ACA.

• The program should not use graphics modes.

• The program should not read from, or write to, the BIOS data areas.

• For non-3270 PC hardware (XT only), if an application is intercepting
keystrokes from a PC session that is running an ill-behaved application
which takes over interrupt vector X'9', the first PC session will not
receive any keystrokes. It will work only if you are running a
well-behaved application.

• ANSI.SYS is not supported under Multi-DOS.

• Virtual Device Interface (VDI) is not supported under Multi-DOS.

If your application program does not follow the rules listed above, the
Multi-DOS management portion of the workstation program may take
special action when the program is running.

How Multi-DOS Affects Program Performance

How Multi-DOS Affects Application Program
Performance

Following is a list of the special actions the workstation program may take
if your application program does not observe some of the rules described:

• If your application program issues a function call to DOS, this request
is serialized. You may not be able to jump to another PC window until
that request is completed. You can jump to a host or notepad window,
however, as long as that window follows the PC window in an
alphabetic sequence of short names. For instance, if you are issuing
DOS function calls in a PC window with a short name of A, then the
host or notepad window you want to jump to should have a short name
ofB.

• If the program writes to storage reserved by BASIC, the Multi-DOS
manager saves an image of this storage before it runs the program.
Each time the program is suspended or put into a wait state, the
Multi-DOS manager saves the current contents of the storage and swaps
them with the original image of storage. Before the program is allowed
to run again, the Multi-DOS manager again swaps the original image of
storage with the image that was saved when the program was
suspended.

• If the program writes to the PC's interrupt vector table, the Multi-DOS
manager saves an image of these vectors before it runs the program.
Each time the program is suspended or put into a wait state, the
Multi-DOS manager saves the current contents of the vectors and swaps
them with the original contents of the vectors. Before the program is
allowed to run again, the Multi-DOS manager again swaps the original
contents of the vectors with the contents that were saved when the
program was suspended.

Note: The workstation program fails if any program writes directly to
interrupt vector X'7 A'.

• If the program writes to the display refresh buffer on 3270 PC hardware,
the Multi-DOS manager suspends the program any time you jump to
another PC session. For non-3270 PC hardware, the Multi-DOS
manager suspends the program when it is not in the active window.

• If the program reprograms the PC's timer, the Multi-DOS manager
suspends the program any time it is not in the active window. Jumping
to another PC window causes the timer to be reset to its default value.

Note: If you are on non-3270 PC hardware, you should not reprogram
the timer.

• If the program reprograms the PC's interrupt controller, the system
fails.

• If the program communicates directly with the keyboard (that is, it
takes over interrupt X'09' and reads keyboard data directly), the

Chapter 2. Programming Considerations 2-7

Using the Interrupt X'lO' Function

Multi~DOS manager suspends the program any time it is not in the
active window.

• If the program uses graphics modes, the Multi-DOS manager on 3270 PC
hardware suspends the program any time you jump to another PC
session. For non-3270 PC hardware, the Multi-DOS manager suspends
the program when it is not in the active window. Only one PC session
at a time may use graphics.

Using the Interrupt X'lO' Function

2-8

On the PC, there are three ways of doing text output to the display screen.
You can use DOS function calls, use BIOS function calls, or write directly
to the video refresh buffer. The last method is frequently the only method
acceptable where performance is a consideration. Unfortunately, using this
method causes your application to be suspended when it is not the active
window, in orderto support Multi-DOS applications. If you want to run
only on the workstation program, there is an alternative. You can do your
video output through the API. This restricts your application to the 3270
PC.

There is a way to achieve high-performance screen output on a normal PC
or on a 3270 PC with Multi-DOS without incurring performance
degradation. This also works under Top View.

To get the address of your presentation space:

1. Load ES:DI with the assumed address of the video buffer (BOOO:OOOO).

2. Load AH with X'FE'.

3. Issue an interrupt X'lO'.

4. The address of your presentation space will be returned in ES:DI. You
should do all your display output to the address returned.

To display your data:

1. Load ES:DI with the address of the first character in the buffer that has
been modified since the last display request.

2. Load CX with the number of sequential characters or attribute bytes
that have been modified.

3. Load AH with X'FF'.

4. Issue an interrupt X'lO'.

5. Data at ES:DI for CX bytes will be displayed in your PC window.

These two functions allow an application to run under Top View and 3270
Workstation Program, as well as on a PC running DOS.

Note: Version 3.0 of the control program and the workstation program do
not support Top View.

Tips on Writing Applications to Run in Multi-DOS

Tips on Writing Applications to Run in Multi-DOS

Multi-DOS provides you with some powerful tools. For example, an
application may download data from a CICS system, format it, and send it
in the form of keystrokes to a customer's spreadsheet program.

There are, however, a number of restrictions. These restrictions are
required because of the nature of existing PC software, software that was
written to run in a single-tasking environment.

You should, for example, be aware that your application can be suspended
when it is not the top window. This happens if your PIF has a "yes" for
any question, if you have no PIF, or if another PC environment has a PIF
that indicates that it swaps vectors in the range X'OO' through X'7F'.

This can cause problems if, for example, you lock WSCTRL, jump to
another PC session, jump back, and release the WSCTRL lock. If the other
session swaps vectors in the range X'OO' through X'7F', your program is
suspended before it can jump back and release the lock. Since you are
holding the lock, no keyboard activity can occur. Since you are suspended,
you cannot release the lock. Since you are not the active session, you
cannot be resumed. This situation, known as circular waiting, is a classic
deadlock. It effectively requires the user to power off and re-IPL the system
in order to regain control.

There are two ways to solve this problem. The first is to use the Query PC
Session PIF Information service to determine whether you will be
suspended. If you will, then avoid the above sequence of calls. The second
is to claim a code serialization semaphore, issue the calls with a wait type
of "no wait," and then release the semaphore. Since you will not be
suspended while holding the semaphore, you will be able to issue the calls,
release the semaphore, and survive. The calls will occur asynchronously.

You must be extremely careful with code serialization semaphores,
however. If you are holding a code serialization semaphore across any
segment of code that could cause a wait condition (for example, claim
semaphore, get keyboard input, do something, release semaphore), you
could also create a deadlock. If, while you are holding the semaphore, the
user presses the JUMP key, this could happen:

• The system tries to suspend you.

• Since you hold a code serialization semaphore, the system waits until
you release it to suspend you.

• You are waiting on keyboard input.

• The user cannot enter data into your session, because you are not the
active session.

The result is as in the previous example, a circular-wait condition. The
system is deadlocked, requiring a power off/on to restart.

Chapter 2. Programming Considerations 2-9

Tips on Writing Applications to Run in Multi-DOS

If you are writing programs that create tasks and then exit back to DOS,
make sure that you use a Terminate But Stay Resident calL If you do not,
then the space in which your task is running will be overlaid by the next
application to run.

When Personal Computer Sessions Will Be Suspended

2-10

The following grid indicates when a personal computer session is
suspended. The foreground task is never suspended. Those boxes marked
with an "X" indicate when the background session(s) is suspended.

The background session is:
Well- Moderately Poorly

The foreground session is: behaved well-behaved behaved

Well-behaved

Moderately well-behaved

Poorly behaved

Definitions:

I~ I~ I
Foreground: If the active window (that is, the one with double borders) is a
PC window, then it is the foreground session. If a non-PC window (host or
notepad) is active, then the foreground session depends on the type of
hardware you are using:

• 3270 PC hardware: The PC window that was most recently active is
considered the foreground session.

• Non-3270 PC hardware: No PC window is considered to be the
foreground session. All PC windows are background sessions and will
be suspended if they either write directly to the screen or are poorly
behaved.

Background: Any window that is not the foreground window.

Well-behaved: A personal computer session running a program that has a
PIF in which every answer was "no"; that is, the personal computer
application does nothing bad. This might also be a personal computer
session that is running COMMAND.COM (for example, doing a DIR).

Moderately well-behaved: A personal computer session running a program
that has a PIF in which any answer was "yes," but for which the space for
"vectors swapped" did not include vectors in the range X'OO' through X'7F'.

Poorly behaved: A personal computer session running a program that has
no PIF, or for which the space for "vectors swapped" did include vectors in
the range X'OO' through X'7F'.

Non-3270 PC Hardware Restrictions

Notes:

1. If any program terminates and stays resident, then the workstation
program treats that personal computer session as though the program
were still running (that is, the program's PIF remains in effect when
determining whether to suspend the session). For example, suppose a
program takes over an interrupt in the range of X'80' through X'FF', then
terminates and stays resident. If another program is loaded, that
program is still suspended when it is not in the foreground window.
When the session is rebooted, the session is considered well-behaved
again.

2. If a program loads and runs another program using DOS function X'4B',
the program that was loaded inherits the PIF characteristics of the
loading program (for example, menu programs).

Non-3270 PC Hardware Restrictions

The following restrictions apply to non-3270 PC hardware (XT and AT).
Failure to follow these guidelines on the use of non-3270 PC hardware could
result in system failure.

• An application is assumed to be ill-behaved when running in Uni-DOS
on non-3270 PC hardware.

• An ill-behaved application will be suspended when:

It is not the top or active window

The WSCTRL key is pressed

It uses the Input Control API to connect to the WSCTRL keyboard.
(Note that this will affect all applications that will attempt to send
Jump, ChgSc, and Enlarge keystrokes, as well as any other
keystrokes that perform functions while in WSCTRL.)

On IPL if your PC session is not in the top window. Any program
you start in your PC window will not be completed until you make
it the active session (for example, your AUTOEXEC.BAT file).

• Ill-behaved applications will run only in an active session. If an
ill-behaved application exits and stays resident in the active session,
then any other application you run in that session will be seen as
ill-behaved and will never run in the background.

• On non-3270 PC hardware, ill-behaved applications will be displayed
full-screen when they are made active, even if they are sized. Even if
you sized your windows using the API, they may be forced to full-screen
and appear enlarged when active under the following conditions:

Your application uses graphics mode
Your application uses 40-column mode
Your application writes directly to the screen

Chapter 2. Programming Considerations 2-11

Non-3270 PC Hardware Restrictions

2-12

- Your application runs in Uni-DOS.

• When an ill-behaved application uses the work station control API, the
redraw screen and redraw window functions will not affect what is seen
on the screen. Any changes made while the application is connected to
the API will not be seen on the screen until the application disconnects
from the API.

• When using work station control API, the WS Ctrl alA will not be
displayed under the following conditions:

Your application uses graphics mode
Your application uses 40-column mode
Your application writes directly to the screen
Your application runs in Uni-DOS.

• If you are running an ill-behaved application in a PC session, the shift
state of that session may not remain as you originally set it after
jumping to other windows and back again. For instance, if you have set
Caps Lock on in this PC session and jump to another window, your
session may be in lowercase mode when you jump back to that window.
Also, applications that write directly to the display adapter registers
may not be restored properly after jumping to another window and back
again.

• Input Control API is not supported for sessions running ill-behaved
applications that read port 60 directly.

• Do not run PC applications that reprogram the timer. This could cause
host communication failure.

• An ill-behaved application that receives keystrokes from any other
session will not work, because the application will be suspended when it
is not the active session, so the keystrokes that it would normally be
receiving will be queued up until the application becomes active. An
ill-behaved application that sends keystrokes will work as long as its
session remains active.

• Use the BIOS INT 10, "Set Color Palette" call, to change the palette
colors. Otherwise, the colors will be changed in all sessions.

• If you load an alternate character generator into one session, then all
your sessions will use this alternate character set.

Determining the Program Level

Determining the Type of PC Your Application Program Is
Running On

An application may perform the following test to determine whether it is
executing on a 3270 PC.

1. Perform a function call (I NT X'lO') to the BIOS Video Routine with the
following parameters:

• AH register = X'30'
• AL register = X'OO'
• CX register = X'OO'
• DX register = X'OO'

2. If the CX and DX registers are still zero (0) on return, the machine is
not a 3270 PC or a non-3270 PC with the 3270 Workstation Program
loaded. If the CX and/or DX registers are not zero, the following test
should be made to determine whether the machine is a 3270 PC or a
non-3270 PC with the 3270 Workstation Program loaded:

a. Read the byte at CX:DX + 2.

b. If the value of this byte is X'FF', the machine is a PC without the
3270 Workstation Program loaded. If the value of this byte is not
X'FF', the machine is a 3270 PC or a non-3270 PC with the 3270
Workstation Program loaded.

Determining the Level of the Control Program or the
Workstation Program That Is Loaded

If the machine is a 3270 PC or a non-3270 PC, an application may determine
whether the 3270 PC Control Program or the 3270 Workstation Program is
loaded in memory, and if so what level of the program is currently resident,
by performing the following tests:

If CX:DX is not zero and not X'C040:0220', read the two-byte location at
address CX:DX + 8.

1. If the contents of the two-byte location at address CX:DX + 8 are X'OOOO',
the following test should be performed to determine whether a
pre-Version 2.0 level of the control program is resident:

a. Read the BIOS high memory limit at address X'0413'.

b. Read the 8 bytes of data located 36 bytes beyond the BIOS high
memory word obtained above.

In rare instances, BIOS isolates bad high memory locations by
placing the high address limit below these locations. If the control
program or the workstation program is not loaded in memory when

Chapter 2. Programming Considerations 2-13

Determining the Program Level

2-14

this test is performed, the application may inadvertently address
these bad memory locations, which will result in a parity error.
This is a nonrecoverable condition.

c. If the data at this memory location is X'2322272031AF A210', then
the control program or workstation program is resident in memory.

d. If the control program is resident, the application can determine
whether Version 1.0/1.1 or Version 1.2/1.21/1.22 is resident as
follows:

1) Read the 8 bytes of data located 16 bytes beyond the BIOS high
memory limit.

2) If the data found at this location is X'353636392D303032', the
resident control program is Version 1.2 or 1.21 or 1.22.
Otherwise, the resident control program is Version 1.0 or 1.1.

2. If the contents of the two-byte location at address CX:DX + 8 are not
zero (Control Program Version 2.0 and later or the workstation
program), it contains the segment address (at offset zero) where the
application will find a two-byte field containing the identifier of the
control program or workstation program in hexadecimal notation (0200
for Control Program 2.0, 0210 for Control Program 2.1, 0300 for Control
Program 3.0, and 0400 for Workstation Program 1.0). Immediately
following the identifier is a single byte indicating the specific control
program or workstation program installed:

a. X'OO' - Standard Control Program or Workstation Program

b. X'OI' to X'FF' - Reserved

Following the identifier is a 27-byte field containing an ASCII text
string that identifies the type of control program or workstation
program installed (for example, "IBM 3270 PC CONTROL PROGRAM").

Part 2. Application Program Services

This part contains information about application program services provided
by the Application Programming Interface.

• Chapter 3, "Coding Supervisor Services," describes the supervisor
services that your application program needs to use the rest of the
services described in this part of the manual.

• Chapter 4, "Coding Session Information Service Requests," describes
the session information services that your application program can use.

• Chapter 5, "Coding Keyboard Service Requests," describes the
keyboard services that your application program can use.

• Chapter 6, "Coding Window Management Service Requests," describes
the window management services that your application program can
use.

• Chapter 7, "Coding Host Interactive Service Requests," describes the
host interactive services that your application program can use.

• Chapter 8, "Coding Presentation Space Service Requests," describes
the presentation space services that your application program can use.

• Chapter 9, "Coding 3270 Keystroke Emulation Service Requests,"
describes the keystroke emulator services that your application
program can use.

• Chapter 10, "Coding Copy Service Requests," describes the copy
services that your application program can use.

• Chapter 11, "Coding Translate Service Requests," describes the
translate service that your application program can use.

• Chapter 12, "Coding Operator Information Area Service Requests,"
describes the operator information area services that your application
program can use.

• Chapter 13, "Coding Multi-DOS Support Service Requests," describes
the multiple DOS support services that your application program can
use to query the size in paragraphs of a specified environment, and to
request DOS INT 21H function calls asynchronously.

Part 2. Application Program Services

Conventions Used in the API Service Descriptions

The following conventions are used in the descriptions of the API services:

• Hexadecimal numbers are represented in the notation X'nn' for byte
values and X'nnnn' for word values.

• Offsets into data structures used by the API services are given as
decimal numbers.

• Bits within a byte are numbered with the high-order (leftmost) bit as bit
o and the low-order (rightmost) bit as bit 7, as follows:

This order of bit numbering follows the IBM 360/370 convention and is the
reverse of the Intel 8088 bit-numbering convention.

Chapter 3. Coding Supervisor Services

Introduction ... 3-2
Obtaining the Gate Name for the Services Your Application Program

Will Use ... 3-2
Obtaining the Results of Services You Have Requested

Asynchronously 3-3
Creating Fixed-Length Queue Entries 3-3
Obtaining Data from a Fixed-Length Queue 3-3
Deleting Fixed-Length Queues 3-4
Requesting the Supervisor Services 3-4

Supervisor Service X'81': Name Resolution 3-5
Supervisor Service X'83': Get Request Completion 3-7
Supervisor Service X'04': Create Fixed-Length Queue Entry 3-9
Supervisor Service X'13': Dequeue Data 3-12
Supervisor Service X'06': Delete Entry 3-15

Chapter 3. Coding Supervisor Services 3-1

Introduction

Introduction

This chapter describes how to code requests for supervisor services provided
by the API that are needed for the rest of the application program services
described in this part of the manual. These supervisor services are a small
subset of the supervisor services that are described in Part 3.

You use the services in this chapter to obtain the gate name for the
services your application program will use, to obtain the results of services
that you have requested asynchronously, and to create, obtain data from,
and delete fixed-length queues.

Obtaining the Gate Name for the Services Your Application Program Will
Use

3-2

A gate is a grouping of services (or requests, as is the case with the
multiple DOS support services) that perform a common function. Each gate
is assigned a name when the gate is created. The workstation program
provides the following groups of services/requests, or gates:

Services or Requests

Session information services
Keyboard services
Window management services
Host interactive services
Presentation space services
3270 keystroke emulation services
Copy services
Translate service
Operator information area services
Multiple DOS support services

Query environment size
Asynchronous DOS function
Get storage

Gate Name

SESSMGR
KEYBOARD
WSCTRL
MFIC
PCPSM
3270EML
COpy
XLATE
OIAM

INDJQRY
INDJASY
MEMORY

Each group of services is identified to the workstation program by a I6-bit
number, called the gate ID. Before your application program can use any of
the services in a particular gate, you must obtain the gate ID that the
workstation program assigns to the gate. You do this by requesting the
Name Resolution service, specifying an alphanumeric gate name on the
request. The workstation program returns the gate ID to your application
program. You should save the gate ID in a variable, because you must
provide it as input when you request any of the services in the gate.

Introduction

Obtaining the Results of Services You Have Requested Asynchronously

Most of the application program interface services described in this part of
the manual are processed synchronously by the workstation program. That
is, when control is returned to your application program, the registers and
the parameter list contain the values assigned to them on request
completion. However, you can specify asynchronous processing of the
following services:

• Keyboard service X'04': Write Keystroke
• Host interactive service X'Ol': Connect to Host Session
• Host interactive service X'02': Disconnect from Host Session
• Host interactive service X'03': Read Structured Field
• Host interactive service X'04': Write Structured Field
• Host interactive service X'05': Define Buffer

When you specify asynchronous processing of these requests, control can be
returned to your application program before the workstation program has
completed the request. You must use the Get Request Completion service
to obtain the values in the parameter list when the request is completed.

You can also use the Get Request Completion service for request processing
of task or components. Request processing is described in Part 3.

Creating Fixed-Length Queue Entries

For some of the application program interfaces, your application program
must create a fixed-length queue.

You create a fixed-length queue by requesting the Create Fixed-Length
Queue Entry service. The workstation program uses fixed-length queues to
notify your application program about events that have occurred and that
affect the operation of your program, and also to pass keystrokes that were
typed on the keyboard to your application program for processing.

The space for the fixed-length queue must reside in your application
program's program space. The first 10 bytes of the queue are reserved for
use by the workstation program.

You can write code that uses fixed-length queues to pass data between
programs running in the 3270 Personal Computer. The services that you
use to do this are described in Part 3.

Obtaining Data from a Fixed-Length Queue

As described above, the workstation program uses fixed-length queues to
notify your application program about events that have occurred and that
affect the operation of your program. You obtain the data on a fixed-length
queue by requesting the Dequeue Data service. The Dequeue Data service
returns the specified number of bytes of information to your application
program.

Chapter 3. Coding Supervisor Services 3-3

Introduction

You can write code that uses fixed-length queues to pass data between
programs running in the 3270 Personal Computer. The services that you
use to do this are described in Part 3.

Deleting Fixed-Length Queues

When your application program no longer needs a fixed-length queue, it
must tell the workstation program that the entry it has created for the
fixed-length queue is no longer needed. You tell the workstation program
to delete its entry for a fixed-length queue by requesting the Delete Entry
service.

The Delete Entry service can also be used to tell the workstation program
to delete its entries for other supervisory objects. Information on these
other supervisory objects is in Part 3.

Note that the workstation program will not allow you to delete objects on
which requests are still pending. For example, if a task has done a dequeue
with a "wait for data" option set, the queue it is waiting on cannot be
deleted until that request has been satisfied (that is, data is enqueued to
that queue and returned to the dequeueing task).

The supervisor services that you will need to code requests for the rest of
the services in this part of the manual are:

• Name Resolution: Use this service to resolve the application
interface gate name to its numeric gate ID.

• Get Request Completion: Use this service to obtain the results of
services requested asynchronously.

• Create Fixed-Length Queue Entry: Use this service to create an
entry in the sve table for a fixed-length queue.

• Dequeue Data: Use this service to dequeue data from the specified
fixed-length queue.

• Delete Entry: Use this service to delete the entry in the sve table for
the specified fixed-length queue.

Requesting the Supervisor Services

3-4

To request any of the supervisor services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Name Resolution

Supervisor Service X'81': Name Resolution

Register Values

Use this service to resolve the application interface gate name to its
numeric gate ID. You can also use this service for name resolution of other
supervisory objects. Refer to Chapter 15, "Coding Supervisory Object
Services," for information about the additional uses of the Name Resolution
service.

On Request

AH = X'81'
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

BH = X'07'
CH = X'12' or X'13'
CL = Return code
DX = Gate ID

The contents of registers
AX, BL, ES, and Dr are
unpredictable.

Register Definitions

Request Registers:

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the resolved name, which is the numeric
representation of the alphanumeric ASCII gate name.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0-7 8 bytes Gate name Unchanged

Chapter 3. Coding Supervisor Services 3-5

Name Resolution

Parameter Definitions

Request Parameters:

• The gate name must be ASCII characters, and must be padded to the
right with blanks if it is less than eight characters long. The gate name
to use for a group of services is described in the introduction to each
chapter in this part of the manual.

Return Codes

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'OF'
X'2E'

Meaning

Successful completion of the request
Invalid environment access
Name not found

Coding Example

PARAMETER LIST FOR NAME RESOLUTION
;
SERVNAME DB 'KEYBOARD'

INITIALIZE REGISTERS FOR NAME RESOLUTION

MOV AH,81H AH = X' 81'
MOV DI,SEG SERVNAME SEGMENT ADDRESS OF

THE PARAMETER LIST
MOV ES,DI ES = SEGMENT ADDRESS OF

THE PARAMETER LIST
MOV DI,OFFSET SERVNAME 01 = OFFSET ADDRESS OF

THE PARAMETER LIST

SIGNAL WORKSTATION PROGRAM FOR NAME RESOLUTION SERVICE

INT 7AH

3-6

Get Request Completion

Supervisor Service X'83': Get Request Completion

Register Values

Use this service to obtain the results of the following services when they
are requested with asynchronous processing specified:

• Keyboard service X'04': Write Keystroke

• Host interactive service X'Ol': Connect to Host Session

• Host interactive service X'02': Disconnect from Host Session

• Host interactive service X'03': Read Structured Field

• Host interactive service X'04': Write Structured Field

• Host interactive service X'05': Define Buffer

On Request

AH = X'83'
BL = X'OO' or X' 40'

Set the BL register to:

On Completion

AX = Request ID
BL = X'OO' or X'40'
CH = X'12'
CL = Return code
ES = Segment address of the parameter list
DI = Offset address of the parameter list

The contents of registers BH and DX are
un predictable.

• X'OO' if you want to check whether results are available (asynchronous
processing)

• X'40' if you want to wait until results are available (synchronous
processing).

Register Definitions

Completion Registers:

• The AX register contains the request ID of the service whose results
were obtained. This is the same value that was returned in the AX
register of a previously requested service. You can determine which
previously requested service the results are for by matching the request
IDs.

• The ES and DI registers are set to the segment and offset addresses of
the service's parameter list, which contains the results of the service.

Chapter 3. Coding Supervisor Services 3-7

Get Request Completion

Parameter List Format

Return Codes

See the description of the requested service for the format of the parameter
list.

Code

X'OO'
X'09'

Meaning

Successful completion of the request.
No results are available.

Additional return codes pertaining to the requested service may appear.
Refer to the description of the requested service for a listing of the possible
return codes.

Coding Example

3-8

INITIALIZE REGISTERS FOR GET REQUEST COMPLETION

MOV
MOV

AH,83H
BL,40H ; WAIT TYPE = COMPLETION QUEUE

i SIGNAL WORKSTATION PROGRAM FOR GET REQUEST COMPLETION SERVICE
INT 7AH

Create Fixed-Length Queue Entry

Supervisor Service X'04': Create Fixed-Length Queue
Entry

Register Values

Use this service to create an entry in the SVC table for a fixed-length
queue.

On Request

AH = X'04'
BL = 0 = no name / 1 = name
CX = Queue length
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12' or X'13'
CL = Return code
DX = Queue ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BL register indicates whether the queue has a name associated
with it.

Possible values for the BL register are:

o = the queue has no name
1 = the queue's name is in the parameter list

• The CX register contains the number of bytes your application program
has reserved for the fixed-length queue. The queue must be greater
than 10 bytes long, because the first 10 bytes of the queue are reserved
for use by the workstation program.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the fixed-length queue.

Chapter 3. Coding Supervisor Services 3-9

Create Fixed-Length Queue Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of the Unchanged
queue

2 1 word Segment address of Unchanged
the queue

4 - 11 8 bytes Queue name Unchanged

Parameter Definitions

Return Codes

Usage Notes

3-10

Request Parameters:

• The queue name is an optional parameter and is needed only if the BL
register is set to 1 on request. The queue name can be a maximum of
eight ASCII characters and should be padded to the right with blanks if
necessary.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'41'

Meaning

Successful completion of the request.
Queue name already exists.
SVC table full.
N arne table full.
Invalid queue length.

• The fixed-length queue resides in the requester's environment.

Create Fixed-Length Queue Entry

Coding Example

i DEFINE PARAMETER LIST FOR CREATE QUEUE
i
CQQOFFS
CQSEGM
CQQNAME

DW
DW
DB

o
o
8 DUP (' ')

INITIALIZE FIRST 2 ENTRIES OF PARAMETER LIST

MOV
MOV

CQQOFFS,OFFSET Q
CQSEGM,SEG Q

OFFSET OF QUEUE
SEGMENT OF QUEUE

THE USER HAS A QUEUE NAME

MOV
CLD
MOV
MOV
MOV
REP

BL,OlH

CX,4
SI,OFFSET
DI,OFFSET
MOVSW

INDICATE A QNAME IS SPECIFIED
BEGIN MOVING QNAME TO THE PARAM LIST
QNAME IS FOUR WORDS LONG

QNAME i SOURCE OFFSET OF QUEUE
CQQNAMEiDESTINATION OFFSET IS CQQNAME

i MOVE QNAME TO PARAMETER LIST

INITIALIZE REGISTERS FOR CREATE QUEUE

MOV
MOV
MOV
MOV
MOV

AH,04H
CX,50
DI,SEG CQQOFFS
ES,DI i

DI,OFFSET CQQOFFSi

CX = NUMBER OF BYTES FOR QUEUE
ADDRESSABILITY TO
PARAMETER LIST
USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR CREATE QUEUE SERVICE

INT 7AH

Chapter 3. Coding Supervisor Services 3-11

Dequeue Data

Supervisor Service X'13': Dequeue Data

Register Values

Use this service to dequeue data from the specified fixed-length queue.

On Request

AH = X'13'
BL = Wait type
CX = Number of bytes
DX = Fixed-length queue ID
ES = Segment address of data
DI = Offset address of data

On Completion

CH = X'12' or X'13'
CL = Return code
DX = Number of bytes

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

3-12

Request Registers:

• The BL register specifies the type of wait state your application
program will go into until the request is completed. The type of wait is
specified through a bit mask. When more than one type of wait is
specified, the wait state ends when anyone of the conditions is
satisfied. The bits in the wait type are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program will wait until a request
queue element is in its request queue. If an RQE is already in its
request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program will wait until a request
queue element is in its completion queue. If an RQE is already in its
completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program will wait until it receives
a 'completion' signal.

If bit 3 is set to 1, your application program will wait until it receives
a 'got semaphore' signal.

Return Codes

Dequeue Data

If bit 4 is set to 1, your application program will wait until it receives
a 'timer tick' signal.

If bit 5 is set to 1, your application program will wait until it receives
a 'generic' signal.

If bit 6 is set to 1, your application program will wait until it receives
a 'data available' signal.

Bit 7 is reserved and must be set to O.

Note: A wait type of "no wait" is specified by setting the wait type to
X'OO'.

• The CX register contains the number of bytes to be dequeued from the
specified fixed-length queue. When you are de queueing information that
the workstation program has placed on a fixed-length queue, this number
should be X'04'.

• The DX register contains the ID of the fixed-length queue.

• The ES and DI registers point to the beginning of a data area provided by
your application to contain the dequeued data.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type have the same meaning
as the bits in the wait type.

• The DX register contains the number of bytes remaining on the
fixed-length queue.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'09'
X'13'
X'37'

Meaning

Successful completion of the request.
Invalid index specified.
The fixed-length queue is empty.
Number of bytes requested is too large.
Not your turn to dequeue.

Chapter 3. Coding Supervisor Services 3-13

Dequeue Data

Usage Notes

• Programs running in stoppable environments cannot dequeue data from
fixed-length queues in other stoppable environments.

• If you want to get control back as soon as data appears on your queue,
use a wait type of "wait for data available."

• If two or more tasks request the Dequeue Data service for the same
fixed-length queue, the supervisor processes the requests in first-in
first-out (FIFO) order.

• If you use a wait type other than "wait for data available," and another
request for data from the queue was received before your request, you
will receive a return code indicating that it is not your turn to dequeue.

Coding Example

3-14

DATA AREA FOR DEQUEUE

DATAAREA DB 4 DUP(O)

INITIALIZE REGISTERS FOR DEQUEUE

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,13H
BL,02H
CX,0004H
DX,QUEUEID
DI,SEG DQSESSID
ES,DI
DI,OFFSET DQSESSID

DATA AREA TO RECEIVE 4 BYTES FROM THE
DEQUEUE

WAIT UNTIL INFORMATION IS AVAILABLE
DEQUEUE 4 BYTES
FIXED-LENGTH QUEUE ID IN DX
SEGMENT ADDRESS OF DATA AREA IN ES

OFFSET ADDRESS OF DATA AREA IN DI

SIGNAL WORKSTATION PROGRAM FOR DEQUEUE SERVICE

INT 7AH

Delete Entry

Supervisor Service X'06': Delete Entry

Register Values

Use this service to delete the entry in the SVC table representing the
specified fixed-length queue.

On Request

AH = X'06'
DX = Fixed-length queue ID

On Completion

CH = X'12' or X'13'
CL = Return code

The contents of registers AX, BX,
DX, ES, and DI are unpredictable.

Register Definitions

Return Codes

Usage Notes

Request Registers:

• The DX register contains the ID of the supervisory object to be deleted
from the SVC table.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'OF'
X'30'

X'31'
X'3F'

Meaning

Successful completion of the request.
Invalid supervisory object ID.
Specified object is in an inaccessible environment.
Cannot delete a task, fixed-length queue, or semaphore that has
pending requests.
Cannot delete a task that has timers.
Cannot delete a service entry in a gate.

• If requests are outstanding for the fixed-length queue entry, then the
entry will not be removed and an error indicator will be returned.

• An application program running in a stoppable environment can only
delete entries in its own environment.

• Part 3 of this manual describes additional supervisory objects the Delete
Entry service can delete that you can create in application programs.

Chapter 3. Coding Supervisor Services 3-15

Delete Entry

Coding Example

INITIALIZE REGISTERS FOR DELETE AN ENTRY REQUEST

3-16

MOV AH,06H
MOV DX,QUE$ID ; DX ~ FIXED LENGTH QUEUE ID

SIGNAL WORKSTATION PROGRAM FOR DELETE AN ENTRY SERVICE

INT 7AH

Delete Entry

Chapter 4. Coding Session Information Service Requests

Introduction .. 4-2
Requesting the Session Information Services 4-3
Return Codes for the Session Information Services 4-4

Session Information Service X'Ol': Query Session ID 4-5
Session Information Service X'02': Query Session Parameters 4-10
Session Information Service X'04': Detach Session ID 4-14
Session Information Service X'05': Attach Session ID 4-17
Session Information Service X'06': Query Windows in Environment .. 4-20
Session Information Service X'07': Query Environment of Window .. , 4-23
Session Information Service X'08': Query PC Session Program

Information File (PIF) Information 4-26
Session Information Service X'OA': Query Base Window 4-30
Session Information Service X'OB': Query Session Cursor 4-33

Chapter 4. Coding Session Information Service Requests 4-1

Introduction

Introduction

4-2

This chapter describes how to code requests for the session information
services provided by the API.

The session information services allow your application program to query
the workstation program to find out what sessions are currently defined, and
what the characteristics of those sessions are. The session information
services are:

• Query Session ID Service: Use this service to obtain the ID of the
session you specify. You can specify a particular session by its short or
long name, or ask for the IDs of all sessions of a particular session type.
The session types that are supported on the 3270 Personal Computer are:

The work station control session
Distributed function terminal (DFT) host session
Central unit terminal (CUT) host session
Notepad session
Personal computer session

A session ID is required as input for most of the remaining API services.
Your application program must request the Query Session ID service for
all sessions it will be referencing in API service requests. Typically,
obtaining the necessary session IDs is included in the initialization
portion of an application program.

• Query Session Parameters Service: Use this service to obtain the
session characteristics of a particular session. The characteristics
obtained by this service are:

The session type
Whether the session has base or extended attribute support (host
session only)
Whether the session supports programmed symbols (host session
only)
The number of rows and columns in the session's presentation space
The segment and offset address of the session's presentation space

• Attach and Detach Session ID Services: Use these services to
attach to and detach from a session. These services should be used by
system extensions that provide some service to a session. Attaching to
the session assures that the session will not be deleted until you detach
from it.

• Query Windows in Environment Service: Use this service to obtain
a list of the windows that are defined within a specified environment.

Introduction

• Query Environment of Window Service: Use this service to obtain
the environment ID of a specified window.

• Query PC Session PIF Information: Use this service to obtain a flag
that indicates the answers to questions about the Program Information
File. This is for the application program running in the specified
personal computer session.

• Query Base Window Service: Use this service to obtain the session
ID and short name of the base window of a particular environment. The
base window is the window that was defined at configuration time for the
specified environment. You can use this service to obtain the session ID
for the session your application program is currently running in.

• Query Session Cursor Service: Use this service to obtain the cursor
type and the row and column addresses of the specified session's cursor
on the session's presentation space. The possible cursor types are as
follows:

Underscore cursor (blinking or not blinking)

An underscore cursor appears as: _

Box cursor (blinking or not blinking)

A box cursor appears as: •

Inhibited cursor

An inhibited cursor is not displayed. When the cursor position
changes, the text in the window is not moved to keep the cursor
inside the window borders.

Inhibited cursor with autos croll

An inhibited cursor with autoscroll is not displayed. When the
cursor position changes, the text in the window is moved to keep the
cursor inside the window borders.

Requesting the Session Information Services

To request any of the session information services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the session information services, it
must request the Name Resolution service, using 'SESSMGR ' as the
gate name in the parameter list. (Remember that the gate name must be
padded to the right with blanks if it is less than eight characters.)

Chapter 4. Coding Session Information Service Requests 4-3

Introduction

Return Codes for the Session Information Services

4-4

Each session information service has two return codes associated with it, a
system return code and a session management return code. Both types of
return codes are 2-byte values made up of a function ID and an error number.
The function ID indicates the portion of the workstation program in which
the error occurred. The error number indicates the specific type of error
that has occurred. An error number of X'OO' always indicates a successful
acceptance or completion of the request.

• System return codes:

After your application has requested a session information service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in the
CH register, and the error number is in the CL register. System return
codes use a function ID of X'12'. The error codes that can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

, Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all session information services.

• Session information services return codes:

After a requested session information service is completed, bytes 0 and 1
of the parameter list contain a return code generated by the session
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte O. Session information return
codes use a function ID of X'6B'. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix H, "Return Codes," for more information.

Query Session ID

Session Information Service X'Ol': Query Session ID

Register Values

Use this service to obtain the session ID of the session you specify. You can
specify a session by its short or long name, or ask for the IDs of all sessions
of a particular type.

On Request

AH = X'09'
AL = X'01'
BH = X'80'
BL = X'20'
CX = X'OOOO'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Option code Unchanged

3 1 byte Data code Unchanged

4 1 word Offset address of Unchanged
name array

6 1 word Segment address of Unchanged
name array

8 - 15 8 bytes Session long name Unchanged

Parameter Definitions

Request Parameters:

• To obtain the session ID of a session whose short name you
specify:

The option code must be X'01'.
The data code must be the I-character (A - Z) ASCII short name of
the session.

The session long name is ignored.

Chapter 4. Coding Session Information Service Requests 4-5

Query Session ID

• To obtain the session ID of a session whose long name you specify:

The option code must be X'OI'.

The data code must be X'OO'.

Bytes 8 through 15 must' contain the long name of the session, padded
to the right with blanks if it is less than eight characters long.

• To obtain the session ID for all sessions of a specific session type:

The option code must be X'OO'.

The data code must be:

X'Ol' for a work station control session.
X'02' for a DFT host session.
X'03' for a CUT host session.
X'04' for a notepad session.
X'05' for a personal computer session.

The session long name is ignored.

Name Array Format

Contents Contents
Offset Length on Request on Completion

0 1 byte N arne array length Unchanged

1 1 byte Reserved Number of matching
seSSIons

2 * 1 byte Reserved Short name of session 1

3 * 1 byte Reserved Type of session 1

4 * 1 byte Reserved Session ID of session 1

5 * 1 byte Reserved Reserved
6 - 13 * 8 bytes Reserved Long name of session 1

• • •
and so on for all possible matching sessions.

* The format of the name array offsets 2 through 13 must be repeated for as many possible
sessions as can match the Query Session ID service request.

4-6

Query Session ID

Name Array Parameter Definitions

Request Parameters:

• The name array length is the number of bytes in the name array. The
name array must be at least 14 bytes long and no greater than 170 bytes
long. In addition, if you are coding this service to obtain the session ID
for all sessions of a specific type, the name array must be large enough
for all the possible matching sessions that can be returned for the session
type.

Completion Parameters:

• The number of matching sessions contains the number of sessions that
matched the request.

• The session short name is the I-character uppercase ASCII alphabetic
name of the session (A through Z).

• The session type is one of the following:

X'OI' for a work station control session.
X'02' for a DFT host session.
X'03' for a CUT host session.
X'04' for a notepad session.
X'05' for a personal computer session.

• The session ID is the ID that the workstation program uses to identify
the session. You use the session ID to specify this session in any
following API service requests.

• The session long name is the 8-character ASCII name assigned to the
session when it was configured. The session long name is padded to the
right with blanks if necessary.

Chapter 4. Coding Session Information Service Requests 4-7

Query Session ID

Return Codes

4-8

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'03'
X'09'
X'OB'
X'OC'
X'OD'
X'll'
X'12'
X'13'

Meaning

Successful completion.
The specified long name is invalid.
The session type is invalid.
The specified short name is invalid.
Byte 0 of the parameter list not zero on request.
Invalid option code.
No session has been configured for the specified session type.
The name array length is invalid.
The specified short name is not an uppercase ASCII alphabetic
character.

See Appendix H, "Return Codes," for more information.

Query Session ID

Coding Example

DEFINE PARAMETER LIST FOR QUERY SESSION ID
;
QDRCODE
QFXNID
QDOPT
QDDATA
QDAOFF
QDASEG
QDLNAM

DB 0
DB 0
DB 0
DB 0
DW 0
DW 0
DB 8

MOV
MOV
MOV

DUP(, ,)

AX,SEG QDRCODE
ES,AX
DI,OFFSET QDRCODE

RETURN CODE
FUNCTION ID
OPTION BYTE
DATA BYTE
NAMES ARRAY OFFSET
NAMES ARRAY SEGMENT ADDRESS
SESSION LONG NAME

ADDRESSABILITY TO
PARAMETER LIST
USING ES:DI

INITIALIZE PARAMETER LIST FOR QUERY SESSION ID

THERE

SET UP

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

IS A LONG

CLD
PUSH
MOV
MOV
MOV
MOV
MOV
REP
POP

REGISTERS

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AL,OlH
QDOPT,AL
AL,OOH
QDDATA,AL
QDAOFF,OFFSET ARRAYNAME
QDASEG,SEG ARRAY NAME
QDRCODE,OOH
QFXNID,OOH

SESSION NAME

DS
CX,4
SI,OFFSET LONGNAME
AX,SEG LONGNAME
DS,AX
DI,OFFSET QDLNAM
MOVSW
DS

FOR QUERY SESSION ID

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OOH
DX,SESSMGR
DI,OFFSET QDRCODE

OBTAIN THE SESSION ID OF
A LONG NAME SPECIFIED

DATA BYTE
ARRAY OFFSET
ARRAY SEGMENT
RETURN CODE 0 ON REQUEST
FUNCTION ID = 0 ON REQUEST

BEGIN MOVING NAME
INTO PARAMETER LIST
NAME IS FOUR WORDS LONG
SOURCE OFFSET IN SI

SOURCE SEGMENT IN DS
DESTINATION OFFSET IN DI
MOVE SESSION NAME TO
TO PARAMETER LIST

RESOLVED VALUE FOR 'SESSMGR'
OFFSET ADDRESS OF
PARAMETER LIST

SIGNAL WORKSTATION PROGRAM FOR QUERY SESSION ID SERVICE

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-9

Query Session Parameters

Session Information Service X'02': Query Session
Parameters

Register Values

Use this service to obtain the session characteristics of the session you
specify.

On Request

AH = X'09'
AL = X'02'
BH = X'80'
BL = X'20'
CX = X'oooO'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'BB')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 byte Reserved Session type

5 1 byte Reserved Session characteristics

B 1 byte Reserved Rows

7 1 byte Reserved Columns

8 1 word Reserved Offset address of
presentation space

10 1 word Reserved Segment address of
presentation space

4-10

Query Session Parameters

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session whose characteristics you are
requesting.

Completion Parameters:

• The session type byte is as follows:

X'Ol' for a work station control session.
X'02' for a DFT host session.
X'03' for a CUT host session.
X'04' for a notepad session.
X'05' for a personal computer session.

• The bits in the session characteristics byte are as follows:

0 1 2-7
EAB PSS Reserved

- If bit 0 (EAB) = 0, the session has base attributes.
- If bit 0 (EAB) = 1, the session has extended attributes.
- If bit 1 (PSS) = 0, the session does not support programmed symbols.
- If bit 1 (PSS) = 1, the session supports programmed symbols.

• "Rows" is the hexadecimal number of rows in the session's presentation
space.

• "Columns" is the -hexadecimal number of columns in the session's
presentation space.

• The offset and segment addresses of the presentation space point to the
session's presentation space. See Appendix F for a discussion of
presentation space considerations.

Chapter 4. Coding Session Information Service Requests 4-11

Query Session Parameters

Return Codes

Usage Notes

4-12

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'06'
X'OC'

Meaning

Successful completion.
Specified session ID is invalid.
Specified session ID not in use.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• The session ID required as input for this service can be obtained in the
following ways:

By requesting the Query Session ID service
By requesting the Query Base Window service
Or, if you defined a presentation space with the Define Presentation
Space service, the session ID would be returned

Query Session Parameters

Coding Example

;
; PARAMETER LIST FOR QUERY SESSION PARAMETERS SERVICE
;
QPRETNCD DB 0
QPFXNID DB 0
QPSESSID DB 0
QPRESERV DB 0
QPSESTYP DB 0
QPSESCHR DB 0
QPROWS DB 0
QPCOLS DB 0
QPPSOFF DW 0
QPPSSEG OW 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
SESSION TYPE
SESSION CHARACTERISTICS
NUMBER OF ROWS
NUMBER OF COLUMNS
OFFSET OF PRESENTATION SPACE
SEGMENT OF PRESENTATION SPACE

INITIALIZE PARAMETER LIST FOR QUERY SESSION PARAMETERS SERVICE

MOV
MOV
MOV
MOV

QPRETNCD,OOH
QPFXNID,OOH
AL,SESSID
QPSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR QUERY SESSION PARAMETERS SERVICE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
DI, SEG QPRETNCD
ES,DI
DI,OFFSET QPRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY SESSION PARAMETERS SERVICE

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-13

Detach Session ID

Session Information Service X'04': Detach Session ID

Use this service to detach from a currently defined session.

Register Values

On Request

AH = X'09'
AL = X'04'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

Contents
Offset Length on Request

0 1 byte Must be zero

1 1 byte Must be zero

2 1 byte Session ID

3 1 byte Reserved

Parameter Definitions

Request Parameters:

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents
on Completion

Return code

Function ID (X'6B')

Unchanged

Reserved

• The session ID is the ID of the session to detach from.

4-14

Return Codes

Usage Notes

Detach Session ID

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'06'
X'OC'
X'14'

Meaning

Successful completion.
Specified session ID is invalid.
Specified session ID not in use.
Byte 0 of the parameter list is not zero on request.
Cannot detach from the session now.

See Appendix H, "Return Codes," for more information.

This service should be used only by a system extension that provides a
service for some session. Attaching to a session ID by issuing an Attach
Session ID service request guarantees that the session ID you are providing
services for will not be deleted until you detach from it. However, it is
possible for the fixed-length queue or presentation space associated with the
session to be deleted. If a deletion of this type occurs before you issue a
Detach Session ID request for the session, an appropriate error code will be
issued when you request a service for the session. If this error occurs, you
should request the Detach Session ID service for the session, to make the
session ID available to some other system extension.

Chapter 4. Coding Session Information Service Requests 4-15

Detach Session ID

Coding Example

4-16

; PARAMETER LIST FOR DETACH SESSION ID
;
DTRETNCD DB 0
DTFXNID DB 0
DTSESSID DB 0
DTRSRVD DB 0

RETURN CODE
FUNCTION ID
SESSION ID

INITIALIZE PARAMETER LIST FOR DETACH SESSION ID

MOV
MOV
MOV
MOV

DTRETNCD,OOH
DTFXNID,OOH
AL,SESSID
DTSESSID,AL

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID IN
PARAMETER LIST

o BEFORE REQUEST
o BEFORE REQUEST

INITIALIZE REGISTERS FOR DETACH SESSION ID

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
DI, SEG DTRETNCD
ES,DI
DI,OFFSET DTRETNCD

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DETACH SESSION ID SERVICE

INT 7AH

Attach Session ID

Session Information Service X'05': Attach Session ID

Register Values

Use this service to attach to a currently defined session.

On Request

AH = X'09'
AL = X'05'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session to attach to.

Chapter 4. Coding Session Information Service Requests 4-17

Attach Session ID

Return Codes

Usage Notes

4-18

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'05'
X'06'
X'OC'

Meaning

Successful completion.
Specified session ID is invalid.
Attachment limit exceeded.
Specified session ID not in use.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

This service should only be used by a system extension that provides a
service for some session. Attaching to a session ID guarantees that the
session ID you are providing services for will not be deleted until you
detach from it. However, it is possible for the fixed~length queue or
presentation space associated with the session to be deleted. If a deletion of
this type occurs before you issue a Detach Session ID request for the
session, an appropriate error code will be issued when you request a service
for the session. If this error occurs, you should request the Detach Session
ID service for the session, to make the session ID available to some other
system extension.

Attach Session ID

Coding Example

PARAMETER LIST FOR ATTACH SESSION 10
i
ATRETNCD DB 0
ATFXNID DB 0
ATSESSID DB 0
ATRSRVD DB 0

RETURN CODE
FUNCTION 10
SESSION ID

INITIALIZE PARAMETER LIST FOR ATTACH SESSION ID

MOV
MOV
MOV
MOV

ATRETNCD,OOH
ATFXNID,OOH
AL,SESSID
ATSESSID,AL

RETURN CODE MUST
FUNCTION ID MUST
SESSION 10 IN
PARAMETER LIST

o BEFORE REQUEST
o BEFORE REQUEST

INITIALIZE REGISTERS FOR ATTACH SESSION ID

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,05H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
01, SEG ATRETNCD
ES,DI
DI,OFFSET ATRETNCD

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR ATTACH SESSION 10 SERVICE

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-19

Query Windows in Environment

Session Information Service X'06': Query Windows in
Environment

Register Values

Use this service to obtain a list of the windows that are defined within a
specified environment. The windows in the environment are listed by their
short name. You can also use this service to obtain the ID of the currently
.active environment.

On Request

AH = X'09'
AL = X'06'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Environment ID or Unchanged or
X'OO' environment ID

3 1 byte Reserved N umber of windows

4 - 23 20 bytes Reserved Window short names

4-20

Query Windows in Environment

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The environment ID is the ID of the environment whose window short
names you wish to obtain. If you want to obtain the ID of the currently
active environment, specify X'OO' in this field in the parameter list on
request.

Completion Parameters:

• If you specified X'OO' in byte 2 of the parameter list on request, the ID of
the currently active environment is returned.

• The number of windows is the number of windows defined to belong to
the specified environment.

• The window short name is the I-character uppercase, ASCII alphabetic
name of each window that belongs to the environment.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'OA'
X'OC'

Meaning

Successful completion.
Invalid environment rD.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• You can use the Query Environment service to obtain the environment
ID to use as input for this service.

Chapter 4. Coding Session Information Service Requests 4-21

Query Windows in Environment

Coding Example

4-22

;
; PARAMETER LIST FOR QUERY WINDOWS IN ENVIRONMENT
;
QQRETNCD DB
QQFXNID DB
QQENVID DB
QQNUMWIN DB
QQWNAMS DB

o
o
o
o
20 DUP(?)

RETURN CODE
FUNCTION ID
ENVIRONMENT ID
NUMBER OF WINDOWS
WINDOW SHORT NAMES

INITIALIZE PARAMETER LIST FOR QUERY WINDOWS IN ENVIRONMENT

MOV
MOV
MOV
MOV

QQRETNCD,OOH
QQFXNID,OOH
AL,ENVID
QQENVID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
ENVIRONMENT ID
IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY WINDOWS IN ENVIRONMENT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,06H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
01, SEG QQRETNCD
ES,DI
DI,OFFSET QQRETNCD

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOWS IN ENVIRONMENT SERVICE;
INT 7AH

Query Environment of Window

Session Information Service X'07': Query Environment
of Window

Register Values

Use this service to obtain the environment ID of a specified window.

On Request

AH = X'09'
AL = X'07'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Window short name Unchanged

3 1 byte Reserved Environment ID

Parameter Definitions

Request Parameters:

• The window short name is the ASCII short name of the window whose
environment ID you are requesting.

Completion Parameters:

• The environment ID is the ID of the environment that owns the
specified window.

Chapter 4. Coding Session Information Service Requests 4-23

Query Environment of Window

Return Codes

Usage Notes

4-24

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'OB'
X'OC'
X'13'

Meaning

Successful completion.
Specified short name is invalid.
Byte 0 of the parameter list not zero on request.
Specified short name is not an uppercase ASCII alphabetic
character.

See Appendix H, "Return Codes," for more information.

• The window name is either:

The short window name selected at customization time (which may
be found using the Query Base Window service), or

The window name specified on the Define Presentation Space
service or returned by this service, if you allowed the system to
select an available window name for you.

Query Environment of Window

Coding Example

PARAMETER LIST FOR QUERY ENVIRONMENT OF WINDOW
;
QIRETNCD DB 0
QIFXNID DB 0
QIWINDOW DB 0
QIENVID DB 0

RETURN CODE
FUNCTION ID
WINDOW SHORT NAME
ENVIRONMENT ID

INITIALIZE PARAMETER LIST FOR QUERY ENVIRONMENT OF WINDOW

MOV
MOV
MOV
MOV

QIRETNCD,OOH
QIFXNID,OOH
AL, I pi

QIWINDOW,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
WINDOW SHORT NAME IN
PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY ENVIRONMENT OF WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,07H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
DI, SEG QIRETNCD
ES,DI
DI,OFFSET QIRETNCD

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ENVIRONMENT OF WINDOW SERVICE;

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-25

Query PC Session PIF Information

Session Information Service X'08': Query PC Session
Program Information File (PI F) Information

Register Values

Use this service to obtain a flag that represents the PIF for the application
program running in the specified personal computer session.

On Request

AH = X'09'
AL = X'08'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Session ID Unchanged

3 1 word Reserved PC session flags

Parameter Definitions

4-26

Request Parameters:.

• The session ID is the ID of the PC session being queried.

Completion Parameters

• The bits in the PC session flags indicate the answers to questions in the
PIF for the application running in the specified session.
Chapter 2, "Programming Considerations" contains information on
creating PIFs and how they are used.

FLAGSET:

MOV
TEST
JE

Query PC Session PIF Information

• The format of the PC session flags is as follows (remember that bit 0 is
the high-order, leftmost, bit in the word and bit 15 is the low-order,
rightmost, bit in the word):

Bit 0 = 1 means that the DISPLAY question was answered "yes."
Bit 1 = 1 means that the INTERRUPT VECTORS swapped include
vectors in the range X'OO' through X'7F'.
Bit 2 = 1 means that the INTERRUPT VECTORS swapped include
vectors in the range X'80' through X'FF'.
Bit 3 = 1 means that the TIMER question was answered "yes."
Bit 4 = 1 means that the KEYBOARD question was answered "yes."
Bit 5 is reserved.
Bit 6 is reserved.
Bit 7 is reserved.
Bit 8 = 1 means that the 8087 question was answered "yes."
Bit 9 is reserved.
Bit 10 = 1 means that the FOREGROUND question was answered
"yes."
Bit 11 is reserved.
Bit 12 is reserved.
Bit 13 is reserved.
Bit 14 = 1 means that the MEMORY question was answered "yes."
Bit 15 is reserved.

For example, to test flag 1 to determine whether the session swaps
interrupt vectors in the range X'OO' through X'7F', you can code:

AX,SFLFLG
AX,4000H
FLAGSET

LOAD REGISTER WITH FLAGS
BINARY '01000000 00000000'
TEST SUCCEEDED, TAKE JUMP

FLAG 1 IS SET

Chapter 4. Coding Session Information Service Requests 4-27

Query PC Session PIF Information

Return Codes

Usage Notes

4-28

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'06'
X'OC'

Meaning

Successful completion.
Specified session ID is invalid.
Specified session ID is not in use.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• An application program can request this service for its own session or
for any other PC session in the same environment or any other
environment.

• The use of this service is helpful if, for example, an application program
needs to know whether it will be suspended if it is not the foreground
application. Using the information obtained by this service allows the
application program to avoid situations such as jumping to another
session, becoming suspended, and being unable either to jump back or
to release a lock on the work station control session. A situation such
as this will hang the workstation program.

• If you· are running an application using this service in a system that is
not configured for Multi-DOS, the flag byte returned will be 00.

Query PC Session PIF Information

Coding Example

; PARAMETER LIST FOR QUERY PC SESSION PIF INFORMATION
;
SFLRCVAL
SFLRCFNC
SFLSID
SFLFLG

DB 0
DB 0
DB 0
OW 0

RETURN CODE
FUNCTION 10
SESSION 10

INITIALIZE PARAMETER LIST FOR QUERY PC SESSION PIF INFORMATION

MOV
MOV
MOV
MOV

SFLRCVAL,OOH
SFLRCNFC,OOH
AL,SESSID
SFLSID,AL

RETURN CODE MUST
FUNCTION 10 MUST
SESSION 10 IN
PARAMETER LIST

o BEFORE REQUEST
o BEFORE REQUEST

INITIALIZE REGISTERS FOR QUERY PC SESSION PIF INFORMATION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,08H
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
01, SEG SFLRCVAL
ES,DI
DI,OFFSET SFLRCVAL

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR QUERY PC SESSION PIF INFORMATION SERVICE

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-29

Query Base Window

Session Information Service X'OA': Query Base Window

Register Values

Use this service to obtain the session ID and short name of the base window
of the specified environment. A base window is any window that was
defined at configuration time or created using the INDSPLIT or
INDMERGE commands.

On Request

AH = X'09'
AL = X'OA'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'BB')

2 1 byte Environment ID Unchanged

3 1 byte Reserved Session ID

4 1 byte Reserved Window short name

5 1 byte Reserved Reserved

Parameter Definitions

4-30

Request Parameters:

• The environment ID is the ID of the environment whose base window
identity you are requesting. If this parameter is zero, the environment
ID defaults to the current environment.

Completion Parameters:

• The session ID is the ID of the session associated with the base window.

• The window short name is the one-character uppercase ASCII name of
the base window.

Return Codes

Usage Notes

Query Base Window

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'OA'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid environment ID.
Byte 0 of the parameter list is not zero on request.
Base window is not found.

See Appendix H, "Return Codes," for more information.

• Use this service to obtain the session ID of the window you are
currently working in, if that window was not created using the Define
Presentation Space service.

Chapter 4. Coding Session Information Service Requests 4-31

Query Base Window

Coding Example

4-32

;
; PARAMETER LIST FOR QUERY BASE WINDOW
;
QSRETNCD DB 0 RETURN CODE
QSFXNID DB 0 FUNCTION NUMBER
QSENVID DB 0 ; ENVIRONMENT ID
QSSESSID DB 0 SESSION ID
QSWINDOW DB 0 WINDOW SHORT NAME
QSRESERV DB 0 RESERVED

INITIALIZE PARAMETER LIST FOR QUERY BASE WINDOW

MOV
MOV
MOV

QSRETNCD,OOH
QSFXNID,OOH
QSENVID,O

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
USE DEFAULT OF CURRENT ENVIRONMENT

INITIALIZE REGISTERS FOR QUERY BASE WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OAH
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
DI, SEG QSRETNCD
ES,DI
DI,OFFSET QSRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY BASE WINDOW SERVICE

INT 7AH

Query Session Cursor

Session Information Service X'OB': Query Session Cursor

Register Values

Use this service to obtain the cursor type and the row and column
addresses of the specified session's cursor.

On Request

AH = X'09'
AL = X'OB'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6B')

2 1 byte Session ID Unchanged

3 1 byte Reserved Cursor type

4 1 byte Reserved Row address

5 1 byte Reserved Column address

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session whose cursor information you
are requesting.

Chapter 4. Coding Session Information Service Requests 4-33

Query Session Cursor

Return Codes

4-34

Completion Parameters:

• The cursor type byte is as follows (where bit 0 is the high-order bit and
bit 7 is the low-order bit):

o Reserved
1 Reserved
2 Reserved
3 Inhibited cursor with autoscroll
4 Reserved
5 Inhibited cursor
6 Blinking cursor
7 Box cursor

• The row address is the address in the session's presentation space
representing the cursor's row position. Row addresses start with zero.

• The column address is the address in the session's presentation space
representing the cursor's column position. Column addresses start with
zero.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Session
information services return codes use a function ID of X'6B'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'06'
X'OC'

Meaning

Successful completion.
Specified session ID is invalid.
Specified session ID not in use.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Query Session Cursor

Coding Example

PARAMETER LIST FOR QUERY SESSION CURSOR
;
CRRETNCD DB ° RETURN CODE
CRFXNID DB ° FUNCTION ID
CRSESSID DB ° SESSION ID
CRCURSOR DB ° CURSOR TYPE
CRROWADD DB ° ROW ADDRESS
CRCOLADD DB ° COLUMN ADDRESS

INITIALIZE PARAMETER LIST FOR QUERY SESSION CURSOR

MOV
MOV
MOV
MOV

CRRETNCD,OOH
CRFXNID,OOH
AL,SESSID
CRSESSID,AL

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID IN
PARAMETER LIST

° BEFORE REQUEST ° BEFORE REQUEST

INITIALIZE REGISTERS FOR QUERY SESSION CURSOR

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OBH
BH,80H
BL,20H
CX,OFFH
DX,SESSMGR
DI, SEG CRRETNCD
ES,DI
DI,OFFSET CRRETNCD

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY SESSION CURSOR SERVICE

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-35

Query Session Cursor

4-36

Chapter 5. Coding Keyboard Service Requests

Introduction ... 5-2
Scan Code/Shift States 5-3

Key top Characteristics 5-4
Attention Identifier (AID) Keys 5-5
Work Station Control Keys 5-6
Special Keys ... 5-6

ASCII/ASCII Mnemonics 5-7
Keyboard Services 5-7
Requesting the Keyboard Services 5-8
Return Codes for the Keyboard Services 5-8

Keyboard Service X'Ol': Connect to Keyboard 5-9
Keyboard Service X'02': Disconnect from Keyboard 5-13
Keyboard Service X'03': Read Input 5-16
Keyboard Service X'04': Write Keystroke 5-22
Keyboard Service X'05': Disable Input 5-30
Keyboard Service X'06': Enable Input 5-33
Keyboard Service X'07': Post Status Code 5-36

Chapter 5. Coding Keyboard Service Requests 5-1

Introduction

Introduction

This chapter describes how to code requests for the keyboard services
provided by the API.

The keyboard services allow your application program to read and write
keystroke data from a specified session, to disable and enable operator
input from the keyboard of a specified session, and to notify the
workstation program of the status of your application program's keystroke
processing.

A recommended way of performing keystroke processing is for an
application program to create a separate task (using the Create Task Entry
service) that processes keystrokes in a loop until the terminating keystroke
is detected. The application program should use the Set Task Ready service
to set the task to the ready state and cause it to run.

As an example, the keystroke processing task might consist of the
following:

1. An initialization section that would perform the system functions
needed to obtain information required by the task. Some functions that
the initialization section may include are:

• Creating an input queue and if necessary an event queue
• Requesting any query services needed
• Readying the keystroke processing task.

2. A key processing section that should first connect to any sessions with
which the task will interact; it then will loop while performing the Read
Input and Write Keystroke functions as required as well as any other
actions required to process keystrokes. This section could continue to
loop until some terminating condition was detected, such as some
predefined terminating keystroke.

Note that while this task is in the process of doing a Read Input
function with a WAIT option, it will be suspended until something
appears on its input queue. This means that no other processing can be
done by this task until either a keystroke is pressed on the keyboard, or
a 4-byte item is enqueued to the task's input queue by another task.
The task may also do a Read Input function with a NOW AIT option. In
this case, control will be returned if there is nothing on the queue and
processing can be done without pressing another keystroke or receiving
input from another task. In either case, the processing loop can detect
the value returned in the parameter list as a keystroke, continue
processing, and determine the need to terminate either by the keystroke
value or by some other mechanism. It would then avoid doing another
Read Input and set itself unready.

Introduction

3. A cleanup section that will be be run when the task is signaled in some
way to end its processing. This section would disconnect from all
services that it had connected to and delete any items it had created,
such as the input queue. When its cleanup activities are completed,
this section could signal some controlling task that it is done, and set
itself unready. This prevents it from being dispatched again. The
controlling task could delete the key processing task prior to returning
to DOS.

Scan Code/Shift States

The Keyboard Services utilize scan codes/shift states to identify 3270 PC
keyboard events. Each key top on the keyboard is represented by a unique
scan code byte. An additional shift state byte describes the condition of
keyboard modifying keys (that is, Upshift, Caps Lock, Alt, and Ctrl).

The scan code values are listed in Appendix A and are shown on foldouts at
the back of this book. These 3270 PC API values are not the same as those
received when reading keystrokes via standard PC keyboards (for example,
using the BIOS method). For information on the standard PC scan codes,
refer to the IBM Personal Computer Technical Reference manual.

Regardless of what keyboard you have attached, the scan codes/shift states
you either receive or send are the values for the 3270 PC keyboard. These
3270 PC API scan codes/shift states must be used in all cases involving the
use of the keyboard service API. See Appendix A of this manual for a list
of these scan code/shift state values.

Note that, internal to the workstation program, keystrokes are represented
by four bytes as indicated by bytes 8 through 11 of the Read Input
parameter list.

The 3270 PC keyboard has many more key tops than a standard PC
keyboard. However, only those 3270 PC key tops that are found on the
standard PC are available to an application using the standard PC methods
of reading keystrokes. Alternatively, all 3270 PC key tops (except the work
station control key tops) can be made available to the connecting
application via the Read Input service; the Connect to Keyboard service
with the intercept option of "All Keystrokes" is used to enable this
alternative.

The API scan codes/shift states sent by an application are processed using
the Write Keystroke service; as a result, a receiving application using
standard PC methods can expect the same results as if running on a
standard PC.

The keyboard shift state is indicated by a I-byte value that indicates which
of the functions or characters printed on the key top of a given position is
being sent. The shift state byte is described in Appendix A. Note that PC
sessions require the use of bits 2 and 3 of that byte to determine which of
the two shift keys was depressed, while bit 7 alone is sufficient for all other
sessions to recognize the upshifted condition.

Chapter 5. Coding Keyboard Service Requests 5-3

Introduction

Key top Characteristics

5-4

Four types of key top characteristics are used on the 3270 PC keyboard:

1. "Make Only," where one scan code is sent for each depression of the
key, no matter how long it is held down.

2. "Make/Break," where a scan code is sent when the key is pressed
(make) and then a pair of scan codes is sent when the key is released
(break). The first of the two break scan codes is X'FO', which indicates
that a key is released. The second scan code is that of the key that was
released. (This second scan code is the same as that sent when the key
is pressed.)

3. "Typematic," where a single scan code is sent when the key is pressed
and, if after a short time the key is not released, that same scan code is
sent every 100 milliseconds until the key is released.

4. "Typematic Make/Break," which is the same as that described for
"Typematic," except that upon release the breaking pair of scan codes is
sent just as described for the "Make/Break" type of keys.

With the workstation program loaded, the characteristics of the keyboard
are altered to match those expected by the session that is currently active.
From a keystroking perspective, there are only two types of sessions: PC
sessions (those that appear on a standard PC) and non-PC sessions (host,
notepad, and WS Ctrl). The non-PC sessions are all coded to use the host
style of keyboard characteristics, while the PC sessions expect to receive
the standard PC style.

The key top characteristics (with API scan codes in hex) are as follows:

• PC and non-PC sessions; for all cases, the following key tops are "Make
Only." (Regardless of the active session, these key top scan codes are
always sent to the WS Ctrl session.)

WS Ctrl (scan code 04)
ChgSc/Jump (scan code 03)
Enlarge (0-0) (scan code 01)

• PC sessions; all key tops (except those in item 1) are "Typematic
Make/Break" to match the characteristics of the PC's keyboard.

• Non-PC sessions;

The following keys are "Make/Break":

• Upshift, left and right (scan codes 12 and 29)
• Alt, left and right (scan codes 19 and 39)
• Caps Lock (scan code 14)
• Ctr 1 (scan code 09)

Introduction

- The following keys are "Make Only":

Key(s) Scan Code(s)

PFI through PF24 See page FO-l
P Al through P A3 67, 6E and 6F
Help 05
Clear 06
WS Ctrl 04
Finish OC
ChgSc/Jump 03
Erase EOF OB
Print 83
Copy/Auto OA
Enlarge (,0-0) 01
Reset 11
Enter 58
Insert (~) 65
Delete (I) 6D
Home (') 62

On the Numeric Keypad
Esc 76
NumLk 77
,/ScrLk 7E
Space 84
./Del 71
Enter/+ 79

All other key tops are "Typematic."

Care should be taken when sending keystrokes between differing session
types (that is, reading a PC keyboard and sending the results to a non-PC
session, or vice versa), to filter the keystroke characteristics in such a way
as to match what the destination session expects. The same care should be
taken for the scan codes. For example, a host session does not expect the
Enter key to be "Make/Break" and may treat the breaking scan code as a
second Enter key. Similarly, a scan code for the Esc key has no meaning to
a host session and, if sent, will terminate a Write Keystroke request with
an X'10' error condition.

Attention Identifier (AID) Keys

Attention Identifier (AID) keys are those keys that, when pressed in a host
session, cause immediate host interaction. The term AID applied to these
keys is meaningful only during a host session. In a host session, AID keys
are "Make Only" and references to AID keys do not take into account
typematic or make/break characteristics.

Chapter 5. Coding Keyboard Service Requests 5-5

Introduction

The Connect to Keyboard service with the intercept option of "AID
keystrokes only" allows the API program to contr<?l host mainframe
interactions without interfering with normal data entry keystrokes.

The key tops treated as AID keys during a host session are:

PFI through PF24
Enter (--.J)
Clear
SysRq
CrSel
Test
Attn
PAl through P A3

Work Station Control Keys

Special Keys

5-6

Work station control keys are those keyboard keys that, when pressed, have
their scan codes routed to the WS Ctrl session or the interceptor of the WS
Ctrl session's keystrokes. This routing occurs without regard for what
session is active at the time. These keys have no meaning to any other
session and will be rejected if their scan codes are sent to those sessions
through the Write Keystroke service.

The key tops treated as work station control keys are:

WS Ctrl (in the upper and lower shift states, but not in the control shift
or alternate shift states).
ChgSc
Jump
Enlarge (0-0)

There are some additional API scan codes used by the workstation program
that do not appear in the scan code table, but do appear in the Read Input
and Write Keystroke service requests:

• 'FO' is used to indicate that a make/break type key is being released and
that the next scan code to follow represents the key being released.

• '7F' is sent by the workstation program to notify sessions of the current
shift state of the keyboard. The workstation program sends this scan
code whenever the real keyboard is reattached to a session; this ensures
that the session interprets the current shift state as that perceived by
the keyboard operator. This scan code occurs whenever a session is
jumped into or whenever keystrokes have been sent to a session other
than directly from the keyboard. To the session receiving it, this scan
code means "align the session shift state to match the shift state sent
with this scan code."

Introduction

ASCII/ASCII Mnemonics

Keyboard Services

The Keyboard Services API supports an ASCII option on the Read Input
and Write Keystroke API services to allow applications to send and
receives keys in ASCII or ASCII mnemonics. The ASCII values that can be
sent or received include:

• All standard ASCII characters representing keys that can be received
from the keyboard

• ASCII mnemonics that represent HOST and PC keystrokes that do not
have ASCII codes. All mnemonics are two bytes, three bytes, four bytes,
or six bytes long. All mnemonics start with @.

Note: When intercepting keystrokes with ASCII, only the Make key is
returned. Shift, break, and shift alignment keys are not returned
using this option.

Appendix A contains a complete list of all ASCII values and their
corresponding characters.

The keyboard services provided by the API are:

• Connect to Keyboard Service: Use this service to connect to a
session for keyboard services.

• Disconnect from Keyboard Service: Use this service to disconnect
from a session for keyboard services.

• Read Input Service: Use this service to read keystroke data from a
session.

• Write Keystroke Service: Use this service to write keystroke data
to a session.

• Disable Input Service: Use this service to disable operator input to
the session.

• Enable Input Service: Use this service to reenable operator input to
the session.

• Post Status Code Service: Use this service to notify the workstation
program of the status of your application program's keystroke
processing.

Chapter 5. Coding Keyboard Service Requests 5-7

Introduction

Requesting the Keyboard Services

To request any of the keyboard services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the keyboard services, it must
request the Name Resolution service, using KEYBOARD as the gate
name in the parameter list.

Return Codes for the Keyboard Services

5-8

Each keyboard service has two return codes associated with it: a system
return code and a keyboard management return code. Both types of return
codes are 2-byte values made up of a function ID and an error number. The
function ID indicates the portion of the workstation program in which the
error occurred. The error number indicates the specific type of error that
has occurred. An error number of X'OO' always indicates a successful
acceptance or completion of the request.

• System Return Codes:

After your application has requested a keyboard service, the CH and CL
registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH
register, and the error number is in the CL register. System return
codes use a function ID of X'12'. The error codes that can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all keyboard services.

• Keyboard Services Return Codes:

After a requested keyboard service is completed, bytes 0 and 1 of the
parameter list contain a return code generated by the keyboard
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte O. Keyboard services return
codes use a function ID of X'62'. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix H, "Return Codes," for more information.

Connect to Keyboard

Keyboard Service X'Ol': Connect to Keyboard

Register Values

Use this service to connect to a session for keyboard services.

On Request

AH = X'09'
AL = X'Ol'
BH = X'80'
BL = X'20'
CX = X'OOOO'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'l2'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Event queue ID Unchanged
or zero

6 1 word Input queue ID or Unchanged
zero

8 1 byte Intercept options Unchanged

9 1 byte Reserved First connection indicator

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session you want to connect to.

• The event queue ID is the ID of a fixed-length queue that the
workstation program uses to notify you when the program running in
another session has been stopped. If you intend to interact with
programs in other personal computer sessions, using this event queue is
a way of finding out when any of those programs is stopped. Use the
Create Queue service to create this fixed-length queue, and use the
Dequeue Element service to obtain the event information. This
parameter is optional and should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-9

Connect to Keyboard

5-10

The event that can be reported is as follows:

Offset Length Contents

0 1 byte Session ID

1 1 byte X'OO' (Reserved)

2 1 byte X'02' (code)

3 1 byte X'62' (function ID)

This event indicates that the specified session has been
disconnected.

• The input queue ID is the ID of a fixed-length queue used to receive
intercepted keystrokes typed at a session. Use the Create Queue
service to create this fixed-length queue. This parameter is optional
and should be set to zero if not used. If this parameter is set to a
nonzero value, then a valid intercept option must also be set.
Keystrokes can be intercepted from the specified session by requesting
the Read Input service.

• The intercept options specify which types of keystrokes are to be
intercepted from the specified session. If this byte is nonzero, you must
also supply an input queue ID. The bits in the intercept options byte
are as follows:

0 1 2-7

AID keystrokes only All keystrokes Reserved

Bit 0 set to 1 indicates that only keystrokes that would normally
generate an AID in a host session are to be sent to your application
program.

Bit 1 set to 1 indicates that all keystrokes in the session are to be
sent to your application program, including AID keys.

Bits 2 through 7 are reserved and should be set to all zeros.

Completion Parameters:

• The first connection indicator is set to X'FF' if this is the first time a
Connect to Keyboard request has been made to this session.

If connecting to a session defined at configuration time or by an
INDSPLIT or INDMERGE command, the workstation program has
already issued a Connect to Keyboard request for the session.
Therefore, a value of X'FF' indicates an error condition.

If connecting to a session defined by your application program by a
Define Presentation Space service request, the workstation program
will not have issued a prior Connect to Keyboard request for that
session. Therefore, a value of X'FF' is normal.

Return Codes

Usage Notes

Connect to Keyboard

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'04'
X'OC'
X'12'
X'14'

Meaning

Successful completion.
Invalid intercept option.
Invalid session ID.
Session busy; cannot connect at this time.
Byte 0 of the parameter list is not zero on request.
Request failed; an autokey record operation is in progress.
Request failed; an autokey playback operation is in progress.

See Appendix H, "Return Codes," for more information.

• Your application program can be connected simultaneously for
keystroke data to each of the host, notepad, work station control, and
personal computer sessions that your 3270 Personal Computer is
customized to support.

• The recommended size for input queues is 50 bytes.

• A maximum of two connections for keyboard services can be made to a
session at anyone time. If your session was defined at configuration
time or by issuing an INDSPLIT or INDMERGE command, one
connection has already been made to the session by the workstation
program.

• The workstation program issues Connect to Keyboard service requests
for each configured session to provide the capability for the session to
receive and process keystrokes.

A session defined by your application program (by a Define
Presentation service request) requires that a Connect to Keyboard with
an All Keys Intercept option be issued in order to receive and process
keystrokes. Note that this implies that the application must also
provide the keystroking task for such sessions. A second Connect to
Keyboard request can be issued relative to a Define Presentation Space
session.

Chapter 5. Coding Keyboard Service Requests 5-11

Connect to Keyboard

Coding Example

5-12

;
; PARAMETER LIST FOR CONNECT TO KEYBOARD
;
CKRETNCD DB 0 RETURN CODE
CKFXNID DB 0 FUNCTION NUMBER
CKSESSID DB 0 SESSION ID
CKRESRVl DB 0 RESERVED
CKEVENTQ DW 0 EVENT QUEUE ID
CKKEYSTQ DW 0 INPUT QUEUE ID
CKOPTION DB 0 OPTION BYTE
CKISTCON DB 0 FIRST CONNECTION INDICATOR

INITIALIZE PARAMETER LIST FOR CONNECT TO KEYBOARD

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CKRETNCD,OOH
CKFXNID,OOH
AL,SESSID
CKSESSID,AL
CKOPTION,OlOOOOOOB
AX,KEYSTQ
CKKEYSTQ,AX
AX,EVENTQ
CKEVENTQ,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

OPTION = INTERCEPT ALL
KEYSTROKE QUEUE ID INTO THE LIST

EVENT QUEUE ID INTO THE LIST

INITIALIZE REGISTERS FOR CONNECT TO KEYBOARD

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OOH
DX,KEYBOARD
DI, SEG CKRETNCD
ES,DI
DI,OFFSET CKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO KEYBOARD SERVICE

INT 7AH

Disconnect from Keyboard

Keyboard Service X'02': Disconnect from Keyboard

Register Values

Use this service to disconnect from the session when you are finished using
the keyboard services.

On Request

AU = X'09'
AL = X'02'
BU = X'80'
BL = X'20'
CX = x'oooO' .
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CU = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session you want to disconnect from.
The session must have been previously connected to the keyboard
through a Connect to Keyboard service request.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Disconnect from Keyboard service. This parameter is
optional and should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-13

Disconnect from Keyboard

Return Codes

Usage Notes

5-14

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for keyboard services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• This service also enables operator input to the session if it was
previously disabled through a Disable Input service request.

• Before exiting, your application program must use the Disconnect from
Keyboard service for each session that was connected for keystroking
data. This service should be requested at all error exit points as well as
during normal processing.

Disconnect from Keyboard

Coding Example

PARAMETER LIST FOR DISCONNECT FROM KEYBOARD
i
DKRETNCD DB 0 RETURN CODE
DKFXNID DB 0 FUNCTION NUMBER
DKSESSID DB 0 SESSION ID
DKRESRVl DB 0 RESERVED
DKTASKID DW 0 CONNECTOR'S TASK ID

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM KEYBOARD

MOV
MOV
MOV
MOV
MOV
MOV

DKRETNCD,OOH
DKFXNID,OOH
AL,SESSID
DKSESSID,AL
AX,TASKID
DKTASKID,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

CONNECTOR'S TASK ID INTO THE LIST

INITIALIZE REGISTERS FOR DISCONNECT FROM KEYBOARD

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OOH
DX,KEYBOARD
DI, SEG DKRETNCD
ES,DI
DI,OFFSET DKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM KEYBOARD SERVICE

INT 7AH

Chapter 5. Coding Keyboard Service Requests 5-15

Read Input

Keyboard Service X'03': Read Input

Register Values

Use this service to read intercepted keystroke data destined for the session.
An options byte is set to indicate whether the Read is done with scan
code/shift states or with ASCII mnemonics. This service returns the scan
code/shift state and/or the ASCII mnemonic for one keystroke with each
request made.

On Request

AH = X'09'
AL = X'03'
BH = X'80'
BL = X'20'
CX = X'OOOO'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and Dr
are unpredictable.

Parameter List Format

5-16

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

6 1 byte Options byte Unchanged

The bits in the options byte are as follows:

I ~owait I ~ I~ I ~
• Bit 0 set to 1 means to read the keystroke in ASCII format.

• Bit 2 set to 1 means to read the keystroke in scan code/shift state
format.

Note: Choose either ASCII or scan code/shift state format. Do not select
both (that is, do not set bits 0 and 2 equal to 1).

Read Input

• Bit 4 set to 1 means to read the keystroke with the NOW AIT option. If
a keystroke is not available on the queue when this is issued, a return
code of X'09' will be placed in the parameter list and control returned to
the caller. If the bit is not set, the calling test will be suspended until
keystroke data appears on the task input queue.

The remainder of the parameter list depends on whether you have specified
the scan code/shift state format or the ASCII/ASCII mnemonic format.

If you have selected the scan code/shift state format, the parameter list is as
follows:

Contents on Contents on
Offset Length Request (SC/SS) Completion (SC/SS)

7 1 byte Reserved Reserved

8 1 byte Reserved Scan code of the key

9 1 byte Reserved Shift state of the key

10 1 byte Reserved X'OI'

11 1 word Reserved X'OO'

If you have selected the ASCII/ASCII mnemonic format, the parameter list
is as follows:

Contents on Contents on
Offset Length Request (ASCII) Completion (ASCII)

7 1 byte Reserved Length of
ASCII/ ASCII
mnemonic returned in
bytes 8 - 13

8 - 13 6 bytes Reserved ASCII/ ASCII
mnemonic

Chapter 5. Coding Keyboard Service Requests 5-17

Read Input

Parameter Definitions

5-18

Request Parameters:

• The session ID is the ID of the session from which keystroke data is
intercepted.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Read Input service. This parameter is optional and
should be set to zero if not used.

Completion Parameters for Scan Code/Shift State Option:

Keystroke data is sent to a session in a format that uses four bytes of data
to represent the key being sent. The first byte is called the scan code, and
the second byte is called the shift state. The third and fourth bytes are
particular to the device being used and, for a keyboard, should normally be
X'OlOO'.

• The scan code represents a particular key position on the keyboard.

• The shift state indicates which of the possible characters or functions
located at that key position is being sent. The possible shift states are
the lower shift, the upper shift, the alt shift, and the ctrl shift.

Appendix A lists the scan codes for each key position and describes the
format of the shift state byte. In addition, the foldout for the IBM 3270 PC
keyboard (at the back of this book) shows the scan codes for each key
position on the keyboard.

Completion Parameters for ASCII/ASCII mnemonic option:

• ASCII/ASCII mnemonics are from 1 to 6 bytes long. ASCII mnemonics
start with @.

• The length of field is the length of the ASCII code or ASCII mnemonic.

Note: Any bytes left unused will remain unchanged.

See Appendix A for a list of all the ASCII/ASCII mnemonics that can be
received.

Return Codes

Read Input

Note: If the shift state of the key pressed does not contain a unique
ASCII/ASCII mnemonic or if multiple shift states are active, ASCII
mnemonics for the shift state will be prefixed. The valid shift prefix
mnemonics are:

@A - Alt shift active

@S - Upshift active

@r . Ctrl shift active.

An example of this would be pressing alt-a. The ASCII mnemonic
returned would be @Aa. If the Ctrl-shift-A were pressed, the ASCII
mnemonic returned would be @rA.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'04'
X'09'
X'OC'
X'lO'

Meaning

Successful completion.
Invalid intercept option (see Note).
Invalid session ID.
The session is not connected for keyboard services.
Queue empty, no keystroke available.
Byte 0 of the parameter list is not zero on request.
Invalid keystroke.

Note: An invalid intercept option means that the application is trying to do
a Read Input when no Read options were specified on the connect.

See Appendix H, "Return Codes," for more information.

Chapter 5. Coding Keyboard Service Requests 5-19

Read Input

Usage Notes

5-20

• To be able to use the Read Input service, you must do the following
when you request the Connect to Keyboard service:

Specify which types of keystrokes are to be intercepted from the
connected session

Provide the ID of a fixed-length queue to be used by the workstation
program to store the intercepted keystroke data.

• The scan code and shift state returned by this service are not the same
as those returned by BIOS or DOS read keys.

• When using the Read Input service with the scan code option for a PC
session, you must keep in mind that each key will generate an X'FO'
scan code if the key is breaking, followed by the scan code of the key.
See "Special Scan Codes" in Appendix A.

• It is recommended that each Read Input request be followed by a Post
Status Code request, particularly if keystrokes are rejected for any
reason.

• Applications running on non-3270 PC XT hardware that send keystrokes
to or receive keystrokes from the host session will not run on Uni-DOS.

• Applications using the keyboard services should be well-behaved.
Additionally, if your application is using the API to another PC session,
then that session must also be well-behaved.

Coding Example

i
i PARAMETER LIST FOR READ INPUT
i
RKRETNCD DB 0
RKFXNID DB 0
RKSESSID DB 0
RKRESRVl DB 0
RKTASKID DW 0

DB 20H
RKRESRV2 DB 0
RKSCANCD DB 0
RKSHIFST DB 0

DB 0
DB 0

INITIALIZE PARAMETER LIST FOR

MOV RKRETNCD,OOH
MOV RKFXNID,OOH
MOV AL,SESSID
MOV RKSESSID,AL
MOV AX,TASKID
MOV RKTASKID,AX

INITIALIZE REGISTERS FOR READ

AH,09H
AL,03H
BH,80H
BL,20H
CX,OOH
DX,KEYBOARD
DI, SEG RKRETNCD
ES,DI

READ

INPUT

Read Input

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
MUST BE 20H FOR SCAN CODES
RESERVED
SCAN CODE OF THE KEY
SHIFT STATE OF THE KEY
OlH ON RETURN
OOH ON RETURN

INPUT

RETURN CODE MUST = 0 BEFORE
FUNCTION ID MUST = 0 BEFORE
SESSION ID INTO THE LIST

REQUEST
REQUEST

CONNECTOR'S TASK ID INTO THE LIST

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV DI,OFFSET RKRETNCD OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR READ INPUT SERVICE

INT 7AH

Chapter 5. Coding Keyboard Service Requests 5-21

W rite Keystroke

Keyboard Service X'04': Write Keystroke

Register Values

5-22

Use this service to send keystroke data to the session. An options byte is
set to indicate whether the write is done with scan code/shift states or with
ASCII/ASCII mnemonics. Appendix A contains the valid scan code/shift
states or ASCII/ASCII mnemonics that can be sent.

On Request

AH = X'09'
AL = X'04'
BH = X'80' or X'40' (see Note)
BL = X'20' or X'OO' (see Note)
CX = X'OOOO'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

AX = Request ID
CH = X'12'
CL = Return code

The contents of registers
BH, DX, ES, and DI are
un predictable.

Note: The combined contents of the BH and BL registers are either X'8020'
or X'4000'.

• Request Register Values:

For asynchronous processing of the Write Keystroke service request,
set the BH register to X' 40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of each Write Keystroke
service request.

For synchronous processing of the Write Keystroke service request, set
the BH register to X'80' and the BL register to X'20'.

• Completion Register Values:

If you specified asynchronous processing (the BH register = X'40' and
the BL register = X'OO' on request), the AX register contains a request
ID that the workstation program assigned to the request. You use this
request ID to match the results of the service obtained by the Get
Request Completion service to a previously requested service.

Write Keystroke

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X''62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

6 1 byte Options byte Unchanged

The bits in the options byte are as follows:

I ~C/SS I ~ist I ~ I~ I~
• Bit 0 set to 1 means to write the keystroke or list of keystrokes in

ASCII format.

• Bit 2 set to 1 means to write keystroke or list of keystrokes in scan
code/shift state format.

Note: Choose either ASCII or scan code/shift state format. Do not select
both (that is, do not set bits 0 and 2 equal to 1).

• Bit 3 is set as follows:

1 - Write a list of keystrokes.
2 - Write a single keystroke.

The remainder of the parameter list depends on which option you have
specified and on whether you are writing a single keystroke or a list of
keystrokes.

If you are sending a single keystroke with the scan code/shift state option,
the parameter list must be formatted as follows:

Contents on Request Contents on Completion
Offset Length (SC/SS Single) (SC/SS Single)

7 1 byte Reserved Reserved

8 1 byte Scan code of the key Unchanged

9 1 byte Shift state of the key Unchanged

Chapter 5. Coding Keyboard Service Requests 5-23

Write Keystroke

5-24

If you are sending a single keystroke with the ASCII option, the parameter
list must be formatted as follows:

Contents on Request Contents on Completion
Offset Length (ASCII) Single (ASCII) Single

7 1 byte Number of bytes of Number of bytes of
ASCII/ASCII ASCII/ASCII
mnemonics to send (in mnemonics sent
bytes 8-13)

8-13 6 bytes ASCII mnemonic Unchanged

If you are sending a list of keystrokes with the scan code/shift state option,
the parameter list must be formatted as follows:

Contents on Request Contents on Completion
Offset Length (SCjSS List) (SCjSS List)

7 1 byte Reserved N umber of keys sent

8 1 word Offset address of list of Unchanged
keys

10 1 word Segment address of list Unchanged
of keys

If you are sending a list of keystrokes with the ASCII option, the parameter
list must be formatted as follows:

Contents on Request Contents on Completion
Offset Length (ASCII) (ASCII)

7 1 byte Reserved Number of bytes of
ASCII/ASCII
mnemonics in the list
that were sent

8 1 word Offset address of list of Unchanged
keys

10 1 word Segmen t address of list Unchanged
of keys

Write Keystroke

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session to write the keystrokes to.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Write Keystroke service. This parameter is optional and
should be set to zero if not used.

• The format of a list of scan code/shift state keystrokes is as follows:

Offset Length Contents (SC/SS List)

0 1 word 2 x n (where n is the number of keys being
sent to the session)

2 1 byte Scan code of the first key being sent

3 1 byte Shift state of the first key being sent

4 1 byte Scan code of the second key being sent

5 1 byte Shift state of the second key being sent

• • •
2n 1 byte Scan code of the nth key being sent

2n + 1 1 byte Shift state of the nth key being sent

Note: n = 255 keys, which is the maximum value allowed.

The format of a list of ASCII keystrokes is as follows:

Offset Length Contents

0 1 word N (where N is the number of bytes of
ASCII/ ASCII mnemonics being sent to the

,
session)

2 - (N +2) N ASCII/ ASCII mnemonic of the keys being
bytes sent

Note: N = 255 bytes, which is the maximum value allowed.

Chapter 5. Coding Keyboard Service Requests 5-25

Write Keystroke

Return Codes

5-26

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'

X'04'
X'OC'
X'lO'

X'12'

Meaning

Successful completion.
Invalid option byte value.
Invalid session ID, or the list of scan code/shift state
keystrokes is longer than 255 bytes, or the list of
ASCII/ASCII mnemonics is longer than 255 bytes.
The session is not connected for keyboard services.
Byte 0 of the parameter list is not zero on request.
Processing stopped because of invalid scan code or input
inhibited, or invalid ASCII mnemonic.
Processing stopped because AID key was detected; successful
completion.

See Appendix H, "Return Codes," for more information.

Usage Notes

Write Keystroke

• The maximum number of keystrokes that can be sent is 255.

• The maximum number of ASCII/ASCII mnemonic bytes in the list that
can be sent is 255.

• AID keys must not be embedded within a list, although one may be the
last key in a list. The processing of a keystroke list ends when an AID
key is processed or when a keystroke is rejected for any reason. If a
return code of X'lO' or X'12' is received, it is good practice to check byte
7 of the parameter list on completion to determine how many of the
keystrokes or how many bytes of ASCII/ASCII mnemonics were actually
sent before processing was ended.

• If you specified asynchronous processing (BH = X' 40' and BL = X'OO'
on request), you must use the Get Request Completion service to obtain
the results in the parameter list when the Write Keystroke service is
completed.

• Host sessions must be functional in order for keystroke data to be
processed. That is, if your 3270 Personal Computer is customized to
support a host session, but no port is available for that session on the
control unit, any keystroke data sent to that host session will not be
processed.

• If your 3270 Personal Computer is connected to more than one control
unit through a coaxial switch, you can switch to an alternate control
unit by toggling the coaxial switch and pressing the Ctrl key and the
Clear key at the same time. This sequence of keystrokes enables you to
log on to an alternate host system without having to re-IPL the
workstation program.

• A successful completion return code from a Write Keystroke request to
a host session does not mean that the host has processed the keystroke.
It indicates only that the keystroke has been successfully sent to the
host session.

• Applications running on non-3270 PC XT hardware that send keystrokes
to or receive keystrokes from the host session will not run on Uni-DOS.

• Applications using the keyboard services should be well-behaved.
Additionally, if your application is using the API to another PC session,
then that session must also be well-behaved.

Chapter 5. Coding Keyboard Service Requests 5-27

Write Keystroke

Coding Example

5-28

PARAMETER LIST STRUCTURE FOR WRITE KEYSTROKE
i
WRKYPARI
WKRETNCD
WKFXNID
WKSESSID
WKRESRVI
WKTASKID
WKOPTION
WKNUMKEY
WKSCNCOD
WKSHFST
WRKYPARI

WRKYPARM

WKLSTOFF
WKLSTSEG
WRKYPARM
;

STRUC
DB 0
DB 0
DB 0
DB 0
DW 0
DB 0
DB 0
DB 0
DB 0
ENDS

STRUC
DB 8
DW 0
DW 0
ENDS

DUP(OO)

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
OPTIONS BYTE
KEYS SENT SUCCESSFULLY
SCAN CODE OF THE KEY
SHIFT STATE OF THE KEY

OFFSET OF LIST OF KEYSTROKES
SEGMENT OF LIST OF KEYSTROKES

; ALLOCATE STORAGE FOR THE PARAMETER LIST
i
WKPARLST WRKYPARM <>

SET UP THE PARAMETER LIST FOR WRITE KEYSTROKE

IF

IF

MOV WKPARLST.WKRETNCD,OH
MOV WKPARLST.WKFXNID,OH
MOV AL,SESSID
MOV WKPARLST.WKSESSID,AL
MOV AX,TASKID
MOV WKPARLST.WKTASKID,AX

SENDING ONE KEYSTROKE

MOV AL,SCANCD
MOV WKPARLST.WKSCNCOD,AL
MOV AL,SHIFST
MOV WKPARLST.WKSHFST,AL

MOV AL,20H
MOV WKPARLST.WKOPTION,AL

SENDING A LIST OF KEYSTROKES

MOV AX,OFFSET LIST
MOV WKPARLST.WKLSTOFF,AX
MOV AX,SEG LIST
MOV WKPARLST.WKLSTSEG,AX

RETURN CODE MUST BE 0 FOR THE CALL
FUNCTION ID MUST BE 0 FOR THE CALL
SESSION ID INTO THE LIST

CONNECTOR'S TASK ID INTO THE LIST

PUT THE SCAN CODE INTO THE
PARAMETER LIST
PUT SHIFT STATE INTO THE
PARAMETER LIST

PUT THE OPTION BYTE FOR SENDING SCAN
CODES ONE CHARACTER IN THE PARM LIST

PUT THE OFFSET ADDRESS OF THE LIST
INTO THE PARAMETER LIST
PUT THE SEGMENT ADDRESS OF THE LIST
INTO THE PARAMETER LIST

MOV AL,30H ; PUT THE OPTION BYTE FOR SENDING A
MOV WKPARLST.WKOPTION,AL i LIST OF CHARS. IN THE PARM LIST

Write Keystroke

SET UP THE REGISTERS FOR WRITE KEYSTROKE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,40H
BL,40H
eX,OOH
DX,KEYBOARD
01, SEG WKPARLST
ES,DI
01, OFFSET WKPARLST

RESOLVED VALUE FOR 'KEYBOARD'
GET SEGMENT ADDRESS OF PARM LIST
AND PUT IT IN ES
SET 01 TO OFFSET OF PARM LIST

SIGNAL WORKSTATION PROGRAM FOR WRITE KEYSTROKE SERVICE

INT 7AH

Chapter 5. Coding Keyboard Service Requests 5-29

Disable Input

Keyboard Service X'05': Disable Input

Register Values

Use this service to disable operator input to the session.

On Request

AH = X'09'
AL = X'05'
BH = X'80'
BL = X'20'
CX = x'oooO'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

Parameter Definitions

5-30

Request Parameters:

• The session ID is the ID of the session whose keyboard you want to
disable.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Disable Input service. This parameter is optional and
should be set to zero if not used.

Return Codes

Usage Notes

Disable Input

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for keyboard services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• Keystrokes typed on the keyboard of a session can become intermixed
with the keystroke data that your application program is sending to
that session. To prevent this, you can disable the processing of
keystrokes typed on the keyboard of the session by using this service.

• Using the Disable Input service on the work station control session
causes the work station control session to become active with operator
inputs disabled.

Chapter 5. Coding Keyboard Service Requests 5-31

Disable Input

Coding Example

5-32

DEFINE PARAMETER LIST FOR DISABLE INPUT
;
DIRCODE
DIFXNID
DISESID
DIRESRVD
DICONNID

DB 0
DB 0
DB 0
DB 0
DW 0

RETURN CODE
FUNCTION CODE
SESSION ID
RESERVED
CONNECTORS TASK ID

INITIALIZE PARAMETER LIST FOR DISABLE INPUT

MOV
MOV
MOV
MOV

MOV
MOV

AL,SESSID
DISESID,AL
DIRCODE,OOH
DIFXNID,OOH

AX,CONNID
DICONNID,AX

KEYBOARD INPUT DISABLED FOR
THIS SESSION
RETURN CODE MUST=O ON REQUEST
FUNCTION ID MUST=O ON REQUEST
IF THERE IS A CONNECTORS 10
THEN PUT IT IN THE
PARAMETER LIST

INITIALIZE REGISTERS FOR DISABLE INPUT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OSH
BH,80H
BL,20H
CX,OOH
DX,KEYBOARD
DI,SEG DIRCODE
ES,DI
DI,OFFSET DIRCODE

RESOLVED VALUE FOR 'KEYBOARD'
ADDRESSABILITY OF
PARAMETER LIST
USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR DISABLE INPUT SERVICE

INT 7AH

Enable Input

Keyboard Service X'06': Enable Input

Register Values

Use this service to reenable operator input to the session.

On Request

AH = X'09'
AL = X'06'
BH = X'80'
BL = X'20'
CX = X'OOOO'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session whose keyboard you want to
enable.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from. the task
requesting the Enable Input service. This parameter is optional and
should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-33

Enable Input

Return Codes

Usage Notes

5-34

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for keyboard requests.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• The Disconnect from Keyboard service also enables operator input to a
session if it was previously disabled.

• Using the Enable Input service on the work station control session
causes the work station control session to become inactive.

Enable Input

Coding Example

DEFINE PARAMETER LIST FOR ENABLE INPUT
;
EIRCODE DB ° RETURN CODE
EIFXNID DB ° FUNCTION ID
EISESID DB ° SESSID
EIRESRVD DB ° RESERVED
EICONNID DW ° CONNECTOR'S TASK ID

INITIALIZE PARAMETER LIST FOR ENABLE INPUT

MOV
MOV
MOV
MOV

MOV
MOV

AL,SESSID
EISESID,AL
EIRCODE,OOH
EIFXNID,OOH

AX,CONNID
EICONNID,AX

KEYBOARD INPUT ENABLED FOR
THIS SESSION
RETURN CODE MUST=O ON REQUEST
FUNCTION ID MUST=O ON REQUEST
IF THERE IS A CONNECTOR'S ID
THEN STORE THE ID
IN THE PARAMETER LIST

INITIALIZE REGISTERS FOR ENABLE INPUT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,06H
BX,80H
BL,20H
CX,OOH
DX,KEYBOARD
DI,SEG EIRCODE
ES,DI
DI,OFFSET EIRCODE

RESOLVED VALUE FOR 'KEYBOARD'
ADDRESSABILITY OF
PARAMETER LIST
USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR ENABLE INPUT SERVICE

INT 7AH

Chapter 5. Coding Keyboard Service Requests 5-35

Post Status Code

Keyboard Service X'07': Post Status Code

Register Values

Use this service to notify the workstation program of the status of your
application program's keystroke processing.

On Request

AH = X'09'
AL = X'07'
BH = X'80'
BL = X'20'
ex = X'OOFF'
DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'62')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Connector's task ID Unchanged

6 1 byte Status code Unchanged

Parameter Definitions

5-36

Request Parameters:

• The session ID is the ID of the session from which keystroke data was
intercepted.

• The connector's task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Post Status Code service. This parameter is optional and
should be set to zero if not used.

Return Codes

Usage Notes

Post Status Code

• The status codes that can be sent to the workstation program are:

Code

X'OO'

X'Ol'

X'02'

Meaning

The keystroke was accepted.

The last keystroke sent was detected to be from an AID key.

The keystroke was rejected or could not be processed. When
the workstation program receives this status code, it signals
the operator with a beep to indicate invalid input.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Keyboard
services return codes use a function ID of X'62'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for keyboard services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• Your application program should request the Post Status Code service
after it has processed a keystroke that was received by the Read Input
request and was not passed on to the original session for which the
keystroke was intended.

• The primary usage of the Post Status Code service is to provide audible
feedback to the user in case of rej ected keystrokes.

• For applications providing full keystroke services for newly created
sessions, the Post Status Code service must be issued after every Read
Input function to provide full compatibility with the workstation
program. The use of all three status codes listed above at the correct
times allows for proper operation of the keyboard services and autokey.

Chapter 5. Coding Keyboard Service Requests 5-37

Post Status Code

Coding Example

5-38

PARAMETER LIST FOR POST STATUS CODE
i
PSRETNCD DB 0

(
RETURN CODE

PSFXNID DB 0 FUNCTION NUMBER
PSSESSID DB 0 SESSION ID
PSRESERV DB 0 RESERVED
PSTASKID DW 0 CONNECTOR'S TASK ID
PSRETCOD DB 0 RETURN CODE TO BE POSTED

INITIALIZE PARAMETER LIST FOR POST STATUS CODE

MOV PSRETNCD,OOH RETURN CODE MUST = ° BEFORE REQUEST
MOV PSFXNID,OOH FUNCTION ID MUST = ° BEFORE REQUEST
MOV AL,SESSID SESSION ID INTO THE LIST
MOV PSSESSID,AL
MOV AX,TASKID CONNECTOR'S TASK ID INTO THE LIST
MOV PSTASKID,AX
MOV AL,RETCODE RETURN CODE INTO THE LIST
MOV PSRETCOD,AL

INITIALIZE REGISTERS FOR POST STATUS CODE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,07H
BH,80H
BL,20H
CX,OFFH
DX,KEYBOARD
DI, SEG PSRETNCD
ES,DI
DI,OFFSET PSRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR POST STATUS CODE SERVICE

INT 7AH

Chapter 6. Coding Window Management Service
Requests

Introduction ... 6-2
Requesting the Window Management Services 6-5
Return Codes for the Window Management Services 6-6

Window Management Service X'01': Connect to Work Station Control 6-7
Window Management Service X'02': Disconnect from Work Station

Control ... 6-11
Window Management Service X'03': Add Window 6-14
Window Management Service X'04': Change Window Position on

Screen .. 6-17
Window Management Service X'05': Change Window Size 6-21
Window Management Service X'06': Change Window Color 6-25
Window Management Service X'07': Change Window Position on

Presentation Space 6-29
Window Management Service X'08': Change Hidden State 6-33
Window Management Service X'09': Change Enlarge State 6-36
Window Management Service X'OA': Change Screen Background ... 6-38
Window Management Service X'OB': Query Window Position on

Screen .. 6-41
Window Management Service X'OC': Query Window Size 6-44
Window Management Service X'OD': Query Window Colors 6-47
Window Management Service X'OE': Query Window Position on

Presentation Space 6-51
Window Management Service X'OF': Query Hidden State 6-54
Window Management Service X'10': Query Enlarge State 6-57
Window Management Service X'11': Query Screen Background Color 6-60
Window Management Service X'12': Query Window Names 6-63
Window Management Service X'13': Clear Screen 6-66
Window Management Service X'14': Select Active Window 6-69
Window Management Service X'15': Redraw Screen 6-72
Window Management Service X'16': Redraw Window 6-75
Window Management Service X'17': Delete Window 6-78
Window Management Service X'18': Query Active Window 6-81
Window Management Service X'19': Query Active Screen 6-84
Window Management Service X'1A': Query Window Attributes 6-87
Window Management Service X'1B': Change Window Attributes 6-92
Window Management Service X'1C': Select Active Screen 6-98

Chapter 6. Coding Window Management Service Requests 6-1

Introduction

Introduction

6-2

This chapter describes how to code requests for the window management
services provided by the API.

The window management services allow your application program to use
the functions of the work station control session of the IBM 3270 Personal
Computer. Using these services, your application program can determine
the current size, position, or color of a window, and change them if desired.
You can jump to specified windows, enlarge or hide windows, or change to
a different screen profile. You can add a window, delete a window, or clear
the entire screen.

Your application program must request the Connect to Work Station
Control service before it can request any of the other window management
services. After the Connect to Work Station Control service has been
completed successfully, the keyboard is attached to the work station control
session and the operator information area (alA) is displayed on the bottom
line of the screen, with the following symbols:

• WSCTRL

• viz x clock (X [] on non-3270 PC hardware)

• WINDOW = name

• SCREEN = number

Note: When using work station control API with non-3270 PC
hardware, the WS Ctrl OIA will not be displayed on either a
Uni-DOS or Multi-DOS system under the following conditions:

Your application uses graphics mode
Your application uses 40-column mode
Your application writes directly to the screen.

When your application program is finished using the window
management services, it must request the Disconnect from Work Station
Control service. If an error occurs during the execution of an
application program that has connected to the work station control
session, the alA remains visible and the keyboard remains attached to
the work station control session. You can press the Quit key (Alt plus
Reset) to force termination of the connection to the work station
control session. The program that was connected to the work station
control session will continue to run, but any window management
service requests that it makes will fail with an error code indicating
that the program is not connected to the work station control session.

Introduction

Possible problems can occur by the simultaneous use of the keyboard
service requests to connect to the work station control keyboard and
the use of the window management service requests.

If the keyboard for the work station control session is redirected to
another session, the use of the Quit key to force termination of the
connection to the work station control session for window
management services will be lost.

If keystrokes are sent to the work station control session while
window management service requests are being made, those
keystrokes will effectively be lost except for the Quit key, which
will terminate the connection to the work station control session for
window management services.

The window management services provided by the API are:

Connect to Work Station Control Service: Use this service to
connect to the work station control session, to be able to use the
window management services.

Disconnect from Work Station Control Service: Use this
service to disconnect from the work station control session.

Add Window Service: Use this service to add a window from
screen profile 0 to the specified screen profile.

Change Window Position on Screen Service: Use this service
to change the position of a window on the specified screen profile.
The window's new position is determined by placing the upper left
corner of the window at the specified row and column numbers.

Change Window Size Service: Use this service to change the
size of a window on the specified screen profile. The window's new
size is determined by the specified number of rows and columns.

Change Window Color Service: Use this service to change the
foreground and background colors of a window on the specified
screen profile.

Change Window Position on Presentation Space Service: Use
this service to change the position of a window on the presentation
space for the specified screen profile. The window's new position is
determined by placing the upper left corner of the window at the
specified row and column numbers.

Change Hidden State Service: Use this service to toggle the
"hidden" state of a window on the specified screen profile. A hidden
window becomes not hidden, or a window that is not hidden
becomes hidden.

Chapter 6. Coding Window Management Service Requests 6-3

Introduction

6-4

Change Enlarge State Service: Use this service to toggle the
"enlarge" state of the display image. An enlarged display image
becomes normal, or a normal display image becomes enlarged.

Change Screen Background Service: Use this service to
change the background color of the specified screen profile.

Query Window Position on Screen Service: Use this service to
obtain the position of a window on the specified screen profile. The
window's position is given by the row and column numbers of the
upper left corner of the window.

Query Window Size Service: Use this service to obtain the size
of a window on the specified screen profile. The window's size is
given as the number of rows and columns in the window.

Query Window Colors Service: Use this service to obtain the
foreground and background colors of a window on the specified
screen profile.

Query Window Position on Presentation Space Service: Use
this service to obtain the position of a window on the specified
screen profile. The window's position is given by the row and
columns of the upper left corner of the window.

Query Hidden State Service: Use this service to obtain the
"hidden" state of a window on the specified profile. The hidden
state tells whether the window is hidden or not hidden.

Query Enlarge State Service: Use this service to obtain the
"enlarge" state of the display image. The display image can be
either enlarged or not enlarged. In an enlarged image, the active
window is displayed on the entire screen.

Query Screen Background Color Service: Use this service to
obtain the background color of the specified screen profile.

Query Window Names Service: Use this service to obtain the
short names of all windows in the specified screen profile.

Clear Screen Service: Use this service to delete all windows
from the specified screen profile. Windows cannot be deleted from
screen profile O.

Select Active Window Service: Use this service to select a
window on the specified screen profile to become the active window.

Redraw Screen Service: Use this service to redraw the specified
screen profile, if it is the active screen.

Redraw Window Service: Use this service to redraw a window
on the specified screen profile, if it is the active screen.

Introduction

Delete Window Service: Use this service to delete a window
from the specified screen profile. Windows cannot be deleted from
screen profile O.

Query Active Window Service: Use this service to obtain the
short name of the active window in the specified screen profile.

Query Active Screen Service: Use this service to obtain the
number of the active screen profile.

Query Window Attributes Service: Use this service to obtain
the following information about a window on the specified screen
profile:

Number of rows and columns in the window
Rowand column number of the upper left corner of the window
on the screen
Window colors and border colors
Control flags
Rowand column number of the upper left corner of the window
on the presentation space.

Change Window Attributes Service: Use this service to change
the following information about a window on the specified screen
profile:

Number of rows and columns in the window
Rowand column number of the upper left corner of the window
on the screen
Window colors and border colors
Control flags
Rowand column number of the upper left corner of the window
on the presentation space.

Select Active Screen Service: Use this service to make active
the specified screen profile.

Requesting the Window Management Services

To request any of the window management services, load the registers and
the parameter list with the proper values, and use the INT 7 AH instruction
to signal the workstation program that it has a request to process.

Note: Before your application can request the window management services,
it must request the Name Resolution service, using 'WSCTRL as
the gate name in the parameter list. (Remember that the gate name
must be padded to the right with blanks if it is less than eight
characters .)

Chapter 6. Coding Window Management Service Requests 6-5

Introduction

Return Codes for the Window Management Services

6-6

Each window management service has two return codes associated with it:
a system return code and a window management return code. Both types of
return codes are two-byte values made up of a function ID and an error
number. The function ID indicates the portion of the workstation program
in which the error occurred. The error number indicates the specific type
of error that has occurred. An error number of X'OO' always indicates a
successful acceptance or completion of the request.

• System Return Codes:

After your application has requested a window management service, the
CR and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CR register, and the error number is in the CL register. System
return codes use a function ID of X'12'. The error codes that can
appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all window management services.

• Window Management Services Return Codes:

After a requested window management service is completed, bytes 0 and
1 of the parameter list contain a return code generated by the window
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte O. Window management return
codes use a function ID of X'63'. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix R, "Return Codes," for more information.

Connect to Work Station Control

Window Management Service X'Ol': Connect to Work
Station Control

Register Values

Use this service to connect to the work station control session, to be able to
use the window management services.

On Request

AH = X'09'
AL = X'Ol'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'63')

2 1 byte Session ID Unchanged

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID of the session requesting the use of the window
management services.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 6. Coding Window Management Service Requests 6-7

Connect to Work Station Control

Usage Notes

6-8

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'OC'

Meaning

Successful completion.
Invalid session ID.
A session is already connected for window management
serVICes.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• Only one session can be connected for window management services at
a time.

• When the connection is completed, the following symbols will appear in
the operator information area (OIA):

WSCTRL

viz X CLOCK (X [] on non-3270 PC hardware)

WINDOW = name

SCREEN = number

When using work station control API with non-3270 PC hardware,
the WS Ctrl OIA will not be displayed on either a Uni-DOS or
Multi-DOS system under the following conditions:

Your application uses graphics mode
Your application uses 40-column mode
Your application writes directly to the screen.

While your application program is using the window management
services, the screen and windows are not redrawn. The screen is
redrawn when your application requests the Disconnect from Work
Station Control service. In order to update the display screen while
connected to the work station control session, your application
must request either the Redraw Screen service or the Redraw
Window service.

Connect to Work Station Control

While a session is connected to the work station control session, the
keyboard belongs to the work station control session. All
keystrokes typed at the keyboard are rejected except the Quit key,
unless your application program has issued a Connect to Keyboard
service request to the work station control session to intercept
keystrokes. In this case, the keystrokes will be sent to your
application program instead of to the work station control session.

The Quit key allows the user to disconnect from the work station
control session at any time. The Quit key can be used to enable the
keyboard in the event that an application program finishes without
disconnecting from the work station control session. When the Quit
key is pressed, the application program is disconnected from the
work station control session. Keystrokes typed at the keyboard are
directed either to the active window, or to the work station control
session if no windows exist on the active screen.

Note: ' The Quit key is active once your application program issues a
Connect to Work Station Control service request. If the Quit
key is pressed while the application program is running, any
subsequent requests to window management services
(including the Disconnect from Work Station Control service)
fail with a return code indicating that the session is not
connected to the work station control session.

If your application program hangs, because of a problem in the
application, the usual recovery sequence of pressing the Ctrl-Alt-Del
keys causes a re-IPL of the entire workstation program. To recover
only the session in which the faulty application program is running,
you must first disconnect from the work station control session by
the Quit key. Once the Quit key is pressed, the Ctrl-Alt-Del
keystroke sequence re-IPLs the session without disrupting the rest
of the sessions that are running.

Chapter 6. Coding Wind,ow Management Service Requests 6-9

Connect to Work Station Control

Coding Example

6-10

i PARAMETER LIST FOR CONNECT TO WORK STATION CONTROL
;
CWRETNCD DB 0
CWFXNID DB 0
CWSESSID DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID

INITIALIZE PARAMETER LIST FOR CONNECT TO WORK STATION CONTROL

MOV
MOV
MOV
MOV

CWRETNCD,OOH
CWFXNID,OOH
AL,SESSION
CWSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO PARAMETER LIST

INITIALIZE REGISTERS FOR CONNECT TO WORK STATION CONTROL

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CWRETNCD
ES,DI
DI,OFFSET CWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO WORK STATION CONTROL SERVICE

INT 7AH

Disconnect from Work Station Control

Window Management Service X'02': Disconnect from
Work Station Control

Register Values

Use this service to disconnect from the work station control session.

On Request

AH = X'09'
AL = X'02'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'63')

2 1 byte Session ID Unchanged

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

Chapter 6. Coding Window Management Service Requests 6-11

Disconnect from Work Station Control

Return Codes

Usage Notes

6-12

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'04'

X'OC'

Meaning

Successful completion.
The session is not connected for window management
services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• When the disconnect is completed, the following occurs:

The screen is redrawn.

The work station control OIA is removed from the screen, and
keystrokes typed on the keyboard are directed to the active window.

If there are no windows on the active screen:

On 3270 PC hardware, the work station control OIA remains on
the screen,

On non-3270 PC hardware, the work station control OIA appears
on the screen. The prompt "Valid Keys: WSCTRL List Print A-Z
0-9 Jump ChgSc Quit" will appear.

Disconnect from Work Station Control

Coding Example

PARAMETER LIST FOR DISCONNECT FROM WORK STATION CONTROL
;
DWRETNCD DB 0
DWFXNID DB 0
DWSESSID DB 0

RETURN CODE
FUNCTION ID
SESSION ID

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM WORK STATION CONTROL

MOV
MOV
MOV
MOV

DWRETNCD,OOH
DWFXNID,OOH
AL,SESSID
DWSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE

INITIALIZE REGISTERS FOR DISCONNECT FROM WORK STATION CONTROL

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG DWRETNCD
ES,DI
DI,OFFSET DWRETNCD

,

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM WORK STATION CONTROL
SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-13

Add Window

Window Management Service X'03': Add Window

Register Values

Use this service to add a window from screen profile 0 to the specified
screen profile.

On Request

AH = X'09'
AL = X'03'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'I2'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

6-14

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
that you are adding the window to. Windows cannot be added to screen
profile O.

• The window short name is the I-character ASCII name for the window
being added. Window short names must be alphabetic characters (A
through Z).

Return Codes

Usage Notes

Add Window

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'Ol'

X'02'
X'04'

X'05'
X'06'
X'09'
X'OC'

Meaning

Successful completion.
The maximum number of windows has already been reached
(no free WCBs).
Invalid session ID.
The session is not connected for window management
services.
The window already exists on screen.
Invalid screen ID.
The window is not on screen O.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• The added window becomes the active window.

• Windows cannot be added to screen profile O.

Chapter 6. Coding Window Management Service Requests 6-15

Add Window

Coding Example

PARAMETER LIST FOR ADD WINDOW

AWRETNCD DB 0
AWFXNID DB 0
AWSESSID DB 0
AWSCRPRO DB 0
AWWINDN DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

INITIALIZE PARAMETER LIST FOR ADD WINDOW

6-16

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AWRETNCD,OOH
AWFXNID,OOH
AL,SESSID
AWSESSID,AL
AL, '1'
AWSCRPRO,AL
AL, 'P'
AWWINDN,AL

INITIALIZE REGISTERS FOR ADD WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,03H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG AWRETNCD
ES,DI
DI,OFFSET AWRETNCD

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID

o BEFORE REQUEST
o BEFORE REQUEST

IN PARAMETER LIST
SCREEN PROFILE NUMBER 1
IN PARAMETER LIST
WINDOW SHORT NAME 'P'
IN PARAMETER LIST

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR ADD WINDOW SERVICE

INT 7AH

Change Window Position on Screen

Window Management Service X'04': Change Window
Position on Screen

Register Values

Use this service to change the position of a window on the specified screen
profile. The window's new position is determined by placing the upper left
corner of the window at the row and column numbers specified in the
parameter list.

On Request

AH = X'09'
AL = X'04'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Row Unchanged, or
row

6 1 byte Column Unchanged, or
column

Chapter 6. Coding Window Management Service Requests 6-17

Change Window Position on Screen

Parameter Definitions

6-18

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

• "Row" is the new row position for the upper left corner of the window
on the screen.

• "Column" is the new column position for the upper left corner of the
window on the screen.

Note: Rowand column numbers start at zero.

Completion Parameters:

• "Row" is the row number chosen by the workstation program when the
row number in the parameter list on request caused the window to
overlap the screen boundaries.

• "Column" is the column number chosen by the workstation program
when the column number in the parameter list on request caused the
window to over lap the screen boundaries.

Note: Rowand column numbers start at zero.

Return Codes

Usage Notes

Change Window Position on Screen

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'
X'lO'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window was not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.
The window overlapped the screen boundaries or did not fit
on the screen.

See Appendix H, "Return Codes," for more information.

• If the window overlaps the screen boundaries after it has been moved to
the new position:

The window is moved to fit on the screen.

A return code of X'10' is returned in the parameter list.

The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-19

Change Window Position on Screen

Coding Example

6-20

PARAMETER LIST FOR CHANGE WINDOW POSITION ON SCREEN
;
CSRETNCD DB 0
CSFXNID DB 0
CSSESSID DB 0
CSSCREEN DB 0
CSWINDOW DB 0
CSROW DB 0

CSCOLUMN DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER
WINDOW SHORT NAME
ROW POSITION OF UPPER LEFT CORNER
OF WINDOW
COLUMN POSITION OF UPPER LEFT
CORNER OF WINDOW

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW POSITION ON SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CSRETNCD,OOH
CSFXNID,OOH
AL,SESSID
CSSESSID,AL
CSSCREEN, ' 2 '
CSWINDOW, 'B '
AL,ROW
CSROW,AL
AL,COL
CSCOLUMN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER 2
WINDOW 'B' SHORT NAME
ROW POSITION INTO THE LIST

COLUMN POSITION INTO THE LIST

INITIALIZE REGISTERS FOR CHANGE WINDOW POSITION ON SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CSRETNCD
ES,DI
DI,OFFSET CSRETNCD

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW POSITION ON SCREEN SERVICE

INT 7AH

Change Window Size

Window Management Service X'05': Change Window Size

Register Values

Use this service to change the size of a window on the specified screen
profile. The window's new size is determined by the number of rows and
columns specified in the parameter list.

On Request

AH = X'09'
AL = X'05'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Rows Unchanged, or
rows

6 1 byte Columns Unchanged, or
columns

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the l-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-21

Change Window Size

Return Codes

6-22

• "Rows" is the number of rows in the new window size.

• "Columns" is the number of columns in the new window size.

Completion Parameters:

• "Rows" is the number of rows chosen by the workstation program when
the number of rows in the parameter list on request caused the window
to become too big to fit on the screen or the presentation space.

• "Columns" is the number of columns chosen by the workstation
program when the number of columns in the parameter list on request
caused the window to become too big to fit on the screen or the
presentation space.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'
X'IO'

Meaning

Successful completion.
In valid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window was not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on the screen.
The window overlapped the screen boundaries or did not fit
on the screen, because of the row and column values sent in
the parameter list. If the window size was too big, the
number of rows and columns chosen by the workstation
program is returned in the parameter list.

See Appendix H, "Return Codes," for more information.

Usage Notes

Change Window Size

• A value of 0 for either the number of rows or the number of columns in
the window size is changed by the workstation program to be a value of
1.

• If the window overlaps the screen boundaries after it has been changed
to the new size:

The window is moved to fit on the screen.

A return code of X'lO' is returned in the parameter list.

• If the window overlaps the presentation space boundaries after it has
been changed to the new size:

The window is moved to fit on the presentation space.

A return code of X'lO' is returned in the parameter list.

• If the window is too big to fit on the screen or the presentation space
after it has been changed to the new size:

The window size is reduced, and the window position is changed (if
necessary), to allow the window to fit on the screen and the
presentation space.

A return code of X'lO' is returned in the parameter list.

The number of rows and columns in the window size chosen by the
workstation program is returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-23

Change Window Size

Coding Example

6-24

PARAMETER LIST FOR CHANGE WINDOW SIZE
;
CZRETNCD DB 0
CZFXNID DB 0
CZSESSID DB 0
CZSCRPRO DB 0
CZWINDN DB 0
CZNUMROW DB 0
CZNUMCOL DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
NUMBER OF ROWS IN NEW WINDOW SIZE
NUMBER OF COLUMNS IN NEW WINDOW SIZE

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW SIZE

MOV CZRETNCD,OOH RETURN CODE MUST = 0 BEFORE REQUEST
MOV CZFXNID,OOH FUNCTION ID MUST = 0 BEFORE REQUEST
MOV AL,SESSID SESSION ID OBTAINED FROM REQUEST
MOV CZSESSID,AL TO QUERY SESSION ID
MOV AL, '1' SCREEN PROFILE NUMBER 1
MOV CZSCRPRO,AL IN PARAMETER LIST
MOV AL,' p' WINDOW SHORT NAME 'p'
MOV CZWINDN,AL IN PARAMETER LIST
MOV AL,lO NUMBER OF ROWS IN THE NEW
MOV CZNUMROW,AL WINDOW SIZE
MOV AL,lS NUMBER OF COLUMNS IN THE
MOV CZNUMCOL,AL WINDOW SIZE

INITIALIZE REGISTERS FOR CHANGE WINDOW SIZE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OSH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CZRETNCD
ES,DI
DI,OFFSET CZRETNCD

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW SIZE SERVICE

INT 7AH

Change Window Color

Window Management Service X'06': Change Window
Color

Register Values

Use this service to change the foreground and background colors of a
window on the specified screen profile.

On Request

AH = X'09'
AL = X'06'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Foreground color Unchanged
value

6 1 byte Background color Unchanged
value

7 1 byte Base color Unchanged

Chapter 6. Coding Window Management Service Requests 6-25

Change Window Color

Parameter Definitions

6-26

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

• The foreground and background color values are as follows:

Value Color

0 Black
1 Blue
2 Red
3 Pink
4 Green
5 Turquoise
6 Yellow
7 White

If the foreground or background color value is greater than 7, the color
value is selected using the formula: color = value MOD 8.

• The base color is specified as follows:

A value of 1 indicates that the base colors are to be used to display
the window.
A value other than 1 indicates that the specified foreground and
background colors are to be used to display the window.

Note: Setting base colors for the window overrides the color values
specified for the foreground and background.

Return Codes

Change Window Color

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code Meaning

X'OO' Successful completion.
X'02' Invalid session ID.
X'04' The session is not connected for window management services.
X'06' Invalid screen ID.
X'07' The window is not found on screen.
X'OC' Byte 0 of the parameter list is not zero on request.
X'OE' No windows exist on screen.
X'OF' No colors can be set for a PC session.
X'12' Foreground and background colors are the same. The window

name and the window border become black on white.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-27

Change Window Color

Coding Example

6-28

; PARAMETER LIST FOR CHANGE WINDOW COLOR
;
CCRETNCD DB 0 RETURN CODE
CCFXNID DB 0 FUNCTION NUMBER
CCSESSID DB 0 SESSION ID
CCSCREEN DB 0 SCREEN PROFILE NUMBER
CCWINDOW DB 0 WINDOW SHORT NAME
CCFORGND DB 0 FOREGROUND COLOR VALUE
CCBAKGND DB 0 BACKGROUND COLOR VALUE
CCBASE DB 0 BASE COLOR

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW COLOR

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CCRETNCD,OOH
CCFXNID,OOH
AL,SESSID
CCSESSID,AL
CCSCREEN, , 3 '
CCWINDOW, 'S'
CCFORGND,4
CCBAKGND,O
CCBASE,O

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO PARAMETER LIST

SCREEN NUMBER 3
WINDOW'S' SHORT NAME
GREEN FOREGROUND
BLACK BACKGROUND
NO BASE COLORS

INITIALIZE REGISTERS FOR CHANGE WINDOW COLOR

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,06H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CCRETNCD
ES,DI
DI,OFFSET CCRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW COLOR SERVICE

INT 7AH

Change Window Position on Presentation Space

Window Management Service X'07': Change Window
Position on Presentation Space

Register Values

Use this service to change the position of a window on the presentation
space for the specified screen profile. The window's new position is
determined by placing the upper left corner of the window at the row and
column numbers specified in the parameter list.

On Request

AH = X'09'
AL = X'07'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Row Unchanged, or
row

6 1 byte Column Unchanged, or
column

Chapter 6. Coding Window Management Service Requests 6-29

Change Window Position on Presentation Space

Parameter Definitions

6-30

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

• "Row" is the new row position for the upper left corner of the window
on the presentation space.

• "Column" is the new column position for the upper left corner of the
window on the presentation space.

Note: Rowand column numbers start at zero.

Completion Parameters:

• "Row" is the row number chosen by the workstation program when the
row number in the parameter list on request caused the window to
overlap the presentation space boundaries.

• "Column" is the column number chosen by the workstation program
when the column number in the parameter list on request caused the
window to overlap the presentation space boundaries.

Note: Rowand column numbers start at zero.

Return Codes

Usage Notes

Change Window Position on Presentation Space

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'
X'lO'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.
The window overlapped the presentation space boundaries or
did not fit on the presentation space.

See Appendix H, "Return Codes," for more information.

• If the window overlaps the presentation space boundaries after it has
been moved to the new position:

The window is moved to fit on the presentation space.

A return code of X'10' is returned in the parameter list.

The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

• This service accepts only row and column positions as parameters, not
PEL positions such as those used by windows in graphics mode.

• This service is similar to the Browse function on the keyboard. When
the window becomes the top window of the screen and the screen is
active, if the cursor is not within the area shown by the window, the
window will be moved on the presentation space until the cursor is
within the window area.

Chapter 6. Coding Window Management Service Requests 6-31

Change Window Position on Presentation Space

Coding Example

PARAMETER LIST FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE
;
CPRETNCD DB 0 RETURN CODE
CPFXNID DB 0 FUNCTION ID
CPSESSID DB 0 SESSION ID
CPSCRPRO DB 0 SCREEN PROFILE NUMBER IN ASCII
CPWINDN DB 0 WINDOW SHORT NAME IN ASCII
CPROWNUM DB 0 ROW NUMBER FOR NEW POSITION OF

UPPER LEFT CORNER OF WINDOW
CPCOLNUM DB 0 COLUMN NUMBER FOR NEW POSITION OF

UPPER LEFT CORNER OF WINDOW

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CPRETNCD,OOH
CPFXNID,OOH
AL,SESSID
CPSESSID,AL
AL, '1'
CPSCRPRO,AL
AL, 'P'
CPWINDN,AL
AL,20
CPROWNUM,AL
AL,25
CPCOLNUM,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER 1
IN PARAMETER LIST
WINDOW SHORT NAME 'P'
IN PARAMETER LIST
ROW NUMBER FOR NEW POSITION OF
UPPER LEFT CORNER OF WINDOW
COLUMN NUMBER FOR NEW POSITION OF
UPPER LEFT CORNER

INITIALIZE REGISTERS FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,07H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
Dr, SEG CPRETNCD
ES,DI
DI,OFFSET CPRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW POSITION ON PRESENTATION
SPACE SERVICE

INT 7AH

6-32

Change Hidden State

Window Management Service X'08': Change Hidden
State

Register Values

Use this service to toggle the "hidden" state of a window on the specified
screen profile. (A hidden window becomes not hidden, or a window that is
not hidden becomes hidden.)

On Request

AH = X'09'
AL = X'08'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-33

Change Hidden State

Return Codes

Usage Notes

6-34

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OA'
X'OB'

X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
serVIces.
Invalid screen ID.
The window is not found on screen.
Only one window on screen; the window cannot be hidden.
All other windows are hidden; the next window has been
unhidden and made the active window.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

• If the requested window is the active window and all other windows are
hidden, the next window on the screen profile becomes not hidden and
is made the active window.

Change Hidden State

Coding Example

PARAMETER LIST FOR CHANGE HIDDEN STATE
;
CHRETNCD DB 0
CHFXNID DB 0
CHSESSID DB 0
CHSCREEN DB 0
CHWINDOW DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER
WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR CHANGE HIDDEN STATE

MOV CHRETNCD,OOH RETURN CODE MUST = 0 BEFORE REQUEST
MOV CHFXNID,OOH FUNCTION ID MUST = 0 BEFORE REQUEST
MOV AL,SESSID SESSION 10 INTO THE
MOV CHSESSID,AL PARAMETER LIST
MOV CHSCREEN, '5' SCREEN NUMBER 5
MOV CHWINDOW, 'T' WINDOW 'T' SHORT NAME

INITIALIZE REGISTERS FOR CHANGE HIDDEN STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,08H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CHRETNCD
ES,DI
DI,OFFSET CHRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE HIDDEN STATE SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-35

Change Enlarge State

Window Management Service X'09': Change Enlarge
State

Register Values

Use this service to toggle the "enlarge" state of the display image. (An
enlarged display image becomes normal, or a normal display image becomes
enlarged.)

On Request

AH = X'09'
AL = X'09'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

Parameter Definitions

Return Codes

6-36

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Change Enlarge State

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Coding Example

PARAMETER LIST FOR CHANGE ENLARGE STATE

CERETNCD DB 0
CEFXNID DB 0
CESESSID DB 0

RETURN CODE
FUNCTION ID
SESSION ID

INITIALIZE PARAMETER LIST FOR CHANGE ENLARGE STATE

MOV
MOV
MOV
MOV

CERETNCD,OOH
CEFXNID,OOH
AL,SESSID
CESESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE

INITIALIZE REGISTERS FOR CHANGE ENLARGE STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,09H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CERETNCD
ES,DI
DI,OFFSET CERETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE ENLARGE STATE SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-37

Change Screen Background

Window Management Service X'OA': Change Screen
Background

Register Values

Use this service to change the background color of the specified screen
profile.

On Request

AH = X'09'
AL = X'OA'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

, On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Screen Unchanged
background color

Parameter Definitions

6-38

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being changed.

Return Codes

Change Screen Background

• The background color values are as follows:

Value Color

0 Black
1 Blue
2 Red
3 Pink
4 Green
5 Turquoise
6 Yellow
7 White

If the background color value is greater than 7, the color value is selected
using the formula: color = value MOD 8.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-39

Change Screen Background

Coding Example

6-40

PARAMETER LIST FOR CHANGE SCREEN BACKGROUND
;
CBRETNCD DB 0
CBFXNID DB 0
CBSESSID DB 0
CBSCREEN DB 0
CBCOLOR DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER
SCREEN BACKGROUND COLOR

INITIALIZE PARAMETER LIST FOR CHANGE SCREEN BACKGROUND

MOV
MOV
MOV
MOV
MOV
MOV

CBRETNCD,OOH
CBFXNID,OOH
AL,SESSID
CBSESSID,AL
CBSCREEN, '0'
CBCOLOR,7

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST
SCREEN NUMBER 0
BACKGROUND COLOR WHITE

INITIALIZE REGISTERS FOR CHANGE SCREEN BACKGROUND

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OAH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CBRETNCD
ES,DI
DI,OFFSET CBRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE SCREEN BACKGROUND SERVICE

INT 7AH

Query Window Position on Screen

Window Management Service X'OB': Query Window
Position on Screen

Register Values

Use this service to obtain the position of a window on the specified screen
profile. The window's position is given by the row and column numbers of
the upper left corner of the window.

On Request

AH = X'09'
AL = X'OB'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Row

6 1 byte Reserved Column

Chapter 6. Coding Window Management Service Requests 6-41

Query Window Position on Screen

Parameter Definitions

Return Codes

6-42

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• "Row" is the row number of the upper left corner of the window on the
screen.

• "Column" is the column number of the upper left corner of the window
on the screen.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
In valid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.
/)

Query Window Position on Screen

Coding Example

PARAMETER LIST FOR QUERY WINDOW POSITION ON SCREEN
i
QQRETNCD DB 0
QQFXNID DB 0
QQSESSID DB 0
QQSCRPRO DB 0
QQWINDN DB 0
QQROWNUM DB 0
QQCOLNUM DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
ROW NUMBER OF UPPER LEFT CORNER
COLUMN NUMBER OF UPPER LEFT CORNER

INITIALIZE PARAMETER LIST FOR QUERY WINDOW POSITION ON SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

QQRETNCD,OOH
QQFXNID,OOH
AL,SESSID
QQSESSID,AL
AL,' l'
QQSCRPRO,AL
AL, 'P'
QQWINDN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER
IN PARAMETER LIST
WINDOW SHORT NAME OBTAINED FROM
REQUEST TO QUERY SESSION ID SERVICE

INITIALIZE REGISTERS FOR QUERY WINDOW POSITION ON SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OBH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QQRETNCD
ES,DI
DI,OFFSET QQRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW POSITION ON SCREEN SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-43

Query Window Size

Window Management Service X'OC': Query Window Size

Register Values

Use this service to obtain the size of a window on the specified screen
profile. The window's size is given as the number of rows and columns in
the window.

On Request

AH = X'09'
AL = x'oC'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, aJld DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Rows

6 1 byte Reserved Columns

6-44

Query Window Size

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• "Rows" is the number of rows in the window size.

• "Columns" is the number of columns in the window size.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
In valid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-45

Query Window Size

Coding Example

6-46

PARAMETER LIST FOR QUERY WINDOW SIZE

QZRETNCD DB 0 RETURN CODE
QZFXNID DB 0 FUNCTION NUMBER
QZSESSID DB 0 SESSION ID
QZSCREEN DB 0 SCREEN PROFILE NUMBER
QZWINDOW DB 0 WINDOW SHORT NAME
QZROWS DB 0 NUMBER OF ROWS IN WINDOW SIZE
QZCOLUMS DB 0 NUMBER OF COLUMNS IN WINDOW SIZE

INITIALIZE PARAMETER LIST FOR QUERY WINDOW SIZE

MOV
MOV
MOV
MOV
MOV
MOV

QZRETNCD,OOH
QZFXNID,OOH
AL,SESSID
QZSESSID,AL
QZSCREEN, ' 4 '
QZWINDOW, 'D'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST
SCREEN NUMBER 4
WINDOW 'D' SHORT NAME INTO THE LIST

INITIALIZE REGISTERS FOR QUERY WINDOW SIZE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OCH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QZRETNCD
ES,DI
DI,OFFSET QZRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW SIZE SERVICE

INT 7AH

Query Window Colors

Window Management Service X'OD': Query Window
Colors

Register Values

Use this service to obtain the foreground and background colors of a
window on the specified screen profile.

On Request

AH = X'09'
AL = X'OD'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Foreground color

6 1 byte Reserved Background color

7 1 byte Reserved Color flag

Chapter 6. Coding Window Management Service Requests 6-47

Query Window Colors

Parameter Definitions

6-48

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• The foreground and background color values are as follows:

Value

o
1
2
3
4
5
6
7

Color

Black
Blue
Red
Pink
Green
Turquoise
Yellow
White

• The color flag is as follows:

o Normal
(foreground/background color values apply)

1 Base mode
(base colors apply)

2 PC session

Note: If the color flag value is 1 or 2, the foreground and
background color values are both o.

Return Codes

Query Window Colors

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-49

Query Window Colors

Coding Example

6-50

PARAMETER LIST FOR QUERY WINDOW COLORS
;
QCRETNCD DB 0
QCFXNID DB 0
QCSESSID DB 0
QCSCRPRO DB 0
QCWINDN DB 0
QCFORCOL DB 0
QCBAKCOL DB 0
QCCOLFLG DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
FOREGROUND COLOR
BACKGROUND COLOR
COLOR FLAG

INITIALIZE PARAMETER LIST FOR QUERY WINDOW COLORS

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

QCRETNCD,OOH
QCFXNID,OOH
AL,SESSID
QCSESSID,AL
AL,' l'
QCSCRPRO,AL
AL, 'P'
QCWINDN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER 1
IN PARAMETER LIST
WINDOW SHORT NAME 'pI
IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY WINDOW COLORS

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,ODH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QCRETNCD
ES,DI
DI,OFFSET QCRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW COLORS SERVICE

INT 7AH

Query Window Position on Presentation Space

Window Management Service X'OE': Query Window
Position on Presentation Space

Register Values

Use this service to obtain the position of a window on the presentation
space for the specified screen profile. The window's position is given by the
row and column numbers of the upper left corner of the window.

On Request

AH = X'09'
AL = X'OE'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Row

6 1 byte Reserved Column

Chapter 6. Coding Window Management Service Requests 6-51

Query Window Position on Presentation Space

Parameter Definitions

Return Codes

6-52

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• "Row" is the row number of the upper left corner of the window on the
presentation space.

• "Column" is the column number of the upper left corner of the window
on the presentation space.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
serVIces.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Query Window Position on Presentation Space

Coding Example

PARAMETER LIST FOR QUERY WINDOW POSITION ON PRESENTATION SPACE
i
QPRETNCD DB 0
QPFXNID DB 0
QPSESSID DB 0
QPSCREEN DB 0
QPWINDOW DB 0
QPROW DB 0
QPCOLUMN DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER
WINDOW SHORT NAME
ROW NUMBER OF UPPER LEFT CORNER
COLUMN NUMBER OF UPPER LEFT CORNER

INITIALIZE PARAMETER LIST FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV

QPRETNCD,OOH
QPFXNID,OOH
AL,SESSID
QPSESSID,AL
QPSCREEN, '3'
QPWINDOW, , J'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST
SCREEN NUMBER 3
WINDOW 'J' SHORT NAME

INITIALIZE REGISTERS FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OEH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QPRETNCD
ES,DI
DI,OFFSET QPRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-53

Query Hidden State

Window Management Service X'OF': Query Hidden State

Register Values

Use this service to obtain the "hidden" state of a window on the specified
screen profile. (The hidden state tells whether the window is hidden or not
hidden.)

On Request

AH = X'09'
AL = X'OF'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved "Hidden" flag

6-54

Query Hidden State

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• The "hidden" flag is as follows:

A value of X'Ol' in the "hidden" flag means that the window is
hidden.

A value of X'OO' in the "hidden" flag means that the window is not
hidden.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-55

Query Hidden State

Coding Example

6-56

PARAMETER LIST FOR QUERY HIDDEN STATE
;
QHRETNCD DB 0
QHFXNID DB 0
QHSESSID DB 0
QHSCRPRO DB 0
QHWINDN DB 0
QHHIDFLG DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
HIDDEN FLAG

INITIALIZE PARAMETER LIST FOR QUERY HIDDEN STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

QHRETNCD,OOH
QHFXNID,OOH
AL,SESSID
QHSESSID,AL
AL, 'I'
QHSCRPRO,AL
AL, 'P'
QHWINDN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER
IN PARAMETER LIST
WINDOW SHORT NAME
IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY HIDDEN STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OFH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QHRETNCD
ES,DI
DI,OFFSET QHRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY HIDDEN STATE SERVICE

INT 7AH

Query Enlarge State

Window Management Service X'lO': Query Enlarge State

Register Values

Use this service to obtain the "enlarge" state of the display image. (The
display image can be either enlarged or not enlarged. In an enlarged
image, the active window is displayed on the entire screen.)

On Request

AH = X'09'
AL = X'lO'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request On Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Reserved "Enlarge" flag

Chapter 6. Coding Window Management Service Requests 6-57

Query Enlarge State

Parameter Definitions

Return Codes

6-58

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

Completion Parameters:

• The" enlarge" flag is as follows:

A value of X'Ol' in the "enlarge" flag means that the display image
is enlarged.

A value of X'OO' in the "enlarge" flag means that the display image
is not enlarged.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Query Enlarge State

Coding Example

PARAMETER LIST FOR QUERY ENLARGE STATE
i
QERETNCD DB 0
QEFXNID DB 0
QESESSID DB 0
QEENLFLG DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
ENLARGE FLAG

INITIALIZE PARAMETER LIST FOR QUERY ENLARGE STATE

MOV
MOV
MOV
MOV

QERETNCD,OOH
QEFXNID,OOH
AL,SESSID
QESESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY ENLARGE STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,lOH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QERETNCD
ES,DI
DI,OFFSET QERETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ENLARGE STATE SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-59

Query Screen Background Color

Window Management Service X'll': Query Screen
Background Color

Register Values

Use this service to obtain the background color of the specified screen
profile.

On Request

AH = X'09'
AL = X'll'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Reserved Screen
background color

6-60

Query Screen Background Color

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

• The background color values are as follows:

Value Color

0 Black
1 Blue
2 Red
3 Pink
4 Green
5 Turquoise
6 Yellow
7 White

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-61

Query Screen Background Color

Coding Example

6-62

PARAMETER LIST FOR QUERY SCREEN BACKGROUND COLOR
;
QBRETNCD DB 0
QBFXNID DB 0
QBSESSID DB 0
QBSCRPRO DB 0
QBBAKCOL DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
SCREEN BACKGROUND COLOR

INITIALIZE PARAMETER LIST FOR QUERY SCREEN BACKGROUND COLOR

MOV
MOV
MOV
MOV
MOV
MOV

QBRETNCD,OOH
QBFXNID,OOH
AL,SESSID
QBSESSID,AL
AL, '1'
QBSCRPRO,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER
IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY SCREEN BACKGROUND COLOR

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,llH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QBRETNCD
ES,DI
DI,OFFSET QBRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY SCREEN BACKGROUND COLOR SERVICE

INT 7AH

Query Window Names

Window Management Service X'12': Query Window
Names

Register Values

Use this service to obtain the short names of all windows in the specified
screen profile.

On Request

AU = X'09'
AL = X'12'
BH = X'80'
BL = X'20'
ex = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CU = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Reserved Window short name #1

5 1 byte Reserved Window short name #2

6 1 byte Reserved Window short name #3

• • •
21 1 byte Reserved Window short name #18

22 1 byte Reserved Window short name #19

23 1 byte Reserved Window short name #20

Chapter 6. Coding Window Management Service Requests 6-63

Query Window Names

Parameter Definitions

Return Codes

Usage Notes

6-64

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

• The window short name is the I-character ASCII name for the window
on the specified screen profile. Window short names are uppercase
alphabetic characters.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
serVICes.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.
No windows exist on the screen.

See Appendix H, "Return Codes," for more information.

• The windows are listed in the parameter list in the order they appear on
the screen.

• The parameter list is filled with blanks (X'20') after all window names
have been given.

Query Window Names

Coding Example

PARAMETER LIST FOR QUERY WINDOW NAMES
;
QWRETNCD DB 0 RETURN CODE
QWFXNID DB 0 FUNCTION NUMBER
QWSESSID DB 0 SESSION 10
QWSCREEN DB 0 SCREEN PROFILE NUMBER
QWWNDLST DB 20 DUP(O) LIST OF WINDOW SHORT NAMES

INITIALIZE PARAMETER LIST FOR QUERY WINDOW NAMES

MOV
MOV
MOV
MOV
MOV

QWRETNCD,OOH
QWFXNID,OOH
AL,SESSID
QWSESSID,AL
QWSCREEN, , I'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION 10 MUST = 0 BEFORE REQUEST
SESSION 10 INTO THE
PARAMETER LIST
SCREEN NUMBER 1

INITIALIZE REGISTERS FOR QUERY WINDOW NAMES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,12H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
01, SEG QWRETNCD
ES,DI
DI,OFFSET QWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW NAMES SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-65

Clear Screen

Window Management Service X'13': Clear Screen

Register Values

Use this service to delete all windows from the specified screen profile.
Windows cannot be deleted from screen profile o.

On Request

AH = X'09'
AL = X'13'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

Parameter Definitions

6-66

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being cleared.

Return Codes

Usage Notes

Clear Screen

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
In valid screen ID.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• Windows cannot be deleted from screen profile O.

Chapter 6. Coding Window Management Service Requests 6-67

Clear Screen

Coding Example

6-68

PARAMETER LIST FOR CLEAR SCREEN
i
CLRETNCD DB 0
CLFXNID DB 0
CLSESSID DB 0
CLSCRPRO DB 0

RETURN CODE
FUNCTION ID
SESSION 10
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR CLEAR SCREEN

MOV
MOV
MOV
MOV
MOV
MOV

CLRETNCD,OOH
CLFXNID,OOH
AL,SESSID
CLSESSID,AL
AL, '1'
CLSCRPRO,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION 10 SERVICE
SCREEN PROFILE NUMBER
IN PARAMETER LIST

INITIALIZE REGISTERS FOR CLEAR SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,13H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CLRETNCD
ES,DI
DI,OFFSET CLRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CLEAR SCREEN SERVICE

INT 7AH

Select Active Window

Window Management Service X'14': Select Active
Window

Register Values

Use this service to select a window on the specified screen profile to become
the active window.

On Request

AH = X'09'
AL = X'14'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Chapter 6. Coding Window Management Service Requests 6-69

Select Active Window

Parameter Definitions

Return Codes

6-70

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being made active. Window short names must be alphabetic characters.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Select Active Window

Coding Example

PARAMETER LIST FOR SELECT ACTIVE WINDOW
;
ACRETNCD DB 0
ACFXNID DB 0
ACSESSID DB 0
ACSCREEN DB 0
ACWINDOW DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER
WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR SELECT ACTIVE WINDOW

MOV ACRETNCD,OOH RETURN CODE MUST = 0 BEFORE REQUEST
MOV ACFXNID,OOH FUNCTION ID MUST = 0 BEFORE REQUEST
MOV AL,SESSID SESSION ID INTO THE
MOV ACSESSID,AL PARAMETER LIST
MOV ACSCREEN, , I' SCREEN NUMBER 1
MOV ACWINDOW, , C ' WINDOW 'C' SHORT NAME

INITIALIZE REGISTERS FOR SELECT ACTIVE WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,14H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG ACRETNCD
ES,DI
DI,OFFSET ACRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SELECT ACTIVE WINDOW SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-71

Redraw Screen

Window Management Service X'15': Redraw Screen

Register Values

Use this service to redraw the specified screen profile if it is the active
screen.

On Request

AH = X'09'
AL = X'15'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

Parameter Definitions

6-72

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being redrawn.

Return Codes

Usage Notes

Redraw Screen

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'
X'OD'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.
This screen is not the active screen.

See Appendix H, "Return Codes," for more information.

• This service is necessary if the position or size of any window on the
screen has been changed, or if a window has been enlarged, so that the
change becomes visible.

• The Disconnect from Work Station Control service also redraws the
screen.

Chapter 6. Coding Window Management Service Requests 6-73

Redraw Screen

Coding Example

6-74

PARAMETER LIST FOR REDRAW SCREEN
;
RSRETNCD DB 0
RSFXNID DB 0
RSSESSID DB 0
RSSCRPRO DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR REDRAW SCREEN

MOV
MOV
MOV
MOV
MOV
MOV

RSRETNCD,OOH
RSFXNID,OOH
AL,SESSID
RSSESSID,AL
AL,' I'
RSSCRPRO,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID
SCREEN PROFILE NUMBER
IN PARAMETER LIST

INITIALIZE REGISTERS FOR REDRAW SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,15H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG RSRETNCD
ES,DI
DI,OFFSET RSRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR REDRAW SCREEN SERVICE

INT 7AH

Redraw Window

Window Management Service X'16': Redraw Window

Register Values

Use this service to redraw a window on the specified screen profile if it is
the active screen.

On Request

AH = X'09'
AL = X'16'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being redrawn. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-75

Redraw Window

Return Codes

Usage Notes

6-76

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OD'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
Requested screen not active.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

• This service is necessary to make the change visible on the screen when
the contents of a window or its colors have changed, but the position or
size of the window has not changed. The Redraw Screen service and
the Disconnect from Work Station Control service have the same
function, except that they redraw the entire screen.

Coding Example

PARAMETER LIST FOR REDRAW WINDOW
,
RWRETNCD DB 0
RWFXNID DB 0
RWSESSID DB 0
RWSCREEN DB 0
RWWINDOW DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID

Redraw Window

SCREEN PROFILE NUMBER
WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR REDRAW WINDOW

MOV RWRETNCD,OOH RETURN CODE MUST = 0 BEFORE REQUEST
MOV RWFXNID,OOH FUNCTION ID MUST = 0 BEFORE REQUEST
MOV AL,SESSID SESSION ID INTO THE
MOV RWSESSID,AL PARAMETER LIST
MOV RWSCREEN, , 7 ' SCREEN NUMBER 7
MOV RWWINDOW, 'E ' WINDOW 'E' SHORT NAME

INITIALIZE REGISTERS FOR REDRAW WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,16H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG RWRETNCD
ES,DI
DI,OFFSET RWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR REDRAW WINDOW SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-77

Delete Window

Window Management Service X'17': Delete Window

Register Values

Use this service to delete a window from the specified screen profile.
Windows cannot be deleted from screen profile o.

On Request

AH = X'09'
AL = X'17'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

6-78

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being deleted. Window short names must be alphabetic characters.

Return Codes

Usage Notes

Delete Window

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

• Windows cannot be deleted from screen profile o.

• If all the remaining windows on the specified screen profile are hidden,
the next window on the chain will be unhidden and made the active
window on the screen.

Chapter 6. Coding Window Management Service Requests 6-79

Query Active Window

Coding Example

6-80

PARAMETER LIST FOR DELETE WINDOW
;
DDRETNCD DB 0
DDFXNID DB 0
DDSESSID DB 0
DDSCRPRO DB 0
DDWINDN DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

INITIALIZE PARAMETER LIST FOR DELETE WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

DDRETNCD,OOH
DDFXNID,OOH
AL,SESSID
DDSESSID,AL
AL, 'I'
DDSCRPRO,AL
AL, 'P'
DDWINDN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
SCREEN PROFILE NUMBER
IN PARAMETER LIST
WINDOW SHORT NAME
IN PARAMETER LIST

INITIALIZE REGISTERS FOR DELETE WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,17H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG DDRETNCD
ES,DI
DI,OFFSET DDRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DELETE WINDOW SERVICE

INT 7AH

Query Active Window

Window Management Service X'18': Query Active
Window

Register Values

Use this service to obtain the short name of the active window in the
specified screen profile.

On Request

AH = X'09'
AL = X'18'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Reserved Window short
name

Chapter 6. Coding Window Management Service Requests 6-81

Query Active Window

Parameter Definitions

Return Codes

6-82

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen' profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

• The window short name is the I-character ASCII name for the active
window. Window short names are uppercase alphabetic characters.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.
No windows exist on the screen.

See Appendix H, "Return Codes," for more information.

Query Active Window

Coding Example

PARAMETER LIST FOR QUERY ACTIVE WINDOW
i
QNRETNCD DB 0
QNFXNID DB 0
QNSESSID DB 0
QNSCREEN DB 0
QNWINDOW DB 0

RETURN CODE
FUNCTION NUMBER
SESSION 10
SCREEN PROFILE NUMBER
ACTIVE WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR QUERY ACTIVE WINDOW

MOV
MOV
MOV
MOV
MOV

QNRETNCD,OOH
QNFXNID,OOH
AL,SESSID
QNSESSID,AL
QNSCREEN, '0'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION 10 MUST = 0 BEFORE REQUEST
SESSION 10 INTO THE
PARAMETER LIST
SCREEN NUMBER 0

INITIALIZE REGISTERS FOR QUERY ACTIVE WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,18H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
01, SEG QNRETNCD
ES,DI
DI,OFFSET QNRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR QUERY ACTIVE WINDOW SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-83

Query Active Screen

Window Management Service X'19': Query Active Screen

Register Values

Use this service to obtain the number of the active screen profile.

On Request

AH = X'09'
AL = X'19'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Reserved Screen profile
number

Parameter Definitions

6-84

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

Completion Parameters:

• The screen profile number is the number (in ASCII) of the active screen
profile.

Return Codes

Query'Active Screen

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-85

Query Active Screen

Coding Example

6-86

PARAMETER LIST FOR QUERY ACTIVE SCREEN
;
QARETNCD DB 0
QAFXNID DB 0
QASESSID DB 0
QASCRPRO DB 0

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR QUERY ACTIVE SCREEN

MOV
MOV
MOV
MOV

QARETNCD,OOH
QAFXNID,OOH
AL,SESSID
QASESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = ° BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID

INITIALIZE REGISTERS FOR QUERY ACTIVE SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,19H
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QARETNCD
ES,DI
DI,OFFSET QARETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ACTIVE SCREEN SERVICE

INT 7AH

Query Window Attributes

Window Management Service X'lA': Query Window
Attributes

Register Values

Use this service to obtain the following information about a window on the
specified screen profile:

• The number of rows in the window

• The number of columns in the window

• The row number of the upper left corner of the window on the screen

• The column number of the upper left corner of the window on the
screen

• Window colors

• Border colors

• Control flags

• The row number of the upper left corner of the window on the
presentation space

• The column number of the upper left corner of the window on the
presentation space.

On Request

AH = X'09'
AL = X'lA'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Chapter 6. Coding Window Management Service Requests 6-87

Query Window Attributes

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Rows

6 1 byte Reserved Columns

7 1 byte Reserved Row on screen

8 1 byte Reserved Column on screen

9 1 byte Reserved Window colors

10 1 byte Reserved Border colors

11 1 byte Reserved Control flags

12 1 byte Reserved Row on PS

13 1 byte Reserved Column on PS

Parameter Definitions

6-88

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

• "Rows" is the hexadecimal number of rows in the window.

• "Columns" is the hexadecimal number of columns in the window.

• "Row on screen" is the row position of the upper left corner of the
window on the screen.

• "Column on screen" is the column position of the upper left corner of
the window on the screen.

Query Window Attributes

• The window colors are specified as follows:

o and 1 2 through 4 5 through 7
Not used Foreground color Background color

The foreground and background color values are as follows:

Value Color

0 Black
1 Blue
2 Red
3 Pink
4 Green
5 Turquoise
6 Yellow
7 White

• The border colors will always be the same as the window colors (except
where the window foreground and background colors are the same; in
that case, the border colors will be white on black).

• The bits in the control flag are as follows:

0 1 and 2 3 4 and 5 6 7

Hidden Reserved Enlarge Reserved Base Window
colors

Bit 0 set to 0 means that the window is not hidden.
If bit 0 is set to 1 and:

1. Bit 3 is set to 0, the window is hidden.

colors

2. Bit 3 is set to 1, the window is not hidden (but will not be
displayed on the screen, because the display is enlarged).

Bit 6 set to 0 means that the session is not displayed in the base
colors.
Bit 6 set to 1 means that the session is displayed in the base
colors.

Bit 7 set to 0 means that the session is not displayed in the
foreground and background colors.
Bit 7 set to 1 means that the session is displayed in the
foreground and background colors.

Note: Bits 6 and 7 cannot both be set to 1.

Chapter 6. Coding Window Management Service Requests 6-89

Query Window Attributes

Return Codes

6-90

• "Row on PS" is the row position of the upper left corner of the window
on the presentation space.

• "Column on PS" is the column position of the upper left corner of the
window on the presentation space.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
serVIces.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, "Return Codes," for more information.

Query Window Attributes

Coding Example

PARAMETER LIST FOR QUERY WINDOW ATTRIBUTES
;
QTRETNCD DB 0 RETURN CODE
QTFXNID DB 0 FUNCTION NUMBER
QTSESSID DB 0 SESSION ID
QTSCREEN DB 0 SCREEN PROFILE NUMBER
QTWINDOW DB 0 WINDOW SHORT NAME
QTNUMROW DB 0 NUMBER OF ROWS IN THE WINDOW
QTNUMCOL DB 0 NUMBER OF COLUMNS IN THE WINDOW
QTLCRWSC DB 0 ROW NUMBER OF UPPER LEFT CORNER OF

THE WINDOW ON THE SCREEN
QTLCCLSC DB 0 COLUMN NUMBER OF UPPER LEFT CORNER

OF THE WINDOW ON THE SCREEN
QTWCOLOR DB 0 WINDOW COLOR ATTRIBUTES
QTBCOLOR DB 0 BORDER COLOR ATTRIBUTES
QTCTLFLG DB 0 CONTROL FLAGS
QTLCRWPS DB ° ROW NUMBER OF UPPER LEFT CORNER

OF THE WINDOW ON THE
PRESENTATION SPACE

QTLCCLPS DB 0 COLUMN NUMBER OF UPPER LEFT CORNER
OF THE WINDOW ON THE
PRESENTATION SPACE

INITIALIZE PARAMETER LIST FOR QUERY WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV

QTRETNCD,OOH
QTFXNID,OOH
AL,SESSID
QTSESSID,AL
QTSCREEN, , ° '
QTWINDOW, 'M'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST
SCREEN NUMBER °
WINDOW 'M' SHORT NAME

INITIALIZE REGISTERS FOR QUERY WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,lAH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG QTRETNCD
ES,DI
DI,OFFSET QTRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW ATTRIBUTES SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-91

Change Window Attributes

Window Management Service X'lB': Change Window
Attributes

Register Values

6-92

Use this service to change the following information about a window on the
specified screen profile:

• The number of rows in the window

• The number of columns in the window

• The row number of the upper left corner of the window on the screen

• The column number of the upper left corner of the window on the
screen

• Window colors

• Border colors

• Control flags

• The row number of the upper left corner of the window on the
presentation space

• The column number of the upper left corner of the window on the
presentation space.

On Request

AH = X'09'
AL = X'lB'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Change Window Attributes

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Rows Unchanged *
6 1 byte Columns Unchanged *
7 1 byte Row on screen Unchanged *
8 1 byte Column on screen Unchanged *
9 1 byte Window colors Unchanged

10 1 byte Border colors Unchanged

11 1 byte Control flags Unchanged

12 1 byte Row on PS Unchanged *
13 1 byte Column on PS Unchanged *
* These values may be changed by the workstation program. See "Usage Notes" for

more information.

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

• The window short name is the I-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

• "Rows" is the number of rows in the window.

• "Columns" is the number of columns in the window.

• "Row on screen" is the row position of the upper left corner of the
window on the screen.

• "Column on screen" is the column position of the upper left corner of
the window on the screen.

Chapter 6. Coding Window Management Service Requests 6-93

Change Window Attributes

6-94

• The window colors are specified as follows:

0, 1 2 through 4 5 through 7

Not used Foreground color Background color

The foreground and background color values are as follows:

Value Color

0 Black
1 Blue
2 Red
3 Pink
4 Green
5 Turquoise
6 Yellow
7 White

• The border colors will always be the same as the window colors (except
where the window foreground and background colors are the same; in
that case, the border colors will be white on black).

Note: If the window and border color attributes do not match, the border
color will be changed to match the window colors.

• The bits in the control flag are as follows:

0 1 and 2 3 4 and 5 6 7

Hidden Reserved Enlarge Reserved Base Window
colors

Bit 0 set to 0 means that the window is not hidden.
If bit 0 is set to 1 and:

1. Bit 3 is set to 0, the window is hidden.

colors

2. Bit 3 is set to 1, the window is not hidden (but will not be
displayed on the screen, because the display is enlarged).

Bit 6 set to 0 means that the session is not displayed in the base
colors.
Bit 6 set to 1 means that the session is displayed in the base
colors.

Bit 7 set toO means that the session is not displayed in the
foreground and background colors.
Bit 7 set to 1 means that the session is displayed in the
foreground and background colors.

Note: Bits 6 and 7 cannot both be set to 1.

Return Codes

Usage Notes

Change Window Attributes

• "Row on PS" is the row position of the upper left corner of the window
on the presentation space.

• "Column on PS" is the column position of the upper left corner of the
window on the presentation space.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'07'
X'OC'
X'OE'
X'll'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
The window is not found on screen.
Byte 0 of the parameter list is not zero on request.
No windows exist on screen.
One or more values sent in the parameter list are not valid.

See Appendix H, "Return Codes," for more information.

• If the window does not exist on the specified screen, it is added to the
screen, with the attributes specified in the parameter list.

• A value of 0 for either the number of rows or the number of columns in
the window size is changed by the workstation program to a value of 1.

• If the window overlaps the screen or presentation space boundaries
after it has been moved to the new position:

The window is moved to fit on the screen.

A return code of X' 11' is returned in the parameter list.

The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-95

Change Window Attributes

Coding Example

• If the window overlaps the screen boundaries after it has been changed
to the new size:

The window is moved to fit on the screen.

A return code of X' 11' is returned in the parameter list.

• If the window is too big to fit on the screen after it has been changed to
the new size:

The window size is reduced, and the window position is changed (if
necessary), to allow the window to fit on the screen.

A return code of X'II' is returned in the parameter list.

The number of rows and columns in the window size chosen by the
workstation program is returned in the parameter list.

• If the "hidden" bit in the control flag is 1 and the window is the only
window on the screen, the workstation program changes the bit setting
to o.

• If the "hidden" bit in the control flag is 1 and all the other windows on
the specified screen profile are hidden, then the next window on the
chain will become not hidden and will be made the active window.

• If any of the reserved bits in the control flag are set to 1, the
workstation program changes the bit setting to o.

• If both the "base colors" and "window colors" bits in the control flag
are the same value (both 1 or both 0), "base colors" is used as the
default setting.

• This service places the specified window at the bottom of the chain on
the specified screen profile.

PARAMETER LIST FOR CHANGE WINDOW ATTRIBUTES

CTRETNCD DB 0 RETURN CODE
CTFXNID DB 0 FUNCTION ID
CTSESSID DB 0 SESSION ID
CTSCRPRO DB 0 SCREEN PROFILE NUMBER IN ASCII
CTWINDN DB 0 WINDOW SHORT NAME IN ASCII
CTROWNUM DB 0 NUMBER OF ROWS IN THE WINDOW
CTCOLNUM DB 0 NUMBER OF COLUMNS IN THE WINDOW
CTROWSCR DB 0 ROW NUMBER AND COLUMN NUMBER OF THE
CTCOLSCR DB 0 UPPER LEFT CORNER OF THE WINDOW

ON THE SCREEN
CTWINDCO DB 0 WINDOW COLOR ATTRIBUTES
CTBORDCO DB 0 BORDER COLOR ATTRIBUTES
CTFLAG DB 0 FLAG BYTE
CTROWPS DB '0 ROW AND COLUMN NUMBER OF THE UPPER
CTCOLPS DB 0 LEFT CORNER OF THE WINDOW ON THE

PRESENTATION SPACE

6-96

Change Window Attributes

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV

MOV
MOV
MOV

CTRETNCD,OOH
CTFXNID,OOH
AL,SESSID
CTSESSID,AL
AL,' I'
CTSCRPRO,AL
AL, 'P'
CTWINDN,AL
AL,IO
CTROWNUM,AL
AL,IO
CTCOLNUM,AL
AL,IS
CTROWSCR,AL
AL,IS
CTCOLSCR,AL
AL,OOOOIOOOB
CTWINDCO,AL
AL,O
CTBORDCO,AL
AL,OOOOOOOIB
CTFLAG,AL

AL,S
CTROWPS,AL

AL,S
CTCOLPS,AL
CTROWPS,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID
SCREEN PROFILE NUMBER
IN PARAMETER LIST
WINDOW SHORT NAME
IN PARAMETER LIST
NUMBER OF ROWS IN THE NEW
WINDOW SIZE
NUMBER OF COLUMNS IN THE
WINDOW SIZE
ROW NUMBER AND COLUMN NUMBER OF THE
UPPER LEFT CORNER OF THE
WINDOW ON SCREEN
IN THE PARAMETER LIST
FOREGROUND = BLUE AND
BACKGROUND = BLACK
BORDER COLOR WILL BE THE SAME
AS THE WINDOW COLOR
THE SESSION IS NOT HIDDEN AND IT
IS DISPLAYED IN FOREGROUND AND
BACKGROUND COLORS
ROW NUMBER OF UPPER LEFT CORNER
OF THE WINDOW
ON THE PRESENTATION SPACE
COLUMN NUMBER OF UPPER LEFT CORNER
OF THE WINDOW
OF THE WINDOW

INITIALIZE REGISTERS FOR CHANGE WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,IBH
BH,80H
BL,20H
CX,OFFH
DX,WSCTRL
DI, SEG CTRETNCD
ES,DI
DI,OFFSET CTRETNCD

RESOLVED VALUE FOR WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW ATTRIBUTES SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-97

Select Active Screen

Window Management Service X'lC': Select Active
Screen

Register Values

Use this service to make the specified screen profile the active screen.

On Request

AH = X'09'
AL = X'lC'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'63')

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

Parameter Definitions

6-98

Request Parameters:

• The session ID is the ID of the session currently connected to the work
station control session.

• The screen profile number is the number (in ASCII) of the screen profile
being made active.

Return Codes

Select Active Screen

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. Window
management return codes use a function ID of X'63'. The error codes
that can be received for this service are:

Code

X'OO'
X'02'
X'04'

X'06'
X'OC'

Meaning

Successful completion.
Invalid session ID.
The session is not connected for window management
services.
Invalid screen ID.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 6. Coding Window Management Service Requests 6-99

Select Active Screen

Coding Example

6-100

PARAMETER LIST FOR SELECT ACTIVE SCREEN
;
ASRETNCD DB °
ASFXNID DB °
ASSESSID DB °
ASSCREEN DB °

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN NUMBER

INITIALIZE PARAMETER LIST FOR SELECT ACTIVE SCREEN

MOV
MOV
MOV
MOV
MOV

ASRETNCD,OOH
ASFXNID,OOH
AL,SESSID
ASSESSID,AL
ASSCREEN,3

RETURN CODE MUST = ° BEFORE REQUEST
FUNCTION ID MUST = ° BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER 3

INITIALIZE REGISTERS FOR SELECT ACTIVE SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,lCH
BH,80H
BL,20H
CX,OFFH
DX,SERVTYPE
DI, SEG ASRETNCD
ES,DI
DI,OFFSET ASRETNCD

SERVICE TYPE IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SELECT ACTIVE SCREEN SERVICE

INT 7AH

Select Active Screen

Chapter 7. Coding Host Interactive Service Requests

Introduction ... 7-2
Requesting the Host Interactive Services 7-2
Return Codes for the Host Interactive Services 7-3

Host Interactive Service X'Ol': Connect to Host Session 7-4
Host Interactive Service X'02': Disconnect from Host Session 7-11
Host Interactive Service X'03': Read Structured Field 7-15
Host Interactive Service X'04': Write Structured Field 7-20
Host Interactive Service X'05': Define Buffer 7-25

Chapter 7. Coding Host Interactive Service Requests 7-1

Introduction

Introduction

This chapter describes how to code requests for the host interactive services
provided by the API.

The host interactive services allow communication between a personal
computer application program and a host applicat~on program using
destination/origin structured field protocol. The host interactive services
also allow a personal computer application program to be notified when a
host presentation space or operator information area is updated.

With CUT host sessions, one connection is allowed for only PS/OIA
updates. For each DFT host session, all PC tasks may connect for both
destination/origin and PS/OIA updates; however, a maximum of three
connections at anyone time are allowed. When destination/origin
protocols are used, each PC task must be identified with a unique
application name. When activated, the 3270 PC file transfer program uses
one of the three connections. With the destination/origin protocol, the 3270
Workstation Program accepts Open (X'DOOO'), Close (X'D041'), Set Cursor
(X'D045'), Get (X'D046'), and Insert and Insert Data structured fields
(X'D047'). See Appendix B, "Destination/Origin Structured Fields," for
more information.

The host interactive services provided by the API are:

• Connect to Host Session Service: Use this service to connect to the
specified host session for host interactive services.

• Disconnect from Host Session Service: Use this service to
disconnect from the specified host session.

• Read Structured Field Service: Use this service to read structured
field data from the specified host session. This service is valid for DFT
host sessions only.

• Write Structured Field Service: Use this service to write
structured field data to the specified host session. This service is valid
for DFT host sessions only.

• Define Buffer Service: Use this service to define a buffer that will
be used to receive a message from the specified host session. This
service is valid for DFT host sessions only.

Requesting the Host Interactive Services

7-2

To request any of the host interactive services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the host interactive services, it
must request the Name Resolution service, using 'MFIC ' as the
gate name in the parameter list. (Remember that the gate name must
be padded to the right with blanks if it is less than eight characters.)

Introduction

Return Codes for the Host Interactive Services

Each host interactive service has two return codes associated with it: a
system return code and a host interaction management return code. Both
types of return codes are 2-byte values made up of a function ID and an
error number. The function ID indicates the portion of the workstation
program in which the error occurred. The error number indicates the
specific type of error that has occurred. An error number of X'OO' always
indicates a successful acceptance or completion of the request.

• System Return Codes:

After your application has requested a host interactive service, the CH
and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X'12'. The error codes that can
appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all host interactive services.

• Host Interactive Services Return Codes:

After a requested host interactive service is completed, bytes 0 and 1 of
the parameter list contain a return code generated by the host
interaction management portion of the Workstation Program. The
function ID is in byte 1, and the error number is in byte o. Host
interactive return codes use a function ID of X'32'. The error numbers
that can appear are specific to the service that was requested and are
included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 7. Coding Host Interactive Service Requests 7 -3

Connect to Host Session

Host Interactive Service X'Ol': Connect to Host Session

Register Values

7-4

Use this service to connect to the specified host session for host interactive
services.

On Request On Completion

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'Ol'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOOO'
Resolved value for MFIC
Segment address of the parameter list
Offset address of the parameter list

AX Request ID
CH X'12'
CL Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the
Connect to Host Session service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X' 40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Connect to Host Session

Asynchronous processing:

For asynchronous processing of the Connect to Host Session service
request, set the BH register to X' 40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Connect to Host Session
service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. Match this request ID with the results from the Get Request
Completion service.

Parameter List Format to Connect for Structured Field Communications

Note: Connection for structured field communication is valid for DFT host
sessions only.

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Fixed-length queue ID Unchanged

6 1 byte X'OI' Unchanged

7 1 byte Must be zero Unchanged

8 1 byte Must be zero Unchanged

9 1 byte X'06' Unchanged

10 1 word Offset address of Unchanged
Query Reply data

12 1 word Segment address of Unchanged
Query Reply data

14 1 word Must be zero Unchanged

16 1 word Task ID Unchanged

18 1 word Must be zero Unchanged

20 - 35 9 words System work area System work area

Chapter 7. Coding Host Interactive Service Requests 7-5

Connect to Host Session

Parameter Definitions

7-6

Request Parameters:

For connect for structured field communications:

• The session ID is the ID of the, host session you will be communicating
with using structured fields.

• The fixed-length queue ID is the ID of a fixed-length queue that the
workstation program will use to post communication status information
about the specified host session. Your application program must use
the Dequeue Data service to obtain the communication status
information before each Read Structured Field service request. The
communication status information is described under "Usage Notes" in
the Read Structured Field service description in this chapter.

• The format of the Query Reply data is as follows:

Offset Length Contents Meaning

0 1 byte Must be zero Not used

1 1 byte X'19' Length of structure

2 1 byte X'81' Query Reply

3 1 byte X'9D' Query Reply type

4 1 byte Must be zero Reserved flags

5 1 byte X'OI' Structured field exchange

6, 7 2 bytes Up to maximum Maximum number of bytes
ofX'OEOO' allowed in an inbound

transmission

8, 9 2 bytes Up to maximum Maximum number of bytes
ofX'OEOO' allowed in an outbound

transmission

10 1 byte Must be X'OF' Identifies the next two bytes as
being the destination/origin ID

11 1 word Must be zero Destination/origin ID supplied
by the 3270 workstation
program

13 - 24 12 bytes APLNME Application name
(in EBCDIC)

• The task ID is the ID of the task that is issuing the Connect to Host
Session service request. It is used to identify the application to the API
and must be the same for all Read Structured Field, Write Structured
Field, and Define Buffer services that your application program
requests. You can use the Query Active Task service to obtain the ID
of your application program. The Query Active Task service is
described in Chapter 17, "Coding Task State Modifier Services."

• The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

Connect to Host Session

Parameter List Format to Connect for PS/OIA Update Events

Note: Connection for PS/OIA update events is valid for both DFT and CUT
host sessions.

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Fixed-length queue ID Unchanged

6 1 byte X'03' Unchanged

7 1 byte Must be zero Unchanged

8 1 byte Events Unchanged

9 1 byte Must be zero Unchanged

10 1 word Reserved Reserved

12 1 word Reserved Reserved

14 1 word Reserved Reserved

16 1 word Reserved Reserved

18 1 word Reserved Reserved

20 - 35 9 words System work area System work area

Parameter Definitions

Request Parameters:

For connect for PS/OIA update events:

• The session ID is the ID of the host session for which you want to
receive notification whenever PS/OIA information is updated. The
session ID is one word in length.

• The fixed-length queue ID is the ID of a fixed-length queue that the
workstation program will use to post update information about the
PS/OIA of the specified host session. Your application program must
use the Dequeue Data service to obtain the update information. The
Dequeue Data service is described in Chapter 3, "Coding Supervisor
Services." The format of the update information is in 4 bytes, 2 for the
session ID and 2 for the update information. The update information is
as follows:

X'1000' - Presentation space updated

X'2000' - OIA updated

Chapter 7. Coding Host Interactive Service Requests 7-7

Connect to Host Session

Return Codes

7-8

• The events that you want to be notified of are specified as follows:

Bits 0 - 4 Bit 5 Bit 6 Bit 7
Must be zero PS alA Must be zero

Bits 0 through 4 are reserved and must be zero.
Bit 5 set to 1 indicates that you want to be notified of presentation
space updates to the specified host session.
Bit 6 set to 1 indicates that you want to be notified of operator
information area updates to the specified host session.
Bit 7 is reserved and must be zero.

• The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte o. Host
interactive return codes use a function ID of X'32'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'04'
X'08'
X'lO'
X'OC'

Meaning

Successful completion.
The host session is not active (DFT only).
Invalid service request parameter.
The session is already connected.
A system error has occurred.
The limit of three requesters have already connected.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

Usage Notes

Connect to Host Session

• Before you request this service, you must create a fixed-length queue
entry using the Create Queue service.

• If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Connect to Host Session service is completed.

• CUT host sessions can be connected to for PS/OIA update events only,
not structured field communications.

Chapter 7. Coding Host Interactive Service Requests 7-9

Connect to Host Session

Coding Example

i
i PARAMETER LIST FOR CONNECT TO HOST SESSION
i
CFRETNCD DB 0 RETURN CODE
CFFXNID DB 0 FUNCTION NUMBER
CFSESSID DB 0 SESSION 10
CFRESRV1 DB 0 MUST BE 0

DW 0
CFFLQID DB 01 FIXED-LENGTH QUEUE 10 MUST BE 01

DB 00
CFEVNTS DB 00 EVENTS TO BE ENQUEUED - OFT

DB 06
CFQRPLY DD QUERYREP OFFSET AND SEGMENT OF THE QUERY REPLY
CFRESERV2 DW 0 MUST BE 0
CFTASKID OW 0 PC TASK 10
CFRESRV3 OW 0 MUST BE 0
CFWORK DW 9 DUP(O) SYSTEM WORK AREA
;
; QUERY REPLY FOR DESTINATION/ORIGIN
;
QUERYREP OW

DB
DB
DB
DB
OW
OW
DB
OW

QRAPLNAM DB

0019H
81H
9DH
o
01H
0008H
0008H
OFH
o
8 DUP(O)

LENGTH OF THE STRUCTURE
QUERY REPLY
ANOMALY IMPLEMENTATION
MUST BE 0
STRUCTURED FIELD EXCHANGE
MAXIMUM NUMBER OF BYTES IN INBOUND TRANSMISSION
MAXIMUM NUMBER OF BYTES IN OUTBOUND TRANSMISSION
RESERVED
RESERVED
PC APPLICATION NAME IN EBCDIC

INITIALIZE PARAMETER LIST FOR CONNECT TO HOST SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CFRETNCD,OOH
CFFXNID,OOH
AL,SESSID
CFSESSID,AL
AX,QUEUEID
CFFLQID,AX
AX,PCTASKID
CFTASKID,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION 10 MUST = 0 BEFORE REQUEST
SESSION 10 INTO THE LIST

FIXED-LENGTH QUEUE 10 INTO THE LIST

PC TASK 10 INTO THE LIST

INITIALIZE REGISTERS FOR CONNECT TO HOST SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,SERVTYPE
01, SEG CFRETNCD
ES,DI
DI,OFFSET CFRETNCD

RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO HOST SESSION SERVICE

INT 7AH

7-10

Disconnect from Host Session

Host Interactive Service X'02': Disconnect from Host
Session

Register Values

Use this service to disconnect from the specified host session.

On Request On Completion

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'02'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOOO'
Resolved value for MFIC
Segment address of the parameter list
Offset address of the parameter list

AX Request ID
CH X'12'
CL Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the
Disconnect from Host Session service. In synchronous processing,
control is returned to your application program after the workstation
program has completed the request. In asynchronous processing,
control is returned to your application program before the workstation
program has completed the request. You must use the Get Request
Completion service to obtain the parameter list values on completion
when you request asynchronous processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X' 40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7 -11

Disconnect from Host Session

Asynchronous Processing:

For asynchronous processing of the Disconnect from Host Session
service request, set the BH register to X' 40' and the BL register to X'OO'.
When asynchronous processing is specified, you must request the Get
Request Completion service to obtain the results of the Disconnect from
Host Session service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service, matches the request ID in the
AX register on completion of this service, the results obtained by the
Get Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte Disconnect type Unchanged

7 1 byte Must be zero Must be zero

8 1 word Reserved Reserved

10 1 word Reserved Reserved

12 1 word Reserved Reserved

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 - 35 9 words System work area System work area

7-12

Disconnect from Host Session

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The session ID is the ID of the host session to disconnect from.

• The disconnect type is specified as follows:

X'01' to disconnect for structured field communications
X'03' to disconnect for PSjOIA update events

Note: Disconnect type X'OJ' can be specified for DFT host sessions only.
Disconnect type X'03' can be specified for both DFT and CUT host
sessions.

• The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O. Host
interactive return codes use a function ID of X'32'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'08'
X'OC'

Meaning

Successful completion.
Invalid service request parameter.
The session is not connected.
A system error has occurred.
Byte 0 of the parameter list is not zero on request.

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Disconnect from Host Session service is
completed.

Chapter 7. Coding Host Interactive Service Requests 7 -13

Disconnect from Host Session

Coding Example

7-14

; PARAMETER LIST FOR DISCONNECT FROM HOST SESSION
;
DFRETNCD DB
DFFXNID DB
DFSESSID DB
DFRESERV1 DB

DW
DFTYPE DB

DW
DFWORK DW

o
o
o
o
o
01
6 DUP(O)
9 DUP(O)

RETURN CODE
FUNCTION NUMBER
SESS·.ION ID
RESERVED
NOT USED
DISCONNECT TYPE - DESTINATION/ORIGIN
NOT USED
SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM HOST SESSION

MOV
MOV
MOV
MOV

DFRETNCD,OOH
DFFXNID,OOH
AL,SESSID
DFSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR DISCONNECT FROM HOST SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,SERVTYPE
DI, SEG DFRETNCD
ES,DI
DI,OFFSET DFRETNCD

RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM HOST SESSION SERVICE

INT 7AH

Read Structured Field

Host Interactive Service X'03': Read Structured Field

Register Values

Use this service to read structured field data from the specified host
session. This service is valid for DFT host sessions only.

On Request On Completion

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'03'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOOO'
Resolved value for MFIC
Segment address of the parameter list
Offset address of the parameter list

AX Request ID
CH X'12'
CL Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the Read
Structured Field service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X' 40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7-15

Read Structured Field

Asynchronous Processing:

For asynchronous processing of the Read Structured Field service
request, set the BH register to X' 40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Read Structured Field
service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte X'OI' Unchanged

7 1 byte Must be zero Unchanged

8 1 word Reserved Reserved

10 1 word Unchanged Offset address of
structured field data

12 1 word Unchanged Segment address of
structured field data

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 - 35 9 words System work area System work area

7-16

Read Structured Field

Parameter Definitions

Request Parameters:

• The session ID is the ID of the host session to read the structured field
data from.

• The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host
Session service.

• The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

Completion Parameters:

• The structured field data contains the application structured fields
received from the host. Destination/origin structured field headers are
removed by the workstation program before the structured field data
reaches the application.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'OOOO'

2 1 word m (message length, which is the number of
bytes in the message). This length does not
include the eight bytes used for the message
buffer header.

4 1 word n (buffer size - this is the number that you
specified in the Define Buffer request).

6 1 word X'COOO'

8 1 word p Number of bytes from byte 8 to the end of
the message.

10 1 byte First byte in the structured field message

11 1 byte Second byte in the structured field message

• • •
m byte Last byte in the structured field message

Bytes 0 through 7 are the buffer header. Bytes 8 and 9 contain the number
of bytes in the message, including 2 bytes for bytes 8 and 9. Bytes 10
through m are used for the structured field message received from the host.

Chapter 7. Coding Host Interactive Service Requests 7 -17

Read Structured Field

Return Codes

Usage Notes

7-18

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O. Host
interactive return codes use a function ID of X'32'. The error codes that
can be received for this service are:

Code

X'OO'

X'02'
X'04'
X'08'
X'OC'
X'14'

Meaning

Successful completion. Structured field data is available in
the message buffer.
Invalid service request parameter.
The session is not connected.
A system error has occurred.
Byte 0 of the parameter list is not zero on request.
No structured field data is available.

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Read Structured Fields service is completed.

• Before you request the Read Structured Field service, you must use the
Dequeue Data service to check for the communication status
information that indicates that a message is available from the host.

The first two bytes of the communication status information contain the
session ID of the host session that the information pertains to. The
second two bytes of the communication status information contain one
of the following codes:

Code

X'04'
X'06'

X'08'
X'OA'

Type

X'80'
X'80'

X'OO'
X'OO'

Meaning

A message from the host is available.
An outbound transmission from the host was
canceled.
Lost contact with the host.
Contact reestablished with the host.

Read Structured Field

Coding Example

PARAMETER LIST FOR READ STRUCTURED FIELD
;
RSRETNCD
RSFXNID
RSHOSTID
RSZERO

RSOFFSD
RSSEGTD

RSTASKID

DB 0
DB 0
DB 0
DB 0
DW 0
DB 01
DB 00
DW 0
DW 0
DW 0
DW 0
DW 0
DW 9 DUP(O)

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID
UNCHANGED
NOT USED
STRUCTURED FIELD TYPE, (DEST/ORIG)
UNUSED
OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA
UNUSED
PC TASK ID

SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR READ STRUCTURED FIELD

MOV
MOV
MOV
MOV
MOV
MOV
MOV

RSRETNCD,OOH
RSFXNID,OOH
AL,HOSTID
RSHOSTID,AL
AX,PCTSKID
RSTASKID,AX
RSZERO,O

RSRETNCD MUST BE 0 BEFORE REQUEST
RSFXNID MUST BE 0 BEFORE REQUEST
HOST ID IN

THE LIST
PC TASK ID

IN LIST
THIS FIELD MUST BE ZEROED

INITIALIZE REGISTERS FOR READ STRUCTURED FIELD

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,03H
BH,40H
BL,40H
CX,O
DX,MFIC
DI, SEG RSRETNCD
ES,DI
DI,OFFSET RSRETNCD

REPLY TYPE IN BH
WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR READ STRUCTURED FIELD SERVICE

INT 7AH

Chapter 7. Coding Host Interactive Service Requests 7 -19

Write Structured Field

Host Interactive Service X'04': Write Structured Field

Register Values

7-20

Use this service to write structured field data to the specified host session.
This service is valid for DFT host sessions only.

On Request On Completion

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'04'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOOO'
Resolved value for MFIC
Segment address of the parameter list
Offset address of the parameter list

AX Request ID
CH X'12'
CL Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the Write
Structured Field service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X'40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

W rite Structured Field

Asynchronous Processing:

For asynchronous processing of the Write Structured Field service
request, set the BH register to X'40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Write Structured Field
service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte X'OI' Unchanged

7 1 byte Must be zero Unchanged

8 1 word Reserved Reserved

10 1 word Offset address of Unchanged
structured field data

12 1 word Segmen t address of Unchanged
structured field data

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 - 35 9 words System work area System work area

Chapter 7. Coding Host Interactive Service Requests 7 -21

Write Structured Field

Parameter Definitions

7-22

Request Parameters:

• The session ID is the ID of the host session to write the structured field
data to.

• The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host
Session service.

• The structured field data contains the application structured fields that
are to be sent to the host. Destination/origin structured fields are
added by the workstation program before the structured field data
reaches the host.

• The system work area is used by the Workstation Program while it
processes the request. This area must be provided in the parameter list.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'OOOO'

2 1 word m (m~ssage length, which is the number of
bytes in the message). This length does not
include the eight bytes used for the message
buffer header.

4 1 word X'OOOO'

6 1 word X'OOOO'

8 1 word p Number of bytes from byte 8 to the end of
the message.

10 1 byte First byte in the structured field message
must be X'DO'.

11 1 byte Second byte in the structured field message
must be X'OO', X'41', X'45', X'46', X'47', and
X'48'.

• • •
m + 7 byte Last byte in the structured field message

Bytes 0 through 7 are the buffer header. Bytes 8 and 9 contain the number
of bytes in the message, including 2 bytes for bytes 8 and 9. Bytes 10
through m + 7 are used for the structured field message sent to the host.

Return Codes

Usage Notes

Write Structured Field

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O. Host
interactive return codes use a function ID of X'32'. The error codes that
can be received for this service are:

Code

X'OO'

X'02'
X'04'
X'08'
X'OC'
X'lO'

Meaning

Successful completion. The message has been sent to and
acknow ledged by the host.
Invalid service request parameter.
The session is not connected.
A system error has occurred.
Byte 0 of the parameter list was not zero on request.
The message you sent was rejected.

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Write Structured Fields service is completed.

• Before you use the Write Structured Field service, you must use the
Define Buffer service to define a buffer to use to receive the next
transmission of structured field data sent from the host.

Chapter 7. Coding Host Interactive Service Requests 7 -23

Write Structured Field

Coding Example

PARAMETER LIST FOR WRITE STRUCTURED FIELD
;
WSRETNCD DB
WSFXNID DB
WSHOSTID DB
WSZERO DB

o
o
o
o
o
01
00
o
o
o
o
o

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID
UNCHANGED

DW
DB
DB

NOT USED
STRUCTURED FIELD TYPE, (DEST/ORIG)
UNUSED

WSOFFSD DW
WSSEGTD DW

DW
WSTASKID DW

DW
DW 9 DUP(O)

OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA
UNUSED
PC TASK ID

SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR WRITE STRUCTURED FIELD

MOV WSRETNCD,OOH WSRETNCD MUST BE 0 BEFORE REQUEST
MOV WSFXNID,OOH WSFXNID MUST BE 0 BEFORE REQUEST
MOV AL,HOSTID HOST ID IN
MOV WSHOSTID,AL THE LIST

; OFFSET AND SEGMENT OF DATA IN LIST
MOV WSOFFSD,OFFSET STR$DATA
MOV WSSEGTD,SEG STR$DATA
MOV AX,PCTSKID PC TASK ID
MOV WSTASKID,AX IN LIST
MOV WSZERO,O THIS FIELD MUST BE ZEROED

INITIALIZE THE FIELDS IN THE STRUCTURED FIELD 8 BYTE HEADER.
STR$DATA IS THE MEMORY LOCATION NAME OF THE BEGINNING OF THE
STRUCTURED FIELD 8 BYTE HEADER.

MOV STR$DATA,O
MOV WORD PTR STR$DATA + 4,0
MOV WORD PTR STR$DATA + 6,0

INITIALIZE REGISTERS FOR WRITE STRUCTURED FIELD

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H
BL,20H
CX,O
DX,MFIC
DI, SEG WSRETNCD
ES,DI
DI,OFFSET WSRETNCD

REPLY IS A COMPLETION SIGNAL
WAIT FOR A COMPLETION SIGNAL
PRIORITY IN CX
RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR WRITE STRUCTURED FIELD SERVICE

INT 7AH

7-24

Define Buffer

Host Interactive Service X'05': Define Buffer

Register Values

Use this service to define a buffer that will be used to receive a message
from the specified host session. This service is valid for DFT host sessions
only.

On Request On Completion

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'05'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOOO'
Resolved value for MFIC
Segment address of the parameter list
Offset address of the parameter list

AX Request ID
CH X'12'
CL Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the Define
Buffer service. In synchronous processing, control is returned to your
application program after the workstation program has completed the
request. In asynchronous processing, control is returned to your
application program before the workstation program has completed the
request. You must use the Get Request Completion service to obtain
the parameter list values on completion when you request asynchronous
processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X'40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7 -25

Define Buffer

Asynchronous Processing:

For asynchronous processing of the Define Buffer service request, set
the BH register to X' 40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Define Buffer service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X'32'

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte X'Ol' Unchanged

7 1 byte Must be zero Unchanged

8 1 word Reserved Reserved

10 1 word Offset address of Unchanged
buffer

12 1 word Segment address of Unchanged
buffer

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 - 35 9 words System work area System work area

7-26

Define Buffer

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID of the host session whose structured field data
will be received in the buffer being defined.

• The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host
Session service.

• The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

• The format of the buffer is as follows:

Offset Length Contents
0 1 word Must be zero

2 1 word Must be zero

4 1 word n (buffer size). This includes the 8-byte
prefix.
The maximum buffer size allowed is 3592
bytes (decimal).

6 1 word X'OOOO'

8 1 byte Used for structured field data

9 1 byte U sed for structured field data

• • •
n + 8 1 byte U sed for structured field data

Bytes 0 through 7 are the buffer header. Bytes 8 through n +8 are used
for the destination/origin structured field message received from the
host.

• The length of the buffer is the number of bytes in the buffer. The
maximum buffer size allowed is 3592 (decimal) bytes.

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 7. Coding Host Interactive Service Requests 7-27

Define Buffer

Usage Notes

7-28

• Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O. Host
interactive return codes use a function ID of X'32'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'04'
X'08'
X'OC'

Meaning

Successful completion.
Invalid service request parameter.
The session is not connected.
A system error has occurred.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Define Buffer service is completed.

• You must request the Define Buffer service at the following times:

Before the host application that communicates with your
application is started, so that a message buffer is available in time
to receive the first message from the host. (To start the host
application program, your application program can use the
keyboard services for sending keystrokes to the host.)

Before each Write Structured Field service request, so that a
message buffer is available in time to receive the next message from
the host session.

You do not have to use a different message buffer for each Write
Structured Field service request (although you can if you wish), but you
must reset the message buffer header as follows:

1. Set the first two words of the buffer header to zero.

2. Set the third word of the buffer header to the length of the message
buffer (including the eight bytes of the buffer header).

3. Set the fourth word of the message buffer header to zero.

Define Buffer

Coding Example

PARAMETER LIST FOR DEFINE RECEIVE BUFFER
;
DBRETNCD DB
DBFXNID DB
DBHOSTID DB

DB
DW
DB
DB

DBOFFSET DW
DBSEGMNT DW

DW
DBTASKID DW

DW
DW

o
o
o
o
o
01
00
o
o
o
o
o
9 DUP(O)

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID
UNCHANGED
NOT USED

UNUSED
SEGMENT AND OFFSET OF THE MESSAGE BUFFER

UNUSED
PC TASK ID

SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR DEFINE RECEIVE BUFFER

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

DBRETNCD,OOH
DBFXNID,OOH
AL,HOSTID
DBHOSTID,AL
AX,PCTSKID
DBTASKID,AX
AX,OFFSET BUFFER
DBOFFSET,AX
AX,SEG BUFFER
DBSEGMNT,AX

DBRETNCD MUST BE 0 BEFORE REQUEST
DBFXNID MUST BE 0 BEFORE REQUEST
HOST ID IN

THE LIST
PC TASK ID

IN THE LIST
OFFSET OF MESSAGE BUFFER

IN THE LIST
SEGMENT OF THE MESSAGE BUFFER

IN THE LIST

INITIALIZE THE 8 BYTE HEADER OF THE MESSAGE BUFFER.
BUFFER IS THE MEMORY LOCATION NAME OF THE BEGINNING OF THE
STRUCTURED FIELD 8 BYTE HEADER.

MOV BUFFER,O
MOV WORD PTR BUFFER + 2,0
MOV WORD PTR BUFFER + 6,0

INITIALIZE REGISTERS FOR DEFINE RECEIVE BUFFER

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OSH
BH,40H
BL,40H
CX,O
DX,MFIC
DI, SEG DBRETNCD
ES,DI
DI,OFFSET DBRETNCD

REPLY
WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DEFINE RECEIVE BUFFER SERVICE

INT 7AH

Chapter 7. Coding Host Interactive Service Requests 7-29

Define Buffer

7-30

Define Buffer

Chapter 8. Coding Presentation Space Service Requests

Introduction ... 8-2
Requesting the Presentation Space Services 8-2
Return Codes for the Presentation Space Services 8-2

Presentation Space Service X'01': Define Presentation Space 8-4
Presentation Space Service X'02': Delete Presentation Space 8-11
Presentation Space Service X'03': Display Presentation Space 8-14
Presentation Space Service X'04': Set Cursor Position 8-17
Presentation Space Service X'05': Switch Presentation Space 8-21

Chapter 8. Coding Presentation Space Service Requests 8-1

Introduction

Introduction

This chapter describes how to code requests for the presentation space
services provided by the API.

The presentation space services allow your application program to create
and delete personal computer presentation spaces, to display them, and to
control the position of the cursor in them.

The presentation space services provided by the API are:

• Define Presentation Space Service: Use this service to define a
presentation space, and to obtain the session ID that the workstation
program assigns to that presentation space.

• Delete Presentation Space Service: Use this service to delete a
presentation space created by the Define Presentation Space service.
Any window created on this presentation space is also deleted.

• Display Presentation Space Service: Use this service to display
any changes made in the specified presentation space.

• Set Cursor Service: Use this service to set a cursor position in a
presentation space.

• Switch Presentation Space Service: Use this service to specify a
presentation space as the default presentation space for all DOS and
BIOS updates.

Requesting the Presentation Space Services

To request any of the presentation space services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the presentation space services, it
must request the Name Resolution service, using 'PCPSM ' as the
gate name in the parameter list. (Remember that the gate name must
be padded to the right with blanks if it is less than eight characters.)

Return Codes for the Presentation Space Services

8-2

Each presentation space service has two return codes associated with it: a
system return code and a presentation space management return code.
Both types of return codes are 2-byte values made up of a function ID and
an error number. The function ID indicates the portion of the workstation
program in which the error occurred. The error number indicates the
specific type of error that has occurred. An error number of X'OO' always
indicates a successful acceptance or completion of the request.

Introduction

• System Return Codes:

After your application has requested a presentation space service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X'12'. The error codes that can
appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all presentation space services.

• Presentation Space Services Return Codes:

After a requested presentation space service is completed, bytes 0 and 1
of the parameter list contain a return code generated by the
presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O.
Presentation space return codes use a function ID of X'69'. The error
numbers that can appear are specific to the service that was requested
and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 8. Coding Presentation Space Service Requests 8-3

Define Presentation Space

Presentation Space Service X'Ol': Define Presentation
Space

Register Values

Use this service to define a presentation space and to obtain the session ID
that the workstation program assigns to it. This service is allowed only if
Multi-DOS is selected at customization time.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'OI'
X'80'
X'20'
X'OOFF'
Resolved value for PCPSM
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'69')

2 1 byte Reserved Session ID

3 1 byte Reserved Reserved

4 1 word Offset address of the Unchanged
presentation space
work area

6 1 word Segment address of Unchanged
the presentation space
work area

8 1 word Offset address of the Unchanged
presentation space
data stream

10 1 word Segment address of Unchanged
the presentation space
data stream

12 1 byte Must be zero Unchanged

13 1 byte Reserved Window short name

8-4

Define Presentation Space

Parameter Definitions

Request Parameters:

• The presentation space work area is a 1552-byte area that your
application program must provide.

• The presentation space data stream is in the following format:

Header
Elements in the form of command data

The header is a I-byte value that contains the number of commands you
have coded in the data stream.

Each command is specified as a I-byte value indicating the command
number, followed by a variable-length amount of data.

Commands 01, 02, and 03 are required to define a presentation space,
while 05 and 06 are optional. Command 07 is used only for a specific
function-3270 keystroke emulation.

The commands available in the presentation space data stream, and
their data format, are as follows:

Command 01: Set Presentation Space Size

The only presentation space currently supported is 25 rows by 80
columns. (The presentation space is the buffer described for
command 03.) The data format is one byte containing X'19', which
indicates 25 rows in hexadecimal followed by one byte containing
X'50', which indicates 80 columns in hexadecimal.

Command 02: Set Presentation Space Type

The data format is one byte containing X'OO', which indicates text
indirect. The application program uses either a presentation space
or the BIOS or DOS calls that must be routed to a presentation
space.

Command 03: Set Presentation Space Buffer

The data format is one word containing the offset address of the
presentation space buffer, followed by one word containing the
segment address of the presentation space buffer.

The size of the presentation space buffer must be twice the number
of character positions in the presentation space. (Each character
needs two bytes of information for it to be displayed.) Thus, for a
presentation space of 25 rows with 80 columns each, the
presentation space size must be 4000 bytes. (See Command 01.)

The space for the presentation space buffer must be provided by
your application program.

Chapter 8. Coding Presentation Space Service Requests 8-5

Define Presentation Space

8-6

Command 04: Reserved

Command 05: Set Window Long Name

The data format is eight bytes containing the window long name.
The window long name can be as many as eight ASCII characters
long, and it must begin with an alphabetic character. If the window
long name is less than eight characters long, it must be padded to
the right with blanks. This command is optional.

Command 06: Set Window Short Name

The data format is one byte containing the window short name.
This command is optional. If the window short name is not
specified, the workstation program assigns the first unused letter
from A through Z as the window short name. If a short name is
supplied, it must be a unique short name (one not already iIi use). If
the short name supplied is currently in use, the Define Presentation
Space request will not be completed successfully.

Command 07: Set Session Attribute Buffer

The data format is one word containing the offset address of the
session attribute buffer, followed by one word containing the
segment address of the session attribute buffer. The size of the
session attribute buffer must be twice the number of rows specified
in command 01 of the presentation space data stream.

This buffer is an internal work space allocated in the user area; it
should not be altered by the user. The workstation program uses
this buffer for 3270 attribute algorithms.

This command should be used only if you intend to use 3270
keystroke emulation in this presentation space. For more
information, refer to Chapter 9, "Coding 3270 Keystroke Emulation
Service Requests."

Completion Parameters:

• The session ID is the ID identifying this presentation space. Use this
session ID for all further communication with this presentation space or
its window.

• The window short name is the I-character ASCII name of the window
associated with the presentation space. This window short name is
either provided in the presentation space data stream (command 06) or
provided by the workstation program. If it is provided by the
workstation program, it will be the first letter from A through Z that is
not currently used as a short window name.

Return Codes

Define Presentation Space

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• You may receive return codes from the session information services,
with a function code of X'6B'.

• Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O.
Presentation space return codes use a function ID of X'69'. The error
codes that can be received for this service are:

Code

X'OO'
X'OA'

X'OB'

X'OC'
X'OD'

X'OF'

X'll'
X'13'
X'14'

X'15'

X'lS'

X'19'

Meaning

Successful completion.
An invalid number of commands is in the presentation space
data stream.
An invalid number of rows/columns is in the presentation
space data stream.
Byte 0 of the parameter list was not zero on request.
There is invalid data in the Set Presentation Space Type data
stream command.
A command that had no data was found in the presentation
space data stream.
Invalid parameter.
The address of the work area was zero on request.
The maximum number of personal computer presentation
spaces has already been created, or DOS has been configured
and you attempt to create an alternate presentation space
(ALT PS).
The Set Presentation Space Buffer command was missing
from the presentation space data stream.
The Set Presentation Space Size command was missing from
the presentation space data stream.
The Set Presentation Space Type command was missing from
the presentation space data stream.

See Appendix H, "Return Codes," for more information.

Chapter 8. Coding Presentation Space Service Requests 8-7

Define Presentation Space

Usage Notes

8-8

• A window for the presentation space is created on screen profile 0 and
also on the current screen. You can use the presentation space data
stream to specify the window short and long names. If no short name is
specified, a default short name is provided. The workstation program
assigns the first unused character from A through Z as the default
window short name. There is no default for the long name.

• The only type of presentation space that can be created is a personal
computer presentation space.

• The presentation space that was the default remains the default for all
DOS and BIOS updates until the switch occurs for the new presentation
space just defined by the application program. After the switch occurs,
the new presentation space becomes the default. To specify another
presentation space as the default for DOS and BIOS updates, use the
Switch Presentation Space service.

• Before exiting, your application program should use the Delete
Presentation Space service to delete any presentation spaces it may
have created with this service.

• For each presentation space that you create using this service, you
must provide a unique 1552-byte work area.

• A session defined by your application program as a result of a Define
Presentation Space service request requires that a Connect to Keyboard
service request with an All key intercept option be issued in order to
receive and process keystrokes. A second Connect to Keyboard service
request can be issued relative to a Define Presentation Space session.

Define Presentation Space

Coding Example

,
; PRESENTATION SPACE DATA STREAM FOR DEFINE PRESENTATION SPACE
;
PSDS DB 5 PSDS HEADER - 5 COMMANDS
SETSIZE DB 01H COMMAND TO SET THE PS SIZE
PSROWS DB 25 25 ROWS IN THE PS
PSCOLS DB 80 80 COLUMNS IN THE PS
SETTYPE DB 02H COMMAND TO SET THE PS TYPE

DB OOH TYPE = TEXT INDIRECT
SETPSBUF DB 03H COMMAND TO SET THE PS BUFFER
PSOFFSET DW 0 PS OFFSET
PSSEGMNT DW 0 PS SEGMENT
SETLNGNM DB 05H COMMAND TO SET THE WINDOW LONG NAME
LONGNAME DB 'SAMPLE WINDOW LONG NAME
SETSHTNM DB 06H COMMAND TO SET WINDOW SHORT NAME
SHRTNAME DB 'X' WINDOW SHORT NAME
;
; PARAMETER LIST FOR DEFINE PRESENTATION SPACE

DPRETNCD DB 0
DPFXNID DB 0
DPSESSID DB 0
DPRESERV DB 0
DPBUFOFF DW 0
DPBUFSEG DW 0
DPDSOFF DW 0
DPDSSEG DW 0

DB 0
DPWINDOW DB 0

; NEW PRESENTATION SPACE

PS DB 4000 DUP(O)
;
; KEYSTROKING BUFFER
;
KSBUF DB 128 DUP(O)

1552 BYTE WORK AREA
i
WORKAREA DB 1552 DUP(O)

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
OFFSET ADDRESS OF THE 1552 BYTE WORK AREA
SEGMENT ADDRESS OF THE 1552 BYTE WORK AREA
OFFSET OF DATA STREAM
SEGMENT OF DATA STREAM
MUST BE 0
RETURNED WINDOW SHORT NAME

INITIALIZE PRESENTATION SPACE DATA STREAM FOR DEFINE PRESENTATION SPACE

MOV
MOV

PSOFFSET,OFFSET PS
PSSEGMNT,SEG PS

OFFSET OF PS INTO THE PSDS
SEGMENT OF PS INTO THE PSDS

Chapter 8. Coding Presentation Space Service Requests 8-9

Define Presentation Space

INITIALIZE PARAMETER LIST FOR DEFINE PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

DPRETNCD,OOH
DPFXNID,OOH
AX,OFFSET WORKAREA
DPBUFOFF,AX
AX,SEG WORKAREA
DPBUFSEG,AX
AX,OFFSET PSDS
DPDSOFF,AX
AX,SEG PSDS
DPDSSEG,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = ° BEFORE REQUEST
WORK AREA OFFSET INTO THE LIST

WORK AREA SEGMENT INTO THE LIST

PSDS OFFSET INTO THE LIST

PSDS SEGMENT INTO THE LIST

INITIALIZE REGISTERS FOR DEFINE PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,PCPSM
DI, SEG DPRETNCD
ES,DI
DI,OFFSET DPRETNCD

RESOLVED VALUE FOR 'PCPSM
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DEFINE PRESENTATION SPACE SERVICE

INT 7AH

8-10

Delete Presentation Space

Presentation Space Service X'02': Delete Presentation
Space

Register Values

Use this service to delete a presentation space created by the Define
Presentation Space service. This service is allowed only if Multi-DOS is
selected at customization time. Any window created on this presentation
space is also deleted.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'02'
X'80'
X'20'
X'OOFF'
Resolved value for PCPSM
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 i byte Must be zero Return code

1 1 byte Must be zero Function ID (X'69')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

• The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

Chapter 8. Coding Presentation Space Service Requests 8-11

Delete Presentation Space

Return Codes

Usage Notes

8-12

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte o.
Presentation space return codes use a function ID of X'69'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'OC'
X'lO'

Meaning

Successful completion.
Invalid session ID.
Byte 0 of the parameter list was not zero on request.
The specified presentation space cannot be deleted.

See Appendix H, "Return Codes," for more information.

• Any window created on this presentation space is deleted from all
screen profiles on which it appears, as well as from screen profile o.

Delete Presentation Space

Coding Example

;
i PARAMETER LIST FOR DELETE PRESENTATION SPACE
;
DYRETNCD DB 0
DYFXNID DB 0
DYSESSID DB 0
DYRESERV DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED

INITIALIZE PARAMETER LIST FOR DELETE PRESENTATION SPACE

MOV
MOV
MOV
MOV

DYRETNCD,OOH
DYFXNID,OOH
AL,SESSID
DYSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
HANDLE ID INTO THE LIST

INITIALIZE REGISTERS FOR DELETE PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,PCPSM
01, SEG DYRETNCD
ES,DI
DI,OFFSET DYRETNCD

RESOLVED VALUE FOR 'PCPSM
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DELETE PRESENTATION SPACE SERVICE

INT 7AH

Chapter 8. Coding Presentation Space Service Requests 8-13

Display Presentation Space

Presentation Space Service X'03': Display Presentation
Space

Register Values

Use this service to display any changes made in the specified presentation
space.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'03'
X'80'
X'20'
X'OOFF'
Resolved value for PCPSM
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'69')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Starting offset Unchanged

6 1 word Length Unchanged

Parameter Definitions

8-14

Request Parameters:

• The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

• The starting offset is a character offset into the presentation space
buffer, specifying the first character to display.

• The length is the number of characters to be displayed.

Return Codes

Display Presentation Space

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O.
Presentation space return codes use a function ID of X'69'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'03'

X'09'
X'OC'
X'll'

Meaning

Successful completion.
Invalid session rD.
The specified offset for display is not within the address of
the presentation space.
The specified length is invalid.
Byte 0 of the parameter list was not zero on request.
Invalid parameter.

See Appendix H, "Return Codes," for more information.

Chapter 8. Coding Presentation Space Service Requests 8-15

Display Presentation Space

Coding Example

8-16

PARAMETER LIST FOR DISPLAY PRESENTATION SPACE
;
RDRETNCD DB 0
RDFXNID DB 0
RDSESSID DB 0
RDRESERV DB 0
RDCHROFF DW 0
RDLENGTH DW 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
STARTING CHARACTER OFFSET
NUMBER OF CHARACTERS TO DISPLAY

INITIALIZE PARAMETER LIST FOR DISPLAY PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV

RDRETNCD,OOH
RDFXNID,OOH
AL,SESSID
RDSESSID,AL
RDCHROFF,O
RDLENGTH,2000

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE
PARAMETER LIST
START AT THE 1ST CHARACTER
DISPLAY 2000 CHARACTERS

INITIALIZE REGISTERS FOR DISPLAY PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,03H
BH,80H
BL,20H
CX,OFFH
DX,PCPSM
DI, SEG RDRETNCD
ES,DI
DI,OFFSET RDRETNCD

RESOLVED VALUE FOR 'PCPSM
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISPLAY PRESENTATION SPACE SERVICE

INT 7AH

Set Cursor Position

Presentation Space Service X'04': Set Cursor Position

Register Values

Use this service to set a cursor position in a presentation space.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'04'
X'80'
X'20'
X'OOFF'
Resolved value for PCPSM
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH X'12'
CL = Return code

The contents of
registers AX, BX, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'69')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Cursor address Unchanged

6 1 byte Cursor type Unchanged

7 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

• The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

• The cursor address is an offset into the presentation space buffer,
specifying character position to set the cursor.

Chapter 8. Coding Presentation Space Service Requests 8-17

Set Cursor Position

Return Codes

8-18

The character position for the cursor is derived from the following
formula:

[Row number x number of columns] + column number

where:

"Row number" is the number of the row that you want the cursor to
be positioned in (0 to 24).

"Number of columns" is the number of columns defined in the
presentation space.

"Column number" is the number of the column that you want the
cursor to be positioned in (0 to 79).

• The cursor type byte is as follows (where bit 0 is the high-order bit and
bit 7 is the low-order bit):

o Reserved
1 Reserved
2 Reserved
3 Inhibited cursor with autoscroll
4 Reserved
5 Inhibited cursor
6 Blinking cursor
7 Box cursor

A blinking underscore cursor appears as

A blinking box cursor appears as •

An inhibited cursor is not displayed. When the cursor position
changes, the text in the window is not moved to keep the cursor
inside the window borders.

An inhibited cursor with autos croll is not displayed. When the
cursor position changes, the text in the window is moved to keep
the cursor inside the window borders.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Usage Notes

Set Cursor Position

• Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O.
Presentation space return codes use a function ID of X'69'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'06'
X'07'
X'OC'
X'll'

. Meaning

Successful completion.
Invalid session ID.
Invalid cursor type.
Invalid cursor address.
Byte 0 of the parameter list was not zero on request.
Invalid parameter.

See Appendix H, "Return Codes," for more information.

• Request this service each time you wish to change the position of the
cursor.

• The cursor only appears in the active window, data autoscrolls if
necessary to keep the cursor in view, and the cursor always blinks.

Chapter 8. Coding Presentation Space Service Requests 8-19

Set Cursor Position

Coding Example

8-20

; PARAMETER LIST FOR SET CURSOR POSITION
;
DCRETNCD DB 0 RETURN CODE
DCFXNID DB 0 FUNCTION NUMBER
DCSESSID DB 0 SESSION ID
DCRESRVI DB 0 RESERVED
DCCURADD DW 0 CURSOR ADDRESS
DCCURTYP DB 0 CURSOR TYPE
DCRESRV2 DB 0 RESERVED

INITIALIZE PARAMETER LIST FOR SET CURSOR POSITION

MOV DCRETNCD,OOH RETURN CODE MUST = 0 BEFORE
MOV DCFXNID,OOH FUNCTION ID MUST = 0 BEFORE
MOV AL,SESSID SESSION ID INTO THE
MOV DCSESSID,AL pARAMETER LIST
MOV DCCURADD,O DISPLAY CURSOR AT THE HOME
MOV DCCURTYP,OlH CURSOR TYPE = BOX CURSOR

INITIALIZE REGISTERS FOR SET CURSOR POSITION

AH,09H
AL,04H
BH,80H
BL,20H
CX,OFFH
DX,PCPSM RESOLVED VALUE FOR 'PCPSM

REQUEST
REQUEST

POSITION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

DI, SEG DCRETNCD
ES,DI

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

DI,OFFSET DCRETNCD OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SET CURSOR POSITION SERVICE

INT 7AH

Switch Presentation Space

Presentation Space Service X'05': Switch Presentation
Space

Register Values

Use this service to specify a presentation space to become the default
presentation space for all DOS and BIOS updates.

On Request

AH
AL
BB
BL
cx
DX
ES
DI

X'09'
X'05'
X'80'
X'20'
X'OOFF'
Resolved value for PCPSM
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'69')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

Parameter Definitions

Return Codes

Request Parameters:

• The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 8. Coding Presentation Space Service Requests 8-21

Switch Presentation Space

• Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte o.
Presentation space return codes use a function ID of X'69'. The error
codes that can be received for this service are:

Code

X'OO'
X'02'
X'OC'

Meaning

Successful completion.
Invalid session ID.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

Coding Example

8-22

PARAMETER LIST FOR SWITCH PRESENTATION SPACE
i
SPRETNCD DB 0
SPFXNID DB 0
SPSESSID DB 0
SPRESERV DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED

INITIALIZE PARAMETER LIST FOR SWITCH PRESENTATION SPACE

MOV
MOV
MOV
MOV

SPRETNCD,OOH
SPFXNID,OOH
AL,SESSID
SPSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR SWITCH PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,05H
BH,80H
BL,20H
CX,OFFH
DX,PCPSM
DI, SEG SPRETNCD
ES,DI
DI,OFFSET SPRETNCD

RESOLVED VALUE FOR 'PCPSM
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SWITCH PRESENTATION SPACE SERVICE

INT 7AH

Switch Presentation Space

Chapter 9. Coding 3270 Keystroke Emulation Service
Requests

Introduction ... 9-2
Field Attribute Definition for 3270 Keystroke Emulation 9-2
Presentation Space Format for 3270 Keystroke Emulation 9-4
Requesting the 3270 Keystroke Emulation Services 9-5
Return Codes for the 3270 Keystroke Emulation Services 9-5

3270 Keystroke Emulation Service X'Ol': Connect for 3270 Keystroke
Emulation .. 9-7

3270 Keystroke Emulation Service X'02': Disconnect for 3270
Keystroke Emulation 9-10

3270 Keystroke Emulation Service: Read Attention Identifier (AID)
Key .. 9-13

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-1

Introduction

Introduction

This chapter describes how to code requests for the 3270 keystroke
emulation services provided by the API. This service is allowed only if
Multi-DOS is selected at customization time.

The 3270 keystroke emulation services enable you to type into a personal
computer presentation space as if it were a host presentation space.
Keystrokes that previously were valid only for host sessions are processed
by the 3270 keystroke emulation task for personal computer sessions as
well.

The 3270 keystroke emulation services are activated in your personal
computer session by issuing the lNDEML command. To use the 3270
keystroke services, your application must first issue a Define Presentation
Space command to define a presentation space. This presentation space
should have no more than 24 rows or 80 columns. Screen row 25 is reserved
for the operator information area (OlA). You must run the lNDEML utility
in each PC session for which you want to use 3270 Keystroke Emulation.
See Chapter 10 in the IBM 3270 Workstation Program User's Guide and
Reference for more information.

The format of a personal computer session defined to accept 3270 keystroke
emulation is the same as the format of a standard personal computer
session. However, the contents of that presentation space are interpreted
and processed differently from other personal computer presentation spaces.
A presentation space defined to accept 3270 keystroke emulation is
interpreted as having 3270 field attributes as well as personal computer
ASCII characters.

Field Attribute Definition for 3270 Keystroke Emulation

9-2

Field attributes are contained in two bytes and are defined as any personal
computer ASCII character with a hexadecimal value between X'CO' and
X'FF', and a character attribute of nondisplay (X'OO'). This enables all 256
characters of the personal computer character set to be displayed with 3270
keystroke emulation. Field attributes occupy character positions within
the presentation space. The first byte within a field is a field attribute
character that defines the characteristics of the field. A field continues
until the next field attribute is encountered in the presentation space.
Fields within the presentation space can wrap from the bottom of the
presentation space to the top of the presentation space. The 3270 keystroke
emulation task interprets field attributes within the presentation space and
applies the 3270 keystroke rule defined by the field attribute to all
keystrokes entered into the presentation space field. The following table
describes the field attribute character bit assignment. (Remember that bit 0
is the high-order, leftmost, bit in the byte, and bit 7 is the low-order,
rightmost, bit in the byte.)

Note: Only the 3270 base attributes are supported.

Introduction

EBCDIC
Bit Field Characteristics

0, 1 11 = This byte is an attribute

2 0 = Unprotected
1 = Protected (see Note)

3 0 = Alphanumeric
1 = Numeric (if numeric lock capability is activated, causes
automatic numeric shift of keyboard) (see Note)

4, 5 00 = Display not detectable by Cursor Select key
01 = Display detectable by Cursor Select key
10 = Intensified display detectable by Cursor Select key
11 = Nondisplay, nonprint, nondetectable

6 Reserved: always 0

7 Modified data tag (MDT); identifying modified fields during
Read Modified command operation

o = Field has not been modified
1 = Field has been modified by the operator. Can also be
set by a program in the presentation space.

Note: Binary 11 in bits 2 and 3 causes an automatic skip.

When a personal computer presentation space defined to accept 3270
keystroke emulation is defined or redisplayed using presentation space
services, all character attributes in the presentation space are set to display
the character in the color defined by that character's field attribute.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-3

Introduction

Presentation Space Format for 3270 Keystroke Emulation

When defined to accept 3270 keystroke emulation, the presentation space is
interpreted as follows:

.... 41--------- Field -------.... ~ 4f_------- Field --------i ... ~

~_F_ie_l_d_A_t_tr_~ ____ ~ ____ ~ ____ ~ __ A_tt_r~ ___ F_i_el_d_A_t_t_r __ ~C-h-a-r.~----~~----L-----~~ ~

9-4

Field
Attribute
Character

'CO' - 'FF'X 'OO'X

Character Attribute
Set by PC/PSM on
Create and Display
PC Presentation
Space

White - Intensified/protected
Blue - Normal/protected
Red - Intensified/unprotected
Green - Normal/unprotected

The 3270 keystroke emulation services provided by the API are:

• Connect for 3270 Keystroke Emulation Service: Use this service
to connect the 3270 keystroke emulation task to the session identified in
the request.

• Disconnect for 3270 Keystroke Emulation Service: Use this
service to disconnect the 3270 keystroke emulation task from the
session identified in the request.

• Read AID Key Service: Use this service to enable operator input at
the keyboard until a valid AID key is entered. The 3270 PC READ AID
API allows you to choose how the application will receive AID keys.
You can receive each AID key as a scan code/shift state or as a 2- or
4-byte ASCII mnemonic. Select the ASCII option by setting the
high-order bit of byte 3 in the parameter list during READ API request.
The ASCII mnemonic is returned in bytes 10 - 13 of the parameter list.

Your personal computer application program formats the presentation
space by storing characters and field attributes directly in the presentation
space buffer. After formatting the presentation space, use the Display
Presentation Space and Display Cursor services to display the formatted
presentation space.

Introduction

After the presentation space has been formatted and displayed, request the
Read AID Key service to enable operator input from the keyboard. When
the Read AID Key service request is completed, your application program
must interrogate the contents of the presentation space, or scan the field
attributes for attributes with the modified data tag (MDT) bit set, to
determine which fields have been modified. Your application should modify
and, if necessary, redisplay the presentation space before the next Read AID
Key service request.

Requesting the 3270 Keystroke Emulation Services

To request any of the 3270 keystroke emulation services, load the registers
and the parameter list with the proper values, and use the INT 7 AH
instruction to signal the workstation program that it has a request to
process.

Note: Before your application can request the 3270 keystroke emulation
services, it must request the Name Resolution service, using
'3270EML ' as the gate name in the parameter list. (Remember that
the gate name must be padded to the right with blanks if it is less
than eight characters.)

Return Codes for the 3270 Keystroke Emulation Services

Each 3270 keystroke emulation service has two return codes associated
with it: a system return code and a 3270 keystroke emulation services
return code. Both types of return codes are 2-byte values made up of a
function ID and an error number. The function ID indicates the portion of
the workstation program in which the error occurred. The error number
indicates the specific type of error that has occurred. An error number of
X'OO' always indicates a successful acceptance or completion of the request.

• System Return Codes:

After your application has requested a 3270 keystroke emulation
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID
is in the CH register, and the error number is in the CL register.
System return codes use a function ID of X'12'. The error codes that
can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-5

Introduction

9-6

These system return codes apply to all 3270 keystroke emulation
services.

• 3270 Keystroke Emulation Services Return Codes:

After a requested 3270 keystroke emulation service is completed, bytes 0
and 1 of the parameter list contain a return code generated by the 3270
keystroke emulation management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte O. The
3270 keystroke emulation services return codes use a function ID of
X'6E'. The error numbers that can appear are specific to the service
that was requested and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Connect for 3270 Keystroke Emulation

3270 Keystroke Emulation Service X'Ol': Connect for 3270
Keystroke Emulation

Register Values

Use this service to attach a 3270 keystroke emulation task to your PC
presentation space that has been defined to accept 3270 keystroke
emulation. On successful completion of this service, operator input to the
keyboard of the connected session is disabled, so that the operator cannot
type keystrokes to that session from the keyboard.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'Ol'
X'80'
X'20'
X'OOFF'
Resolved value for 3270EML
Segment address of the parameter list
Offset address of the parameter list

On Completion

BL Return type
CH = X'12'
CL = Return code

The contents of
registers AX, BH, DX,
ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Reserved Function ID (X'6E')

2 1 byte Session ID Unchanged

3 1 byte X'OO' Unchanged

4 1 word X'OO' Keystroke task ID

6 1 word Work area offset Unchanged

8 1 word Work area segment Unchanged

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-7

Connect for 3270 Keystroke Emulation

Parameter Definitions

Return Codes

9-8

Request Parameters:

• The session ID is the ID of the PC presentation space returned on the
Define Presentation Space request. The PC presentation space must be
defined to accept 3270 keystroke emulation.

• The work area is a 700-byte area of working storage that your
application program must provide. The work area is allocated to the
keystroke emulation task until the Disconnect 3270 Keystroke
Emulation service request is issued.

Completion Parameters:

• The keystroke task ID is the task ID of the 3270 keystroke emulation
task. This task ID is required on both the Read AID Key service and the
Disconnect 3270 Keystroke Emulation service request. This is the task
provided by the workstation program that performs the 3270 keystroke
emulation for the specified presentation space.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• 3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
O. The 3270 keystroke emulation services return codes use a function
ID of X'6E'. The error codes that can be received for this service are:

Code

X'OO'
X'02'
X'08'

X'OC'

Meaning

Successful completion.
Invalid session ID.
An unsuccessful return code was encountered while
processing the request.
Byte 0 of the parameter list is not 0 on the request.

See Appendix H, "Return Codes," for more information.

Connect for 3270 Keystroke Emulation

Coding Example

;
; PARAMETER LIST FOR CONNECT FOR 3270 KEYSTROKE EMULATION
;
CERETNCD DB 0 RErrURN CODE
CEFXNID DB 0 FUNCTION NUMBER
CESESSID DB 0 SESSION ID
CEZERO DB 0 MUST BE ZERO
CEKEY$ID DW 0 KEYSTROKE TASK ID
CEWRKOFF DW 0 WORK AREA OFFSET
CEWRKSEG DW 0 WORK AREA SEGMENT

INITIALIZE PARAMETER LIST FOR CONNECT FOR 3270 KEYSTROKE EMULATION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CERETNCD,OOH
CEFXNID,OOH
AL,SESSID
CESESSID,AL
CEZERO,O
AX,OFFSET WORKAREA
CEWRKOFF,AX
AX,SEG WORKAREA
CEWRKSEG,AX

CERETNCD MUST BE 0 BEFORE REQUEST
CEFXNID MUST BE 0 BEFORE REQUEST
SESSION ID OBTAINED FROM DEFINE

PRESENTATION SPACE API
MUST BE ZERO
OFFSET OF THE WORK AREA IN LIST

SEGMENT OF THE WORK AREA IN LIST

INITIALIZE REGISTERS FOR CONNECT FOR 3270 KEYSTROKE EMULATION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,3270EML
DI, SEG CERETNCD
ES,DI
DI,OFFSET CERETNCD

RESOLVED VALUE FOR '3270EML '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT FOR 3270 KEYSTROKE EMULATION SERVICE

INT 7AH

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-9

Disconnect for 3270 Keystroke Emulation

3270 Keystroke Emulation Service X'02': Disconnect for
3270 Keystroke Emulation

Register Values

Use this service to detach the 3270 keystroke emulation task from your PC
presentation space that has been defined to accept 3270 keystroke
emulation.

On Request

AH
AL
BH
BL
CX
DX
ES
DI

X'09'
X'02'
X'80'
X'20'
X'OOFF'
Resolved value for 3270EML
Segment address of the parameter list
Offset address of the parameter list

On Completion

BL Return type
CH = X'12'
CL = Return code

The contents of
registers AX, BH, DX,
ES, and DI are
un predictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Reserved Function ID (X'6E')

2 1 byte Session ID Unchanged

3 1 byte X'OO' Unchanged

4 1 word Keystroke task ID Unchanged

Parameter Definitions

9-10

Request Parameters:

• The session ID is the ID of the PC presentation space that was specified
on the Connect to 3270 Keystroke Emulation request.

• The keystroke task ID must be the ID of the 3270 keystroking task
returned on the Connect for 3270 Keystroke request.

Return Codes

Usage Notes

Disconnect for 3270 Keystroke Emulation

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• 3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
O. The 3270 keystroke emulation services return codes use a function
ID of X'6E'. The error codes that can be received for this service are:

Code

X'OO'
X'02'
X'08'

X'OC'

Meaning

Successful completion.
Invalid session ID.
An unsuccessful return code was encountered while
processing the request.
Byte 0 of the parameter list is not 0 on the request.

See Appendix H, "Return Codes," for more information.

• You cannot request the Disconnect for 3270 Keystroke Emulation
service while you have a Read AID Key service request outstanding.
That is, if you have requested the Read AID Key service and specified
asynchronous processing, you must use the Get Request Completion
service to obtain the values on completion in the parameter list before
you can request the Disconnect for 3270 Keystroke Emulation service.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-11

Disconnect for 3270 Keystroke Emulation

Coding Example

;
; PARAMETER LIST FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION
;
DERETNCD DB 0 RETURN CODE
DEFXNID DB 0 FUNCTION NUMBER
DESESSID DB 0 SESSION ID
DEZERO DB 0 MUST BE ZERO
DEKEY$ID DW 0 KEYSTROKE TASK ID

INITIALIZE PARAMETER LIST FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION

ED

MOV
MOV
MOV
MOV
MOV
MOV

MOV

DERETNCD,OOH
DEFXNID,OOH
AL,SESSID
DESESSID,AL
DEZERO,O
AX,KEYTSKID

DEKEY$ID,AX

DERETNCD MUST BE 0 BEFORE REQUEST
DEFXNID MUST BE 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO DEFINE PRESENTATION SPACE API
MUST BE ZERO
KEYSTROKE TASK ID IN LIST (THE ID IS RETURN

FROM CONNECT TO 3270 KEYSTROKE EMULATION)

INITIALIZE REGISTERS FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H.
BH,80H
BL,20H
CX,OFFH
DX,3270EML
DI, SEG DERETNCD
ES,DI
DI,OFFSET DERETNCD

RESOLVED VALUE FOR '3270EML '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION SERVICE

INT 7AH

9-12

Read AID Key

3270 Keystroke Emulation Service: Read Attention
Identifier (AID) Key

Register Values

Use this service to receive AID keystrokes from the 3270 keystroke
emulation task that is performing 3270 keystroke emulation for the
specified presentation space. The Read AID Key service begins keystroke
processing by enabling operator input at the keyboard of the connected
session. As keystrokes are entered, the presentation space is updated using
3270 keystroke rules until a valid AID key is entered. When an AID key is
encountered, operator input to the connected session's keyboard is again
disabled. The Read AID key service returns the AID key in the parameter
list in one of two formats: scan code/shift state format or ASCII mnemonic
format. Select the ASCII format by setting the ASCII option of byte 3 of
the parameter list upon request. The READ AID key service also returns
the current row and column position of the cursor.

On Request On Completion

AH
BH
BL
CX
DX
ES
DI

X'09'
Synchronous or asynchronous *
Synchronous or asynchronous *
X'OOFF'
Keystroke task ID
Segment address of the parameter list
Offset address of the parameter list

BL Return type
CH X'12'
CL Return code

The contents of
registers AX, BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

• Request Register Values:

You can specify synchronous or asynchronous processing of the Read
AID Key service. In synchronous processing, control is returned to
your application program after the workstation program has completed
the request. In asynchronous processing, control is returned to your
application program before the workstation program has completed the
request. You must use the Get Request Completion service to obtain
the parameter list values on completion when you request asynchronous
processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program and the registers and parameter list contain the values for
completion of the request.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-13

Read AID Key

2. Set both the BH and BL registers to X' 40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Asynchronous Processing: i

For asynchronous processing of the Read AID key service request, set
the BH register to X' 40' and the BL register to X'OO'. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Read AID Key service.

• Completion register values:

If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register, on completion
of the Get Request Completion service, matches the request ID in the
AX register on completion of this service, the results obtained by the
Get Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Reserved Function ID (X'6E ')

2 1 byte Session ID Unchanged

3 1 byte Options byte Unchanged

4 1 word Reserved Reserved

6 1 byte X'OO' Scan code
or length of mnemonic
starting at byte 10

7 1 byte X'OO' Shift state
or unchanged

8 1 byte X'OO' Cursor row

9 1 byte X'OO' Cursor column

10-13 2-4 Reserved ASCII mnemonic. May
bytes be 2 or 4 bytes long.

9-14

Read AID Key

Parameter Definitions

Request Parameters:

• The session ID is the ID of the presentation space to which the
keystroke emulation task is attached.

• The options byte has the following values:

X'OO': Previous AID key was accepted, return AID keys in
scan/ shift.
X'Ol': Previous AID key was rejected, return AID keys in scan/shift.
X'SO': Previous AID key was accepted, return AID keys in ASCII.
X'Sl': Previous AID key was rejected, return AID keys in ASCII.

Completion Parameters:

• The scan code or length of mnemonic field (byte 6 of the parameter list)
is a hexadecimal value that could contain one of two values:

If the options byte was set to X'SO' or X'Sl' upon request, byte 6 will
contain the length of the ASCII mnemonic being returned. If this
byte is X'02', then bytes 10 -11 of the parameter list contain the
2-byte ASCII mnemonic being returned, and bytes 12 - 13 are
unchanged. If this byte is X'04', then bytes 10 -13 of the parameter
list contain the 4-byte ASCII mnemonic being returned.

If the options byte was set to X'OO' or X'Ol' upon request, byte 6 will
c'ontain the scan code of the AID key being reported. Bytes 10 - 13
are unchanged.

The AID keys, and their associated hexadecimal scan code and ASCII
mnemonics, are shown in the table below:

Hexadecimal ASCII
Scan Code Mnemonic

AID Key Returned Returned

Enter or CrSel X'5S' @E
on Ampersand
(&) *
Numeric Pad X'79' @E
Enter

PF1 X'07' @1

PF2 X'OF' @2

PF3 X'17' @3

PF4 X'lF' @4

PF5 X'27' @5

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-15

Read AID Key

9-16

Hexadecimal ASCII
Scan Code Mnemonic

AID Key Returned Returned

PF6 X'2F' @6

PF7 X'37' @7

PF8 X'3F' @8

PF9 X'47' @9

PFIO X'4F' @a

PFll X'56' @b

PF12 X'5E' @c

PF13 X'08' @d

PF14 X'lO' @e

PF15 X'18' @f

PF16 X'20' @g

PF17 X'28' @h

PF18 X'30' @i

PF19 X'38' @j

PF20 X'40' @k

PF2l X'48' @l

PF22 X'50' @m

PF23 X'57' @n

PF24 X'5F' @o

CrSel on a X'03' @A@J
Space or null *
PAl X'67' @x

PA2 X'6E' @y

PA3 X'6F' @z

Attn X'OC' @A@Q

Clear X'06' @C

* The 3270 Workstation Program uses the CrSel key the same way a light pen is used. If
CrSel is pressed when the cursor is on a light pen detectable field, the workstation program
may do one of four things:

1. It returns an Enter AID key if the field begins with an ampersand (&).

2. It returns the CrSel key itself if the field begins with a null or a space.

3. It returns no AID key if the field begins with a question mark (?). The question mark
is, however, changed to a ' >' and the modified data tag (MDT) bit in the field
attribute is set on.

4. It returns no AID key if the field begins with a greater than sign (». The greater
than sign is, however, changed to a '?' and the modified data tag (MDT) bit in the field
attribute is set off.

Return Codes

Read AID Key

If the cursor is not on a light pen detectable field, an input-inhibit condition results.

When the Clear key is pressed, the presentation space is cleared.

When all other AID keys in this table are pressed, the MDT bit is set in the field
attribute byte of all modified fields in the presentation space.

The SysRq and Test keys are not supported by 3270 keystroke emulation.

• The shift state indicates the shift conditions that were active when the
AID key was sent to your application program. The format of the shift
byte is as follows:

0, 1 2 3 4 5 6 7

Reserved Right Left Control ALT Shift Upshift
shift shift key keys Lock keys

Bits 0 and 1 are reserved.

Bit 2 represents the right upshift key.

Bit 3 represents the left upshift key.

Bit 4 represents the control shift state.

Bi t 5 represents the AL T shift state.

Bit 6 represents the Shift Lock state.

Bit 7 represents the upshift state. Bit 7 indicates that one of the·
two upshift keys was pressed. If your application program must
distinguish between the right upshift key and the left upshift key,
use bits 2 and 3.

Lower shift is represented by a value of X'OO'.

• "Cursor row" is the row position of the cursor on the specified
presentation space. Cursor row positions start at zero.

• "Cursor column" is the column position of the cursor on the specified
presentation space. Cursor column positions start at zero.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-1 7

Read AID Key

Usage Notes

9-18

• 3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
o. The 3270 keystroke emulation services return codes use a function
ID of X'6E'. The error codes that can be received for this service are:

Code

X'OO'

X'02'
X'08'

X'OC'

Meaning

Successful completion. The scan code for AID key was
returned in parameter list.
Invalid session ID.
An unsuccessful return code was detected while processing
the request.
Byte 0 of the presentation list is not 0 on the request.

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Read AID Key service is completed.

Coding Example

PARAMETER LIST FOR READ AID KEY

RARETNCD DB 0
RAFXNID DB 0
RASESSID DB 0
RAACCREJ DB 0

DW 0
RASCNCDE DB 0
RASHFTST DB 0
RACURS$R DB °
RACURS$C DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
ACCEPT/REJECT AID
UNUSED
SCAN CODE
SHIF'rSTATE
CURSOR ROW POSITION
CURSOR COLUMN POSITION

Read AID Key

INITIALIZE PARAMETER LIST FOR READ AID KEY

MOV
MOV
MOV
MOV
MOV
MOV

RARETNCD,OOH
RAFXNID,OOH
AL,SESSID
RASESSID,AL
AL,ACC$REJ
RAACCREJ,AL

RARETNCD MUST BE 0 BEFORE REQUEST
RAFXNID MUST BE 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO DEFINE PRESENTATION SPACE API
ACCEPT OR REJECT PREVIOUS AID IN LIST

INITIALIZE REGISTERS FOR READ AID KEY

MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV

AH,09H
BH,80H
BL,20H
CX,OFFH
DX,KEYTSKID

DI, SEG RARETNCD
ES,DI
DI,OFFSET RARETNCD

REPLY TYPE
WAIT TYPE
PRIORITY
KEYSTROKE TASK ID RETURNED FROM CONNECT TO

TO 3270 KEYSTROKE EMULATION
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR READ AID KEY SERVICE

INT 7AH

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-19

Read AID Key

9-20

Read AID Key

Chapter 10. Coding Copy Service Requests

Introduction .. 10-2
Requesting the Copy Services 10-3
Return Codes for the Copy Services 10-4

Copy Service X'Ol~: Copy String 10-5
Copy Service X'02~: Copy Block 10-12
Copy Service X'03~: Connect for Copy to PC Session 10-19
Copy Service X'04~: Disconnect for Copy to PC Session 10-22

Chapter 10. Coding Copy Service Requests 10-1

Introduction

Introduction

10-2

This chapter describes how to code requests for the copy services provided
by the API.

The copy services allow your application program to copy data into a
personal computer window, as well as copy data from one area into another
within the same personal computer window. The copy services also allow
copying of data between any host and notepad sessions. (Before you can
use a personal computer window as the target for a copy operation, you
must use the Connect for Copy to PC Session service to designate the
session as a valid copy target. You must also use the Disconnect for Copy
to PC Session service when you no longer want your personal computer
session to be a target for copy operations.)

The copy services also allow your application program to copy data from
one presentation space or buffer to another. Copying graphics characters
or program symbol set characters is not allowed.

When copying between sessions that have different character code types
(i.e., PC characters and host/notepad characters), a translation will occur.

The copy services provided by the API are:

• Copy String Service: Use this service to copy a string from a
specified presentation space or buffer into another specified
presentation space or buffer.

• Copy Block Service: Use this service to copy a block from a
specified presentation space or buffer into another specified
presentation space or buffer.

• Connect for Copy to PC Session Service: Use this service to
identify a personal computer session as being a valid target session for
the copy services.

• Disconnect for Copy to PC Session Service: Use this service to
identify a personal computer session as no longer being a valid target
for the copy services.

Copy services are available for use only if you specify COpy = YES at
customization time.

Introduction

The major copy operations are: copy string and copy block. The copy
string operation copies all characters beginning with the specified starting
character up to and including the specified ending character, as shown
below:

• Copy string

If the source is specified as:

EI ow is the time for all good
women to come to the aid of their part n

the string copied to the target is:

Now is the time for all good
women to come to the aid of their party

The copy block operation copies all characters in the block of text formed
by the specified starting and ending characters, as shown below:

• Copy block

If the source is specified as:

EI ow is the time for all good
women to come to the aid of their part n

the block copied to the target is:

Now is the time for all good
men to come to the aid of their party

Requesting the Copy Services

To request any of the copy services, load the registers and the parameter
list with the proper values, and use the INT 7 AH instruction to signal the
workstation program that it has a request to process.

Note: Before your application can request the copy services, it must request
the Name Resolution service, using 'COpy 'as the gate name in the
parameter list. (Remember that the gate name must be padded to the
right with blanks if it is less than eight characters.)

Chapter 10. Coding Copy Service Requests 10-3

Introduction

Return Codes for the Copy Services

10-4

Each copy service has two return codes associated with it, a system return
code and a copy service return code. Both types of return codes are 2-byte
values made up of a function ID and an error number. The function ID
indicates the portion of the workstation program in which the error
occurred. The error number indicates the specific type of error that has
occurred. An error number of X'OO' indicates a successful acceptance or
completion of the request.

• System Return Codes:

After your application has requested a copy service, the CH and CL
registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH
register, and the error number is in the CL register. System return
codes use a function ID of X'12'. The error codes that can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid gate entry.

These system return codes apply to all the copy services.

• Copy Services Return Codes:

After a requested copy service has completed, bytes 0 and 1 of the
parameter list contain a return code generated by the copy management
portion of the workstation program. The function ID is in byte 1, and
the error number is in byte O. Copy services return codes use a function
ID of X'64'. The error numbers that can appear are specific to the
service that was requested, and are included in the descriptions of each
service.

See Appendix H, "Return Codes," for more information.

Copy String

Copy Service X'Ol': Copy String

Register Values

Use this service to copy a string from one presentation space or buffer into
another.

On Request

AH = X'09'
AL = X'Ol'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for COpy
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

*

Contents Contents
Offset Length on Request on Completion

0

1

2

3

4

6

8

9

10

12

14

1 byte Must be zero Return code

1 byte Must be zero Function ID
(X'64')

1 byte Source session ID Unchanged
or zero*

1 byte Reserved - must Reserved
be X'OO'

1 word Offset address of Unchanged
source buffer or
zero*

1 word Segment address Unchanged
of source buffer*

1 byte Source Unchanged
characteristics*

1 byte Source session Unchanged
type*

1 word Offset of source Unchanged
starting character

1 word Offset of source Unchanged
ending character

1 byte Target session Unchanged
ID* or zero

The contents of this offset depend on whether a presentation space or a buffer is being used
as the copy source/target. See the parameter definitions for more information.

Chapter 10. Coding Copy Service Requests 10-5

Copy String

*

Contents Contents
Offset Length on Request on Completion

15

16

18

20

21

22

24

25

1 byte Reserved - must Reserved
be X'OO'

1 word Offset address of Unchanged
target buffer*

1 word Segment address Unchanged
of target buffer*

1 byte Target Unchanged
characteristics*

1 byte Target session Unchanged
type*

1 word Offset of target Unchanged
starting character

1 byte Copy mode Unchanged

1 byte Reserved Reserved

The contents of this offset depend on whether a presentation space or a buffer is being used
as the copy source/target. See the parameter definitions for more information.

Parameter Definitions

10-6

Request Parameters:

• If the copy source is a presentation space:

The source session ID is the ID of the session containing the string
to copy.

Offsets 3 through 9 of the parameter list must be zero.

The source starting character is the character offset into the
presentation space of the starting character of the string to be
copied. This is the number of characters, not including the
attributes. Character offsets begin with zero.

The source ending character is the character offset in to the
presentation space of the ending character of the string to be
copied. This is the number of characters, not including the
attributes. Character offsets begin with zero.

Copy String

• If the copy source is a buffer:

Offset 2 of the parameter list must be zero.

The source buffer contains the source string for the copy.

The source characteristics apply to DFT host sessions only as
follows:

If bit 7 = 0, the source has base attributes.
If bit 7 = 1, the source has extended attributes.

The source session type is one of the following:

X'02' - DFT host session
X'03' - CUT host session
X'04' - notepad session
X'05' - PC session

The source starting character is the byte offset into the buffer of the
starting character of the string to be copied. Byte offsets begin with
zero.

The source ending character is the byte offset into the buffer of the
ending character of the string to be copied. Byte offsets begin with
zero.

• If the copy target is a presentation space:

The target session ID is the ID of the session to receive the copied
string.

Offsets 15 through 21 of the parameter list must be zero.

The target starting character is the character offset into the
presentation space of the character to place the beginning of the
copied string. This is the number of characters not including the
attributes. Character offsets begin with zero.

Chapter 10. Coding Copy Service Requests 10-7

Copy String

10-8

• If the copy target is a buffer:

The target buffer contains the target data area for the copy.

Offset 14 must be zero.

The target characteristics apply to DFT host sessions only, and are
as follows:

If bit 7 = 0, the target has base attributes.
If bit 7 = 1, the target has extended attributes.

The target session type is one of the following:

X'02' - DFT host session
X'03' - CUT host session
X'04' - notepad session
X'05' - PC session

The target starting character is the byte offset into the buffer of the
starting character of the string to be copied. Byte offsets begin with
zero.

• The copy mode is specified as follows:

To force the desired color mode (refer to IBM 3270 Workstation
Program User's Guide and Reference for the definition of the color
modes):

X'OO' = 4-color mode
X'80' = 7-color mode

If the target is a personal computer presentation and is connected
for 3270 keystroke emulation or if the target is a PC buffer:

X'OO' = field attributes not copied
X'40' = field attributes copied

Return Codes

Copy String

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Copy Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the copy management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The copy
services return codes use a function ID of X'64'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'05'
X'06'

X'07'

X'09'

X'OC'
X'OD'
X'OE'
X'OF'

Meaning

Successful completion.
Source not allowed.
Invalid session ID.
The target window is input-inhibited.
The source and target areas over lap (copy performed).
There is a missing or invalid parameter on the source
definition.
There is a missing or invalid parameter on the target
definition.
Truncation occurred (copy performed). You attempted to
copy past the end of the presentation space.
Byte 0 of the parameter list was not zero on request.
The target was not allowed.
The target window is protected.
The copy of the field attributes was not allowed (copy not
performed).

See Appendix H, "Return Codes," for more information.

Chapter 10. Coding Copy Service Requests 10-9

Copy String

Coding Example

PARAMETER LIST FOR COPY STRING
;
CSRETNCD
CSFXNID
CSSSESID
CSRESRVI
CSSRCOFF
CSSRCSEG
CSSRCCHR
CSSRCTYP
CSSSTRTC
CSSENDC
CSTSESID
CSRESRV2
CSTRGOFF
CSTRGSEG
CSTRGCHR
CSTRGTYP
CSTSTRTC
CSMODE
CSRESRV3

DB a
DB a
DB a
DB a
DW a
DW a
DB a
DB a
DW a
DW a
DB a
DB a
DW a
DW a
DB a
DB a
DW a
DB a
DB a

RETURN CODE
FUNCTION ID
SOURCE SESSION ID
RESERVED - MUST BE X'OO'
OFFSET ADDRESS OF SOURCE BUFFER
SEGMENT ADDRESS OF SOURCE BUFFER
SOURCE CHARACTERISTICS
SOURCE SESSION TYPE
OFFSET OF SOURCE STARTING CHARACTER
OFFSET OF SOURCE ENDING CHARACTER
TARGET SESSION ID
RESERVED - MUST BE X'OO'
OFFSET ADDRESS OF TARGET BUFFER
SEGMENT ADDRESS OF TARGET BUFFER
TARGET CHARACTERISTICS
TARGET SESSION TYPE
OFFSET OF TARGET STARTING CHARACTER
COpy MODE
RESERVED

COpy THE FIRST LINE OF A NOTEPAD TO A PC BUFFER

INITIALIZE PARAMETER LIST FOR COpy STRING

MOV CSRETNCD,OOH RETURN CODE MUST = a BEFORE REQUEST
MOV CSFXNID,OOH FUNCTION ID MUST = a BEFORE REQUEST
MOV AL,SRCSESID SOURCE SESSION ID INTO THE LIST
MOV CSSSESID,AL
MOV CSRESRVl,O RESERVED - MUST BE a
MOV CSSRCOFF,O SOURCE OFFSET NOT USED
MOV CSSRCSEG,O SOURCE SEGMENT NOT USED
MOV CSSRCCHR,OOH SOURCE CHARACTERISTICS NOT USED
MOV CSSRCTYP,04H SOURCE TYPE = NOTEPAD SESSION
MOV CSSSTRTC,O SOURCE STARTING CHARACTER OFFSET =0
MOV CSSENDC,80 SOURCE ENDING CHARACTER OFFSET 80

MOV CSTSESID,O TARGET SESSION ID NOT USED
MOV CSRESRV2,0 RESERVED - MUST BE a
MOV AX,OFFSET TARGET TARGET OFFSET INTO THE LIST
MOV CSTRGOFF,AX
MOV AX,SEG TARGET TARGET SEGMENT INTO THE LIST
MOV CSTRGSEG,AX
MOV CSTRGCHR,O TARGET CHARACTERISTICS NOT USED
MOV CSTRGTYP,05H TARGET TYPE = PC SESSION
MOV CSTSTRTC,O TARGET STARTING CHARACTER OFFSET =0
MOV CSMODE,OlOOOOOOB COpy MODE = 4-COLOR WITH FIELD ATT.

10-10

Copy String

INITIALIZE REGISTERS FOR COpy STRING

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,COPY
DI, SEG CSRETNCD
ES,DI
DI,OFFSET CSRETNCD

RESOLVED VALUE FOR 'COpy
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR COpy STRING SERVICE

INT 7AH

Chapter 10. Coding Copy Service Requests 10-11

Copy Block

Copy Service X'02': Copy Block

Register Values

Use this service to copy a block from one presentation space or buffer into
another.

On Request

AH = X'09'
AL = X'02'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for COpy
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

*

10-12

Contents Contents
Offset Length on Request on Completion

0

1

2

3

4

6

8

9

10

12

14

1 byte Must be zero Return code

1 byte Must be zero Function ID
(X'64')

1 byte Source session ID Unchanged
or zero*

1 byte Reserved - must Reserved
be X'OO'

1 word Offset address of Unchanged
source buffer or
zero*

1 word Segment address Unchanged
of source buffer*

1 byte Source Unchanged
characteristics*

1 byte Source session Unchanged
type*

1 word Offset of source Unchanged
/ starting character

1 word Offset of source Unchanged
ending character

1 byte Target session Unchanged
ID* or zero

The contents of this offset depend on whether a presentation space or a buffer is being used
as the copy source/target. See the parameter definitions for more information.

*

Copy Block

Contents Contents
Offset Length on Request on Completion

15

16

18

20

21

22

24

25

1 byte Reserved - must Reserved
be X'OO'

1 word Offset address of Unchanged
target buffer*

1 word Segment address Unchanged
of target buffer*

1 byte Target Unchanged
characteristics *

1 byte Target session Unchanged
type*

1 word Offset of target Unchanged
starting character

1 byte Copy mode Unchanged

1 byte Reserved Reserved

The contents of this offset depend on whether a presentation space or a buffer is being used
as the copy source/target. See the parameter definitions for more information.

Parameter Definitions

Request Parameters:

• If the copy source is a presentation space:

The source session ID is the ID of the session containing the block
to copy.

Offsets 3 through 9 of the parameter list must be zero.

The source starting character is the character offset into the
presentation space of the starting character of the block to be
copied. This is the number of characters, not including the
attributes. Character offsets begin with zero.

The source ending character is the character offset into the
presentation space of the ending character of the block to be copied.
This is the number of characters, not including the attributes.
Character offsets begin with zero.

Chapter 10. Coding Copy Service Requests 10-13

Copy Block

10-14

• If the copy source is a buffer:

Offset 2 of the parameter list must be zero.

The source buffer contains the source block for the copy.

The source characteristics apply to DFT host sessions only as
follows:

If bit 7 = 0, the source has base attributes.
If bit 7 = 1, the source has extended attributes.

The source session type is one of the following:

X'02' - DFT host session
X'03' - CUT host session
X'04' - notepad session
X'05' - PC session

The source starting character is the byte offset into the buffer of the
starting character of the block to be copied. Byte offsets begin with
zero.

The source ending character is the byte offset into the buffer of the
ending character of the block to be copied. Byte offsets begin with
zero.

• If the copy target is a presentation space:

- The target session ID is the ID of the session to receive the copied
block.

Offsets 15 through 21 of the parameter list must be zero.

- The target starting character is the character offset into the
presentation space of the character to place the beginning of the
copied block. This is the number of characters not including the
attributes. Character offsets begin with zero.

Copy Block

• If the copy target is a buffer:

Offset 14 must be zero.

The target buffer contains the target data area for the copy.

The target characteristics apply to DFT host sessions only, and are
as follows:

If bit 7 = 0, the source has base attributes.
If bit 7 = 1, the source has extended attributes.

The target session type is one of the following:

X'02' - DFT host session
X'03' - CUT host session
X'04' - notepad session
X'05' - PC session

The target starting character is the byte offset into the buffer of the
starting character of the block to be copied. Byte offsets begin with
zero.

• The copy mode is specified as follows:

To force the desired color mode (refer to IBM 3270 Workstation
Program User's Guide and Reference for the definition of color
modes):

X'OO' = 4-color mode
X'80' = 7 -color mode

If the target is a personal computer presentation and is connected
for 3270 keystroke emulation or if the target is a PC buffer:

X'OO' = Field attributes were not copied
X'40' = Field attributes were copied

Chapter 10. Coding Copy Service Requests 10-15

Copy Block

Return Codes

10-16

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Copy Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the copy management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The copy
services return codes use a function ID of X'64'. The error codes that
can be received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'05'
X'06'
X'07'
X'09'

X'OC'
X'OD'
X'OE'
X'OF'

Meaning

Successful completion.
Source not allowed.
Invalid session ID.
The target window is input-inhibited.
The source and target areas overlap (copy performed).
There is a missing or invalid parameter on source definition.
There is a missing or invalid parameter on target definition.
Truncation occurred (copy performed). You attempted to
copy past the end of the presentation space.
Byte 0 of the parameter list was not zero on request.
The target was not allowed.
The target window is protected.
A copy of the field attributes was not allowed (copy not
performed).

See Appendix H, "Return Codes," for more information.

Coding Example

PARAMETER LIST FOR COpy BLOCK
;
CBRETNCD DB 0
CBFXNID DB 0
CBSSESID DB 0
CBRESRVl DB 0
CBSRCOFF DW 0
CBSRCSEG DW 0
CBSRCCHR DB 0
CBSRCTYP DB 0
CBSSTRTC DW 0
CBSENDC DW 0
CBTSESID DB 0
CBRESRV2 DB 0
CBTRGOFF DW 0
CBTRGSEG DW 0
CBTRGCHR DB 0
CBTRGTYP DB 0
CBTSTRTC DW 0
CBMODE DB 0
CBRESRV3 DB 0

RETURN CODE
FUNCTION ID
SOURCE SESSION ID
RESERVED

Copy Block

OFFSET ADDRESS OF SOURCE BUFFER
SEGMENT ADDRESS OF SOURCE BUFFER
SOURCE CHARACTERISTICS
SOURCE SESSION TYPE
OFFSET OF SOURCE STARTING CHARACTER
OFFSET OF SOURCE ENDING CHARACTER
TARGET SESSION ID
RESERVED
OFFSET ADDRESS OF TARGET BUFFER
SEGMENT ADDRESS OF TARGET BUFFER
TARGET CHARACTERISTICS
TARGET SESSION TYPE
OFFSET OF TARGET STARTING CHARACTER
COpy MODE
RESERVED

COpy A BLOCK FROM THE HOST TO A NOTEPAD

INITIALIZE THE PARAMETER LIST FOR COpy BLOCK

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV

CBRETNCD,OOH
AL,SRCSESID
CBSSESID,AL
CBSRCOFF,O
CBSRCSEG,O
CBSRCCHR,lOOOOOOOB

CBSRCTYP,02H
CBSSTRTC,O
CBSENDC,835
AL,TRGSESID
CBTSESID,AL
CBTRGOFF,O
CBTRGSEG,O
CBTRGCHR,OOH
CBTRGTYP,04H
CBTSTRTC,440

CBMODE,O

RETURN CODE MUST = 0 BEFORE REQUEST
SOURCE SESSION ID INTO THE LIST

SOURCE OFFSET NOT USED
SOURCE SEGMENT NOT USED
SOURCE CHARACTERISTICS SOURCE HAS

EXTENDED ATTRIBUTES
SOURCE TYPE = DFT HOST SESSION
SOURCE STARTING CHARACTER OFFSET =0
SOURCE ENDING CHARACTER OFFSET =835
TARGET SESSION ID INTO THE LIST

TARGET OFFSET NOT USED
TARGET SEGMENT NOT USED
TARGET CHARACTERISTICS NOT USED
TARGET TYPE = NOTEPAD SESSION
TARGET STARTING CHARACTER OFFSET

= 440
COpy MODE NOT USED

Chapter 10. Coding Copy Service Requests 10-17

Copy Block

INITIALIZE REGISTERS FOR COpy BLOCK

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,COPY
DI, SEG CBRETNCD
ES,DI
DI,OFFSET CBRETNCD

RESOLVED VALUE FOR 'COpy
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR COpy BLOCK SERVICE

INT 7AH

10-18

Connect for Copy to PC Session

Copy Service X'03': Connect for Copy to PC Session

Register Values

Use this service to identify a personal computer session as being a valid
target session for the copy services.

On Request

AH = X'09'
AL = X'03'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for COpy
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'64')

2 1 byte Session ID Unchanged

3 1 byte Reserved - must Reserved
be X'OO'

Parameter Definitions

Request Parameters:

• The session ID is the ID of a personal computer session that will be
identified as a valid target session for the copy services. You can
obtain the session ID through a request to the Query Base Window
service if this personal computer session is not one created by the
Define Presentation Space service.

Chapter 10. Coding Copy Service Requests 10-19

Connect for Copy to PC Session

Return Codes

10-20

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the copy management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The copy
services return codes use a function ID of X'64'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'OC'

Meaning

Successful completion.
The specified session is not a personal computer session.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

Connect for Copy to PC Session

Coding Example

; PARAMETER LIST FOR CONNECT FOR COpy TO PC SESSION
;
CCRETNCD DB 0
CCFXNID DB 0
CCSESSID DB 0
CCRESERV DB 0

RETURN CODE
FUNCTION NUMBER
SESSION 10
RESERVED -- MUST BE 0

INITIALIZE PARAMETER LIST FOR CONNECT FOR COpy TO PC SESSION

MOV
MOV
MOV
MOV

CCRETNCD,OOH
CCFXNID,OOH
AL,SESSID
CCSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION 10 MUST = 0 BEFORE REQUEST
SESSION 10 INTO THE LIST

INITIALIZE REGISTERS FOR CONNECT FOR COpy TO PC SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,03H
BH,80H
BL,20H
CX,OFFH
DX,COPY
01, SEG CCRETNCD
ES,DI
DI,OFFSET CCRETNCD

RESOLVED VALUE FOR 'COpy
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR CONNECT FOR COpy TO PC SESSION SERVICE

INT 7AH

Chapter 10. Coding Copy Service Requests 10-21

Disconnect for Copy to PC Session

Copy Service X'04': Disconnect for Copy to PC Session

Register Values

Use this service to identify a personal computer session as no longer being
a valid target session for the copy services.

On Request

AH = X'09'
AL = X'04'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for COpy
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'64')

2 1 byte Session ID Unchanged

3 1 byte Reserved - must Reserved
be X'OO'

Parameter Definitions

10-22

Request Parameters:

• The session ID is the ID of a personal computer session that has been
identified as a valid target session for the copy services. You can
obtain the session ID through a request to the Query Base Window
service if this personal computer session is not one created by the
Define Presentation Space service.

Return Codes

Disconnect for Copy to PC Session

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the copy management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. The copy
services return codes use a function ID of X'64'. The error codes that
can be received for this service are:

Code

X'OO'
X'02'
X'OC'

Meaning

Successful completion.
The specified session is not a personal computer session.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 10. Coding Copy Service Requests 10-23

Disconnect for Copy to PC Session

Coding Example

10-24

PARAMETER LIST FOR DISCONNECT FOR COpy TO PC SESSION
i
DCRETNCD DB 0
DCFXNID DB 0
DCSESSID DB 0
DCRESERV DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED -- MUST BE 0

INITIALIZE PARAMETER LIST FOR DISCONNECT FOR COpy TO PC SESSION

MOV
MOV
MOV
MOV

DCRETNCD,OOH
DCFXNID,OOH
AL,SESSID
DCSESSID,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR DISCONNECT FOR COPY TO PC SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H
BL,20H
CX,OFFH
DX,COPY
DI, SEG DCRETNCD
ES,DI
DI,OFFSET DCRETNCD

RESOLVED VALUE FOR 'COpy
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FOR COpy TO PC SESSION

INT 7AH

Disconnect for Copy to PC Session

Chapter 11. Coding Translate Service Requests

Introduction .. 11-2
Requesting the Translate Service 11-2
Return Codes for the Translate Service 11-2

Translate Service X'Ol': Translate Data 11-4

Chapter 11. Coding Translate Service Requests 11-1

Translate Service

Introduction

This chapter describes how to code requests for the translate service
provided by the API.

Data that is displayed in host and notepad presentation spaces is
represented by numbers called host/notepad character codes. Data that is
displayed in personal computer presentation spaces is represented by ASCII
codes. The translate service allows your application program to translate
the data in a buffer from one type of data representation to the other.

Notes:

1. You cannot translate graphic characters or programmed symbol set
characters.

2. If the input code does not have a matching output code, it is translated to
a blank.

The translate service provided by the API is:

• Translate Data Service: Use this service to translate the data in a
buffer from ASCII codes to host/notepad character codes, or from
host/notepad character codes to ASCII codes.

Requesting the Translate Service

To request the translate service, load the registers and the parameter list
with the proper values, and use the INT 7 AH instruction to signal the
workstation program that it has a request to process.

Note: Before your application can request the translate service, it must
request the Name Resolution service, using 'XLATE ' as the gate
name in the parameter list. (Remember that the gate name must be
padded to the right with blanks if it is less than eight characters.)

Return Codes for the Translate Service

11-2

The translate service has two return codes associated with it: a system
return code and a translate service return code. Both types of return codes
are 2-byte values made up of a function ID and an error number. The
function ID indicates the portion of the workstation program in which the
error occurred.
The error number indicates the specific type of error that has occurred.

An error number of X'OO' always indicates a successful acceptance or
completion of the request.

Translate Service

• System Return Codes:

After your application has requested a translate service, the CH and CL
registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH
register, and the error number is in the CL register. System return
codes use a function ID of X'12'. The error codes that can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid gate entry.

• Translate Service Return Codes:

After a requested translate service is completed, bytes 0 and 1 of the
parameter list contain a return code generated by the translation
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte O. The translate service return
codes use a function ID of X'6C'. The error numbers that can appear
are included in the description of the service.

See Appendix H, "Return Codes," for more information.

Chapter 11. Coding Translate Service Requests 11-3

Translate Data

Translate Service X'Ol': Translate Data

Register Values

Use this service to translate the data in a buffer from ASCII codes to
host/notepad character codes, or from host/notepad character codes to
ASCII codes.

On Request

AH = X'09' .
AL = X'OI'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for XLATE
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'6C')

2 1 word Offset address of source Unchanged
buffer

4 1 word Segment address of source Unchanged
buffer

6 1 word Offset address of target Unchanged
buffer

8 1 word Segment address of target Unchanged
buffer

10 1 byte Translate type Unchanged

11 1 byte Reserved Reserved

12 1 word Length Unchanged

11-4

Translate Data

Parameter Definitions

Request Parameters:

• The source buffer contains the codes to be translated.

• The target buffer is where the translated codes are to be stored.

Note: The source and target buffers can be the same address.

• The translate type is specified as follows:

X'Ol' -ASCII to host/notepad
X'02'-Host/notepad to ASCII

• "Length" is the number of bytes to translate. If the length is 0, no
translation occurs, but the request will not fail.

Note: If the input code does not have a matching output code, it will be
translated to a blank. An ASCII blank is X'20', and a host and
notepad blank is X'JO'.

The following table shows the host and notepad character codes and the
characters they represent.

Ox Ix 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx ex Dx Ex
xO NUL SP 0 & a a A X a q A Q ~ /'It. P
xl EM = 1 - e e E E b r B R - I s
x2 ,

2
~ i i °i c 11 FF 0 1 C S S ~

-+

x3 " 3 "- 0 0 d t D T ! if NL , 0 0

x4 / 4 "-
.......

ti .' ! * STP 0 U U U e u E U .:. r
x5 \ 5 + " A ~ f F V " - J!. CR a a v

x6 I 6 -, 0 " e 0 ~ g w G W)(r l:
x7 I 7 - t:-

Y i h H X -L l' I Y 1 x

x8 > ? 8 0 "- & A 6 i I Y , V a y +-

x9 < ! 9 e " E U j J Z ~ J t u z
xA [$ fJ A e ,,; ,,;

11 3 a E A k ae K .JE .;r

xB] § ~ ,,; ,,;

0 ~ .. ¢ "" 1 e I E 1 flf L

xC "-
,,; ./ .a. rr 0) ~ # 00

0 i 0 I m a M A
xD (y @ , U 6 u 6 n ~ N C]. ~ T ...
xE } 070 , 00 ./ Y 6 -;- 0 • -Pts U U 0 .. , , - .. '
xF { ~ - ~ f n C

.....

I II • N p .- p •

Fx
00
[7]
• to-: • ..

Bl
-
-

• .
I.J

~a:
'"
CJ

I!Iiz

So

0
· I

Not
Sup-
ported

Chapter 11. Coding Translate Service Requests 11-5

Translate Data

Return Codes

11-6

Notes:

1. Values X'CO) through X'FF' are used as attributes in CUT and DFT host
sessions, and as characters in notepad sessions.

2. Characters X'68' through X'6F' are replaced in the refresh buffer by
X'E8', X'69', X'6A', X'F8', X'FE', X'D4', X'CE', and X'D3', respectively.
These characters are used only in non-U.S. countries.

The following table shows the hexadecimal ASCII codes found in the
personal computer presentation space and the characters they represent.

'~:~'~Al
IVAIUI

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8lAIIK BlAIIK 0 @ p , p ~ E ,
ex: -

~ a -
IIIUlll IS'ACII -

'"

J ~ I 1 A Q q ii ~ f3 + a z

• t II 2 B R b
,

IE
,

I' > 2 r e 0 I

3 • II # 3 C S a A. ,
~ lL 1T < C S 0 U

4 • 9T $ 4 D T d t
.. .. ~ - ~ b L r a 0 n

5 • § % 5 E U " " N = F u I) e u a 0 -~
6 • & 6 F V f 0 1\ a ~ y - v a u ,..-
7 ! ,

7 G W g w ~ " 0 r- T ---• u "tl H ---f---

D I\. ..
1 (8 H X h Q 0 8 X e y 0 R

f---

0 H • 9 0 1) 9 I Y 1 Y e r It ~ e
~-. * · J Z J " 0 --. ~ n · z e •

B (j + · K [k { y ¢ Y2 8 -r ~ , FTI
c 9 L < L "- I I A. £ ~ :::JJ 00 n , I 1
D .P M] m } " ¥

. -1J cp 2 +--+ - - 1 ,
E ~ • . > N /\ n ~ A R « d ~ E I
F ~ • / ? 0 0 ~ A f' » -, n BlAIIK

· - fF

For further information regarding the personal computer character set and
attributes, refer to the IBM Personal Computer Technical Reference.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Translate Data

• Translate Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the translate management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte o. Translate
services return codes use a function ID of X'6C'. The translate services
return codes that can be received for this service are:

Code
X'OO'
X'Ol'
X'OC'

Meaning
Successful completion.
Invalid translate type.
Byte 0 in the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

Chapter 11. Coding Translate Service Requests 11-7

Translate Data

Coding Example

11-8

PARAMETER LIST FOR TRANSLATE DATA
;
TLRETNCD DB a
TLFXNID DB a
TLSRCOFF DW a
TLSRCSEG DW a
TLTRGOFF DW a
TLTRGSEG DW a
TLTYPE DB a
TLRESERV DB a
TLLENGTH DW a

RETURN CODE
FUNCTION NUMBER
OFFSET ADDRESS OF SOURCE BUFFER
SEGMENT ADDRESS OF SOURCE BUFFER
OFFSET ADDRESS OF TARGET BUFFER
SEGMENT ADDRESS OF TARGET BUFFER
TRANSLATE TYPE
RESERVED
LENGTH

INITIALIZE PARAMETER LIST FOR TRANSLATE DATA

MOV TLRETNCD,OOH RETURN CODE MUST = a BEFORE REQUEST
MOV TLFXNID,OOH FUNCTION ID MUST = a BEFORE REQUEST
MOV AX,OFFSET SOURCE SOURCE OFFSET INTO THE LIST
MOV TLSRCOFF,AX
MOV AX,SEG SOURCE SOURCE SEGMENT INTO THE LIST
MOV TLSRCSEG,AX
MOV AX,OFFSET TARGET TARGET OFFSET INTO THE LIST
MOV TLTRGOFF,AX
MOV AX,SEG TARGET TARGET SEGMENT INTO THE LIST
MOV TLTRGSEG,AX
MOV TLTYPE,OlH TRANSLATE ASCII TO EBCDIC
MOV TLLENGTH, 80 TRANSLATE 80 BYTES

INITIALIZE REGISTERS FOR TRANSLATE DATA

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,XLATE
DI, SEG TLRETNCD
ES,DI
DI,OFFSET TLRETNCD

RESOLVED VALUE FOR 'XLATE
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR TRANSLATE DATA SERVICE

INT 7AH

Translate Data

Chapter 12. Coding Operator Information Area Service
Requests

Introduction .. 12-2
Requesting the Operator Information Area Services 12-3
Return Codes for the Operator Information Area Services 12-3

Operator Information Area Service X'Ol': Read Operator Information
Area Image .. 12-4

Operator Information Area Service X'02': Read Operator Information
Area Group .. 12-7

Chapter 12. Coding Operator Information Area Service Requests 12-1

Introduction

Introduction

12-2

This chapter describes how to code requests for the operator information
area (OIA) services provided by the API.

The OIA services allow your application program to determine the current
status of a session as shown in the OIA.

The OIA services provided by the API are:

• Read Operator Information Area Image Service: Use this service
to obtain an image of the OIA for the specified session.

• Read Operator Information Area Group Service: Use this service
to obtain a bit string that indicates the current settings of a group of
indicators in the OIA for the specified session.

The Read Operator Area Image service reads an image of the OIA into a
buffer that you supply. In order for the image to be useful to you, you must
be aware of the possible OIA indicators that can be displayed on the system
you are connected to. To determine the presence of a particular OIA
indicator, you must scan the buffer for the hexadecimal character that
represents that character. The OIA image in the buffer is represented by
host/notepad character codes.

The Read Operator Area Group service returns a bit mask that indicates
the state of all the indicators in a specified group of OIA indicators. The
states of each group are ordered so that the high-order bits represent the
indicators of higher priority. Therefore, if more than one state is active
within a group, the state with the highest priority is the active state within
that group.

Notes:

1. For CUT host sessions, the information in the OIA may not be updated to
reflect the status of that session if the session has lost communication
with the controller or the host.

2. For non-3270 PC hardware, no OIA is displayed for PC sessions. In
addition, there is no host separation line in the OIA.

For more information on the host OIA, refer to the 3278 Display Station
Operator's Guide.

For further information on the OlA, refer to the IBM 3270 Workstation
Program User's Guide and Reference.

OIA Service

Requesting the Operator Information Area Services

To request the operator information area services, load the registers and
the parameter list with the proper values, and use the INT 7 AH instruction
to signal the workstation program that it has a request to process.

Note: Before your application can request the operator information area
services, it must request the Name Resolution service, using
'OIAM ' as the gate name in the parameter list. (Remember that
the gate name must be padded to the right with blanks if it is less
than eight characters.)

Return Codes for the Operator Information Area Services

Each operator information area service has two return codes associated
with it, a system return code and an operator information area services
return code. Both types of return codes are 2-byte values made up of a
function ID and an error number. The function ID indicates the portion of
the workstation program in which the error occurred. The error number
indicates the specific type of error that has occurred. An error number of
X'OO' always indicates a successful acceptance or completion of the request.

• System Return Codes:

After your application has requested an operator information area
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID
is in the CH register, and the error number is in the CL register.
System return codes use a function ID of X'12'. The error codes that
can appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all the operator information area
serVIces.

• Operator Information Area Services Return Codes:

After a requested operator information area service is completed, bytes
o and 1 of the parameter list contain a return code generated by the
OIA management portion of the workstation program. The function ID
is in byte 1, and the error number is in byte O. Operator information
area services return codes use a function ID of X'6D'. The error
numbers that can appear are specific to the service that was requested
and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 12. Coding Operator Information Area Service Requests 12-3

Read Operator Information Area Image

Operator Information Area Service X'Ol': Read Operator
Information Area Image

Register Values

Use this service to obtain an image of the operator information area for the
specified host, notepad, or PC session (excluding WSCtrl mode).

On Request

AH = X'09'
AL = X'OI'
BH = X'80'
BL = X'20'
CX = X'OOFF'
DX = Resolved value for OIAM
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X'6D')

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 word Offset address of OIA buffer Unchanged

6 1 word Segment address of OIA Unchanged
buffer

Parameter Definitions

12-4

Request Parameters:

• The session ID is the ID of the session being queried for OIA
information.

• The OIA buffer is the buffer where the OIA image data will be returned.
The OIA buffer must be 160 bytes long. Each character in the OIA is
represented in the buffer by two bytes of information. The first byte
contains the character in the OIA, and the second byte contains the
character attribute for that character. Figures F-3 and F-5 in
Appendix F, "Presentation Space Considerations," show the format of
the character attributes and the hexadecimal codes for the OIA
characters.

Read Operator Information Area Image

OIA Image Overlay

Return Codes

Usage Notes

• Below are some useful byte definitions; their byte positions start with
offset o.

Byte

36
38

104
106
110
118

Meaning

Window short name.
Screen profile number.
Autokey play/record status.
Autokey abort/pause status.
Enlarge state.
Printer status.

• System Return Codes:

Refer to the chapter introduction for a description of the system
return codes found in the CH and CL registers.

• Operator Information Area Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated
by the OIA management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The OIA
return codes use a function ID of X'6D'. The error codes that can be
received for this service are:

Code

X'OO'
X'02'
X'OC'

Meaning

Successful completion.
Invalid session ID.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

• In order for the OIA image to be useful, you must be aware of the
possible OIA indicators that can be displayed on the system you are
connected to.

• To determine the presence of a particular OIA indicator, you must
scan the buffer for the hexadecimal character that represents that
character. The OIA image in the buffer is represented by
host/notepad character codes.

Chapter 12. Coding Operator Information Area Service Requests 12-5

Read Operator Information Area Image

• When this service is requested for a CUT host session, the following
OIA indicators are not returned:

Autokey input inhibited (found in Group 8)
Autokey states (found in Groups 16 and 17)
Enlarge state (found in Group 18)

To obtain these indicators for a CUT host session, use the Read
Operator Information Area Group service.

• For CUT host sessions, the information in the OIA may not be
updated to reflect the status of that session if the session has lost
communication with the controller or the host.

Coding Example

12-6

PARAMETER LIST FOR READ OPERATOR INFORMATION AREA IMAGE
;
OIRETNCD DB 0 RETURN CODE
OIFXNID DB 0 FUNCTION ID
OISESSID DB 0 SESSION ID
OIRESVD DB 0 RESERVED
OIAOFFS DW 0 OFFSET ADDRESS OF OIA BUFFER
OIASEGM DW 0 SEGMENT ADDRESS OF OIA BUFFER

INITIALIZE PARAMETER LIST FOR READ OPERATOR INFORMATION AREA IMAGE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

OIRETNCD,OOH
OIFXNID,OOH
AL,SESSID
OISESSID,AL
AX,OFFSET OIABUFF
OIAOFFS,AX
AX,SEG OIABUFF
OIASEGM,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
OFFSET OF THE OIA BUFFER
IN PARAMETER LIST
SEGMENT ADDRESS OF OIA BUFFER
IN PARAMETER LIST

INITIALIZE REGISTERS FOR READ OPERATOR INFORMATION AREA IMAGE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,OIAM
DI, SEG OIRETNCD
ES,DI
DI,OFFSET OIRETNCD

NAME RESOLUTION FOR OIAM
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR READ OPERATOR INFORMATION AREA IMAGE
SERVICE

INT 7AH

Read Operator Information Area Group

Operator Information Area Service X'02': Read Operator
Information Area Group

Register Values

Use this service to obtain a bit string that indicates the current settings
of a group of indicators in the operator information area for the
specified session.

On Request

AH = X'09'
AL = X'02'
BH = X'80'
BL = X'20'
XX = X'OOFF'
DX = Resolved value for OlAM
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'12'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and Dl are
unpredictable.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function lD
(X'6D')

2 1 byte Session lD Unchanged

3 1 byte Reserved Reserved

4 1 word Offset address of OlA Unchanged
buffer

6 1 word Segment address of OlA Unchanged
buffer

8 1 byte OlA group number Unchanged

Chapter 12. Coding Operator Information Area Service Requests 12-7

Read Operator Information Area Group

Parameter Definitions

Request Parameters:

• The session ID is the ID of the session being queried for alA
information.

• The alA buffer is the buffer where the alA group data will be
returned. The buffer sizes for each group are as follows:

Groups 1 through 7: 1 byte

Group 8: 5 bytes

Groups 9 through 18: Ibyte

All groups (group number X'FF'): 22 bytes

• The group number is the number of the requested alA group. To
obtain indicators for all alA groups, specify group number X'FF'.

OIA Group Indicator Meanings

12-8

The states of each group are ordered so that the high-order bits
represent the indicators of higher priority. Therefore, if more than one
state is active within a group, the state with the highest priority is the
active state within that group.

The meanings of the bits in each alA group are as follows:

• Group 1: Online and screen ownership

Bit Meaning
0 Setup mode
1 Test mode
2 SSCP-LU session owns screen
3 LU-LU session owns screen
4 Online and not owned
5 Subsystem ready
6, 7 Reserved

• Group 2: Character selection

Bit Meaning
0 Extended select
1 APL
2 Kana
3 Alpha
4 Text
5 - 7 Reserved

Read Operator Information Area Group

• Group 3: Shift state

Bit Meaning
0 Upper shift
1 Numeric
2 - 7 Reserved

• Group 4: PSS group 1

Bit Meaning
0 Operator-selectable
1 Field inherit
2 - 7 Reserved

• Group 5: Highlight group 1

Bit Meaning
0 Operator-selectable
1 Field inherit
2 - 7 Reserved

• Group 6: Color group 1

Bit Meaning
0 Operator-selectable
1 Field inherit
2 - 7 Reserved

• Group 7: Insert

Bit Meaning
0 Insert mode
1 - 7 Reserved

• Group 8: Input inhibited (5 bytes)

Bit Meaning
0 N onresettable machine check
1 Reserved for security key
2 Machine check
3 Communication check
4 Program check
5 Retry
6 Device not working
7 Device very busy

Chapter 12. Coding Operator Information Area Service Requests 12-9

Read Operator Information Area Group

12-10

Bit Meaning
0 Device busy
1 Terminal wait
2 Minus symbol
3 Minus function
4 Too much entered
5 Not enough entered
6 Wrong number
7 Numeric field

Bit Meaning
0 Reserved
1 Operator unauthorized
2 Operator unauthorized, minus function
3 Invalid dead key combination
4 Wrong place
5 - 7 Reserved

Bit Meaning
0 Message pending
1 Partition wait
2 System wait
3 Hardware mismatch
4 Logical terminal not configured at control unit
5 - 7 Reserved

Bit Meaning
0 Autokey inhibit
1 Application program has operator input inhibited
2 - 7 Reserved

• Group 9: PSS group 2

Bit Meaning
0 PS selected
1 PC display disable
2 - 7 Reserved

• Group 10: Highlight group 2

Bit
o
1 - 7

Meaning
Selected
Reserved

• Group 11: Color group 2

Bit
o
1 - 7

Meaning
Selected
Reserved

Read Operator Information Area Group

• Group 12: Communication error reminder

Bit Meaning
0 Communication error
1 Response time monitor
2 - 7 Reserved

• Group 13: Printer status

Bit Meaning
0 Print code not customized
1 Prin ter malfunction
2 Printer printing
3 Assign printer
4 What printer
5 Printer assignment
6 - 7 Reserved

• Group 14: Reserved group

• Group 15: Reserved group

• Group 16: Autokey play/record status

Bit Meaning
0: Play
1: Record
2 - 7 Reserved

• Group 17: Autokey abort/pause state

Bit Meaning
0 Recording overflow
1 Pause
2 - 7 Reserved

• Group 18: Enlarge state

Bit Meaning
0 Window is enlarged
1 - 7 Reserved

Chapter 12. Coding Operator Information Area Service Requests 12-11

Read Operator Information Area Group

Return Codes

Usage Notes

12-12

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Operator Information Area Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the OIA management portion of the workstation program. The function
ID is in byte 1, and the error number is in byte o. The OIA return codes
use a function ID of X'6D'. The error codes that can be received for this
service are:

Code

X'OO'
X'02'
X'OC'

Meaning

Successful completion.
Invalid session ID.
Byte 0 of the parameter list was not zero on request.

See Appendix H, "Return Codes," for more information.

• For CUT host sessions, the information in the OIA may not be updated
to reflect the status of that session if the session has lost
communication with the controller or the host.

Read Operator Information Area Group

Coding Example

PARAMETER LIST FOR READ OPERATOR INFORMATION AREA GROUP

OGRETNCD DB 0 RETURN CODE
OGFXNID DB 0 FUNCTION ID
OGSESSID DB 0 SESSION ID
OGRESVD DB 0 RESERVED
OGBUFOFF DW 0 OFFSET ADDRESS OF OIA BUFFER
OGBUFSEG DW 0 SEGMENT ADDRESS OF OIA BUFFER
OGGRPNUM DB 0 OIA GROUP NUMBER

INITIALIZE PARAMETER LIST FOR READ OPERATOR INFORMATION AREA GROUP

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

OGRETNCD,OOH
OGFXNID,OOH
AL,SESSID
OGSESSID,AL
AX,OFFSET OIABUFF
OGBUFOFF,AX
AX,SEG OIABUFF
OGBUFSEG,AX
AL,5
OGGRPNUM,AL

RETURN CODE MUST = ° BEFORE REQUEST
FUNCTION ID MUST = ° BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO QUERY SESSION ID SERVICE
OFFSET OF THE OIA BUFFER
IN PARAMETER LIST
SEGMENT ADDRESS OF OIA BUFFER
IN PARAMETER LIST
OIA GROUP NUMBER
IN PARAMETER LIST

INITIALIZE REGISTERS FOR READ OPERATOR INFORMATION AREA GROUP

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,OIAM
DI, SEG OGRETNCD
ES,DI
DI,OFFSET OGRETNCD

NAME RESOLUTION FOR OIAM
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR READ OPERATOR INFORMATION AREA GROUP
SERVICE

INT 7AH

Chapter 12. Coding Operator Information Area Service Requests 12-13

Read Operator Information Area Group

12-14

Read Operator Information Area Group

Chapter 13. Coding Multi-DOS Support Service Requests

Introduction .. 13-2
Requesting the Multi-DOS Support Services 13-2
Return Codes for the Multi-DOS Support Services 13-3

Multi-DOS Support Service: Query Environment Size 13-4
Multi-DOS Support Service: Asynchronous DOS Function Requests 13-7
Multi-DOS Support Service X'Ol': Get Storage 13-12
Multi-DOS Support Service X'02': Free Storage 13-15
Multi-DOS Support Service X'03': Set Storage Allocation 13-18

Chapter 13. Coding Multi-DOS Support Service Requests 13-1

Introduction

Introduction

This chapter describes how to code requests for the Multi-DOS support
services provided by the API.

The Multi-DOS support services allow your application program to query
the size in paragraphs of a specified environment, and to request DOS INT
21H function calls asynchronously.

The Multi-DOS support services provided by the API are:

• Query Environment Size: Use this service to obtain the size in
paragraphs of the specified environment, the address of the first
paragraph of the environment, and a flag describing the state of the
environment.

• Asynchronous DOS Function Request: Use this service to issue
DOS function requests asynchronously.

• Get Storage: Use this service to allocate storage to your application
program. This service performs the same function as the DOS INT 21H
type 48 function call.

• Free Storage: Use this service to free storage from your application
program. This service performs the same function as the DOS INT 21H
type 49 function call.

• Set Storage Allocation: Use this service to modify the number of
blocks of storage allocated to your application program. This service
performs the same function as the DOS INT 21H type 4A function call.

Requesting the Multi-DOS Support Services

13-2

To request the Multi-DOS support services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the Multi-DOS support services, it
must request the Name Resolution service, using 'INDJQRY "
'INDJASY " or 'MEMORY , as the name in the parameter list.
(Remember that the name must be padded to the right with blanks if it
is less than eight characters.)

Introduction

Return Codes for the Multi-DOS Support Services

Each Multi-DOS support service has two return codes associated with it, a
system return code and a Multi-DOS support services return code. Both
types of return codes are 2-byte values made up of a function ID and an
error number. The function ID indicates the portion of the workstation
program in which the error occurred. The error number indicates the
specific type of error that has occurred. An error number of X'OO' always
indicates a successful acceptance or completion of the request.

• System Return Codes:

After your application has requested a Multi-DOS support service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X'12'. The error codes that can
appear are:

Code

X'OO'
X'05'
X'07'
X'08'
X'OB'
X'OF'
X'34'

Meaning

Request accepted.
Invalid index specified.
Invalid reply specified.
Invalid wait type specified.
RQE pool depleted.
Invalid environment access.
Invalid gate entry.

These system return codes apply to all the Multi-DOS support services.

• Multi-DOS Support Services Return Codes:

After a requested Multi-DOS support service is completed, bytes 0 and 1
of the parameter list contain a return code generated by the Multi-DOS
support management portion of the workstation program. The function
ID is in byte 1, and the error number is in byte O. Multi-DOS support
service return codes use function IDs X'22' and X'23'. The error
numbers that can appear are specific to the service that was requested
and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 13. Coding Multi-DOS Support Service Requests 13-3

Query Environment Size

Multi-DOS Support Service: Query Environment Size

Register Values

Use this service to obtain the size in paragraphs of the specified
environment, the address of the first paragraph of the environment, and a
flag describing the state of the environment.

On Request

AH = X'09'
BH = X'80'
BL = X'20'
CX = X'FF'
DX = Resolved value for INDJQRY
ES = Segment address of the parameter list
DI = Offset address of the parameter list

• Request Register Values:

On Completion

CH = X'12' or X'13'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
un predictable.

The DX register contains the resolved value of the component name
INDJQRY. Your application must request the Name Resolution service
using INDJQRY as the name in the parameter list to obtain this
resolved value.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Not used Function ID (X'22')

2 1 byte Environment ID Unchanged

3 1 byte Not used Environment flag

4 1 word Not used Environment size

6 1 word Not used Environment address

Parameter Definitions

Request Parameters:

• The environment ID is the ID of the environment being queried.

13-4

Return Codes

Query Environment Size

Completion Parameters:

• The bits in the environment flag are as follows:

0 1, 2 3 4, 5 6 7

Stopping/ Reserved DOS Reserved Base Keybd
running appl wait

Bit 0 set to 1 indicates that the environment is stopping, doing an
IPL, or involved in an INDSPLIT or INDMERGE operation. Bit 0
set to 0 indicates that the environment is in a normal running state.

Bits 1 and 2 are reserved.

Bit 3 set to 1 indicates that COMMAND.COM is the base
application.

Bits 4 and 5 are reserved.

Bit 6 set to 1 indicates that the base-level program (the application
specified at customization time) is running.

Bit 7 set to 1 indicates that the program is in a keyboard wait.

• The environment size is the number of paragraphs in the environment.

• The environment address is the segment address of the beginning of the
environment.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Multi-DOS Support Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the Multi-DOS management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The
Multi-DOS support services return codes use a function ID of X'22'.
The error codes that can be received for this service are:

Code

X'OO'
X'E6'
X'E7'

Meaning

Successful completion.
Byte 0 of the parameter list was not zero on request.
Invalid environment ID.

See Appendix H, "Return Codes," for more information.

Chapter 13. Coding Multi-DOS Support Service Requests 13-5

Query Environment Size

Coding Example

13-6

PARAMETER LIST FOR QUERY ENVIRONMENT SIZE
;
QDRETNCD DB 0 RETURN CODE
QDFXNID DB 0 FUNCTION ID
QDENVID DB 0 ENVIRONMENT ID
QDENVFLG DB 0 ENVIRONMENT FLAG
QDENVSIZ DW 0 ENVIRONMENT SIZE
QDENVADD DW 0 ENVIRONMENT ADDRESS

INITIALIZE PARAMETER LIST FOR QUERY ENVIRONMENT SIZE

MOV
MOV
MOV
MOV

QDRETNCD,OOH
QDFXNID,OOH
AL,ENVID
QDENVID,AL

QDRETNCD MUST BE 0 BEFORE REQUEST
QDFXNID MUST BE 0 BEFORE REQUEST
ENVIRONMENT ID

IN LIST

INITIALIZE REGISTERS FOR QUERY ENVIRONMENT SIZE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
BH,80H
BL,20H
CX,OFFH
DX,INDJQRY
DI, SEG QDRETNCD
ES,DI
DI,OFFSET QDRETNCD

RESOLVED VALUE FOR INDJQRY
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ENVIRONMENT SIZE SERVICE

INT 7AH

Asynchronous DOS Function Requests

Multi-DOS Support Service: Asynchronous DOS
Function Requests

Register Values

Use this service to issue DOS function requests.

The Multi-DOS portion of the workstation program provides a special task
for personal computer applications to issue DOS interrupt 21H function
calls asynchronously. For example, an application program could use this
service to perform a DOS function call for file I/O, and continue processing
without having to wait for the I/O to be completed.

On request, the parameter list for the Asynchronous DOS Function
Requests service contains the register values needed for the DOS function
being requested. On completion, the parameter list contains the register
values that were set by the DOS function.

At least three separate requests have to be issued to use this function: a
connect for asynchronous DOS function requests, one or more
asynchronous DOS function requests, and a disconnect for asynchronous
DOS function requests.

Note: DOS function calls OH, 31H, 4BOOH, 4CH, and 4DH cannot be
requested using this service. Requests for these DOS function calls
will fail with return code X'll', invalid function. This service should
not be used for display or keyboard I/O, because the results will be
unpredictable.

On Request

AU = X'09'
BU = Synchronous or asynchronous *
BL = Synchronous or asynchronous *
CX = X'FF'
DX = Resolved value for INDJASY
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

AX = Return ID
BL = Return type
CH = X'12' or X'13'
CL = Return code

The contents of
registers BH, DX,
ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the description of request register values for more
information.

• Request Register Values:

The DX register contains the resolved value of the name INDJASY.
Your application must request the Name Resolution service using
INDJASY as the name in the parameter list to obtain this resolved
value.

Chapter 13. Coding Multi-DOS Support Service Requests 13-7

Asynchronous DOS Function Requests

13-8

You can specify synchronous or asynchronous processing of the
Asynchronous DOS Function Requests service. In synchronous
processing, control is returned to your application program after the
workstation program has completed the request. In asynchronous
processing, control is returned to your application program before the
workstation program has completed the request. You must use the Get
Request Completion service to obtain the parameter list values on
completion when you request asynchronous processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X'80' and the BL register to X'20'. When the
request is completed, control is returned to your application
program and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X' 40'. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Asynchronous Processing:

For asynchronous processing of the Asynchronous DOS Function
Requests service request, set the BH register to X'40' and the BL
register to X'OO'. When asynchronous processing is specified, you must
request the Get Request Completion service to obtain the results of the
Asynchronous DOS Function Requests service.

• Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X' 40' in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register, on completion
of the Get Request Completion service, matches the request ID in the
AX register on completion of this service, the results obtained by the
Get Request Completion service pertain to this request.

Asynchronous DOS Function Requests

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Not used Function ID (X'23')

2 1 byte Request type Unchanged

3 1 byte Reserved Reserved

4 1 word AX register value Value determined by
DOS function

6 1 word BX register value Value determined by
DOS function

8 1 word ex register value Value determined ,by
DOS function

10 1 word DX register value Value determined by
DOS function

12 1 word DS register value Value determined by
DOS function

14 1 word ES register value Value determined by
DOS function

16 1 word SI register value Val ue determined by
DOS function

18 1 word DI register value Value determined by
DOS function

20 1 word Flags register value Value determined by
DOS function

Parameter Definitions

Request Parameters:

• The request type can be one of the following:

X'OO' - to connect for asynchronous DOS function requests
X'OI' - to request a DOS function
X'02' - to disconnect for asynchronous DOS function requests

You must use request type X'OO' to connect for asynchronous DOS
function requests before you can use request type X'OI' to request a
DOS function. When your application program has completed all its
DOS function requests, it must use request type X'02' to disconnect for
asynchronous DOS function requests.

• The remainder of the parameter list must contain the values of registers
AX, BX, ex, DX, DS, ES, SI, and DI and the flags register. The values
in these registers should correspond to the values needed by the DOS
function you are requesting. The registers that are not used by the
DOS functions do not need to be set or initialized to any value.

Chapter 13. Coding Multi-DOS Support Service Requests 13-9

Asynchronous DOS Function Requests

Return Codes

Usage Notes

13-10

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Multi-DOS Support Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the Multi-DOS management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The
Multi-DOS support services return codes use a function ID of X'23'.
The error codes that can be received for this service are:

Code

X'OO'
X'Ol' through X'53'
X'FD'

Meaning

Successful completion
DOS interrupt 21H errors
Not connected for asynchronous DOS requests

See Appendix H, "Return Codes," for more information.

• If you specified asynchronous processing, or synchronous processing
using X'40' in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Asynchronous DOS Function Requests service
is completed.

• If your system extension is going to use DOS function calls, it is
recommended that you use the Multi-DOS support services, because
those services do not use the interrupt vectors to issue the request,
which allows ill-behaved application programs to run simultaneously.

Asynchronous DOS Function Requests

Coding Example

PARAMETER LIST FOR ASYNCHRONOUS DOS FUNCTION REQUESTS
i
ARRETNCD
ARFXNID
ARTYPE
ARRESRVD
AR$AX
AR$BX
AR$CX
AR$DX
AR$DS
AR$ES
AR$SI
AR$DI
ARFLAGS

DB a
DB a
DB a
DB a
DW a
DW a
DW a
DW a
DW a
DW a
DW a
DW a
DW a

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
RESERVED
AX REGISTER
BX REGISTER
CX REGISTER
DX REGISTER
DS REGISTER
ES REGISTER
SI REGISTER
DI REGISTER
FLAGS

INITIALIZE PARAMETER LIST FOR ASYNCHRONOUS DOS FUNCTION REQUESTS

MOV
MOV
MOV
MOV
PUSHF
POP

MOV
MOV

MOV

ARRETNCD,OOH
ARFXNID,OOH
AL,I
ARTYPE,AL

ARFLAGS

AR$AX,0900H
AR$DX,OFFSET STRING

AR$DS,SEG STRING

SMRETNCD MUST BE a BEFORE REQUEST
SMFXNID MUST BE a BEFORE REQUEST
REQUEST TYPE IN THE LIST

PUT THE CURRENT FLAGS INTO THE LIST

PRINT A STRING

PUT THE OFFSET AND SEGMENT OF THE STRING
INTO THE LIST

INITIALIZE REGISTERS FOR ASYNCHRONOUS DOS FUNCTION REQUESTS

AH,09H
BH,80H
BL,20H
CX,OFFH
DX,INDJASY
DI, SEG ARRETNCD
ES,DI

REPLY TYPE IN BH
WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR 'INDJASY ,
SEGMENT ADDRESS OF PARAMETER LIST

IN ES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV DI,OFFSET ARRETNCD OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR ASYNCHRONOUS DOS FUNCTION REQUESTS
SERVICE

INT 7AH

Chapter 13. Coding Multi-DOS Support Service Requests 13-11

Get Storage

Multi-DOS Support Service X'Ol': Get Storage

Register Values

Use this service to allocate storage to your application program. This
service performs the same function as the DOS INT 21H type 48 function
call.

On Request

AH = X'09'
AL = X'Ol'
BH = X'80'
BL = X'20'
CX = X'FF'
DX = Resolved value for MEMORY
ES = Segment address of the parameter list
DI = Offset address of the parameter list

• Request Register Values:

On Completion

CH = X'12' or X'13'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
un predictable.

The DX register contains the resolved value of the gate name
MEMORY. Your application must request the Name Resolution service
using MEMORY as the gate name in the parameter list to obtain this
resolved value.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Not used Function ID (X'23')

2 1 byte Environment ID Unchanged

3 1 byte Must be zero Reserved

4 1 word Paragraphs Unchanged or
paragraphs free

6 1 word Not used Segment

13-12

Get Storage

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The environment ID is the ID of the environment to perform the request
In.

• "Paragraphs" is the number of 16-byte paragraphs of storage to allocate.

Completion Parameters:

• "Paragraphs free" is the number of 16-byte paragraphs that are free, if
insufficient storage was available for the request. Otherwise, this value
is unchanged from its request value.

• "Segment" is the segment address of the start of the allocated block of
storage.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Multi-DOS Support Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the Multi-DOS management portion of the workstation program. The
function ID is in byte 1, and the error n um ber is in byte O. The
Multi-DOS support services return codes use a function ID of X'23'.
The error codes that can be received for this service are:

Code

X'OO'
X'07'
X'08'
X'E7'

Meaning

Successful completion.
Storage control blocks destroyed.
Insufficient storage.
Invalid environment ID.

See Appendix H, "Return Codes," for more information.

• An application running in a stoppable environment can only get storage
from its own environment.

Chapter 13. Coding Multi-DOS Support Service Requests 13-13

Get Storage

Coding Example

13-14

i PARAMETER LIST FOR GET STORAGE
i
GMRETNCD DB 0
GMFXNID DB 0
GMENVID DB 0
GMRESRVD DB 0
GMPARAGN DW 0
GMSEGMNE DW 0

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
RESERVED
NUMBER OF PARAGRAPHS
SEGMENT ADDRESS OF MEMORY

INITIALIZE PARAMETER LIST FOR GET STORAGE

MOV
MOV
MOV
MOV
MOV
MOV

GMRETNCD,OOH
GMFXNID,OOH
AL,ENVID
GMENVID,AL
AX,NUMPARAG
GMPARAGN,AX

GMRETNCD MUST BE 0 BEFORE REQUEST
GMFXNID MUST BE 0 BEFORE REQUEST
ENVIRONMENT ID .

IN LIST
NUMBER OF PARAGRAPHS TO ALLOCATE

IN LIST

INITIALIZE REGISTERS FOR GET STORAGE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,OlH
BH,80H
BL,20H
CX,OFFH
DX,MEMORY
DI, SEG GMRETNCD
ES,DI
DI,OFFSET GMRETNCD

RESOLVED VALUE FOR 'MEMORY
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR GET STORAGE SERVICE

INT 7AH

Free Storage

Multi-DOS Support Service X'02': Free Storage

Register Values

Use this service to free storage from your application program. This
service performs the same function as the DOS INT 21H type 49 function
call.

On Request

AH = X'09'
AL = X'02'
BH = X'80'
BL = X'20'
CX = X'FF'
DX = Resolved value for MEMORY
ES = Segment address of the parameter list
DI = Offset address of the parameter list

• Request Register Values:

On Completion

CH = X'12' or X'13'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
un predictable.

The DX register contains the resolved value of the gate name
MEMORY. Your application must request the Name Resolution service
using MEMORY as the gate name in the parameter list to obtain this
resolved value.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Not used Function ID (X'23')

2 1 byte Environment ID Unchanged

3 1 byte Must be zero Reserved

4 1 word Not used Not used

6 1 word Segment Unchanged

Parameter Definitions

Request Parameters:

• The environment ID is the ID of the environment to perform the request
In.

• "Segment" is the segment adress of the start of the block of storage to
free.

Chapter 13. Coding Multi-DOS Support Service Requests 13-15

Free Storage

Return Codes

Usage Notes

13-16

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Multi-DOS Support Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the Multi-DOS management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The
Multi-DOS support services return codes use a function ID of X'23'.
The error codes that can be received for this service are:

Code

X'OO'
X'07'
X'09'
X'E7'

Meaning

Successful completion.
Storage control blocks destroyed.
Invalid storage block address.
Invalid environment ID.

See Appendix H, "Return Codes," for more information.

• An application running in a stoppable environment can only free
storage from its own environment.

Coding Example

PARAMETER LIST FOR FREE MEMORY
;
FMRETNCD DB 0
FMFXNID DB 0
FMENVID DB 0
FMRESRVD DB 0
FMPARAGN DW 0
FMSEGMNE DW 0

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
RESERVED

Free Storage

NUMBER OF PARAGRAPHS
SEGMENT ADDRESS OF MEMORY

INITIALIZE PARAMETER LIST FOR FREE MEMORY

MOV
MOV
MOV
MOV
MOV
MOV

FMRETNCD,OOH
FMFXNID,OOH
AL,ENVID
FMENVID,AL
AX,SEGADDR
FMSEGMNE,AX

FMRETNCD MUST BE 0 BEFORE REQUEST
FMFXNID MUST BE 0 BEFORE REQUEST
ENVIRONMENT ID

IN LIST
SEGMENT ADDRESS OF BLOCK

TO FREE

INITIALIZE REGISTERS FOR FREE MEMORY

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,02H
BH,80H
BL,20H
CX,OFFH
DX,MEMORY
DI, SEG FMRETNCD
ES,DI
DI,OFFSET FMRETNCD

RESOLVED VALUE FOR 'MEMORY
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR FREE MEMORY SERVICE

INT 7AH

. Chapter 13. Coding Multi-DOS Support Service Requests 13-17

Set Storage Allocation

Multi-DOS Support Service X'03': Set Storage Allocation

Register Values

Use this service to modify the number of blocks of storage allocated to your
application program. This service performs the same function as the DOS
INT 21H type 4A function call.

On Request

AH = X'09'
AL = X'03'
BH = X'80'
BL = X'20'
CX = X'FF'
DX = Resolved value for MEMORY
ES = Segment address of the parameter list
DI = Offset address of the parameter list

• Request Register Values:

On Completion

cn = X'12' or X'13'
CL = Return code

The contents of
registers AX, BX,
DX, ES, and DI are
unpredictable.

The DX register contains the resolved value of the gate name
MEMORY. Your application must request the Name Resolution service
using MEMORY as the gate name in the parameter list to obtain this
resolved value.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Not used Function ID (X'23')

2 1 byte Environment ID Unchanged

3 1 byte Must be zero Reserved

4 1 word Paragraphs Unchanged or
paragraphs free

6 1 word Segment Unchanged

13-18

Set Storage Allocation

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The environment ID is the ID of the environment to perform the request
In.

• "Paragraphs" is the number of I6-byte paragraphs to set the block size
to.

• "Segment" is the segment address of the block of storage to be set.

Completion Parameters:

• "Paragraphs free" is the maximum number of I6-byte paragraphs that
the block can grow to, if insufficient storage was available for the
request. Otherwise, this value is unchanged from its request value.

• System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

• Multi-DOS Support Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the Multi-DOS management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte O. The
Multi-DOS support services return codes use a function ID of X'23'.
The error codes that can be received for this service are:

Code

X'OO'
X'07'
X'08'
X'09'
X'E7'

Meaning

Successful completion.
Storage control blocks destroyed.
Insufficient storage.
Invalid storage block address.
Invalid environment ID.

See Appendix H, "Return Codes," for more information.

• An application running in a stoppable environment can only set storage
from its own environment.

Chapter 13. Coding Multi-DOS Support Service Requests 13-19

Set Storage Allocation

Coding Example

PARAMETER LIST FOR SET MEMORY
;
SMRETNCD DB 0
SMFXNID DB 0
SMENVID DB 0
SMRESRVD DB 0
SMPARAGN DW 0
SMSEGMNE DW 0

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
RESERVED
NUMBER OF PARAGRAPHS
SEGMENT ADDRESS OF MEMORY

INITIALIZE PARAMETER LIST FOR SET MEMORY

13-20

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

SMRETNCD,OOH
SMFXNID,OOH
AL,ENVID
SMENVID,AL
AX,NUMPARAG
SMPARAGN,AX
AX,SEGADDR
SMSEGMNE,AX

INITIALIZE REGISTERS FOR SET MEMORY

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,03H
BH,80H
BL,20H
CX,OFFH
DX,MEMORY
DI, SEG SMRETNCD
ES,DI
DI,OFFSET SMRETNCD

SMRETNCD MUST BE 0 BEFORE REQUEST
SMFXNID MUST BE 0 BEFORE REQUEST
ENVIRONMENT ID

IN LIST
PARAGRAPH NUMBER

IN LIST
SEGMENT ADDRESS

IN LIST

RESOLVED VALUE FOR 'MEMORY
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SET MEMORY SERVICE

INT 7AH

Part 3. Supervisor Services

This part contains information about the supervisor services of the
application programming interface.

• Chapter 14, "Supervisor Services," describes the types of supervisor
services provided by the workstation program that your application
program can use.

• Chapter 15, "Coding Supervisory Object Services," describes the
supervisory object services that your application program can use.

• Chapter 16, "Coding Request Services," describes the task/component
request services that your application program can use.

• Chapter 17, "Coding Task State Modifier Services," describes the task
state modifier services that your application program can use.

• Chapter 18, "Coding Semaphore Management Services," describes the
semaphore management request services that your application program
can use.

• Chapter 19, "Coding Logical Timer Management Services," describes
the logical timer management request services that your application
program can use.

• Chapter 20, "Coding Fixed-Length Queue Management Services,"
describes the fixed-length queue management request services that your
application program can use.

• Chapter 21, "Coding Interrupt Handler Management Services,"
describes the interrupt handler management services that your
application program can use.

Part 3. Supervisor Services

• Chapter 22, "Environments and the Environment Manager," describes
environments, environment access restrictions, and resource managers.

• Chapter 23, "Coding Environment Manager Services," describes the
environment manager services that your application program can use.

• Chapter 24, "Coding System Extensions," describes how to code and
use system extensions as part of the control program.

Conventions Used in the API Service Descriptions

The following conventions are used in the descriptions of the API services:

• Hexadecimal numbers are represented in the notation X'nn' for byte
values and X'nnnn' for word values.

• Offsets into data structures used by the API services are given as
decimal numbers.

• Bits within a byte are numbered with the high-order (leftmost) bit as bit
o and the low-order (rightmost) bit as bit 7, as follows:

This order of bit numbering follows the IBM 360/370 convention and is the
reverse of the Intel 8088 bit-numbering convention.

Chapter 14. Supervisor Services

Introduction .. 14-2
Supervisory Object Creation and Deletion 14-2

Tasks ... 14-2
Components .. 14-3
Semaphores ... 14-4
Fixed-Length Queues 14-4
Gates 14-5
User Exit Tables 14-5
The Supervisor Call Instruction (SVC) Table 14-5
Creating Objects with Names 14-5
Supervisory Object Services Your Application Program Can Use 14-6

Task Requests ... 14-6
Use of Wait States 14-7
Sending a Request to Another Task 14-8
Receiving a Request from Another Task .. 14-8
Replying to a Request from Another Task 14-9
Obtaining Request Completion from Another Task 14-9
Task Request Services Your Application Program Can Use 14-9

Task State Modifiers 14-10
Dispatch Cycles 14-10
Task Dispatching Procedure 14-10
Task Dispatch Activity 14-11
Task Dispatcher States 14-11
Task State Modifier Services Your Application Program Can Use . 14-12

Semaphore Management 14-13
Considerations for Using Code Serialization Semaphores 14-13
Restrictions on the Use of Semaphores 14-13
Semaphore Management Services Your Application Program Can

Use .. 14-14
Logical Timer Management 14-14

Logical Timer Management Services Your Application Program
Can Use .. 14-15

Fixed-Length Queue Management 14-15
Fixed-Length Queue Management Services Your Application

Program Can Use 14-15
Interrupt Handler Management 14-15

Hardware Interrupt Handlers 14-16
Using the DOS Function Calls to Take Over Hardware

Interrupts ... 14-16
Using the Install a Hardware Interrupt Handler Service to Take

Over Hardware Interrupts 14-16
Using the Install an Interrupt Handler Service to Take Over

Hardware Interrupts 14-17
Hardware Interrupt Handler Considerations 14-17

Software Interrupt Handlers 14-17
Using the DOS Function Calls to Take Over Software Interrupts 14-17
Using the Install an Interrupt Handler Service to Take Over

Software Interrupts 14-18
Local Software Interrupt Handlers 14-18

Chapter 14. Supervisor Services 14-1

Global Software Interrupt Handlers 14-18
Software Interrupt Handler Considerations 14-18

Interrupt Handler Management Services Your Application
Program Can Use 14-19

14-2

Introduction

The supervisor portion of the Workstation Program provides a set of system
services that support a multitasking environment. Supervisor services are
divided into the following categories:

• Supervisory object creation and deletion

• Task/component requests

• Task state modifiers

• Semaphore management

• Logical timer management

• Fixed-length queue management

• Interrupt handler management.

Each of these categories of supervisor services is discussed below.

Supervisory Object Creation and Deletion

Tasks

The supervisor manages the following supervisory obj ects:

• Tasks

• Components

• Semaphores

• Fixed-length queues

• Gates

• User exit tables.

The supervisor manages supervisory objects through entries in the SVC
table. A list of the supervisory object services that your application
program can request is given at the end of this section.

A task is a unit of dispatchable code. If the tasks are scheduled for
execution by the dispatcher and are ready to run, they are guaranteed to
execute (where components must be invoked). Conceptually, a task is a
never-terminating program. Tasks can perform work on behalf of other
system objects, including other tasks. They are capable of both
synchronous and asynchronous communication.

Chapter 14. Supervisor Services 14-3

Components

14-4

All tasks run on their own stacks and are serially reusable (that is, not
reentrant).

There are 64 priority levels in the system. When you write an application
program, it runs at priority 60. Your application, however, can issue the
Create Task Entry service to create a task that runs at a priority of your
choice between 36 and 64. Your system extension may also create a task to
run at any priority between 1 and 64.

For an example of a task or for the Create Task Entry service with coding
instructions, see Chapter 15, "Coding Supervisory Object Services."

Components represent shared code that can be dynamically invoked. Since
they are shared, they should either be reentrant or use code serialization
techniques (for example, semaphores).

Components are invoked through the Make Request system service. When
they get control, the registers are set up just as if the component had done
a Get Request. Once a component is invoked, it is running under the task
thread of the invoking task. Because a component runs under a task
thread, it can perform any function a task can perform. However, a
component must be very careful in relying on the state of certain task
resources, such as the request and completion queues. Since a task can do
asynchronous processing, it may have outstanding signals that may arrive
after a component has been invoked. Therefore, a component does not
necessarily have free use of a task's wait states. In general, a component
can freely wait on a fixed-length queue or a semaphore; but any other wait
can interfere with a task's asynchronous processing.

If a component uses other services that require use of wait states, they
should clearly document what restrictions are imposed on the invocation of
the component. For example, if the component uses the Make Request
service and waits for a completion signal, it must be clearly documented
that no outstanding completion signals can be pending when this
component is invoked.

As a general guideline, tasks should use completion signals only for
synchronous services (request and wait) and should use completion queue
signals for either synchronous or asynchronous requests. This ensures that
components can use the completion signal facility to implement their
required function.

Note: When a component is invoked through the Make Request service, the
requested wait must be a completion signal, and the requested reply
must be a completion signal. In implementation, the task is not put to
sleep. Instead, it remains dispatchable. However, on each dispatch the
component, running under the task thread, is dispatched. The
invoking task's code will only be executed after the component returns.

Semaphores

Requests to components are passed by means of a parameter list.
Components receive the address of the parameter list in the ES and DI
registers and the requester's ID in the DX register.

See Chapter 15, "Coding Supervisory Object Services," for an example of
how to create a component.

When a component is done executing, it must do a Return Far.

Semaphores are system objects that allow system designers to guarantee
serial access to a resource. When a task owns a semaphore, it is assured
that it is the only supervisory object that can access the resource protected
by the semaphore.

There are two types of semaphores: resource semaphores and code
serialization semaphores. Code serialization semaphores have some
restrictions placed on them in respect to environment access. These
restrictions are described under "Semaphore Management" in this chapter.

In essence, semaphores represent resource locks. However, this locking is
only by agreement. That is, in order for a semaphore to be effective, all
tasks must "agree" to claim the semaphore before accessing a desired
resource, code, or data. If a task violates this agreement, the integrity of a
system design may be in jeopardy.

Access to semaphores is granted on a first-in-first-out (FIFO) basis.
Semaphore ownership is granted to tasks. This means that a component is
not considered to own a semaphore. If a component claims a semaphore,
that semaphore is owned by the task the component is running under.

Fixed-Length Queues

Fixed-length queues are queues that exist in an application program's
address space but that are managed by the supervisor. Fixed-length queues
are used by the supervisor to report events and pass keystrokes typed on
the keyboard to your application program. They are also useful for
application programs that must send small amounts of data between them.
In a sense, fixed-length queues represent a "pipeline" between two
cooperating tasks.

Fixed-length queues are managed on a FIFO basis, use a circular linking
structure, and have a fixed size. You determine the structure and length of
the elements enqueued and dequeued from a fixed-length queue, on the
basis of the needs of your particular application program.

Chapter 14. Supervisor Services 14-5

Gates

User Exit Tables

A gate is a grouping of services provided by a system extension that can be
accessed by tasks or components. A gate contains a list of component or
task IDs. Each component or task ID is associated with a specified service
provided by the gate. The services provided by the gate are requested
through the use of the Task/Component Request services, described under
"Task Request Services Your Application Program Can Use" on page 14-9.

A gate should have a name assigned to it. Typically, the gate name
indicates the type of services provided by the gate.

A user exit table is basically a branch table. It is made up of a series of
32-bit values, generally the segment and offset addresses of entry points to
routines. Your application program can write routines to run whenever
control is passed to their addresses in the user exit table. By giving a user
exit table a name that an application program can name-resolve, your
system extension can allow an application program to replace these
routines with its own. This is useful for functions such as error handling.

The Supervisor Call Instruction (SVC) Table

The supervisor makes an entry in a table called the SVC table for each
supervisory object defined in the system. The supervisor uses these entries
to manage task and component requests, and to control access to
semaphores, fixed-length queues, user exit tables, and gates. The supervisor
identifies each supervisory object by a numeric index. This numeric index
is referred to as the ID of the object.

Creating Objects with Names

14-6

Each entry in the SVC table can have a unique eight-byte name associated
with it. If the name is less than eight characters, you should pad it to the
right with blanks. All names must be unique, with one exception: an
object in a stoppable environment may have a name that is a duplicate of a
name in another stoppable environment. The name is useful for objects
that are to be known outside their environment. The Name Resolution
supervisor service returns the numeric ID of the supervisory object
associated with a specified name. The ID Resolution supervisor service
returns the name associated with the supervisory object specified by its
numeric ID.

Supervisory Object Services Your Application Program Can Use

Task Requests

The supervisory object services provided by the API are:

• Create Task Entry: Use this service to create an entry in the SVC
table for a task.

• Create Component Entry: Use this service to create an entry in the
SVC table for a component.

• Create Semaphore Entry: Use this service to create an entry in the
SVC table for a semaphore.

• Create Fixed-Length Queue Entry: Use this service to create an
entry in the SVC table for a fixed-length queue.

• Create Gate Entry: Use this service to create an entry in the SVC
table for a gate.

• Create User Exit Table Entry: Use this service to create an entry
in the SVC table for a user exit table.

• Install User Exit Table Entries: Use this service to install entries
in the specified user exit table.

• Name Resolution: Use this service to resolve the specified
supervisory object name to its numeric index.

• ID Resolution: Use this service to resolve the specified supervisory
ID name to its alphanumeric name.

• Delete Entry: Use this service to delete an entry in the SVC table
representing the specified supervisory object.

These services are described in Chapter 15, "Coding Supervisory Object
Services."

Tasks, components, and interrupt handlers represent the only code in the
system. In a multitasking system, it is necessary for a task, the primary
object, to request services of other tasks.

This request structure is supported by a variable-length request queue and
a variable-length completion queue in each task control block. Tasks pass
information about requests and request completion through the use of
request queue elements (RQEs).

Chapter 14. Supervisor Services 14-7

Use of Wait States

14-8

A task can wait for one or more events. These events are typically referred
to as signals (that is, a task waits for specific types of signals). The seven
types of signals for which a task can wait are:

• 'Request queue' signal

• 'Completion queue' signal

• 'Completion' signal

• 'Semaphore' signal

• 'Timer' signal

• 'Generic' signal

• 'Data available' signal

Each of these signals is associated with a specific event. The first three
signals ('request queue,' 'completion queue,' and 'completion') are all
associated with the task request structure. Whenever a task uses the Make
Request system service, it specifies what events it wants to wait for and
what kind of reply should be sent to the task after the request has been
completed. If it specifies a reply of 'completion queue' signal, the RQE
associated with the request is placed on the task's completion queue, and a
'completion queue' signal is generated to the task when the request has
been finished. If the task specifies a reply of 'completion' signal, the RQE
associated with the request is not returned when the request has been
finished. Therefore, it is not necessary to invoke a Get Request Completion
system service. However, a 'completion' signal is generated to the task.

The 'request queue' signal is sent whenever a request (RQE) is placed onto
a task's request queue. Therefore, a task can be in a "Get Request loop"
waiting for a request to be placed on its request queue.

A 'semaphore' signal is generated whenever a task invokes the Claim a
Semaphore system service with a "wait for semaphore free" wait state, and
ownership of the semaphore is granted to the requesting task. Once the
'semaphore' signal is sent, the task is removed from the waiting state. The
wait for semaphore free option is only meaningful when a task invokes the
Claim a Semaphore system service.

Once a task has received a timer, it can use the Set Timer system service.
After the timer is running, the task can specify a "wait for 'timer' signal"
option on any system service that allows the wait option to be specified
(this would normally be done when the timer is set). When the timer counts
down, a 'timer' signal is sent to the task that owns the timer. If the task
was waiting for a 'timer' signal, it is then removed from the wait state.

A task can wait for a 'generic' signal. Any task can send a 'generic' signal
to any other task (environment restrictions apply). Therefore, a 'generic'
signal is a means for two tasks to cooperate and communicate in a primitive
manner. No meaning is attached to the 'generic' signal other than that
which cooperating tasks assign to it.

Whenever a task requests data from a fixed-length queue, there may not be
enough data in the queue to satisfy its request. If the request specifies a
"wait for data" option, the task will be taken out of the wait state when
some other task in the system enqueues enough data to satisfy the dequeue
request. The "wait for data" option is only meaningful when the Dequeue
system service is invoked.

Sending a Request to Another Task

When a task requests a service of another task, the supervisor obtains an
RQE, fills it in with the details of the request (including a pointer to a
parameter list and the type of reply desired), and enqueues the RQE on the
requested task's request queue. Parameter lists sent to a task must reserve
the first two bytes as a return code field to be used by the workstation
program.

The requesting task specifies what type of wait state it will be set to. The
task can specify a multiple-wait state, which ends when anyone of the wait
conditions is satisfied. The requesting task also specifies what type of reply
it expects when the request is completed. Possible reply types include no
reply, reply via a 'completion' signal, or reply via an RQE on the requesting
task's completion queue. For example, a task can request a service,
specifying that it will wait for an RQE on its completion queue, and expect
a reply in the form of an RQE on its completion queue.

Requests can be made to tasks or components. When they are directed at
components, the wait requested must be a 'completion' signal. The system
will simply call the component, passing in registers the details of the
request.

Receiving a Request from Another Task

A task that receives requests can be in a never-terminating loop, waiting to
get requests. The task can do this by invoking the Get a Request service
and specifying that it wants to wait until an RQE is enqueued on its
request queue. When an RQE is enqueued on this task's request queue, the
task is set to the "dispatchable" state. The registers of this task will
contain the details of the request.

Chapter 14. Supervisor Services 14-9

Replying to a Request from Another Task

The requested task can now service the request and use the Reply to a
Request service to send a reply and the request-completion information to
the requesting task. When a task issues the Reply to a Request service, the
supervisor removes the RQE from the task's request queue, examines it for
the type of reply specified by the requesting task, and sends that reply to
the requesting task.

Obtaining Request Completion from Another Task

The supervisor notifies the requesting task that the request has been
completed by sending it the type of reply specified on the request. If the
requesting task specified that it wanted an RQE placed on its completion
queue, it must use the Get Request Completion service to obtain the
completion values of the registers and parameter list.

Task Request Services Your Application Program Can Use

14-10

The task/component request services provided by the API are:

• Make a Request: Use this service to put a request queue element on
a task's request queue, or to directly invoke a component.

• Get a Request: Use this service to obtain the contents of a request
queue element (which includes a parameter list) on a task's request
queue. A component does not have to do this. When a component gets
control, the parameter list passed to it is pointed to by the ES and DI
registers.

• Reply to a Request: Use this service to remove a specified request
queue element from a task's request queue and to send the specified
reply to the requester. A component does not need to do this. You
must get a request before you can reply to it.

• Get Request Completion: Use this service to obtain the contents of
a request queue element from a task's completion queue. A component
does not need to do this. It simply checks the parameter list.

• Send a Signal to a Task: Use this service to send a signal to the
specified task.

These services are described in Chapter 16, "Coding Request Services."

Task State Modifiers

Dispatch Cycles

Tasks are the only dispatchable units of code in the system. The dispatcher
portion of the workstation program is responsible for scheduling and
dispatching a task on each dispatch cycle.

Dispatch cycles are driven by both hardware interrupts and voluntary
relinquishment of the processor by a task. Because the workstation
program is time-sliced, a dispatch cycle is guaranteed as often as hardware
timer interrupts occur. A dispatch cycle occurs whenever:

• A first-level interrupt handler has finished processing.

• A task enters the "wait" or "unready" state.

• A task requests the Return to Dispatcher service, so that another task
can be run.

Task Dispatching Procedure

High (1) Status

Prty

Low (64)

Tasks are selected for dispatching by scanning the dispatch list. The
dispatch list contains an entry for each task priority level (1 through 64).
Each entry on the dispatch list consists of a status flag and a pointer to the
first task control block (TCB) at that priority. The TCB of each task points
to the TCB of the next task at the same priority. The last task in the TCB
chain for each priority points to the first task in the chain. This type of
chain is called a round-robin chain.

Dispatch List

Pointer

Round-Robin Chain
o

o

Chapter 14. Supervisor Services 14-11

The dispatcher selects the next task to be dispatched as follows:

• The dispatcher first determines the highest dispatch able priority. If the
last task to run at that priority is nonpreemptable within its
round-robin and dispatchable, it is selected for dispatching. Otherwise,
the next dispatchable task at that priority is selected.

• If the currently selected task has another task in its environment that
had been running as nonpreemptable within the environment and did
not voluntarily (by a requested wait or dispatch return request) give up
control, that other task is selected instead for dispatching.

Task Dispatch Activity

Each time a task is dispatched, the following occurs:

1. The execution state (hardware flags and registers) is saved on the
currently active task's stack.

2. The active task's SS and SP registers are saved.

3. The next task to be dispatched is selected.

4. The selected task's execution state is restored from its stack, and the
task is set running through the use of an IRET instruction.

Task Dispatcher States

14-12

The dispatch status of each task is contained in the task's TCB. The
possible dispatch states are as follows:

Dispatchable

Wait

Unready

The task is eligible to be dispatched. It is
not in a wait, unready, or suspended state.

The task cannot be dispatched. It is
waiting for one or more of the following:

• A request queue element in its request
queue

• A request queue element in its
completion queue

• A 'completion' signal
• A 'semaphore claimed' signal
• A 'timer tick' signal
• A 'data available' signal
• A 'generic' signal.

The task cannot be dispatched. The
unready state ends when a task receives a
'ready' signal.

Suspend

Pending Unready

The task cannot be dispatched. This state
usually applies to all tasks within the same
environment, while the unready state
applies to a specific task only. The suspend
state ends when the task becomes
unsuspended.

The resource manager puts the task in the
"unready" state after it releases all code
serialization semaphores.

Nonpreemptable within round robin
The task will continue to be selected for
dispatching as long as no task at a higher
priority becomes dispatchable.

Nonpreemptable within environment
The task will continue to be dispatched any
time any task within its environment has
been selected for dispatching. A task that
is nonpreemptable within its environment is
not nonpreemptable within its round-robin
chain and, therefore, competes for the
processor with tasks of equal and higher
priority.

Task State Modifier Services Your Application Program Can Use

The task state modifier services provided by the API are:

• Query Active Task: Use this service to obtain the ID and priority of
the currently active task.

• Set Task "Ready": Use this service to set a specified task to the
"ready" state.

• Set Task "Unready": Use this service to set a specified task to the
"unready" state.

• Set Task "Preemptable": Use this service to set a specified task to
the "preemptable" state.

• Set Task "N onpreemptable": Use this service to set a specified task
to the "nonpreemptable" state.

• Change Task's Priority: Use this service to change the specified
task's priority.

• Return to Dispatcher: Use this service to return to the dispatcher
from the requesting task.

These services are described in Chapter 17, "Coding Task State Modifier
Services."

Chapter 14. Supervisor Services 14-13

Semaphore Management

Semaphores are supervisory objects that allow your application program to
control access to resources and the execution of nonreentrant code.
Resource semaphores control access to resources, and code serialization
semaphores control the execution of nonreentrant code.

Considerations for Using Code Serialization Semaphores

Code serialization semaphores protect segments of code in stoppable
environments that should not be interrupted by stop or suspend functions.
When a stop or suspend service is requested for an environment, the
workstation program waits for all code serialization semaphores to be
released by the tasks in the environment before honoring the stop or
suspend request. Therefore, it is recommended that your application
program release any code serialization semaphores it has claimed before it
requests any service that causes the program to enter a dispatcher wait
state.

In addition, there are times when the workstation program itself stops or
suspends an environment. Your application program must release any code
serialization semaphores before these stop or suspend requests can be
completed. The workstation program issues stop or suspend requests on an
environment at the following times:

• When you use the Split Environment or Merge Environment commands.
The workstation program attempts to stop all environments involved in
the split or merge operation.

• When you jump (either by using the window management services or
the Jump key) to a window that contains an application that writes
directly to the interrupt vectors. The workstation program attempts to
suspend the application in the window you jumped from.

• When another application program becomes active, and the previously
active application has claimed a code serialization semaphore and also
violates any of the rules listed in Chapter 2, "Programming
Considerations." The workstation program attempts to suspend the
previously active application.

Restrictions on the Use of Semaphores

14-14

The supervisor imposes the following restrictions on the use of semaphores.
Failure to follow these guidelines on the use of semaphores could result in
system failure.

1. A task that owns a semaphore should avoid going into a dispatcher wait
state. If a task that holds a resource semaphore representing a limited
resource goes into a wait state, the performance of other tasks that
need to access the same resource will be adversely affected.

2. A task that has claimed a code serialization semaphore must release
that code serialization semaphore itself. Resource semaphores may be
released by any task, even if the task requesting the release is not the
task that claimed the semaphore.

3. If more than one semaphore is required to access a resource, access to
the semaphores should follow a defined order. An orderly access
scheme for semaphore allocation reduces the possibility of resource
deadlock. For example, without ordered semaphore access rules, a task
that owns a semaphore may try to claim another semaphore that is
owned by a task running at a higher priority. If the task running at a
higher priority tries to claim the semaphore owned by the task running
at the lower priority, neither task's request can be satisfied, causing
both tasks to be in an infinite wait state (deadlock).

Semaphore Management Services Your Application Program Can Use

The semaphore management services provided by the API are:

• Claim a Semaphore: Use this service to claim a specified semaphore.

• Release a Semaphore: Use this service to release a specified
semaphore.

• Query a Semaphore: Use this service to determine whether a
specified semaphore is claimed or free.

These services are described in Chapter 18, "Coding Semaphore
Management Services."

Logical Timer Management

The logical timer management services allow your application program to
control time-dependent events through the use of logical timers.

The logical timers implemented by the workstation program use 18.2 timer
ticks per second. Thus, to specify a logical timer interval of 1 second, you
should specify a timer interval of 18, for a 2-second timer interval, you
should specify a timer interval of 36, and so on.

Note: Reprogramming the PC timer on non-3270 PC systems could cause a
host communication failure.

Chapter 14. Supervisor Services 14-15

Logical Timer Management Services Your Application Program Can Use

The logical timer management services provided by the API are:

• Get Logical Timer: Use this service to get a logical timer for the
specified task.

• Set Logical Timer. Use this service to set the timer interval for a
specified logical timer.

• Release Logical Timer: Use this service to release a logical timer.

These services are described in Chapter 19, "Coding Logical Timer
Management Services."

Fixed-Length Queue Management

The fixed-length queue management services allow your application
program to pass data to other tasks or components, and to receive data from
other tasks or components, using the fixed-length queue as a "pipeline" for
the data.

Fixed-Length Queue Management Services Your Application Program Can
Use

The fixed-length queue management services provided by the API are:

• Enqueue Data: Use this service to enqueue data on the specified
fixed-length queue.

• Dequeue Data: Use this service to dequeue data from the specified
fixed-length queue.

• Purge Queue Data: Use this service to remove all data from the
specified fixed-length queue.

These services are described in Chapter 20, "Coding Fixed-Length Queue
Management Services."

Interrupt Handler Management

14-16

Interrupt handlers are code that performs immediate functions. There are
two types of interrupt handlers: hardware and software.

Hardware Interrupt Handlers

Hardware interrupt handlers generally perform action required to service a
condition detected by the hardware. For example, a communication adapter
may interrupt every time a character is received from the communication
line. The interrupt handler would read the character received and perform
any action required to allow the' adapter to receive another character.

There are three ways for your application program to take over hardware
interrupts. The first way is to use the DOS function calls X'35' and X'25',
described in the DOS Technical Reference manual. The second way is to
use the Install a Hardware Interrupt Handler service provided by the
supervisor. The third way is to use the Install an Interrupt Handler
serVIce.

Using the DOS Function Calls to Take Over Hardware Interrupts

A program may use the DOS facilities to take over a hardware interrupt,
provided there is no requirement to share the interrupt with a program in
another environment. The interrupt handler cannot be removed (short of a
system re-IPL) without endangering the integrity of the system.

U sing the Install a Hardware Interrupt Handler Service to Take Over Hardware Interrupts

The Install a Hardware Interrupt Handler service allows system extensions
or applications requiring hardware interrupt service to install an interrupt
handler in the system, and to share hardware interrupt vectors in certain
circumstances. This service provides enough information for the supervisor
to remove the interrupt handler without disturbing other users of that level
if the environment is stopped.

Programs that use the Install a Hardware Interrupt Handler service to
share an interrupt vector must meet these restrictions:

• The device must be poll able at one address, where the byte of data will
return nonzero when it is logically ANDed with a byte mask whenever
the device is interrupting.

• It must be possible to disable the device by writing one byte of data to a
single port address.

• The handler should return with the FAR option (not IRET) and should
not call the previous handler.

Chapter 14. Supervisor Services 14-17

U sing the Install an Interrupt Handler Service to Take Over Hardware Interrupts

The Install an Interrupt Handler service allows system extensions or
applications requiring hardware interrupt service to install an interrupt
handler into the system. Using this service does not provide the supervisor
with enough information to remove the interrupt handler without
disturbing other users of that level if the environment is stopped.
Therefore, use this service only if you cannot meet the restrictions for
using the Install a Hardware Interrupt Handler service. Also, if a hardware
in terru pt handler installed by this service chooses to chain to the previous
handler, it is imperative, before jumping to the previous handler, that the
registers and stack be the same as when the interrupt handler gained
control.

Hardware Interrupt Handler Considerations

Regardless of whether the application uses the DOS function calls or a
supervisor service, no interrupt handler should ever create or destroy
supervisory objects (such as gates, tasks, timers, or other interrupt
handlers). Neither should a hardware interrupt handler attempt to use the
Name Resolution service for supervisory objects.

Note: Application programs should not take over a hardware interrupt by
writing directly to the interrupt vector table. The workstation
program will support programs that do this, but only with significant
performance degradation. See Chapter 2, U Programming
Considerations," for more information.

Software Interrupt Handlers

Software interrupt handlers provide another means by which programs that
are not linked together can communicate. One program can set an
interrupt vector to point to a software interrupt handler within itself.
When another program issues an INT instruction, the interrupt handler
gains control. A software interrupt handler may be classified as either
local or global. Local interrupt handlers may only receive interrupts
originating within the same environment as the interrupt handler. Global
interrupt handlers may receive interrupts originating from any
environment.

There are two ways for your application program to take over software
interrupts. The first way is to use the DOS function calls X'35' and X'25',
described in the DOS Technical Reference manual. The second way is to
use the Install an Interrupt Handler service provided by the supervisor.

Using the DOS Function Calls to Take Over Software Interrupts

14-18

A program may use the DOS facilities to take over a software interrupt,
provided there is no requirement to share the interrupt with a program in
another environment. The interrupt handler will only gain control if the
INT instruction is executed from within the same environment.

U sing the Install an Interrupt Handler Service to Take Over Software Interrupts

The supervisor provides a full set of interrupt vectors for each environment.
When a software interrupt occurs, the supervisor fields the interrupt, uses
its system's tables to determine the active environment, and gives control to
the appropriate software interrupt handler. The Install an Interrupt
Handler service allows programs to request that a software interrupt
handler be installed. This service allows interrupt handlers to be defined as
"local" or "global."

Local Software Interrupt Handlers

Local interrupt handlers only receive software interrupts on the requested
vector when the interrupt originated in the handler's own environment.

Global Software Interrupt Handlers

Global interrupt handlers receive all software interrupts for a given vector,
regardless of the environment that issued it.

An additional option for global software interrupt handlers is available. A
program may request to service software interrupts as a "last resort." The
requester will get the interrupt only if no other interrupt handlers are
found to service it.

Generally, programs should avoid the use of global interrupt handlers if the
purpose of the interrupt handler is to provide some service to other
programs, since program environments can be stopped, killed, or suspended
at any time during the software interrupt processing. To avoid this
problem, the program should be written as a system extension and define
gates, components, or tasks in order to receive requests. Another
possibility is to have the interrupt handler claim a code serialization
semaphore before processing the interrupt. Tasks holding code
serialization semaphores are not stopped until the semaphore is released.

Note: Global or last-resort interrupt handlers cannot be installed in a
stoppable environment.

Software Interrupt Handler Considerations

Application programs should not take over a software interrupt by writing
directly to the interrupt vector table. The workstation program supports
programs that do this, but only with significant performance degradation.
See Chapter 2, "Programming Considerations," for more information.

Chapter 14. Supervisor Services 14-19

Interrupt Handler Management Services Your Application Program Can Use

14-20

The interrupt handler management services provided by the API are:

• Install a Hardware Interrupt Handler: Use this service to identify
an interrupt routine that is to gain control on hardware interrupts.

• Install an Interrupt Handler: Use this service to identify an
interrupt routine that is to gain control on software or hardware
interrupts. This service also returns the entry point of the previous
interrupt handler. For hardware interrupt handlers, the Install a
Hardware Interrupt Handler service is the recommended service to use
if you can satisfy the restrictions for using it.

• Query Interrupt Vector Contents: Use this service to obtain the
entry point address of the second-level interrupt handler currently
installed for the specified interrupt vector.

• Remove an Interrupt Handler: Use this service to remove an
interrupt handler that was installed through the Install a Hardware
Interrupt Handler or Install an Interrupt Handler service request.

These services are described in Chapter 21, "Coding Interrupt Handler
Management Services."

Chapter 15. Coding Supervisory Object Services

Introduction .. 15-2
Supervisory Object Service X'92': Create Task Entry 15-4
Supervisory Object Service X'93': Create Component Entry 15-S
Supervisory Object Service X'94': Create Semaphore Entry 15-11
Supervisory Object Service X'04': Create Fixed-Length Queue Entry 15-14
Supervisory Object Service X'9A': Create Gate Entry 15-17
Supervisory Object Service X'97': Create User Exit Table Entry 15-21
Supervisory Object Service X'OE': Install User Exit Table Entries 15-24
Supervisory Object Service X'Sl': Name Resolution 15-27
Supervisory Object Service X'Ol': ID Resolution 15-30
Supervisory Object Service X'06': Delete Entry 15-32

Chapter 15. Coding Supervisory Object Services 15-1

Introduction

Introduction

15-2

This chapter describes how to code requests for the supervisory object
services provided by the API.

The supervisory object services allow your application program to create
and delete tasks, components, semaphores, fixed-length queues, gates, and
user exit tables. The supervisory object services also allow your
application program to obtain the numeric ID of a supervisory object by
specifying its alphanumeric name, or obtain the alphanumeric name of the
supervisory object by specifying its numeric ID.

The supervisory object services provided by the API are:

• Create a Task Entry: Use this service to create an entry in the SVC
table for a task.

• Create a Component Entry: Use this service to create an entry in
the SVC table for a component.

• Create a Semaphore Entry: Use this service to create an entry in
the SVC table for a semaphore.

• Create a Fixed-Length Queue Entry: Use this service to create an
entry in the SVC table for a fixed-length queue.

• Create a Gate Entry: Use this service to create an entry in the SVC
table for a gate.

• Create a User Exit Table Entry: Use this service to create an entry
in the SVC table for a user exit table.

• Install User Exit Table Entries: Use this service to install entries
in the specified user exit table.

• Name Resolution: Use this service to resolve the specified
supervisory object name to its numeric index.

• ID Resolution: Use this service to resolve the specified supervisory
ID name to its alphanumeric name.

• Delete an Entry: Use this service to delete an entry in the SVC table
representing the specified supervisory object.

When created, an object can be optionally named. That name, however,
must be unique.

Introduction

Note: Following is a list of names used by the supervisor. Do not assign
these same names to system objects that you create.

• Names that begin with the letters IND or 3270KS

• SYSKILL

• MEMORY

• DOSINT21

• DOSIOR

• DOSBADP

• XLATE

• SESSMGR

• KEYBOARD

• WSCTRL

• OIAM

• CPYUET

• MFIC

• 3270EML

• PCPSM

• COpy

• BSMUET

Requesting the Supervisory Object Services

To request any of the supervisory object services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

Return Codes for the Supervisory Object Services

Return codes for the supervisory object services are 2-byte values made up
of a function ID and an error code. The function ID indicates the portion of
the workstation program in which the error occurred. The error code
indicates the specific type of error that has occurred. An error code of
X'OO' indicates a successful acceptance or completion of the request.

After your application has requested a supervisory object service, the CH
and CL registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH register,
and the error number is in the CL register. The return codes that can be
generated by supervisory object services are called system return codes. The
function ID for system return codes is X'12' or X'13'. The error codes that
can appear are specific to the service that was requested and are included
in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 15. Coding Supervisory Object Services 15-3

Create Task Entry

Supervisory Object Service X'92': Create Task Entry

Register Values

Use this service to create an entry in the sve table for a task.

On Request

AH = X'92'
AL = X'OO'
BH = Preemptive status
BL = 00 = no name / 01 = name / 02 = reset
CX = Task priority
DX = Task ID *
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Task ID

The contents of registers
AX, BX, ES, and DI are
un predictable.

* The value coded in the DX register is dependent on the value coded in
the BL register. See "Register Definitions" below for more information.

Register Definitions

15-4

Request Registers:

• The BH register indicates whether the new task is preemptable.

Possible values for the BH register are:

X'OO' = The task is preemptable.
X'Ol' = The task is nonpreemptable within its priority level.
X'02' = The task is nonpreemptable within its environment.

If the BH register contains a value other than X'OO', X'Ol', or X'02', the
supervisor sets the preemptive status of the task to "preemptable."

• The BL register indicates whether the task has a name associated with
it, or whether the task is to be reinitialized with the specified
parameters.

Possible values for the BL register are:

X'OO' = The task has no name.
X'Ol' = The task's name is in the parameter list.
X'02' = The task is to be reset to the specified parameters.

The "reset" option can only be used by requesters resetting tasks within
the same environment. It is used for tasks previously created and still
in the system. Use this option if you want to reinitialize the task. You
must include all input as if you were creating the task for the first time.
This option should only be used after a stop environment service that
also used the reset option.

Create Task Entry

• The CX register indicates the dispatch priority of the task. If a system
extension is issuing this request, valid dispatch priorities are 1 through
64. If an application program running in a stoppable environment is
issuing this request, valid dispatch priorities are 36 through 64.

• The DX register indicates the task ID of the task to be reset. This
register is used only if the BL register indicates that the task is to be
reset.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the task.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
the task's stack

2 1 word Segment address Unchanged
of the task's stack

4 - 11 8 bytes Task name Unchanged

Parameter Definitions

Request Parameters:

• The offset specified for the stack must point to the address containing
the initial ES register value, so the stack should be set up as follows:

SP Initial ES register contents
Initial DS register contents
Initial SI register contents
Initial DI register contents
Initial BP register contents
Initial DX register contents
Initial CX register contents
Initial BX register contents
Initial AX register contents
Initial IP register contents
Initial CS register contents
Initial flag register

Low end of stack

High end of stack

Note: When a task is dispatched, all the initial register values are
placed into the corresponding registers and an IRET instruction
is performed.

Chapter 15. Coding Supervisory Object Services 15-5

Create Task Entry

Return Codes

Usage Notes

15-6

Note: When a task is dispatched, all the initial register values are
placed into the corresponding registers and an IRET instruction
is performed.

• The task name is an optional parameter and is needed only if the BL
register is set to 1 on request. The task name can be a maximum of
eight ASCII characters and should be padded to the right with blanks if
it is less than eight characters.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'04'
X'05'
X'06'

Meaning

Successful completion of the request.
The task name already exists.
SVC table full.
Name table full.
No more free TCBs.
Invalid task ID (on reset).
Invalid priority.

• A task is always created in the "unready" state. You must set the task
to the "ready" state to make it dispatchable.

• A task is a continually executing thread. Therefore, care must be taken
when it completes its function. In a stoppable environment, the only
task that should return to DOS is the task under which the application
first began running. All other tasks should be deleted. In a
nonstoppable environment, most tasks will be in never-ending
loops-typically, waiting for a unit of work, performing that work, and
looping to the top, where it will wait again for the next unit of work.

• Whenever a task or component is providing a service to other
applications, and a parameter list is required, the first two bytes of the
parameter list should be used as the return code field.

Coding Example

PARAMETER LIST FOR CREATE TASK
i
CTTASKSP OW
CTTASKSS OW
CTTSKNAM DB
i

o
o
8 DUP(O)

; THE TASK'S STACK

STACK DB 256 DUP(O)

INITIALIZE THE TASK'S STACK

OS
AX,SEG STACK
DS,AX

TASK'S STARTING SP
TASK'S STARTING SS
TASK NAME

SAVE OS

Create Task Entry

GET THE TASK'S STACK SEGMENT
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
POP
PUSH
MOV
POP

SI,OFFSET STACK i DS:SI NOW POINT TO THE TASK STACK
WORD PTR [SI+254] ,OF242H SET FLAGS IN THE STACK
AX,SEG TASK
WORD PTR [SI+252] ,AX
AX,OFFSET TASK
WORD PTR [SI+250] ,AX
AX
AX
WORD PTR [SI+234] ,AX
OS

i
RESTORE

SET CODE SEGMENT OF TASK IN STACK

SET CODE OFFSET OF TASK IN STACK
GET THE PROGRAM'S DS REGISTER INTO
AX (PUT IT BACK ON THE STACK)
SET DATA SEGMENT IN STACK

OS

INITIALIZE PARAMETER LIST FOR CREATE TASK

MOV
ADD

MOV
MOV
MOV

MOV

AX,OFFSET STACK
AX,232

CTTASKSP,AX
AX,SEG STACK
CTTASKSS,AX

BL,O

GET THE OFFSET OF THE TASK'S STACK
INCREMENT THE SP TO POINT AT THE

START OF REGISTER RESTORE AREA
PUT TASK'S SP IN PARAMETER LIST
PUT TASK'S SS IN PARAMETER LIST

i NO NAME SPECIFIED

INITIALIZE REGISTERS FOR CREATE TASK

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,92H
AL,O
BH,PREEMPT
CX,PRIORITY
01, SEG CTTASKSP
ES,DI
DI,OFFSET CTTASKSP

PREEMPTION TYPE IN BH
PRIORITY IN CX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR CREATE TASK SERVICE

INT 7AH

Chapter 15. Coding Supervisory Object Services 15-7

Create Component Entry

Supervisory Object Service X'93': Create Component
Entry

Register Values

Use this service to create an entry in the SVC table for a component.

On Request

AH = X'93'
AL = X'OO'
BL = 00 = no name / 01 = name
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Component ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

15-8

Request Registers:

• The BL register indicates whether the component has a name associated
with it.

Possible values for the BL register are:

X'OO' = The component has no name.
X'Ol' = The component's name is in the parameter list.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the component.

Create Component Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
the component's
entry point

2 1 word Segment address Unchanged
of the
component's entry
point

4 - 11 8 bytes Component name Unchanged

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The entry point of the component is specified as the contents of the CS
and IP registers when the component is invoked.

• The component name is an optional parameter and is needed only if the
BL register is set to 1 on request. The component name can be a
maximum of eight ASCII characters and should be padded to the right
with blanks if necessary.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The system return codes that can be
received for this service are:

Code

X'OO'
X'Ol'
X'02'
X'03'

Meaning

Successful completion of the request.
The component name already exists.
SVC table full.
N arne table full.

• When a component receives control, the pointer to the parameter list
will be in the ES and DI registers.

• When a component receives control, interrupts are disabled.

• When a component is finished executing, it should use a RETURN FAR
to return.

Chapter 15. Coding Supervisory Object Services 15-9

Create Component Entry

Coding Example

PARAMETER LIST FOR CREATE A COMPONENT
i
CCCMPOFF
CCCMPSEG
CCNAME

DW a
DW a
DB 8 DUP(O)

COMPONENT ENTRY POINT OFFSET
COMPONENT ENTRY POINT SEGMENT
COMPONENT NAME

INITIALIZE PARAMETER LIST FOR CREATE A COMPONENT

MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
REP

AX,OFFSET CMPONENT
CCCMPOFF,AX
AX,SEG CMPONENT
CCCMPSEG,AX

AX,SEG CCNAME
ES,AX
DI,OFFSET CCNAME
SI,OFFSET COMPNAME
CX,8
MOVSB

COMPONENT OFFSET INTO THE LIST

COMPONENT SEGMENT INTO THE LIST

[ES:DI] POINTS TO THE DESTINATION IN THE
PARAMETER LIST

[DS:SI] POINTS TO SOURCE OF THE NAME
MOVE 8 BYTES
COpy THE NAME INTO THE PARM LIST

INITIALIZE REGISTERS FOR CREATE A COMPONENT

MOV
MOV
MOV
MOV
MOV
MOV

AH,93H
AL,O
BL,l
DI, SEG CCCMPOFF
ES,DI
DI,OFFSET CCCMPOFF

BL = 1 SINCE A NAME IS SPECIFIED
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CREATE A COMPONENT SERVICE

INT 7AH

15-10

Create Semaphore Entry

Supervisory Object Service X'94': Create Semaphore
Entry

Register Values

Use this service to create an entry in the SVC table for a semaphore.

On Request

AH = '94'
BH = Semaphore type
BL = 00 = no name I 01 = name
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Semaphore ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BH register indicates the semaphore type.

Possible values for the BH register are:

X'03' = The semaphore is a code serialization semaphore.
X'04' = The semaphore is a resource semaphore.

See Chapter 14, "Supervisor Services," and Chapter 2, "Programming
Considerations," for guidelines on using semaphores.

• The BL register indicates whether the semaphore has a name associated
with it.

Possible values for the BL register are:

X'OO' = The semaphore has no name.
X'Ol' = The semaphore's name is in the parameter list.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Note: The parameter list is needed only if the BL register is set to 1.

Completion Registers:

• The DX register contains the ID of the semaphore.

Chapter 15. Coding Supervisory Object Services 15-11

Create Semaphore Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0-7 8 bytes Semaphore name Unchanged

Parameter Definitions

Return Codes

15-12

Request Parameters:

The semaphore name is an optional parameter and is needed only if the BL
register is set to 1 on request. The semaphore name can be a maximum of
eight ASCII characters and should be padded to the right with blanks if
necessary.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'3C'

Meaning

Successful completion of the request.
The semaphore name already exists.
SVC table full.
N arne table full.
Invalid semaphore type.

Create Semaphore Entry

Coding Example

;
; PARAMETER LIST FOR CREATE A SEMAPHORE ENTRY
;
CSNAME DB 8 DUP(O) ; SEMAPHORE NAME

INITIALIZE PARAMETER LIST FOR CREATE A SEMAPHORE ENTRY

MOV
MOV
MOV
MOV
MOV
REP

SI,OFFSET SEMNAME
AX,SEG CSNAME
ES,AX
DI,OFFSET CSNAME
CX,8
MOVSB

[DS:SI] POINTS TO SOURCE OF THE NAME
[ES:DI] POINTS TO DESTINATION IN PARM

LIST

MOVE 8 BYTES
COPY THE NAME INTO THE PARM LIST

INITIALIZE REGISTERS FOR CREATE A SEMAPHORE ENTRY

MOV
MOV
MOV
MOV
MOV
MOV

AH,94H
BH,03H
BL,l
01, SEG CSNAME
ES,DI
DI,OFFSET CSNAME

SEMAPHORE TYPE = CODE SERIALIZATION
BL = 1 SINCE A NAME IS SPECIFIED
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CREATE A SEMAPHORE ENTRY SERVICE

INT 7AH

Chapter 15. Coding Supervisory Object Services 15-13

Create Fixed-Length Queue Entry

Supervisory Object Service X'04': Create Fixed-Length
Queue Entry

Register Values

Use this service to create an entry in the SVC table for a fixed-length
queue.

On Request

AH = X'04'
BL = 00 = no name / 01 = name
CX = Queue length
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Queue ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

15-14

Request Registers:

• The BL register indicates whether the queue has a name associated
with it.

Possible values for the BL register are:

X'OO' = The queue has no name.
X'Ol' = The queue's name is in the parameter list.

• The CX register contains the number of bytes your application program
has reserved for the fixed-length queue. The queue must be greater
than 10 bytes long, because the first 10 bytes of the queue are reserved
for use by the workstation program.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the fixed-length queue.

Create Fixed-Length Queue Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
the queue

2 1 word Segment address Unchanged
of the queue

4 - 11 8 bytes Queue name Unchanged

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

The queue name is an optional parameter and is needed only if the BL
register is set to 1 on request. The queue name can be a maximum of eight
ASCII characters and should be padded to the right with blanks if
necessary.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'41'

Meaning

Successful completion of the request.
The queue name already exists.
SVC table full.
N arne table full.
Invalid queue length.

The fixed-length queue resides in the requester's environment.

Chapter 15. Coding Supervisory Object Services 15-15

Create Fixed-Length Queue Entry

Coding Example

15-16

; DEFINE PARAMETER LIST FOR CREATE QUEUE
i
CQQOFFS
CQSEGM
CQQNAME

DW
DW
DB

o
o
8 DUP (I I)

INITIALIZE FIRST 2 ENTRIES OF PARAMETER LIST

MOV
MOV

CQQOFFS,OFFSET Q
CQSEGM,SEG Q

OFFSET OF QUEUE
SEGMENT OF QUEUE

THE USER HAS A QUEUE NAME

MOV
CLD
MOV
MOV
MOV
REP

BL,OlH

CX,4
SI,OFFSET
DI,OFFSET
MOVSW

INDICATE A QNAME IS SPECIFIED
BEGIN MOVING QNAME TO THE PARAM
QNAME IS FOUR WORDS LONG

QNAME i SOURCE OFFSET OF QUEUE
CQQNAMEiDESTINATION OFFSET IS CQQNAME

; MOVE QNAME TO PARAMETER LIST

INITIALIZE REGISTERS FOR CREATE QUEUE

MOV
MOV
MOV
MOV
MOV

AH,04H
CX,50
DI,SEG CQQOFFS
ES,DI i
DI,OFFSET CQQOFFS;

CX = NUMBER OF BYTES FOR QUEUE
ADDRESSABILITY TO
PARAMETER LIST
USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR CREATE QUEUE SERVICE

INT 7AH

LIST

Create Gate Entry

Supervisory Object Service X'9A': Create Gate Entry

Register Values

Use this service to create an entry in the SVC table for a gate.

On Request

AH = X'9A'
BL = 00 = no name I 01 = name
CX = Number of services
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Gate ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BL register indicates whether the gate has a name associated with
it.

Possible values for the BL register are:

X'OO' = The gate has no name.
X'Ol' = The gate's name is in the parameter list.

• The CX register indicates the number of services provided by the gate.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the gate.

Chapter 15. Coding Supervisory Object Services 15-17

Create Gate Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
the service entry
array

2 1 word Segment address Unchanged
of the service
entry array

4 - 11 8 bytes Gate name Unchanged

Parameter Definitions

15-18

Request Parameters:

• The format of the service entry array is as follows:

Contents Contents
Offset Length on Request on Completion

0 1 word Service entry 1 Unchanged

2 1 word Service entry 2 Unchanged

4 1 word Service entry 3 Unchanged

• • •
2n-2 1 word Service entry n, where Unchanged

n is the number of
service entries
specified in the CX
register on request.

A service entry is the ID of the task or component that will provide the
service. This ID was obtained when the task or component was created.

• The gate name is an optional parameter. The gate name can be a
maximum of eight ASCII characters and should be padded to the r~~ht
with blanks if necessary.

Return Codes

Usage Notes

Create Gate Entry

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'Ol'
X'02'
X'03'
X'OF'
X'34'

X'3B'

Meaning

Successful completion of the request.
The gate name already exists.
SVC table full.
N arne table full.
Invalid environment access.
The service entry is not a task or component ID, or the number
of services specified in the gate is invalid.
Gate table full.

• Only nonstoppable environments (system extensions) can create gates.

• Service entries may not be changed, added to, or deleted from a gate
after it has been initialized.

• Requests through gates can be made from any environment.

Chapter 15. Coding Supervisory Object Services 15-19

Create Gate Entry

Coding Example

15-20

; PARAMETER LIST FOR CREATE A GATE ENTRY
;
CGENTRYS DD NTRYARAY
CGNAME DB 8 DUP(O)

; ENTRY ARRAY

NTRYARAY DW 10 DUP(O)

; POINTER TO ENTRY ARRAY
; GATE NAME

ENTRY ARRAY FOR 10 ENTRIES

INITIALIZE PARAMETER LIST FOR CREATE A GATE ENTRY

MOV
MOV
MOV
MOV
MOV
REP

AX,SEG CGNAME
ES,AX
DI,OFFSET CGNAME
SI,OFFSET GATENAME
CX,8
MOVSB

ES:DI POINT TO DESTINATION IN PARM
LIST

DS:SI POINT TO SOURCE OF THE NAME
MOVE 8 BYTES
COPY THE NAME INTO THE PARM LIST

INITIALIZE REGISTERS FOR CREATE A GATE ENTRY

MOV
MOV
MOV
MOV
MOV
MOV

AH,9AH
BL,1
CX,10
DI, SEG CGENTRYS
ES,DI
DI,OFFSET CGENTRYS

BL = 1 SINCE A NAME IS SPECIFIED
CX = NUMBER OF ENTRIES (10)
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CREATE A GATE ENTRY SERVICE

INT 7AH

Create User Exit Table Entry

Supervisory Object Service X'97': Create User Exit Table
Entry

Register Values

Use this service to create an entry in the sve table for a user exit table.

On Request

AH = X'97'
BL = 00 = no name I 01 = name
CX = Number of entries
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = User exit table ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BL register indicates whether the user exit table has a name
associated with it.

Possible values for the BL register are:

X'OO' = The user exit table has no name.
X'Ol' = The user exit table's name is in the parameter list.

• The ex register contains the maximum number of entries that the user
exit table will be able to contain.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Register:

• The DX register contains the ID of the user exit table.

Chapter 15. Coding Supervisory Object Services 15-21

Create User Exit Table Entry

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
the user exit table

2 1 word Segment address Unchanged
of the user exit
table

4 - 11 8 bytes User exit table Unchanged
name

Parameter Definitions

15-22

Request Parameters:

• The format of the user exit table is as follows:

Offset Length Contents

0 1 word Offset address of user exit table entry 0

2 1 word Segment address of user exit table entry
0

4 1 word Offset address of user exit table entry 1

6 1 word Segment address of user exit table entry
1

8 1 word Offset address of user exit table entry 2

10 1 word Segment address of user exit table entry
2

12 1 word Offset address of user exit table entry 3

14 1 word Segment address of user exit table entry
3

• • •
4n-4 1 word Offset address of user exit table entry

n-l

4n-2 1 word Segment address of user exit table entry
n-1

In this table, n is the number of entries in the user exit table. User exit
table entries are numbered from 0 to n-l. The contents of a user exit
entry are the address of code to be given control when it is invoked by
means of a CALL FAR instruction.

• The user exit table name is an optional parameter. The user exit table
name can be a maximum of eight ASCII characters and should be
padded to the right with blanks if necessary.

Create User Exit Table Entry

Return Codes

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Usage Notes

Code

X'OO'
X'Ol'
X'02'
X'03'
X'35'

Meaning

Successful completion of the request.
The name already exists.
SVC table full.
Name table full.
The user exit table size cannot be zero.

• Access to user exit tables is not valid between stoppable environments.

Coding Example

PARAMETER LIST FOR CREATE A USER EXIT TABLE ENTRY

CUUETOFF
CUUETSEG
CUNAME
;

DW a
DW a
DB 8 DUp(a)

; USER EXIT TABLE

UET DD 7 DUP(?)

OFFSET OF USER EXIT TABLE
SEGMENT OF USER EXIT TABLE
USER EXIT TABLE NAME

THE USER EXIT TABLE

INITIALIZE PARAMETER LIST FOR CREATE A USER EXIT TABLE ENTRY

OFFSET OF USER EXIT TABLE INTO THE LIST MOV
MOV
MOV
MOV

AX,OFFSET UET
CUUETOFF,AX
AX,SEG UET
CUUETSEG,AX

SEGMENT OF USER EXIT TABLE INTO THE LIST

INITIALIZE REGISTERS FOR CREATE A USER EXIT TABLE ENTRY

MOV
MOV
MOV
MOV
MOV
MOV

AH,97H
BL,a
CX,7
DI, SEG CUUETOFF
ES,DI
DI,OFFSET CUUETOFF

BL = a SINCE NO NAME IS SPECIFIED
NUMBER OF ENTRIES IN USER EXIT TABLE
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CREATE A USER EXIT TABLE ENTRY SERVICE

INT 7AH

7

Chapter 15. Coding Supervisory Object Services 15-23

Install User Exit Table Entries

Supervisory Object Service X'OE': Install User Exit Table
Entries

Register Values

Use this service to install up to n entries in the specified user exit table.

On Request

AH = X'OE'
DX = User exit table ID
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The DX register contains the ID of the user exit table where the entries
are to be installed.

• The ES register contains the segment address of the parameter list.
• The DI register contains the offset address of the parameter list.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word n (number of user exit table Unchanged
entries)

2 1 word User exit table entry Unchanged
number

4 1 word Offset address of user exit Previous contents

6 1 word Segment address of user Previous contents
exit

• • •
6n-4 1 word User exit table entry Unchanged

number

6n-2 1 word Offset address of user exit Previous contents

6n 1 word Segment address of user Previous contents
exit

15-24

Install User Exit Table Entries

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

• The format of the user exit table is as follows:

Offset Length Contents

0 1 word Offset address of user exit en try 0

2 1 word Segment address of user exit entry 0

4 1 word Offset address of user exit entry 1

6 1 word Segment address of user exit entry 1

8 1 word Offset address of user exit entry 2

10 1 word Segment address of user exit entry 2

12 1 word Offset address of user exit entry 3

14 1 word Segment address of user exit entry 3

• • •
4n-4 1 word Offset address of user exit entry n-l

4n-2 1 word Segment address of user exit entry n-l

Where n is the number of entries in the user exit table. User exit table
entries must start with entry 0 as the first entry.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'OS'
X'lS'
X'16'
X'lA'

Meaning

Successful completion of the request.
Invalid user exit table ID.
The user exit table entry number is out of range.
An incorrect number of user exit table entries was specified.
The user exit table address space is not available to the
requester.

This service may be requested between nonstoppable environments or
within the requester's environment.

Chapter 15. Coding Supervisory Object Services 15-25

Install User Exit Table Entries

Coding Example

PARAMETER LIST FOR INSTALL USER EXIT TABLE ENTRIES
;
IUNUMENT DW 0 NUMBER OF USER EXIT TABLE ENTRIES
IUUET1NO DW 0 USER EXIT TABLE ENTRY NUMBER
IUUET10F DW 0 OFFSET OF USER EXIT TABLE ENTRY
IUUET1SG DW 0 SEGMENT OF USER EXIT TABLE ENTRY
IUUET2NO DW 0 USER EXIT TABLE ENTRY NUMBER
IUUET20F DW 0 OFFSET OF USER EXIT TABLE ENTRY
IUUET2SG DW 0 SEGMENT OF USER EXIT TABLE ENTRY
IUUET3NO DW 0 USER EXIT TABLE ENTRY NUMBER
IUUET30F DW 0 OFFSET OF USER EXIT TABLE ENTRY
IUUET3SG DW 0 SEGMENT OF USER EXIT TABLE ENTRY

INITIALIZE PARAMETER LIST FOR INSTALL USER EXIT TABLE ENTRIES

MOV IUNUMENT,3 3 ENTRIES TO INSTALL IN THE USER EXIT

MOV AX,ENT1NO NUMBER OF THE 1ST ENTRY IN THE LIST
MOV [BX] . IUNUMBER,AX
MOV AX,OFFSET ENT1 OFFSET OF THE 1ST ENTRY IN THE LIST
MOV [BX] . IUUETOFF ,AX
MOV AX,SEG ENT1 SEGMENT OF THE 1ST ENTRY IN THE LIST
MOV [BX] . IUUETSEG ,AX

MOV AX,ENT2NO NUMBER OF THE 2ND ENTRY IN THE LIST
MOV [BX] . IUNUMBER , AX
MOV AX,OFFSET ENT2 OFFSET OF THE 2ND ENTRY IN THE LIST
MOV [BX] . IUUETOFF , AX
MOV AX,SEG ENT2 SEGMENT OF THE 2ND ENTRY IN THE LIST
MOV [BX] . IUUETSEG,AX

MOV AX,ENT3NO NUMBER OF THE 3RD ENTRY IN THE LIST
MOV [BX] . IUNUMBER,AX
MOV AX,OFFSET ENT3 OFFSET OF THE 3RD ENTRY IN THE LIST
MOV [BX] . IUUETOFF ,AX
MOV AX,SEG ENT3 SEGMENT OF THE 3RD ENTRY IN THE LIST
MOV [BX] . IUUETSEG,AX

INITIALIZE REGISTERS FOR INSTALL USER EXIT TABLE ENTRIES

MOV
MOV
MOV
MOV
MOV

AH,OEH
DX,UETID
DI, SEG IUNUMENT
ES,DI
DI,OFFSET IUNUMENT

USER EXIT TABLE ID IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR INSTALL USER EXIT TABLE ENTRIES SERVICE

INT 7AH

15-26

TABLE

Name Resolution

Supervisory Object Service X'81': Name Resolution

Register Values

Use this service to resolve the specified supervisory object name to its
numeric index.

On Request

AH = X'81'
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

BH = Object type
CH = Function ID
CL = Return code
DX = Resolved name

The contents of registers
AX, BL, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The BH register indicates the type of the specified supervisory object.
Possible supervisory object types are as follows:

X'OO' - Task
X'Ol' - Component
X'03' - Code serialization semaphore
X'04' - Resource semaphore
X'05' - Fixed-length queue
X'06' - User exit table
X'07' - Gate.

• The DX register contains the supervisory object ID of the resolved
name, which is the numeric representation of the alphanumeric
supervisory object name.

Chapter 15. Coding Supervisory Object Services 15-27

Name Resolution

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0-7 8 bytes Supervisory Unchanged
object name

Parameter Definitions

Return Codes

Usage Notes

15-28

Request Parameters:

The supervisory object name must be ASCII characters and also be padded
to the right with blanks if it is less than eight characters long.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'OF'
X'2E'

Meaning

Successful completion of the request.
The specified object is in an inaccessible environment.
The name is not found.

This service does not allow names to be resolved across stoppable
environments or allow code serialization semaphore names to be resolved
from a stoppable environment to a nonstoppable environment. Also, the
name of a component in a stoppable environment may never be resolved
outside that environment.

Name Resolution

Coding Example

PARAMETER LIST FOR NAME RESOLUTION

SERVNAME DB 'KEYBOARD'

INITIALIZE REGISTERS FOR NAME RESOLUTION

MOV
MOV
MOV
MOV

AH,81H
DI,SEG SERVNAME
ES,DI
DI,OFFSET SERVNAME

AH = X'81'
SEGMENT ADDRESS OF PARM LIST
ES SEGMENT ADDRESS OF PARM LIST
DI = OFFSET ADDR. OF PARM LIST

SIGNAL WORKSTATION PROGRAM FOR NAME RESOLUTION SERVICE

INT 7AH

Chapter 15. Coding Supervisory Object Services 15-29

ID Resolution

Supervisory Object Service X'Ol': ID Resolution

Register Values

Use this service to resolve the specified supervisory object ID to its
alphanumeric name.

On Request

AH = X'O!'
DX = Supervisory object ID
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The DX register contains the ID of the supervisory object.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0-7 8 bytes Reserved Supervisory
object name

Parameter Definitions

15-30

Completion Parameters:

• The supervisory object name is the alphanumeric name assigned to the
specified supervisory object when an entry for it was created in the SVC
table. The supervisory object name can be a maximum of eight
characters and is padded to the right with blanks if necessary.

Return Codes

Usage Notes

Coding Example

ID Resolution

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'05'
X'OF'
X'2E'

Meaning

Successful completion of the request.
Invalid supervisory object ID.
The specified object is in an inaccessible environment.
The ID was not found in the SVC table.

A task or component can resolve the ID of a supervisory object either
within its own environment or within a nonstoppable environment.

INITIALIZE REGISTERS FOR ID RESOLUTION

AH,OlH
DX,OBJECTID
DI, SEG OBJNAME
ES,DI

OBJECT ID IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES

MOV
MOV
MOV
MOV
MOV DI,OFFSET OBJNAME OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR ID RESOLUTION SERVICE

INT 7AH

Chapter 15. Coding Supervisory Object Services 15-31

Delete Entry

Supervisory Object Service X'06': Delete Entry

Register Values

Use this service to delete the entry in the SVC table representing the
specified supervisory object.

On Request

AH = X'06'
DX = Supervisory object ID

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

15-32

Request Registers:

The DX register contains the ID of the supervisory object to be deleted from
the SVC table. This object can only be a task, component, fixed-length
queue, or semaphore within the requester's environment.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received are:

Code

X'OO'
X'05'
X'OF'
X'30'

X'31'
X'3F'

Meaning

Successful completion of the request.
Invalid supervisory object ID.
The specified object is in an inaccessible environment.
Cannot delete a task, fixed-length queue, or semaphore that has
pending requests.
Cannot delete a task that has timers.
Cannot delete a gate.

Usage Notes

Coding Example

Delete Entry

• If the entry to be removed is a task, semaphore, or fixed-length queue
and there are outstanding requests for the entry, then the entry will not
be removed and an error indicator will be returned.

• An application program running in a stoppable environment can only
delete entries in its own environment.

INITIALIZE REGISTERS FOR DELETE AN ENTRY REQUEST

MOV
MOV

AH,06H
DX,QUE$ID ; DX = FIXED LENGTH QUEUE ID

SIGNAL WORKSTATION PROGRAM FOR DELETE AN ENTRY SERVICE

INT 7AH

Chapter 15. Coding Supervisory Object Services 15-33

Delete Entry

15-34

Delete Entry

Chapter 16. Coding Request Services

Introduction .. 16-2
Requesting the Request Services 16-2
Return Codes for the Request Services 16-2

Request Service X'09': Make a Request 16-3
Request Service X'96': Get a Request 16-S
Request Service X'S2': Reply to a Request 16-11
Request Service X'S3': Get Request Completion 16-14
Request Service X'12': Send a Signal to a Task 16-17

Chapter 16. Coding Request Services 16-1

Introduction

Introduction

This chapter describes how to code requests for request services provided by
the API.

The request services allow your application program to write tasks that
request services of other tasks, and tasks that respond to requests from
other tasks.

The request services provided by the API are:

• Make a Request: Use this service to put a request queue element on
the specified task's request queue, or to directly invoke a component.

• Get a Request: Use this service to obtain the contents of a request
queue element on a task's request queue.

• Reply to a Request: Use this service to remove a specified request
queue element from a task's request queue and to send the specified
reply to the requester.

• Get Request Completion: Use this service to obtain the contents of
a request queue element from a task's completion queue.

• Send a Signal to a Task: Use this service to send a signal to the
specified task.

Requesting the Request Services

To use any of the request services, load the registers and the parameter list
with the proper values, and use the INT 7 AH instruction to signal the
workstation program that it has a request to process.

Return Codes for the Request Services

16-2

Return codes for the request services are 2-byte values made up of a
function ID and an error code. The function ID indicates the portion of the
workstation program in which the error occurred. The error number
indicates the specific type of error that has occurred. An error number of
X'OO' indicates a successful acceptance or completion of the request.

After your application has requested a request service, the CH and CL
registers contain a return code generated by the request processing portion
of the workstation program. The function ID is in the CH register, and the
error number is in the CL register. The return codes that can be generated
by request services are called system return codes. The function ID for
system return codes is X'12' or X'13'. The error numbers that can appear
are specific to the service that was requested and are included in the
descri ptions of each service.

See Appendix H, "Return Codes," for more information.

Make a Request

Request Service X'09': Make a Request

Register Values

Use this service to put a request queue element (RQE) on the specified
task's request queue, or to directly invoke a component.

On Request

AH = X'09'
AL = Service number
BH = Reply type
BL = Wait type
CX = Request priority
DX = Task, component, or gate ID
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

AX = Request ID
BL = Return type
CH = Function ID
CL = Return code

The contents of registers
BH, DX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The AL register contains the service entry number of the requested
service, if the request is being made to a gate. This register is not used
on input if the request is being used to directly invoke a component or a
task.

• The BH register specifies the type of reply your application program
receives when the request is completed. Possible reply types are as
follows:

X'80'

X'40'

X'20'

X'lO'

Request completion is indicated by a 'completion' signal.
Any existing 'completion' signal to the application program
is canceled.

Request completion is indicated by an RQE on the
application program's completion queue.

No notification of request completion is received.

No notification of request completion is received, and the
parameter list is copied into a lO-byte area so that the
parameter list data area can be reused. This is intended for
interrupt handler use.

Chapter 16. Coding Request Services 16-3

Make a Request

16-4

/

• The BL register specifies the type of wait state your application
program will go into until the request is completed. The type of wait is
specified through a bit mask. When more than one type of wait is
specified, the wait state ends when anyone of the conditions is
satisfied. The bits in the wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal ph ore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

• The CX register indicates the priority of the request. Valid request
priorities are 0 through 255, with 0 being the highest priority.

• The DX register indicates the ID of the task to which the request is to be
sent, or the ID of the component being directly invoked, or a gate ID
through which a request is being made.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Make a Request

Completion Registers:

• The AX register contains the ID of the RQE that was placed on the
requested task's request queue. You can use this request ID to match
outstanding requests with incoming completion queue elements.

• The BL register indicates the type of wait condition that was satisfied to
return control to your application program. The return type is specified
through a bit mask. The bits in the return type mask have the same
meaning as the bits in the wait type mask.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

• • •

You determine the format of the remainder of the parameter list on the basis
of the needs of your particular application.

Parameter Definitions

Request Parameters:

• Bytes 0 and 1 of the parameter must be X'OO' on request.

• You determine the format of the remainder of the parameter list on the
basis of the needs of your particular application program.

Completion Parameters:

• Byte 1 of the parameter list contains a 2-digit function ID that indicates
the portion of the requested task that processed the request.

• Byte 0 of the parameter list contains a 2-digit error number that indicates
what type of error (if any) caused request processing to fail. An error
number of zero is used to indicate successful completion of the request.

• You determine the format of the remainder of the parameter list on the
basis of the needs of your particular application program.

Chapter 16. Coding Request Services 16-5

Make a Request

Return Codes

Usage Notes

16-6

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12~ or X'13~ (found in
the CH register). The error codes that can be received are:

Code

X'OO' *
X'05'
X'07'
X'08'
X'OB'
X'34'

Meaning

Successful completion of the request.
Invalid index specified.
Invalid reply type specified.
Invalid wait type specified.
System RQE pool depleted.
Invalid service number specified.

* When the error number returned is X'OO', you must also check the return
code in the parameter list to be sure that return code X'1314' is not
returned in the parameter list. See the note below for more information.

You can use bytes 0 and 1 of the parameter list for return codes and function
IDs from the requested task or component. You determine the return codes
and function IDs that pertain to the request on the basis of the needs of your
particular application program.

Note: Your application may have used the Make a Request service to send a
request to another task in an environment that is stopped, reset, or
deleted before the request could be acted upon. In this case, bytes 0 and
1 of the parameter list will contain return code X'1314'. This return
code indicates that the request cannot be completed.

• This service cannot be requested between stoppable environments.

• If you are doing a Make Request with a parameter list~ the first two bytes
should be used as a return code function code field.

• Generally~ a task doing asynchronous processing should specify a reply
of 'completion queue~ signal. Tasks doing synchronous processing can
specify a reply of 'completion~ signal or a 'completion queue~ signal.

Make a Request

Coding Example

INITIALIZE REGISTERS FOR MAKE A REQUEST

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
BH,80H
BL,20H
CX,60
DX,TASKID
DI, SEG PARMLIST
ES,DI
DI,OFFSET PARMLIST

REPLY TYPE = COMPLETION SIGNAL
WAIT TYPE = COMPLETION SIGNAL
PRIORITY = 60
TASK OR COMPONENT ID IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR MAKE A REQUEST SERVICE

INT 7AH

Chapter 16. Coding Request Services 16-7

Get a Request

Request Service X'96': Get a Request

Register Values

Use this service to obtain the contents of a request queue element (RQE) on
a task's request queue.

On Request

AH = X'96'
BL = Wait type

On Completion

AX = Request ID
BL = Return type
CH = Function ID
CL = Return code
DX = Task ID
ES = Segment address of

the parameter list
DI = Offset address of

the parameter list

The contents of register
BH are unpredictable.

Register Definitions

16-8

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

Get a Request

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO' specifies "no wait." A" wait" for semaphore or data is
inappropriate for this service.

Completion Registers:

• The AX register contains the ID of the RQE that was returned.

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type mask have the same
meaning as the bits in the wait type mask.

• The DX register contains the ID of the task that made the request.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Parameter List Format

Return Codes

You define the format of the parameter list on the basis of the needs of your
particular application program.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'09'
X'36'

Meaning

Successful completion of the request.
The request queue is empty.
No request queue elements were on the request queue.

Chapter 16. Coding Request Services 16-9

Get a Request

Usage Notes

Coding Example

• If the request queue is empty and a wait type of "no wait" is specified,
the request ID in the AX register on completion is set to zero and a
"request queue empty" is received in the CL register.

• If the request queue is empty and a wait type other than "no wait" is
specified, the task is set to the specified wait state until the request is
satisfied.

INITIALIZE REGISTERS FOR GET A REQUEST

16-10

MOV
MOV

AH,96H
BL,80H WAIT TYPE = REQUEST QUEUE

SIGNAL WORKSTATION PROGRAM FOR GET A REQUEST SERVICE

INT 7AH

Reply to a Request

Request Service X'82': Reply to a Request

Register Values

Use this service to remove a specified request queue element (RQE) from a
task's request queue and send the specified reply to the requester. The
process of removing the RQE and sending the reply is called completing the
request.

On Request

AU = X'82'
BL = Wait type
DX = RQE ID

On Completion

BL = Return type
CU = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wai t type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

Chapter 16. Coding Request Services 16-11

Reply to a Request

Return Codes

Usage Notes

16-12

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO' specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

• The DX register specifies the ID of the request queue element to be
completed. A value of X'OOOO' indicates that the first element on the
request queue is to be completed.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type mask have the same
meaning as the bits in the wait type mask.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'09'
X'36'

Meaning

Successful completion of the request
The request queue is empty
The specified request queue element was not on request queue.

• The specified RQE is removed from the task's request queue.

• If tlie request was issued with a reply type of X'40' ("completion queue"),
the reply is added to the requesting task's completion queue.

• If the request was issued with a reply type of X'80' ('completion' signal),
the requesting task is sent a 'completion' signal. The RQE is returned to
the system RQE pool.

• If the request was issued with a reply type of X'20' or X'10' ("none" or
"none-copy parameter list"), no reply is sent to the requesting task. The
RQE is returned to the system RQE pool.

Reply to a Request

Coding Example

INITIALIZE REGISTERS FOR REPLY TO A REQUEST

MOV
MOV
MOV

AH,82H
BL,OOH
DX,O

WAIT TYPE = NO WAIT
1ST RQE ON QUEUE

SIGNAL WORKSTATION PROGRAM FOR REPLY TO A REQUEST SERVICE

INT 7AH

Chapter 16. Coding Request Services 16-13

Get Request Completion

Request Service X'83': Get Request Completion

Register Values

Use this service to obtain the contents of a request queue element (RQE)
from a task~ s completion queue.

On Request

AH = X'83'
BL = Wait type

On Completion

AX = RQE ID
BL = Return type
CH = Function ID
CL = Return code
ES = Segment address of

the parameter list
DI = Offset address of

the parameter list

The contents of registers
BH and DX are
unpredictable.

Register Definitions

16-14

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion'signal.

- If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

Get Request Completion

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

Completion Registers:

• The AX register contains the ID of the RQE that was returned.

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type mask have the same
meaning as the bits in the wait type mask.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Parameter List Format

Return Codes

Usage Notes

You define the format of the parameter list on the basis of the needs of your
particular application program.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'09'

Meaning

Successful completion of the request
The completion queue is empty.

• If the request queue is empty and a wait type other than "no wait" is
specified, the task is set to the specified wait state until the request is
satisfied.

Chapter 16. Coding Request Services 16-15

Get Request Completion

Coding Example

16-16

INITIALIZE REGISTERS FOR GET REQUEST COMPLETION

MOV AH,83H
MOV BL,40H i WAIT TYPE = COMPLETION QUEUE

; SIGNAL WORKSTATION PROGRAM FOR GET REQUEST COMPLETION SERVICE
INT 7AH

Send a Signal to a Task

Request Service X'12': Send a Signal to a Task

Register Values

Use this service to send a signal to the specified task.

On Request

AH = X'12'
BL = Wait type
DX = Task ID or X'OOOO'

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

Chapter 16. Coding Request Services 16-17

Send a Signal to a Task

Return Codes

Usage Notes

Coding Example

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO' specifies "no wait." A" wait" for semaphore or data is
inappropriate for this service.

• The DX register contains the ID of the task to be signaled. A value of
X'OOOO' indicates that the currently active task should be sent the signal.
(This results in your application program's sending a signal to itself.)

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified via a
bit mask. The bits in the return type mask have the same meaning as the
bits in the wait type mask.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'05'

Meaning

Successful completion of the request.
An invalid index was specified.

A program running in a stoppable environment may send a signal only to
tasks within its own environment.

INITIALIZE REGISTERS FOR SEND A SIGNAL TO A TASK

16-18

MOV
MOV
MOV

AH,12H
BL,04H
DX,TASK$ID

WAIT TYPE = SIGNAL
TASK ID IN DX

SIGNAL WORKSTATION PROGRAM FOR SEND A SIGNAL TO A TASK SERVICE

INT 7AH

Send a Signal to a Task

Chapter 17. Coding Task State Modifier Services

Introduction .. .
Requesting the Task State Modifier Services
Return Codes for the Task State Modifier Services

Task State Modifier Service X'9C': Query Active Task
Task State Modifier Service X'02': Set Task "Ready"
Task State Modifier Service X'05': Set Task "Unready"
Task State Modifier Service X'08': Set Task "Preemptable"
Task State Modifier Service X'07': Set Task "Nonpreemptable"
Task State Modifier Service X'03': Change Task's Priority
Task State Modifier Service X'95': Return to Dispatcher

Chapter 17. Coding Task State Modifier Services

17-2
17-2
17-2
17-3
17-4
17-7

17-10
17-12
17-14
17-16

17-1

Introduction

Introduction

This chapter describes how to code requests for the task state modifier
services provided by the API.

The task state modifier services allow your application program to change
the dispatch state or priority of a task.

The task state modifier services provided by the API are:

• Query Active Task: Use this service to obtain the ID and priority of
the currently active task.

• Set Task "Ready": Use this service to set a specified task to the
"ready" state.

• Set Task "Unready": Use this service to set a specified task to the
"unready" state.

• Set Task "Preemptable": Use this service to set a specified task to
the "preemptable" state.

• Set Task "Nonpreemptable": Use this service to set a specified task
to the "nonpreemptable" state.

• Change Task's Priority: Use this service to change the specified
task's priority.

• Return to Dispatcher: Use this service to return to the dispatcher
from the requesting task.

Requesting the Task State Modifier Services

To request any of the task state modifier services, load the registers and the
parameter list with the proper values, and use the INT 7 AH instruction to
signal the workstation program that it has a request to process.

Return Codes for the Task State Modifier Services

17-2

Return codes for the Task State Modifier services are 2-byte values made up
of a function ID and an error code. The function ID indicates the portion of
the workstation program in which the error occurred. The code number
indicates the specific type of error that has occurred. A code number of X'OO'
always indicates a successful acceptance or completion of the request.

After your application has requested a task state modifier service, the CH
and CL registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH register,
and the error code is in the CL register. The return codes that can be
generated by semaphore management services are called system return codes.
The function ID for system return codes is X'12' or X'13'. The error codes
that can appear are specific to the service that was requested and are
included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Query Active Task

Task State Modifier Service X'9C': Query Active Task

Use this service to obtain the ID and priority of the currently active task.

On Request

AH = X'9C'

On Completion

AL = Priority
CH = Function ID
CL = Return code
DX = Task ID

The contents of registers
AH, BX, ES, and DI are
unpredictable.

Register Definitions

Return Codes

Completion Registers:

• The AL register contains the priority of the currently active task.

• The DX register contains the ID of the currently active task.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' (found in the CH
register). The system error code that can be received for this service is:

Code Meaning

X'OO' Successful completion of the request.

Coding Example

INITIALIZE REGISTERS FOR QUERY TASK

MOV AH,9CH

SIGNAL WORKSTATION PROGRAM FOR QUERY TASK SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 17-3

Set Task "Ready"

Task State Modifier Service X'02': Set Task "Ready"

Register Values

Use this service to set a specified task to the "ready" state.

On Request

AH = X'02'
BL = Wait type
DX = Task ID

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

17-4

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal ph ore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

•

Return Codes

Usage Notes

Set Task "Ready"

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

• The DX register contains the ID of the task to be set to the "ready" state.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to your application program. The return type is specified
via a bit mask. The bits in the return type have the same meaning as the
bits in the wait type mask.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'OF'

Meaning

Successful completion of the request.
An invalid index was specified.
Invalid environment access.

• A program running in a stoppable environment cannot set tasks in other
environments to the ready state.

• The specified task is removed from the "unready" or "pending unready"
state.

• The specified task is made dispatchable if it is not waiting and not
suspended.

Chapter 17. Coding Task State Modifier Services 17-5

Set Task "Ready"

Coding Example

INITIALIZE REGISTERS FOR SET TASK "READY"

17-6

MOV
MOV
MOV

AH,02H
BL,04H
DX,TASKID

WAIT TYPE = SIGNAL
TASK ID IN DX

SIGNAL WORKSTATION PROGRAM FOR SET TASK "READY" SERVICE

INT 7AH

Set Task "Unready"

Task State Modifier Service X'05': Set Task "Unready"

Register Values

Use this service to set a specified task to the "unready" state.

On Request

AH = X'05'
BL = Wait type
DX = Task ID or X'OOOO'

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified via
a bit mask. If more than one type of wait is specified, the wait state ends
when anyone of the conditions is satisfied. The bits in the wait type
mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

Chapter 17. Coding Task State Modifier Services 17 -7

Set Task "Unready"

Return Codes

Usage Notes

17-8

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to o.

Note: X'OO' specifies "no wait." A" wait" for semaphore or data is
inappropriate for this service.

• The DX register contains the ID of the task to be set to the "unready"
state. If the value of the DX register is X'OOOO', the workstation program
uses the ID of the currently executing task.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to your application program. The return type is specified
via a bit mask. The bits in the return type have the same meaning as the
bits in the wait type mask.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'OF'

Meaning

Successful completion of the request.
An invalid index was specified.
Invalid environment access.

• A program running in a stoppable environment cannot set tasks in other
environments to the unready state.

• If the specified task is already in the "unready" or "pending unready"
state, there is no change.

• If the specified task does not own any code serialization semaphores, it is
set to the "unready" state. In the "unready" state, the task is not
dispatch able.

• If the specified task owns one or more code serialization semaphores, it is
set to the "pending unready" state. In the "pending unready" state,
dispatching is not affected. Once the task's code serialization
semaphores are released, the task is set to the "unready" state.

• If the specified task is the currently active task, the dispatcher takes
control as soon as the task sets itself unready.

Set Task "Unready"

Coding Example

INITIALIZE REGISTERS FOR SET TASK "UNREADY"

MOV
MOV
MOV

AH,05H
BL,20H
DX,TASKID

WAIT TYPE = COMPLETION SIGNAL
TASK ID IN DX

SIGNAL WORKSTATION PROGRAM FOR SET TASK "UNREADY" SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 17-9

Set Task "Preemptable"

Task State Modifier Service X'08': Set Task
"Preemptable"

Register Values

Use this service to set a specified task to the "preemptable" state.

On Request

AH = X'08'
DX = Task ID or X'OOOO'

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

Usage Notes

17-10

Request Registers:

• The DX register contains the ID of the task to be set to preemptable. If
the value of the DX register is X'OOOO', the workstation program uses the
ID of the currently executing task.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The system return codes that can be received for this
service are:

Code

X'OO'
X'05'
X'OF'

Meaning

Successful completion of the request.
An invalid index specified.
Invalid environment access.

• A program running in a stoppable environment cannot set tasks in other
environments to the preemptable state.

• The preemptable state takes effect when the dispatcher makes the
specified task the active task. The dispatcher selects the task to become
active using the rules described at the beginning of this chapter. The
task becomes preemptable until it goes into a wait state or becomes
"unready." When the task becomes active again, it will again become
preemptable.

Set Task "Preemptable"

\ Coding Example

INITIALIZE REGISTERS FOR SET TASK "PREEMPTABLE"

MOV
MOV

AH,08H
DX,TASKID ; TASK ID IN DX

SIGNAL WORKSTATION PROGRAM FOR SET TASK "PREEMPTABLE" SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 17-11

Set Task "Nonpreemptable"

Task State Modifier Service X'07': Set Task
"Nonpreemptable"

Register Values

Use this service to set a specified task to the "nonpreemptable" state. The
task can be set either "nonpreemptable within priority" or "nonpreemptable
within environment."

On Request

AH = X'07'
BH = Nonpreemptable type
DX = Task ID or X'OOOO'

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

17-12

Request Registers:

• The BH register indicates the nonpreemptable type, which is specified as
follows:

X'Ol' Nonpreemptable within priority
X'02' Nonpreemptable within environment

• The DX register contains the ID of the task to be set to the
"nonpreemptable" state. If the value of the DX register is X'OOOO', the
workstation program uses the ID of the currently executing task.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'OA'
X'OF'

Meaning

Successful completion of the request.
An invalid index was specified.
Invalid nonpreemptable state.
Invalid environment access.

Usage Notes

Coding Example

Set Task "Nonpreemptable"

• A program running in a stoppable environment cannot set tasks in other
environments to the nonpreemptable state.

• The nonpreemptable state takes effect when the dispatcher makes the
specified task the active task. The dispatcher selects the task to become
active using the rules described at the beginning of this chapter. The
task becomes non preempt able until it goes into a wait state or becomes
"unready." When the task becomes active again, it again becomes
nonpreemptable.

INITIALIZE REGISTERS FOR SET TASK "NONPREEMPTABLE"

MOV
MOV
MOV

AH,07H
BH,OlH
DX,TASKID

NONPREEMPTABLE WITHIN PRIORITY
TASK ID IN OX

SIGNAL WORKSTATION PROGRAM FOR SET TASK "NONPREEMPTABLE" SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 17-13

Change Task's Priority

Task State Modifier Service X'03': Change Task's
Priority

Register Values

Use this service to change the specified task's priority. The task's priority
can be set within the range of 36 through 64 ..

On Request

AH = X'03'
CX = Task priority
DX = Task ID or X'OOOO'

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

17-14

Request Registers:

• The CX register contains the specified task's priority. The priority must
be in the range of 36 through 64.

• The DX register contains the ID of the task to be set to the specified
priority. If the DX register contains X'OOOO', the supervisor uses the ID
of the currently running task.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13' (found in
the CH register). The error codes that can be received for this service are:

Code

X'OO'
X'05'
X'06'
X'OF'

Meaning

Successful completion of the request.
An invalid index was specified.
An invalid priority was specified.
Invalid environment access.

Usage Notes

Coding Example

Change Task's Priority

• A program running in a stoppable environment cannot change the
priority of tasks in other environments.

• The new task priority takes effect. The nonpreemptable state takes effect
when the dispatcher makes the specified task the active task. The
dispatcher selects the task to become active using the rules described at
the beginning of this chapter.

INITIALIZE REGISTERS FOR CHANGE TASK'S PRIORITY

MOV
MOV
MOV

AH,03H
CX,PRIORITY
DX,TASKID

TASK PRIORITY IN CX
TASK ID IN DX

SIGNAL WORKSTATION PROGRAM FOR CHANGE TASK'S PRIORITY SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 17-15

Return to Dispatcher

Task State Modifier Service X'95': Return to Dispatcher

Register Values

Use this service to return to the dispatcher from the requesting task.

On Request

AH = X'95'
BL = Wait type

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

17-16

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a.bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already an
RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

Return Codes

Coding Example

Return to Dispatcher

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified via a
bit mask. The bits in the return type have the same meaning as the bits
in the wait type mask.

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X'12' or X'13'(found in
the CH register). The error code that can be received for this service is:

Code Meaning

X'OO' Successful completion of the request.

INITIALIZE REGISTERS FOR RETURN TO DISPATCHER

MOV
MOV

AH,95H
BL,04H ; WAIT TYPE = SIGNAL

SIGNAL WORKSTATION PROGRAM FOR RETURN TO DISPATCHER SERVICE

INT 7AH

Chapter 17. Coding Task State Modifier Services 1 7-1 7

Return to Dispatcher

17-18

Return to Dispatcher

Chapter 18. Coding Semaphore Management Services

Introduction ... 18-2
Requesting the Semaphore Management Services 18-2
Return Codes for the Semaphore Management Services 18-2

Semaphore Management Service X'OD': Claim a Semaphore 18-3
Semaphore Management Service X'OA': Release a Semaphore 18-6
Semaphore Management Service X'OB': Query a Semaphore 18-8

Chapter 18. Coding Semaphore Management Services 18-1

Introduction

Introduction

This chapter describes how to code requests for the semaphore management
request services provided by the API.

The semaphore management services allow your application program to
control access to resources and the execution of nonreentrant code.

The semaphore management services provided by the API are:

• Claim a Semaphore: Use this service to claim a specified semaphore.

• Release a Semaphore: Use this service to release a specified
semaphore.

• Query a Semaphore: Use this service to determine whether a
specified semaphore is claimed or free.

Requesting the Semaphore Management Services

To request any of the semaphore management services, load the registers and
the parameter list with the proper values, and use the INT 7 AH instruction
to signal the workstation program that it has a request to process.

Return Codes for the Semaphore Management Services

18-2

Return codes for the semaphore management services are 2-byte values made
up of a function ID and an error code. The function ID indicates the portion
of the workstation program in which the error occurred. The error code
indicates the specific type of error that has occurred. An error code of X'OO'
always indicates a successful acceptance or completion of the request.

After your application has requested a semaphore management service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in the CH
register, and the error code is in the CL register. The return codes that can
be generated by semaphore management services are called system return
codes. The function ID for system return codes is X'12' or X'13'. The error
codes that can appear are specific to the service that was requested and are
included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Claim a Semaphore

Semaphore Management Service X'OD': Claim a
Semaphore

Register Values

Use this service to claim a specified semaphore.

On Request

AH = X'OD'
BL = Wait type
DX = Semaphore ID

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers AX, BH,
DX, ES, and DI are unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application program
goes into until the request is completed. The type of wait is specified
through a bit mask. If more than one type of wait is specified, the wait
state ends when anyone of the conditions is satisfied. The bits in the
wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until a request
queue element is in its request queue. If an RQE is already in its
request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until a request
queue element is in its completion queue. If an RQE is already in
its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion'signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

Chapter 18. Coding Semaphore Management Services 18-3

Claim a Semaphore

Return Codes

Usage Notes

18-4

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A" wait" for data is inappropriate for
this service.

• The DX register contains the ID of the semaphore to be claimed.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied
to return control t<l> the requesting task. The return type is specified
via a bit mask. The bits in the return type have the same meaning as
the bits in the wait type mask.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'OB'
X'2C'
X'3D'

Meaning

Successful completion of the request.
Invalid index specified.
System RQE pool depleted.
Semaphore not claimed on wait.
Semaphore already claimed, no wait specified.

• A program running in a stoppable environment may not claim
semaphores in other stoppable environments.

• A program running in a stoppable environment may claim a resource
semaphore from a nonstoppable environment, but it will not be allowed
to request the Name Resolution service for code serialization
semaphores in a non stoppable environment.

Claim a Semaphore

Coding Example

INITIALIZE REGISTERS FOR CLAIM A SEMAPHORE

MOV
MOV
MOV

AH,ODH
BL,lOH
DX,SEMID

; WAIT FOR SEMAPHORE SIGNAL
; SEMAPHORE ID

SIGNAL WORKSTATION PROGRAM FOR CLAIM A SEMAPHORE SERVICE

INT 7AH

Chapter 18. Coding Semaphore Management Services 18-5

Release a Semaphore

Semaphore Management Service X'OA': Release a
Semaphore

Register Values

Use this service to release a specified semaphore.

On Request

AH = X'OA'
DX = Semaphore ID

On Completion

CH = Function ID
CL = Return code

The contents of registers AX, BX,
DX, ES, and DI are unpredictable.

Register Definitions

Return Codes

Usage Notes

18-6

Request Registers:

• The DX register contains the ID of the semaphore to be released.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'OD'

Meaning

Successful completion of the request.
Invalid index specified.
Semaphore is already free.

• A program running in a stoppable environment may not release
semaphores in other stoppable environments.

• The workstation program does not check that the semaphore is being
released by the task that claimed it. This means that, for example, task
A could claim a semaphore and then request to claim it again. The
second claim request causes task A to be put in a wait state. Task B
could, on completion of some action, release the semaphore. This
action would cause task A's second claim request to be honored, and
task A could continue.

Release a Semaphore

Coding Example

INITIALIZE REGISTERS FOR RELEASE A SEMAPHORE

MOV
MOV

AH,OAH
OX,SEMIO ; SEMAPHORE 10

SIGNAL WORKSTATION PROGRAM FOR RELEASE A SEMAPHORE SERVICE

INT 7AH

Chapter 18. Coding Semaphore Management Services 18-7

Query a Semaphore

Semaphore Management Service X'OB': Query a
Semaphore

Register Values

Use this service to determine whether a specified semaphore is claimed or
free.

On Request

AH = X'OB'
DX = Semaphore ID

On Completion

BH = Semaphore type
CH = Function ID
CL = Return code
DX = Task ID or X'OOOO'

The contents of registers AX, BL,
ES, and DI are unpredictable.

Register Definitions

Return Codes

18-8

Request Registers:

• The DX register contains the ID of the semaphore to be queried.

Completion Registers:

• The BH register indicates the type of the specified semaphore, as
follows:

X'03'
- X'04'

Resource semaphore
Code serialization semaphore

• The DX register contains the ID of the task that claimed the semaphore,
or X'OOOO' if the semaphore is free.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'

Meaning

Successful completion of the request.
Invalid index specified.

Usage Notes

Coding Example

Query a Semaphore

• A program running in a stoppable environment may not query
semaphores in other stoppable environments.

INITIALIZE REGISTERS FOR QUERY A SEMAPHORE

MOV
MOV

AH,OBH
DX,SEMID ; SEMAPHORE ID

SIGNAL WORKSTATION PROGRAM FOR QUERY A SEMAPHORE SERVICE

INT 7AH

Chapter 18. Coding Semaphore Management Services 18-9

Query a Semaphore

18-10

Query a Semaphore

Chapter 19. Coding Logical Timer Management Services

Introduction .. 19-2
Requesting the Logical Timer Management Services 19-2
Return Codes for the Logical Timer Management Services 19-2

Logical Timer Management Service X'85': Get Logical Timer 19-3
Logical Timer Management Service X'84': Set Logical Timer 19-5
Logical Timer Management Service X'8A': Release Logical Timer 19-8

Chapter 19. Coding Logical Timer Management Services 19-1

Introduction

Introduction

This chapter describes how to code requests for the logical timer
management request services provided by the API.

The logical timer management services allow your application program to
control time-dependent events through the use of logical timers.

The logical timer management services provided by the API are:

• Get Logical Timer: Use this service to get a logical timer for the
specified task.

• Set Logical Timer: Use this service to set the timer interval for a
specified logical timer.

• Release Logical Timer: Use this service to release a logical timer.

Requesting the Logical Timer Management Services

To request any of the logical timer management services, load the registers
and the parameter list with the proper values, and use the INT 7AH
instruction to signal the workstation program that it has a request to
process.

Return Codes for the Logical Timer Management Services

19-2

Return codes for the lugical timer management services are 2-byte values
made up of a function ID and an error code. The function ID indicates the
portion of the workstation program in which the error occurred. The error
code indicates the specific type of error that has occurred. An error code of
X'OO' always indicates a successful acceptance or completion of the request.

After your application has requested a logical timer queue management
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID is
in the CH register, and the error code is in the CL register. The return
codes that can be generated by logical timer management services are
called system return codes. The function ID for system return codes is X'12'
or X'13'. The error codes that can appear are specific to the service that
was requested and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Get Logical Timer

Logical Timer Management Service X'85': Get Logical
Timer

Register Values

Use this service to get a logical timer for the specified task.

On Request

AH = X'85'
BH = Timer interval
DX = Task ID or X'OOOO'
ES = Segment address of the timer flag
DI = Offset address of the timer flag

On Completion

CH = Function ID
CL = Return code
DX = Logical timer ID

The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BH register contains the timer interval for the logical timer. The
logical timers implemented by the workstation program use 18.2 timer
ticks per second. Thus, to specify a logical timer interval of 1 second,
you should specify a timer interval of 18; for a 2-second timer interval,
you should specify a timer interval of 36, and so on.

• The DX register contains the ID of the task that will receive a 'timer
tick' signal when the timer interval has elapsed. If the value of the DX
register is X'OOOO', the workstation program uses the ID of the currently
executing task.

• The ES and DI registers point to the timer flag, which is a I-byte data
area provided by your application program, that will be set to X'FF'
when the timer interval has elapsed.

Completion Registers:

• The DX register contains the logical timer ID.

Chapter 19. Coding Logical Timer Management Services 19-3

Get Logical Timer

Return Codes

Usage Notes

Coding Example

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'I2' or
X'I3' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'll'

Meaning

Successful completion of the request.
Invalid index specified.
Logical timer pool depleted.

• You must request the Set Logical Timer service to set the timer interval
the first time.

After the Set Logical Timer service is requested and the timer interval
elapses once, the timer interval specified on the Get Logical Timer
service will be used to reset the timer interval until the timer is
released. The Set Timer service can be used at any time to override this
reset value.

If the timer interval specified on the Get Timer service was X'OO', your
application program must request the Set Logical Timer service to reset
the timer interval each time the timer interval has elapsed.

• Your application program can own multiple timers. You can determine
which timer interval has elapsed by checking the I-byte timer flag that
is associated with each logical timer.

• The task specified by its task ID is the task that receives the 'timer tick'
signal when the timer interval has elapsed.

INITIALIZE REGISTERS FOR GET LOGICAL TIMER

19-4

MOV
MOV
MOV
MOV
MOV
MOV

AH,85H
BH,O
DX,O
DI,SEG TIMERFLG
ES,DI
DI,OFFSET TIMERFLAG

DO NOT RESET THE TIMER
USE THE CURRENTLY EXECUTING TASK'S ID
ES:DI POINT TO THE TIMER FLAG

SIGNAL WORKSTATION PROGRAM FOR GET A LOGICAL TIMER SERVICE

INT 7AH

Set Logical Timer

Logical Timer Management Service X'84': Set Logical
Timer

Register Values

Use this service to set the timer interval for a specified logical timer. The
specified task will receive a 'timer tick' signal when the timer interval has
elapsed.

On Request

AH = X'84'
BH = Timer interval
BL = Wait type
DX = Logical timer ID

On Completion

BL = Return type
CH = Function ID
CL = Return code

The contents of registers
AX, BH, DX, ES, and DI
are unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application
program goes into until the request is completed. The type of wait is
specified through a bit mask. If more than one type of wait is specified,
the wait state ends when anyone of the conditions is satisfied. The bits
in the wait type are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until a request
queue element is in its request queue. If an RQE is already in its
request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until a request
queue element is in its completion queue. If an RQE is already in
its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

Chapter 19. Coding Logical Timer Management Services 19-5

Set Logical Timer

Return Codes

Usage Notes

19-6

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

• The BH register contains the timer interval for the logical timer. The
logical timers implemented by the workstation program use 18.2 timer
ticks per second. Thus, to specify a logical timer interval of 1 second,
you should specify a timer interval of 18; for a 2-second timer interval,
you should specify a timer interval of 36, and so on.

• The DX register contains the ID of the timer to be set.

Completion Registers:

• The BL register indicates the type of wait condition that was satisfied
to return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type have the same meaning
as the bits in the wait type mask.

• The DX register contains the logical timer ID.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'

Meaning

Successful completion of the request.
Invalid index specified.

• After the specified timer interval has elapsed, the timer interval
specified on the Get Logical Timer service is used to reset the timer
interval until the timer is released.

If the timer interval is specified as X'OO' on the Get Logical Timer
service, your application program must request the Set Logical Timer
service to reset the timer interval each time the timer interval has
elapsed.

Coding Example

Set Logical Timer

• The task specified on the Get Logical Timer service is the task that
receives the 'timer tick' signal when the timer interval has elapsed.

INITIALIZE REGISTERS FOR SET A LOGICAL TIMER

MOV
MOV
MOV
MOV

AH,84H
BH,36
BL,08H
DX,TIMERID

TIMER INTERVAL,APPROXIMATELY 2 SECONDS
WAIT TYPE,WAIT FOR TIMER TICK SIGNAL
TIMER ID

SIGNAL WORKSTATION PROGRAM FOR SET A LOGICAL TIMER SERVICE

INT 7AH

Chapter 19. Coding Logical Timer Management Services 19-7

Release Logical Timer

Logical Timer Management Service X'SA': Release
Logical Timer

Register Values

Use this service to release a logical timer. Logical timers may be released
only by the task that was specified on the Get Logical Timer request.

On Request

AH = X'8A'
DX = Logical timer ID

On Completion

CH = Function ID
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

Usage Notes

19-8

Request Registers:

• The DX register contains the ID of the logical timer to be released.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'lO'

Meaning

Successful completion of the request.
Invalid index specified.
Requesting task does not own timer.

Logical timers may be released only by the task that was specified on the
Get Logical Timer request.

Release Logical Timer

Coding Example

INITIALIZE REGISTERS FOR RELEASE LOGICAL TIMER

MOV
MOV

AH,8AH
DX,TIMERID ; TIMER ID

SIGNAL WORKSTATION PROGRAM FOR RELEASE LOGICAL TIMER SERVICE

INT 7AH

Chapter 19. Coding Logical Timer Management Services 19-9

Release Logical Timer

19-10

Release Logical Timer

Chapter 20. Coding Fixed-Length Queue Management
Services

Introduction .. 20-2
Requesting the Fixed-Length Queue Management Services 20-2
Return Codes for the Fixed-Length Queue Management Services 20-2

Fixed-Length Queue Management Service X'OC': Enqueue Data 20-3
Fixed-Length Queue Management Service X'13': Dequeue Data 20-5
Fixed-Length Queue Management Service X'OF': Purge Queue Data. 20-8

Chapter 20. Coding Fixed-Length Queue Management Services 20-1

Introduction

Introduction

This chapter describes how to code requests for the fixed-length queue
management request services provided by the API.

The fixed-length queue management services allow your application
program to pass data to other tasks or components, and to receive data from
other tasks or components, using the fixed-length queue as a "pipeline" for
the data.

The fixed-length queue management services provided by the API are:

• Enqueue Data: Use this service to enqueue data on the specified
fixed-length queue.

• Dequeue Data: Use this service to dequeue data from the specified
fixed-length queue.

• Purge Queue Data: Use this service to remove all data from the
specified fixed-length queue.

Requesting the Fixed-Length Queue Management Services

To request any of the fixed-length queue management services, load the
registers and the parameter list with the proper values, and use the INT
7 AH instruction to signal the workstation program that it has a request to
process.

Return Codes for the Fixed-Length Queue Management Services

20-2

Return codes for the fixed-length queue management services are 2-byte
values made up of a function ID and an error code. The ifunction ID
indicates the portion of the workstation program in which the error
occurred. The error code indicates the specific type of error that has
occurred. An error code of X'OO' always indicates a successful acceptance
or completion of the request.

After your application has requested a fixed-length queue management
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID is
in the CH register, and the error code is in the CL register. The return
codes that can be generated by fixed-length queue management services are
called system return codes. The function ID for system return codes is X'12'
or X'13'. The error codes that can appear are specific to the service that
was requested and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Enqueue Data

Fixed-Length Queue Management Service
X'OC': Enqueue Data

Register Values

Use this service to enqueue data on the specified fixed-length queue.

On Request

AH
CX
DX
ES
DI

X'OC'
N umber of bytes
Fixed-length queue ID
Segment address of data
Offset address of data

On Completion

AX N umber of bytes
CH Function ID
CL Return code

The contents of registers
BX, DX, ES, and DI are
unpredictable.

Register Definitions

Return Codes

Request Registers:

• The CX register contains the number of bytes to be enqueued on the
specified fixed-length queue.

• The DX register contains the ID of the fixed-length queue to receive the
data.

• The ES and DI registers point to the beginning of the data to be
enqueued.

Completion Registers:

• The AX register contains the number of unused bytes currently left on
the fixed-length queue if the number of bytes to be enqueued was too
large.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'39'

Meaning

Successful completion of the request.
Invalid index specified.
Not enough room on fixed-length queue to enqueue the specified
data.

Chapter 20. Coding Fixed-Length Queue Management Services 20-3

Enqueue Data

Usage Notes

Coding Example

Programs running in stoppable environments cannot enqueue data to
fixed-length queues in other stoppable environments.

INITIALIZE REGISTERS FOR ENQUEUE

20-4

MOV
MOV
MOV
MOV
MOV
MOV

AH,OCH
CX,2
DX,QUEUEID
DI, SEG DATANAME
ES,DI
DI,OFFSET DATANAME

NUMBER OF BYTES
QUEUE ID
SEGMENT ADDRESS OF DATA

IN ES
OFFSET OF DATA IN DI

SIGNAL WORKSTATION PROGRAM FOR ENQUEUE SERVICE

INT 7AH

Dequeue Data

Fixed-Length Queue Management Service
X'13': Dequeue Data

Register Values

Use this service to dequeue data from the specified fixed-length queue.

On Request

AH
BL
CX
DX
ES
DI

X'13'
Wait type
Number of bytes
Fixed-length queue ID
Segment address of data
Offset address of data

On Completion

BL Return type
CH Function ID
CL Return code
DX Number of bytes

The contents of registers
BH, AX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BL register specifies the type of wait state your application
program goes into until the request is completed. The type of wait is
specified through a bit mask. If more than one type of wait is specified,
the wait state ends when anyone of the conditions is satisfied. The bits
in the wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until a request
queue element is in its request queue. If an RQE is already in its
request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until a request
queue element is in its completion queue. If an RQE is already in
its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'got semaphore' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

Chapter 20. Coding Fixed-Length Queue Management Services 20-5

Dequeue Data

Return Codes

20-6

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO'specifies "no wait." A "wait" for semaphore is inappropriate
for this service.

• The CX register contains the number of bytes to be de queued from the
specified fixed-length queue.

• The DX register contains the ID of the fixed-length queue.

• The ES and DI registers point to the beginning of a data area provided
by your application to contain the dequeued data.

Completion Registers:

• The DX register contains the number of bytes remaining on the
fixed-length queue.

• The BL register indicates the type of wait condition that was satisfied
to return control to the requesting task. The return type is specified
via a bit mask. The bits in the return type have the same meaning as
the bits in the wait type mask.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'09'
X'13'
X'37'

Meaning

Successful completion of the request.
Invalid index specified.
The fixed-length queue is empty.
Number of bytes requested is too large.
Not your turn to dequeue.

Dequeue Data

Usage Notes

• Programs running in stoppable environments cannot dequeue data from
fixed-length queues in other stoppable environments.

• If two or more tasks request the Dequeue Data service for the same
fixed-length queue, the supervisor processes the requests in
first-in-first-out (FIFO) order.

Coding Example

DATA AREA FOR DEQUEUE
;
DQSESSID DB 4 DUP(O) DATA AREA TO RECEIVE 4 BYTES FROM THE

DEQUEUE

INITIALIZE REGISTERS FOR DEQUEUE

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH ,13H
BL,02H
CX,0004H
DX,QUEUEID
DI,SEG DQSESSID
ES,DI
DI,OFFSET DQSESSID

WAIT UNTIL INFORMATION IS AVAILABLE
DEQUEUE 4 BYTES
FIXED-LENGTH QUEUE ID IN DX
SEGMENT ADDRESS OF DATA AREA IN ES

OFFSET ADDRESS OF DATA AREA IN DI

SIGNAL WORKSTATION PROGRAM FOR DEQUEUE SERVICE

INT 7AH

Chapter 20. Coding Fixed-Length Queue Management Services 20-7

Purge Queue Data

Fixed-Length Queue Management Service X'OF': Purge
Queue Data

Register Values

Use this service to remove all data from the specified fixed-length queue.

On Request

AH
DX

X'OF'
Fixed-length queue ID

On Completion

CH
CL

Function ID
Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Register Definitions

Return Codes

Usage Notes

20-8

Request Registers:

• The DX register contains the ID of the fixed-length queue.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'

Meaning

Successful completion of the request.
Invalid index specified.

Programs running in stoppable environments cannot purge data from
fixed-length queues in other stoppable environments.

Purge Queue Data

Coding Example

INITIALIZE REGISTERS FOR PURGE QUEUE

MOV
MOV

AH,OFH
DX,QUEUEID ; QUEUE ID

SIGNAL WORKSTATION PROGRAM FOR PURGE QUEUE SERVICE

INT 7AH

Chapter 20. Coding Fixed-Length Queue Management Services 20-9

Purge Queue Data

20-10

Purge Queue Data

Chapter 21. Coding Interrupt Handler Management
Services

Introduction .. 21-2
Requesting the Interrupt Handler Management Services 21-2
Return Codes for the Interrupt Handler Management Services ... 21-3

Interrupt Handler Management Service X'86': Install a Hardware
Interrupt Handler 21-4

Interrupt Handler Management Service X'87': Install an Interrupt
Handler ... 21-7

Interrupt Handler Management Service X'88': Query Interrupt Vector
Contents .. 21-10

Interrupt Handler Management Service X'89': Remove an Interrupt
Handler ... 21-12

Chapter 21. Coding Interrupt Handler Management Services 21-1

Introduction

Introduction

This chapter describes how to code requests for the interrupt handler
management services provided by the API.

The interrupt handler management services allow environments to share
the interrupt vector on a cooperative basis. On hardware interrupts, a
device handler in any environment can receive control. On software
interrupts, control is passed only to the software interrupt handler in the
same environment as the code that issued the software interrupt, unless the
interrupt handler was installed as a "global" software interrupt handler.

The interrupt handler management services provided by the API are:

• Install a Hardware Interrupt Handler: Use this service to identify
an interrupt routine that is to gain control on hardware interrupts.

• Install an Interrupt Handler: Use this service to identify an
interrupt routine to gain control on software or hardware interrupts.
This service also returns the entry point of the previous interrupt
handler. For hardware interrupt handlers, the Install a Hardware
Interrupt Handler service is the recommended service to use.

• Query Interrupt Vector Contents: Use this service to obtain the
entry point address of the second-level interrupt handler currently
installed for the specified interrupt vector.

Note: If you are querying the contents of an interrupt vector for interrupt
handler chaining, the entry point returned by the Query Interrupt
Vector Contents service should not be used. For interrupt handler
chaining purposes, always use the entry point returned by the
Install an Interrupt Handler service.

• Remove an Interrupt Handler: Use this service to remove an
interrupt handler that was installed through the Install a Hardware
Interrupt Handler or Install an Interrupt Handler service request.

Requesting the Interrupt Handler Management Services

21-2

To request any of the interrupt handler management services, load the
registers and the parameter list with the proper values, and use the INT
7 AH instruction to signal the workstation program that it has a request to
process.

Introduction

Return Codes for the Interrupt Handler Management Services

Return codes for the interrupt handler management services are 2-byte
values made up of a function ID and an error code. The function ID
indicates the portion of the workstation program in which the error
occurred. The error code indicates the specific type of error that has
occurred. An error code of X'OO' always indicates a successful acceptance
or completion of the request.

After your application has requested an interrupt handler management
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID is
in the CH register, and the error code is in the CL register. The return
codes that can be generated by interrupt handler management services are
called system return codes. The function ID for system return codes is X'12'
or X'13'. The error codes that can appear are specific to the service that
was requested and are included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 21. Coding Interrupt Handler Management Services 21-3

Install a Hardware Interrupt Handler

Interrupt Handler Management Service X'86': Install a
Hardware Interrupt Handler

Register Values

Use this service to identify an interrupt routine to gain control on
hardware interrupts for devices that:

• Share a level

• Can be polled

• Can be disabled.

On Request

AH = X'86'
BL = Interrupt mask
CL = Interrupt level
DX = Status register
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = Function ID
CL = Return code
DX = Interrupt

handler ID

The contents of
registers AX, BX, ES,
and Dlare
un predictable.

Register Definitions

21-4

Request Registers:

• The BL register contains an 8-bit mask that is logically ANDed with the
contents of the status register on hardware interrupts. A nonzero result
indicates that the device is interrupting. If your device does not have a
port that returns an interrupt status, install your handler using DOS
function calls (X'35', X'25') or the Install an Interrupt Handler service.

• The CL register contains the hardware interrupt level, which can be in
the range X'OO' through X'07'.

• The DX register contains the address of a status register I/O port.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DX register contains the ID of the interrupt handler.

Install a Hardware Interrupt Handler

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 word Offset address of the Unchanged

interrupt handler

2 1 word Segment address of the Unchanged
interrupt handler

4 1 word I/O port address Unchanged

6 1 byte Byte to write on device Unchanged
shutdown

Parameter Definitions

Return Codes

Request Parameters:

• The first two words of the parameter list must point to the interrupt
handler's entry point.

• The I/O port address is the address of the port used to shut the device
down.

• A port address of 'OOOOX' will prevent the device from being shut down
on IPL.

• The byte to write on shutdown is written to the port on device
shutdown.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'OE'
X'20'

Meaning

Successful completion of the request.
Invalid interrupt vector.
Interrupt handler control block pool depleted.

Chapter 21. Coding Interrupt Handler Management Services 21-5

Install a Hardware Interrupt Handler

Usage Notes

Handlers installed with Install a Hardware Interrupt Handler service:

• Get control with interrupts disabled.

• Should never issue an EOI instruction.

• Must do a device reset if the hardware requires it.

• Should use a RETURN FAR instruction to return.

• Should not swap stacks and then enable interrupts on an XMA system;
this causes failure unless INDIBM2.SIF has been updated. See the
User's Guide for more information on updating INDIBM2.SIF.

Coding Example

PARAMETER LIST FOR INSTALL A HARDWARE INTERRUPT HANDLER

IHHANOFF DW 0
IHHANSEG DW 0
IHPORTAD DB 0
IHBYTE DB 0

OFFSET ADDRESS OF THE INTERRUPT HANDLER
SEGMENT ADDRESS OF THE INTERRUPT HANDLER
I/O PORT ADDRESS FOR SHUT-DOWN
BYTE TO WRITE ON DEVICE SHUT-DOWN

INITIALIZE PARAMETER LIST FOR INSTALL A HARDWARE INTERRUPT HANDLER

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AX,OFFSET INTHANDL
IHHANOFF,AX
AX,SEG INTHANDL
IHHANSEG,AX
AL,SHUTPORT
IHPORTAD,AL
AL,SHUTBYTE
IHBYTE,AL

INTERRUPT HANDLER OFFSET INTO THE LIST

INTERRUPT HANDLER SEGMENT INTO THE LIST

SHUT-DOWN PORT ADDRESS INTO THE LIST

SHUT-DOWN BYTE INTO THE LIST

INITIALIZE REGISTERS FOR INSTALL A HARDWARE INTERRUPT HANDLER SERVICE

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,86H
BL,MASK
CL,INTLEVEL
DX,STATADDR
DI, SEG IHHANOFF
ES,DI
DI,OFFSET IHHANOFF

STATUS REGISTER MASK IN BL
INTERRUPT LEVEL IN CL
STATUS REGISTER IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR INSTALL A HARDWARE INTERRUPT HANDLER
SERVICE

INT 7AH

21-6

Install an Interrupt Handler

Interrupt Handler Management Service X'87': Install an
Interrupt Handler

Register Values

Use this service to identify an interrupt routine that is to gain control on
software or hardware interrupts. This service also returns the entry point
of the previous interrupt handler to allow sharing a given interrupt.

On Request

AH = X'87'
BL = Flags
CL = Interrupt vector
ES = Segment address of

the interrupt handler
DI = Offset address of

the interrupt handler

On Completion

CH = Function ID
CL = Return code
DX = Interrupt

handler ID
ES = Segment address of

the previous interrupt
handler

DI = Offset address of
the previous interrupt
handler

The contents of registers AX and BX
are unpredictable.

Register Definitions

Request Registers:

• The BL register contains a flag byte that indicates how the interrupt
handler will get control in the following format:

o through 5 6 and 7

Reserved Control options

Bits 0 through 5 are reserved.

Bits 6 and 7 are specified as follows:

B'OO' - local. This interrupt handler gets control only if the
interrupt originated in the requester's environment and if no
"global" handlers, who do not chain, service it first.

B'lO' - global. This interrupt handler always gets control for
interrupts on this level, regardless of the issuing environment.

B'Ol' - global last resort. This interrupt handler gets control only
if no other interrupt handlers service the interrupt. It services
interrupts for all environments.

Chapter 21. Coding Interrupt Handler Management Services 21-7

Install an Interrupt Handler

Return Codes

21-8

• The CL register contains the interrupt vector the requester wishes to
claim. Valid interrupt vector values are 0 through 255, excluding
vectors X'50' through X'57' and vector X'7A'.

• The ES register contains the segment address of the interrupt handler's
entry point.

• The DI register contains the offset address of the interrupt handler's
entry point.

Completion Registers:

• The DX register contains the ID of the interrupt handler.

• The ES register contains the segment address of the entry point of the
interrupt handler previously recorded for this interrupt vector.

• The DI register contains the offset address of the entry point of the
interrupt handler previously recorded for this interrupt vector.

Note: If both the ES and DI registers contain X'OOOO', do not chain to that
address. Instead, use an IRET (interrupt return) instruction at the
end of the interrupt handler code.

For hardware interrupts, ES and DI always contain the entry point of a
routine that chains to the next interrupt handler for this level.

For software interrupts, ES and DI contain the entry point of the interrupt
handler that previously would have been given control for an interrupt
coming from the requester's environment, on the basis of the values
specified in the flag byte on request. For example, if the "global" option
was specified and no other global handlers have been installed, ES and DI
contain the entry point of the software first-level interrupt handler. If
another global handler exists, ES and DI will contain the entry point of
that handler. If the "local" option was specified, ES and DI contain the
address of the handler that was servicing interrupts for this environment.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'OE'
X'OF'
X'20'
X'26'

Meaning

Successful completion of the request.
Invalid interrupt vector.
Invalid environment access.
Interrupt handler control block pool depleted.
Maximum number of software interrupt vectors already taken.

Usage Notes

Coding Example

Install an Interrupt Handler

• If your interrupt handler is a local interrupt handler and it decides not
to service an interrupt, it should jump to the address returned by this
service in the ES and DI registers. If the ES and DI registers contain a
value of zero, your interrupt handler should use the IRET instruction.

• If your interrupt handler is a global interrupt handler and it decides not
to service an interrupt, it should jump to the address returned by this
service in ESDI.

• If your interrupt handler services an interrupt, it should use the IRET
instruction to return and thus discontinue chaining the interrupt. A
hardware handler about to IRET must first do a RESET if hardware
requires it and issue an EOI.

• If your interrupt handler attempts to chain to the previous handler with
a PUSHF and far CALL instruction combination, the registers and the
stack must first be restored.

• Your interrupt handler should not swap stacks and then enable
interrupts on an XMA system; this causes failure unless INDIBM2.SIF
has been updated. See the User's Guide for more information on
updating INDIBM2.SIF.

INITIALIZE REGISTERS FOR INSTALL AN INTERRUPT HANDLER

MOV
MOV
MOV
MOV
MOV
MOV

AH,87H
BL,FLAGS
CL,INTVECT
DI, SEG INTHNDLR
ES,DI
DI,OFFSET INTHNDLR

FLAGS
INTERRUPT VECTOR
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR INSTALL AN INTERRUPT HANDLER

INT 7AH

Chapter 21. Coding Interrupt Handler Management Services 21-9

Query Interrupt Vector Contents

Interrupt Handler Management Service X'88': Query
Interrupt Vector Contents

Register Values

Use this service to obtain the entry point address of the second-level
interrupt handler currently installed for the specified interrupt vector. Do
not use this service for global chaining.

On Request

AH = X'88'
CL = Interrupt vector

On Completion

CH = Function ID
CL = Return code
ES = Segment address of

the interrupt handler
DI = Offset address of

the interrupt handler

The contents of registers AX, BX, and DX
are unpredictable.

Register Definitions

21-10

Request Registers:

• The CL register contains the interrupt vector the requester wishes to
query. Valid interrupt vector values are 0 through 255.

Completion Registers:

• The ES register contains the segment address of the entry point of the
interrupt handler currently installed for this interrupt vector.

• The DI register contains the offset address of the entry point of the
interrupt handler currently installed for this interrupt vector.

Note: If both the ES and DI registers contain X'OOOO', do not chain to that
address. Instead use an IRET (Interrupt Return) instruction at the
end of the interrupt handler code.

For hardware interrupts, ES and DI always contain the entry point of a
routine that chains to the next interrupt handler for this level.

For software interrupts, ES and DI contain the entry point of the interrupt
handler that previously would have been given control for an interrupt
coming from the requester's environment, after the global interrupt
handlers had checked the interrupt. That is, if a local interrupt handler
was installed, ES and DI contain the address of this local handler.
Otherwise, ES and DI contain the address of the original contents of the
interrupt vector before any local handlers were installed.

Return Codes

Usage Notes

Coding Example

Query Interrupt Vector Contents

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error code that can be received for
this service is:

Code Meaning

X'OO' Successful completion of the request.

If you are querying the contents of an interrupt vector for interrupt handler
chaining purposes, the entry point returned by the Query Interrupt Vector
Contents service should not be used. For interrupt handler chaining
purposes, always use the entry point returned by the Install a Software
Interrupt Handler service.

INITIALIZE REGISTERS FOR QUERY INTERRUPT VECTOR CONTENTS

MOV
MOV

AH,88H
CL,9 ; INTERRUPT VECTOR IN BL

SIGNAL WORKSTATION PROGRAM FOR QUERY INTERRUPT VECTOR CONTENTS

INT 7AH

Chapter 21. Coding Interrupt Handler Management Services 21-11

Remove an Interrupt Handler

Interrupt Handler Management Service X'89': Remove
an Interrupt Handler

Register Values

Use this service to remove an interrupt handler that was installed through
the Install a Hardware Interrupt Handler or Install an Interrupt Handler
service request.

If the interrupt handler was installed through the Install a Hardware
Interrupt Handler service, the device is shut down according to the
information supplied when the hardware interrupt handler was installed.

On Request

AH = X'89'
DX = Interrupt handler ID

On Completion

CH = Function ID
CL = Return code

The contents of registers AX, BX, DX,
ES, and DI are unpredictable.

Register Definitions

Return Codes

21-12

Request Registers:

• The DX register contains the ID of the interrupt handler to be removed.

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X'12' or
X'13' (found in the CH register). The error codes that can be received for
this service are:

Code

X'OO'
X'05'
X'OF'

Meaning

Successful completion of the request.
Invalid ID specified.
Invalid environment access.

Remove an Interrupt Handler

Coding Example

INITIALIZE REGISTERS FOR REMOVE AN INTERRUPT HANDLER

MOV
MOV

AH,89H
DX,HNDLR$ID ; INTERRUPT HANDLER ID

SIGNAL WORKSTATION PROGRAM FOR REMOVE AN INTERRUPT HANDLER

INT 7AH

Chapter 21. Coding Interrupt Handler Management Services 21-13

Remove an Interrupt Handler

21-14

Remove an Interrupt Handler

Chapter 22. Environments and the Environment
Manager

Introduction .. 22-2
Environments ... 22-2

Stoppable Environments 22-2
Nonstoppable Environments 22-3
Environment Access Restrictions 22-3
Environment Management Services Your Program or System

Extension Can Use to Control Environments 22-4
Resource Managers 22-4

Environment Management Services Your System Extension Can
Use to Control Resource Management 22-6

Chapter 22. Environments and the Environment Manager 22-1

Introduction

Introduction

Environments

The environment manager portion of the workstation program allows you
to divide memory, resources, and supervisory objects into several groupings,
called environments. You can designate an environment to be used to run
DOS or an application program. Environments used to run DOS and DOS
applications are called stoppable environments. You can alternatively
designate an environment to be used to run a system extension that is
loaded as part of the workstation program. Environments used in this way
are called nonstoppable environments.

The environment manager allows you to stop the program running in a
stoppable environment, releasing any resources that were added to the
environment by that program's request. After you stop the program
running in a stoppable environment, you can restart a different program in
that environment without re-IPLing the entire system. The Stop/Reset
service corresponds to the Ctrl-Alt-Del key sequence offered by DOS in
base PC mode.

The environment manager also provides services that allow you to suspend
or resume an environment. When you suspend an environment, the
supervisor sets all the tasks running in that environment to the unready
state until you resume that environment. When you resume an
environment, the supervisor sets all the tasks in that environment to the
ready state. The Suspend/Resume service corresponds to the Ctrl-NumLock
key sequence offered by DOS in base PC mode.

An environment may contain memory, system control blocks, and system
data areas created or accessed by user program requests. For example, an
application program that creates multiple windows will have a record of
each of those windows in its environment definition.

Stoppable Environments

22-2

A stoppable environment is used for running DOS or personal computer
application programs. Stoppable environments can be used for any program
that can be removed from the system without causing other programs to
fail. That is, programs in stoppable environments must not offer services to
programs running in any other environments. Programs running in
stoppable environments can be stopped by any program running in the same
environment including itself, by a program running in a nonstoppable
environment, or by the user by pressing the Ctrl-Alt-Del keys in that
sequence.

Introduction

Nonstoppable Environments

Nonstoppable environments are used to run system extensions, which are
loaded as part of the workstation program and start running automatically
when the workstation program is IPLed. System extensions cannot be
removed from the system without recustomizing. A system extension may
offer services that other programs can use.

Environment Access Restrictions

A program in a stoppable environment should never offer services or
supervisory objects that other programs may depend on. To prevent this,
restrictions on access rights of stoppable environments will be enforced.
These restrictions are as follows:

1. Stoppable environments are only allowed to access system resources
created within that environment, or within a nonstoppable
environment. For instance, a stoppable environment may not claim
another stoppable environment's semaphore, or access its fixed-length
queue, or send a work request to a task in another stoppable
environment. This restriction is enforced at name resolution time.
Nonstoppable environments are allowed to access all system resources,
but resources belonging to stoppable environments must be managed by
a resource manager.

2. A program in a stoppable environment may not change the priority,
preemptability, or dispatch status of a task outside that environment.
This cannot be enforced at name resolution time. Instead, it will be
enforced when the specific request is made.

3. A component within a stoppable environment may not be invoked by
any other environment. Access restrictions to the component ID are
enforced at name resolution time.

4. A stoppable environment cannot create a gate. This is enforced when
the environment attempts to create the gate.

5. A stoppable environment cannot stop, suspend, or resume an
environment other than its own. It can never reset any environment,
including its own.

6. A stoppable environment cannot name-resolve a code serialization
semaphore that belongs to a nonstoppable environment. This is
enforced at name resolution time.

7. A nonstoppable environment can only reset its own environment, but it
can stop any stoppable environment. A nonstoppable environment can
also suspend or resume any environment.

Chapter 22. Environments and the Environment Manager 22-3

Resource Managers

Environment Management Services Your Program or System Extension Can
Use to Control Environments

Application programs and system extensions can use the following services
to control environments. Application programs must observe the
environment access restrictions listed on page 22-3. The following services
and their coding examples may be found in Chapter 23, "Coding
Environment Manager Services."

• Suspend/Resume Environment: Use this service to suspend or
resume all tasks in the specified environment. You can also use this
service to suspend or resume all tasks in the specified environment
except the task that is requesting the service.

• Stop/Reset Environment: Use this service to stop or reset the
specified environment.

• Query Task's Environment ID: Use this service to obtain the ID of
the environment associated with the specified task.

• Query Environment Characteristics: Use this service to obtain a
list of characteristics associated with a specified environment.

Resource Managers

22-4

A resource is anything, such as control blocks, storage, or physical devices
(for example, a printer), that a system extension allocates or deallocates. A
resource is generally represented as a control block or data area. A
resource chain is a grouping of these data areas or control blocks.
Resources are chained per environment.

You can code a system extension to provide services or allocate resources
to stoppable environments. A resource manager can only exist in a
nonstoppable environment. The portion of a system extension that
allocates and deallocates a specified resource is called a resource manager.
A resource manager must be identified to the environment manager before
it can begin its resource management operations. You can identify more
than one resource manager per environment. Alternatively, each resource
manager may have more than one resource chain (one per environment).

To act as a resource manager, your system extension should do the
following:

• Request the Create Component Entry service to create a component
called the cleanup component, which the environment manager calls to
recover the resources allocated to an environment when that
environment is stopped.

• Obtain a resource manager ID by requesting the Identify Resource
Manager service. Your resource manager must use this ID in all
subsequent interaction with the environment manager.

Resource Managers

• Request the Add Resource service each time a resource is allocated to
an application program. The environment manager will add the
resource to the top of the environment's chain.

• Request the Delete Resource service each time a resource is deallocated
normally from the application.

To add resources to or delete resources from a resource chain, the resource
manager uses the Add Resource or Delete Resource service. Each resource
is assumed to be a data area that contains as its first element a 2- or 4-byte
field that the environment manager uses to link the resources. The size of
the field is determined by a parameter that is required on the Identify
Resource Manager request.

A resource manager has a component that is called by the environment
manager when a stoppable environment to which the system extension has
allocated resources is being stopped. This allows the resource manager to
reclaim resources outstanding in that stoppable environment. In order for
your resource manager's cleanup component to be notified when a PC
environment is stopped (so your resource manager can reclaim resources
used for that PC environment), it must have added at least one resource to
the PC environment's chain.

When a stoppable environment is re-IPLed or stopped, the environment
manager notifies the cleanup component by sending the address of each
resource on the resource chain. This allows the cleanup component to
recover the resources that have been allocated to the stoppable
environment. See "The Cleanup Component Interface" on page 23-32 for
more information.

If the application is stopped (either voluntarily or involuntarily) and there
are outstanding resources allocated to the application, the environment
manager will call the cleanup component once for each resource on the
chain of allocated resources, passing a parameter list. The cleanup
component should request the Delete Resource service each time it is
called, to delete the resource. In this way, the cleanup component recovers
all the resources allocated by the application program.

When a PC environment is stopped, the environment manager will notify
all the resource manager's cleanup components that have a resource on the
PC environment chain that the environment is being stopped. Thus it is
important for your resource manager to add a resource to any PC
environment about which it is to be notified. If your resource manager that
handles requests from a PC is a component, then it is running under the
PC task that is in the PC environment, and it can simply add a resource to
the current active task environment.

If the resource manager that handles requests from a PC is a task, then it
is executing in a different environment from the PC. When it received the
request through the Make a Request service, the DX register contained the
task ID of the task that made the request. Your resource manager will add
a resource to the environment of the task (in the DX register) that made the
request.

Chapter 22. Environments and the Environment Manager 22-5

Resource Managers

Environment Management Services Your System Extension Can Use to
Control Resource Management

22-6

Your system extension can use the following services to control resource
management:

• Identify Resource Manager: Use this service to identify a resource
manager to the environment management portion of the workstation
program.

• Add Resource: Use this service to add a resource to the top of the
resource chain, or to move a resource already on the chain to the top of
the chain for a specified environment.

• Delete Resource: Use this service to delete a resource from a
resource chain.

• Query Resource: Use this service to obtain the address of the first
resource in a specified resource chain.

These services and their coding examples are described in
Chapter 23, "Coding Environment Manager Services."

Resource Managers

Chapter 23. Coding Environment Manager Services

Introduction .. 23-2
Requesting the Environment Manager Services 23-3
Return Codes for the Environment Manager Services 23-3

Environment Manager Service X'10': Identify Resource Manager ... 23-4
Environment Manager Service X'8E': Add Resource 23-8
Environment Manager Service X'8B': Delete Resource 23-12
Environment Manager Service X'8C': Query Resource 23-15
Environment Manager Service X'90': Suspend/Resume Environment 23-17
Environment Manager Service X'99': Stop/Reset Environment 23-23
Environment Manager Service X'11': Query Task's Environment ID . 23-34
Environment Manager Service X'8D': Query Environment

Characteristics ... 23-36

Chapter 23. Coding Environment Manager Services 23-1

Introduction

Introduction

23-2

This chapter describes how to code requests for the environment manager
services provided by the API. Before using it, you should have read the
introductory discussion in Chapter 22, "Environments and the
Environment Manager."

The environment manager services allow your application program to
control its environment, and allow a system extension to act as a resource
manager to control the allocation and deallocation of resources to
application programs running in stoppable environments.

Environment manager services that your application program and system
extension can use are:

• Suspend/Resume Environment: Use this service to suspend or
resume all tasks in the specified environment. You can also suspend or
resume all tasks in the environment except the task that is requesting
the service.

• Stop/Reset Environment: Use this service to stop or reset the
environment. Reset should only be used by system extensions.

• Query Task's Environment ID: Use this service to obtain the ID of
the environment associated with a task.

• Query Environment Characteristics: Use this service to obtain a
list of characteristics associated with an environment.

Additional environment manager services that your system extension can
use to control resource management are:

• Identify Resource Manager: Use this service to identify a resource
manager to the environment management portion of the workstation
program.

• Add Resource: Use this service to add a resource to the top of the
resource chain, or to move a resource already on the chain to the top of
the chain for an environment.

• Delete Resource: Use this service to delete a resource from a
resource chain.

• Query Resource: Use this service to obtain the address of the first
resource in a resource chain.

Introduction

Requesting the Environment Manager Services

To request any of the environment manager services, load the registers and
the parameter list with the proper values, and use the INT 7 AH instruction
to signal the workstation program that it has a request to process.

Return Codes for the Environment Manager Services

Return codes for the environment manager services are 2-byte values made
up of a function ID and an error code. The function ID indicates the
portion of the workstation program in which the error occurred. The error
number indicates the specific type of error that has occurred. An error
code of X'OO' always indicates a successful acceptance or completion of the
request.

After your application has requested an environment manager service, the
CH and CL registers contain a return code generated by either the request
processing portion or the environment management portion of the
workstation program. The function ID is in the CH register, and the error
code is in the CL register. Environment manager services that require a
parameter list have additional return codes in bytes 0 and 1 of the
parameter list on completion. The function ID is in byte 1, and the error
code is in byte O. The function ID for system return codes is X'12'. The
function ID for environment manager return codes is X'13'. The error codes
that can appear are specific to the service that was requested and are
included in the descriptions of each service.

See Appendix H, "Return Codes," for more information.

Chapter 23. Coding Environment Manager Services 23-3

Identify Resource Manager

Environment Manager Service X'lO': Identify Resource
Manager

Register Values

Your system extension can identify itself as a resource manager to the
environment manager portion of the workstation." program. A resource
manager resides in a nonstoppable system extension and allocates resources
to stoppable environments. The environment manager assigns an ID to the
resource manager and establishes a unique resource chain for the resource
manager.

Before you can request this service, you must create a component by using
the Create Component service. This component, called the cleanup
component, is invoked whenever an environment that has resources
allocated by this resource manager is stopped, reset, or deleted.

On Request

AH = X'IO'
BH = Priority of the cleanup component
CX = X'OOOO' or segment value
DX = ID of the cleanup component

On Completion

CH = X'I2' or X'I3'
CL = Return code
DL = Resource

manager ID

The contents of registers
AX, BX, DH, ES, and DI
are unpredictable.

Register Definitions

23-4

Request Registers:

• The BH register contains the priority at which to run the cleanup
component. This priority must be in the range 1 through 64. If a task
in the resource manager receives requests on a fixed-length queue from
an application program, the cleanup component should run at a lower
priority than that task, since the Stop/Reset Environment service does
not track or clean up items placed on a fixed-length queue by a
terminating environment. Running the cleanup component at a lower
priority ensures that the data enqueued by the application is de queued
by the system extension before the cleanup component runs.

• The CX register indicates whether the resource manager's resource
chain will be linked by I-word or doubleword pointers. If a segment
value is coded in the CX register on request, the resource manager is
indicating that all resources that will be added to its resource chain
reside in the specified segment and, thus, are linked by I-word pointers.

Return Codes

Identify Resource Manager

The environment manager uses the specified segment value for Query
Resource, Add Resource, and Delete Resource requests. If X'OOOO' is
coded in the CX register on request, the resource manager is indicating
that all resources that will be added to its resource chain will be linked
by doubleword pointers.

If the resources in the resource chain are linked by I-word pointers,
each resource data area or control block must begin with a I-word field
that will be used by the environment manager for chaining. If the
resources in the resource chain are linked by doubleword pointers, each
resource control block must begin with a doubleword field that will be
used by the environment manager for chaining.

• The DX register contains the ID of the cleanup component, which will
reclaim all of this resource manager's resources whenever an
environment using them is stopped, reset, or deleted. The cleanup
component is given a data chain pointer and an indication of the type
"stop." The cleanup component runs under the environment manager's
task at the specified priority, and also runs off the environment
manager's task's stack. This stack only has 80 bytes available for the
cleanup component to use. If 80 bytes is not sufficient, the cleanup
component switches to its own stack when it gets control.

The cleanup component is invoked once for each resource on the
resource chain for the environment being stopped, reset, or deleted.
The environment manager notifies the cleanup component when an
environment is stopped, reset, or deleted. See "The Cleanup Component
Interface" on page 23-32 for more information.

The cleanup component must request the Delete Resource service for
each resource it has cleaned up in order to remove the resources from
the stopping environment.

Completion Registers:

• The DL register contains the resource manager ID assigned to this
resource manager. This ID identifies a unique chain for a resource
manager within each environment.

The CH and CL registers contain a return code generated either by the
supervisor portion of the workstation program or by the environment
manager portion of the workstation program.

Chapter 23. Coding Environment Manager Services 23-5

Identify Resource Manager

Usage Notes

23-6

• Supervisor return code:

The supervisor return codes use a function ID of X'12' (found in the CH
register). The error code that can be received is found in the CL
register:

Code Meaning

X'05' Invalid SVC ID.

• Environment manager return codes:

Environment manager return codes use a function ID of X'13' (found in
the CH register). The error codes that can be received are found in the
CL register:

Code

X'OO'
X'05'
X'06'
X'OF'

X'25'

Meaning

Successful completion.
The specified ID is not a component.
Invalid priority.
Invalid environment access. This service must be requested
from a nonstoppable environment.
The maximum number of resource managers has already been
defined.

See Appendix H, "Return Codes," for more information.

• This service may be requested only by a nonstoppable system extension.

• This service needs to be requested only by a resource manager that
wants to be notified when a stoppable environment is being stopped,
reset, or deleted, so that it may clean up any resources that it allocated
on the stoppable environment's behalf.

• This service should be requested once by a resource manager when it is
brought into the system, usually in the system extension's initialization
code.

• Before you request the Identify Resource Manager service, you must
request the Create Component service to create the component that will
clean up any resources allocated by the resource manager.

• The cleanup component is invoked once for each of its resources. The
component must issue a Delete Resource to have that resource deleted.

Identify Resource Manager

Coding Example

INITIALIZE REGISTERS FOR IDENTIFY RESOURCE MANAGER

MOV
MOV
MOV
MOV

AH,lOH
BH,50
CX,SEGVAL
DX,CLEANCID

PRIORITY OF THE CLEANUP COMPONENT
SEGMENT VALUE
CLEANUP COMPONENT ID

SIGNAL WORKSTATION PROGRAM FOR IDENTIFY RESOURCE MANAGER SERVICE

INT 7AH

Chapter 23. Coding Environment Manager Services 23-7

Add Resource

Environment Manager Service X'SE': Add Resource

Register Values

Use this service to add a resource to the top of a resource chain, or to move
a resource already on the chain to the top of the chain for a specified
environment.

When a PC application wants to add a resource to its chain, it should make
a request to the resource manager. The resource manager then issues the
Add Resource service to add the resource to the PC environment.

On Request

AH = X'8E'
BL = Options
DX = ID of the task or X'OOOO' * or
DL = Environment ID or X'OO' *
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'13'
CL = Return code
DL = Environment ID

The contents of registers
AX, BX, DH, ES, and DI
are unpredictable.

* The value coded in the DX or DL register depends on the value coded in the BL register.
See "Register Definitions" below for more information.

Register Definitions

23-8

Request Registers:

• The BL register indicates the following options:

Whether the resource is to be added to the resource chain or moved
to the top of the resource chain

Whether a task ID or an environment ID is to be used to identify
the environment that requested the Add Resource service from the
resource manager.

The format of the options flag is as follows:

Bit 0 Bits 1 - 6 Bit 7

o = Add resource Must be zero o = Environment ID in
1 = Move resource DL

1 = Task ID in DX

• If bit 7 of the BL register is set to 1, the DX register contains the ID of
the task that requested the Add Resource service from the resource
manager. If the DX register contains X'OOOO', the environment manager
uses the ID of the currently executing task.

Add Resource

• If bit 7 of the BL register is set to 0, the DL register contains the
environment ID of the task that requested the Add Resource service
from the resource manager. If the DL register contains X'OO', the
environment manager uses the environment ID of the currently
executing task.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The DL register contains the ID of the environment to which the
resource was added or moved.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
resource

2 1 word Segment address Unchanged
of resource

4 1 word Reserved Offset address of
resource chain

6 1 word Reserved Segment address
of resource chain

8 1 byte Resource manager Unchanged
ID

9 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

• The segment and offset addresses of the resource are used as a pointer
to the resource being added or moved.

If you are chaining with 1-word pointers, the same segment specified on
the Identify Resource Manager is always used when that resource
manager issues an add resource. This is true regardless of the segment
address that was entered in the parameter list.

• The resource manager ID (returned by the Identify Resource Manager
service) indicates which resource chain to use to add or move the
specified resource.

Chapter 23. Coding Environment Manager Services 23-9

Add Resource

Return Codes

Usage Notes

23-10

Completion Parameters:

• The segment and offset addresses of the resource chain indicate the
resource that was at the top of the resource chain before the Add
Resource service request was completed. If the resource pointer passed
was the first one on the resource chain, this value is zero.

The CH and CL registers contain a return code generated by the
environment manager portion of the workstation program. Environment
manager return codes use a function ID of X'I3' (found in the CH register).
The error codes that can be received are found in the CL register:

Code

X'OO'
X'05'
X'21'
X'24'
X'33'

Meaning

Successful completion.
Invalid SVC ID.
Invalid environment ID.
Invalid resource manager ID.
Specified resource not found.

See Appendix H, "Return Codes," for more information.

• This service may be requested only by a nonstoppable system extension.

• Before you request the Add Resource service, you must request the
Identify Resource Manager to identify the resource manager to the
environment manager.

• When a resource is added to the resource chain, it is always added to
the top (beginning) of the chain. The resource is assumed to be a data
area or control block that has as its first field either a I-word or a
doubleword pointer. The environment manager uses this pointer field
to chain together all the resources recorded by the resource manager in
the specified environment, by setting the pointer field to point to the
next resource in the resource chain. The environment manager records
the newly added resource as the first resource in the chain.

The resource chain enables a resource manager to track the resources it
has allocated to a particular environment so that it may reclaim those
resources if a request to stop an environment is received. When a stop
request is received, each item on the resource chain is sent to the
resource manager's cleanup component with an indication that the
environment is being stopped, reset, or deleted.

• A resource manager can add different "types" of control blocks to its
resource chain. If it does, the resource control block should contain a
"type" field so that your resource manager can distinguish between the
resource "types" when notified of a stop.

Add Resource

Coding Example

PARAMETER LIST FOR ADD RESOURCE

AROFFSRS DW 0
ARSEGRS DW 0
AROFFSCH DW 0
ARSEGCH DW 0
ARRMID DB 0
ARRESRVD DB 0

OFFSET ADDRESS OF RESOURCE
SEGMENT ADDRESS OF RESOURCE
OFFSET ADDRESS OF RESOURCE CHAIN
SEGMENT ADDRESS OF RESOURCE CHAIN
RESOURCE MANAGER ID
RESERVED

INITIALIZE PARAMETER LIST FOR ADD RESOURCE

MOV
MOV
MOV
MOV

AROFFSRS,OFFSET RESOURCE
ARSEGRS,SEG RESOURCE
AL,RESMGRID
ARRMID,AL

OFFSET ADDRESS OF RESOURCE
SEGMENT ADDRESS OF RESOURCE
RESOURCE MANAGER ID
IN LIST

INITIALIZE REGISTERS FOR ADD RESOURCE

MOV
MOV
MOV
MOV
MOV
MOV

AH,8EH
BL,OlH
DX,O
DI, SEG AROFFSRS
ES,DI
DI,OFFSET AROFFSRS

ADD RESOURCE, AND TASK ID IS IN DX
USE ID OF THE CURRENT TASK
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR ADD RESOURCE SERVICE

INT 7AH

Chapter 23. Coding Environment Manager Services 23-11

Delete Resource

Environment Manager Service X'8B': Delete Resource

Register Values

Use this service to delete a resource from a resource chain.

On Request

AH X'8B'
BL Options
DX ID of the task or X'OOOO' * or
DL Environment ID or X'OO' *
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X'13'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

* The value coded in the DX or DL register depends on the value coded in the BL register.
See "Register Definitions" below for more information.

Register Definitions

23-12

Request Registers:

• The BL register indicates whether a task ID or an environment ID is to
be used to identify the environment that requested the Delete Resource
service from the resource manager. Possible values of the BL register
are as follows:

X'OO' Environment ID in the DL register
X'Ol' Task ID in the DX register

• If the value of the BL register is X'Ol', the DX register contains the ID
of the task that requested the Delete Resource service from the resource
manager. If the DX register contains X'OOOO', the environment manager
uses the ID of the currently executing task.

• If the value of the BL register is X'OO', the DL register contains the
environment ID of the task that requested the Delete Resource service
from the resource manager. If the DL register contains X'OO', the
environment manager uses the environment ID of the currently
executing task.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Delete Resource

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 word Offset address of Unchanged
resource

2 1 word Segment address Unchanged
of resource

4 1 word Reserved Offset address of
resource chain

6 1 word Reserved Segment address
of resource chain

8 1 byte Resource manager Unchanged
ID

9 1 byte Reserved Reserved

Parameter Definitions

Return Codes

Request Parameters:

• The segment and offset addresses of the resource are used as a pointer
to the resource being deleted.

• The resource manager ID (returned by the Identify Resource Manager
service) indicates which resource chain to use to delete the specified
resource.

Completion Parameters:

• The segment and offset addresses of the resource chain indicate the
resource that was at the top of the resource chain before the Delete
Resource service request was completed.

The CH and CL registers contain a return code generated by the
environment manager portion of the workstation program. Environment
manager return codes use a function ID of X'13' (found in the CH register).
The error codes that can be received are found in the CL register:

Code

X'OO'
X'05'
X'21'
X'24'
X'33'

Meaning

Successful completion.
Invalid SVC ID.
Invalid environment ID.
Invalid resource manager ID.
Specified resource not found.

See Appendix H, "Return Codes," for more information.

Chapter 23. Coding Environment Manager Services 23-13

Delete Resource

Usage Notes

• This service may be requested only by a nonstoppable system extension.

• Before you request the Delete Resource service, you must request the
Identify Resource Manager to identify the resource manager to the
environment manager, and use the Add Resource service to add
resources to the resource chain.

• When the last resource is deleted from the resource chain, the
environment manager will no longer notify the resource manager if the
environment is stopped, reset, or deleted.

• A resource manager should request this service whenever it removes
any resources from an environment. The resource manager may choose
to delete any item -not necessarily the first- on the chain. However,
on a Stop Environment request, each time the environment manager
invokes your cleanup component, it will pass the address of one
resource, traversing in order through the chain starting with the top or
first item.

Coding Example

PARAMETER LIST FOR DELETE RESOURCE

DROFFSRS DW 0
DRSEGRS DW 0
DROFFSCH DW 0
DRSEGCH DW 0
DRRMID DB 0
DRRESRVD DB 0

OFFSET ADDRESS OF RESOURCE
SEGMENT ADDRESS OF RESOURCE
OFFSET ADDRESS OF RESOURCE CHAIN
SEGMENT ADDRESS OF RESOURCE CHAIN
RESOURCE MANAGER ID
RESERVED

INITIALIZE PARAMETER LIST FOR DELETE RESOURCE

MOV
MOV
MOV
MOV

DROFFSRS,OFFSET RESOURCE
DRSEGRS,SEG RESOURCE
AL,RESMGRID
DRRMID,AL

OFFSET ADDRESS OF RESOURCE
SEGMENT ADDRESS OF RESOURCE
RESOURCE MANAGER ID
IN LIST

INITIALIZE REGISTERS FOR DELETE RESOURCE

MOV
MOV
MOV
MOV
MOV
MOV

AH,8BH
BL,OlH
DX,O
DI, SEG DROFFSRS
ES,DI
DI,OFFSET DROFFSRS

TASK ID IN THE DX REGISTER
USE ID OF THE CURRENTLY EXECUTING TASK
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DELETE RESOURCE SERVICE

INT 7AH

23-14

Query Resource

Environment Manager Service X'8C': Query Resource

Register Values

Use this service to obtain the address of the first resource in a specified
resource chain.

On Request

AH = X'8C'
BL = Options
CL = Resource manager ID
DX = ID of the task or X'OOOO' * or
DL = Environment ID or X'OO' *

On Completion

CH = X'13'
CL = Return code
ES = Segment address

of the resource
pointer

DI = Offset address of
the resource
pointer

The contents of registers
AX BX, and DX are
unpredictable.

* The value coded in the DX or DL register depends on the value coded in the BL register.
See "Register Definitions" below for more information.

Register Definitions

Request Registers:

• The BL register indicates whether a task ID or an environment ID is to
be used to identify the task that requested the resource from the
resource manager. Possible values of the BL register are as follows:

X'OO' Environment ID in the DL register
X'Ol' Task ID in the DX register

• The CL register contains the resource manager ID (returned by the
Identify Resource Manager service), which indicates which resource
chain to query.

• If the value of the BL register is X'Ol', the DX register contains the ID
of the task that requested the Query Resource service from the resource
manager. If the DX register contains X'OOOO', the environment manager
uses the ID of the currently executing task.

• If the value of the BL register is X'OO', the DL register contains the
environment ID of the task that requested the Query Resource service
from the resource manager. If the DL register contains X'OO', the
environment manager uses the environment ID of the currently
execu ting task.

Chapter 23. Coding Environment Manager Services 23-15

Query Resource

Return Codes

Usage Notes

Completion Registers:

• The ES register contains the segment address of the resource at the top
of the resource chain.

• The DI register contains the offset address of the resource at the top of
the resource chain.

The CH and CL registers contain a return code generated by the
environment manager portion of the workstation program. Environment
manager return codes use a function ID of X'13' (found in the CH register).
The error codes that can be received are found in the CL register:

Code

X'OO'
X'05'
X'21'
X'24'

Meaning

Successful completion.
Invalid SVC ID.
Invalid environment ID.
Invalid resource manager ID.

See Appendix H, "Return Codes," for more information.

• This service may be requested only by a nonstoppable system extension.

• Before you request the Query Resource service, you must request the
Identify Resource Manager to identify the resource manager to the
environment manager.

• If there are no resources on the resource chain, the resource chain
pointer is zero.

Coding Example

INITIALIZE REGISTERS FOR QUERY RESOURCE

MOV
MOV
MOV
MOV

AH,8CH
BL,OlH
CL,MANAGRID
DX,O

TASK ID IN THE DX REGISTER
RESOURCE MANAGER ID
USE ID OF THE CURRENTLY EXECUTING TASK

SIGNAL WORKSTATION PROGRAM FOR QUERY RESOURCE SERVICE

INT 7AH

23-16

Suspend/Resume Environment

Environment Manager Service X'90': Suspend/Resume
Environment

Register Values

Use this service to suspend or resume all tasks in the specified
environment.

On Request

AH = X'90'
BH = Reply type
BL = Wait type
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

AX = Request ID
BL = Return type
CH = Function ID
CL = Return code

The contents of registers
BH, DX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

• The BH register specifies the type of reply your application program
will receive when the request is completed. Possible reply types are as
follows:

X'80'

X'40'

X'20'

X'lO'

Request completion is indicated by a 'completion' signal.
Any existing 'completion' signal to the application program
is canceled.

Request completion is indicated by an RQE on the
application program's completion queue.

No notification of request completion is received.

No notification of request completion is received, and the
parameter list is copied into a IO-byte area, so that the
parameter list data area can be reused. This is intended for
interrupt handler usage.

Chapter 23. Coding Environment Manager Services 23-17

Suspend/Resume Environment

23-18

• The BL register specifies the type of wait state your application
program goes into until the request is completed. The type of wait is
specified through a bit mask. When more than one type of wait is
specified, the wait state ends when anyone of the conditions is
satisfied. The bits in the wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already
an RQE in its completion queue, the application stays dispatchable.

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to o.

/ I Note: X'OO' specifies" no wait." A" wait" for semaphore or data is not
appropriate for this service.

I

• The ES register contai~s the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The AX register contains the ID of the RQE used by the supervisor for
this request.

• The BL register indicates the type of wait condition that was satisfied
to return control to your application program. The return type is
specified via a bit mask. The bits in the return type have the same
meaning as the bits in the wait type.

Suspend/Resume Environment

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'13')

2 1 byte Request type Unchanged

3 1 byte Flags Unchanged

If using a task ID to specify the environment to be suspended or resumed:

Contents Contents
Offset Length on Request on Completion

4 1 word Task ID May be changed

If using an environment ID to specify the environment to be suspended or
resumed:

Contents Contents
Offset Length on Request on Completion

4 1 byte Environment ID May be changed

5 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

• The request type indicates whether the specified environment is to be
suspended or resumed as follows:

X'05' - Suspend the environment
X'06' - Resume the environment

• The flags are as follows:

Bits 0 - 5 Bit 6

Must be o = All
zero 1 = All except

requester

Bit 7

o = Env ID used
1 = Task ID used

Chapter 23. Coding Environment Manager Services 23-19

Suspend/Resume Environment

Bits 0 through 5 are reserved and must be zero.

Bit 6 indicates whether all tasks in the specified environment are to
be suspended:

Bit 6 = 0 - Suspend all tasks in the environment.
Bit 6 = 1 - Suspend all tasks in the environment except the
requesting task.

Bit 7 indicates how the environment to be suspended or resumed is
specified in the parameter list:

Bit 7 = 0 - Environment ID in parameter list
Bit 7 = 1 - Task ID in parameter list. The task's environment is the
one to be suspended or resumed.

• If bit 7 of the flag byte is 0, byte 4 of the parameter list must contain the
environment ID of the environment to be suspended or resumed. Byte 5
of the parameter list is reserved.

• If bit 7 of the flag byte is 1, word 4 of the parameter list must contain
the ID of the task whose environment is to be suspended or resumed.

Return Codes in the CH and CL Registers

23-20

The CH and CL registers contain a return code generated by the supervisor
portion of the workstation program or the environment management
portion of the workstation program.

Supervisor return codes use a function ID of X'12' (found in the CH
register). The error codes that can be received are:

Code

X'OO'
X'07'
X'OB'

Meaning

Successful completion of the request.
Invalid reply type specified.
System RQE pool depleted.

Environment management return codes use a function ID of X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'05'
X'OC'
X'17'

X'21'
X'43'

Meaning

Successful completion of the request.
Invalid task ID.
Byte 0 of the parameter list was nonzero.
Stoppable environment cannot stop, reset, suspend, or resume an
environment other than its own.
Invalid environment ID.
Invalid request type (not suspend or resume).

Suspend/Resume Environment

Return Codes in the Parameter List

Usage Notes

Bytes 0 and 1 of the parameter list contain a return code generated by the
environment management portion of the workstation program. The
function ID is in byte 1, and the error code is in byte O. Environment
management return codes use a function ID of X'13'. The error codes that
can be received are:

Code

X'OO'
X'29'

Meaning

Successful completion of the request.
Environment not suspended.

• A program in a stoppable environment can suspend or resume only its
own environment. A program in a nonstoppable environment can
suspend or resume any environment. If a task suspends or resumes its
own environment, all tasks will be suspended or resumed except for the
requesting task.

• When your application or system extension suspends an environment,
the supervisor sets all the tasks running in that environment to the
unready state. When you resume, the supervisor sets all the tasks in
that environment to the ready state.

• On a suspend request, if a task in the environment holds any code
serialization semaphores, the suspend processor will wait for the
semaphores to be released. (Code serialization semaphores are to be
used to protect I/O operations that cannot be interrupted by a suspend
or stop request.) A deadlock may occur if the task has gone into a wait
state while holding the semaphore. A deadlock will certainly occur if
the task is waiting upon another task in the same environment, since
all other tasks may be suspended. All application programs should
observe the semaphore restrictions described in
Chapter 14, "Supervisor Services."

• On a suspend request, any tasks within the environment that are found
waiting for code serialization semaphores are removed from the
semaphore wait queue. This prevents other environments from having
to wait merely because they claim a semaphore allocated to a suspended
environment.

• On a resume request, all tasks waiting on code serialization semaphores
(that were saved on the suspend request) are restored to the correct
semaphore wait queues.

• If an environment holds, or is waiting on, a resource semaphore when it
is suspended, any environment requesting the semaphore will have to
wait for the suspended environment to resume.

Chapter 23. Coding Environment Manager Services 23-21

Suspend/Resume Environment

• More than one suspend request can be made for the same environment
before any resume requests are made. However, an equal number of
resume requests must be issued before the environment will actually be
resumed.

• For the reasons noted above, the Suspend/Resume Environment service
should be used sparingly.

Coding Example

PARAMETER LIST FOR SUSPEND/RESUME ENVIRONMENT
;
SSRETNCD DB 0 RETURN CODE
SSFXNID DB 0 FUNCTION NUMBER
SSTYPE DB 0 REQUEST TYPE
SSFLAGS DB 0 FLAGS
SSTASKID OW 0 TASK ID (OR l-BYTE ENVIRONMENT 10)

INITIALIZE PARAMETER LIST FOR SUSPEND/RESUME ENVIRONMENT

MOV
MOV
MOV
MOV
MOV
MOV

SSRETNCD,OOH
SSFXNID,OOH
SSTYPE,05H
SSFLAGS,03H
AX,TASKID
SSTASKID,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION 10 MUST = 0 BEFORE REQUEST
REQUEST TYPE = SUSPEND
FLAGS = ALL EXCEPT REQUESTER, TASK 10 USED
TASK ID INTO THE LIST

INITIALIZE REGISTERS FOR SUSPEND/RESUME ENVIRONMENT

MOV
MOV
MOV
MOV
MOV
MOV

AH,90H
BH,80H
BL,20H
DI, SEG SSRETNCD
ES,DI
DI,OFFSET SSRETNCD

REPLY TYPE = COMPLETION SIGNAL
WAIT TYPE = COMPLETION SIGNAL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

SIGNAL WORKSTATION PROGRAM FOR SUSPEND/RESUME ENVIRONMENT SERVICE

INT 7AH

23-22

Stop/Reset Environment

Environment Manager Service X'99': Stop/Reset
Environment

Use this service to stop or reset the specified environment. This service
corresponds to the Ctrl-Alt-Del key sequence offered by DOS in base PC
mode.

• Stopping an environment:

The stop feature of the Stop/Reset Environment service can be used by
a system extension to stop all programs that are loaded in a stoppable
environment. It can also be used by an application to stop the
environment it is running in. A program running in a stoppable
environment cannot stop programs running in other stoppable
environments.

A stop request asks the environment manager to stop the program(s) in
the specified environment, releasing any noninitial resources that it
currently owns, and freeing all storage acquired during its loading and
execution. It also results in the termination and removal of any
programs that were loaded and exited but remain resident in the
environment. On a stop request, the environment's storage is cleared,
and any alternate presentation spaces and their associated windows are
removed. Only the base presentation space and base window remain.
The environment's window is cleared, and COMMAND. COM is
running, waiting for input.

• Resetting an environment:

The reset feature of the Stop/Reset Environment service can be used to
request that an environment's resources be reset to the state they were
in when they were first created. For example, all fixed-length queues
are purged, and all semaphores are released. The environment's storage
is not cleared. The environment can reinitialize itself without having
to be reloaded. All supervisory objects that were created by programs
running in the environment still exist with the same IDs that were
assigned to them when they were created.

This feature is designed for system extensions. For example, system
extensions that provide communications services from a host session
that can get a reset from a controller may want to use the reset feature.

Chapter 23. Coding Environment Manager Services 23-23

Stop/Reset Environment

Register Values

On Request

AH = X'99'
BH = Reply type
BL = Wait type
ES = Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

AX = Request ID
BL = Return type
CH = Function ID
CL = Return code

The contents of registers
BH, DX, ES, and DI are
unpredictable.

Register Definitions

23-24

Request Registers:

• The BH register specifies the type of reply your application program
receives when the request is completed. Possible reply types are as
follows:

X'80'

X'40'

X'20'

X'lO'

Request completion is indicated by a 'completion' signal.
Any existing 'completion' signal to the application program
is canceled.

Request completion is indicated by an RQE on the
application program's completion queue.

No notification of request completion is received.

No notification of request completion is received, and the
parameter list is copied into a lO-byte area so that the
parameter list data area can be reused. This is intended for
interrupt handler usage.

• The BL register specifies the type of wait state your application
program will go into until the request is completed. The type of wait is
specified through a bit mask. When more than one type of wait is
specified, the wait state ends when anyone of the conditions is
satisfied. The bits in the wait type mask are as follows:

0 1 2 3 4 5 6 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

If bit 0 is set to 1, your application program waits until there is a
request queue element in its request queue. If there is already an
RQE in its request queue, the application stays dispatchable.

If bit 1 is set to 1, your application program waits until there is a
request queue element in its completion queue. If there is already
an RQE in its completion queue, the application stays dispatchable.

Stop/Reset Environment

If bit 2 is set to 1, your application program waits until it receives a
'completion' signal.

If bit 3 is set to 1, your application program waits until it receives a
'semaphore claimed' signal.

If bit 4 is set to 1, your application program waits until it receives a
'timer tick' signal.

If bit 5 is set to 1, your application program waits until it receives a
'generic' signal.

If bit 6 is set to 1, your application program waits until it receives a
'data available' signal.

Bit 7 is reserved and must be set to O.

Note: X'OO' specifies "no wait." A "wait" for semaphore or data is
inappropriate for this service.

• The ES register contains the segment address of the parameter list.

• The DI register contains the offset address of the parameter list.

Completion Registers:

• The AX register contains the ID of the RQE used by the supervisor for
this request.

• The BL register indicates the type of wait condition that was satisfied
to return control to your application program. The return type is
specified by a bit mask. The bits in the return type have the same
meaning as the bits in the wait type.

Parameter List Format

Contents Contents
Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID
(X'13')

2 1 byte Request type Unchanged

3 1 byte Flags Unchanged

Chapter 23. Coding Environment Manager Services 23-25

Stop/Reset Environment

If using a task ID to specify the environment to be stopped:

Contents Contents
Offset Length on Request on Completion

4 1 word Task ID May be changed

If using an environment ID to specify the environment to be stopped:

Contents Contents
Offset Length on Request on Completion

4 1 byte Environment ID May be changed

5 1 byte Reserved Reserved

Parameter Definitions

23-26

Request Parameters:

• The request type indicates whether the specified environment is to be
reset or stopped as follows:

X'02' = Reset the environment
X'03' = Stop the environment

• The flags are as follows:

Bits 0 - 6

Must be
zero

Bit 7

o = Env ID used
1 = Task ID used

- Bits 0 through 6 are reserved and must be zero.

- Bit 7 indicates how the environment to be stopped or reset is
specified in the parameter list:

Bit 7 = 0 - Environment ID in parameter list
Bit 7 = 1 - Task ID in parameter list. The task's environment is the
one to be stopped or reset.

• If bit 7 of the flag byte is 0, byte 4 of the parameter list must contain the
environment ID of the environment to be stopped or reset. Byte 5 of the
parameter list is reserved.

• If bit 7 of the flag byte is 1, word 4 of the parameter list must contain
the ID of the task whose environment is to be stopped or reset.

Stop/Reset Environment

Return Codes in the CH and CL Registers

The CH and CL registers contain a return code generated by the supervisor
portion of the workstation program or the environment management
portion of the workstation program.

Supervisor return codes use a function ID of X'12' (found in the CH
register). The error codes that can be received are:

Code

X'OO'
X'07'
X'OB'

Meaning

Successful completion of the request.
Invalid reply type specified.
System RQE pool depleted.

Environment management return codes use a function ID of X'13' (found in
the CH register). The error codes that can be received are:

Code

X'OO'
X'05'
X'17'

X'21'
X'32'
X'40'

X'43'

Meaning

Successful completion of the request.
Invalid SVC ID.
Stoppable environment cannot stop, reset, suspend, or resume an
environment other than its own.
Invalid environment ID.
The environment is nonstoppable.
A request to delete the environment using INDSPLIT or
INDMERGE is already in progress.
Invalid request type (not stop or reset).

Return Codes in the Parameter List

Bytes 0 and 1 of the parameter list contain a return code generated by the
environment management portion of the workstation program. The
function ID is in byte 1, and the error code is in byte O. Environment
management return codes use a function ID of X'13'. The error codes that
can be received are:

Code

X'OO'
X'OC'
X'22'
X'OF'
X'27'

Meaning

Successful completion of the request.
Byte 0 of the parameter list was nonzero.
Some resources were not successfully released.
Invalid environment access.
Time-out occurred.

Chapter 23. Coding Environment Manager Services 23-27

Stop/Reset Environment

Usage Notes

23-28

• A stoppable environment cannot stop an environment other than its
own. A nonstoppable environment can stop any stoppable environment,
but it can only reset its own environment.

• If a system extension uses the Make a Request service to send a request
to a task in a stoppable environment, the system extension must be
aware that the environment can be stopped or deleted at any time.

If the Make a Request service has been issued, the task in the stoppable
environment has not started to work on the request, and a stop, reset,
or delete environment request occurs, the requester's parameter list is
returned to the requester with return code X'1314'. Return code X'1314'
indicates that the work request was not completed, because the
environment was stopped or deleted before the request could be acted
on.

• If the suspend request is in process, a stop or reset request waits for the
suspend request to be completed.

• A stop request asks the environment manager to stop the program(s) in
the specified environment, releasing any noninitial resources that it
currently owns and freeing all storage acquired during its load and
execution. It also results in the termination and removal of any
programs that were loaded and exited but remain resident in the
environment. On a stop request, the environment's storage is cleared,
and any alternate presentation spaces and their associated windows are
removed. Only the base presentation space and base window remain.
The environment's window is cleared, and COMMAND. COM is
running, waiting for input.

After the environment processes the stop request, it is the responsibility
of the requester to ensure that any initial resources deleted by the
stopped program are recreated.

When a stop request is issued, an environment manager task performs
all supervisor cleanup and will drive all other resource managers for
cleanup as well.

To complete cleanup operations, the environment manager task
prevents initiation of new work by stopping all tasks in the
environment. It then recovers or waits for completion of all
outstanding requests. Next, it recovers all resources of external
resource managers, and finally it recovers its own system resources.

Stop/Reset Environment

The system resources that the environment manager task is concerned
with during cleanup are:

Outstanding request queue elements (RQEs) issued by the
termina ting task

Semaphores requested by the terminating task

Completion RQEs queued to the terminating task

Request RQEs queued to the terminating task

Logical timers claimed by the terminating task

Second-level interrupt handlers created by the terminating task

User exit tables created by the terminating task

Fixed-length queues created by the terminating task.

The environment manager ensures that the terminating environment
cannot do new work by marking all the tasks terminated and unready.
Those tasks, however, that hold code serialization semaphores will be
marked pending unready and will be allowed to continue. It is not
acceptable simply to free the semaphore, as most serialized code
initiates I/O that should be allowed to complete processing. When the
semaphore is freed, the environment manager continues with the
cleanup.

Note: It is assumed that code serialization semaphores are only claimed
and released by well-tested code. Therefore, it is assumed that the
semaphore will be released at some time, and the environment
manager does not try to force the release of the semaphore.

The environment manager releases all resource semaphores held by the
tasks in the environment being stopped.

RQEs on the completion queue are removed from tasks in the
environment being stopped.

The environment manager waits for all accessed RQEs originating from
each task in the environment being stopped to be released. Accessed
RQEs are all RQEs from the environment being stopped that were sent
out to tasks outside that environment, and that a task has already
started to work on.

Next, an environment manager task runs through the record of resource
managers interested in the environment being stopped and issues Make
a Request services to the resource managers' cleanup components. The
environment manager passes a parameter list to the cleanup component
that contains a pointer to the resource that is to be cleaned up and an
indication that the environment is being stopped. The format of the
information sent to the cleanup components is described under the
heading "The Cleanup Component Interface" on page 23-32.

Chapter 23. Coding Environment Manager Services 23-29

Stop/Reset Environment

23-30

The cleanup component will run under the environment manager task
at the priority specified on the Identify Resource Manager service
request. The cleanup component is invoked once for each resource that
is on the resource manager's chain for the environment being stopped.
(Resources are added to a resource chain through the use of the Add
Resource service.)

All tasks, fixed-length queues, semaphores, user exit tables, and
components created by the environment being stopped may be released.

If any wait state during stop extends beyond a normal period of time
(10 seconds), the environment manager sends a return code to the
requester and displays a return code to indicate to the user that a
time-out occurred. At this point the user may wish to take some action
to lighten the system workload, so cleanup operations may be
completed. However, when an environment has not been fully cleaned
up, it may be that a serious system error occurred, or that some
resource manager (or its device) has hung. If a bad return code is
returned by any of the external resource managers, a return code is
displayed that indicates some resources were not successfully released.
In this case, the user may have to take some corrective action.

After issuing the error message, the workstation program attempts to
continue cleanup operations. If cleanup operations are eventually
completed after the user has been notified, the environment manager
displays a return code that indicates the cleanup operations have been
completed. At this time, the environment may be reused.

• A reset request asks the environment manager to reset an
environment's resources to their state when they were first created. In
this case only, the environment's storage is not cleared. The
environment may now reinitialize itself without having to reload. All
supervisor resources such as fixed-length queues and tasks still exist,
with the same IDs assigned to them by the supervisor when they were
created.

A task can only do a reset for its own environment.

Reset processing is similar to stop processing in that the environment
manager will mark all tasks in the environment being reset as
terminating and unready. Those tasks that hold code serialization
semaphores are allowed to continue until the semaphores are released.

The environment manager then releases all resource semaphores held
by the tasks in the environment being reset.

Stop/Reset Environment

All hardware and software second-level interrupt handlers belonging to
the environment being reset are left as they were. All timers belonging
to the environment are stopped. Request queue elements (RQEs) on the
completion queue are removed from tasks in the environment being
reset. RQEs going to other tasks in the system are removed. As during
stop processing, the environment manager waits for all accessed RQEs
to be freed. All RQEs coming into the tasks in the environment being
reset are returned to the requester with error code X'1314'.
Fixed-length queues are purged.

The environment manager notifies all resource managers interested in
the environment that the environment is being reset. The format of the
information sent to the resource manager is described under the
heading "The Cleanup Component Interface" on page 23-32.

Tasks are marked as nonterminating when the reset has been completed
by the environment manager.

Only the task that initially requested the reset is set ready. It is
recommended that the requesting task use the Create Task Entry
service with the reset option for all other tasks in the environment.
This will reset each task state to what it was when it was originally
created. The requesting task must then set ready other tasks in the
environment.

• If an application program uses the Make a Request service to send a
request to a task in a system extension that can be reset, the
application program must be aware that the system extension's
environment can be reset at any time.

If the Make a Request service has been invoked, the task in the system
extension has not started to work on the request, and a reset request
occurs, the requester's parameter list is returned to the requester with a
return code of X'1314'. This code indicates that the request was not
completed, because the environment was reset before the request could
be acted on.

Chapter 23. Coding Environment Manager Services 23-31

Stop/Reset Environment

The Cleanup Component Interface

23-32

When an environment is stopped, reset, or deleted, the environment
manager sends a Make a Request service to the cleanup component of each
resource manager that was interested in the environment for each of its
resources on the chain. The Make a Request service sends information to
the cleanup component in the following format:

Offset Length Contents

0 1 byte Return code

1 1 byte Function ID
4 1 word Offset address of resource

2 1 word Segmen t address of resource

6 1 byte Environment ID
7 1 byte Action

• The offset and segment address of the resource is a resource that was
added to the resource manager's resource chain through the use of the
Add Resource service. Each time the environment manager invokes
your cleanup component, it will pass the address of one resource,
traversing in order through the chain, starting with the top of the
resource chain.

• The environment ID is the ID of the environment being reset~ stopped,
or deleted.

• The Action indicates whether the environment is being reset or stopped
as follows:

X'02' = Reset
X'03' or X'04' = Stopped

The above information is sent to the cleanup component for each
resource on the resource manager's chain whenever an environment
that has resources allocated by this resource manager is reset, stopped,
or deleted. The cleanup component will run under an environment
manager task at the priority specified for it on the Identify Resource
Manager service request. This allows a resource manager to clean up
any resources it may have allocated at an application's request when an
environment is reset, stopped, or deleted. It is the resource manager's
responsibility to issue the Delete Resource request as necessary to
remove resources it has cleaned up from the stopping environment.

If the cleanup component is unable to release all resources or detects an
error, it must set a nonzero value in the return code portion of the
parameter list. See the heading "System Extension Return Codes" in
Chapter 24, "Coding System Extensions," for more information.

Stop/Reset Environment

Coding Example

PARAMETER LIST FOR STOP/RESET ENVIRONMENT

STRETNCD DB 0
STFXNID DB 0
STTYPE DB 0
STFLAGS DB 0
STTASKID DW 0

RETURN CODE
FUNCTION NUMBER
REQUEST TYPE
FLAGS
TASK ID (OR 1 BYTE ENV. ID)

INITIALIZE PARAMETER LIST FOR STOP/RESET ENVIRONMENT

MOV STRETNCD,OOH RETURN CODE MUST = 0 BEFORE REQUEST
MOV STFXNID,OOH FUNCTION ID MUST = 0 BEFORE REQUEST
MOV STTYPE,03H REQUEST TYPE = STOP
MOV STFLAGS,OlH FLAGS = TASK ID USED
MOV AX,TASKID TASK ID INTO THE LIST
MOV STTASKID,AX

INITIALIZE REGISTERS FOR STOP/RESET ENVIRONMENT

MOV
MOV
MOV
MOV
MOV
MOV

AH,99H
BH,80H
BL,20H
DI, SEG STRETNCD
ES,DI
DI,OFFSET STRETNCD

REPLY TYPE = COMPLETION SIGNAL
WAIT TYPE = COMPLETION SIGNAL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR STOP/RESET ENVIRONMENT SERVICE

INT 7AH

Chapter 23. Coding Environment Manager Services 23-33

Query Task's Environment ID

Environment Manager Service X'll': Query Task's
Environment ID

Register Values

Use this service to obtain the environment ID associated with a specified
task.

On Request

AH = X'll'
DX = Task ID or X'OOOO'

On Completion

CH = X'12' or X'13'
CL = Return code
DL = Environment ID

The contents of registers
AX, BX, DR, ES, and DI
are unpredictable.

Register Definitions

Return Codes

23-34

Request Registers:

• The DX register contains the ID of the task being queried. If the DX
register contains X'OOOO', the environment manager uses the ID of the
currently executing task.

Completion Registers:

• The DL register contains the environment ID associated with the
specified task.

The CH and CL registers contain a return code generated by either the
supervisor or environment manager portion of the workstation program.

• Supervisor Return Code:

The supervisor return code uses a function ID of X'12' (found in the CR
register). The error code that can be received is found in the CL
register:

Code Meaning

X'05' Invalid SVC ID.

Usage Notes

Coding Example

Query Task's Environment ID

• Environment Manager Return Codes:

Environment manager return codes use a function ID of X'13' (found in
the CH register). The error codes that can be received are found in the
CL register:

Code

X'OO'
X'05'

Meaning

Successful completion.
The specified SVC ID is not a task.

See Appendix H, "Return Codes," for more information.

A system extension or application can use this service to determine which
environment issued a particular request. If the system extension or
application is a task, this is the task to which completion status must be
posted. If it is a component, the task is the one the component is currently
running under.

INITIALIZE REGISTERS FOR QUERY TASK'S ENVIRONMENT ID

MOV
MOV

AH,llH
DX,O ; USE ID OF THE CURRENTLY EXECUTING TASK

SIGNAL WORKSTATION PROGRAM FOR QUERY TASK'S ENVIRONMENT ID SERVICE

INT 7AH

Chapter 23. Coding Environment Manager Services 23-35

Query Environment Characteristics

Environment Manager Service X'8D': Query
Environment Characteristics

Register Values

Use this service to obtain a list of characteristics associated with a
specified environment. The characteristics obtained indicate whether the
environment is:

• Stoppable or nonstoppable

• A user environment or a system environment

• Allocated or available for use.

On Request

AH = X'SD'
BL = Options flag
CX = Output buffer length
DX = ID of the task or X'OOOO' * or
DL = Environment ID or X'FF' *
ES = Segment address of the output buffer
DI = Offset address of the output buffer

On Completion

BH = Number of
environments

CH = X'l3'
CL = Return code

The contents of registers
AX, BL, DX, ES, and DI
are unpredictable.

* The value coded in the DX or DL register depends on the value coded in the BL register.
See "Register Definitions" below for more information.

Register Definitions

23-36

Request Registers:

• The BL register indicates whether a task ID or an environment ID is to
be used to identify the environment being queried. Possible values of
the BL register are as follows:

X'OO' Environment ID in the DL register
X'Ol' Task ID in the DX register

• The ex register contains the number of bytes in the output buffer,
which will contain the environment characteristics on completion of the
request. If the value in the ex register is zero, the total number of
environments in the system is returned in the BH register.

• If the value of the BL register is X'Ol', the DX register contains the ID
of a task in the environment being queried. If the DX register contains
X'OOOO', the environment manager uses the ID of the currently
executing task.

Query Environment Characteristics

• If the value of the BL register is X'OO', the DL register contains the ID
. of the environment being queried. If the DL register contains X'OO', the
environment manager uses the ID of the currently executing task to
identify the environment being queried. If the DL register contains
X'FF', the environment manager returns the characteristics of all
environments.

• The ES register contains the segment address of the output buffer.

• The DI register contains the offset address of the output buffer.

Completion Registers:

• The BH register contains the number of environment descriptions
returned.

Output Buffer Format

The BH register will contain the total number of environments in the
system in the following cases:

If information was requested for all environments and the buffer
was not large enough for the information

If information was requested for one environment and the buffer
was not large enough for the information

If the CX register contains zero on request.

In these circumstances, only the request for information on all
environments returns an unsuccessful return code if there is not enough
room in the output buffer.

The environment information is returned in a variable-length buffer area
that your application program must provide. In the format of the output
buffer, offsets of 0 and 1 as shown below must be repeated for as many
environments as can be returned for the request.

Contents Contents
Offset Length on Request on Completion

o * 1 byte Reserved Environment ID

1 * 1 byte Reserved Environment
characteristics

* The environment ID is the ID of the environment whose characteristics are given in
the following byte.

Chapter 23. Coding Environment Manager Services 23-37

Query Environment Characteristics

The environment characteristics are indicated by the following bit settings:

Bit 0 Bit 1 Bit 2 Bits 3 - 7

0= o = System o = Available Reserved
Nonstoppable 1 = User 1 = In use
1 = Stoppable

Return Codes

The CH and CL registers contain a return code generated by the
environment manager portion of the workstation program. Environment
manager return codes use a function ID of X'13' (found in the CH register).
The error codes that can be received are found in the CL register:

Code

X'OO'
X'05'
X'21'
X'28'

Meaning

Successful completion.
Invalid SVC ID.
Invalid environment ID.
The output buffer is too small.

See Appendix H, "Return Codes," for more information.

Coding Example

23-38

INITIALIZE REGISTERS FOR QUERY ENVIRONMENT CHARACTERISTICS

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,8DH
BL,OlH
CX,2
DX,O
DI, SEG OUTBUFF
ES,DI
DI,OFFSET OUTBUFF

TASK ID IN THE DX REGISTER
SIZE OF BUFFER AREA
USE ID OF THE CURRENTLY EXECUTING TASK
SEGMENT ADDRESS OF BUFFER AREA

IN ES
OFFSET OF BUFFER AREA IN DI

i SIGNAL WORKSTATION PROGRAM FOR QUERY ENVIRONMENT CHARACTERISTICS
SERVICE

INT 7AH

Query Environment Characteristics

Chapter 24. Coding System Extensions

Introduction
How to Create a System Extension

Resident Code .. .
Fixed Data
Initialization Code

How to Tell the Workstation Program about Your System Extension
Customization Procedure
Creating and Modifying System Information Files (SIFs)
How to Determine the Numbers to Use for Your System

Information File
How a System Extension Is Loaded
System Extension Messages and Return Codes

System Extension Return Codes
The System Extension Message Service

Identifying Error Return Codes with the System Extension
Message Service

Requesting Error Messages with the System Extension Message
Service .. .

Requesting Informational Messages with the System Extension
Message Service

Coding the System Extension Message Service to Identify Return
Codes

Coding the System Extension Message Service to Request Error
Messages

Coding the System Extension Message Service to Request
Informational Messages

Managing Resources
Design Considerations for System Extensions and the XMA Card .. .

Components
Tasks .. .
Fixed-Length Queues
General Notes .. .

Chapter 24. Coding System Extensions

24-2
24-3
24-3
24-4
24-4
24-5
24-5
24-9

24-10
24-13
24-15
24-15
24-16

24-16

24-17

24-17

24-18

24-20

24-23
24-26
24-26
24-27
24-27
24-27
24-27

24-1

Introduction

Introduction

24-2

You can code a system extension that will run as part of the workstation
program. System extensions must be well-behaved. The system extension
runs in its own nonstoppable environment, created by the DOS subsystem
when the system extension is loaded into memory. System extensions do
not have a logical screen or keyboard. A system extension should not write
to the display buffer or accept input from the keyboard unless it has used
the API to establish a presentation space or keyboard definition. System
extensions should provide services to other programs in stoppable
environments and to tasks or system extensions in non stoppable
environments.

A system extension has greater flexibility than normal application
programs because it runs in a nonstoppable environment. System
extensions are a permanent part of the system and cannot be removed until
the system unit is turned off or re-IPLed. System extensions must follow
the guidelines described in Chapter 2, "Programming Considerations."
Considerations for system extensions that will act as resource managers are
described in Chapter 22, "Environments and the Environment Manager."

When system extensions create parameter lists to pass data between tasks
and components, they should reserve the first word of the parameter list for
the return code.

Notes:

1. Some languages are by nature poorly behaved and should not be used.

2. In XMA systems, application spaces are not all addressed
simultaneously. If system extensions process parameter lists from PC
applications, they should process them when they receive the request
(because, at that time, they will be running in the PC's bank). If the
system extensions put the parameter list on a work queue, and on a
subsequent redispatch they process the work queue, the system extensions
will not be in the correct bank to be looking at the user's parameter list.

3. System extensions should use the Enqueue Data service and Dequeue
Data service to enqueue and dequeue data. These services are not
recommended for passing parameter lists from one task to another.
Assume a PC application in an XMA environment enqueues a parameter
list to a user system extension; when the user system extension was given
control after a Dequeue Data service, the system extension would not be
running in the bank of the PC application and, thus, could not look at the
user's parameter list.

Create a System Extension

How to Create a System Extension

Resident Code

A system extension can be either a DOS format .EXE file or a DOS format
.COM file. Typically, a system extension consists of three parts:

1. Residen t code

2. Fixed data

3. Initialization code.

By keeping the initialization code separate from the resident code, it is
possible to make the storage occupied by the one-time initialization code
available for other system extensions or DOS environments.

Following is a source code example of a .COM file. The initialization code
is separate from both the resident code and the data.

START

INITCODE:

JMP INITCODE

RESIDENT CODE

• • •
FIXED DATA

• • •

INITIALIZATION CODE

• • •
RETURN TO DOS VIA INTERRUPT X'21'
AND FUNCTION CODE X'31'.

The resident code part of the system extension should include the code to
be run when tasks or components are invoked.

Note: If your system extension is going to use DOS function calls, it is
recommended that you use the API DOS function request so that the
function does not use the interrupt vectors to issue the request,
allowing poorly behaved applications to run simultaneously.

Chapter 24. Coding System Extensions 24-3

Create a System Extension

Fixed Data

Initialization Code

The fixed data part of the system extension should include any data
declarations and data structures needed by the system extension.

The initialization code part of the system extension should create all the
system objects (such as tasks, components, or queues) needed by the system
extension. The initialization code should also request the Set Task Ready
service for all tasks that need to be started at that time. The initial task
that the initialization code is running under will be deleted when the
initialization of the system extension is completed.

If the system extension needs to allocate any variable or dynamic data, it
can do so by having the initialization code relocate itself to the high end of
storage. Once relocated, the initialization code can create control blocks
and data areas in the area of storage where it used to reside. There are
several advantages to this approach, since the data areas can be in the
same segment of storage as the original data areas. This approach results
in better performance, since the data areas can be accessed by the offset
address only, instead of both the segment and offset addresses. Another
advantage to this approach is that the number of control blocks can be
determined from the configuration informatibn. It is also generally faster
to build control blocks, rather than read them in from a disk.

Following is an example of initialization code written to move itself to the
high end of memory and execute there.

AAA: PROC FAR
MOV ES, TOADR ES-DI IS THE ADDRESS YOU ARE

RELOCATING THE CODE TO. TOADR
IS FOUND BY SUBTRACTING THE SIZE
OF THE MODULE IN PARAGRAPHS FROM
THE TOP OF STORAGE, WHICH IS
FOUND IN THE PSP

24-4

SUB
SUB

MOV
CLD

DI,DI
SI,SI

CX,MODSIZE

DS-SI IS THE ADDRESS YOU ARE
RELOCATING THE CODE FROM. THE
DS REGISTER IS SET UP ON ENTRY.

MODSIZE IS THE SIZE OF THE
MODULE IN WORDS (USING WORDS
FOR THE SIZE IS FASTER THAN
USING BYTES)

RELOCAT:

System Extensions

REP MOVS WORD PTR[DI],WORD PTR[SI] i MOVE TO HIGH STORAGE

PUSH
LEA
PUSH
RET

• • •

ES
BX, RELOCAT
BX

SET UP THE STACK TO DO A FAR
RETURN AND GIVE CONTROL TO
LABEL RELOCAT

AT THIS POINT YOU ARE RUNNING
CODE RESIDING AT THE HIGH END OF MEMORY

After the initialization code is completed, a system extension should return
to DOS by using interrupt 21H with function code X'31'. This function
allows you to tell DOS the number of paragraphs to keep resident, thus
allowing the initialization code storage to be reused. (See note 3 under
Panel 8.1 later :n this chapter.)

How to Tell the Workstation Program about .Your
System Extension

In order to tell the workstation program that your system extension exists,
you must:

• Supply information in the customization process

• Create a SIF for the extension.

Customization Procedure

Y Oll tell the workstation program to load user-supplied system extensions
through the customization process. This process is described in the IBM
3270 Workstation Program User's Guide and Reference manual. A system
extension can be added to or removed from the system only by customizing.

On the following cllstomization home panel there is a question asking you
for the number of user-supplied system extensions to be included in the
workstation program. Enter the number of user-supplied system extensions
you have written.

Chapter 24. Coding System Extensions 24-5

System Extensions

Home panel IBM CORPORATION
3270 WORKSTATION CUSTOMIZATION

Level 1.00 Copyright IBM Corp. 1984, 1987

Move cursor under the desired option.
Press PF2 to select, or type the required information

DEFAULTS

TARGET

XMA CARD

STORAGE

SYSTEM
EXTENSIONS

PF1=Help

24-6

None IBM-supplied default values
ABC Drive from which previously customized

system values are read

Yes
No

1 M

o

PgDn=Next

Drive to which customized system is written

The expanded memory adapter card is installed

Amount of storage on XMA card
(1 - 2 M)

Number of user-supplied system extensions
(0-29)

End=Summary Esc=Quit

Panel 8.1

System Extensions

Later in the customization process, Panel 8.1 (shown below) asks you to
enter data about your system extensions. At this time you can specify
which drive the system extension module will be loaded from. You can
choose to put your system extension on the customized system diskette, on
a different diskette, or on the hard disk. For information on entering data
in panel 8.1, see the IBM 3270 Workstation Program User's Guide and
Reference manual.

USER-SUPPLIED SYSTEM EXTENSION OPTIONS

Move cursor under the desired option.
Press PF2 to select, or type the required information.

Customized system is 375K allocated, XXXXK free
NAME A: Name of system extension

Storage required for system extension

DOS Yes System extension uses DOS functions
No

DEFAULT DRIVE A Default disk drive for this extension

DEFAULT DIRECTORY
A:\ __ ___
B:\ __ ___
C:\ __ _
D:\ __ ___
E:\ __ ___
F:\ __ ___

PF1=Help PgDn=Next PgUp=Prev Home=Home End=Summary Esc=Quit

The following list explains the User-Supplied System Extension Options:

1. If your system extension uses DOS function calls, you should reply
"yes" to DOS and the Multi-DOS feature will be selected for you.
Multi-DOS = yes will protect you from the PC application and the
system extension doing a file I/O at the same time. (This combination
causes problems.) If you choose not to select the Multi-DOS feature,
then you must protect yourself from the PC and system extension doing
file I/O at the same time. (For example, assume your reply is DOS = no,
even if your system extension uses DOS. The PC application can issue
the Make Request service to the system extension with aWAIT option.
The system extension will do all DOS functions and not reply to the PC
application until all DOS functions complete processing.) If your
system extensions use DOS function calls only during initialization, you
can answer DOS = no.

Again, DOS is not reentrant and can handle function calls only on a
serial basis. The Multi-DOS feature ensures that DOS gets all requests
serially. Without the Multi-DOS feature, the application and system
extension must ensure that DOS gets all function requests serially.
Your indication on Panel 8.1 that your system extension uses DOS will
automatically select the Multi-DOS feature.

Chapter 24. Coding System Extensions 24-7

System Extensions

24-8

2. If a PC application takes over interrupt X'21', then system extensions
must use the DOS asynchronous service (discussed in
Chapter 13, "Coding Multi-DOS Support Service Requests") to make all
DOS interrupt X'21' function calls. This ensures that DOS gets your
request and not the application that took over interrupt X'21'. (This
action is available only if the Multi-DOS feature is selected at
customization time.)

3. If your system is running Multi-DOS and it takes over interrupts, it
must use the Install a Hardware Interrupt Handler service or Install an
Interrupt Handler service to do so. If it uses DOS to take over the
interrupts, only the environment that used DOS to take over the
interrupt will see the interrupt. System extensions run in their own
environment. PC applications run in different environments. If an
application is running and causes a software interrupt that is taken
over by a system extension using DOS calls, the handler installed by the
system extension will not get control. It would detect a 000 vector.

If your system extension is running without the Multi-DOS feature,
then DOS can be used to take over interrupts without any problems.
(The supervisor API will also work without problems.)

4. Storage Required:

a. If you reply "yes" to using DOS, the storage size is the size of your
system extension .COM or .EXE file (including initialization code),
plus 4K bytes for DOS control blocks, plus the size of any variable
data allocated by the system extension. The specified storage size is
actually allocated by the workstation program for this system
extension. When initialization code is completed, it should issue
DOS interrupt X'21' and function code X'31' to terminate and stay
resident, and to specify the number of paragraphs to remain
resident. This frees storage to be used only by the system extension.
This extra storage is not available to the system or DOS.

b. If your system extension replies "no" to using DOS, the storage size
is the size of your system extension .COM or .EXE file (including
initialization) plus the size of any variable data allocated by your
system extension (if applicable).

In this case, storage is not actually allocated by the workstation
program for this system extension. The system extension 'is simply
loaded by DOS, and initialization is run. When it is completed, it
issues the DOS function call to terminate and stay resident,
specifying the number of paragraphs to remain resident. This frees
storage to be used by the entire system and DOS.

System Extensions

Creating and Modifying System Information Files (SIFs)

You use the INDSPIF utility to create and modify SIFs. The INDSPIF
utility is provided on your 3270 Workstation program diskettes.

To use the INDSPIF utility, follow these steps:

1. Determine the name of the EXE or COM file you will use. This will be
the name of the SIF file.

2. For system extensions, determine how many of each type of control
block are needed for the system extension to run.

3. At the DOS prompt, enter the INDSPIF command by typing INDSPIF
followed by the Enter key.

4. On the Home panel, you may enter the module name or the path name.

a. To create a System Information File, press PF2.

b. To read an existing System Information File, press PF3.

5. Depending on your choice, you will see the SIF panel.

6. Complete all items on the panel. When you are done, press PF3 to save
the SIF on diskette.

7. You may then press either Home, to return to the Home panel, or Esc,
to quit the INDSPIF utility, or you may change any information on the
panel and save it again.

Chapter 24. Coding System Extensions 24-9

System Extensions

How to Determine the Numbers to Use for Your System Information File

Panel 1 of 1

The panel that must be completed to create a SIF for a system extension is
as follows:

SYSTEM INFORMATION FILE OPTIONS

Type the required information.

PROGRAM NAME:

DIRECTORY: C:\

ECB
RESM
TCB
RQE
GATE
NAME
SVC
SLIH
TIMER
STACK

o
o
o
o
o
o
o
o
o
o

How many Environment Control Blocks?
How many Resource Managers?
How many Task Control Blocks?
How many Request Queue Entries?
How many Gate Entries?
How many Name Table Entries?
How many SVC Entries?
How many Second Level Interrupt Handlers?
How many Logical Timers?
How many Stacks for the FLIH?

Press PF3 to write the System Information File.

PF3=Write

24-10

Home=Home Panel Esc=Quit

The following list explains each System Extension Option and how to
determine what number to enter on the panel.

1. ECB: Environment Control Blocks

This is the environment your system extension will be running in. This
number must be set to 1, since each user system extension runs in its
own environment. Do not change this number.

2. RESM: Resource Managers

This is the number of resource managers created by your system
extension. A resource manager is created by an Identify Resource
Manager service request. Determine the maximum number of Identify
Resource Manager service requests your code issues and enter this
number in the RESM field.

3. TCB: Task Control Blocks

This is the number of tasks created by your system extension. A TCB is
created by a Create Task Entry service request. Determine the number
of Create Task Entry service requests your code issues and enter this
number in the TCB field.

System Extensions

4. RQE: Request Queue Entries

This is an estimate of the number of request queue entries likely to be
used by the system extension at any given time. Every time your code
issues one of the following, at least one RQE is used and later returned
to the free pool:

a. The Make a Request service (one RQE)

b. A Make a Request service with a reply type of X'10' (no notification
of request completion, copy parameter list) (two RQEs)

c. The Claim Semaphore service (one RQE)

d. The Dequeue Data service (one RQE)

e. All of the following service requests use one RQE each:

1) Session information services
2) Keyboard services
3) Window management services
4) Host interactive services
5) Presentation space services
6) 3270 keystroke emulation services
7) Copy services
8) Translate service
9) Operator information area services
10) Multiple DOS services
11) The Stop Environment service
12) The Suspend Environment service

Determine the maximum number of these service requests that may be
pending at any time. Enter this value in the RQE field.

5. GATE: Gate Entries

This is the total number of gate service entries put in the gate table by
your module. For example, if five gates are created, each with two gate
service entries, then 10 is the number you specify for this System
Extension Option. A gate is created by a Create Gate Entry service
request. Add up the number of service entries you specify on each
Create Gate Entry service request your code will issue. Enter this
number in the GATE field.

6. NAME: Name Table Entries

This is the number of names put in the name table by your module. A
name is created every time you issue a supervisory object service
request that uses the name option to assign a name to the object. Add
up all the supervisory object service requests that your system
extension issues with the name option and enter this number in the
NAME field.

Chapter 24. Coding System Extensions 24-11

System Extensions

24-12

7. SVC: Services

This is the total number of entries put into the SVC table by your
module. The following items take an entry in the SVC table:

a. Tasks

b. Components

c. Fixed-Length Queues

d. User Exit Tables

e. Gates (not the entries in the gate table, but the actual gates)

f. Semaphores

To determine this value, add up all the Create Task Entry, Create
Component Entry, Create Semaphore Entry, Create Fixed-Length Queue
Entry, Create User Exit Table Entry, and Create Gate Entry service
requests your system extension will issue. Enter that value in the sve
field.

8. SLIH: Second-Level Interrupt Handlers

This is the number of unique second-level interrupt handlers installed
by your module. A second-level interrupt handler is created every time
you request the Install a Hardware Interrupt Handler service or the
Install an Interrupt Handler service. Determine the maximum number
of these requests your code will issue and enter this number in the
SLIH field.

9. TIMER: Logical Timers

This is the number of logical timers created by your module. A TIMER
is created every time you issue a Get Logical Timer service request.
Determine the maximum number of Get Logical Timer service requests
your code will issue and enter this number in the TIMER field.

10. STACKS:

Note: You should ignore this field unless you are updating
INDIBM2.SIF.

For systems that have an XMA card installed, you may want to specify
one or more STACKS. You must do so if your PC applications install
interrupt handlers that swap stacks and then enable. The STACK field
will not be multiplied by the number of PC sessions you have
customized for.

Note: You should not increase this field unless absolutely necessary,
since it allocates large areas of storage for stack use.

For more information on using the SPIF facility to create SIFs, see IBM
3270 Workstation Program User's Guide and Reference.

Loading a System Extension

How a System Extension Is Loaded

After you complete the customization process, you will have a customized
diskette that you can use to IPL the workstation program. When you IPL
the workstation program, the DOS loader loads all the system extensions
from low storage to high storage.

The DOS loader reads the configuration file that was produced by
customization (INDCFIG.DAT) and loads the system extensions that were
specified in the file. User-supplied system extensions are loaded after the
workstation program system extensions, but before the remaining storage is
divided among the personal computer environments. If you are using the
XMA card, the loader will find a place to install your system extension.
This may be anywhere in the I-megabyte address space of the PC.

The system extension is loaded and started the same way that DOS is
loaded, as follows:

• The system extension is loaded in storage, and control is passed to the
entry point of the initialization code.

• Both the ES and DS registers contain the segment address of the
program segment prefix (PSP), and the offset is always zero. Refer to
the DOS Technical Reference manual for the format of the PSP.

• The amount of memory available to the system extension is recorded in
its program segment prefix.

The location PSP + X'82' will contain the address of the entry within the
configuration file that describes the system extension being loaded. The
first two bytes of the entry are used as a return code when control is passed
back to the DOS loader after initialization is completed. The 2-byte return
code is made up of a I-byte function code and a I-byte error number. If the
error code is nonzero, message ST004 will be issued by the DOS loader and
will contain the system extension name, the return code, and an option to
take a dump or continue bringing up the system.

It is recommended that system extensions use this return code in the event
that initialization fails. For more information about the return codes that
your system extension can use, see "System Extension Messages and Return
Codes" on page 24-15.

Chapter 24. Coding System Extensions 24-13

Loading a System Extension

640K

+0

24-14

DOS Loader

System extension 1
initialization code

The following diagram shows storage allocation as system extensions are
loaded into memory.

Step 1 illustrates a system extension loaded into low memory with resident
code separate from initialization code. The initialization code gets control
to execute first.

Step 2 illustrates a system extension relocating its initialization code to the
high end of storage. The initialization code runs in high storage, allocating
variable data as an extension of the fixed data. When the initialization
code is completed, the system extension will return to DOS. The return to
DOS causes only the resident code and the fixed and variable data to
remain in the system. In effect, the initialization code is deleted from the
system.

Step 3 illustrates storage allocation after all system extensions have been
loaded, the initialization code has been run and deleted from the system,
variable data has been allocated, and the personal computer environments
have been allocated.

640K DOS Loader 640K DOS environment 3

System ex tension 1 DOS environment 2
initialization code relocated

DOS environment 1

System extension n

+ System extension 3

System extension 2

Variable data Variable data

Data portion of system Data portion of system Data portion of system
extension 1 extension 1 extension 1

Code portion of system C ode portion of system Code portion of system
extension 1 extension 1 extension 1

3270 PC Control Program 3270 PC Control Program 3270 PC Control Program

+0 +0

Step 1 Step 2 Step 3

Messages and Return Codes

System Extension Messages and Return Codes

Your system extension may want to issue messages to the terminal user to
inform him of a normal event that is happening in the system or to tell him
of an error that occurred while the system extension was running.

A system extension can issue messages by using the System Extension
Message API service. This service supports error messages with three
possible levels of severity, and also supports informational messages. The
error messages that can be issued allow you to include a return code at the
end of the message. All messages are displayed on the bottom of the screen
in reverse video. The System Extension Message service is described under
the heading "The System Extension Message Service."

It is recommended that all messages issued by the system extension start
with a unique identifier.

System Extension Return Codes

The workstation program uses a standard format for return codes. Return
codes are 2 bytes long. The first byte is a function ID, and the second byte
is an error code. The function ID indicates the portion of the workstation
program in which the error occurred. The error code indicates the specific
type of error that has occurred.

The workstation program has reserved the following function IDs for use by
system extensions:

• X'Dx' = Vendor-supplied system extensions

• X'Ex' = User-supplied system extensions

• X'Fx' = IBM-supplied system extensions

where x is the ID of the environment that the system extension is running
in. The environment ID can be obtained by requesting the Query
Environment ID service.

The error code can be any number from 0 to 255. An error code of X'OO'
always indicates a successful acceptance or completion of the request.

Chapter 24. Coding System Extensions 24-15

System Extension Message Service

The System Extension Message Service

You can use the System Extension Message service to do the following:

1. Identify the error return codes that will be used by the system extension
as part of message INDSY001, INDSY002, or INDSY003

2. Issue error message INDSY001, INDSY002, or INDSY003

3. Issue informational messages written by the system extension.

Each of these functions is described in the following sections.

Note: The System Extension Message service is available for use by system
extensions only, not by application programs running in stoppable
environments.

Identifying Error Return Codes with the System Extension Message Service

24-16

Each return code that can be issued by your system extension as part of
message INDSY001, INDSY002, or INDSY003 must be identified to the error
handler portion of the workstation program before it can be displayed using
the System Extension Message service. This needs to be done only once for
each system extension, so that it is recommended that it be done in
initialization code. When you identify a return code to the error handler,
you provide the following information:

• The function ID and error code of the return code
• The threshold value for the error message
• The severity level of the error message.

The function ID and the error number must conform to the standard
described under the heading "System Extension Return Codes" above.

The threshold value for the error message indicates the number of times the
error can occur before an action is taken by the error service.

The severity level of the error message identifies the message that will be
displayed when the error threshold is reached. There are three levels of
error severity, as described below:

• Severity 1: A severity 1 error is an unrecoverable system error. The
message that is displayed is INDSYOO1. The user can either press D to
take a dump or press any other key to re-IPL the system.

• Severity 2: A severity 2 error is a less serious error. The message that
is displayed is INDSY002. The user can either press D to take a dump
or press any other key to continue.

• Severity 3: A severity 3 error is a minor error. The message that is
displayed is INDSY003. The system continues running after the user
presses another key.

System Extension Message Service

Requesting Error Messages with the System Extension Message Service

Your system extension can request the System Extension Message service
to display error message INDSY001, INDSY002, or INDSY003 in the event
of an error, along with a 2-byte return code and, optionally, 2 bytes of data.
The error message is displayed when the threshold level associated with the
return code has been reached.

• Severity 1 errors:

When the System Extension Message service is requested for a severity
1 error and the threshold associated with the error is reached, the
following message is displayed:

INDSYOOI Unrecoverable system error - xxxxxxxx Press D to
take a dump or any other key to Re-IPL

• Severity 2 errors:

When the System Extension Message service is invoked for a severity 2
error and the threshold associated with the error is reached, the
following message is displayed:

INDSY002 Component error - xxxxxxxx Press D to take a
dump or any other key to continue

• Severity 3 errors:

When the System Extension Message service is invoked for a severity 3
error and the threshold associated with the error is reached, the
following message is displayed:

INDSY003 Component information - xxxxxxxx Press any key
to continue.

"xxxxxxxx" contains the 2-byte return code for the information, followed by
2 bytes of data. The 2 bytes of data can be unique for the system extension.

Requesting Informational Messages with the System Extension Message
Service

Your system extension can use the System Extension Message service to
issue its own informational message. The length of the message string must
be 160 characters, and the message must be coded in host/notepad character
format. See Appendix F, "Presentation Space Considerations," for more
information on host/notepad character formats. You can request the
Translate Data service to translate an ASCII message to host/notepad
character format before invoking the System Extension Message service.
See Chapter 11, "Coding Translate Service Requests," for a description of
the Translate Data service.

Chapter 24. Coding System Extensions 24-1 7

Coding to Identify Return Codes

When the System Extension Message service is requested to display a
message string, the error handler displays the string and waits for a
keystroke to be pressed by the user before continuing. The 3270 converged
keyboard scan code of the key pressed is returned to the requester in the
AL register. Be sure to include in your message a request to the user to
press a certain key or any key to continue.

Coding the System Extension Message Service to Identify Return Codes

Register Definitions

24-18

The format of the System Extension Message service to identify an error
return code that will be used by your system extension as part of message
INDSYOOl, INDSY002, or INDSY003 is shown below:

Register Values
on Request

AX = X'91'
CH = Function ID of return code
CL = Error number of return code
DH = Threshold value
DL = Severity value

Request Registers:

Register Values
on Completion

CH = X'72'
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

• The CR register contains the function ID of the return code.

• The CL register contains the error number of the return code.

• The DR register indicates the threshold value of the error, which is the
number of times the error can occur before error message INDSYOOl,
INDSY002, or INDSY003 is displayed.

Note: Threshold values should start at 1 to have the message displayed.
If the threshold is specified as 0, a message will never be issued
when the error occurs.

• The DL register contains the severity value of the error. Possible
severity values are:

X'Ol' - A severity 1 error is an unrecoverable system error. The
message that is displayed is INDSYOOl. The user can either press D to
take a dump or press any other key to re-IPL the system.

X'02' - A severity 2 error is a less serious error. The message that is
displayed is INDSY002. The user can either press D to take a dump or
press any other key to continue.

Coding to Identify Return Codes

X'03' - A severity 3 error is a minor error. The message that is
displayed is INDSY003. The system continues running after the user
presses another key.

Requesting the System Extension Message Service

Return Codes

Usage Notes

Coding Example

To request the System Extension Message service, use the INT 7 AH
instruction to signal the workstation program that it has a request to
process.

The CH and CL registers contain a return code generated by the error
handler portion of the workstation program. Error handler return codes
use a function ID of X'72' (found in the CH register). The error handler
return codes that can be received for this service are:

Code

X'OO'
X'02'
X'03'

Meaning

Successful completion of the request.
The error table is full.
Invalid severity specified.

• Your system extension needs to identify the return codes that it will
issue as part of message INDSYOOl, INDSY002, or INDSY003 only once.
Typically, all return code identification can be done in the initialization
portion of the system extension code.

• Each return code must be identified one at a time. You cannot use a
list to identify return codes.

INITIALIZE REGISTERS FOR SYSTEM EXTENSION MESSAGE SERVICE TO IDENTIFY
A RETURN CODE THAT WILL BE ISSUED ALONG WITH MESSAGE INDSY001,
INDSY002, OR INDSY003.

MOV
MOV
MOV
MOV
MOV
MOV

AH,91H
CH,12H
CL,02H
DL,OlH
DH,OlH
ES,DI

FUNCTION ID IS X'12'
ERROR NUMBER IS X'02'
SEVERITY IS X'Ol'
THRESHOLD IS X'Ol'

SIGNAL WORKSTATION PROGRAM FOR SYSTEM EXTENSION MESSAGE SERVICE

INT 7AH

Chapter 24. Coding System Extensions 24-19

Coding to Request Error Messages

Coding the System Extension Message Service to Request Error Messages

Register Definitions

24-20

The format of the System Extension Message service to request error
message INDSYOOl, INDSY002, or INDSY003 is shown below:

Register Values
on Request

AH = X'91'
AL = X'OO' or X'80'
BX = Two bytes of data or zero
CH = Function ID of return code
CL = Error number of return code
DX = X'OO'
DI = SP register value

Request Registers:

Register Values
on Completion

AL = Scan code
CH = X'72'
CL = Return code

The contents of registers
AH, BX, DX, ES, and DI
are unpredictable.

• The AH register indicates whether you have pushed registers on the
stack to be included in the dump data if a dump is taken.

X'OO' indicates that the registers are not to be displayed if a dump is
taken.
X'80' indicates that the registers are to be displayed if a dump is
taken.

• The BX register must contain 2 bytes of data that are to be included in
message INDSYOOl, INDSY002, or INDSY003, or may contain all zeros.
These 2 bytes of data can be used as an extended return code.

• The CH register contains the function ID of the return code.

• The CL register contains the error number of the return code.

• The DI register must contain the value of the SP register before issuing
INT 7AH.

Completion Registers:

• The AL register contains the scan code for the key pressed by the user
in response to message INDSYOOl, INDSY002, or INDSY003. The error
handler first intercepts this key to determine whether some action must
be taken. If the keystroke causes a dump to be taken or the system to
re-IPL, that action will be taken by the system. All other keys are
passed to your system extension. See Appendix A,
"Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values," for scan
code values.

Coding to Request Error Messages

Requesting the System Extension Message Service

Return Codes

Usage Notes

Coding Example

To request the System Extension Message service, use the INT 7 AH
instruction to signal the workstation program that it has a request to
process.

The CH and CL registers contain a return code generated by the error
handler portion of the workstation program. Error handler return codes
use a function ID of X'72' (found in the CH register). The error handler
return codes that can be received for this service are:

Code

X'OO'
X'Ol'

Meaning

Successful completion of the request.
Return code was not previously identified.

• The System Extension Message service request will not be completed
successfully unless the return code associated with the error has been
previously identified to the error handler.

EXTENDED RETURN CODE DECLARATION

EXT OW 1306H

PUSH ALL REGISTERS FOR DUMP

PUSH AX
PUSH BX
PUSH CX
PUSH OX
PUSH BP
PUSH SI
PUSH 01
PUSH OS
PUSH ES

Chapter 24. Coding System Extensions 24-21

Coding to Request Error Messages

24-22

INITIALIZE REGISTERS FOR SYSTEM EXTENSION MESSAGE SERVICE TO REQUEST
ERROR MESSAGE INDSYOOl, INDSY002, OR INDSY003.

MOV
MOV

MOV

MOV
MOV

MOV
MOV

AH,91H
AL,80H

BX,EXT

CH,12H
CL,02H

DX,OOH
DI,SP

REGISTERS HAVE BEEN SAVED
ON THE STACK FOR DUMP
TWO BYTES OF DATA TO FOLLOW
THE MESSAGE
FUNCTION ID IS X'12'
ERROR NUMBER IS X'02'
NOTE THAT THIS ERROR CODE WAS
IDENTIFIED IN THE PREVIOUS EXAMPLE
MUST BE X'OO'
POINT TO REGISTERS SAVED ON
THE STACK

SIGNAL WORKSTATION PROGRAM FOR SYSTEM EXTENSION MESSAGE SERVICE

INT 7AH

POP ALL SAVED REGISTERS

POP ES
POP DS
POP DI
POP SI
POP BP
POP DX
POP CX
POP BX
POP AX

Coding to Request Informational Messages

Coding the System Extension Message Service to Request Informational
Messages

Register Definitions

The format of the System Extension Message service to request
informational messages is shown below:

Register Values
on Request

AH = X'91'
AL = X'OO'
CX = X'7FFF'
ES = Segment address of the message string
DI = SP register value
DX = Offset address of the message string

Request Registers:

Register Values
on Completion

AL = Scan code
CH = X'72'
CL = Return code

The contents of registers
AL, BX, DX, ES, and DI
are unpredictable.

• The ES and DX registers contain the segment and offset addresses of
the message string to be displayed. The length of the message string
must be 160 characters, and the message must coded in host/notepad
character format. You can request the Translate Data service to
translate an ASCII message to host/notepad character format before
requesting the System Extension Message service. Refer to
Chapter 11, "Coding Translate Service Requests," for the host
characters. It is suggested that the first character of the message be a
blank.

• The DI register must contain the value of the SP register before issuing
INT 7AH.

Completion Registers:

• The AL register contains the scan code of the key that was pressed by
the user in response to the message. Scan code values are found in
Appendix A, "Scan-Code/Shift-State and ASCII/ASCII-Mnemonic
Values."

Note: When the System Extension Message service is requested to
display a message string, the error handler displays the string and
waits for a keystroke to be pressed by the user before continuing.
This keystroke is passed directly to your system extension. Be sure
to include in your message a request to the user to press a certain
key or any key to continue.

Chapter 24. Coding System Extensions 24-23

Coding to Request Informational Messages

Requesting the System Extension Message Service

To request the System Extension Message service, use the INT 7 AH
instruction to signal the workstation program that it has a request to
process.

Return Codes

The CH and CL registers contain a return code generated by the error
handler portion of the workstation program. Error handler return codes
use a function ID of X'72' (found in the CH register). The error handler
return code that can be received for this service is:

Code Meaning

X'OO' Successful completion of the request.

Usage Notes

• The message displayed by this service is treated as a severity 3 message.
After the message is displayed, the error handler waits for a keystroke
from the user and then returns control to your system extension.
Because of this, you should include in your message a prompt asking
the user to press a key.

• The message string must be 160 characters long. It is suggested that
the first character of each message be a blank.

• If any return codes are issued as part of this message, they do not have
to be identified with the error handler.

Coding Example

24-24

THE USER-DEFINED MESSAGE

MSG DB
DB
DB
DB

lOH,B3H,B7H,B8H,92H,10H,BBH,92H,10H,BOH,BDH,10H
B4H,97H,BOH,BCH,BFH,BBH,B4H,10H,BEH,B5H,10H,BOH,8DH,lOH
A8H,BDH,93H,B4H,91H,BDH,BOH,BBH,lOH,A2H,BEH,B3H,84H
BFH,BEH,BBH,BDH,93H,10H,BCH,B4H,92H,92H,BOH,B6H,84H,32H

THE ABOVE MESSAGE SAYS: THIS IS AN EXAMPLE OF A CODEPOINT MESSAGE

DB 27 DUP(lOH)

PAD WITH BLANKS TO EQUAL BO CHARACTERS

DB lOH,AFH,91H,B4H,92H,92H,lOH,BOH,BDH,9BH,lOH,BAH,84H,9BH
DB 10H,93H,BEH,lOH,82H,BEH,8DH,93H,B8H,BDH,94H,B4H,32H

THE ABOVE MESSAGE SAYS: PRESS ANY KEY TO CONTINUE

DB 53 DUP(lOH)

Coding to Request Informational Messages

PAD WITH BLANKS TO EQUAL 80 CHARACTERS

;
iSAVE ALL REGISTERS

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES

INITIALIZE REGISTERS FOR SYSTEM EXTENSION MESSAGE SERVICE TO REQUEST
AN INFORMATIONAL MESSAGE.

MOV
MOV
MOV
MOV
MOV
MOV

AH,91H
AL,OOH
CX,7FFFH
DX,OFFSET MSG
ES,SEGMENT MSG
DI,SP

MUST BE X I 00 I •

MUST BE X'7FFF'
DX OFFSET ADDRESS OF THE MESSAGE
ES SEGMENT ADDRESS OF THE MESSAGE

SIGNAL WORKSTATION PROGRAM FOR SYSTEM EXTENSION MESSAGE SERVICE

INT 7AH

RESTORE ALL REGISTERS

POP ES
POP DS
POP DI
POP SI
POP BP
POP DX
POP CX
POP BX
POP AX

Chapter 24. Coding System Extensions 24-25

Design Considerations

Managing Resources

If your system extension is going to manage internal resources (for
example, control blocks or hardware) for applications in stoppable
environments, it must include a resource manager. A resource manager is
a component that is called by the environment manager when a stoppable
environment to which the system extension has allocated resources is being
stopped. This allows the system extension to reclaim resources outstanding
in that stoppable environment. In order for your system extension's
cleanup component to be notified when a PC environment is stopped (so
your system extension can reclaim resources used for that PC environment),
it must have added a resource to the PC environment's chain.

When a PC environment is stopped, the environment manager notifies all
the resource manager's cleanup components that have a resource on the PC
environment chain that the environment is being stopped. Thus, it is
important for your system extension to add a resource to any PC
environment about which it is to be notified. If your system extension that
handles requests from a PC is a component, then it is running under the
PC task that is in the PC environment, and it can simply add a resource to
the current active task environment.

If the system extension that handles requests from a PC is a task, then it is
executing in a different environment from the PC. When it received the
request, the DX register contained the task ID of the task that made the
request. Your system extension must add a resource to the environment of
the task (in the DX register) that made the request.

If a resource is added to the PC environment, the resource managers that
added the resource are notified (via the cleanup component) when the PC
environment is stopped. Resource managers are described in
Chapter 22, "Environments and the Environment Manager."

Design Considerations for System Extensions and the
XMA Card

24-26

When the XMA card is used and there are multiple PC sessions, each PC
session is in its own I-megabyte address space. This was not the case in
Release 2.1, where all PC sessions shared the same I-megabyte address
space; thus PC sessions and system extensions could pass information in
any way, and avoiding the Application Program Interface (API) would not
cause a problem. With the XMA card, PC sessions cannot communicate
directly with one another, since the storage of one PC session is not
addressable from the second. System extensions are loaded in the
I-megabyte address space of all PC sessions, so all the PC sessions can
communicate with a system extension.

Components

Tasks

Design Considerations

In a Release 4.0 system, all tasks are assigned an address space to run in.
Each task can address 1 megabyte of storage. Since each PC is in its own
address space, a single task cannot address storage in all the PC sessions at
the same time. To interface a system extension to all PC sessions, the
following elements of the API should be used.

Components installed by a system extension always run on the PC sessions
task in the PC sessions address space. There is no problem passing
information to and from all PC sessions using components.

Tasks installed by a system extension initially run in the address space of
the workstation program, since during initialization of the system extension
there are no PC sessions created yet. The workstation program has built
into the Get a Request service on the API an automatic switching of
address spaces. When a task does a Get a Request service, the task is
switched to the address space of the requesting PC session. The task
continues to run in this address space until another Get a Request call is
done. The Get a Request call is the only one that causes the address space
to change; waiting for a signal, timer, semaphore, fixed-length queue, or a
completion queue request (RQE) does not change the address space.

Fixed-Length Queues

General Notes

When a fixed-length queue is created, it is assigned to an address space.
The workstation program is aware of which address space the queue is in,
and Enqueue Data and Dequeue Data services can be used to pass data
between address spaces. Note that the data is passed, but if pointers to data
are passed in the queue, the pointer may not be valid in the address space
of the task that did the dequeue.

System extensions that rely on absolute addresses may have problems
handling requests from multiple PC sessions. Since the PC sessions are in
different address spaces, the PC sessions are located at the same address
within the l-megabyte address. If you run the same program in three
different PC sessions, and that program passes an address to the system
extension, the address could be exactly the same for all three PC sessions.
If your system extension needs to track which PC made the request, the
Query Task's Environment ID call can be used to distinguish between the
different PC sessions. Each PC has a unique environment ID.

Chapter 24. Coding System Extensions 24-27

Design Considerations

24-28

Part 4. Sample Programs

This part contains five sample programs that use the services of the API.

• Sample Program 1 (Chapter 25) locks all keyboard input until the
correct password is typed.

• Sample Program 2 (Chapter 26) prevents a 3270 PC user from using the
Work Station Control windowing features, allowing a user to set up the
screens using the RESTORE utility but not to change the setup of the
windows on the screen.

• Sample Program 3 (Chapter 27) presents a summary of the currently
active sessions.

• Sample Program 4 (Chapter 28) accesses data from the host and displays
the information about a business in a personal computer window in bar
chart form.

• Sample Program 5 (Chapter 29) is the second half of Sample Program 4.
It should be linked with Sample Program 4 at link-edit time.

Part 4. Sample Programs

Chapter 25. Sample Program 1

TITLE LOCKKYBD
PAGE 80,132

PROGRAM LOCKKYBD

FUNCTION

Sample Program 1

THIS PROGRAM LOCKS ALL KEYBOARD INPUT UNTIL THE CORRECT PASSWORD
IS TYPED. THIS PREVENTS UNWANTED USERS FROM GAINING ACCESS TO 3270
PC FUNCTIONS AND DATA. THE USER INVOKING THE PROGRAM IS PROMPTED
TO ENTER A PASSWORD. THIS PASSWORD MUST BE REENTERED IN ORDER TO
REGAIN ACCESS TO THE 3270 PC.

TO DO THIS, TWO OTHER TASKS ARE CREATED. THE FIRST TASK IN
TERCEPTS THE WSCTRL KEYSTROKES TO KEEP THE USER FROM ACCESSING
WSCTRL FUNCTIONS. THIS IS ACCOMPLISHED BY CONNECTING TO THE WSCTRL
KEYBOARD, INTERCEPTING THE KEYSTROKES AND IGNORING THEM.

THE SECOND TASK PREVENTS THE PC IPL SEQUENCE (CTRL-ALT-DEL) FROM
REACHING THE PC SESSION, THUS PREVENTING THE USER FROM RESTARTING THE
SYSTEM TO GAIN ACCESS TO ANY FUNCTIONS OR DATA. THIS SECOND TASK IS
CONNECTED TO THE PC SESSION'S KEYBOARD. IT INTERCEPTS THE KEYSTROKES
GOING TO THE PC AND CHECKS FOR THE CTRL-ALT-DEL SEQUENCE. THIS KEY
STROKE IS IGNORED, WHILE ALL OTHERS ARE PASSED ON TO THE PC SESSION.

A SIGNAL MUST BE SENT TO THE TASKS TO TELL THEM WHEN TO STOP
READING KEYSTROKES. THE READ KEYSTROKE FUNCTION PUTS A REQUEST QUEUE
ELEMENT (RQE) ON THE KEYSTROKING QUEUE TO SIGNAL THAT IT IS WAITING
FOR DATA IN THE QUEUE. SINCE THE TASKS ARE ALWAYS LOOPING BACK TO
GET KEYSTROKES, THERE ARE ALWAYS RQE'S ON THE KEYSTROKING QUEUES.
THIS CAUSES A PROBLEM DURING CLEAN UP SINCE THE WORKSTATION PROGRAM WILL
NOT ALLOW A FIXED-LENGTH QUEUE WITH AN RQE ON IT TO BE DELETED. SO
AN UNUSED SCAN CODE IS SENT TO THE TASKS TO SIGNAL THAT IT IS TIME TO
STOP READING KEYSTROKES, THUS KEEPING RQE'S OFF THE KEYSTROKING
QUEUES.

THIS PROGRAM USES THE FOLLOWING API FUNCTIONS:

CONNECT TO KEYBOARD
CREATE A FIXED LENGTH QUEUE ENTRY
CREATE A TASK ENTRY

SUBTTL MACROS
PAGE

DELETE AN ENTRY
DISCONNECT FROM KEYBOARD
RETURN TO DISPATCHER
ENQUEUE DATA
NAME RESOLUTION
QUERY SESSION ID
QUERY BASE WINDOW
QUERY ACTIVE TASK
READ KEYSTROKE
SET A TASK "READY"
SET A TASK "UNREADY"
WRITE KEYSTROKE

iii;;;;;;;;;;;;;ii;
;; SET UP MACROS ;;
iii;;;;;;;;;;;;;;;;

Chapter 25. Sample Program 1 25-1

Sample Program 1

MACRO : DOSFUNCT
FUNCTION :

ISSUE THE DOS CALL WITH THE FUNCTION NUMBER PASSED IN
FUNCTNUM.

DOSFUNCT MACRO FUNCTNUM

MOV AH,FUNCTNUM
INT 21H

ENDM

MACRO : PROMPT
FUNCTION :

DISPLAY THE PROMPT "ENTER PASSWORD "

ESTABLISH CONSTANTS

DISPSTR

PROMPT

EQU 9

MACRO

LEA DX,PASSPRMT
DOSFUNCT DISPSTR

ENDM

MACRO : DISPLAY
FUNCTION :

DOS DISPLAY STRING FUNCTION NUMBER

POINT DX TO THE START OF THE PROMPT
DISPLAY THE PROMPT STRING

DISPLAY THE CHARACTER PASSED IN CHAR.

ESTABLISH CONSTANTS

DISPCHAR EQU 2

DISPLAY MACRO CHAR

MOV DL,CHAR
DOSFUNCT DISPCHAR

ENDM

MACRO : CHEK4ERR
FUNCTION :

DOS DISPLAY CHARACTER FUNCTION NUMBER

PUT THE CHARACTER IN DL
DISPLAY THE CHARACTER

SET UP THE REGISTERS FOR THE ERROR CHECKER PROCEDURE.

25-2

CHEK4ERR MACRO RETNCODE

IFNB <RETNCODE>
MOV BL,RETNCODE
ELSE
MOV BL,O
ENDIF

CALL CHECKERR

ENDM

MACRO NAME
PARAMETERS

CONN$KEY
SERVTYPE
SESSID
KEYSTQ

Sample Program 1

IF THERE IS A PARAMETER LIST RETURN CODE
SPECIFIED, PASS IT TO THE ERROR CHECKER
IN BL.

OTHERWISE, SEND A 0 IN BL

CALL THE ERROR CHECKER

RESOLVED VALUE FOR 'KEYBOARD'
SESSION ID

KEYSTROKE QUEUE ID

EVENT QUEUE ID
FUNCTION :

EVNTQ

CONNECT THE KEYBOARD TO THE SPECIFIED SESSION.

CONN$KEY MACRO SERVTYPE,SESSID,KEYSTQ,EVNTQ

; INITIALIZE PARAMETER
MOV CKRETNCD,OOH
MOV CKFXNID,OOH
MOV AL,SESSID
MOV CKSESSID,AL

IFNB <KEYSTQ>
MOV AX,KEYSTQ
ELSE
MOV AX,O
ENDIF
MOV CKKEYSTQ,AX

IFNB <EVNTQ>
MOV AX,EVNTQ
ELSE
MOV AX,O
ENDIF
MOV CKEVENTQ,AX

LIST FOR CONN$KEY
RETURN CODE MUST = 0 BEFORE REQUEST

; FUNCTION ID MUST = 0 BEFORE REQUEST
; SESSION ID INTO THE LIST

IF A KEYSTROKE QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

IF AN EVENT QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

; INITIALIZE REGISTERS FOR CONN$KEY
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG CKRETNCD
MOV ES,DI
MOV DI,OFFSET CKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CONN$KEY SERVICE
INT 7AH

ENDM

Chapter 25. Sample Program 1 25-3

Sample Program 1

CRT$Q

MACRO NAME
PARAMETERS

FUNCTION :

CRT$Q
QSEGMENT
QOFFSET
QSIZE

SEGMENT OF QUEUE
OFFSET OF QUEUE
SIZE OF QUEUE

CREATE A FIXED LENGTH QUEUE.

MACRO QSEGMENT,QOFFSET,QSIZE

i INITIALIZE PARAMETER LIST FOR CRT$Q
MOV AX,QSEGMENT SEGMENT ADDRESS INTO THE LIST
MOV CQSEGMEN,AX
MOV AX,QOFFSET OFFSET INTO THE LIST
MOV CQOFFSET,AX

; INITIALIZE REGISTERS FOR CRT$Q

SPECIFIED
THE QUEUE

MOV AH,04H
MOV BL,OOH
MOV CX,QSIZE
MOV DX,OOOOH
MOV DI, SEG CQOFFSET

NO NAME
SIZE OF
DX MUST
SEGMENT

= 0 FOR THE REQUEST
ADDRESS OF PARAMETER LIST

MOV ES,DI IN ES
MOV DI,OFFSET CQOFFSET OFFSET OF PARAMETER

; SIGNAL WORKSTATION PROGRAM FOR CRT$Q SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS TASK TO BE CREATED

NAME OF THE TASK
STACK FOR THE TASK
PREEMPTION TYPE
PRIORITY OF THE TASK

LIST IN DI

CRT$TASK
TASK
NAME
STACK
PREEMPT
PRIORITY
DATA VARIABLE IN THE TASK'S DATA SEGMENT

FUNCTION :
CREATE A TASK.

CRT$TASK MACRO TASK,NAME,STACK,PREEMPT,PRIORITY,DATA

25-4

i INITIALIZE PARAMETER
MOV AX,OFFSET STACK
ADD AX,232

MOV CTTASKSS,AX
MOV AX,SEG STACK
MOV CTTASKSP,AX

MOV BL,O

LIST FOR CRT$TASK
GET THE OFFSET OF THE TASK'S STACK
INCREMENT THE SP TO POINT AT THE

START OF REGISTER RESTORE AREA
PUT TASK'S SP IN PARAMETER LIST
PUT TASK'S SS IN PARAMETER LIST

BL o IF NO NAME SPECIFIED

REP

DEL$ENT

IFNB <NAME>

MOV BL,l
MOV AX,SEG CTTSKNAM
MOV ES,AX
MOV DI,OFFSET CTTSKNAM
MOV SI,OFFSET NAME
MOV CX,8
MOVSB

ENDIF

Sample Program 1

IF THERE IS A NAME SPECIFIED, PUT
IT IN THE PARAMETER LIST

BL = 1 IF A NAME IS SPECIFIED
ES:DI POINT TO DESTINATION IN

PARAMETER LIST

DS:SI POINT TO SOURCE OF THE NAME
MOVE 8 BYTES
COpy THE NAME INTO THE PARM LIST

; INITIALIZE
PUSH DS

THE TASK'S STACK
; SAVE DS

MOV AX,SEG STACK
MOV DS,AX

; GET THE TASK'S STACK SEGMENT

MOV SI,OFFSET STACK ; DS:SI NOW POINT TO THE TASK STACK
MOV WORD PTR [SI+254],OF242H SET FLAGS IN THE STACK
MOV AX,SEG TASK
MOV WORD PTR [SI+252] ,AX
MOV AX,OFFSET TASK
MOV WORD PTR [SI+250],AX

IFNB <DATA>
MOV AX,SEG DATA
MOV WORD PTR [SI+234],AX
ENDIF

POP DS

SET SEGMENT OF TASK IN STACK

SET OFFSET OF TASK IN STACK

SE~ DATA SEGMENT IN STACK

RESTORE DS

; INITIALIZE REGISTERS FOR CRT$TASK
MOV AH,92H
MOV BH,PREEMPT
MOV CX,PRIORITY
MOV DI, SEG CTTASKSS
MOV ES,DI
MOV DI,OFFSET CTTASKSS

PREEMPTION TYPE IN BH
PRIORITY IN CX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CRT$TASK SERVICE
INT 7AH

ENDM

MACRO NAME : DEL$ENT
PARAMETERS : ENTRYID -- ID OF THE ENTRY TO BE DELETED
FUNCTION :

DELETE AN ENTRY FORM THE SYSTEM.

MACRO ENTRYID

;INITIALIZE REGISTERS FOR DEL$ENT
MOV AH,06H
MOV CX,OOOOH
MOV DX,ENTRYID ; ox = ENTRY ID

;SIGNAL WORKSTATION PROGRAM FOR DEL$ENT SERVICE
INT 7AH

ENDM

Chapter 25. Sample Program 1 25-5

Sample Program 1

MACRO NAME
PARAMETERS

FUNCTION :

DISC$KEY
SERVTYPE
SESSID

RESOLVED VALUE FOR 'KEYBOARD'
SESSION ID

DISCONNECT THE KEY BOARD FROM THE SPECIFIED SESSION.

DISC$KEY MACRO SERVTYPE,SESSID,TASKID

; INITIALIZE PARAMETER
MOV DKRETNCD,OOH
MOV DKFXNID,OOH
MOV AL,SESSID
MOV DKSESSID,AL

IFNB <TASKID>
MOV AX,TASKID
ELSE
MOV AX,OOOOH
ENDIF
MOV DKTASKID,AX

LIST FOR DISC$KEY
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

IF A TASK ID WAS SPECIFIED, PUT IT
IN THE LIST

i INITIALIZE REGISTERS FOR DISC$KEY
MOV AH,09H
MOV AL,02H
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG DKRETNCD
MOV ES,DI
MOV DI,OFFSET DKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR DISC$KEY SERVICE
INT 7AH

ENDM

MACRO NAME : DISP$RET
PARAMETERS : WAITTYPE -- WAIT TYPE
FUNCTION :

RETURN TO THE DISPATCHER.

DISP$RET MACRO WAITTYPE

25-6

i INITIALIZE REGISTERS FOR DISP$RET
MOV AH,95H
MOV BL,WAITTYPE WAIT TYPE IN BL

i SIGNAL WORKSTATION PROGRAM FOR DISP$RET SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

ENQUEUE
NUMBYTES
QUEUEID
DATANAME

Sample Program 1

NUMBER OF BYTES TO BE ENQUEUED
FIXED LENGTH QUEUE ID
MEMORY LOCATION NAME OF THE DATA

USE THIS SERVICE TO ENQUEUE DATA ON THE SPECIFIED FIXED
LENGTH QUEUE ID.

ENQUEUE MACRO NUMBYTES,QUEUEID,DATANAME

i INITIALIZE REGISTERS FOR ENQUEUE
MOV AH,OCH
MOV CX,NUMBYTES
MOV DX,QUEUEID
MOV DI, SEG DATANAME
MOV ES,DI
MOV DI,OFFSET DATANAME

NUMBER OF BYTES
QUEUE ID
SEGMENT ADDRESS OF DATA

IN ES
OFFSET OF DATA IN DI

i SIGNAL WORKSTATION PROGRAM FOR ENQUEUE SERVICE
INT 7AH

ENDM

PARAMETERS NR$SERVN

NR$SERVT

LOCATION OF THE 8-BYTE
SERVICE NAME. I.E. 'SESSMGR '
RETURN CODE FROM PARAMETER LIST

NAME$RES MACRO NR$SERVN,NR$SERVT

i SET
MOV
MOV
MOV
MOV
MOV

UP REGISTERS NAME$RES
AX,SEG NR$SERVN
ES,AX

SEGMENT ADDRESS OF PARM LIST
ES SEGM ADDRESS OF PARM LIST
AH X '81' AH,81H

CX,OOOOH CX X'OOOO'
DI,OFFSET NR$SERVN DI OFFSET ADDR. OF PARM LIST

i SIGNAL WORKSTATION PROGRAM FOR NAME$RES SERVICE
INT 7AH

i RETURN SERVICE TYPE ID TO CALLER
MOV NR$SERVT,DX

ENDM

MACRO NAME
PARAMETERS

QUERY$ID
SERVTYPE
NAMEARRY
OPTION
DATA
LONGNAME

RESOLVED VALUE FOR 'SESSMGR '
NAME ARRAY
OPTION BYTE
DATA BYTE
SESSION LONG NAME

Chapter 25. Sample Program 1 25-7

Sample Program 1

FUNCTION :
GET THE SESSION ID(S) OF THE SESSION(S) SPECIFIED BY

THE OPTION AND DSTS BYTES AND RETURNS THEM IN THE NAME
ARRAY.
NOTE - THE NAME ARRAY IS SET UP BY THE USER AND MUST HAVE

THE LENGTH OF THE ARRAY CONTAINED IN THE 1ST BYTE.

QUERY$ID MACRO SERVTYPE,NAMEARRY,OPTION,DATA,LONGNAME

REP

25-8

; INITIALIZE PARAMETER
MOV QDRETNCD,OOH
MOV QDFXNID,OOH

LIST FOR QUERY$ID

MOV AL,OPTION
MOV QDOPTION,AL
MOV AL,DATA
MOV QDDATA,AL
MOV AX,OFFSET NAMEARRY
MOV QDNAMOFF,AX
MOV AX,SEG NAMEARRY
MOV QDNAMSEG,AX

IFNB <LONGNAME>

CLD
MOV
MOV
MOV
MOV
MOV
MOVSB

ENDIF

AX,SEG QDLNGNAM
ES,AX
DI,OFFSET QDLNGNAM
SI,OFFSET LONGNAME
CX,8

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
OPTION BYTE INTO THE LIST

DATA BYTE INTO THE LIST

NAME ARRAY OFFSET INTO THE LIST

NAME ARRAY SEGMENT INTO THE LIST

CHECK IF A LONG NAME WAS SPECIFIED

COpy DIRECTION = FORWARD

ES:DI POINTS TO DESTINATION IN PARM
LIST

DS:SI POINTS TO SOURCE OF LONG NAME
MOVE 8 BYTES
COpy LONG NAME INTO THE PARM LIST

; INITIALIZE REGISTERS FOR QUERY$ID
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG QDRETNCD
MOV ES,DI
MOV DI,OFFSET QDRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY$ID SERVICE
INT 7AH

ENDM

MACRO NAME QBASW
PARAMETERS SERVTYPE -- RESOLVED VALUE FOR 'SESSMGR '
FUNCTION :

FIND THE SESSION ID AND SHORT NAME FOR THE BASE WINDOW
OF AN ENVIRONMENT.

QBASW

Q$TASK

MACRO SERVTYPE

; INITIALIZE PARAMETER LIST FOR QBASW
MOV QSRETNCD,OOH RETURN CODE MUST
MOV QSFXNID,OOH FUNCTION ID MUST

; INITIALIZE REGISTERS FOR QBASW
MOV AH,09H
MOV AL,OAH
MOV BH,80H
MOV BL,20H

Sample Program 1

o BEFORE REQUEST
o BEFORE REQUEST

MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG QSRETNCD
MOV ES,DI

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
MOV DI,OFFSET QSRETNCD OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QBASW SERVICE
INT 7AH

ENDM

MACRO NAME : Q$TASK
FUNCTION :

GET THE ID OF THE CURRENT ACTIVE TASK.

MACRO

; INITIALIZE REGISTERS FOR Q$TASK
MOV AH,9CH

; SIGNAL WORKSTATION PROGRAM FOR Q$TASK SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION

READ$KEY
SERVTYPE
SESSID

READ KEYSTROKE DATA.

SERVICE TYPE
SESSION ID

READ$KEY MACRO SERVTYPE,SESSID,TASKID

; INITIALIZE PARAMETER
MOV RKRETNCD,OOH
MOV RKFXNID,OOH
MOV AL,SESSID
MOV RKSESSID,AL

IFNB
MOV
ELSE
MOV
ENDIF
MOV

<TASKID>
AX,TASKID

AX,O

RKTASKID,AX

LIST FOR READ$KEY
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

IF A TASK ID WAS SPECIFIED PUT IT
IN THE LIST, ELSE PUT IN A 0

Chapter 25. Sample Program 1 25-9

Sample Program 1

SET$RDY

; INITIALIZE REGISTERS FOR READ$KEY
MOV AH,09H
MOV AL,03H
MOV BH,BOH
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG RKRETNCD
MOV ES,DI
MOV DI,OFFSET RKRETNCD

SERVICE TYPE IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR READ$KEY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

SET$RDY
TASKID
WAITTYPE

TASK ID
WAIT TYPE

SET THE SPECIFIED TASK TO THE "READY" STATE.

MACRO TASKID,WAITTYPE

; INITIALIZE REGISTERS FOR SET$RDY
MOV AH,02H
MOV BL,WAITTYPE WAIT TYPE IN BL
MOV DX,TASKID TASK ID IN OX

; SIGNAL WORKSTATION PROGRAM FOR SET$RDY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

SETUNRDY
TASKID
WAITTYPE

TASK ID
WAIT TYPE

SET THE SPECIFIED TASK TO THE "UNREADY" STATE.

SETUNRDY MACRO TASKID,WAITTYPE

25-10

; INITIALIZE REGISTERS FOR SETUNRDY
MOV AH,05H
MOV BL,WAITTYPE WAIT TYPE IN BL
MOV DX,TASKID TASK ID IN OX

; SIGNAL WORKSTATION PROGRAM FOR SETUNRDY SERVICE
INT 7AH

ENDM

MACRO : WRIT$KEY
PARAMETERS : SERVTYPE

SESSID
SCANCD
SHIFST
LISTOFF
LISTSEG
TASKID

FUNCTION :

Sample Program 1

RESOLVED VALUE FOR 'KEYBOARD'
SESSION ID
SCAN CODE
SHIFT STATE
LIST OFFSET
LIST SEGMENT
CONNECTOR'S TASK ID

SEND A KEYSTROKE OR A LIST OF KEYSTROKES TO THE
SPECIFIED SESSION.

WRIT$KEY MACRO SERVTYPE,SESSID,SCANCD,SHIFST,LISTOFF,LISTSEG,TASKID
LOCAL WKEND

MOV
MOV
MOV
MOV

WKPARLST.WKRETNCD,OH
WKPARLST.WKFXNID,OH
AL,SESSID
WKPARLST.WKSESSID,AL

IFNB <SCNCD>

; SENDING ONE KEYSTROKE

MOV
MOV
MOV
MOV
MOV
MOV

ELSE

AL,SCANCD
WKPARLST.WKSCNCOD,AL
AL,SHIFST
WKPARLST.WKSHFST,AL
AL,20H
WKPARLST.WKOPTION,AL

WKRETCD MUST BE 0 FOR THE CALL
WKFXNID MUST BE 0 FOR THE CALL
PUT THE SESSION ID IN PARM LIST

CHECK IF SENDING ONE KEYSTROKE
OR A LIST OF KEYSTROKES

PUT THE SCAN CODE IN THE PARM LIST

PUT SHIFT STATE IN THE PARM LIST

PUT THE OPTION BYTE FOR SENDING
ONE CHARACTER IN THE PARM LIST

; SENDING A LIST OF KEYSTROKES

MOV
MOV
MOV
MOV

MOV
MOV

ENDIF

AX,LISTOFF
WKPARLST.WKLSTOFF,AX
AX,LISTSEG
WKPARLST.WKLSTSEG,AX

AL,30H
WKPARLST.WKOPTION,AL

IFNB <TASKID>
MOV AX,TASKID
ELSE
MOV AX,O
ENDIF
MOV WKPARLST.WKTASKID,AX

PUT THE OFFSET ADDRESS OF THE LIST
INTO THE PARAMETER LIST

PUT THE SEGMENT ADDRESS OF THE
LIST INTO THE PARAMETER LIST

PUT OPTION BYTE FOR SENDING LIST
OF CHARACTERS IN THE PARM LIST

IF A CONNECTOR'S TASK ID WAS
SPECIFIED, PUT IT IN THE LIST

OTHERWISE PUT A 0 IN THE LIST

; INITIALIZE THE REGISTERS FOR WRIT$KEY
MOV AH,09H
MOV AL,04H
MOV BH,BOH
MOV BL,20H
MOV CX,OOOOH

Chapter 25. Sample Program 1 25-11

Sample Program 1

DATASEG

MOV
MOV
MOV
MOV

INT

ENDM

DX,SERVTYPE
DI, SEG WKPARLST
ES,DI
DI, OFFSET WKPARLST

7AH

SUBTTL DATASEG
PAGE

SEGMENT 'DATA'

i PARAMETER LIST FOR CONN$KEY

CKRETNCD DB 0
CKFXNID DB 0
CKSESSID DB 0
CKRESRVI DB 0
CKEVENTQ DW 0
CKKEYSTQ DW 0
CKOPTION DB 40H
CKRESRV2 DB 0

i PARAMETER LIST FOR CRT$Q

CQOFFSET DW 0
CQSEGMEN DW 0
CQNAME DB 8 DUP(O)

i PARAMETER LIST FOR CRT$TASK

CTTASKSS DW 0
CTTASKSP DW 0
CTTSKNAM DB 8 DUP(?)

i PARAMETER LIST FOR DISC$KEY

DKRETNCD DB 0
DKFXNID DB 0
DKSESSID DB 0
DKRESRVI DB 0
DKTASKID DW 0
DKRESRV2 DB 0

; PARAMETER LIST FOR QUERY$ID

QDRETNCD DB 0
QDFXNID DB 0
QDOPTION DB 0
QDDATA DB 0
QDNAMOFF DW 0
QDNAMSEG DW 0
QDLNGNAM DB 8 DUP(?)

25-12

RESOLVED VALUE FOR 'KEYBOARD'
GET SEGMENT ADDRESS OF PARM LIST

AND PUT IT IN ES
SET DI TO OFFSET OF PARM LIST

PASS THE REQUEST TO THE API

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
EVENT QUEUE ID
KEYSTROKE QUEUE ID
OPTION BYTE (INTERCEPT ALL)
RESERVED

OFFSET OF THE QUEUE
SEGMENT ADDRESS OF THE QUEUE
QUEUE NAME

TASK'S STARTING SS
TASK'S STARTING SP
TASK NAME

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
RESERVED

RETURN CODE
FUNCTION NUMBER
OPTION BYTE
DATA BYTE
OFFSET OF NAME TABLE
SEGMENT OF NAME TABLE
SESSION LONG NAME

; PARAMETER LIST FOR QBASW

QSRETNCD DB 0
QSFXNID DB 0
QSENVID DB 0
QSSESSID DB 0
QSWINDOW DB 0
QSRESERV DB 0

; PARAMETER LIST FOR READ$KEY

RKRETNCD DB 0
RKFXNID DB 0
RKSESSID DB 0
RKRESRV1 DB 0
RKTASKID DW 0

DB 20H
RKRESRV2 DB 0
RKSCANCD DB 0
RKSHIFST DB 0

DB 0
DB 0

; PARAMETER LIST STRUCTURE FOR

WRKYPARM STRUC
WKRETNCD DB 0
WKFXNID DB 0
WKSESSID DB 0
WKRESRV1 DB 0
WKTASKID DW 0
WKOPTION DB 0
WKNUMKEY DB 0
WKSCNCOD DB 0
WKSHFST DB 0
WRKYPARM ENDS

WRKYPAR2 STRUC
DB 8 DUP(OO)

WKLSTOFF DW 0
WKLSTSEG DW 0
WRKYPAR2 ENDS

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
SESSION ID
WINDOW SHORT NAME
RESERVED

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
MUST BE 20H
RESERVED
SCAN CODE
SHIFT STATE

Sample Program 1

NOT USED 01H ON RETURN
NOT USED = OOH ON RETURN

WRIT$KEY

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
OPTIONS BYTE
KEYS SENT SUCCESSFULLY
SCAN CODE OF THE KEY
SHIFT STATE OF THE KEY

OFFSET OF LIST OF KEYSTROKES
SEGMENT OF LIST OF KEYSTROKES

; ALLOCATE STORAGE FOR THE PARAMETER LIST

WKPARLST WRKYPARM <>

PASSPRMT DB 'ENTER PASSWORD: $'

PASSWORD DB

PCTASKID DW

NAMARRAY DB
NUMSESS DB
SHRTNAME DB
SESSTYPE DB
WSCSESID DB
SPARE DB
LONGNAME DB

21 DUP(?)

o

14
o
o
o
o
o
8 DUP(O)

PASSWORD (IN ASCII) 20 CHARACTERS +
A 1 CHARACTER OVERFLOW

THIS PROGRAM'S TASK ID

NAME ARRAY FOR QUERY$ID FUNCTION
NUMBER OF MATCHING SESSIONS
SESSION SHORT NAME
SESSION TYPE
SESSION ID (WSCTRL)

LONG NAME OF SESSION

Chapter 25. Sample Program 1 25-13

Sample Program 1

WSCSTACK DB 256 DUP(O)

IPLSTACK DB 256 DUP(O)

LOCKWSID DW 0

LOCKIPID DW 0

KYBDNAME DB 'KEYBOARD'
SMGRNAME DB 'SESSMGR ,

KEYBOARD DW 0
SESSMGR DW 0

WSQUEID DW 0
WSQSIZE DW 64
WSQSEG DW 0
WSQOFF DW 0
WSQUEUE DB 64 DUP(?)

IPQUEID DW 0
IPQSIZE DW 64
IPQSEG DW 0
IPQOFF DW 0
IPQUEUE DB 64 DUP(?)

STACK FOR THE LOCKWSC TASK

STACK FOR THE LOCKIPL TASK

LOCKWSC TASK ID

LOCKIPL TASK ID

PARM LIST FOR NAME$RES ON KEYBOARD
PARM LIST FOR NAME$RES ON SESSMGR

RESOLVED ID FOR 'KEYBOARD'
RESOLVED ID FOR 'SESSMGR '

SVC ID OF THE KEYSTROKE QUEUE
SIZE OF THE KEYSTROKE QUEUE
SEGMENT OF THE KEYSTROKE QUEUE
OFFSET OF THE KEYSTROKE QUEUE
THE KEYSTROKE QUEUE

SVC ID OF THE KEYSTROKE QUEUE
SIZE OF THE KEYSTROKE QUEUE
SEGMENT OF THE KEYSTROKE QUEUE
OFFSET OF THE KEYSTROKE QUEUE
THE KEYSTROKE QUEUE

ENDDATA DB 90H,OOH,OlH,OOH
; BYTES TO ENQUEUE TO SIGNAL THE TASKS TO

STOP

ERRMSG DB 'ERROR. PROGRAM ABORTED.$'

DATASEG ENDS

STACKSEG SEGMENT STACK

DB 256 DUP(?)

STACKSEG ENDS

SUB TTL MAIN
PAGE

CODESEG SEGMENT 'CODE'

; ESTABLISH CONSTANTS

BAKSPACE EQU 08H
BOX EQU OBIH
CR EQU ODH
LF EQU OAH
SPACE EQU 20H

INNOECHO EQU 8

MAIN PROC FAR

ASCII FOR A BACKSPACE
ASCII FOR A BOX
ASCII FOR A CARRIAGE RETURN
ASCII FOR A LINE FEED
ASCII FOR A SPACE

FUNCTION NUMBER FOR DOS INPUT WITH NO ECHO

ASSUME CS:CODESEG,DS:DATASEG,SS:STACKSEG,ES:DATASEG

25-14

MOV
MOV

AX,DATASEG
DS,AX

; ESTABLISH ADDRESSABILITY TO THE DATA

Sample Program 1

iii;;
;; PROMPT THE USER TO ENTER THE PASSWORD ;;
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;

PROMPT

iii;;;iii;;;;;;
;; READ THE PASSWORD INTO MEMORY. USE SI TO INDEX INTO THE ;;
;; PASSWORD AREA. AFTER EACH CHARACTER IS READ STORE IT AT "
" LOCATION [SI], INCREMENT SI, AND DISPLAY A BOX TO CONFIRM ;;
;; THAT A CHARACTER WAS ENTERED. IF THE CHARACTER WAS A ;;
;; BACKSPACE, THEN ERASE THE LAST BOX DISPLAYED AND DECREMENT;;
;; SI. IF THE CHARACTER WAS A CARRIAGE RETURN, THEN THE ;;
;; PASSWORD IS FINISHED. SAVE THE CARRIAGE RETURN AND GO ON ;;
;; TO LOCK THE KEYBOARD. ; ; ...
""""""""""""""""""""""""""""""",
LEA SI,PASSWORD POINT 81 TO THE START OF PASSWORD AREA

NEXTCHAR: DOSFUNCT INNOECHO GET A CHARACTER FROM THE KEYBOARD, NO ECHO

BACKUP:

CMP
JE

MOV
INC

CMP
JE

AL,BAKSPACE
BACKUP

[SI] ,AL
SI

AL,CR
LOCK

DISPLAY BOX

JMP NEXTCHAR

CHECK IF IT IS A BACK SPACE
IF SO, GO TO BACKUP ROUTINE

SAVE THE CHARACTER IN PASSWORD AREA

CHECK IF THIS IS THE END OF THE PASSWORD
IF SO, PROCEED TO LOCK THE KEYBOARD

DISPLAY A BOX TO CONFIRM CHAR. ENTERED

GET THE NEXT PASSWORD CHARACTER

iii;;;iii
;; THIS ROUTINE IS JUMPED TO WHEN THE BACKSPACE KEY IS ;;
;; PRESSED WHILE ENTERING THE PASSWORD. IT ALLOWS THE ;;
;; USER TO MAKE CORRECTIONS WHILE ENTERING THE PASS- ;;
i; WORD. THE ROUTINE BACKS UP THE POINTER TO THE PASS-i;
i; WORD BY ONE CHARACTER AND ERASES THE LAST BOX DIS- ;;
;; PLAYED TO THE SCREEN. A CHECK IS MADE TO SEE IF THEi;
;; PASSWORD POINTER IS ALREADY AT THE START OF THE ;;
;; PASSWORD BUFFER TO PREVENT BACKING THE POINTER PAST ;;
;; THE START OF THE BUFFER. , ,
iii;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;;;;;;;;;;;;;;;iii

CMP
JLE

SI,OFFSET PASSWORD; CHECK IF WE'RE ALREADY AT THE START
NEXTCHAR IF SO, SKIP BACKING UP

DEC SI

DISPLAY
DISPLAY
DISPLAY

BAKSPACE
SPACE
BAKSPACE

JMP NEXTCHAR

POINT TO THE PREVIOUS CHARACTER

ECHO A BACKSPACE TO THE SCREEN
ERASE THE LAST CHARACTER
ECHO A BACKSPACE TO THE SCREEN

iii;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i
;; LOCK THE WSCTRL KEYBOARD SO THE USER CAN'T JUMP TO ;;
;; ANOTHER SESSION. LOCK OUT THE PC IPL SEQUENCE TO ;;
;; PREVENT THE USER FROM RESTARTING THIS PC SESSION. ;;
•••••••••••••••••••••••••••• to: •••••••••••••••••••••••••••

""""""""""""""""""""""""""""

Chapter 25. Sample Program 1 25-15

Sample Program 1

LOCK:

25-16

CALL CLEAR

Q$TASK
MOV PCTASKID,DX
CHEK4ERR

CLEAR THE SCREEN

FIND THE TASK ID OF THIS PC PROGRAM
SAVE THE TASK ID IN PCTASKID

NAME$RES SMGRNAME,SESSMGR
; FIND THE RESOLVED ID FOR 'SESSMGR '

CHEK4ERR

NAME$RES KYBDNAME,KEYBOARD
i FIND THE RESOLVED ID FOR 'KEYBOARD'

CHEK4ERR

iii;;;;;;j;;;;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;iii;
ii SET UP THE KEYSTROKE QUEUE AND CONNECT TO THE WSCTRL ii
i i KEYBOARD FOR THE LOCKWSC TASK. i i
iii;;ii;;;;;;;;;iii;

QUERY$ID SESSMGR,NAMARRAY,OOH,OlH
; GET THE SESSION ID FOR WSCTRL

CHEK4ERR QDRETNCD

MOV
MOV

WSQSEG,SEG WSQUEUE
WSQOFF,OFFSET WSQUEUE

CRT$Q WSQSEG,WSQOFF,WSQSIZE

INITIALIZE VARIABLES FOR KEY
BOARD QUEUE OFFSET AND SEGMENT

i CREATE A QUEUE TO RECEIVE KEYSTROKES
MOV WSQUEID,DX i SAVE THE KEYSTROKE QUEUE ID
CHEK4ERR

CONN$KEY KEYBOARD,WSCSESID,WSQUEID
; CONNECT TO WSCTRL KEYBOARD

CHEK4ERR CKRETNCD

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;;;;;
ii SET UP THE KEYSTROKE QUEUE AND CONNECT TO THE PC ;i
i; KEYBOARD FOR THE LOCKIPL TASK. ii
iii;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;

QBASW SESSMGR i GET THE SESSION ID FOR THIS PC SESSION
CHEK4ERR QSRETNCD

MOV
MOV

IPQSEG,SEG IPQUEUE
IPQOFF,OFFSET IPQUEUE

CRT$Q IPQSEG,IPQOFF,IPQSIZE

INITIALIZE VARIABLES FOR KEY
BOARD QUEUE OFFSET AND SEGMENT

i CREATE A QUEUE TO RECEIVE KEYSTROKES
MOV IPQUEID,DX i SAVE THE KEYSTROKE QUEUE ID
CHEK4ERR

CONN$KEY KEYBOARD,QSSESSID,IPQUEID
i CONNECT TO PC KEYBOARD

CHEK4ERR CKRETNCD

...
"""""""""""""""""""""""""""""'"
ii CREATE THE TASKS TO LOCK OUT WSCTRL AND THE PC IPL KEYS ii
;i SET THE TASKS AT A HIGHER PRIORITY (59) THAN THIS MAIN ;i
;i TASK (60) SO THAT THEY CAN BE GIVEN CONTROL WHEN IT IS ;;
;; TIME TO CLEAN UP. i;
iii;;;;;;;;;;i;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;i;;;iii;;;;

Sample Program 1

CRT$TASK LOCKWSC"WSCSTACK,OOH,59,LOCKWSID
; CREATE THE TASK TO INTERCEPT WSCTRL KEYS

MOV LOCKWSID,DX ; SAVE THE TASK ID IN LOCKWSID
CHEK4ERR

CRT$TASK LOCKIPL"IPLSTACK,OOH,59,LOCKIPID
; CREATE THE TASK TO INTERCEPT PC IPL KEYS

MOV LOCKIPID,DX ; SAVE THE TASK ID IN LOCKIPID
CHEK4ERR

iii;;;;;;;;;;;;;;;;;;;;;;;;;;
;; START THE TASKS RUNNING ;;
"""""""""""""",

SET$RDY LOCKWSID,OOH
; SET THE TASK RUNNING (NO WAIT)

CHEK4ERR

SET$RDY LOCKIPID,OOH
; SET THE TASK RUNNING (NO WAIT)

CHEK4ERR

iii;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;
;; READ IN KEYSTROKES AND CHECK FOR THE PASSWORD SEQUENCE ;;
iii;;;iii;;;

PROMPT

TRYAGAIN: LEA SI,PASSWORD

NXTPCHAR: DOSFUNCT INNOECHO

CMP
JNE

AL, [SI]
TRYAGAIN

PROMPT THE USER FOR THE PASSWORD

POINT SI TO THE START OF THE PASSWORD

READ A KEY WITHOUT ECHOING IT

CHECK IF IT MATCHES THE PASSWORD CHAR.
IF NOT, START OVER

INC SI ; POINT TO THE NEXT CHARACTER
CMP BYTE PTR [SI] ,CR ; CHECK IF WE'RE AT END OF THE PASSWORD
JNE NXTPCHAR ; IF NOT, CHECK NEXT PASSWORD CHARACTER

..
"""""""""""""""""""""""""""""" ;; THE CORRECT PASSWORD WAS ENTERED. START THE CLEAN UP. ;;
;; SEND A 90H SCAN CODE TO THE TASKS TO TELL THEM TO QUIT. ;;
;; RETURN TO THE DISPATCHER AFTER EACH 90H SCAN CODE IS ;;
;; SENT TO A TASK. THE TASKS WILL GET CONTROL AFTER A
;; RETURN TO THE DISPATCHER SINCE THEY ARE RUNNING AT A ; i
;; HIGHER PRIORITY THAN THIS MAIN TASK. ; ;
;; DISCONNECT THE TASKS FROM THEIR RESPECTIVE KEYBOARDS, ;;
;; DELETE THE KEYSTROKING QUEUES THAT WERE CREATED FOR i ;
;; EACH TASK, DELETE THE TASKS FROM THE SYSTEM, AND CLEAR ;;
;; THE SCREEN. ; ;
iii;;;;;;;;;iii;;;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;i;;;;;iii;;;

ENQUEUE

CHEK4ERR

4,WSQUEID,ENDDATA
SEND THE DATA TO SIGNAL THE END TO THE

LOCKWSC TASK

DISP$RET OOH RETURN TO THE DISPATCHER TO GIVE THE TASK
CONTROL SO IT CAN PROCESS THE DATA

ENQUEUE

CHEK4ERR

4, IPQUEID,ENDDATA
SEND THE DATA TO SIGNAL THE END TO THE

LOCKIPL TASK

Chapter 25. Sample Program 1 25-1 7

Sample Program 1

FINISH:

DISP$RET OOH ; RETURN TO THE DISPATCHER TO GIVE THE TASK
CONTROL SO IT CAN PROCESS THE DATA

DISC$KEY KEYBOARD,WSCSESID
; DISCONNECT THE LOCKWSC TASK FROM WSCTRL

CHEK4ERR DKRETNCD

DISC$KEY KEYBOARD,QSSESSID

CHEK4ERR DKRETNCD

DEL$ENT WSQUEID
CHEK4ERR

DEL$ENT IPQUEID
CHEK4ERR

DEL$ENT LOCKWSID
CHEK4ERR

DEL$ENT LOCKIPID
CHEK4ERR

CALL CLEAR
MOV AX,4COOH
INT 21H

PROCEDURE : CLEAR
FUNCTION :

DISCONNECT THE LOCKIPL TASK FROM THIS PC
SESSION

DELETE THE LOCKWSC KEYSTROKE QUEUE

DELETE THE LOCKIPL KEYSTROKE QUEUE

DELETE THE LOCKWSC TASK

DELETE THE LOCKIPL TASK

CLEAR THE SCREEN BEFORE EXITING
RETURN TO DOS

CLEAR THE PC SCREEN.

ESTABLISH CONSTANTS

SETCURS EQU
VIDSTAT EQU
WRITCHAR EQU

CLEAR PROC

MOV
INT

MOV
MOV
INT

MOV
MOV
MOV
INT

RET

CLEAR ENDP

25-18

02H
OFH
OAH

NEAR

AH,VIDSTAT
10H

DX,OOOOH
AH,SETCURS
10H

AL,SPACE
CX,2000
AH,WRITCHAR
10H

BIOS SET CURSOR FUNCTION NUMBER
BIOS GET VIDEO STATE FUNCTION NUMBER
BIOS WRITE CHARACTER WITHOUT ATTRIBUTE

GET THE STATE OF THE SCREEN

MOVE CURSOR TO HOME POSITION

DISPLAY A SCREENFUL OF BLANKS
25 X 80 2000 BLANKS

CHECKERR

ERROR:

CHECKERR

MAIN

LOCKWSC

PROCEDURE : CHECKERR
FUNCTION :

Sample Program 1

THIS PROCEDURE IS PASSED TWO RETURN CODES IN CL AN BL.
BL CONTAINS A RETURN CODE FROM THE FIRST BYTE IN A PARAMETER
LIST. BOTH CL AND BL ARE CHECKED FOR O'S. IF EITHER CONTAINS
A NON-ZERO RETURN CODE, AN ERROR MESSAGE IS DISPLAYED AND THE
PROGRAM IS TERMINATED.

NOTE: THIS IS A VERY SIMPLE ERROR HANDLER USED TO PRESERVE
PROGRAM FLOW AND IS NOT LISTED AS AN EXAMPLE OF AN
APPROPRIATE ERROR HANDLER. THIS ERROR HANDLER SIMPLY
TERMINATES THE PROGRAM WHEN AN ERROR IS ENCOUNTERED
LEAVING ANY RESOURCES, SUCH AS FIXED LENGTH QUEUES,
PRESENTATION SPACES, AND A CONNECTION TO THE WINDOW
SERVlCES, STILL ALLOCATED. A MORE APPROPRIATE ERROR
HANDLER WOULD DELETE ALL RESOURCES BEFORE TERMINATING.

PROC NEAR

CMP CL,O
JNE ERROR

CMP BL,O
JNE ERROR

RET

LEA DX,ERRMSG
DOSFUNCT DISPSTR

JMP FINISH

ENDP

ENDP

SUBTTL LOCKWSC
PAGE

PROCEDURE : LOCKWSC
FUNCTION :

CHECK THE RETURN CODE IN CL

CHECK THE RETURN CODE PASSED IN BL

RETURN TO THE CALLER

DISPLAY THE ERROR MESSAGE

TERMINATE THE PROGRAM AND EXIT TO DOS

THIS PROCEDURE IS KICKED OFF AS A SEPARATE TASK. ITS JOB
IS TO INTERCEPT AND DISCARD ALL WSCTRL KEYSTROKES. THIS
PREVENTS THE USER FROM ACCESSING THE WSCTRL FUNCTIONS.

THIS TASK WILL STOP INTERCEPTING KEYS AND SET ITSELF
"UNREADY" WHEN IT READS A 90H SCAN CODE. A 90H SCAN CODE IS A
SIGNAL FROM THE MAIN TASK TO STOP PROCESSING.

PROC

GETWSKEY: READ$KEY KEYBOARD,WSCSESID,PCTASKID

CMP RKSCANCD,90H

JE WSFINISH

JMP GETWSKEY

GRAB A KEYSTROKE OUT OF THE QUEUE WHEN
ONE IS READY

CHECK FOR THE SCAN CODE THAT SIGNALS THE
END

IF SO, QUIT READING KEYSTROKES AND SET
THIS TASK UNREADY

TRY FOR ANOTHER KEYSTROKE.

Chapter 25. Sample Program 1 25-19

Sample Program 1

WSFINISH: SETUNRDY LOCKWSID,OOH

LOCKWSC ENDP

SUBTTL LOCKIPL
PAGE

PROCEDURE : LOCKIPL
FUNCTION :

; SET THIS TASK UNREADY (NO WAIT)

THIS PROCEDURE IS KICKED OFF AS A SEPARATE TASK. ITS JOB IS TO
INTERCEPT AND DISCARD THE PC IPL KEY SEQUENCE (CTRL - ALT - DEL).
THIS PREVENTS THE USER FROM RE-IPLING THE PC SESSION.

THIS IS ACCOMPLISHED BY READING THE PC KEYSTROKES AND CHECKING
FOR THE CTRL-ALT-DEL KEYSTROKE. THIS KEYSTROKE IS DROPPED WHILE ALL
OTHERS ARE WRITTEN BACK TO THE PC SESSION.

THE BREAK KEYSTROKES ARE NOT SENT BACK TO THE PC SESSION SINCE
THE WRIT_KEY API SERVICE WILL TAKE CARE OF SENDING BREAK KEYSTROKES
TO THE PC SESSION. HOWEVER, ANY BREAK KEYSTROKES SENT THROUGH THE
API SERVICE WILL NOT AFFECT THE KEYSTROKING IN THE PC SESSION. BY
DROPPING THE BREAK KEYSTROKES THE SPEED OF THIS ROUTINE IS IMPROVED.

THIS TASK WILL STOP INTERCEPTING KEYS AND SET ITSELF "UNREADY"
WHEN IT READS A 90H SCAN CODE. A 90H SCAN CODE IS A SIGNAL FROM THE
MAIN TASK TO STOP PROCESSING.

ESTABLISH CONSTANTS

DEL_SCAN
CTRL
ALT

LOCKIPL

EQU
EQU
EQU

PROC

71H
OOOOlOOOB
OOOOOIOOB

3270 PC SCAN CODE FOR THE DELETE KEY
SHIFT STATE FOR CTRL KEY PRESSED
SHIFT STATE FOR ALT KEY PRESSED

GETPCKEY: READ_KEY KEYBOARD,QSSESSID,PCTASKID

CMP
JNE

RKSCANCD,OFOH
MAKE KEY

GRAB A KEYSTROKE OUT OF THE QUEUE WHEN ONE IS
READY

CHECK FOR THE "BREAK" KEYSTROKE
IF NOT THE BREAK THEN IT IS A MAKE KEYSTROKE

READ_KEY KEYBOARD,QSSESSID,PCTASKID

JMP GETPCKEY

GET THE SCAN CODE FOR THE BREAKING KEYSTROKE
FROM THE QUEUE.

GET ANOTHER KEYSTROKE

MAKEKEY: CMP
JNE
JMP

RKSCANCD,90H
VALIDKEY
IPFINISH

CHECK FOR THE SCAN CODE THAT SIGNALS THE END
IF NOT, CONTINUE PROCESSING
OTHERWISE, QUIT READING KEYSTROKES AND SET THIS

TASK UNREADY

25-20

iii;;;iii;;;;
;; CHECK IF THIS KEYSTROKE IS A CTRL-ALT-DEL. FIRST CHECK ;;
ii IF THE SCAN CODE IS FOR A DEL KEY. IF IT IS, THEN CHECK ;;
;; IF THE CTRL KEY IS PRESSED. IF THE CTRL KEY IS PRESSED ;;
;; THEN CHECK IF THE ALT KEY IS ALSO PRESSED. IF THESE ;;
;; THREE CONDITIONS ARE TRUE, THEN SKIP SENDING THIS KEY- ;;
;; STROKE TO THE PC SESSION. ;;
iii;;;;;;;;;;;;;;;;;;;;;;;ii;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;

VALIDKEY:

OKKEY:

Sample Program 1

CMP RKSCANCD,DEL_SCAN ; CHECK FOR THE DEL KEY
JNE OKKEY ; IF NOT, SEND THE KEYSTROKE TO THE PC

TEST RKSHIFST,CTRL CHECK IF THE CTRL KEY IS PRESSED
JZ OKKEY IF NOT, SEND THE KEYSTROKE TO THE PC

TEST RKSHIFST,ALT CHECK IF THE ALT KEY IS ALSO PRESSED
JZ OKKEY IF NOT, SEND THE KEYSTROKE TO THE PC

JMP GETPCKEY GET ANOTHER KEYSTROKE

WRIT_KEY KEYBOARD,QSSESSID,RKSCANCD,RKSHIFST",PCTASKID
SEND THE KEYSTROKE TO THE PC SESSION

JMP GETPCKEY TRY FOR ANOTHER KEYSTROKE.

IPFINISH: SETUNRDY LOCKIPID,OOH
i SET THIS TASK UNREADY (NO WAIT)

LOCKIPL ENDP

CODESEG ENDS

END

Chapter 25. Sample Program 1 25-21

Sample Program 1

25-22

Sample Program 2

Chapter 26. Sample Program 2

PAGE 80,132

PROGRAM : LOCK$WSC

FUNCTION
THIS PROGRAM WILL STOP A USER FROM

CONTROL WINDOWING FEATURES. NOTHING
KEY IS PRESSED. THIS ALLOWS A USER
THE RESTORE UTILITY BUT NOT TO CHANGE
ON THE SCREENS.

USING THE WORK STATION
WILL HAPPEN IF THE WSCTRL
TO SET UP THE SCREENS VIA
THE SET-UP OF THE WINDOWS

THE USER WILL ONLY BE ALLOWED TO JUMP BETWEEN WINDOWS AND
SCREENS, AND ENLARGE THE WINDOWS.

THIS WILL BE IMPLEMENTED BY CREATING A TASK THAT WILL INTERCEPT
ALL WORK STATION CONTROL KEYSTROKES AND ACCEPT ONLY THE JUMP
AND ENLARGE KEYS. THIS PROGRAM CAN BE USED AS A SYSTEM
EXTENSION. WHICH MEANS THAT THE WORK STATION CONTROL KEY IS
DISABLED WHEN THE 3270 PERSONAL COMPUTER CONTROL PROGRAM IS
LOADED.

IF THIS PROGRAM IS USED AS A PC APPLICATION, AND IT IS RUN
IN A MULTI-DOS SYSTEM, THEN IT MUST HAVE A PIF INDICATING THIS
PROGRAM IS ALL GOOD.

THIS PROGRAM WILL DEMONSTRATE THE FOLLOWING
API FUNCTIONS:

NAME RESOLUTION
QUERY SESSION ID
CONNECT TO THE KEYBOARD
CREATE A FIXED LENGTH QUEUE
CREATE A TASK
SET READY
READ INPUT
WRITE KEYSTROKE
GET REQUEST COMPLETION
QUERY ACTIVE TASK

; DOS FUNCTION CALLS
DISPSTRG EQU 09H PRINTING A STRING
DISPCHAR EQU 02H PRINTING A CHARACTER

; CONSTANTS
QRY$TYPE EQU OOH OPTION BYTE FOR QUERY ID, QUERY BY

SESSION TYPE
WSCTRL EQU 01H DATA BYTE FOR QUERY ID,WORK STATION

CONTROL
WSCTRL$K EQU 04H SCAN CODE FOR WORK STATION CONTROL KEY
NON$PRE EQU 01H A TASK IS NON-PREEMPTABLE
PRIO EQU 60 PRIORITY OF A TASK

Chapter 26. Sample Program 2 26-1

Sample Program 2

NO$WAIT EQU
STAK$SIZ EQU
INTERCEPT EQU

OOOOOOOOB
512
01000000B

NO WAIT, TASK IS DISPATCHABLE
SIZE OF PROGRAM STACK
INTERCEPT ALL KEYSTROKES FOR WS CNTRL

USED BY CONNECT TO THE KEYBOARD API

MACRO NAME
PARAMETERS

FUNCTION :

*** MACRO DEFINITIONS ***

NAME$RES
NR$SERVN-- LOCATION OF THE 8 BYTE

SERVICE NAME. I.E. 'SESSMGR '
NR$SERVT-- RETURN THE RESOLVED VALUE FOR THE SERVICE

USE THE NAME$RES SERVICE TO OBTAIN THE SERVICE TYPE FOR
THE SERVICE NAME YOU SPECIFY.

NAME$RES MACRO NR$SERVN,NR$SERVT

26-2

; INITIALIZE REGISTERS FOR
MOV AX,SEG NR$SERVN

NAME$RES
SEGMENT ADDRESS OF PARM LIST
ES SEGM ADDRESS OF PARM LIST
AH X' 81'

MOV ES,AX
MOV AH,81H
MOV DI,OFFSET NR$SERVN DI OFFSET ADDR. OF PARM LIST

; SIGNAL WORKSTATION PROGRAM FOR NAME$RES SERVICE
INT 7AH

; RETURN SERVICE TYPE ID TO CALLER
MOV NR$SERVT,DX
ENDM

MACRO NAME
PARAMETERS

FUNCTION

Q$ID
QIDARRYN - ARRAY NAME, MEMORY LOCATION NAME
QIDOPT - OPTION BYTE

OlH = SPECIFY SHORT OR LONG NAME
OOH = SPECIFY A SESSION TYPE,IE PC

QIDDATA - DATA BYTE
OlH=WSCTL,02H=DFT,03H=CUT,
04H=NOTEPAD,05H=P.C,O=SPECIFY SHORT
OR LONG NAME

LSESSNAM - LONG SESSION NAME, MEMORY LOCATION
NAME. THIS IS OPTIONAL.

SERVTYPE - NAME RESOLUTION FOR SESSMGR
QID$RETC - THE RETURN CODE FOUND IN THE

PARAMETER LIST (NOT IN THE CL REG.)

USE THIS SERVICE TO OBTAIN THE SESSION ID OF THE SESSION
YOU SPECIFY.

NOTE- THE NAMES ARRAY MUST BE DECLARED BY THE CALLER
THE ARRAY LENGTH IN THE NAMES ARRAY MUST BE INITIALIZED
BY THE CALLER.

Sample Program 2

QUERY$ID MACRO QIDARRYN,QIDOPT,QIDDATA,LSESSNAM,SERVTYPE,QID$RETC

MOV AX,SEG QDRCODE ADDRESSABILITY TO
MOV ES,AX ; PARAMETER LIST
MOV DI,OFFSET QDRCODE

USING ES:DI

; INITIALIZE PARAMETER LIST FOR QUERY$ID
MOV QDRCODE,OOH
MOV QDFXNID,OOH

RETURN CODE = 0 ON REQUEST
FUNCTION CODE=O ON REQUEST

MOV AL,QIDOPT
MOV QDOPT,AL
MOV AL,QIDDATA
MOV QDDATA,AL
MOV QDAOFF,OFFSET

OPTION BYTE

; DATA BYTE
QIDARRYN

MOV
; ARRAY OFFSET

QDASEG,SEG QIDARRYN
; ARRAY SEGMENT

THERE A LONG SESSION NAME ?
<LSESSNAM> ; IF NAME IS SPECIFIED,

; IS
IFNB
CLD
PUSH
MOV
MOV

; THEN BEGIN MOVING NAME

MOV
MOV
MOV

REP
POP
ENDIF

; SET
MOV
MOV
MOV
MOV
MOV

UP

DS ; INTO PARAMETER LIST
CX,4 ; NAME IS FOUR WORDS LONG
SI,OFFSET LSESSNAM

SOURCE OFFSET IN SI
AX,SEG LSESSNAM
DS,AX SOURCE SEGMENT IN DS
DI,OFFSET QDLNAM

DESTINATION OFFSET IN DI
MOVSW MOVE SESSION NAME TO PARAMETER LIST
DS

REGISTERS FOR QUERY$ID
AX,0901H AH 09H, AL OlH
BX,8020H BH 80H, BL 20H
CX,OOOOH CX OOOOH
DX,SERVTYPE ; DX SESSION SERVICE TYPE
DI,OFFSET QDRCODE

OFFSET ADDRESS OF PARAM LIST

; REQUEST QUERY$ID SERVICE
INT 7AH

; SEND RETURN CODE BACK TO CALLER
MOV BL,QDRCODE
MOV QID$RETC,BL

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CONN$KEY
SERVTYPE
SESSID
KEYSTQ
EVNTQ
OPT

SERVICE TYPE
SESSION ID
KEYSTROKE QUEUE ID (OPTIONAL)
EVENT QUEUE ID (OPTIONAL)
RECEIVE ALL, SOME OR NO KEYSTROKES

CONNECT THE KEYBOARD TO THE SPECIFIED SESSION.

Chapter 26. Sample Program 2 26-3

Sample Program 2

CONN$KEY MACRO SERVTYPE,SESSID,KEYSTQ,EVNTQ,OPT

CRT$Q

26-4

; INITIALIZE PARAMETER
MOV CKRETNCD,OOH
MOV CKFXNID,OOH

LIST FOR CONN$KEY

MOV AL,SESSID
MOV CKSESSID,AL
MOV AL,OPT
MOV CKOPTION,AL

IFNB <KEYSTQ>
MOV AX,KEYSTQ
ELSE
MOV AX,O
ENDIF
MOV CKKEYSTQ,AX

IFNB <EVNTQ>
MOV AX,EVNTQ
ELSE
MOV AX,O
ENDIF
MOV CKEVENTQ,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

OPTION BYTE INTO LIST

IF A KEYSTROKE QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

IF AN EVENT QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

; INITIALIZE REGISTERS FOR CONN$KEY
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG CKRETNCD
MOV ES,DI
MOV DI,OFFSET CKRETNCD

SERVICE TYPE IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CONN$KEY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CRT$Q
Q

QNAME

NUMBYTES -
RET$ID

Q IS THE MEMORY LOCATION NAME
FOR THE QUEUE
QNAME IS THE USERS NAME FOR THE
NEWLY CREATED QUEUE. QNAME IS
OPTIONAL. CRT$Q EXPECTS QNAME TO BE
REFERENCED BY THE DS REGISTER
NUMBER OF BYTES IN THE QUEUE
CRT$Q RETURNS THE QUEUES ID

USE THE CRT$Q SERVICE TO CREATE A FIXED LENGTH QUEUE
ENTRY.

MACRO Q,QNAME,NUMBYTES,RET$ID

MOV
MOV
MOV

AX,SEG CQQOFFS
ES,AX
DI,OFFSET CQQOFFS

ADDRESSABILITY TO
PARAMETER LIST
USING ES:DI

Sample Program 2

; INITIALIZE FIRST 2 ENTRIES OF PARAMETER LIST
MOV CQQOFFS,OFFSET Q i OFFSET OF QUEUE
MOV CQSEGM,SEG Q i SEGMENT OF QUEUE

; USER SPECIFY
IFNB <QNAME>
MOV BL,OlH
CLD

A QUEUE NAME?

MOV
MOV
MOV
REP
ELSE

CX,4
SI,OFFSET
DI,OFFSET
MOVSW

IF THERE IS A QUEUE NAME THEN
INDICATE A QNAME IS SPECIFIED
BEGIN MOVING QNAME TO THE PARAM
QNAME IS FOUR WORDS LONG

QNAME i SOURCE OFFSET OF QUEUE
CQQNAMEiDESTINATION OFFSET IS CQQNAME

MOVE QNAME TO PARAMETER LIST

LIST

MOV
ENDIF

BL,OOH ELSE INDICATE QNAME IS NOT SPECIFIED

i INITIALIZE REGISTERS FOR CRT$Q
MOV CX,NUMBYTES i CX = NUMBER OF BYTES FOR QUEUE
MOV AH,04H
MOV DI,OFFSET CQQOFFSiDI = OFFSET OF PARAM LIST

i SIGNAL WORKSTATION PROGRAM FOR CRT$Q SERVICE
INT 7AH

MOV RET$ID,DX

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CRT$TASK
TASK
NAME
STACK
PREEMPT
PRIORITY
DATA

CREATES A TASK .

RETURN THE QUEUE ID TO CALLER

TASK TO BE CREATED
NAME OF THE TASK
STACK FOR THE TASK
PREEMPTION TYPE
PRIORITY OF THE TASK
A DATA ITEM IN DATASEG ACCESSED BY THE
TASK IN ORDER TO PUT THE DATA SEG IN
TASKS STACK

CRT$TASK MACRO TASK,NAME,STACK,PREEMPT,PRIORITY,DATA

REP

; INITIALIZE PARAMETER
MOV AX,OFFSET STACK
ADD AX,232

LIST FOR CRT$TASK

MOV CTTSKOFF,AX
MOV AX,SEG STACK
MOV CTTSKSEG,AX

MOV BL,O
IFNB <NAME>

MOV
MOV
MOV
MOV
MOV
MOV
MOVSB

ENDIF

BL,l
AX,SEG CTTSKNAM
ES,AX
DI,OFFSET CTTSKNAM
SI,OFFSET NAME
CX,8

GET THE OFFSET OF THE TASK'S STACK
INCREMENT THE SP TO POINT AT THE

START OF REGISTER RESTORE AREA
PUT TASK'S SP IN PARAMETER LIST
PUT TASK'S SS IN PARAMETER LIST

BL = 0 IF NO NAME SPECIFIED
IF THERE IS A NAME SPECIFIED, PUT

IT IN THE PARAMETER LIST
BL = 1 IF A NAME IS SPECIFIED
ES:DI POINT TO DESTINATION IN PARM

LIST

DS:SI POINT TO SOURCE OF THE NAME
MOVE 8 BYTES
COpy THE NAME INTO THE PARM LIST

Chapter 26. Sample Program 2 26-5

Sample Program 2

SET$RDY

26-6

; INITIALIZE
PUSH DS

THE TASK'S STACK

MOV AX,SEG STACK
MOV DS,AX

; SAVE DS
; GET THE TASK'S STACK SEGMENT

MOV SI,OFFSET STACK ; DS:SI NOW POINT TO THE TASK STACK
MOV WORD PTR [SI+254] ,OF242H

SET FLAGS IN THE STACK
MOV AX,SEG TASK
MOV WORD PTR [SI+252],AX

SET SEGMENT OF TASK IN STACK
MOV AX,OFFSET TASK
MOV WORD PTR [SI+250] ,AX

SET OFFSET OF TASK IN STACK
MOV AX,SEG DATA

; YOU NEED THE DATA SEGMENT
MOV WORD PTR [SI+234] ,AX

TO GET TO THE VARIABLES
POP DS RESTORE DS

; INITIALIZE REGISTERS FOR CRT$TASK
MOV AH,92H
MOV BH,PREEMPT
MOV CX,PRIORITY
MOV DI, SEG CTTSKOFF
MOV ES,DI
MOV DI,OFFSET CTTSKOFF

PREEMPTION TYPE IN BH
PRIORITY IN CX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CRT$TASK SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

SET$RDY
REPLYTYP
WAITTYPE
PRIORITY
SERVTYPE
SESSID

REPLY TYPE
WAIT TYPE
PRIORITY
SERVICE TYPE
SESSION ID

SET THE SPECIFIED TASK TO THE "READY" STATE.

MACRO TASKID,WAITTYPE

; INITIALIZE REGISTERS FOR SET$RDY
MOV AH,02H
MOV BL,WAITTYPE WAIT TYPE IN BL
MOV DX,TASKID TASK ID IN DX

; SIGNAL WORKSTATION PROGRAM FOR SET$RDY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION

READ$KEY
SERVTYPE
SESSID
TASKID

SERVICE TYPE
SESSION ID
ID OF TASK (OPTIONAL)

Sample Program 2

THIS SERVICE READS KEYSTROKE DATA FROM A SESSION.

READ$KEY MACRO SERVTYPE,SESSID,TASKID

; INITIALIZE PARAMETER
MOV RKRETNCD,OOH
MOV RKFXNID,OOH

LIST FOR READ$KEY

MOV AL,SESSID
MOV RKSESSID,AL
IFNB <RKTASKID>
MOV AX,TASKID
ELSE
MOV AX,O
ENDIF
MOV RKTASKID,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

IF A TASK ID WAS SPECIFIED, PUT IT
IN THE LIST, ELSE PUT IN A 0

; INITIALIZE REGISTERS FOR READ$KEY
MOV AH,09H
MOV AL,03H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG RKRETNCD
MOV ES,DI
MOV DI,OFFSET RKRETNCD

SERVICE TYPE IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR READ$KEY SERVICE
INT 7AH

ENDM

MACRO : WRIT$KEY
PARAMETERS : SERVTYPE

SESSID
SCANCD
SHIFST
LISTOFF
LISTSEG
TASKID

FUNCTION :

SERVICE TYPE
SESSION ID
SCAN CODE
SHIFT STATE
LIST OFFSET (OPTIONAL)
LIST SEGMENT (OPTIONAL)
CONNECTOR'S TASK ID (OPTIONAL)

SEND A KEYSTROKE OR A LIST OF KEYSTROKES TO THE
SPECIFIED SESSION.

WRIT$KEY MACRO SERVTYPE,SESSID,SCANCD,SHIFST,LISTOFF,LISTSEG,TASKID
LOCAL WKEND

MOV
MOV
MOV
MOV

WKPARLST.WKRETNCD,OH
WKPARLST.WKFXNID,OH
AL,SESSID
WKPARLST.WKSESSID,AL

IFNB <SCNCD>

WKRETCD MUST BE 0 FOR THE CALL
WKFXNID MUST BE 0 FOR THE CALL
PUT THE SESSION ID IN PARM LIST

CHECK IF SENDING ONE KEYSTROKE
OR A LIST OF KEYSTROKES

Chapter 26. Sample Program 2 26-7

Sample Program 2

; SENDING ONE KEYSTROKE

MOV
MOV
MOV
MOV

MOV
MOV

ELSE

AL,SCANCD
WKPARLST.WKSCNCOD,AL
AL,SHIFST
WKPARLST.WKSHFST,AL

AL,20H
WKPARLST.WKOPTION,AL

PUT THE SCAN CODE IN THE PARM LIST

PUT SHIFT STATE IN THE PARM LIST

PUT THE OPTION BYTE FOR SENDING
ONE CHARACTER IN THE PARM LIST

; SENDING A LIST OF KEYSTROKES

MOV
MOV
MOV
MOV
MOV
MOV

ENDIF

AX,LISTOFF
WKPARLST.WKLSTOFF,AX
AX,LISTSEG
WKPARLST.WKLSTSEG,AX
AL,30H
WKPARLST.WKOPTION,AL

IFNB <TASKID>
MOV AX,TASKID
ELSE
MOV AX,O
ENDIF
MOV WKPARLST.WKTASKID,AX

PUT THE OFFSET ADDRESS OF THE LIST
INTO THE PARAMETER LIST

PUT THE SEGMENT ADDRESS OF THE LIST
INTO THE PARAMETER LIST

PUT THE OPTION BYTE FOR SENDING A
LIST OF CHARS. IN THE PARM LIST

IF A CONNECTOR'S TASK ID WAS
SPECIFIED, PUT IT IN THE LIST

OTHERWISE PUT A 0 IN THE LIST

; INITIALIZE THE REGISTERS FOR WRIT$KEY
MOV AH,09H
MOV AL,04H
MOV BH,40H
MOV BL,40H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG WKPARLST
MOV ES,DI
MOV DI, OFFSET WKPARLST

INT 7AH

CMP CL,OOH
JNE WKEND

GET$COMP OOH

SERVICE TYPE IN DX
GET SEGMENT ADDRESS OF PARM LIST

AND PUT IT IN ES
SET DI TO OFFSET OF PARM LIST

PASS THE REQUEST TO THE API

CHECK FOR AN OK RETURN CODE
IF NOT OK, SKIP GETTING RESULTS

GET THE RESULTS. DON'T WAIT.

WKEND: NOP

26-8

ENDM

MACRO : GET$COMP
FUNCTION:

USE THIS SERVICE TO OBTAIN THE CONTENTS OF A SPECIFIED
REQUEST QUEUE ELEMENT.
ONE PARAMETER IS PASSED THAT INDICATES WHETHER THE USER
WANTS TO WAIT UNTIL RESULTS ARE READY (40H) OR TO CHECK IF
RESULTS ARE AVAILABLE AND GET THEM IF THEY ARE READY (OOH).

GET$COMP MACRO WAIT

MOV BL,WAIT
MOV AH,83H
MOV CX,OOOOH
INT 7AH

ENDM

STACKSEG SEGMENT STACK 'STACK'
DB STAK$SIZ DUP(?)

STACKSEG ENDS

DATASEG SEGMENT 'DATASEG'

Sample Program 2

SET UP THE REGS FOR A GET$COMP CALL

STACK SPACE

; NAME$RES PARAMETER LIST ELEMENT, SERVICE NAME
SESSMGR DB 'SESSMGR '
KEYBOARD DB 'KEYBOARD'

; RETURNED SERVICE TYPES FROM NAME$RES
SMGR DW 0
KEYB DW 0

; NAME ARRAY FORMAT FOR Q$ID
LENARRAY DB 22
MATCHES DB 0
SNAME$l DB 0
STYPE$l DB 0
SESSID$l DB 0
SPARE$l DB 0
LNAME$l DB 0

DB 15 DUP(O)

; DEFINE PARAMETER LIST FOR QUERY$ID

QDRCODE DB
QDFXNID DB
QDOPT DB
QDDATA DB
QDAOFF DW
QDASEG DW
QDLNAM DB

o
o
o
o
o
o
8 DUP (' ')

; PARAMETER LIST FOR CRT$TASK

CTTSKOFF DW
CTTSKSEG DW
CTTSKNAM DB

o
o
8 DUP(?)

NUMBER OF BYTES IN NAME ARRAY
NUMBER OF MATCHING SESSIONS
SHORT NAME OF MATCHING SESSION
TYPE OF MATCHING SESSION
SESSION ID OF MATCHING SESSION

LONG NAME OF MATCHING SESSION

RETURN CODE
FUNCTION ID
OPTION BYTE
DATA BYTE
NAMES ARRAY OFFSET
NAMES ARRAY SEGMENT ADDRESS
WINDOW LONG NAME

OFFSET OF TASK TO BE CREATED
SEGMENT OF TASK TO BE CREATED
TASK NAME

Chapter 26. Sample Program 2 26-9

Sample Program 2

; PARAMETER LIST FOR CONN$KEY

CKRETNCD DB 0
CKFXNID DB 0
CKSESSID DB 0
CKRESRVI DB 0
CKEVENTQ DW 0
CKKEYSTQ DW 0
CKOPTION DB 0
CKRESRV2 DB 0

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
EVENT QUEUE ID
KEYSTROKE QUEUE ID
OPTION BYTE
RESERVED

; PARAMETER LIST STRUCTURE FOR WRIT$KEY

WRKYPARM
WKRETNCD
WKFXNID
WKSESSID
WKSPARE
WKTASKID
WKOPTION
WKNUMKEY
WKSCNCOD
WKSHFST
WKRESRV2
WRKYPARM
WRKYPAR2

WKLSTOFF
WKLSTSEG
WRKYPAR2

STRUC
DB 0
DB 0
DB 0
DB 0
DW 0
DB 0
DB 0
DB 0
DB 0
DW 0
ENDS
STRUC
DB 8 DUP(OO)
DW 0
DW 0
ENDS

; ALLOCATE STORAGE FOR THE PARAMETER LIST

WKPARLST WRKYPARM <>

i PARAMETER LIST FOR READ$KEY

RKRETNCD DB 0
RKFXNID DB 0
RKSESSID DB 0
RKRESRVI DB 0
RKTASKID DW 0
RKOPTION DB 20H
RKRESRV2 DB 0
RKSCANCD DB 0
RKSHIFST DB 0
RKDEVID DB 0
RKRESRV3 DB 0

DEFINE PARAMETER LIST FOR CRT$Q

CQQOFFS DW 0
CQSEGM DW 0
CQQNAME DB 8 DUP(' ')

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
OPTION BYTE (INTERCEPT ALL)
RESERVED
SCAN CODE
SHIFT STATE
DEVICE ID
RESERVED

; DECLARE A STACK FOR TASK, USED BY CRT$TAST API FUNCTION
TASK$STK DB 256 DUP(?)
TASK$ID DW 0 ; TASK ID RETURNED FROM CRT$TASK

26-10

Sample Program 2

; CREATE AREA FOR A QUEUE, USED BY CRT$Q API FUNCTION
QUE DB 100 DUP(?)
LEN$Q DW 100 LENGTH OF QUEUE
Q$ID DW 0 ., QUEUE ID RETURNED FROM CRT$Q

CONNID
;
RCODE

DW 0

DB 0

THE ID OF THE TASK THAT CONNECTS TO
WSCTRL

RETURN CODE FORM Q$ID PARAM LIST

DLAST DB 0 LAST BYTE IN THE DATA SEGMENT
DATASEG ENDS

*** MAIN BODY ***

ZCODE SEGMENT 'CODE'

START:

; ESTABLISH ADDRESSABILITY OF CODE
ASSUME CS:ZCODE
; ESTABLISH ADDRESSABILITY OF DATA

MOV
MOV
ASSUME

AX,DATASEG
DS,AX
DS:DATASEG

; THE CODE THAT WILL CREATE THE TASK WILL FOLLOW THE ACTUAL
; DEFINITION OF THE TASK
JMP INITTSK

*** TASK DEFINITION ***

TASK PROC FAR
READ A KEYSTROKE THAT IS DIRECTED TO WORK STATION CONTROL
NOTE: THE CONNECTOR'S ID (CONNID) IS USED BY THE READ$KEY

FUNCTION BECAUSE THE TASK THAT REQUESTED THE CONNECT
TO WORK STATION CONTROL IS DIFFERENT FROM THE TASK THAT

; IS REQUESTING THE READ KEYSTROKE.
READKEYS: READ$KEY KEYB,SESSID$l,CONNID

; IF THE KEYSTROKE IS FOR WORK STATION CONTROL THEN IGNORE
; IT AND READ THE NEXT KEYSTROKE.
eMP RKSCANCD,WSCTRL$K
JE READKEYS

THE KEYSTROKE MUST BE THE ENLARGE WINDOW OR JUMP KEY.
SEND THE KEYSTROKE TO WORK STATION CONTROL TO BE PROCESSED.
NOTE: THE CONNECTOR'S ID (CONNID) IS USED BY THE WRIT$KEY

FUNCTION BECAUSE THE TASK THAT REQUESTED THE CONNECT
TO WORK STATION CONTROL IS DIFFERENT FROM THE TASK THAT

; IS REQUESTING THE WRITE KEYSTROKE.
WRIT$KEY KEYB,SESSID$l,RKSCANCD,RKSHIFST",CONNID

; CONTINUE READING KEYSTROKES
JMP READKEYS

TASK ENDP

Chapter 26. Sample Program 2 26-11

Sample Program 2

*** INITIALIZATION CODE ***

; REQUEST THE NAME RESOLUTION FOR THE SESSION MANAGER
INITTSK: NAME$RES SESSMGR,SMGR

26-12

; REQUEST THE NAME RESOLUTION FOR THE KEYBOARD
NAME$RES KEYBOARD,KEYB

; GET THE SESSION ID FOR WORK STATION CONTROL
QUERY$ID LENARRAY,QRY$TYPE,WSCTRL"SMGR,RCODE

; CREATE A QUEUE IN ORDER TO BE ABLE TO INTERCEPT WSCTRL KEYS
CRT$Q QUE"LEN$Q,Q$ID

; FIND
; THIS
; WORK
; READ
MOV
INT
MOV

OUT THE TASK ID OF THE INITIALIZATION CODE.
IS THE ID OF THE TASK THAT IS CONNECTING TO
STATION CONTROL. THIS ID WILL BE NEEDED LATER TO
AND WRITE KEYSTROKES.

AH,9CH QUERY ACTIVE TASK REQUEST
7AH
CONNID,DX SAVE TASK'S ID ON RETURN

; CONNECT TO WORK STATION CONTROL, IN ORDER TO INTERCEPT
; KEYSTROKES THAT ARE DIRECTED TO WORK STATION CONTROL
CONN$KEY KEYB,SESSID$l,Q$ID"INTERCEPT

; CREATE A TASK, NEWLY CREATED TASKS ARE CREATED UNREADY
CRT$TASK TASK"TASK$STK,NON$PRE,PRIO,KEYB
MOV TASK$ID,DX ; SAVE TASK ID

; SET THE TASK READY
SET$RDY TASK$ID,NO$WAIT

; EXIT AND STAY RESIDENT
CALL EXIT$RES

*** PROCEDURE DEFINITION ***

PROCEDURE : EXIT$RES
FUNCTION :

CALCULATE THE SIZE OF THIS PROGRAM THAT WILL REMAIN RESIDENT.
(STACK + SIZE OF TASK + DATA)
EXIT FROM THIS PROGRAM BUT STAY RESIDENT IN MEMORY.

Sample Program 2

EXIT$RES PROC NEAR

i CALCULATE THE LENGTH OF THIS PROGRAM
MOV AX,OFFSET DLAST LENGTH OF DATA
ADD AX,STAK$SIZ + LENGTH OF STACK
ADD AX,OFFSET INITTSK + LENGTH OF TASK
ADD AX,lOOH + LENGTH OF THE PSP
MOV CL,4 CALCULATE THE LENGTH OF THIS PROGRAM
SAR AX,CL IN PARAGRAPHS (DIVIDE BY SIXTEEN)
INC AX ROUND UP

MOV DX,AX STORE IN DX FOR THE DOS INTERRUPT
MOV AH,31H DOS FUNCTION CALL TO
INT 21H EXIT & REMAIN

RESIDENT
EXIT$RES ENDP

ZCODE ENDS END.CODE SEGMENT
END START

Chapter 26. Sample Program 2 26-13

Sample Program 2

26-14

Sample Program 3

Chapter 27. Sample Program 3

TITLE WNDWSMRY
PAGE 60,132

PROGRAM : WNDWSMRY

FUNCTION :
THIS PROGRAM PRESENTS A SUMMARY OF THE USER'S CURRENTLY

ACTIVE SESSIONS. A SAMPLE WINDOW IS DISPLAYED FOR EACH SESSION.
THE WINDOWS ARE DISPLAYED ACCORDING TO SESSION TYPE, FIRST THE
PC WINDOWS, THEN THE HOST WINDOWS, THEN THE NOTEPAD WINDOWS.
A MESSAGE IN THE LOWER LEFT CORNER TELLS THE NUMBER OF WINDOWS
FOR THAT SESSION TYPE. THE USER IS THEN PROMPTED TO PRESS A
KEY TO INITIATE THE PROGRAM EXIT.

A PROBLEM ARISES IN DISPLAYING THE MESSAGE IN THE LOWER
LEFT CORNER. ANY MESSAGE MUST BE DISPLAYED IN A WINDOW. BUT THE
WINDOW THIS PROGRAM WILL RUN IN IS ONE OF THE SAMPLE WINDOWS TO
BE DISPLAYED. TO SOLVE THIS, AN ALTERNATE PRESENTATION SPACE IS
CREATED. THE MESSAGE IS DISPLAYED IN THE LOWER LEFT CORNER OF
THE ALTERNATE PRESENTATION SPACE AND A SIZED WINDOW OF EACH OF
THE OTHER SESSIONS IS DISPLAYED ON TOP OF THE ALTERNATE PRESEN
TATION SPACE.

EACH WINDOW IS SIZED TO 4 ROWS BY 14 COLUMNS. THIS SIZING
PERMITS 20 WINDOWS (THE MAXIMUM NUMBER OF WINDOWS ON THE 3270
PC) TO BE DISPLAYED IN A 5 BY 4 ARRAY ON THE SCREEN.

IN ORDER TO PRESERVE THE USER'S CURRENT WINDOW AND SCREEN
SETUP, THE PROGRAM DOES ALL THE WORK ON AN UNUSED SCREEN
PROFILE. A SEARCH IS MADE STARTING AT SCREEN 9 AND COUNTING
DOWN FOR A SCREEN PROFILE THAT HAS NO WINDOWS. IF NO BLANK
SCREEN IS FOUND, THEN A MESSAGE IS DISPLAYED INDICATING A BLANK
SCREEN IS NEEDED AND THE PROGRAM ENDS. ONCE AN UNUSED SCREEN
PROFILE IS FOUND, THE ALTERNATE PRESENTATION SPACE IS BROUGHT
TO THAT SCREEN. THEN A SIZED AND COLORED WINDOW OF EACH OF THE
SESSIONS IS BROUGHT TO THE SCREEN WITH THE MESSAGE IN THE ALT
ERNATE PRESENTATION SPACE SHOWING THE NUMBER AND TYPE OF THE
WINDOWS BEING DISPLAYED.

THIS PROGRAM USES THE FOLLOWING API FUNCTIONS:

SELECT ACTIVE SCREEN
SELECT ACTIVE WINDOW
ADD WINDOW
CLEAR SCREEN
CONNECT TO WORK STATION CONTROL
CHANGE ENLARGE STATE ')
CHANGE WINDOW POSITION ON SCREEN
CHANGE WINDOW COLORS
CHANGE WINDOW SIZE
DEFINE PRESENTATION SPACE
DISCONNECT FROM WORK STATION CONTROL
DELETE PRESENTATION SPACE
NAME RESOLUTION
QUERY SESSION ID
QUERY ACTIVE SCREEN
QUERY ACTIVE WINDOW
QUERY ENLARGE STATE
QUERY BASE WINDOW
QUERY WINDOW NAMES

Chapter 27. Sample Program 3 27-1

Sample Program 3

SUBTTL CONSTANTS
PAGE

ESTABLISH CONSTANTS

CR
LF
DISPSTR
INKEY
RED
GREEN
BLUE
WHITE

ACT$SCR

27-2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

13
10
9
8
00000100B
00000010B
00000001B
00000111B

SUBTTL MACROS

.SALL

MACRO NAME
PARAMETERS

ACT$SCR
SERVTYPE
SESSID
SCREEN

FUNCTION

ASCII FOR A CARRIAGE RETURN
ASCII FOR A LINE FEED
DOS DISPLAY CHARACTER FUNCTION NUMBER
DOS INPUT CHARACTER FUNCTION NUMBER
ATTRIBUTE BYTE FOR RED ON BLACK
ATTRIBUTE BYTE FOR GREEN ON BLACK
ATTRIBUTE BYTE FOR BLUE ON BLACK
ATTRIBUTE BYTE FOR WHITE ON BLACK

SUPPRESS LISTING ALL MACROS

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN PROFILE NUMBER

MAKE THE SPECIFIED SCREEN PROFILE THE ACTIVE SCREEN.

MACRO SERVTYPE,SESSID,SCREEN

i INITIALIZE PARAMETER
MOV ASRETNCD,OOH

LIST FOR ACT$SCR

MOV ASFXNID,OOH
MOV AL,SESSID
MOV ASSESSID,AL
MOV 'AL,SCREEN
MOV ASSCREEN,AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER

i INITIALIZE REGISTERS FOR ACT$SCR
MOV AH,09H
MOV AL,lCH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG ASRETNCD
MOV ES,DI
MOV DI,OFFSET ASRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR ACT$SCR SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

ACT$WNDW
SERVTYPE
SESSID
SCREEN
WINDOW

Sample Program 3

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN NUMBER
WINDOW SHORT NAME

MAKE A WINDOW ON THE SPECIFIED SCREEN PROFILE THE
ACTIVE WINDOW.

ACT$WNDW MACRO SERVTYPE,SESSID,SCREEN,WINDOW

; INITIALIZE PARAMETER
MOV ACRETNCD,OOH
MOV ACFXNID,OOH
MOV AL,SESSID
MOV ACSESSID,AL
MOV AL,SCREEN
MOV ACSCREEN,AL
MOV AL,WINDOW
MOV ACWINDOW,AL

LIST FOR ACT$WNDW
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER

WINDOW SHORT NAME

; INITIALIZE REGISTERS FOR ACT$WNDW
MOV AH,09H
MOV AL,14H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG ACRETNCD
MOV ES,DI

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
MOV DI,OFFSET ACRETNCD OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR ACT$WNDW SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

ADD$WNDW
SERVTYPE
SESSID
SCRPRO
WINDN

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

ADD A WINDOW FROM SCREEN PROFILE 0 TO THE SPECIFIED
SCREEN PROFILE. THE ADDED WINDOW BECOMES THE ACTIVE
WINDOW. WINDOWS CANNOT BE ADDED TO SCREEN PROFILE O.

ADD$WNDW MACRO SERVTYPE,SESSID,SCRPRO,WINDN

; INITIALIZE PARAMETER
MOV AWRETNCD,OOH
MOV AL,SESSID
MOV AWSESSID,AL
MOV AL,SCRPRO
MOV AWSCRPRO,AL
MOV AL,WINDN
MOV AWWINDN,AL

LIST FOR ADD$WNDW
AWRETNCD MUST BE 0 BEFORE REQUEST
SESSION ID

IN LIST
SCREEN PROFILE NUMBER

IN LIST
WINDOW SHORT NAME

IN LIST

; INITIALIZE REGISTERS FOR ADD$WNDW
MOV AH,09H
MOV AL,03H
MOV BH,80H
MOV BL,20H

Chapter 27. Sample Program 3 27-3

Sample Program 3

MOV
MOV
MOV
MOV
MOV

CX,OFFH
DX,SERVTYPE
DI, SEG AWRETNCD
ES,DI
DI,OFFSET AWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR ADD$WNDW SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CLEAR$SC
SERVTYPE
SESSID
SCRPRO

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

DELETE ALL WINDOWS FROM THE SPECIFIED SCREEN PROFILE.
WINDOWS CAN NOT BE DELETED FROM SCREEN PROFILE O.

CLEAR$SC MACRO SERVTYPE,SESSID,SCRPRO

; INITIALIZE PARAMETER
MOV CLRETNCD,OOH
MOV CLFXNID,OOH
MOV AL,SESSID
MOV CLSESSID,AL
MOV AL,SCRPRO
MOV CLSCRPRO,AL

LIST FOR CLEAR$SC
CLRETNCD MUST BE 0 BEFORE REQUEST
CLFXNID MUST BE 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY$ID
SCREEN PROFILE NUMBER

IN LIST

; INITIALIZE REGISTERS FOR CLEAR$SC
MOV AH,09H
MOV AL,13H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG CLRETNCD
MOV ES,DI
MOV DI,OFFSET CLRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CLEAR$SC SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CONN$WSC
SERVTYPE
SESSID

RESOLVED VALUE FOR 'WSCTRL
SESSION ID

CONNECT TO THE WORK STATION CONTROL SESSION FOR THE WIN
DOW MANAGEMENT SERVICES. ONLY ONE SESSION CAN BE CONNECTED
FOR WINDOW MANAGEMENT SERVICES AT A TIME.

CONN$WSC MACRO SERVTYPE,SESSID

27-4

; INITIALIZE PARAMETER
MOV CWRETNCD,OOH
MOV CWFXNID,OOH
MOV AL,SESSID
MOV CWSESSID,AL

LIST FOR CONN$WSC
RETURN CODE MUST = 0 BEFORE REQUEST

; FUNCTION ID MUST = 0 BEFORE REQUEST
; SESSION ID INTO PARAMETER LIST

Sample Program 3

i INITIALIZE REGISTERS FOR CONN$WSC
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG CWRETNCD
MOV ES,DI
MOV DI,OFFSET CWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR CONN$WSC SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

C$ENLUN
SERVTYPE
SESSID

RESOLVED VALUE FOR 'WSCTRL
SESSION ID

TOGGLE THE "ENLARGE STATE" OF THE DISPLAY. AN ENLARGED
DISPLAY BECOMES NORMAL, OR A NORMAL DISPLAY BECOMES
ENLARGED.

CENLUN MACRO SERVTYPE,SESSID

i INITIALIZE PARAMETER
MOV CERETNCD,OOH

LIST FOR C$ENLUN

MOV CEFXNID,OOH
MOV AL,SESSID
MOV CESESSID,AL

CERETNCD MUST BE ° BEFORE REQUEST
CEFXNID MUST BE ° BEFORE REQUEST
SESSION 10 OBTAINED FROM REQUEST

TO QUERY$ID

i INITIALIZE REGISTERS FOR C$ENLUN
MOV AH,09H
MOV AL,09H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV 01, SEG CERETNCD
MOV ES,DI
MOV DI,OFFSET CERETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

i SIGNAL WORKSTATION PROGRAM FOR C$ENLUN SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

C$SCRPOS
SERVTYPE
SESSID
SCRNUM
WNDWNAME
ROW
COL

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN NUMBER
WINDOW SHORT NAME
ROW OF UPPER LEFT CORNER
COLUMN OF UPPER LEFT CORNER

CHANGE THE POSITION OF A WINDOW ON THE SPECIFIED SCREEN
PROFILE. THE NEW WINDOW POSITION IS DETERMINED BY PLACING
THE UPPER LEFT CORNER OF THE WINDOW AT THE ROW AND COLUMN
NUMBERS SPECIFIED IN THE PARAMETER LIST.

Chapter 27. Sample Program 3 27-5

Sample Program 3

C$SCRPOS MACRO SERVTYPE,SESSID,SCRNUM,WNDWNAME,ROW,COL

; INITIALIZE PARAMETER
MOV CSRETNCD,OOH
MOV CSFXNID,OOH
MOV AL,SESSID
MOV CSSESSID,AL
MOV AL,SCRNUM
MOV CSSCREEN,AL
MOV AL,WNDWNAME
MOV CSWINDOW,AL
MOV AL,ROW
MOV CSROW,AL
MOV AL,COL
MOV CSCOLUMN,AL

LIST FOR C$SCRPOS
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO PARAMETER LIST

SCREEN NUMBER INTO PARAMETER LIST

WINDOW SHORT NAME INTO LIST

ROW NUMBER INTO THE LIST

COLUMN NUMBER INTO THE LIST

; INITIALIZE REGISTERS FOR C$SCRPOS
MOV AH,09H
MOV AL,04H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG CSRETNCD
MOV ES,DI
MOV DI,OFFSET CSRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR C$SCRPOS SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

C$WNDCOL
SERVTYPE
SESSID
SCREEN
WINDOW
FOREGND
BACKGND
BASE

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN NUMBER
WINDOW SHORT NAME
FOREGROUND COLOR
BACKGROUND COLOR
BASE COLOR

CHANGE THE FOREGROUND AND BACKGROUND COLORS OF A WINDOW
ON THE SPECIFIED SCREEN PROFILE.

C$WNDCOL MACRO SERVTYPE,SESSID, SCREEN ,WINDOW, FOREGND ,BACKGND ,BASE

27-6

; INITIALIZE PARAMETER
MOV CCRETNCD,OOH
MOV CCFXNID,OOH
MOV AL,SESSID
MOV CCSESSID,AL
MOV AL,SCREEN
MOV CCSCREEN,AL
MOV AL,WINDOW
MOV CCWINDOW,AL
MOV AL,FOREGND
MOV CCFORGND,AL

LIST FOR C$WNDCOL
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION DI MUST = 0 BEFORE REQUEST
SESSION ID INTO LIST

SCREEN NUMBER INTO LIST

WINDOW SHORT NAME INTO LIST

FOREGROUND COLOR INTO LIST

MOV
MOV
MOV
MOV

AL,BACKGND
CCBAKGND,AL
AL,BASE
CCBASE,AL

Sample Program 3

BACKGROUND COLOR INTO LIST

BASE 'COLOR INTO LIST

; INITIALIZE REGISTERS FOR C$WNDCOL
MOV AH,09H
MOV AL,06H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG CCRETNCD
MOV ES,DI

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
MOV DI,OFFSET CCRETNCD OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR C$WNDCOL SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

C$WNDWSZ
SERVTYPE
SESSID
SCRPRO
WINDOW
ROWS
COLS

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
NUMBER OF ROWS IN NEW WINDOW SIZE
NUMBER OF COLUMNS IN NEW WINDOW SIZE

CHANGE THE SIZE OF A WINDOW ON A SPECIFIED SCREEN
PROFILE. THE WINDOW'S NEW SIZE IS DETERMINED BY THE
NUMBER OF ROWS AND COLUMNS IN THE PARAMETER LIST.
A VALUE OF ZERO FOR EITHER THE NUMBER OF ROWS OR
NUMBER OF COLUMNS IN THE WINDOW SIZE IS CHANGED BY THE
WORKSTATION PROGRAM TO BE A VALUE OF ONE.

C$WNDWSZ MACRO SERVTYPE,SESSID,SCRPRO,WINDOW,ROWS,COLS

; INITIALIZE PARAMETER
MOV CZRETNCD,OOH
MOV CZFXNID,OOH
MOV AL,SESSID
MOV CZSESSID,AL
MOV AL,SCRPRO
MOV CZSCRPRO,AL
MOV AL,WINDOW
MOV CZWINDN,AL
MOV AL,ROWS
MOV CZNUMROW,AL
MOV AL,COLS
MOV CZNUMCOL,AL

LIST FOR C$WNDWSZ
CZRETNCD MUST BE 0 BEFORE REQUEST
CZFXNID MUST BE 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY$ID
SCREEN PROFILE NUMBER

IN LIST
WINDOW SHORT NAME OBTAINED FROM

REQUEST TO QUERY$ID
NUMBER OF ROWS IN THE NEW

WINDOW SIZE
NUMBER OF COLUMNS IN THE

WINDOW SIZE

; INITIALIZE REGISTERS FOR C$WNDWSZ
MOV AH,09H
MOV AL,05H
MOV BH,80H
MOV BL, 20H
MOV CX,OFFH

Chapter 27. Sample Program 3 27 -7

Sample Program 3

MOV
MOV
MOV
MOV

DX,SERVTYPE
DI, SEG CZRETNCD
ES,DI
DI,OFFSET CZRETNCD

RESOLVED VALUE FOR lWSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR C$WNDWSZ SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DEFIN$PS
SERVTYPE
BUFFSEG
PSDS

RESOLVED VALUE FOR 'PCPSM
WORK BUFFER
POINTER TO PS DATA STREAM

CREATE A NEW PRESENTATION SPACE.

DEFIN$PS MACRO SERVTYPE,BUFFER,PSDS

27-8

; INITIALIZE PARAMETER
MOV DPRETNCD,OOH
MOV DPFXNID,OOH
MOV AX,OFFSET BUFFER
MOV DPBUFOFF,AX
MOV AX,SEG BUFFER
MOV DPBUFSEG,AX
MOV AX,OFFSET PSDS
'MOV DPDSOFF,AX
MOV AX,SEG PSDS
MOV DPDSSEG,AX

LIST FOR DEFIN$PS
RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
BUFFER OFFSET INTO THE LIST

BUFFER SEGMENT INTO THE LIST

PSDS OFFSET INTO THE LIST

PSDS SEGMENT INTO THE LIST

; INITIALIZE REGISTERS FOR DEFIN$PS
MOV AH,09H
M,OV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG DPRETNCD
MOV ES,DI
MOV DI,OFFSET DPRETNCD

SERVICE TYPE IN DX
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR DEFIN$PS SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DISC$WSC
SERVTYPE
SESSID

RESOLVED VALUE FOR 'WSCTRL
SESSION ID

DISCONNECT FROM THE WORK STATION CONTROL SESSION.

DISC$WSC MACRO SERVTYPE,SESSID

; INITIALIZE PARAMETER
MOV DWRETNCD,OOH
MOV DWFXNID,OOH
MOV AL,SESSID
MOV DWSESSID,AL

Sample Program 3

LIST FOR DISC$WSC
DWRETNCD MUST BE 0 BEFORE REQUEST
DWFXNID MUST BE 0 BEFORE REQUEST
SESSION 10 OBTAINED FROM REQUEST

TO QUERY$ID

; INITIALIZE REGISTERS FOR DISC$WSC
MOV AH,09H
MOV AL,02H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG DWRETNCD
MOV ES,DI
MOV DI,OFFSET DWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR DISC$WSC SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DSTRY$PS
SERVTYPE
SESSID

RESOLVED VALUE FOR 'PCPSM
SESSION 10

DELETE A PRESENTATION SPACE.

DSTRY$PS MACRO SERVTYPE,SESSID

; INITIALIZE PARAMETER
MOV DYRETNCD,OOH
MOV DYFXNID,OOH
MOV AL,SESSID
MOV DYSESSID,AL

LIST FOR DSTRY$PS
RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION 10 MUST 0 BEFORE REQUEST
HANDLE ID INTO THE LIST

; INITIALIZE REGISTERS FOR DSTRY$PS
MOV AH,09H
MOV AL,02H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV 01, SEG DYRETNCD
MOV ES,DI
MOV DI,OFFSET DYRETNCD

RESOLVED VALUE FOR 'PCPSM
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

; SIGNAL WORKSTATION PROGRAM FOR DSTRY$PS SERVICE
INT 7AH

ENDM

MACRO - NAME$RES
PARAMETERS - NR$SERVN - LOCATION OF THE 8-BYTE

SERVICE NAME, I.E.'SESSMGR '
NR$SERVT - RETURN CODE FROM PARAMETER LIST

Chapter 27. Sample Program 3 27-9

Sample Program 3

NAME$RES MACRO NR$SERVN,NR$SERVT

; SET
MOV
MOV
MOV
MOV
MOV

UP REGISTERS NAME$RES
AX,SEG NR$SERVN
ES,AX

SEGMENT ADDRESS OF PARM LIST
ES SEGM ADDRESS OF PARM LIST
AH X'Sl' AH,SlH

CX,OOOOH CX X'OOOO'
DI,OFFSET NR$SERVN DI OFFSET ADDR. OF PARM LIST

; REQUEST SERVICE TYPE FROM WORKSTATION PROGRAM
INT 7AH

; RETURN SERVICE TYPE ID TO CALLER
MOV NR$SERVT,DX

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

QUERY$ID
SERVTYPE
NAMEARRY
OPTION
DATA
LONGNAME

RESOLVED VALUE FOR 'SESSMGR '
NAME ARRAY
OPTION BYTE
DATA BYTE
SESSION LONG NAME

GET THE SESSION ID(S) OF THE SESSION(S) SPECIFIED BY
THE OPTION AND DATA BYTES AND RETURNS THEM IN THE NAME
ARRAY.
NOTE - THE NAME ARRAY IS SET UP BY THE USER AND MUST HAVE

THE LENGTH OF THE ARRAY CONTAINED IN THE 1ST BYTE.

QUERY$ID MACRO SERVTYPE,NAMEARRY,OPTION,DATA,LONGNAME

REP

27-10

; INITIALIZE PARAMETER
MOV QDRETNCD,OOH

LIST FOR QUERY$ID

MOV QDFXNID,OOH
MOV AL,OPTION
MOV QDOPTION,AL
MOV AL,DATA
MOV QDDATA,AL
MOV AX,OFFSET NAMEARRY
MOV QDNAMOFF,AX
MOV AX,SEG NAMEARRY
MOV QDNAMSEG,AX

IFNB <LONGNAME>

CLD
MOV
MOV
MOV
MOV
MOV
MOVSB

ENDIF

AX,SEG QDLNGNAM
ES,AX
DI,OFFSET QDLNGNAM
SI,OFFSET LONGNAME
CX,S

RETURN CODE MUST = a BEFORE REQUEST
FUNCTION ID MUST = a BEFORE REQUEST
OPTION BYTE INTO THE LIST

DATA BYTE INTO THE LIST

NAME ARRAY OFFSET INTO THE LIST

NAME ARRAY SEGMENT INTO THE LIST

CHECK IF A LONG NAME WAS SPECIFIED

COpy DIRECTION = FORWARD

ES:DI POINTS TO DESTINATION IN PARM
LIST

DS:SI POINTS TO SOURCE OF LONG NAME
MOVE S BYTES
COpy LONG NAME INTO THE PARM LIST

Sample Program 3

; INITIALIZE REGISTERS FOR QUERY$ID
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV 01, SEG QDRETNCD
MOV ES,DI
MOV DI,OFFSET QDRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

; SIGNAL WORKSTATION PROGRAM FOR QUERY$ID SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

Q$ASCRID
SERVTYPE
SESSID

RESOLVED VALUE FOR 'WSCTRL
SESSION 10

OBTAIN THE 10 OF THE ACTIVE SCREEN PROFILE.

Q$ASCRID MACRO SERVTYPE,SESSID

; INITIALIZE PARAMETER LIST FOR Q$ASCRID
MOV QARETNCD,OOH QARETNCD MUST BE 0 BEFORE REQUEST
MOV AL,SESSID SESSION 10 OBTAINED FROM REQUEST
MOV QASESSID,AL TO QUERY$ID

; INITIALIZE REGISTERS FOR Q$ASCRID
MOV AH,09H
MOV AL,19H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV 01, SEG QARETNCD
MOV ES,DI
MOV DI,OFFSET QARETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

; SIGNAL WORKSTATION PROGRAM FOR Q$ASCRID SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

Q$AWNDSN
SERVTYPE
SESSID
SCREEN

RESOLVED VALUE FOR 'WSCTRL
SESSION 10
SCREEN PROFILE NUMBER

OBTAIN THE SHORT NAME OF THE ACTIVE WINDOW IN THE
SPECIFIED SCREEN PROFILE.

Chapter 27. Sample Program 3 27 -11

Sample Program 3

Q$AWNDSN MACRO SERVTYPE,SESSID,SCREEN

; INITIALIZE PARAMETER
MOV QNRETNCD,OOH
MOV QNFXNID,OOH
MOV AL,SESSID
MOV QNSESSID,AL
MOV AL,SCREEN
MOV QNSCREEN,AL

LIST FOR Q$AWNDSN
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER INTO THE LIST

; INITIALIZE REGISTERS FOR Q$AWNDSN
MOV AH,09H
MOV AL,18H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYP~
MOV DI, SEG QNRETNCD
MOV ES,DI
MOV DI,OFFSET QNRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR Q$AWNDSN SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

QENLUN
SERVTYPE
SESSID

RESOLVED VALUE FOR 'WSCTRL
SESSION ID

OBTAIN THE "ENLARGE STATE" OF THE DISPLAY.

QENLUN MACRO SERVTYPE,SESSID

27-12

i INITIALIZE PARAMETER
MOV QERETNCD,OOH
MOV QEFXNID,OOH
MOV AL,SESSID
MOV QESESSID,AL

LIST FOR Q$ENL/UN
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

; INITIALIZE REGISTERS FOR Q$ENL/UN
MOV AH,09H
MOV AL,lOH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG QERETNCD
MOV ES,DI
MOV DI,OFFSET QERETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR Q$ENL/UN SERVICE
INT 7AH

ENDM

QBASW

Sample Program 3

MACRO NAME QBASW
PARAMETERS SERVTYPE -- RESOLVED VALUE FOR 'SESSMGR '
FUNCTION :

FIND THE SESSION ID AND SHORT NAME FOR THE BASE WINDOW
OF AN ENVIRONMENT.

MACRO SERVTYPE

; INITIALIZE PARAMETER LIST FOR QBASW
MOV QSRETNCD,OOH RETURN CODE MUST ° BEFORE REQUEST ° BEFORE REQUEST MOV QSFXNID,OOH FUNCTION ID MUST

; INITIALIZE REGISTERS FOR QBASW
MOV AH,09H
MOV AL,OAH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG QSRETNCD
MOV ES,DI
MOV DI,OFFSET QSRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QBASW SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

Q$WINDWS
SERVTYPE
SESSID
SCREEN

RESOLVED VALUE FOR 'WSCTRL
SESSION ID
SCREEN PROFILE NUMBER

OBTAIN THE SHORT NAMES OF ALL WINDOWS IN THE SPECIFIED
SCREEN PROFILE.

Q$WINDWS MACRO SERVTYPE,SESSID,SCREEN

; INITIALIZE PARAMETER
MOV QWRETNCD,OOH
MOV QWFXNID,OOH
MOV AL,SESSID
MOV QWSESSID,AL
MOV AL,SCREEN
MOV QWSCREEN,AL

LIST FOR Q$WINDWS
RETURN CODE MUST = ° BEFORE REQUEST
FUNCTION ID MUST = ° BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER INTO THE LIST

; INITIALIZE REGISTERS FOR Q$WINDWS
MOV AH,09H
MOV AL,12H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH

Chapter 27. Sample Program 3 27-13

Sample Program 3

MOV
MOV
MOV
MOV

DX,SERVTYPE
DI, SEG QWRETNCD
ES,DI
DI,OFFSET QWRETNCD

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR Q$WINDWS SERVICE
INT 7AH

ENDM

MACRO : DOSFUNCT
FUNCTION :

ISSUE THE DOS CALL WITH THE FUNCTION NUMBER PASSED IN
FUNCTNUM

DOSFUNCT MACRO FUNCTNUM

DISPLAY

CHEK4ERR

27-14

MOV AH,FUNCTNUM
INT 21H

ENDM

MACRO : DISPLAY
FUNCTION :

DISPLAY THE STRING STARTING AT STRING ON THE SCREEN.

MACRO STRING
LEA DX,STRING
DOSFUNCT 09H

ENDM

MACRO : CHEK4ERR
FUNCTION

MACRO

IFNB
MOV
ELSE
MOV
ENDIF

CALL

ENDM

SET UP THE REGISTERS FOR THE ERROR CHECKER.
THE RETURN CODES FROM AN API FUNCTION CALL ARE IN THE CL
REGISTER AND IN THE FIRST BYTE OF THE PARAMETER LIST.
THE PARAMETER LIST RETURN CODE (IF IT EXISTS) IS PASSED IN
THE PARAMETER RETCODE AND IS PASSED TO THE ERROR CHECKER
IN BL. THE ERROR CHECKER WILL CHECK CL AND BL FOR O'S
AND RETURN IF THEY BOTH ARE O.

RETCODE

<RETCODE>
BL,RETCODE

BL,O

CHECKERR

IF A RETURN CODE FROM A PARAMETER LIST
WAS SPECIFIED, PUT IT IN BL

OTHERWISE, SET BL TO 0 SO IT LOOKS LIKE
A GOOD RETURN CODE TO THE ERROR CHECKER

MACRO : WRITBUFF
FUNCTION :

Sample Program 3

COPIES N CHARACTERS STARTING AT TEXT TO THE PS BUFFER WITH
THE SPECIFIED ATTRIBUT (ATTRIBUTE).

WRITBUFF MACRO TEXT,N,ATTRIBUT
LOCAL NEXTCHAR

XOR CX,CX CLEAR CX TO RECEIVE THE # OF CHARACTERS
MOV CL,N
LEA SI,TEXT POINT SI TO THE TEXT TO COpy
LEA DI,BUFFMSG POINT 01 TO THE PS BUFFER MESSAGE AREA

NEXTCHAR: MOVSB ; COpy A CHARACTER TO THE BUFFER
MOV BYTE PTR [01] ,ATTRIBUT

COpy THE ATTRIBUTE INTO THE BUFFER
INC 01 POINT 01 TO THE NEXT CHARACTER
LOOP NEXTCHAR COpy THE NEXT CHARACTER AND ATTRIBUTE

ENDM

MACRO : BI2ASCII
FUNCTION :

CONVERTS THE VALUE IN VARIABLE - ASSUMING IT'S BETWEEN 0
AND 9 - TO ITS ASCII EQUIVALENT BY ADDING 30H.
THIS IS USED TO CONVERT SCREEN PROFILE NUMBERS, WHICH RANGE
FROM 0 TO 9, TO THEIR ASCII EQUIVALENT WHICH IS NEEDED FOR
THE API FUNCTION CALLS.

BI2ASCII MACRO VARIABLE

MOV
ADD
MOV

ENDM

AL,VARIABLE
AL,30H
VARIABLE,AL

SUB TTL DATA
PAGE

DATASEG SEGMENT

WORKAREA DB 1552 DUP(?)
; PARAMETER LIST FOR ACT$SCR

ASRETNCD DB 0
ASFXNID DB 0
ASSESSID DB 0
ASSCREEN DB 0

; PARAMETER LIST FOR ACT$WNDW

ACRETNCD DB 0
ACFXNID DB 0
ACSESSID DB 0
ACSCREEN DB 0
ACWINDOW DB 0

GET THE VARIABLE BINARY VALUE
CONVERT TO ASCII
REPLACE VARIABLE WITH ITS ASCII VALUE

WORK AREA FOR DEFIN$PS

RETURN CODE
FUNCTION NUMBER
SESSION 10
SCREEN NUMBER

RETURN CODE
FUNCTION NUMBER
SESSION 10
SCREEN NUMBER
WINDOW SHORT NAME

Chapter 27. Sample Program 3 27-15

Sample Program 3

i PARAMETER LIST FOR ADD$WNDW

AWRETNCD DB 0
AWFXNID DB 0
AWSESSID DB 0
AWSCRPRO DB 0
AWWINDN DB 0

; PARAMETER LIST FOR CLEAR$SC

CLRETNCD DB 0
CLFXNID DB 0
CLSESSID DB 0
CLSCRPRO DB 0

; PARAMETER LIST FOR CONN$WSC

CWRETNCD DB 0
CWFXNID DB 0
CWSESSID DB 0

; PARAMETER LIST FOR C$ENLUN

CERETNCD DB 0
CEFXNID DB 0
CESESSID DB 0

; PARAMETER LIST FOR C$SCRPOS

CSRETNCD DB 0
CSFXNID DB 0
CSSESSID DB 0
CSSCREEN DB 0
CSWINDOW DB 0
CSROW DB 0

CSCOLUMN DB 0

; PARAMETER LIST FOR C$WNDCOL

CCRETNCD DB 0
CCFXNID DB 0
CCSESSID DB 0
CCSCREEN DB 0
CCWINDOW DB 0
CCFORGND DB 0
CCBAKGND DB 0
CCBASE DB 0

; PARAMETER LIST FOR C$WNDWSZ

CZRETNCD DB 0
CZFXNID DB 0
CZSESSID DB 0
CZSCRPRO DB 0
CZWINDN DB 0
CZNUMROW DB 0
CZNUMCOL DB 0

27-16

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

RETURN CODE
FUNCTION NUMBER
SESSION ID

RETURN CODE
FUNCTION NUMBER
SESSION ID

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER (IN ASCII)
WINDOW SHORT NAME (IN ASCII)
ROW NUMBER FOR POSITION OF UPPER

LEFT CORNER OF WINDOW
COLUMN NUMBER FOR POSITION OF UPPER

LEFT CORNER OF WINDOW

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN NUMBER
WINDOW SHORT NAME
FOREGROUND COLOR
BACKGROUND COLOR
BASE COLOR

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
NUMBER OF ROWS IN NEW WINDOW SIZE
NUMBER OF COLUMNS IN NEW WINDOW SIZE

; PARAMETER LIST

DPRETNCD DB 0
DPFXNID DB 0
DPSESSID DB 0
DPRESERV DB 0
DPBUFOFF DW 0
DPBUFSEG DW 0
DPDSOFF DW 0
DPDSSEG DW 0

DB 0
DPWINDOW DB 0

; PARAMETER LIST

DWRETNCD DB 0
DWFXNID DB 0
DWSESSID DB 0

; PARAMETER LIST

DYRETNCD DB 0
DYFXNID DB 0
DYSESSID DB 0
DYRESERV DB 0

; PARAMETER LIST

QDRETNCD DB 0
QDFXNID DB 0
QDOPTION DB 0
QDDATA DB 0
QDNAMOFF OW 0
QDNAMSEG OW 0
QDLNGNAM DB 8

; PARAMETER LIST

QARETNCD DB 0
QAFXNID DB 0
QASESSID DB 0
QASCRPRO DB 0

; PARAMETER LIST

QNRETNCD DB 0
QNFXNID DB 0
QNSESSID DB 0
QNSCREEN DB 0
QNWINDOW DB 0

i PARAMETER LIST

QSRETNCD DB 0
QSFXNID DB 0
QSENVID DB 0
QSSESSID DB 0
QSWINDOW DB 0
QSRESERV DB 0

FOR DEFIN$PS

FOR DISC$WSC

FOR DSTRY$PS

FOR QUERY$ID

DUP(?)

FOR Q$ASCRID

FOR Q$AWNDSN

FOR QBASW

RETURN CODE
FUNCTION NUMBER
SESSION 10
RESERVED

Sample Program 3

OFFSET ADDRESS OF THE lK BUFFER
SEGMENT ADDRESS OF THE lK BUFFER
OFFSET OF DATA STREAM
SEGMENT OF DATA STREAM
MUST BE 0
RETURNED WINDOW SHORT NAME

RETURN CODE

SESSION ID

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED

RETURN CODE
FUNCTION NUMBER
OPTION BYTE
DATA BYTE
OFFSET OF NAME TABLE
SEGMENT OF NAME TABLE
SESSION LONG NAME

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN NUMBER
SHORT NAME OF ACTIVE WINDOW

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
SESSION 10
WINDOW SHORT NAME
RESERVED

Chapter 27. Sample Program 3 27 -17

Sample Program 3

i PARAMETER LIST FOR Q$ENL/UN

QERETNCD DB a
QEFXNID DB a
QESESSID DB a
QEENLFLG DB a

i PARAMETER LIST

QWRETNCD DB a
QWFXNID DB a
QWSESSID DB a
QWSCREEN DB a
QWWNDLST DB 20

SMGRNAME DB
WSCTNAME DB
PCPSNAME DB

SESSMGR DW
WSCTRL DW
PCPSM DW

SCREEN DB

ROWSIZE DB
COLSIZE DB
ROWPOS DB
COLPOS DB

NAMEARRY DB
NUMSESS DB
SHRTNAME DB
SESSTYPE DB
SESSID DB
SPARE DB
LONGNAME DB

DB
PSDS DB

PSSIZE DB
DB
DB

PSTYPE DB
DB

SETBUFER DB
BUFFOFF DW
BUFFSEG DW

PSBUFFER DW
BUFFMSG DW

NOSCRMSG DB
DB
DB

ISPC DB
AREPCS DB
PCSESNUM DW

DB

27-18

FOR Q$WINDWS

DUP(O)

'SESSMGR '
'WSCTRL
'PCPSM

o
a
o

a

4
14
1
1

170
a
a
a
a
a
156 DUP(O)
228 DUP(O)
3

01
25
80
02
a
03
o
a

1920 DUP(O)
80 DUP(O)

RETURN CODE
FUNCTION NUMBER
SESSION ID
ENLARGE FLAG

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN NUMBER
LIST OF WINDOW SHORT NAMES

PARAMETER LIST FOR NAME$RES ON "SESSMGR"
PARAMETER LIST FOR NAME$RES ON "WSCTRL"
PARAMETER LIST FOR NAME$RES ON "PCPSM"

SESSION MANAGER SERVICE TYPE
WINDOW MANAGER SERVICE TYPE
PRESENTATION SPACE MANAGER SERVICE TYPE

THE SCREEN WE ARE WORKING IN

NUMBER OF ROWS IN SUMMARY WINDOWS
NUMBER OF COLUMNS IN SUMMARY WINDOWS
ROW POSITION OF WINDOW ON THE SCREEN
COLUMN POSITION OF WINDOW ON THE SCREEN

NAME ARRAY FOR QUERY$ID FUNCTION
NUMBER OF MATCHING SESSIONS
SHORT NAME OF THE FIRST MATCHING WINDOW
SESSION TYPE
SESSION ID
SPARE BYTE (UNUSED)
LONG NAME OF THE WINDOW
REMAINDER OF THE NAME ARRAY
PRESENTATION SPACE DATA STREAM FOR

DEFIN$PS FUNCTION (3 COMMANDS)
COMMAND FOR SIZE OF PRESENTATION SPACE
25 ROWS
80 COLUMNS
COMMAND TO SET PRESENTATION SPACE TYPE
PC TEXT INDIRECT (WELL BEHAVED)
COMMAND TO SET THE PS BUFFER
OFFSET OF THE BUFFER
SEGMENT OF THE BUFFER

THE PRESENTATION SPACE BUFFER
SPACE TO DISPLAY MESSAGES (25TH LINE)

'PROGRAM NEEDS A BLANK SCREEN PROFILE TO RUN.' ,CR,LF
'DELETE ALL THE WINDOWS FROM ONE SCREEN AND TRY AGAIN. '
CR,LF,'$'

'THERE IS 1 PC SESSION'
'THERE ARE '
o
, PC SESSIONS'

NOHOST DB
ISHOST DB
AREHOST DB
HOSTNUM DW

DB

NONOTE DB
ISNOTE DB
ARENOTE DB
NOTENUM DW

DB

'THERE ARE NO HOST SESSIONS'
'THERE IS 1 HOST SESSION '
'THERE ARE '
o
, HOST SESSIONS'

'THERE ARE NO NOTEPAD SESSIONS'
'THERE IS 1 NOTEPAD SESSION'
'THERE ARE '
o
, NOTEPAD SESSIONS'

Sample Program 3

NUMBRTAB DB , 0 1 2 3 4 5 6 7 8 91011121314151617181920'

EXITMSG DB 'PRESS ANY KEY TO EXIT

ERRORMSG DB 'ERROR. PROGRAM TERMINATED.' ,CR,LF,'$'

DATASEG

STACKSEG

STACKSEG

CODESEG

MAIN

ENDS

SEGMENT STACK

DB 20 DUP ('STACK ')

ENDS

SUB TTL MAIN
PAGE

SEGMENT
ASSUME CS:CODESEG,SS:STACKSEG,DS:DATASEG,ES:DATASEG

PROC FAR

MOV
MOV
MOV

AX,DATASEG
DS,AX
ES,AX

ESTABLISH ADDRESSABILITY TO THE DATA

iii;;iii;;;;;;;;iii;;;;
;; FIND THE RESOLVED VALUES FOR SESSMGR, WSCTRL, AND PCPSM i;
iii;;;iii;;;;

NAME$RES SMGRNAME,SESSMGR
CHEK4ERR
NAME$RES WSCTNAME,WSCTRL
CHEK4ERR
NAME$RES PCPSNAME,PCPSM
CHEK4ERR

iiii;;;
;i FIND THE SESSION ID FOR THIS PC SESSION ;i
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;;;;;;;

QBASW SESSMGR
CHEK4ERR QSRETNCD

Chapter 27. Sample Program 3 27 -19

Sample Program 3

iii;;;
;; CREATE A PRESENTATION SPACE TO WORK IN ;;
iii;;;;j;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MOV AX,OFFSET PSBUFFER
MOV BUFFOFF,AX PUT THE OFFSET AND SEGMENT OF THE PS
MOV AX,SEG PSBUFFER ; IN THE PSDS
MOV BUFFSEG,AX
DEFIN$PS PCPSM,WORKAREA,PSDS

; CREATE A PRESENTATION SPACE
CHEK4ERR DPRETNCD

iii;;;;;;;;;;;;ji;;;;i;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;i
;; CONNECT TO WINDOW MANAGER SERVICES IN ORDER TO DO ;;
;; WINDOW MANAGER API FUNCTIONS. ; ; ...
""""""""""""""""""""""""""",
CONN$WSC WSCTRL,QSSESSID
CHEK4ERR CWRETNCD

iii;;;iii;;;;
;; FIND AN UNUSED SCREEN PROFILE. START WITH SCREEN 9 AND ;;
;; COUNT DOWN. ; ; ...
"""""""""""""""""""""""""""""'"
MOV CX,9 LOAD THE COUNT INTO CX

FINDSCR: MOV SCREEN,CL CHECK SCREEN (COUNT)

27-20

PUSH CX SAVE THE COUNT
BI2ASCII SCREEN ; CONVERT BINARY SCREEN NUMBER TO ASCII
Q$WINDWS WSCTRL,QSSESSID,SCREEN

CMP QWRETNCD,OEH

JE FOUNDSCR
CHEK4ERR QWRETNCD

POP CX
LOOP FINDSCR

GET THE LIST OF WINDOWS FOR THIS SCREEN

CHECK FOR RETURN CODE INDICATING NO
WINDOWS

IF NO WINDOWS, A BLANK SCREEN WAS FOUND

RESTORE THE COUNT
CHECK THE NEXT SCREEN PROFILE

iii;;;iii;;;;;
;; IF NO UNUSED SCREEN WAS FOUND, CLEAN UP BY DISCONNECTING ;;
;; FROM WINDOW MANAGER SERVICES AND DELETING THE NEW PRE- ;;
;; SENTATION SPACE. THEN PRINT AN ERROR MESSAGE INDICATING ;;
" A BLANK SCREEN PROFILE IS NEEDED AND EXIT TO DOS. ;;
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;j;;;;;;;;iiij;;;;

DISC$WSC

CHEK4ERR
DSTRY$PS

WSCTRL,QSSESSID
; DISCONNECT FROM WINDOW SERVICES

DWRETNCD
PCPSM,DPSESSID

DESTROY THE PRESENTATION SPACE
CHEK4ERR DYRETNCD
DISPLAY NOSCRMSG ; DISPLAY THE ERROR MESSAGE

JMP FINISH EXIT TO DOS

Sample Program 3

iii;;;iii;;;;;
;; HAVING FOUND AN UNUSED SCREEN PROFILE, SAVE THE CURRENT ;;
;; ACTIVE SCREEN PROFILE AND WINDOW. QUERY THE ENLARGE ;;
;; STATE OF THE DISPLAY AND SET IT TO "UNENLARGED" IF IT IS ;;
;; NOT ALREADY UNENLARGED. (THE DISPLAY MUST BE UNENLARGED ;;
;; IN ORDER FOR THE SAMPLE WINDOWS TO SHOW) ACTIVATE THE ;;
;; UNUSED SCREEN PROFILE AND ADD THE WORK WINDOW TO THE ;;
;; SCREEN. ;;
iii;;;iii;;;;;

FOUNDSCR: Q$ASCRID WSCTRL,QSSESSID
; SAVE THE CURRENT ACTIVE SCREEN

CHEK4ERR
Q$AWNDSN

QARETNCD
WSCTRL,QSSESSID,QASCRPRO

; SAVE THE CURRENT ACTIVE WINDOW
CHEK4ERR QNRETNCD

QENLUN WSCTRL,QSSESSID,QASCRPRO

CHEK4ERR QERETNCD

CMP
JE

QEENLFLG,O
ISNTENL

; CHECK THE "ENLARGE STATE" OF THE DISPLAY

IF THE DISPLAY IS NOT ENLARGED, THEN
DON'T TOGGLE THE ENLARGED STATE.

CENLUN WSCTRL,QSSESSID,QASCRPRO

CHEK4ERR CERETNCD

TOGGLE THE ENLARGE STATE OF THE DISPLAY
TO UNENLARGE IT.

ISNTENL: ACT$SCR WSCTRL,QSSESSID,SCREEN

DONE:

; MAKE THE BLANK SCREEN ACTIVE
CHEK4ERR ASRETNCD

ADD$WNDW WSCTRL,QSSESSID,SCREEN,DPWINDOW

CHEK4ERR AWRETNCD

CALL PCWNDWS

CALL HSTWNDWS

CALL NOTWNDWS

; ADD THE WORK WINDOW TO THE SCREEN

DISPLAY A SIZED WINDOW OF EACH PC SESSION

DISPLAY A SIZED WINDOW OF EACH HOST
SESSION

DISPLAY A SIZED WINDOW OF EACH NOTEPAD
SESSION

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;;;;;;;;;;;
;; PROMPT THE USER TO INITIATE THE CLEANUP AND EXIT ;;
iii;;;

WRITBUFF EXITMSG,30,WHITE
; WRITE THE MESSAGE TO THE PS BUFFER

ACT$WNDW WSCTRL,QSSESSID,SCREEN,QSWINDOW
MAKE THIS PC WINDOW THE ACTIVE WINDOW SO

THAT THE DOS KEY INPUT WILL COME TO
THIS PC SESSION

CHEK4ERR
DISC$WSC

ACRETNCD
WSCTRL,QSSESSID

CHEK4ERR DWRETNCD

MOV
INT

AH,INKEY
21H

DISCONNECT FROM WINDOW SERVICES TO SHOW
THE CHANGES TO THE SCREEN

WAIT FOR THE USER TO HIT A KEY

Chapter 27. Sample Program 3 27-21

Sample Program 3

iii;;;;;;;ii;;;;;;;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;ii;;iii;;;;;
;; CLEAN UP BY DESTROYING THE PRESENTATION SPACE THAT WAS ;;
;; CREATED, DELETING ALL WINDOWS FROM THE SCREEN, MAKING THE;;
;; ORIGINAL WINDOW AND SCREEN ACTIVE AGAIN, AND RESTORING ;;
;; THE ENLARGE STATE OF THE DISPLAY. ;; ..
"""""""""""""""""""""""""""""""
DSTRY$PS

CHEK4ERR

CONN$WSC

CHEK4ERR
CLEAR$SC

CHEK4ERR
ACT$SCR

CHEK4ERR
ACT$WNDW

PCPSM,DPSESSID

DYRETNCD

DESTROY THE PRESENTATION SPACE THAT WAS
CREATED FOR A WORK SPACE

WSCTRL,QSSESSID
CONNECT FOR WINDOW MANAGER SERVICES TO

THE WINDOW AND SCREEN THAT WERE ACTIVE
ON ENTRY TO THIS PROGRAM

CWRETNCD
WSCTRL,QSSESSID,SCREEN

; DELETE THE WINDOWS FROM THE SCREEN
CLRETNCD
WSCTRL,QSSESSID,QASCRPRO

; MAKE THE ORIGINAL SCREEN PROFILE ACTIVE
ASRETNCD
WSCTRL,QSSESSID,QASCRPRO,QNWINDOW

MAKE THE ORIGINAL WINDOW ACTIVE

CMP
JE

QEENLFLG, 0
WASNTENL

; IF THE DISPLAY WAS NOT ENLARGED, SKIP
TOGGLING IT BACK TO ENLARGED STATE

CENLUN WSCTRL,QSSESSID

CHEK4ERR CERETNCD

TOGGLE THE DISPLAY BACK TO THE ENLARGED
STATE

WASNTENL: DISC$WSC WSCTRL,QSSESSID

FINISH:

27-22

CHEK4ERR DWRETNCD
MOV AX,4COOH
INT 21H

PROCEDURE PCWNDWS
CALLED BY MAIN
FUNCTION

DISCONNECT FROM WINDOW MANAGER SERVICES

RETURN TO DOS

THIS PROCEDURE DISPLAYS A MESSAGE TELLING THE NUMBER OF PC
SESSIONS AND DISPLAYS A SIZED WINDOW OF EACH PC SESSION.
FIRST IT GETS A LIST OF THE CURRENT PC SESSIONS BY USING THE
QUERY SESSION ID API FUNCTION ON THE SESSION TYPE FOR PC'S
(X'OS'). IT THEN DISPLAYS A MESSAGE IN THE CREATED WORK
PRESENTATION SPACE INDICATING THE NUMBER OF PC SESSIONS. EACH
WINDOW IN THE LIST IS ADDED TO THE SCREEN PROFILE THEN SIZED
AND MOVED TO THE PROPER POSITION. SINCE THE CREATED WORK PS
IS ALSO RETURNED IN THIS LIST, A CHECK IS MADE FOR THE WORK
WINDOW. WHEN IT IS ENCOUNTERED, THE WORK WINDOW IS NOT SIZED
OR MOVED SINCE IT WAS NOT A CURRENT PC SESSION WHEN THE PROGRAM
WAS STARTED.

PCWNDWS

ONEPC:

Sample Program 3

PROC

iii;;;;;;;;;;;;;;;;;ii;;;;;;;;;;;;;;;;;;i;;;
;; GET A LIST OF THE CURRENT PC SESSIONS. ;;
; ; ; ;.; i ; ; ; i ; ; ; i ; i ; ; iii i ; iii ; ; ; ; ; ; ; i ; i ; i ; ; ; i ; ;

QUERY$ID
CHEK4ERR

SESSMGR,NAMEARRY,OOH,05H
QDRETNCD

MOV
SUB
CMP
JE

AL,NUMSESS
AL,l
AL,l
ONEPC

GET A LIST OF THE PC SESSIONS

GET THE NUMBER OF MATCHING SESSIONS
SUBTRACT 1 FOR OUR WORK WINDOW
CHECK IF THERE IS ONLY ONE SESSION
IF SO, DISPLAY THE MESSAGE FOR ONE PC

iii;;;;;;;;;;;;i;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;
;; DISPLAY THE MESSAGE FOR MULTIPLE PC SESSIONS ;;
iii;;;

XOR
MOV
SUB
ADD

BX,BX
BL,NUMSESS
BL,l
BX,BX

CLEAR BX TO READ THE NUMBER OF SESSIONS

SUBTRACT 1 FOR OUR WORK WINDOW
CALCULATE THE INDEX INTO THE ASCII

; TRANSLATION TABLE
MOV AX,WORD PTR NUMBRTAB[BX]

; GET THE ASCII VALUE OF THE NUMBER
MOV PCSESNUM,AX ; PUT ASCII FOR THE NUMBER IN THE MESSAGE
WRITBUFF AREPCS,24,BLUE

; WRITE THE MESSAGE TO THE PS BUFFER
JMP DISPCWN

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ii;;;;;;;;
;; DISPLAY THE MESSAGE FOR ONE PC SESSION ;;
iii;;;

WRITBUFF ISPC,21,BLUE
; WRITE THE MESSAGE TO THE PS BUFFER

... '"
""""""""""""""""""""""""""""""'" ;; REDRAW THE CHANGES MADE TO THE SCREEN. CHANGES TO THE ;;
;; SCREEN BY THE WINDOW MANAGER SERVICES ARE NOT SHOWN UNTIL ;;
;; A PROGRAM EITHER DISCONNECTS FROM WINDOW MANAGER SERVICES ;;
;; OR USES THE REDRAW SCREEN FUNCTION. ;; ...
"""""'1111111""'111"'11"""""""'1"'1'""""'"

DISPCWN: CALL DISPWNDX

iii;;;;ii;;
;; DISPLAY THE PC WINDOWS ON THIS SCREEN PROFILE ;;
iii;;

XOR CX,CX CLEAR CX BEFORE LOADING ONE BYTE
MOV CL,NUMSESS LOAD CX WITH THE NUMBER OF PC SESSIONS
LEA SI,SHRTNAME POINT SI TO THE FIRST SESSION SHORT NAME

NXTPCWND: MOV AL,DPWINDOW CHECK IF IT'S OUR CREATED WORK WINDOW
CMP [SI] ,AL
JE SKIPWNDX IF IT IS, SKIP IT

PUSH CX SAVE THE COUNT OF THE WINDOWS
CALL ADDNMOV SIZE AND MOVE THE WINDOW
POP CX RESTORE THE COUNT

Chapter 27. Sample Program 3 27-23

Sample Program 3

SKIPWNDX: ADD SI,12
LOOP NXTPCWND

POINT TO THE NEXT SHORT NAME
DISPLAY THE NEXT PC WINDOW

PCWNDWS

RET

ENDP

PROCEDURE : HSTWNDWS
CALLED BY : MAIN
FUNCTION :

THIS PROCEDURE DISPLAYS A MESSAGE TELLING THE NUMBER OF
HOST WINDOWS AND DISPLAYS A SIZED AND COLORED SAMPLE WINDOW OF
EACH HOST SESSION.
HOST SESSIONS CAN BE EITHER CUT OR DFTi BOTH TYPES OF SESSIONS
MUST BE QUERIED. FIRST A QUERY IS MADE FOR A CUT TYPE SESSION.
IF THERE IS A CUT SESSION, THEN A MESSAGE IS DISPLAYED TELLING
THERE IS ONE HOST SESSION. IF THERE IS NOT A CUT SESSION, THEN
A QUERY IS MADE FOR ANY DFT SESSIONS AND THE NUMBER OF SESSIONS
IS DISPLAYED. A SAMPLE WINDOW OF EACH HOST SESSION (IF ANY) IS
ADDED TO THE SCREEN PROFILE AND THEN COLORED RED AND SIZED AND
MOVED TO ITS PROPER POSITION.

HSTWNDWS PROC

27-24

..
""""""""""""""""""""""""""""" ii SET THE ROWPOS AND COLPOS VARIABLES SO THAT THE HOST ii
ii SESSION WINDOWS WILL BE DISPLAYED ON THE NEXT ROW. ii
iii;;;iii;

MOV
ADD

COLPOS,l
ROWPOS,6

i START AT THE FIRST COLUMN
i START A NEW ROW

iii;;;iii;;;;;;
;; GET A LIST OF THE HOST SESSIONS. FIRST CHECK FOR A CUT ;i
;; HOST SESSION. IF THERE IS NO CUT SESSION, THEN CHECK FOR ;;
ii ANY DFT HOST SESSIONS. ;;
iii;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; CHECK FOR A CUT HOST SESSION. ;i
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

QUERY$ID SESSMGR,NAMEARRY,OOH,03H
GET THE LIST FOR A CUT HOST SESSION

CMP QDRETNCD,llH i CHECK IF THERE IS NOT A CUT SESSION
JE CHECKDFT ; IF SO, CHECK FOR DFT HOST SESSIONS

CHEK4ERR QDRETNCD

JMP ONEHOST IF THERE IS A CUT SESSION, DISPLAY THE
MESSAGE FOR ONE HOST SESSION.

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; CHECK FOR ANY DFT HOST SESSIONS. i;
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Sample Program 3

CHECKDFT: QUERY$ID SESSMGR,NAMEARRY,00H,02H
; GET A LIST OF THE HOST DFT SESSIONS

CMP QDRETNCD,llH ; CHECK IF THERE ARE NO DFT SESSIONS
JNE DISPHOST

iii;;;
;; DISPLAY THE MESSAGE FOR NO HOST SESSIONS ;;
iii;;;

WRITBUFF NOHOST,26,RED
; WRITE THE MESSAGE TO THE PS BUFFER

CALL DISPWNDX ; DISPLAY THE MESSAGE
JMP NOTEPAD

DISPHOST: CHEK4ERR QDRETNCD

CMP
JNE

NUMSESS,l
MANYHOST

CHECK IF THERE IS ONLY ONE SESSION

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;;
;; DISPLAY THE MESSAGE FOR ONE HOST SESSION ;;
iii;;;

ONEHOST: WRITBUFF ISHOST,24,RED
; WRITE THE MESSAGE TO THE PS BUFFER

JMP DISHSTWN

.. ,
;; DISPLAY THE MESSAGE FOR MULTIPLE HOST SESSIONS ;;
iii;;;

MANYHOST: XOR
MOV
ADD

BX,BX
BL,NUMSESS
BX,BX

CLEAR BX TO READ THE NUMBER OF SESSIONS

CALCULATE THE INDEX INTO THE ASCII
; TRANSLATION TABLE

MOV AX,WORD PTR NUMBRTAB[BX]
; GET THE ASCII VALUE OF THE NUMBER

MOV HOSTNUM,AX ; PUT ASCII FOR THE NUMBER IN THE MESSAGE
WRITBUFF AREHOST,26,RED

WRITE THE MESSAGE TO THE PS BUFFER

DISHSTWN: CALL DISPWNDX DISPLAY THE MESSAGE

•• 1ft
, I I , , , I , , , , , I , , , , , , ,

;; DISPLAY THE HOST WINDOWS ON THIS SCREEN PROFILE ;;
iii;;;;;;;;;;;;;;ii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

XOR
MOV
LEA

CX,CX
CL,NUMSESS
SI,SHRTNAME

CLEAR CX BEFORE LOADING ONE BYTE
LOAD CX WITH THE NUMBER OF HOST SESSIONS
POINT SI TO THE FIRST SESSION SHORT NAME

NXTHSTWN: PUSH CX SAVE THE COUNT OF THE WINDOWS
CALL ADDNMOV ; SIZE AND MOVE THE WINDOW
C$WNDCOL WSCTRL,QSSESSID,SCREEN,[SI] ,2,0,0

CHEK4ERR CCRETNCD
POP CX
ADD SI,12
LOOP NXTHSTWN

RET

HSTWNDWS ENDP

SET WINDOW COLOR - RED FORE, BLACK BACK

RESTORE THE COUNT
POINT TO THE NEXT SHORT NAME
DISPLAY THE NEXT HOST WINDOW

Chapter 27. Sample Program 3 27-25

Sample Program 3

PROCEDURE : NOTWNDWS
CALLED BY : MAIN
FUNCTION :

THIS PROCEDURE DISPLAYS A MESSAGE TELLING THE NUMBER OF
NOTEPAD SESSIONS AND DISPLAYS A COLORED SAMPLE WINDOW OF EACH
SESSION. FIRST IT GETS A LIST OF THE NOTEPAD SESSIONS BY
USING THE QUERY SESSION ID API FUNCTION WITH THE SESSION TYPE
FOR NOTEPAD (X'04'). A SAMPLE WINDOW OF EACH NOTEPAD (IF ANY)
IS ADDED TO THE SCREEN PROFILE, COLORED GREEN, AND SIZED AND
MOVED TO ITS PROPER POSITION.

NOTWNDWS PROC

; i ; ; i ; ; ;'j i ; ; ; ; ; ; ; ; i ; ; ; i ; iii ; i ; ; ; i ; ; ; ; ; ; ; i ; ; i ; i i ; ; i ; iii ; i i ; i ; ;
;; SET THE ROWPOS AND COLPOS VARIABLES SO THAT THE NOTEPAD ;;
;; SESSION WINDOWS ARE DISPLAYED ON THE NEXT ROW. ;;
iii;;;iii;;;;

NOTEPAD: MOV
ADD

COLPOS,l
ROWPOS,6

START AT THE FIRST COLUMN
START A NEW ROW

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;
;; GET A LIST OF THE NOTEPAD SESSIONS. ;;
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

QUERY$ID SESSMGR,NAMEARRY,OOH,04H
CMP QDRETNCD,llH ; CHECK IF THERE ARE NO NOTEPAD SESSIONS.
JNE DISPNOTE

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;
;; DISPLAY THE MESSAGE FOR NO NOTEPAD SESSIONS ;;
iii;;j;;;

WRITBUFF NONOTE,29,GREEN
; WRITE THE MESSAGE TO THE PS BUFFER

ACT$WNDW WSCTRL,QSSESSID,SCREEN,QSWINDOW
MAKE THIS PC WINDOW THE ACTIVE WINDOW

CHEK4ERR ACRETNCD
CALL DISPWNDX ; DISPLAY THE MESSAGE
JMP DONE

DISPNOTE: CHEK4ERR QDRETNCD

27-26

CMP
JNE

NUMSESS,l
MANYNOTE

GET A LIST OF THE NOTEPAD SESSIONS

CHECK IF THERE IS ONLY ONE SESSION

iii;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;
;; DISPLAY THE MESSAGE FOR ONE NOTEPAD SESSION ;;
iii;;

WRITBUFF ISNOTE,26,GREEN
; WRITE THE MESSAGE TO THE PS BUFFER

JMP DISNOTWN

iii;;;;;;;;;;;;;;j;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; DISPLAY THE MESSAGE FOR MULTIPLE NOTEPAD SESSIONS ;;
iii;;

Sample Program 3

MANYNOTE: XOR
MOV
ADD

BX,BX
BL,NUMSESS
BX,BX

CLEAR BX TO READ THE NUMBER OF SESSIONS

CALCULATE THE INDEX INTO THE ASCII
; TRANSLATION TABLE

MOV AX,WORD PTR NUMBRTAB[BX]
; GET THE ASCII VALUE OF THE NUMBER

MOV NOTENUM,AX ; PUT ASCII FOR THE NUMBER IN THE MESSAGE
WRITBUFF ARENOTE,29,GREEN

; WRITE THE MESSAGE TO THE PS BUFFER
DISNOTWN: ACT$WNDW WSCTRL,QSSESSID,SCREEN,QSWINDOW

CHEK4ERR ACRETNCD
CALL DISPWNDX

; MAKE THIS PC WINDOW THE ACTIVE WINDOW

iii;;;iiijj;;;;;;i
;; DISPLAY THE NOTEPAD WINDOWS ON THIS SCREEN PROFILE ii

iii;;i

XOR
MOV
LEA

CX,CX
CL,NUMSESS
SI,SHRTNAME

CLEAR CX BEFORE LOADING ONE BYTE
LOAD CX WITH NUMBER OF NOTEPAD SESSIONS
POINT SI TO THE FIRST SESSION SHORT NAME

NXTNOTWN: PUSH CX SAVE THE COUNT OF THE WINDOWS
CALL ADDNMOV i SIZE AND MOVE THE WINDOW
C$WNDCOL WSCTRL,QSSESSID,SCREEN,[SI] ,4,0,0

CHEK4ERR CCRETNCD
POP CX
ADD SI,12
LOOP NXTNOTWN

RET

SET WINDOW COLOR - GREEN FORE,BLACK BACK

RESTORE THE COUNT
POINT TO THE NEXT SHORT NAME
DISPLAY THE NEXT NOTEPAD WINDOW

NOTWNDWS ENDP

ADDNMOV

PROCEDURE : ADDNMOV
FUNCTION :

GIVEN A SHORT WINDOW NAME POINTED TO BY SI, ADD THE WINDOW
TO THE CURRENT WORK SCREEN. NEXT, SIZE THE WINDOW TO ROWSIZE
BY COLSIZE. THEN MOVE THE WINDOW TO ITS POSITION ON THE SCREEN
SPECIFIED BY ROWPOS AND COLPOS. REDRAW THE SCREEN TO SHOW
THE CHANGES. UPDATE ROWPOS AND COLPOS FOR THE NEXT WINDOW.

THIS PROCEDURE ASSUMES THAT A CONN$WSC HAS ALREADY BEEN
ISSUED BY THE CALLING PROCEDURE.

PROC NEAR

ADD$WNDW

CHEK4ERR
C$WNDWSZ

CHEK4ERR
C$SCRPOS

CHEK4ERR

WSCTRL,QSSESSID,SCREEN, [SI]
; ADD THIS NOTEPAD WINDOW TO THE SCREEN

AWRETNCD
WSCTRL,QSSESSID,SCREEN, [SI],ROWSIZE,COLSIZE

; SIZE THE WINDOW TO ROWSIZE X COLSIZE
CZRETNCD
WSCTRL,QSSESSID,SCREEN,[SI] ,ROWPOS,COLPOS

; MOVE THE WINDOW TO ROWPOS,COLPOS
CSRETNCD

Chapter 27. Sample Program 3 27 -27

Sample Program 3

NEWROW:

SMDONE:

ADDNMOV

iii;;;iiij;;;
;; UPDATE THE ROW POSITION AND THE COLUMN POSITION FOR THE ;;
;; NEST WINDOW ;;
iiii;;;;;;;;;;;;;;;;;;;;;;;;ji;;;;;;;;;;;;ij;;;;;;;;;;iii;;;;

CMP COLPOS,65
JGE NEWROW

ADD COLPOS,16
JMP SMDONE

MOV COLPOS,l
ADD ROWPOS,6

RET

ENDP

PROCEDURE : DISPWNDX
FUNCTION

CHECK IF THIS IS LAST WINDOW ON THE ROW
IF SO, START A NEW ROW

POINT COLPOS TO THE NEXT WINDOW LOCATION

POINT TO STARTING COLUMN OF A NEW ROW
POINT ROWPOS TO THE NEXT ROW

THIS PROCEDURE DISCONNECTS FROM WINDOW MANAGER SERVICES TO
SHOW THE CHANGES MADE ON THE SCREEN AND TO REMOVE THE WSCTRL
OIA TO LET THE USER SEE THE NEW MESSAGE ON THE 5TH LINE OF THE
WORK WINDOW. AFTER WAITING A BIT, THE PROCEDURE RECONNECTS
TO WINDOW MANAGER SERVICES.

DISPWNDX PROC NEAR

DISC$WSC WSCTRL,QSSESSID
; DISCONNECT FROM WINDOW SERVICES

CHEK4ERR DWRETNCD

iii;;
;; WAIT A BIT SO THE USER CAN READ THE MESSAGE ;;
iii;;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MOV CX,12 LOAD CX WITH THE NUMBER OF DELAY CYCLES
DELAY1: PUSH CX SAVE THE COUNT

MOV CX,OFFFFH LOAD CX FOR ONE DELAY CYCLE
DELAY2: LOOP DELAY2 BUSY WAIT

POP CX RESTORE THE COUNT
LOOP DELAYl DELAY FOR ANOTHER DELAY CYCLE

CONN$WSC WSCTRL,QSSESSID
; CONNECT TO WINDOW SERVICES

CHEK4ERR CWRETNCD

RET

DISPWNDX ENDP

27-28

;
CHECKERR

ERROR:

CHECKERR

MAIN

CODESEG

Sample Program 3

PROCEDURE : CHECKERR
FUNCTION :

CHECK THE RETURN CODES FROM THE API CALLS. BL CONTAINS
THE RETURN CODE IN THE PARAMETER LIST. BL AND CL ARE CHECKED
FOR as. IF EITHER DOES NOT CONTAIN A 0, AN ERROR MESSAGE IS
DISPLAYED AND THE PROGRAM IS TERMINATED.

NOTE: THIS IS A VERY SIMPLE ERROR HANDLER USED TO PRE-

PROC

CMP
JNE

CMP
JNE

RET

SERVE PROGRAM FLOW AND IS NOT LISTED AS AN EXAMPLE OF
AN APPROPRIATE ERROR HANDLER. THIS ERROR HANDLER SIMPLY
TERMINATES THE PROGRAM WHEN AN ERROR IS ENCOUNTERED
LEAVING ANY RESOURCES, SUCH AS FIXED LENGTH QUEUES,
PRESENTATION SPACES, AND A CONNECTION TO THE WINDOW
SERVICES, STILL ALLOCATED. A MORE APPROPRIATE ERROR
HANDLER WOULD DELETE ALL RESOURCES BEFORE TERMINATING.

NEAR

CL,O CHECK THE RETURN CODE IN CL
ERROR

BL,O CHECK THE PARAMETER LIST RETURN CODE
ERROR

RETURN CODES OK. RETURN TO CALLER.

DISPLAY ERRORMSG AN ERROR OCCURRED. DISPLAY THE ERROR
MESSAGE AND EXIT TO DOS. JMP FINISH

ENDP

ENDP

ENDS

END

Chapter 27. Sample Program 3 27-29

Sample Program 3

27-30

Sample Program 4

Chapter 28. Sample Program 4

PAGE 80,132

PROGRAM : STEMIR

FUNCTION
THIS PROGRAM GRAPHICALLY DISPLAYS (IN BAR CHART FORM)

INFORMATION ABOUT A BUSINESS. THERE ARE FIVE CATEGORIES OF
INFORMATION RELATING TO THIS BUSINESS.

THE CATEGORIES ARE: 1. GROSS REVENUE
2. NET REVENUE
3. NUMBER OF PRODUCTS SOLD
4. EMPLOYEE OVERTIME
5. EMPLOYEE ILLNESS

THE DATA CORRESPONDING TO EACH CATEGORY IS LOCATED IN
A FILE LOCATED ON A VM HOST SYSTEM.

A MENU IS DISPLAYED AND THE USER CHOOSES ONE OF THE ABOVE
CATEGORIES. THIS PROGRAM GETS THE DATA THAT CORRESPONDS TO
THE USER'S CHOICE FROM THE HOST AND GRAPHS THE DATA IN A BAR
CHART FORM. THIS CONTINUES UNTIL THE USER HITS THE ESCAPE KEY
FROM THE MENU.

DATA IS TRANSFERRED FROM THE HOST USING DESTINATION/ORIGIN
STRUCTURED FIELDS AND THE MFIC API.

THIS PROGRAM IS NOT WELL BEHAVED SINCE IT USES GRAPHICS
AND WRITES DIRECTLY TO THE DISPLAY BUFFER. THE INDSPIF UTILITY
WAS USED TO CREATE A PIF FILE THAT REFLECTS THIS BEHAVIOR.

THIS PROGRAM DEMONSTRATES THE FOLLOWING
API FUNCTIONS:

NAME RESOLUTION
QUERY ID
CONNECT TO KEYBOARD/DISCONNECT FROM KEYBOARD
DISABLE INPUT/ENABLE INPUT
CREATE A QUEUE/DELETE AN ENTRY
DEFINE RECEIVE BUFFER
CONNECT/DISCONNECT TO HOST SESSION
READ STRUCTURED FIELD
WRITE STRUCTURED FIELD
DEQUEUE
QUERY BASE WINDOW
WRITE KEYSTROKE
GET REQUEST COMPLETION
QUERY ACTIVE TASK
TRANSLATE

NOTE: THIS PROGRAM IS SEPARATED INTO TWO LOAD MODULES.
THIS MODULE CONTAINS THE MAIN BODY OF THE PROGRAM. THE MAIN
BODY CALLS PROCEDURES IN BOTH THIS AND THE SECOND MODULE.

NOTE: DESTINATION/ORIGIN STRUCTURED FIELDS CAN ONLY BE
USED WHEN THE 3270 PERSONAL COMPUTER HAS BEEN CUSTOMIZED FOR
OFT COMMUNICATIONS. ALSO, THERE IS A HOST PROGRAM THAT RUNS
ON VM THAT RETRIEVES THE DATA AND COMMUNICATES WITH THIS
PERSONAL COMPUTER PROGRAM.

Chapter 28. Sample Program 4 28-1

Sample Program 4

; DOS FUNCTION CALLS
DISPSTRG EQU 09H
NO$ECHO EQU 7

; BIOS VIDEO FUNCTION CALLS
SET$MODE EQU 0
SET$PALL EQU 11
WRITEDOT EQU 12

; CONSTANTS
MSGAVAIL EQU 8004H

UPCASE EQU 01H
AIDKEY EQU 12H

ESC EQU 1BH
STAKSIZE EQU 512

i THE FOLLOWING CONSTANTS ARE USED
MEDRES$G EQU 04H
COL$8025 EQU 3
GRY EQU 0
COL$AXIS EQU 01H

i THE FOLLOWING ARE REPLY AND WAIT
WAITCMPS EQU 20H
RPLYCMPS EQU 80H
RPLYCMPQ EQU 40H
WAITCMPQ EQU 40H

i THE FOLLOWING CONSTANTS ARE USED
i AND COMMENTS AROUND THE GRAPH
LEN$DASH EQU 5
X$VERTEX EQU 50
Y$VERTEX EQU 167
LENXAXIS EQU 260
LENYAXIS EQU 160
ENTRYSIZ EQU 20

X$COMNT EQU 7
Y$COMNT EQU 22

X$DASHC EQU 1
Y$DASHC EQU 17
X$TMSG EQU 10
Y$TMSG EQU 23

X$CMSG EQU 15
Y$CMSG EQU 0
X$HKMSG EQU 8
Y$HKMSG EQU 24

PRINTING A STRING
DOS FUNCTION TO READ A CHARACTER WITH NO

ECHO

BIOS VIDEO FUNCTION TO SET THE MODE
BIOS VIDEO FUNCTION TO SET PALETTE
BIOS VIDEO FUNCTION TO WRITE A DOT

COMMUNICATION STATUS, MESSAGE AVAILABLE
FROM HOST

UPPERCASE SHIFTSTATE
AID KEY GENERATES A 12H RETURN CODE FROM

WRIT$KEY
THE ASCII VALUE FOR THE ESCAPE KEY
SIZE OF THE STACK

TO SWITCH TO GRAPHICS MODE AND SET THE COLORS
MEDIUM RESOLUTION IN GRAPHICS MODE

i 80 COLUMNS BY 25 ROWS IN ASCII MODE
; THE PALETTE EQUALS GREEN, RED AND YELLOW
i THE COLOR OF THE AXIS IS GREEN

STATES USED BY SOME OF THE API FUNCTIONS
WAIT FOR COMPLETION SIGNAL

i REPLY COMPLETION SIGNAL
i REPLY COMPLETION QUEUE
i WAIT FOR RQE ON COMPLETION QUEUE

TO PRINT THE GRAPH (E.G. BAR CHARTS)

LENGTH OF THE DASH ON THE VERTICAL AXIS
X COORDINATE FOR THE AXIS VERTEX
Y COORDINATE FOR THE AXIS VERTEX
LENGTH OF THE Y AXIS
LENGTH OF THE X AXIS
THERE ARE 20 BYTES PER ENTRY IN THE COMMENT

TABLES
THE COMMENTS DESCRIBING THE INTERVALS ALONG

THE X AXIS AT (X$COMNT,Y$COMNT)
I.E. COLUMN,ROW

THE COMMENTS DESCRIBING THE INTERVALS ALONG
THE Y AXIS BEGIN AT (X$DASHC,Y$DASHC)

THE MESSAGE THAT DESCRIBES THE TYPE OF DATA
THAT IS BEING DISPLAYED IS LOCATED AT

(X$TMSG,Y$TMSG)
THE MESSAGE THAT DISPLAYS THE CORPORATION

NAME IS LOCATED AT (X$CMSG,Y$CMSG)
THE MESSAGE THAT DISPLAYS THE "HIT ANY

KEY ... " IS LOCATED AT (X$HKMSG,Y$HKMSG)

*** MACRO DEFINITIONS ***

28-2

MACRO NAME
PARAMETERS

DOSFXN
FXNNUM -- DOS FUNCTION NUMBER

DOSFXN

Sample Program 4

FUNCTION :
THIS WILL CALL A DOS FUNCTION SPECIFIED BY THE PARAMETER
FXNNUM.

MACRO FXNNUM

MOV
INT

ENDM

AH,FXNNUM
21H

MACRO NAME : MOV$CURS
FUNCTION :

THE FUNCTION NUMBER BELONGS IN AL
CALL DOS

THIS WILL CALL THE BIOS VIDEO FUNCTION TO MOVE THE
CURSOR TO POSITION (X$COLUMN,Y$ROW).

MOV$CURS MACRO

MOV
MOV
INT

ENDM

AH,2
BH,O
lOH

MACRO NAME
PARAMETERS
PARAMETERS

FUNCTION

DISPMENU
SESSMGR
PCSESSID
MENU$PS

BIOS VIDEO FUNCTION NUMBER TWO
THE PAGE NUMBER IS ZERO IN GRAPHICS MODE
CALL DOS

RESOLVED VALUE FOR WSCTRL
SESSION 10 FOR WINDOW WITH THE MENU
SCREEN NUMBER

THIS WILL MAKE THE MENU APPEAR.

DISPMENU MACRO PCSESSID,MENU$PS

REP

CLD INCREMENT SI AND 01 ON THE REPEAT
MOV CX,4000 ; MOVE 4000 BYTES OF CHARACTER-ATTRIBUTE
MOV SI,OFFSET MENU$PS

MOV
MOV
MOV
MOVSB

MOV
MOV

ENDM

01,0
AX,OBOOOH
ES,AX

AX,DATASEG
ES,AX

MACRO NAME
PARAMETERS

DRAWVERT
X

FUNCTION

YBEGIN
LEN
COLOR

THE SOURCE DATA BEGINS AT MENU$PS
THE DESTINATION IS THE DISPLAY BUFFER

MOVE THE MENU DATA INTO THE DISPLAY BUFFER

ASSIGN ES TO BACK TO THE DATASEG

VALUE ON THE X AXIS, (COLUMN)
VALUE ON THE Y AXIS, (ROW)
LENGTH OF THE LINE
COLOR OF THE LINE

Chapter 28. Sample Program 4 28-3

Sample Program 4

THIS WILL DRAW A VERTICAL LINE. THE LINE WILL BE DRAWN
FROM POINT (X,YBEGIN) TO (X,YBEGIN+LEN).

DRAWVERT MACRO
LOCAL

X, YBEGIN,LEN, COLOR
LP,EXIT

LP:

BIOS

; SAVE THE CURRENT Y VALUE
MOV AX,YBEGIN
MOV CURR$Y,AX

i HAVE WE REACHED THE
MOV BX,LEN
ADD BX,CURR$Y
CMP CURR$Y,BX

i YES, WE ARE DONE
JE EXIT

; NO, TURN THE PEL ON
; INITIALIZE REGISTERS
MOV CX,X
MOV AL,COLOR
MOV AH,WRITEDOT

FUNCTION NUMBER
MOV DX,CURR$Y
INT lOH

LAST PEL YET?
THE LAST PEL = THE FIRST PEL PLUS

THE LENGTH OF THE LINE

FOR THE BIOS WRITE DOT FUNCTION
COLUMN NUMBER FOR VERTICAL LINE
COLOR FOR VERTICAL

ROW NUMBER OF PEL
CALL THE BIOS VIDEO FUNCTION

; INCREMENT THE ROW NUMBER AND CHECK THE PEL
INC CURR$Y
JMP LP

EXIT: NOP

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DRAWHORZ
Y
XBEGIN
LEN
COLOR

VALUE ON THE Y AXIS, (ROW)
VALUE ON THE X AXIS, (COLUMN)
LENGTH OF THE LINE
COLOR OF THE LINE

THIS WILL DRAW A HORIZONTAL LINE. THE LINE WILL BE
DRAWN FROM POINT (XBEGIN,Y) TO POINT (XBEGIN+LEN,Y).

DRAWHORZ MACRO
LOCAL

Y,XBEGIN,LEN,COLOR
LP,EXIT

; SAVE THE CURRENT X VALUE
MOV AX,XBEGIN
MOV CURR$X,AX

28-4

LP:

; HAVE WE REACHED THE
MOV BX,LEN
ADD BX,CURR$X
CMP CURR$X,BX

; YES, WE ARE DONE
JE EXIT

; NO, TURN THE PEL ON
i INITIALIZE REGISTERS
MOV DX,Y
MOV AL,COLOR
MOV AH,WRITEDOT
MOV CX,CURR$X
INT lOH

Sample Program 4

LAST PEL YET?
THE LAST PEL = THE FIRST PEL PLUS

THE LENGTH OF THE LINE

FOR THE BIOS WRITE DOT FUNCTION
ROW NUMBER FOR VERTICAL LINE
COLOR FOR VERTICAL
BIOS FUNCTION NUMBER
ROW NUMBER OF PEL
CALL THE BIOS VIDEO FUNCTION

i INCREMENT THE COLUMN NUMBER AND CHECK THE PEL
INC CURR$X
JMP LP

EXIT: NOP

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DRAWAXIS
X$VERTEX-- X COORDINATE OF THE AXIS VERTEX
Y$VERTEX-- Y COORDINATE OF THE AXIS VERTEX
LENXAXIS-- LENGTH OF THE X AXIS
LENYAXIS-- LENGTH OF THE Y AXIS

THIS WILL DRAW THE VERTICAL AND HORIZONTAL AXIS FOR THE
BAR CHARTS.

DRAWAXIS MACRO X$VERTEX,Y$VERTEX,LENXAXIS,LENYAXIS

i THE BEGINNING POINT OF THE VERTICAL AXIS (Y$VERTEX - LENYAXIS)
MOV AX,Y$VERTEX
SUB AX,LENYAXIS

i DRAW THE VERTICAL LINE
DRAWVERT X$VERTEX,AX,LENYAXIS,COL$AXIS

i DRAW THE HORIZONTAL LINE
DRAWHORZ Y$VERTEX,X$VERTEX,LENXAXIS,COL$AXIS

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CMNT$DSH
FIRSTINP-- THE USERS FIRST INPUT, WHICH DATA

THE USER WANTED TO DISPLAY
INTVTABL-- THE TABLE NAME OF THE COMMENTS FOR

THE Y AXIS

THIS WILL DISPLAY THE COMMENTS ALONG SIDE THE DASHES ON
THE Y AXIS.

Chapter 28. Sample Program 4 28-5

Sample Program 4

CMNT$DSH MACRO
LOCAL

FIRSTINP,INTVTABL
NXTCMNT

; CONVERT THE USERS FIRST INPUT FROM ASCII TO BINARY
MOV BL,FIRSTINP
XOR BH,BH
SUB BX, 10 1

; FIND THE BEGINNING OF THE ENTRY THAT CORRESPONDS TO THE USERS CHOICE
SUB BX,l ; THE TABLES BEGIN AT OFFSET ZERO
MOV AL,ENTRYSIZ
MUL BL
MOV SI,AX

; FOR EACH DASH
MOV CX,S
MOV DL,X$DASHC
MOV DH,Y$DASHC

INITIALIZE THE LOOP COUNTER
THE FIRST COMMENTS STARTS HERE

AT (X$DASHC,Y$DASHC)

; MOV THE CURSOR TO THE CORRECT POSITION
NXTCMNT: MOV$CURS

PUSH DX ; SAVE THE CURRENT POSITION OF THE CURSOR

; CALCULATE THE POSITION IN THE TABLE OF THE COMMENT TO BE PRINTED
MOV DX,OFFSET INTVTABL
ADD DX,SI

; PRINT THE STRING
DOSFXN DISPSTRG

; INCREMENT THE INDEX INTO THE TABLE
ADD SI,4

; INCREMENT THE POSITION OF THE NEXT DASH
POP DX
SUB DH,4

LOOP NXTCMNT CONTINUE PROCESSING

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CMNT$GRP
FIRSTINP-- THE USERS FIRST INPUT, WHICH DATA

THE USER WANTED TO DISPLAY
SECNDINP-- THE USERS SECOND INPUT, WHETHER THE

DATA IS DISPLAYED BY YEARS OR MONTHS

THIS WILL DISPLAY THE COMMENTS ON THE X AND Y AXIS.

CMNT$GRP MACRO FIRSTINP,SECNDINP

28-6

; PUT
MOV
SUB
MOV
MOV
DIV
MOV
MOV

FIVE HORIZONTAL
AX,X$VERTEX
AX,LEN$DASH
DASH$BEG,AX
AX,LENYAXIS
FIVE
AH,O
DASHINTV,AX

DASHES ON THE VERTICAL AXIS
BEGINNING OF A DASH = COLUMN-LENGTH

OF A DASH
STORE THE VALUE
FIGURE OUT THE NUMBER OF ROWS BETWEEN

DASHES = LENYAXIS / S

STORE THE INTERVAL BETWEEN DASHES

Sample Program 4

i CALCULATE THE FIRST DASH ROW
MOV CURRY,YVERTEX i THE Y VERTEX
SUB CURR$Y,LENYAXIS i MINUS THE LENGTH OF THE Y AXIS

i FOR EACH FIVE DASHES DRAW A HORIZONTAL LINE
MOV Cx,S

DRAWDASH: MOV SAVECX,CX ; SAVE THE LOOP COUNTER
DRAWHORZ CURR$Y,DASH$BEG,LEN$DASH,COL$AXIS
MOV AX,DASHINTV ; UPDATE THE ROW VALUE
ADD CURR$Y,AX

; GET THE LOOP COUNTER
MOV CX,SAVECX
LOOP DRAWDASH

; MOVE THE CURSOR TO PRINT THE COMMENT UNDER THE X AXIS
MOV DL,X$COMNT COLUMN
MOV DH,Y$COMNT ROW
MOV$CURS

; FIND OUT WHICH INTERVAL WE ARE WORKING WITH
CMP SECNDINP,'Y'
JE PRINTYRS

; PRINT MONTHS
MOV DX,OFFSET MONTHS
DOSFXN DISPSTRG

; PRINT THE COMMENTS BY THE DASHES ON THE Y AXIS
CMNT$DSH FIRSTINP,M$INTVL
JMP NXTCMNT

; PRINT YEARS
PRINTYRS: MOV DX,OFFSET YEARS

DOSFXN DISPSTRG

; PRINT THE COMMENTS BY THE DASHES ON THE Y AXIS
CMNT$DSH FIRSTINP,Y$INTVL

; MOVE THE CURSOR IN ORDER TO
; PRINT A MESSAGE THAT DESCRIBES THE TYPE OF DATA BEING DISPLAYED

NXTCMNT: MOV DL,X$TMSG
MOV DH,Y$TMSG
MOV$CURS

; CALCULATE THE ADDRESS OF THE APPROPRIATE MESSAGE TO PRINT UNDER
; THE AXIS
MOV AL,FIRSTINP
SUB AL,' l'
MUL LENCMNT

CONVERT THE USERS FIRST INPUT FROM ASCII
TO HEXADECIMAL

MOV
ADD

THE OFFSET INTO THE TABLE IS THE USERS
CHOICE * THE LENGTH OF A MESSAGE ;

DX,OFFSET DATATTAB
DX,AX ADD THE OFFSET TO THE BEGINNING OF THE

TABLE

; PRINT THE MESSAGE
DOSFXN DISPSTRG

; MOVE THE CURSOR IN ORDER TO PRINT "HIT ANY KEY TO RETURN TO MENU"
MOV DL,X$HKMSG
MOV DH,Y$HKMSG
MOV$CURS

Chapter 28. Sample Program 4 28-7

Sample Program 4

i PRINT THE MESSAGE UNDER THE GRAPH
MOV DX,OFFSET HITKEYM
DOSFXN DISPSTRG

i MOVE THE CURSOR IN ORDER TO PRINT THE CORPORATION NAME
MOV DL,X$CMSG
MOV DH,Y$CMSG
MOV$CURS

i PRINT THE CORPORATION NAME UNDER THE GRAPH
MOV DX,OFFSET CORPNAME
DOSFXN DISPSTRG

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DISPDATA
FIRSTINP-- THE USER'S CHOICE
SECNDINP-- INTERVAL OF DATA (MONTH OR YEAR

THIS WILL DISPLAY DATA ON A GRAPHICS SCREEN IN A BAR
CHART FORM.

DISPDATA MACRO FIRSTINP,SECNDINP

DISPD:

28-8

i SET THIS WINDOW TO GRAPHICS MODE
MOV AL,MEDRES$G i MEDIUM RESOLUTION GRAPHICS
MOV AH,SET$MODE i BIOS FUNCTION TO SET THE MODE
INT lOH

; SET
MOV
MOV
MOV
INT

THE COLOR PALETTE
BH,COL$AXIS
BL,GRY
AH,SET$PALL
lOH

i DRAW THE AXIS FOR THE BAR CHARTS
DRAWAXIS X$VERTEX,Y$VERTEX,LENXAXIS,LENYAXIS

; DRAW BARS ON THE BAR CHART
CALL GRAFDATA

i COMMENT THE GRAPH
CMNT$GRP FIRSTINP,SECNDINP

; WAIT FOR THE USER TO HIT A KEY
DOSFXN NO$ECHO ; DOS FUNCTION TO INPUT A CHARACTER WITHOUT

ECHOING IT

iSET THE WINDOW BACK TO ASCII MODE
MOV AL,COL$8025
MOV AH,SET$MODE
INT lOH

ENDM

GETDATA

PRNTER:

MACRO NAME
PARAMETERS

FUNCTION :

GETDATA
MFIC
KEYBOARD-
HOST$ID -
PCTSKID -
STRTPROG--

SENDACK --

BUFFER

Sample Program 4

RESOLVED VALUE FOR MFIC
RESOLVED VALUE FOR KEYBOARD
SESSION ID FOR THE HOST
PC TASK ID
THE SCAN CODES TO START THE HOST
PROGRAM.
THE NAME OF THE BUFFER SENT TO THE
HOST TO ACKNOWLEDGE THE FACT THAT
WE RECEIVED THE DATA FROM THE HOST
MEMORY LOCATION OF RECEIVE BUFFER

THIS WILL GET DATA FROM THE HOST.

MACRO MFIC,KEYBOARD,HOST$ID,PCTSKID,STRTPROG,SENDACK,BUFFER

; CONNECT TO MFIC, CONNECT TO THE HOST KEYBOARD,
; DISABLE INPUT TO THE HOST AND CREATE A FIXED LENGTH QUEUE
CALL CONNHOST

; PRINT A MESSAGE THAT SAYS WE ARE GETTING DATA FROM THE HOST
CALL GETDATAM

; DEFINE A BUFFER TO RECEIVE INPUT FROM THE HOST
; THIS BUFFER IS DEFINED BEFORE THE HOST APPLICATION IS STARTED
; IN ORDER TO HAVE A BUFFER READY FOR THE HOST'S DATA.
DEF$RBUF WAITCMPQ,MFIC,HOST$ID,PCTSKID,BUFFER
GET$COMP 40H
CHEK4ERR 19,DBRETNCD

; START UP THE HOST APPLICATION, I.E. SEND THE KEYSTROKES TO THE
; HOST TO INVOKE A PROGRAM NAMED EXAMP
MOV AL,IN1SCNCD THE USERS SELECTION FROM THE MENU IS USED
MOV RECNUM,AL AS A RECORD NUMBER. THE HOST WILL SEND

A RECORD OF INFORMATION FROM A DATA FILE
; ON THE HOST.

WRIT$KEY KEYBOARD,HOST$ID, "STRTPROG
CMP WKPARLST.WKRETNCD,AIDKEY

; IF THE LAST KEY WAS SENT THEN AN AID
JNE PRNTER ; KEY WAS GENERATED (RETURN CODE = 12)
MOV WKPARLST.WKRETNCD,O
CHEK4ERR 20,WKPARLST.WKRETNCD

; OTHERWISE CHECK FOR ANOTHER KEY

; GET THE COMMUNICATION STATUS FROM THE FIXED LENGTH QUEUE
GTSTATUS: DEQUEUE 02H,SFQID

CHEK4ERR 21

; IF THERE IS COMMUNICATION STATUS AND THERE IS NOT
A MESSAGE AVAILABLE FROM THE HOST THEN CLEAN UP AND EXIT THIS

; ROUTINE BECAUSE THERE IS A PROBLEM WITH THE HOST
CMP DQSTATUS,MSGAVAIL
JE READMSG
JMP PERRMSG

; THERE IS A MESSAGE FROM THE HOST SO READ IT INTO OUR BUFFER

Chapter 28. Sample Program 4 28-9

Sample Program 4

READMSG: READ$SF 40H,40H,MFIC,HOST$ID,PCTSKID
GET$COMP 40H
CHEK4ERR 22,RSRETNCD

i TELL THE HOST THAT WE RECEIVED THE INFORMATION
WRIT$SF RPLYCMPS,WAITCMPS,MFIC,HOST$ID,PCTSKID,SENDACK
CHEK4ERR 23,WSRETNCD
JMP CLNUP

i PRINT AN ERROR MESSAGE
PERRMSG: MOV DX,OFFSET HOSTPROB

MOV CX,DQSTATUS
CHEK4ERR 21
DOSFXN DISPSTRG

i DELETE THE FIXED LENGTH QUEUES, ENABLE INPUT TO THE HOST AND
; DISCONNECT FROM THE HOST

CLNUP CALL DISCHOST

ENDM

3270 P.C. API MACROS

CHEK4ERR

28-10

MACRO : CHEK4ERR
FUNCTION :

SET UP THE REGISTERS FOR THE ERROR CHECKER PROCEDURE.

MACRO CODE,RETNCODE

MOV AL,CODE

IFNB <RETNCODE>
MOV BL,RETNCODE
MOV BH,RETNCODE+1
ELSE
MOV BL,O
ENDIF

CALL CHECKERR

ENDM

MACRO NAME
PARAMETERS

DEF$RBUF
WAITTYPE

FUNCTION :

MFIC
HOSTID
PCTSKID
BUFFER

IF THERE IS A PARAMETER LIST RETURN CODE
SPECIFIED, PASS THE RETURN CODE AND THE
FUNCTION ID TO THE ERROR CHECKER IN BX

OTHERWISE, SEND A 0 IN BL

CALL THE ERROR CHECKER

WAIT TYPE(40H=WAIT FOR COMPLETION
OOH=DO NOT WAIT

RESOLVED VALUE FOR MFIC
HOST SESSION ID
PC TASK ID
MEMORY LOCATION NAME OF THE MESSAGE
BUFFER

USE THIS SERVICE TO DEFINE A BUFFER THAT WILL BE USED
TO RECEIVE A MESSAGE FROM THE SPECIFIED HOST SESSION.
THIS SERVICE IS VALID FOR DFT HOST SESSIONS ONLY.

Sample Program 4

DEF$RBUF MACRO WAITTYP,MFIC,HOSTID,PCTSKID,BUFFER

i INITIALIZE PARAMETER
MOV DBRETNCD,OOH

LIST FOR DEF$RBUF

MOV DBFXNID,OOH
MOV AL,HOSTID
MOV DBHOSTID,AL
MOV AX,PCTSKID
MOV DBTASKID,AX
MOV AX,OFFSET BUFFER
MOV DBOFFSET,AX
MOV AX,SEG BUFFER
MOV DBSEGMNT,AX

DBRETNCD MUST BE ° BEFORE REQUEST
DBFXNID MUST BE ° BEFORE REQUEST
HOST ID IN

THE LIST
PC TASK ID

IN THE LIST
OFFSET OF MESSAGE BUFFER

IN THE LIST
SEGMENT OF THE MESSAGE BUFFER

IN THE LIST

i INITIALIZE THE 8 BYTE HEADER OF THE MESSAGE BUFFER
MOV BUFFER,O
MOV WORD PTR BUFFER + 2,0
MOV WORD PTR BUFFER + 4,800H iLENGTH OF RECEIVE BUFFER
MOV WORD PTR BUFFER + 6,0

i INITIALIZE REGISTERS FOR DEF$RBUF
MOV AH,09H
MOV AL,05H
MOV BH,40H
MOV BL,WAITTYP
MOV CX,O
MOV DX,MFIC
MOV DI, SEG DBRETNCD
MOV ES,DI
MOV DI,OFFSET DBRETNCD

WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR DEF$RBUF SERVICE
INT 7AH

ENDM

MACRO : WRIT$KEY
PARAMETERS : SERVTYPE

SESSID
SCANCD
SHIFST
LISTNAME
TASKID

FUNCTION :

SERVICE TYPE
SESSION ID
SCAN CODE
SHIFT STATE
THE NAME OF THE LIST OF KEYSTROKES
CONNECTOR'S TASK ID (OPTIONAL)

SEND A KEYSTROKE OR A LIST OF KEYSTROKES TO THE
SPECIFIED SESSION.

WRIT$KEY MACRO SERVTYPE,SESSID,SCANCD,SHIFST,LISTNAME,TASKID
LOCAL WKEND

MOV WKPARLST.WKRETNCD,OH
i WKRETCD MUST BE 0 FOR THE CALL

MOV WKPARLST.WKFXNID,OH i WKFXNID MUST BE ° FOR THE CALL
MOV AL,SESSID PUT THE SESSION ID IN PARM LIST
MOV WKPARLST.WKSESSID,AL

Chapter 28. Sample Program 4 28-11

Sample Program 4

IFNB <SCANCD>

; SENDING ONE KEYSTROKE

MOV
MOV
MOV
MOV

AL,SCANCD
WKPARLST.WKSCNCOD,AL
AL,SHIFST
WKPARLST.WKSHFST,AL

CHECK IF SENDING ONE KEYSTROKE
OR A LIST OF KEYSTROKES

PUT THE SCAN CODE IN THE PARM LIST

PUT SHIFT STATE IN THE PARM LIST

MOV AL,20H ; PUT THE OPTION BYTE FOR SENDING
MOV WKPARLST.WKOPTION,AL; ONE CHARACTER IN THE PARM LIST

ELSE
; SENDING A LIST OF KEYSTROKES

MOV AX,OFFSET LISTNAME PUT THE OFFSET ADDRESS OF THE LIST
MOV WKPARLST.WKLSTOFF,AX

INTO THE PARAMETER LIST
MOV AX,SEG LISTNAME ; PUT THE SEGMENT ADDRESS OF THE LIST
MOV WKPARLST.WKLSTSEG,AX; INTO THE PARAMETER LIST

MOV AL,30H PUT THE OPTION BYTE FOR SENDING A
MOV WKPARLST.WKOPTION,AL

ENDIF

IFNB <TASKID>
MOV AX,TASKID
ELSE
MOV AX,O
ENDIF
MOV WKPARLST.WKTASKID,AX

LIST OF CHARS. IN THE PARM LIST

IF A CONNECTOR'S TASK ID WAS
SPECIFIED, PUT IT IN THE LIST

OTHERWISE PUT A 0 IN THE LIST

; INITIALIZE THE REGISTERS FOR WRIT$KEY
MOV AH,09H
MOV AL,04H
MOV BH,BOH
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG WKPARLST
MOV ES,DI
MOV DI, OFFSET WKPARLST

INT 7AH

SERVICE TYPE IN DX
GET SEGMENT ADDRESS OF PARM LIST

AND PUT IT IN ES
SET DI TO OFFSET OF PARM LIST

PASS THE REQUEST TO THE API

WKEND: NOP

28-12

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DEQUEUE
WAITTYPE
QUEUEID

WAIT TYPE
ID OF THE FIXED-LENGTH QUEUE

OBTAIN AN ELEMENT FROM A FIXED-LENGTH QUEUE.

DEQUEUE

;
READ$SF

Sample Program 4

MACRO WAITTYPE,QUEUEID

; INITIALIZE REGISTERS FOR DEQUEUE
MOV AH,13H
MOV BL,WAITTYPE WAIT TYPE IN BL
MOV CX,0004H
MOV DX,QUEUEID FIXED-LENGTH QUEUE ID IN DX
MOV DI, SEG DQSESSID SEGMENT ADDRESS OF DATA AREA IN ES
MOV ES,DI
MOV DI,OFFSET DQSESSID OFFSET ADDRESS OF DATA AREA IN DI

; SIGNAL WORKSTATION PROGRAM FOR DEQUEUE SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

READ$SF
RPLYTYPE
WAITTYPE
MFIC
HOSTID
PCTSKID

REPLY TYPE
WAIT TYPE
RESOLVED VALUE FOR MFIC
HOST SESSION ID
PC TASK ID

USE THIS SERVICE TO READ STRUCTURED FIELD DATA FROM THE
SPECIFIED HOST SESSION. THIS SERVICE IS VALID FOR DFT
HOST SESSIONS ONLY.

MACRO RPLYTYPE,WAITTYP,MFIC,HOSTID,PCTSKID
LOCAL RSEND

; INITIALIZE PARAMETER
MOV RSRETNCD,OOH
MOV RSFXNID,OOH

LIST FOR READ$SF

MOV AL,HOSTID
MOV RSHOSTID,AL
MOV AX,PCTSKID
MOV RSTASKID,AX
MOV RSZERO,O

RSRETNCD MUST BE 0 BEFORE REQUEST
RSFXNID MUST BE 0 BEFORE REQUEST
HOST ID IN

THE LIST
PC TASK ID

IN LIST
THIS FIELD MUST BE ZEROED

; INITIALIZE REGISTERS FOR READ$SF
MOV AH,09H
MOV AL,03H
MOV BH,RPLYTYPE
MOV BL,WAITTYP
MOV CX,O
MOV DX,MFIC
MOV DI, SEG RSRETNCD
MOV ES,DI
MOV DI,OFFSET RSRETNCD

REPLY TYPE IN BH
WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR READ$SF SERVICE
INT 7AH

ENDM

Chapter 28. Sample Program 4 28-13

Sample Program 4

WRIT$SF

28-14

MACRO NAME
PARAMETERS

FUNCTION :

WRIT$SF
RPLYTYPE
WAITTYPE
MFIC
HOSTID
PCTSKID
STR$DATA

REPLY TYPE
WAIT TYPE
RESOLVED VALUE FOR MFIC
HOST SESSION ID
PC TASK ID
MEMORY LOCATION NAME OF STRUCTURED
FIELD DATA

USE THIS SERVICE TO WRITE STRUCTURED FIELD DATA FROM THE
SPECIFIED HOST SESSION. THIS SERVICE IS VALID FOR DFT
HOST SESSIONS ONLY.

MACRO RPLYTYPE,WAITTYP,MFIC,HOSTID,PCTSKID,STR$DATA

; INITIALIZE PARAMETER
MOV WSRETNCD,OOH
MOV WSFXNID,OOH

LIST FOR READ$SF

MOV AL,HOSTID

WSRETNCD MUST BE ° BEFORE REQUEST
; WSFXNID MUST BE ° BEFORE REQUEST
; HOST ID IN

MOV WSHOSTID,AL ; THE LIST

MOV
MOV
MOV
MOV
MOV

; OFFSET AND SEGMENT OF DATA IN LIST
WSOFFSD,OFFSET STR$DATA
WSSEGTD,SEG STR$DATA
AX,PCTSKID
WSTASKID,AX
WSZERO,O

PC TASK ID
IN LIST

THIS FIELD MUST BE ZEROED

; INITIALIZE THE FIELDS IN THE STRUCTURED FIELD 8 BYTE HEADER
MOV STR$DATA, °
MOV WORD PTR STR$DATA + 4,0
MOV WORD PTR STR$DATA + 6,0

; INITIALIZE REGISTERS FOR
MOV AH,09H
MOV AL,04H
MOV BH,RPLYTYPE
MOV BL,WAITTYP
MOV CX,O
MOV DX,MFIC
MOV DI, SEG WSRETNCD
MOV ES,DI
MOV DI,OFFSET WSRETNCD

WRIT$SF

REPLY TYPE IN BH
WAIT TYPE IN BL
PRIORITY IN CX
RESOLVED VALUE FOR MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR WRIT$SF SERVICE
INT 7AH

ENDM

MACRO : GET$COMP
FUNCTION:

USE THIS SERVICE TO OBTAIN THE CONTENTS OF A SPECIFIED
REQUEST QUEUE ELEMENT.
ONE PARAMETER IS PASSED WHICH INDICATES WHETHER THE USER
WANTS TO WAIT UNTIL RESULTS ARE READY (40H) OR TO CHECK IF
RESULTS ARE AVAILABLE AND GET THEM IF THEY ARE READY (OOH).

Sample Program 4

GET$COMP MACRO WAIT

MOV
MOV
MOV
INT

BL,WAIT
AH,83H
CX,OOOOH
7AH

SET UP THE REGS FOR A GET$COMP CALL

ENDM

STACKSEG SEGMENT STACK 1 STACK 1
DB STAKSIZE DUP(?)

STACKSEG ENDS

DATASEG SEGMENT PUBLIC

; THESE VARIABLES ARE LOCATED IN THE SECOND LOAD MODULE
EXTRN PCSESSID:BYTE,KEYBOARD:WORD,MENU$PS:BYTE,HOST$ID:BYTE,PCTASKID:WORD
EXTRN MFIC:WORD,IN1SCNCD:BYTE,SFQID:WORD,SECNDINP:BYTE,SESSMGR:WORD
EXTRN FIRSTINP:BYTE

; THESE VARIABLES ARE USED BY THE SECOND LOAD MODULE
PUBLIC BUFFAREA,CURR$Y

CURR$Y

CURR$X

DW 0

DW 0

DW 0
DW 0

CURRENT Y POINTER, USED TO DRAW A
VERTICAL LINE

CURRENT X POINTER, USED TO DRAW A
HORIZONTAL LINE

DASH$BEG
DASHINTV
MONTHS
YEARS

DB IJ F M A M
DB 1 1980 1981

USED TO DRAW A DASH ON THE Y AXIS
INTERVAL BETWEEN DASHED ON THE Y AXIS

J J A SON D$'
1982 1983 1984$1

COMMENTS TO BE DISPLAYED UNDER THE X AXIS
; OF THE GRAPH

SAVECX
FIVE

DW 0
DB 5

; SAVE A LOOP COUNTER
; USED FOR DIVIDE INSTRUCTION

; TABLES FOR PRINTING OUT COMMENTS BY THE Y AXIS
THE FIRST TABLE IS FOR PRINTING OUT DATA BY THE MONTH

; THE SECOND TABLE IS FOR PRINTING OUT DATA BY THE YEAR
M$INTVL DB 1 20$ 40$ 60$ 80$100$1

DB 1 8$ 16$ 24$ 32$ 40$ 1
DB 1 3$ 6$ 9$ 13$ 15$1
DB 1 20$ 40$ 60$ 80$100$1
DB 1 5$ 10$ 15$ 20$ 25$ 1

Y$INTVL DB 1180$360$540$720$900$1
DB 1 80$160$240$320$400$1
DB 1 30$ 60$ 90$130$150$1
DB 1 60$120$180$240$300$1
DB 1 25$ 50$ 75$100$125$1

; MESSAGES
HOSTPROB DB
CORPNAME DB
WAITMSG DB
HITKEYM DB

'PROBLEM WITH HOST, CANNOT GET DATA $1
'STEMIR CORPORATION$'

; MESSAGES PRINTED
DATATTAB DB

DB
DB
DB
DB

'GETTING DATA FROM THE HOST$'
'HIT ANY KEY TO RETURN TO MENU$'

UNDER THE GRAPH DESCRIBING THE DATA
'GROSS REVENUE (THOUSANDS)$
'NET REVENUE (THOUSANDS) $
'PRODUCTS SOLD (THOUSANDS)$
'EMPLOYEE OVERTIME (HOURS)$
'EMPLOYEE ILLNESS (DAYS) $

Chapter 28. Sample Program 4 28-15

Sample Program 4

; LENGTH OF EACH STRING IN THE ABOVE TABLE
LENCMNT DB 33

; A LIST OF SCAN CODES AND SHIFTSTATES SENT TO THE HOST TO START THE
; PROGRAM THAT
STRTPROG DW
E DB
X DB
A DB
M DB
P DB
SPACE1 DB
S DB
T DB
E$2 DB
M$2 DB
I DB
R DB
SPACE2 DB
D DB
A$2 DB
T$2 DB
A$3 DB
SPACE3 DB
LFTPARN1 DB
R$2 DB
E$3 DB
C DB
LFTPARN2 DB
RECNUM DB

DB
RHTPARN1 DB
RHTPARN DB
ENTERKEY DB

8 BYTE HEADER
VIA WRIT$SF

IS ON THE HOST
54
24H,UPCASE
22H,UPCASE
1CH,UPCASE
3AH,UPCASE
4DH , UP CASE
29H,UPCASE
1BH,UPCASE
2CH,UPCASE
24H,UPCASE
3AH,UPCASE
43H,UPCASE
2DH,UPCASE
29H,UPCASE
23H,UPCASE
1CH,UPCASE
2CH,UPCASE
1CH,UPCASE
29H,UPCASE
46H,UPCASE
2DH,UPCASE
24H,UPCASE
21H,UPCASE
46H,UPCASE
?

° 45H,UPCASE
45H,UPCASE
58H,0

; LENGTH OF THE LIST

THIS IS THE RECORD THAT WE WANT FROM
THE HOST

FOLLOWED BY ACKNOWLEDGMENT THAT IS SENT TO THE HOST PROGRAM

THE FORMAT OF THE SUCCESSFUL TRANSMISSION RESPONSE
APPENDIX B, "FORMAT OF THE HOST INSERT AND INSERT

CAN BE FOUND IN

; DATA REQUESTS."
SENDACK DB

DB
DATBLK DB

O,O,OBH,O,O,O,O,O
0,OBH,ODOH,47H,05H,63H,06H
0,0,0,1

DEFINE A RECEIVE BUFFER
THE RECEIVE BUFFER IS AN EIGHT
THE FORMAT OF THE HOST DATA IS

; "FORMAT OF THE HOST INSERT AND
BUFFER DW °
OBLEN DW °
RB$SIZ DW ° DB 12 DUP(O)

DW °
DB 6 DUP(O)

LD DW ° BUFFAREA DB 2000 DUP(O)

28-16

BYTE HEADER FOLLOWED BY THE DATA AREA
DOCUMENTED IN APPENDIX B,
INSERT DATA REQUESTS."

OUTBOUND TRANSMISSION LEN
EXCLUDING THE BUFFER HEADER

SIZE OF RECEIVE BUFFER ON DEF$RBUF

OUTBOUND TRANSMISSION LEN
INCLUDING THE BUFFER HEADER

LENGTH OF DATA + 5
2000 BYTES FOR THE BUFFER

i PARAMETER LIST FOR DEF$RBUF

DBRETNCD
DBFXNID
DBHOSTID

DBOFFSET
DBSEGMNT

DBTASKID

DB
DB
DB
DB
DW
DW
DW
DW
DW
DW
DW
DW
DW

a
a
a
a
a
OOOlH
a
a
a
a
a
a
9 DUP(O)

PARAMETER LIST STRUCTURE

WRKYPARM
WKRETNCD
WKFXNID
WKSESSID
WKSPARE
WKTASKID
WKOPTION
WKNUMKEY
WKSCNCOD
WKSHFST'
WKRESRV2
WRKYPARM

WRKYPAR2

WKLSTOFF
WKLSTSEG
WRKYPAR2

STRUC
DB a
DB a
DB a
DB a
DW a
DB a
DB a
DB a
DB a
DW a
ENDS

STRUC
DB 8 DUP(OO)
DW a
DW a
ENDS

FOR

Sample Program 4

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID
UNCHANGED
NOT USED

UNUSED
SEGMENT AND OFFSET OF THE MESSAGE BUFFER

UNUSED
PC TASK ID

SYSTEM WORK AREA

WRIT$KEY

i ALLOCATE STORAGE FOR THE WRITE KEYSTROKE PARAMETER LIST

WKPARLST WRKYPARM <>

; DATA AREA FOR DEQUEUE

DQSESSID DB a
DQRESERV DB a
DQSTATUS DW a

; PARAMETER LIST FOR READ$SF

RSRETNCD DB
RSFXNID DB
RSHOSTID DB
RSZERO DB

DW
DW
DW

RSOFFSD DW
RSSEGTD DW

DW
RSTASKID DW

DW
DW

a
a
a
a
a
OOOlH
a
a
a
a
a
a
9 DUP(O)

SESSION ID
RESERVED
STATUS CODE FOLLOWED BY
STATUS TYPE

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID
UNCHANGED
NOT USED
STRUCTURED FIELD TYPE, (DESTjORIG)
UNUSED
OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA
UNUSED
PC TASK ID

SYSTEM WORK AREA

Chapter 28. Sample Program 4 28-1 7

Sample Program 4

; PARAMETER LIST FOR WRIT$SF

WSRETNCD DB
WSFXNID DB
WSHOSTID DB
WSZERO DB

OW
ow
OW

WSOFFSD OW
WSSEGTD OW

OW
WSTASKID OW

OW
ow

DATASEG ENDS

o
o
o
o
o
OOOlH
o
o
o
o
o
o
9 DUP(O)

RETURN CODE
FUNCTION NUMBER
HOST SESSION 10
UNCHANGED
NOT USED
STRUCTURED FIELD TYPE,(DEST/ORIG)
UNUSED
OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA
UNUSED
PC TASK ID

SYSTEM WORK AREA

*** MAIN BODY ***

CODESEG SEGMENT PUBLIC

; THESE ENTRY POINTS ARE LOCATED IN THE SECOND LOAD MODULE
EXTRN INIT:NEAR,CHECKERR:NEAR,GET$RESP:NEAR, CONNHOST: NEAR , 01 SCHOST:NEAR,

GRAFDATA:NEAR

; THESE ENTRY POINTS ARE USED BY THE SECOND LOAD MODULE
PUBLIC THE$END,DISPD

START:

; ESTABLISH ADDRESSABILITY OF CODE
ASSUME CS:CODESEG

; ESTABLISH ADDRESSABILITY OF DATA BY OS AND ES REGISTER
MOV AX,DATASEG
MOV DS,AX
MOV ES,AX
ASSUME DS:DATASEG,ES:DATASEG

; RESOLVE NAMES FOR SERVICES AND FIND THE BASE WINDOW SESSION 10
CALL INIT

; DISPLAY THE DATA
MAINLOOP: DISPMENU PCSESSID,MENU$PS

28-18

; GET THE USERS REQUEST FROM THE MENU
CALL GET$RESP

; IS THE USER FINISHED?
CMP AL,ESC
JNE CONT
JMP THE$END

DID THE USER HIT THE ESCAPE KEY?
NO, PROCESS HIS REQUEST
YES, THE USER IS FINISHED, CLEAN UP

; GET THE DATA,(CORRESPONDING TO THE USERS REQUEST) FROM THE HOST

CONT:

Sample Program 4

GETDATA MFIC,KEYBOARD,HOST$ID,PCTASKID,STRTPROG,SENDACK,BUFFER

i DISPLAY THE DATA
DISPDATA FIRSTINP,SECNDINP

i CONTINUE GETTING USER'S REQUEST
JMP MAINLOOP

THE$END: CALL
MOV
INT

CLEARSCR
AX,4COOH
21H

CLEAR THE SCREEN BEFORE EXITING
i EXIT PROGRAM

*** PROCEDURE DEFINITIONS ***

PROCEDURE: CLEARSCR
FUNCTION

THIS PROCEDURE WILL CLEAR THE SCREEN.

CLEARSCR PROC

i SET THE SEGMENT TO THE BEGINNING OF THE HARDWARE BUFFER
MOV AX,OBOOOH
MOV ES,AX

i INITIALIZE THE LOOP COUNTER
MOV CX,2000 THE BUFFER HAS 2000 CHARACTERS AND EACH

CHARACTER IS FOLLOWED BY AN ATTRIBUTE
MOV DI,O

i MOVE A BLANK CHARACTER WITH AN ATTRIBUTE INTO THE BUFFER
CLRSCRN: MOV BYTE PTR ES: [DI],' ,

MOV BYTE PTR ES: [DI+l] ,07H

i INCREMENT THE INDEX INTO THE BUFFER
ADD DI,2
i CLEAR THE WHOLE BUFFER
LOOP CLRSCRN
RET

CLEARSCR ENDP
RETURN TO CALLER

MACRO NAME : GETDATAM
FUNCTION

THIS PROCEDURE WILL PRINT A MESSAGE ON THE MENU SAYING
THAT THE DATA IS BEING GOTTEN FROM THE HOST.

GETDATAM PRoe

i MOVE CURSOR TO THE PLACE THAT THE MESSAGE IS BEING PRINTED
MOV DL,ll
MOV DH,20
MOV$CURS

Chapter 28. Sample Program 4 28-19

Sample Program 4

; PRINT THE STRING
MOV DX,OFFSET WAITMSG
DOSFXN DISPSTRG

RET TO CALLER

GETDATAM ENDP

CODESEG ENDS END OF THE CODE SEGMENT
END START IDENTIFY THE START ADDRESS OF THE SOURCE

28-20

Sample Program 5

Chapter 29. Sample Program 5

DATASEG

THIS PROGRAM IS THE SECOND MODULE OF THE STEMIR PROGRAM. THE
TWO MODULES ARE TO BE ASSEMBLED SEPARATELY AND THEN LINKED TOGETHER.

PAGE 60,132

**** DATA ****

SEGMENT PUBLIC

i DECLARE VARIABLES THAT ARE NEEDED BY THE FIRST MODULE OF THE PROGRAM

PUBLIC
PUBLIC

PCSESSID,KEYBOARD,MENU$PS,HOST$ID,PCTASKID,MFIC,IN1SCNCD,SFQID
FIRSTINP,SECNDINP,SESSMGR

i DECLARE VARIABLES THAT ARE LOCATED IN THE FIRST MODULE OF THE PROGRAM

EXTRN BUFFAREA:WORD,CURR$Y:WORD

; PARAMETER LIST FOR CONN$KEY

CKRETNCD DB 0
CKFXNID DB 0
CKSESSID DB 0
CKRESRV1 DB 0
CKEVENTQ DW 0
CKKEYSTQ DW 0
CKOPTION DB 40H
CKRESRV2 DB 0

i PARAMETER LIST FOR CONN$SF

CFRETNCD DB 0
CFFXNID DB 0
CFSESSID DB 0
CFRESRV1 DB 0
CFFLQID DW 0

DW 0001H
CFEVNTS DW 0600H
CFQRPLY DD QUERYREP
CFRESERV2 DW 0
CFTASKID DW 0
CFRESRV3 DW 0
CFWORK DW 9 DUP(O)

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
EVENT QUEUE ID
KEYSTROKE QUEUE ID
OPTION BYTE (INTERCEPT ALL)
RESERVED

RETURN CODE
FUNCTION NUMBER
SESSION ID
MUST BE 0
FIXED-LENGTH QUEUE ID
MUST BE 00001H
EVENTS TO BE ENQUEUED - DFT
OFFSET AND SEGMENT OF THE QUERY REPLY
MUST BE 0
PC TASK ID
MUST BE 0
SYSTEM WORK AREA

Chapter 29. Sample Program 5 29-1

Sample Program 5

; QUERY REPLY FOR DESTINATION/ORIGIN

QUERYREP DW
DB
DB
DB
DB
DW
DW
DB
DW

QRAPLNAM DB

; PARAMETER LIST

CQOFFSET DW 0
CQSEGMEN DW 0
CQNAME DB 8

1900H
81H
9DH
o
01H
0008H
0008H
OFH
4801H
12 DUP(O)

FOR CRT$Q

DUP(O)

LENGTH OF THE STRUCTURE
QUERY REPLY
ANOMALY IMPLEMENTATION
MUST BE 0
STRUCTURED FIELD EXCHANGE
MAXIMUM NUMBER OF BYTES IN INBOUND TRANSMISSION
MAXIMUM NUMBER OF BYTES IN OUTBOUND TRANSMISSION
RESERVED
MY OWN DESTINATION ORIGIN ID
PC APPLICATION NAME IN EBCDIC

OFFSET OF THE QUEUE
SEGMENT ADDRESS OF THE QUEUE
QUEUE NAME

; PARAMETER LIST FOR DISC$KEY

DKRETNCD DB 0
DKFXNID DB 0
DKSESSID DB 0
DKRESRV1 DB 0
DKTASKID DW 0
DKRESRV2 DB 0

; PARAMETER LIST FOR DISC$SF

DFRETNCD DB 0
DFFXNID DB 0
DFSESSID DB 0
DFRESERV1 DB 0

DW 0
DFTYPE DW 000lH

DW 6 DUP(O)
DFWORK DW 9 DUP(O)

i DEFINE PARAMETER LIST FOR

DIRETNCD DB 0
DIFXNID DB 0
DISESID DB 0
DIRESRVD DB 0
DICONNID DW 0

; DEFINE PARAMETER LIST FOR
EIRETNCD DB 0
EIFXNID DB 0
EISESID DB 0
EIRESRVD DB 0
EICONNID DW 0

29-2

DISA$INP

ENAB$INP

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
CONNECTOR'S TASK ID
RESERVED

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED
NOT USED
DISCONNECT TYPE - DESTINATION/ORIGIN
NOT USED
SYSTEM WORK AREA

RETURN CODE
FUNCTION CODE
SESSION ID
RESERVED
CONNECTORS TASK ID

RETURN CODE
FUNCTION ID
SESSID
RESERVED
CONNECTOR'S TASK ID

; PARAMETER LIST

QDRETNCD DB 0
QDFXNID DB 0
QDOPTION DB 0
QDDATA DB 0
QDNAMOFF DW 0
QDNAMSEG DW 0
QDLNGNAM DB 8

i PARAMETER LIST

QSRETNCD DB 0
QSFXNID DB 0
QSENVID DB 0
QSSESSID DB 0
QSWINDOW DB 0
QSRESERV DB 0

i PARAMETER LIST

TLRETNCD DB 0
TLFXNID DB 0
TLSRCOFF DW 0
TLSRCSEG DW 0
TLTRGOFF DW 0
TLTRGSEG DW 0
TLTYPE DB 0
TLRESERV DB 0
TLLENGTH DW 0

NAMARRAY DB
NUMSESS DB
SHRTNAME DB
SESSTYPE DB
SESSID DB
SPARE DB
LONGNAME DB

KYBDNAME DB
SMGRNAME DB
XLATNAME DB
MFICNAME DB

KEYBOARD DW
SESSMGR DW
XLATE DW
MFIC DW

PCSESSID DB

HOST$ID DB
HOST$WND DB

PCTASKID DW

COUNT DW

BFWIDTH DW
BARWIDTH DW
HEIGHT DW

FOR QUERY$ID

DUP(?)

FOR QBASW

FOR TRANSLAT

14
0
0
0
0
0
8 DUP(O)

'KEYBOARD'
'SESSMGR ,
'XLATE
'MFIC

0
0
0
0

0

0
0

0

0

0
0
0

RETURN CODE
FUNCTION NUMBER
OPTION BYTE
DATA BYTE

Sample Program 5

OFFSET OF NAME TABLE
SEGMENT OF NAME TABLE
SESSION LONG NAME

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
SESSION ID
WINDOW SHORT NAME
RESERVED

RETURN CODE
FUNCTION NUMBER
OFFSET ADDRESS OF SOURCE BUFFER
SEGMENT ADDRESS OF SOURCE BUFFER
OFFSET ADDRESS OF TARGET BUFFER
SEGMENT ADDRESS OF TARGET BUFFER
TRANSLATION TYPE
RESERVED
LENGTH

NAME ARRAY FOR QUERY$ID FUNCTION
NUMBER OF MA~CHING SESSIONS
SESSION SHORT NAME
SESSION TYPE
SESSION ID

LONG NAME OF SESSION

PARM LIST FOR NAME$RES ON KEYBOARD
PARM LIST FOR NAME$RES ON SESSMGR
PARM LIST FOR NAME$RES ON XLATE
PARM LIST FOR NAME$RES ON MFIC

KEYBOARD SERVICE TYPE
SESSMGR SERVICE TYPE
XLATE SERVICE TYPE
MFIC SERVICE TYPE

SESSION ID OF THE GRAPHICS WINDOW

SESSION ID OF THE HOST WINDOW
SHORT NAME OF THE HOST WINDOW

TASK ID FOR THIS PC PROGRAM

NUMBER OF BAR FIELDS ON THE X AXIS

WIDTH IN PELS OF THE BAR FIELD
WIDTH OF ONE BAR (3/4 OF BFWIDTH)
HEIGHT IN PELS OF A BAR

Chapter 29', Sample Program 5 29-3

Sample Program 5

STARTX DW
STARTY DW

YAXISLEN DW

YMAX DW

IN1SCNCD DB

SFQID DW
SFQLEN DW
SF$Q DB

HOSTQ$ID DW
HOSTQLEN DW
HOSTQ DB

FIRSTINP DB
SECNDINP DB

MENU$PS DB
DB
DB

DB
DW
DB

DB
DW
DB
DB
DB
DW
DB

DB
DW
DB
DB
DW
DB

DB
DW
DB

DB
DW
DB

DB
DW
DB
DB
DW
DB

29-4

° °
°
°
°
° 64
64 DUP(O)

° 64
64 DUP(O)

° °
201,7
78 DUP(205,7)
187,7

186,7
78 DUP(0700H)
186,7

186,7
30 DUP(0700H)

X POSITION OF THE LOWER LEFT CORNER OF THE BAR
Y POSITION OF THE LOWER LEFT CORNER OF THE BAR

LENGTH OF THE Y AXIS IN PELS

MAXIMUM VALUE ON THE Y AXIS

SCAN CODE FOR THE FIRST INPUT IN THE MENU

ID OF THE HOST INTERACTIVE FIXED$LENGTH QUEUE
LENGTH OF THE HOST INTERACTIVE QUEUE
THE HOST INTERACTIVE QUEUE

ID OF THE HOST KEYSTROKE FIXED$LENGTH QUEUE
LENGTH OF THE HOST KEYSTROKE QUEUE
THE HOST KEYSTROKE QUEUE

THE CHARACTER IN THE FIRST INPUT FIELD
THE CHARACTER IN THE SECOND INPUT FIELD

THE PRESENTATION SPACE FOR THE SELECTION MENU

IS' ,4, 'T' ,4, 'E' ,4, 'M' ,4, 'I' ,4, 'R' ,4,0,0
'C' ,4, '0' ,4, 'R' ,4, 'pi ,4, '0' ,4, 'R' ,4, 'A' ,4
'T' ,4,' I' ,4, '0' ,4, 'N' ,4
30 DUP(0700H)
186,7

186,7
31 DUP(0700H)
'G' ,4, 'R' ,4, 'A' ,4, 'Pi ,4, 'H' ,4, 'I' ,4, 'C' ,4,0,0
IS' ,4, lUI ,4, 'M' ,4, 'M' ,4, 'A' ,4, 'R' ,4,'Y' ,4
32 DUP(0700H)
186,7

186,7
78 DUP(0700H)
186,7

186,7
78 DUP(0700H)
186,7

186,7
10 DUP(0700H)
'I' ,1,0,0, I_I ,1,0,0, 'G' ,1, 'R' ,1, '0' ,1, IS' ,1, IS' ,1,0,0
'R' ,1, 'E' ,1, 'V' ,1, 'E' ,1, 'N' ,1, lUI ,1, 'E' ,1
51 DUP(0700H)
186,7

Sample Program 5

DB 186,7
DW 10 DUP(0700H)
DB ' 2 ' , 1,0 , 0 , , - , , 1 ,0,0, 'N' , 1, 'E' , 1 , 'T' , 1,0, 0
DB ' R' , 1, 'E' , 1, 'V' , 1, 'E' , 1, 'N' , 1, 'U' , 1, 'E ' , 1
DW 53 DUP(0700H)
DB 186,7

DB 186,7
DW 10 DUP(0700H)
DB ' 3 ' , 1 , 0 , 0, , - , , 1 , 0 , 0, 'N' , 1, , U' , 1, 'M' , 1, 'B' , 1, 'E ' , 1, 'R' , 1 , 0 , 0
DB ' 0' , 1, 'F' , 1,0 ,0 , 'P' , 1, , R' , 1, '0' , 1, 'D' , 1, 'U' , 1, , C' , 1, 'T' , 1, , S ' , 1
DB 0 ,0, , S ' , 1, '0' , 1, 'L' , 1, 'D' , 1
DW 41 DUP(0700H)
DB 186,7

DB 186,7
DW 10 DUP(0700H)
DB ' 4 ' , 1,0, 0 , ' -' , 1,0 ,0, 'E' , 1, , M' , 1, 'P' , 1, , L' , 1, '0' , 1, 'Y' , 1
DB ' E' , 1, 'E' , 1,0 , 0 , '0' , 1, 'V' , 1, 'E' , 1, 'R' , 1, 'T' , 1, , I ' , 1, 'M' , 1, 'E' , 1
DB 0 , 0, 'H' , 1, '0' , 1, 'U' , 1, 'R' ,1, ' S' , 1
DW 41 DUP(0700H)
DB 186,7

DB 186,7
DW 10 DUP(0700H)
DB ' 5 ' , 1 , 0 , 0 , , -' , 1 , 0 , 0, 'E' , 1, , M' , 1, 'P' , 1, 'L' , 1, '0' , 1, 'Y , , 1
DB ' E' , 1, 'E' , 1 , 0 , 0, , I ' , 1, 'L' , 1, 'L' , 1, 'N' , 1, 'E ' , 1, , S' , 1, , S ' , 1 , 0 , 0
DB ' D' , 1, 'A' , 1, 'Y' , 1, , S ' , 1
DW 43 DUP(0700H)
DB 186,7

DB 186,7
DW 78 DUP(0700H)
DB 186,7

DB 186,7
DW 10 DUP(0700H)
DB'S' , 3 , 'E' , 3, 'L' , 3 , 'E ' , 3, , C' , 3 , , T' , 3 , 0 , 0 , , T' , 3, 'H' , 3, 'E ' , 3 , 0 , 0
DB ' D' , 3 , , A' , 3, 'T' , 3 , , A' , 3 , 0 , 0, 'T' , 3 , '0' , 3 , 0 , 0
DB 'D' ,3, 'I' ,3, IS' ,3, 'Pi ,3, 'L' ,3, 'A' ,3, 'Y' ,3,0,0,205,3,205,3, ')',3
DB 0,0
DB 0,7
DW 36 DUP(0700H)
DB 186,7

DB 186,7
DW 78 DUP(0700H)
DB 186,7

DB 186,7
DW 78 DUP(0700H)
DB 186,7

DB 186,7
DW 10 DUP(0700H)
DB ' M' , 1 , 0 , 0, , - , , 1 , 0 , 0, 'D' , 1, , I ' , 1, , S ' , 1, 'P' , 1, 'L' , 1, 'A' , 1, 'Y' , 1
DB 0 , 0 , 'D' , 1, , A' , 1, , T' , 1, 'A' , 1 , 0 , 0 , 'F' , 1, '0' , 1, 'R' , 1 , 0 , 0
DB ' T' , 1, 'H' , 1, 'E' , 1 , 0 , 0, 'L' , 1, , A' , 1, , S ' , 1, 'T' , 1 , 0 , 0, , I' , 1, , 2 ' , 1
DB 0 , 0 , 'M' , 1, '0' , 1, 'N' , 1, 'T' , 1, , H' , 1, , S' , 1
DW 29 DUP(0700H)
DB 186,7

Chapter 29. Sample Program 5 29-5

Sample Program 5

DB
DW
DB
DB
DB
DB
DW
DB

DB
DW
DB

DB
DW
DB
DB
DB
DB
DW
DB

DB
DW
DB

DB
DW
DB

DB
DW
DB
DB
DB
DB
DB
OW
DB

DB
OW
DB
DB
DW
DB

DB
DW
DB

DB
DB
DB

DW

YMAXTAB DW

PROGNAME DB

HSTPRMPT DB
DB

29-6

186,7
10 DUP(0700H)
'y' ,1,0,0, '-' ,1,0,0, 'D' ,1, 'I' ,1, 'S' ,1, 'P' ,1, 'L' ,1, 'A' ,1, 'Y',l
0,0, 'D' ,1, 'A' ,1, 'T' ,1, 'A' ,1,0,0, 'F' ,1, '0' ,1, 'R' ,1,0,0
'T' ,1, 'H' ,1, 'E' ,1,0,0, 'L' ,1, 'A' ,1, 'S' ,1, 'T' ,1,0,0, '5',1
0,0, 'Y' ,1, 'E' ,1, 'A' ,1, 'R' ,1, 'S',l
31 DUP(0700H)
186,7

186,7
78 DUP(0700H)
186,7

186,7
10 DUP(0700H)
's' ,3, 'E' ,3, 'L' ,3, 'E' ,3, 'C' ,3, 'T' ,3,0,0, 'T' ,3, 'H' ,3, 'E' ,3,0,0
'T' ,3, 'I' ,3, 'M' ,3, 'E' ,3,0,0, 'S' ,3, 'p' ,3, 'A' ,3, 'N' ,3,0,0
205,3,205,3, ,>' ,3,0,0
0,7
42 DUP(0700H)
186,7

186,7
78 DUP(0700H)
186,7

186,7
78 DUP(8400H)
186,7

186,7
10 DUP(0700H)
'P',7,'R',7,'E',7,'S',7,'S',7,0,0,'E',7,'N',7,'T',7,'E',7,'R',7
0,0,' (' ,7,17,7,196,7,217,7,')' ,7,0,0,'T' ,7,'0' ,7,0,0
'D',7, '1',7, 'S',7, 'P',7, 'L',7, 'A',7, 'Y',7 ,0,0, 'T',7, 'H',7, 'E',7
0,0, 'S' ,7, 'E' ,7, 'L' ,7, 'E' ,7, 'e' ,7, 'T' ,7, 'E' ,7, 'D' ,7,0,0
'D',7,'A',7,'T',7,'A',7
22 DUP(0700H)
186,7

186,7
10 DUP(0700H)
'P' ,7,'R' ,7,'E' ,7,'S' ,7, 'S' ,7,0,0,'E' ,7,'S' ,7,'C' ,7,0,0
'T' ,7,'0' ,7,0,0,'E' ,7,'X' ,7,'1' ,7,'T',7
51 DUP(0700H)
186,7

186,7
78 DUP(0700H)
186,7

200,7
78 DUP(205,7)
188,7

80 DUP(0700H)

100,40,15000,100,25,900,400,150,300,125

'STEMIR .EXE'

'ENTER THE SHORT NAME OF THE HOST WINDOW' ,13,10
205,205,16,' $'

NOTDFT

ERRMSG

DB
DB
DB

DB

Sample Program 5

13,10, 'INCORRECT HOST WINDOW SPECIFIED. WINDOW MUST BE A DFT '
'HOST SESSION.' ,13,10
'PROGRAM TERMINATED' ,13,10,'$'

13,10, 'ERROR IN API CALL. PROGRAM TERMINATED.' ,13,10, '$'

ASCI2SCN DB 45H,16H,lEH,26H,25H,2EH,36H,3DH,3EH,46H

DATABUFF STRUC

MNTHDATA DW
YEARDATA DW

DATABUFF ENDS

DATASEG ENDS

12 DUP(?)
5 DUP(?)

DATA FOR THE LAST 12 MONTHS
DATA FOR THE LAST 5 YEARS

**** DEFINE MACROS ****

DOSFXN

MACRO : DOSFXN
FUNCTION

THIS WILL CALL A DOS FUNCTION SPECIFIED BY THE PARAMETER FXNNUM.

MACRO FXNNUM

MOV
INT

ENDM

AH,FXNNUM
21H

MACRO : DISPLAY
FUNCTION :

THE FUNCTION NUMBER BELONGS IN AL
CALL DOS

DISPLAY THE CHARACTER STRING PASSED IN STRING.

ESTABLISH CONSTANTS

DISPSTRN EQU 9 DOS DISPLAY STRING FUNCTION NUMBER

DISPLAY MACRO STRING

LEA DX,STRING
DOSFXN DISPSTRN

ENDM

MACRO : DRAW$BOX
FUNCTION :

DX POINTS TO THE STRING TO BE DISPLAYED
DISPLAY THE CHARACTER

DRAWS A FILLED IN BOX WITH ITS LOWER LEFT CORNER AT XO,YO WITH
THE SPECIFIED HEIGHT AND LENGTH. THIS IS DONE BY DRAWING LENGTH
NUMBER OF VERTICAL LINES NEXT TO EACH OTHER EACH WITH LENGTH HEIGHT.

Chapter 29. Sample Program 5 29-7

Sample Program 5

; ESTABLISH CONSTANTS

BARCOLOR EQU 2 ; THE COLOR OF THE BOX

DRAW$BOX MACRO XO,YO,HEIGHT,LENGTH

MOV CX,LENGTH
MOV STARTX,XO SAVE A COpy OF THE X STARTING OFFSET
MOV AX,YO CALCULATE THE OFFSET FROM THE TOP OF THE SCREEN
SUB AX,HEIGHT OF THE TOP OF THE BOX

MOV STARTY,AX SAVE THE TOP OF BOX OFFSET

NEXTLINE: PUSH CX ; SAVE THE COUNT
DRAWVERT STARTX,STARTY,HEIGHT,BARCOLOR

RESTORE THE COUNT POP
INC
LOOP

CX
STARTX
NEXTLINE

POINT STARTX TO THE NEXT COLUMN TO DRAW
DRAW THE NEXT LINE

ENDM

MACRO NAME
PARAMETERS

FUNCTION

DRAWVERT
X
YBEGIN
LEN
COLOR

VALUE ON THE X AXIS, (COLUMN)
VALUE ON THE Y AXIS, (ROW)
LENGTH OF THE LINE
COLOR OF THE LINE

THIS WILL DRAW A VERTICAL LINE. THE LINE WILL BE DRAWN
FROM POINT (X,YBEGIN) TO (X,YBEGIN + LEN).

DRAWVERT MACRO
LOCAL

X,YBEGIN,LEN,COLOR
LP,EXIT

; SAVE THE CURRENT Y VALUE
MOV AX,YBEGIN
MOV CURR$Y,AX

; HAVE WE REACHED THE LAST PEL YET?
MOV BX,LEN THE LAST PEL = THE FIRST PEL PLUS
ADD BX,CURR$Y THE LENGTH OF THE LINE

LP: CMP CURR$Y,BX

; YES, WE ARE DONE
JE EXIT

; NO, TURN THE PEL ON
; INITIALIZE REGISTERS
MOV CX,X
MOV AL,COLOR
MOV AH,WRITEDOT

MOV
INT

DX,CURR$Y
lOH

FOR THE BIOS WRITE DOT FUNCTION
COLUMN NUMBER FOR VERTICAL LINE
COLOR FOR VERTICAL
BIOS FUNCTION NUMBER

; ROW NUMBER OF PEL
; CALL THE BIOS VIDEO FUNCTION

; INCREMENT THE ROW NUMBER AND CHECK THE PEL
INC CURR$Y
JMP LP

EXIT: NOP

ENDM

29-8

CHEK4ERR

MACRO : CHEK4ERR
FUNCTION :

Sample Program 5

SET UP THE REGISTERS FOR THE ERROR CHECKER PROCEDURE.

MACRO RETNCODE

IFNB <RETNCODE>
MOV BL,RETNCODE
ELSE
MOV BL,O
ENDIF

CALL CHECKERR

ENDM

MACRO NAME
PARAMETERS

CONN$KEY
SERVTYPE
SESSID

FUNCTION :

IF THERE IS A PARAMETER LIST RETURN CODE
SPECIFIED, PASS THE RETURN CODE IN BL

OTHERWISE, SEND A 0 IN BL

CALL THE ERROR CHECKER

RESOLVED VALUE FOR 'KEYBOARD'
SESSION ID

CONNECT THE KEYBOARD TO THE SPECIFIED SESSION.

CONN$KEY MACRO SERVTYPE,SESSID,KEYSTQ,EVNTQ

i INITIALIZE PARAMETER
MOV CKRETNCD,OOH
MOV CKFXNID,OOH
MOV AL,SESSID
MOV CKSESSID,AL

IFNB <KEYSTQ>
MOV AX,KEYSTQ
ELSE
MOV AX,O
ENDIF
MOV CKKEYSTQ,AX

IFNB <EVNTQ>
MOV AX,EVNTQ
ELSE
MOV AX,O
ENDIF
MOV CKEVENTQ,AX

LIST FOR CONN$KEY
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

IF A KEYSTROKE QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

IF AN EVENT QUEUE WAS SPECIFIED,
PUT IT INTO THE LIST

; INITIALIZE REGISTERS FOR CONN$KEY
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH

Chapter 29. Sample Program 5 29-9

Sample Program 5

CONN$SF

29-10

MOV
MOV
MOV
MOV

DX,SERVTYPE
DI, SEG CKRETNCD
ES,DI
DI,OFFSET CKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CONN$KEY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

CONN$SF
SERVTYPE
SESSID
QUEUEID
PCTAKSID
PCAPLNAM

RESOLVED VALUE FOR 'MFIC
SESSION ID
FIXED-LENGTH QUEUE ID
PC TASK ID
PC APPLICATION NAME

CONNECT TO THE SPECIFIED HOST SESSION FOR HOST INTER
ACTIVE SERVICES. THIS MACRO CONNECTS FOR DESTINATION/ORIGIN
STRUCTURED FIELDS. DESTINATION/ORIGIN IS VALID FOR DFT
HOST SESSIONS ONLY.

MACRO SERVTYPE,SESSID,QUEUEID,PCTASKID,PCAPLNAM

; INITIALIZE PARAMETER
MOV CFRETNCD,OOH
MOV CFFXNID,OOH
MOV AL,SESSID
MOV CFSESSID,AL
MOV AX,QUEUEID
MOV CFFLQID,AX
MOV AX,PCTASKID
MOV CFTASKID,AX

LIST FOR CONN$SF
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

FIXED-LENGTH QUEUE ID INTO THE LIST

PC TASK ID INTO THE LIST

TRANSLAT XLATE,PCAPLNAM,QRAPLNAM,OlH,12
TRANSLATE THE PC APPLICATION NAME INTO

EBCDIC AND PUT IT IN THE QUERY REPLY

; INITIALIZE REGISTERS FOR CONN$SF
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG CFRETNCD
MOV ES,DI
MOV DI,OFFSET CFRETNCD

RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR CONN$SF SERVICE
INT 7AH

ENDM

CRT$Q

DEL$ENT

MACRO NAME
PARAMETERS

FUNCTION :

CRT$Q
QUEUE
QSIZE

-- THE QUEUE TO CREATE
-- SIZE OF QUEUE

CREATE A FIXED LENGTH QUEUE.

MACRO QUEUE,QNAME,QSIZE,RETURNID

i INITIALIZE PARAMETER LIST FOR CRT$Q

Sample Program 5

MOV AX,SEG QUEUE SEGMENT ADDRESS INTO THE LIST
MOV CQSEGMEN,AX
MOV AX,OFFSET QUEUE OFFSET INTO THE LIST
MOV CQOFFSET,AX

i INITIALIZE REGISTERS FOR CRT$Q

SPECIFIED
THE QUEUE

MOV AH,04H
MOV BL,OOH
MOV CX,QSIZE
MOV DX,OOOOH
MOV DI, SEG CQOFFSET

NO NAME
SIZE OF
DX MUST
SEGMENT

= ° FOR THE REQUEST
ADDRESS OF PARAMETER LIST

MOV ES,DI IN ES
MOV DI,OFFSET CQOFFSET OFFSET OF PARAMETER

i SIGNAL WORKSTATION PROGRAM FOR CRT$Q SERVICE
INT 7AH

LIST IN DI

MOV RETURNID,DX PASS THE QUEUE ID BACK TO THE CALLER

ENDM

MACRO NAME : DEL$ENT
PARAMETERS : QUEID - FIXED LENGTH QUEUE ID
FUNCTION:

DELETE THE ENTRY FROM THE SYSTEM

MACRO QUEID

i INITIALIZE REGISTERS FOR DEL$ENT REQUEST
MOV AH,06H AH X'06'
MOV CX,OOOOH CX X'OOOO'
MOV DX,QUEID DX FIXED LENGTH QUEUE ID

; REQUEST THE DEL$ENT SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DISC$KEY
SERVTYPE
SESSID

RESOLVED VALUE FOR 'KEYBOARD'
SESSION ID

DISCONNECT THE KEY BOARD FROM THE SPECIFIED SESSION.

Chapter 29. Sample Program 5 29-11

Sample Program 5

DISC$KEY MACRO SERVTYPE,SESSID,TASKID

DISC$SF

29-12

; INITIALIZE PARAMETER
MOV DKRETNCD,OOH
MOV DKFXNID,OOH
MOV AL,SESSID
MOV DKSESSID,AL

IFNB <TASKID>
MOV AX,TASKID
ELSE
MOV AX,OOOOH
ENDIF
MOV DKTASKID,AX

LIST FOR DISC$KEY
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

IF A TASK ID WAS SPECIFIED, PUT IT
IN THE LIST

; INITIALIZE REGISTERS FOR DISC$KEY
MOV AH,09H
MOV AL,02H
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG DKRETNCD
MOV ES,DI
MOV DI,OFFSET DKRETNCD

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR DISC$KEY SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DISC$SF
SERVTYPE
SESSID

RESOLVED VALUE FOR 'MFIC
SESSION ID

DISCONNECT FROM THE SPECIFIED HOST SESSION. THIS MACRO
IS CODED TO DISCONNECT FROM A DESTINATION/ORIGIN CONNECTION.

MACRO SERVTYPE,SESSID

; INITIALIZE PARAMETER
MOV DFRETNCD,OOH
MOV DFFXNID,OOH
MOV AL,SESSID
MOV DFSESSID,AL

LIST FOR DISC$SF
RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID INTO THE LIST

; INITIALIZE REGISTERS FOR DISC$SF
MOV AH,09H
MOV AL,02H
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG DFRETNCD
MOV ES,DI
MOV DI,OFFSET DFRETNCD

RESOLVED VALUE FOR 'MFIC
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR DISC$SF SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

DISA$INP
SERVTYPE
SESSID
CONN$ID

Sample Program 5

- RESOLVED VALUE FOR 'KEYBOARD'
- SESSION 10
- (OPTIONAL) CONNECTORS TASK 10 IS

NEEDED ONLY IF THE TASK THAT REQ
UESTED THE CONNECT TO KEYBOARD FOR
THIS SESSION IS DIFFERENT FROM THE
TASK REQUESTING THE DISABLE INPUT.

USE THIS SERVICE TO DISABLE OPERATOR INPUT TO THE
SESSION.

DISA$INP MACRO SERVTYPE,SESSID,CONN$ID

AX,SEG DIRETNCD
ES,AX

MOV
MOV
MOV DI,OFFSET DIRETNCD

ADDRESSABILITY OF
PARAMETER LIST
USING ES:DI

; INITIALIZE PARAMETER
MOV DIRETNCD,OOH
MOV DIFXNID,OOH
MOV AL,SESSID
MOV DISESID,AL
IFNB <CONN$ID>
MOV AX,CONN$ID
MOV DICONNID,AX
ENDIF

; INITIALIZE REGISTERS
MOV AX,0905H
MOV BX,8020H
MOV CX,OOOOH
MOV DX,SERVTYPE

LIST FOR DISABLE INPUT
RETURN CODE MUST=O ON REQUEST
FUNCTION 10 MUST=O ON REQUEST
KEYBOARD INPUT DISABLED FOR

THIS SESSION
IF THERE IS A CONNECTORS 10

THEN PUT IT IN THE
PARAMETER LIST

FOR DISABLE INPUT
LOCK INPUT SERVICE

; DX=NAME RESOLUTION FOR THE
KEYBOARD SERVICES

; REQUEST DISABLE INPUT SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

ENAB$INP
SERVTYPE
SESSID
CONN$ID

- RESOLVED VALUE FOR 'KEYBOARD'
- SESSION 10
- (OPTIONAL) THE CONNECTORS TASK 10 IS

NEEDED ONLY IF THE TASK THAT RE
QUESTED THE CONNECT TO KEYBOARD FOR
THIS SESSION IS DIFFERENT FROM THE
TASK REQUESTING THE ENABLE INPUT

USE THIS SERVICE TO ENABLE OPERATOR INPUT TO THE
SESSION.

ENAB$INP MACRO

MOV
MOV
MOV

SERVTYPE,SESSID,CONN$ID

AX,SEG EIRETNCD
ES,AX
DI,OFFSET EIRETNCD

ADDRESSABILITY OF
PARAMETER LIST
USING ES:DI

Chapter 29. Sample Program 5 29-13

Sample Program 5

; INITIALIZE PARAMETER
MOV EIRETNCD,OOH
MOV EIFXNID,OOH
MOV AL,SESSID
MOV EISESID,AL
IFNB <CONN$ID>
MOV AX,CONN$ID
MOV EICONNID,AX
ENDIF

; INITIALIZE REGISTERS
MOV AX,0906H
MOV BX,S020H
MOV CX,OOOOH
MOV DX,SERVTYPE

LIST FOR ENABLE INPUT
RETURN CODE MUST=O ON REQUEST
FUNCTION ID MUST=O ON REQUEST
KEYBOARD INPUT DISABLED FOR

THIS SESSION
IF THERE IS A CONNECTOR'S ID

THEN STORE THE ID
IN THE PARAMETER LIST

FOR ENABLE INPUT
ENABLE INPUT SERVICE

; DX=NAME RESOLUTION FOR THE
; KEYBOARD SERVICES

; REQUEST ENABLE INPUT SERVICE
INT 7AH

ENDM

MACRO - NAME$RES
PARAMETERS - NR$SERVN - LOCATION OF THE S BYTE

SERVICE NAME. I.E. 'SESSMGR '
NR$SERVT - RETURN CODE FROM PARAMETER LIST

NAME$RES MACRO NR$SERVN,NR$SERVT

29-14

; SET
MOV
MOV
MOV
MOV
MOV

UP REGISTERS NAME$RES
AX,SEG NR$SERVN
ES,AX

SEGMENT ADDRESS OF PARAM. LIST
ES SEGM ADDRESS OF PARAM.LIST
AH X'Sl' AH,SlH

CX,OOOOH CX X'OOOO'
DI,OFFSET NR$SERVN DI OFFSET ADDR. OF PARAM LIST

i REQUEST SERVICE TYPE FROM WORKSTATION PROGRAM
INT 7AH

; RETURN SERVICE TYPE ID TO CALLER
MOV NR$SERVT,DX

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

QUERY$ID
SERVTYPE
NAMEARRY
OPTION
DATA
LONGNAME

RESOLVED VALUE FOR 'SESSMGR '
NAME ARRAY
OPTION BYTE
DATA BYTE
SESSION LONG NAME

GET THE SESSION ID(S) OF THE SESSION(S) SPECIFIED BY
THE OPTION AND DATA BYTES AND RETURNS THEM IN THE NAME
ARRAY.
NOTE: THE NAME ARRAY IS SET UP BY THE USER AND MUST HAVE

THE LENGTH OF THE ARRAY CONTAINED IN THE 1ST BYTE.

Sample Program 5

QUERY$ID MACRO SERVTYPE,NAMEARRY,OPTION,DATA,LONGNAME

REP

QBASW

; INITIALIZE PARAMETER
MOV QDRETNCD,OOH
MOV QDFXNID,OOH

LIST FOR QUERY$ID

MOV AL,OPTION
MOV QDOPTION,AL
MOV AL,DATA
MOV QDDATA,AL
MOV AX,OFFSET NAMEARRY
MOV QDNAMOFF,AX
MOV AX,SEG NAMEARRY
MOV QDNAMSEG,AX

IFNB <LONGNAME>

CLD
MOV
MOV
MOV
MOV
MOV
MOVSB

ENDIF

AX,SEG QDLNGNAM
ES,AX
DI,OFFSET QDLNGNAM
SI,OFFSET LONGNAME
CX,8

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
OPTION BYTE INTO THE LIST

DATA BYTE INTO THE LIST

NAME ARRAY OFFSET INTO THE LIST

NAME ARRAY SEGMENT INTO THE LIST

CHECK IF A LONG NAME WAS SPECIFIED

COpy DIRECTION = FORWARD

ES:DI POINTS TO DESTINATION IN PARM
LIST

DS:SI POINTS TO SOURCE OF LONG NAME
MOVE 8 BYTES
COpy LONG NAME INTO THE PARM LIST

i INITIALIZE REGISTERS FOR QUERY$ID
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OOOOH
MOV DX,SERVTYPE
MOV DI, SEG QDRETNCD
MOV ES,DI
MOV DI,OFFSET QDRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN 01

; SIGNAL WORKSTATION PROGRAM FOR QUERY$ID SERVICE
INT 7AH

ENDM

MACRO NAME QBASW
PARAMETERS SERVTYPE -- RESOLVED VALUE FOR 'SESSMGR '
FUNCTION :

FIND THE SESSION ID AND SHORT NAME FOR THE BASE WINDOW
OF AN ENVIRONMENT.

MACRO SERVTYPE

; INITIALIZE PARAMETER LIST FOR QBASW
MOV QSRETNCD,OOH ; RETURN CODE MUST o BEFORE REQUEST
MOV QSFXNID,OOH ; FUNCTION ID MUST o BEFORE REQUEST

Chapter 29. Sample Program 5 29-15

Sample Program 5

Q$TASK

;

; INITIALIZE REGISTERS FOR QBASW
MOV AH,09H
MOV AL,OAH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG QSRETNCD
MOV ES,DI
MOV DI,OFFSET QSRETNCD

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN D1

; SIGNAL WORKSTATION PROGRAM FOR QBASW SERVICE
INT 7AH

ENDM

MACRO NAME : Q$TASK
PARAMETERS : NONE
FUNCTION :

GET THE ID OF THE CURRENT ACTIVE TASK.

MACRO

; INITIALIZE REGISTERS FOR Q$TASK
MOV AH,9CH

; SIGNAL WORKSTATION PROGRAM FOR Q$TASK SERVICE
INT 7AH

ENDM

MACRO NAME
PARAMETERS

FUNCTION :

TRANSLAT
SERVTYPE
SOURCE
TARGET
TYPE
LENGTH

RESOLVED VALUE FOR 'XLATE
SOURCE BUFFER
TARGET BUFFER
TYPE OF TRANSLATE
NUMBER OF BYTES TO TRANSLATE

TRANSLATE THE DATA IN A BUFFER FROM ASCII CODES TO
MFI CODES, OR FROM MFI CODES TO ASCII CODES.

TRANSLAT MACRO SERVTYPE,SOURCE,TARGET,TYPE,LENGTH

29-16

; INITIALIZE PARAMETER
MOV TLRETNCD,OOH
MOV TLFXNID,OOH
MOV AX,OFFSET SOURCE
MOV TLSRCOFF,AX
MOV AX,SEG SOURCE
MOV TLSRCSEG,AX
MOV AX,OFFSET TARGET
MOV TLTRGOFF,AX
MOV AX,SEG TARGET
MOV TLTRGSEG,AX
MOV AL,TYPE
MOV TLTYPE,AL
MOV AX ,LENGTH
MOV TLLENGTH,AX

LIST FOR TRANSLAT
RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SOURCE OFFSET INTO THE LIST

SOURCE SEGMENT INTO THE LIST

TARGET OFFSET INTO THE LIST

TARGET SEGMENT INTO THE LIST

TRANSLATION TYPE INTO THE LIST

LENGTH INTO THE LIST

CODESEG

Sample Program 5

i INITIALIZE REGISTERS FOR TRANSLAT
MOV AH,09H
MOV AL,OlH
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,SERVTYPE
MOV DI, SEG TLRETNCD
MOV ES,DI
MOV DI,OFFSET TLRETNCD

RESOLVED VALUE FOR 'XLATE
SEGMENT ADDRESS OF PARAMETER LIST

IN ES
OFFSET OF PARAMETER LIST IN DI

i SIGNAL WORKSTATION PROGRAM FOR TRANSLAT SERVICE
INT 7AH

ENDM

**** CODE ****

SEGMENT PUBLIC

i DECLARE ENTRY POINTS THAT ARE NEEDED BY THE FIRST MODULE OF THE PROGRAM

PUBLIC INIT,CHECKE~R,GET$RESP,CONNHOST,DISCHOST,GRAFDATA,CONNSF

i DECLARE ENTRY POINTS THAT ARE LOCATED IN THE FIRST MODULE OF THE PROGRAM

EXTRN

X$VERTEX
Y$VERTEX

LENXAXIS
LENYAXIS

WRITEDOT

THE$END:NEAR

ASSUME CS:CODESEG,DS:DATASEG,ES:DATASEG

EQU
EQU

EQU
EQU

EQU

50
167

260
160

OCH

PROCEDURE : IN IT
CALLED BY : MAIN
FUNCTION :

X,Y CO-ORDINATES OF THE VERTEX OF THE GRAPH

LENGTH IN PELS OF THE X AXIS
LENGTH IN PELS OF THE Y AXIS

BIOS FUNCTION NUMBER FOR WRITING A DOT

THIS PROCEDURE DOES THE INITIAL WORK NEEDED FOR THIS PROGRAM.
FIRST, IT FINDS THE RESOLVED VALUES FOR THE KEYBOARD, SESSION INFOR
MATION, HOST INTERACTIVE, AND TRANSLATE SERVICES. THEN IT PROMPTS
THE USER FOR THE SHORT NAME OF THE HOST WINDOW. NEXT IT FINDS THE
SESSION IDS FOR THIS PC SESSION AND FOR THE HOST SESSION. IT CHECKS
TO MAKE SURE THE HOST CONNECTION IS FOR DFT. LAST IT FINDS THE TASK
10 FOR THIS PC APPLICATION.

ESTABLISH CONSTANTS

DFTTYPE
INKEY

EQU
EQU

02H
01H

NUMBER TO INDICATE SESSION IS DFT HOST
DOS INPUT KEY WITH ECHO FUNCTION NUMBER

Chapter 29. Sample Program 5 29-17

Sample Program 5

INIT

OKINPUT:

29-18

PROC NEAR

iii;;;iii;;;;;;;;;;;;;
;; FIND THE RESOLVED VALUES FOR KEYBOARD, SESSION MANAGER, TRANS- ;;
ii LATE, AND HOST INTERACTIVE SERVICES. ii

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;;;iii;;;;;;;;;;i;;

NAME$RES KYBDNAME,KEYBOARD
i FIND THE RESOLVED VALUE FOR KEYBOARD SERVICES

CHEK4ERR

NAME$RES SMGRNAME,SESSMGR

CHEK4ERR

FIND THE RESOLVED VALUE FOR SESSION INFORMATION
SERVICES

NAME$RES XLATNAME,XLATE
i FIND THE RESOLVED VALUE FOR TRANSLATE SERVICES

CHEK4ERR

NAME$RES MFICNAME,MFIC

CHEK4ERR

FIND THE RESOLVED VALUE FOR HOST INTERACTIVE
SERVICES

iii;;;iii;;;;;;;;;;;;;
i; PROMPT THE USER FOR THE SHORT NAME OF THE HOST WINDOW. GET THE ;i

;i USER'S RESPONSE AND CONVERT IT TO UPPER CASE. ;;
iii;;;iii;;;;;;;;;;;;;

DISPLAY HSTPRMPT

DOSFXN
CMP
JL
ADD
MOV

INKEY
AL,' ,
OKINPUT
AL, 'A '-' ,
HOST$WND,AL

PROMPT THE USER FOR THE HOST WINDOW SHORT NAME

GET THE USERS RESPONSE IN AL
CHECK IF THE CHARACTER IS UPPER CASE
IF SO, STORE IT
OTHERWISE, CONVERT IT TO UPPERCASE
SAVE THE HOST WINDOW SHORT NAME

iii;;i;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;;;;
i; FIND THE SESSION 10 AND TYPE OF THE SPECIFIED HOST WINDOW. IF ii

II THE SESSION TYPE IS NOT OFT THEN DISPLAY AN ERROR MESSAGE AND ii
ii EXIT. THE HOST CONNECTION MUST BE OFT SINCE THIS PROGRAM USES ii
;; DESTINATION/ORIGIN STRUCTURED FIELDS WHICH CAN ONLY BE USED WITH ii
;; OFT HOST CONNECTIONS. ;;
iii;;;;;;;;;;;;;;;;;;;i;;;;;;;;;i;;;;;;;;;i;;;;;;;;;;;iii;;;;;;;;;;;;;

QUERY$ID SESSMGR,NAMARRAY,OlH,HOST$WND
i GET THE HOST SESSION 10 AND TYPE

CHEK4ERR QDRETNCD

CMP SESSTYPE,DFTTYPE

JE OKHOST

DISPLAY NOTDFT
JMP THE$END

; CHECK IF THIS HOST IS OFT

IF NOT, DISPLAY AN ERROR MESSAGE AND EXIT

OKHOST:

INIT

Sample Program 5

MOV
MOV

AL,SESSID
HOST$ID,AL

MOVE THE HOST SESSION ID TO HOST$ID

iii;;;;;;;;;;;;;;;;;;i;;;i;;;;;;;;;;;;;;;;;ii;;;;;;;;;iii;;;;;;;;;;;;;
;; FIND THE SESSION ID FOR THIS PC SESSION. ; ;
iii;;;iii;;;;;;;;;;;;;

QBASW SESSMGR ; GET THE SESSION ID FOR THIS PC SESSION
CHEK4ERR QSRETNCD

MOV
MOV

AL,QSSESSID
PCSESSID,AL

MOVE THE PC SESSION ID TO PCSESSID

iii;;;iii;;;;;;;;;;;;;
i; FIND THE TASK ID FOR THIS PC PROGRAM. i ;
iii;;jjj;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;iii;j;;;;;;;;;;;

Q$TASK
MOV PCTASKID,DX

RET

ENDP

PROCEDURE : GET$RESP
CALLED BY : MAIN
FUNCTION :

; GET THIS PC APPLICATION'S TASK ID
; SAVE THE TASK ID IN PCTASKID

THIS PROCEDURE GETS THE USERS RESPONSES TO THE MENU SELECTIONS.
IT STARTS BY SETTING THE CURSOR AT THE FIRST INPUT FIELD. IT THEN
WAITS FOR THE USER TO PRESS A KEY. IF THE KEY WAS THE ESCAPE KEY,
MEANING USER WISHES TO EXIT THE PROGRAM, THEN THE PROCEDURE RETURNS
TO THE CALLER. IF THE KEY WAS THE PC ENTER KEY, MEANING THE USER
WANTS THE SELECTED DATA TO BE DISPLAYED, THEN A CHECK IS MADE TO
MAKE SURE BOTH INPUT FIELDS ARE NOT BLANK. IF BOTH ARE NOT BLANK,
THEN THE PROCEDURE RETURNS TO THE CALLER. IF AT LEAST ONE FIELD IS
BLANK, THEN A BEEP IS ISSUED TO SIGNAL AN ERROR AND THE PROCEDURE
LOOPS BACK TO READ IN ANOTHER CHARACTER. THIS KEEPS THE USER FROM
TRYING TO DISPLAY DATA WITHOUT SPECIFYING WHICH DATA ARE TO BE DIS
PLAYED.

WHEN ENTERING INPUT INTO THE FIRST FIELD, A CHECK IS MADE TO
MAKE SURE THE INPUT CHARACTER IS BETWEEN '1' AND '5'. IF THE CHAR
ACTER IS ~OT IN THIS RANGE, A BEEP IS ISSUED AND THE PROCEDURE LOOPS
BACK TO READ IN ANOTHER CHARACTER. IF THE CHARACTER IS WITHIN RANGE
~HE CHARACTER IS DISPLAYED ON THE MENU AND THE CURSOR IS MOVED TO
THE SECOND INPUT FIELD. THE CHARACTER ENTERED IN THE SECOND INPUT
FIELD IS CHECKED TO MAKE SURE IT IS EITHER A 'Y' OR AN 'M'. AS IN
THE CASE FOR THE FIRST FIELD, A BEEP IS ISSUED ON AN ERROR, OTHER
WISE THE CHARACTER IS DISPLAYED ON THE MENU AND THE CURSOR IS MOVED
TO THE FIRST INPUT POSITION.

Chapter 29. Sample Program 5 29-19

Sample Program 5

; ESTABLISH CONSTANTS

BEEP
CR
ESC
DISPCHAR
INNOECHO
SETCURS
INIROW
INICOL
IN2ROW
IN2COL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

07H
ODH
IBH
02H
08H
02H
12
42
18
36

ASCII FOR A BEEP CHARACTER
ASCII FOR A CARRIAGE RETURN
ASCII FOR AN ESCAPE
DOS DISPLAY CHARACTER FUNCTION NUMBER
DOS INPUT WITH NO ECHO FUNCTION NUMBER
BIOS SET CURSOR POSITION FUNCTION NUMBER
ROW CO-ORDINATE FOR 1ST INPUT AREA
COLUMN CO-ORDINATE FOR 1ST INPUT AREA
ROW CO-ORDINATE FOR 2ND INPUT AREA
COLUMN CO-ORDINATE FOR 2ND INPUT AREA

GET$RESP PROC NEAR

INPUTCHR:

QUIT:

29-20

..
""""""""""""""""""""""""""""""""""" ;; CLEAR THE INPUT VARIABLES. ; ;
;; SET THE CURSOR AT THE FIRST INPUT FIELD. ; ;
iii;;;iii;;;;;;;;;;;;;

MOV
MOV

MOV
MOV
MOV
MOV
INT

FIRSTINP,O
SECNDINP,O

DH,INIROW
DL,INICOL
BH,O
AH,SETCURS
10H

CLEAR THE FIRST INPUT VARIABLE
CLEAR THE SECOND INPUT VARIABLE

DH, DL = ROW, COLUMN OF THE CURSOR

BH = DISPLAY PAGE NUMBER = a

iii;;;iii;;;;;;;;;;;;;
" GET THE USER'S RESPONSE. IF THE ESCAPE KEY WAS HIT THEN RETURN ;;
;; TO THE MAIN PROGRAM. IF THE ENTER KEY WAS HIT THEN CHECK THE ;;
" INPUT FIELDS TO MAKE SURE THE USER HAS ENTERED BOTH INPUTS. IF ;;
;; EITHER INPUT IS BLANK THEN BEEP AT THE USER, OTHERWISE RETURN TO ;;
;; THE MAIN PROGRAM. IF ANY OTHER KEY WAS HIT, THEN IF THE CURSOR ;;
;; IS ON THE FIRST INPUT, GO TO THE CODE TO HANDLE THE FIRST INPUT ;;
;; FIELD, OTHERWISE GO TO THE CODE TO HANDLE THE SECOND INPUT FIELD.;;
iii;;;iii;;;;;;;;;;;;;

DOSFXN INNOECHO GET AN INPUT CHARACTER INTO AL

CMP AL,ESC CHECK IF IT IS THE ESC KEY
JE QUIT IF SO, EXIT

CMP AL,CR CHECK IF IT IS THE ENTER KEY
JNE NOTDONE IF NOT, CONTINUE PROCESSING THE INPUT KEY

CMP FIRSTINP,O CHECK IF THE FIRST INPUT FIELD IS EMPTY
JE BADKEY IF SO, BEEP AT THE USER AND TRY FOR ANOTHER KEY

CMP SECNDINP,O CHECK IF THE SECOND INPUT FIELD IS EMPTY
JE BADKEY IF SO, BEEP AT THE USER AND TRY FOR ANOTHER KEY

RET RETURN TO THE CALLER

Sample Program 5

NOTDONE: CMP DH,IN1ROW
ONINPUT1
ONINPUT2

CHECK IF THE CURSOR IS ON THE FIRST INPUT FIELD
IF NOT, GO TO THE SECTION FOR HANDLING THE 2ND

INPUT FIELD

ONINPUT1:

BADKEY:

JE
JMP

iii;;;iii;;;;;;;;;;;;;
;; THE CURSOR IS ON THE FIRST INPUT FIELD. CHECK TO MAKE SURE THE ;;
;; USER HAS ENTERED A VALID SELECTION, I.E. THE CHARACTER IS BETWEEN;;
;; '1' AND '5'. IF THE CHARACTER IS OUT OF RANGE THEN GO TO THE ;;
;; CODE THAT BEEPS AT THE USER. OTHERWISE, SAVE THE CHARACTER IN ;;
;; FIRSTINP, CONVERT THE CHARACTER TO A SCAN CODE AND SAVE IT IN ;;
;; IN1SCNCD, AND DISPLAY THE CHARACTER ON THE MENU. THEN MOVE THE ;;
;; CURSOR TO THE SECOND INPUT FIELD AND LOOP BACK TO GET ANOTHER ;;
;; CHARACTER. ; ;
iii;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;iii;;;;;;;;;;;;;

CMP
JL
CMP
JG

MOV

MOV

AL,' l'
BADKEY
AL,' 5'
BADKEY

FIRSTINP,AL

BL/AL

CHECK IF THE CHARACTER IS BETWEEN '1' AND '5'
IF NOT, BEEP AT THE USER AND TRY FOR ANOTHER

CHARACTER

SAVE THE CHARACTER IN FIRSTINP

USE THE BINARY VALUE OF THE ASCII CHARACTER
SUB BL I '1'-1 AS AN INDEX INTO THE ASCII TO SCAN CODE TABLE
MOV BH/O
MOV DL,ASCI2SCN[BX]
MOV IN1SCNCD,DL SAVE THE SCAN CODE IN IN1SCNCD

MOV DL,AL DISPLAY THE CHARACTER ON THE SCREEN
DOSFXN DISPCHAR

MOV DH / IN2ROW MOVE THE CURSOR TO THE SECOND INPUT FIELD
MOV DL,IN2COL
MOV AH,SETCURS
INT 10H

JMP INPUTCHR

iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;ii;;;;;iii;;;;;;j;;;;;;
;; THIS CODE BEEPS AT THE USER TO INDICATED THAT AN INCORRECT KEY;;
;; WAS PRESSED. TO BEEP, A CTRL-G (07H) IS SENT TO THE DISPLAY. ;;
;; THEN LOOP BACK TO GET ANOTHER CHARACTER. ;;
iii;;;;;;;;;;i;;iii;;;;;;;;;;i;;

MOV DL,BEEP BEEP AT THE USER TO SIGNAL AN ERROR
DOSFXN DISPCHAR
JMP INPUTCHR GET ANOTHER INPUT CHARACTER

iii;;;;;i;;i;;;;iii;i;;;;;;;;;;;
;; THE CURSOR IS ON THE SECOND INPUT FIELD. CONVERT THE CHARACTER
;; IN AL TO UPPER CASE. CHECK TO MAKE SURE THE USER HAS ENTERED A
;; VALID SELECTION, I.E. THE CHARACTER IS EITHER AN 'M' OR A 'Y'.
;; IF THE CHARACTER IS OUT OF RANGE THEN GO TO THE CODE THAT BEEPS

; ;
; i

i i
;; AT THE USER. OTHERWISE, SAVE THE CHARACTER IN SECNDINP AND DIS- ;;
;; PLAY THE CHARACTER ON THE MENU. THEN MOVE THE CURSOR TO THE ii
;; FIRST INPUT FIELD AND LOOP BACK TO GET ANOTHER CHARACTER. i i
iii;;;iiijj;;;;;j;;;;;

ONINPUT2: CMP
JL
SUB

AL,' ,
ISUPPER
AL,' '-' A'

CHECK IF THE CHARACTER IS LOWER CASE
IF NOT, SKIP CONVERTING TO UPPER CASE
CONVERT TO UPPER CASE

Chapter 29. Sample Program 5 29-21

Sample Program 5

ISUPPER:

OKKEY:

GET$RESP

29-22

CMP
JE
CMP

AL, 'M'
OKKEY
AL, 'Y'

CHECK IF THE CHARACTER IS EITHER AN 'M' OR A 'Y'
IF NOT, BEEP AT THE USER AND TRY FOR ANOTHER

CHARACTER
JNE BADKEY

MOV SECNDINP,AL

MOV DL,AL
DOSFXN DISPCHAR

MOV DH,IN1ROW
MOV DL,IN1COL
MOV AH,SETCURS
INT 10H

JMP INPUTCHR

ENDP

PROCEDURE : GRAFDATA
CALLED BY : DISPDATA
FUNCTION :

GET ANOTHER INPUT CHARACTER

SAVE THE CHARACTER IN SECNDINP

DISPLAY THE CHARACTER ON THE SCREEN

MOVE THE CURSOR TO THE FIRST INPUT FIELD

GET ANOTHER INPUT CHARACTER

THIS PROCEDURE DISPLAYS THE BARCHART OF THE DATA OBTAINED FROM
THE HOST. FIRST IT GETS THE SELECTED TIME SPAN. IF IT IS BY MONTH,
THEN THERE ARE TWELVE BARS ON THE GRAPH. IF IT IS BY YEAR, THEN
THERE ARE FIVE BARS ON THE CHART. THE X AXIS IS DIVIDED INTO THE
EITHER FIVE OR TWELVE SECTIONS DEPENDING ON THE SELECTION. EACH OF
THESE SECTIONS IS A BAR FIELD. THE BASE OF A BAR TAKES UP THE LATER
3/4 OF THE BAR FIELD. EXAMPLE:

y

x
Bar Field 11/41 3/4

SI IS USED TO POINT TO THE STARTING POSITION OF EACH BAR. IT IS
THE OFFSET IN PELS OF THE X POSITION OF THE LOWER LEFT CORNER OF THE
BAR. SI STARTS BY POINTING 1/4 OF THE WAY INTO THE FIRST BAR FIELD.
IT IS THEN INCREMENTED BY THE LENGTH OF THE BAR FIELD SO THAT IT
POINTS 1/4 OF THE WAY INTO THE NEXT FIELD.

DI IS USED TO POINT TO THE DATA OBTAINED FROM THE HOST. THE
DATA FROM THE HOST IS 17 WORDS, 12 WORDS OF MONTH DATA FOLLOWED BY
5 WORDS OF YEAR DATA. DI IS SET TO POINT TO THE FIRST
DATUM OF THE MONTH DATA IF THE USER SELECTED THE MONTH TIME
SPAN OR TO THE FIRST
DATUM OF THE YEAR DATA IF THE USER SELECTED THE YEAR TIME SPAN. DI
IS THEN INCREMENTED BY 2 AS EACH DATUM IS GRAPHED.

THE HEIGHT OF EACH BAR DEPENDS ON THE MAGNITUDE OF THE DATUM
BEING GRAPHED RELATIVE TO THE MAXIMUM VALUE ON THE Y AXIS. TO CAL
CULATE THE NUMBER OF PELS NEEDED TO REPRESENT A DATUM THE FOLLOWING
COMPUTATION IS USED:

DATUM VALUE
PELS ----------------- X NUMBER OF PELS IN THE Y AXIS

MAXIMUM Y VALUE

Sample Program 5

SINCE DIVISION AND MULTIPLICATION ARE FOR INTEGERS, THE ABOVE DIVI
SION WILL YIELD A ZERO QUOTIENT SINCE THE DATUM VALUE IS ALWAYS LESS
THAN OR EQUAL TO THE MAXIMUM VALUE. THIS IS NOT GOOD SINCE THE NUM
BER OF PELS WOULD THEN BE ZERO. AN ACCURATE ESTIMATE OF THE FRAC
TION IS NEEDED TO ACCURATELY DETERMINE THE NUMBER OF PELS. TO SOLVE
THIS, THE DATUM IS SHIFTED TO THE LEFT 1 WORD (MULTIPLIED BY
65,536) BEFORE THE DIVISION AND THE RESULTING NUMBER OF PELS IS
SHIFTED RIGHT 1 WORD (DIVIDED BY 65,536). THE SHIFTING IS ACCOM
PLISHED BY LOADING THE DATUM INTO THE DX REGISTER (THE HIGH WORD FOR
WORD DIVISION), INSTEAD OF THE AX REGISTER, BEFORE THE DIVISION AND
TAKING THE RESULT FROM THE DX REGISTER (THE HIGH WORD FOR WORD MUL
TIPLICATION), INSTEAD OF THE AX REGISTER, AFTER THE MULTIPLY. THE
ALGORITHM THEN BECOMES:

__ [(DATUM VALUE X 65,536)
PELS

MAXIMUM Y VALUE
X NUMBER OF PELS IN THE Y AXIS] X 65,536

THE MAXIMUM Y VALUE IS OBTAINED FROM A TABLE THAT CONTAINS THE
MAXIMUM Y VALUE FOR EACH OF THE TEN GRAPHS. THE VALUES IN THE INPUT
FIELDS ARE USED TO CALCULATE AN INDEX INTO THE TABLE. THE TABLE HAS
THE MAXIMUM VALUES FOR THE MONTH OPTIONS 1, 2, 3, 4, AND 5 FOLLOWED
BY THE MAXIMUM VALUES FOR THE YEAR OPTIONS 1, 2, 3, 4, AND 5.

GRAFDATA PROC NEAR

iii;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;i;;
;; FIND WHICH TIME SPAN THE USER SELECTED. IF IT IS BY MONTH THEN ;;
;; SET THE NUMBER OF BARS (COUNT) TO 12 AND POINT DI TO THE START OF;;
;; THE MONTH DATA. IF IT IS BY YEAR THEN SET THE NUMBER OF BARS TO ;;
;; 5 AND POINT DI TO THE START OF THE YEAR DATA. ;;
iii;;;iii;;i;;;;;;;;;;

CMP SECNDINP,'M' ; CHECK IF 12 MONTH TIME SPAN WAS SELECTED
JE BYMONTH

MOV CX,5 ; IF 5 YEAR TIME SPAN, LOAD THE COUNT (CX)
WITH 5 TO DISPLAY 5 BARS

LEA DI,BUFFAREA.YEARDATA

JMP FINDWIDT

BYMONTH: MOV CX,12

; POINT DI TO THE BEGINNING OF THE YEAR DATA

; IF 12 MONTH TIME SPAN, LOAD THE COUNT (CX)
WITH 12 TO DISPLAY 12 BARS

LEA DI,BUFFAREA.MNTHDATA
; POINT DI TO THE BEGINNING OF THE MONTH DATA

iii;;;;;;;;;;;;;ii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;;;;
ii DIVIDE THE X AXIS INTO COUNT NUMBER OF BAR FIELDS. CALCULATE 1/4 ;;
;; OF A BAR FIELD AND 3/4 OF A BAR FIELD. POINT SI 1/4 OF THE WAY;;
;; INTO THE FIRST BAR FIELD. ;;
iii;;;i;;;;;;;iii;;;;;;;;;;;;;

FINDWIDT: MOV
MOV
MOV
DIV

MOV
MOV

COUNT,CX
DX,O
AX,LENXAXIS
COUNT

BFWIDTH,AX
BX,AX

STORE THE NUMBER OF BARS FOR DIVISION
CLEAR DX FOR DOUBLE WORD DIVISION
DIVIDE THE X AXIS INTO COUNT NUMBER OF

DIVISIONS. EACH OF THESE DIVISIONS IS A
BAR FIELD

STORE THE LENGTH OF THE BAR FIELD IN BFWIDTH
BX = LENGTH OF THE BAR FIELD

Chapter 29. Sample Program 5 29-23

Sample Program 5

SHR AL,l
SHR AL,l

SUB BX,AX
MOV BARWIDTH,BX

MOV SI,X$VERTEX
ADD SI,AX

CALCULATE 1/4 OF THE BAR FIELD
AX = 1/4 OF THE BAR FIELD

CALCULATE 3/4 OF BAR FIELD (BFWIDTH-1/4BFWIDTH)
THIS IS THE WIDTH OF ONE BAR

POINT SI TO THE START OF THE X AXIS
SI POINTS 1/4 OF THE WAY INTO FIRST BAR FIELD

iii;;;iii;;;;;;;;;;;;;
;; GET THE MAXIMUM Y VALUE FOR THE SELECTED GRAPH. TO CONVERT THE ;;
;; INPUTS TO AN INDEX, FIRST FIND THE BINARY VALUE OF THE FIRST ;;
;; INPUT AND SUBTRACT 1. THIS IS DONE BY SUBTRACTING AN ASCII '1' ;;
;; FROM THE FIRST INPUT. THEN, IF THE SECOND INPUT IS A 'Y' ADD 5. ;;
;; USE THIS INDEX INTO THE TABLE TO OBTAIN THE MAXIMUM Y VALUE. i;
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;j;;;;;;;;;;;;iii:i;;;;;;;;;;;

MOV
MOV
SUB
CMP
JE
ADD

BH,O
BL,FIRSTINP
BX, '1'
SECNDINP, 'M'
DONTADD
BX,S

GET THE USER'S CHOICES FROM THE MENU
USE THESE AS AN INDEX INTO A TABLE THAT GIVES

THE MAXIMUM Y VALUES
1M->1, 2M->2, ... ,SM->S,lY->6,2Y->7, ... ,SY->10

DONTADD: ADD BX,BX DOUBLE BX SINCE THE TABLE ENTRIES ARE WORDS
INDEX INTO THE TABLE TO GET THE OFFSET OF THE

PROPER TABLE AND ...
MOV AX,YMAXTAB[BX]

MOV YMAX,AX
GET THE MAXIMUM Y VALUE FOR THIS GRAPH
SAVE IT IN YMAX

iii;;;;;;;;;;;;;;;;:;;;;;;;;;ii;;;;i;;;;;;;;;;;;;;i;;;iii;;;;;;;;;;;;:
ii GRAPH EACH OF THE DATA. FIRST, STORE LENYAXIS IN MEMORY SO IT ii
;; CAN BE USED FOR MULTIPLICATION. THEN, FOR EACH DATUM CALCULATE ;i
;i IT'S HEIGHT IN PELS AND DRAW A BOX WITH THAT HEIGHT AND A BASE OF;;
;; BARWIDTH. SI IS INCREMENTED ALONG THE X AXIS TO POINT TO THE i;
;; STARTING POINT OF EACH BOX. DI IS INCREMENTED THROUGH THE HOST ;;
;; DATA. CX COUNTS THE NUMBER OF BARS TO DISPLAY. ;;
iii;;;iiiii;;;;;;;;;;;

MOV
MOV

AX,LENYAXIS
YAXISLEN,AX

STORE THE CONSTANT LENYAXIS IN MEMORY FOR
THE UPCOMING MULTIPLIES

NEXTBAR: MOV DX, [DI]
AX,O

PUT A HOST DATUM INTO DX (SHIFTED LEFT 1 WORD)
CLEAR AX FOR DOUBLE WORD DIVISION MOV

DIV
MUL
MOV

YMAX
YAXISLEN
HEIGHT,DX

CALCULATE THE NUMBER OF PELS NEEDED TO
REPRESENT THIS VALUE

SAVE DX (RESULT SHIFTED RIGHT 1 WORD) IN HEIGHT
THE HEIGHT IN PELS OF THE BAR

PUSH CX
DRAW$BOX

; SAVE THE BAR COUNT
SI,Y$VERTEX,HEIGHT,BARWIDTH

POP CX

ADD
ADD
LOOP

RET

SI,BFWIDTH
DI,2
NEXT BAR

DRAW THE BOX - LOWER LEFT CORNER = (SI,Y$VERTEX)
HEIGHT = HEIGHT, WIDTH = BARWIDTH

RESTORE THE BAR COUNT

POINT SI TO 1/4 OF THE WAY INTO NEXT BAR FIELD
POINT DI TO THE NEXT WORD IN THE DATA

GRAFDATA ENDP

29-24

PROCEDURE : CONNHOST
CALLED BY : GETDATA
FUNCTION :

Sample Program 5

THIS PROCEDURE DOES THE SET UP FOR GETTING THE DATA FROM THE
HOST. FIRST IT CREATES A QUEUE FOR HOST INTERACTIVE COMMUNICATION
AND THEN CONNECTS TO THE HOST INTERACTIVE SERVICES. NEXT IT CREATES
A QUEUE FOR THE HOST KEYSTROKES AND CONNECTS TO THE HOST KEYBOARD.
THEN IT DISABLES THE USER INPUT TO THE HOST KEYBOARD SO THAT THIS
PROGRAM'S INPUT TO THE HOST IS NOT DISRUPTED.

CONNHOST PROC

CONNSF:

CRT$Q SF$Q"SFQLEN,SFQID

CHEK4ERR

CREATE A QUEUE FOR HOST INTERACTIVE
COMMUNICATION

CONN$SF MFIC,HOST$ID,SFQID,PCTASKID,PROGNAME
; CONNECT FOR HOST INTERACTIVE SERVICES

CHEK4ERR CFRETNCD

CRT$Q HOSTQ"HOSTQLEN,HOSTQ$ID
; CREATE A QUEUE FOR HOST KEYSTROKES

CHEK4ERR

CONN$KEY KEYBOARD,HOST$ID,HOSTQ$ID
; CONNECT TO THE HOST KEYBOARD

CHEK4ERR CKRETNCD

DISA$INP KEYBOARD, HOST$ID
i DISABLE USER INPUT TO THE HOST KEYBOARD

CHEK4ERR DIRETNCD

RET

CONNHOST ENDP

PROCEDURE : DISCHOST
CALLED BY : GETDATA
FUNCTION :

THIS PROCEDURE DOES THE CLEAN UP FROM GETTING THE DATA FROM THE
HOST. FIRST IT REENABLES USER INPUT TO THE HOST KEYBOARD. NEXT IT
DISCONNECTS FROM THE HOST KEYBOARD AND DELETES THE KEYSTROKE QUEUE.
THEN IT DISCONNECTS FROM HOST INTERACTIVE SERVICES AND DELETES THE
HOST INTERACTIVE COMMUNICATION QUEUE.

DISCHOST PROC

ENAB$INP KEYBOARD,HOST$ID
i ENABLE USER INPUT TO THE HOST KEYBOARD

CHEK4ERR EIRETNCD

DISC$KEY KEYBOARD,HOST$ID

CHEK4ERR DKRETNCD

DEL$ENT HOSTQ$ID
CHEK4ERR

i DISCONNECT FROM THE HOST KEYBOARD

DELETE THE HOST KEYSTROKE QUEUE

Chapter 29. Sample Program 5 29-25

Sample Program 5

DISC$SF MFIC,HOST$ID

CHEK4ERR DFRETNCD

DEL$ENT SF$Q$ID
CHEK4ERR

RET

; DISCONNECT FROM HOST INTERACTIVE SERVICES

; DELETE THE HOST INTERACTIVE COMMUNICATION Q

DISCHOST ENDP

CHECKERR

ERROR:

CHECKERR

CODESEG

29-26

PROCEDURE : CHECKERR
FUNCTION :

THIS PROCEDURE IS PASSED TWO RETURN CODES IN CL AN BL. BL CON
TAINS A RETURN CODE FROM THE FIRST BYTE IN A PARAMETER LIST. BOTH
CL AND BL ARE CHECKED FOR a's. IF EITHER CONTAINS A NON-ZERO RETURN
CODE, AN ERROR MESSAGE IS DISPLAYED AND THE PROGRAM IS TERMINATED.

NOTE: THIS IS A VERY SIMPLE ERROR HANDLER USED TO PRESERVE PROGRAM
FLOW AND IS NOT LISTED AS AN EXAMPLE OF AN APPROPRIATE ERROR
HANDLER. THIS ERROR HANDLER SIMPLY TERMINATES THE PROGRAM
WHEN AN ERROR IS ENCOUNTERED LEAVING ANY RESOURCES, SUCH AS
FIXED LENGTH QUEUES, PRESENTATION SPACES, AND A CONNECTION
TO THE WINDOW SERVICES, STILL ALLOCATED. A MORE APPROPRIATE
ERROR HANDLER WOULD DELETE ALL RESOURCES BEFORE TERMINATING.

PROC NEAR

CMP CL,O CHECK THE RETURN CODE IN CL
JNE ERROR

CMP BL,O CHECK THE PARAMETER LIST RETURN CODE
JNE ERROR

RET

DISPLAY ERRMSG DISPLAY THE ERROR MESSAGE

INT 20H EXIT TO DOS

ENDP

ENDS
END

Part 5. Appendixes

Part 5 contains additional information that deals with the Application
Program Interface (API).

• Appendix A, "Scan-Code/Shift-State and ASCII/ASCII-Mnemonic
Values," describes the scan code/shift state values and the ASCII/ASCII
mnemonics that can be sent to a session or intercepted from the
keyboard for a· particular session.

• Appendix B, "Destination/Origin Structured Fields," describes the
destination/origin structured field formats and protocol to use with the
host interactive services.

• Appendix C, "Using Command Procedures for Save and Restore and for
File Transfer," describes ways to create programmed command
procedures for using the Save, Restore, Send, and Receive commands.

• Appendix D, "Technical Notes," contains technical information on the
3270 capabilities of the IBM 3270 Personal Computer and describes the
3270 data stream functions.

• Appendix E, "Problem Determination Procedures and Debugging
Information," describes problem determination procedures to use if a
system error occurs during API activity in your application program,
and describes some of the control blocks and data areas used by the
workstation program that may assist you in debugging your application
program or system extension.

• Appendix F, "Presentation Space Considerations," describes
presentation space considerations.

Part 5. Appendixes

• Appendix G, "Calling Save, Restore, Send, and Receive from Your
Application Program," describes how to use DOS function calls to call
Save, Restore, Send, and Receive from your application program.

• Appendix H, "Return Codes," describes the return codes that can be
received while the workstation program or application programs that
use the API services are running.

• Appendix I, "Outbound Data Stream Preprocessor (ODSP) Option,"
describes how to preprocess outbound data streams using ODSP.

Appendix A. Scan-Code/Shift-State and
ASCII/ASCII-Mnemonic Values

Introduction ... A-2
Scan-Code/Shift-State Values A-2

Scan Code ... A-2
Special Scan Codes A-3

Shift State ... A-4
ASCII/ASCII Mnemonics A-4
Default Scan Codes for the IBM 3270 PC Keyboard (PC Mode) A-5
Default Scan Codes for the IBM 3270 PC Keyboard (MFI Mode) A-9
Default Scan Codes for the IBM Enhanced PC Keyboard (PC Mode) A-I3
Default Scan Codes for the IBM Enhanced PC Keyboard (MFI Mode) A-I6
Default Scan Codes for the PC XT Keyboard (PC Mode) A-I9
Default Scan Codes for the IBM PC XT Keyboard (MFI Mode) A-22
Default Scan Codes for the IBM Personal Computer AT Keyboard

(PC Mode) ... A-25
Default Scan Codes for the IBM Personal Computer AT Keyboard

(MFI Mode) .. A-28
ASCII Characters Common to All Countries A-3I
ASCII Mnemonics Common to All Countries A-34
Additional ASCII Characters Used by U.S. English A-37

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-I

Introduction

Introduction

Keystrokes sent to a session or read from the keyboard for a particular
session via the Read and Write API are in the form of:

• Scan-code/shift-state values or

• ASCII/ASCII-mnemonic values.

If you are using the Keyboard Services API, then applications using the
API must be well-behaved. If you are using the API to another PC session,
then that PC session must also be well-behaved.

Scan-Code/Shift-State Values

Scan Code

A-2

Keystrokes sent in the form of scan code/shift state are represented by a
4-byte value. Byte 0 is the scan code, and byte 1 is the shift state. Bytes 2
and 3 are normally '01' and '00', respectively; these two bytes are not
needed for the Write Keystroke service requests.

The scan code is a unique I-byte hexadecimal value that is assigned to each
key position on the IBM 3270 PC Keyboard, the Enhanced PC Keyboard,
the PC XT Keyboard, and the Personal Computer AT Keyboard. Foldouts
at the back of this book show the key position number and scan code for
each key position on the keyboards.

Figures A-I and A-2 list the default scan code values for each key position
for the PC and MFI modes, respectively, of the IBM 3270 PC Keyboard.
Figures A-3 and A-4 list the default value for each key position for the PC
and MFI modes, respectively, of the IBM Enhanced PC Keyboard. Figures
A-5 and A-6 list the default value for each key position for the PC and MFI
modes, respectively, of the PC XT Keyboard. Figures A-7 and A-8 list the
default value for each key position for the PC and MFI modes, respectively,
of the Personal Computer AT Keyboard. The first byte of the 2-byte
keystroke value represents the default scan code; the second byte, the shift
state; and the function (if there is one) is listed last. In Figure A-4 for
example, the uppercase keystroke value for key 5 is:

2521 $

Scan Code ~ i ~ Function

Shift State

Special Scan Codes

The Scan Code

Note: The tables indicate the default values you will receive when reading
the keyboard as well as the values you can send to a session. If you
have modified the keyboard with the Keyboard Definition Utility, then
the values you receive when reading the keyboard will differ.

The workstation program uses some special scan codes not listed in
Figure A-Ion page A-5. They are:

• X'7F', which is used by the workstation program to tell keystroke
applications that the shift state may have changed since the last key
was sent. Your application should adjust the shift state to match the
one accompanying the X'7F' scan code if it is concerned with the shift
state.

• X'FO', which indicates that a key is breaking (being released), and the
next keystroke to be sent is the key being released.

• X'OO', which indicates that the application or keyboard did not handle a
series of rapid keystrokes, and some keystrokes were lost.

In all sessions except for personal computer sessions, all keys are "make
only," with the exception of the following keys, which are "make/break":

• The Upshift keys (left and right)

• The AU key
• The Ctr 1 key
• The Caps Lock key.

When in the personal computer session, the keyboard is reprogrammed to
make all keys that are sent to the personal computer session "make/break"
as well as typematic. Therefore, an application program that uses the Read
Input service to obtain keystrokes destined for a personal computer session
should expect to receive three separate scan codes for each key that is
pressed. The scan codes generated each time a key is pressed and released
are as follows:

1. When a key is pressed, the scan code for that key is generated. This
scan code is continuously generated until the key breaks (is released).

2. When the key breaks (is released), the X'FO' scan code is generated.

3. Finally, the scan code of the key that was pressed is generated again to
indicate that this key is breaking.

In all other sessions, only one scan code is received for most keys. The
"make/break" sequence of three scan codes only appears for the keys listed
as "make/break" keys above.

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-3

The Shift State

Shift State

The shift state is a I-byte value that indicates which of the functions or
characters printed on the key top of a given position is being sent. The
following shows the format of the shift state byte:

0, 1 2 3 4 5 6 7

Reserved Right Left Control Alt Caps Upshift
shift shift key keys Lock keys

Bits 0 and 1 are reserved.

Bit 2 represents the right upshift key.

Bit 3 represents the left upshift key.

Bit 4 represents the Control shift state.

Bit 5 represents the Alt shift state.

Bit 6 represents the Caps Lock state.

Bit 7 represents the upshift state. Bit 7 indicates that one of the two
upshift keys was pressed. If your application program must distinguish
between the right upshift key and the left upshift key, use bits 2 and 3.

Lower shift is represented by a value of X'OO'.

Note: When sending keystrokes to another session, only bits 4 through 7
control the shift state. Bits 2 and 3 are used by the PC sessions and
PC application programs to determine which of the two shift keys
caused the upshift state condition represented by bit 7.

ASCII/ASCII Mnemonics

A-4

The ASCII/ASCII mnemonic is the 1- to 6-byte value representing the
functions on the 'keyboard. Figures A-9 and A-IO list the ASCII/ASCII
mnemonics that are common for all countries. Figure A-II lists the
additional ASCII/ASCII mnemonics that can be used by U.S. English.

The tables give the ASCII code (both decimal and hexadecimal) and the
ASCII mnemonic and specify the functions they perform in PC,
Host/Notepad, and Work Station Control sessions.

Scan Code Tables

Default Scan Codes for the IBM 3270 PC Keyboard (PC
Mode)

Key Lowercase Uppercase Alternate Case

1 OEOO' OE21 ~ OE04

2 1600 1 1621 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 0/0 2E04

7 3600 6 3621
/\

3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

15 6600 Backspace 6621 Backspace 6604

16 ODOO Right Tab OD21 Left Tab OD04

17 1500 q 1521 Q 1504

18 1DOO w 1D21 W 1D04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 a 4421 0 4404

26 4DOO p 4D21 P 4D04

27 5400 [5421 { 5404

28 5BOO \ 5B21 I 5B04

30 1400 Caps Lock 1421 Caps Lock 1404 Caps Lock

31 1COO a 1C21 A 1C04

32 1BOO s 1B21 S 1B04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

35 3400 g 3421 G 3404

Figure A-I (Part I of 4). Default Scan Codes for IBM 3270 PC Keyboard
(PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-5

Scan Code Tables

A-6

Key Lowercase Uppercase Alternate Case

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO I 4B21 L 4B04

40 4COO; 4C21 : 4C04

41 5200 ' 5221 " 5204

42 5300] 5321 } 5304

43 5AOO Enter 5A21 Enter 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

45 1300 < 1321 > 1304

46 1AOO z 1A21 Z 1A04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 4121 < 4104

54 4900 . 4921 > 4904

55 4AOO / 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 1100 1121 1104 Quit

60 1900 Left Alt 1921 Left Alt 1904 Left Alt

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

62 3900 Right Alt 3921 Right Alt 3904 Right Alt

64 5800 Enter 5821 Enter 5804

65 0600 0621 0604 Test

66 OCOO Finish OC21 Finish OC04

67 OBOO OB21 OB04

68 OAOO OA21 OA04 Pause

69 0900 Ctrl 0921 Ctrl 0904 Ctrl

70 0500 0521 0504 SysRq

71 0400 WSCtrl 0421 WSCtrl 0404

72 0300 Jump 0321 ChgScr 0304

73 8300 * 8321 Print 8304

74 0100 Enlarge 0121 Enlarge 0104

75 6700 6721 6704

Figure A-I (Part 2 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(PC Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

76 6400 6421 6404

78 6100 Left Cursor 6121 Left Cursor 6104

80 6EOO 6E21 6E04

81 6500 Insert 6521 Insert 6504

82 6300 Up Cursor 6321 Up Cursor 6304

83 6200 6221 6204

84 6000 Dn Cursor 6021 Dn Cursor 6004

85 6FOO 6F21 6F04

86 6DOO Delete 6D21 Delete 6D04

88 6AOO Right Cursor 6A21 Right Cursor 6A04

90 7600 Esc 7721 Esc 7704

91 6COO Home 6C21 7 6C04

92 6BOO Left Cursor 6B214 6B04

93 6900 End 6921 1 6904

95 7700 NumLk 7721 NumLk 7704

96 7500 Up Cursor 7521 8 7504

97 7300 7321 5 7304

98 7200 Down Cursor 7221 2 7204

99 7000 Insert 7021 0 7004

100 7EOO ScrLk 7E21 ScrLk 7E04

101 7DOO PgUp 7D21 9 7D04

102 7400 Right Cursor 7421 6 7404

103 7AOO PgDn 7A213 7A04

104 7100 Delete 7121 . 7104

105 8400 Spacebar 8421 Spacebar 8404 Spacebar

106 7COO Right Tab 7C21 7C04

107 7BOO - 7B21 - 7B04

108 7900 + 7921 + 7904

110 0700 F1 0721 0704

111 OFOO F2 OF21 OF04

112 1700 F3 1721 1704

113 1FOO F4 1F21 1F04

114 2700 F5 2721 2704

115 2FOO F6 2F21 2F04

116 3700 F7 3721 3704

117 3FOO F8 3F21 3F04

118 4700 F9 4721 4704

Figure A-I (Part 3 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-7

Scan Code Tables

A-8

Key Lowercase Uppercase Alternate Case

119 4FOO FlO 4F21 4F04

120 5600 5621 5604

121 5EOO 5E21 5E04

122 0800 0821 0804

123 1000 1021 1004

124 1800 1821 1804

125 2000 2021 2004

126 2800 2821 2804

127 3000 3021 3004

128 3800 3821 3804

129 4000 4021 4004

130 4800 4821 4804

131 5000 5021 5004

132 5700 5721 5704 Alt Cr

133 5FOO 5F21 5F04
*This key position is not used.

Figure A-I (Part 4 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(PC Mode)

Scan Code Tables

Default Scan Codes for the IBM 3270 PC Keyboard (MFI
Mode)

Note: MFI = host/notepad.

Key Lowercase Uppercase Alternate Case

1 OEOO \ OE21 - OE04

2 1600 1 1621 I 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 0/0 2E04

7 3600 6 3621 --, 3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

15 6600 Backs,pace 6621 Backspace 6604

16 ODOO Right Tab OD21 Right Tab OD04

17 1500 q 1521 Q 1504

18 1DOO w 1D21 W 1D04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 a 4421 0 4404

26 4DOO p 4D21 P 4D04

27 5400 ¢ 5421 ! 5404

28 5BOO \ 5B21 ; 5B04

30 1400 Shift Lock 1421 Shift Lock 1404 Shift Lock

31 1COO a 1C21 A 1C04

32 1BOO s 1B21 S 1B04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

35 3400 g 3421 G 3404

Figure A-2 (Part 1 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(MFI Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-9

Scan Code Tables

A-IO

Key Lowercase Uppercase Alternate Case

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO 1 4B21 L 4B04

40 4COO; 4C21 : 4C04

41 5200 ' 5221 " 5204

42 5300 { 5321 } 5304

43 5AOO Newline 5A21 Newline 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

45 1300 < 1321 > 1304

46 1AOO z 1A21 Z 1A04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 4121 , 4104

54 4900 . 4921 . 4904

55 4AOO / 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 1100 Reset 1121 Reset 1104 Quit

60 1900 Left Alt 1921 Left Alt 1904 Left Alt

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

62 3900 Right Alt 3921 Right Alt 3904 Right Alt

64 5800 Enter 5821 Enter 5804

65 0600 Clear 0621 Clear 0604 Test

66 oeoo Finish OC21 Finish OC04 Attn

67 OBOO Erase EOF OB21 Erase EOF OB04 ErInp

68 OAOO AUTO OA21 COpy OA04 Pause

69 0900 Ctrl 0921 Ctrl 0904 Ctrl

70 0500 Help 0521 Help 0504 Sys Req

71 0400 WSCtrl 0421 WSCtrl 0404 ExSel

72 0300 Jump 0321 ChgScr 0304 CrSel

73 8300 Print 8321 Print 8304 Ident

74 0100 Enlarge 0121 Enlarge 0104 Window
Delete

Figure A-2 (Part 2 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(MFI Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

75 6700 PAl 6721 Dup 6704

76 6400 Left Tab 6421 Left Tab 6404

78 6100 Left Cursor 6121 Left Cursor 6104 Fast Left
Cursor

80 6EOO PA2 6E21 Field Mark 6E04

81 6500 Insert 6521 Insert 6504

82 6300 Up Cursor 6321 Up Cursor 6304

83 6200 6221 6204 Home

84 6000 Down Cursor 6021 Down Cursor 6004

85 6FOO PA3 6F21 6F04

86 6DOO Delete 6D21 Delete 6D04

88 6AOO Right Cursor 6A21 Right Cursor 6A04 Fast
Right Cursor

90 7600 7721 7704

91 6COO 7 6C21 7 6C04

92 6BOO 4 6B214 6B04

93 6900 1 6921 1 6904

95 7700 NumLk 7721 NumLk 7704 NumLk

96 7500 8 7521 8 7504

97 7300 5 7321 5 7304

98 7200 2 7221 2 7204

99 7000 0 7021 0 7004

100 7EOO, 7E21 , 7E04

101 7DOO 9 7D219 7D04

102 7400 6 7421 6 7404

103 7AOO 3 7A213 7A04

104 7100 . 7121 . 7104

105 8400 Spacebar 8421 Spacebar 8404 Space

106 7COO Right Tab 7C21 Right Tab 7C04

107 7BOO - 7B21 - 7B04

108 7900 Enter 7921 Enter 7904

110 0700 PF1 0721 PF1 0704 PSA

111 OFOO PF2 OF21 PF2 OF04 PSB

112 1700 PF3 1721 PF3 1704 PSC

113 1FOO PF4 1F21 PF4 1F04 PSD

114 2700 PF5 2721 PF5 2704 PSE

115 2FOO PF6 2F21 PF6 2F04 PSF

116 3700 PF7 3721 PF7 3704 PS Reset

Figure A-2 (Part 3 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(MFI Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-II

Scan Code Tables

A-12

Key Lowercase Uppercase Alternate Case
117 3FOO PF8 3F21 PF8 3F04

118 4700 PF9 4721 PF9 4704 Reverse
Video

119 4FOO PF10 4F21 PF10 4F04 Blink

120 5600 PF11 5621 PF11 5604 Underscore

121 5EOO PF12 5E21 PF12 5E04 Attribute
Reset

122 0800 PF13 0821 PF13 0804 Red

123 1000 PF14 1021 PF14 1004 Pink

124 1800 PF15 1821 PF15 1804 Green

125 2000 PF16 2021 PF16 2004 Yellow

126 2800 PF17 2821 PF17 2804 Blue

127 3000 PF18 3021 PF18 3004 Turquoise

128 3800 PF19 3821 PF19 3804 White

129 4000 PF20 4021 PF20 4004 Black

130 4800 PF21 4821 PF21 4804 Color Reset

131 5000 PF22 5021 PF22 5004

132 5700 PF23 5721 PF23 5704 Alt Cr

133 5FOO PF24 5F21 PF24 5F04
*This key position is not used.

Figure A-2 (Part 4 of 4). Default Scan Codes for IBM 3270 PC Keyboard
(MFI Mode)

Scan Code Tables

Default Scan Codes for the IBM Enhanced PC Keyboard
(PC Mode)

Key Lowercase Uppercase Alternate Case

1 OEOO' OE21 - OE04

2 1600 1 1621 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 0/0 2E04

7 3600 6 3621
/\

3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

15 6600 Backspace 6621 Backspace 6604

16 ODOO Right Tab OD21 Left Tab OD04

17 1500 q 1521 Q 1504

18 1DOO w 1D21 W 1D04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 a 4421 0 4404

26 4DOO p 4D21 P 4D04

27 5400 [5421 { 5404

28 5300] 5321 } 5304

29 5BOO \ 5B21 I 5B04

30 1400 Caps Lock 1421 Caps Lock 1404 Caps Lock

31 1COO a 1C21 A 1C04

32 IBOO s 1B21 S IB04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

Figure A-3 (Part 1 of 3). Default Scan Codes for IBM Enhanced PC
Keyboard (PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-13

Scan Code Tables

A-14

Key Lowercase Uppercase Alternate Case

35 3400 g 3421 G 3404

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO I 4B21 L 4B04

40 4COO; 4C21 : 4C04

41 5200 I 5221 II 5204

43 5AOO Enter 5A21 Enter 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

46 1AOO z 1A21 Z 1A04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 4121 < 4104

54 4900 . 4921 > 4904

55 4AOO I 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 0900 Left Ctrl 0921 Left Ctrl 0904 Left Ctr I

60 1900 Left Alt 1921 Left Alt 1904

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

62 3900 Right Alt 3921 Right Alt 1104 Quit

64 0200 Right Ctrl 0221 Right Ctrl 0204 Right Ctrl

75 6500 Insert 6521 Insert 0100 Enlarge

76 6DOO Delete 6D21 Delete 6D04

79 6100 Left Cursor 6121 Left Cursor 6104

80 A500 Home A521 Home 0321 ChgSc

81 A600 End OCOO Finish A604

83 6300 Up Cursor 6321 Up Cursor 6304

84 6000 Dn Cursor 6021 Dn Cursor 6004

85 A700 Page Up A721 Page Up 0300 Jump

86 A800 Page Down A821 Page Down A804

89 6AOO Right Cursor 6A21 Right Cursor 6A04

90 7700 NumLock 7721 NumLock 7704 NumLock

91 6COO Home 6C21 7 6C04

Figure A-3 (Part 2 of 3). Default Scan Codes for IBM Enhanced PC
Keyboard (PC Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

92 6BOO Left Cursor 6B214 6B04

93 6900 End 6921 1 6904

95 5DOO / 5D21 / 5D04

96 7500 Up Cursor 7521 8 7504

97 7300 7321 5 7304

98 7200 Dn Cursor 7221 2 7204

99 7000 Ins 7021 0 7004

100 6800 * 6821 * 6804

101 7DOO PgUp 7D219 7D04

102 7400 Right Cursor 7421 6 7404

103 7AOO PgDn 7A213 7A04

104 7100 Del 7121 . 7104

105 7BOO - 7B21 - 7B04

106 7900 + 7921 + 7904

108 7800 Enter 7821 Enter 7804

110 7600 Esc 0400 WSCtrl 7604

112 0700 F1 0721 0704

113 OFOO F2 OF21 OF04

114 1700 F3 1721 1704

115 1FOO F4 1F21 1F04

116 2700 F5 2721 2704

117 2FOO F6 2F21 2F04

118 3700 F7 3721 3704

119 3FOO F8 3F21 3F04

120 4700 F9 4721 4704

121 4FOO FlO 4F21 4704

122 5600 F11 5621 5604

123 5EOO F12 5E21 5E04

124 5100 Print Screen 5121 Print Screen 5104 SysRq

125 7EOO Scroll Lock 7E21 Scroll Lock 0604 Test

126 8000 Pause (PC) OA04 Pause 8004
(Autokey)

Note: Key 124 in the control state toggles Screen Echo. Key 126 in the control state is
Break.*

Figure A-3 (Part 3 of 3). Default Scan Codes for IBM Enhanced PC
Keyboard (PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-15

Scan Code Tables

Default Scan Codes for the IBM Enhanced PC Keyboard
(MFI Mode)

A-16

Key Lowercase Uppercase Alternate Case

1 OEOO' OE21 - OE04

2 1600 1 5421 ! 1604

3 lEOO 2 lE21 @ lE04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 % 2E04

7 3600 6 5400 ¢ 3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

15 6600 Backspace 6621 Backspace 6604 Backspace

16 ODOO Right Tab 6400 Left Tab OD04

17 1500 q 1521 Q 1504

18 IDOO w ID21 W ID04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 0 4421 0 4404

26 4DOO p 4D21 P 4D04

27 3621 I 5300 { 5304

28 1621 I 5321 } 5304

29 5BOO \ 5B21 I 5B04

30 1400 Shift Lock 1421 Shift Lock 1404 Shift Lock

31 lCOO a 1C21 A lC04

32 1BOO s 1B21 S 1B04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

Figure A-4 (Part 1 of 3). Default Scan Codes for IBM Enhanced PC
Keyboard (MFI Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

35 3400 g 3421 G 3404

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO 1 4B21 L 4B04

40 4COO; 4C21 : 4C04

41 5200 I 5221 " 5204

43 5AOO New Line 5A21 New Line 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

46 1AOO z 1A21 Z 1A04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 1300 < 4104

54 4900 . 1321 > 4904

55 4AOO I 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 0900 Ctrl 0921 Ctrl 0904 Ctrl

60 1900 Alt 1921 Alt 1904

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

62 1100 Reset 1121 Reset 1104 Quit

64 5800 Enter 5821 Enter 5804

75 6500 Insert 6721 Dup 0100 Enlarge

76 6DOO Delete 6D21 Delete 6D04 Word Del

79 6100 Cursor Left 6121 Cursor Left 6104 Fast Cursor
Left

80 6204 Home 6E21 FldMk 0321 ChgSc

81 OBOO ErEOF OCOO Finish OB04 ErInp

83 6300 Cursor Up 6321 Cursor Up 6304

84 6000 Cursor Dn 6021 Cursor Dn 6004

85 6700 PAl 6FOO PA3 0300 Jump

86 6EOO PA2 DEOO NF DEOO NF

89 6AOO Cursor Right 6A21 Cursor Right 6A04 Fast Cursor
Right

90 0700 PF1 7721 NumLk 0704 PSA

Figure A-4 (Part 2 of 3). Default Scan Codes for IBM Enhanced PC
Keyboard (MFI Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-17

Scan Code Tables

A-I8

Key Lowercase Uppercase Alternate Case

91 1FOO PF4 3DOO 7 OF04 PSB

92 3700 PF7 2500 4 1704 PSC

93 4FOO PF10 1600 1 1F04 PSD

95 OFOO PF2 DEOO NF 2704 PSE

96 2700 PF5 3EOO 8 2F04 PSF

97 3FOO PF8 2EOO 5 3704 M>

98 5600 PF11 1EOO 2 DEOO NF

99 6500 Ins 4500 0 DEOO NF

100 1700 PF3 4121 , 4704 m
101 2FOO PF6 4600 9 4F04 :a,

102 4700 PF9 3600 6 5604 .I.

103 5EOO PF12 2600 3 5E04 ~

104 6DOO Del 4921 . 7104 Del

105 7BOO - 7B21 - 7B04

106 7COO Right Tab 7C21 Right Tab 7C04

108 7900 Enter 7921 Enter 7904

110 OC04 Attn 0400 WSCtrl 0404 ExSel

112 0700 PF1 0800 PF13 0804

113 OFOO PF2 1000 PF14 1004

114 1700 PF3 1800 PF15 1804

115 1FOO PF4 2000 PF16 DEOO NF

116 2700 PF5 2800 PF17 OAOO

117 2FOO PF6 3000 PF18 OA21

118 3700 PF7 3800 PF19 0104

119 3FOO PF8 4000 PF20 DEOO NF

120 4700 PF9 4800 PF21 0304

121 4FOO PF10 5000 PF22 5004

122 5600 PF11 5700 PF23 5704

123 5EOO PF12 5FOO PF24 DEOO NF

124 8300 Print 8304 Indent 0504

125 0500 Help 0521 Help 0604 Test

126 0600 Clear OA04 Pause DEOO NF
Note: NF (no function) means no function has been assigned to the specified key location.

Figure A-4 (Part 3 of 3), Default Scan Codes for IBM Enhanced PC
Keyboard (MFI Mode)

Scan Code Tables

Default Scan Codes for the PC XT Keyboard (PC Mode)

Key Lowercase Uppercase Alternate Case

1 7600 Escape 0400 WS Ctrl 0300 Jump

2 1600 1 1621 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 % 2E04

7 3600 6 3621 " 3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

14 6600 Backspace 6621 Backspace 6604

15 ODOO Right tab OD21 Left tab OD04

16 1500 q 1521 Q 1504

17 1DOO w 1D21 W 1D04

18 2400 e 2421 E 2404

19 2DOO r 2D21 R 2D04

20 2COO t 2C21 T 2C04

21 3500 y 3521 Y 3504

22 3COO u 3C21 U 3C04

23 4300 i 4321 I 4304

24 4400 0 4421 0 4404

25 4DOO p 4D21 P 4D04

26 5400 [5421 { 5404

27 5300] 5321 } 5304

28 5AOO Enter 5A21 Enter 5A04

29 0900 Ctrl 0921 Ctrl 0904 Ctrl

30 1COO a 1C21 A 1C04

31 1BOO s 1B21 S 1B04

32 2300 d 2321 D 2304

33 2BOO f 2B21 F 2B04

34 3400 g 3421 G 3404

35 3300 h 3321 H 3304

Figure A-5 (Part 1 of 3). Default Scan Codes for IBM PC XT Keyboard
(PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-19

Scan Code Tables

A-20

Key Lowercase Uppercase Alternate Case

36 3BOO j 3B21 J 3B04

37 4200 k 4221 K 4204

38 4BOO 1 4B21 L 4B04

39 4COO ; 4C21 : 4C04

40 5200 ' 5221 " 5204

41 OEOO \ OE21 - OE04

42 1200 Left Shift 1221 Left Shift 1204 Left Shift

43 5BOO \ 5B21 I 5B04

44 1AOO z 1A21 Z 1A04

45 2200 x 2221 X 2204

46 2100 c 2121 C 2104

47 2AOO v 2A21 V 2A04

48 3200 b 3221 B 3204

49 3100 n 3121 N 3104

50 3AOO m 3A21 M 3A04

51 4100 , 4121 < 4104

52 4900 . 4921 > 4904

53 4AOO / 4A21 ? 4A04

54 5900 Right Shift 5921 Right Shift 5904 Right Shift

55 8300 * 8321 Prnt Scr 8304

56 1900 AU 1921 AU 1904 Alt

57 2900 Spacebar 2921 Spacebar 2904 Spacebar

58 1400 Caps lock 1421 Caps lock 1404 Caps lock

59 0700 F1 0721 0704

60 OFOO F2 OF21 OF04

61 1700 F3 1721 1704

62 1FOO F4 1F21 1F04

63 2700 F5 2721 2704

64 2FOO F6 2F21 2F04

65 3700 F7 3721 3704

66 3FOO F8 3F21 3F04

67 4700 F9 4721 4704

68 4FOO FlO 4F21 4F04

69 7700 Num Lock 7721 Num Lock 0100 Enlarge

70 7EOO Scr Lk 1104 Quit 0321 Chg Scr

71 6COO Home 6C21 Keypad 7 6C04

72 7500 Up Cursor 7521 Keypad 8 7504

Figure A-5 (Part 2 of 3). Default Scan Codes for IBM PC XT Keyboard
(PC Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

73 7DOO Page Up 7D21 Keypad 9 7D04

74 7BOO - 7B21 - 7B04

75 6BOO Left Cursor 6B21 Keypad 4 6B04

76 7300 7321 Keypad 5 7304

77 7400 Right 7421 Keypad 6 7404
Cursor

78 7900 + 7921 + 0604 Test

79 6900 End 6921 Keypad 1 6904

80 7200 Down 7221 Keypad 2 7204
Cursor

81 7AOO PgDn 7 A21 Keypad 3 7A04

82 7000 Insert 7021 Keypad 0 7004

83 7100 Delete 7121 . 7104

Figure A-5 (Part 3 of 3). Default Scan Codes for IBM PC XT Keyboard
(PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-21

Scan Code Tables

Default Scan Codes for the IBM PC XT Keyboard (MFI
Mode)

A-22

Note: MFI = host/notepad.

Key Lowercase Uppercase Alternate Case

1 DEOO NF 0400 WS Ctrl 0300 Jump

2 1600 1 5421 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 0/0 2E04

7 3600 6 3621 -, 3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

14 6600 Backspace 6621 6604

15 ODOO Right tab OD21 Left tab OD04

16 1500 q 1521 Q 1504

17 1DOO w 1D21 W 1D04

18 2400 e 2421 E 2404

19 2DOO r 2D21 R 2D04

20 2COO t 2C21 T 2C04

21 3500 y 3521 Y 3504

22 3COO u 3C21 U 3C04

23 4300 i 4321 I 4304

24 4400 0 4421 0 4404

25 4DOO p 4D21 P 4D04

26 5400 ¢ 5300 { 5304

27 1621 I 5321 } 5304

28 5AOO Newline 5A21 Newline 5A04

29 0900 Ctrl 0921 Ctrl 0904 Ctrl

30 1COO a 1C21 A 1C04

31 1BOO s 1B21 S 1B04

32 2300 d 2321 D 2304

Figure A-6 (Part 1 of 3). Default Scan Codes for IBM PC XT Keyboard
(MFI Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

33 2BOO f 2B21 F 2B04

34 3400 g 3421 G 3404

35 3300 h 3321 H 3304

36 3BOO j 3B21 J 3B04

37 4200 k 4221 K 4204

38 4BOO 1 4B21 L 4B04

39 4COO ; 4C21 : 4C04

40 5200 I 5221 " 5204

41 OEOO ' OE21 - OE04

42 1200 Left Shift 1221 Left Shift 1204 Left Shift

43 5BOO \ 5B21 I 5B04

44 1AOO z 1A21 Z 1A04

45 2200 x 2221 X 2204

46 2100 c 2121 C 2104

47 2AOO v 2A21 V 2A04

48 3200 b 3221 B 3204

49 3100 n 3121 N 3104

50 3AOO m 3A21 M 3A04

51 4100 , 1300 < 4104

52 4900 . 1321 > 4904

53 4AOO I 4A21 ? 4A04

54 5900 Right Shift 5921 Right Shift 5904 Right Shift

55 5800 Enter 8300 Prnt Scr DEOO NF

56 1900 Alt 1921 Alt 1904 Alt

57 2900 Spacebar 2921 Spacebar 2904 Spacebar

58 1400 Shift Lock 1421 Shift Lock 1404 Shift Lock

59 0700 PF1 5600 PF11 OC04 Attn

60 OFOO PF2 5EOO PF12 0600 Clear

61 1700 PF3 0800 PF13 0304 CrSel

62 1FOO PF4 1000 PF14 0404 ExSel

63 2700 PF5 1800 PF15 1804 ChFmt

64 2FOO PF6 2000 PF16 OBOO ErE OF

65 3700 PF7 2800 PF17 8300 Print

66 3FOO PF8 3000 PF18 6721 Dup

67 4700 PF9 3800 PF19 DEOO NF

68 4FOO PF10 4000 PF20 1100 Reset

69 7700 Num Lock 0504 SysRq 0100 Enlarge

Figure A-6 (Part 2 of 3). Default Scan Codes for IBM PC XT Keyboard
(MFI Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-23

Scan Code Tables

A-24

Key Lowercase Uppercase Alternate Case

70 6E21 FldMk 1104 DvCnl 0321 Chg Scr

71 6204 Home 6C21 Keypad 7 6C04

72 6300 Up Cursor 7521 Keypad 8 5004 CrPos

73 6700 PAl 7D21 Keypad 9 OB04 ErInp

74 6EOO PA2 7BOO - 4704 ReVid

75 6100 Left Cursor 6B21 Keypad 4 6104 Fast Left
Cursor

76 8304 Ident 7321 Keypad 5 1004 Wrap

77 6AOO Right 7421 Keypad 6 6A04 Fast Right
Cursor Cursor

78 7900 Enter 7921 Enter 0604 Test

79 DEOO NF 6921 Keypad 1 4F04 Blink

80 6000 Down 7221 Keypad 2 5604 UndSc
Cursor

81 6FOO PA3 7A21 Keypad 3 5E04 Ex
Highlight

82 6500 Insert 7021 Keypad 0 0804 DocMd

83 6DOO Delete 7121 . 6D04 WdDel
Note: NF (no function) means no function has been assigned to the specified key location.

Figure A-6 (Part 3 of 3). Default Scan Codes for IBM PC XT Keyboard
(MFI Mode)

Scan Code Tables

Default Scan Codes for the IBM Personal Computer AT
Keyboard (PC Mode)

Key Lowercase Uppercase Alternate Case

1 OEOO \ OE21 - OE04

2 1600 1 1621 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 0/0 2E04

7 3600 6 3621
/\

3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

14 5BOO \ 5B21 I 5B04

15 6600 Backspace 6621 Backspace 6604

16 ODOO Right Tab OD21 Left Tab OD04

17 1500 q 1521 Q 1504

18 1DOO w 1D21 W ID04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 0 4421 0 4404

26 4DOO p 4D21 P 4D04

27 5400 [5421 { 5404

28 5300] 5321 } 5304

30 0900 Ctrl 0921 Ctrl 0904 Ctrl

31 1COO a 1C21 A 1C04

32 1BOO s 1B21 S IB04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

Figure A-7 (Part 1 of 3). Default Scan Codes for IBM Personal Computer
AT Keyboard (PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-25

Scan Code Tables

A-26

Key Lowercase Uppercase Alternate Case

35 3400 g 3421 G 3404

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO 1 4B21 L 4B04

40 4COO ; 4C21 : 4C04

41 5200 ' 5221 " 5204

43 5AOO Enter 5A21 Enter 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

46 1AOO z 1A21 Z 1A04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 4121 < 4104

54 4900 . 4921 > 4904

55 4AOO / 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 1900 Alt 1921 Alt 1904 Alt

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

64 1400 Caps Lock 1421 Caps Lock 1404 Caps Lock

65 OFOO F2 OF21 OF04

66 1FOO F4 1F21 1F04

67 2FOO F6 2F21 2F04

68 3FOO F8 3F21 3F04

69 4FOO FlO 4F21 4F04

70 0700 F1 0721 0704

71 1700 F3 1721 1704

72 2700 F5 2721 2704

73 3700 F7 3721 3704

74 4700 F9 4721 4704

90 7600 Esc 0400 WS Ctrl 0300 Jump

91 6COO Home 6C21 Keypad 7 6C04

92 6BOO Left Cursor 6B21 Keypad 4 6B04

93 6900 End 6921 Keypad 1 6904

Figure A-7 (Part 2 of 3). Default Scan Codes for IBM Personal Computer
AT Keyboard (PC Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

95 7700 NumLk 7721 NumLk 0100 Enlarge

96 7500 Up Cursor 7521 Keypad 8 7504

97 7300 7321 Keypad 5 7304

98 7200 Down 7221 Keypad 2 7204
Cursor

99 7000 Insert 7021 Keypad 0 7004

100 7EOO ScrLk 1104 Quit 0321 ChScr

101 7DOO PgUp 7D21 Keypad 9 7D04

102 7400 Right 7421 Keypad 6 7404
Cursor

103 7AOO PgDn 7 A21 Keypad 3 7A04

104 7100 Delete 7121 . 7104

105 0504 SysReq DEOO NF DEOO NF

106 8300 * 8321 PrtScr 8304

107 7BOO - 7B21 - 7B04

108 7900 + 7921 + 0604 Test
Note: NF (no function) means no function has been assigned to the specified key location.

Figure A-7 (Part 3 of 3). Default Scan Codes for IBM Personal Computer
AT Keyboard (PC Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-27

Scan Code Tables

Default Scan Codes for the IBM Personal Computer AT
Keyboard (MFI Mode)

A-28

Key Lowercase Uppercase Alternate Case

1 OEOO \ OE21 - OE04

2 1600 1 5421 ! 1604

3 1EOO 2 1E21 @ 1E04

4 2600 3 2621 # 2604

5 2500 4 2521 $ 2504

6 2EOO 5 2E21 % 2E04

7 3600 6 3621 -, 3604

8 3DOO 7 3D21 & 3D04

9 3EOO 8 3E21 * 3E04

10 4600 9 4621 (4604

11 4500 0 4521) 4504

12 4EOO - 4E21 4E04 -
13 5500 = 5521 + 5504

14 5BOO \ 5B21 I 5B04

15 6600 Backspace 6621 Backspace 6604

16 ODOO Right Tab 6400 Left Tab OD04

17 1500 q 1521 Q 1504

18 1DOO w 1D21 W 1D04

19 2400 e 2421 E 2404

20 2DOO r 2D21 R 2D04

21 2COO t 2C21 T 2C04

22 3500 y 3521 Y 3504

23 3COO u 3C21 U 3C04

24 4300 i 4321 I 4304

25 4400 0 4421 0 4404

26 4DOO p 4D21 P 4D04

27 5400 ¢ 5300 { 5404

28 1621 I 5321 } 5304

30 0900 Ctrl 0921 Ctrl 0904 Ctrl

31 1COO a 1C21 A 1C04

32 1BOO s 1B21 S 1B04

33 2300 d 2321 D 2304

34 2BOO f 2B21 F 2B04

Figure A-8 (Part 1 of 3). Default Scan Codes for IBM Personal Computer
Keyboard (MFI Mode)

Scan Code Tables

Key Lowercase Uppercase Alternate Case

35 3400 g 3421 G 3404

36 3300 h 3321 H 3304

37 3BOO j 3B21 J 3B04

38 4200 k 4221 K 4204

39 4BOO I 4B21 L 4B04

40 4COO ; 4C21 : 4C04

41 5200 ' 5221 1/ 5204

43 5AOO Enter 5A21 Enter 5A04

44 1200 Left Shift 1221 Left Shift 1204 Left Shift

46 1AOO z lA21 Z lA04

47 2200 x 2221 X 2204

48 2100 c 2121 C 2104

49 2AOO v 2A21 V 2A04

50 3200 b 3221 B 3204

51 3100 n 3121 N 3104

52 3AOO m 3A21 M 3A04

53 4100 , 1300 < 4104

54 4900 . 1321 > 4904

55 4AOO I 4A21 ? 4A04

57 5900 Right Shift 5921 Right Shift 5904 Right Shift

58 1900 Alt 1921 Alt 1904 Alt

61 2900 Spacebar 2921 Spacebar 2904 Spacebar

64 1400 Shift lock 1421 Shift lock 1404 Shift lock

65 OFOO PF2 5EOO PF12 0600 Clear

66 IFOO PF4 1000 PF14 0404 ExSel

67 2FOO PF6 2000 PF16 OBOO ErEOF

68 3FOO PF8 3000 PF18 6721 Dup

69 4FOO PF10 4000 PF20 1100 Reset

70 0700 PFI 5600 PFll OC04 Attn

71 1700 PF3 0800 PF13 0304 CrSel

72 2700 PF5 1800 PF15 1804 ChFmt

73 3700 PF7 2800 PF17 8300 Print

74 4700 PF9 3800 PF19 DEOO NF

90 DEOO NF 0400 WS Ctrl 0300 Jump

91 6204 Home 6C21 Keypad 7 DEOO NF

92 6100 Left Cursor 6B21 Keypad 4 6B04 Fast Cursor
Left

Figure A-8 (Part 2 of 3). Default Scan Codes for IBM Personal Computer
Keyboard (MFI Mode)

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-29

Scan Code Tables

A-30

Key Lowercase Uppercase Alternate Case

93 DEOO NF 6921 Keypad 1 4F04 Blink

95 7700 NumLk 7721 NumLk 0100 Enlarge

96 6300 Up Cursor 7521 Keypad 8 5004 CrPos

97 8304 Ident 7321 Keypad 5 1004 Wrap

98 6000 Down 7221 Keypad 2 5604 UndSc
Cursor

99 6500 Insert 7021 Keypad 0 0804 DocMd

100 6E21 FldMk 1104 Quit 0321 ChScr

101 6700 PAl 7D21 Keypad 9 OB04 ErInp

102 6AOO Right 7421 Keypad 6 6A04 Fast Right
Cursor

103 6FOO PA3 7 A21 Keypad 3 5E04 FIHiCr

104 6DOO Delete 7121 . 6D04 WdDel

105 0504 SysReq DEOO NF DEOO NF

106 3E21 * 8300 PrtScr DEOO NF

107 6EOO PA2 7B21 - 4704 ReVid

108 7900 Enter 7921 Enter 0604 Test
Note: NF {no function} means no function has been assigned to the specified key location.

Figure A-8 (Part 3 of 3). Default Scan Codes for IBM Personal Computer
Keyboard (MFI Mode)

ASCII Tables

ASCII Characters Common to All Countries

ASCII Code PC and Host/Notepad
(hex) (dec) Character W sCtrl Function

20 32 Blank space Space

22 34 " Invalid

25 37 0/0 Invalid

26 38 & Invalid

27 39 I Invalid

28 40 (Invalid

29 41) Invalid

2A 42 * Invalid

2B 43 + Invalid

2C 44 , Invalid

2D 45 - Invalid

2E 46 Invalid

2F 47 / Invalid

30 48 0 Select screen

31 49 1 Select screen

32 50 2 Select screen

33 51 3 Select screen

34 52 4 Select screen

35 53 5 Select screen

36 54 6 Select screen

37 55 7 Select screen

38 56 8 Select screen

39 57 9 Select screen

3A 58 Invalid

3B 59 , Invalid

3C 60 < <

3D 61 = Invalid

3E 62 > >

3F 63 ? Invalid

41 65 A Select window

42 66 B Select window

43 67 C Select window

44 68 D Select window

45 69 E Select window

Figure A-9 (Part 1 of 3). Valid ASCII Characters Common to All
Countries

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-31

ASCII Tables

A-32

ASCII Code PC and Host/Notepad
(hex) (dec) Character W sCtrl Function

46 70 F Select window

47 71 G Select window

48 72 H Select window

49 73 I Select window

4A 74 J Select window

4B 75 K Select window

4C 76 L Select window

4D 77 M Select window

4E 78 N Select window

4F 79 0 Select window

50 80 P Select window

51 81 Q Select window

52 82 R Select window

53 83 S Select window

54 84 T Select window

55 85 U Select window

56 86 V Select window

57 87 W Select window

58 88 X Select window

59 89 Y Select window

5A 90 Z Select window

5F 95 Invalid -

61 97 a Select window

62 98 b Select window

63 99 c Select window

64 100 d Select window

65 101 e Select window

66 102 f Select window

67 103 g Select window

68 104 h Select window

69 105 i Select window

6A 106 J Select window

6B 107 k Select window

6C 108 1 Select window

6D 109 m Select window

6E 110 n Select window

Figure A-9 (Part 2 of 3). Valid ASCII Characters Common to All
Countries

ASCII Tables

ASCII Code PC and Host/Notepad
(hex) (dec) Character W sCtr 1 Function

6F 111 0 Select window

70 112 p Select window

71 113 q Select window

72 114 r Select window

73 115 s Select window

74 116 t Select window

75 117 u Select window

76 118 v Select window

77 119 w Select window

78 120 x Select window

79 121 Y Select window

7A 122 z Select window

Figure A-9 (Part 3 of 3). Valid ASCII Characters Common to All
Countries

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-33

ASCII Tables

ASCII Mnemonics Common to All Countries

ASCII Host/N otepad
Mnemonic PC Function Function W sCtrl Function
@< Backspace Backspace Backspace

@x Invalid PAl Invalid

@S@x Invalid Dup Invalid

@y Invalid PA2 Invalid

@S@y Invalid Field mark Invalid

@z Invalid PA3 Invalid

@w Esc Invalid Invalid

@t Numlk Numlk (DFT) Invalid

@s Scrlk Invalid Invalid

@r@s Break Invalid Invalid

@T Right tab Right tab Right tab

@B Left tab Left tab Left tab

@I Insert Insert Invalid

@A@D Invalid Delete word (CUT) Invalid

@D Delete character Delete character Invalid

@N Newline Newline Newline

@E Enter Enter Enter

@U Cursor up Cursor up Cursor up

@V Cursor down Cursor down Cursor down

@Z Cursor right Cursor right Cursor right

@L Cursor left Cursor left Cursor left

@A@Z Invalid Cursor right fast Invalid

@A@L Invalid Cursor left fast Invalid

@O Home Home Home

@u PgUp Invalid Invalid

@v Pg Down Invalid Invalid

@q End Invalid Invalid

@H Invalid Invalid Help

@C Invalid Clear Invalid

@A@H Invalid Sys Req Invalid

@A@C Invalid Test Invalid

@W Invalid Invalid WsCtrl

@Q Invalid Invalid Finish

@A@W Invalid ExSel Invalid

Figure A-IO (Part 1 of 3). Valid ASCII Mnemonics Common to All Countries

A-34

ASCII Tables

ASCII Host/Notepad
Mnemonic PC Function Function W sCtr 1 Function

@A@Q Invalid Attn Invalid

@J Invalid Invalid Jump

@S@J Invalid Invalid ChgScr

@A@J Invalid CrSel CrSel

@F Invalid Erase EOF Erase EOF

@A@F Invalid Erinp Erase

@P Print Print Print

@A@P Invalid Ident Invalid

@K Invalid Invalid Copy

@S@K Invalid Invalid Auto

@r@t Pause Invalid Invalid

@M Invalid Invalid Enlarge

@A@M Invalid Invalid Delete Window

@Y Caps Lock Shift Lock Shift Lock

@R Invalid Reset Invalid

@A@R Invalid Dev Cancel Quit

@l Fl PFI List

@2 F2 PF2 Setup

@3 F3 PF3 Browse

@4 F4 PF4 Play

@5 F5 PF5 Invalid

@6 F6 PF6 Invalid

@7 F7 PF7 Invalid

@8 F8 PF8 Color

@9 F9 PF9 Hide

@a FlO PFIO Corner

@b Fll PFll Move

@c F12 PF12 Size

@d Invalid PF13 Source

@e Invalid PF14 Target

@f Invalid PF15 Invalid

@q Invalid PF16 Record

@h Invalid PF17 Invalid

@i Invalid PF18 Invalid

@j Invalid PF19 Invalid

@k Invalid PF20 Invalid

Figure A-tO (Part 2 of 3). Valid ASCII Mnemonics Common to All Countries

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-35

ASCII Tables

ASCII Host/N otepad
Mnemonic PC Function Function W sCtrl Function
@l Invalid PF21 Base Color

@m Invalid PF22 Scr Bk Color

@n Invalid PF23 Foregr Color

@o Invalid PF24 Background Color

@A@l Invalid PSA (DFT only) Invalid

@A@2 Invalid PSB (DFT only) Invalid

@A@3 Invalid PSC (DFT only) Invalid

@A@4 Invalid PSD (DFT only) Invalid

@A@5 Invalid PSE (DFT only) Invalid

@A@6 Invalid PSF (DFT only) Invalid

@A@7 Invalid Reset program symbols Invalid
(DFT only)

@A@9 Invalid Reverse video (DFT and Invalid
notepad)

@A@a Invalid Hilite (DFT and notepad) Invalid

@A@b Invalid Underscore (DFT and Invalid
notepad)

@A@c Invalid Reset reverse video, etc. Invalid
(DFT and notepad)

@A@d Invalid Red (DFT and notepad) Red
Doc mode (CUT)

@A@e Invalid Pink (DFT and notepad) Pink
Wrap (CUT)

@A@f Invalid Green (DFT and notepad) Green
Chg format (CUT)

@A@g Invalid Yellow (DFT and Yellow
notepad)

@A@h Invalid Blue (DFT and notepad) Blue

@A@i Invalid Turq (DFT and notepad) Turq

@A@j Invalid White (DFT and White
notepad)

@A@k Invalid Black (DFT and notepad) Black

@A@l Invalid Reset host colors (DFT Invalid
and notepad)

@A@m Invalid Cr Position (CUT) Invalid

@/ Queue full, Queue full, keystrokes Queue full,
keystrokes lost lost keystrokes lost

@@ @ @ Invalid

Figure A-I0 (Part 3 of 3). Valid ASCII Mnemonics Common to All Countries

A-36

ASCII Tables

Additional ASCII Characters Used by U.S. English

ASCII Code Character
(hex) (dec) Description PC CUT DFT IN otepad

21 33 ! x x x

23 35 # x x x

24 36 $ x x x

5B 91 [x

5C 92 \ x x x

5D 93] x

5E 94
A

x

60 96
,

x x x

7B 123 { x x x

7C 124 I x x

7D 125 } x x x

7E 126 ~ x x x

9B 155 ¢ x x

AA 170 I x x

DD 221 I x x X I

Figure A-II. Additional ASCII Characters Used by U.S. English

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic Values A-37

ASCII Tables

A-38

ASCII Tables

Appendix B. Destination/Origin Structured Fields

In troduction ... B-3
The 3270 Outbound Data Stream B-3
The 3270 Inbound Data Stream B-3
Verifying That the IBM 3270 Personal Computer Interface Is

Operational ... B-4
The Read Partition Query Structured Field B-4
The Query Reply Structured Field B-4

Query Reply ... B-6
Input Control .. B-6
PC Application Program and Display Interaction B-7
Exception Handling B-8
Structured Fields ... B-9

Destination/Origin B-9
Exception Condition B-I0

X'DO' Structured Fields for Sending Data from the Host to the 3270
Personal Computer B-ll

The Open X'DO' Structured Field B-12
Format of the Host Open Request B-12
Format of the Successful Transmission Response B-14
Format of the Unsuccessful Transmission Response B-14

The Insert and Insert Data X'DO' Structured Fields B-15
Format of the Host Insert and Insert Data Requests B-15
Format of the Successful Transmission Response B-16
Format of the Unsuccessful Transmission Response B-17

The Close X'DO' Structured Field B-18
Format of the Host Close Request B-18
Format of the Successful Transmission Response B-18
Format of the Unsuccessful Transmission Response B-19

X'DO' Structured Fields for Sending Data from Personal Computer to
Host ... B-20

The Open X'DO' Structured Field B-21
Format of the Host Open Request B-21
Format of the Successful Transmission Response B-22
Format of the Unsuccessful Transmission Response B-23

The Set Cursor and Get X'DO' Structured Field B-23
Format of the Host Set Cursor and Get Requests B-24
Format of the Succes.sful Transmission Response B-25
Format of the Unsuccessful Transmission Response for Set

Cursor .. B-26
Format of the Unsuccessful Transmission Response for Get B-27

The Close X'DO' Structured Field B-28
Format of the Host Close Request B-28
Format of the Successful Transmission Response B-28
Format of the Unsuccessful Transmission Response B-29

Appendix B. Destination/Origin Structured Fields B-1

ASCII Tables

B-2

Introd uction

Introduction

This appendix describes the destination/origin structured field formats and
protocol used by your IBM 3270 PC application program to move data
between a host session and the personal computer session (using the host
interactive services). Structure types accepted by the 3270 Workstation
Program are designated Open (X'DOOO'), Close (X'D041'), Set Cursor
(X'D045'), Get (X'D046'), and Insert and Insert Data (X'D047'). No other
types are allowed when using the 3270 PC application program interface.

The 3270 data stream was defined for use between a host application
program and a single display; it allows support of a 3270 data stream work
station. A 3270 data stream work station consists of a 3270 data stream
display and one or more personal computer (PC) application programs. A
PC application program does not accept the usual 3270 data stream (for
example, 3270 commands, orders, and so forth). However, the 3270 data
stream is used to carry the data streams associated with the PC application
programs. The data to and from PC application programs must be in the
form of structured fields.

The 3270 Outbound Data Stream

The 3270 outbound data stream is a data stream sent from the host to the
3270 Personal Computer. The 3270 outbound data stream containing
structured fields begins with a Write Structured Field (WSF) command
X'F3' or X'll'. Multiple structured fields can be sent with one WSF
command.

WSF Structured Structured
Field 1 Field 2

The 3270 Inbound Data Stream

I

\
I

Structured
Field n

The 3270 inbound data stream is a data stream sent from the 3270 Personal
Computer to the host. The 3270 inbound data stream containing structured
fields begins with an attention identifier (AID):

I Structured Field

The structures used by the 3270 Personal Computer follow the 3270 data
stream format. The maximum number of bytes that can be sent in one
transmission in either direction is 3.5K bytes (K equals 1024). (For more
information on structured fields, refer to the IBM 3274 Control Unit
Description and Programmer's Guide.)

Appendix B. Destination/Origin Structured Fields B-3

Verifying Interface Is Operational

Verifying That the IBM 3270 Personal Computer
Interface Is Operational

Prior to a request from the host application to the 3270 Personal Computer,
the host application must verify (with the control unit) that the 3270
Personal Computer interface is operational. This is done with a Read
Partition Query structured field. The workstation program then returns a
specific Query Reply back to the host.

The Read Partition Query Structured Field

The read partition query and query reply structures verify that a path
exists between the host application and the 3270 PC application. The host
application inquires about the 3270 PC application.

Figure B-1 shows the format of the read partition query structured field.

Byte Contents Meaning

0, 1 X'0005' Length of structured field in
bytes

2 X'Ol' Read-partition ID code

3 X'FF' Partition identifier physical
terminal: query operation

4 Type Query (used in both implicit
X'02' partition and explicit

partitioned states)

Figure B-1. Read Partition Query Structured Field Format

The Query Reply Structured Field

B-4

Figure B-2 shows the format of the query reply structured field. The field
is returned only when the PC application is loaded and active.

The maximum bytes per transmission allowed on inbound and outbound
transmissions is the 3.5K-byte length restriction enforced by the control
unit on structures to and from the 3270 Personal Computer. (Refer to the
IBM 3274 Control Unit Description and Programmer's Guide for more
information.)

Verifying Interface Is Operational

Offset Length Contents Meaning

0 1 byte Must be zero Not used

1 1 byte X'19' Length of structure

2 1 byte X'81' Query Reply

3 1 byte X'9D' Query Reply type

4 1 byte Must be zero Reserved flags

5 1 byte X'Ol' Structured Field Exchange

6, 7 2 bytes Maximum of Maximum number of bytes
X'OEOO' allowed in an inbound

transmission

8,9 2 bytes Maximum of Maximum number of bytes
X'OEOO' allowed in an outbound

transmission

10 1 byte Must be X'OF' Identifies the next two bytes as
being the destination/origin ID.

11 1 word Must be zero Destination/origin ID supplied
by the 3270 Workstation
Program.

13 - 24 12 bytes APLNME Application name (in EBCDIC)

Figure B-2. Query Reply Structured Field Format

When the 3270 Personal Computer powers off, the interface to the control
unit is disabled. If a host application attempts to exchange data with a PC
application, the control unit returns a Data Stream Error-OP CHECK.
(Refer to the component description card in your Guide to Operations for
more information about OP CHECK.)

The presentation space associated with a PC application program is
independent of the display presentation space. Data directed to a PC
application program does not alter the display presentation space, and data
directed to the display presentation space does not alter the presentation
space associated with a PC application program.

A different type of Query Reply is defined for each different IBM data
stream used by PC application programs. The Query Reply identifies the
IBM data stream supported.

The display is the default destination or origin if the data destination or
origin is not explicitly identified by a destination/origin structured field.
Data of a type not supported that is directed to the display or a PC
application program will be rejected.

At the start of each outbound transmission the destination is the display,
and at the start of each inbound transmission the origin is the display. The
destination/origin remains the display unless changed by a
destination/origin structured field. Once a destination/origin structured
field has established the destination/origin of the data, that
destination/origin applies for all structured fields that follow until the end
of the transmission or until changed by a subsequent destination/origin
structured field.

Appendix B. Destination/Origin Structured Fields B-5

Input Control

Query Reply

Input Control

B-6

The PC application program Query Reply is sent in reply to either a Query
or Query List.

Return of the AUXDA Query Reply indicates a 3270 Data Stream Work
Station implementation (that is, support of the destination/origin structured
field and one or more PC application programs). The AUXDA Query Reply
is returned in reply to either a Query List (= AUXDA or All) or a Query.

The workstation program inserts the Destination/Origin Identification
(DOID) value into the Query Reply for the Destination/Origin structured
field in individual PC application programs.

A Query or Query List directed to a PC application program instead of to
the display will be rejected.

A separate Query Reply must be returned for each PC application program
supported. For example, if two identical PC application programs were
supported, a Query Reply would be returned for each. The DOID reported
would be different for each.

The host application controls when the PC application is permitted to send
in data. The control is achieved with the INCTRL (input control) flag in
the destination/origin structured field. The INCTRL flag has meaning only
on outbound transmissions (to the 3270 PC) and is ignored on inbound
transmissions. When the destination/origin structured field is directed to
the display (ID = X'OOOO'), the INCTRL flag provides a global control.

The default (for example, Power-On-Reset from the control unit) is
input-disabled. Once input is enabled, it remains enabled until disabled by
one of the following:

• A destination/origin structured field with the INCTRL flag set to B'lO'
(input disable) is sent outbound to the PC application.

• A destination/origin structured field with the INCTRL flag set to B'lO'
(global input disable) is sent outbound to the display.

• An Erase Write or Erase Write Alternate command with the Write
control character set to reset is sent outbound.

• A clear local function (for example, the Clear key is pressed).

• A Power-On-Reset.

• The 3270 PC receives a Bind (SNA only).

PC Application Program

Receiving a destination/origin structured field from the host application
with INCTRL set to B'Ol' will not cause a change in the input
enable/disable state of the PC application. Also, if the INCTRL flag value
is the same as the existing input enable/disable state, the state is
unchanged. For example, if the input enable/disable state is input-enabled,
receiving a destination/origin structured field with INCTRL set to B'OO'
(input enable) will be accepted and the input enable/disable state will
remain enabled.

Note: There is one exception where input may be sent without being enabled.
An exception condition structured field, reporting unavailability of the
PC application, may be sent in reply to a destination/origin structured
field sequence attempting to use it.

PC Application Program and Display Interaction

The PC application programs must conform to the read operations described
in the IBM 3270 Information Display System Data Stream Programmer's
Reference, except where otherwise noted here.

When data is read in from a PC application, the rules or states for Read
Retry and Read Acknowledgment apply. For example, once a transmission
is sent from a PC application, additional data from that application cannot
be sent inbound until a Read Acknowledgment is received. If the data from
a PC application is transmitted in multiple transmissions, each
transmission requires an acknowledgment. An inbound transmission may
contain data from the display and/or data from one or more PC
applications. When display data is sent in the same transmission as PC
application data, the Inbound 3270DS structured field must be used for the
display data. An inbound transmission containing data from PC
applications must start with an AID of X'88', which indicates structured
fields follow. The same conditions that acknowledge a Query Reply will
acknowledge an inbound transmission from a PC application.

An outbound transmission to a PC application constitutes a read
acknowledgment per the description for outbound display transmissions.
The fact that the transmission is to a PC application adds no additional
acknowledgment function. For example, a transmission to a PC application
would acknowledge an outstanding Query Reply transmission because the
transmission contained a WSF. As another example, in the SNA
environment a transmission to a PC application would constitute an
acknowledgment to an outstanding enter transmission only if the
transmission put the work station in a send or contention state.

Only one display-type read may occur in an outbound transmission, and
when in structured field form, it must be the last structured field in the
transmission. A display-type read is defined as any of the following:

• A query or query list structured field
• A read partition structured field
• A Read Buffer, Read Modified, or Read Modified All command.

Appendix B. Destination/Origin Structured Fields B-7

Exception Handling

In an outbound transmission, data to a PC application can initiate inbound
data from that application. Inbound data can be initiated from multiple PC
applications by a single outbound transmission containing multiple
destination/origin structured fields. Inbound data from one or more PC
applications can be initiated in an outbound transmission that also
contains a display-type read. When this occurs, the display-type read is
executed first.

A display-type read always takes priority over pending inbound data from a
PC application. A display operator enter action is considered a display-type
read. If inbound data is pending from one or more PC applications, an
operator enter action will take priority and use the next available inbound
transmission.

When the data from a PC application must be sent in multiple
transmissions (for example, a transmission size limit imposed for certain
data), each inbound transmission is treated like an Enter, to the extent that
sending of the data is initiated by the application. A host Read
Acknowledgment is required prior to sending the next part of the data.
Therefore, data from a PC application that is sent in multiple transmissions
could have some interspersed display transmissions. Also, the display
operator is not "locked out" as a result of a PC application condition (for
example, power off, diskette removed, and so forth).

Exception Handling

B-8

An exception condition in a PC application does not cause the session
between the host and the 3270DS work station to be terminated. That is, a
PC application program exception condition must not cause a negative
response. Exception conditions must be reported at the application level.

In general, the exception handling is defined by the data stream used by the
PC application.

Some exception conditions are handled within the 3270DS. For example, if
the PC application is not available (such as when power is off or processing
code is not resident), the unavailability is reported by returning a
destination/origin structured field followed by an exception condition
structured field with the code field set to X'0801' (resource not available).
Another example is where the host exceeds the transmission size specified
in a PC application Query Reply. In this case, the code field is set to
X'084C' (permanent insufficient resource).

Structured Fields

Structured Fields

Destination/Origin

The destination/origin structured field is used to designate the destination
or origin of the structured fields that follow in the data stream.

Format

Byte Bit Contents Meaning

0,1 X'0008' Length of this structure

2, 3 X'OF02' Destination/ origin

4 Flags:

0, 1 INCTRL Input Control
B'OO' Enable input
B'Ol' No change
B'lO' Disable input
B'll' Reserved

2-7 RES Reserved - must be zeros

5 Flags Must be zeros

6, 7 ID Identifies the destination or origin
of the structured fields that follow
in the data stream

Flags: INCTRL applies only on outbound transmissions (to the PC
application). The INCTRL flag is ignored on inbound retransmissions.

1. B'OO' - The PC application is allowed to send data. If the PC
application is already enabled, it will remain enabled.

2. B'Ol' - A change does not occur in the enabled/disabled status.

3. B'lO' - The PC application is not permitted to send data until
subsequently enabled by a destination/origin structured field with
INCTRL flag = B'Ol'. If the PC application is already disabled, the
INCTRL flag = B'lO' will cause no change.

If a destination/ origin structured field is directed to the base display (ID =

X'OOOO'), the INCTRL flag applies on a global basis. That is, all the
supported PC applications are enabled, disabled, or unchanged as a group.

Note: There is one case where a PC application may send input without
being enabled. An exception condition structured field, reporting
unavailability of the PC application, may be sent in reply to a
destination/origin structured field sequence attempting to use the PC
application.

Appendix B. Destination/Origin Structured Fields B-9

Structured Fields

ID: The valid values for the ID are:

• X'OOOO' (permanently assigned to the primary display)

• All ID values returned in the Query Reply(s) for PC applications.

All other values are invalid and are rejected.

Operation: The function of the destination/origin structured field is to
identify the destination or origin of the structured fields in a single-session
multidevice (work station) implementation.

Outbound (from the host) the ID identifies the destination of the structured
fields that follow. Inbound (to the host) the ID identifies the origin of the
structured fields that follow.

At the beginning of the transmission, the destination/origin is the default
(primary display).

Once a destination/origin structured field establishes the destination/origin,
it applies until either another destination/origin structured field establishes
a new destination/origin or a new transmission starts.

Exception Condition

B-IO

The exception condition structured field allows the reporting of exception
information at the application level.

Format

Byte Bit Contents Meaning

0, 1 L Length of structured field

2,3 X'OF22' Exception condition

4 PID Partition identifier

5,6 Flags Reserved - must be zeros

Self-Defining Parameter - Application Program Exception Condition

Byte Bit Contents Meaning

0 X'06' Length of parameter

1 X'Ol' Application program exception
condition

2,3 RES Reserved - must be zero

4, 5 EXCODE Exception code

X'DO' Structured Fields, Host to 3270 PC

PID: The PID should be set to X'FF'.

EXCODE: This defines the specific direct-accessed PC application
exception condition.

Code Meaning

0801 Resource not available. The required processing code is not
resident.

084B Temporary insufficient resource. The application did not provide a
buffer.

084C Permanent insufficient resource. The host sent more than X'OEOO'
bytes of data.

1003 Invalid function code

Operation: The exception condition structured field is allowed to carry
only one exception condition.

When used for reporting an exception condition for a direct-accessed PC
application, the exception condition structured field must be preceded by a
destination/origin structured field.

X'DO' Structured Fields for Sending Data from the Host
to the 3270 Personal Computer

The following structures describe the requests sent by the host and the
responses sent by the 3270 PC application through the 3270 PC Application
Program Interface.

The data part of the Insert and Insert Data X'DO' structured fields is defined
by the host application file formats for the 3270 Personal Computer. All
numbers given in the request and response formats are hexadecimal values.

Transferring data from the host to the 3270 Personal Computer is
accomplished by the following sequence of X'DO' structured fields:

1. The Open X'DO' Structured Field (X'DOOO')

The host application sends an Open X'DO' structured field request to the
3270 PC application program. The Open request contains the ASCII
format name of the data to be sent and the ASCII file specification of
the file to be created on the 3270 Personal Computer. The application
program must check the host request for validity, and send a X'DO'
structured field response to the host indicating whether the Open
request was successful or unsuccessful.

Appendix B. Destination/Origin Structured Fields B-11

X'DO' Structured Fields, Host to 3270 PC

2. The Insert and Insert Data X'DO' Structured Fields (X'D047')

The host application sends the Insert and Insert Data X'DO' structured
field requests to the application program. These two requests are
always sent in the same transmission. The Insert request indicates to
the application program that an insert operation is to be done on the
opened file. The Insert Data request contains both the length of the
data to be inserted into the opened file and the data itself. The
application program must check the host requests for validity, and send
a X'DO'structured field response indicating whether the Insert and
Insert Data requests were successful or unsuccessful. The host program
continues to send the Insert and Insert Data requests to the 3270 PC
application program until all the data is sent.

3. The Close X'DO' Structured Field (X'D041')

The host application sends a Close X'DO' structured field request to the
3270 PC application program when all the data has been sent. The
application program must check the host request for validity, and send
a X'DO' structured field response to the host indicating whether the
Close request was successful.

The Open X'DO' Structured Field

The Open X'DO' structured field request forms a logical connection between
an application on the host system and a file on the 3270 Personal Computer
system. Once the connection has been made, requests and data may flow
from the host to the 3270 Personal Computer.

Format of the Host Open Request

B-12

The buffer sent by the host to the 3270 PC application program for the Open
X'DO' structured field request must be formatted as follows:

Byte (Decimal) Contents (Hex)

0,1 LL, a 2-byte length field (the length of the
transmission, including LL)

2 through 10 DOOO12010601010403

11 through 19 OA OA 00 00 00 00 11 01 01

20 through 26 00 50 05 52 03 FO 08

27 LO, a I-byte length field (8 + length of format
NAME)

28 28

29 Ll, a I-byte length field (2 + length of format
NAME)

30 through n NAME, a variable-length field containing the
format name (in ASCII)

X'DO' Structured Fields, Host to 3270 PC

Byte (Decimal) Contents (Hex)

n + 1 03

n + 2 L2, a I-byte length field (2 + length of the 3270
Personal Computer file specification)

n + 3 through m FILSPEC, a variable-length field containing the
3270 Personal Computer file specification in ASCII

Note: The host Open request must be coded as shown above.

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
uses the READ-SF and GET-COMP services to receive the data in the
following format:

Byte (Decimal) Contents (Hex)

0,1 0000

2,3 xx xx, a 2-byte length field containing the length
of the outbound transmission received from the
host, excluding the buffer header, which is 8 bytes
long. This is in the PC format with low-order byte
first.

4 through 7 0000 CO 00

8, 9 LL, a 2-byte length field (the length of the
transmission, including LL)

10 through 18 DO 00 12 01 06 01 01 04 03

19 through 27 OA OA 0000 00 00 11 01 01

28 through 34 00 50 05 52 03 FO 08

35 LO, a I-byte length field (8 + length of format
NAME)

36 28

37 Ll, a I-byte length field (2 + length of format
NAME)

38 through n NAME, a variable-length field containing the
format name (in ASCII)

n + 1 03

n + 2 L2, a I-byte length field (2 + length of the 3270
Personal Computer file specification)

n + 3 through m FILSPEC, a variable-length field containing the
3270 Personal Computer file specification in ASCII

Bytes 0 through 7 are the buffer header.

Appendix B. Destination/Origin Structured Fields B-13

X'DO' Structured Fields, Host to 3270 PC

Format of the Successful Transmission Response

To indicate a successful transmission of the Open X'DO' structured field
request, the 3270 PC application uses the WRITE-SF service to send a
message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 00 00

8 through 12 0005 DO 00 09

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 4 00 05 DO 00 09

Format of the Unsuccessful Transmission Response

B-14

To indicate an_ unsuccessful transmission of the Open X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 00 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

01 Open failed exception
02 Arrival sequence not allowed
lA File name invalid
IB File not found
lC File size invalid
20 Function/ open error
2A Path not found
5D Unsupported type

X'DO' Structured Fields, Host to 3270 PC

60 Command sequence error
62 Parameter is missing
63 Parameter not supported
65 Parameter value not supported
71 Invalid format

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 00 08 69 04 xx 00

xx is one of the values listed above.

The Insert and Insert Data X'DO' Structured Fields

The Insert and Insert Data X'DO' structured field requests are always sent
in the same transmission. The Insert X'DO' structured field request
indicates that an insert operation is to be performed on the opened file.
The Insert Data X'DO' structured field request contains both the length of
the data to be inserted into the opened file and the data itself.

Format of the Host Insert and Insert Data Requests

The buffer sent by the host to the 3270 PC application program for the
Insert and Insert Data X'DO' structured field requests must be formatted as
follows:

Byte (Decimal) Contents (Hex)

o through 9 00 OA DO 47 11 01 05 00 80 00

10,11 LL, a 2-byte length field (the length of the
transmission, from LL to the end of the data)

12 through 17 DO 47 04 CO 80 61

18, 19 LD, a 2-byte length field (5 + length of the data)

20 through n DATA, the data being sent

Note: The host Insert and Insert Data requests must be coded as shown
above.

Appendix B. Destination/Origin Structured Fields B-15

X'DO' Structured Fields, Host to 3270 PC

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
program uses the READ-SF and GET-COMP services to receive the data in
the following format:

Byte (Decimal) Contents (Hex)

0, 1 0000

2,3 xx xx, a 2-byte length field containing the length of
the outbound transmission received from the host
excluding the buffer header, which is 8 bytes long.
This is in PC format with low-order byte first.

4 through 7 0000 CO 00

8 through 17 00 OA DO 47 11 01 05008000

18, 19 LL, a 2-byte length field (the length of the
transmission, including LL)

20 through 25 DO 47 04 CO 80 61

26,27 LD, a 2-byte length field (5 + length of the data)

28 through n DATA, the data being sent

Bytes 0 through 7 are the buffer header.

Format of the Successful Transmission Response

B-16

To indicate a successful transmission of the Insert and Insert Data X'DO'
structured field requests, the 3270 PC application program uses the
WRITE-SF service to send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 OB 00 00 00 00 00

8 through 14 00 OB DO 47 05 63 06

15 through 18 DATBLK, a 4-byte field containing the data block
number received. For the first data block,
DATBLK = 00 00 00 01.

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

X'DO' Structured Fields, Host to 3270 PC

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 6 00 OB DO 47 05 63 06

7 through 10 DATBLK, a 4-byte field containing the data block
number received. For the first data block,
DATBLK = 00 00 00 01.

Format of the Unsuccessful Transmission Response

To indicate an unsuccessful transmission of the Insert and Insert Data
X'DO' structured field requests, the 3270 PC application program uses the
WRITE-SF service to send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 47 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

02 Arrival sequence not allowed
3E Operation not authorized
47 Record not added, storage limit
5D Unsupported type
60 Command syntax error
62 Parameter is missing
63 Parameter not supported
65 Parameter value not supported
6E Data element missing
70 Record length = 0
71 Invalid flag value

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 47 08 69 04 xx 00

xx is one of the values listed above.

Appendix B. Destination/Origin Structured Fields B-17

X'DO' Structured Fields, Host to 3270 PC

The Close X'DO' Structured Field

The Close X'DO' structured field request performs the logical termination of
a connection between a file on the host system and a previously opened file
on the personal computer system.

Format of the Host Close Request

The buffer sent by the host to the 3270 PC application program for the
Close X'DO' structured field request must be formatted as follows:

Byte (Decimal) Contents (Hex)

o through 4 0005 DO 41 12

Note: The host close request must be coded as shown above.

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
program uses the READ-SF and GET-COMP services to receive the data in
the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 CO 00

8 through 12 0005 DO 4112

Bytes 0 through 7 are the buffer header.

Format of the Successful Transmission Response

B-18

To indicate a successful transmission of the Close X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 00 00

8 through 12 0005 DO 4109

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

X'DO' Structured Fields, Host to 3270 PC

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 4 0005 DO 41 09

Format of the Unsuccessful Transmission Response

To indicate an unsuccessful transmission of the Close X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 41 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

03 Close of an unopened file
5D Unsupported type
60 Command syntax error
71 Invalid format

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 0009 DO 41 086904 xx 00

xx is one of the values listed above.

Appendix B. Destination/Origin Structured Fields B-19

X'DO' Structured Fields, PC to Host

X'DO' Structured Fields for Sending Data from Personal
Computer to Host

B-20

The following structures detail the requests sent by the host and the
responses sent by the 3270 PC application program through the 3270
Personal Computer Application Program Interface.

The data part of the Set Cursor and Get X'DO' structured fields is defined by
the host application file formats for the 3270 Personal Computer. All
numbers given in the request and response formats are hexadecimal values.

Data is transferred from the 3270 Personal Computer to the host by the
following sequence of X'DO' structured fields:

1. The Open X'DO' Structured Field (X'DOOO')

The host application sends an Open X'DO' structured field request to the
3270 PC application program. The Open request contains the ASCII
format name of the data to be sent and the ASCII file specification of
the file to be sent to the host from the 3270 Personal Computer. The
application program must check the host request for validity, and send
a X'DO' structured field response to the host indicating whether the
Open request was successful or unsuccessful.

2. The Set Cursor and Get X'DO' Structured Fields (X'D045' and X'D046')

The host application sends the Set Cursor and Get X'DO' structured
field requests to the application program. These two requests are
always sent in the same transmission. The Set Cursor request sets the
logical block pointer (cursor) of the opened file to the next data block to
be sent. The Get request requests a block of data from the 3270
Personal Computer. The PC application sends the specified data block
of the opened file to the host. The application program must check the
host requests for validity, and send a X'DO'structured field response
indicating whether the Set Cursor and Get requests were successful or
unsuccessful. The host program continues to send the Set Cursor and
Get requests to the 3270 PC application program until all the data is
sent.

3. The Close X'DO' Structured Field (X'D041')

The host application sends a Close X'DO' structured field request to the
3270 PC application program when all the data has been sent. The
application program must check the host request for validity, and send
a X'DO' structured field response to the host indicating whether the
Close request was successful.

X'DO' Structured Fields, PC to Host

The Open X'DO' Structured Field

The Open X'DO' structured field request forms a logical connection between
an application on the host system and a file on the 3270 Personal Computer
system. Once the connection has been made, requests may flow from the
host to the 3270 Personal Computer, and data may flow back from the 3270
Personal Computer to the host.

Format of the Host Open Request

The buffer sent by the host to the 3270 PC application program for the Open
X'DO' structured field request must be formatted as follows:

Byte (Decimal) Contents (Hex)

0, 1 LL, a 2-byte length field (the length of the
transmission, including LL)

2 through 10 DO 00 12 01 06 01 01 04 03

11 through 19 OA OA 00 01 00 00 00 00 01

20 through 26 005005 52 03 FO 08

27 LO, a I-byte length field (4 + length of format
NAME)

28 28

29 Ll, a I-byte length field (2 + length of format
NAME)

30 through n NAME, a variable-length field containing the
format name (in ASCII)

n + 1 03

n + 2 L2, a I-byte length field (2 + length of the 3270
Personal Computer file specification)

n + 3 through m FILSPEC, a variable-length field containing the
3270 Personal Computer file specification (in
ASCII)

Note: The host Open request must be coded as shown above.

Appendix B. Destination/Origin Structured Fields B-21

X'DO' Structured Fields, PC to Host

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
program uses the READ-SF and GET-COMP services to receive the data in
the foHowing format:

Byte (Decimal) Contents (Hex)

0,1 0000

2, 3 xx xx, a 2-byte length field containing the length
of the outbound transmission received from the
host excluding the buffer header, ~hich is 8 bytes
long. This is in PC format with low-order byte
first.

4 through 7 0000 CO 00

8, 9 LL, a 2-byte length field (the length of the
transmission, including LL)

10 through 18 DO 00 12 01 06 01 01 04 03

19 through 27 OA OA 00 01 00 00 00 00 01

28 through 34 00 50 05 52 03 FO 08

35 LO, a I-byte length field (4 + length of format
NAME)

36 28

37 Ll, a I-byte length field (2 + length of format
NAME)

38 through n NAME, a variable-length field containing the
format name (in ASCII)

n + 1 03

n + 2 L2, a I-byte length field (2 + length of the 3270
Personal Computer file specification)

n + 3 through m FILSPEC, a variable-length field containing the
3270 Personal Computer file specification (in
ASCII)

Bytes 0 through 7 are the buffer header.

Format of the Successful Transmission Response

B-22

To indicate a successful transmission of the Open X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 00 00

8 through 12 0005 DO 00 09

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

X'DO' Structured Fields, PC to Host

Byte (Decimal) Contents (Hex)

o through 4 00 05 DO 00 09

Format of the Unsuccessful Transmission Response

To indicate an unsuccessful transmission of the Open X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 OB DO 00 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

01 Open failed exception
02 Arrival sequence not allowed
1A File name invalid
1B File not found
lC File size invalid
20 Function/ open error
2A Path not found
5D Unsupported type
60 Command syntax error
62 Parameter is missing
63 Parameter not supported
65 Parameter value not supported
71 Invalid format

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 00 08 69 04 xx 00

xx is one of the values listed above.

The Set Cursor and Get X'DO' Structured Field

The Set Cursor and Get X'DO' structured field requests are always sent in
the same transmission. The Set Cursor X'DO' structured field request sets
the logical block pointer (cursor) in the opened file to the next data block
to be sent. The Get request requests a block of data from the 3270 Personal
Computer. The PC application program sends the specified data block of
the opened file to the host in its reply.

Appendix B. Destination/Origin Structured Fields B-23

X'DO' Structured Fields, PC to Host

Format of the Host Set Cursor and Get Requests

B-24

The buffer sent by the host to the 3270 PC application program for the Set
Cursor and Get X'DO' structured field requests must be formatted as follows:

Byte (Decimal) Contents (Hex)

o through 6 00 OF DO 45 11 01 05

7 through 14 00 06 00 09 05 01 03 00

15 through 23 00 09 DO 46 11 01 04 00 80

Note: The host Set Cursor and Get requests must be coded as shown above.

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
program uses the READ-SF and GET-COMP services to receive the data in
the following format:

Byte (Decimal) Contents (Hex)

0,1 0000

2, 3 xx xx, a 2-byte length field containing
the length of the outbound transmission
received from the host excluding the
buffer header, which is 8 bytes long. This
is the PC format with low-order byte first.

4 through 7 0000 CO 00

8 through 17 00 OF DO 45 11 01 05 00 06 00

18 through 22 09 05 01 03 00

23 through 31 00 09 DO 46 11 01 0400 80

Bytes 0 through 7 are the buffer header.

X'DO' Structured Fields, PC to Host

Format of the Successful Transmission Response

To indicate a successful transmission of the Set Cursor and Get X'DO'
structured field requests, the 3270 PC application program uses the
WRITE-SF service to send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

0, 1 0000

2, 3 xx xx, a 2-byte length field containing the length of
the data that begins in byte 8. This is the PC
format with low-order byte first.

4 through 7 00000000

8, 9 LL, a 2-byte length field (the length of the structure
including LL)

10 through 14 DO 46 05 63 06

15 through 18 DATBLK, a 4-byte field, the data block number
being sent

19,20 CO 80

21,22 LD, a 2-byte length field (5 + length of the data)

23 through n DATA, the data being sent

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

0,1 LL, a 2-byte length field (the length of the
structure including LL)

2 through 6 DO 46 05 63 06

7 through 10 DATBLK, a 4-byte field, the data block number
being sent

11,12 CO 80

13,14 LD, a 2-byte length field (5 + length of the data)

15 through n DATA the data being sent

Appendix B. Destination/Origin Structured Fields B-25

X'DO' Structured Fields, PC to Host

Format of the Unsuccessful Transmission Response for Set Cursor

B-26

To indicate an unsuccessful transmission of the Set Cursor X'DO' structured
field request, the 3270 PC application program uses the WRITE-SF service
to send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 45 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

02 Arrival sequence not allowed
5D Unsupported type
60 Command syntax error
62 Parameter is missing
63 Parameter not supported
65 Parameter value not supported
6E Data element missing
70 Record length = 0
71 Invalid flag value

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 45 08 69 04 xx 00

xx is one of the values listed above.

X'DO' Structured Fields, PC to Host

Format of the Unsuccessful Transmission Response for Get

To indicate an unsuccessful transmission of the Get X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 46 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

02 Arrival sequence not allowed
22 Get past end of file
3E Operation not authorized
5D Unsupported type
60 Command syntax error
62 Parameter is missing
63 Parameter not supported
65 Parameter value not supported
71 Invalid flag value

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 46 08 69 04 xx 00

xx is one of the values listed above.

Appendix B. Destination/Origin Structured Fields B-27

X'DO' Structured Fields, PC to Host

The Close X'DO' Structured Field

The Close X'DO' structured field request performs the logical termination of
a connection between a file on the host system and a previously opened file
on the personal computer system.

Format of the Host Close Request

The buffer sent by the host to the 3270 PC application program for the
Close X'DO' structured field request must be formatted as follows:

Byte (Decimal) Contents (Hex)

o through 4 00 05 DO 41 12

Note: The host Close request must be coded as shown above.

When the Workstation Program receives the request from the host, it puts
it into the buffer defined by the DEF-BUF service. The 3270 PC application
program uses the READ-SF and GET-COMP services to receive the data in
the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 CO 00

8 through 12 0005 DO 4112

Bytes 0 through 7 are the buffer header.

Format of the Successful Transmission Response

B-28

To indicate a successful transmission of the Close X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 05 00 00 00 00 00

8 through 12 0005 DO 41 09

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The successful transmission
response must be coded as shown above.

X'DO' Structured Fields, PC to Host

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 4 00 05 DO 41 09

Format of the Unsuccessful Transmission Response

To indicate an unsuccessful transmission of the Close X'DO' structured field
request, the 3270 PC application program uses the WRITE-SF service to
send a message to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 7 00 00 09 00 00 00 00 00

8 through 16 00 09 DO 41 08 69 04 xx 00

Bytes 0 through 7 are the buffer header. Bytes 2 and 3 are the length of the
structured field message that begins in byte 8. The unsuccessful
transmission response must be coded as shown above.

xx is one of the following:

03 Close of an unopened file
5D Unsupported type
60 Command syntax error
71 Invalid format

When the Workstation Program receives the response from the 3270 PC
application program, it sends it to the host in the following format:

Byte (Decimal) Contents (Hex)

o through 8 00 09 DO 41 086904 xx 00

x~ is one of the values listed above.

Appendix B. Destination/Origin Structured Fields B-29

X'DO' Structured Fields, PC to Host

B-30

X'DO' Structured Fields, PC to Host

Appendix C. Using Command Procedures for Save and
Restore and for File Transfer

Introduction ... C-2
Command Procedures for Save and Restore C-2

Creating an AUTOEXEC.Bat File C-3
Programmed Command Procedures C-4
File Transfer Command Procedures C-6

Appendix C. Using Command Procedures for Save and Restore and for File Transfer C-l

Save and Restore Command Procedures

Introduction

Any of the Save and Restore comrnands, Send and Receive commands, IBM
PC DOS commands, or user-written commands (see the IBM Personal
Computer Disk Operating System manual) can be stored as records in
special DOS files called batch files, whose file extension is .BAT. Each
record in the file is a command, and the sequence of such commands is
called a command procedure. Records stored in such a filename.BAT
file may include any of the commands mentioned above.

The commands stored in a filename.BAT file can be invoked by typing

filename

in the personal computer window.

This appendix shows you how to create various kinds of command
procedures for the Save, Restore, Send, and Receive commands.

Command Procedures for Save and Restore

C-2

Suppose you want to set up your IBM 3270 Personal Computer periodically
for a particular application and need to:

• Restore a set of screen profiles from APPLl.SCR

• Restore a set of autokey recordings from APPL1.REC

• Restore a set of notepads from APPL1.NOT.

Instead of entering three individual Restore commands and having to
remember three user file names, you can set up a command procedure, such
as CONFIG1.BAT, that contains the three commands. Then you need only
enter a single word to cause the three commands to be executed. This is
illustrated below:

A>
CONFIGl-----;.~ CONFIGl.BAT FILE

INDRSTR SCREEN APPLl.SCR

INDRSTR RECORD APPLI .REC

INDRSTR NOTEPAD APPLl.NOT

Creating an AUTOEXEC.BAT File

Creating an AUTOEXEC.Bat File

Besides using command procedures to prepare the 3270 Personal Computer
quickly for a particular application, most users will have a special
command procedure named AUTOEXEC.BAT. This file initially contains
a statement that the system supplies at the conclusion of the customization
task. Do not alter or remove this name. You may include other desired
commands as long as they follow the statement that the system supplies.

If you build such a file, it is invoked automatically any time DOS is
initialized, causing the commands in AUTOEXEC.BAT to be executed. By
putting the appropriate Restore commands into the AUTOEXEC.BAT file
with other desired commands, you can set up the 3270 Personal Computer
with -standard screen profiles, autokey recordings, and notepads whenever
DOS is initialized.

DOS initialization occurs automatically whenever the customized system
diskette is loaded and initialized. Also, when the personal computer
window is active and in application mode, you can reinitialize DOS at any
time by pressing the following key sequence:

Ctrl + Alt + Del (press these keys at the same time)

AUTOEXEC.BAT or other command procedure files can be created by using
the EDLIN editor supplied with DOS (see the IBM Personal Computer Disk
Operating System manual) or any of the other file editors available for the
IBM Personal Computer.

Appendix C. Using Command Procedures for Save and Restore and for File Transfer C-3

Programmed Command Procedures

Programmed Command Procedures

C-4

A special programmed command procedure can be created to quickly recall
a series of notepads previously saved. This technique requires that the user
write a DOS command program (in BASIC or another language) to interface
with the operator. The program can prompt the operator to press certain
keys to page forward or backward through notepad screens, or ask for the
"name" of a particular notepad screen to be restored. The operator
program, after receiving input about which notepad to restore next,
converts this input into an INDRSTR (Restore) command record with the
correct notepad file name. The operator program then writes this new
INDRSTR record to the disk to overlay an existing INDRSTR command
record contained in the command procedure file. This file also contains a
command that invokes the operator program itself. If a Loop command is
put into this file as well, a programmed command procedure, controlled by
operator input, is created. This is illustrated below:

A>

NOTE ---. NOTE.BAT SELECT.COM

~ SELECT
~ CALL RETURN .. 1. REQUEST INPUT

DISK WRITE
INDRSTR (FILENAME) "" 2. REWRITE INDRSTR

'--- LOOP 3. RETURN

When NOTE.BAT is invoked, it first calls the SELECT.COM operator
program. The operator program requests input that indicates which
notepad record is to be restored next. This input is converted into an
INDRSTR command record with the correct notepad file name. This record
is written into the NOTE.BAT file to overlay the existing INDRSTR record.
The SELECT. COM program then returns, causing the next command,
INDRSTR, which was just created, to be executed. When this command has
finished restoring the notepad, the next command, LOOP, is executed,
causing the SELECT command to be invoked again. This starts the cycle
over again, with new operator input into the SELECT. COM operator
program.

~

NOTE.BAT

SELECT

Programmed Command Procedures

A related series of notepads can be created and their file names stored in a
control file along with a "current notepad" pointer. This control file can be
accessed by the operator program to step through the related notepads,
using the pointer. Single keys can then be used to cause the operator
program to step forward or backward through the related notepad file
names to quickly restore them. The notepads can be used for operator
viewing or, for example, as a source for copying saved data into 3270 edit
screens for document creation. The following illustrates the control file
concept:

-
CALL
RETURN

-'"

SELECT.COM

1. 'ADVANCE' KEY ..
CONTROL.FIL

DISK
CURRENT .. I---

READ/ POINTER DISK WRITE INDRSTR (FILENAME) - _ .. 2. READ CURRENT
- WRITE

LOOP
POINTER

3. INCREMENT NOTEA.OOI

4. WRITE CURRENT NOTEA.OO2
POINTER

DISK ..
5. READ NOTEA.OO3 '* NOTEA.OO3 ~ READ

6. REWRITE INDRSTR NOTEB.OO2

7. RETURN NOTEB.OO3

NOTEB.OO4

NOTEB.OOS

The SELECT. COM program reads an operator keystroke indicating
advance to the next related notepad. The current pointer in the control file
is read and updated. The file name of the notepad being pointed to,
NOTEA.003, is read in from the control file and used to build a new
INDRSTR command record. This record is written into the NOTE.BAT file.
SELECT.COM returns, and NOTEA.003 is restored by the INDRSTR
command for operator viewing or other uses.

Many variations of the illustrated programmed command procedure can be
developed to allow program control, not only of notepad Save and Restore,
but also of screen profiles or autokey Save and Restore. In addition, similar
techniques can be used to control file transfer commands (see the next
section), IBM Personal Computer DOS commands, or other user-written
commands.

Appendix C. Using Command Procedures for Save and Restore and for File Transfer C-5

File Transfer Command Procedures

File Transfer Command Procedures

C-6

The file transfer commands can be entered directly from the keyboard or
invoked indirectly by use of standard or programmed command procedures.
Such command procedures can relieve the operator of remembering the
complex parameters required when directly entering Send or Receive
commands.

For example, you could write a general programmed command procedure.
An operator interface program could prompt for simplified filenames and
convert them into the required parameters for multiple Send or Receive
operations. This is illustrated below:

A>
FILE -. FILE. BAT FILEFIND.COM

~ FILEFIND
CALL RETURN ..

1. OPERATO R INPUTS

DISK WRITE
SIMPLIFIED FILE

SEND/RECEIVE ... - IDs
2. REWRITE SEND OR

'--- LOOP RECEIVE COMMAND
3. RETURN

Refer to "Programmed Command Procedures" in this appendix for a more
detailed discussion of this technique.

Another option is to set up fixed command procedures that transfer multiple
files to and from the host by typing in a single command, as shown below:

A>
FILESETI--~"" FILESETl.BAT FILE

SEND MEMO.OOI ...

SEND MEMO.002 ...

RECEIVE MEMO.OOL ..

RECEIVE MEMO.002 ...

Note: To use the file transfer functions, the IBM host-supported file transfer
program, Program No. 5664-281 for VM/CMS or 5665-311 for TSO,
must be installed at your host site. You can verify that you have the
host file transfer program by checking the host for the presence of the
file named IND$FILE MODULE.

File Transfer Command Procedures

Appendix D. Technical Notes

Introduction ... D-2
3270 Limitations .. D-2
3270 Data Stream Functions D-3

Interface Codes ... D-3
Attributes ... D-6

Field Attributes D-6
Extended Field Attributes and Character Attributes D-7

Commands .. D-8
3270 Data Stream Commands D-8
Non-SNA Channel Commands D-8

Write Control Character D-9
3270 Data Stream Orders D-II
Outbound 3270 Data Stream Structured Fields D-12

Set Reply Mode Structured Field Format D-13
Erase/Reset Structured Field Format D-14
Outbound 3270DS Structured Field Format D-14
Read Partition Structured Field Format D-15
Inbound 3270 Data Stream D-16
Inbound 3270 Data Stream for Partition 0 D-17

Inbound Structured Fields D-2I
Query Reply Structured Field D-2I

Transmission of Buffer Addresses D-3I
Buffer Addresses " D-31
Transmission of a Buffer Address D-31
Transmission of a Buffer Address in I6-Bit Address Mode D-32
Transmission of a Buffer Address in I2/I4-Bit Address Mode ... D-32

Changes or Limitations to the Personal Computer Session D-34
Non-3270 PC Hardware Restrictions D-34

Personal Computer Physical Cursor D-35
Personal Computer Print Spooling D-35
Control Unit Communication Session Termination D-36
IBM 3270 Personal Computer Failure D-36
Color Limitations D-36
Notes on All-Points-Addressable Graphics D-37
Using the Full-Screen APA Mode D-37
Changing the Cursor Size or Position D-38
Personal Computer Session Screen Size D-38

Appendix D. Technical Notes D-l

3270 Limitations

In trod uction

This appendix is for anyone lolIlho needs technical information about

• 3270 limitations

• 3270 data stream functions

• Personal computer application mode operation.

3270 Limitations

D-2

The following 3270 capabilities are limited or are not available with the
IBM 3270 Personal Computer:

• The magnetic slot reader, magnetic hand scanner, and selector light pen
are not available as attachments.

• The functions of port 0 of the 3270 control unit attachment that are
available in control unit terminal (CUT) mode are Load Print Matrix
and Test key. Port 0 of the control unit attachment is not available in
distributed function terminal (DFT) mode.

• The binary synchronous host copy command is not available.

• The security keylock is not available.

• Explicit partition is not supported on the DFT session.

• The control unit Entry Assist feature is supported in CUT mode only.

• X.25 and X.21 keystroke support is available in CUT mode only.

• The APL character set is not available.

• Encryption/decryption is available for control unit terminals (CUT
mode) only.

• The 3270 graphic escape is not supported.

• The diagnostic reset dump to the control unit is supported as a reset
only; no dump is generated.

• The response time monitor is supported on the DFT session.

3270 Data Stream Functions - Interface Codes

3270 Data Stream Functions

Interface Codes

00

Hex 1 00 01 10
Bits

~ 4567 0 1 2

0000 0 NUL

0001 1 SBA

0010 2 EUA

0011 3 IC

0100 4

0101 5 PT NL

0110 6

0111 7

1000 8 GE SA

1001 9 EM SFE

1010 A

1011 B

1100 C FF DUP MF

1101 0 CR SF

1110 E FM

1111 F

This section describes the 3270 data stream functions supported by the IBM
3270 Personal Computer. For general information on all the 3270 data
stream functions, refer to the IBM 3270 Information Display System: Data
Stream Programmer's Reference.

In this section, those functions of the 3270 data stream that are supported
by the 3270 Personal Computer are listed, and any information unique to
3270 Personal Computer is provided. For those familiar with the 3270 data
stream, this information should be sufficient for most purposes.

Data commands and orders transmitted between the 3270 Personal
Computer and the host system are in the form of extended binary-coded
decimal interchange code (EBCDIC) interface codes. Figure D-l shows the
interface codes. Figure D-2 lists the EBCDIC control character I/O codes.
Refer to IBM 3270 Information Display System: Character Set Reference, for
further details.

01

11 00 01 10 11 00

3 4 5 6 7 8

SP & -

/ a

b

c

d

e

f

9

h

..
I

¢ ! I :
I

$ #

RA < * % @

() -

+ ; > =

SUB I -. ? "

10

01 10 11 00

9 A B C

(

j ~ 1\

k s B

I t C

m u D

n OJ E

0 w F

P x G

q V H

r z I

11

01 10

0 E

) \

J

K S

L T

M U

N V

0 W

P X

Q y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

EO

~

~

~

Bits
0,1

2.3

Hex 0

Figure D-l (Part 1 of 2). United States EBCDIC I/O Interface Code

Appendix D. Technical Notes D-3

3270 Data Stream Functions - Interface Codes

Notes:

1. Codes X'OO' through X'IF' and X'FF' are control codes, and codes X'40' through X'FE' are
character codes. All blank squares in this chart represent undefined codes. All defined character
codes are enclosed by heavy lines. Undefined control codes are rejected with a negative response
(SNA) or an OP CHECK (non-SNA). If the extended attribute buffer (EAB) is enabled, all
undefined character codes are accepted, stored, and returned without change on a subsequent read
operation. If the EAB is disabled, character codes X'CE', X'CF', X'DD', X'DE', X'EE', X'EF', and
X'FE' are stored, displayed, and returned as the character (X'60'), and all other undefined
character codes are accepted, stored, and returned without change. IBM reserves the right to change
at any time the character displayed or printed and the IIO interface code returned for an undefined
character code.

2. CR, NL, EM, and FF control characters are displayed and printed as spaces. If extended attributes
are not enabled, the DUP and FM control characters are respectively displayed as * and; in
dual-case mode. If extended attributes are enabled, DUP and FM are always displayed as * and;
respectively. DUP and FM are always printed as * and; respectively.

3. Bits 0 and 1 are assigned for the following characters: AID, attribute, write control (WeC), device
address, buffer address, sense, and status. Bits 0 and 1 are assigned so that each character can be
represented by a graphic character within the solid outlined areas of the chart. See Figure D-2.

Figure D-l (Part 2 of 2). United States EBCDIC I/O Interface Code

D-4

3270 Data Stream Functions - Interface Codes

EBCDIC EBCDIC
Bits 2-7 Graphic (Hex) Bits 2-7 Graphic (Hex)

000000 SP 40 100000 60
000001 A C1 100001 / 61
000010 B C2 100010 S E2
000011 C C3 100011 T E3
000100 D C4 100100 U E4
000101 E C5 100101 V E5
000110 F C6 100110 W E6
000111 G C7 100111 X E7
001000 H C8 101000 Y E8
00 1001 I C9 101001 Z E9
00 1010 --, 4A 101010 6A
001011 4B 101011 , 6B
00 1100 < 4C 101100 r- 6C
00 1101 (4D 101101 6D
00 1110 + 4E 101110 > 6E
00 1111 I 4F 10 1111 ? 6F
010000 & 50 110000 0 FO
01 0001 J D1 110001 1 F1
010010 K D2 110010 2 F2
010011 L D3 110011 3 F3
010100 M D4 110100 4 F4
010101 N D5 110101 5 F5
010110 0 D6 110110 6 F6
010111 P D7 110111 7 F7
011000 Q D8 111000 8 F8
011001 R D9 111001 9 F9
011010 5A 111010 7A
011011 L- 5B 111011 # 7B
011100 * 5C 111100 L- 7C
011101) 5D 111101

,
7D

011110 , 5E 111110 = 7E
011111 --, 5F 111111 " 7F

Notes:

1. The characters in Figure D-2 are used as attribute, write control
character (WCC), attention identifier (AID), CU and device address, and
buffer address.

2. To use this table to determine the hexadecimal code transmitted for an
address or control character, first determine the values of bits 2- 7.
Select this bit configuration from the Bits 2-7 column. The hexadecimal
code that will be transmitted is to the right of the bit configuration.

3. Use this table also to determine equivalent EBCDIC hex codes and their
associated graphic characters. Graphic characters for the United States
110 interface codes are shown. Graphic characters might differ for
particular World Trade I/O interface codes. For possible graphic
differences when these codes are used, refer to IBM 3270 Information
Display System: Character Set Reference.

Figure D-2. EBCDIC Control Character 1/0 Codes

Appendix D. Technical Notes D-5

3270 Data Stream Functions - Attributes

Attributes

Field Attributes

D-6

The IBM 3270 Personal Computer display stations support field attributes,
extended field attributes, and character attributes.

Figure D-3 shows the bit positions in the field attribute byte. Figure D-4
shows the bit assignments for the field attributes supported by the IBM 3270
Personal Computer.

Figure D-3. Field Attribute Byte Bit Positions

EBCDIC
Bit

o

1

2

3

4,5

6

7

Field Characteristics

Value determined by contents of bits 2 -7.
See Figure D-2 for hexadecimal values.

Always 1

o = Un protected
1 = Protected (see Note)

o = Alphanumeric
1 = Numeric (if numeric lock capability is activated,

causes automatic numeric shift of keyboard) (see
Note)

00 = Display not detectable by CrSel key
01 = Display detectable by CrSel key
10 = Intensified display detectable by CrSel key
11 = Nondisplay, nonprint, nondetectable

Reserved - Al ways 0

Modified data tag (MDT); identifies modified fields during
Read Modified command operation:

o = Field has not been modified
1 = Field has been modified by the operator. Can also

be set by program in data stream.

Note: Bits 2 and 3 equal to 11 causes an automatic skip.

Figure D-4. Field Attribute Character Bit Assignments

3270 Data Stream Functions - Attributes

Extended Field Attributes and Character Attributes

The IBM 3270 Personal Computer supports the attribute types and attribute
values in Figures D-6 through D-8 as extended field attributes (EF As) and
as character attributes (CAs). All other attribute types and attribute values
are rejected with a negative response (SNA) or an OP CHECK (non-SNA).

The attribute structure used for extended field attributes defines all
characteristics with attribute type-value pairs, as shown in Figure D-5.
Each attribute type has associated with it a set of attribute values.

I Attribute type I Attribute value

Figure D-5. The Structure of an Attribute Pair

Attribute Attribute
Type (Hex) Value (Hex) EFA CA

41 00 Default Default (to EFA)
F1 Blink Blink
F2 Reverse Video Reverse Video
F4 Underscore Underscore

Figure D-6. Attribute Type X'41' - Extended Highlighting

Attribute Attribute
Type (Hex) Value (Hex) EFA CA

42 00 Default Default (to EFA)
F1 Blue Blue
F2 Red Red
F3 Pink Pink
F4 Green Green
F5 Turquoise Turquoise
F6 Yellow Yellow
F7 White White

Figure D-7. Attribute Type X'42' - Color

Attribute Attribute LCID
Type (Hex) Value (Hex) EFA CA Default

43 00 Default Default (to EFA)
F1 Reserved
F2 PSA PSA FF
F3 PSB PSB FF
F4 PSC PSC FF
F5 PSD PSD FF
F6 PSE PSE FF
F7 PSF PSF FF

Figure D-8. Attribute Type X'43' - Character Set Selection

Appendix D. Technical Notes D-7

3270 Data Stream Functions - Commands

Commands

For a description of the functions of the following commands, see the IBM
3270 In/ormation Display System: 3274 Control Unit Description and
Programmer's Guide, GA23-0061.

3270 Data Stream Commands

The control unit internally translates the non-SNA channel command codes
into the SNA/BSC form before transmitting this information to the 3270
Personal Computer. Figure D-9 shows these commands.

Command Mnemonic SNAjBSC

Write WRITE Fl
Erase/Write EW F5
Erase/Write EWA 7E

Alternate
Write WSF F3

Structured
Field

Erase All EAU 6F
Unprotected

Read Buffer RB F2
Read Modified RM F6
Read Modified RMA 6E

All

Figure D-9. 3270 Data Stream Commands

Non-SNA
Channel

01
05
OD

11

OF

02
06
NA

Graphic

1
5

NA

?

2
6
>

Non-SNA Channel Commands

D-8

Although not part of the 3270 data stream, the channel commands in
Figure D-I0 are valid for non-SNA channel-attached 3270 Personal
Computer display stations.

The 3270 Control Unit internally decodes the following commands and
parses the appropriate Write, Read Modified, or Read Buffer SNAjBSC
command code values to the IBM 3270 Personal Computer.

Non-SNA Channel
Command Code

Command Mnemonic EBCDIC (Hex)

No Operation 03
Sense 04
Select Read Modified Select RM OB
Select Read Buffer Select RB IB
Select Read Modified from Select RMP 2B

Position
Select Read Buffer from Position Select RBP 3B
Select Write Select WRT 4B

Figure D-IO. Non-SNA Channel Commands

Write Control Character

Write Control Character

The write control character (WCC) bits have the following significance for
the 3270 Personal Computer:

wee
Bit Explanation

o No function.

1 No function for the WRT command. Reset function, if set to 1, for
EW and EWA commands. See Figure D-11 for the effects of the reset
function when the 3270 Personal Computer is in implicit partition
state.

2, 3 Reserved.

4 Start printer (SNA only). When set to 1, initiates a local-copy
operation at the completion of the write operation. If no printer is
available, a negative response X'OS01', X'OS2E', or X'OS2F' is
returned.

5 Sound alarm. When set to 1, causes the audible alarm to sound.

6 Keyboard restore. When set to 1, causes keyboard operation to be
restored (by resetting the system lock or WAIT indicator) and resets
the AID byte to X'60'.

7 Reset MDT bits in field attributes (WRT command only). When set
to 1, causes MDT bits to be reset to 0 in all field attribute bytes in
the specified partition, before any orders or data characters are
processed.

Appendix D. Technical Notes D-9

Write Control Character

Reset Condition

1. wee following Erase/Write
or an Erase/Write Alternate
command.

a. wee = 'Reset.

b. wee = No Reset.

2. wee following a Write
command.

a. wee = Reset or no reset.

3. wee in outbound 3270DS
header, and the function is
Erase/\Vrite Ol~ Erase/vVrite
Alternate

a. wee = Reset.

b. wee = No reset.

4. wee in outbound 3270DS
header, and the function is
Write.

a. wee = Reset or no reset.

Implicit Partition State

Execute the command; reset the
inbound reply mode to field.

Execute the command.

Execute the command.

If the PID equals 0, execute the
function (except for screen-size
changes) and reset the inbound
reply mode to field. If the PID
does not equal 0, reject with a
negative response

If the PID equals 0, execute the
function. If the PID does not
equal 0, reject with a negative
response.

Execute the function if the PID
equals 0; otherwise, reject with a
negative response.

Figure D-l1. Write Control Character Reset Actions

D-IO

3270 Data Stream Orders

3270 Data Stream Orders

The IBM 3270 Personal Computer supports the 3270 data stream orders
shown in Figure D-12.

Order Code
Order Mnemonic EBCDIC (Hex)

Start Field SF ID

Start Field Extended 1 SFE 29

Set Buffer Address SBA 11

Set Attribute l SA 28

Modify Field l MF 2C

Insert Cursor IC 13

Program Tab PT 05

Repeat to Address RA 3C

Erase Unprotected to Address EUA 12

1 The SFE, SA, and MF orders are valid only when the extended attribute buffer (EAB) is
enabled for the logical terminal to which the order is directed. When the EAB is not enabled,
these orders are rejected with a negative response (SNA) or an OP CHECK (non-SNA).

Figure D-12. 3270 Data Stream Orders

Appendix D. Technical Notes D-ll

Outbound 3270 Data Stream Structured Fields

Outbound 3270 Data Stream Structured Fields

D-12

The Write Structured Field (WSF) command (X'F3') is used by the host
program to transmit the following outbound structured fields to the
addressed logical terminal.

Outbound Structured Field ID Code Type

Set Reply Mode X'09'
Erase/Reset X'03'
Outbound 3270DS X'40'

Write X'Fl'
Erase/Write X'F5'
Erase/Write Alternate X'7E'
Erase All Unprotected X'6F'

Pnnrl Dn 4-~4-~r.,.... V'f\1 ,
..L'-'\..;-LA.\A. ..l. Gl.1. lI~"'~V~~ .Ll.. V.1.

Read Buffer X'F2'
Read Modified X'F6'
Read Modified All (SNA only) X'6E'
Query X'02'
Query List X'03'

Load Programmed Symbols X'06'
Destination/Origin X'OF' X'02'

All other structured-field ID codes are rejected with a negative response
(SNA) or an OP CHECK (non-SNA).

Outbound 3270 Data Stream Structured Fields

Set Reply Mode Structured Field Format

The set reply mode structured field specifies the reply mode required in all
subsequent inbound data streams. The specified reply mode remains in
effect until it is changed by one of the following:

• Another set reply mode structured field, specifying a different reply
mode

• An erase/reset structured field

• An EW or EW A command or a structured field with the WCC bit 1 set
to 1, causing a reset function.

Figure D-13 shows the contents and meanings for bytes 0 through 5 and 7.

Byte Contents Meaning

0,1 X'0005' Length of structured field in bytes
through
X'OOO8'

2 X'09' ID code of set reply mode

3 PID Partition identifier (must be X'OO' for
implicit partition state) X'OO' - X'OF'

4 Reply mode requested
X'OO' Field mode (default)
X'Ol' Extended field mode
X'02' Character mode

5 X'41' Highlighting selection (Notes 1 and 3)

7 X'42' Color selection (Notes 1, 2, and 3)

Notes:

1. More than five bytes can be present only when character mode (X'02') is
requested. Only when the length code is greater than X'0005' can the
operator select from the keyboard the attribute value to be associated with
the keyed data as shown in byte 5 above.

2. If color selection (X'42') is specified, the structured field is accepted, but
the operator is not allowed to select color attributes from the keyboard.

3. X'41' and X'42' can appear in any order, not necessarily as shown in
bytes 5 and 7 above.

Figure D-13. Set Reply Mode Structured Field Format

Appendix D. Technical Notes D-13

Outbound 3270 Data Stream Structured Fields

Erase/Reset Structured Field Format

The erase/reset structured field creates an implicit partition 0 of default or
alternate size, as specified in the structured field. Inbound-reply mode is
reset. Figure D-14 shows the contents and meanings for bytes 0 through 3.

Byte Contents Meaning

0,1 X'OOO4' Length of structured field in bytes

2 X'03' Erase/Reset ID code

3 Size Size of usable area:
X'OO' Default size
X'80' Alternate size

Figure D-14. Erase/Reset Structured Field Format

If byte 3 contains any value other than X'OO' or X'80', the structured field is
rejected with a negative response (SNA) or an OP CHECK (non-SNA).

Outbound 3270DS Structured Field Format

D-14

The outbound 3270DS structured field is used to direct the write commands
to a specified partition. The write commands are:

• Write

• Erase/Write

• Erase/Write Alternate

• Erase All Unprotected.

Figure D-15 lists the contents and meanings for this structured field.

Byte Contents Meaning

0, 1 Length Length of structured field in bytes

2 X'40' Outbound 3270DS ID code

3 PID Partition identifier

4 Wrt Cmd Write-type command code
X'Fl' Write
X'F5' Erase/Write
X'7E' Erase/Write Alternate
X'6F' Erase All Unprotected

Figure D-15. Outbound 3270DS Structured Field Format

The remaining bytes of the structured field are the same as for the specified
Write command.

WCC bit 1 set to 1 does not reset the IBM 3270 Personal Computer to
implicit partition state, as it does for the nonstructured-field command, but
resets the reply mode of the inbound partition to field mode. wce bit 4 set
to 1 specifies Start Print and must be in the last structured field of the
string of structured fields.

Outbound 3270 Data Stream Structured Fields

Read Partition Structured Field Format

Figure D-l6 describes the contents and meanings for the read partition
structured field.

Byte Content Meaning

0, 1 X'OOOO' Length of structured field in bytes
X'OO05'

2 X'Ol' Read-partition ID code

3 PID Partition identifier
X'OO' through X'OF': read operations
X'FF' (physical terminal): query operations

4 Type The type of operation to be performed:

X'F6' Read Modified (RM)
X'6E' Read Modified All (RMA)
X'F2' Read Buffer (RB)
X'02' Query
X'03' Query List

5 REQTYP Request Type - present only for
Type = X'03' (Query List):

Bits: B'OO' Only list (bytes 6 through n)
o - 1 B'Ol' Query Equivalent + list

B'lO' All Query Replies
B'll' Reserved

2 - 7 Reserved

Figure D-16. Read Partition Structured Field Format

For Query (Type = X'02'), the structured field ends after byte 4.

For Query List (Type = X'03'), byte 5 is a flag byte called REQTYP,
described below. Bytes 6 through n contain the type codes of the Query
Reply (or Replies) being requested.

• REQTYP - Request Type (present only if TYPE = X'03'):

B'OO' indicates the only Query Replies being requested are those
specified in bytes 6 through n. If the value is B'OO' but no list is
present (count field is valid), a Null Query Reply is returned.

B'Ol' indicates all the Query Replies that would be sent in reply to a
Query are sent, in addition to those (if any) that are specified in the
list (bytes 6 through n). No duplicate Query Replies are sent. For
example, if the list requests a Query Reply that would be sent
anyway, because of the B'Ol' flag, the Query Reply is sent only
once.

Appendix D. Technical Notes D-15

Inbound 3270 Data Stream

B'lO' indicates that all the query replies that are supported are sent.
If a list is present (bytes 6 through n), B'lO' overrides the list (that
is, the list is ignored).

The same type code may appear more than once in the list (bytes 6
through n). However, only one Query Reply will be returned for a
particular type code value, regardless of how many times it appears
in the list.

All type code values are valid in the list. Those type codes not
supported are ignored. However, if none of the type codes in the list
are supported, a null Query Reply is returned.

Restrictions:

1. The Read Partition structured field must be the last structured field
in the current outbound transmission.

2. The IBM 3270 Personal Computer must be in normal-read state, and
the PID must specify a valid partition.

Any of the following conditions causes an error and the return of an
appropriate sense code in SNA sessions or OP-CHECK in non-SNA
seSSIons:

The IBM 3270 Personal Computer display is in normal-read state,
and the identified partition does not exist: sense code X'1005'.

The command code is invalid: sense code X'1003'.

The PID value is invalid: sense code X'1005'.

The read-partition structured field is not the last structured field to
be sent in the current outbound transmission: sense code X'1005'.

The IBM 3270 Personal Computer is in retry state: sense code
X'0871'.

The transmission is sent with end bracket: sense code X'0829'.

The transmission does not specify "Change Direction": sense code
X'0829'.

Inbound 3270 Data Stream

D-16

All inbound 3270 data streams are preceded by an attention identifier (AID)
byte that identifies the cause of the inbound transmissions. Figure D-17
lists the possible causes of an inbound 3270 data stream, the associated AID
values, and the resulting operations when the IBM 3270 Personal Computer
is in normal-read state or in retry state.

Inbound 3270 Data Stream

Operation (Normal- Operation
Cause AID Read State) (Retry State)

Clear key X'6D' Short read (implicit
partition 0)

PAl key X'6C' Short read
PA2 key X'6E' Short read
PA3 key X'6B' Short read

PFI - PF9 keys X'Fl' -X'F9' Read modified (addresses

PFIO - PF12 keys X'7A'-X'7C'
and data of all modified
fields - nulls suppressed)

PF13 - PF2l keys X'Cl' -X'C9'

PF22 - PF24 keys X'4A'-X'4C'

Cursor-select field with & X'7D'
designator or Enter key

Cursor-select field with X'7E' Read modified (addresses
null or space designator of modified fields)

Read Modified command X'60' Read modified Retry last AID action
from inbound partition

Read Modified All X'60' Read modified all Retry read modified all
command from inbound partition

Read Buffer command X'60' Read buffer Retry read buffer from
inbound partition

Read Partition- Modified X'6l' Read modified Reject
SF

Read Partition-Read X'6l' Read modified all Negative response (SNA)
Modified ALL SF or OP CHECK

(non-SNA)

Read Partition-Read X'6l' Read buffer
Buffer SF

Read Partition-Query SF X'88' Query replies

Figure D-17. Inbound 3270 Data Stream

Inbound 3270 Data Stream for Partition 0

Each inbound 3270 data stream for partition 0 is preceded by an AID code
that identifies the cause of this inbound data stream. Figure D-17 lists
each cause, the AID associated with that cause, and the resulting type of
inbound operation. The types of inbound operations are:

• Short read

• Read modified

• Read modified all

• Read buffer.

Appendix D. Technical Notes D-17

Inbound 3270 Data Stream

D-18

Short Read Format: Figure D-18 shows that the short-read operation
results in an inbound data stream consisting of only the AID byte.

Byte Content Meaning

0 AID Attention identifier byte:
X'6D' Clear key
X'6C' PAl key
X'6E' PA2 key
X'6B' PA3 key

Figure D-lS. Short Read Format

Read Modified and Read Modified All Format: The read-modified
operation and the read-modified-all (SNA only) operation can take place in
a field, an extended field, or a character reply mode. Figure D-19 shows a
general format for all three reply modes.

Byte Contents Meaning

0 AID Attention identifier byte

1,2 CCP Hexadecimal address of the cursor (current
cursor position)

3 X'll' SBA order code

4, 5 X'-
,

Hexadecimal address of the first character
in the modified field (attribute address + 1)

6 through n Data Data from the addressed field but with null
characters suppressed. See Notes 1 and 2.

Notes:

1. In character reply mode, the string of data characters can also include Set
Attribute orders to indicate changes in the character attribute value.

2. For the read-modified operation, with an AID of X'7E' (indicating cursor
selection of a space or null designator character), only the addresses of
modified fields are transmitted.

3. If none of the fields has been modified, the inbound data stream consists
of bytes 0 through 2 only.

4. If the partition buffer is unformatted, the data stream consists of bytes 0
through 2 and bytes 6 through n (all data in the partition buffer, with
nulls suppressed).

Figure D-19. Read Modified and Read Modified All Format

The pattern of bytes 3 through n is repeated for all other modified
(MDT bit set to 1) fields.

Inbound 3270 Data Stream

Read Buffer Format: The read-buffer operation can take place in field,
extended field, or character reply mode. The read-buffer operation
transmits the contents of all buffer locations in the presentation space,
starting at the current cursor position.

Read Buffer Format in Field Reply Mode: Figure D-20 shows the read
buffer format in field reply mode.

Byte / Contents Meaning

0 AID Attention identifier byte

1,2 CCP Hexadecimal address of the cursor (current
cursor position)

3 through Data Data characters (including null characters,
n but excluding Set Attribute orders), from the

current cursor position to the start of the
next field (see Note)

n + 1 X'lD' Start Field order code

n + 2 X'-
,

Field-attribute character

m Data All data characters to the start of the next
field

Note: Set Attribute orders are defined in the IBM 3270 Information Display
System 3274 Control Unit Description and Programmer's Guide.

Figure D-20. Read Buffer Format in Field Reply Mode

The pattern of bytes n + 1 through m is repeated for all other fields being
transmitted.

Read Buffer Format in Extended Field and Character Mode: The read
buffer format in extended field and character mode is shown in Figure D-21.

Appendix D. Technical Notes D-19

Inbound 3270 Data Stream

D-20

Byte Contents Meaning

0 AID Attention identifier byte

1,2 CCP Hexadecimal address of the cursor (current
cursor position)

3 through Data Data characters (including null characters),
n from the current cursor position to the start

of the next field.

n+ 1 X'29' Start Field Extended order code.

n + 2 ATTC Attribute count (X'OO' through X'04'). The
number of attribute specifications (byte
pairs) that follow.

Byte pairs are transmitted only for those
extended field attributes with specified
(nondefault) values.

X'CO' Field-attribute type
X'-

,
Field-attribute type

X'-
,

Extended-field-attribute type
X'-

,
Extended-field-attribute value: includes
highlighting, color, and PS. (See
"Attributes" in Appendix F, "Presentation
Space Considerations.")

m Data All data characters to the start of the next
field.

Notes:

1. Set Attribute orders are defined in the IBM 3270 Information Display
System: 3274 Control Unit Description and Programmer's Guide,
GA23-0061.

2. When in character mode, each string of data characters can include Set
Attribute orders to indicate changes in the character attribute value. The
format for these Set Attribute orders is the same as for outbound Set
Attribute orders. In extended-field mode, no Set Attribute orders are
included.

Figure D-21. Read Buffer Format in Extended Fi.eld and Character Mode

The pattern of bytes n + 1 through m is repeated for all other fields being
transmitted.

Inbound Structured Fields

Inbound Structured Fields

The inbound structured field AID code (X'SS') precedes and identifies the
following inbound structured fields for transmission to the host program:

Query Reply Structured Field

Destina tion/ Origin
Inbound 3270DS
Query reply

Usable area
Character sets
Color
Highlight
Reply modes
Implicit partition
DDM
Auxiliary device
Document Interchange Architecture

Query Reply Structured Field

ID Code

X'OF'
X'SO'
X'Sl'

Type

X'02'

X'Sl'
X'S5'
X'S6'
X'S7'
X'SS'
X'A6'
X'95'
X'99'
X'97'

The logical terminal to which the read partition query function was
addressed responds with the transmission of a series of structured fields
indicating the field and character attributes, the screen or page size
characteristics, the symbol sets, and the reply modes available on the
logical terminal. Since each structured field contains its own unique
identification, the order in which the fields are transmitted is not
important. The query reply structured fields and their associated reply
codes are as follows:

Query Reply Structured Field

Query reply
Usable area
Character sets
Color
Highlight
Reply modes
Implicit partition
DDM
Auxiliary device

ID Code Type

X'Sl'

Document Interchange Architecture

X'Sl'
X'S5'
X'S6'
X'S7'
X'SS'
X'A6'
X'95'
X'99'
X'97'

Appendix D. Technical Notes D-21

Inbound Structured Fields

D-22

Usable Area Query Structured Field Format: The usable area query
reply structured field indicates to the host program the dimensions of the
logical screen for the logical terminal. Figure D-22 describes the contents
and meaning of the usable area query reply structured field.

Byte Contents Meaning

0,1 Length Length of structured field in bytes, if
X'0017' partitions are not supported (0 partitions

defined)

2 X'81' ID code of query reply

3 X'81' ID code of usable area reply

4 X'OI' 12/14-bit addressing allowed

5 X'OO' Variable-character cells not supported (omit
bytes 23 through 26) per logical-terminal
definition table

6, 7 LSW Width of usable screen for logical screen

8, 9 LSH Height of usable screen for logical screen

10 X'OI' Units of measure (millimeters)

11 Xr Horizontal pitch: the distance between points
through in the x-direction as a fraction measured in
14 units

2-byte numerator
2-byte denominator

15 Yr Vertical pitch: the distance between points in
through the y-direction as a fraction measured in units
18 2-byte numerator

2-byte denominator

19 HS 09 Horizontal character cell size

20 VSOE Vertical character cell size

21,22 BUFFSZ Character buffer size

Figure D-22. Usable Area Query Reply Structured Field Format

Inbound Structured Fields

Character Sets Query Reply Structured Field Format: The character
sets query reply structured field is transmitted to inform the host program
what character sets are defined for the logical terminal. Figure D-23
describes the contents and meaning of the character sets query reply
structured field.

Byte Bit Contents Meaning

0, 1 Length Length of structured field in bytes
(13 + lengths of descriptors)

2 X'81' ID code of query reply

3 X'85' ID code of character sets reply

4 Flags Based on logical-terminal definition
table (EAB/PS) definition:

0 0 Graphic escape not supported
1 0 Reserved
2 o or 1 Load PS (EAB and PS) supported

(0 = no; 1 = yes)
3 o or 1 Load PS extension (EAB and PS)

supported (0 = no; 1 = yes)
4 0 One size of character cell supported
5 000 Reserved
-

7

5 X'OO' Reserved

6 X'09' Default-character cell width

7 X'OE' Default-character cell depth

8 - 11 X'6000 Supported Load PS format types;
0000' bit-encoded (if bit i = 1, then type

is supported).

12 DL Length of each descriptor

Figure D-23. Character Sets Query Reply Structured Field Format

Appendix D. Technical Notes D-23

Inbound Structured Fields

D-24

Character Set Descriptors: Figure D-24 describes the length of each
descriptor.

Byte Bit Contents Meaning

1 Set ID Device-specific character set ID (RWS
or ROS number)

2 Flags

0 Load Loadable:
B'O' N onloadable character set
B'l' Loadable character set

1 Triple Triple plane:
B'O' Single-plane character set
B'l' Tri ple-plane character set

2 Reserved Reserved - must be zero

3 CB Compare bit:
B'O' LCID compare
B'l' No LCID compare

4 - 7 Reserved Reserved

3 LCID Local character set ID

Figure D-24. Character Set Descriptors

Reply Modes Query Reply Structured Field Format: The reply modes
query reply structured field is transmitted, if EAB is defined, to inform the
host program which reply modes are supported by the logical terminal.
Figure D-25 lists the contents and meanings for bytes 0 through 6 of the
structured field.

Byte Contents Meaning

0,1 X'0007' Length of structured field in bytes

2 X'81' ID code of query reply

3 X'88' ID code of reply modes reply

4 X'OO' Field reply mode supported

5 X'Ol' Extended-field reply mode supported

6 X'02' Character reply mode supported

Figure D-25. Reply Modes Query Reply Structured Field Format

Inbound Structured Fields

DDM Query Reply Structured Field Format: Figure D-26 lists the
contents and meanings for bytes 0 through 11 of the structured field.

Byte Contents Meaning

0,1 Length Length of structured field in bytes

2 X'81' ID code of query reply

3 X'95' ID code of DDM reply

4 X'OO' File not available

5 X'OO' Reserved

6, 7 X'0800' Maximum DDM bytes per transmission allowed
inbound

8, 9 X'0800' Maximum DDM bytes per transmission allowed
outbound

10 X'OI' Number of subsets supported

11 X'OI' DDM subset identifier

Figure D-26. DDM Query Reply Structured Field Format

Auxiliary Device Query Reply Structured Field Format: Figure D-27
lists the contents and meanings of the bytes in the auxiliary device query
reply structured field, which indicates direct access support of one or more
auxiliary devices.

Byte Contents Meaning

0, 1 X'0006' Length of this structured field in bytes

2 X'81' ID code of query reply

3 X'99' ID code of auxiliary device reply

4, 5 Reserved Must be X'OOOO'
flags

Figure D-27. Auxiliary Device Query Reply Structured Field Format

When one or more auxiliary devices is supported (3270 data stream work
stations), this query reply is transmitted inbound to a Query List or to a
Query. This query reply indicates support of:

• Destination/origin structured field

• Query list structured field

• One or more auxiliary devices.

Appendix D. Technical Notes D-25

Inbound Structured Fields

D-26

Document Interchange Architecture Query Reply Structured Field
Format: The contents and meanings of the bytes in the document
interchange architecture query reply structured field are shown in
Figure D-28.

Byte Contents Meaning

0,1 Length Length of structured field in bytes

2 X'81' ID code of query reply

3 X'97' ID code of Document Interchange Architecture
query reply

4, 5 Reserved Must be X'OOOO'
flags

6, 7 X'0800' Maximum DIA bytes per transmission allowed
inbound

8, 9 X'0800' Maximum DIA bytes per transmission allowed
outbound

10 X'OI' Number of 3-byte function set identifiers that
follow

11 - 13 X'OI000B' DIAL function set identifier

Figure D-28. Document Interchange Architecture Query Reply
Structured Field Format

Direct Access ID Self-Defining Parameter: Figure D-29 lists the contents
and meanings of the bytes in the direct access ID self-defining parameter.

Byte Content Meaning

0 X'04' Parameter length in bytes

1 X'OI' Direct access ID

2,3 ID Destination/origin identification

Figure D-29. Direct Access Self-Defining Parameter

Inbound Structured Fields

Color Query Reply Structured Field Format: The color query reply
structured field indicates to the host the color that will be displayed for
each color attribute value. Figure D-30 describes the contents and
meanings of the bytes in this structured field.

Byte Contents Meaning

0, 1 X'OO16' Length of this structured field in bytes

2 X'Sl' ID code of query reply

3 X'S6' ID code of color reply

4 X'OO' Reserved

5 X'OS' Length of attribute list (number of
color attribute pairs)

6 X'OO' Default color attribute

7 X'F4' Green is the default device color.

S through 21 X'F1F1F2F2 For color display, each color maps to
F3F3F4F4 itself.
F5F5F6F6
F7F7'

S through 21 X'F1F4F2F4 For monochrome display, each color
F3F4F4F4 maps to green.
F5F4F6F4
F7F4'

Notes:

1. Bytes 6 and 7 are always used to indicate the IBM 3270 Personal
Computer default color.

2. If "extended attributes" is not enabled by the logical-terminal definition
table, the color query reply is not returned.

Figure D-30. Color Query Reply Structured Field Format

Appendix D. Technical Notes D-27

Inbound Structured Fields

D-28

Highlight Query Reply Structured Field Format: The highlight query
reply is transmitted inbound as a structured field with the format shown in
Figure D-31.

Byte Contents Meaning

0, 1 X'OOOD' Length of this structured field in bytes

2 X'81' ID code of query reply

3 X'87' ID code of highlight reply

4 X'04' Number of byte pairs that follow

5 X'OO' Acceptable attribute value

6 X'FO' Default-highlight action code

7 X'Fl' Accepted attribute value

8 X'Fl' Blink action code

9 X'F2' Accepted attribute value

10 X'F2' Reverse action code

11 X'F4' Accepted attribute value

12 X'F4' Underscore action code

Notes:

1. Bytes 5, 7, 9, and 11 of a highlight query reply indicate to a host the
attribute values that the IBM 3270 Personal Computer:

a. Can accept in an outbound extended-highlight attribute byte
b. Will preserve and will return to the host in a subsequent inbound

operation (unless changed by the operator)

2. Bytes 6, 8, 10, and 12 indicate to a host what action the IBM 3270
Personal Computer performs for each of those attribute values.

3. If" extended attributes" is not enabled by the logical-terminal definition
table, the highlight query reply is not returned.

Figure D-31. Highlight Query Reply Structured Field Format

Inbound Structured Fields

Implicit Partition Query Reply Structured Field Format: The implicit
partition query reply structured field is always returned by the IBM 3270
Personal Computer logical terminal. It informs the host of the default and
alternate sizes for the target logical terminal's implicit partition. It may
also return the cell size in effect for the default and alternate screen sizes.
Figure D-32 shows this structured field format.

Byte Contents Meaning
0, 1 Length Length of structured field in bytes

2 X'81' ID code of query reply

3 X'A6' ID code of implicit partition reply

4, 5 X'OOOO' Reserved

Figure D-32. Implicit Partition Query Reply Structured Field Format

Implicit Partition Default and Alternate Screen Size: For an SNA
session, the default and alternate screen sizes returned in this reply are
those established by the BIND for this logical terminal.

For a non-SNA session, the default and alternate screen sizes returned in
this reply are those in effect for this logical terminal at the time the reply is
generated.

Character Cell Dimensions: The dimensions of the character cells in
effect for the default and alternate screen sizes are returned only when the
character cell size for either the default or the alternate implicit partition is
different from the cell size specified in the usable area query reply.

Appendix D. Technical Notes D-29

Inbound Structured Fields

D-30

Self-Defining Parameters: The implicit partition size parameter shown in
Figure D-33 is always returned as part of the implicit partition query reply.

Byte Contents Meaning

0 Length Length of parameter in bytes

1 X'Ol' Parameter of screen size dimension

2 X'OO' Reserved

3,4 WD Width of default screen size in cells

5,6 HD Height of default screen size in cells

7,8 WA Width of alternate screen size in cells

9, 10 HA Height of alternate screen size in cells

Notes:

1. Bytes 3 and 4: For an SNA session, the width of the default implicit
partition is the value established at logical-terminal bind time. For a
non-SNA session, the width of the default implicit partition is 80.

2. Bytes 5 and 6: For an SNA session, the height of the default implicit
partition is the value established at logical-terminal bind time. For a
non-SNA session, the height of the default implicit partition is 24.

3. Bytes 7 through 10: For an SNA session, the width and the height of the
alternate implicit partition are the values established at logical-terminal
bind time. For a non-SNA session, the width and the height of the
alternate implicit partition are the values defined in the logical-terminal
definition table.

Figure D-33. Self-Defining Parameters

Transmission of Buffer Addresses

Transmission of Buffer Addresses

Buffer Addresses

The following text describes:

1. The relationship between a given row/column position in a logical
terminal's presentation space and its address in the logical terminal's
buffer storage.

2. How a buffer storage address is transmitted to and from the IBM 3270
Personal Computer in each of the two address modes.

The relationship between any given row/column position in a logical
terminal and its address in the logical terminal's buffer storage is expressed
thus:

Buffer address = W x (R-1) + (C-1)

Where:

W is the logical terminal width (number of columns).
R is the row number (counting from 1) of the position being addressed.
C is the column number (counting from 1) of the position being addressed.

Note: For column 1, row 1, the buffer address is o.

Example of Buffer Address Calculation: Given a logical terminal width
(W) of 50 columns, the buffer address of the character location in column 46
and row 21 is:

Buffer Address (50 x 20) + 45 = 1045

Transmission of a Buffer Address

A buffer address is always transmitted in a 2-byte field.

The way in which a buffer address is transmitted depends on the address
mode for the logical terminal. For example, it may be transmitted in the
two bytes after the X'11' byte in a Set Buffer Address order, or in the two
bytes that specify the current cursor position in an inbound read operation.

A logical terminal has one of two address modes:

• 16-bit address mode

• 12/14-bit address mode.

Appendix D. Technical Notes D-31

Transmission of Buffer Addresses

Transmission of a Buffer Address in I6-Bit Address Mode

In 16-bit address mode, buffer addresses are transmitted outbound and
inbound as 16-bit binary numbers.

Transmission of a Buffer Address in I2/I4-Bit Address Mode

D-32

In 12/14-bit address mode, bits 0 and 1 of the first address byte have the
following bit significance:

00 - 14-bit binary address follows
01 - 12-bit coded address follows
11 - 12-bit coded address follows

(In an outbound transmission, if bits 0 and 1 of the first byte are set to
B'10', a sense code of X'1005' is returned.)

For outbound transmissions, the IBM 3270 Personal Computer uses these
first two bits to determine whether the address in the transmission has 12
bits or 14 bits. For inbound transmissions, the size of the logical terminal
determines whether the address in the transmission has 12 bits or 14 bits. If
the logical terminal size is greater than 4096 bytes (excluding character
attributes if an EAB device), 14-bit addresses are used. Otherwise, 12-bit
addresses are used.

14-Bit Addresses: 14-bit buffer addresses are transmitted outbound and
inbound with bits 0 and 1 of the first byte equal to B'OO', followed by the
buffer address expressed as a 14-bit binary number.

12-Bit Addresses: 12-bit buffer addresses are transmitted outbound and
inbound with the following format:

First byte Second byte

BBaa a a a a BBaa a a a a

Where:

a represents the binary value of the address (12 bits), and BB is B'OI' or
B'II' (see text below).

The 12-bit address EBCDIC values for decimal addresses 0 through 10879
are derived as follows:

1. The 12-bit binary representation qf the decimal address is split into two
6-bit groups. '

2. The more significant 6-bit group occupies bits 2 through 7 of the first
byte.

3. The less significant 6-bit group occupies bits 2 through 7 of the second
byte.

Transmission of Buffer Addresses

4. According to the value of bits 2 through 7 in each byte, bits 0 and 1 of
each byte are set to obtain the hexadecimal representations, as defined
in Figure D-34. The resulting EBCDIC value represents a graphic
character in the range X' 40' through X'F9'.

Bits 2-7 EB* Bits 2-7 EB* Bits 2-7 EB* Bits 2-7 EB*

000000 40 01 0000 . 50 100000 60 11 0000 FO
000001 C1 010001 D1 100001 61 11 0001 F1
000010 C2 01 0010 D2 100010 E2 11 0010 F2
000011 C3 01 0011 D3 100011 E3 11 0011 F3
000100 C4 01 0100 D4 100100 E4 11 0100 F4
000101 C5 01 0101 D5 100101 E5 11 0101 F5
000110 C6 01 0110 D6 100110 E6 11 0110 F6
000111 C7 01 0111 D7 100111 E7 11 0111 F7
00 1000 C8 011000 D8 10 1000 E8 111000 F8
00 1001 C9 011001 D9 10 1001 E9 111001 F9
00 1010 4A 011010 5A 10 1010 6A 111010 7A
00 1011 4B 011011 5B 10 1011 6B 111011 7B
00 1100 4C 011100 5C 10 1100 6C 111100 7C
00 1101 4D 011101 5D 10 1101 6D 111101 7D
00 1110 4E 011110 5E 10 1110 6E 11 1110 7E
00 1111 4F 011111 5F 10 1111 6F 111111 7F

* EB = EBCDIC

Note: The 12-bit address EBCDIC values for decimal addresses 0
through 3563 are listed in the IBM 3270 Buffer Address Codes.

Figure D-34. Hexadecimal Representations

Appendix D. Technical Notes D-33

Changes or Limitations to the Personal Computer Session

Changes or Limitations to the Personal Computer
Session

Following are the changes or limitations to the PC session in application
mode when operating under the workstation program Note that if you are
running a PC application program through the IBM 3270 Workstation
Program, there may be unpredictable results in some cases.

Non-3270 PC Hardware Restrictions

D-34

The following restrictions apply to non-3270 PC hardware (XT and AT).
Failure to follow these guidelines on the use of non-3270 PC hardware could
result in system failure.

• For Uni-DOS on non-3270 PC hardware, an application is assumed to be
ill~behaved. The application will be suspended when:

It is not the top or active window
The WSCtr I key is pressed.

• Ill-behaved applications will run only in an active session. If an
ill-behaved application exits and stays resident in the active session,
then any other application you run in that session will be seen as
ill-behaved and will never run in the background.

• On non-3270 PC hardware, ill-behaved applications will be displayed
full-screen when they are made active even if they are sized.

• Even if you sized your windows using the API, they may be forced to
full-screen and appear enlarged when active under the following
conditions:

Your application uses graphics mode
Your application uses 40-col umn mode
Your application writes directly to the screen.

Note: The Browse function will not work on applications forced to
full-screen size.

• When using work station control API, the WS Ctrl OIA will not be
displayed on either a Uni-DOS or Multi-DOS system under the following
conditions:

Your application uses graphics mode
Your application uses 40-column mode
Your application writes directly to the screen.

Changes or Limitations to the Personal Computer Session

• If you are running an ill-behaved application in a PC session, the shift
state of that session may not remain as you originally set it after
jumping to other windows and back again. For instance, if you have set
Caps Lock on in this PC session, your session may be in lowercase mode
when you jump back to it from another window.

• Input Control API is not supported for sessions running ill-behaved
applications that read port 60 directly.

• Do not run PC applications that reprogram the timer. This could cause
host communication failure.

• Batch files will only run in the active window. To IPL your system
completely, you must jump to the session that contains your
AUTOEXEC.BAT file.

• Applications that send or receive keystrokes from the host session will
not run under Uni-DOS in a non-3270 PC XT system.

• Applications that write directly to the display adapter registers may not
be restored properly after jumping to another window and back again.

Personal Computer Physical Cursor

Auto-windowing in the PC session occurs only in response to the movement
of the PC session physical cursor. That is, the IBM 3270 PC window always
follows and keeps the physical cursor within its viewable area. Some IBM
Personal Computer application programs do not use the physical cursor,
but use other types of cursors. These other types of cursors will not
support the auto-windowing function. If you want auto-windowing to
occur, you must convert such applications to use the physical cursor, or
keep the physical cursor updated and in synchronization with the logical
cursor.

If an application has inhibited the default cursor but you chose an alternate
cursor, the alternate cursor will be the cursor you see.

On non-3270 PC hardware, your cursor may have changed its position in a
PC session after you have jumped to another session. Press the spacebar to
return the cursor to its original position.

Personal Computer Print Spooling

If you are running Uni-DOS, the DOS print spooler will not operate in a PC
session and should never be activated. If you use the print spooler, it may,
and in most instances will, cause the control unit communication session to
terminate. See "Control Unit Communication Session Termination" below
for other causes of session termination.

If you are using DOS Version 3.3 in a Multi-DOS PC session, you can use
print spooling without any control unit communication problems.

Appendix D. Technical Notes D-35

Changes or Limitations to the Personal Computer Session

Control Unit Communication Session Termination

The PC application actions that may, and in most instances will, cause the
control unit communication session to terminate are:

• Use of the disable/enable functions for an extended period of time

• Failure to issue an end-of-interrupt on a hardware interrupt level for an
extended period of time

• Masking of selected interrupt levels for an extended period of time

• Failure to issue an IRET for an extended period of time.

IBM 3270 Personal Computer Failure

Color Limitations

D-36

The 3270 Personal Computer will, in most cases, fail in an unpredictable
manner if you:

• Use interrupt vectors X'50' through X'57' or X'7A'.

• Program the Intel 8259 Interrupt Controller timer chip.

• Program channel 0 or 1 of the Intel 8253 timer chip.

• Program the mode bits of any channel of the Intel 8253 timer chip.

• Program group A of the Intel 8255 programmable peripheral interface
(PPI) chip.

• Program the Mode register of the Intel 8255 PPI chip.

• Take over hardware interrupt 2 (3270 PC adapter).

• Disable interrupts for an extended period of time.

Note: This section does not apply to non-3270 PC hardware.

The 3270 Personal Computer supports eight colors for personal computer
applications. If you use the Personal Computer color printer to print a
Personal Computer color graphics screen in medium resolution graphics,
the 3270 Workstation Program uses the blue color to determine which color
palette is displayed. In palette 0 there is no blue, and the colors printed are
black, blue, and pink. If you change the background color to green, blue,
turquoise, or white while using palette 0, the blue color gun is turned on
and the colors for palette 1 are used. The color palette select register is
Write only and cannot be checked.

Changes or Limitations to the Personal Computer Session

Notes on All-Points-Addressable Graphics

Note: This section does not apply to non-3270 PC hardware.

If you use the IBM Personal Computer all-points-addressable (AP A)
graphics applications on the IBM 3270 Personal Computer, your graphics
images may appear differently. For example, you may have ovals in place
of circles. For images to appear normally on the IBM 3270 Personal
Computer, you must set the aspect ratio parameters in the application
program. For example, in BASIC, add the aspect ratio parameter to the
CIRCLE command to get circles instead of ovals on the display screen.
Following is a table that shows the aspect ratios for the IBM 5153 Color
Graphics Display, the IBM 5154 Enhanced Color Graphics Display, and the
IBM 3270 Personal Computer Color Display.

5153 5154 3270 Personal
Full-Screen Personal Personal Computer Color
Mode Computer Computer Display

Medium 5:6 35:24 35:27
resolution (approx 5:4)

High resolution 5:12 35:48 35:54
(approx 5:8)

Note: The current aspect ratio parameters are also available dynamically. A
video interrupt (INT X'lO,) must be made to BIOS. Register AH must
contain X'30'. This function call causes an address to be returned in
CX (segment) and DX (offset), which points to the aspect values in two
hexadecimal bytes: X'23' and X'36' for high resolution, or X'23' and
X'lB' for medium resolution. The BIOS character generator cannot
be used while in full-screen mode.

Using the Full-Screen APA Mode

Note: This section does not apply to non-3270 PC hardware.

When emulating the IBM Personal Computer Color Graphics Adapter, note
that approximately one-half of the display screen is used (640 x 200 PELs).
In addition, the AP A adapter is capable of displaying 720 x 350 PELs. To
set this full-screen mode, a video interrupt (INT X'10') must be made to
BIOS. For high-resolution full-screen graphics mode (720 x 350 PELs),
register AH must contain X'OO' and register AL must contain X'30' or X'32'.
For medium-resolution full-screen graphics mode (360 x 350 PELs), register
AH must contain X'OO' and register AL must contain X'31'. Colors
associated with these modes are shown in the table below.

Appendix D. Technical Notes D-37

Changes or Limitations to the Personal Computer Session

AH AL Colors Display Screen (PELs)

0 30 2 720 x 350

0 31 4 360 x 350

0 32 8 720 x 350

For either full-screen graphics mode, the storage addressing scheme
changes from the standard IBM Personal Computer odd/even scans to a
simpler, contiguous map of 32K bytes starting at 'B8000'. For example, the
first byte of the second scan line is addressed as 90 (X'5A'). The IBM
Personal Computer screens use the standard IBM Personal Computer map.

Changing the Cursor Size or Position

Note: This section does not apply to non-3270 PC hardware.

PC applications control the size and position of the cursor by writing to a
pair of I/O registers, as described in the IBM Personal Computer Technical
Reference.

The 6845 index registers X'OA' and X'OB' are used for the cursor size. Index
registers X'OE' and X'OF' are used for the cursor position. Applications that
do not use BIOS or DOS services for this must write these register pairs in
the following order. For size, specify:

'X'OA' followed by X'OB'

For position, specify:

X'OE' followed by X'OF'

Personal Computer Session Screen Size

D-38

Note: This section does not apply to non-3270 PC hardware.

PC applications can control the screen size of the PC session. Only the
screen size of 25 x 80 is supported by the 3270 Workstation Program.

Changes or Limitations to the Personal Computer Session

Appendix E. Problem Determination Procedures and
Debugging Information

Introduction ... E-2
System Error Problem Determination Procedures E-2
Dump Data Utilities E-3

Preparing Formatted Dump Diskettes E-3
Taking the Dump E-4
Using the Display Utility E-5

U sing the Trace Command E-8
Workstation Program Loading Procedure E-9
Debugging a PC Application Program E-IO
Debugging a System Extension E-IO
Control Blocks You Can Use during Debugging E-IO

The Supervisor's Data Area E-ll
The Dispatcher's Data Area E-ll
The Task Control Block E-12
The Supervisor Name Table E-14

Appendix E. Problem Determination Procedures and Debugging Information E-l

System Error PD

Introduction

This appendix describes the problem determination procedures to follow if a
system error occurs during API activity in your application program.

System Error Problem Determination Procedures

E-2

If a system error occurs during API activity, you should follow your local
procedures for problem determination and:

1. If the return code indicates that you are out of system resources such as
RQEs or TCBs, or if the name table is full, you must do the following:

a. If the error occurred in a system extension, you must increase the
resource requirements in the SIF for that system extension. See
Chapter 24, "Coding System Extensions," for information on SIFs.

b. If the error occurred in an application program, you must increase
the requirements in the INDIBM2 SIF file. See the IBM 3270
Workstation Program User's Guide and Reference for information on
updating the INDIBM2 SIF file.

2. Record the return code that indicates that a system error occurred, and
also record whether the return code was in the CL register, in the
parameter list, or in the communication status code.

3. Dump the system, using the procedures outlined under "Dump Data
Utilities" in this appendix.

4. Turn on trace events 45, 46, 47, and 48. Instructions on using the trace
facility are given under "Using the Trace Command" in this appendix.

5. Rerun the application that caused the system error.

6. If the system error occurs again:

a. Save the results of the first system dump, and dump the system
again.

b. Follow your local procedures, and report the problem to your
service coordinator.

7. If the system error does not occur again, follow your local procedures
and report the system error occurrence to your service coordinator.

Dump Data Utilities

Dump Data Utilities

The dump data utilities prepare formatted dump diskettes, take a dump, and
then display:

• Dumps of memory

• Dumps of the trace buffer

• Dumps of error counters.

The three basic steps you follow to use these utilities are:

1. Preparing formatted dump diskettes

2. Taking the dump

3. Displaying the dump.

Preparing Formatted Dump Diskettes

To use the dump facility, you must start by preparing a formatted dump
diskette(s}. To do this, perform the following steps:

1. IPL DOS and have available the diskette that contains the INDPREP
utility.

2. Format and externally label the number of diskettes according to the
chart below.

Remember:

a. The diskettes cannot contain any bad sectors.
b. Do NOT use /s as a FORMAT command parameter.

Number of Externally
Type of Diskettes Label the
Diskette Needed Diskette(s):

5-1/2-inch 360 Kb 3 DUMPDATA.OOI
DUMPDATA.002
DUMPDATA.003

3-1/2-inch 720 Kb 2 DUMPDATA.OOI
DUMPDATA.002

High -Density 1 DUMPDATA.OOI
1.2 Mb or greater

With the DOS diskette in the active drive, type:

format a:

or:

format b:

Appendix E. Problem Determination Procedures and Debugging Information E-3

Dump Data Utilities

Taking the Dump

E-4

Note: Refer to the DOS manual to ensure that you are using the correct
parameters for the FORMAT command (for example, /4 to format a
360K double-sided diskette in a high-capacity drive).

3. After formatting the recommended number of diskettes, insert the
diskette containing the INDPREP utility into the active diskette drive
and type:

INDPREP a:

or:

INDPREP b:

4. Press Enter.

5. You will be prompted to insert the diskette(s) just formatted.

At the conclusion of the INDPREP utility, the following message appears:

INDDP003 Dump diskette(s) ready for use

You have generated the dump diskette(s) to use only when you need to take
a dump.

Notes:

1. If you have an XMA (expanded memory adapter) installed, it may take up
to 6 minutes to complete the dumping process.

2. If you used the IBM 3270 Workstation Program Keyboard Definition
Utility to redefine the keyboard layout, when you are prompted to "Press
D to take a dump ... " you must press the "original" D key to take the
dump.

If you need to use the dump facility for problem determination procedures,
you may take a dump in one of four ways:

1. By pressing the D key in response to an INDSYOOI or INDSY002
message.

2. By pressing the Alt + Ctrl + Test keys (Alt + Ctrl + Scroll Lock on
an enhanced PC keyboard, Alt + Ctrl + {+} on an XT or AT
keyboard). The following prompt message will appear:

INDSYOOl Unrecoverable System Error - 72060000 Press 0 to
take a dump or any other key to re-IPL

3. By turning TRACE off with the dump option. To do this, type TRACE
OFF/D. The following prompt message will appear:

Dump Data Utilities

4. By pressing the Non-Maskable Interrupt (NMI) pushbutton, if present,
on the back of the system unit. Use the NMI pushbutton if the
keyboard does not respond. The following prompt message will appear:

INDSYOOl Unrecoverable System Error - 72050000 Press D to
take a dump or any other key to re-IPL

After pressing the D key in response to one of the above system messages:

1. You will be prompted to insert diskette DUMPDATA.OOl.

2. The message INDSYOll Dumping ... will appear.

3. You will then be prompted to insert DUMPDATA.002 and
DUMPDATA.003 diskettes if they were created. Insert them as
requested.

4. When the dump is completed, messages INDSYOll and INDSY012
appear. Insert the system diskette and press any key to re-IPL.

This completes the dump process.

U sing the Display Utility

The display utility, INDDISP, resides on your customized utilities system
diskette, and is used to display dumps of memory, trace buffers, and error
counters. Note that to use the display utility, you must have previously
taken a dump or issued the command INDSA VE, discussed below.

To save dumps of trace buffers or error counters:

1. You must be in an active personal computer session.

2. At the DOS prompt, type:

INDSAVE TRACE

or:

INDSAVE COUNTER

This action creates TRACE.DMP or COUNTER.DMP files on the
diskette in the active drive, depending on the parameter you chose.
This is a quick way to provide trace or error counter information
without dumping the entire system.

Appendix E. Problem Determination Procedures and Debugging Information E-5

Dump Data Utilities

Displaying the Dump

E-6

To display dumps, dumps of trace buffers, or dumps of error
counters:

1. You must be in an active personal computer session.

2. At the DOS prompt, type:

INDDISP a:DUMP

or

INDDISP b:DUMP

3. Press Enter.

4. The following message appears:

INDDD004 Insert DUMPDATA.OOI. Press Enter, or End to
quit

5. Insert DUMPDATA.OOI in the currently active drive you specified
above and press Enter.

6. Notice the display of the dump. It always begins at address 0000:0000.

You can use the following keys:

Home Takes you to another panel with additional options

PgUp Takes you to the next higher 256 bytes of memory

PgDn Takes you to the next lower 256 bytes of memory

End Ends the use of this display utility

7. If you press the Home key, a panel appears with prompts that allow you
to display the following options:

a. Trace buffer

b. Registers at the time of the dump. If the registers are all zeros, they
were not meaningful at the time of the dump.

c. Error counters

d. PC Presentation Space Work Areas

e. PC Presentation Space Buffers.

Dump Data Utilities

f. Segment address in hexadecimal. Type the first four digits of the
8-character address and press Enter. The following prompt appears:

Enter offset to display

Type the last four digits that follow the colon. Then that section of
memory is displayed.

g. The frequently used buffers listed in Figure E-l may be found at the
segment addresses indicated.

Buffer You Type of PC Segment
Want Displayed You Have Address

DFTjCUT 3270 PC unique CEOO
communication hardware or
buffers non-3270 PC

hardware

PC display buffer 3270 PC unique BOOO
hardware or
non-3270 PC Mono
Display hardware

N on-3270 PC Color B800* or
Display hardware AOOO**

PC graphics buffer 3270 PC unique B800
hardware

Non-3270 PC B800* or
hardware AOOO**

3270 display buffer 3270 PC unique AOOO
hardware

Non-3270 PC Not applicable
hardware

* BIOS Modes 0 through 6
** BIOS Modes D, E, 10, 11, and 13

As described in the "IBM Enhanced Graphics Adapter" section of the Technical
Reference Options and Adapter manual.

Figure E-l. Frequently Used Trace Buffers

Displaying the Error Counters

To display the counter:

1. You must be in an active personal computer session.

2. At the DOS prompt, type:

INDDISP COUNTER

3. Press Enter.

Appendix E. Problem Determination Procedures and Debugging Information E-7

Trace Command

4. The following message appears:

INDDD006 Insert diskette with COUNTER.DMP. Press Enter,
or End to quit

5. Insert diskette with file COUNTER.DMP in the currently active drive,
and press Enter.

6. You will see a display of the counters where:

RC = Return code.

TH = Threshold or the point at which the error-handling program
takes action.

CT = Count or the number of times this error has been reported to the
error-handling program.

SV = Severity level of error: 1, 2, 3

Displaying the Trace Buffer

To display the trace buffer:

1. You must be in an active personal computer session.

2. At the DOS prompt, type:

INDDISP TRACE

3. Press Enter. The following message appears:

INDDD005 Insert diskette with TRACE.DMP. Press Enter, or
End to quit

4. Insert the diskette with file TRACE.DMP in the currently active drive,
and press Enter.

5. You will see a display of the trace buffers.

U sing the Trace Command

E-8

Trace is used in gathering data required to isolate the causes of software
failures in the workstation program and is to be used during problem
determination. If you encounter problems running Trace, refer to the IBM
3270 Workstation Program Problem Determination Guide.

The Trace command runs as a PC application and is used to turn Trace on
and off. While running in IBM Personal Computer DOS application mode
with the PC window active, the operator issues a Trace On command for
the trace recordings he wants to start or a Trace Off command to stop all
trace recording. The traces in effect are those specified on the most recent
Trace On command.

Trace Command

The discussion of solving IBM 3270 Personal Computer problems in the
IBM 3270 Workstation Program Problem Determination Guide identifies
which events you must turn on to obtain the correct documentation for a
given problem.

The syntax of the command is:

TRACE [:JGJ
OFF [/d]

• The Trace commands may be typed and entered in any combination of
uppercase and lowercase characters.

• TRACE OFF /d turns off all trace requests and causes the error
handler to take a dump.

• One of each of the parameters shown in uppercase in a stack must be
selected.

• Lowercase parameters are optional.

• M, n, 0, and p represent decimal numbers corresponding to unique trace
identification recording requests.

• Single or multiple blanks and/or commas delineate individual requests.

• The /d parameter indicates that a dump is desired.

When a dump is requested, your system will request you to insert a
diskette for the dump. This diskette will be formatted; therefore, all
existing files on the diskette will be erased. After the dump gets
control, the workstation program is no longer running. The only way
to restart the system is by turning the system off and then on.

Workstation Program Loading Procedure

When the workstation program is IPLed, the INDCIPL.EXE loads the first
system extension belonging to the workstation program, the supervisor,
called INDSNUM.COM. Next, the INDCIPL.EXE loads the DOS subsystem
extension INDSDOM. COM, followed by the remaining system extensions
from low storage to high storage. When all the system extensions have
been loaded, the DOS subsystem divides the rest of the remaining storage
into the PC environments. The last PC environment gets all of the storage
left over, which fits within the 640K address space.

Appendix E. Problem Determination Procedures and Debugging Information E-9

Debugging

Debugging a PC Application Program

A PC application program running under the workstation program can be
debugged by loading the application with the DEBUG utility, or any other
software debugger that runs under the workstation program. You can use
the debugger to help you find the errors in your PC application program.

Debugging a System Extension

Because system extensions do not have a logical refresh buffer, debugging
your system extension can be done in the following ways:

• You can use a hardware debugger. In this case you could code a stop
condition in the beginning of the system extension to find out where it
is loaded and debug the system extension from there.

• You can run the system extension as a PC application and debug it
using a software debugger. When the system extension is running
correctly, you can remove any PC session dependencies such as DOS or
BIOS calls.

Control Blocks You Can Use during Debugging

E-IO

Following are some guidelines on how to find some of the control blocks
used by the workstation program. These control blocks will assist you in
debugging your system extension or PC application program.

Warning: These offsets will change across releases. No
coding dependencies should be implemented based on these
offsets.

Addresses are given in the format xx:yy, where xx is the segment portion of
the address and yy is the offset portion of the address.

Address O:IE8 (interrupt vector X'7 A') contains the address of INDKSYI, a
module that belongs to the supervisor. The segment portion of that address
is the beginning of the 3270 W orkstationProgram code. The first load
module is named INDSNUM.COM.

That address minus 5 points to the I-word segment address of the
supervisor's data area.

Debugging

The Supervisor's Data Area

The supervisor's data area is on a segment boundary. All addresses within
the supervisor's data area are 16-bit addresses. They are offset addresses
and are to be used with the segment address of the supervisor data area to
refer to any address within the supervisor's data area.

Warning: These offsets will change across releases. No
coding dependencies should be implemented based on these
offsets.

The supervisor's data area is shown below.

~ Supervisor Data Area

+0

+6BB Address of dispatcher data ~

+0 Active TeB See TCB below

+2 Current priority

+7DB Address of name table

+4 Area for priority 0

Nu
+8 Area for priority I

1st
mber of tasks
TCB for that priority

+C Area for priority 2

The Dispatcher's Data Area

To locate the dispatcher's data area, use an offset of X'671' into the
supervisor's data segment. The first word in the dispatcher's data area is
an offset address of the dispatched active task's task control block (TCB).
The next word in the dispatcher's data area contains the priority of the
highest priority dispatchable task. Next are 65 four-byte areas, one for
each of the 65 task priority levels, 0 through 64. In each 4-byte area, the
first 2 bytes contain the number of dispatchable tasks at that priority. The
next 2 bytes contain the offset address of the TCB for the first task in the
round robin at that priority level.

Appendix E. Problem Determination Procedures and Debugging Information E-ll

Debugging

Priority zero is reserved for the supervisor. The PC task that runs an
application has a priority of 60. Tasks created by a PC application program
are restricted to priority levels 36 through 64.

Warning: These offsets will change across releases. No
coding dependencies should be implemented based on these
offsets.

See Figure E-2 for offsets in previous releases.

Release 2.1 Release 3.0 Release 4.0

+447 +671 +6BB

Figure E-2. Dispatcher Data Address Offsets

The Task Control Block

E-12

Warning: These offsets will change across releases. No
coding dependencies should be implemented based on these
offsets.

The offset address of a TeB, used together with the supervisor's data
segment, can be used to locate that TCB. The fields of the TCB shown
below may be helpful when you are debugging a program:

+0 rCB status byte

+1 Wait byte

+2 Priority + 1

+3 Preemption type

+4 Stack address (ss/ sp)

+8 Request queue head pointer

+10 Request queue tail pointer

+12 Completion queue head pointer

+14 Completion queue tail pointer

I

+16 Pointer to next rCB in round robin

+18 SVC ID of task

+24 Waiting for data from this FLQ ID

+28 ID of semaphore being waited on

Debugging

The TCB Status Byte

The TCB status byte is formatted as follows:

Bit 0 Bit 1 Bit 2 Bit 3 Bits 4, 5 Bit 6 Bit 7

Wait Unready Reserved Nonpreemptable Reserved Susp Reserved

• Bit 0 - Task is waiting
• Bit 1 - Task is "unready"
• Bit 2 - Reserved
• Bit 3 - Task is nonpreemptable within the round robin or environment
• Bi t 4 - Reserved
• Bit 5 - Reserved
• Bit 6 - Task is suspended
• Bit 7 - Reserved

The TCB Wait Byte

The TCB wait byte is formatted as follows:

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Request Comp Comp Sema- Timer Signal Data Reserved
queue queue signal phore

• Bit 0 - Waiting for an RQE in the request queue
• Bit 1 - Waiting for an RQE in the completion queue
• Bit 2 - Waiting for a 'completion' signal
• Bit 3 - Waiting to for a 'semaphore claimed' signal
• Bit 4 - Waiting for a 'timer tick' signal
• Bit 5 - Waiting for a 'generic' signal
• Bit 6 - Waiting for a 'data available' signal
• Bit 7 - Reserved

The TCB Preemption Type

The TCB preemption type is specified as follows:

• X'OO' - Task is preemptable
• X'Ol' - Task is nonpreemptable within round robin
• X'02' - Task is nonpreemptable within environment

The Request Queue Head Pointer

The request queue head pointer points to the first request queue element
(RQE) on the task's request queue. The request queue tail pointer points to
the last RQE on the task's request queue. These RQEs were placed on the
task's request queue after the Make a Request supervisor service was
requested to make a request of that task. These RQEs may not have been
processed by the task yet, or the task may be currently working on
processing one of the RQEs. When the task has finished processing an
RQE, it will use the Reply to a Request service so that the supervisor will

Appendix E. Problem Determination Procedures and Debugging Information E-13

Debugging

either move the RQE from its request queue to the completion queue of the
requesting task or discard the RQE if the requesting task did not want a
reply.

The Completion Queue Head Pointer

The completion queue head pointer points to the first RQE on the task's
completion queue. The completion queue tail pointer points to the last
RQE on the task's completion queue. These RQEs were placed on the task's

, completion queue as the result of a Make a Request service that had a reply
type of "completion queue" specified. When the task requests the Get
Request Completion service, the supervisor copies the contents of the RQE
to the parameter list used for the service request, and returns the RQE to
the system RQE pool.

The Request Queue Element

The following fields in an RQE may be helpful to you when you are
debugging:

RQE

+0

+2 ID of requestor

+4 Next RQE on chain

The ID should be the ID of a task or component that was created as part of
your system extension or PC application program. This ID was returned to
you when the Create Task Entry or Create Component Entry service
request was completed.

The Supervisor Name Table

E-14

Warning: These offsets will change across releases. No
coding dependencies should be implemented based on these
offsets.

See Figure E-3 for offsets in previous releases.

Release 2.1 Release 3.0 Release 4.0

+55B +78B +7DB

Figure E-3. Name Table Address Offsets

Debugging

At offset X'78B' into the supervisor's data area is the pointer to the name
table. The name table contains all the names in the system that were added
to the table through the use of the supervisory objects services. Each name
is followed by the index of the object that was created with that name. The
name table has the following format:

~ Supervisor Data Area

+0

+6BB Address of dispatcher data

Address of name table
Name Table .. +7DB

+0 8 character ASCII name

+8 SVC ID for name

+A 8 character ASCII name

+C SVC ID for name

Following is a list of names used by the supervisor. Do not assign these
same names to system objects that you create.

• N ames that begin with the letters "IND" or 3270KS
• SYSKILL
• MEMORY
• DOSINT21
• DOSIOR
• DOSBADP
• XLATE
• SESSMGR
• KEYBOARD
• WSCTRL
• OIAM
• CPYUET
• MFIC
• 3270EML
• PCPSM
• COpy
• BSMUET

Appendix E. Problem Determination Procedures and Debugging Information E-15

Debugging

E-16

Debugging

Appendix F. Presentation Space Considerations

Introduction ... F-2
Attributes ... F-2

Field Attributes .. F-3
Extended Field Attributes and Character Attributes F-4

Presentation Space Character Tables F-6
Host and Notepad Session Character Codes F-6
Personal Computer Session Character Codes F-7

Presentation Space Sizes F-7
Distributed Function Terminal (DFT) Host Presentation Space Sizes F-7
Control Unit Terminal (CUT) Host Presentation Space Size F-8
Notepad Presentation Space Size F-8
Personal Computer Presentation Space Size F-8

Appendix F. Presentation Space Considerations F-1

Introduction

Introduction

Attributes

F-2

Presentation space represents the area that contains the data that is shown
in an image on your display screen. The data is stored in a format that
includes both the character to be displayed and information about how that
character is to be displayed, called the attribute of the character. This
appendix discusses attribute types, character codes, and presentation space
sizes for DFT host, CUT host, notepad, and personal computer sessions on
the IBM 3270 Personal Computer.

Warning: Altering the contents of the presentation space
can cause unpredictable results in the host application
program that accesses the presentation space. Do not alter
the contents of a host session presentation space unless the
host application program is designed to interpret the changes
that you make.

Note: For information concerning presentation spaces that are defined to
accept 3270 keystroke emulation, refer to Chapter 9, "Coding 3270
Keystroke Emulation Service Requests."

Display images may be unformatted or formatted. An unformatted display
is one that has no defined fields. A formatted display is one that has
separate fields defined by the host application program. The first character
position in each field contains a control character, or attribute, that defines
the characteristics of that field.

For detailed information on attributes and their use in the IBM 3270 data
stream, see these manuals:

• IBM 3270 Information Display System: 3274 Control Unit Description
and Programmer's Guide

• IBM 3270 Information Display System: Data Stream Programmer's
Reference

The IBM 3270 Personal Computer display station supports field attributes,
extended field attributes, and character attributes. Field attributes are
supported in CUT and DFT host sessions, and are used to define the start of
a field and control the characteristics of that field. Character attributes
are supported in CUT host sessions, DFT host sessions, and notepad
sessions, and are used to control the attributes of a character.

Note: If your DFT host session is customized to have an extended attributes
buffer (EAB = Yes), the session will support field attributes, extended
field attributes, and character attributes. Otherwise, the session
supports only field attributes.

Field Attributes

Attributes

The field attribute is used by the host application program to define the
start of a field and to assign characteristics to that field. A field consists of
the field attribute and all the data following it up to (but not including) the
next field attribute. A field can wrap (continue) from the end of one row to
the beginning of the next row within the presentation space. A field can
also wrap from the last location in the presentation space to the first
location. In any case, the field is terminated by the next field attribute.
There is no limit to the number of fields that can be defined, other than
that imposed by the screen size.

The characteristics that can be assigned to a field are:

• Protected or unprotected. A protected field is protected from
modification by the operator. An unprotected field is available for the
operator to enter or modify data. The unprotected definition classifies a
field as an input field.

• Alphanumeric or numeric. Subject to its being protected, an
alphanumeric field is one into which an operator enters data normally,
using the shift keys as required.

When the numeric lock is active, fields defined as numeric will only
accept characters 0 through 9, . , Dup, and -. Numeric lock can be
overridden by pressing and holding the upshift key while typing.
Overriding Numlock by this method will allow only upper shift
characters to be entered.

• Autoskip. A field defined as protected and numeric causes the cursor
to skip to the next unprotected field.

• Nondisplay or display/intensified display. The selected characteristics
apply to the entire field. Nondisplay means that any characters entered
from the keyboard are entered into the buffer for subsequent
transmission to the application program but they are not displayed.
Intensified display means the intensified characters appear on the
screen brighter than the nonintensified characters. Some devices may
not be able to intensify characters on the screen and will therefore
highlight in a different manner.

• Detectable or nondetectable. A field defined as detectable can be
detected by the cursor select key (CrSel), subject to the use of a
designator character.

Figure F-l shows the bit positions in the field attribute byte. Bit 0 is the
leftmost bit in the byte, and bit 7 is the rightmost bit in the byte.
Figure F-2 shows the bit assignments for the field attributes supported by
the 3270 Personal Computer.

Upon entry of a character into the last character location of an unprotected
data field, the cursor is repositioned based on the attributes of the next
field.

Appendix F. Presentation Space Considerations F-3

Attributes

If the field attribute defines the next field as (1) alphanumeric and either
unprotected or protected, or (2) numeric and unprotected, the cursor skips
the attribute character and is positioned to the first character location in
that field.

If the field attribute defines the field as numeric and protected, the cursor
automatically skips that field and is positioned to the first character
location of the next unprotected field.

0, 1 2 3 4,5 6 7

Attribute UjP AjN DjSPD Reserved MDT

Figure F-l. Field Attribute Bit Positions

EBCDIC Bit Field Characteristics

0, 1

2

3

4, 5

6

7

11 = This byte is an attribute

o = Unprotected
1 = Protected (see Note)

o = Alphanumeric
1 = Numeric (if numeric lock capability is activated,

causes automatic numeric shift of keyboard)
(see Note)

00 = Display not detectable by Cursor Select key
01 = Display detectable by Cursor Select key
10 = Intensified display detectable by Cursor Select key
11 = Nondisplay, nonprint, nondetectable

Reserved - Al ways 0

Modified data tag (MDT); identifies modified fields
during Read Modified command operation

o = Field has not been modified
1 = Field has been modified by the operator. Can also

be set by a program in the data stream.

Note: Bits 2 and 3 equal to binary 11 causes an automatic skip.

Figure F-2. Field Attribute Bit Assignment

Extended Field Attributes and Character Attributes

F-4

Extended field attributes and character attributes are used to give fields
and single characters the attributes of highlighting, color, and character
set. The extended field attribute is always associated with a field, and is
positioned in the byte following the field attribute in the presentation
space. The character attribute is associated with a single character, and is
positioned in the byte following the character in the presentation space.
The extended field attributes of any single character are always overridden

Attributes

by the character attributes associated with it. However, characters in
nondisplay fields are never displayed. The attribute structure used for
character attributes is the same as for extended field attributes.

Figure F-3 shows the bit positions in the extended field/character attribute
byte. Bit 0 is the leftmost bit in the byte, and bit 7 is the rightmost bit in
the byte. Figure F-4 shows the bit assignments for the extended field
attributes and character attributes supported by the IBM 3270 Personal
Computer.

Highlighting Color Character set

0, 1 2 through 4 5 through 7

Figure F -3. Extended Field Attribute and Character Attribute Bit
Positions

EBCDIC Bit Character Characteristics

0, 1 Character highlighting:
00 = NormaP
01 = Blink
10 = Reverse video
11 = U nderscore2

2 through 4 Character color:
000 = Defaultl

001 = Blue
010 = Red
011 = Pink
100 = Green
101 = Turquoise
110 = Yellow
111 = White

5 through 7 Character set:
000 = Base character setl

001 = Reserved
010 = Programmable Symbol Set A3
011 = Programmable Symbol Set B3
100 = Programmable Symbol Set C3
101 = Programmable Symbol Set D3
110 = Programmable Symbol Set E3
111 = Programmable Symbol Set F3

1 If this is a character attribute, a zero value in this field indicates that the value in the
extended field attribute for this field is to be used. If this is an extended field attribute, a
zero value in this field indicates that the default value for the display is to be used.

2 On the Enhanced Graphics Adapter (EGA), the character highlighting underscore will be
displayed as a normal attribute.

3 The Programmable Symbol Sets are not supported in notepad sessions on non-3270 PC
hardware.

Figure F -4. Extended Field Attribute and Character Attribute Bit
Assignment

For additional information on PC character attributes, see the IBM
Personal Computer Technical Reference.

Appendix F. Presentation Space Considerations F-5

Presentation Space Character Tables

Presentation Space Character Tables

Characters in the presentation space are represented by hexadecimal codes.

Host and Notepad Session Character Codes

F-6

Figure F -5 shows the hexadecimal codes found in the DFT host, CUT host,
and notepad presentation spaces, and the characters they represent.

Ox Ix 2x 3x 4x Sx 6x 7x 8x 9x Ax Bx ex Dx Ex Fx
xO NUL SP 0 & a a A X a q A Q ~ 1\ P 00
xl EM = 1 - ~ e E E b r B R - I s li1
x2). 00

I "i II • FF
,

2 1 i c s C S ~ ~ 0 "Z. ,
x3 NL " 3 0 0 0 0 d t D T ! it ~ , -
x4 / 4 " ii i) ti

..
! ;I: BJ STP 0 U e u E U ·:.f 0

xS \ S + a A A ~ f F V
,. - ~ -CR a v

x6 I 6 -. 0 ~ 0 ~ G W >< r l: -g w
x7 I 7 - • 0 '-' y y h H X • L L' • I Y 1 x

x8 > ? 8 0 a A a 6 i y I Y +- , }J ~
x9 < ! 9 e A E () j J Z ~ J z fa; u z , "

xA [$ (J A e / E " ..zE ~ 3 a A k ae K 0- 0

xB] ¢ §). /

I E 1 III L 0 ~ ~ ~ '" 1 e ...
xC) t! # 0 « " . .a r;: (] i 00

1 0 I m a M A

xD (:t @ \ U 6 u 6 n ~ N ~ 1. l! 0 T ...
xE } 070 , ii '" y u . 0 . • - , ..

i Pts U 0
,. , t -

xF { ~ ~
.... c N p I II • Not - f n p • • Sup·

ported

Notes:

1. Values X'CO' through X'FF' are used as attributes in CUT and DFT host
sessions, and as characters in notepad sessions.

2. Characters X'68' through X'6F' are replaced in the refresh buffer by
X'E8', X'69', X'6A', X'F8', X'FE', X'D4', X'CE', and X'D3', respectively.
These characters are not used in the U.S ..

Figure F-5. Host and Notepad Presentation Space Character Table

Presentation Space Sizes

Personal Computer Session Character Codes

Figure F-6 shows the hexadecimal codes found in the personal computer
presentation space, and the characters they represent.

1:::1:1
IVAIUl

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 II A lUI IUIUI 0 @ p , p C; E , I OC INUlll ~ ISPAtli a -...
J ~ ~ I 1 A Q q u ~ f3 + a ce T

2 • t II 2 B R b
,

IE 6 J" > r e II

3 • II =IF 3 C S c s ~ 0 u ~ lL 1T <
4 + err $ 4 D T d t

00, - b ~ r a 0 n ~

5 4- § % 5 E U
, , N F (J I) e u a 0 = --

6 • -& 6 F V f
0 " a ~I ~ y v a u r-

7 1 ,
7 G W g w ~

,
0 I T ~ • u --n ~

- a " y- o

8 T (8 H X h Q 0 x e L r=
-

0 • 9 0 1) 9 I Y 1 Y e r F rr= - e
~--+ *

0 J Z J
, 0 --, W!= n 0 z e •

8 (j + 0 K [k { 00

¢ ~ nt 8 -r +- , 1 ill
C Q L < L " 1 I " £ ~ ~ 00 n ,

I 1
D Jl M 1 } ¥

0 --1J cJ> 2 +--+ - - m 1 ,
E ~ A . > N /\ n 'V A R « d A E I
F <r '" / ? 0 0 ~ A f' » ~ n II Aiul

0 - 'ff

Figure F -6. Personal Computer Presentation Space Character Table

For further information regarding the personal computer character set and
attributes, refer to the IBM Personal Computer Technical Reference.

Presentation Space Sizes

Distributed Function Terminal (DFT) Host Presentation Space Sizes

Figure F-7 lists the presentation space size for DFT host sessions, based on
the screen size and on whether the session is customized to support an
extended attributes buffer (EAB). For additional information on color
attributes, see the IBM Personal Computer Technical Reference.

Appendix F. Presentation Space Considerations F-7

Presentation Space Sizes

Presentation
Screen Size Attributes Space Size

1920 characters No EAB (4-color) 1920 bytes
(24 rows of 80 characters)

1920 characters EAB (7-color) 3840 bytes
(24 rows of 80 characters)

2560 characters No EAB (4-color) 2560 bytes
(32 rows of 80 characters)

2560 characters EAB (7 -color) 5120 bytes
(32 rows of 80 characters)

3440 characters No EAB (4-color) 3440 bytes
(43 rows of 80 characters)

3440 characters EAB (7 -color) 6880 bytes
(43 rows of 80 characters)

3564 characters No EAB (4-color) 3564 bytes
(27 rows of 132 characters)

3564 characters EAB (7-color) 7128 bytes
(27 rows of 132 characters)

Figure F -7. DFT Host Presentation Space Sizes

Control Unit Terminal (CUT) Host Presentation Space Size

The presentation space size for a CUT host session is 1920 bytes, one byte
in the presentation space for each character position on the screen.

Notepad Presentation Space Size

The presentation space size for the notepad session depends on the
configured size of the notepad session. Each character in the notepad
session is represented by two bytes in the presentation space. The first byte
representing a character is the character itself, and the second byte is the
character attribute associated with the character. For example, a notepad
defined to have 24 rows of 80 characters will have a presentation space of
3840 bytes, since there can be 1920 characters in the notepad.

Personal Computer Presentation Space Size

F-8

The presentation space size for the personal computer session is 4000 bytes.
Each character in the personal computer session is represented by two
bytes. The first byte representing a character is the character itself, and
the second byte is the attribute associated with the character.

Presentation Space Sizes

Appendix G. Calling Save, Restore, Send, and Receive
from Your Application Program

Introduction ... G-2
The DOS SETBLOCK Function Call G-2
The DOS EXEC Function Call G-3

The Environment String G-3
The Command Line G-4
The File Control Blocks G-4

Appendix G. Calling Save, Restore, Send, and Receive from Your Application Program G-l

The DOS SETBLOCK Function Call

Introduction

Your application program can invoke the Save, Restore, Send, and Receive
commands by using the DOS function calls SETBLOCK and EXEC. This
appendix describes how to set up these DOS function calls in your
application program. The DOS function calls are described in the DOS
manuals that were shipped with the version of DOS you are using.

The DOS SETBLOCK Function Call

G-2

The DOS SETBLOCK function call modifies the number of allocated
storage blocks. You use the SETBLOCK function to free all available
storage other than the storage used by your application program, so that
there is room for the Send, Receive, Save, or Restore .COM file. To call the
SETBLOCK function, set up the registers as follows:

AH = X'4A'

BX = the amount of storage used by your application program (in
paragraphs)

ES = the segment address of the block of storage used by your
application program (that is, the segment address of the application
program's code segment).

To determine the amount of storage used by your application program (in
paragraphs), use the following formula:

paragraphs = [(program size + 15) / 16]

Program size is the number of bytes shown for your .COM file in a directory
listing obtained by the DOS DIR command, plus 16 paragraphs for the
program segment prefix (PSP). If your application program allocates
additional storage during execution, program size should include the
number of bytes in the additional allocated storage as well.

Note: Be sure that the SS:SP registers point to a stack area within the same
block of storage as your program.

Use the INT 21H instruction to invoke the DOS SETBLOCK function.

For more information on the DOS SETBLOCK function and other DOS
function calls, see the DOS manuals that were shipped with the version of
DOS you are using.

The DOS EXEC Function Call

The DOS EXE C Function Call

The DOS EXEC function call loads and executes a program. You use the
EXEC function to identify the program that you want to execute (Send,
Receive, Save, or Restore), and to pass a parameter string to the program
that contains the command line to be executed. To call the EXEC function,
set up the registers as follows:

AH = X'4B'

AL = X'OO'

BX = offset address of the parameter block

ES = segment address of the parameter block

DX = offset address of an ASCIIZ string containing the drive, path, and
file name of the program to be loaded

DS = segment address of an ASCIIZ string containing the drive, path,
and filename of the program to be loaded.

The block pointed to by ES:BX has the following format:

Data Type Contents

Word Segment address of the environment string to be passed

Dword Pointer to the command line to be placed at PSP + X'80'

Dword Pointer to the default FCB to be passed at PSP = X'5C'

Dword Pointer to the default FCB to be passed at PSP = X'6C'

The Environment String

The environment string is a series of ASCII strings (totaling less than 32K
bytes) in the form:

NAME = parameter

Each string is terminated by a byte of zeros, and the entire set of strings is
terminated by another byte of zeros. The environment built by the
command processor (and passed to all programs it invokes) contains a
COMSPEC = string at a minimum. The parameter on the COMSPEC string
is the path used by DOS to locate the command processor on the disk. The
last PATH and PROMPT command issued will also be in the environment,
along with any environment strings entered through the DOS SET
command.

If you do not wish to change the environment string for the program being
executed, set the segment address of the environment string to be passed to
zero. Otherwise, build the new environment string and store the segment

Appendix G. Calling Save, Restore, Send, and Receive from Your Application Program G-3

The DOS EXEC Function Call

address of the string in this word. Additional information on the
environment string can be found in the DOS manuals that were shipped
with the version of DOS you are using.

The Command Line

The command line contains any parameters that you wish to send to the
program being executed. The format of the command line is as follows:

Byte 0 is the number of bytes in the command line (a hexadecimal
value).

Byte 1 is the ASCII code for a space (X'20').

The remaining bytes in the command line are the ASCII codes for the
rest of the characters in the command line.

The File Control Blocks

G-4

The two default file control blocks (FCBs) are used to contain file names
that may be needed by the program being executed. The format of the
default FCBs is as follows:

Byte 0 is a decimal number representing the drive, where

• 00 represents the default drive

• 01 represents drive A

• 02 represents drive B

• 03 represents drive C

Bytes 1 through 8 contain the ASCII code for the file name, padded to
the right with blanks if necessary. If a reserved drive name is placed
here (such as LPTl), do not include the optional colon.

Bytes 9 through 11 contain the ASCII code for the file name extension,
padded to the right with blanks if necessary. The file name extension
can be all blanks. Additional information on the format of the FCB can
be found in the DOS manuals that were shipped with the version of
DOS you are using.

Use the INT 21H instruction to invoke the DOS EXEC function.

Note: When control is returned to your application program, all registers are
changed, including the stack. You must restore SS, SP, and any
other required registers before proceeding.

For more information on the DOS EXEC function and other DOS function
calls, see the DOS manuals that were shipped with the version of DOS you
are using.

The DOS EXEC Function Call

Appendix H. Return Codes

Introduction ... H-2
Function ID X'12': System Services Return Codes H-3
Function ID X'13': Environment Manager Services Return Codes H-ll
Function ID X'22' or X'23': DOS Subsystem Services Return Codes H-16
Function IDs X'24' or X'25': System Loader Return Codes H-22
Function ID X'30': DFT Operations Return Codes H-26
Function ID X'32': Host Interactive Services Return Codes H-32
Function ID X'46': CUT Return Codes H-33
Function ID X'51': Notepad Operations Return Codes H-34
Function ID X'62'; Keyboard Services Return Codes H-35
Function ID X'63': Window Management Services Return Codes H-38
Function ID X'64': Copy Services Return Codes H-41
Function ID X'67': Draw Service Return Codes H-43
Function ID X'69': Presentation Space Services Return Codes H-44
Function ID X'6B': Session Information Services Return Codes H-47
Function ID X'6C': Translate Services Return Codes H-49
Function ID X'6D': OIA Services Return Codes H-50
Function ID X'6E': 3270 Keystroke Emulation Services Return Codes H-51
Function ID X'6F': Keystroke Definition Return Codes H-52
Function ID X'72': Error Handler Return Codes H-53
Function ID X'7F': Dump Task Return Codes H-54
Function ID X'81': Enhanced Connectivity Router Return Codes ... H-55
Function IDs X'Dx through Fx': User System Extension Return

Codes .. H-56
Return Code Error Steps H-57

Appendix H. Return Codes H-1

Introduction

Introduction

H-2

This appendix contains explanations of the return codes issued by the
workstation program. These return codes can appear in messages on the
screen, or can be returned to your application program when it requests an
API service.

Return codes are two bytes long. The first byte of the return code is the
function ID, and the second byte is the error number. The function ID
indicates the portion of the workstation program that is issuing the return
code. The error number indicates the specific condition being reported.
The possible function IDs are:

Function ID

X'12'
X'13'
X'22' or X'23'
X'24' or X'25'
X'30'
X'32'
X'46'
X'52'
X'62'
X'63'
X'64'
X'69'
X'6B'
X'6C'
X'6D'
X'6E'
X'72'
X'7F'
X'81'

Notes:

Code Reported By

Supervisor services
Environment manager services
Multiple DOS support services
System Loader
DFT system extension
Host interactive services
CUT system extension
Notepad system extension
Keyboard services
Window management services
Copy services
Presentation space services
Session information services
Translate services
Operator Information Area services
3270 keystroke emulation services
Error handler
Dump task
Enhanced Connectivity Router

1. Return codes with a function ID of X'Dx' through X'Fx' are generated by
user-supplied system extensions. Consult local documentation for the
meaning of these return codes and the action to take when they are
encountered. If you get any return codes that are not listed, use the
procedures at your location for diagnosing the problem.

2. "Local procedures," to which you are frequently referred during this
chapter, are the procedures followed in your location for isolating
problems or making repairs.

System Services Return Codes - 12xx

Function ID X'12': System Services Return Codes

Return codes beginning with function code X'12' indicate that an error
occurred during supervisor operations, except return code X'1200', which
indicates that the requested supervisor service was completed successfully.

Code

1200

1201

1202

1203

1204

1205

1206

Explanation

The requested supervisor
service was completed
successfully.

The object being created
does not have a unique
name.

The supervisor cannot
create any more objects,
because the SVC table is
full; service failed.

The supervisor cannot
create any more named
objects, because the
system name table is full;
service failed.

The supervisor cannot
create any more tasks,
since it ran out of task
control blocks; service
failed.

The SVC index specified
in the DX register or the
parameter list is not
valid for the service
requested.

The specified priority
was out of range;
requested service failed.

Action to Take

None.

Ensure that the name is unique. If it is,
rerun the application that caused the
error. If the error persists, follow local
procedures and have the data available
from "Return Code Error Steps" 1,2,
3c, 4, 5, and 6 on page H-57.

You must increase the SVC table
resource. See "Return Code Error
Step" 8 on page H-57.

You must increase the system name
table resource. See "Return Code Error
Step" 8 on page H -57.

You must increase the number of task
control blocks. See "Return Code Error
Step" 8 on page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

Check the input priority index
parameter to the supervisor. Then
check program logic and rerun the
application. If the error persists, follow
local procedures and have the data
available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

Appendix H. Return Codes H-3

System Services Return Codes - 12xx

Code

1207

1208

1209

120A

120B

120D

120E

120F

H-4

Explanation

The requested reply is
not valid; service failed.

The requested wait is not
valid; service failed.

The queue is empty.

The nonpreemption type
specified on create task
service is invalid,
defaulted to preemptable;
service successful.

The system request
queue element pool is
depleted; the system
cannot continue.

A Release Semaphore
request was issued for a
semaphore that was
already free.

An invalid interrupt
vector or level was
specified; service failed.

An invalid environment
access was attempted;
service failed.

Action to Take

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the
problem persists, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2,
3c, 4, 5 and 6 on page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

You must increase the number of
system RQEs. See "Return Code Error
Step" 8 on page H-57.

Follow local procedures and have the
data available from "Return Code Error
Steps" 1, 2, 3c, 4, 5 and 6 on page H-57.

Check the input parameters to the
supervisor. Check program logic and
rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

System Services Return Codes - 12xx

Code Explanation Action to Take

1210 The timer is not owned Check the input parameter to the
by the requester; service supervisor. Then check program logic
failed. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1,2, 3c, 4, 5, and 6 on
page H-57.

1211 No more timers are You must increase the number of timer
available. resources. See "Return Code Error

Step" 8 on page H-57.

1212 A request was made to a Check the input parameters to the
terminating task; service supervisor. Then check program logic
failed. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

1213 The dequeue request Check the input parameters to the
failed; the request is too supervisor. Then check program logic
big. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

1215 The Install User Exit Check the input parameters to the
Table Entry service was supervisor. Then check program logic
requested with an entry and rerun the application. If the error
index that is out of persists, follow local procedures and
range. have the data available from "Return

Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

1216 Invalid "count" Check the count parameter in the input
parameter, which parameter list to the supervisor. Then
specifies the number of check program logic and rerun the
entries to be placed in a application. If the error persists, follow
user exit table. local procedures and have the data

available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

121A The system is running Check the input parameters to the
with an XMA card. On supervisor. Then check program logic
Install User Exit Table and rerun the application. If the error
Entry Service, the user persists, follow local procedures and
exit table is in an have the data available from "Return
address space that is not Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
available to the page H-57.
requester. For more
information on system
extensions and the XMA
card, see the Workstation
Program Programming
Guide.

Appendix H. Return Codes H-5

System Services Return Codes - 12xx

Code Explanation Action to Take

121D There is sufficient Check the SIF file resource requests.
memory for the Correct any errors that exist, or if there
supervisor to allocate are no errors, reduce the number of
requested resources. system extensions.

121E A first-level interrupt Increase the number of stacks used by
handler has run out of the first-level interrupt handler in the
stacks. INDIBM2.SIF file.

Warning: Increments of only 1 are
advisable since each increment
represents another 384 bytes.

121F A version of PC Land is Use a version of the PC Land program
lower than 1.2. higher than 1.2, or run Version 1.2 in

redirector mode only.

1220 No more interrupt You must increase the number of
handlers can be interrupt handler resources. See return
installed. code error step 8.

1221 The environment ID Check the environment ID input
specified in the DL parameter to the supervisor. Then
register or the parameter check program logic and rerun the
list is not valid for the application. If the error persists, follow
service requested. local procedures and have the data

available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

1223 No free environment Follow local procedures and have the
control blocks are data available from "Return Code Error
available. Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

1224 The resource manager Check the input parameters to the
index specified in the supervisor. Then check program logic
request is invalid. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1,2, 3c, 4, 5, and 6 on
page H-57.

1225 The maximum number of Check the input parameters to the
resource managers was supervisor. Then check program logic
already defined. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

1226 The maximum number of Stop any unnecessary applications to
software interrupt reduce the number of software interrupt
vectors (32) were already vectors that are used.
taken. The mix of
program applications is
using too many software
vectors for the
supervisor to handle.

H-6

System Services Return Codes - 12xx

Code Explanation Action to Take

1228 The buffer provided on a Check the input parameter to the
Query Environment supervisor. Then check program logic
request was too small to and rerun the application. If the error
contain the output; persists, follow local procedures and
service failed. have the data available from "Return

Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

122B The environment already Check the input parameters to the
was suspended. supervisor. Then check program logic

and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

122C The semaphore was not Check the input parameters to the
claimed, even though supervisor. Then check program logic
"wait for semaphore" and rerun the application. If the error
was specified. (Some persists, follow local procedures and
other specified wait have the data available from "Return
condition was satisfied Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
first.) page H-57.

122D The stoppable Check the input parameters to the
environment was not supervisor. Then check program logic
allowed to create and rerun the application. If the error
environments. persists, follow local procedures and

have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

122E The name does not exist. Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

122F The supervisor service Check the input parameters to the
does not exist. supervisor. Then check program logic

and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

1230 A task, fixed-length Check the input parameters to the
queue, or semaphore supervisor. Then check program logic
cannot be deleted if and rerun the application. If the error
requests are pending. persists, follow local procedures and

have the data available from "Return
Code Error Steps" 1,2, 3c, 4, 5 and 6 on
page H-57.

Appendix H. Return Codes H-7

System Services Return Codes - 12xx

Code Explanation Action to Take

1231 The task cannot be Check the input parameters to the
deleted, because it owns supervisor. Then check program logic
a timer. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

1232 The supervisor cannot Check the input parameters to the
stop or delete a supervisor. Then check program logic
nonstoppable and rerun the application. If the error
environment. persists, follow local procedures and

have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

1233 The supervisor cannot Check the input parameters to the
find the specified supervisor. Then check program logic
resource. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

1234 The object to be installed Check the input parameters to the
in a gate is not a task or supervisor. Then check program logic
component, the gate and rerun the application. If the error
length is invalid, or an persists, follow local procedures and
invalid index (service have the data available from "Return
number) was specified in Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
the AL register on page H-57.
request.

1235 A user exit table cannot Correct the length and retry.
be created with a length
of zero.

1236 No request queue Check the input parameters to the
elements are on the supervisor. Then check program logic
request queue. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

1237 The dequeue with no Check the input parameters to the
wait failed because it is supervisor. Then check program logic
not the requester's turn. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

H-8

Code

1238

1239

123A

123B

123C

123D

123F

System Services Return Codes - 12xx

Explanation

There is an error in
opening a file.

There is not enough
room in the fixed-length
queue to enqueue the
specified data.

There is an error reading
in a file.

The supervisor cannot
create any more gates,
because the system gate
table is full.

The type specified is not
a valid semaphore type.

This code was returned
on a claim semaphore
with a no-wait; it means
that the semaphore is
already claimed.

The gates cannot be
deleted.

Action to Take

Check the first message on the screen
for the name of the file. Verify that the
file exists on your system diskette. If
the error persists, follow local
procedures and have the data available
from "Return Code Error Steps" 1,2,6,
and 7 on page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Check the first message on the screen
for the name of the file. Verify that the
file has not been damaged on your
system diskette. (Follow the procedures
in your DOS manual to run a Check
Disk.) If there is damage, customize
again on a new formatted diskette. If
the error persists, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2,6,
and 7 on page H-57.

Increase the gate table size. See
"Return Code Error Step" 8 on page
H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Check the program logic. Correct the
wait status if needed, and rerun the
application. If the error persists, follow
local procedures and have the data
available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Appendix H. Return Codes H-9

System Services Return C'odes - 12xx

H-IO

Code Explanation

1240 The delete environment
is already pending.

1241 The fixed length queue
SIze IS In error.

Action to Take

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Environment Manager Services Return Codes - 13xx

Function ID X'13': Environment Manager Services
Return Codes

Return codes beginning with function code X'13' indicate that an error
occurred during environment manager operations, except return code
X'1300', which indicates that the requested environment manager service
was completed successfully.

Code

1300

1305

1306

130C

130F

Explanation

The requested
environment manager
service was completed
successfully.

The SVC index specified
in the DX register or the
parameter list is not
valid for the service
requested.

The priority specified is
not in the range of valid
priorities.

A request to stop, reset,
suspend, or resume an
environment failed
because the return code
field in the parameter
list of the work request
was not set to zero.

The requester is not
allowed to complete the
type of request that was
made, because of invalid
environment access.

Action to Take

None.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Check the input parameters to the
supervisor. Then check program logic
and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5 and 6 on
page H-57.

Set the return code field of the input
parameter list to zero. Then rerun the
application. If the error persists, follow
local procedures and have the data -
available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

Check to be sure the requester is
allowed to complete the specified
request. Then check the input
parameters to the supervisor, check
program logic, and rerun the
application. If the error persists, follow
local procedures and have the data
available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

Appendix H. Return Codes H -11

Environment Manager Services Return Codes - 13xx

Code Explanation Action to Take

1314 A request was made to a Once the stop, reset, INDSPLIT, or
task in an environment INDMERGE is completed, the
that was stopped, reset, parameter list can be set up and the
or involved in an request made again. If the request was
INDSPLIT or not made by an application and no
INDMERGE operation error can be found in your procedures,
before the request could check the input parameters to the
be acted upon. supervisor. Then check program logic

and rerun the application. If the error
persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3a, 4, 5, and 6
on page H-57.

1317 The requester is in a Check that the requester is allowed to
stoppable environment complete the specified request. Check
and is trying to stop, the input parameters to the supervisor.
suspend, or resume Check program logic and rerun the
another environment. application. If the error persists, follow

local procedures and have the data
available from "Return Code Error
Steps" 1, 2, 3a, 4, 5, and 6 on page H-57.

1321 The environment ID Check the environment ID input
specified in the DL parameters to the supervisor. Then
register or the parameter check program logic and rerun the
list is not valid for the application. If the error persists, follow
service requested. local procedures and have the data

available from "Return Code Error
Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

1322 An attempt to stop a The environment on which the stop was
personal computer not completed cannot be used. It may be
environment that was that a system error has occurred or that
made either through the some resource manager or its device
API by using has hung. In this case, you may want to
ALT-CTRL-DEL or by a turn power off and on again. If no error
request to delete an can be found in your procedures, follow
environment (using local procedures and have the data
INDSPLIT or available from "Return Code Error
INDMERGE) failed Steps" 1,2, 3a, 4,5 and 6 on page H-57.
because some resources
were not successfully
released. Some internal
error occurred, and the
stop is not recoverable.

1323 No free environment Follow local procedures and have the
control blocks are data available from "Return Code Error
available. Steps" 1, 2, 3c, 4, 5, and 6 on page H-57.

H-12

Environment Manager Services Return Codes - 13xx

Code Explanation Action to Take

1324 The resource manager Check the input parameters to the
index specified in the su pervisor. Then check program logic
request is invalid. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
page H-57.

1325 A Resource Manager Increase the number of resource
Open request failed managers. See return code error step 8.
because no resource
manager indexes are
available.

1327 An attempt to stop a The environment in which the stop
personal computer request was not completed cannot be
environment that was used. If possible, wait until the
made either through the condition clears. If it does not clear,
API by using another environment may be taking too
ALT-CTRL-DEL or by a much processor time, so that this stop
request to delete an request cannot be completed. You may
environment (using reduce the system load by stopping
INDSPLIT or another environment. If the condition
INDMERGE) failed does not clear, a system error may have
because the process took occurred or some resource manager or
too long to complete. The its device has hung. In this case, you
request may be may want to turn power off/on again. If
completed at a later power off/on is not attempted, the
time. system will continue to try to clean up.

If the cleanup is completed, the
environment manager will post a
different return code, and the
environment may be reused. If the
cleanup is not completed, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2,
3a, 4, 5, and 6 on page H-57.

Some common reasons that an
environment cleanup will not be
completed:

• The application is still holding a
code serialization semaphore.

• The cleanup component did not
delete all its resources.

• A task in the environment being
cleaned up is waiting for a reply to
a request from a system extension.

1328 The size of the output Check the input parameters to the
buffer specified in a supervisor. Then check program logic
Query Environment and rerun the application. If the error
Characteristics request persists, follow local procedures and
is too small to hold the have the data available from "Return
data requested. Code Error Steps" 1, 2, 3c, 4, 5, and 6 on

page H-57.

Appendix H. Return Codes H-13

Environment Manager Services Return Codes - 13xx

Code Explanation Action to Take

1329 A request was made to Check the input parameters to the
resume an environment supervisor. Then check program logic
that was not in a and rerun the application. If the error
suspended state. persists, follow local procedures and

have the data available from "Return
Code Error Steps" 1, 2, 3b, 4, 5, and 6
on page H-57.

132D A request was made to Check the input parameters to the
create an environment, supervisor. Then check prpgram logic
but the requester is in a and rerun the application. If the error
stoppable environment. persists, follow local procedures and

have the data available from "Return
Code Error Steps" 1,2, 3c, 4, 5, and 6 on
page H-57.

1332 A request was made to Check the input parameters to the
stop a nonstoppable supervisor. Then check program logic
system environment. and rerun the application. If the error

persists, follow local procedures and
have the data available from "Return
Code Error Steps" 1, 2, 3a, 4, 5, and 6
on page H-57.

1333 A request to move a Check the input parameters to the
resource to the top of a supervisor. Then check program logic
resource chain or to and rerun the application. If the error
delete a resource from a persists, follow local procedures and
resource chain failed have the data available from "Return
because the resource Code Error Steps" 1, 2, 3c, 4, 5, and 6 on
specified could not be page H-57.
found.

1340 A previous request to Check the input parameters to the
delete the specified supervisor. Then check program logic
environment using and rerun the application. If the error
INDSPLIT or persists, follow local procedures and
INDMERGE is already have the data available from "Return
in progress. Code Error Steps" 1, 2, 3a, 4, 5, and 6

on page H-57.

H-14

Environment Manager Services Return Codes - 13xx

Code

1342

1343

Explanation

A previous request to
stop an environment
made through the API by
using ALT-CTRL-DEL or
by a previous request to
delete an environment
(using INDSPLIT or
INDMERGE) failed with
a return code of X'1327',
indicating a time-out has
occurred. That request
is now completed, and
the environment is now
available for reuse.

A request to stop, reset,
suspend, or resume an
environment failed
because the request type
field in the parameter
list was not a valid
request type.

Action to Take

Make the window active that
previously returned the error, and
begin another application.

Check the input parameters to the
supervisor, including the values in the
parameter list. Then check program
logic and rerun the application. If the
error persists, follow local procedures
and have the data available from
"Return Code Error Steps" 1, 2, 3c, 4, 5
and 6 on page H-57.

Appendix H. Return Codes H-15

DOS Subsystem Services Return Codes - 22xx or 23xx

Function ID X'22' or X'23': DOS Subsystem Services
Return Codes

H-16

Return codes beginning with function code X'22' or X'23' indicate that an
error occurred during DOS subsystem operations, except return code
X'2200', which indicates that the requested DOS subsystem service was
completed successfully. In some cases, the return code indicates that the
error was generated by DOS when the DOS subsystem issued a DOS
function call.

Code Explanation Action to Take

2200 The requested DOS None.
subsystem service was
completed successfully.

2201 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2301 X'21' function call, and Steps" 1, 2,4, 5, and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
1. INVALID FUNCTION
NUMBER.

2202 The DOS subsystem Place the file that could not be found
or issued a DOS interrupt on the disk being used and retry the

2302 X'21' function call, and operation. If the error persists, follow
DOS failed the request local procedures and have the data
with DOS ERROR CODE available from "Return Code Error
2. FILE NOT FOUND. Steps" 1, 2, 4, 5, and 6 on page H-57.

2203 The DOS subsystem Place a disk in the drive with the
or issued a DOS interrupt correct path or create the path on the

2303 X'21' function call, and disk and then retry the operation. If the
DOS failed the request error persists, follow local procedures
with DOS ERROR CODE and have the data available from
3. PATH NOT FOUND. "Return Code Error Steps" 1, 2, 4, 5,

and 6 on page H-57.

2204 The DOS subsystem Create a CONFIG.SYS on the IPL disk
or issued a DOS interrupt or edit the existing one and increase

2304 X'21' function call, and the number of file handles. The
DOS failed the request command in the file is FILES = xx,
with DOS ERROR CODE where xx is the number of file handles.
4. TOO MANY OPEN See the DOS manual for details on
FILES (NO HANDLES setting up your CONFIG.SYS file. If the
LEFT). error persists, follow local procedures

and have the data available from
"Return Code Error Steps" 1, 2, 4, 5,
and 6 on page H-57.

2205 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2305 X'21' function call, and Steps" 1, 2 4, 5, and 6 on page H-57.his
DOS failed the request chapter.
with DOS ERROR CODE
5. ACCESS DENIED.

DOS Subsystem Services Return Codes - 22xx or 23xx

Code Explanation Action to Take

2206 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2306 X'2I' function call, and Steps" 1, 2 4, 5, and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
6. INVALID HANDLE.

2207 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2307 X'2I' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
7. MEMORY CONTROL
BLOCKS DESTROYED.

2208 The DOS subsystem Make more storage available and retry
or issued a DOS interrupt the request. If it appears that there

2308 X'2I' function call, and should have been enough storage,
DOS failed the request follow local procedures and have the
with DOS ERROR CODE data available from "Return Code Error
8. INSUFFICIENT Steps" 1, 2, 4, 5, and 6 on page H-57.
MEMORY.

2209 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2309 X'2I' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
9. INV ALID MEMORY
BLOCK ADDRESS.

220A The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

230A X'2I' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
10. INVALID
ENVIRONMENT.

220B The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

230B X'2I' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
11. INVALID FORMAT.

220C The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

230C X'2I' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
12. INV ALID ACCESS
CODE.

Appendix H. Return Codes H-17

DOS Subsystem Services Return Codes - 22xx or 23xx

Code Explanation Action to Take

220D The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

230D X'21' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request chapter.
with DOS ERROR CODE
13. INVALID DATA.

220F The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

230F X'21' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
15. INVALID DRIVE
WAS SPECIFIED.

2210 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2310 X'21' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
16. ATTEMPT TO
REMOVE THE
CURRENT
DIRECTORY.

2211 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2311 X'21' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
17. NOT SAME DEVICE.

2212 The DOS subsystem Follow local procedures and have the
or issued a DOS interrupt data available from "Return Code Error

2312 X'21' function call, and Steps" 1,2,4, 5 and 6 on page H-57.
DOS failed the request
with DOS ERROR CODE
18. NO MORE FILES.

2213 The DOS subsystem Follow local procedures and have the
thru issued a DOS interrupt data available from "Return Code Error
2253 X'21' function call, and Steps" 1, 2, 4, 5 and 6 on page H-57.
or DOS failed the request

2313 with a DOS ERROR
thru CODE nn, where nn is in
2353 hexadecimal.

H-18

DOS Subsystem Services Return Codes - 22xx or 23xx

Code

22E2

22E3

22E4

Explanation

An error occurred in the
DOS subsystem. A Split
or Merge command was
rejected, because it was
issued for an
environment that does
not exist.

An error occurred in the
DOS subsystem. A Split
or Merge command was
rejected, because it was
issued for an
environment that is
being terminated.

An error occurred in the
DOS subsystem when the
DOS environment task
received an invalid
request. The only valid
requests are "Create"
and "Clean Up."

Action to Take

Issue a Display Environment
(INDDENV *) command to see what
environments do exist. If it appears
that the Split command should have
been completed, take a system dump by
pressing Alt + Ctrl + Test (Alt + Ctrl
+ Scroll Lock on an enhanced PC
keyboard, Alt + Ctrl + {+} on an XT
or AT keyboard), then follow your local
procedures and have available the
dump and the data from "Return Code
Error Steps" 2 and 6 on page H-57.

Wait until the original Split command
is completed. If it hangs, take a system
dump by pressing Alt + Ctrl + Test
(Alt + Ctrl + Scroll Lock on an
enhanced PC keyboard, Alt + Ctrl +
{ +} on an XT or AT keyboard), then
follow your local procedures and have
available the dump and the data from
"Return Code Error Steps" 2 and 6 on
page H-57.

If the problem can be re-created, follow
your local procedures and have
available the dump and the data from
"Return Code Error Steps" 1, 2, 3c, 4, 5,
and 6 on page H-57.

If the problem cannot be re-created,
take a system dump by pressing Alt +
Ctrl + Test (Alt + Ctrl + Scroll Lock
on an enhanced PC keyboard, Alt +
Ctrl + {+} on an XT or AT keyboard),
then follow your local procedures and
have available the dump and the data
from "Return Code Error Steps" 2 and 6
on page H-57.

Appendix H. Return Codes H-19

DOS Subsystem Services Return Codes - 22xx or 23xx

Code Explanation Action to Take

22E5 An error occurred in the Ensure that the parameter list passed to
DOS subsystem when the the DOS environment task has a zero
DOS environment task return code field. If the problem
received an invalid persists, follow your local procedures
parameter list. The and have available the dump and the
return code field of the data from "Return Code Error Steps" 1,
input parameter list was 2, 3c, 4, 5, and 6 on page H-57.
nonzero.

If the problem cannot be recreated, take
a system dump by pressing Alt + Ctrl
+ Test (Alt + Ctrl + Scroll Lock on
an enhanced PC keyboard, Alt + Ctrl
+ {+} on an XT or AT keyboard), then
follow your local procedures and have
available the dump and the data from
"Return Code Error Steps" 2 and 6 on
page H-57.

22E6 An error occurred in the Ensure the parameter list passed to
DOS subsystem when the DOS Query Environment has a zero
DOS Query Environment return code field. If the problem
request received an persists, follow your local procedures
invalid parameter list. and have available the dump and the
The return code field of data from "Return Code Error Steps" 1,
the input parameter list 2, 3c, 4, 5, and 6 on page H-57.
was nonzero.

If the problem cannot be recreated, take
a system dump by pressing Alt + Ctrl
+ Test (Alt + Ctrl + Scroll Lock on
an enhanced PC keyboard, Alt + Ctrl
+ {+} on an XT or AT keyboard), then
follow your local procedures and have
available the dump and the data from
"Return Code Error Steps" 2 and 6 on
page H-57.

22E7 A request was made with Issue a Display Environment
an invalid environment (INDDENV) command to see what
ID. A DOS Query environments do exist. If it seems that
Environment request the Environment request should have
was issued for an been completed successfully, follow
environment that does local procedures and have available the
not exist, or a memory dump and the data from "Return Code
request was issued for an Error Steps" 1, 2, 3c, 4, 5, and 6 on page
invalid environment. H-57.

22E8 An error occurred in the This return code is always accompanied
DOS subsystem. A by a second return code (XXXX) that
Create Environment explains why the Create Environment
request was issued that request failed. Look up the second
was not completed. return code and take the action

recommended for that return code.

H-20

DOS Subsystem Services Return Codes - 22xx or 23xx

Code

23FD

23FE

23FF

Explanation

A request was made
using the Asynchronous
DOS Function Request
service without a prior
request to connect for
asynchronous DOS
function requests.

The request to the DOS
subsystem to add a
device to the DOS
subsystem redirection
function failed.

The DOS subsystem
encountered an error
while processing a
request for a personal
computer session for
which there is no way to
report the error to the
application. The
environment in which
the application was
running stopped.

Action to Take

Request the Asynchronous DOS
Function Request service with a
request type of X'OO' to connect for
asynchronous DOS function requests.

Run fewer programs that are adding
entries into the redirection tables.
Re-IPL to reset the DOS subsystem and
retry the request. If the error persists,
follow local procedures and have the
data available from "Return Code Error
Steps" 1, 2, 4, 5, and 6 on page H-57.

This return code is always accompanied
by a second return code (XXXX) that
explains what the initial failure was.
Look up the second return code and
take the action recommended for that
return code. Correct the problem in the
application or system and retry the
application. If the error persists, follow
local procedures and have the data
available from "Return Code Error
Steps" 1, 2, 4, 5, and 6 on page H-57.

Appendix H. Return Codes H-21

System Loader Return Codes - 24xx or 25xx

Function IDs X'24' or X'25': System Loader Retu~rn
Codes

H-22

Return codes beginning with function code X'24' or X'25' indicate that an
error occurred during system loader operations.

Code

2404

2405

2406

Explanation

A request was made to
the loader for storage to
be allocated from the
XMA card and assigned
to a bank. This return
code indicates there were
no available banks.

A request was made to
the loader for storage to
be allocated from the
XMA card and assigned
to a bank. This return
code indicates that the
requested storage size
was invalid.

A request was made to
the loader for storage to
be allocated from the
XMA card and assigned
to a bank. This return
code indicates that there
was not enough storage
available on the XMA
card.

A 22E8 preceding the
2406 return code
indicates that the
workstation program ran
out of XMA storage
while trying to create a
PC session. For
example, you may
receive 22E82406 if you
customized the system
for a 2-megabyte card
and ran the system with
a I-megabyte card; or if
you customized for
multiple PC sessions,
there may not be enough
storage for the last
session if you have
device drivers and user
system extensions.

Action to Take

Follow local procedures and have the
data available from "Return Code Error
Steps" 1, 2, 4, and 7 on page H-57.

Follow local procedures and have the
data available from "Return Code Error
Steps" 1, 2, 4, and 7 on page H-57.

Follow local procedures and have the
data available from "Return Code Error
Steps" 1,2,4, and 7 on page H-57.

Recustomize the system, referring to
the User's Guide (Setting Up and
Learning the Workstation Program) to
calculate the session sizes.

System Loader Return Codes - 24xx or 25xx

Code Explanation Action to Take

241B A request was made to Follow local procedures and have the
the loader for storage on data available from "Return Code Error
the XMA card, and there Steps" 1,2,4, and 7 on page H-57.
was not enough storage
available for the request.

2501 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5, and 6 on page H-57.
request with DOS
ERROR CODE 1.
INV ALID FUNCTION
NUMBER.

2502 The loader issued a DOS Place the file that could not be found
interrupt X'21' function on the disk being used and retry the
call, and DOS failed the operation. If the error persists, follow
request with DOS local procedures and have the data
ERROR CODE 2. FILE available from "Return Code Error
NOT FOUND. Steps" 1, 2, 4, 5, and 6 on page H-57.

2503 The loader issued a DOS Place a disk in the drive with the
interrupt X'21' function correct path or create the path on the
call, and DOS failed the disk and then retry the operation. If the
request with DOS error persists, follow local procedures
ERROR CODE 3. PATH and have the data available from
NOT FOUND. "Return Code Error Steps" 1, 2, 4, 5,

and 6 on page H-57.

2504 The loader issued a DOS Create a CONFIG.SYS on the IPL disk
interrupt X'21' function or edit the existing one and increase
call, and DOS failed the the number of file handles. The
request with DOS command in the file is FILES = xx,
ERROR CODE 4. TOO where xx is the number of file handles.
MANY OPEN FILES See the DOS manual for details on
(NO HANDLES LEFT). setting up your CONFIG.SYS file. If the

error persists, follow local procedures
and have the data available from
"Return Code Error Steps" 1, 2, 4, 5,
and 6 on page H-57.

2505 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2 4, 5, and 6 on page H-57.his
request with DOS chapter.
ERROR CODE 5.
ACCESS DENIED.

2506 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2 4, 5, and 6 on page H-57.
request with DOS
ERROR CODE 6.
INV ALID HANDLE.

Appendix H. Return Codes H -23

System Loader Return Codes - 24xx or 25xx

Code Explanation Action to Take

2507 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 7.
MEMORY CONTROL
BLOCKS DESTROYED.

2508 The loader issued a DOS Make more storage available and retry
interrupt X'21' function the request. If it appears that there
call, and DOS failed the should have been enough storage,
request with DOS follow local procedures and have the
ERROR CODE 8. data available from "Return Code Error
INSUFFICIENT Steps" 1, 2, 4, 5, and 6 on page H-57.
MEMORY.

2509 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 9.
INVALID MEMORY
BLOCK ADDRESS.

250A The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 10.
INVALID
ENVIRONMENT.

250B The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE II.
INVALID FORMAT.

250C The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 12.
INV ALID ACCESS
CODE.

250D The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 13.
INVALID DATA.

H-24

System Loader Return Codes - 24xx or 25xx

Code Explanation Action to Take

250F The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 15.
INV ALID DRIVE WAS
SPECIFIED.

2510 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 16.
ATTEMPT TO REMOVE
THE CURRENT
DIRECTORY.

2511 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 17. NOT
SAME DEVICE.

2512 The loader issued a DOS Follow local procedures and have the
interrupt X'21' function data available from "Return Code Error
call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.
request with DOS
ERROR CODE 18. NO
MORE FILES.

2513 The loader issued a DOS Follow local procedures and have the
thru interrupt X'21' function data available from "Return Code Error
2553 call, and DOS failed the Steps" 1, 2, 4, 5 and 6 on page H-57.

request with a DOS
ERROR CODE nn, where
nn is in hexadecimal.

Appendix H. Return Codes H -25

DFT Operations Return Codes - 30xx

Function ID X'30': DFT Operations Return Codes

H-26

Return codes beginning with function code X'30' indicate that an error
occurred during DFT operations, except return code X'3000', which
indicates that the requested DFT service was completed successfully.

If these return codes were issued because of some API interaction, they will
be followed by another return code that better describes the problem and
the best action to take; otherwise, follow the "Action to Take" information
provided with the return code.

Code

3000

3001

30C7

30C8

30C9

30CA

30CB

30CC

Explana tion

The requested DFT
service was completed
successfully.

An error occurred during
DFT operations during
an attempt to sound a
bell alarm.

An error occurred during
DFT initialization
operations.

An error occurred during
DFT operations because
a nonresettable machine
check was received.

An error occurred during
DFT error-handling
operations.

An error occurred during
DFT error-handling
operations.

An error occurred during
DFT error-handling
operations.

An error occurred during
DFT operations while
the screen size was being
changed.

Action to Take

None.

None.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1,2,5,6, and 7 on page
H-57, or re-IPL the system.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

Take a system dump, follow local
procedures, and have the data available
from "Return Code Error Steps" 1, 2, 5,
6, and 7 on page H-57, or re-IPL the
system.

DFT Operations Return Codes - 30xx

Code Explanation Action to Take

30CE An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the active logical Error Steps" 1, 2, 5, 6, and 7 on page
terminal session was H-57, or re-IPL the system.
being found.

30CF An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the active logical Error Steps" 1, 2, 5, 6, and 7 on page
terminal session was H-57, or re-IPL the system.
being found.

30DO An error occurred during Follow your local procedures, and have
DFT initialization the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30D1 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the DFT environment Error Steps" 1, 2, 5, 6, and 7 on page
was being reset. H-57, or re-IPL the system.

30D2 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
keystroking task was Error Steps" 1, 2, 5, 6, and 7 on page
being reinitialized for H-57, or re-IPL the system.
any of the configured
logical terminals.

30D3 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
DFT inbound data task Error Steps" 1, 2, 5, 6, and 7 on page
was being reinitialized H-57, or re-IPL the system.
for any of the configured
logical terminals.

30D4 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
DFT outbound data task Error Steps" 1, 2, 5, 6, and 7 on page
was being reinitialized H -57, or re-IPL the system.
for any of the configured
logical terminals.

30D5 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
DFT link task was being Error Steps" 1, 2, 5, 6, and 7 on page
reini tialized. H-57, or re-IPL the system.

30D6 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
window was being Error Steps" 1, 2, 5, 6, and 7 on page
defined for each H-57, or re-IPL the system.
customized logical
terminal.

Appendix H. Return Codes H-27

DFT Operations Return Codes - 30xx

Code Explanation Action to Take

30D7 An error occurred during Follow your local procedures, and have
DFT initialization the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30D8 An error occurred during Follow your local procedures, and have
DFT initialization the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H -57, or re-IPL the system.

30D9 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
task was being linked to. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30DA An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the keyboard was being Error Steps" 1, 2, 5, 6, and 7 on page
connected for a logical H -57, or re-IPL the system.
terminal.

30DB An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the keyboard connection Error Steps" 1, 2, 5, 6, and 7 on page
was being made. H-57, or re-IPL the system.

30DC An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
keystroke was received Error Steps" 1, 2, 5, 6, and 7 on page
from a logical terminal H-57. Record the number of logical
keyboard. terminals you are operating and the

number of the logical terminal into
which you were keystroking.

30DD An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the keystroke was being Error Steps" 1, 2, 5, 6, and 7 on page
received. H-57. Then record the number of

logical terminals with which you are
operating and the number of the logical
terminal into which you were
keystroking.

30DE An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30DF An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

H-28

DFT Operations Return Codes - 30xx

Code Explanation Action to Take

30EO An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57. Record the number of logical
terminals with .which you are operating
and the number of the logical terminal
into which you were keystroking.

30E1 An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30E2 An error occurred during Follow your local procedures, and have
DFT inbound operations. the data available from "Return Code

Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

30E3 An error occurred during Follow your local procedures, and have
DFT inbound operations. the data available from "Return Code

Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

30E4 An error occurred during Follow your local procedures, and have
DFT inbound operations. the data available from "Return Code

Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

30E5 An error occurred during Follow your local procedures, and have
DFT outbound the data available from "Return Code
operations. Error Steps" 1,2,5,6, and 7 on page

H-57, or re-IPL the system.

30E6 An error occurred during Follow your local procedures, and have
DFT outbound the data available from "Return Code
operations. Error Steps" 1,2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30E7 An error occurred during Follow your local procedures, and have
DFT outbound the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30E8 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
task was being linked to. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30E9 An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30EA An error occurred during Follow your local procedures, and have
DFT inbound operations. the data available from "Return Code

Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

Appendix H. Return Codes H-29

DFT Operations Return Codes - 30xx

Code Explanation Action to Take

30EB An error occurred during Follow your local procedures, and have
DFT outbound the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30EC An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30ED An error occurred during Follow your local procedures, and have
DFT inbound operations. the data available from "Return Code

Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL the system.

30EE An error occurred during Follow your local procedures, and have
DFT outbound the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30EF An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1,2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30FO An error occurred during Follow your local procedures, and have
DFT keystroke the data available from "Return Code
operations. Error Steps" 1, 2, 5, 6, and 7 on page

H-57, or re-IPL the system.

30Fl An error occurred during Follow your local procedures, and have
DFT operations; a the data available from "Return Code
logical terminal number Error Steps" 1, 2, 5, 6, and 7 on page
cannot be found. H-57, or re-IPL the system.

30F2 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
7 -color mode was being Error Steps" 1, 2, 5, 6, and 7 on page
requested. H-57, or re-IPL the system.

30F3 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the cursor was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

30F4 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
4-color mode was being Error Steps" 1, 2, 5, 6, and 7 on page
requested. H-57, or re-IPL the system.

30F5 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the cursor was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

H-30

DFT Operations Return Codes - 30xx

Code Explanation Action to Take

30F6 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the OIA was being Error Steps" 1,2,5,6, and 7 on page
drawn. H-57, or re-IPL the system.

30F7 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the OIA was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

30F8 An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the cursor was being Error Steps" 1, 2, 5,6, and 7 on page
drawn. H-57, or re-IPL the system.

30F9 An error occurred during Follow your local procedures, and have
DFT operations while a the data available from "Return Code
character was being Error Steps" 1, 2, 5,6, and 7 on page
drawn. H-57, or re-IPL the system.

30FA An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the cursor was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

30FB An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the cursor was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

30FC An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the screen was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

30FD An error occurred during Follow your local procedures, and have
DFT operations while the data available from "Return Code
the screen was being Error Steps" 1, 2, 5, 6, and 7 on page
drawn. H-57, or re-IPL the system.

Appendix H. Return Codes H-31

Host Interactive Services Return Codes - 32xx

Function ID X'32': Host Interactive Services Return
Codes

H-32

Return codes beginning with function code X'32' indicate that an error
occurred during host interactive services operations, except return code
X'3200', which indicates that the requested host interactive service was
completed successfully.

Code

3200

3201

3202

3204

3208

320C

3210

Explana tion

The request was
completed successfully.

The host session is not
active.

There was an invalid
service request
parameter.

The session is not
connected.

A system error occurred.

Byte 0 of the parameter
list was nonzero on
request.

Three requesters (the
limit) are already
connected.

The message you sent
was rejected.

Action to Take

None.

The port is not geared for the host
session that the application attempted
to connect to. Do not attempt to
connect to a host session that you have
no attachment for.

Check the host session ID, fixed-length
queue ID, and task ID. The task ID
must be the same one specified on the
connect request.

Connect to the host interactive services
and retry.

Follow local procedures and have the
data available from "Return Code Error
Steps" 1, 2, 4, 5, and 6 on page H-57.

Set byte 0 of the parameter list to zero
and retry.

No more than three applications may
connect to a host session at one time.

The device is not in a state to receive
inbound transmissions. If the host
keyboard is inhibited, pressing Clear or
Reset may allow the inbound to work
on retry.

For destination/origin, the host
application may not have indicated that
it wants a reply from the personal
computer program. If this does not
seem to be the case, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2, 4,
5, and 6 at the end of this chapter.

CUT Return Codes - 46xx

Function ID X'46': CUT Return Codes

Return codes beginning with function code X'46' indicate that an error
occurred during CUT operations.

These return codes will be followed by another return code that better
describes the problem and the best action to take. Otherwise, follow the
"Action to Take" information provided with the return code.

Code

4601
thru
4603

4604
thru
4607

4608
thru
4611

4612

4613
thru
4616

Explanation

An error occurred during
the CUT second-level
interrupt handler task.

An error occurred during
the CUT hardware
initialization task.

An error occurred during
the CUT keystroke
handling task.

An error occurred during
the CUT keystroke
transmit task.

An error occurred during
the CUT outbound
control task.

Action to Take

Re-IPL the system or take a system
dump. Then follow local procedures and
have the dump available as well as the
data from "Return Code Error Steps" 1,
2, and 6 on page H-57.

Re-IPL the system or take a system
dump. Then follow local procedures and
have available the dump and the data
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

Re-IPL the system or take a system
dump. Then follow local procedures and
have available the dump and the data
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

Re-IPL the system or take a system
dump. Then follow local procedures and
have available the dump and the data
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

Re-IPL the system or take a system
dump. Then follow local procedures and
have available the dump and the data
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

Appendix H. Return Codes H -33

Notepad Operations Return Codes - 51xx

Function ID X'51': Notepad Operations Return Codes

H-34

Return codes beginning with function code X'51' indicate that an error
occurred during notepad operations, except return code X'5100', which
indicates that the requested notepad service was completed successfully.

Code

5100

5101

5102

5103

5104

Explanation

The requested notepad
service was completed
successfully.

The notepad cannot
connect to the keyboard.

The notepad received an
error indication on a
READ KEYBOARD
operation.

The notepad received an
error indication while
attempting a DRAW
operation.

The notepad received an
error indication during
autokeyoperations.

Action to Take

None.

Refer to keyboard problem
determination in the Problem
Determination Guide and Reference.

Refer to keyboard problem
determination in the Problem
Determination Guide and Reference.

This error is generally caused by the
incorrect insertion of a patch or code
fix. To correct the problem, remove the
last series of changes to the
Workstation Program. If this does not
correct the problem, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

This error generally occurs by an
incorrect insertion of a patch or code
fix. To correct the problem, remove the
last series of changes to the
Workstation Program. If this does not
correct the problem, follow local
procedures and have the data available
from "Return Code Error Steps" 1, 2,
and 6 on page H-57.

Keyboard Services Return Codes - 62xx

Function ID X'62': Keyboard Services Return Codes

Return codes beginning with function code X'62' indicate that an error
occurred during keyboard operations, except return code X'6200', which
indicates that the requested keyboard service was completed successfully.

Code

6200

6201

6202

Explanation

The requested service
was completed
successfully.

An invalid intercept
option was specified on
the Connect to Keyboard
service request.
Connectors that wish to
do READs must set one
of the intercept option
bits on and specify an
input queue ID. The first
connector to a session
input must specify
"intercept all" and must
provide an input queue
ID. Others must specify
"both" or "neither."

An error occurred during
input operations. An
invalid session ID was
found in bytes 2 and 3 of
the parameter list, or the
length specified in the
list of keystrokes is
greater than 255.

Action to Take

None.

If the user is doing a READ, disconnect
and reconnect using the correct
intercept option bit and an input queue.
If the user is connecting, ensure that
either both or neither of the above
inputs is in the parameter list.

This error can also occur if the user is
trying to connect to a host session that
has not yet received a power-on reset
from the control unit. (Missing a
power-on reset can result from an
inoperative control unit, a line
configuration mismatch between the
control unit and the workstation, or a
disconnected coaxial cable.) Byte 9 of
the Connect to Keyboard parameter list
containing a X'FF' is a further
indication of this and should be treated
as an abnormal condition. Under these
conditions, the session has not yet
completed preparations to accept
keystrokes.

Use the session information services to
determine the correct session ID and
reissue the request, or correct the
length of the list of keystrokes to be
less than or equal to 255.

Appendix H. Return Codes H -35

Keyboard Services Return Codes - 62xx

H-36

Code Explanation

6204

6209

620C

6210

On a Connect request,
two connections are
already made to the
requested session ID. No
more connections are
allowed until one of
them disconnects first.

On all other keyboard
API requests, you are
not connected to the
session whose ID is in
bytes 2 and 3 of the
parameter list.

On a Read Keystroke
request with a No Wait
option, there is no
keystroke available on
the queue.

A nonzero return code
was passed in byte 0 of
the parameter list when
the service was
requested.

An error occurred during
input operations. On a
Write Keystroke request,
the last key sent was
rejected either because it
was an invalid scan code
for the session to which
it was sent, or an inhibit
condition was present in
that session.

Action to Take

If your program previously did a
Connect, you are still connected. You
must issue a Disconnect before
reconnecting. Otherwise, if your
program is not one of those connected,
wait and try again later or notify the
terminal operator to determine which
other program is connected so it may be
terminated, allowing yours to run.

Determine the correct session ID to use
and ensure that Connect is issued
before any other API function is used.

Poll again for a keystroke, or continue
with other processing.

Set byte 0 of the parameter list to zero
and retry the request.

Determine whether the last key sent is
valid for the target session (for
example, the ESC key is invalid for a
DFT session or a PAl key has no
meaning to a personal computer
session). Other responses depend on
the indications present in the target
session (for example, if a key was sent
and entered into a protected field of a
DFT session, a reset key must be sent
to clear the inhibit condition before any
more keystrokes will be accepted by
that session).

Code

6212

6214

Keyboard Services Return Codes - 62xx

Explanation

On a Connect operation,
the Connect has been
rejected because an
autokey record is in
progress.

On a Write Key
operation, the last key
sent was detected as an
AID key. If the user is
sending a list of keys,
the processing of that
list ended with that key.

Note: This does not
mean that an
error occurred.

On a Connect operation,
the connect was rejected
because an autokey
playback is in progress.

Action to Take

Notify the terminal operator that the
autokey operation must be terminated
before this or any keyboard API
function can be processed.

If the user is processing a list of keys,
determine how many of them were sent
by looking at byte 7 of the returned
parameter list. When the session is
able to receive more keys, send the
remainder.

Notify the terminal operator that the
autokey operation must be terminated
before this or any other keyboard API
function can be processed.

Appendix H. Return Codes H -3 7

Window Management Services Return Codes - 63xx

Function ID X'63': Window Management Services
Return Codes

H-38

Return codes beginning with function code X'63' indicate that an error
occurred during work station control operations, except return code
X'6300', which indicates that the requested window management service
was completed successfully.

Code

6300

6301

6302

6303

6304

6305

Explanation

The requested service
was completed
successfully.

There is no space for
additional windows.

An invalid session ID
was specified. The ID did
not match the one
specified on the Connect
to Work Station Control
request. If the function
that failed was the
connect, then the session
ID specified is not within
the valid range of
session IDs.

There is not enough
storage to relocate
initialization code.

The caller is not
connected to the work
station control session.

The work station control
session is already in use
by one of the following:

• Another application
program

• The user (by pressing
the WSCRTL key)

• The workstation
program.

The specified window ID
already exists on the
specified screen ID.

Action to Take

None.

To add a window, a window must first
be deleted from this or another screen.

Use the session ID that was specified on
the Connect to Work Station Control
service request to perform the function.
If this return code occurs during the
connect process, then the proper
session ID for the session is needed.

Additional storage must be obtained in
order to load the module.

Connect to the workstation control
session before attempting to perform a
function.

Try to connect to the workstation
control session when it is available.

Either delete the desired window from
the screen (so it may be put back later)
or specify another window ID to be
added.

Window Management Services Return Codes - 63xx

Code

6306

6307

6309

630A

630B

630C

630D

630E

630F

6310

Explanation

An invalid screen ID was
specified. The desired
screen either does not
exist or cannot be used
for the requested
function.

The specified window ID
was not found on the
specified screen ID.

The specified window ID
was not found on Screen
O.

The user attempted to
hide a window when it is
the only window on the
screen.

All windows on the
screen are hidden; the
next window on the
chain will be unhidden.

A nonzero return code
was passed in byte 0 of
the parameter list when
the request was issued.

The specified screen ID
is not that of the active
screen.

No windows exist on the
specified screen ID.

Colors cannot be set on
for a PC session.

Either the row or column
values sent caused the
window not to fit fully
on the screen or
presentation space, or
one or both of the values
were equal to zero.

Action to Take

Specify a valid ASCII screen ID to the
function.

Specify a valid ASCII ID of a window
on a screen to perform the function.

Specify a window ID of a window that
exists on Screen O.

Add at least a second window before
attempting to hide a window.

None.

Set byte 0 of the parameter list to zero
and retry the request.

Specify the ID of the active screen or
make the desired screen active to
perform the function.

The function cannot be performed when
no windows exist on the requested
screen.

Provide a non-PC window ID to set
colors.

This is an informational return code.
The window has been placed on the
screen but has been modified to allow it
to fit on the screen with correct values.
The changes will be sent back via the
parameter list.

Appendix H. Return Codes H -39

Window Management Services Return Codes - 63xx

Code

6311

6312

H-40

Explanation

Some or all of the values
sent in the parameter list
were either not correct
or caused the window
not to fit fully on the
screen or presentation
space.

The foreground and
background colors are
the same.

Action to Take

This is an informational return code.
The window has been placed on the
screen but has been modified to allow it
to fit on the screen with correct values.
The changes will be sent back to the
calling program via the parameter list.

This is an informational return code.
You should change colors as desired.

Copy Services Return Codes - 64xx

Function ID X'64': Copy Services Return Codes

Return codes beginning with function code X'64' indicate that an error
occurred during copy operations, except return code X'6400', which
indicates that the requested copy service was completed successfully.

Code

6400

6401

6402

6403

6404

6405

6406

6407

Explanation

The requested copy
service was completed
successfully.

The selected source is
not allowed. It is a
personal computer
window in graphics
mode.

An invalid session ID
was passed on request to
the Connect or
Disconnect for Copy to
Personal Computer
Session services. The
specified session is not a
personal computer
session.

Input is inhibited in the
target. A copy operation
was attempted while the
keyboard was in an
input-inhibited state for
the selected target
window.

There is not enough
storage to relocate the
initialization code.

Warning: There is an
overlapping source and
target area. The copy
was successful.

The source definition in
the parameter list is
missing a parameter or
has invalid information.

The target definition in
the parameter list is
missing a parameter or
has invalid information.

Action to Take

None.

Select a different source.

Correct the session ID and retry.

1. Wait for the keyboard to "unlock."
2. Try the copy again.
3. Verify that the host is operating. If

the keyboard remains locked, refer
to keyboard problem determination
in the Problem Determination Guide
and Reference.

Additional storage must be obtained in
order to load this module.

Verify the target area.

Correct the source definition and retry
the copy.

Correct the target definition and retry
the copy.

Appendix H. Return Codes H -41

Copy Services Return Codes - 64xx

Code Explanation Action to Take

6409 Warning: The source Verify the target area.
and target are not the
same size. If the source
is larger than the target,
truncation occurs. If the
source is smaller than
the target, the target
area is padded with
blanks and copy.

640C The return code passed Set the return code field in the
in the parameter list on parameter list to zero and retry.
request was not zero.

640D The selected target is not Select a different target.
allowed. Either the
selected target is a PC
window that did not do a
copy connect first, or the
PC target is in graphics
mode.

640E The target window is Redefine the target area.
protected.

640F The copying of field Attach the window to 3270 keystroking
attributes is not allowed or remove the bit in the parameter list
unless the target window to copy field attributes or make the
is a PC window that is target a PC buffer.
attached to 3270
keystroking or the target
is a PC buffer form.

H-42

Draw Service Return Codes - 67xx

Function ID X'67': Draw Service Return Codes

Return codes beginning with function code X'67' indicate that an error
occurred during draw operations, except return code X'6700', which
indicates that the requested draw service was completed successfully.

Code Explanation

6700 The draw request was
completed successfully.

6703 There is not enough
storage to relocate
initialization code.

6708 The parameter list
definition has a missing

. parameter on the
request.

670C The return code passed
in the parameter list on
request was not zero.

Action to Take

None.

Obtain additional storage in order to
load the module.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL.

Follow your local procedures, and have
the data available from "Return Code
Error Steps" 1, 2, 5, 6, and 7 on page
H-57, or re-IPL.

Appendix H. Return Codes H -43

Presentation Space Services Return Codes - 69xx

Function ID X'69': Presentation Space Services Return
Codes

H-44

Return codes beginning with function code X'69' indicate that an error
occurred during presentation space operations, except return code X'6900',
which indicates that the requested presentation space management service
was completed successfully.

Code

6900

6902

6903

6906

6907

6909

690A

690B

Explanation

The requested
presentation space
management service was
completed successfully.

The specified session ID
is unknown.

The specified offset for
the display is not within
the address of the
presentation space.

An invalid cursor type
was specified in the
parameter list for the
Display Cursor service
request.

An invalid cursor
address was specified in
the parameter list for the
Display Cursor service
request.

The specified length is
invalid in the parameter
list for the Display
Presentation Space
service request.

An invalid number of
commands are in the
presentation space data
stream.

An invalid number of
rows/columns are in the
presentation space data
stream for the Define
Presentation Space
service request.

Action to Take

None.

The Define Presentation Space function
will return the session ID to be used
with all subsequent requests concerning
this new presentation space. Ensure
that the specified session ID is one
returned from the Define Presentation
Space request.

Correct the offset supplied in the
parameter list and retry.

Correct the cursor type and retry.

Correct the cursor address and retry.

Correct the length and retry.

Correct the number of commands in the
header of the presentation space data
stream and retry.

Correct the row/column information in
command type 1 of the presentation
space data stream and retry.

Presentation Space Services Return Codes - 69xx

Code Explanation Action to Take

690C Byte 0 of the parameter Set byte 0 of the parameter list to zero
list is nonzero on and retry.
request.

690D There is invalid data in Correct the presentation space type and
the Set Presentation retry.
Space Type data stream
command of the Define
Presentation Space
service request.

690F A command that had no The address supplied on command 03 or
data was found in the command 04 was zero. Correct and
presentation space data retry.
stream of the Define
Presentation Space
service request.

6910 A Delete Presentation A Delete Presentation Space request
Space request was issued can only be issued for a presentation
for a session ID that is space that was previously defined by
an initial resource (that the Define Presentation Space request.
is, a configured personal
computer session).

6911 One or more of the input Review input parameters and ensure
parameters is not valid. they are valid.

6913 The address of the work Correct the work area segment address
area on request to the and retry the request.
Define Presentation
Space service was zero.

6914 The Define Presentation Another Define Presentation Space
Space service was request cannot be completed until an
requested, and the existing presentation space is deleted.
maximum number of PC
presentation spaces has
already been created.

6915 The Set Presentation Correct the presentation space data
Space Buffer command stream to include command 03 and
was missing from the retry.
presentation space data
stream of the Define
Presentation Space
service request.

6918 The Set Presentation Correct the presentation space data
Space Size command was stream to include command 01 and
missing from the retry.
presentation space data
stream of the Define
Presentation Space
service request.

Appendix H. Return Codes H -45

Presentation Space Services Return Codes - 69xx

H-46

Code Explanation

6919 The Set Presentation
Space Type command
was missing from the
presentation space data
stream of the Define
Presentation Space
service request.

Action to Take

Correct the presentation space data
stream to include command 02 and
retry.

Session Information Services Return Codes - 6Bxx

Function ID X'6B': Session Information Services Return
Codes

Return codes beginning with function code X'6B' indicate that an error
occurred during session management operations, except return code
X'6BOO', which indicates that the requested session information service was
completed successfully.

Code

6BOO

6BOl

6B02

6B03

6B05

6B06

6B07

6B09

6BOA

Explanation

The requested service
was completed
successfully.

All short window names
are currently in use.

The session ID in the
parameter list is outside
the legal range.

The long window name
was not found in the
session manager table.

Too many attachments
were made. The
maximum attachments
allowed are 255.

The session ID in the
parameter list was not
found in the session
manager table,
indicating that the
session is no longer
defined.

The short window name
is already in use.

There is an invalid type
field in the parameter
list.

The environment ID in
the parameter list was
not found in the session
manager table. This
indicates that either the
specified environment ID
is invalid or the specified
environment ID was
valid at one time but is
not currently active.

Action to Take

None.

Delete a window to free a short window
name.

Correct the session ID in the parameter
list and retry.

Check that the long name is in ASCII.
Then check the long name spelling.
Correct and retry.

You must request the Detach Session
ID service for the given session ID
before further attachments will be
allowed.

Correct the session ID in the parameter
list and either retry or ignore the error.

Choose an unused short window name
and retry.

Correct the parameter list and retry.

Correct the environment ID in the
parameter list and either retry or
ignore the error.

Appendix H. Return Codes H -47

Session Information Services Return Codes - 6Bxx

Code Explana tion Action to Take

6BOB The window short name Correct the window short name in the
was not found in the parameter list and either retry or
session manager table. ignore the error.

6BOC The return code in the Set the return code field in the
parameter list is not zero parameter list to zero and retry.
on call.

6BOD There is an invalid Correct the option code and retry.
option code in the
parameter list.

6BOE The base window was Correct the environment ID in the
not found. This parameter list and either retry or
indicates that either the ignore the error.
specified environment ID
is invalid or the specified
environment ID was
valid at one time but is
not currently active.

6BOF There are no available Detach a session ID or wait until a
entries in the session session ID becomes free.
manager table. No
additional session can be
established.

6Bll The session type was not Correct the type field in the parameter
found in the session list or ignore the error.
manager table.

6B12 The length of the name Correct the name array length and
array is incorrect. retry.

6B13 The window short name The short window name must be
is not in uppercase uppercase ASCII alphanumeric
ASCII alphanumeric characters. Correct and retry.
characters.

6B14 Cannot detach from this Check to make sure you have not
session now. issued more detaches than attaches.

H-48

Translate Services Return Codes - 6Cxx

Function ID X'6C': Translate Services Return Codes

Return codes beginning with function code X'6C' indicate that an error
occurred during translate operations, except return code X'6COO', which
indicates that the requested translate service was completed successfully.

Code Explanation

6COO The requested service
was completed
successfully.

6COl There is an invalid
translate type in the
parameter list.

6COC Byte 0 of the parameter
list was nonzero on
request.

Action to Take

None.

Change the translate type in the
parameter list and retry.

Set byte 0 of the parameter list to zero
and retry.

Appendix H. Return Codes H -49

OIA Services Return Codes - 6Dxx

Function ID X'6D': OIA Services Return Codes

H-50

Return codes beginning with function code X'6D' indicate that an error
occurred during operator information area operations, except return code
X'6DOO', which indicates that the requested operator information area
service was completed successfully.

Code

6DOO

6D02

6DOC

Explanation

The requested service
was completed
successfully.

A invalid session ID was
specified in the
parameter list.

Byte 0 of the parameter
list was nonzero on
request.

Action to Take

None.

Correct the session ID and retry.

Set byte 0 of the parameter list to zero
and retry.

3270 Keystroke Emulation Services Return Codes - 6Exx

Function ID X'6E': 3270 Keystroke Emulation Services
Return Codes

Return codes beginning with function code X'6E' indicate that an error
occurred during 3270 keystroke emulation operations, except return code
X'6EOO', which indicates that the requested 3270 keystroke emulation
service was completed successfully.

Code Explanation

6EOO The requested service
was completed
successfully.

6E02 On a Connect request,
the specified
presentation space has
not been defined to
accept 3270 keystroking
emulation.

On a Read AID Key
request, the specified
presentation space has
not been connected for
3270 keystroking
emulation.

6E08 A system error occurred
during 3270 keystroke
emulation operations.

6EOC Byte 0 of the parameter
list was nonzero on
request.

Action to Take

None.

Use the Define Presentation Space
service to create a presentation space
that is defined to accept 3270
keystroking emulation. Specify this
presentation space on the Connect for
3270 Keystroke Emulation service
request.

Correct the specified session ID and
request the READ AID Key service
again.

Follow local procedures and have the
data available from return code error
step 9 at the end of this chapter.

Set byte 0 of the parameter list to zero
and retry.

Appendix H. Return Codes H -51

Keystroke Definition Return Codes - 6Fxx

Function ID X'6F': Keystroke Definition Return Codes

H-52

Return codes beginning with function code X'6F' indicate that an error
occurred during 3270 keystroke definition initialization, except return code
X'6FOO', which indicates that the requested 3270 keystroke definition
service was completed successfully.

Code

6FOO

6FOI

6F02

Explanation

The keystroke definition
initialization was
completed successfully.

An ID request was issued
to the keyboard with no
response.

An unsupported or
invalid ID was returned
from the keyboard.

Action to Take

None

Refer to the Guide to Operations and
run the keyboard diagnostics.

Check that the switch settings on the
Model lA keyboard are off. If they are
off, the keyboard is defective. In other
cases, the keyboard is defective or
incompatible.

Error Handler Return Codes - 72xx

Function ID X'72': Error Handler Return Codes

Return codes beginning with function code X'72' indicate that an error
occurred during error handler operations.

Code

7201

7202

7203

7204

7205

7206

Explanation

A component is trying to
report an undefined
return code to the error
handler.

A component is trying to
add a return code to the
error handler error table,
but the table is full.

A component is trying to
add a return code to the
error handler error table
with an invalid severity.

A dump was requested
using "TRACE OFF /d."

A dump was requested by
pressing the NMI
pushbutton.

A dump was requested by
pressing the ALT +
CTRL + TEST keys.

Action to Take

This return code is followed by a
second return code. Follow the
directions given in the "Action to
Take" column for that return code.

This return code is followed by a
second return code. Follow the
directions given in the "Action to
Take" column for that return code.

This return code is followed by a
second return code. Follow the
directions given in the "Action to
Take" column for that return code.

None.

None.

None.

Appendix H. Return Codes H -53

Dump Task Return Codes - 7Fxx

Function ID X'7F': Dump Task Return Codes

H-54

Return codes beginning with function code X'7F' indicate that an error
occurred during dump task operations.

Code

7FOI

7FFF

7F02

7F03

Explanation

An error occurred during
system startup before the
error handler could be
loaded into storage and
successfully initialized.

An error occurred in the
multiple DOS portion of
the workstation program
before the error handler
could be loaded into
storage and successfully
initialized.

An error occurred while
a graphics application
was being run without a
graphics adapter.

A graphics application is
already in progress in
another PC window.

Action to Take

Re-IPL the system. If the error recurs,
follow local procedures and submit a
problem report.

Re-IPL the system. If the error recurs,
follow local procedures and submit a
problem report.

Press any key to re-IPL your system. If
the error recurs, follow local
procedures and submit a problem
report.

Press any key to re-IPL your system. If
the error recurs, follow local
procedures and submit a problem
report.

Enhanced Connectivity Router Return Codes - 81xx

Function ID X'81': Enhanced Connectivity Router
Return Codes

Return codes beginning with function code X'81' indicate that an error
occurred during enhanced connectivity router operations.

Code Explanation

8101 No DFT sessions exist.

8104 Insufficient space to
relocate initialization
code.

Action to Take

Rerun customization to add a DFT
seSSIon.

Obtain additional storage in order to
load the module.

Appendix H. Return Codes H -55

User System Extension Return Codes - Dxxx through Fxxx

Function IDs X'Dx through Fx': User System Extension
Return Codes

H-56

Return codes with a function ID of X'Dx' through X'Fx' are generated by
user-supplied system extensions. Consult local documentation for the
meaning of these return codes and the action to take when they are
encountered.

Return Code Error Steps

Return Code Error Steps

Use these steps only when you are directed to do so by 'action-to-take'
instructions in this chapter.

1. Record the return code.

2. Record the sequence of events that caused the failure, including the
keys pressed and in what order.

3. Turn on the Trace events:

a. 95 96, 97, 98, 99, 101, and 102

b. 93, 94, 101, and 102

c. 101 and 102

4. Rerun the application that caused the error until the error recurs.

5. If the problem persists, issue the command TRACE OFF /D to take a
system dump.

6. Record the system level. To do this, look at your AP AR list as described
in the Problem Determination Guide and Reference.

7. Record the system configuration, which is a list of the hardware,
including installed options. This may be found in the Guide to
Operations and the contents of the summary panels.

a. Insert the customized system diskette in the active drive.
b. If you have a printer, type:

TYPE INDCFIG.FIL)PRN and press Enter.

c. If you do not have a printer, type:

MORE < INDCFIG.FIL and press Enter.

Write down the contents of the summary panels.

8. Increase the resource requirements in the SIF for the system extension
in which the error occurred. Refer to the User's Guide for information
on SIFs.

9. The return code received was accompanied by a message to take a
dump. Record the return code and take a dump if the error persists.

Appendix H. Return Codes H-57

Return Code Error Steps

H-58

Return Code Error Steps

Appendix I. Outbound Data Stream Preprocessor
(ODSP) Option

Introduction ... 1-2
Customizing for ODSP 1-2
Initializing ODSP 1-2
Using ODSP ... 1-3
Entry Parameters 1-4
Return Parameters 1-4
ODSP Restrictions and Recommendations 1-5

Sample Program for Outbound Data Stream Preprocessing 1-5

Appendix 1. ODSP Option I-I

Introduction

Introduction

The Outbound Data Stream Preprocessor (ODSP) Option allows you to
preprocess a 3270 outbound data stream with a user system extension
program. To preprocess an outbound data stream, you must customize your
workstation program for ODSP.

Customizing for ODSP

Initializing ODSP

1-2

Before you can customize your workstation program for ODSP, you must
create a user system extension program. Once you have done this, update
the customization panels as explained below:

1. Update the Home Panel of customization where it says System
Extensions under WORKSTATION PROGRAM OPTIONS. If this is
your only user system extension program, type a 1 under System
Extensions on the Home Panel. If you already have a number of system
extension programs indicated, increase this number by 1.

2. Complete customization Panel 1.1, filling in all the pertinent
information about your user system extension program.

3. Type "yes" under ODSP on Panel 2 of customization. As a result of
indicating "yes" to ODSP, the workstation program creates a user exit
table called INDODSP. INDODSP contains four 4-byte routine address
entries. Each entry corresponds to one of your four possible host
sessions and will be used when you initialize ODSP.

See the IBM 3270 Workstation Program User's Guide and Reference for
more information on how to customize for ODSP.

Now that you have customized for ODSP, each time you IPL your system
the workstation program loads and gives control to the user system
extension program you just specified in customization. That system
extension program must do the following:

• Issue the Supervisory Object Service X'81':Name Resolution, to locate
the user exit table named INDODSP.

• Issue the Supervisory Object Service X'OE':Install User Exit Table
Entries, to initialize the INDODSP table, which contains the routine
addresses that will process the outbound data stream for each host
session. If you wish to preprocess data streams from a subset of host
sessions, then fill in the entries pertaining to those host sessions only.

Using ODSP

ODSP

• After initialization, return to DOS using the Exit and Remain Resident
function.

See Chapter 15 for more information on name resolutions and installing
user exit table entries.

When an outbound data stream is received and a routine address exists in
the user extension table, a parameter list is presented to the user system
extension routine containing pointers and count information pertaining to
the data stream currently in process.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

The parameter list has the following format on entry to and return from
your user system extension routine:

Offset Length Contents on Entry Contents on Return

0 1 word Offset address of Offset address of
curren t buffer curren t buffer

2 1 word Segment address of Segment address of
current buffer current buffer

4 1 word Count of bytes in Count of bytes in
curren t buffer current buffer

6 1 byte Chain indicator Reserved

7 1 byte Host session number Host session number

8 1 word Reserved Offset address of
supplementary buffer

10 1 word Reserved Segment address of
supplementary buffer

12 1 word Reserved Count of bytes in
supplementary buffer

Appendix 1. ODSP Option 1-3

ODSP

Entry Parameters

Return Parameters

1-4

• The current buffer address contains offset and segment of outbound
data stream.

• The current buffer count contains the count of bytes present in the
current buffer.

• Chain indicator

'lOOxxxxx'X First

'OlOxxxxx'X Last

'OOOxxxxx 'X Middle

'llOxxxxx'X Only

'xxlxxxxx'X Local channel command

• The host session number contains the number (0 to 3) of the host
session for which the data stream was received. This will prevent the
user extension code from having to declare separate entry points to
determine the host session number.

Note: For locally attached 3274j3270PCs, the command is sent first and is
followed by the remaining 3270 data stream, if present. The user
system extension will first be passed the command and, subsequently,
will be called with the data as it is received.

• The current buffer address contains offset and segment of the data
stream buffer to process first.

• The current buffer count contains the count of bytes present in the data
stream buffer to process first.

• The supplementary buffer address contains offset and segment of the
data stream buffer to process second.

• The supplementary buffer count contains the count of bytes present in
the data stream buffer to process second.

Note: No change in the Supplementary Buffer fields is necessary if no
supplementary buffer is provided. If you wish the user extension to
process a stored data stream first, move the current buffer address and
count in the parameter list to the respective fields for the
supplementary buffer. Then store the buffer address and count
provided by the user extension in the respective fields of the current
buffer.

ODSP

You may change data in the current buffer and use the address and
count fields of the parameter list to shorten it, either at the front
(increase the address, decrease the count) or at the end (leave address
the same, decrease the count). Do not append data to either end of the
current buffer. This may cause unpredictable results and eventual
disconnection from the control unit. 3270 buffer addresses (12114-16
bit) should be consistent with the current session.

ODSP Restrictions and Recommendations

The User System Extension routines that preprocess outbound data streams
for each logical terminal operate as an internal 3270 Workstation Program
subroutine. Therefore, the following design restrictions must be observed
to avoid time-out problems with the control unit:

• Avoid system waits, including implied waits for 110, and other
workstation program API functions.

• Do not disable interrupts.

Note: Routines requiring lengthy processing time degrade performance.

In a multiple-host-session configuration, when processing a data stream for
one host session, all other host sessions will be locked out from processing
data streams. Also, this routine gets control from the workstation program
data stream processor so errors could cause damage to the workstation
program or system control blocks and modules.

For systems with XMA, the user system extension resides in common
memory and, therefore, should be as compact as possible, since it will
reduce the size of your PC session. See Chapter 24 for more information
about user system extensions.

Sample Program for Outbound Data Stream
Preprocessing

Use the following as a sample user system extension program for the ODSP
option of the 3270 Workstation Program.

Appendix I. ODSP Option 1-5

ODSP

ODSPTEST.ASM <===== Test code for Outbound Data Stream
Preprocessing Option

It is intended for use in testing the Data Stream Preprocessor
option of 3270 Workstation Program. It operates under all three
transmission environments (i.e. Local Chnl, SNA, and Bisynch).

Three variations of data stream modification are tested:
- Prefixing a stored data stream to the beginning of the

current host outbound data stream.
- Post fixing a stored data stream to the end of the

current host outbound data stream.
- Modification of the data stream without pre or post fixing.

The host outbound data stream contains an escape character to
signal which of the operations are required (if any).
The character follows the WCC character in the data stream and
is followed in turn by an eight character format name. The
escape characters are:

- The FM character (lEH) is used to signal pre fixing of a
stored format.

- The DUP character (lCH) is used to signal post fixing of a
stored format.

If modification only is required then the stored format name is
ended with an 'R'.

=============> Program Operation <================================

The parameter list is first moved into local storage.

If the data stream segment is first in chain Then
If the character following the WCC is Field Mark (lEH) Then

pick up the next eight characters as a stored data stream name
and place the stored format as first in the processing.

Else If the character is DUP (lCH) Then

Flag for later processing and pick up the next eight characters
as the stored format name to be appended to the data stream.

If the data stream segment is last in chain Then

If an end of chain escape character (i.e. DUP) Then
Append stored data stream to current data stream

Move local copy of parameters to 3270 PC's copy

Return

==

1-6

Initialization attempts to read an ODSP control file 'ODSPSFCF.CTL'
from drive C:\ODSPTEST directory, if not found, drive A: is used.

All test data streams are defined in the control file and are
read into a control area of ODSPTEST storage.

Each directory named ODSPTEST on which ever drive contains
ODSPSFCF.CTL

i--- ----------------
i EQU Section
i--- ----------------
ESCP - INC EQU 10 iEscape character increment
NAM_SIZE EQU 8 iMaximum size of a stored name
SFCFSIZE EQU NAM_SIZE + 11 iSize of record in SFCF
MAX_NTRS EQU 16 iMaximum entries in SFI
MAX_SIZE EQU 1920 iMaximum size of a screen

BLANK EQU BYTE PTR , , iBlank space
A EQU BYTE PTR 'A' ;ASCII character A
DOSOPEN EQU 3DH iDOS interrupt to open a file
DISPLAY EQU 9H iDOS interrupt to display char.
DOSCALL EQU 21H iCall to DOS commands
FIRSTINC EQU 80H iFirst in chain flag
LASTINC EQU 40H iLast in chain flag
LCLCMD EQU 20H iLocal channel command flag
POSTFLAG EQU 01H iPost fix flag
DATA_NOP EQU l3H ;Data stream NOP

;---
PROGRAM SEGMENT

ASSUME
ORG

;Define program segment
CS:PROGRAM, DS:PROGRAM, ES:PROGRAM i
0100H iMake into a COM file

i---
i DEFINE THE PROGRAM SEGMENT AND SET UP STACK TO MAIN PROGRAM
i--- ----------------

START:
JMP IN IT iStart Initialization

PAGE
i---
i Define the structures to be used
j---
i
i * Input

INPUT_CB
OFFSTCB
SEGADCB
LENCURB
CHAINID
HOSTNUM
OFFSTSB
SEGADSB
LENSUPB

INPUT_CB
;
; * Stored

DEFSFI
SCREENME
SCREENLN
SCREENAD

DEFSFI

Parameters *

STRUC
DW 0
DW 0
DW 0
DB 0
DB 0
DW 0
DW 0
DW 0

ENDS

Format Name Table *

STRUC
DB NAM_SIZE
DW 0
DW 0

ENDS

PAGE

DUP (, ,)

iOFFSET of current buffer
iSEGMENT of current buffer
iLength of current buffer
iChain Indicator
iHost Session
iOFFSET of Suppl. buffer
;SEGMENT of Suppl. buffer
;Length of Suppl. buffer

;Definition of SFI
EBCDIC Name
Length of Screen Data
Offset of Screen Data

ODSP

Appendix 1. ODSP Option I-7

ODSP

i--- ----------------
i Define the working storage to be used
i--- ----------------

INPUT
iLocal copy of Control Block

i * Stored Format Information *

COUNT

SF_LOC
SF_COUNT
ESCAPE_LOC
LCLFLAGS

REQFNAME

DW

DW
OW
OW
DB

DB
DB
DB
DB
DB
DB

DB

DB

DB

DB

DB

DB

°
° ° ° °

iCount length of screen

iStored format offset
iStored format count
iLocation of escape code
iLocal processing flags

Error message
Erase the screen and highlite top line

OFIH,OC7H i Write command with unl. kbd.
OllH,040H,040H i Set buffer address at Rl/Cl
03CH,OSCH,OFOH,OOOH i RA to R24/Cl (OOH)
012H,040H,040H EUA Rl/Cl
OllH,040H,040H Set buffer address at Rl/Cl
OlDH,OEBH Start field (prot. + hilite)
ERROR ***
OCSH,OD9H,OD9H,OD6H,OD9H,040H,OSCH,OSCH,OSCH,040H
Unable to
OE4H,09SH,OBIH,OB2H,093H,OBSH,040H,OA3H,096H,040H
locate sto
093H,096H,OB3H,OBIH,OA3H,OBSH,040H,OA2H,OA3H,096H
red format
099H,OBSH,OB4H,040H,OB6H,096H,099H,094H,OBIH,OA3H

named ==>
040H,095H,OBIH,094H,OB5H,OB4H,040H,07EH,07EH,06EH,040H

NAM_SIZE DUP(O) iRequested format name (EBCDIC)

NO_FINDL EQU OFFSET SFI - OFFSET NO
_FIND iLength of message

SFI DEFSFI MAX_NTRS + 1 DUP «» iScreen Format Information

PAGE
i--- ----------------
i==========================> Main Procedure <=======================
j---

MAIN PROC FAR
i--- ----------------
i Move parameter information to local storage
i--- ----------------

1-8

PUSH
PUSH
PUSH
POP
CLD
MOV
LEA

XCHG
PUSH

ES iSave pointers to Control Block
DI
CS iSet up to put code segment into
OS OS (i.e COM file format)

iClear direction flag - auto inc.
CX,TYPE LOCAL_CB inumber of bytes to transfer
SI,LOCAL_CB.OFFSTCB iOFFSET of local CB

DI,SI
ES

iPut contents of parameter
list into my data segment

POP
PUSH
POP

REPE MOVSB

PUSH
POP
MOV
MOV

PAGE

DS
CS
ES

to free up ES and DI
registers

CS
DS

iRestore DS

DI,LOCAL_CB.OFFSTCB
ES,LOCAL_CB.SEGADCB

iPut address of cur. buffer
into ES:DI registers

j---
; Check for process to initiate
i--- ----------------

TEST
JZ

CALL

CK_LAST:
TEST
JZ

CALL
JMP

CK_LCLCM:
TEST
JZ

CALL

;IF Data is first in chain
LOCAL_CB.CHAINID,FIRSTINC
CK_LAST

PRCFIC Then Process the block for
possible stored format

If data is last in chain
LOCAL_CB.CHAINID,LASTINC
CK_LCLCM

PRCLIC
MOVE_LCL

Then Process the block for
possible stored format

iElse If local channel command
LOCAL_CB.CHAINID,LCLCMD
MOVE_LCL

PRCLCLCM Process local command

j---
i Move local copy of parameters to calling routine parameters
i---
MOVE_LCL:

CLD iClear direction flag (auto inc.

ODSP

MOV
LEA

CX,TYPE LOCAL_CB ;Number of bytes in Control Block
SI,LOCAL_CB.OFFSTCB iOFFSET of current buffer

POP
POP

REPE MOVSB
SUB

MAIN_RET:
RET

MAIN ENDP

PAGE

DI iES:DI from original call
ES

iParameter values to Caller's buf.
DI,TYPE LOCAL_CB i adjust DI after move

;Return point for main procedure
FAR return to procedure

j---
i==========================> Sub-Procedures <=======================
i---
i---
i================> Process Current Buffer First in Chain Procedure
j---
PRCFIC PROC

TEST
NEAR ;Process stored format
LCLFLAGS,LCLCMD

Appendix I. ODSP Option 1-9

ODSP

JNZ

INC
PRCB_GO:

INC
CMP
JE

CMP
JE

RET

PRCB_GO

DI

DI
ES:BYTE PTR
PRC_PREFIX

ES:BYTE PTR
PRC_POSTFIX

Increment past command for
remote NON-SNA or for SNA

Increment past WCC
[DI] ,1EH If prefixing of format

is flagged Then process
i Else

[DI] ,1CH If post fixing of format
is flagged Then set up

Else Return

;---
i Move requested screen format name to local st'orage
i--- ----------------

OR

MOV
INC
MOV
LEA
PUSH
PUSH
POP
PUSH
POP

XCHG
REP MOVSB

POP

iPost fix processing set up
LCLFLAGS,POSTFLAG iTurn on postfix flag

iPrefix processing and Post fix
ESCAPE_LOC, DI iSave offset of escape code
DI iIncrement past escape code
CX,NAM_SIZE
SI,REQFNAME
DS
ES
DS
CS
ES

DI,SI

DS

iNumber of bytes to transfer
iOffset of local copy
iSave current DS
iSwap ES and DS around

iPut contents of name field
into local storage

iRestore DS

j---
i Compare name in control bytes with names in SFI table
j---

STD
LEA.
LEA
MOV

COMPARE:
PUSH
PUSH
PUSH
MOV

REPE CMPSB

POP
POP
POP
JE

ADD
LOOP

iSet for auto-decrement
DI,SFI + NAM_SIZE - 1 iAddr. of end of 1st name
SI,REQFNAME + NAM_SIZE - 1 iAddress of current
CX , COUNT iNumber of names to check

CX
DI
SI
CX,NAM_SIZE

SI
DI
CX
FOUND2

DI,TYPE DEFSFI
COMPARE

iSave count of names
iSave offset into SFT
iSave offset of current name
iScreen name length

iCompare screen names in SFI
with name in control bytes
Restore offset to cur name
Restore offset to end
Restore count of names

If names are not same Then
increment to next in table

If all names are considered
we are pointed at err msg.

i--- ----------------
i Move and update the current buffer values

1-10

j---
FOUND2:

NOP_NAME:

SUB
MOV
MOV
MOV
MOV

iWhen the names match or overrun
DI,OFFSET SFI + NAM_SIZE - 1 iDispl. in SFI
AX,SFI.SCREENLN [DI] iLength of stored format
SF_COUNT ,AX
AX,SFI.SCREENAD [DI] iAddress of stored format
SF_LOC,AX

MOV CX, NAM_SIZE + 1 i Nop the escape code and name
MOV ES, LOCAL_CB.SEGADCB
MOV DI, ESCAPE_LOC in the current buffer

MOV
INC
LOOP

TEST
JNZ

ES:BYTE PTR [DI], DATA_NOP
DI
NOP_NAME

LCLFLAGS,POSTFLAG
FOUND3

;When post fix requested
Skip Buffer update

LEA SI,REQFNAME + NAM_SIZE - 1 i When the last char
CMP BYTE PTR [SI] ,OD9H of SF name is R Then
JE UPD_OUTP Skip Supplemental update

MOV
MOV

MOV
MOV

MOV
MOV

MOV
TEST
JNZ

INC

SUB
ADD

DX,LOCAL_CB.OFFSTCB
LOCAL_CB.OFFSTSB,DX

DX,LOCAL_CB.SEGADCB
LOCAL_CB.SEGADSB,DX

DX,LOCAL_CB.LENCURB
LOCAL_CB.LENSUPB,DX

iMove current buffer address
to supplemental position

iSame segment address

;Move current buffer length
to suppl position

AX,ESCP_INC ;Set up modifying constant
LCLFLAGS,LCLCMD
PRCB_MIN either from local channel

AX or from bisynch

LOCAL_CB.LENSUPB,AX
LOCAL_CB.OFFSTSB,AX

iDecrement length
iIncrement offset

i---
i Update the output parameter list
j---

MOV
MOV
MOV
MOV
MOV

TEST
JZ

AX,SF_COUNT
LOCAL_CB.LENCURB,AX
AX,SF_LOC
LOCAL_CB.OFFSTCB,AX
LOCAL_CB.SEGADCB,DS

LCLFLAGS,LCLCMD
FOUND3

idata segment has segment
; address of SFT and SFI

iWhen dealing with the

local channel,

ODSP

INC
DEC

LOCAL_CB.OFFSTCB
LOCAL_CB.LENCURB

increment the offset address
decrement the length

FOUND3 :

PRCFIC
RET
ENDP ;Return from subprocedure

i--- ----------------

Appendix I. ODSP Option I-II

ODSP

PAGE
i--- ----------------
i================> Last in Chain Procedure
i---
PRCLIC PROC NEAR
i--- ----------------

PRCLIC

TEST
JZ

LCLFLAGS,POSTFLAG iIf post fixing requested
PRCLIC_END

THEN DO
LEA SI,REQFNAME + NAM_SIZE - 1 ; When the last char
CMP BYTE PTR [SI],OD9H of SF name is R Then
JE PRCLIC_END Skip Supplemental update

MOV
MOV

MOV

MOV
MOV

MOV
RET
ENDP
PAGE

DX,SF_LOC
LOCAL_CB.OFFSTSB,DX

LOCAL_CB.SEGADSB,DS

DX,SF_COUNT
LOCAL_CB.LENSUPB,DX

LCLFLAGS,O

move saved buffer address
to supplemental position

using DS for segment addr.

;move saved buffer length
to suppl position

iReset local flag regardless

iReturn from subprocedure

i--- ----------------
i================> Local Channel Command Procedure
i---
PRCLCLCM PROC NEAR
i---

PRCLCLCM

MOV AL,LOCAL_CB.CHAINID
MOV LCLFLAGS,AL iSave local chnl flag

RET
ENDP iReturn from subprocedure

i--- ----------------
PAGE

i--- ----------------
;==========================> Init Procedure <=======================
i--- ----------------

i--- ----------------
; Define the Init storage to be used
i--- ----------------

SERVNAME DB 'INDODSP , ;Name of User Exit Table which
; is resolved into a UET ID

UET - ID DW ? ;User exit table resolved ID

NUMUETE DW ° ;parameter
ENTRYl DW ° ;list
OFENTRYI DW 0 ito
SGENTRYl DW 0 ;install
ENTRY2 DW ° ;user
OFENTRY2 DW 0 ;exit
SGENTRY2 DW 0 ;table
ENTRY3 DW 0 ;entries
OFENTRY3 DW °

1-12

SGENTRY3
ENTRY4
OFENTRY4
SGENTRY4

SFT

PATHNME

SFCFBUFF

SFCFHDL

SCRENHDL

PATHBUFF

EXTASCZ

NXTHSTNM

NXTSCR

ERRORl

ERROR2

ERROR3

ERROR4

ERRORS

ERROR6

ERROR7

DW
DW
DW
DW

DB

DB

DB

DW

DW

DB

DB

DW

DW

DB

DB

DB

DB

DB

DB

DB

PAGE

o
o
o
o

7800H DUP (' ')

;four
;logical
;terroinals

four
table
entries

;Screen Format Table

'C:\ODSPTEST\ODSPSFCF.CTL',O ;pathname of SFCF

SFCFSIZE DUP(O) ;buffer for SFCF records

? ;file handle for SFCF

? ;file handle for screen format

'C:\ODSPTEST\ ';structure for pathn
to get screen files in SFCF

, .SF' ,0 ;extension put in PATHBUFF to get
the screen file

o ;OFFSET of next position to fill
(HOSTID) in host/chain table

o ;addr of next position in SFT

ODH, OAH, 'Error opening SFCF $' ,ODH,OAH

ODH, OAH, 'Error reading from SFCF $' ,ODH,OAH

ODH, OAH, 'Error opening SFT file $' ,ODH,OAH

ODH, OAH, 'Error reading SFT file $' ,ODH,OAH

ODH, OAH, 'Error closing SFT file $' ,ODH,OAH

ODH,OAH,'INDODSP name not resolved $' ,ODH,OAH

ODH,OAH,'PUT_UETE function failed $' ,ODH,OAH

i---
INIT PROC NEAR
i--- ----------------

MOV
MOV
MOV
MOV
MOV
MOV
CLD

AX,CS
DS,AX
ES,AX
NXTSCR,OFFSET
NXTHSTNM,O
COUNT, 0

;Put initial values into
DS and ES

SFT ;Set up to store Screen Data
;Set up to store Information
;Set up count of screen formats

;Set up for automatic increment

;---
; Read in the pathnaroe of the file to be opened
i---

INITPROC:
;address of pathname

ODSP

LEA
MOV
MOV
INT

DX, PATHNME
AL,O
AH,DOSOPEN
DOSCALL

iset access code to 'OPEN TO READ'
;open this file (ASCIIZ format)
;call DOS

Appendix I. ODSP Option 1-13

ODSP

MOV
JNC

LEA
MOV
MOV
MOV
MOV
INT

MOV
JNC

LEA
CALL
RET

SFCFHDL,AX
READREC

DX, PATHNME
PATHNME, A
PATHBUFF, A
AL,O
AH,DOSOPEN
DOSCALL

SFCFHDL,AX
READREC

DX,ERROR1
ERROR

isave file handle
iIf there is no error read record

iaddress of pathname
iaddress of pathname for drive A:
iaddress of pathname for drive A:
iset access code to 'OPEN TO READ'
iopen this file (ASCIIZ format)
icall DOS

isave file handle
iIf there is no error read record

iElse call error routine
and return to DOS

i--- ----------------
i Read a single record from SFCF into buffer and check for EOF
i--- ----------------

READREC:
MOV
LEA
MOV
MOV
INT

JNC

LEA
CALL
RET

CHECKEND:
CMP
JE

CMP
JNL

MAX_CAP:
MOV
MOV
MOV
MOV
MOV
JMP

CX,SFCFSIZE
DX,SFCFBUFF
BX,SFCFHDL
AH,3FH
DOSCALL

CHECKEND

DX,ERROR2
ERROR

COUNT,MAX_NTRS
MAX_CAP

AX,ODH
STORENME

iread in first 12 bytes of SFCF
iaddress of buffer
iput file handle in BX
iread from file function
icall DOS

iIf there was no error check EOF

iElse Do error routine
and return to DOS

iIf at max capacity
Then exit file read

iIf last access to file was EOF

iSet up error message
DI,NXTHSTNM idisplacement in SFI for entry
AX,OFFSET NO_FIND ; Location of error message
SFI.SCREENAD[DI] ,AX imove in addr of screen start
AX,NO_FINDL i Length of error message
SFI.SCREENLN [DI] ,AX iLength of screen
NAME_RES iThen complete initialization

i--- ----------------
i Put the name from the SFCF buffer into the SFI
i---

STORENME:

1-14

MOV DI,NXTHSTNM idisplacement in SFI for entry
MOV AX,NXTSCR iput buffer OFFSET in SFI
MOV SFI.SCREENAD[DI] ,AX imove in addr of screen start

MOV
LEA
ADD

CX,NAM_SIZE
SI,SFCFBUFF
DI,OFFSET SFI

ithe size of screen name
iaddr of buffer (SOURCE)
icalculate OFFSET of destination

REPE MOVSB

i--- ----------------
i Put file name from SFCF into buffer which holds path of screen fill
i-----------------~---

STRPATH:

ENDPTH:

LEA
MOV
INC

MOV
CMP
JE

CMP
JE

MOV
INC
INC
LOOP

LEA
MOV

REPE MOVSB

DI,PATHBUFF + 12
CX,8
SI

DL, [SI.]
DL,ODH
ENDPTH

DL,BYTE PTR BLANK
ENDPTH

[DI],DL
SI
DI
STRPATH

SI,EXTASCZ
CX,4

ipathname (destination)
istore maximum of 8 chars
ifirst SFCFBUFF location

iput char into DL
icheck for CR
iif so, end storing

i is it a blank
iif so, end storing

iput char into pathbuff
inext SFCFBUFF location
inext PATHBUFF location
istore up to 8 characters

iaddr of extension to file
i4 characters long (.SFO)

iPut extension into name

i--- ----------------
i Open file in path buffer and save the handle
i---

MOV DX,OFFSET PATHBUFF iaddr of file name

ODSP

MOV
MOV
INT

AL,O
AH,DOSOPEN
DOSCALL

iaccess code 'OPEN TO READ'
;open file (ASCIIZ format)
icall DOS

MOV
JNC

LEA
CALL
RET

SCRENHDL,AX
READSFT

DX,ERROR3
ERROR

isave handle
iIf no error read SFT

iElse do error routine
and exit to DOS

i---
i Read screen formats into SFT
i---
READSFT:

MOV
MOV
MOV
MOV
INT

JNC

LEA
CALL

CX,MAX_SIZE
DX,NXTSCR
BX,SCRENHDL
AH,3FH
DOSCALL

STORESFT

DX,ERROR4
ERROR

itry to read 1920 characters
iaddr to put file in
iPut handle into BX
iread from file function
icall DOS

iIf no error store SFT info

iElse do error routine
and them return to DOS

Appendix I. ODSP Option 1-15

ODSP

RET

i---
i Store length and offset into SFI and update offsets
i--- ----------------

STORESFT:

MOV SI,NXTHSTNM iaddr to store
MOV SFI.SCREENLN [SI],AX iLength of screen

ADD NXTSCR,AX iOFFSET of next screen table entry
ADD NXTHSTNM,TYPE DEFSFI iOFFSET on next info. entry

i--- ----------------
i Close old screen file, reinit buffers and ctrs., return to read SFCF
i--- ----------------

MOV
MOV
INT

JNC

LEA
CALL
RET

REINIT:

INC
JMP

BX,SCRENHDL
AH,3EH
DOSCALL

REINIT

DX,ERROR5
ERROR

COUNT
READREC

iPut screen handle into BX
iClose handle function
iCal1 DOS

iIf no error REINIT

iElse do error routine
and return to DOS

iIncrement cnt of formats
iRead the next file

i--- ----------------
i Do name resolution and install entries into user exit table
--,

NAME_RES:
MOV
MOV
MOV
LEA

INT

TEST
JZ

LEA
CALL
RET

PUT_ENTRY:
MOV

MOV

MOV
LEA

MOV

1-16

AH,81H
DI,DS
ES,DI
DI,SERVNAME

7AH

CL,OFFH
PUT_ENTRY

DX,ERROR6
ERROR

UET_ID,DX

NUMUETE,2

AX,DS
DX,MAIN

ENTRYl,O

iset up registers
ifor a call to
iname resolution
iinterrupt

iCal1 3270 Workstation Program

iIf name resolution fails, Then

Do error routine
and exit to DOS

istore values

iin

iparameter

ilist

MOV
MOV

MOV
MOV
MOV

MOV
MOV
MOV

MOV
MOV
MOV

MOV
MOV
MOV
MOV
LEA

INT

TEST
JZ

REMAIN -

LEA
CALL
RET

EXIT_AND
REMAIN: -

OFENTRYl,DX
SGENTRYl,AX

ENTRY2,1
OFENTRY2,DX
SGENTRY2,AX

ENTRY3,2
OFENTRY3,DX
SGENTRY3,AX

ENTRY4,3
OFENTRY4,DX
SGENTRY4,AX

AH,OEH
DX,UET_ID
DI,DS
ES,DI
DI,NUMUETE

7AH

CL,OFFH
EXIT_AND

DX,ERROR7
ERROR

;for

;install

;user
;
;exit
j

i table

ientries
;
; interrupt

iput values in
iregisters for
iinstall user exit
itable entries
jinterrupt

;Call 3270 Workstation Program

iIf put table entry fails, Then

Do error routine
and exit to DOS

ODSP

MOV DX,OFFSET PATHNME jOFFSET of next screen table entry
MOV CL,4
SHR DX,CL
INC DX
MOV AX,3100H
INT DOSCALL ;exit and remain resident

INIT ENDP ;end INIT procedure

i---
ERROR PROC NEAR
;---

ERROR

MOV
INT
RET

ENDP

AH,DISPLAY
DOSCALL

;display character function
;Call to DOS routine
jReturn to caller

i--- ----------------

. PROGRAM ENDS iend of program segment

END START

Appendix I. ODSP Option 1-17

ODSP

1-18

Notes:

Notes:

X05' X'OS'

X'04' X'OC'

@ 8 (0) 8 8 8 8 § 8 §

EE Red Pink §§~§
X'OS' X'10' X'1S' X'20' X'2B' X'30' X'3B' X'4Q' X'48' X'5O' X'S7' X'SF'

8 e 888 8 8 e 8 § § §

FlRFlRRRFlRR ~~10 RR
~~~~Eij~!;:jdd ',~,' ~t;j 

X'OT X'OF' X'1T X'H' X'27' X'2F' X'3T X'3F' X'47' X'4F' X'58' X'SE' 

X'OE' X'1S' X" E' X'2S' X'2S' X'2E' X'3S' X'30' X'3E' X'4S' X'45' X'4E' X'5S' 

X'OO' X" 5' X" 0' X'24' X'20' X'2e' X'3S' X'3C' X'43' X'44' X'40' X'54' X'S8' 

This diagram shows the key position number and the hexadecimal 
scan code for each key on the IBM 3270 Personal Computer keyboard. 

For each key. the key position number appears in a circle above 
the key, The hexadecimal scan code appears below the key. 

@ @ @ @ @ 8 S 
El 0 FlR' R 
~ ~ ~~ ~ \ 

X'66' X'S7' X'SE' X'SF' X'7S' X'77' X'7E X 84 

@ @ @ @ @ S (3 

§tjf3 80§§ 
X'54' X'SS' X'SO' X'6C' X'7S' X'70' X'7C' 

@ @ @ @) @) 

8 BgBg 
X'03' X'OB' X';4' X'1C' X" B' X'23' X'2B' X'34' X'3J' X'lB' X'42' X'48' X'4C' X'S2' X'S3' X'SA' X'63' X'SB' X'73' X'74' X'7B' 

X'B3' X'OA' X'12' X'13' X'1A' X'22' X'21' X'2A' X'32' X'l1' X'3A' X'41' X'49' X'4A' X'59' X'S1' X'62' X'6A' X'S9' x'n' X'7A' Enter 

@ @) @ @ @ @ 8 + 

@JI !~ f§Q gj 0 J3 Ins 

/ 
x'o,' X'09' X'11' X"9' X'29' X'39' x'ss' x'so' X'70' X'71' X79 

IBM 3270 Personal Computer U.S. English Keyboard 

FO-l 



I c'P' ~k = r@ Us
@ lr@ lr@ lr@ lr@ It@ lr@ It@ u;@ lf~ t ~ @ \ 

This diagram shows the key position number for each key on the 
IBM 3270 Enhanced Personal Computer keyboard. 

For each key, the key position number appears in a circle above 
the key. 

~ 

@ @ 8 8 

sBBB 
@ @ @ S s 

B,g, Urrl§ 
'own db PgUp 

@ @ 8 
+ 

!9gtl,,-----, 
IOShift@ \ r@ lr@ lBBg9ggg!r UOShift @ 1 ! ~ 1 

® @ § s 

B!9§ 
Enter 

~ ~! ® Ud ~ §0§ I~' @ 

S 

\B~ 
IBM 3270 Enhanced Personal Computer U. S. English Keyboard, PC Mode 

FO-3 



nflflflflflflflnnflflfl. @ bbbbbbbbbbbbd 

\ 

IBM 3270 Enhanced Personal Computer U. S. English Keyboard, MFI Mode 

This diagram shows the key position number for each key on the 
IBM 3270 Enhanced Personal Computer keyboard. 

For each key, the key position number appears in a circle above 
the key. 

@ @ @ 

Enter 

FO-5 



This diagram shows the key position number for each key on the IBM Personal 
Computer AT keyboard. 

For each key, the key position number appears in a circle above the key. 

Q~ BB~9g~B~BBBB9B§ 
~B~gggg9BgBgBgg 
gg c", @ ggg9g99gBBB @ En", ~ 

IBM Personal Computer AT U.S. English Keyboard 

@ @ 8 8 

8Bum 
Scroll B Esc Lock Lock ys 

Break 

@ @ S 8 
r=.l~Uu 
~~~~ 

@ @ § @)

B9BB

FO-7

This diagram shows the key position number for each key on the IBM 3270 Personal
Computer XT keyboard.

For each key, the key position number appears in a circle above the key.

JF~ UF~ 1 i9r@ U~ It@ lr@ lr@ lr@ It@ lJ'@ lr@ lr@ Ur 19: f~·~r@tU~~plQ
JF~ UF6

@ 1 / Ct. @ =JA@ lr@ lr@ lr@ It@ lr@ lr@ lr® It@ lr@ lr~ U~@ L \ r:lr@ lr:l @

BB fjggggggggggI9Br9BBB +

r~ HF~ l I Ait @ J @ t ~::: @) \/~. @ \ /el @) \ I \

I BM Personal Computer XT u.s. English Keyboard

FO-9

Index

Add Resource service, coding information 23-8
Add Window service, coding information 6-14
APA graphics, changes or limitations on personal

computer sessions D-37
API services

functions of 1-4
overview 1-2
overview, diagram of 1-2
using the interface 1-9

application program
call from for Save, Restore, Send and

Receive G-2
exception condition structured field B-10
Interrupt Handler Management services 14-20
services, list of 1-5
type PC running on 2-13

ASCII
ASCII/ASCII Mnemonics 5-7, A-4
characters common to all countries A-4
characters used by U.S. English A-4
mnemonics common to all countries A-4
Read Input API 5-7
Write Keystroke API 5-7

asynchronous API services processing 3-3
Attach Session ID service, coding information 4-17
Attention Identifier (AID) keys, defined 5-5
attributes, session F-2
AUTOEXEC.BAT file, using C-3

background session 2-10
background, definition 2-10
BAT files, using C-2
batch files, using C-2
bit numbering conventions used in this manual,
described 2-16, 13-22

bits, meaning of
write control character (WCC) D-9

buffer addresses D-31

calling Save, Restore, Send, and Receive from your
application program G-2

Change Enlarge State service, coding
information 6-36

Change Hidden State service, coding
informa tion 6-33

Change Screen Background service, coding
information 6-38

Change Task's Priority service, coding
information 17-14

Change Window Attributes service, coding
information 6-92

Change Window Color service, coding
information 6-25

Change Window Position on Presentation Space
service, coding information 6-29

Change Window Position on Screen service, coding
information 6-17

Change Window Size service, coding
information 6-21

character attributes D-7, F-4, F-5
Claim a Semaphore service, coding

information 18-3
Clear Screen service, coding information 6-66
Close X'DO' structured field

sending from host to 3270 PC
format B-18
overview B-12

sending from 3270 PC to host
format B-28
overview B-20

coding descriptions
copy services 10-2
environment manager services 23-2
fixed-length queue management services 20-2
host interactive services 7-2
interrupt handler management services 21-2
keyboard services 5-2
logical timer management services 19-2
Multi-DOS services 13-2-13-20
operator information area services 12-2
presentation space services 8-2
request services 16-2
semaphore management services 18-2
session information services 4-2
supervisor services 3-2
supervisory object services 15-2
system extension message service 24-16
system extensions 24-2
task state modifier services 17-2
translate service 11-2
window management services 6-2

Index X-I

3270 keystroke emulation services 9-2
coding examples

Add Resource service 23-11
Add Window service 6-16
Attach Session ID service 4-19
Change Enlarge State service 6-37
Change Hidden State service 6-35
Change Screen Background service 6-40
Change Task's Priority service 17-15
Change Window Attributes service 6-96
Change Window Color service 6-28
Change Window Position on Presentation Space
service 6-32

Change Window Position on Screen
service 6-20

Change Window Size service 6-24
Claim a Semaphore service 18-5
Clear Screen service 6-68
Connect for Copy to PC Session service 10-21
Connect for 3270 Keystroke Emulation
service 9-9

Connect to Host Session service 7-10
Connect to Keyboard service 5-12
Connect to Work Station Control service 6-10
Copy Block service 10-17
Copy String service 10-10
Create Component Entry service 15-10
Create Fixed-Length Queue Entry service 3-11
Create Fixed-Length Queue service 15-16
Create Gate Entry service 15-20
Create Semaphore Entry service 15-13
Create Task Entry service 15-7
Create User Exit Table Entry service 15-23
Define Buffer service 7 -29
Define Presentation Space service 8-9
Delete Entry service 15-33
Delete Entry service, coding information 3-16
Delete Presentation Space service 8-13
Delete Resource service 23-14
Delete Window service 6-80
Dequeue Data service 20-7
Dequeue Data service, coding information 3-14
Detach Session ID service 4-16
Disable Input service 5-32
Disconnect for Copy to PC Session

service 10-24
Disconnect for 3270 Keystroke Emulation 9-12
Disconnect From Host Session service 7-14
Disconnect from Keyboard service 5-15
Disconnect from Work Station Control

service 6-13
Display Presentation Space service 8-16
Enable Input service. 5-35
Enqueue Data service 20-4
Get a Request service 16-10
Get Logical Timer service 19-4
Get Request Completion service 3-8, 16-16
ID Resolution service 15-31
Identify Resource Manager service 23-7

X-2

Install a Hardware Interrupt Handler
service 21-6

Install an Interrupt Handler service 21-9
Install User Exit Table Entries service, coding

information 15-26
Make a Request service 16-7
Name Resolution service 3-6, 15-29
Post Status Code service 5-38
Purge Queue Data service 20-9
Query a Semaphore service 18-9
Query Active Screen service 6-86
Query Active Task service 17-3
Query Active Window service 6-83
Query Base Window service 4-32
Query Enlarge State service 6-59
Query Environment Characteristics
service 23-38

Query Environment of Window service 4-25
Query Hidden State service 6-56
Query Interrupt Vector Contents service 21-11
Query PC Session PIF Information service 4-29
Query Resource service 23-16
Query Screen Background Color service 6-62
Query Session Cursor service 4-35
Query Session ID service 4-9
Query Session Parameter service 4-13
Query Task's Environment ID service 23-35
Query Window Attributes service 6-91
Query Window Colors service 6-50
Query Window Names service 6-65
Query Window Position on Presentation Space

service 6-53
Query Window service 6-43
Query Window Size service 6-46
Query Windows in Environment service 4-22
Read AID Key service 9-19
Read Input service 5-21
Read Operator Information Area Group

service 12-13
Read Operator Information Area Image

service 12-6
Read Structured Field service 7-19
Redraw Screen service 6-74
Redraw Window service 6-77
Release a Semaphore service 18-7
Release Logical Timer service 19-9
Remove an Interrupt Handler service 21-13
Reply to a Request service 16-13
Return to Dispatcher service 17-17
Select Active Screen service 6-100
Select Active Window service 6-71
Send a Signal to a Task service 16-18
Set Cursor Position service 8-20
Set Logical Timer service 19-7
Set Task "Nonpreemptable" service 17-13
Set Task "Preemptable" service 17-11
Set Task "Ready" service 17-6
Set Task "Unready" service 17-9
Stop/Reset Environment service 23-33

Suspend/Resume Environment service 23-22
Switch Presentation Space service 8-22
System Extension Message service 24-19, 24-21,

24-24
Translate Data service 11-8
Write Keystroke service 5-28
Write Structured Field service 7-24

color, changes or limitations on personal computer
session D-36

command
line G-4
procedures

file transfer (Send and Receive) C-6
Save and Restore C-2, C-4

command line, DOS EXEC G-4
communication status information

listed 7-18
use of with the Read Structured Field
service 7-18

completion queue signal 14-8
completion signal 14-8
components, defined 14-4
Connect for Copy to PC Session service, coding
information 10-19

Connect for 3270 Keystroke Emulation service,
coding information 9-7

Connect to Host Session service, coding
information 7-4

Connect to Keyboard services, coding
information 5-9

Connect to Work Station Control service, coding
information 6-7

Control unit communication session termination on
personal computer session D-36

conventions used in the API service
descriptions 2-16, 13-22

Copy Block service, coding information 10-12
copy services

Connect for Copy to PC Session 10-19
Copy Block 10-12
Copy String 10-5
defined 1-7
Disconnect for Copy to PC Session 10-22

copy services:X'64': H-41
Copy String service, coding information 10-5
Create Component Entry service, coding

information 15-8
Create Fixed-Length Queue Entry service, coding

information 3-9, 15-14
Create Gate Entry service, coding

information 15-17
Create Semaphore Entry service, coding

information 15-11
Create Task Entry service, coding information 15-4
Create User Exit Table Entry service, coding
information 15-21

creating a BAT file
Save and Restore C-2
Send and Receive C-2, C-6

creating a batch file
Save and Restore C-2
Send and Receive C-2, C-6

creating an AUTOEXEC.BAT file C-3
creating objects with names 14-6
cursor, physical: changes or limitations on personal
computer sessions D-35

customization 24-5
home panel 24-5
system extension loading 24-5

CUT hardware initialization:X'43': H-33
CUT host sessions, presentation space size F-8

data available signal 14-8
data stream, manual to use for information

listed vii '
debugging a personal computer application

program E-10
decimal numbers used in this manual

described 2-16, 13-22 '
Define Buffer service, coding information 7-25
Define Presentation Space service, coding
information 8-4

Delete Entry service, coding information 3-15,
15-32

Delete Presentation Space service, coding
information 8-11

Delete Resource service, coding information 23-12
Delete Window service, coding information 6-78
Dequeue Data service, coding information 3-12,

20-5
Detach Session ID service, coding information 4-14
DFT host session presentation space size F-7
DFT operations:X'30': H-26
Disable Input service, coding information 5-30
Disconnect for Copy to PC Session service, coding

information 10-22
Disconnect for 3270 Keystroke Emulation service,

coding information 9-10
Disconnect from Host Session service, coding

information 7-11
Disconnect from Keyboard service, coding

information 5-13
Disconnect From Work Station Control service

coding information 6-11 '
dispatching tasks 14-11
Display Presentation Space service, coding

information 8-14
DOS EXEC function call G-3

command line G-4
environment string G-3
file control blocks G-4
take over hardware interrupts
take over software interrupts

14-17
14-18

Index X-3

DOS function calls 14-18
EXEC G-3
invoke Save, Restore, Send and Receive G-2
SETBLOCK G-2

DOS SETBLOCK function call G-2
DOS subsystem services:X'22' or X'23': H-16
DOS, levels supported by the Workstation

Program iv
draw service:X'67': H-43
dump task:X'7F': H-54
duplicate names 14-6

EBCDIC control character I/O codes between host
and IBM 3270 Personal computer D-5

Enable Input service, coding information 5-33
enhanced graphics adapter (EGA)

defined 1-3
extended field bit assignment F-5

Enqueue Data service, coding information 20-3
environment

defined 1-3
string G-3

environment manager services
Add Resource 23-8
coding information 23-2
Delete Resource 23-12
Identify Resource Manager 23-4
Query Environment Characteristics 23-36
Query Resource 23-15
Query Task's Environment ID 23-34
requesting the 23-2
Stop/Reset Environment 23-23
Suspend/Resume Environment 23-17

environment manager services:X'13': H-ll
Erase/Reset structured field

format D-14
ID code D-12

error handler:X'72': H-53
error service, system extension 24-16
error steps H-57
events, signals 14-8
exception handling B-8
EXEC function call G-3
extended field attributes D-7, F-4, F-5

failure, changes or limitations on personal computer
sessions D-36

field attributes D-6, F-3
file control blocks G-4
file control blocks, DOS EXEC G-4

X-4

file transfer commands (Send and Receive)
BAT file to invoke, using C-2
DOS function calls to invoke, using G-2
programmed command procedure to invoke,

using C-6
fixed-length queue

creating 3-3
deleting 3-4
obtaining data from 3-3

fixed-length queue management services
Dequeue Data 20-5
Enqueue Data 20-3
introduction 14-16
Purge Queue Data 20-8

fixed-length queues, definition 14-5
foreground, definition 2-10
full screen with AP A mode, changes or limitations

on personal computer session D-37
functions the API provides 1-4

gate names 3-2
gate, defined 3-2
gates, definition 14-6
generic signal 14-8
Get a Request service, coding information 16-8
Get Logical Timer service, coding information 19-3
Get Request Completion service, coding

information 3-7, 16-14
global software interrupt handlers 14-19

hardware interrupt handlers 14-16
hardware interrupts

DOS function calls 14-17
Install a Hardware Interrupt Handler
service 14-17

Install an Interrupt Handler service 14-18
interrupt handler considerations 14-18

hexadecimal numbers used in this manual,
described 2-16, 13-22

host interactive services
Connect to Host Session 7-4
Define Buffer 7 -25
defined 1-6
Disconnect from Host Session 7 -11
Read Structured Field 7 -15
Write Structured Field 7-20

host interactive services:X'32': H-32

IBM Macro Assembler manual, listed vii
IBM 3270 data stream manual, listed vii
ID Resolution service, coding information 15-30
Identify Resource Manager service, coding

information 23-4
inbound 3270 data stream for partition 0

Read Buffer format D-19
Read Buffer format in extended field and

character mode D-19
Read Buffer format in field reply mode D-19
Read Modified All format D-18
Read Modified format D-18
Short Read format D-18

inbound 3270 data stream structured field
input control B-6

inbound 3270 data stream structured fields
Auxiliary Device Query Reply structured field

format D-25
character set descriptors D-24
Character Sets Query Reply structured

field D-23
Color Query Reply structured field format D-27
DDM Query Reply structured field format D-25
defined B-3
Direct Access self-defining parameter D-26
Document Interchange Architecture Query

Reply structured field format D-26
Highlight Query Reply structured field

format D-28
Implicit Partition Query Reply structured field

format D-29, D-30
character cell dimensions D-29
implicit partition default and alternate

screen size D-29
self-defining parameters D-30

Reply Modes Query Reply structured field
format D-24

Usable Area Query structured field D-22
INCTRL B-6
input control B-6

See also INCTRL
input queue size 5-11
Insert and Insert Data

sending X'DO' from host to 3270 PC
format B-15

Insert and Insert Data, structured fields
sending X'DO' from host to 3270 PC

overview B-12
Install a Hardware Interrupt Handler service

take over hardware interrupt 14-17
Install an Interrupt Handler service

take over hardware interrupts 14-18
take over software interrupts 14-19

Install User Exit Table Entries service, coding
information 15-24

interface
codes, host and 3270 PC D-3
structured field

exception handling B-8
query reply format B-4
read partition query format B-4

verifying operational B-4
interrupt handler management services

application program uses 14-20
Install a Hardware Interrupt Handler 21-4
Install a Hardware Interrupt Handler service,

coding information 21-4
Install an Interrupt Handler 21-7
Install an Interrupt Handler service, coding

information 21-7
introduction 14-16
Query Interrupt Vector Contents 21-10
Remove an Interrupt Handler 21-12

interrupt handlers 14-16
DOS EXEC function call 14-17
DOS function calls 14-18
global software 14-19
hardware 14-17
hardware interrupt considerations 14-18
hardware interrupts 14-17
Install a Hardware Interrupt Handler

service 14-17
Install an Interrupt Handler service 14-18,

14-19
local software 14-19
software interrupt handler considerations 14-19
software interrupts 14-18

Interrupt X'10' 2-8

keyboard services
Connect to Keyboard 5-9
defined 1-6
Disable Input 5-30
Disconnect from Keyboard 5-13
Enable Input 5-33
how to request 5-8
Post Status Code 5-36
Read Input 5-16
return codes 5-8
use of 5-7
Write Keystroke 5-22

keyboard services:X'62': H-35
keystroke definition services:X'6E': H-52
Keystroke Emulation

connect for 3270 keystroke emulation 9-7
disconnect for 3270 keystroke emulation 9-10
field attribute definition 9-2
presentation space format 9-4
Read AID key 9-13

Index X-5

requesting 9-5
return codes 9-5
return codes :X'6Exx' H-51

key top characteristics 5-4

levels of DOS supported by the Workstation
Program iv

limitations
3270 PC D-2

local software interrupt handlers 14-19
logical timer management services

Get Logical Timer 19-3
introduction 14-15
Release Logical Timer 19-8
Set Logical Timer 19-5

macro assembler, manual to use for information,
listed vii

Make a Request service, coding information 16-3
make only keys

defined A-3
scan codes A-3

make/break keys
defined 5-4
scan codes A-3

managing resources, system extensions 22-5, 24-26
moderately well-behaved program 2-10
Multi-DOS

application program performance 2-6, 2-7
Free Storage service 13-15
guidelines for running 2-6
support services defined 1-7
Writing Applications 2-9

multi-host, simplifying setup and control 1-4

Name Resolution service, coding information 3-5
Name Resolution services, coding
information 15-27

names, creating objects 14-6
non-SNA channel commands D-8
non-3270 PC hardware

defined 1-3
restrictions 2-5, 2-11, D-34

nonstoppable environment, defined 1-3
notepad operations:X'51': H-34

X-6

notepad sessions
presentation space size F-8
restoring, using programmed command

procedure C-4

object ID 14-6
objects

components 14-4
creation 14-3
deletion 14-3
fixed-length queues 14-5
gates 14-6
names, creating objects 14-6
semaphores 14-5, 14-14
SVC table 14-6
tasks 14-3
user exit tables 14-6

ODSP See Outbound Data Stream Preprocessor
Option

OIA services:X'6D': H-50
Open X'DO' structured field

sending from host to 3270 PC
format B-12
overview B-ll

sending from 3270 PC to host
format B-21
overview B-20

successful transmission response, format B-14
unsuccessful transmission response,

format B-14
operational interface B-4
operator information area services

defined 1-7
Read Operator Information Area Group 12-7
Read Operator Information Area Image 12-4

order of bit numbering used in this manual,
described 2-16, 13-22

Outbound Data Stream Preprocessor Option
customizing for ODSP 1-2
entry parameters 1-4
initializing ODSP I-2
restrictions and recommendations 1-5
return parameters 1-4
sample program 1-5
using ODSP 1-3

outbound 3270 data stream structured fields
defined B-3
Erase All Unprotected

format D-14
ID code D-12

Erase/Write
format D-14
ID code D-12

Erase/Write Alternate

format
ID code

listed D-12
Write

format
ID code

D-14
D-12

D-14
D-12

overview of API services 1-2
diagram of 1-2

PC application program
debugging E-I0
display interaction B-7
exception handling B-8

personal computer session changes or
limitations D-34

physical cursor, changes or limitations on personal
computer session D-35

PIF
See Program Information Files

poorly behaved program 2-10
Post Status Code service, coding information 5-36
prerequisite knowledge needed to use the API

services v
presentation space

character table F-6
considerations F-2
size

CUT host F-8
DFT host F-7

presentation space services
Define Presentation Space 8-4
defined 1-6
Delete Presentation Space 8-11
Display Presentation Space 8-14
Set Cursor Position 8-17
Switch Presentation Space 8-21

presentation space services:X'69': H-44
presentation space, defined 1-3
print spooling, changes or limitations on personal

computer session D-35
priorities of tasks 14-3
priorities, Create Task Entry service 15-4
problem determination

procedures E-2-E-9
system error E-2
using the trace command E-8

procedures, command
file transfer C-2
Save and Restore C-2

Program Information Files
creating and modifying 2-4
defined 2-3

programmed command procedures
for file transfer (Send and Receive)
for Save and Restore C-4

C-6

Purge Queue Data service, coding information 20-8

Query a Semaphore service, coding
information 18-8

Query Active Screen service, coding
information 6-84

Query Active Task service, coding
information 17-3

Query Active Window service, coding
information 6-81

Query Base Window service, coding
information 4-30

Query Enlarge State service, coding
information 6-57

Query Environment Characteristics service, coding
information 23-36

Query Environment of Window service, coding
information 4-23

Query Hidden State service, coding
information 6-54

Query Interrupt Vector Contents service, coding
information 21-10

Query PC Session PIF Information, coding
information· 4-26

query reply B-6
query reply structured field B-4
Query Resource service, coding information 23-15
Query Screen Background Color service, coding
information 6-60

Query Session Cursor, coding information 4-33
Query Session ID service, coding information 4-5
Query Session Parameters service, coding

information 4-10
Query Task's Environment ID service, coding

information 23-34
Query Window Attributes service, coding
information 6-87

Query Window Colors service, coding
information 6-47

Query Window Names service, coding
information 6-63

Query Window Position on Presentation Space
service, coding information 6-51

Query Window Position on Screen service, coding
information 6-41

Query Window Size service, coding
inform a tion 6-44

Query Windows in Environment service, coding
information 4-20

Index X-7

Read AID Key service, coding information 9-13
Read Input service, coding information 5-16
Read Operator Information Area Group service,

coding information 12-7
Read Operator Information Area Image service,

coding information 12-4
read partition query structured field B-4
Read Partition structured field

Query
format D-15
ID code D-12

Read Buffer
format D-15
ID code D-12

Read Modified
format D-15
ID code D-12

Read Modified All
format D-15
ID code D-12

Read Structured Field service, coding
information 7-15

Receive command
BAT file to invoke, using C-2
DOS function calls to invoke, using G-2
programmed command procedure to invoke,

using C-6
Redraw Screen service, coding information 6-72
Redraw Window service, coding information 6-75
Release a Semaphore service, coding

information 18-6
Release Logical Timer service, coding

information 19-8
Remove an Interrupt Handler service, coding

information 21-12
Reply to a Request service, coding

information 16-11
request queue signal 14-8
request services

defined 1-8
Get a Request 16-8
Get Request Completion 16-14
Make a Request 16-3
Reply to a Request 16-11
Send a Signal to a Task 16-17

requests, tasks 14-7
resource manager

defined 22-5, 24-26
Restore command

AUTOEXEC.BAT file to invoke, using C-3
BAT file to invoke, using C-2
command procedure to invoke, using C-2
DOS function calls to invoke, using G-2

Restrictions
non-3270 PC hardware 2-11, D-34

X-8

semaphores 14-14
workstation program 2-5

return codes H-2
X'Dx through Fx': user system extension H-56
X'12': system services H-3
X'13': environment manager services H-11
X'22' or X'23': DOS Subsystem Services H-16
X'24': DOS system loader H-22
X'25': DOS system loader H-22
X'30': DFT operations H-26
X'32': host interactive services H-32
X'43': CUT hardware initialization H-33
X'51': notepad operations H-34
X'6B': session information services H-47
X'6C': translate services H-49
X'6D': OIA services H-50
X'6E': keystroke emulation services H-51
X'6F': keystroke definition services H-52
X'62': keyboard services H -35
X'63': window management services H-38
X'64': copy services H-41
X'67': draw service H-43
X'69': presentation space services H-44
X'7F': dump task H-54
X'72': error handler H-53
X'81': enhanced connectivity router H-55

Return to Dispatcher service, coding
information 17-16

Save and Restore
BAT file to invoke, using C-2
command procedure to invoke, using C-2
DOS function calls to invoke, using G-2

Save command
BAT file to invoke, using C-2
command procedure to invoke, using C-2
DOS function calls to invoke, using G-2

scan codes
described A-2
IBM Enhanced PC Keyboard (MFI Mode) A-16
IBM Enhanced PC Keyboard (PC Mode) A-13
IBM PC XT Keyboard (MFI Mode) A-22
IBM PC XT Keyboard (PC Mode) A-19
IBM Personal Computer AT Keyboard (MFI

Mode) A-28
IBM Personal Computer AT Keyboard (PC

Mode) A-25
IBM 3270 PC Keyboard (MFI Mode) A-9
IBM 3270 PC Keyboard (PC Mode) A-5
in list of keystrokes, format 5-25
introduction 5-3
special A-3
table of A-2

scheduling tasks 14-11

Select Active Screen service, coding
information 6-98

Select Active Window service, coding
information 6-69

semaphore
code serialization 14-14
management 14-14
restrictions 14-14
signal 14-8

semaphore management services
Claim a Semaphore 18-3
Query a Semaphore 18-8
Release a Semaphore 18-6

semaphore signal 14-8
semaphores

definition 14-5
Send a Signal to a Task service, coding

information 16-17
Send and Receive

BAT file to invoke, using C-2
DOS function calls to invoke, using G-2
programmed command procedure to invoke,

using C-6
Send command

BAT file to invoke, using C-2
DOS function calls to invoke, using G-2
programmed command procedure to invoke,
using C-6

services and gate names 3-2
session information services

Attach Session ID 4-17
defined 1-6
Detach Session ID 4-14
Query Base Window 4-30
Query Environment of Window 4-23
Query PC Session PIF Information 4-26
Query Session Cursor 4-33
Query Session ID 4-5
Query Session Parameter 4-10
Query Windows in Environment 4-20

session information services:X'6B': H-47
session, defined 1-3
sessions

CUT host, presentation space size for F-8
DFT host, presentation space for F-7
notepad, presentation spaces size for F-8
personal computer, changes or limitations

to D-34
suspended PC sessions 2-10

Set Cursor and Get structured fields
sending from 3270 PC to host

overview B-20
Set Cursor and Get X'DO' structured fields

sending from 3270 PC to host
format B-24

Set Cursor Position, coding information 8-17
Set Logical Timer service, coding information 19-5
Set Reply Mode structured field

format D-13

ID code D-12
Set Task "Nonpreemptable" service, coding
information 17-12

Set Task "Preemptable" service, coding
information 17-10

Set Task "Ready" service, coding information 17-4
Set Task "Unready" service, coding

informa tion 17-7
SETBLOCK function call G-2
shift state

SIF

format of A-4
in list of keystrokes, format 5-25
introduction 5-3

See System Information Files
SIFs

creating and modifying 24-9
software interrupts

defined 14-18
DOS EXEC function call 14-18
DOS function calls 14-18
global interrupt handlers 14-19
Install an Interrupt Handler service 14-19
interrupt handler considerations 14-19
local interrupt handlers 14-19

software needed to write programs that use the API
services iv

special 5-6
Stop/Reset Environment service, coding

information 23-23
stoppable environment, defined 1-3
structured field

exception handling B-8
PC application program and display
interaction B-7

query reply B-6
query reply format B-4
read partition query format B-4
sending X'DO' from host to 3270 PC

Open X'DO' structured field, format B-12
sending X'DO' from the host to 3270 PC

Insert and Insert Data B-12
successful transmission response, format B-14
unsuccessful transmission response B-14

structured fields
destination/origin B-9
exception condition B-10

application program, self defining
parm. B-10

format B-10
sending X'DO' from host to 3270 PC

Close X'DO' structured field, format B-18
Close X'DO' structured field, overview B-12
Insert and Insert Data, format B-15

sending X'DO' from 3270 PC
Set Cursor and Get X'DO' structured fields,

format B-24
sending X'DO' from 3270 PC to host

Close X'DO' structured field, format B-28

Index X-9

Close X'DO' structured field, overview B-20
Open X'DO' structured field, format B-21
Set Cursor and Get structured fields

overview B-20 '
successful transmission response, ·format B-14
supervisor

components 14-4
creating objects with names 14-6
fixed-length queues 14-5
gates 14-6
object creation 14-3
object deletion 14-3
semaphores 14-5, 14-14
SVC table 14-6
tasks 14-3
user exit table 14-6

supervisor services
Create Fixed-Length Queue Entry 3-9
Delete Entry 3-15
Dequeue Data 3-12
Get Request Completion 3-7
introduction 14-3
list of 1-7

supervisor services, Name Resolution 3-5
supervisory object services

Create Component Entry 15-8
Create Fixed-Length Queue Entry 15-14
Create Gate Entry 15-17
Create Semaphore Entry 15-11
Create Task Entry 15-4
Create User Exit Table Entry 15-21
defined 1-8
Delete Entry 15-32
ID Resolution 15-30
Install User Exit Table Entries 15-24
Name Resolution 15-27

Suspend/Resume Environment service, coding
information 23-17

suspended PC sessions 2-10
SVC table

definition 14-6
Switch Presentation Space service, coding

information 8-21
synchronous API services processing 3-3
system errors problem determination E-2
system extension

defined 1-3
extending workstation program 1-5

System Extension Message service 24-16
coding 24-18, 24-20, 24-23

to identify return codes 24-18
to request informational messages 24-20,

24-23
identifying error return codes 24-16
requesting error messages 24-17
requesting informational messages 24-17

system extensions
coding 24-2
creating 24-3

X-IO

error service 24-16
how to load 24-13
initialization code 24-4
introduction 24-2
loading 24-13
managing resources 22-5, 24-26
messages and codes 24-15
resident code 24-3
return codes 24-15
System Extension Message service 24-16
system information files creation 24-10
telling· workstation program about 24-5
user supplied 24-5
user supplied options 24-7

System Information Files
creating 24-9
defined 2-2
determining the numbers to use 24-10
modifying 24-9
options panel 24-10

system loader:X'24': H-22
system services H-3

task creating, coding 15-27
task requests 14-7
task state modifier services

Change Task's Priority 17-14
Query Active Task 17-3
Return to Dispatcher 17-16
Set Task "Nonpreemptable" 17-12
Set Task "Preemptable" 17-10
Set Task "Ready" 17-4
Set Task "Unready" 17-7

tasks
definition 14-3
dispatch activity 14-12
dispatch cycles 14-11
dispatcher states 14-12
dispatching procedure 14-11
obtaining request completion 14-10
priorities 14-3
receiving a request 14-9
replying to a request 14-10
request from another task 14-9, 14-10
request to another 14-9
requests 14-7
sending requests 14-9
state modifiers 14-11
task state modifiers 14-11

timer signal 14-8
trace command, using E-8
Translate Data service, coding information 11-4
translate services

defined 1-7

Translate Data 11-4
translate services:X'6C': H-49
transmission of buffer addresses

buffer addresses, described D-31
in 12/14-bit address mode D-32
in 16-bit address mode D-32

typematic keys, defined 5-4
typematic make/break keys, defined 5-4
types of signals 14-8

unsuccessful transmission response, format B-14
user exit tables

definition 14-6
User supplied system extensions

loading 24-5
options panel 24-7

user system extension:X'Dx through Fx': H-56

wait states 14-8
WCC (write control character) D-9
well-behaved program 2-10
window management services

Add Window 6-14
Change Enlarge State 6-36
Change Hidden State 6-33
Change Screen Background 6-38
Change Window Attributes 6-92
Change Window Color 6-25
Change Window Position on Presentation

Space 6-29
Change Window Position on Screen 6-17
Change Window Size 6-21
Clear Screen 6-66
Connect to Work Station Control 6-7
defined 1-6
Delete Window 6-78
Disconnect From Work Station Control 6-11
Query Active Screen 6-84
Query Active Window 6-81
Query Enlarge State 6-57
Query Hidden State 6-54
Query Screen Background Color 6-60
Query Window Attributes 6-87
Query Window Colors 6-47
Query Window Names 6-63
Query Window Position on Presentation

Space 6-51
Query Window Position on Screen 6-41
Query Window Size 6-44
Redraw Screen 6-72

Redraw Window 6-75
Select Active Screen 6-98
Select Active Window 6-69

window management services:X'63': H-38
window, defined 1-3
work station control keys 5-6
work station control, using 1-5
Workstation Program

determining level 2-13
restrictions 2-5

write control character (WCC) D-9
write control character reset actions D-10
Write Keystroke service, coding information 5-22
Write Structured Field service, coding

information 7-20

X'DO' structured fields
sending from host to 3270 PC

Open X'DO' structured field, overview B-11
sending from 3270 PC to host

Open X'DO' structured field, overview B-20
X'DO' structured fields, host to 3270 PC

Close X'DO' structured field
format B-18
overview B-12

Insert and Insert Data
format B-15
overview B-12

Open X'DO' structured field
format B-12
overview B-11

X'DO' structured fields, 3270 PC to host
Close X'DO' structured field

format B-28
overview B-20

Open X'DO' structured field
format B-21
overview B-20

Set Cursor and Get X'DO' structured fields
format B-24
overview B-20

XMA card, defined 1-3

I Numerics I

3270 data stream
attributes D-6
commands B-3, D-8
exception handling B-8
fields B-3
functions D-3
inbound stream B-3

Index X-11

interface codes D-3
manual to use for information, listed vii
orders D-11
outbound stream B-3

3270 keystroke emulation services

X-12

Connect for 3270 Keystroke Emulation 9-7
Disconnect for 3270 Keystroke Emulation 9-10
Read AID Key 9-13

3270 limitations D-2

CD
"0
z

IBM 3270 Workstation Program
Programming Guide

READER'S
COMMENT
FORM

Order No. 84X0390

This manual is part of a library that serves as a reference source for
systems analysts, programmers, and operators of IBM systems. You may
use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use
or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. Your comments will
be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which
this form is addressed. Please direct any requests for copies of publications,
or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

How did you use this publication?

As an introduction] As a text (student)

As a reference manual] As a text (instructor)

For another purpose (explain)

Is there anything you especially like or dislike about the organization,
presentation, or writing in this manual? Helpful comments include general
usefulness of the book; possible additions, deletions, and clarifications;
specific errors and omissions.

Page Number: Comment:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this
publication:

84X0390

Reader's Comment Form

,
,

Fold and Tape Please Do Not Staple Fold and Tape ,

.. I

IIII NO POSTAGE ::,
NECESSARY
IF MAILED

IN THE
UNITED STATES ,

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 95H / 998
11400 Burnet Rd.
Austin, TX 78758

111.11.11.1111.111111 •• 1111.1 •• 1.1111111111111.1.1.1

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

.. I
Fold and Tape Please Do Not Staple Fold and Tape ,

--------- -------- - ---- - - -----------,-®

I ,
,
,
, "'0

, ~
, :z
, ~
, 0

, Z
, c
, (j)

, » ,
,
I ,
I ,
,
, ,
,
,
I

IIIIIIIIIIII 11111111111111
8~O~O *9084X03900001*
SA23-0343-0

